
DISSERTATION

Planning Experiments for the Validation of Electronic
Control Units

Systematic Experiment Planning for the Validation
of Automotive Electronic Control Units

Submitted at the Faculty of Electrical Engineering and Information Technology, Vienna
University of Technology in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

under supervision of

Univ.-Prof. Dr.habil. Christoph Grimm
Institut number: 384

Institute of Computer Technology

and

Priv.-Doz. Dr.rer.nat. Georg Pelz
Design Methodologies, Automotive Power

Infineon Technologies

by

Dipl.-Ing. Monica Rafaila
Matrikelnummer: e0727803

Tumblingerstr. 56, 80337 München, Deutschland

27.09.2010

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Abstract

Starting from pre-silicon verification, automotive electronic systems require a high degree of
reliability, while their functional and structural complexity constantly increases. Despite high-
performance simulation-based tools and methods, verification is still too time consuming. One
of the reasons is the impact on the target functionality of sources of variability e.g. tolerances
of components or to-be-adjusted design parameters, which can come from internal or external
influences. A dependable system must comply with requirements even in the presence of such
variations, thus they must be accounted for early in the verification flow. Too little focus has
been put on planning simulation experiments to extract maximum information about the system
reliability when these factors vary.
The objective of this work is to determine the impact multiple sources of variation have on system
outputs and find the worst-case behaviour under predefined test scenarios, in order to ensure the
system is reliable or find the reasons why it is not. The necessary effort, mainly characterized by
the number of simulation runs which is invested, must be reduced, while a large set of variable
factors must be effectively handled.
Design of Experiments concepts, completed by metamodelling of the results space and random
test methods are analyzed, adapted and extended to perform sensitivity and worst-case analyses.
The steps to realize efficient simulation experiments are detailed. Then, a sequential flow is
implemented, which replaces the decision-making steps by an adaptive, self correcting process.
The worst-case estimate and its associated confidence are then optimized by further iterative
gradient-based search. The complete flow is extended for transient analysis, to characterize the
system behaviour over the complete simulated time frame. Results of simulation experiments
on selected automotive electronic control units reveal the efficiency of the proposed methods,
compared to alternatives.

III

Kurzfassung

Hohe Anforderungen an die Zuverlässigkeit heutiger Automobilelektronik beginnen bereits in der
Pre-Silicon-Verifikation, da ihre funktionelle und strukturelle Komplexität sich ständig erhöht.
Trotz des Einsatzes leistungsfähiger Simulationsmethoden und Tools ist die Verifikation sehr zeit-
intensiv. Einer der Gründe hierfür sind die Auswirkungen auf die Funktionalität von Toleranzen in
Komponenten oder anzupassenden Designparametern, die aus internen oder externen Einflüssen
stammen. Ein zuverlässiges System muss seine Funktionalität auch im Falle solcher Variatio-
nen erfüllen. Deshalb müssen sie bereits frühzeitig im Verifikationsverlauf berücksichtigt werden.
In der Vergangenheit wurde wenig Fokus auf die Durchführung von Simulations-Experimenten
gerichtet, durch die maximale Informationen über die Zuverlässigkeit eines Systems unter solchen
variablen Faktoren zu erhalten sind.
Ziel dieser Arbeit ist es, die Auswirkungen mehrerer Variationen auf das System zu untersuchen
und das Worst-Case Verhalten unter definierte Testszenarien zu finden, um das Systems dadurch
zu validieren oder die Ursachen für den Ausfall zu ermitteln. Der benötigte Aufwand, welcher
hauptsächlich von der Anzahl der durchzuführenden Simulationen abhängt, muss optimiert wer-
den. Zusätzlich müssen zahlreiche variable Faktoren effizient behandelt werden.
”Design of Experiments”-Konzepte, welche durch Metamodellierung und Random-Test-Methoden
ergänzt werden, werden analysiert, angepasst und erweitert, um Empfindlichkeit- und Worst-
Case-Analysen durchzuführen. Die Schritte, die benötigt werden, um effiziente Simulations-
Experimente zu erreichen sind detailliert beschrieben. Anschließend wird ein sequentieller Ablauf
implementiert, um die Schritte der Entscheidungsfindung durch einen selbstkorrigierenden Prozess
zu ersetzen. Die Worst-Case Abschätzung und die damit verbundene Konfidenz werden an-
schließend mittels einer iterativen gradienten-basierten Suche optimiert. Der gesamte Ablauf wird
um eine transiente Analyse erweitert, um das Verhalten des Systems über den gesamten Simu-
lationsverlauf zu charakterisieren. Die Ergebnisse der Simulationsexperimente von ausgewählten
elektronischen Kraftfahrzeug-Steuergeräten zeigen die Effizienz der vorgestellten Methoden im
Vergleich zu Alternativen.

IV

Acknowledgments

I would like to express my deepest gratitude to Georg Pelz, the leader of our design methodologies
group at Infineon. He guided me on this academic path and created the ideal context for my work,
challenging, supporting, as well as welcoming. I thank him for introducing me to this research
area and sharing valuable knowledge on related topics; for all the motivation, encouragement,
appreciation and recognition of work.
To Prof. Christoph Grimm I thank for being supportive along the way, with an active academic
implication and interest in my work; for being open to my ideas and encouraging me to follow
them; for sharing knowledge and ideas, and patiently guiding me on the path which I chose.
Christian Decker is a valuable advisor. I learned from him that there are no problems, but only
challenges, and solutions can always be found if the problem is formulated well enough. He
contributed to my personal and professional development.
I appreciate the optimal environment Infineon provided for my work, in the context of the Auto-
SUN project1. Jerome Kirscher and the rest of the design methodology department were always
helpful. Christian Koehler helped me especially with getting my work on paper and I thank him
for that.
I thank the group from the Fraunhofer Institute, IIS/EAS, with whom I collaborated mostly in
the first part of the PhD. Thomas Markwirth in particular showed full support and contributed
to my practical as well as methodology-related skills. To the group at the Institute for Computer
Technology of TU Vienna, for being always welcoming in Vienna and responding with interest
and useful feedback to my work.
To Prof. Corneliu Burileanu, from the Polytechnic University of Bucharest, the person who
introduced me not only to the academic world, but also to my future employer: many thanks for
making it possible to pursue this work in this environment.
I am grateful to my parents and my sister for all the love and support. They taught me to
appreciate the value of education. I thank them for standing beside me and ensuring that I have
the best conditions to follow the choices I make. I hope to make them proud.

1This research project is supported by the German Government, Federal Ministry of Education and Research
under the grant number 01M3178.

V

VI

Table of Contents

1 Introduction 1

1.1 Automotive electronic control units . 1

1.1.1 Functional and architectural overview . 1

1.1.2 Industry verification flow . 2

1.1.3 Model-based design and verification . 3

1.2 Problem description . 5

1.3 Objective and scope of the work . 6

1.4 Contributions and structure of the dissertation . 7

2 Related work 11

2.1 Classification . 11

2.2 Directed test verification methods . 12

2.3 Metamodel-based methods . 13

2.3.1 Metamodels and fitting methods . 14

2.3.2 Design of Experiments . 14

2.3.3 Response Surface Methodology . 16

2.4 Random test methods . 17

2.4.1 Monte-Carlo methods . 17

2.4.2 Random search and Importance Sampling 18

2.5 Evolutionary algorithms . 18

2.6 Semi-symbolic verification . 19

2.7 Open issues . 20

3 Adapted DoE flow 21

3.1 Preparing the experiment . 22

3.1.1 Experimental framework and basic flow . 22

3.1.2 Response and factor definition . 24

3.1.3 Simulation model: requirements and setup 26

3.1.4 Nominal value simulation . 29

3.1.5 Simulation control procedure . 29

3.2 Designing the experiment . 31

3.2.1 Principles in the design of simulated experiments 31

3.2.2 Effects of factors and response metamodels 33

3.2.3 Levels, probability distributions and correlations in factors 35

3.2.4 Selected experimental designs with fixed-level factors 38

VII

3.2.5 Space filling designs and DoEs with random factors 43

3.3 Building the metamodel . 46

3.3.1 Analysis of variance for factor screening . 47

3.3.2 Fitting the metamodel . 47

3.3.3 Optimization of the metamodel . 53

3.4 Concluding the experiment . 55

3.4.1 Factor effects . 55

3.4.2 Prediction of the response . 58

3.4.3 Worst-Case response prediction . 59

3.4.4 Concluding after random factor DoEs . 60

3.4.5 Summary of the experiment . 64

4 Extensions of the DoE flow for more complex responses 67

4.1 Sequential experimentation . 67

4.2 Optimization of the worst-case by gradient-based search 70

4.3 Extension for transient response analysis . 72

4.3.1 Problem description . 72

4.3.2 Flow . 73

4.3.3 Performance evaluation . 74

5 Results 77

5.1 Implemented alternatives to the DoE flow . 77

5.1.1 Directed test methods . 77

5.1.2 Worst-case direct search . 78

5.1.3 Random test methods . 78

5.1.4 Genetic algorithm . 79

5.2 Window lifter system . 80

5.2.1 System description . 80

5.2.2 Responses and factors . 81

5.2.3 Results of the random factor DoE versus Monte-Carlo 83

5.2.4 Results of the Central Composite DoE versus alternatives 85

5.2.5 Comparison of Fractional Factorials . 88

5.2.6 Sequential DoE and alternatives . 89

5.2.7 Results of transient response analyses . 93

5.3 Airbag driver system . 98

5.3.1 System description . 98

5.3.2 Responses and factors . 99

5.3.3 Results of sequential DoE . 100

5.3.4 Fitting the response distribution after a random factor DoE 103

5.3.5 Worst-case analysis . 104

5.3.6 Alternatives and comparative analysis of performance 105

6 Discussion 107

6.1 Comparative analyses . 107

6.2 Summary . 109

6.3 Limitations . 111

VIII

7 Conclusion and outlook 113
7.1 Conclusion . 113
7.2 Outlook . 114

A Listings 117
A.1 Pseudo-code for the DoE matrix generation . 117
A.2 Pseudo-code for the analysis of results . 118
A.3 Pseudo-code for the sequential algorithm . 119

B Tables 121
B.1 Number of runs in fixed-level DoEs . 121
B.2 Selected fractional factorials . 121
B.3 Number of runs in Latin Hypercube Sampling DoEs 123
B.4 Probability distribution functions . 124

B.4.1 MATLAB probability distribution functions 124
B.4.2 Custom probability distribution functions 124

B.5 MATLAB functions . 125

C Analysis of variance for one factor 126

Literature 127

Internet References 131

Glossary 133

List of Abbreviations 137

List of Figures 141

List of Tables 144

Curriculum Vitae 145

IX

X

1 Introduction

Automotive electronic control units (ECUs) need extensive verification. This is a fact now, more
than ever, as the verification must be done for complete systems, in the form of SoCs (Systems-
on-Chip) or Systems-in-a-Package, integrating what used to be delivered at a component-level.
Requirements relate to functionality, computing power, safety, energy efficiency and stability.
These all translate into more complexity, both as density of integration and heterogeneity.

Safety is crucial in the automotive sector because any point of potential system failure can have
great leverage, endanger costly and time consuming design projects and even the lives of the
vehicle occupants. Therefore, the verification flow must ensure as early as possible a high degree
of reliability, i.e. a low probability that the system responds outside the admitted range. The
next section details the typical structure and verification flow for these systems. Then, a gap
in this flow is identified and an overview of how the presented work deals with the problems is
provided.

1.1 Automotive electronic control units

An overview of typical automotive systems under verification is presented. The general approach
towards pre-silicon development flow in the industrial environment is then described.

1.1.1 Functional and architectural overview

Figure 1.1 shows functional blocks which are present in standard automotive ECUs.

Figure 1.1: ECU functional blocks

1

Introduction

During normal operation, a sensor input, converted into electric signals, is processed to produce
the control signals directed to the actuators, like valves, relays, lamps, motors [SB04b]. Functions
of supply, supervision, communication, conditioning or control are realized in different blocks, in
software and hardware (analog and digital). The central digital element is a microcontroller
subsystem, which can contain multiple cores if more processing power is needed. The ECU
communicates with other control units on a bus subsystem e.g. CAN, through a dedicated
transceiver.

Such systems are heterogeneous1 and introduce sources of variation of multiple natures e.g. cali-
bration parameters of a regulation loop, the tolerance of an electrical component or the fluctuant
transmission delay on the bus. For a complete validation, they need to be tested together with
the surrounding parts in their operating environment. Hence the need to cover multiple domains:
electrical, thermal, mechanical, and handle the interferences between these domains. While the
ECU complexity and heterogeneity increase, the time to reach a dependable validation must be
decreased. The next section details the typical verification flow.

1.1.2 Industry verification flow

Figure 1.2 shows the well known V-model, applied for design and verification of complex systems
and highlights the aspects relevant for the approach. An automotive ECU must be validated as
a complete system early in the design process, before going down in the development chain, in
order to ensure conformance to requirements e.g. customer expectations, standards’ compliance
or budget constraints.

Figure 1.2: Phases of the V-model in ECU design and verification

A virtual executable representation i.e. a model of the system is built and refined as part of
the design flow. Starting already from the conceptual level, it is often required to simulate it

1contain analog and digital electronics and embed software

2

Introduction

in complete application scenarios or even with the surrounding environment and systems, e.g.
for demonstration of customer applications. Model-based verification is deployed throughout the
entire development process, but different levels of abstraction focus it on different requirements.
Options for system-level modelling and simulation are detailed in the next section. The archi-
tectural level is of interest, when the system is already partitioned and modelled, and where the
conformance of the virtual system against the requirements must be tested.

It is necessary to confirm that, given the current proposal of implementation, the system would
behave as desired. The concept, translated into an executable description, must fulfill the target
functionality for different application scenarios. This introduces a set of requirements coming from
the target specification, e.g. expected ranges for system outputs, typical and extreme conditions
in which the device must operate normally. Additionally, for the top level verification, nominal
values and admitted variations of block-level parameters are provided as outputs of the concept
level design and are also needed as inputs for the next step of block-level implementation.

At this level of system validation, sensitivity analysis is a step necessary for the design space
exploration (Figure 1.2). It characterizes the impact the existing sources of variation have on the
target behaviour, which is quantified in outputs of interest. The next step which is important
for validation against requirements is the worst-case analysis. By worst-case we understand the
situation farthest possible from the intended behaviour, with respect to the variable conditions.

Industrial verification rarely addresses these issues so early in the design process, i.e. at the
architectural level. This is a gap which must be filled in order to avoid the situation where a system
is functionally compliant, but fails the final tests of conformance, i.e. under specific settings of
its parameters/stimuli, the outputs fall outside the required ranges. Manufacturers along the
complete supply chain for automotive systems must commit to a high degree of dependability.
Therefore, new methods are needed, which start from the basic simulation flow, and extend it to
perform fast and reliable multivariable sensitivity and worst-case analyses. The inputs to these
validation steps are the system model at the proper level of architectural refinement, where all
variables of the system and environment are controllable, and the requirements with respect to
these variables and target system behaviour.

1.1.3 Model-based design and verification

Model usage can accomplish in-depth verification tasks when hardware is not available, thus
offers a cost effective and systematic solution to deploy key phases of the development flow.
Some examples are: functional verification, architectural exploration, application demonstration,
virtual platform software development. High-level models are needed in early phases, for concept
definition and proof, but also along the way to tape-out, by reflecting the functionality of the
complete system, in its real context of application. These conditions would be otherwise, i.e. in
real hardware testing, hard to reproduce and almost impossible to explore.

Options for modelling and simulation

Figure 1.3, adapted from [54], gives an overview of current approaches for modelling digital, as
well as heterogeneous systems, i.e. mixed-signal, mixed-level, mixed-domain. Specification and
simulation of complete heterogeneous systems can be covered at a pure functional level by tools
like MATLAB/Simulink. However, such tools do not cover architectural level details. On the

3

Introduction

Figure 1.3: Specification languages and design abstractions

other hand, implementation-focused solutions like VHDL-AMS [PAT02] do not address the high
complexity issues which occur in system-level modelling.

The above mentioned reasons motivate the use of SystemC [GLMS02], enhanced by its transaction
level modelling (TLM) library [Ghe05], as description means which enables abstraction, and
extended by SystemC-AMS [GBVE08], offering the possibility to describe heterogeneous systems.
The extension has been continually improved [VGE05, VGE04], and proven its applicability in
system-level modelling and verification [VPB+08, ADR+08]. As a consequence, first industry
design flows are adopting it [63, 62], and provide reasons to approach it for the domain-specific
problems we must face.

Adopting open source tools gives the opportunity to have interoperable models, and more perspec-
tives to integrate them in a flow which suits best the needs of the respective field of application
and level of abstraction desired. Additionally to the expressivity and flexibility SystemC can
offer, a high performance in simulation can be achieved when the verification takes place at the
right level of abstraction. This gain in speed is an essential advantage, which amplifies in the
case of multi-simulation flows like the one proposed in this work.

System-level simulation for sensitivity and worst-case analysis

Simulation-based verification addresses a wide range of purposes, as Figure 1.2 also points out.
The functional verification translates requirements on the behaviour into test cases and observes

4

Introduction

how the system responds over the simulated time frame. In this case, it is of interest to check that
specific events occur, e.g. power-up behaviour, switch of the outputs under predefined stimuli.
Visual assessment is essential, while the specific timing or exact values of outputs are only roughly
verified.

The next step must be to analyze these aspects deeper, i.e. apply changes on potentially variable
aspects, quantify how close the result of the complete test is to the ideal one and interpret these
values. This can involve optimization of the sources of variation, in order to get closer to the
ideal behaviour, or modifying them to test the system by driving it as far as possible from the
target behaviour. Either way, the output of each simulation becomes a very limited set of values
as compared to a database of signals traced over the complete test duration. This reduced set of
values symbolizes the system performance with respect to the simulated test case. It is referred
to as the response, and exemplified in the next section.

1.2 Problem description

As previously mentioned, the main problem to deal with is handling numerous sources of vari-
ation with potential impact on the behaviour of the system. The values for the parameters of
components, either internal or external to the system, or for the environment conditions, are not
guaranteed, but rather vary in specified windows. Block parameters need tuning and their final
values are still affected by manufacturing or operating changing conditions. Tolerances, safety
margins or simply the room left for later design decisions always introduce variations. Hence
the need for early validation of the system against requirements, in the presence of such influ-
ences [SB04b]. Responses and factors are illustrated in Figure 1.4 and are defined in the following.

Figure 1.4: Factors and responses

Responses are defined as measures of the system’s performance or characteristics at its interface,
which must be within required ranges in order to validate the system behaviour. They are
quantities which can be measured or computed after each simulation. Responses can be static,
i.e. only one value characterizes one simulation run, with respect to what needs to be checked in
the specific test. Common static responses are signal properties, electrical or timing-related e.g.
maximum value, slew rate, drop in value within a predefined time. System response times, e.g.
end-to-end transfer delays, time to process and transfer a message, can also be of interest and

5

Introduction

be set as responses. A dynamic response refers to a set of samples for signals of interest, which
quantifies its transient behavior. Dynamic response analysis is addressed later in the approach,
as an extension to the basic static response flow.

Factors are sources of variation with potential impact on the response. As Figure 1.4 shows,
factors can come from the stimuli e.g. the supply voltage, or can be parameters, both of external
blocks e.g. loads from the test bench, and of the device under test e.g. component delays.
Table 1.1 exemplifies factors with impact on common responses in ECUs, which have the typical
structure introduced in Figure 1.1 [PGZ08].

Table 1.1: Typical ECU factors

Source of variation Factors

Environment Temperature, Supply voltage
Measurement ADC resolution, Amplifier Gain, Offsets
Power switch Slew Rate, ON-Resistance
Supply, voltage regulators Reference voltage, Regulated voltage, Settle time
Supervision, Protection Thresholds (temperature, voltage)
Transceiver Jitter, End-to-end delays
Actuators Loads

Factors are controllable inputs of the simulation process. They vary in pre-specified windows
and form a multi-dimensional, continuous verification space. Experiments are sets of simulation
runs which apply variations in the factors to identify reasons for changes in the response. It
is necessary to optimally cover this hyperspace, to discover important factor effects and safety
margins for system responses, to ensure the system conformance before moving on to the next
design step. The characterization phase must realize a sensitivity analysis to determine how
factors and their interactions impact the response. To validate that the response is within a
specified range, the response’s extremes over the verification space are of interest and they are
referred to as worst-cases. Worst-case analysis explores the factor hyperspace to find the worst
response and the main causes for it.

To reduce the overall verification time, great effort has been invested into developing modelling
methods and solutions which speed-up simulation, as exemplified in the previous section. Raising
the abstraction level gains performance in simulation, at the expense of a reduced model accuracy.
But this is just a first step toward smaller verification times. Models can and should be resimulated
until the conformance of the system is verified under the variation of all factors. This raises the
question of which are good measures for the coverage of the factor space and for the reliability of
the response validation in general. After defining them, the present work must find how to plan
the set with minimum number of simulation runs, which is able to reach the target coverage and
reliability in response characterization.

1.3 Objective and scope of the work

The general goal of this work is to perform reliable characterization and validation, at the archi-
tectural level as illustrated in Figure 1.2. In the context of this work, reliability is the probability
of system conformance with value-ranged requirements. The performance of system validation is
then given by how well the reliability has been evaluated. When many variables i.e. factors can

6

Introduction

impact it and vary in continuous ranges, the ones with significant impact must be isolated and
the worst-case behaviour must be estimated, to check that the system can be counted on under
any condition. Therefore, the accuracy of estimates must be maximized for:

• the impact of factors on the response

• the prediction of the response in specific points, i.e. for specific factor settings

• the worst-case response

Since neither real effects nor the true worst-case is known, the error of response prediction in
simulated points and the coverage of the factor space are to be evaluated as measures of perfor-
mance. When statistical distributions of factors are known, biased sampling of the verification
space achieves a higher, i.e. closer to real, coverage. Similarly, when the statistical distribution
of the response is derived, any prediction made on its (extreme) values is improved.

In this process, it is important to keep the number of simulation runs under control. The number
of runs is a difficult topic to address right from start, because most of the times a decision-based
flow is needed, where simulations are run to improve the estimates of the previous steps, until the
target reliability is reached. There is no hard restriction, but in general, no more than 1k runs
should be involved, even for large factor sets i.e. of up to 30 factors. Therefore, an exponential
increase with the number of factors is not acceptable.

The verification is simulation-based and the level of abstraction in modelling is rather high, i.e.
the system is modelled using SystemC and its extensions. In order to address similar issues at
a circuit-level, approaches are needed which involve a high computational complexity, e.g. to
handle low-level thermal effects. These approaches are not applicable here because they cannot
handle sufficient factors or they use too many simulation runs. This is justified more in Chapter 2
of related approaches and in Section 5.1 of implemented alternatives. Such complex approaches
are not even necessary, therefore methods which take advantage of the higher level of abstraction
are proposed.

Another aspect which reduces the scope of the approach is that the systems under study are
designed for applications in the automotive domain. Most of the principles would be applicable
to systems from other domains. The main aspects to consider are complexity reflected in a high
number of factors i.e. more than 10 and heterogeneity of the systems: factors can be discrete or
continuous, can have statistical properties and can be correlated to each other.

In addition to these boundaries for the scope of the work, which help to filter the possible
approaches, the proposed approach presents limitations which reduce its area of applicability.
These are detailed in Section 6.3.

1.4 Contributions and structure of the dissertation

The Design of Experiments (DoE) methodology is the starting point of the approach. DoE is a
discipline with very broad application across many sciences. Classical DoE was initially focused
on improving the outputs of real life experiments, by applying mathematical statistics on physical
systems. For such systems, the scientific DoE started with agricultural experiments in the 1920s,
followed by chemical experiments in the 1950s, and is now also applied in social systems [Kle08].
This domain is covered extensively by textbooks such [Mon05].

7

Introduction

Out of the DoE classical framework, several principles apply only in real life experiments, while
others work in simulation experiments as well. This class of concepts and methods has not been
clearly delimited, especially because it is highly problem and domain dependent. The goals of
experimenting vary in a wide range and the degree of complexity of the systems under verification
also constrains the applicability of classical DoE. The degree of control exercised on the factors
further differentiate the DoE applied on deterministic simulation models from experiments on
random (stochastic) simulation models.

Therefore, what DoE covers is a wide variety of experimental designs and analysis methods, with
a strong mathematical foundation and much past evidence that they can meet various design
objectives. In addition, the so-called metamodelling framework provides an extensive class of
deterministic functions (metamodels) which approximate the response with respect to factor
variations. Results of properly designed experiments can accurately fit metamodels with power
to predict the response in not yet simulated points.

What DoE and metamodelling domains do not cover, however, is to indicate how to isolate
techniques which are efficient for specific cases. The gap between these domains, currently covered
only in research, and simulation practices in industrial applications must be filled. The methods
under evaluation can be proven effective if and only if they work on the complete, real-sized
systems. Testing the methods on responses of deterministic systems or functions, i.e. where
the worst-case is known or can be computed a priori, would not prove the applicability on our
simulated systems. The systems must first be characterized in terms of response complexity and
predictability, before establishing the equivalence to others. This calls for an empirical study, to
reach a worst-case as close as possible to the real, unknown one. On the other hand, such systems
are highly complex in terms of functionality, size and/or structure, thus they present large sets
of factors and require long simulation times, so not many simulations can be spent.

The experiment flow proposed here manages to:

• find worst-cases and factor effects more efficiently than existing simulation-based approaches

• extend DoE to a strategy of sequential simulation, in order to build upper and lower bounds
for the response, be it static or transient i.e. signals

which is a first in the high-level verification of automotive industrial systems and applications.
More questions are addressed in the presented work: how to select the responses and the corre-
sponding factors to test; how to implement the existing methods, since rather complex algorithms
for statistical data analysis and optimization routines are needed; how to best integrate them
with the system simulator; how to automate the flow, since many recommended techniques are
decision-based, so they involve the user interaction; whether and how they can be coupled with
other deterministic optimization methods.

The present work extends the basic simulation framework to implement the core of DoE. Clas-
sical methods for experiment planning and analysis are first tested and compared on simulated
systems, then optimized, to be efficient in this extended framework. Predictive metamodels are
built and optimized to characterize the response and replace expensive simulations. Worst-case
estimates and factor effects are derived from the metamodels, corrected and confirmed by simu-
lation. These are improved by the extension referred to as random factor experimental design, in
order to account for factor distributions and conclude on the resulting statistical distribution of
the response. A reduced number of runs is invested to extract the necessary results, in terms of
coverage and accuracy of the estimates for factor effects and for the worst-case.

8

Introduction

Chapter 2 realizes a selection out of the existing problem-related approaches. It explains the
basic concepts and justifies the choices of DoE and metamodelling as starting point. Chapter 3
implements them and evaluates their feasibility. Section 3.1 presents a solution to implement
multi-simulation flows. It uses standard tools, to build a reusable, transparent framework, suit-
able for experiment planning and analysis. Section 3.2 details selected principles of experimental
design, while Section 3.3 adapts methods of statistical analysis of the experimental results. Sec-
tion 3.4 shows how to interpret the final outputs of the analysis methods, in order to reach the
targets initially defined.

The complete experiment is automated in Section 4.1, so that it can become a sequential, self-
adaptive flow, with ability to revise assumptions evaluated false and to reuse the previous simula-
tions’ results. Section 4.2 extends the basic experiment flow to iteratively simulate in the region
of the worst found case and increase the reliability in the worst-case estimate.

The automatic experiment flow is robust enough to be extended for a transient analysis, where
response metamodels are estimated for several sample times along complete simulated test cases
(Section 4.3). This is of interest because the impact of factors and the worst-case drivers change
in time. The sensitivity and worst-case studies span over complete simulated time frames, and
do not even require more runs than before.

The methods require minimum additional effort in preparing the model of the system and in
building the experimental framework. The applicability of methods, in terms of conceptual reuse
and portability from one case study to another, is maximized. A configurable interface is offered,
which requires no more interaction than needed to the user, and provides sufficient outcome of the
experiment. The approach is concluded efficient only after evaluating a high overall performance,
on the results of two case-studies: a window lifter ECU and an airbag control system. Several
alternatives are implemented for comparison.

Table 1.2 represents the structure of the proposed approach, along with its extensions. The first
two columns point to chapters/sections which present methods or results, while the issues which
are solved in the respective part are indicated in the third column.

9

Introduction

Table 1.2: Structure of the approach, and addressed issues

Chapter Section Solved issues

Adapted
DoE flow

Preparing
the experi-
ment 3.1

• configure and control multi-run experiments 3.1.1

• extract from the requirements the [factors, response]
sets 3.1.2

• setup the model to run the experiment 3.1.3

Designing
the experi-
ment 3.2

• evaluate the feasibility of the DoE principles in simulation
experiments on the systems under verification 3.2.1

• select the metamodels which can fit the responses 3.2.2

• identify and adapt classical experiments which can meet
the requirements e.g. as number of runs 3.2.4

• account for statistical properties and correlations of fac-
tors 3.2.3, 3.2.5

Building the
metamodel 3.3 • adapt statistical DoE methods to postprocess the results

• fit the metamodels for accurate estimates 3.3.2

Concluding
the experi-
ment 3.4

• extract and interpret factor effects 3.4.1

• characterize the response in terms of statistical properties
and the worst-case 3.4.4.2, 3.4.3

Extensions
of the DoE
flow

Sequential
experiment
flow 4.1

• extend the flow to an automated sequence

• revise assumptions on the response

• reuse results from one experimental step to the next

Optimization
of the worst-
case search 4.2

• gradient-based search to optimize the worst-case estimate

Transient re-
sponse analy-
sis 4.3

• extend the flow to analyze more time samples

• reduce the overall postprocessing time

Results Alternatives
to the DoE
flow 5.1

• implement existing approaches to address similar issues

• characterize their performance for comparison

Window lifter system 5.2
Airbag driver system 5.3 10

2 Related work

This chapter discusses existing approaches to similar problems, both classical and recent. Con-
cepts, terminology and methods related presented approach are also introduced. The first section
classifies the related approaches. Then, the main classes are separately treated, while the last
section explains the the existing gap between industrial practices and research, which must be
covered.

2.1 Classification

The problem is defined in relation to the scientific terminology commonly used. The general goal is
to find a set of controllable inputs (factors) which minimizes a given objective function (response).
Since the response is not available directly and must be estimated through simulation [FGA05],
it is a simulation optimization problem. In a stochastic problem, the simulation provides a
noisy estimate for the response, and replications of simulations yield better estimates for the
response expectation [FGA05, Kim06]. The present problem is a deterministic one, however,
as the response is uniquely determined given a fixed set of parameters. Although a continuous
optimization problem, because of continuous factors’ ranges, it can be considered discrete, with
levels for the factors obtained after discretizing these specified ranges.

Figure 2.1 shows a rather simplified hierarchical description of the present approaches to similar
problems. [FGA05, FCS08, SPKA01, WS07, MM06] contain reviews on such approaches, often
also referred to as simulation optimization techniques.

The main differentiating criteria is whether the strategy is sequential (or adaptive) i.e. whether
outputs of previous simulation runs are fed back to the simulation controller. This splits the
approaches into directed test, i.e. where no feedback exists, and adaptive search. The third
option of symbolic simulation, when feasible, would not need a feedback loop because it covers
the input space within one simulation, by symbolically representing variations of factors. Details
are provided in Section 2.6.

The second criteria is whether statistical properties of factors are used to generate the values
which are tested in simulation: random test (or Monte-Carlo methods) consider these properties.
Such methods, whether adaptive or not, are analyzed in Section 2.4. A selection of these is
adopted to be extended by the presented work.

The genetic algorithm approach and the rest of meta-heuristics are also covered separately, in
Section 2.5. The part which presents most interest is the metamodel-based class of methods.

11

Related work

Figure 2.1: Related approaches

This consists of the core, i.e. Design of Experiments methodology, treated in Section 2.3.2. The
Response surface methodology, as a representative of the gradient-based approaches, is also a
metamodel-based method. It is discussed in Section 2.3.3.

2.2 Directed test verification methods

Directed test methods apply predefined settings to factors. This class includes the nominal value
simulation, when each factor is set to the typical (or central) value of its range. This is the starting
point of any simulation flow, to ensure the system behaves as expected under nominal simulation
settings. Unfortunately, these methods are often the only ones used in practice. But for in-depth
analyses of the system’s sensitivity and worst-case, directed test is less efficient, as compared to
approaches which learn about system behaviour from the previous runs. The worst-case is the
worst simulated case, because of no predictive nature of the process.

Trial-and-error methods such as best guesses fall within this class of directed test. They are
not reliable, since they assume knowledge of the system and are subjective. One-at-a-time ap-
proach successively varies each factor to observe the impact on the response. The problem with
this method is that factors can interact in their impact on the response, thus must be varied
concomitantly to draw correct conclusions.

Exhaustive search methods simply test all factor combinations and are applicable only when
factors have a finite number of levels. A proper discretization (or sampling) of the factor space
and exhaustive exploration of the sampled space (when feasible) ensures a higher quality for
the worst found response than trial-and-error methods. This is rarely used, because of the high
dimension of the factor space. For instance, uniform grids present an exponential increase of the
runs with the number of factors n and a power increase with the number of levels per factor k:
number runs = kn. Even for a poor discretization of k = 2, i.e. each sample is a corner of the
factor space, the method requires more than 1k runs for n = 10, and more than 1M runs for
n = 20.

12

Related work

Random or selected corners can reach a good performance only when the control algorithm
is sequential (adaptive), as implemented in [SREP08]. Otherwise the methods also fall in the
category of trial-and-error, and are considered inefficient. All of the above methods are simple
to implement, but are low on performance. They either ensure unacceptable coverage or they
require too many runs.

Space filling experimental designs target an optimal discretization of the continuous factor space,
by a given number of samples. Even when used as directed test methods, they can achieve a
better coverage then the ones previously mentioned. However, such designs should be involved
in metamodel-based approaches, i.e. be succeeded by a step of metamodel fitting. They are
covered in Section 3.2.5. Random test methods, although trial-and-error, are separately treated
in Section 2.4.1, and are adopted by the approach.

2.3 Metamodel-based methods

Metamodels represent deterministic approximations of the response of the system with respect
to the factors under variation, over the space of interest. They are also referred to surrogates by
sources such as [GTCD09]. Once the functional behaviour has been validated1, metamodelling
can serve one or more of the following objectives [Bar04, Mon05]:

• Screening: in the early experimentation phases, the number of the factors can be reduced,
by identifying and removing the ones with insignificant effects.

• Sensitivity analysis (or characterization): by choosing an intuitive representation of the
metamodel with respect to the influence of factors and their interactions, the metamodel
can assist in understanding the impact of factor variations on the response.

• Design space exploration (or model approximation): based on a set of underlying assump-
tions, an interpolation is performed to predict the response between the simulated points.
Evaluating this fitted metamodel, i.e. the interpolation, in specific points is then an inex-
pensive alternative to simulation.

• Worst-case analysis: the metamodel is used to predict where the response reaches extreme
values, i.e. is farthest from expected.

• Design optimization and robust design: for design optimization, changes are applied in
factors to identify the settings which best accomplish the functionality. For robust design,
the target is to choose factors which ensure minimum variability in the response.

In the context of the present work, the experiments must characterize and validate the system,
according to the requirements described in Section 1.1.2. Screening filters the initial set of factors
to a reduced subset, which can be efficiently handled by experiments with a reasonable number
of runs. Sensitivity analysis determines the impact of the remaining factors on the response, by
fitting the simulation results on a metamodel equation. Then, the worst-case response is searched
with the help of the fitted metamodel, in order to ensure conformance to the requirements or,
alternatively, to explain potential nonconformance sources.

1The nominal setting of the factors ensures a system behaviour as expected

13

Related work

Although metamodelling is performed, factors are not varied to find optimal implementations, i.e.
for system optimization (usually done over wide factor ranges). Nor are factor values searched,
to ensure less response variability, i.e. for robust design.

2.3.1 Metamodels and fitting methods

Depending on the dependency on the factors, metamodels can be multivariate polynomials or
have more complex forms. When the specific representation is parametric, it needs estimation
of the parameters’ values. For this, an experimental design (or sampling algorithm) is built,
which requires minimum samples of the factor space, and provides optimal data to estimate the
metamodel parameters, i.e. to fit the metamodel. The sample size increases with the number of
parameters to estimate, therefore with the metamodel complexity. The main challenge to finding
an appropriate sampling algorithm is, however, the increase of the sample size with the number of
factors. To use the metamodel to characterize the dependency response(factors) and to predict the
response in points of interest, a step of metamodel validation must be performed. This evaluates
how close the estimates provided by the metamodel are to the response values extracted from the
real system. Various metrics on evaluating the residuals, i.e. distances between predictions and
response values, with associated thresholds, are available: [GCLD10]. Optionally, a step which
optimizes the parameter estimates can follow.

A wide variety of metamodels, with associated sampling strategies, as well as fitting and validation
methods have been covered in research [SPKA01, WS07]. For the present approach, polynomials
are chosen: they are simple parameterized metamodels, which realize an intuitive characterization
of the response by attributing at least one coefficient to each factor and to each interaction of
factors. This is found sufficient to approximate the response on the regions under study with
acceptable residuals. Such metamodels can handle enough factors and are flexible enough to
allow corrections of estimates and reuse of experimental results from one step to the next.

Metamodelling strategies which perform a more accurate interpolation of the simulation results
are available. For instance, the Kriging metamodel, popular in deterministic simulation exper-
iments, corrects the polynomial approximation by an additive term Z. Z is assumed to be a
realization of a stochastic process in which the covariance structure relates to the smoothness
of the response. Several correlation functions between sample points can be chosen. Software
packages like [56] estimate the Kriging parameters. However, fitting such a metamodel involves
more estimation overhead (complex regression algorithms), thus more potential sources of errors.
Although these metamodels can achieve higher accuracy, perfect interpolation of the simulated
points is not considered necessary.

Even more sophisticated metamodels need more effort to be built, as number of simulations
and algorithmic complexity. Less intuitive response representations are used, therefore factor
effects are harder to be extracted and interpreted. They involve more parameters, therefore more
necessary runs. For instance, the sampling which is recommended in [KR03] starts with a grid
of 3 levels per factor and assumes a number of factors smaller than 6. [56] also suggests grids as
space filling designs. But, as mentioned in Section 2.2, this exponential increase of runs with the
number of factors is not acceptable.

2.3.2 Design of Experiments

DoE is an approach to plan and analyze real life as well as simulated experiments [Mon05]. DoE

14

Related work

is a metamodel-based strategy, with particularities in each of the steps previously detailed i.e.
experimental design, metamodel choice, metamodel fitting and validation. It has emerged in
many fields, as it invests a reasonable number of simulation runs to handle a highly dimensional
verification space, while still locating factor effects unlike other methods [Bar04]. DoE is applied
and extended in the present work for deterministic simulation experiments, where all factors
are controllable and under investigation, to study the impact which functional blocks and their
interdependencies have on the system outputs. This leads to an efficient, still reliable, multi-run
strategy to discover response bounds and understand the main causes for worst-case behaviour.

DoE concepts

DoE assumes that the response dependency on the factor set f can be approximated with a
multivariate low-order polynomial metamodel R(f):

R(f) = c0 +
∑2

o=1

∑n
i=1 c

(o)
i · foi +

∑n−1
j=1

∑n
k=j+1 cjk · fj · fk

Its coefficients quantify the effects of factors on the response: c
(1)
i - main effects, c

(2)
i - quadratic

effects, cik - 2-factor interaction effects. The assumption is based on the sparsity of effects principle
which often applies in practice, that implies the system is likely to be driven primarily by some
main effects and low-order interactions.

Statistical DoE plans experiments with minimum runs, in order to find factor effects and how they
interact, with maximum statistical confidence. The term DoE is used to refer to such experimental
designs. Multiple regression extracts the coefficients which best fit simulation data. Orthogonal
DoEs allow optimal regression of results, because they obtain results which enable a decoupling of
factor effects. These DoEs work in the assumption that estimated effects are significantly higher
then the effects which are not taken into account. This is reasonable according to the sparsity of
effects principle, and can be checked after regression.

2-level factorial DoEs set all factors to either the minimum or maximum of their ranges. Such
factor sets are referred to as corners. 2-level fractional factorial designs consist of selected factors’
corners, and are widely used to investigate main and interaction effects. Response Surface DoEs
additionally estimate 2nd order effects, using at least one extra level per factor. Space filling DoEs
can improve the metamodel fitness at the cost of more simulation runs. E.g. a Latin Hypercube
Sampling (LHS) generates random factor levels, e.g. normally distributed, in order to maximize
the minimum distance between points in the factor space [56]. Software packages generate the
tests required by such DoEs [52, 53]. To evaluate the fitness of the regression model as a response
estimate, the set of residuals is analyzed. For adequate models, they must be small enough,
approximately normally distributed with mean zero and not correlated to the response values.

A classical experiment flow includes the following steps [Mon05]:

1. Define the objective of the experiment

2. Define the response

3. Choose the factors and their levels

4. Plan the experiment

5. Execute the experiment

15

Related work

6. Analyze the results

7. Conclude

More details are provided throughout Chapter 3, where a selection of the available methods is
made to support the approach. Section 3.2.1 presents how principles of experimentation are
adapted to the particularities of the problem, while Sections 3.2.4 and 3.2.5 adopt a set of the
classical DoE methods to use in the approach. The results of these DoEs are analyzed using
classical and extended methods, as well as custom ones, introduced in Sections 3.3 and 3.4.

Applied DoE

Several recent applications support DoE methods for input space exploration and estimation of
effects. [MPLM07] exemplifies application of DoE in practical simulated experiments, but states
some problems. E.g. the experimental framework should be designed for simulated systems,
instead of adapted from real world experimentation cases, as they differ significantly. Moreover,
there is a recognized gap between simulation practitioners and applied DoE theories.

DoE can control simulations of parameterized systems, for various verification purposes: screen-
ing [TM01]; sensitivity analysis [NYLS05, SB04a]; for robust design [ATW06]; for multi-objective
(multi-response) optimization [TWLBX09]. Previous work evaluates experimental designs to
optimally cover the verification space or reduce the number of simulation points while keeping
reasonable prediction models [San07]. Simulated DoE was efficient in more areas of electronic
system design: tuning microprocessors [SVL07]; designing chip floorplanning [NYLS05]; CMOS
technologic processes [SB04a]. However, most applications are either limited to screening, or deal
with relatively few factors (<10).

The present work is supported by publications of the author in field-related conferences: [PR10,
RDGP10c, RDGP09b, RDGP10a, RDGP10b, RGDP10, RDG+10]. They show how experiments
were conducted on automotive ECUs, modelled using SystemC and its extensions. But more on
the topic is presented starting with the next chapter.

2.3.3 Response Surface Methodology

The Response Surface Methodology2 is a gradient-based technique which addresses determinis-
tic, continuous optimization problems. The procedure identifies the direction of the maximum
increase of the response. A local response surface representation is built, which drives the se-
quential search for the response extreme. Given a current best setting of the input variables,
a movement is made in the gradient direction. The two common representations are regression
models and neural networks. Optimization is then applied using deterministic optimization pro-
cedures. Linear regression can guide estimating the direction of the steepest descent. Once the
region of optimum has been narrowed down, a more elaborate model is estimated to lead the
search [Mon05, FGA05].

The main drawback is that the regression assumptions must hold. It presupposes that the response
variable is differentiable in the feasible region, with respect to the inputs. In addition, it is
best suited to find local extremes, and it is difficult to apply on a highly dimensional input
space [FGA05]. One reason is the large amount of simulation points in one area before exploring

2also known as ”hill climbing” or method of the steepest ascent

16

Related work

other parts of the search space, which increases with the number of factors. Moreover, commercial
software for simulation optimization does not integrate the simulation model and the optimization
routine [FCS08, FGA05].

Gradient-based methods are coupled to the experimental framework and applied later on. The
algorithms do not scale when applied on the initial factor space, as observed in the results. A low
convergence rate is caused by the assumptions of regression algorithms i.e. continuity, derivability,
which do not hold over the full initial space. Even more, it isolates the local optima instead of
targeting the worst-case, i.e. global response extreme. However, it can conduct an efficient search
in a relatively small region, when it is applied on a reduced area in the neighborhood of the
previously estimated response extreme. The implementation is detailed in Section 4.2, while
Sections 5.3.5 and 6.1 provide results of such an implementation.

2.4 Random test methods

Basic random test is commonly referred to as Monte-Carlo simulation and is a type of directed
test. Random search, on the other hand, assume using the results of the previous simulations, to
guide the worst-case search. Both of them are detailed next.

2.4.1 Monte-Carlo methods

The classical method is a circuit-level analysis which randomizes prior to the simulation technol-
ogy parameters of the device models reflecting fabrication variations, e.g. doping concentration,
and observes their effects. Monte-Carlo methods can in this sense be extended to the system
level, in order to determine effects of statistical variations of factors on the simulation responses.
The controlled randomization can account for dependencies between inputs e.g. by deterministic
correlations or other constraints. Monte-Carlo and constraint-random verification are applied in
practice, e.g. in [NZH+08]. Most of the times, these methods are limited to low level verification,
e.g. circuit or block levels.

For system level randomization, the SystemC Verification Library [55] offers efficient implemen-
tation of constraint-based random stimulus generation [GED07] and it brings interesting ideas
about how to build custom randomization functions. An extensive set of classes is offered, and
the coupling to the simulator should present no problem. However, it does not support directly
generic distribution functions, which are common with other packages like MATLAB, and which
are considered necessary for the approach. Moreover, it does not provide a built-in simulation
multi-run ability. The formulation of correlations between factors is found of use for the present
goals and is analyzed in more detail by the approach.

The proposed methods use as starting point random test methods, implemented using the statis-
tical MATLAB functions [52]. The statistical package presented in [MHE08], which implements
system-level Monte-Carlo simulations on SystemC models, is also used. These are extended to
handle factor correlations, and postprocessing steps are added to address sensitivity and worst-
case analysis. This type of experimental design is referred to as random factor DoE (RFDoE).

17

Related work

2.4.2 Random search and Importance Sampling

Random search algorithms address problems of discrete input space exploration. They move
iteratively through the feasible parameter space, like gradient-based procedures, but instead of
using a gradient, the next candidate solution is probabilistically drawn from the neighborhood of
the current best. The success depends heavily on the defined neighborhood structure [FGA05].

Methods like Importance Sampling are somehow related to random search. Their underlying idea
is that certain values of the random variables in a simulation have more impact on the response
than others. If these important values are emphasized by sampling more frequently, then the
estimator variance can be reduced. It is important to choose a distribution which encourages
the important values. This use of biased distributions results in a biased estimator for extreme
response values [59]. [SR07] synthesizes such ideas from Importance Sampling, data mining
and Extreme Value Theory. It demonstrates the application of Statistical Blockade, to overcome
simplistic assumptions about worst-case corners, and speed-up standard Monte-Carlo.

Such approaches involve too many simulations (> 1k) to deal with the number of factors required
in the systems under study. These methods usually address circuit-level problems, while for
system-level simulations assumptions on the response e.g. only low-order factor effects, need to
be made and checked, to simplify the problem and reduce the number of runs. In addition, the
approaches are strictly worst-case oriented and do not make use the simulation data to realize a
system characterization. The sensitivity analysis problem should also be addressed while exploring
the verification space. However, [SR07] offers interesting ideas, e.g. how to build and apply filters
to the input variables before simulation.

2.5 Evolutionary algorithms

Worst-case search is also addressed by deterministic metaheuristics. This is a category includ-
ing approaches such as genetic algorithms, tabu search, scatter search and other iterative and
population-based algorithms. Extensive reviews are offered by sources e.g. [FGA05, FCS08].

Concepts of genetic algorithms

The genetic algorithm (GA) is a method for solving optimization problems by repeatedly modify-
ing a population of individual solutions. At each step, GA selects individuals randomly from the
current population to be parents and uses them to produce the children for the next generation.
GA is commonly applied to solve problems that are not well suited for standard optimization
algorithms. To create the next generation from the current population, GA uses

• selection rules to select the individuals that contribute to the population at the next gen-
eration, i.e. parents

• crossover rules, to combine parents to form children for the next generation

• mutation rules, to apply random changes to individual parents to form children

Unlike gradient-based algorithms, GA generates a population of sample points at each iteration,
and the best point in the population approaches the solution. Another important difference is that
GA involves random generation when selecting the next population, i.e. not only deterministic
computation [51].

18

Related work

Applied genetic algorithms

[SREP08] presents a study of worst-case response time estimation of distributed real-time systems,
for automotive communication protocols, simulated with SystemC. The optimization strategies
in [SREP08] involve GA and bring out interesting ideas of corner-case reduction. The addressed
problems are typical to real-time systems i.e. message scheduling policies for processes in commu-
nication protocols. The present goals concern, however, heterogeneous systems with multi-nature
factors and system inter-dependencies, which must be abstracted to reduce the number of runs.

Combining evolutionary algorithms with the Response Surface Methodology has also been under
research. A drawback is the assumption that the input space is of low dimension [Guo07]. In
general, such algorithms are necessary for highly complex responses. [KO07] also presents an
approach applying some of the mentioned techniques i.e. meta-heuristics, random search. As
viewed by [Guo07] as well, these reasons make evolutionary algorithms not applicable when many
factors must be handled. Moreover, the sensitivity analysis problem should also be addressed.
The present work tests GA and compares its results to a gradient-based worst-case search, and
finds a lower performance for the GA search.

2.6 Semi-symbolic verification

The semi-symbolic simulation is the counterpart of formal verification in the analog-mixed signal
domain. The Affine Arithmetic approach3 is a representative, which optimizes classical interval
arithmetic. It can be successfully applied on systems with uncertainties, in order to estimate
worst-case values of signals over the simulated time frames [GHW04]. Since an exhaustive search
of the continuous factor space is not possible, Affine Arithmetic symbolically represents variables
in the simulation process. Because symbolic simulation can cover many system executions in a
single run, it can greatly reduce the size of such verification problems [61].

Methods based on Affine Arithmetic lead to safe, but over-pessimistic response bounds when
dealing with complex effects and interactions, and are hard to apply on systems which need
to transfer discretized information between different blocks. In addition, documentation and
software implementations are hardly available.

[FS00] applies this approach to compute outer bounds and GA for inner bounds of the response.
Although efficient for the addressed topic, it would present limitations in the present case, with
respect to the number of uncertainties and width of the ranges to cover. As the authors conclude:

”much care is required as the computation time could become unsustainable, as is
dictated by the joint action of several factors: the number of uncertain parameters, the
width of relevant uncertainties, the use of iterative models, the length of computation
chains,the number of nonaffine operations involved by the evaluation function. For this
reason, trying to define precise limits, in terms of maximum number of components
or degree of complexity or any other factor, for the circuits that can be analyzed by
means of AA is meaningless.” [FS00].

3Affine arithmetic is a model for numerical analysis, which represents the quantities of interest as affine combi-
nations (affine forms) of certain primitive variables. These variables stand for sources of uncertainty in the data or
approximations made during the computation.

19

Related work

The application domain is in this sense restricted to the circuit level:

”A tolerance analysis method is presented, which is best suited for studying circuits
represented by iterative models/equations or whose response is known in explicit an-
alytical iterative form.” [FS00].

To address a higher level of abstraction, techniques which make use of the simpler underlying
models of computation are found more time effective and sufficient in terms of worst-case results.

2.7 Open issues

Approaches which are common among simulation practitioners are often limited to directed test
methods: nominal value simulations; best guesses, e.g. selected corners; one-at-a-time approach;
exhaustive search e.g. by full corner-case exploration. Monte-Carlo and constraint-random ver-
ification are applied in practice, but most of the times only at a low level, e.g. circuit level
verification. However, in none of these cases a proper analysis of simulation results is made and
information useful for system characterization is wasted. As a consequence, pessimistic guesses
on the effects of input variables are made in order to ensure the specification compliance in the
worst-case. These lead to over-estimations, i.e. oversize the specification range, over-restrict the
inputs’ ranges [Law07].

For the reasons stated in this chapter, metamodel-based methods, starting from the core of DoE,
indicate the most appropriate direction to follow. When it comes to such approaches, there
is a significant gap between simulation practices and the research community. Implementation
and test on real-sized applications are needed. From a practical point of view, the routines
for experiment planning and analysis must be coupled to the simulator. Automation of the
complete flow is then to be implemented. The flexibility and reusability of the algorithms must
be maximized.

The availability of software to implement the DoE or metamodelling approaches on an industrial
scale is arguable: MATLAB toolboxes provide support for generation of DoEs, but only for real-
life experiments. Still, the functions from the Statistics toolbox [52], together with optimization
algorithms [51] can be adapted. Software packages such as the Design and Analysis of Computer
Experiments toolbox [56], the SUMO toolbox [GTCD09] (also MATLAB-based), or [53] also
provide support for experimental design generation and metamodelling. The dimension of the
factor space always represents a restriction. This is discussed more in Sections 3.2 and 6.3.

From a methodological point of view, the approach must first evaluate whether the classical
framework provided by the statistical DoE is applicable to the presented problems. Then, experi-
mental designs and metamodel representations which are effective must be identified. Algorithms
which can fit and validate the metamodels must be adapted and extended when it is needed. In
addition, the framework must be extended to account for factor distributions and correlations,
because they are important aspects for the variations of real systems. Finally, the results must be
analyzed and processed to compute the effects of factors and predict the worst-case, and properly
presented to the verification engineer e.g. by special graphical representations.

20

3 Adapted DoE flow

This chapter details how the present work deals with the problems described in Section 1.2. The
core of the approach consists of the main phases to deploy a simulated experiment, which are
described in Figure 3.1. The chapters which detail their implementation are also referenced.

Figure 3.1: Main experimental flow

• Preparing the experiment, Chapter 3.1. The setup and control of the simulations is also
described: Section 3.1.5.

• Designing the experiment, Chapter 3.2.

• Building the response metamodel, Chapter 3.3.

• Concluding the experiment, by characterization of the response with respect to impact of
factors and the worst-case: Chapter 3.4.

Chapter 4 will present extensions of this flow, which represent a big advantage of implementing
the previous steps.

21

Adapted DoE flow

3.1 Preparing the experiment

This chapter focuses on the prerequisites for the next phases of the experiment. These preliminary
steps must convert the objective of the experiment into inputs which the algorithms can inter-
pret. Outputs of the simulation must be filtered and properly transferred to the postprocessing
algorithms. The analysis of results must finally translate the conclusions to the user.

Section 3.1.1 introduces the functional parts of the simulation experiment (Figure 3.2) and their
interfaces, as well as the experimental flow (Figure 3.3). Section 3.1.2 shows how to transfer the
objective of the experiment into executable descriptions. Section 3.1.3 provides information on the
device under test (DUT) model, with its associated test bench and stimuli structure. A modelling
approach is recommended, in order to easily configure and monitor the simulation model. Then,
the simulation flow is detailed. Section 3.1.4 describes requirements on the first run, both from
the functional verification and from the experiment implementation points of view. Section 3.1.5
describes the simulation controller and the communication scheme to the user and the simulator.

Therefore, this part contributes to the approach by ensuring that any specification requirements
can be passed to the experiment planning algorithm. Starting from standard tools of simulation
and data processing, a framework is built which automates the DUT setup and experiment
simulation, together with collection of necessary data for analysis of the experiment. These phases
of preparation of the experiment and simulation control can be decoupled from the experiment
planning and analysis of results, which will go hand in hand and will be detailed in subsequent,
dedicated chapters.

3.1.1 Experimental framework and basic flow

Figure 3.2 represents the basic elements of the setup for the control of multiple simulations
required by the experiment.

Figure 3.2: Experimental framework

The DUT refers to the model of the system under study. For each simulation, it must be set up
in a test bench, configured and stimulated according to the experiment-specific test. A monitor
unit must record the response values for the chosen experiment. It must also be configured prior
to the simulation, in order to store no more than the necessary data.

The configuration and stimuli unit (Cfg&Stim) is responsible for these steps. It transfers the
input from the controller (Ctrl) and from the DUT configuration file (DUT config) to the model.
This file contains the current setup of the DUT and of the monitor. More about the configuration
file can be found in Section 3.1.2. The results file consists of the response values recorded during
the experiment.

22

Adapted DoE flow

The controller plans the experimental design, drives the simulation and analyzes the results. The
DoE matrix is the output of the experiment planning step, performed by the controller. It is a
m × n matrix, which specifies the setting for each of the n factors, in each of the m simulation
runs of the current experiment. The communication to the controller can be differentiated into a
”control flow” and a ”data flow”. The control flow (marked by red arrows in Figure 3.2) refers to
getting the user input, as well as launching the simulations and receiving the simulation status
from the simulator. The data flow, marked by blue arrows, is the transfer of configuration and
DoE matrix data, as well as simulation results and experiment reports.

The controller reports to the user which point of the experiment has been successfully passed, to
easily monitor the progress (response values which are successfully recorded, runs which are sim-
ulated/remaining/failed, partial results of the analysis step). Simulation bottlenecks or postpro-
cessing steps which take longer than expected can be then detected to terminate the experiment,
if necessary. The final report is also stored by the controller.

Some choices relevant to this framework are discussed in the following.

There must be a single source to provide the settings for the factors active in the current exper-
iment, necessary for the DUT (re)configuration. These settings must however be visible to the
user. A good choice is to apply them directly from the controller. On the other hand, the con-
troller must be decoupled from application dependent details, such as nominal values of factors.
Therefore, a configuration function, contained in the Cfg&Stim unit, is used to translate the data
of the current test into DUT specific settings.

The controller unit will pass the reconfiguration data for each simulation run in the form of
the DoE matrix. It acts as a master, controlling the simulation executable. Alternatively, the
controller could forward the complete DoE matrix to the Cfg&Stim unit, with the advantage of
less data communication between units, i.e. only once for a larger set of runs. That would imply,
however, less control and insight from the controller side, and additional overhead to launch the
complete experiment from the Cfg&Stim side.

Another important aspect is what and (from) where to monitor and report, with respect to the
simulation results, so that the controller receives no more than the experiment specific information
to be postprocessed. A monitor unit inside the test bench will be responsible for that. Details
can be found in Section 3.1.3. Generally, the implementation targets an overall increase in
performance, by minimum time and memory space consumption and minimum file handling.
This lowers the risk of errors and the overhead to access configuration/results/report data.

Figure 3.3 represents the experiment flow, focused on the communicating entities.

• The User sets the objective of the experiment. This is transferred through the DUT con-
figuration file, but also by passing options to the controller. Section 3.1.2 describes how
requirements, extracted from the specification, are translated into experiment setup.

• The nominal simulation, i.e. with no variations in the factors, is first executed and checked,
as detailed in Section 3.1.4. Then, the controller generates an experimental design, according
to the configuration file and other options set by the User.

• (Loop for the number of runs) Each simulation run is launched, according to the DoE matrix
file. The Ctrl executes the Cfg&Stim, by passing the test case of choice and the index of
the current run. The Cfg&Stim unit configures the model using the settings from the DUT
configuration file. During the simulation, the monitor stores the response in the results
file, then stops the simulation if configured so. The stimuli function returns the status to

23

Adapted DoE flow

Figure 3.3: Simulation control flow

the Ctrl. More details about the model setup are provided in Section 3.1.3 and about the
simulation control process in Section 3.1.5.

• The controller collects and postprocesses all simulation data. The final report is then
provided to the user.

3.1.2 Response and factor definition

This section explains how the objective of the experiment must be transferred to a format which
can be interpreted for experiment setup and processing of results. Requirements on the system
behaviour under specific stimuli, and variabilities with potential impact on it are extracted from
the specification. These must be converted into the response, respectively factors’ definition.
Factors are directly mapped to parameters of the units of the DUT model, and responses to
signals in the test bench or related events.

Specification information must be extracted, filtered and centralized into the DUT configuration
file. A prerequisite of the experiment is that the ranges for the factors are or, if not, they should be
specified by the initial requirements, so that the user can simply extract the relevant information.
Another prerequisite is the DUT model exists and that all the variables, potential factors in the
experiment, are available. When necessary, these variables must be coded as parameters into the
DUT model, test bench or the stimuli function. Section 3.1.3 provides more model related hints.
These prerequisites enable choosing the response, test case, stimuli, and initial set of factors (i.e.
active factors), in this order.

Figure 3.4 shows an example of a DUT model in its test bench. When triggered, the system
regulates the voltage of the load. A corresponding DUT configuration file, in a tabular form, to
which specification requirements were transfered can be viewed in Figure 3.5.

Such a file is parsed for experiment and simulation configuration. The controller extracts the
experiment specific information: number of factors, relative variations of factors and, if existing,
expected range for the response, factor distributions and correlations. The Cfg&Stim unit must
parse this file as well, and map the factors to parameters of the DUT model and of the test bench,

24

Adapted DoE flow

adc_inadc_out A

D

p
n

IFX_DMOS

g

d

s

t

A

PWL_SRC_SDF

sdf_o

short_inp

dac_out

inp A

D
p n

p

n

sdf_voltage

i_rshunt
i_dmos

i_adc

p

n

sdf_voltage

IN

IN

OUT

OUT

i_amp1

i_amp2

i_dac

i_pid

i_supply

p
n

i_r_load

p
n

p
n

i_l_load

i_c_load
DUT

Figure 3.4: Example of a DUT regulating the load voltage

and the response to signals and monitors. This way, it is able to configure them as requested
by the controller, prior to each simulation. Other examples of factors and responses, extracted
directly from the specification, can be found in the Results chapter 5.

Figure 3.5: DUT configuration file

Constraints on how the factors and response are chosen can be modelling concerned, i.e. related
to the configurability of the models or to the ability to record and store the simulation outputs.
These are detailed in the next section. Alternatively, the constraints can be related to the
experiment budget, e.g. maximum number of runs, imposed by the initial requirements, or they
can come from the restrictions of the approach: maximum number of factors, width of factor
ranges.

25

Adapted DoE flow

3.1.3 Simulation model: requirements and setup

SystemC, with its extensions, is chosen as means of modelling and simulation. It is expressive
in terms of modelling capabilities: several models of computation and communication (MoCCs)
are available to optimally describe heterogeneous systems. Models are parameterizable, run-time
configurable and easily refinable. In terms of simulation, SystemC can achieve a high performance
and offers good observability over the run-time behaviour. More reasons for this choice can be
found in Section 1.1.3. The following paragraphs detail the requirements and implementation
using SystemC for the model and simulation related units.

Model requirements

Some requirements on the models are stated, in order to make use of the above mentioned
capabilities. First, the abstraction capabilities must be used and the appropriate MoCC must be
selected, so that the trade-off simulation speed versus model accuracy is well controlled. More
details on how to control and optimize this trade-off are provided by previous work [RDGP09c,
RDGP09a]. Second, the model parameters must be easy to view and configure. This class of
reconfigurable model parameters forms an ”executable” description of the design in its current
state. The values are not hard-coded in the models, rather turned into variables and read-into
the model at execution time. They can be accessed when needed, or set to the test case specific
defaults when not accessed.

Figure 3.6 shows an example of functional parameters for a switch model, no matter which is
the choice as abstraction level or MoC: Electric Networks (ELN) or Discrete Event (DE). Simple
control and observability of the current state are enabled by configurable parameters.

Figure 3.6: Parameterization of a switch model

Third, the model must be easy to inspect i.e. the response must be easy to monitor and record.
The response is most of the times a static characteristic of a signal. When only a few time samples
of the signal are necessary to compute the response, the related signal should not be traced for
the complete duration of the test. Performance-wise, it would be inefficient, because it would
cause lower simulation speed and high memory consumption, which amplify for experiments with
hundreds of simulation runs. Moreover, it would introduce overhead, in order to postprocess the
traced samples, and extract the actual response. The next paragraph introduces the monitors, i.e.
functional elements which record static responses. When a transient response is of interest, e.g.
to validate a signal over the complete test duration, the tracing should be done with a precision
not higher than necessary. Such a transient analysis is presented in Section 4.3.

26

Adapted DoE flow

Monitors

Since SystemC allows inspection in the models during simulation, special monitors are created to
track the responses. The requirements on the system usually relate to ranges or extreme values
for: voltages, currents, delays, etc. Depending on the nature of the response, monitors can:

• measure signal properties: slew rate, offset, extreme values, settle time, drop in value after
a predefined time.

• compare the signal against thresholds, e.g. to record the delay of signal transition to specific
values.

• measure delays between signal-related events.

These components are configurable and applicable under different scenarios. The user can provide
as inputs the path to the signal to monitor and specific parameters such as threshold value,
time/value to start detection, the format or file for the log. The monitor can terminate the
simulation once the response has been recorded, to speed up the complete experiment.

The model is considered valid for the experiment only if the monitor can be provided after the
nominal run with the data necessary to compute the response. A response is valid if it is in the
expected range, and this is most of the times test case related (e.g. no switch-off delay will be
recorded in a test-case which does not switch off). An arbitrary simulation run is valid if a valid
model has provided a valid response after the execution.

The Cfg&Stim unit

The Cfg&Stim unit is executed by the controller, using as arguments the test case of choice and
the index of the current run, in order to find the corresponding factor settings. The main inputs
are the DUT configuration file, and the experiment-specific data in the form of the DoE matrix.
This unit includes a configuration part which instantiates, elaborates and configures the DUT,
test bench and monitor. The factors and responses are extracted from the DUT configuration
file. The rest of the DUT parameters are set to defaults, done either by the configuration part,
or by the submodel itself. The second part is responsible for simulation control. Both make
use of SystemC constructs. An auxiliary function is also needed for the parsing of the DUT
configuration file.

Simulation flow

The flow performed for each simulation, by the Cfg&Stim unit, DUT, test bench and monitor, is
visible in the figure.

27

Adapted DoE flow

Ctrl

Ctr l

Cfg&Stim

Cfg&Stim

DUT & Tb

DUT & Tb

Monitor

Monitor

run index
testcase

DUT config.

get factors
& response

DoE matrix

get factor
settings

create

create & configure

configure

sc_start

apply stimuli

track & record
response

status

alt [response valid]

error status

[response invalid]

Simulation flow in SystemC

• Parse the DUT configuration file, to extract:

– nominal and tolerance values for factors active in the current experiment

– paths to configure them in the model

– monitoring function calls (and the path to the signal related to the response)

– test case associated to each response. This way, responses are tracked only in test
cases which can provide them.

• Parse the DoE matrix file, to find the (normed) factor settings for the current run. A check
of consistency for the number of factors from the two sources is also performed.

• The test case passed as argument selects the stimuli. The monitors for the test case-related
responses are created and configured, as well as the DUT model and the test bench.

• The simulation is executed, by applying the test case specific stimuli.

28

Adapted DoE flow

• After the monitor records a valid response, it returns a proper status to the controller. If an
invalid response value or no report from monitor is recorded, a status to indicate simulation
failure is returned to the controller by the stimuli function.

It is important to select the type of monitor and create it at run time, because the monitor choice
depends on the configuration file, which is written and provided to the Cfg&Stim only at run
time. Only after the DUT is created, can the monitor and related signals be created and bound
to the model and its test bench. Once these steps are performed, the configuration of the DUT
submodules and of the monitor are performed. Some details on this flow from the controller
perspective will be given in Section 3.1.5.

3.1.4 Nominal value simulation

The nominal value simulation refers to the center point of the hypercubic factor space i.e. with
each factor set to the center value of its range. It has special significance, since it is always the
first run, and will be used as a reference for the subsequent simulations. Its results enable checks
of functional aspects of the experiment: a failure to run it or to validate that the response is in
the expected range means the objective of the experiment must be reconsidered. The user should
be involved, mainly to visually assert the functional behavior.

For example, Figure 3.7 shows the nominal value simulation for the system from Figure 3.4,
corresponding to the configuration file in Figure 3.5. A visual check of the transient behavior is
performed. The values for the responses of interest (also represented in the figure) are checked
and stored by the controller, as reference for the experiment.

Figure 3.7: Nominal value simulation

During the nominal value simulation, more aspects can be verified: duration of one simulation
run, quality of reporting, correct initial settings. These should be detected here, before investing
time in the rest of the runs. As noted before, tracing the response-related signal would slow
down future simulations and take up memory space, so it will be disabled after this point. More
examples of nominal value simulations can be found in the results chapter 5.

3.1.5 Simulation control procedure

The controller acts as master in the complete experiment. It is the interface between the user
and the rest of the units of the experiment. The steps it performs are:

29

Adapted DoE flow

1. Prepare the experiment, by

(a) initial interaction to the user
(b) parsing of the configuration file
(c) launching the nominal value simulation

2. Design the experiment (detailed in the following chapter).

3. Control the experiment: once the DoE matrix is generated, each run is launched, by calls
of the Cfg&Stim executable, with the test case of choice and the run index passed as
arguments. The controller checks the returned status at the end of each execution.

4. Analyze the results, see Chapter 3.3.

5. Report the experiment status and resulting performance.

This flow is modular i.e. these phases can also be performed stand-alone. The process can be ex-
tended to an adaptive loop, including a decision-making process dependent on the postprocessing
output. This is covered in Section 4.1. The extension can also be performed in order to analyze
transient responses, as shown in Section 4.3

Similarly to the nominal simulation, the status and the response are checked for each run. For
each failed run e.g. failed status returned, no result recorded, or a response out of range, a decision
to abort the experiment can be taken. Alternatively, ”Not-a-Number”s (NaNs) can replace the
failed runs, to be ignored by the analysis part. This way, the failed simulation issue does not
escalate e.g. response values with wrong orders of magnitude are detected in good time, and
offsets in the matrix of results caused by missing responses are avoided. Otherwise, subsequent
postprocessing steps would be misleading, and would compromise the complete experiment.

MATLAB is chosen for the implementation of the controller. It can easily control the SystemC
simulation and its toolboxes help to implement the algorithms described in the next chapters.
MATLAB also facilitates handling, processing and visualization of large data structures, which
is necessary for the experiments under study.

The data flow i.e. the transfer of configuration data to the simulator, and of simulation results
to the controller, is implemented by simple file intercommunication. The simulation is executed
by the controller by simple system calls system(′exec name arg1 arg2...′). The command line
arguments can pass any necessary parameters, while using environment variables was found to
be a lower-performance alternative.

30

Adapted DoE flow

3.2 Designing the experiment

Figure 3.8 represents the main inputs and outputs of the experimental design step. This step
outputs the DoE matrix, with factor settings for each run.

Figure 3.8: Experiment design flow

The general goal of experimental design is that the postprocessing of results can provide maximum
information about the response after minimum number of runs. Further targets are:

• ability to handle maximum number of factors

• minimum initial assumptions on the response behavior over the verification space

• accuracy in predicting the response, with a special focus on the worst-case

Section 3.2.1 presents principles of the classical DoE found valid in simulation experiments on
the systems under study. Assumptions made about the response, decided by a metamodel choice,
and their impact on sensitivity analysis, are discussed in Section 3.2.2. Section 3.2.3 translates
the requirements on factors in terms of levels and distributions, into inputs to the experiment
planning step. Fixed-level DoEs, presented in Section 3.2.4, use a fixed set of levels for the
factors and build optimal DoEs with minimum number of runs. Alternatively, random factor
DoEs (RFDoEs), described in Section 3.2.5, invest more runs, but provide more insight in the
factor space, by distributing the factors according to their statistical properties.

In order to plan effective experiments, the approach contributes with deciding which principles,
metamodels and classical DoEs apply to the simulated systems. Given the requirements and the
budget constraints, as well as the nature of the factors and of the simulation model, the selection
of experiments is validated on deterministic responses, before being applied to simulation cases.
For the experiments with random factors, the present work must contribute by generating the
proper distributions and correlations for factors, and evaluating the coverage such DoEs reach.

3.2.1 Principles in the design of simulated experiments

This section describes the core principles of experimenting. They are either directly adopted
from real life experiments, or adapted to simulated systems. The general problem of experi-
mental design in the presented context is to plan simulation sets in order to extract an optimal
approximation of the response. A design is identified by the DoE matrix d of factor settings
for the experiment. The analysis of the vector of results r must find the best estimate for the
coefficient vector c so that:

res((R(c, d), r)) = min. (3.1)

where:

31

Adapted DoE flow

• R is the metamodel which approximates the response.

• c is the set of parameters (or coefficients) which must be estimated.

• d is the DoE matrix of factor values used in the experiment. It is an m×n matrix, m is the
number of runs and n is the number of factors.

• r is the vector of length m of response results, corresponding to the DoE matrix d.

• res is the residual function, i.e. a metric of the distance between the results r and the
estimates given by R.

The type of R and the number of runs m influence the DoE choice, which in turn determines the
d matrix.

The experiment objective The steps common to any experiment are followed, as introduced
in Section 2.3.2. The first step is to define the objective of the experiment. Screening, sensi-
tivity analysis and worst-case analysis are sequentially addressed here, with respect to common
objectives of metamodelling methods. The next step, i.e. definition of the responses and factors,
is derived from the initial requirements, as described in Section 3.1.2, and with the practical
restrictions explained in Section 3.1.3.

Response assumptions The sparsity of effects principle states that the system is likely to be
driven primarily by some of the main effects and low-order interactions. This means it can be
assumed that some of the factors have insignificant impact on the response, as compared to the
rest. The low-order effects prevail over the higher order ones and from an order upwards, the
effects can be neglected. These assumptions often apply in practice, and can be supported by
a choice of small factor ranges, e.g. a relative variation of less than 50%. Factor ranges must
be small enough anyway for the purpose of preserving the functionality i.e. avoid unpredictable
factor effects and a corresponding misbehaviour of the system. Such small ranges ensure low-order
effects, and keep the response variance under control.

These assumptions are the starting point when choosing the metamodel and the corresponding
experimental designs. The metamodelling Section 3.3 introduces methods to evaluate the cor-
rectness of estimates. Classical principles recommend a sequential approach, which invests no
more than 25% of the total number of runs in the first experiment. A sequential approximation
strategy should be deployed, which experiments and refines the estimates until the metamodel
is fit. Section 4.1 automates such a self-correcting flow, which revises the assumptions which are
found not valid.

Factor controllability An important advantage of the simulated systems is that all factors
are controllable. Noise factors are not considered, and neither are their consequences on the
experiment planning and analysis. As compared to classical experiments, another benefit of
controllability is that, at least in theory, any factor level can be used. The consequence of driving
the system into a state not reachable in reality i.e. corresponding to unrealistic factor settings
should be detected by an invalid response value.

32

Adapted DoE flow

Discretized factor ranges For each factor, the sampling algorithm selects out of the range
of possible values, be it continuous or discrete, a discrete subset for the specific experimental
design. Then, the analysis interpolates over the factors’ ranges. When discretizing the ranges,
the sampling algorithm chooses either predefined factor levels, by fixed-level DoEs (Section 3.2.4)
or random levels distributed in the range (Section 3.2.5).

No levels outside factor ranges In some experimental designs e.g. Central Composite De-
signs, the levels could fall outside the factor’s range. Similarly, the tails of normal distributions
can be outside the region under study. In such cases, there is no guarantee that the system can
even provide a response. Therefore, the reachable factor levels used here are restricted to within
the configured ranges. These limit the verification space and the response approximation is used
only inside these ranges.

No replication Replication, i.e. rerunning tests with the same factor settings, is used by
classical experiments to estimate the influence of uncontrollable factors such as the measurement
error and to obtain a more precise estimate of the mean response. It can highlight the sources
of variability both between runs and within runs [Mon05]. In our case, however, sample points
must not be resimulated, because more runs with control over all factors would clearly yield the
same response value. Still, replication of their results only can be useful for the analysis, to apply
methods of the classical DoE, e.g. to weigh the specific points more in the metamodel estimation.
The experimental error will be estimated null, while the remaining response variance is attributed
to the factors or to the metamodel unfitness.

No randomization, no blocking Randomization is necessary in real life cases and implies
that the experimental material and the order in which individual runs are performed should
be randomly determined [Mon05]. This way, the impact of measurement conditions, such as
human errors or the environment, must be homogeneous. Blocking means grouping the runs into
batches, which have relatively homogeneous experimental conditions. It is used to eliminate by
compensation the influences of uncontrollable factors e.g. noise [Mon05]. Since these influences
do not impact simulation results, none of these principles nor their consequences are applied here.

Further issues when adapting the theories of experimental design to simulations are related to
the metamodel representation, which is presented next.

3.2.2 Effects of factors and response metamodels

Metamodels are empirical models which approximate the response as a multivariable function
on the factors. A form is assumed, which is fitted by simulation data. The general approach to
fitting it is referred to as regression analysis, while the choice of simulation data to fit various
metamodels is referred to as experimental design.

It is of interest to choose intuitive metamodels which highlight factor effects, i.e. the impact
of factors on the response can be easily extracted. That is why parameterized metamodels are
chosen, and their coefficients are used to characterize the factor set. At least one quantity should
be associated with each factor as this allows comparison and interpretation. Therefore, the main
requirements for a metamodel are:

33

Adapted DoE flow

• small number of runs, i.e. little data necessary to estimate it

• simple fitting algorithms

• possibility to extract factor effects out of the metamodel coefficients

Multivariate polynomials are regression metamodels which meet these requirements, as long as
they pass the fitness tests, described in Section 3.3.2.1. Their general form, for an n-dimensional
factor space, is:

R = c0 +

o∑
k=1

n∑
i=1

c
(k)
i · F (i)k +

n−1∑
i=1

n∑
j=i+1

cij · F (i) · F (j) + ...+ ci...n ·
n∏
i=1

·F (i) (3.2)

Here, F (i) is element i of the vector of factors F of length n. Such metamodels can be decomposed
into components, to decouple factor effects of different types. Coefficients quantify these effects:

• ci: individual factor effects: linear or main effects for k = 1; quadratic effects for k = 2.

• ci...k: interaction effects; cij are the 2-factor interaction effects.

The statistical model includes the constant term, n individual effects for each order,
Cn2 = n · (n − 1)/2 2-factor interaction effects, Cn3 3-factor interactions etc. and one n-
factor interaction, so there are 2n−1 effects. The low-order effects, i.e. main, 2-factor interaction
and quadratic effects sum up to (n+ 1) · (n+ 2)/2.

Figure 3.9 shows these basic factor effects, in a 2-dimensional factor space. The response surfaces
correspond to metamodels with only one of these components.

Figure 3.9: Basic factor effects

Projected on one factor dimension, these effects are visible in Figure 3.10. The interaction effect
determines an impact of one factor on the response which depends on the level of the other factor.

Figure 3.10: Basic factor effects in one dimension

Such types of low-order effects are quite common in practice:

34

Adapted DoE flow

• linear effects e.g. end− to− enddelay(blockidelay) =
∑

i blockidelay

• 2-factor interaction effects e.g. derived from Ohm’s law U(R, I) = R · I
• quadratic effects in resonant systems e.g. Fourier(U)(frecv) = f(frecv2)

The sparsity of effects principle implies that significant effects come only from a reduced factor
set and are of low-orders. Higher order factor effects rarely occur, but when they do, an iterative
estimation of the next order effect is possible, as the method introduced in Section 3.3.3 demon-
strates. The sequential strategy proposed in Section 4.1, starts from here and realizes a refinement
of the polynomial metamodel. After the metamodel is built, the sensitivity analysis is addressed,
by comparing factor effects against predefined thresholds and to each other (Section 3.4.1).

To summarize, multivariate polynomials are good choices as regression models, because they:

• Do not need complex or simulation-intensive experiments (Section 3.2.4).

• Are easy to build i.e. require simple regression algorithms (Section 3.3.2.1).

• Are easy to interpret (Section 3.4).

• Can handle enough factors (Figure 3.15).

• Can be deterministically optimized for worst-case analysis (Section 3.4.3).

More about metamodelling techniques can be found in Section 2.3.1.

3.2.3 Levels, probability distributions and correlations in factors

Each factor is characterized by the levels it can take during the experiment, its probability distri-
bution as well as the correlations to other factors. They are provided by the initial requirements
on the system and each should be accounted when designing a proper experiment.

Levels

A factor’s levels are the values it takes during the experiment. A benefit of simulated experiments
is that there is no practical difficulty in using extra factor levels. The accuracy of results is not
affected either. A higher number of levels per factor can involve extra computational complex-
ity when estimating the metamodel or deriving factor effects, but has potential to increase the
accuracy of the estimates.

Depending on the experiment type, 2, 3, 5 or more levels per factor are used. These are distributed
between -1 and + 1, equidistant, equally distanced from the center, or randomly. The levels are
decided by the DoE choice: fixed-level DoEs usually involve up to 5 levels per factor, while
RFDoEs use a different level in each run, dependent on the factor’s statistical distribution.

Factors are normed to their ranges, so that the verification space becomes a hypercube of radius
one1. Using normed values makes the planning and analysis of results for each experiment easier
to implement. E.g. comparisons between factor effects becomes easier when using normed values.
Moreover, they contribute to decoupling between the controller of the experiment, which must be
aware only of the normed values, and the DUT dependent part, which has to use the complete
factor ranges.

1Factor correlations reduce the hypercube to the subregion which complies with the existing constraints

35

Adapted DoE flow

Probability distributions

Probability distributions of factors should be considered when they are available and when suf-
ficient runs can be invested, i.e. in RFDoEs. The required number of runs is discussed in
Section 3.2.5. Factor effects and the response distribution can be extracted as influenced by the
statistical properties of factors. This type of sensitivity analysis is introduced in Section 3.4.4,
along with a derived worst-case study.

The probability density function (PDF) of a random variable gives the probability for the variable
to take specific values. The probability that the variable falls within a given range is given by
the integral of its density over the set. The cumulative distribution function(CDF) describes the
probability that the random variable is found at a value less than its argument. Figure 3.11
presents histograms of factor samples, for some of the statistical distributions of interest. The
PDF is used as a reference for the generated values as the red lines indicate in some of the
examples.

• Corner-peaked

• Uniform

• Maximum-peaked

• Gaussian

• Minimum-peaked

• Piecewise linear cumulative distribution function (PWL CDF) i.e. piecewise constant prob-
ability distribution function (PDF)

• Piecewise constant CDF i.e. discrete PDF

The distributions of interest are generated using the statistical functions available with MAT-
LAB [52], modified when necessary. Others are derived from the statistical package implemented
for SystemC, introduced by [MHE08]. More examples of PDFs of interest can be found in Ap-
pendix B.4.

Figure 3.11: Factor statistical distributions

In a reverse manner to how these reference PDFs are used to generate samples, the PDF param-
eters can be estimated to best fit an input data set. The simulation results of the response are
analyzed by such a method, detailed in Section 3.4.4.

36

Adapted DoE flow

Correlations

2-factor correlations represent the codependency between pairs of factors. Such codependencies
frequently occur in practice, when factors originate from common sources of variation, e.g. tem-
perature can generate correlated factors in system components. Accounting correlations into the
experimental design introduces a higher coverage of the factor space, with respect to the real
distribution of samples. Such correlations best suit RFDoEs, where no hard restrictions on fixed
factor levels or on the design orthogonality are imposed, but can be implemented in the case of
fixed-level designs, as well. The sets of values used for codependent factors are correlated to each
other, which transforms the initial hypercubic factor space into a non-uniformly covered space.

Factor correlations can be generated in more ways:

• Specifying factors as any deterministic function on a subset of factors e.g. linear combina-
tions of other factors e.g. F2 = α ·F1. This can be implemented in any experimental design
and makes the analysis of results simpler, when a metamodel must be estimated.

• Linear correlation, using the Pearson correlation coefficient [58], which is mainly sensitive
to a linear relationship between two variables (−1 ≤ corr(F1, F2) = ct. ≤ 1).

• Computing the values of one factor out of other factors and explicitly introducing an extra
source of uncertainty. Example: F2 = α1 · F1 + ε

The last two correlation types are more appropriate for the RFDoEs. Figure 3.12 shows samples
in a 3-dimensional space, where the factors are normally distributed and linearly correlated. A
correlation matrix, marked on the plot, is used to specify the Pearson correlation in factors. The
plot matrix shows on the main diagonal histograms of the samples, corresponding to normal
probability distributions, while the other subplots represent the factors against each other.

Figure 3.12: Factor correlations

Figure 3.13 plots 2-factor correlations. These are weaker on the left side, where both F1 and an
extra source ε influence F2. The right side shows a strong correlation where F2 is determined by
F1 only.

For the regression necessary to build a metamodel, when factors are independent, direct regression
is more likely to result into valid estimates. Therefore, the analysis of results must decouple the
factors into independent sources of variation. Only then can the variance in response truly be

37

Adapted DoE flow

Figure 3.13: 2-factor correlations: weak vs. strong

attributed to the variations applied in factors. Section 3.3 describes how to decouple correlations
when analyzing the results.

The response is characterized as a result of the experiment, thus indirectly accounts for these
correlations. In a similar manner to how correlations can be introduced in factors, they can be
extracted from the set of response values in relation to the sets of factor values. This is a form
of sensitivity analysis, when effects of factors are quantified by the correlations to the response.
More on this topic is discussed in 3.4.4.

3.2.4 Selected experimental designs with fixed-level factors

Experiments with fixed-level factors use for each factor one of the predefined levels. They se-
lect a reduced subset of runs, out of the set of number of levelsnumber of factors possible factor
combinations. A DoE should be chosen only after defining the metamodel type to fit. This way,
response assumptions are consciously decided on, in order to be aware of the limitations and of
the possible experimental follow-ups. The metamodel does not impose hard restrictions on the
DoE choice, but a lower chance of errors is ensured when the DoE is built as to optimally fit the
chosen metamodel. The classical, fixed-level DoEs estimate coefficients of polynomial regression
models, optimizing the number of runs with respect to the coefficients to extract. This is in fact
the main merit of the classical DoE, for the present approach.

DoE properties which minimize the risk of errors in the metamodel fitting step, are:

• orthogonality: a design is orthogonal when the DoE matrix has pairwise orthogonal columns:
d(:, i) · d(:, j)′ = 0. In this case, d′ · d is a multiple of the identity matrix. Orthogonality
reduces the errors in the coefficients estimated after regression, therefore allows independent
analysis of the considered factor effects. This is justified in Section 3.3.2.1.

• rotability, i.e. equal precision of estimation in points equally distanced from the center: is
achieved when the DoE points are located on hyperspheres centered on 0. For instance, any
first order orthogonal design is rotable [Mon05, p.282-296].

• minimum response variance: minimum probability of prediction errors. It can be achieved
for a first order model when

∑number runs
k=1 d(k, i)2 = constant, ∀ i = 1 . . . number factors

and the DoE is rotable.

38

Adapted DoE flow

• equality of factor treatments: although normed factors have the same ranges, i.e. [−1...1],
their unnormed initial ranges are different. The more a factor varies relative to its nominal
value, the more complex effects it is probable to have. Therefore, more coefficients related
to such factors should be attributed. More levels and more runs in which the factor is
varied should exist. Such a situation can be handled with the custom DoE presented in
Section 3.2.4.1.

A consequence of the sparsity of effects principle is that the worst-case has a higher probability
of being located in a corner, because the main and 2-factor interaction effects are more likely to
occur than higher-order effects. Therefore, a fixed-level design should minimize the prediction
error in the corners. This happens when most of the DoE points are also located in the corners
and the design is approximately rotable.

3.2.4.1 2-level fractional factorial designs

Use 2 levels per factor. A 2-level full factorial design uses all combinations of levels and it
can estimate a regression model with all main effects and interactions of all orders. But such a
metamodel includes interactions of unnecessary high orders. It is not desired because it determines
an exponential increase of number of runs with the number of factors, just as exhaustive search
methods do. Therefore, 2-level fractional factorials are preferred. In the following, concepts of
2-level fractional factorials are selected from textbooks such as [Mon05, p.314-318] and clarified.

A 2k−p fractional factorial design contains a fraction of the full 2k factorial of 2k−p runs. The
fractional factorial DoEs are heavily used for early design and improvement, in screening exper-
iments, and for later response characterization. Their main advantage is that they require only
a few runs to estimate a predefined subset of the full set of metamodel coefficients. When the
metamodel is inadequate, the initial fraction can be augmented with a further fraction to separate
effects initially assumed insignificant from the ones assumed significant.

Definitions

A fractional factorial has a resolution R when there is no main effect aliased with an effect of an
order smaller than R−1 (exclusively), no 2nd order effect is aliased with an effect of order smaller
than R − 2... [Mon05]. A resolution 3 fractional factorial (R3FF) estimates main effects aliased
on 2-factor interactions. Such a DoE is commonly used for screening, because it can extract
preliminary main effects. A resolution 5 fractional factorial (R5FF) can decouple main effects
from 2-factor interactions, but 2-factor interactions are aliased with 3-factor interactions and so
on.

To build the DoE matrix of a fractional factorial, the full factorial in (k − p) factors is first
written. + and - symbolize 1 and -1 normed factor levels. Then, the columns for the rest
of p factors are written as to be identical to the columns of appropriately chosen interactions
involving the first k − p factors. Such interaction columns are obtained by multiplying the signs
of the respective factors. The selected p interactions are called the design generators. All columns
equal to the identity column i.e. only with + signs, form the defining relation for the design. The
design resolution is equal to the smallest number of letters in the defining relation. The example
Table 3.2 illustrates these concepts.

39

Adapted DoE flow

The loss when fractioning the full factorial to allocate less runs is that the estimated effects are
aliased (overlapped) with the effects initially assumed not to exist. Multiplying any of the design
generators yields the generalized interactions, i.e. words. The aliases of any effect are produced
by the multiplication of the column for that effect by each word in the defining relation. The
generators must be chosen so that potentially important effects are not aliased with each other.
When a more complex metamodel should have been chosen, the initially estimated metamodel
accounts in its coefficients (additively) for the extra coefficients of the better fitting metamodel.
To solve this, a dealiasing experiment must follow, which augments the existent fraction with
another one.

Properties

• 2-level fractional factorials have the rotability property previously defined and are orthog-
onal.

• Projection property: the 2k−p design collapses into a full factorial or a fractional factorial
in any subset of the r ≤ (k − p) of the original factors.

• Fold over of R3FF to separate aliased effects: by combining fractions in which certain signs
are reversed, effects of potential interest can be isolated. This property is useful in sequential
experimentation.

Table 3.1 includes in its cells the number of factors which can be handled with fractional factorials
with the number of runs included in the title row.

Number of runs 4 8 16 32

Design type Number of factors

Full factorial 2 3 4 5
Half fraction 3 4 5 6
Resolution IV fraction - 4 6-8 7-16
Resolution III fraction 3 5-7 9-15 17-31

Table 3.1: Number of factors versus number of runs in fractional factorials
source: [Mon05], Table 8-28

Software packages such as [52] are used to generate the desired fractions and their alias structure,
which can be quite complex, especially when the number of factors is high. Appendix B.2 includes
the resolution, number of runs and design generators for selected fractional factorial designs, for
a number of factors up to 15 and a number of runs of up to 128.

Example: building the resolution 5 fractional factorial for 5 factors

A table of treatment combinations (Table 3.2) is formed which shows by + and - the settings
of each factor and of the corresponding interactions, for each run. To build this table for the
highest resolution fractional factorial, i.e. resolution 5, the basic design for the full 25−1 factorial
is written. Then the 5th factor is added by identifying its plus and minus levels with the ones of
the highest order interaction, i.e. ABCD. ABCD is the design generator and I = ABCDE is
the defining relation. The alternate fraction is obtained using the generator I = −ABCD.

40

Adapted DoE flow

Full 24 factorial
run A B C D E = ABCD
1 - - - - +
2 - - - + -
3 - - + - -
4 - - + + +
5 - + - - -
6 - + - + +
7 - + + - +
8 - + + + -
9 + - - - -
10 + - - + +
11 + - + - +
12 + - + + -
13 + + - - +
14 + + - + -
15 + + + - -
16 + + + + +

Table 3.2: The one half fraction of the 5-factor factorial

Factor effects are extracted by adding the treatment combinations where the factor is set to +
and subtracting the ones where it is set to -, e.g.
effectA = −∑8

i=1 response runi +
∑16

i=9 response runi.

Since some of the interactions are obtained in the same way, it is impossible to differenti-
ate between these interactions and the respective main effects. In fact, what is being es-
timated is the sum between the effects of interest and their aliases. The alias structure
of the design is easily extracted from its defining relation I = ABCDE. For instance,
A · I = A · ABCDE = A2 · BCDE = BCDE. Each main effect is aliased with a
single 4-factor interaction. The alias structures of the 2-factor interactions are:
AB = CDE; AC = BDE; AD = BCE; AE = BCD; BC = ADE; BD = ACE; BE = ACD;
CD = ABE; CE = ABD; DE = ABC.

Response surface designs

Use at least one more level per factor, to estimate quadratic factor effects, in number of 2 · n.
A Central Composite DoE (CCD DoE) is a 2-level factorial design augmented by center points
and 2 star points (i.e. axial runs) for each factor. The star points visible in Figure 3.14c are
placed on the axes of the hypercubic factor space, where one factor has the value ±α and all
others are 0. The value of α which is used is 1 (the design is a face-centered CCD). The design
only uses 3 levels per factor and it is not rotable (the region of interest is cuboidal). The option
of α =

√
factor number (circumscribed CCD) would make it approximately rotable and would

involve 2 additional levels per factor. It is not used because the levels would fall outside the
factor ranges. Other choices for α are possible depending where the response variance should be
minimized.

The center point is replicated in the matrix of results only when it is necessary, e.g. when the
regression must weigh the center point more than others. Alternatively, a Box-Behnken DoE [52]

41

Adapted DoE flow

also uses 3 levels per factor, but the points are mostly placed on the sides of the factor hypercube.
The two direct disadvantages are:

• The fractional factorial DoEs, consisting of corners, are not subsets of this response surface
design, therefore the runs cannot be reused in sequential designs.

• The minimum response variance is not in the corners, because the sample points are not
placed in the corners. This violates the condition stated in the properties at the beginning
of the section.

Figure 3.14 represents DoEs for 3 factors: the full factorial, the half fraction (R3FF) and the
CCD.

Figure 3.14: Basic DoEs
a. 23 Full Factorial b. 23−1 Fractional Factorial c. Central Composite DoE

Figure 3.15 shows the number of runs required by such DoEs. The R3FF is involved for the
initial phase of factor screening, and to extract a linear metamodel (only main effects). The
R4FF, R5FF and CCD DoEs are used to build metamodels of 1st and 2nd orders. The DoEs are
generated using the MATLAB fraction generator i.e. the function fracfact.

Figure 3.15: Number of runs in fixed-level DoEs

These are small sized DoEs needed to efficiently fit the low-order metamodels. They are part of
the classical DoE, adapted for the issues addressed here, e.g. by not using factor levels outside the

42

Adapted DoE flow

[-1...1] range. The approach also needs to be able to estimate higher-order individual effects. To
estimate a factor’s next order effect, the previous designs are augmented with axial runs for the
respective factor. This is deployed in the iterative regression strategy, described in Section 3.3.3.
E.g. sweeping a factor’s range with k points can estimate individual effects up to the k − 1th
order. Additional runs can be necessary for the following reasons:

• The nominal run is needed as a reference for the experiment.

• Pilot runs, e.g. sweeping factors, to give a first impression on the response variance and
magnitude of effects.

• To validate the metamodel (measure the prediction error of the metamodel) against runs
different from the ones used to fit it (as explained in Section 3.3.2.2).

• To optimize the estimate for the metamodel’s coefficients (Section 3.3.3).

Sources in the DoE literature indicate to many more experimental designs [SPKA01, WS07],
which are, however, not necessary here. Rather simple DoEs can estimate simple metamodels,
which are found sufficient, and they involve minimum runs for that. Then, worst-case analysis
can focus on the regions of extreme response values, e.g. by optimizing the existing metamodels.

Custom DoE

It is a multi-level factorial design, built to address the present problems. The work presented
in [RDGP09b] shows results of such custom DoEs. The design favors a so-called main factor, by
sweeping it over several fixed levels in its range e.g. 10 levels. It uses random or fixed levels for
the rest of factors, referred to as the factor set. The factors which present particular interest to
the experiment can be set as main factors in such a custom DoE. For instance, a main factor can
be a factor which has a relatively wide initial range or a factor which determines right from the
start a big response variance, identified from a screening phase. Another example is a factor with
high interaction coefficients, estimated after a proper experiment, e.g. a R5FF.

A custom analysis of effects for these DoEs is introduced in Section 3.4.1. This analysis focuses on
the interaction between the main factor and the factor set. In addition, a piece-wise linear main
factor effect can be approximated, to detect non-monotonic, or even discontinuous dependencies
of the response on the factors. Such effects determine worst-cases corresponding to main factor
values which are not corners, and which depend on the factor set because of the interactions.

3.2.5 Space filling designs and DoEs with random factors

This section introduces experimental designs with random factors. While the concept of space
filling designs is well-known, the evaluation of the coverage and of the correlation, as well as the
extension to RFDoEs are realized to address the present problems.

Space filling designs

A space filling DoE strategy should ”evenly” cover the entire factor space. Several space-
filling criteria are discussed in the literature, e.g. maximin, minimax, IMSE, and maximum
entropy [WS07]. To aim for a better and more uniform coverage, the distance between sample

43

Adapted DoE flow

points of the DoE is optimized. More precisely, the minimal distance between pairs of points must
is maximal (e.g. maximin designs [57]). Different distance metrics can be used, out of which the
euclidean one is considered sufficient.

The Latin Hypercube Design (LHS DoE) generates samples in order to ensure that each region of
the space is equally represented. Each factor level occurs only once, so DoE points do not share
coordinate values. They do not replicate or group points like classical experiments sometimes
do [57]. E.g. to sample m points in an n dimensional space, LHS perform the following steps:

1. Divide the interval of each dimension into m non-overlapping intervals having equal prob-
ability (for uniform distribution, the intervals have equal size).

2. Sample randomly from a uniform distribution a point in each interval in each dimension.

3. Pair randomly (equal likely combinations) the point from each dimension.

These designs can be generated using the MATLAB lhsdesign function. The function can maxi-
mize the minimum euclidean distance between pairs of sample points. Figure 3.16 represents the
number of runs versus number of factors obtained for various distances between points. Although
more runs than in fixed-level DoEs are needed, the number can be controlled and limited, by
using the target distance between points.

Figure 3.16: Number of runs in LHS designs with uniformly distributed factors

Sources like [Kle08] are more optimistic when estimating this number of runs: a linear increase
of the number of runs with the number of factors is present, which does not significantly exceed
200 runs, even for up to 30 factors.

Random factor DoEs

Random factors DoEs (RFDoEs) distribute the factor values according to their properties. Gen-
erators of several distribution functions can be derived from statistical packages like [50] or
[MHE08], no matter the size of the factor space. Various distributions can be implemented,
while accounting for factor correlations, as exemplified in Section 3.2.3.

The main differences between RFDoEs, as defined here, and Monte-Carlo simulations are ex-
plained in the following. With respect to planning the simulations, Monte-Carlo methods ran-
domize underlying device parameters, usually normally. RFDoEs, on the other hand, have more
power, because they cover a wider class of functions and can introduce correlations. The outputs

44

Adapted DoE flow

of this process are also fed to the postprocessing part. Concerning the results’ analysis, Monte-
Carlo involves no postprocessing, except for a graphical analysis and an extraction of the worst
simulated case. RFDoEs, on the other hand, quantify factor effects in correlation coefficients, and
characterize the response distribution. Then, the worst-case can be estimated after computations
on this extracted statistical function.

RFDoEs can also perform regression on results to estimate a metamodel, and continue with the
sensitivity and worst-case analysis, just as in the case of the fixed-level DoEs. The accuracy
of estimates depends on the number of runs, but also on the factor correlation. Results become
”biased” by the initial distributions, having more accurate estimates in the centers of distribution
e.g. around nominal values in the case of a normal distribution. These steps are detailed in the
analysis of results and response characterization parts, in Section 3.4.4.

When combined with space filling strategies previously introduced, RFDoEs can be optimized and
evaluated in terms of coverage. The minimum distance between points is maximized by a LHS
design. Its value is used here to measure the coverage of the DoE. The numbers in Figure 3.16,
although extracted for the case of uniformly distributed factors, can be generally used as reference
for space filling and RFDoEs. Since they ensure the target coverage in the uniformly distributed
case, then in the presence of differently distributed, and possibly correlated factors, the distance
value changes, but the coverage is kept. This is because the shape itself and the size of the
verification space also change. This way, when the target coverage is given by a fixed distance,
the number of factors is taken into account as the sole impact on the number of runs.

When regression is performed on the results, optimal estimates are extracted when the design is
as close as possible to an orthogonal design, similarly to fixed-level factor DoEs. The correlation
matrix of orthogonal DoEs is the identity matrix. In order to measure of the performance of
an experiment from this point of view, the factors must have a correlation coefficient as close as
possible to 0. Therefore, space filling designs should have the correlation between the columns
of the DoE matrix smaller than a predefined threshold. The 0.05 threshold for the coefficients
of factor correlation is used to conclude whether a space-filling design is good enough from this
point of view. This is considered the highest value which allows correct regression on determin-
istic responses. The correlated ones should have a coefficient close enough to the one initially
specified. Together with the distance between points and with the accuracy of representation
for the statistical properties, the correlation represents a measure of performance for the step of
design of the experiment.

Implementation algorithm The generation of the DoE matrix as described before is per-
formed by the function get doe matrix, with the signature:
doe = get_doe_matrix(factor_nr, max_run_nr, doe_type, factor_stat_struct)

The main inputs are the number of factors, maximum number of runs and whether the DoE is
fixed-level or a random factor experiment. The structure of factor distributions and correlations
can optionally be passed, when RFDoEs are generated. A matrix of effects could also be specified,
for the factorial generator to return a proper fraction of the design. Such a matrix marks by
ones the position of effects to be extracted. A pseudo-code description of it is inserted in the
Appendix A.1.

45

Adapted DoE flow

3.3 Building the metamodel

This chapter describes the postsimulation steps which form a metamodel accurate enough to
approximate the response. Starting from the results of the planned DoE, be it a fixed-level or
an RFDoE, parameters of the metamodel are estimated, evaluated for fitness and optimized.
Figure 3.17 represents the main inputs and outputs of this step. The dotted steps are optional2.

Figure 3.17: Flow to build the metamodel

Section 3.3.1 realizes the factor screening, by analyzing the response variance. It identifies which
factors have significant impact and are worth considering in following experiments. Section 3.3.2.1
describes the algorithms used to estimate the coefficient set for the metamodel and Section 3.3.2.2
presents methods to evaluate its fitness. Algorithms to optimize the metamodel are presented in
Section 3.3.3. Only after making sure the metamodel is adequate, can it be used to predict the
response and for subsequent worst-case analysis.

The approach starts with selecting statistical methods of analysis of variance, metamodelling
and residual analysis out of the available set. These are evaluated on deterministic functions and
modified when needed, e.g. for the computation of residuals, while the procedures which optimize
the metamodels are own extensions of the approach.

Decoupling factor correlations

Factors must be decorrelated before any study of response variance, by decomposing into inde-
pendent sources of variation. Otherwise, the impact of a factor cannot be differentiated from ones
correlated with it, as the orthogonality property of the DoE would not hold (3.2.4.1). There are
two types of correlations of interest: when some factors are linear combinations of other factors:

Fn =
n−1∑
i=1

αi · Fi (3.3)

2Screening should be involved when the factor set is too large and metamodel optimization when the validation
cannot output a good enough model.

46

Adapted DoE flow

Fn is simply removed from the analysis and after regression with respect to the first n − 1, the
metamodel R(F1, ..., Fn−1) becomes R′(F1, ..., Fn), with coefficients modified according to the
codependency relation.

Alternatively, in RFDoEs, factors can be generated from already existing factors, to which extra
sources of variation are added, for instance as Figure 3.13 shows.

Fn =
n−1∑
i=1

αi · Fi + ε (3.4)

Such weaker correlations can also be produced by passing a correlation matrix when generating
the design. In these cases, decoupling is not considered necessary, as the DoE involves sufficient
runs to estimate coefficients for weakly correlated factors.

3.3.1 Analysis of variance for factor screening

The analysis of variance (ANOVA) is a formal method which distributes the total response vari-
ance into the variance explained by each factor. As recommended by [Mon05, p.160-177], ANOVA
is applied here to identify factors statistically significant. It determines which factor effects are
nonzero, by estimating preliminary main effects, assumed high only for significant factors. It is
therefore performed after the so-called screening experiments on a large set of factors, e.g. after
R3FF DoEs, as they were detailed in 3.2.4.1.

The analysis of results procedure evaluates the hypothesis on equality of response values for
different combinations of factor levels. This test distributes the sum of squares SS, into the
sum of squares for factor Fi, and the left over variance that cannot be explained, i.e. the error
term ε. Appendix C explains more on this topic. Applying the F-statistic on the sums of squares,
ANOVA estimates the probability p for the null hypothesis of equality between factor treatments.
Then, important factors can be filtered based on the p values. Table 5.4 in the results shows a
reduced form of the ANOVA Table, with the relevant information to make a screening decision.
The sums of squares SS and probability p of the tested hypothesis are extracted, for each factor.

Factors are then filtered on the criteria:

• p(Fi) < 0.05. A more permissive threshold of 0.1 can also be used.

• SS(Fi) > ε. This recommended check makes sure that the error term is smaller than the
factor variance, which is also a measure for the factor effect.

There is no hard restriction on the number of factors which must be filtered by screening, but in
practical cases of interest here, not more than 10 factors are usually kept after this step. This is
based on the sparsity of effects principle and on the consideration that not all factors can have
significant impact on a response, relatively to each other.

3.3.2 Fitting the metamodel

The metamodels to fit are multivariate polynomials. On the one hand, the DoE is chosen after
defining the metamodel type to fit in this step. On the other hand, it is important to select a
metamodelling approach whose performance, to some extent, is independent of the experimental
design [MM06]. That is, the regression analysis and metamodel validation steps which are detailed
next must be as robust as possible with respect to the input data and the specific form of the
polynomial to fit.

47

Adapted DoE flow

3.3.2.1 Regression analysis

It is the first step in estimating the regression metamodel, after simulating a corresponding
experiment. The inputs are the simulation results and the associated DoE matrix. The main
output is the set of coefficients of the metamodel which was planned to approximate the response.
A multiple linear regression algorithm is applied for polynomial metamodels. The following details
the general regression method [50], formulated so that it optimally analyzes the experiment
results. The matrix form of equation (3.2) for a 2nd order metamodel is:

R = c0 + ctl · F + ciq · F · F t (3.5)

where F is the vector of factors of length n, c0 is the constant term, cl is the vector of linear
coefficients. t indicates the vector is transposed. ciq is a symmetrical matrix with the interaction
and quadratic terms:

c
(2)
1 c12/2 ... c1n/2
...

c1n/2 c(n−1)n/2 ... c
(2)
n

The vector c of all unknown coefficients, of length (n+ 1) · (n+ 2)/2, is formed:

c = [c0; c1; ...cn; c12; ..; c1n; c23; ...; c
(2)
1 ; ...; c

(2)
n]

Then, the so-called regressors matrix X is built out of the DoE matrix d. X contains a column
for each term of vector c. The values for each column are computed as the multiplication factor
of the specific coefficient in c, in the specific run. For the matrix d = (dij)i=1,m;j=1,n, X is:

X = [di1 di2 ... din di1 · di2 ... di(n−1) · din d2
i1 ... d

2
in], whose size is m × (n+ 1) · (n+ 2)/2.

Applied to the vector of results r of length m, the metamodel approximation becomes:

X · c ≈ r (3.6)

This is an overdetermined linear equation system with the unknown c. Then c is:

c = (XT ·X)−1 ·XT · r (3.7)

When the design is orthogonal, d has pairwise orthogonal columns and d′ · d is a multiple of the
identity matrix. Then, the solution to the equation is simple, since (XT · X) is also a multiple
of the identity matrix. The general procedure applies the least square fit to minimize the sum of
squares of the residuals, i.e. the differences between the results r and the estimated values. That
is, c is estimated by solving:

‖residuals‖ = ‖r −X · c‖ = min. (3.8)

The regression technique can vary e.g. weigh differently different points of the factor space, such
as robust fit does, by putting less weight on outliers. More details on regression alternatives and
associated statistical measures are available with [52].

48

Adapted DoE flow

3.3.2.2 Validation of the metamodel

In order to conclude that the assumptions initially made on the response are acceptable, the
residuals, i.e. the errors of the response predictions, are analyzed. That is why this step is also
referred to as residual analysis. It is recommended to invest just a part of the results for regression
and leave the rest for metamodel validation.

The inputs of this step are the estimates for the metamodel coefficients, the DoE matrix and the
corresponding simulation results, against which the metamodel must be validated. The output is
at least a true/false result whether the metamodel is fit. The user interaction can be useful, for
visual checks, as seen next. The criteria to evaluate the residuals must be clearly defined.

Sample points for residual analysis

The metamodel validation is first performed with respect to the samples used to build it. Still,
validation against a new set of samples is more reliable. This set is either a subset of the initial
results, which are used only now, or a new set of results dedicated to the validation step. The
new sample points can be placed in regions of special interest e.g. random corners. Alternatively,
they can be uniformly distributed or points around the metamodel extremes. The runs initially
used for factor screening should also checked by the residual analysis. Since the screened factors
do not have a significant impact, the metamodel should be a valid approximation, as long as a
higher threshold for error acceptance is used.

It must be checked that the fitting step is, as far as possible, independent of the samples used to
do it. The ”Leave-K-Out-Method” explained in the next section can decide on this robustness,
by varying the sample choices used for fitting and validation. The closer the validation points
are to the fitting ones, the more likely it is that the residuals are smaller. When they are equally
far to the set used for fitting, a rather small residual variance is expected. More outliers with
respect to the metamodel predictions determine an increased variance and a non-zero mean.

Computing the residuals

A commonly used residual metric is the average relative error:

ε = 1/m ·
m∑
i=1

|r(i)−R(i)| / |r(i)| (3.9)

where m is the number of runs, and r, respectively R, are the simulated and predicted response
for run i. It is also common to norm the residuals to the average response. However, residuals are
normed here to the maximum response variation, in order to remove the dependency on the order
of magnitude of the response, which is application specific, and use the same decision thresholds.
This provides more reusability and consistency to the subsequent evaluation metrics. Therefore,
the normed residuals used for validation are computed as:

res = (r −R)/(maxi=1,mr(i)−mini=1,mr(i)) (3.10)

The minimum requirements relate to:

• mean, maximum values

49

Adapted DoE flow

• statistical distribution

• correlations to the response and to the factor values

There are many other ways to compute residuals3. Sources in the literature like [SPKA01, KR03,
GCLD10] provide more details on alternatives. For the present case, the normed residuals as
introduced in equation 3.10 are considered sufficient.

Decision threshold for residuals

The threshold to use for concluding about residuals depends on the experimental phase. 1% has
been found a good threshold for the mean of absolute residuals, while 1% to 5% is chosen for
the absolute maximum. Values higher than that are considered not reliable, because a prediction
error bigger than 5% of the total response variability is unacceptable. The mean and maximum
absolute values for the residuals are also used to apply corrections to worst-case predictions.

Figure 3.18 plots a quadratic metamodel on 2 factors, i.e. the surface, and two sets of samples.
The green response data is fitted well by the metamodel, while the red data is not. The sets
of samples are generated by adding to the response surface random departures. The evaluation
criteria under test is given by the residuals. Clearly, the decision is much improved when residuals
are automatically computed and compared to thresholds, than in the case of a simple visual
inspection.

Figure 3.18: Example plots of response data and of the fitted metamodel

Distribution of residuals

Real-life experiments assume the experimental error is normally distributed with mean zero and
can decide on the metamodel fitness based on that. This is not proven to always stand in simulated
cases, as it is application-dependent [SPKA01]. Still, in our case, the effects which determine
departures of the response from the metamodel, e.g. round-off errors, can be approximated with

3e.g. normalized root mean squared error, normalized maximum absolute error

50

Adapted DoE flow

white noise and evaluated using the distribution criteria. A normal probability plot can assess
how close the residuals are to a normal distribution with mean zero. Such a plot scales the y-axis
according to distances between the quantiles of a normal distribution. Residuals of inadequate
models are nonlinearly distributed or have nonzero means, which is the center value on the x-axis.

Figure 3.19 shows a comparison of adequate versus inadequate residual sets. The sets are gen-
erated as random samples which fulfill the decision criteria good enough (blue stars) or not (red
circles). The validity of the null hypothesis H0 stating that the data does not come from a normal
distribution results out of the test, which enables automating the decision process. The results
chapter shows how the distribution assumptions apply on large samples of data.

Figure 3.19: Comparison of normal probability plots

Correlations residuals-responses, residuals-factors

The distribution of the residuals with the response values is also important, mainly to make sure
there are no visible patterns, therefore no systematic errors of prediction. Scatter plots can also
easily detect outliers, in order to judge on the robustness of the regression. Similar analyses can
be performed on residuals versus the factor values. The degree of correlation to the response
values can be quantified as coefficients. They should be used at least to compare between sets of
residuals or to optimize when iteratively fitting metamodels as illustrated in Section 3.3.3. The
0.15 threshold is used to decide between correlated and uncorrelated sets of values. This is found
the highest value which still allows correct regression of results on deterministic responses.

Example

The methods presented above can be tested and visualized on deterministic functions. A 10-
factor 2nd order multivariate polynomial, with a superimposed error term ε, which is distributed
randomly N(µ = 0, σ = 0.1)4, is computed to mimic simulation results.

R = c0 + ctl · F + ciq · F · F t + ε (3.11)

4Normally distributed with mean µ and standard deviation σ

51

Adapted DoE flow

where t means the transposed form, c0=0; cl=[1.0 2.0 ... 10.0]; the matrix ciq is:

0.1 0.12/2 ... 0.2/2
...

0.2/2 0.19/2 ... 0.1
The design used for regression is a CCD DoE, which has 149 runs, as Figure 3.15 points out.
An LHS DoE of 50 runs is used for validation5. Regression is performed on the results of the
design, then the residual analysis is applied on both for comparison. Figure 3.20a represents the
residuals against the response, stars for the residuals with respect to the initial CCD DoE and
circles for the residuals with respect to the validation LHS DoE. The distribution of both sets,
represented on a normal probability plot is shown in Figure 3.20b.

Figure 3.20: Validation results for the example
a. Scatter plots of residuals b. Normal probability plot of residuals

The estimated coefficients have a maximum relative error as compared to the true (initial) set
of 0.07, which is considered acceptable. The correlation coefficients residuals-responses and the
mean and maximum absolute normed residuals are visible on the plots.

Confidence bounds

The analysis of results can also extract (1-α) confidence intervals for each coefficient [52]. The
smaller the α value is, the wider the confidence bounds are. The bounds result into confidence
intervals for the response predictions and can be used to improve the worst-case analysis (Sec-
tion 3.4.3).

Implementation algorithms

The fitting and the validation steps are implemented in the experiment controller by the dedicated
functions:
[coef,residuals_ok] = do_regression(doe_matrix,r,type) and

5The minimum number of runs is chosen based on the minimum pairwise distance between points of the design,
i.e. a distance of 0.5. More runs can be used for validation when feasible, but 30% of the regression runs is
considered sufficient.

52

Adapted DoE flow

residuals_ok = validate(doe_matrix,r,coef).
A description in a pseudocode form is attached in the Appendix A.2. The optimization methods
presented next implement loops over these basic functions.

3.3.3 Optimization of the metamodel

The metamodel optimization problem can be defined as finding the optimal metamodel R∗, which:

R∗ = R so that ε(Rc,θ(d), r(d))c∈C, θ∈Θ = min. (3.12)

with the minimum requirement:

ε(Rc,θ(d), r(d)) ≤ τ (3.13)

where Rc,θ is the parameterization θ of R and c is the set of R coefficients. ε is the error
function which represents the residuals and τ is its target value. d is the matrix of points used for
optimization and r(d) is the corresponding set of response values. The metamodel optimization
problem becomes a selection of the best metamodel parameterization, with respect to θ6 and with
respect to the coefficient set c. The selection of the error function ε and of the corresponding
threshold τ is as important as the initial metamodel choice, represented by θ and c.

3.3.3.1 Finding the lowest fitting polynomial order

The first optimization step is to iteratively add one order to the metamodel and to regress, until
the residual analysis is satisfactory. With respect to definition 3.12, this means optimizing with
respect to θ. Figure 3.21 shows this idea.

Figure 3.21: Search for the lowest order of an adequate metamodel

The algorithm starts from a 1st order metamodel and iteratively estimates the next polynomial
order for each factor, provided enough simulation points are available. Alternatively, including
simulation in the loop is possible, but such sequential experimentation methods are treated in
Section 4.1. These additional points are axial runs of the respective factor, at least one for each
additional order. The regression assumption is still that interactions are of low orders, as in the
case of a CCD DoE. Residual analysis is performed and the decision threshold is the same as
before. In order to compare factor effects of different orders and decide on their significance, the
effects estimates must first be rescaled, then compared.

Figure 3.22 shows how polynomials with increasing orders with respect to one factor can approach
the sample points better, even when random terms are superimposed on the polynomial used as
response.

6Best parameterization e.g. finding the lowest order of fitting polynomial or best matrix of factor effects.

53

Adapted DoE flow

Figure 3.22: Estimation of high-order effects

The metamodel can also be optimized with respect to interaction effects. This would add 2-factor,
3-factor, etc. interactions to the parametrization, regress and measure the improvement. This
could be applied when needed, based on the sparsity of effects, which implies that effects become
smaller as their orders become higher.

3.3.3.2 The leave-k-out method

This method performs an optimization with respect to the coefficient set c. It applies when only
a part of the runs are invested to fit the metamodel, and the rest are used strictly for validation.
The Leave-k-out method implements this in a loop, which permutes the validation samples, within
the complete set of samples. The principle is visible in Figure 3.23.

Figure 3.23: The leave-k-out metamodel optimization flow

The loop predicts with respect to (m − k) and validates with respect to the k left points, where
m is the total number of samples. The best fit is chosen as the one with the best final residual
analysis. To best meet the requirements explained in 3.3.2.2, the mean distance between the
samples used to evaluate the residuals and the ones for the fitting must be approximately equal
from one iteration to the next.

54

Adapted DoE flow

3.4 Concluding the experiment

This chapter explains how to conclude on the overall experimental results. The first part describes
how to analyze the properly fitted metamodel, output of the previous steps. Sensitivity analysis
is addressed by translating the metamodel into factor effects, to be compared and interpreted
as detailed in Section 3.4.1. The metamodel can be used to make predictions on the response
(Section 3.4.2) and to go on with the worst-case analysis, explained in Section 3.4.3. Such an
analysis can follow both fixed-level and RFDoEs.

Section 3.4.4 presents an analysis procedure which can be applied only on RFDoEs, for response
characterization in terms of factor effects and the worst-case. Correlations to factors estimate
their effects. Fitting the response statistical distribution enables predictions on new response
values and provides worst-case estimates.

Graphical analysis plays a big role in the complete flow. Figure 3.24 shows the steps followed by
these steps of response characterization.

Figure 3.24: Response characterization flow

The approach must extend the available algorithms of metamodel analysis e.g. for decision on
which factors are important or to find the metamodel extreme. The analysis of results both for
custom DoEs and for RFDoEs are own contributions of the approach.

3.4.1 Factor effects

The sensitivity analysis problem is addressed when the factor effects are quantified in an unified
and consistent manner. Then, they can be compared, visualized and interpreted, for a better
understanding of the system. In the case of polynomial regression metamodels, factor effects can
be directly mapped to the coefficients, as introduced in Section 3.2.2.

55

Adapted DoE flow

Individual factor effects Are the effects which characterize that factor only, i.e. which do
not change their value or sign, no matter the levels of the other factors. Linear, quadratic and
higher-order polynomial coefficients estimate these effects. To graphically analyze such effects,
a representation of the metamodel on each factor, at fixed-levels of other factors is sufficient.
Figure 3.25 shows such a representation for a metamodel with the linear coefficients: cl = [0 1 2
3 4 5 -1 -2 -3 -4 -5] and the quadratic ones: cq = [1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0].

Figure 3.25: Individual factor effects

Interaction factor effects Are the effects which change value or sign when other factors
change levels. Such effects are hard to detect with trial-and-error methods, because one must
concomitantly vary several factors, in order to track potential interactions. The ability to detect
the existence of such effects is one of the biggest benefits of the DoE methodology, with the
associated experiments and metamodels. 2-factor interactions are most common and should
be visualized for a correct interpretation. Interaction plots show the dependency of the fitted
metamodel on selected factors, at various levels for the other factors. For example, for the
metamodel plotted in Figure 3.25, the interaction effect between factors 1 and 2 is visible in
Figure 3.26.

Figure 3.26: Interaction factor effects

MATLAB enables an interactive plotting of regression models of up to the 2nd order: the predicted
response values are plotted on each factor, at fixed levels of the others. The interactive nature
allows updates of the dependencies on all factors and of the confidence bounds, when modifying
the level of one factor. Figure 3.27 shows an example of such a plot, after regressing the results
of a DoE on 10 factors, applied on the response:

r = 0.1 ·
10∑
k=1

k · F (k) + 0.075 ·
10∑
k=1

k · (−1)k · F (k)2 +

9∑
i=1

10∑
j=i+1

(−1)i · F (i) · F (j) + ε (3.14)

56

Adapted DoE flow

where ε is normally distributed N(µ=0, σ=0.05). The DoE is composed from a 149-run CCD and
a 50-run LHS, with normally distributed factors.

Figure 3.27: Interactive prediction plot

For each coefficient, (1−α) statistical confidence bounds are estimated. These reflect into bounds
for the predicted response, which can be visualized on the interactive plots. Since the regression
data is normally distributed, there is naturally more confidence in the center point of the factor
space and it decreases as approaching the corners7.

In order to judge on significant factors, effects must be compared. Effects can be directly
compared only when they are of the same type i.e. linear coefficients, 2-factor interactions etc.
A linear coefficient is considered significant here when a variation in the factor alone with 10%
of its range causes a response variation of at least 1% of its total relative variability. That is, if
the following is fulfilled:

abs(cl) > (maxfR(f)−minfR(f))/(20 · abs(R(0))) (3.15)

For the interaction and quadratic coefficients, applying the same condition of at least 1% of
response variation on the equation of the metamodel yields the condition:

abs(cij) > (maxfR(f)−minfR(f))/(4 · abs(R(0))) (3.16)

Factor effects in the custom DoE

A special analysis must be performed on the custom DoE introduced in Section 3.2.4.1.
With respect to the main factor, regression can extract higher-order effects. Alternatively,
the simulation results can be interpolated over the main factor levels for a piece-wise linear
response(mainfactor).

This DoE actually focuses on the interaction effects between the main factor and the set of
other factors. The plots of the response, over the main factor levels, for different factor sets, can

7With factors otherwise distributed, for instance corner-peaked as shown in Section 3.2.3, the confidence is
higher in the area of higher sample density, i.e. near the corners.

57

Adapted DoE flow

highlight such high-order interactions. It indicates interaction by lack of parallelism between plots
of the response for different factor sets. An important interaction would determine a response
extreme i.e. the worst-case, at a level of the main factor which depends on the factor set. Another
sign of interaction appears when the response variability on the main factor is different for different
sets. Figure 3.28 shows such an interaction plot, for a DoE which uses 10 levels for the main
factor and 2 for each factor of the factor set.

Figure 3.28: Effects in a custom DoE

The main effects for the main factor and for the factor set, as well as the interaction between
them, can be estimated. The response’s mean and standard deviation, for different levels of the
main factor and for different factor sets, are used. The change in response over main factor levels,
relative to the distance between different sets, corresponds to the ratio of main effects (main
factor/factor set). The contrast between deviations within sets at different main factor levels
measures the interaction between the main factor and the factor set. These estimations of factor
effects are summarized in Table 3.3. Table 5.1 shows results of such an analysis.

Table 3.3: Effects in a custom DoE

Effect estimates

Main factor effect mean(std. within sets)

Factor set effect std(mean within sets)

Interaction std(std. across main factor levels)

3.4.2 Prediction of the response

When an adequate response regression metamodel is built, a large benefit is the ability to replace
expensive simulation runs by fast evaluations of the metamodel in sample points of interest. After
a proper validation, provided that each factor is in the [−1,+1] range, the following approximation
holds:

r(F) ≈ c0 +

2∑
k=1

n∑
i=1

c
(k)
i · F (i)k +

n∑
i=1

n∑
j=1

cij · F (i) · F (j) (3.17)

The regression analysis provided confidence bounds for the coefficients. They can be easily
extended to provide bounds for the response prediction, which is also visible in Figure 3.27.

58

Adapted DoE flow

Given a factor set, these response bounds are computed as:

rmin(F) ≈ c0min+
2∑

k=1

n∑
i=1

min{sgn{F (i)k}·c(k)
i }·F (i)k+

n∑
i=1

n∑
j=i

min{sgn{F (i)·F (j)}·cij}·F (i)·F (j)

(3.18)

A correction for these bounds can be the residual in the center (F = 0), as it has a high signifi-
cance, i.e. the prediction offset for the nominal simulation. Alternatively, the mean or maximum
residual can be used for correction. The relative distances between the point of prediction and
the ones used for metamodel fitting can also be accounted for, e.g. by using radial basis func-
tions [MM06].

3.4.3 Worst-Case response prediction

The worst-case response is most of the times defined as one of the two global extremes of the
response over the factor space. Once the metamodel is available, it becomes subject to determin-
istic optimization8 and its extreme is the estimated worst-case. The problem can be simplified
by considering only the minimum of the metamodel R. The solution to finding the maximum is
similar, but performed on −R.

Figure 3.29 illustrates the ideas discussed in the following.

Figure 3.29: Worst-cases in different metamodels
a. linear b. with interactions c. 2nd order model

In the case of a linear metamodel, the solution is simple, since the worst-case of the hyperplane
represented by the metamodel is a corner. It can be easily computed by setting the factors to
either 1 or −1 depending on their linear coefficient. When only linear and 2-factor interaction
terms are present, the worst-case is also a corner. As noted in the middle plot in Figure 3.29, the
corners can be relatively close to each other because of interactions.

In cases where all corners are too many to be evaluated fast on the metamodel equation or
quadratic terms are present as well, a constrained optimization method is applied to search for the
minimum of the metamodel. To look for the minimum of a function of several variables starting at
an initial estimate, a gradient-based algorithm is commonly used, when the function is continuous
and has continuous first derivative. This requires an iterative procedure, and determines the
direction of search at each major iteration.

8Finding the extreme of an objective function is commonly referred to as optimization.

59

Adapted DoE flow

Nonlinear Programming addresses the optimization problem for an objective function nonlinear
on the factors. Quadratic Programming is a particular case of interest, of a quadratic objective
function that is linearly constrained. The procedure finds an initial feasible solution, by solving
a linear programming problem. Then, it generates an iterative sequence of feasible points that
converge to the solution. Sources like [50] make such algorithms available and provide more
details about their implementation.

The algorithm can present convergence problems e.g. because of interaction effects. A solution
which addresses this issue and can even reduce the optimization time is, when feasible, to evaluate
the metamodel on a hypergrid. The right plot in Figure 3.29 shows how this first narrows down
the space, then the worst-case is searched within the hyper-cubic subregion which contains the
minimum found so far. A problem can be the exponential increase of the number of points to
be evaluated with the number of factors and a power increase with the number of factor levels
per grid: N = levels per gridnumber factors. The same problem can occur when evaluating all
corners. The impact on performance is evaluated as negligible, as long as the total number of
evaluations is kept smaller than 105, i.e. up to all corners for 15 factors can still be handled quite
fast. Considering the factor set is already reduced in the step of worst-case search, this restriction
is acceptable.

Worst-case corrections For safer response margins, the predicted response extremes can be
adjusted with confidence bounds and/or residuals, same as applied to the predicted response
values. The residual in the center is most commonly used, when corrections are required.

Confirmation runs Running confirmation simulations in the predicted worst-case is of course
of interest. Comparing the result to the predicted value and to the previous simulations offers
more confidence. Low residuals, i.e. below a threshold of 1 to 5%, confirm the metamodel is well
fitted in the neighbourhood of the worst predicted case.

3.4.4 Concluding after random factor DoEs

This section describes solutions to estimate the factors’ effects, as well as the distribution and
the worst-case for the response, on results of random factor DoEs (RFDoE).

3.4.4.1 Factor effects

The correlation between the vectors used for the factors in the experiment and the vector of
response results can be estimated and used to characterize the response in terms of significant
factors. Therefore, correlation coefficients can measure factor effects, and can be used alterna-
tively to the coefficients of the fitted metamodel. This best suits the RFDoEs, where a metamodel
is rarely formed, but data with an accurate statistical distribution is collected.

More options for estimating correlation are available:

• The linear correlation, quantified by the Pearson’s correlation coefficient, indicates the
strength of a linear relationship factors-response.

• Rank correlation coefficients, which do not focus only on the linear nature of the dependency.

60

Adapted DoE flow

• More complex descriptions, e.g. distance correlation.

Details on these type of correlations can be found in sources such as: [52, 58]. The important
aspects are that coefficients lie between -1 and +1, and that when an increase in the factor
determines a response increase/decrease, then the coefficient is positive/negative. Since main
factor effects are considered, by assumption, significant as compared to higher order effects, a
special focus on the linear dependency should be put anyway. Therefore, the linear correlation is
considered sufficient.

For instance, the polynomial: R = c0 + ctl · f , where c0=0 and cl=[1.0 -2.0 3.0 -4.0 5.0], is
subject to an LHS DoE of 200 tests on the vector of factors F (t=transposed). The cor-
relation coefficients between the sets of factor values f and the results computed for r are:
corr(r, f) = [0.230; −0.381; 0.463; −0.564; 0.701]. Another example can be found in the
results on the window lifter, i.e. in Section 5.2.3.

The values of the coefficients in the example are proportional to the main factor effects and
have the same signs. Their signs indicate the direction of the effect, while the values of the
coefficients, as related to each other, indicate the magnitude of the main factor effects. Testing
the hypothesis of no correlation between the responses and the factors can objectively identify
significant factor effects. A probability threshold of 0.05 is used, just as in the ANOVA case. The
disadvantage with correlation is that no interaction or quadratic effects can be detected when
using the linear correlation type. More complex correlations are possible, however, with available
statistical packages, e.g. [50].

3.4.4.2 Response distribution

Correlations of response values to factors can estimate factor effects after an RFDoE, as previously
explained. But they are not useful to describe the response standalone, have no predictive nature
with respect to the response, and do not estimate the worst-case response. An alternative to
regression which still meets these goals is proposed here. Once a set of response values is available,
the approach characterizes the response as an independently distributed variable and estimates
the response distribution. Its fitted distribution has both predictive power for new response values
and can estimate the worst-case as explained in the following.

It is of interest to identify regions where the response data tends to cluster, as well as tails
of its distribution. The analysis should be applied on RFDoEs with sufficient data to obtain
statistically significant conclusions, provided that factors are distributed as close as possible to
their original distribution. The response distribution is estimated, so that the values or intervals
with high/low probability of occurrence are identified. By interpolating the empirical probability
density function (PDF), the frequency of occurrence for specific values can be estimated. More
importantly, the worst-case is then estimated as the highest/lowest value which can occur, with
a probability higher than a given threshold.

Fitting the distribution

When the data resembles a well-known distribution, parameters of the specific distribution must
be extracted. The functions used to generate the factor distributions, such as the ones presented in
Section 3.2.3, can be fitted with respect to their parameters, then used to generate further values.

61

Adapted DoE flow

The simplest cases are the uniform and the normal distribution, where a range, or respectively,
a mean and standard deviation, are sufficient. For instance, Figure 3.30 shows a fitted normal
distribution.

Figure 3.30: Response distribution example

The estimated normal PDF can be quite poor, as observed in the figure. Therefore, more dis-
tribution types must be available, including nonparametric ones, as introduced in the following.
Moreover, a step of validation is performed, as described in the next subsection. In addition to
fitting the custom distributions used for factor generation, such as the ones presented in Fig-
ure 3.11, the set of functions contained in the MATLAB statistics toolbox [52] provide support
in fitting various tendencies of the response data set. A set of such functions can be found in
Appendix B.4. The optimal distribution type is identified and the set of parameters which best
fit the response values is estimated.

Nonparametric fitting is an alternative with the benefit that it can model almost any shape of
response distribution. Kernel density estimation function [60], also available in the MATLAB
statistic toolbox [52], interpolates the empirical PDF and computes the probability density es-
timate for any sample of the response. Parameters which can be generally used for response
characterization are only the mean and variance, but the main advantage is a high accuracy in
estimating the probability of occurrence of an arbitrary value. The worst-case is then estimated
by extrapolating the fitted PDF, as seen in the final step explained in this section.

Validation

To check the quality of the estimates, the goodness of fit must be evaluated. For this, a residual
probability of occurrence (res prob) is evaluated, i.e. the differences between the estimated PDF
and the empirical frequency of occurrence are computed, for intervals in the response range.

res prob = (estim cdf(r1)− estim cdf(r2))− (#(r1 < r < r2))/(#r) (3.19)

estim cdf is the estimated cumulative distribution function. #(r1 < r < r2) is the number
of response values between r1 and r2. #r is the total number of response values. res prob is
evaluated on equidistant intervals between the response extremes, and its mean and maximum
measure the goodness of probabilistic fit. Generally, a 1% threshold to decide on how well a
distribution fits on a data set is used. Figure 3.31 shows an example of two distribution types
fitted on an arbitrary data set: a parametric distribution (extreme value type), as well as a

62

Adapted DoE flow

nonparametric, better fitting one. The mean and maximum residual probability values are also
marked.

Figure 3.31: Fitted distribution examples

Since the analysis considers the response a random independent variable, it ignores correlations to
the distributions of factors, which will always exist, and changing them would most likely change
the output of this step. Characterizing the response distribution can also involve mapping it to the
statistical properties of factors. This depends, however, on each distribution type, for the factor
set and for the response. If this mapping would be established, modifying the factor distributions
to identify changes in the response distribution, especially to obtain extreme response values,
would be a worst-case search strategy. This is a possible topic for future work, as noted in
Section 7.2.

3.4.4.3 Response prediction

The ability to predict response values from factor values is limited when there is no regression
model. Still, the estimated response distribution not only characterizes the response, but can also
generate further values as a substitute to results of further expensive simulations. The response
PDF which has been estimated can predict the probability of each value and it can be used to
produce new values with the same distribution.

This response ”model” is independent of the factors. The correlations to factors store the sensi-
tivity information. This dependency can be decoupled and several parts of the simulated system
can be replaced with independently distributed variables. This can transfer the response charac-
teristics to the next upper-level simulations and speeds them up, because responses can become
factors in the next experiment. This steps into the next level of abstraction, replacing the impact
of factors with keeping the response distribution accurate.

3.4.4.4 Worst-case prediction

After a response distribution, parametric or not, is well-fitted on the response data, the
worst-case is estimated by extrapolating the PDF. More precisely, a specific value estimates the
response maximum if the probability to exceed that value is smaller than a specified ε. Similarly

63

Adapted DoE flow

for the minimum:

max(r) ≈ r max⇔ 1− estim cdf(r max) < ε (3.20)

min(r) ≈ r min⇔ estim cdf(r min) < ε (3.21)

An ε value between 10−3 and 10−6 is used here, depending on the smoothness of the PDF towards
its extremes. r max and r min can be computed by inversing the estimated CDF or by iteratively
increasing r max or decreasing r min, and estimating its probability. The ksdensity MATLAB
function provides this estimate.

For instance, the polynomial R = c0 + ctl · f , where c0=0 and cl=[1.0 -2.0 3.0 -4.0 5.0], is subject
to an LHS DoE of 200 tests on the vector of factors f . The real worst-case is given by:
min(r) = −15, for fr=min = [−1 1 −1 1 −1]; max(r) = 15, for fr=max = [1 −1 1 −1 1].
The fitted distribution presents a max(res prob) = 18.3 · 10−3. The worst-case estimates, for
an ε value of 10−6, are: max(r) ≈ 15.33; min(r) ≈ −17.32. Therefore, the maximum error
relative to the maximum response variability is of: 7.7%. The general performance depends on the
number of samples, the number of bins used to cluster them and on the smoothness of the PDF.
Examples for such worst-case estimations can be found in the results: Sections 5.2.3 and 5.3.4.

3.4.5 Summary of the experiment

Therefore, concluding the experiment mainly focuses on the response characterization, which
highly depends on the DoE type. The main steps are:

• Extracting the factor effects from the metamodel, or directly from the results as correlation
coefficients; plotting individual and interaction effects, when possible.

• Estimating the response distribution for RFDoEs

• Estimating the worst-case, as an extreme of the metamodel or of the distribution function.

• Running confirmation simulations, when possible, and checking the residuals.

A report folder is created where the controller saves the simulation inputs and outputs, the DoE
matrix, the coefficient set of the metamodel, when available. The fitted PDF, the worst-case and
estimates for the factor effects, as well as important plots are also stored.

Specification conformance check The worst found case for the response is checked to be
compliant with the expected range. The potential reasons for nonconformance are the factors
with significant effects.

Prediction model When available, the metamodel coefficients and their bounds are saved for
later use or refinement. Given a factor set, the metamodel is simply loaded and used as predictor,
by estimating the response in any given point.

64

Adapted DoE flow

Performance analysis A final analysis of the experiment is realized, summarizing the resources
and the performance. The resources are given by the number of runs, because the time to plan
and analyze the experiment is insignificant as compared to the simulation time, for the systems
under study. The final number of runs is influenced mainly by the number of factors and should
not be significantly higher than the values provided in Figures 3.15 for fixed level DoEs, and 3.16
for RFDoEs. Table 3.4 describes the performance criteria used to classify the experiment.

The first class of performance metrics were introduced in Section 3.2.5. Figure 3.16 presented
the dependency between the distance in the factor space and the number of runs, for RFDoEs.
A distance smaller than 0.3, i.e. which corresponds to 500 runs for 10 factors, corresponds to
a high coverage. A distance of 0.5 is considered medium, because it is the design with the
smallest distance, which still outperforms the classical DoEs as number of runs. In addition,
it allows correct regression of results on tested deterministic responses. The thresholds used
for the correlation between independent factors are chosen on the same criteria: regression can
be correctly performed on data with a correlation of up to 0.1, i.e. such a correlation is still
acceptable as residuals, unlike in the case of higher values.

The second class of metrics relate to the metamodel fitness, given by residuals, and are discussed
in Section 3.3.2.2. The thresholds for maximum and mean values, for the distribution of residuals
and for the correlation residuals-response were tested on deterministic models in the examples
in Section 3.3. The third criteria, relevant for RFDoEs, determines how accurate the statistical
properties of factors were represented. The thresholds for the accuracy of PDF estimation is
introduced and exemplified in Section 3.4.4.2. Finally, with respect to the worst-case estimate,
the experiment has a high performance when the distance between the initially simulated worst-
case and the predicted worst-case is large enough. A 10% distance is still high, because it means
one order of magnitude smaller than the maximum response variability. The simulation residual
for the worst-case prediction, when available, should be not farther from the prediction than the
maximum residual, hence the used threshold.

Table 3.4: Performance

Performance High Medium Low

Experimental design performance
Distance between sample points (only RFDoEs) < 0.3 < 0.5 > 0.5
Correlation between independent factors < 0.05 < 0.1 > 0.1

Metamodel fitness (only metamodel-based DoEs)
Maximum residual < 1% < 5% > 5%
Correlation residuals-response < 0.15 > 0.15
Distribution of residuals is normal yes no

Distribution fitness (only RFDoEs)
Factor correlations are considered yes no
Statistical factor properties are considered yes no
Maximum residual of PDF estimate < 1% < 5% > 5%

Worst-case analysis
δ relative improvement of the worst-case esti-
mate, from the initially simulated worst-case

> 10% > 1% < 1%

Residual of worst-case estimate < 1% < 5% > 5%
(only metamodel-based DoEs)

65

Adapted DoE flow

66

4 Extensions of the DoE flow for more
complex responses

All the following methods are contributions of the present work which extend the previously
introduced methods to handle more complex responses. The goal is either to improve the response
metamodel, to optimize the worst-case estimate or to handle time-variant responses. Section 4.1
describes how to embed the sequence of experiment steps into an automated sequential flow.
An improvement of the worst-case analysis is presented in Section 4.2, using as starting point
the available algorithms of gradient-based optimization. Section 4.3 extends the experiment to
a transient response analysis i.e. applies the steps of experimental analysis to each time sample
of a response signal. It requires the same number of runs as the basic experiments which were
presented. This extension is of interest to observe how the effects of important factors and the
worst-case conditions change in time. It provides predictions on the worst-case behaviour of the
response over the complete duration of the test. These build safe margins for the signals of
interest and can be confirmed by simulation.

4.1 Sequential experimentation

This type of experiment refers to sequential design strategies, which are necessary to resample
the factor space depending on the results of the previous experiment. Even in flows which go
as initially expected, when the number of factors is big enough, more steps of experimentation
need to be followed1. Classical approaches also recommend investing no more than 25% of the
resources in the first experiment [Mon05, p.1 - 22]. The experimental sequence removes the user
interaction, which, although useful, is still optional. The decision-making steps can be automated,
provided that thresholds and default settings are first set.

Figure 4.1 shows the necessary steps. Phases common to any experiment are visible, but loops
connect them. The loop within the Metamodelling step refer to the sequential strategies which
iterate through the results and optimize the metamodel estimates, e.g. the Leave-k-out method,
discussed in Section 3.3.3. The external loops indicate sequential design, i.e. iterative sampling or
revising the initial experiment settings, e.g. by a reduction of the initial factor set. They should
only be applied when the existent data cannot fit any of the available metamodels. Steps which
require simulations are marked in gray boxes.

1pilot runs, runs for screening, for fitting, for validation, worst-case confirmation runs

67

Extensions of the DoE flow for more complex responses

Figure 4.1: Sequential experiment flow

As also noted in [GCLD10], an adaptive sampling must define a sampling function doe that
constructs a hierarchy doe(0) ⊂ doe(1)... ⊂ doe(n) of nested subsets from the total combinations
of factor levels. doe(0) is the initial experimental design and is constructed using one of the
available algorithms. An important requirement of doe is to minimize the number of sample
points added from one iteration to the next, yet maximize the information gain of each successive
sampling level. This process is referred to as sequential design, but is also known in literature as
adaptive sampling, active learning, reflective exploration or optimal experimental design [WS07].
The advantage of such approaches is that the number of required data points does not need to
be specified from start, avoiding potential over/undersampling. An important consequence is
that the task of finding a proper response metamodel R becomes a dynamic problem, both with
respect to the parameterization and to the set of optimal values of metamodel coefficients.

The main indicators that a metamodel is not appropriate are the residuals and they are used as
optimization criteria. To embed the relevant decisions in an automated sequence, the need for
user interaction must be absent, e.g. by visual inspection. The metrics associated with residuals,
together with predefined thresholds, allow these decisions. Section 3.4.5 justified these thresholds
chosen as the boundaries between good and poor performance with respect to the metamodel’s
fitness (Table 3.4). Therefore, the decision criteria is:

• the absolute maximum of relative residuals (< 5%)

• true result of hypothesis test on normal distribution of residuals, with mean zero

• correlation to the response values (< 0.15%)

When the metamodel is unfit, the steps detailed in the next paragraphs are necessary: revise the
assumptions, i.e. isolate the reasons for metamodel unfitness; design the new experiment, be it
by a resampling on the same factor set or on a modified factor set; reuse the previous runs for
the new metamodelling.

68

Extensions of the DoE flow for more complex responses

Revise the assumptions

When residuals are not compliant, there is either not enough data, or some assumptions about
the metamodel are false. Common sources for these problems are:

• The experiment was not properly designed e.g. not enough runs, or factors are strongly
correlated and regression does not decorrelate them.

• Some higher order effects were not accounted for in the metamodel.

• Some interactions were not accounted for in the metamodel.

• The metamodel included too many factors.

The following corrections can be applied:

• Modify the metamodel to fit (a) i.e. add higher order effects or other types of effects. The
experiment must then be augmented with the extra runs to estimate the new effects.

• Run more simulations, but keep the metamodel assumptions and the factor set i.e. optimize
the design (b).

• Modify the initial set of factors or the factor ranges (c).

The pseudo-code inserted in Appendix A.3 shows how the sequential experimentation is imple-
mented, making use of concepts and algorithms introduced in previous chapters. The sequential
follow-ups (a, b, c) are referenced in this implementation.

Choose the next experimental design

This choice depends on the decision previously made about the assumptions to revise. The next
experimental design is defined by the resampling function doe (also included in the Appendix A.3).
When the metamodel parametrization is revised (a), a sequence of DoEs is performed, and the
corresponding metamodels are fitted: 1st order model without interactions (R3FF DoE); 1st order
model with interactions (R5FF DoE); 2nd order model with interactions (CCD DoE). When the
metamodel must be further refined, the next effects to add are higher orders of individual factors,
estimated after running more axial points for the specific factor. When specific interactions must
be estimated, a higher resolution fractional factorial is performed. When the coefficient set is
kept and the metamodel is optimized (b), the next experimental design is an RFDoE, when
statistical properties of factors are provided or a space filling, LHS DoE, when they are not. The
next decision is to revise the screening step, i.e. to eliminate factors (c). This removes from the
factor set the ones with the smallest main effects, which are likely to act as big sources of noise.
When the set has been reduced and a proper metamodel has been fitted, in case more runs can
still be afforded, the factor set is successively built back. The last resort is to reduce the factor
ranges. This is not included in the automation since it implies applying modifications to the
initial requirements.

69

Extensions of the DoE flow for more complex responses

Reuse the runs

Before redesigning the experiment and even more, before performing any new run, it is impor-
tant to check how to reuse previous runs. If a factor is removed after screening, it is assumed
insignificant. Therefore, the previous runs can be used in the experiment on the remaining factor
set, considering the screened factor just a ”don’t care” or a small source of noise. In this sense,
as Montgomery notes [Mon05], and as is detailed in Section 3.2.4.1, fractional factorials have the
projection property, i.e. they can be projected into stronger (larger) DoEs in the subset of sig-
nificant factors. This has an application in sequential experimentation: it is possible to combine
the runs of two or more fractional factorials to assemble sequentially a DoE to estimate factor
effects and interactions of interest. To take advantage of this property, one must reestimate the
metamodel, but this time with respect to the subset of factors for which important main and in-
teractions effects were found. The direct benefit is that more complex interaction effects for this
subset of factors can be estimated, without loss of accuracy in the results and without investing
new runs.

In a reverse situation, when a new factor must be taken into accounted, the previous factor set is
a subset of the new one. Therefore, the previous experiments are subsets of designed experiments
for the new factor set. Old runs are used in the new setup, with the new factor simply set to 0.
Although they do not help in estimating effects with respect to the new factor, any previous run
can be reused, at least for validation of new estimates.

4.2 Optimization of the worst-case by gradient-based search

To increase the confidence and correctness on the worst-case analysis, further simulation runs
can be invested to search in the neighborhood of the previously estimated response extreme. A
gradient-based search is implemented, similar to what has been introduced in Section 2.3.3. The
self-correcting search method takes as starting point the factor set of the worst-case found so
far. An iterative sequence of simulation sets is performed. The search undertakes the role of
the simulation controller, initiating the launching of each simulation set. While performing this
search, it allows no inputs other than the results of the previous simulation set.

The problem addressed here is similar to the optimization problem presented in Section 3.4.3.
The worst-case can be considered for simplification the global minimum of the response over the
factor space. The procedure makes similar assumptions on the objective function i.e. continuity,
derivability, to induct the next search direction. The direction of search is determined at each
major iteration, by performing a metamodelling step for each simulation set. A constrained
optimization algorithm is then called on the estimated function.

However, the main difference as compared to the previous problem is that the objective function
is not the deterministic metamodel, but an unknown function, i.e. the response of the simulated
system. The constraints are stricter, as the size of the search area is reduced. It should be chosen
inversely proportional to the accuracy of the metamodel estimated in previous steps. Specific
differences which relate to the algorithm options are detailed next.

It is important to provide the algorithm with options which fit the given problem. Although
these are usually application dependent, thresholds and ranges which were found effective on the
responses under study will be mentioned. One of these options is the starting point of search: it is
set to the previously estimated worst-case, i.e. the output of the step explained in Section 3.4.3.

70

Extensions of the DoE flow for more complex responses

The other is the search step, i.e. the variation applied in the factors, commonly 10−3. The main
options, however, relate to the stop criteria. The algorithm returns when one of the following is
met:

• relative change in response during the last iteration smaller than a specific threshold. A
small change in the response must be expected in reduced regions of search, so this stop
criteria is set relatively low e.g. 10−6.

• maximum number of iterations reached (e.g. 10 to 20). Alternatively, the maximum number
of runs can be set, which is preferred since the size of each iteration increases with the
number of factors e.g. 100 runs.

• violation of factor constraints, i.e. the hypercube of radius one.

• changes in factor predictions smaller than a given threshold e.g. 10−6.

Sources like [51] make such algorithms available and provide more details about their implementa-
tion. The MATLAB functions fmincon and fminsearch are used for implementation. A handle
to the simulation controller is passed as parameter.

Figure 4.2 shows a test of the algorithm on an approximately polynomial function on 2 factors:

R ≈ 1 + 10 · f1 − 5 · f2 + 5 · f1 · f2 − 10 · f2
1 + 25 · f2

2

The response is replaced with this deterministic function which is the represented surface in the
figure, added to an independent error term, which models real departures from the metamodel.

Figure 4.2: Worst-case search example

For simplification, the center is the starting point and a bigger search step is used. The gradient-
based search can be observed: after a few iterations around the central area, the search is con-
ducted into the steepest direction, approaching the maximum of the polynomial. A similar search
is applied on the real system response in Section 5.3.5. It is compared to a direct search in the
full initial factor space. The algorithm is efficient in improving the worst-case results only when
applied on a reduced area, i.e. as explained in this section.

71

Extensions of the DoE flow for more complex responses

4.3 Extension for transient response analysis

Simulation tests how the system under study responds in time, under a predefined stimulation
applied to the inputs. Requirements commonly specify admitted bounds of transient signals at
the system interface. Therefore, the objective of this extended flow is to identify the impact
factors have on the response and to find safe bounds for it, considering that the response varies in
time. In addition, turning the worst-case predictions into graphical representations of margins for
signals is attractive to system-level simulation practitioners, especially in the analog mixed-signal
world, as opposed to extensive statistical measures for the probability of system conformance.

Therefore, the concept of a response is extended here to the set of time-value pairs of such a signal.
With respect to the time factor t, the sampled response r represents a set of highly correlated
static responses, because they are values of the same signal, influenced by the same set of factors.
Ideally, the factors with major impact remain the same over the time interval under study. But
since different events occur at different times, not only the constant term c0 of the polynomial
metamodel, i.e. the value when all factors are zero, modifies in time, but in reality so can the
effects of factors and their interactions.

Basically, the experimental flow as introduced before is run in a loop, on the records of a transient
response. The main challenge to address is the problem dimension, since a signal can exceed 106

time samples recorded during a standard simulation. The rate of result analysis must be obviously
reduced, otherwise the impact of postprocessing on the performance becomes unacceptable. The
analysis is executed in fewer samples and the metamodel representations are ”interpolated” over
these points.

4.3.1 Problem description

The problem can be formally described as: given a vector of factors f of length n and a response
signal r(f, t), the dependency on f and bounds of r with respect to f must be estimated. The
effects of f can vary in time, and so can the factor sets which determine global extremes of the
response. For each simulation, f is kept fixed and r(f, t) can be recorded, at least for a set of
time samples S.

It is assumed that the dependency of r on f can be approximated by a polynomial metamodel:

R(f, t) = c0(t) +
∑2

o=1

∑n
i=1 c

(o)
i (t) · foi +

∑n−1
j=1

∑n
k=j+1 cjk(t) · fj · fk

The assumption is checked for correctness after processing the simulation results, in the Meta-
modelling step. For simplification, the sample points are equidistant:
S = {t = p · T ; p = 1...s}, where s is the number of samples (the simulation duration is
at least s · T). Metamodelling must estimate for each time sample the set of coefficients

c(t) = {c0(t); c
(o)
i (t); cjk(t)}, where o = 1, 2; i = 1...n; j = i...n− 1; k = j + 1...n. The

metamodel must be validated using the residual set, for each time sample. The relative residuals,
i.e. normed to the maximum response variability, are analyzed. They also vary in time:

ε(f, t) = (r(f, t)−R(f, t))/(maxfR(f, t)−minfR(f, t))

72

Extensions of the DoE flow for more complex responses

Figure 4.3: Transient response experiment flow

4.3.2 Flow

Figure 4.3 shows the experiment flow for a transient response.

Define the factor set The factor set is defined as described in Section 3.1.2. An experimental
design is generated depending on the number of factors n which must be handled and the number
of runs m which can be invested. The DoE matrix d of size m×n is loaded to be simulated. The
first run is always the center point of the factor space (f = 0). This run provides a reference for
each time sample.

Simulate the experiment The set of runs is simulated. The response signal is recorded for
the complete duration of each simulation run, with a predefined time resolution.

Sample the response The traces are loaded into the postprocessing algorithm and a matrix
of samples is formed: [k · T ; r(k · T, d(1, :)) ... r(k · T, d(m, :))], k = 1...s, where r(k ·T, d(i, :))
is the response result for run i, at time sample k · T . d(i, :) is the row i of DoE matrix, i.e.
with the factor settings from run i. The failed runs are filtered out and the outliers are replaced
with NaNs. When too many runs failed, the controller aborts the analysis and optionally reruns
with reduced factor ranges. The outliers, on the other hand, are removed only for the respective
time samples. For instance, a response signal which ramps-up and is triggered at different points

73

Extensions of the DoE flow for more complex responses

in time can present such outliers for sample times around the trigger event. This restriction is
necessary to keep the response assumptions valid (discontinuities are removed).

Metamodelling For each time sample, the vector of results r(k · T, d) and the matrix d are
used to:
Build the metamodel: Regression analysis extracts least square estimates for the coefficient set
c(k · T).
Validate the metamodel: The metamodel must be characterized in terms of fitness on data, in
order to be used for interpretation of effects and response prediction. For this, the residuals are
analyzed according to the criteria defined in Section 3.3.2.2. Optionally, some runs can be invested
to optimize the coefficient set, by performing iterative regression and validation. Samples where
the metamodel is unfit are removed from the analysis. When they are too many, the controller
aborts the analysis and optionally redesigns the experiment for a higher metamodel accuracy.
Important factors and interactions, and the way they vary in time, can be identified by the
estimated coefficients, and separately plotted for interpretation.
Find the metamodel extremes: Details on this step were explained in Section 3.4.3. Optimization
strategies vary depending on the type of effects. The output of this step is the pair of estimated
factor sets for extreme values of the metamodel, together with the specific extreme response
values:

fmin/max(k · T) = f(k · T)R(f,k·T)=min/max

Simulate confirmation runs Simulations can be run to confirm the predictions with respect
to the response’s extremes, for time samples of interest. Only the significantly different predictions
are run, i.e. only those runs, for which factor sets are far enough from each other. Results show
that the impact of factors and, consequently, the factor set which determines a response extreme
value, vary in time.

Form bounds for the response Finally, bounds for the transient response are ”assembled”.
While metamodelling interpolates the response with respect to the factor set, the sampling in time
and assembling of the response bounds performs a time interpolation of the response dependency
on the factors. The confirmation runs completed by the predictions are used for the samples k ·T .
Between these samples, the response can be predicted by extending the dependency on the factors
from the closest time sample. Still, the constant term is adjusted using the value r(f = 0, t).
Safer response margins can be obtained by corrections based on the residuals (as center value or
maximum).

Finally, the controller must report the estimated metamodels as well as the predictions for extreme
response values. Assembled response bounds and results of initial or confirmation simulation runs
are also stored. Additionally, the resulting performance as described in the following is reported.

4.3.3 Performance evaluation

The experiment time is

τ = (m+ conf) · τsim + s · τregress validate + sfit · τpredict

74

Extensions of the DoE flow for more complex responses

where s is the number of time samples, m is the number of runs of the DoE. conf is the number
of confirmation runs. sfit is the number of time samples where the metamodel is found fit. m
is the required number of runs for usual, fixed-level DoEs (the dependency on the number of
factors is visible in Figure 3.15). The error rate of the experiment is given mainly by the results
of residuals’ evaluation. The number of significantly different sets of effects and extreme response
predictions shows how complex the response dependency in time is.

Section 5.2.7 presents results of such a performance evaluation. The discussion paragraph 6.2
concludes that a careful monitoring of the postprocessing steps can lead to an efficient overall
performance for transient signals.

75

Extensions of the DoE flow for more complex responses

76

5 Results

The presented flow and alternatives are demonstrated on selected automotive systems. A selection
is made out of the existing approaches introduced in Chapter 2. Their implementation is first
described. Then, the first case-study, i.e. an ECU designed for window lift applications, is
validated by fixed-level and RFDoEs, as well as by transient response analysis. Afterwards,
a system designed for airbag control applications is analyzed, with more focus on RFDoEs.
Alternatives are tested on both systems and compared to the proposed solutions. The next
chapter summarizes these results and makes comparisons between them.

5.1 Implemented alternatives to the DoE flow

Out of the set of alternatives presented in Chapter 2, the ones worth implementing (and marked
so in Figure 2.1) are considered because of a higher potential to solve the issues we face. To
implement them and reuse the experimental framework in place, only the simulation controller is
modified. Some of the alternatives require only small modifications of the experiment planning
algorithms.

5.1.1 Directed test methods

They require no adaptive test, thus there is no feedback of results to the instance planning the
simulations. In addition, no complex postprocessing steps are required (no metamodelling, no
response prediction or estimation of the worst-case). Sensitivity analysis can be performed only by
simple computations on the response variance, while the worst simulated case is used to estimate
the worst-case.

Trial-and-error

An example is the nominal value simulation, or best guesses on where the worst response case
would occur. Their implementation is simple, but application dependent, and requires knowledge
of the system.

One-at-a-time approach needs to successively vary each factor and keep the others at fixed levels,
e.g. 0. As compared to the custom DoE introduced in Section 3.2.4.1, the planning is similar,

77

Results

the effort to implement is comparable, and the number of runs is identical. The results of the
one-at-a-time alternative can easily be derived from the ones of the custom DoE.

This class of methods is easily implemented by loading the factor settings to simulate in the DoE
matrix, and feeding it to the controller. Nominal value simulation is a vector of 0-s for the factors,
best guesses are manually set, while one-at-a-time approach, is realized by a basic loop which
increments the current factor level and launches simulations, similarly to grids.

Exhaustive search

This method exhausts all combinations of factor levels, similarly to a multivariate grid. When
factor ranges are continuous, it is not feasible. Still, they can be discretized, and then a number
of

∏factor number
i=1 number levelsfactor i runs is needed. Since the dimension of the factor set often

exceeds 10, the only acceptable case is the full set of corners, where 2 levels are invested per factor,
just as in a 2-level Full Factorial. However, no metamodelling is involved, because there is no
prediction or confirmation of the worst-case in directed test methods. It is easily implemented by
simulating all corners, i.e. a DoE matrix of all vector combinations with elements in the {−1,+1}
set.

5.1.2 Worst-case direct search

A similar method to the iterative gradient-based search proposed in the approach (Section 4.2) is
implemented. The iterative nature of the search is kept, but the following settings are different:

• as opposed to initial method, which is performed on the screened set, the direct search is
applied on the complete initial factor set.

• the direct search uses the center as the starting point, while the initial method starts from
the worst-case found after the sequential DoE.

• a bigger search step is used.

• the stop criteria is modified: a bigger change in response is expected before stopping and
more runs are allowed before stopping.

Results can be found on the airbag case study, as compared to the proposed flow, in Section 5.3.6.
The flow is found efficient only as initially proposed in Section 4.2 of the alternatives.

5.1.3 Random test methods

Random test is performed here as alternative to the proposed RFDoE. The conceptual differences
between random test methods (Monte-Carlo) and RFDoE were explained in Section 3.2.5. They
involve similar planning and the same number of runs, but basic random test methods do only
randomization. No correlation or de-correlation of factors or measurements of the distances
between samples in the factor space are performed. Just as in trial-and-error methods, no analysis
of factors’ effects, no response characterization and no worst-case prediction are performed. The
implementation is quite simple: the random generator is called independently for each factor,
passing the statistical distribution of the respective factor. The sets of random values are loaded
into the DoE matrix, which is then simulated and plotted together with the results.

Results which compare Monte-Carlo against proposed approaches are presented in Section 5.2.3,
but also shortly in Tables 5.6 and 5.12.

78

Results

5.1.4 Genetic algorithm

The basic necessary concepts were briefly introduced in Section 2.5. GA is implemented to be
compared against the proposed metamodel-based methods, in terms of worst-case results and
general performance on the systems under study. The implementation uses a population size of:
N = ct · n, where n is the number of factors, and ct is chosen minimum 2 (e.g. 5). A number
of generations of minimum 10 is used, therefore a 10-factor set would typically involve 500 runs,
i.e. comparable to a LHS design. The mutation and crossover probabilities are varied according
to how much the GA should span the domain of interest when generating the next population.

Judging from the results, response surfaces are found appropriate metamodels for the responses of
interest. That is why the current GA implementation is tested initially on polynomial responses.
Similarly to Figure 4.2, Figure 5.1 plots GA results evaluated on a 2-factor polynomial, with
a superimposed noise (a random term). Although some progress towards the response extreme
(maximum in this case) exists, the random changes applied from a generation to the next do not
help to approach the real maximum. Many runs must be invested to reach a rather poor final
response: N = 10, G = 10, i.e. 100 runs.

Figure 5.1: GA search example

The algorithm is tested for applicability on the real system, in Section 5.2.6. Because of the
same reason, i.e. use of random sources in the next population generation, a low performance is
recorded.

79

Results

5.2 Window lifter system

The first case-study is an automotive ECU designed for window lift applications. The experiment
must evaluate the system in the complete application context, so the DUT consists of the ECU
and the electro-mechanical system driven and supervised by the ECU. Therefore, the system
includes mechanics, analog and digital electronics, as well as software. It is a heterogeneous
system and presents multiple sources of variability which introduce multi-nature factors.

5.2.1 System description

Figure 5.2 represents the basic structure of the electro-mechanical subsystem. The ECU controls
a DC motor through relays. The motor acts on the gear box and a gear rack finally drives the
window. A Hall sensor provides the ECU with the speed and direction of the motor, in the form
of electric signals, for window position track.

Figure 5.2: Window lifter electro-mechanical subsystem

The ECU structure is visible in Figure 5.3. The central digital element is a microcontroller

Figure 5.3: Architecture of the window lifter ECU

subsystem (MCU) compatible to the standard 8051 core. Within this application context, the
LIN transceiver acts as an interface to provide the MCU with commands to control the mechanical
load. Two low-side switches (LSS) with protection against short circuit and open load are driven
for the relay control. The motor current is measured across a shunt resistance and transferred by

80

Results

an operational amplifier (OPAMP), to a measurement interface (MI), consisting of 8-bit ADCs.
The diagnosis element is a processing unit contained by the measurement block, which receives
information from other sources which need supervision as well, e.g. the temperature sensor or the
power supply. The processing unit signals the MCU if error conditions exist (overtemperature,
overvoltage, overcurrent). The MCU interprets these signals and controls the system accordingly.
Such protection against overcurrent is needed when an obstacle blocks the window (also referred
as anti-pinch response). The power management unit is responsible for internal and external
power supply and supervision. Low power modes are available, from which wake-up is possible
via the LIN transceiver or monitoring inputs. A watchdog timer (WDT) supervises periodic
trigger inputs from the MCU.

The DUT model The DUT was modelled using SystemC and its extensions SystemC-AMS
and SystemC TLM1.0. The available models of computation and communication (Discrete Event,
Timed Data Flow, TLM) were used to model the ECU and the electromechanics. An algorithmic
model of the application software is used for the MCU, which was first validated against the
results of an Instruction Set Simulator. The electromechanics model uses a nonlinear proprietary
extension of SystemC-AMS, presently under evaluation. In this context, complete application
scenarios can be simulated. Several test cases were verified: window control, with position track
and anti-pinch response; tests of protection features e.g. overtemperature; power-up and power
mode management.

5.2.2 Responses and factors

Responses are first defined, considering the requirements and expected behaviour of the system.
Then, factors are identified as sources of variability with potential impact on the responses. Their
ranges are extracted from the specification, as explained in Section 3.1.2.

The first experiment is performed on the anti-pinch response. For safety reasons, it is necessary
to ensure that the maximum force applied to the external obstacle is within a specified range,
given the allowed variations in different blocks and operating conditions. Therefore it is chosen
as experimental response. Other responses associated to this scenario can be identified and they
all relate to the event of obstacle occurrence: maximum current reached at the ECU interface,
delay in the ECU reaction, from the presence of the obstacle until the relays switch off, driven
by the LSS.

A correct interpretation and filtering of the specification information are essential at this point.
The initial set of factors is common to all responses, and is collected from parameters of the
blocks involved in this scenario. Factors are extracted from the specification and transferred into
a configuration file, similar to the one presented in Figure 3.5.

Figure 5.4 contains this information in a tabular form. Each factor has a nominal value (considered
the central value of its range) and a tolerance. Optionally, a statistical distribution can be
specified. Along with the name to use in all pre- and postsimulation steps, the path to the
corresponding parameter in the DUT model must be specified. Another field is used to mark if
the factor is active in the current experiment.

The first level of hierarchy of the test bench schematic is visible in Figure 5.5. The corresponding
test case is implemented in the stimuli function, of the Cfg&Stim unit.

81

Results

Figure 5.4: Window lifter DUT configuration file

Figure 5.5: Window lifter testbench

Nominal value simulation

Results of the nominal value simulation are presented in Figure 5.6.

The close window command is processed and the MCU controls the LSSs to drive the DC motor.
When an obstacle blocks the window, the force developed by the DC motor increases and so does
the current. The MI converts the amplified current value and the postprocessing block flags the
error condition to the MCU, which switches the LSSs off. For functional verification purposes,
relevant internal and external signals were traced, and correct timing and event sequences were
checked. These are not performed in the experiment, however, since they are not necessary,
cannot be checked for each run and would introduce a decrease in the simulation performance.
Instead, the response results are checked against the expected range, to make sure the system
still has the same functional behaviour.

In the following, different experimental approaches are demonstrated, on different factor sets. The
next two sections present experiments on the first factor set, which are focused on probability

82

Results

Figure 5.6: Nominal value simulation of the antipinch test case

distributions and correlations in factors. These are best applied on RFDoEs, but fixed-level factor
DoEs are also implemented for comparison. The second factor set analyzed in Sections 5.2.5
shows how simple responses can be and that experiments with minimum resources can reach
the objectives. The third factor set is analyzed in Section 5.2.6 to show a sequential approach,
suitable for more complex effects, and when a deeper worst-case analysis must be implemented.
Finally, the extended analysis for transient responses is demonstrated in Section 5.2.7.

5.2.3 Results of the random factor DoE versus Monte-Carlo

The experimental methods are first demonstrated on a reduced 4-factor set (factor set 1). The
target is to show the applicability of experimenting with factors statistically distributed and
correlated as explained in Section 3.2.3. Basic Monte-Carlo and RFDoEs, as introduced in Sec-
tion 3.2.5, are tested and analyzed as detailed in Section 3.4.4.

Experiment

The responses in the first experiment are the maximum force on the obstacle and the maximum
switch-off delay. The selected factors are: V bat (supply for the overall system), V s (supply for
the electronics), the OPAMP gain and the LSS delay (Figure 5.4). V s is strongly correlated to
V bat because the supply voltages have a common origin, even if the electrical components which
interface the two power supplies introduce additional variation and weaken the correlation.

500 simulations were run, with factors normally distributed, and the two responses were recorded
and mapped to the factor sets. This corresponds to a distance in the factor space of less than
0.1. The distributions are generated as described in Section 3.2.3. The plot matrix in Figure 5.7
shows scatter plots for each pair of factors, the responses with each factor, histograms for each
factor and for the responses.

Some interesting effects can be observed: the force increases with V bat, for smaller values, proba-
bly because the DC motor develops more force against the obstacle as the supply voltage increases.

83

Results

Figure 5.7: Plot matrix of an RFDoE on window lifter responses

But for higher values, the force tends to decrease. The reason could be an ability to stop the
DC motor faster and finally a smaller force. The force decreases with the OPAMP gain. That
is because the over-current condition is triggered faster for higher gains. But the OPAMP gain
effect on the delay response is masked by more important ones. The force should increase with
the LSS delay, but the effect is also masked by others (the maximum variation of the LSS delay
introduces less variability than other factors in the total reaction delay, thus in the force). The
main effect visible in the delay is a decrease with high supply voltages, because of a bigger speed
of reaction of the system.

Factor effects

While basic Monte-Carlo (i.e. random test) stops here, the RFDoE continues with a sensitivity
study to confirm the observations detailed above and with the worst-case analysis. The correlation
extracted from the matrix plotted in Figure 5.7 can be used to characterize the factors’ effects,
as explained in Section 3.4.4.1. The table below contains the linear correlation coefficients, with
the color corresponding to the plot matrix.

A test of the hypothesis of no correlation between the responses and the factors is performed
in order to judge on significant factor effects, as related to each other. The 2-row matrix below
is the resulting probability of the test, and indicates that the single insignificant factor is the
LSS delay.

84

Results

1.00 −0.04 −0.05 −0.03 −0.36 −0.76
−0.04 1.00 0.98 0.00 −0.91 −0.32
−0.05 0.98 1.00 −0.01 −0.89 −0.31
−0.03 0.00 −0.01 1.00 0.01 0.01
−0.36 −0.91 −0.89 0.01 1.00 0.62
−0.76 −0.32 −0.31 0.01 0.62 1.00

0 0 0 0.682
0 0 0 0.743

A mapping to the effects visible in the matrix plot can be established. The correlation coefficients
factors-response quantify factor effects, thus allow comparisons. These linear correlations estimate
the main effects of the factors. Their signs and magnitude, as referenced to each other, can be
interpreted for sensitivity analysis, similar to the one previously described, but more objective.
The independent factors have a correlation coefficient smaller than the 0.05 threshold, and the
correlated factors have a coefficient close enough to the one initially specified.

Response distribution and worst-case prediction

Analysis of the distribution for the force response first fits a function on the empirical PDF.
Figure 5.8 shows a fitted nonparametric distribution, for the maximum force response.

Figure 5.8: Fitted response distribution

The fitness is given by a residual probability of mean(res prob) = 0.077% < 0.1%, i.e. small
enough. The response range is estimated to [69.45...76.61]N with a threshold probability of
ε = 1.0e − 6. To conclude, distributing and correlating factors according to their statistical
properties ”naturally” covers the multi-dimensional verification space. But RFDoEs continue
the Monte-Carlo experiment by extracting correlation as a measure of factors effects and space
coverage. Then, the response distribution is estimated and used to predict the worst-case.

5.2.4 Results of the Central Composite DoE versus alternatives

The first part of this section shows results of fixed-level and random factor experimental designs.
The second part applies the custom DoE and the third compares the results.

85

Results

CCD DoE, RFDoE and Monte-Carlo

V bat is removed and Rshunt, an independent factor, is introduced. A CCD DoE is simulated,
which requires only 25 runs. The quadratic regression model is estimated, and it locates a
pronounced 2nd order effect of V s and important interaction effects. The coefficient set quantifies
effects for the factor set:
[F1 = V s;F2 = Rshunt;F3 = OPAMP gain;F4 = LSS delay]. The metamodel has the constant
term c0=75.71, the vector of linear effects
cl=[1.04 -1.44 -0.67 0.11]. The matrix with interaction and quadratic effects cij is visible
below. The coefficient estimates are validated against the regression results of a 500-run RFDoE.

-2.040 -0.165 -0.375 0.060
-0.165 0.010 -0.003 -0.020
-0.375 -0.003 -0.090 -0.015
0.060 -0.020 -0.015 -0.010

Figure 5.9a shows an interactive plot of the regression model. Such a plot updates the predicted
response when changing the factors levels (indicated by the vertical lines) [50]. This makes the
2-dimensional graphical view possible. 95% confidence bounds for the response are also extracted.
The residuals are computed and analyzed as described in Section 3.3.2.2. Their normal probability
plot (Figure 5.9b) indicates that they are approximately normally distributed with mean 0.

Figure 5.9: a. Regression results on the RFDoE
b. Normal probability plot of residuals

To compare the initial DoE and the basic Monte-Carlo, Figure 5.10 plots the results of the Monte-
Carlo simulations and the metamodel resulting out of the CCD DoE. The worst found cases are
marked on the figure. For the Monte-Carlo experiment, this is the worst simulated case. For
the CCD DoE the worst-case is first predicted as detailed in Section 3.4.3, then confirmed by
simulation.

To conclude, CCD DoEs can be quite powerful, because they extract sufficient information out of
much less data, i.e. even after 20 times less runs than Monte-Carlo. Regression on the results of
a considerable number of runs indicate adequacy of regression metamodels for the major effects
in this system. However, statistical properties of factors and characterization of the response
distribution can be performed only with RFDoEs.

86

Results

Figure 5.10: RFDoE results versus CCD DoE regression results, on the maximum force on the obstacle

Custom DoE

The previous results pointed V s as an interesting factor, due to 2nd order effects, as well as
interactions with OPAMP gain and Rshunt. The custom implementation of a multi-level fac-
torial introduced in Section 3.2.4.1 is tested next. A special focus is put on the main factor, and
corresponding analysis of results and estimation of effects are performed: V s is the main factor,
with 10 levels over its range. Simulation sets, with the other factors (=factor set) set to corners,
are run at each main factor level. Results show an interaction between the main factor and the
factor set, plus a non-monotonous response, over the main factor range.

The force is interpolated over main factor levels, thus assumed piecewise linear, for each set.
Figure 5.11 shows that interaction exists: plots of different factor sets are not parallel and the
worst-case corresponds to different levels of the main factor, depending on the choice for the
factor set. The response variability on V bat is different for different sets, i.e. another sign of
interaction.

Figure 5.11: Interpolated response for the custom DoE

The effects are computed as explained in Table 3.3. Estimates are summarized in Table 5.1.
Similar conclusions can be drawn based on the interpolated Force(index of factor set).

87

Results

Effect estimates[N] Vbat Rshunt OPAMP gain LSS delay

Main factor effect mean (std sets) 1.27 1.00 0.61 0.05

Factor set effect std (mean sets) 1.62 1.50 1.7703 2.24

Interaction std (std levels) 0.53 0.06 0.22 0.02

Table 5.1: Effects in the custom DoE

Comparison

The worst-cases and the number of runs for tested experiments are presented in Table 5.2. The
response’s mean and standard deviation are also included.

Table 5.2: Relative improvement in the response variability

Method Number of Worst-case Mean Std. dev.
runs response[N] response[N] of response[N]

Monte-Carlo 500 76.41 74.30 0.92
Custom DoE 80 77.09 73.49 1.96
CCD DoE 25 78.16 73.99 2.22

Monte-Carlo is therefore the poorest as number of runs, worst-case found as well as standard
deviation. The CCD DoE has the highest performance, obtained with 20 times less runs, because
of the well-fitted quadratic metamodel. The custom DoE also detects the non-monotonic response
dependency on the main factor, as well as the interaction effects, but has no predictive nature.
Therefore, its worst-case estimate is one of the initially simulated points, and is poorer the
metamodel’s confirmed prediction.

To conclude this first part, the CCD DoE reveals effects essential for a proper sensitivity analysis
and response extremes better than the alternatives which require more runs: random test method
and than the custom DoE. The custom DoE can locate higher order interactions, and approximate
the response with piece-wise linear functions on important factors. RFDoEs contribute by a better
coverage of the factor space with properly modelled correlations and distributions, both for the
factors and for the response.

5.2.5 Comparison of Fractional Factorials

R3FF DoE is demonstrated next to be efficient when factor effects are quite simple. The exper-
iment studies the maximum force response, and uses a 10-factor set (factor set 2). Figure 5.12
displays the interactive plot of the metamodel obtained after regression on the results of a 16-run
experiment. The factor set under study is also visible.

Table 5.3 compares the simulation results for the worst-case predictions of the metamodels esti-
mated after: the full factorial DoE, the R5FF DoE and the R3FF previously presented. It can
be observed how significantly different the invested numbers of runs are, while the worst found
case is the same. The factor set has insignificant interactions or quadratic effects, as compared
to the main effects. Therefore the worst-case is estimated as one of the corners.

88

Results

Figure 5.12: Individual effects on the maximum force response, after R3FF DoE

Table 5.3: Results of Factorials on the maximum force response

10 factors Full factorial Fractional factorials

Number of simulation runs 1024 128 16
Simulated after prediction 78.488N 78.488N 78.488N

5.2.6 Sequential DoE and alternatives

More factors are considered in the next analysis, i.e. a 14-factor set (factor set 3) (visible in
Table 5.4) from the set specified in Figure 5.4. A sequence of experiments is performed, in order
to locate important factors and more complex effects.

Results of a screening experiment

The factor set is subject to a screening experiment. The same maximum force response is ana-
lyzed. To identify factors with little or no impact on the response, a R3FF DoE for this set of
factors involves no more than 16 runs to extract preliminary main effects. The ANOVA method
described in Section 3.3.1 is applied to identify factors statistically significant (Table 5.4).

The test compares the variance explained by factors relative the the total response variance (given
by the mean sum of squares from the first column) with the left over variance that cannot be
explained ε. The probability from the last column is the result of the hypothesis test of null factor
effects. A rather permissive for p of 0.1 is used as decision threshold. Factors which are removed
from the analysis, i.e. with p > 0.1, are marked italic in the table.

Fixed-level factor DoEs

The 10 remaining factors after the screening step are analyzed first in a R5FF DoE with 128 runs,
to estimate main and interaction factor effects. The estimated metamodel is found not adequate
after the residual analysis, because they are not approximately normally distributed. The left
plot in Figure 5.13 indicates this lack of fit. Therefore a CCD DoE is built by augmenting the
previous DoE with 21 additional points, resulting into a DoE with 149 runs. The simulation
results fit a 2nd order regression model. In this case the residuals are approximately linearly

89

Results

Table 5.4: Window lifter ANOVA Table

Factor Mean Sum of
Squares

Probability

v bat 1.024 0.063
r sh 7.291 0.023
amp gain 5.006 0.028
lss sr 0.008 0.524
mi delay 0.134 0.170
motor kt 7.534 0.023
motor d 3.738 0.033
motor j 0.018 0.408
r wind 0.213 0.136
l wind 0.568 0.084
g ratio 2.986 0.037
g r 3.431 0.034
g box ratio 2.754 0.038
w mass 0.827 0.070

ε 0.002

distributed and have zero mean (Figure 5.13, right side). The model is adequate enough and can
be used for response characterization and worst-case analysis.

Figure 5.13: Residual analysis on the R5FF and CCD DoEs, on the maximum force response

Figure 5.14 shows the predicted response versus each factor, with the others fixed to 0. Main
and quadratic effects are visible and can be interpreted, like for the plot matrix in Figure 5.7,
but can also be used for response predictions. The new sources of factors, i.e. the DC motor, the
gear rack, the gear box and the window, impact the force as well. E.g. a smaller window mass
determines a smaller maximum force.

To view interaction effects, a plot like in Figure 5.15 is useful. E.g. a significant interaction exists
between the supply voltage and the amplifier gain, because the impact of the voltage is affected by
the level of the gain, and vice-versa. When the OPAMP gain is high, the over-current condition
occurs fast enough for the force to remain smaller. In this case, the supply voltage does not have
a big impact on the force.

90

Results

Figure 5.14: Individual effects on the maximum force response, after CCD DoE

Figure 5.15: Interaction effects on the maximum force response, after CCD DoE

Worst-case analysis

Based on the metamodel previously estimated, the factor sets for extreme response values are
predicted, as detailed in Section 3.4.3. Their prediction error, evaluated against the respective
confirmation runs is less than 0.1%. The error is computed as:
error = (simulated response− predicted response)/(max response−min response).
The results are summarized in Table 5.5.

Table 5.5: Worst-case maximum force response

Max. response [N] Normed factors Min. response [N] Normed factors

Predicted v bat = 0.7387 Predicted v bat = -1
78.82 r sh = -1 69.36 r sh = 1

amp gain = -1 amp gain = 1
Simulated motor kt = 1 Simulated motor kt = -1
78.77 motor d = -1 69.37 motor d = 1

l wind = -0.0168 l wind = -1
Error g ratio = 1 Error g ratio = -1
0.06% g r = 1 0.01% g r = -1

g box ratio = -1 g box ratio = 1
w mass = 1 w mass = -1

91

Results

Directed and random test alternatives

For comparison purposes, the exhaustive search directed test method is tested. The complete set
of corners for the screened factor set is simulated, because the initial set of 14 factors is too large
to allow exhaustive test. Monte-Carlo is also implemented, i.e. a set of 500 random runs on the
initial factor set is performed. Table 5.6 summarizes the comparisons, in terms of number of runs
and detected extreme response values.

Table 5.6: Comparisons of worst-case results

Experiment approach Number of runs Extreme response
values (Force [N])

Relative response
variability

Proposed sequential DoE 16+149 = 165 69.37 - 78.77 12.69%

Screening &
all remaining corners 16+1024 = 1,040 69.37 - 78.69 12.58%

Monte-Carlo 500 72.15 - 75.85 5%

The extreme response values found with the sequential DoE are better than using the alternatives.
In addition, the required number of runs is smaller with one, even 2 orders of magnitude. None
of the alternative approaches characterizes the response. The DoE method measures effects by
coefficients and can additionally predict the response between simulated points, with a small
enough error (less than 0.1%).

Genetic algorithm alternative

The maximum force response is analyzed on the screened 10-factor set. The gradient-based search
is performed after the sequential DoE, as explained in Section 4.2. It is compared against the
results of the GA algorithm detailed in Section 5.1.4. The gradient-based search stopped after
64 runs. The GA used G = 50 generations, with N = 10 samples as the size of each population,
i.e. 500 runs. Figure 5.16 shows all simulated samples for the gradient-based search, and only
the maximum response from each generation, for the GA method.

Figure 5.16: GA versus gradient-based search

Only the gradient-based search indicates an evolution in the proper direction. This can be
explained by the fact that GA involves random generators in the search for the maximum, and

92

Results

especially when applied on large factor sets, the method does not converge. The worst-case values
also show a higher performance of the gradient-based search. Even after 500 runs, the GA finds
a worst-case poorer than a gradient-based search of only 64 runs.

5.2.7 Results of transient response analyses

The flow proposed in Section 4.3 for worst-case analysis of signals over the complete duration of
the test is demonstrated.

Experiment

The simulated test case is visible in Figure 5.17. For each window move command, the LSSs are
controlled to drive the DC motor. At time 1.8 seconds, an obstacle in the window determines an
increase in the force developed by the DC motor, thus the normal anti-pinch system reaction.

printed Wed Jun 9 2010 12:09:06 by rafaila on scuis019 Synopsys, Inc. (c) 2000-2008

Nominal value simulation
waveview 1

0

0

0.5

0.5

1

1

1.5

1.5

sec (lin)

1b[HALL_pulse] tb_stimuli_obstacle.vcd

0

10 (
lin

)

[LSS1 output[V]] tb_stimuli_obstacle.vcd
[LSS2 output[V]] tb_stimuli_obstacle.vcd

0

50m (
lin

)

[window_position[m]] tb_stimuli_obstacle.dat

0

50 (
lin

)[Force on obstacle[N]] tb_stimuli_obstacle.dat

0

6 (
lin

)

[ECU_current_input[A]] tb_stimuli_obstacle.dat

Figure 5.17: Simulated test case

Two responses are analyzed: the current at the ECU input and the window position
(r1=current[A]; r2=window position[m]), as they introduced in Figure 5.4. The 10-factor set
screened as shown in Section 5.2.6 is analyzed. The CCD DoE is augmented by a LHS DoE for
more metamodel accuracy and for later validation against separate runs. A total of 200 runs is
used.

Metamodelling

The initial response traces are sampled in s = 100 equidistant points. For each time sample, the
data for each response is fitted and the metamodel is validated.

93

Results

Figure 5.18 exemplifies a set of compliant residuals for r2, in an arbitrary time sample. The
hypothesis of fit to a normal distribution of mean zero is passed. The correlation of residuals to
the response values and the maximum residual are also tested. Samples where the metamodel is
concluded unfit are removed from the analysis. This way, no extra effort is spent to predict the
extremes for such samples.

Figure 5.18: Residual analysis

To study factor effects, coefficients of the metamodels are studied at each sample time. Figure 5.19
shows the metamodel of response r2, plotted for a subset of 4 factors, when the others are set to
0, for 3 time samples. It can be concluded that the impact of factors varies in time. Different

Figure 5.19: Factor effects at different time samples

time samples correspond to different factor effects, and consequently, to different predictions for
the factor sets which determine response extremes. Some are exemplified in Table 5.7, for the
window position (r2). The factor sets which were found are not only corners. This is justified by
the presence of quadratic effects.

These steps are useful to identify and interpret effects which are otherwise hard to track, especially
when they change in time. For instance, the effect of the LSS delay depends on the moment
in simulation: the slower the switch, i.e. the higher the delay is, the lower the position at time
0.38 seconds is. At time 0.9 seconds, because of the two switching events which occur until then,
the effect can become positive, by an increase in the response at an increase in the delay. The
cumulation of factors’ influences in time, combined with the mixed nature (interaction, quadratic)
for these influences, can become rather complex.

94

Results

Table 5.7: Worst-case predictions for r2

f(1) f(2) f(3) f(4)

Time Min. 2.57cm 1 1 1 1
0.38s Max. 2.82cm -1 -1 -1 -1

Time Min. 4.27cm -1 -1 -1 -1
0.90 Max. 5.28cm 1 1 1 1

Time Min. 7.84cm 0.35 -1 1 -1
1.76s Max. 9.52cm -1 1 -1 0.84

Max. residual 0.05

Analysis of bounds for the responses

To analyze the worst-case over the complete simulation duration, the bounds for the two responses
are formed as explained in Section 4.3. They are plotted in Figure 5.20. The figure also plots
the resulted bounds after a similar analysis, but in fewer time samples (s = 10), and without
interpolation.

printed Wed Jun 9 2010 12:07:19 by rafaila on scuis019 Synopsys, Inc. (c) 2000-2008

Predictions of response bounds
waveview 1

0

0

0.5

0.5

1

1

1.5

1.5

2

2

sec (lin)

0

6

12

 (
lin

)

[r1=ecu_current[A]] trace_file_nominal.dat
[min] predicted_response_r1_bup.dat
[max] predicted_response_r1_bup.dat
[max_low_frecv] predicted_response_r1_lf.dat
[min_low_frecv] predicted_response_r1_lf.dat

10.5
10.2
10.8
10.8
10.2

0

50m (
lin

)

[r2=window_position[m]] trace_file_nominal.dat
[min] predicted_response_r2.dat
[max] predicted_response_r2.dat
[max_low_frecv] predicted_response_r2_lf.dat
[min_low_frecv] predicted_response_r2_lf.dat

33.6m
30.9m
36.6m
30.9m
25.7m

1:436m

-1.3

2:1.73

Figure 5.20: Transient responses

The large metamodel variance close to the end of the test is caused by the discontinuities in the
response sampled in that interval. These are in turn effects of various switch-off times for different
factor settings. When the obstacle occurs, factors which impact the DC motor speed, the window
inertial effects and ECU block delays affect the reaction delay. This explains the outliers and lack
of metamodel fit around the obstacle detection time.

Confirmation simulations are run for the worst-case predictions at different time samples. Only
the significantly different predictions are run, i.e. only when the corresponding factor sets are
far enough from each other. A minimum distance between factor sets of 1% is used to determine

95

Results

whether to run confirmations. Figure 5.21 shows results of such confirmation runs, for different
time samples, for the window position.

printed Wed May 19 2010 11:42:21 on rom43 Synopsys, Inc. (c) 2000-2008

Confirmations of response2 bounds
waveview 1

102m

102m

2.25

2.25

sec (lin)

0

10m

20m

30m

40m

50m

60m

70m

80m

90m

 (
lin

)

[min@ 0.9s&1.2s]
[max@ 0.9s&1.2s]
[min@1.9s]
[max@1.9s]

89.4m
87.5m
87.5m
89.6m

1:899m 2:1.97

1.07

766m

3:1.2

Figure 5.21: Confirmation runs

They confirm that the worst-case originates from different factor sets at different time samples,
because the traces are intersecting. This also happens for the current, as factor sets which
determine higher overshoots in current correspond to smaller settle values.

Performance

The performance is evaluated on the criteria introduced in Section 4.3. The experiment included
a 200-runs initial experiment (m = 200), at a simulation duration of τsim. ≈ 45 seconds per
run, corresponding to the 2 seconds of real time simulated in the test. None of them failed the
functional test i.e. the response could be recorded for each.

Out of a total of s = 100 time samples, r1 results presented too many outliers in 5 time samples,
while for 7 samples of r1 and for 8 of r2 a metamodel could not be fitted. These were caused mainly
by the responses’ discontinuities close to the end of the simulation, because of different switch-off
times. For response r2, different sets of factor effects determined conf = 18 different worst-case
predictions, both for response minimum and maximum. These were run for confirmation and
output residuals smaller than 5%. The postprocessing durations are τregress validate ≈ 4 seconds
per sample, while τpredict, of 8 seconds per sample, is invested only for the well fitted metamodels.
The overall time is evaluated to ≈ 3h, out of which the total simulation time is ≈ 90% of the
total sime, while the postprocessing time for fitting, validation and worst-case prediction for all
samples is ≈ 10% of the total time.

As a general note, a more complex system is likely to require a higher τsim (take longer time to
simulate) and have more factors. Similar problems occur when the DUT model is more accurate:
more details e.g. in the function or structure of a model, add factors and increase the simulation

96

Results

time. But a higher number of factors n determines a higher number of experiment runs m, in
order to fit a reasonable metamodel. τregress validate and τpredict also increase with the number of
factors to consider.

With respect to the influence of the number of time samples, a higher s reflects into a bigger post-
processing duration. Still, this duration becomes significant only for a high number of samples.
When the metamodels are unfit for too many samples, either a resampling or additional runs
should be performed. Tracing should be done as little as possible, especially when the simulated
duration is high, because it slows down simulation and would consume too much memory e.g.
for more than 100 runs. Only the time samples of interest from the traced responses are loaded
during postprocessing, because of the limitations in the run-time memory. To avoid oversampling
or undersampling the simulated traces before the metamodelling step, an adaptive sampling step
dependent on the rate of change in time of the response would also be an option.

To conclude, the experiment flow extended for transient responses can find how factor effects vary
in time and predict safe margins for signals of interest. This does not involve more runs than in
the case of static responses, i.e. with only one value per run. A careful monitoring of each step
allows to control and limit the overall effort.

97

Results

5.3 Airbag driver system

The second case-study is an automotive system designed for airbag control applications. Similar
to personal restraint systems and ABS systems, airbag systems represent a major class of safety
electronics. After they collect diagnostic data about the environment and the critical components
of the vehicle, they must provide the driver with assistance and help to protect the vehicle
occupants in the event of an accident. They face critical requirements with respect to fault
tolerance and response timing, therefore the validation process must ensure a high degree of
reliability.

5.3.1 System description

In such a system, the squibs, i.e. the pyrotechnic devices for the airbags, act as actuators, while
the driver is a firing unit enhanced with protection and diagnosis features. The power supply
unit provides energy to the functional parts, enough for them to act in the event of a collision,
and can undertake additional supervision functions.

These functional blocks form the squib driver IC. A standard airbag ECU contains 8 or more
firing units, and the number is expected to increase in the future [SB04b]. The system to be
validated against requirements is such a firing unit, visible in Figure 5.22.

Figure 5.22: The firing unit of an airbag system

At the time of airbag deployment, it must send current of a predefined value through the squib
for a few milliseconds, heating it up and thus bringing it to the point of ”explosion”. To provide
the current required for deployment, each firing channel contains one high-side switch (HS) path
and one low-side switch (LS) path. The squib is connected between the HS and the LS. Each
loop digitally regulates the firing current and contains standard parts of a control loop (analog-
to-digital converter (ADC), digital-to-analog converter (DAC), PID controller).

The communication with a microcontroller is realized via an SPI interface. Diagnostic and pro-
tection features of the drivers prevent system malfunctions. Several hardware inputs together

98

Results

with SPI commands control the status of the drivers, to prevent or enable deployment as well as
provide diagnostic functions. During normal deployment, the HS operates as a current limiting
element, while the LS driver is a current switch with emergency limitation, to protect from firing
to short circuit.

5.3.2 Responses and factors

The main test case of interest is the squib deployment. Figure 5.23 shows the nominal simulation
results, for the deployment test.

printed Thu Jun 24 2010 14:27:17 by rafaila on rom19 Synopsys, Inc. (c) 2000-2008

Deployment test
waveview 1

300u

300u

350u

350u

400u

400u

450u

450u

500u

500u

550u

550u

sec (lin)

0

2

 (
lin

)

[HS reference current input] toplevel.dat2.96

0

10

 (
lin

)

[HS Gate voltage] toplevel.dat12.4

0

5 (
lin

)

[HS switch source voltage] toplevel.dat
[LS switch drain voltage] toplevel.dat

5.53
5.53

0

2

 (
lin

)

[Squib current] toplevel.dat 2.87

RT 59.1u

1:282u 2:407u

125u

-87.7u

3:495u

RT 59.1u

Figure 5.23: Nominal simulation of the deployment test

The SPI command to deploy translates into a stimuli for the reference current of the HS switch,
i.e. the HS reference current input. The digital controller drives up the gate voltage for the
HS switch, which opens and injects current in the squib. The squib current has a slew rate of
50 milliamperes/microsecond, corresponding to the rise time of ≈ 60 microseconds visible on the
plot. The final value of approx. 2.9 Amperes is digitally regulated and maintained for about
100 microseconds, when the reference changes back to 0. The waveforms also show the voltages
at the two pins connected to the squib terminals.

Each operating condition and functional block plays a role in the firing process, thus has potential
impact on the responses: the squib, as load to the HS and LS; functional parameters along the
regulation paths; the supply voltage V bat; the SPI interface. These sources introduce the specific
factors which are summarized in Table 5.8. The main signal of interest is the current sent through
the squib at deployment time. Signal characteristics are chosen as experimental responses: the
delay in deployment, slew rate and final value of the current sent to the squib. These and the
factors, as extracted from the specification, i.e. with associated ranges and properties, are trans-
ferred to the DUT configuration file (Figure 5.24). Since all responses relate to the deployment
test, the initial set of factors is common to all responses.

99

Results

Table 5.8: Factors with impact during deployment

Source of variation Factors

Squib load Lsquib, Rsquib, Csfx, Csrx

Supply unit Vbat

HS regulation DMOS HS Vth, HS beta, HS Cgs
path Digital controller Ctrl. gain, Ctrl. prec., Discretizer block: prec.

Df1, offset Df2, threshold Df3
ADC, DAC ADC gain, ADC precision, DAC gain
Other factors HS Rshunt

LS regulation DMOS LS Vth, LS beta, LS Cgs
path Other factors LS Rshunt

SPI I/F SPI Td (Transfer delay)

Figure 5.24: DUT configuration file for the airbag system

5.3.3 Results of sequential DoE

Sequential experimentation is performed on the complete set of factors, which sums up to 22. A
screening step is first implemented, to reduce the factor set. Then, fixed-level factor DoEs are
applied for sensitivity analysis.

Results of factor screening

To filter the important factors a screening phase is necessary. A 32-run R3FF DoE is performed on
the complete set of factors. This experiment, detailed in Section 3.2.4.1 is sufficient for screening
of all the deployment-related responses. The results are analyzed using ANOVA, to extract the
significant factors, as introduced in Section 3.3.1. Table 5.9 comprises the relevant information:

100

Results

sum of squares SS and probability p of null hypothesis of equality between factor treatments,
for each factor. Factors which are kept are filtered on the criteria: p(fi) < 0.05. Checking for a
minimum variability of SS(fi) > ε is also recommended. Values of compliant factors are marked
as bold.

Table 5.9: Factor screening results (ANOVA Table)

Response Depl. delay Depl. slew rate Depl. current

Factor SS p SS p SS p

Lsquib 1604.7 0 1.693 0 4.50e-04 0.03
Rsquib 0.19 0.495 0.046 0.02 0 0.92
Csrx 74.271 0 0.007 0.29 2.00e-05 0.6
Csfx 45.551 0 0.002 0.62 3.00e-05 0.52

V bat 338.7 0 0.108 0 1.40e-04 0.17

HS beta 0.055 0.712 0.925 0 1.00e-05 0.65
HS Cgs 60.795 0 53.35 0 1.50e-04 0.16
HS Vth 1.165 0.112 0.004 0.46 1.10e-04 0.21
DAC gain 75.58 0 28.26 0 4.00e-05 0.45
ADC gain 0.049 0.727 0 0.86 0.1082 0
ADC prec 0.009 0.88 0 0.94 0.102 0

Ctrl gain 0.055 0.712 0.001 0.64 0.1051 0
Ctrl prec 0.36 0.353 0.001 0.76 0.1123 0
Df1 0.033 0.772 0.004 0.44 5.00e-05 0.38
Df2 0.684 0.21 0 0.78 1.20e-04 0.2
Df3 2.202 0.038 0.016 0.13 1.00e-05 0.74

HS Rshunt 0.148 0.545 0.012 0.19 3.00e-05 0.49

LS beta 1.007 0.136 0.004 0.44 1.00e-05 0.74
LS Cgs 2.714 0.025 0.195 0 0 0.8
LS Vth 41.394 0 0.009 0.26 9.00e-05 0.25

LS Rshunt 0.104 0.612 0.076 0.01 2.00e-05 0.57

SPI Td 6.604 0.002 0.017 0.13 4.00e-05 0.43

ε 3.378 0.054 5.60e-04

Results of sensitivity analysis

For each response, the sensitivity analysis continues with a R5FF DoE on the remaining factors
and as many additional axial runs as necessary, until the residual analysis is satisfactory.

Metamodel validation Figure 5.25 shows plots of residuals after the regression analysis on
the results of the CCD DoE, for the deployment delay response. The normal probability plot
indicates that they pass the hypothesis of normal distribution, which is a sign of metamodel fitness
as explained in Section 3.3.2.2. The scatter plot of residuals against response values indicates
no pattern, so there are no systematic prediction errors. This is quantified by a correlation
coefficient smaller than the threshold of 0.15, and the maximum absolute residual is smaller than
5%. Therefore, the metamodel passes the validation test.

101

Results

Figure 5.25: Plots of the normed residuals for the deployment delay response

Analysis of factor effects After the residual analysis is satisfactory, the metamodel can be
used to extract and interpret factor effects. In order to view individual effects, the metamodel is
plotted against each factor, at fixed values of the others. Interaction plots represent the response
versus a factor, at various levels of other factors. Figure 5.26 shows individual (a) and 2-factor
interaction effects (b).

Figure 5.26: Plots of effects on the deployment responses
a. Main effect plots b. Interaction effect plot

Several factors, of electrical nature or functional parameters along the regulation path, impact
the responses. The lack of parallelism between curves from the interaction plot indicates 2-factor
interactions. The study shows that regression models are reasonable approximations for the
responses under study: either a 1st or a 2nd order model with 2-factor interactions is satisfactory.
Such an effect analysis ensures a reliable validation, by isolating sources of potential system
nonconformance, without the need to have detailed knowledge of block implementation.

102

Results

5.3.4 Fitting the response distribution after a random factor DoE

As explained in Section 3.4.4.2, the distributions for the three responses are fitted. First, a 500-run
experiment on a 6-factor set of randomized factors is performed. Figure 5.27 shows histograms
for the distributed factors and scatter plots for the responses’ values. They depend not only on
the factors’ values, but also on their distribution.

Figure 5.27: Matrix

Figures 5.28, 5.29 and 5.30 plot the simulation results clustered as histograms, and their fitted
PDFs. The residual probability values are also marked on the figures. Nonparametric distribu-
tions are fitted, since they output better residuals.

Figure 5.28: Fitting of a nonparametric distribution on response 1

103

Results

Figure 5.29: Fitting of a nonparametric distribution on response 2

Figure 5.30: Fitting of a nonparametric distribution on response 3

It can be concluded that, as long as the statistical properties of factors are accurately represented,
statistical properties of the responses can be extracted. This is of interest to be able to predict
the frequency of occurrence for specific values of the response, and estimate the worst-case.
Table 5.10 includes these estimates. Mapping the parameters from the factor distributions to
the response is difficult, because factors have various distributions, and especially because the
response distribution can be nonparametric. Therefore, the sensitivity analysis of RFDoEs stops
at estimating the correlations between the response and factor set values.

5.3.5 Worst-case analysis

Starting from the outputs of the previous steps, the worst-case responses are estimated, first as
extreme values of the metamodels. Then, the worst-case optimization by a gradient search is
applied. Finally, an estimate of the worst-case is extracted from the fitted response PDF.

Worst-cases as metamodel extremes First, the bounds of the regression metamodels are
estimated, with respect to the remaining factor set. The method described in Section 3.4.3 is
applied. To overcome problems of low convergence because of the interaction effects, the response
is evaluated on a grid to reduce the search area. Results are summarized in Table 5.10.

104

Results

Further iterative worst-case search The worst-case estimation is optimized by gradient-
based search. The iterative procedure is conducted in a reduced neighborhood of the previously
estimated worst-case, for both response extremes. The search stops when one of the criteria is
met, which were detailed in Section 4.2. The results are included in Table 5.10.

Worst-case as extreme of the fitted distribution The worst-case estimates can also be
computed as introduced in Section 3.4.3. The distributions fitted as in the previous section are
extrapolated to reachable minimum and maximum response values, using a probability threshold
of ε = 1.0e− 6.

The results for each of the proposed methods are summarized in Table 5.10. The iterative search
shows a constant improvement from the staring point, i.e. from the metamodel extreme. The cases
with the same worst-case correspond to the worst-case placed in a corner. Since the prediction
of the fitted PDF cannot be confirmed, the results of the iterative search are taken as reference,
and the offset of the estimated distribution are errors given by its lack of fit: an overall error of
5% relative to the (max response−min response) value occurs.

Table 5.10: Worst-case found

Response Deployment delay [us] Slew rate of cur-
rent [mA/us]

Value of cur-
rent [A]

As metamodel min max min max min max
extreme 77.679 113.000 46.607 52.349 2.700 3.185

After iterative min max min max min max
search 77.679 116.714 46.489 52.424 2.695 3.186

Estimate of min max min max min max
fitted PDF 76.103 116.140 47.431 52.054 2.702 3.191

5.3.6 Alternatives and comparative analysis of performance

For comparison with the proposed approach, three alternatives are implemented:

• Exhaustive corner-case testing DoE: all corner-cases. The initial factor set would require
too many runs, i.e. 222 corners, so this test is run only for the subset of factors filtered after
screening.

• A Monte-Carlo experiment, with 500 runs with uniformly distributed factors.

• Worst-case direct search, i.e. applied directly on the initial factor set, as explained in
Section 5.1.2.

Table 5.11 shows the number of runs invested in each step of the proposed sequential DoE flow.
The last line of the table, for the iterative worst-case search, includes the ratio (runs until each
extreme response value is reached/runs until the search stops).

The alternatives need more runs: the Monte-Carlo experiment has 500 runs. The worst-case
direct search is stopped after maximum 10 · #factor = 220 runs, and needs 50 to 200 runs to
get to a stop criteria. The Full Factorial has 2#screened factors runs, in addition to the 22 initial

105

Results

Table 5.11: Number of runs in steps of the proposed approach

Step Deployment delay Slew rate of current Value of current

Center point 1

Screening 32

Regression 8 factors 6 factors 5 factors
2nd order model 2nd order model 1st order model
64 + 2·8 = 80 32 + 2·6 = 44 16

Iterative min max min max min max
search 1/18 4/24 4/18 7/18 2/15 13/15

screening runs. The exhaustive corner-case testing would need more than 4M runs, which is not
feasible.

The alternatives do not perform sensitivity analysis. Some effects could be visualized only on
plots of the Monte-Carlo results, but such an analysis is subjective and not reliable. The effects
and interactions are hard to separate and interpret, e.g. as seen in the scatter plots of the
deployment responses, in Figure 5.27. Therefore, the proposed approach is more efficient in
terms of estimating factor effects.

The proposed approach of iterative search in the reduced area finds better values both for the
minimum and maximum response, thus it finds a higher response variability ∆. Table 5.12 shows
this relative improvement for each response, computed as the ratio
δ = (∆proposed − ∆alternative)/∆alternative, where ∆ = (max. resp. − min. resp.)/mean resp.
As observed in the table, not only does the direct search need more runs, but, when convergent,
it finds a poorer response bound. The exhaustive corner-case test also has a lower worst-case
performance (can only find the worst corner-case) and it can only be applied after the screening
phase. The basic Monte-Carlo is the poorest in terms of worst-case found.

Table 5.12: Relative improvement in the response variability

Alternative Delay[us] Slew rate[mA/us] Current[A]

min. max. δ min. max. δ min. max. δ
Proposed 77.679 116.714 - 46.489 52.424 - 2.695 3.186 -
Monte-Carlo 80.500 112.214 22.02% 47.270 51.050 56.07% 2.754 3.138 28.10%
Direct search 78.536 115.643 5.08% 46.607 52.275 4.68% 2.717 3.185 5.29%
Full Factorial 77.679 113.000 8.40% 46.786 52.349 6.93% 2.700 3.181 2.08%

106

6 Discussion

In this chapter, a discussion of the results from the proposed and alternative approaches is
presented. Then, a summary of how the initial problems were solved is detailed. Finally, the
aspects limiting the approach are identified.

6.1 Comparative analyses

The proposed experiments show an improvement in terms of number of runs, capability of re-
sponse characterization and worst-case prediction. These were demonstrated in comparison to
alternatives both on the window lifter e.g. in Section 5.2.4, Table 5.3, Section 5.2.6, and on the
airbag system, e.g. in Section 5.3.6. Performance aspects specific to each method are discussed
and concluded next.

Directed test methods versus DoE

Directed test requires the least implementation effort, but is the lowest in terms of performance:
the coverage is too low or the effort is too high. Sensitivity analysis is barely addressed, while
the worst simulated case is chosen as an estimate for the worst-case.

Trial-and-error The nominal value simulation and best guesses, although effective because
of the low number of runs, are highly application dependent, require knowledge of the system
and are subjective, thus are not reliable. When the number of factors is high e.g. 10 and
interactions or quadratic effects exist, the worst simulated case is a very poor worst-case estimate.
The one-at-a-time approach has the main disadvantage of not detecting interaction effects. The
custom DoE extends such an approach to sweeping one factor and clustering the others, thus
realizes concomitant variations to find interaction effects. Then, a postprocessing step extracts
estimates for effects. Even so, the general response variability and worst-case, as presented in
Section 5.2.4, are found poorer than DoE-based approaches. Therefore, basic trial-and-error
methods are generally low on performance.

107

Discussion

Exhaustive search The full set of corners, i.e. the only feasible exhaustive search, presents an
exponential increase with the number of factors and easily ends up into more than 1k runs. In
addition, it assumes that the worst-case is a corner, i.e. that no quadratic effects exist. On the
other hand, a R5FF DoE uses much fewer runs (Figure 3.15) to build a 1st order metamodel even
with 2-factor interactions, and find its worst corner. This conclusion is supported by results on
the window lifter: Table 5.3 shows how easily the worst corner can be detected. When quadratic
effects exist, the sequential DoE outputs better results than the exhaustive search, both for the
minimum and maximum response. This is shown on the the airbag system, in Table 5.12.

DoE and sequential DoE

Screening experiments can reduce factor sets which would be otherwise difficult to manage. Ta-
bles 5.4 and 5.9 show how the ANOVA method, applied after screening experiments, can safely
identify insignificant factors out of a larger set. The R3FF DoE easily finds the worst corner-case
when the response can be approximated by a 1st order model with no interactions, as best seen
in the window lifter results, in Table 5.3. The R5FF DoE can detect interactions, while the
CCD DoE is able to find quadratic effects, as observed in the experimental results presented in
Figures 5.10, 5.14 and 5.26.

The sequential DoE flow is always indicated, to approach complex responses or large factor sets.
A sign of inadequacy simply means the response needs to be approximated by a more complex
metamodel. Follow-up DoEs can realize a step-by-step process of metamodel refinement. This is
demonstrated on the window lifter system (Section 5.2.6) and on the airbag driver (Section 5.3.3).

Worst-case gradient-based search (direct/in a reduced area) versus genetic algorithm

Section 5.3.5 showed results of the search as a final step after the sequential DoE, while Sec-
tion 5.3.6 compared it to the direct search, i.e. applied from start on the initial factor set. The
direct search needed more runs, as seen in Table 5.11, and it found poorer response bounds, which
is visible in Table 5.12. The algorithm does not converge when the factor set and the search area
are large, because the underlying assumptions do not hold for the complete space.

The genetic algorithm approach (GA) generates subsequent populations of solutions, consisting
of several samples each, which must be simulated. Results were compared against gradient-based
methods on the window lifter system, in Section 5.2.6. These results show that the use of random
number generators to apply changes from a generation to the next do not help to approach the
real worst-case, especially for large factor sets. The consequence is a lower performance of the
GA method, both in terms of worst-case and of number of runs. Therefore, the GA strategy
should be applied to solve worst-case problems on responses which are either discontinuous,
nondifferentiable, stochastic or of high orders.

Monte-Carlo versus RFDoEs versus fixed-level DoEs

A lower performance of the Monte-Carlo experiments as compared to other methods is observed
in the results. A smaller response variability out of a higher number of runs is recorded in the case
of the window lifter system, in the comparison Section 5.2.4 and in Table 5.6, as well as for the
airbag system, in Table 5.12. Any sensitivity data extracted from pure Monte-Carlo simulations
is graphical, thus subjective and not reliable, as effects are hard to separate and interpret, as seen

108

Discussion

in Figure 5.7. CCD DoE can yield outputs comparable to Monte-Carlo out of much less data, as
pointed out in Figure 5.10.

The basic differences between Monte-Carlo and RFDoEs were explained in Section 3.2.5. From
a planning point of view, they involve comparable effort. Both Monte-Carlo and RFDoEs help
to cover the verification space better and observe how statistical factor properties impact the
response, as demonstrated on the window lifter (Section 5.2.3) and on the airbag system (Sec-
tion 5.3.4). RFDoE methods, on the other hand, are more expressive in terms of statistical
properties i.e. cover a wide range of functions and can express correlations between factors.
Then, they extract correlations factors-responses, to measure and compare factor effects.

The response characterization as a random variable is another advantage of RFDoEs. By ap-
proximating the response distribution, a probability is associated to each response value. Such
estimations were demonstrated both for the window lifter (Figure 5.8) and for the airbag sys-
tem (Figures 5.28, 5.29, 5.30). The worst-case response is estimated as the extreme of the fitted
distribution, reached with a probability higher than a given threshold. This is exemplified in
Section 5.3.5, in Table 5.10, with worst-case estimates close enough to the confirmed results of
the sequential DoE.

Alternatively, regression can be performed on the RFDoE results, and the analysis can continue
as for fixed-level factor DoEs. Figure 5.9 points out that regression on RFDoEs can discover
quadratic effects and interactions. Moreover, regression on the results of a considerable number
of runs confirms the adequacy of polynomial metamodels as general representation for major
effects in such systems. Therefore, sensitivity analysis by a study of correlation or, alternatively,
a metamodelling step, followed by worst-case analysis of the response distribution or, respectively,
of the fitted metamodel, yield experiments much superior to the basic Monte-Carlo.

Comparative analysis

A comparison of the methods, according to the criteria included in Table 3.4, is summarized
in Table 6.1 (a + stands for higher performance). When time efficiency is the main target,
sequential DoE is considered the best choice. The characterization of individual and interaction
factor effects and the predictive nature of the metamodel are the main benefits. The iterative
search does not improve the sensitivity analysis, but can get closer to the real worst-case. RFDoE
invest more runs, but reach a better coverage and can extract statistical measures for factor effects
and response properties.

6.2 Summary

The next paragraphs detail how the initial targets set in Section 1.3 and evaluated in Table 6.1
were achieved, and their related advantages.

Sensitivity analysis: Response characterization with respect to the factors is performed by
extracting a set of coefficients, at least one per factor. This is necessary to support the verification
engineer to identify the sources of potential failure of the system. The effects of factors and
interactions on the system behaviour can be correctly interpreted. None of the alternatives from
Table 6.1 realizes such a sensitivity analysis.

109

Discussion

Method No. sim.
runs

Worst-case
response

Effects esti-
mates

Graphical
representa-
tion

Statistical
factor
properties

Implemen-
tation
effort

Proposed approach

Sequential
DoE

++ ++ ++ +++ - +

Iterative
search

++ + - - - +

RFDoE + + + ++ ++ ++

Alternative approach

Exhaustive
search (full
factorial)

- - - + - ++

Monte-
Carlo

+ - - + + ++

Genetic Al-
gorithm

- - - - - +

Table 6.1: Comparative analysis

Worst-case analysis: The worst-case can be estimated as the metamodel extreme. It is con-
firmed by a check of metamodel adequacy and by an additional iterative gradient-based search
in the neighborhood of the prediction. Alternatively, RFDoEs can predict the worst-case as the
extreme reached by the estimated PDF, extracted from the response distribution. It cannot,
however, be confirmed by simulation. As compared to the alternatives, the proposed worst-case
analyses output better results.

Transient analysis: The problem amplifies when the response varies in time, e.g. when it is a
signal. The effects of variations and the conditions which drive the system into a worst-case also
change in time. In order to validate the behaviour of signals of interest, for the duration of the
complete test, the approach is extended for a transient response analysis. Metamodels are fitted
in equidistant samples of the time frame. The factor effects, as well as metamodel bounds and
corresponding factor sets are estimated and validated. Then, margins for the analyzed samples
are assembled, to build safe bounds for the signal. The same number of runs as in the case of
a static response is involved. Each step is monitored closely, in order to identify and control
potential bottlenecks of simulation or processing. The trade-off between the overall time versus
the complexity which is handled recommends such extended DoE flows for future use.

Number of runs: A reduced number of simulation runs is sufficient to find effects and to
predict the behaviour between the simulated points. The number of runs does not increase
exponentially with the number of factors, as happens with exhaustive search methods, and is
smaller than 1k runs, even for factor sets up to 30. Based on the sparsity of effects principle,
several factors are insignificant and can be screened out. Minimum sized experimental designs
allow screening and estimation of effects for the remaining factors. Alternatively, RFDoEs invest
more runs, but the number is controlled to reach the desired coverage. Selected alternatives, i.e.
basic random test, directed test or GA methods, involve more runs.

110

Discussion

Graphical analyses Graphical analyses are an important part for a proper interpretation of
the effects and discovered worst-cases. Plotting the response metamodel determines a better
understanding of the factor effects. The interaction plots in particular reveal effects which can
hardly be tracked or viewed otherwise, and which should not be omitted in a rigorous analysis.
Residuals should also be visualized to make sure there are no systematic prediction errors of the
metamodel. With RFDoEs, the factors’ and response distributions, as well as correlated sets of
values should be plotted. In the case of transient response analysis, the graphical analysis of
predicted signal bounds, confirmation simulations, as well as factor effects which change in time
is important.

Statistical properties By accounting for the real distribution of factors and correlations be-
tween them, a real distribution for the response is simulated and characterized. Correlations
between the data sets response-factors reveal another side of the sensitivity analysis problem,
while the worst response case can be estimated by fitting the empirical response PDF.

Implementation effort As intended from the start, the portability and applicability of the
methods was maximized. By decoupling the pre-, postprocessing and the simulation control al-
gorithms, any implementation effort is compensated by a high reusability. The DUT model setup
and configuration require minimum effort and are kept separate from the experiment planning
and analysis, so that the flow is as little as possible application dependent. This is certainly not
the case with the alternative best-guess methods. GA needs not only the initial implementation
effort, but also a tuning of the algorithm parameters depending on the number of factors and the
complexity of the response.

6.3 Limitations

The presented approach has restrictions reflected in the size of the verification space. The com-
plexity increases with the number of factors, so it is recommended to keep the initial set to no
more than 50 factors, since that would introduce scaling problems, i.e. too many required runs,
difficulty to design proper experiments. No more than 20 factors should present significant ef-
fects, otherwise for the regression phase it is difficult to estimate the high number of interaction
coefficients, i.e. n · (n− 1)/2.

Another limitation is given by assumptions on the response. One of the proposed metamodels
should fit, and this can be assessed by a proper validation phase, preferably in a complete se-
quential DoE flow. In case even after all sequential steps and metamodel optimizations, a lack
of fit still exists, the RFDoEs can always be counted on. They involve less planning and analysis
effort, but for reliable conclusions and an acceptable coverage, they must invest sufficient runs. A
second option when no metamodel fits is to reduce the number of factors which are initially taken
into account, or at least analyze them separately. Their ranges can also be reduced, because
complex factor interaction and individual effects are more likely to occur when factor sets and
ranges are larger.

The factors’ ranges should be limited, e.g. variations up to 50% relative to the nominal value.
This is to reduce the risks of metamodel unfitness, because discontinuities in the response and
even misbehaviours of the system can occur when wider ranges must be covered.

111

Discussion

112

7 Conclusion and outlook

This chapter includes a final argumentation of the contributions and benefits of the present work.
Then, several possible directions to continue are presented.

7.1 Conclusion

The industry of automotive electronics must cope with great challenges because their complexity
increases faster than the current verification flows can handle. On the other hand, pre-silicon
verification must provide as fast as possible a highly reliable outcome, especially in the automotive
sector. Ensuring safety is essential in this field, because any design problem which is not detected
in good time can lead to system misbehaviour, and finally to product re-spins or even threaten
the lives of the end users. Hence the need to verify starting from early development phases that
the reliability is maximum i.e. that the probability of system failure is minimum.

Since multiple sources of variation influence the system behaviour, multivariate sensitivity analysis
are needed to find the effects of variations on the system responses. Then, a search for the worst
response case is a must, in order to estimate where the system could fail the conformance against
requirements. A reduced number of simulations must be invested in this process. The current
industrial practices address these issues too late, i.e. at a low level of abstraction e.g. circuit-level.
Thus they can either handle a lower complexity than is needed i.e. a small number of variations,
or they require more time than can be spent i.e. too many simulation runs.

The approach proposes a flow for simulation-based experimentation on complex systems. First, a
framework which couples the simulator with algorithms for control and postprocessing of multi-
simulation experiments is built. The framework allows transfer of the specification requirements
as algorithm inputs. Principles and methods for experiment planning and data analysis are
adopted from the field of statistical DoE. Their feasibility is tested on the systems to be validated
and modifications are introduced where needed. Classical and custom experimental designs,
metamodels of the results space and fitting algorithms are evaluated and a selection of effective
methods is made. Such DoE and metamodelling strategies, as well as random test methods, are
adopted and optimized.

This way, effects of variations and the worst response case are estimated. To achieve an opti-
mal trade-off between the accuracy of estimates and the number of invested runs, a sequential
experimentation flow is proposed, which includes:

113

Conclusion and outlook

• factor screening, to reduce the size of the verification space

• sequential DoE for sensitivity analysis and to build an adequate metamodel

• estimation of the worst-case and iterative search to increase its reliability

To approach a better coverage in terms of statistical properties of factors and the response,
random test methods are extended to a new type of experimental design, to perform:

• factor randomization, accounting for their statistical properties and correlations

• extraction of factor effects as correlations between the sets of factors-response values

• characterization of the response distribution and estimation of its extremes

The issues are addressed more effectively than with existing trial-and-error methods or more
complex gradient-based or genetic algorithms. The experimentation steps are extended by op-
timization of the worst-case search and automation to form a sequential self-correcting flow.
Transient response analysis is addressed last, by extending the basic flow to analyze time variant
responses, for which the factors’ effects and the worst-case conditions also vary in time.

The proposed methods are demonstrated on two automotive case-studies: a window lifter system
and an airbag control unit. No output of the simulation experiment is wasted and the postpro-
cessing effort is controlled and small enough. Results show that the statistical methods under
evaluation form an efficient solution to cope with variations in complex automotive systems.
This way, the gap between research, which extensively supports these methods, and simulation
practices in industry can be covered.

7.2 Outlook

Further work can address the topics detailed below.

Handling more factors The main issue to address is the scaling problem which occurs with
an initial set of more factors e.g. > 50. A hierarchical approach is possible, i.e. split the initial
set and cluster the factors into subsets with more probable interactions. The factors of subsets
can be chosen as parameters of the same subsystems or of subsystems which directly interact in
the simulated test. The experimentation flow can be applied separately on each subset. Then, a
custom analysis of the interaction between clusters could be performed, similarly to the custom
DoE approach.

More metamodelling representations It is also of interest to find other metamodels appro-
priate for common effects in the systems under verification. For instance, response discontinuities
can occur e.g. in the form of piece-wise constant response(factor). In such cases, interpolating
the response over the factor space is still possible and useful, but care must be taken so that both
individual and interaction factor effects to be accounted for in the new metamodel. Other shapes
of responses can be fitted, and included into the metamodel optimization flow.

114

Conclusion and outlook

Sequential RFDoE Extending the RFDoEs to change properties in the factor distributions
and identify changes in the response distribution is also of interest because it would address the
sensitivity analysis problem. Mapping the response distribution to the statistical properties of
factors depends, however, on each distribution type, for the factor set and for the response. If
this mapping would be established, the factor distributions can be changed in order to drive the
response in the worst-case. Although this would depart from keeping the factor distributions real,
such an adaptive flow is an interesting direction to improve the worst-case analysis.

Multi-objective DoE This refers to metamodelling a vector of responses, with respect to the
same factor set. The analysis must be extended to consider the correlations between responses,
and the fact the not all worst responses’ cases can be reached simultaneously. In this case, ”cost”
functions could be attached to responses to prioritize them.

115

Conclusion and outlook

116

A Listings

A.1 Pseudo-code for the DoE matrix generation

The pseudo-code below generates the DoE matrix. The used routines are:

• get_resolution computes the maximum resolution which can be achieved by a fractional
factorial which has a number of runs smaller than the input number of runs.

• generate_ff generates the corresponding fractional factorial using the MATLAB functions
fracfact and factgen (see Table B.4 in the Appendix).

• generate_ccd extends the fractional factorial to a CCD DoE.

• augment_doe augments the input DoE matrix with lines, using one of the available algo-
rithms (lhsdesign, cordexch, rowexch MATLAB algorithms). The ’rf’ option uses the
structure of statistical properties of the factors (distributions, correlations) to generate
random numbers using linear correlation and the supported distributions).

function doe = get_doe_matrix(factor_nr, max_run_nr, doe_type, factor_stat_struct)

if nargin==2 or doe_type==’basic’

resolution = get_resolution(factor_nr, max_run_nr-2*factor_nr-1)

ff_doe = generate_ff(factor_nr, resolution)

left_run_nr = max_run_nr - size(ff_doe(:,1))

if left_run_nr>2*factor_nr+1

ccd_doe = generate_ccd(ff_doe)

left_run_nr = max_run_nr - size(ccd_doe(:,1))

if left_run_nr>0

doe = augment_doe(ccd_doe,left_run_nr,’lhs’)

else

return ccd_doe

end

else

return ff_doe

end

else

doe = zeros(1,factor_nr)

if nargin>3

117

Listings

% factor_stat_struct => statistical properties

doe = augment_doe(doe,max_run_nr-1,’rf’,factor_stat_struct)

else

doe = augment_doe(doe,max_run_nr-1,’lhs’)

end

return doe

end

end

A.2 Pseudo-code for the analysis of results

do_regression performs regression on the experiment results. validate makes the residual
analysis. The MATLAB functions which are used regress, corr, lillietest, x2fx are in-
cluded in the appendix Table B.4. evaluate(doe_matrix,coef) returns the vector of values of
the polynomial with coefficients coef at the values rows of the doe_matrix.

function [coef,residuals_ok] = do_regression(doe_matrix,r,type)

% type = linear, quadratic,...

[run_nr,factor_nr] = size(doe_matrix)

% default 80% of the total runs used for regression

% but must be more than the minimum sized basic doe

regress_run_nr = max(run_nr*0.8,length(get_doe_matrix(factor_nr,run_nr,’basic’)’))

X = x2fx(doe_matrix(1:regress_run_nr,:),type)

coef = regress(X,r(1:regress_run_nr))

validate_run_nr = run_nr-regress_run_nr

residuals_ok = validate(doe_matrix,r(validate_run_nr+1:run_nr),coef)

return [coef,residuals_ok]

end

function residuals_ok = validate(doe_matrix,r,coef)

residuals = r - evaluate(doe_matrix,coef)

norm_res = residuals/(max(r) - min(r))

if corr(norm_res,r)>0.15

residuals_ok.corr_ok = 0

else

residuals_ok.corr_ok = 1

end

if mean(abs(norm_res))>0.01

residuals_ok.mean_ok = 0

else

residuals_ok.mean_ok = 1

118

Listings

end

if max(abs(norm_res))>0.05

residuals_ok.max_ok = 0

else

residuals_ok.max_ok = 1

end

residuals_ok.h = lillietest(norm_res)

return residuals_ok

end

A.3 Pseudo-code for the sequential algorithm

The pseudo-code for the sequential experimentation algorithm is inserted on the next page. The
notations which are used are:

• n - number of factors.

• r - the vector of response results, R(i) - the vector of metamodel coefficients at iteration i

• doe - sampling function, which creates a hierarchy of designs, doe(k, f) ⊂ doe(k + 1, f), for
each factor set f ; it is defined below.

• k - model complexity, (an iteration which does not change the factor set), is 0 for a linear
model; 1 for a first order model; k ≥ 2 for a model with 2-factor interactions and individual
effects of orders k; kmax can be set between 2 and 5.

• i - iteration which changes the factor set.

• f(i) - vector of active factors for iteration i: a bit is 1 if its factor is active, 0 if not.

The doe function is defined as:
doe(0, f) = R3FF ∪ [0...0]
doe(1, f) = R5FF ∪ [0...0]
doe(2, f) = CCD
doe(k, f) = doe(k − 1, f) ∪ (−1)k · αk−2 · f · Id(n)], k < kmax, where α is between 0 and 1
When k ≥ kmax, doe(k, f) = doe(k− 1, f)∪ lhs(f,max run nr− size(doe(k− 1, f))), where lhs
generates the LHS DoE corresponding to the number of factors and number of runs parameters.
Alternatively, doe(k, f) = doe(k − 1, f) ∪ ff(r + 1, f), where ff(r, f) generates the fractional
factorial of the next resolution r, to estimate higher-order interaction effects.

The procedures which are used are:

• run: launches simulation runs with factors set to the values of matrix d

• find min: finds the metamodel minimum value and the corresponding factor set, as ex-
plained in Section 3.4.3

• reduce(f,R): resets one bit from the vector f , for the lowest main coefficient of R

• extend(f,R): sets one bit from the vector f , for the highest main coefficient of R

• function [coef, residuals ok] = doregression(d, r, type), from A.2

• function residuals ok = validate(d, r, coef) from A.2

The performance will be given by the final residual metrics and by the final size(doe(k)).

119

Listings

i = 1

if n > 10

k = 0, goto 0

else

k = 1, goto 1

0: d(i) = doe(f(i),k)

r = run d

f(1) = anova(d(i),r)

1: d(i) = doe(f(i),k)

r = run d(i) \ d(i-1) % run only what is new

[R(i),residuals_ok] = do_regression(doe(i),r,k) % k identifies the R type

if residuals_ok = false

if k < kmax

k = k+1 % type(a):k<kmax or type(b):k>=kmax

if sum(size(d(i)))>mmax

goto 2

else

goto 1

else

i = i+1

f(i) = reduce(f(i-1),R(i)) % type(c):k=0

k = 0

if sum(size(d(i))) > mmax

goto 2

else

goto 0

else if sum(f(i)) < n

i = i+1

f(i) = extend(f(i-1),R(i-2)) % extend factor set (identify initial error)

k = 1

if sum(number_rows(d(i))) > mmax

goto 2

else

goto 1

else

goto 2

2: [min -max] = [find_min(R) find_min(-R)]

r = run([min max])

res = (R([min max])-r)/(max(abs(r)) - min (abs(r))

if abs((res)) > thr_max_res

f(i) = reduce(f(i-1))

if sum(size(d(i))) > mmax

exit

else

goto 0 % start over

else end % successfully reached the end

120

B Tables

B.1 Number of runs in fixed-level DoEs

Table B.1: Number of runs in fixed-level DoEs

Number
of factors

R3FF R4FF R5FF CCD
DoE

1 1 1 1 5
2 4 4 4 9
3 4 8 8 15
4 8 8 16 25
5 8 16 16 27
6 8 16 32 45
7 8 16 64 79
8 16 16 64 81
9 16 32 128 147
10 16 32 128 149
11 16 128 128 151
12 16 256 256 281
13 16 256 256 283
14 16 256 256 285
15 16 256 256 287
16 32 256 256 289
17 32 256 256 291

B.2 Selected fractional factorials

Table B.2 on the next page includes the resolution, number of runs and design generators for
selected fractional factorial designs, for a number of factors up to 15 and a number of runs of up
to 128.

121

Tables
T

a
b

le
B

.2
:

S
elected

fra
ctio

n
a
l

fa
cto

ria
ls

(so
u

rce:
[M

o
n

0
5],

T
ab

le
8-14)

N
r
fa
cto

rs
F
ra
ctio

n
N
r

ru
n
s

D
esign

gen
era

to
rs

N
r
fa
cto

rs
F
ra
ctio

n
N
r

ru
n
s

D
esign

gen
era

to
rs

N
r
fa
cto

rs
F
ra
ctio

n
N
r

ru
n
s

D
esign

gen
era

to
rs

3
2
3−

1
I
I
I

4
C

=
±

A
B

2
9−

5
I
I
I

1
6

E
=
±

A
B

C
L

=
±

A
C

4
2
4−

1
I
V

8
D

=
±

A
B

C
F

=
±

B
C

D
1
2

2
1
2−

8
I
I
I

1
6

E
=
±

A
B

C
5

2
5−

1
V

1
6

E
=
±

A
B

C
D

G
=
±

A
C

D
F

=
±

A
B

D
2
5−

2
I
I
I

8
D

=
±

A
B

H
=
±

A
B

D
G

=
±

A
C

D
E

=
±

A
C

J
=
±

A
B

C
D

H
=
±

B
C

D
6

2
6−

1
I
V

3
2

F
=
±

A
B

C
D

E
1
0

2
1
0−

3
V

1
2
8

H
=
±

A
B

C
G

J
=
±

A
B

C
D

2
6−

2
I
V

1
6

E
=
±

A
B

C
J
=
±

A
C

D
E

K
=
±

A
B

F
=
±

B
C

D
K

=
±

A
C

D
F

L
=
±

A
C

2
6−

3
I
V

8
D

=
±

A
B

2
1
0−

4
I
V

6
4

G
=
±

B
C

D
F

M
=
±

A
D

F
=
±

B
C

J
=
±

A
B

D
E

F
=
±

A
B

D
7

2
7−

1
V
I
I

6
4

G
=
±

A
B

C
D

E
F

K
=
±

A
B

C
E

G
=
±

A
C

D
2
7−

2
I
V

3
2

F
=
±

A
B

C
D

2
1
0−

5
I
V

3
2

F
=
±

A
B

C
D

H
=
±

B
C

D
G

=
±

A
B

D
E

G
=
±

A
B

C
E

J
=
±

A
B

C
D

2
7−

3
I
V

1
6

E
=
±

A
B

C
H

=
±

A
B

D
E

K
=
±

A
B

F
=
±

B
C

D
J
=
±

A
C

D
E

L
=
±

A
C

G
=
±

A
C

D
K

=
±

B
C

D
E

M
=
±

A
D

2
7−

4
I
I
I

8
D

=
±

A
B

2
1
0−

6
I
I
I

1
6

E
=
±

A
B

C
N

=
±

B
C

E
=
±

A
C

F
=
±

B
C

D
1
4

2
1
4−

1
0

I
I
I

1
6

E
=
±

A
B

C
F

=
±

B
C

G
=
±

A
C

D
F

=
±

A
B

D
G

=
±

A
B

C
H

=
±

A
B

D
G

=
±

A
C

D
8

2
8−

2
V

6
4

J
=
±

A
B

C
D

H
=
±

A
B

D
E

H
=
±

B
C

D
H

=
±

A
B

E
F

K
=
±

A
B

J
=
±

A
B

C
D

2
8−

3
I
V

3
2

F
=
±

A
B

C
1
1

2
1
1−

5
I
V

6
4

G
=
±

C
D

E
K

=
±

A
B

G
=
±

A
B

D
H

=
±

A
B

C
D

L
=
±

A
C

H
=
±

B
C

D
E

J
=
±

A
B

F
M

=
±

A
D

2
8−

4
I
V

1
6

E
=
±

B
C

D
K

=
±

B
D

E
F

N
=
±

B
C

F
=
±

A
C

D
L

=
±

A
D

E
F

O
=
±

B
D

G
=
±

A
B

C
2
1
1−

6
I
V

3
2

F
=
±

A
B

C
1
5

2
1
5−

1
1

I
I
I

1
6

E
=
±

A
B

C
H

=
±

A
B

D
G

=
±

B
C

D
F

=
±

A
B

D
9

2
9−

2
V
I

1
2
8

H
=
±

A
C

D
F

G
H

=
±

C
D

E
G

=
±

A
C

D
J
=
±

B
C

E
F

G
J
=
±

A
C

D
H

=
±

B
C

D
2
9−

3
I
V

6
4

G
=
±

A
B

C
D

K
=
±

A
D

E
J
=
±

A
B

C
D

H
=
±

A
C

E
F

L
=
±

B
D

E
K

=
±

A
B

J
=
±

C
D

E
F

2
1
1−

7
I
I
I

1
6

E
=
±

A
B

C
L

=
±

A
C

2
9−

4
I
V

3
2

F
=
±

B
C

D
E

F
=
±

B
C

D
M

=
±

A
D

2
9−

4
I
V

3
2

F
=
±

B
C

D
E

F
=
±

B
C

D
M

=
±

A
D

G
=
±

A
C

D
E

G
=
±

A
C

D
N

=
±

B
C

H
=
±

A
B

D
E

H
=
±

A
B

D
O

=
±

B
D

J
=
±

A
B

C
E

J
=
±

A
B

C
D

P
=
±

C
D

122

Tables

B.3 Number of runs in Latin Hypercube Sampling DoEs

The number of runs versus distance is estimated using the lhsdesign and pdist MATLAB func-
tions. The distance is the Euclidean distance between pairs of sample points in the factor space.

Table B.3: Number of runs in space filling DoEs

Number
of factors

distance=0.1 distance=0.2 distance=0.3 distance=0.4 distance=0.5

3 33 16 11 7 6
4 85 32 15 13 8
5 159 49 27 21 10
6 757 121 50 37 15
7 1814 211 81 50 19
8 - 500 116 73 27
9 - 900 330 118 37
10 - - 490 211 66
11 - - 991 364 166
12 - - - 589 181
13 - - - 833 352
14 - - - - 561
15 - - - - 1021

123

Tables

B.4 Probability distribution functions

B.4.1 MATLAB probability distribution functions

Specific functions for each supported distribution:

• Parameter estimation functions (fit)

• Cumulative Distribution Functions (cdf)

• Probability density functions (pdf)

• Inverse cumulative distribution functions (inv)

• Random number generator functions (rnd)

Supported distributions and corresponding functions:

• normal (normfit, normcdf, normpdf, norminv, normrnd)

• uniform (unifit, unifcdf, unifpdf, unifinv, unifrnd)

• extreme value (evfit, evcdf, evpdf, evinv, evrnd)

• exponential (expfit, expcdf, exppdf, expinv, exprnd)

• binomial (binofit, binocdf, binopdf, binoinv, binornd)

B.4.2 Custom probability distribution functions

• corner-peaked, minimum-peaked, maximum-peaked (derived from exponential or normal
PDFs)

• piece-wise linear cumulative density function (derived from the statistical pack-
age: [MHE08])

• piece-wise constant cumulative density function (derived from the statistical pack-
age: [MHE08])

124

Tables

B.5 MATLAB functions

Table B.4: MATLAB functions, used in the experiment planning and analysis algorithms

Mnemonic Description

Statistics toolbox

anovan N-way analysis of variance (ANOVA)
corr Linear or rank correlation
fracfact Generate fractional factorial design from generators.
fracfactgen Output fractional factorial design generators.
ksdensity Compute density estimate using kernel-smoothing method.
lhsdesign Generate latin hypercube sample.
lhsnorm Generate latin hypercube sample with normal distribution.
lillietest Test the hypothesis that the input data has a normal distribu-

tion, returns 1 if it can be rejected and 0 if not.
mvrnd Random matrices from multivariate normal distribution.
normplot Normal probability plot for graphical normality testing.
pdist Compute pairwise distance between observations.
polyfit Polynomial curve fitting.
polyval Polynomial evaluation.
regress The least squares fit of the vector of observations on the matrix

of regressors, returns the vector of coefficient estimates.
regstats Regression diagnostics for linear model.
robustfit Robust linear regression to fit the vector of observations as a

function of the columns of the matrix of regressors, returns the
vector of coefficient estimates.

rstool Interactive fitting and visualization of response surfaces.
x2fx Transform matrix of variable values to design matrix of term

values (regressor).

Optimization toolbox

fmincon Find minimum of constrained nonlinear multivariable function
fminsearch Find minimum of unconstrained multivariable function using

derivative-free method
fminunc Find minimum of unconstrained multivariable function
linprog Solve linear programming problems
quadprog Solve quadratic programming problems

Global optimization toolbox

ga Find minimum of function using genetic algorithm using call-
backs to the to the objective function, i.e. the simulator.

125

C Analysis of variance for one factor

The fundamental ANOVA identity for the one factor f case states that:

SStotal = SStreatments + SSerror (C.1)

where:

SStreatments = n ·
a∑
i=1

(ri. − r..)2 (C.2)

SSerror =
a∑
i=1

n∑
j=1

(rij − ri.)2 (C.3)

ri. = 1/n ·∑n
j=1 rij and r.. = 1/a ·∑a

i=1 ri.. rij is the response of run j, from the set of runs
where f is set to level i. a is the number of levels for f . n observations are taken, for each level
of f . N is the total number of observations. MS is the mean square of sums, defined as the sum
of squares divided by the degrees of freedom:

MSfactor = SSfactor/(a− 1) (C.4)

The fundamental ANOVA identity C.1 states that the total variability in the data, as measured
by the total sum of squares, can be partitioned into a sum of squares of the differences between the
treatment averages and the grand average, plus a sum of squares of the differences of observations
within treatments, from the treatment average.

If the null hypothesis about the equality of treatments with different factor levels is true, then,
according to Cochran’s theorem, the ratio:
H0 : F0 = MStreatments/MSerror is distributed as F with a− 1 and N − a degrees of freedom.

H0 is the test statistic for the hypothesis of no differences in treatment means. Under the
alternative hypothesis, the expected value of the numerator MStreatments is greater than the
expected value of the denominator MSerror. So, the null thesis H0 is rejected on values of the
test statistic that are too large.

It is therefore concluded that there are differences in the treatment means if F0 > Fα,a−1,N−a,
where F0 is computed from the test statistic equation. α is the confidence level, typically 0.05
corresponding to a 95% confidence in deciding on the statistic. Alternatively, the p-approach to
make the decision computes and uses the probability p intead of the statistic F0. More details on
how to compute the F and p values can be found in [Mon05, p.65-75].

126

Literature

[ADR+08] Alassir, M. ; Denoulet, J. ; Romain, O. ; Suissa, A. ; Garda, P.: Modelling
Field Bus Communications in Mixed-Signal Embedded Systems. In: EURASIP
Journal on Embedded Systems. Hindawi Publishing Corporation, 2008

[ATW06] Ayeb, M. ; Theuerkauf, H. ; Winsel, C.W.T.: Robust identification of nonlinear
dynamic systems using Design of Experiment. In: IEEE Computer Aided Control
System Design, 2006, p. 2321–2326

[Bar04] Barton, R.R.: Designing simulation experiments. In: Winter Simulation Confer-
ence, 2004

[FCS08] Fu, Michael C. ; Chen, Chun-Hung ; Shi, Leyuan: Some topics for simulation opti-
mization. In: WSC ’08: Proceedings of the 40th Conference on Winter Simulation,
Winter Simulation Conference, 2008. – ISBN 978–1–4244–2708–6, p. 27–38

[FGA05] Fu, Michael C. ; Glover, Fred W. ; April, Jay: Simulation optimization: a
review, new developments, and applications. In: WSC ’05: Proceedings of the 37th
conference on Winter simulation, Winter Simulation Conference, 2005. – ISBN
0–7803–9519–0, p. 83–95

[FS00] Femia, N. ; Spagnuolo, G.: True worst-case circuit tolerance analysis using
Genetic Algorithms and Affine Arithmetic. In: IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, 2000

[GBVE08] Grimm, C. ; Barnasconi, M. ; Vachoux, A. ; Einwich, K. An introduction to
modeling Embedded Analog/Mixed-Signal Systems using SystemC AMS extensions.
2008

[GCLD10] Gorissen, D. ; Couckuyt, I. ; Laermans, E. ; Dhaene, T.: Multiobjective
global surrogate modeling, dealing with the 5-percent problem. In: Engineering
With Computers manuscript (2010), p. 81–98

[GED07] Grosse, Daniel ; Ebendt, Rüdiger ; Drechsler, Rolf: Improvements for con-
straint solving in the systemc verification library. In: GLSVLSI ’07: Proceedings
of the 17th ACM Great Lakes symposium on VLSI. New York, NY, USA : ACM,
2007. – ISBN 978–1–59593–605–9, p. 493–496

[Ghe05] Ghenassia, F.: Transaction Level Modeling with SystemC. Springer, 2005

127

LITERATURE LITERATURE

[GHW04] Grimm, Ch. ; Heupke, W. ; Waldschmidt, K. Refinement of Mixed-Signal Sys-
tems with Affine Arithmetic. 2004

[GLMS02] Grötker, T. ; Liaom, S. ; Martin, G. ; Swan, S.: System Design with SystemC.
Kluwer Academic Publishers, 2002

[GTCD09] Gorissen, D. ; Tommasi, L. D. ; Crombecq, K. ; Dhaene, T.: Sequential
Modeling of a Low Noise Amplifier with Neural Networks and Active Learning. In:
Neural Computing and Applications 18 (2009), Nr. 5, p. 485–494

[Guo07] Guo, Shin-Ming: A Fast Multi-Objective Evolutionary Algorithm for Expensive
Simulation Optimization Problems. In: ICICIC ’07: Proceedings of the Second In-
ternational Conference on Innovative Computing, Informatio and Control. Wash-
ington, DC, USA : IEEE Computer Society, 2007. – ISBN 0–7695–2882–1, p. 324

[Kim06] Kim, Sujin: Gradient-based simulation optimization. In: WSC ’06: Proceedings of
the 38th conference on Winter simulation, Winter Simulation Conference, 2006. –
ISBN 1–4244–0501–7, p. 159–167

[Kle08] Kleijnen, J.P.C.: Design Of Experiments: Overview. In: Winter Simulation
Conference, 2008, p. 479–488

[KO07] Kabirian, Alireza ; Olafsson, Sigurdur: Allocation of simulation runs for sim-
ulation optimization. In: WSC ’07: Proceedings of the 39th conference on Winter
simulation. Piscataway, NJ, USA : IEEE Press, 2007. – ISBN 1–4244–1306–0, p.
363–371

[KR03] Key, A. C. ; Rees, L. P.: A sequential-design metamodeling strategy for simulation
optimization. In: Computers & Operations Research 31 Bd. 31, Elsevier, 2003, p.
19111932

[Law07] Law, A.: Statistical analysis of simulation output data: The practical state of the
art. In: Winter Simulation Conference, 2007, p. 77–83

[MHE08] Markwirth, T. ; Haase, J. ; Einwich, K.: Statistical Modeling with SystemC-
AMS for automotive systems. In: Forum on Specification and Design Languages,
2008, p. 247–248

[MM06] Mullur, A. A. ; Messac, A.: Metamodeling using extended radial basis functions:
a comparative approach. In: Engineering with Computers 21 (2006)

[Mon05] Montgomery, D.: Design and analysis of experiments. John Wiley & Sons, 2005

[MPLM07] Montevechi, J. A. B. ; de Pinho, A. F. ; Leal, F. ; Marins, F.A.S.: Application
of design of experiments on the simulation of a process in an automotive industry.
In: Proceedings of the 2007 Winter Simulation Conference, 2007

[NYLS05] Nookala, V. ; Ying, C. ; Lilja, D.J. ; Sapatnekar, S.: Microarchitecture-
Aware Floorplanning Using a Statistical DoE approach. In: Design Automation
Conference, 2005, p. 579–584

[NZH+08] Nirmaier, T. ; Zaguirre, J.T. ; Hong, E. ; Spirkl, W. ; Rettenberger, A.
; Schmitt-Landsiedel, D.: Efficient High-Speed Interface Verification and Fault
Analysis. In: IEEE International Test Conference, 2008

128

LITERATURE LITERATURE

[PAT02] Peterson, Gregory ; Ashenden, Peter ; Teegarden, Darrell: The System De-
signer’s Guide to VHDL-AMS. San Francisco, CA, USA : Morgan Kaufmann Pub-
lishers Inc., 2002. – ISBN 1558607498

[PGZ08] Pelz, G. ; Gergintschew, Z. ; Zeller, C.: Design Quality in the Development
of Automotive Smart Power ICs. In: 2. GMM/GI/ITG-Fachtagung, 2008

[PR10] Pelz, G. ; Rafaila, M.: From Requirements to Comprehensive Verification of
Smart Power ICs. In: Proceedings of the Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und Systemen, 2010

[RDG+10] Rafaila, M. ; Decker, C. ; Grimm, C. ; Kirscher, J. ; Pelz, G.: Design of
Experiments for Reliable Operation of Electronics in Automotive Applications. In:
Forum on specification and design languages, 2010

[RDGP09a] Rafaila, M. ; Decker, C. ; Grimm, C. ; Pelz, G.: Case Study of High-level Verifi-
cation of an Automotive Window Lifter ECU. In: Workshop Multi-Nature Systems:
Entwicklung von Systemen mit elektronischen und nichtelektronischen Komponen-
ten, 2009

[RDGP09b] Rafaila, M. ; Decker, C. ; Grimm, C. ; Pelz, G.: Design of Experiments for Ef-
fective Pre-silicon Verification of Automotive Electronics. In: Forum on specification
and design languages, 2009

[RDGP09c] Rafaila, M. ; Decker, C. ; Grimm, C. ; Pelz, G.: New Methods for System-
level Verification using SystemC-AMS Extensions: Application to an Automotive
ECU. In: 12. Workshop Methoden und Beschreibungssprachen zur Modellierung
und Verifikation von Schaltungen und Systemen, 2009

[RDGP10a] Rafaila, M. ; Decker, C. ; Grimm, C. ; Pelz, G.: Design of Experiments for
Effective Pre-silicon Verification of Automotive Electronics. In: Springer (Hrsg.):
Advances in Design Methods from Modeling Languages for Embedded Systems and
SoC’s - Selected Contributions from FDL’09. Springer, 2010 (ISBN-10: 9048193036,
ISBN-13: 978-9048193035)

[RDGP10b] Rafaila, M. ; Decker, C. ; Grimm, C. ; Pelz, G.: Sequential Design of Ex-
periments for Effective Model-based Validation of Electronic Control Units. In:
Mikroelektroniktagung ME10, 2010

[RDGP10c] Rafaila, M. ; Decker, C. ; Grimm, C. ; Pelz, G.: Simulation-based Sensitiv-
ity and Worst-Case Analyses of Automotive Electronics. In: IEEE International
Symposium on Design and Diagnostics of Electronic Circuits and Systems, 2010

[RGDP10] Rafaila, M. ; Grimm, Ch. ; Decker, Ch. ; Pelz, G.: Sequential design of
experiments for effective model-based validation of electronic control units. In:
Elektrotechnik und Informationstechnik 127 (2010), p. 164–170. – 10.1007/s00502-
010-0738-x. – ISSN 0932–383X

[San07] Sanchez, S.: Work Smarter, not Harder: Guidelines for Designing Simulation
Experiments. In: Winter Simulation Conference, 2007

129

LITERATURE LITERATURE

[SB04a] Srinivasaiah, H.C. ; Bhat, N.: Response Surface Modeling of 100nm CMOS
Process Technology using Design of Experiments. In: 17th International Conference
on VLSI Design, 2004

[SB04b] Stone, R. ; Ball, J.: Automotive Engineering Fundamentals. SAE International,
2004

[SPKA01] Simpson, T. W. ; Peplinski, J. D. ; Koch, P. N. ; Allen, J. K.: Metamodels for
Computer-based Engineering Design: Survey and recommendations. In: Engineer-
ing with Computers 17 (2001), p. 129–150

[SR07] Singhee, A. ; Rutenbar, R.A.: Statistical blockade: a novel method for very
fast Monte Carlo simulation of rare circuit events and its application. In: Design,
Automation and Test in Europe, 2007, p. 1–6

[SREP08] Samii, S. ; Rafiliu, S. ; Eles, P. ; Peng, Z.: A simulation methodology for
worst-case response time estimation of distributed real-time systems. In: Design,
Automation and Test in Europe, 2008, p. 556–561

[SVL07] Sheldon, D. ; Vahid, F. ; Lonardi, S.: Soft-core Processor Customization using
the Design of Experiments Paradigm. In: Design, Automation and Test in Europe,
2007, p. 1–6

[TM01] Trocine, L. ; Malone, L.C.: An overview of newer, advanced screening methods
for the initial phase in an experimental design. In: Winter Simulation Conference,
2001, p. 169–178

[TWLBX09] Tate, J. ; Woolford-Lim, B. ; Bate, I. ; Xin, Y.: Comparing Design of Exper-
iments and Evolutionary Approaches to Multi-objective Optimisation of Sensornet
Protocols. In: Congress on Evolutionary Computation, 2009, p. 1137–1144

[VGE04] Vachoux, A. ; Grimm, C. ; Einwich, K.: Towards Analog and Mixed-Signal
SOC Design with SystemC-AMS. In: IEEE International Workshop on Electronic
Design, Test and Applications, 2004

[VGE05] Vachoux, A. ; Grimm, C. ; Einwich, K.: Extending SystemC to support mixed
discrete-continuous system modeling and simulation. In: IEEE International Sym-
posium on Circuits and Systems, 2005

[VPB+08] Vasilevski, M. ; Pecheux, F. ; Beilleau, N. ; Abou-shady, H. ; Einwich, K.:
Modeling and Refining Heterogeneous Systems With SystemC-AMS: Application to
WSN. In: Design, Automation and Test in Europe, 2008

[WS07] Wang, G. G. ; Shan, S.: Review of Metamodeling Techniques in Support of
Engineering Design Optimization. In: Journal of Mechanical Design 129 (2007),
Nr. 4, p. 370–380

130

Internet References

[50] MathWorks. MATLAB online documentation. http://www.mathworks.com/help/

techdoc/, 2010.

[51] MathWorks. MATLAB Optimization toolbox online documentation. http://www.

mathworks.com/access/helpdesk/help/toolbox/optim/, 2010.

[52] MathWorks. MATLAB Statistics toolbox online documentation, regression statistics docu-
mentation. http://www.mathworks.com/help/toolbox/stats/, 2010.

[53] Sigmazone. Software tool for experiment design, 2010. http://www.sigmazone.com/

doepro--_features.htm.

[54] SystemC-AMS Working Group. Requirements specification for SystemC Analog Mixed Signal
(AMS) Extensions, 2008. http://www.systemc.org/downloads/standards/.

[55] SystemC Working Group. SystemC Verification Standard Specification Version 1.0e, 2003.
http://www.systemc.org/downloads/standards/.

[56] Technical University of Denmark. S. N. Lophaven and H. B. Nielsen and J. Sondergaard:
DACE, a MATLAB kriging toolbox, 2002. http://www2.imm.dtu.dk/~hbn/dace/.

[57] Tilburg University. Web generator for space filling designs, 2010. http://www.

spacefillingdesigns.nl/.

[58] Wikipedia. Correlation, 2010. http://en.wikipedia.org/wiki/Correlation.

[59] Wikipedia. Importance Sampling, 2010. http://en.wikipedia.org/wiki/Importance_

sampling.

[60] Wikipedia. Kernel density estimation, 2010. http://en.wikipedia.org/wiki/Kernel_

density_estimation.

[61] Wikipedia. Symbolic simulation, 2010. http://en.wikipedia.org/wiki/Symbolic_

simulation.

[62] Workshop on C/C++ Modeling for Mixed-Signals Embedded Systems. G. Noessing:
SystemC-AMS Modelling for Voice over IP Physical Interfaces, 2007. http://www.eas.

iis.fraunhofer.de/events/workshops/2007/cmemss/presentations.pdf.

131

http://www.mathworks.com/help/techdoc/
http://www.mathworks.com/help/techdoc/
http://www.mathworks.com/access/helpdesk/help/toolbox/optim/
http://www.mathworks.com/access/helpdesk/help/toolbox/optim/
http://www.mathworks.com/help/toolbox/stats/
http://www.sigmazone.com/doepro--_features.htm
http://www.sigmazone.com/doepro--_features.htm
http://www.systemc.org/downloads/standards/
http://www.systemc.org/downloads/standards/
http://www2.imm.dtu.dk/~hbn/dace/
http://www.spacefillingdesigns.nl/
http://www.spacefillingdesigns.nl/
http://en.wikipedia.org/wiki/Correlation
http://en.wikipedia.org/wiki/Importance_sampling
http://en.wikipedia.org/wiki/Importance_sampling
http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Symbolic_simulation
http://en.wikipedia.org/wiki/Symbolic_simulation
http://www.eas.iis.fraunhofer.de/events/workshops/2007/cmemss/presentations.pdf
http://www.eas.iis.fraunhofer.de/events/workshops/2007/cmemss/presentations.pdf

INTERNET REFERENCES INTERNET REFERENCES

[63] Workshop on C/C++ Modeling for Mixed-Signals Embedded Systems. W. Scherr: SystemC-
AMS Modeling of Embedded Sensors for Automotive Applications, 2007. http://www.eas.

iis.fraunhofer.de/events/workshops/2007/cmemss/presentations.pdf.

132

http://www.eas.iis.fraunhofer.de/events/workshops/2007/cmemss/presentations.pdf
http://www.eas.iis.fraunhofer.de/events/workshops/2007/cmemss/presentations.pdf

Glossary

A

ANOVA Analysis of variance: a formal method to identify significant factors, which determines
which factor effects are nonzero by analyzing the inequality of response values at
different factor treatments, p. 47.

C

CCD Central Composite Design: an experimental design which augments a 2-level factorial
design with center points and 2 star points for each factor, p. 41.

CDF Cumulative distribution function: describes the probability that a real-valued ran-
dom variable X with a given probability distribution will be found at a value less
than its argument x. It is computed by integrating the probability density function:
FX(x) =

∫ x
−∞ PDFX(t)dt, p. 36.

D

DoE Design of Experiments: discipline aimed at improving the outputs of experiments, by
applying mathematical statistics on the experiment planning and analysis. Experi-
mental design: output of the design of the experiment, specifies in a matrix format
the settings for the experiment inputs, p. 7.

DUT Device under test: system under verification. Since the verification is simulation-
based, the system is represented by its model. For each simulation, it must be set up
in a test bench, configured and stimulated according to the test case, p. 22.

E

ECU Electronic control unit: an embedded system that controls one or more of the electrical
systems or subsystems in a motor vehicle, p. 1.

133

GLOSSARY GLOSSARY

G

GA Genetic algorithm: a heuristic that addresses optimization and search problems, using
techniques inspired by natural evolution, such as inheritance, mutation, selection, and
crossover, p. 18.

L

LHS Latin Hypercube Sampling: a space filling experimental design which generates sam-
ples in order to ensure that each region of the factor space is equally represented,
p. 15.

M

Monte-Carlo Monte-Carlo (or random test methods): a method of circuit- or system-level anal-
ysis, which randomizes prior to the simulation design parameters to determine their
effects on the simulation outputs, p. 11.

P

PDF Probability density function: a function that describes the relative likelihood for a
continuous random variable to occur at a given point in the observation space. The
probability of a random variable falling within a given range is given by the integral
of its density over the set, p. 36.

R

R3FF Resolution 3 fractional factorial: a fraction of the full 2number of factors factorial design
which estimates main factor effects aliased on 2-factor interactions. It is commonly
used for screening, because it can extract preliminary main effects, assumed significant
compared to the interactions, p. 39.

R5FF Resolution 5 fractional factorial: a fraction of the full 2number of factors factorial design
which estimates main factor effects and 2-factor interactions, but 2-factor interactions
are aliased with 3-factor interactions, p. 39.

RFDoE Random-factor experimental design: a type of experimental design which extends
random test methods by handling factor correlations and adding postprocessing steps
to address sensitivity and worst-case analysis, p. 17.

S

SoC System-on-a-chip: an electronic system with all components contained into a single
integrated circuit (chip), p. 1.

Systems-in-a-Package System-in-a-Package: a number of integrated circuits enclosed in a single
package or module, p. 1.

134

GLOSSARY GLOSSARY

T

TLM Transaction-level modeling : a high-level approach to modeling digital systems where
details of communication among modules are separated from the details of the im-
plementation of functional units or of the communication architecture, p. 4.

135

GLOSSARY GLOSSARY

136

Abbreviations

ADC Analog to digital converter
ANOVA Analysis of variance
CCD Central Composite Design
CDF Cumulative distribution function
Cfg&Stim Configuration and Stimuli unit
Ctrl Controller
DAC Digital to analog converter
DMOS Double diffused metal oxide semiconductor
DoE Design of Experiments
DUT Device under test
ECU Electronic control unit
GA Genetic algorithm
LHS Latin Hypercube Sampling
LIN Local Interconnect Network
LSS Low Side Switch
HSS High Side Switch
MCU Microcontroller subsystem
MI Measurement Interface
MoCC Models of computation and communication
NaN Not-a-number
OPAMP Operational Amplifier
PDF Probability density function
PID Proportional integral derivative controller
PWL Piece-wise linear
R3FF Resolution 3 fractional factorial
R4FF Resolution 4 fractional factorial
R5FF Resolution 5 fractional factorial
RFDoE Random-factor experimental design
SoC System-on-a-chip
SPI Serial Peripheral Interface
TLM Transaction-level modeling

137

Abbreviations

138

List of Figures

1.1 ECU functional blocks . 1

1.2 Phases of the V-model in ECU design and verification 2

1.3 Specification languages and design abstractions . 4

1.4 Factors and responses . 5

2.1 Related approaches . 12

3.1 Main experimental flow . 21

3.2 Experimental framework . 22

3.3 Simulation control flow . 24

3.4 Example of a DUT regulating the load voltage . 25

3.5 DUT configuration file . 25

3.6 Parameterization of a switch model . 26

3.7 Nominal value simulation . 29

3.8 Experiment design flow . 31

3.9 Basic factor effects . 34

3.10 Basic factor effects in one dimension . 34

3.11 Factor statistical distributions . 36

3.12 Factor correlations . 37

3.13 2-factor correlations: weak vs. strong . 38

3.14 Basic DoEs a. 23 Full Factorial b. 23−1 Fractional Factorial c. Central Composite
DoE . 42

3.15 Number of runs in fixed-level DoEs . 42

3.16 Number of runs in LHS designs with uniformly distributed factors 44

139

LIST OF FIGURES LIST OF FIGURES

3.17 Flow to build the metamodel . 46

3.18 Example plots of response data and of the fitted metamodel 50

3.19 Comparison of normal probability plots . 51

3.20 Validation results for the example a. Scatter plots of residuals b. Normal proba-
bility plot of residuals . 52

3.21 Search for the lowest order of an adequate metamodel 53

3.22 Estimation of high-order effects . 54

3.23 The leave-k-out metamodel optimization flow . 54

3.24 Response characterization flow . 55

3.25 Individual factor effects . 56

3.26 Interaction factor effects . 56

3.27 Interactive prediction plot . 57

3.28 Effects in a custom DoE . 58

3.29 Worst-cases in different metamodels a. linear b. with interactions c. 2nd order model 59

3.30 Response distribution example . 62

3.31 Fitted distribution examples . 63

4.1 Sequential experiment flow . 68

4.2 Worst-case search example . 71

4.3 Transient response experiment flow . 73

5.1 GA search example . 79

5.2 Window lifter electro-mechanical subsystem . 80

5.3 Architecture of the window lifter ECU . 80

5.4 Window lifter DUT configuration file . 82

5.5 Window lifter testbench . 82

5.6 Nominal value simulation of the antipinch test case 83

5.7 Plot matrix of an RFDoE on window lifter responses 84

5.8 Fitted response distribution . 85

5.9 a. Regression results on the RFDoE
b. Normal probability plot of residuals . 86

5.10 RFDoE results versus CCD DoE regression results, on the maximum force on the
obstacle . 87

5.11 Interpolated response for the custom DoE . 87

140

LIST OF FIGURES LIST OF FIGURES

5.12 Individual effects on the maximum force response, after R3FF DoE 89

5.13 Residual analysis on the R5FF and CCD DoEs, on the maximum force response . 90

5.14 Individual effects on the maximum force response, after CCD DoE 91

5.15 Interaction effects on the maximum force response, after CCD DoE 91

5.16 GA versus gradient-based search . 92

5.17 Simulated test case . 93

5.18 Residual analysis . 94

5.19 Factor effects at different time samples . 94

5.20 Transient responses . 95

5.21 Confirmation runs . 96

5.22 The firing unit of an airbag system . 98

5.23 Nominal simulation of the deployment test . 99

5.24 DUT configuration file for the airbag system . 100

5.25 Plots of the normed residuals for the deployment delay response 102

5.26 Plots of effects on the deployment responses a. Main effect plots b. Interaction
effect plot . 102

5.27 Matrix . 103

5.28 Fitting of a nonparametric distribution on response 1 103

5.29 Fitting of a nonparametric distribution on response 2 104

5.30 Fitting of a nonparametric distribution on response 3 104

141

LIST OF FIGURES LIST OF FIGURES

142

List of Tables

1.1 Typical ECU factors . 6

1.2 Structure of the approach, and addressed issues . 10

3.1 Number of factors versus number of runs in fractional factorials source: [Mon05],
Table 8-28 . 40

3.2 The one half fraction of the 5-factor factorial . 41

3.3 Effects in a custom DoE . 58

3.4 Performance . 65

5.1 Effects in the custom DoE . 88

5.2 Relative improvement in the response variability 88

5.3 Results of Factorials on the maximum force response 89

5.4 Window lifter ANOVA Table . 90

5.5 Worst-case maximum force response . 91

5.6 Comparisons of worst-case results . 92

5.7 Worst-case predictions for r2 . 95

5.8 Factors with impact during deployment . 100

5.9 Factor screening results (ANOVA Table) . 101

5.10 Worst-case found . 105

5.11 Number of runs in steps of the proposed approach 106

5.12 Relative improvement in the response variability 106

6.1 Comparative analysis . 110

B.1 Number of runs in fixed-level DoEs . 121

143

LIST OF TABLES LIST OF TABLES

B.2 Selected fractional factorials (source: [Mon05], Table 8-14) 122

B.3 Number of runs in space filling DoEs . 123

B.4 MATLAB functions, used in the experiment planning and analysis algorithms . . . 125

144

Monica Rafaila

Address: Tumblingerstr. 56
80337 Munich, Germany

Date of birth: 08/08/1983
Email: monicarafaila@yahoo.com
Telephone: +49 176 25774431

EDUCATION
PhD. 10.2007 - expected 10.2010
Technical University of Vienna
Institute for Computer Technology, coordinator: Univ.Prof. Dr.phil.nat. Christoph Grimm
The work focuses on the planning and analysis of simulation experiments, for automotive
electronic control units. The number of simulation runs necessary to deal with a high
number of sources of variation is reduced, while a good verification coverage is maintained.
Design of Experiments and Metamodelling methods are intensively used.

Dipl.Ing. 10.2002 - 07.2007
Polytechnic University of Bucharest
Faculty of Electronics, Telecommunications and Information Technology
Networks and Software for Telecommunications Division
Graduation: grade 10.00 (the Romanian scale is increasing from 1 to 10), top in the year.
The topic of the Bachelor’s Diploma was Virtual Private Networks (Layer 2 vs. Layer 3).

Certificates
• Fundamentals of Java Programming (Cisco Networking Academy certified)

• Fundamentals of Unix (Cisco Networking Academy certified)

• Cisco Certified Network Associate (Cisco Networking Academy certified) I (Network-
ing Basics), II (Routers and Routing Basics)

• Symbolic Model Checking (Technical University of Vienna)

Reviewed conference publications
• M. Rafaila, C. Decker, C. Grimm, G. Pelz: ”Simulation-based Sensitivity and Worst-

Case Analyses of Automotive Electronics”; IEEE International Symposium on Design
and Diagnostics of Electronic Circuits and Systems, Vienna, 2010.

• M. Rafaila, C. Decker, C. Grimm, G. Pelz: ”Sequential Design of Experiments for Ef-
fective Model-based Validation of Electronic Control Units”; Mikroelektronik Tagung,
Vienna, 2010.

• M. Rafaila, C. Decker, C. Grimm, G. Pelz: ”Design of Experiments for Effective Pre-
silicon Verification of Automotive Electronics”; Forum of Design Languages, Nice,
2009.

• M. Rafaila, C. Decker, C. Grimm, G. Pelz: ”New Methods for System-level Verification
using SystemC-AMS Extensions: Application to an Automotive ECU”; Methoden
und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und
Systemen, Berlin, 2009.

• M. Rafaila, C. Decker, C. Grimm, G. Pelz: ”Case Study of High-level Verification of
an Automotive Window Lifter ECU”; Workshop Multi-Nature Systems: Entwicklung
von Systemen mit elektronischen und nichtelektronischen Komponenten, Ulm, 2009.

145

Articles and book chapters
• M. Rafaila, C. Decker, C. Grimm, G. Pelz: ”Sequential Design of Experiments for Ef-

fective Model-based Validation of Electronic Control Units”; published in the journal:
Elektrotechnik und Informationstechnik, Springer Vienna, volume 127, issue 6, pages
164-170, http://dx.doi.org/10.1007/s00502-010-0738-x, 2010.

• M. Rafaila, C. Decker, C. Grimm, G. Pelz: ”Design of Experiments for Effective Pre-
silicon Verification of Automotive Electronics”; published in the book: ”Advances in
Design Methods from Modeling Languages for Embedded Systems and SoC’s”, Springer
Netherlands, series ”Lecture Notes in Electrical Engineering”, chapter 9, pages 141-
158, http://dx.doi.org/10.1007/978-90-481-9304-2_9, 2010.

Invited papers and presentations
• M. Rafaila, C. Decker, C. Grimm, J. Kirscher, G. Pelz: ”Design of Experiments

for Reliable Operation of Electronics in Automotive Applications”; Forum of Design
Languages, Southampton, 2010 (invited paper).

• G. Pelz, M. Rafaila: ”From Requirements to Comprehensive Verification of Smart
Power ICs”; Methoden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen, Dresden, 2010 (invited paper).

• M. Rafaila, C. Grimm, C. Decker, G. Pelz: ”SystemC-AMS High-level Verification of
Automotive Applications, in the Presence of Uncertainties”; Forum of Design Lan-
guages, Stuttgart, 2008 (invited presentation).

Prizes
• Best paper award, Mikroelektronics Tagung (Embedded Systems track), 2010, Vienna.

• Prizes in the Signals, Circuits and Systems Section of Tudor Tanasescu Annual Na-
tional Contest, 2nd (2005) and 4th places (2006), Polytechnic University of Bucharest.

• 2nd and 3rd prizes in the Romanian National Olympics of Mathematics (1998 - 2001).

EMPLOYMENT
Infineon Technologies, Munich 10.2007 - present

Automotive Power Department, Design Methodologies Division
Responsibilities

• Concept-level modelling of electronic control units.

• Tasks in the AutoSUN research project:

– Develop and test methods for abstract modelling and efficient simulation-based
verification.

– Provide an interface to collaborators.

– Document and present results to the funding authorities.

2kTelecom, Bucharest 07.2006 - 07.2007
Technical Department, Network Operating Center
Responsibilities

• Provide level 1 and 2 technical support and troubleshooting.

• Monitor and optimize network parameters.

146

SKILLS
Technical

• Hardware Description languages: SystemC, SystemC-AMS, SystemC TLM1.0, VHDL.

• Programming languages: MATLAB, C++, Java.

• IDEs: Eclipse, Keil (C, assembler for the 8051 core), Netbeans (Java).

Operating systems: UNIX/Linux.

147

	Titlepage
	Introduction
	Automotive electronic control units
	Functional and architectural overview
	Industry verification flow
	Model-based design and verification

	Problem description
	Objective and scope of the work
	Contributions and structure of the dissertation

	Related work
	Classification
	Directed test verification methods
	Metamodel-based methods
	Metamodels and fitting methods
	Design of Experiments
	Response Surface Methodology

	Random test methods
	Monte-Carlo methods
	Random search and Importance Sampling

	Evolutionary algorithms
	Semi-symbolic verification
	Open issues

	Adapted DoE flow
	Preparing the experiment
	Experimental framework and basic flow
	Response and factor definition
	Simulation model: requirements and setup
	Nominal value simulation
	Simulation control procedure

	Designing the experiment
	Principles in the design of simulated experiments
	Effects of factors and response metamodels
	Levels, probability distributions and correlations in factors
	Selected experimental designs with fixed-level factors
	Space filling designs and DoEs with random factors

	Building the metamodel
	Analysis of variance for factor screening
	Fitting the metamodel
	Optimization of the metamodel

	Concluding the experiment
	Factor effects
	Prediction of the response
	Worst-Case response prediction
	Concluding after random factor DoEs
	Summary of the experiment

	Extensions of the DoE flow for more complex responses
	Sequential experimentation
	Optimization of the worst-case by gradient-based search
	Extension for transient response analysis
	Problem description
	Flow
	Performance evaluation

	Results
	Implemented alternatives to the DoE flow
	Directed test methods
	Worst-case direct search
	Random test methods
	Genetic algorithm

	Window lifter system
	System description
	Responses and factors
	Results of the random factor DoE versus Monte-Carlo
	Results of the Central Composite DoE versus alternatives
	Comparison of Fractional Factorials
	Sequential DoE and alternatives
	Results of transient response analyses

	Airbag driver system
	System description
	Responses and factors
	Results of sequential DoE
	Fitting the response distribution after a random factor DoE
	Worst-case analysis
	Alternatives and comparative analysis of performance

	Discussion
	Comparative analyses
	Summary
	Limitations

	Conclusion and outlook
	Conclusion
	Outlook

	Listings
	Pseudo-code for the DoE matrix generation
	Pseudo-code for the analysis of results
	Pseudo-code for the sequential algorithm

	Tables
	Number of runs in fixed-level DoEs
	Selected fractional factorials
	Number of runs in Latin Hypercube Sampling DoEs
	Probability distribution functions
	MATLAB probability distribution functions
	Custom probability distribution functions

	MATLAB functions

	Analysis of variance for one factor
	Literature
	Internet References
	Glossary
	List of Abbreviations
	List of Figures
	List of Tables
	Curriculum Vitae

