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Chapter 1.

Introduction

The scattering matrix, or S-matrix, is an incredibly useful tool in a wide range of
applications. In simple terms, the S-matrix captures the relation between input
and output of a scattering system. The information held by the S-matrix could be,
e.g., the transmission of an electromagnetic wave propagating through a dielectric
landscape or the angle of an electron’s trajectory scattering off an atomic nucleus.
Not only does the knowledge of the S-matrix enable to predict the output for an
arbitrary ‘excitation’, it also allows to construct input states that precisely tune
the response of the system in order to manipulate [1] or measure [2] certain quant-
ities. A concrete example would be the recently demonstrated coherent perfect
absorption in a random medium [3]: By measuring the S-matrix, the authors were
able to find an input configuration that got completely absorbed by a sink inside
the medium, i.e., there was no output.

The scattering matrix turns out to be strongly determined by the underly-
ing resonances of a scattering system, which are also known as Quasi-Normal
Modes (QNMs). We find these QNMs in the context of electrodynamics as well
as quantum mechanics, when solving scattering problems with purely outgoing
boundary conditions. As a compelling consequence, their eigenfrequencies or ei-
genenergies become complex, which might elude one’s physical intuition, especially,
as they cause the QNM-fields to diverge far away from the scatterer. Yet, these
states are the key to a better understanding of complex scattering systems: it is
well known, that QNMs can be linked to isolated resonances in scattering spectra,
cf. [4]. In the diffusive regime, however, the spectra become a crowded superposi-
tion of overlapping resonances and it is not clear how to exactly reconstruct them
in the QNM-picture. Being able to do so would lead to a compact description of
complex scattering systems which could ultimately be used to express the entire
S-matrix.

In this work, we investigate various QNM-expansions of the S-matrix. The
complex QNM-energies coincide with the poles of the S-matrix, which, in turn, are
directly connected to resonances of the real scattering spectra. As a consequence,
all of the methods presented here are based on pole expansions. Ideally, the
only parameters required can be derived from the QNMs. The main difficulty

1
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Chapter 1. Introduction

of this ansatz is the calculation of the correct residues, beside other issues like
background contributions or the proper normalisation of the QNMs. The reward
for overcoming these obstacles is a semi-analytical formula for the S-matrix which
has many advantages: Once the QNMs are calculated, such a formula would beat
any conventional fully numerical routine in terms of computation time, because
they have to be re-run for every desired frequency or energy point in the spectrum.
More importantly, such an S-matrix expansion would yield an efficient and physical
description of complex scattering phenomena that could not only be leveraged to
improve control over complex scattering systems but also to further explore their
intriguing properties.

2
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Chapter 2.

The Scattering Matrix

The scattering matrix or S-matrix is the central tool for describing scattering
processes. In quantum mechanics it was introduced by Heisenberg in 1943 as the
‘characteristic matrix’ for scattering problems [5]. However, the S-matrix captures
a quite general concept: given some input vector αin that describes an incoming
wave1, may that be an electronic wavefunction or a classical electromagnetic field,
the S-matrix yields the outgoing wave, represented by the output vector αout, by
multiplying αin from the right

αout = Sαin . (2.1)

As such it appears in a wide variety of fields ranging from nuclear physics [6] to
electronic transport [7], optics [8] and even acoustics [9]. The ability to measure
or calculate the S-matrix is invaluable for an abundance of applications. In optics,
for example, a breakthrough [10] demonstrated how to measure the transmission
matrix—a submatrix of the S-matrix—of complex media which facilitated the
means to study focusing and imaging in such media [11]. Similarly, the S-matrix
allows to determine optimal input configurations for controlling branched flow [12],
micro-manipulation [1] or maximum information measurements [2].

The present work focuses on the resonances of scattering systems and their po-
tential to represent any S-matrix in a compact and semi-analytical form. Such a
‘resonance expansion’ could speed up the numerical calculation of the S-matrix
considerably and is the key to a better understanding of scattering processes ap-
plicable to all of the above examples. But before we concern ourselves with such
matters, we will establish some basic properties of the S-matrix.

2.1. Scattering on the Potential Barrier

Let us illustrate how the S-matrix is applied on a classic example: consider the
quantum mechanical potential barrier in one dimension, Figure 2.1. The incoming

1The vector’s entries are the expansion coefficients of the wave in some basis, e.g., complex
amplitudes of a Fourier-series.
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Chapter 2. The Scattering Matrix

zl zr

barrier

z

scattering region

incoming

reflected

transmitted

Figure 2.1.: Scattering on a potential barrier in one dimension: An incoming wave
from the left (grey) is scattered on the barrier. The scattered waves,
i.e., the reflected (blue) and the transmitted (red) parts, propagate
freely away from the barrier.

plane wave propagates freely until it hits the barrier where it is partially reflec-
ted and partially transmitted. Both, the reflected and transmitted part, then
propagate freely away from the barrier. In the plane wave basis we have two input
‘channels’; one for incoming waves from the left and one for incoming waves from
the right:

ψin
l (z) = αin

l exp(ikz) , ψin
r (z) = αin

r exp(−ikz) .

Analogously, we have two output channels carrying plane waves away from the
barrier,

ψout
l (z) = αout

l exp(−ikz) , ψout
r (z) = αout

r exp(ikz) .

So, every channel has a designated direction of propagation as well a designated
side or port. The complex amplitudes of the waves carried in each channel are the
entries of the input and output vectors

αin =

(
αin
l

αin
r

)
, αout =

(
αout
l

αout
r

)
. (2.2)

Since the wavenumber k is the same for all waves, we can express the outgoing
amplitude, say, αout

l by adding the fraction of αin
l that got reflected to the fraction

of αin
r that got transmitted:

αout
l = rl←l α

in
l + tl←r α

in
r ,

where rl←l is the reflection amplitude from left to left and tl←r is the transmission
amplitude from right to left. Following this logic we obtain the S-matrix as

S =

(
rl←l tl←r

tr←l rr←r

)
. (2.3)

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.1. Scattering on the Potential Barrier

Keep in mind that reflection and transmission amplitudes are complex quant-
ities. The terms ‘reflection’ and ‘transmission’ (without ‘amplitude‘), denoted R
and T , respectively, refer to the reflected or transmitted fraction of the intensity.
Thus,

Rl←l = |rl←l|2 , Tl←r = |tl←r|2 ,
Tr←l = |tr←l|2 , Rr←r = |rr←r|2 .

2.1.1. Unitarity

The S-matrix of the potential barrier must be unitary as can be shown as follows:
In quantum mechanics and electrodynamics (if we consider the scalar Helmholtz
equation), the flux J(r), i.e., probability density or current density, is found to be

J(r) ∝ Im{ψ∗(r)∇ψ(r)} . (2.4)

Since there is no gain or loss in the barrier2—meaning there are no sinks or sources
which absorb or generate flux—the incoming flux must equal the outgoing flux at
the boundary of the scattering region in the outwards pointing direction:

J in
l (zl)− J in

r (zr) = Jout
l (zl)− Jout

r (zr) .

By plugging the plane wave basis ψout
l , ψout

r , ψin
l and ψin

r into (2.4), we arrive at
|αin

l |2+ |αin
r |2 = |αout

l |2+ |αout
r |2. Switching to vector notation, cf. Equation (2.2),

and using (2.1) we get:

(
αin
)†
αin =

(
αout

)†
αout

=
(
Sαin

)†
Sαin

(
αin
)†
αin =

(
αin
)†
S†Sαin

⇒ S†S = 1 . (2.5)

Thus, the S-matrix is unitary which implies that R+ T = 1, meaning there is no
fraction of the intensity that gets lost. Also, assuming that there is no gain or
loss, unitarity holds for more general systems as well.

2.1.2. Transposition Symmetry

Usually, the S-matrix is transposition symmetric3. In the case of the potential
barrier we can reveal this fact by inspecting the symmetry of the system: If we
flipped the z-axis in Figure 2.1 and sent the incoming wave from the right instead

2Mathematically, gain or loss could be introduced by making the potential complex.
3A matrix A is symmetric or transposition symmetric if A = AT .
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Chapter 2. The Scattering Matrix

of the left, we could not make out a difference to the original figure (disregarding
textual labels). Consequently, scattering from one side cannot be any different
from scattering from the other side:

rl←l = rr←r

tr←l = tl←r

⇒ S = ST .

One could be tempted to attribute the transposition symmetry to the mirror or
rotational symmetry (rotation by 180° around the z-axis) of this problem. How-
ever, S = ST holds even for asymmetric systems where left and right can be
distinguished; the complex waveguide presented in Section 4.1.2 being such an ex-
ample. In these cases, one could argue that time-reversal symmetry is responsible:
a scattering system is symmetric under time-reversal if for all input-output pairs,
related through αout = Sαin, the time-reversed amplitudes are related by the same
S-matrix [13] which leads to:

(αin)∗ = S(αout)∗

(αin)∗ = S(Sαin)∗

⇒ SS∗ = 1 . (2.6)

But time-reversal symmetry implies unitarity of the S-matrix [14], because other-
wise αout = Sαin and (αin)∗ = S(αout)∗ could not hold simultaneously4. Combin-
ing (2.6) with unitarity we obtain:

SS∗ = 1 = SS†

SS∗ = S(ST )∗

⇒ S = ST .

As we see, transposition symmetry is tied to the common notion of time-
reversibility. In reality, however, transposition symmetry is a consequence of an
even more fundamental property: Reciprocity. A thorough discussion can be found
in [15] which describes reciprocity as the symmetry of the scattering amplitude un-
der exchange of source and detector. The formal definition of reciprocity employs
an anti-unitary operator; such as the time-reversal operator. However, there are
other anti-unitary operators that fulfil the reciprocity conditions given in [15], and
thus S = ST holds even for systems that are not time-reversal symmetric, i.e.,
systems with gain or loss. Reciprocity and time-reversal symmetry hold for all of
the systems we study in this work; non-reciprocity is normally a feature reserved
for ‘exotic’ problems.
4A unitary operator A preserves the metric of any state it is acting on, ||Ax|| = ||x||. If the

S-matrix was not unitary, we could not swap incoming and outgoing amplitudes, as their
metrics—their ‘lengths’—would not match in general.
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2.2. S-Matrix for Waveguide Structures

2.2. S-Matrix for Waveguide Structures

The previous section covered the essential properties of the S-matrix in the simple
setting of the one-dimensional potential barrier. But its scope is limited and fails
to capture other important aspects of scattering problems. For this reason, let us
turn our attention to a more realistic geometry: The two-dimensional waveguide.

Rectangular 2D waveguides are an important experimental platform on which
plenty of phenomena have been demonstrated and examined [1, 3, 12, 16]. In an
ideal representation, such a waveguide consists of two infinite and parallel ‘hard
walls’, i.e., an infinite potential or a perfectly conducting metallic layer. In either
case, the wavefunction or the field cannot penetrate the hard wall and must be zero
at the boundary. The scattering region is embedded in the ‘centre’ of the waveguide
between the walls and typically consists of cylindrical scatterers because they are
conveniently realised in our experimental setup. See Figure 4.1 for an example
geometry.

Similar to the 1D case, we distinguish between left and right channels that are
either incoming or outgoing. The modes of the 2D waveguide carried by these
channels behave like plane waves in z-direction with wavenumber κ. There is,
however, a transversal component Kn in y-direction so that κn =

√
k2 −K2

n, with
k the magnitude of the (total) wave vector. Of course, Kn can only assume values
that lead to a vanishing field on the waveguide walls: if we choose the y-origin to
coincide with the upper wall and assume a distance of L between the walls, then
Kn = 2πn/L, where n is some positive integer, and the waveguide modes take the
form

ψn(y, z; k) =
αn√
κn(k)︸ ︷︷ ︸
=α̃n

√
2

L
sin(Kny/2)e

iκn(k)z n = 1, 2, ... ,

where α̃n = αn/
√
κn(k) is the flux-normalised complex amplitude of the mode

(discussed below) and
√

2/L normalises the transverse profile to unity. For a
given k, each channel can carry a limited amount of open modes, i.e., modes for
which k ≥ Kn = 2πn/L. For k < Kn, κ would become imaginary, corresponding
to closed modes, i.e., evanescent modes, which do not matter asymptotically5.

The input and output vectors are defined analogously to (2.2) but contain as
many entries as open modes per side:

αin/out =
(
α
in/out
l1 , α

in/out
l2 , . . . , α

in/out
r1 , α

in/out
r2 , . . .

)T
.

As a consequence the S-matrix, that relates open incoming to open outgoing
modes, increases its size as more modes become energetically available with in-
5One can generalise the S-matrix to work with evanescent fields, see [13].
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Chapter 2. The Scattering Matrix

creasing k: 2 > kL/(2π) ≥ 1 ⇒ S(k) ∈ C2×2, 3 > kL/(2π) ≥ 2 ⇒ S(k) ∈ C4×4

and so on. For convenience we define a maximum amount of open modes and keep
the dimensions of the S-matrix fixed. Entries related to inactive modes (depend-
ing on k) are set to zero. Still, the S-matrix assumes the form (2.3), the entries,
however, are now matrices:

S =

(
rleft tright

tleft rright

)

rleft/right =




r
left/right
11 r

left/right
12 ...

r
left/right
21 r

left/right
22 ...

...
...

. . .


 tleft/right =




t
left/right
11 t

left/right
12 ...

t
left/right
21 t

left/right
22 ...

...
...

. . .


 .

The superscripts ‘left’ and ‘right’ correspond, on the one hand, to the posi-
tion of the column and, on the other hand, to the port from which the scat-
tering originated. Again, the reflection and transmission will be the absolute-
square of the reflection and transmission amplitudes; Rleft/right

ij = |rleft/rightij |2 and

T
left/right
ij = |tleft/rightij |2.
In contrast to the potential barrier, one channel carrying a certain mode can

scatter into channels carrying different modes, i.e., modes with a different value
of Kn and thus κn(k). This circumstance is called mode-mixing and manifests
itself in non-zero off-diagonal elements of the submatrices rleft/right and tleft/right.
The possibility of mode-mixing has consequences for the unitarity relation: The
incoming flux must still equal the outgoing flux but this time we have to take
contributions from other modes into account (and integrate over the interface, cf.
[13]). This leads to

∑

i

κi(|α̃in
li |2 + |α̃in

ri |2) =
∑

j

κj(|α̃out
lj |2 + |α̃out

rj |2) ,

∑

i

(|αin
li |2 + |αin

ri |2) =
∑

j

(|αout
lj |2 + |αout

rj |2) ,

⇒ S†S = 1 ,

where the last line follows from the same steps taken in (2.5). As we see, the flux
normalisation is necessary to get rid of the κi terms and obtain unitarity of the
S-matrix.

2.3. Calculating the S-Matrix Numerically

Typically we partition space into the scattering region, where the actual inter-
action of the incoming wave and the scatterer takes place, and the asymptotic
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2.3. Calculating the S-Matrix Numerically

region outside the scattering region where incoming and outgoing/scattered waves
propagate freely. This partition is an important concept that allows to confine
the scattering problem to a finite space through appropriate boundary conditions.
Consequently, it enables us to solve scattering problems numerically as we will
demonstrate for the one-dimensional case. The concept is straightforwardly ex-
tended to two dimensions as discussed in [17].

First, we need to discretise the scattering region in space with a finite amount of
sampling points zj , with j = 1, 2, ..., N , spaced equidistantly apart by ∆z. We con-
sider systems that can always be cast into a Hamiltonian H with a local potential
V (z) and so the discretisation procedure yields the well-known tri-diagonal matrix
HD approximating the Hamiltonian inside the scattering region, i.e., H fl HD

[7, 17]:

HD = −t




. . .
1 −2 1

1 −2 1
1 −2 1

. . .




+




. . .
0 V (zj) 0

0 V (zj+1) 0
0 V (zj+2) 0

. . .



,

where t = 1/(2∆z2) is the hopping parameter; a measure of the coupling strength
between points.

So far, HD represents a closed system, namely, the system that emerges if the
scattering region was enclosed with hard walls. In order to ‘open’ HD and connect
it to the asymptotic region we introduce open boundary conditions: since the
solutions must propagate like plane waves outside the scattering region, the values
of any solution at the boundary on the inside (j = 1 and j = N) are related to
the outside (j = 0 and j = N + 1) by:

ψ0 = eik∆zψ1 ,

ψN+1 = eik∆zψN ,

where the phase term exp(ik∆z) is the phase that a plane wave would acquire
propagating over a distance of ∆z. These boundary conditions are incorporated
into HD to yield the effective Hamiltonian, Heff , which describes the finite but
open system, as follows:

Heff = HD +B , (2.7)

B = −t



eik∆z

. . .
eik∆z


 .
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Chapter 2. The Scattering Matrix

Next, we introduce the (discrete) effective Green’s function, Geff , which is the
inverse of E −Heff :

(E −Heff)Geff = 1/∆z

⇒ Geff = ((E −Heff)∆z)
−1

,

where E is the energy and the factor 1/∆z appears due to the discrete nature
of the operators and the requirement that integration over one spatial coordinate
yields unity6. By ‘integration’ we mean a Riemann sum,

∫
f(z)dz fl

∑
j f(zj)∆z.

The effective Green’s function specifies how waves propagate inside the scatter-
ing region, i.e., how they are scattered. Defining appropriate coupling operators,
W † and W , allows us to couple an incoming wave into the system, let it scatter by
applying Geff , and finally couple it to outgoing waves in the asymptotic region. In
this way we can determine all the entries of the S-matrix by sending an incoming
wave through every channel. Executing this idea in formulae, we find that

W =




√
sin(k∆z)/∆z 0

0 0
...

...
0

√
sin(k∆z)/∆z


 ,

where the dimension of W is N×Nc, with Nc the number of channels (here Nc = 2
for left and right), and ultimately obtain the effective Hamiltonian formula for the
S-matrix7:

S = 1− iW †GeffW . (2.8)

The numerical implementation of Equation (2.8) is straightforward for simple
systems: we construct HD, choose an energy E, run a matrix inversion routine
to obtain Geff and multiply the coupling matrices W † and W , and substitute the
resulting matrix W †GeffW into (2.8) to get the S-matrix at energy E. For complex
systems, the direct inversion of E − Heff becomes infeasible and other methods
must be employed to obtain Geff , like the iterative scheme proposed in [18].

A final remark regarding the discrete system: the quantum mechanical disper-
sion relation E = k2/2, where we assumed ~ = m = 1, translates into

E = 2t(1− cos(k∆z)) .

Of course, both forms are asymptotically equivalent as k∆z → 0. Therefore, one
should choose ∆z according to the largest possible value of k such that k∆z stays
small and the discrete system is a good approximation of the real and continuous
system.
6This stems from the fact that in the continuous case (E −H)G(z, z′) = δ(z − z′) and∫

δ(z − z′)dz = 1.
7The detailed derivation can be found in Appendix A.
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Chapter 3.

Quasi-Normal Modes

Closed or conservative systems, i.e., Hermitian systems, have discrete and real-
valued eigenenergies Em or eigenfrequencies ωm. The corresponding eigenstates
are the normal modes: imagine a harmonic oscillator resonating at its eigenfre-
quency with time-dependence ∝ exp(−iωmt) for eternity. If we introduce damp-
ing, however, the resulting oscillation will decay exponentially in time, with time-
dependence ∝ exp(−iωmt) exp(−Γmt/2), because it continuously dissipates en-
ergy. This damped state assumes the same time dependence as a normal mode if
we define its eigenfrequency to be complex, ω̃m = ωm−iΓm/2. Due to this analogy,
we call such a dissipative or decaying state a Quasi-Normal Mode (QNM)1.

In a more general context, the damping of the harmonic oscillator corresponds
to opening a closed system, which will always coincide with the scattering region in
this work, by coupling it, e.g., to free space or waveguide leads. As a consequence,
the real energies or frequencies are shifted onto the complex plane. In [23], this
phenomenon is discussed in regard to the density of states (DOS): a closed system
exhibits a ‘discrete’ DOS with Dirac deltas positioned at the eigenenergies, i.e., the
normal modes. After opening the system, each Dirac delta will broaden to yield
a continuous DOS and might slightly shift its position. The resulting line shape
is Lorentzian which is described by the ‘projection’ of the squared magnitude of a
simple pole located at the shifted energy Ẽm in the complex plane:

δ(E − Em)→
∣∣∣∣

1

E − Ẽm

∣∣∣∣
2

.

In Figure 3.1 we see that the imaginary part of Ẽm, Ẽ′′m := Im{Ẽm}, determines the
width of the line shape: the larger it is, the broader the Dirac delta becomes. Since
Γm = −2Ẽ′′m, an increased line width translates into a larger damping factor in the
time domain, meaning that the energy initially stored inside the system dissipates
more quickly. Consider, for instance, an electron occupying some eigenstate inside
a closed system: after opening the system the electron’s wavefunction will decay

1QNMs have also been called decaying states [19], resonant states [20], leaky modes [21] or
quasiguided modes [22].
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Chapter 3. Quasi-Normal Modes

Re{E}

Im{E}

∝ 1/|E − Em|2

Γ2/2
E2

Γ3/2
E3

Γ1/2

E1

Γ1

Γ2

Γ3

Figure 3.1.: Several Lorentzian peaks with different widths and positions arising
from poles (dots) in the complex E-plane. The imaginary part of the
poles, Γm/2, determines the line width, Γm, i.e., the full-width-half-
maximum, indicated by the double arrows. The light grey curve is a
toy-spectrum obtained by summing over all Lorentzians, demonstrat-
ing the principle of a pole based reconstruction.

and eventually ‘escape’ [19]. The electron’s life time inside the system is thus
inversely proportional to the line width and consequently the imaginary part of its
shifted eigenenergy. In general, the real-part might be altered as well (conversely to
the damped oscillator example), effectively shifting the position of the Lorentzian
peak.

We see that, even though the DOS of an open system is continuous, it can
be described by a discrete set of simple poles. These poles originally lie on the
real axis—in form of Dirac deltas—located at the real eigenenergies of the closed
system, but by opening the system they get shifted onto the complex plane, where
the imaginary part of the shift is physically interpreted as the inverse lifetime.
These shifted eigenstates are the QNMs.

The principle of representing Lorentizan peaks with simple poles and thus with
QNMs, is very powerful and works not only for the DOS but also for transmission
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3.1. Properties

and reflection spectra, as demonstrated, for example, by the prominent Breit-
Wigner formula from nuclear physics [4]. From this perspective, each resonance,
i.e., each peak of the spectrum, is linked to a QNM. Finding such a representation
of the S-matrix, which is the subject of the next chapter, would allow to interpret
even complex scattering spectra on a physical basis provided by the QNMs.

3.1. Properties

We introduced the QNMs as decaying states with complex energies or frequen-
cies. Assuming a time dependence exp(−iω̃mt), it follows that the imaginary part
must be less than zero. The same holds for the wave number2, km, and thus
the spatial dependence, exp(ikz), is exponentially divergent outside the originally
closed scattering region. A normalisation of the QNMs in the conventional sense
is therefore impossible. Still, a proper normalisation can be derived rigorously, see
Section 4.3.4 or [24, 25]. Intuitively, the divergence can be thought of as the tail
of a previous excitation that already left the system a ‘long’ time ago. The almost
vanishing residue of this excitation is thought to be renormalised or ‘amplified’
so that its peak, located far away from the scattering region, seems to become
infinite.

How can we calculate the QNMs? The normal modes are easily obtained by
solving the typical eigenvalue problem of the Hamiltonian H:

Hψ = Eψ . (3.1)

Formally, we open the system by introducing Boundary Conditions (BCs) that
force the solution to be freely propagating outside the scattering region. We
already discussed this procedure in the previous chapter for the discrete case,
Equation (2.7). In the continuous and one-dimensional case, the BC reads

dψ(z)

dz
|z=z0 = ikψ(z0) , (3.2)

which is obtained from (2.7) by letting ∆z go to zero [17]. Note, that the BC is
defined on the interface between the scattering region and the asymptotic region at
z = z0. Integrating this BC into (3.1) leads to the generalised eigenvalue problem

H(E)ψ = Eψ , (3.3)

with an energy-dependent Hamiltonian, which renders this problem non-linear.
The QNMs arise as the solutions of (3.3) for purely outgoing BCs because of
2In electrodynamics this is obvious due to the linear dispersion relation k = ω/c. In quantum

mechanics k =
√
2E, but the imaginary part is still less than zero for one of the two branches.

The other branch contains ‘incoming’ QNMs with the same energy which will not play a role
in this work.
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Chapter 3. Quasi-Normal Modes

their dissipative nature. Purely outgoing means that there is no incoming wave.
This might seem counter-intuitive at first, as the field appears to be generated
inside the scattering region even though we did not add any sources. But due to
the connection between QNMs and normal modes, we can argue that the source
is a bound state that escaped the system. Solving Equation (3.3) numerically for
complex systems is non-trivial but there exist several techniques [26]. Also, QNMs
come in pairs [27]: if km is a QNM eigenvalue, so is −k∗m.

Lastly, we shall note, that there is a similar eigenvalue problem for the effective
Hamiltonian, Heff (see Section 2.3 and Appendix A), that fixes the wavenumber
found in the BC (3.2) to an arbitrary but real value k0 [28, 29]. The effective
Hamiltonian containing the BCs will thus be fixed, i.e., energy-independent and
we obtain the linear but non-Hermitian eigenvalue problem

Heff(E0)ψ = Eψ .

The solutions are the so-called Constant-Flux (CF) states [30]. They are only
defined inside the scattering region, as is Heff . Due to the fixed BC we can,
however, treat them as plane waves in the exterior, i.e., CF states do not diverge3.
Even though they form a biorthogonal basis in the interior, they are not solutions
to the underlying differential equation and must be calculated anew for each energy
E0.

3.2. Quasi-Normal Modes as Poles of the S-matrix

The fact, that QNMs are non-zero and outgoing solutions to a problem without
any incoming wave has interesting consequences for the S-matrix at a QNM-
wavenumber km: We can multiply the zero input vector and still produce a non-
zero output. We conclude that the S-matrix must have a pole at each km, with
the rationale being that only infinity times zero yields something non-zero. Going
back to the effective Hamiltonian formula for the S-matrix, Equation (2.8), we see
that the poles originate from the effective Green’s function because the coupling
matrices W and W † are free of poles. This is also true for the ‘real’ Green’s func-
tion of the system and leads to its QNM-expansion or Mittag-Leffler expansion
[31] that will be central to the pole expansion presented in the next chapter.

Analogous to the pole picture of the DOS from the beginning of this chapter, we
ultimately seek to express the S-matrix in terms of QNMs; one for each resonance
in the transmission and reflection spectra. Mathematically, this corresponds to
finding a pole expansion of the S-matrix. Contrary to a Laurent series, which is a

3Setting k, appearing in the BC, to a complex value, will cause the CF states to diverge. In
fact, setting k to one of the km of the QNMs will cause exactly one CF state to be equal to
the according QNM. All other CF states of the eigenbasis of Heff differ from the rest of the
QNMs, even though they might be similar [30].

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3.3. Poles and Zeros in the S-Matrix Eigenbasis

power series around a single pole, we will employ the Mittag-Leffler-type expansion
[32] that takes all poles into account. Furthermore, as the S-matrix is an operator,
we will need to find residues in operator form. Such a representation is attractive
since it allows physical insights into the scattering problem and, as discussed in
the next chapter, enables an efficient numerical computation of the S-matrix.

In order to represent the S-matrix over the desired spectral interval, i.e, the
range of interest for k, ω or E, we need to incorporate all those QNMs whose
real parts lie within said interval: each QNM ‘resolves’ a single resonance or peak
of the spectrum where the position is determined by the real part of the com-
plex eigenenergy or eigenfrequency. Nonetheless, for an adequate representation
one must include additional QNMs lying outside (but close to) the interval. This
concerns, especially, broad resonances with a large imaginary part as their long
tails might extend into the interval. Occasionally, one introduces a smooth, i.e,
slowly varying, background term to capture the contributions of these broad reson-
ances located within as well as outside the interval. This background is not clearly
defined as there is no general rule to determine what qualifies as a broad resonance
and thus which QNMs to include. But even if all resonances would be included
in the pole expansion, there might be a non-resonant background containing no
poles as shown in the next chapter, Section 4.3. Either way, the background term
is usually calculated through a fitting routine which requires the values of the
S-matrix at a sufficient amount of points throughout the spectrum. Even though
this can be achieved by conventional numerical methods, it would be desirable to
represent the S-matrix through a QNM-expansion without any fit parameters.

3.3. Poles and Zeros in the S-Matrix Eigenbasis

So far we established the connection between QNMs and poles of the S-matrix.
Additionally, QNMs are linked to the zeros of the S-matrix: imagine a system in
a state comprised of a single QNM. Initially, there is only outgoing flux. However,
after time reversing the QNM4, which yields another valid state if we assume time-
reversal symmetry, all outgoing flux is reversed and there is only incoming flux.
Seen in the context of scattering, the S-matrix for this configuration is said to
have a ‘zero’ since we send something in but nothing goes out. This does not
mean that the S-matrix has all-zero entries: the ‘zero’ only occurs for a certain
energy or frequency and a particular incoming wave, namely an eigenstate of the
S-matrix.

In order to better understand this circumstance, let us diagonalise the S-matrix
for a one-dimensional and symmetric system like the potential barrier from the
previous chapter or the Fabry-Pérot cavity presented in Section 4.3.5. The exact
form is insignificant here. The only relevant property is that the QNMs are either
4If the QNM-wavenumber is km, then the time-reversed wavenumber will be −km.
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Chapter 3. Quasi-Normal Modes

even or odd functions5; this is a direct consequence of the symmetry of the system.
Furthermore, the S-matrix must be unitary and transposition symmetric as there
is no loss or gain and reciprocity holds. Consequently, the S-matrix has even and
odd eigenstates. This can immediately be checked as the S-matrix is a two-by-two
matrix of the form

S(k) =

(
r(k) t(k)
t(k) r(k)

)
, (3.4)

with the even eigenvalue e(k) = r(k) + t(k) and eigenstate ve = (1, 1)T and
the odd eigenvalue o(k) = r(k) − t(k) and eigenstate vo = (1,−1)T . After the
diagonalisation the S-matrix will be

S̃(k) =

(
e(k) 0
0 o(k)

)
.

As we can see, the off-diagonal elements are zero, i.e., there is no mode-mixing:
if the configuration of incoming waves is even, the output state cannot be odd
and vice versa. Inspecting the S-matrix at a wavenumber k0 corresponding to the
time-reversed state of an, e.g., even pole, the S-matrix will become

S̃(k0) =

(
e(k0) 0
0 o(k0)

)
=



0 0
0 o(k0)︸ ︷︷ ︸

­=0


 .

Therefore, multiplying with the even eigenvector (1, 0)T will produce no outgo-
ing wave. Nevertheless, if we were to send an odd incoming wave, e.g, (0, 1)T ,
onto the system at wavenumber k0, there would be non-zero scattering; zeros are
only ‘active’ for a specific eigenstate of the S-matrix (the same goes for poles).
This principle was, for example, applied for the experimental realisation of co-
herent perfect absorption in a random medium [3], where a waveguide system is
furnished with loss in such a way that the a zero moves onto the real axis. At the
corresponding frequency the system swallows the incoming eigenstate without any
back-reflection.

As we have demonstrated, poles and zeros have designated eigenstates. But
what about the non-diagonal description that we typically use for S-matrices?
Using the eigenvalues e(k) and o(k) to represent (3.4) we get

S(k) =

(
r(k) t(k)
t(k) r(k)

)
=

1

2

(
e(k)− o(k) e(k) + o(k)
e(k) + o(k) e(k)− o(k)

)
.

From the previous considerations it is clear that ‘steering’ the system into a pole,
no matter if even or odd, gives infinities in all entries, while steering the system
5A function f(z) is even if f(−z) = f(z) and odd if f(−z) = −f(z).
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3.3. Poles and Zeros in the S-Matrix Eigenbasis

into a zero might not give a zero-entry at all. Therefore, in the non-diagonal case,
the position of the zeros is generally unknown. It is even conceivable that certain
poles cannot appear in certain entries. This fact poses a severe limitation for the
method presented in [33], which we will briefly discuss in Section 4.2.2.
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Chapter 4.

Quasi-Normal Mode Expansion of

the Scattering Matrix

In this chapter we have a look at several approaches to formulating a semi-
analytical expression for the S-matrix. By ‘semi-analytical’ we mean an ana-
lytical series expansion which depends on numerically calculated coefficients that,
in turn, depend on the QNMs, i.e., their complex wavenumbers or frequencies and
(far-)fields.

Having such a semi-analytical form has decisive advantages: for one, it allows
to evaluate the S-matrix at arbitrary points1. Conventional (numerical) methods
for calculating the S-matrix need to be re-run for every discrete frequency point
which can take a considerable amount of time, as will be reported later. For
the semi-analytical expression, however, we need to run similar routines only to
solve for the dominant QNMs inside the desired frequency interval, leading to—
potentially huge—speed-ups in computation. Moreover, while numerical routines
can be considered as black-boxes that spit out numbers, a QNM-expansion allows
for a transparent description and a better understanding of complex scattering
systems based on which, e.g., resonant nanostructures can be optimised [33].

First, we examine Alpeggiani’s work [34] and show that his formalism fails to
deliver meaningful results for our complex waveguide structure: the reconstructed
spectrum differs wildly from the reference and violates unitarity, a property that
should be fulfilled as there is no absorption or gain in the system.

This observation led Salihbegović to modify Alpeggiani’s derivation in order to
enforce unitarity [35]. Naturally, the resulting S-matrix is unitary, nevertheless,
it loses its transposition symmetry and thus violates reciprocity (which can be
seen as an even more fundamental property in our case). Surprisingly, the total
transmissions are reconstructed accurately.

Lastly, we present Weiss’ method [36] for the one-dimensional Fabry-Pérot
(1DFP). In contrast to the previously mentioned approaches, its derivation ap-
pears to be more sound and all in all more promising. The implementation,

1Of course, the series has to be truncated at some point, meaning that the expansion is only
valid in a certain range that is determined by the set of selected QNMs.
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Chapter 4. Quasi-Normal Mode Expansion of the Scattering Matrix

however, has to overcome some obstacles which render this approach not quite
as convenient as the others.

4.1. Alpeggiani’s Approach

4.1.1. Derivation

In a 2017 PRX article [34], Alpeggiani and his coauthors presented a derivation of
a semi-analytical formula for the S-matrix which will be summarised here.

Alpeggiani starts with a coupled mode ansatz: incoming waves in the channel
basis, denoted s+, couple to modes a which consecutively couple to outgoing waves
s−. The time evolution of the modes in the absence of any incoming wave is
governed by some Hamiltonian H

da

dt
= iHa . (4.1)

For the stationary case with time dependence exp(iωt) of a, (4.1) is solved by
the matrix exponential a = a0 exp(iHt). In order to describe the coupling to
QNMs, Alpeggiani chooses H in such a way that its eigenstates are exactly the
QNMs, am, with complex eigenfrequencies ωm (or eigenenergies in the quantum
mechanical context). Let us denote this Hamiltonian as HQNM for which the
eigenequation is

HQNMam = ωmam . (4.2)

It must be mentioned that, although the authors callHQNM the effective Hamilto-
nian, it is not the same as what we call the effective Hamiltonian, Heff , that is
derived in Appendix A: On one hand, HQNM is energy-independent and has solely
the QNMs as its eigenstates. On the other hand, Heff is energy-dependent and
its eigenstates are the so-called Constant Flux states (CF states) [30]. Due to its
skew-Hermitian property, these CF states form a biorthogonal basis [37]. Now,
Alpeggiani assumes that the ‘artificial’ Hamiltonian HQNM always exists and is
skew-Hermitian, i.e., it has a biorthogonal basis with the right-eigenstates being
the QNMs. Following these assumptions and the fact that QNMs have complex
frequencies, we can write HQNM = Ω+ iΓ, where Ω and Γ are both Hermitian.

Plugging HQNM into (4.1), introducing coupling between the modes and the
incoming waves through KT

s+, as well as introducing the equation for outgoing
waves via the out-coupling of the modes and the direct coupling of incoming waves,
we arrive at the coupled mode equations:

iωa = i (Ω + iΓ)a+KT
s+ , (4.3)

s− = Cs+ +Da .
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4.1. Alpeggiani’s Approach

Due to physical reasons there exist some useful relations between the coupling
matrices K and D, the direct coupling matrix C and Γ [38], namely

K = D , (4.4)

Γ =
1

2
D†D ,

CD∗ = −D . (4.5)

The S-matrix connects outgoing to incoming waves, s− = Ss+. By solving (4.3)
for s− and using Equations (4.4) and (4.5) we arrive at

S = C − iD(ω1− Ω− iΓ)−1DT . (4.6)

Next, Alpeggiani expands the S-matrix in such a way that it depends only on
the complex frequencies ωm and the far-fields of the QNMs. For this we define
A := (a1,a2, ...) and write all of the eigenequations (4.2) compactly as2

(Ω + iΓ)A = AΩ̃ ,

where Ω̃ = diag(ω1, ω2, ...) is the diagonal matrix containing the complex eigen-
frequencies. Due to the assumed biorthogonality, we do the same for the left-
eigenvectors of HQNM

L†(Ω + iΓ) = L†Ω̃ .

We can now expand ω1−HQNM as

ω1− Ω− iΓ = A
(
ω1− Ω̃

)
L† .

Substituting this expansion in (4.6) and using L† = A−1 [37] yields3

S = C − iD
(
A
(
ω1− Ω̃

)
L†
)−1

DT =

= C − iDA
(
ω1− Ω̃

)−1
A−1DT =

= C − iDA
(
ω1− Ω̃

)−1
A−1

(
(AT )−1AT

)
DT =

= C − iDA
(
ω1− Ω̃

)−1
Λ−1(DA)T ,

2Writing the eigenstate in front of the eigenvalue, i.e. AΩ̃, might seem strange at first, but is
necessary when compacting all eigenequations in matrix notation.

3Keep in mind that (AB)−1 = B−1A−1 as well as (AB)T = BTAT .
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Chapter 4. Quasi-Normal Mode Expansion of the Scattering Matrix

with the diagonal matrix Λ := ATA [34].
The term DA collects all the far-fields of the QNMs: consider the case of only

one QNM am′ being active; by definition there are no incoming waves and thus the
outgoing wave, i.e., the far-field, is simply the out-coupling of the QNMs described
by D, cf. (4.3). We therefore define

bm := s−|ω=ωm
= Dam

B = (b1,b2, ...) = DA .

The vectors bm and thus the matrix B can be obtained by evaluating the QNM-
field sufficiently far away from the scattering region in the channel basis. As is
shown in [34], the normalisation can be chosen freely; only the relative complex
amplitudes contained in the bms are important.

With the above, the S-matrix becomes

S = C − iB
(
ω1− Ω̃

)−1
Λ−1BT .

In order to evaluate Λ, Equation (4.5) is extended [34] to read

CB∗ +BΛ−1Q∗ = 0 , (4.7)

where Q = A†A. The entries of Q can be shown to be [34]

Qij = i
b
†
ibj

ωj − ω∗i
. (4.8)

Equation (4.7) remains to be solved for Λ. However, the problem is over-determined
since the dimensions of B are the number of channels, N , times the number of
QNMs, M , and therefore N×M , while the number of diagonal entries of Λ (which
we need to solve for) is N . Hence, for given C, a solution is not guaranteed to exist.
Alpeggiani mentions that C could be chosen to make (4.7) solvable for Λ but claims
this would be increasingly difficult with a larger number of QNMs. Consequently,
he considers C to be given—presumably from physical considerations—and con-
tinues to find an approximate solution in the least squares sense. The resulting
diagonal entries of Λ−1 are

1

λj
= −

∑
mm′ Q

−1
mj(Q

−1
m′j)

∗
b
T
mC
†Cb∗m′

∑
mQ−1mjb

T
mC
†bj

,

leading to the final expression for the S-matrix

Salpe = C + i
∑

m

1

λm

bmb
T
m

ω − ωm
. (4.9)
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4.1. Alpeggiani’s Approach

scatterers

waveguide modes

slit

Figure 4.1.: 3D visualisation of the geometry and potential of the 2D system:
a quadratic scattering region of side length L = 4.35 is embedded
into an infinite two-dimensional waveguide. It is connected via two
slits of length L/3. Between the slits are 25 randomly distributed
scatterers (in red) with diameter r = 0.025L and constant potential
V = 95.86E0, where E0 = 1

2

(
π
L

)2
. The blue waves indicate the first

three waveguide modes on either side. We will consider an energy
interval which will allow up to eight open modes per port.

only depends on the complex eigenfrequencies ωm, the far-fields of the according
QNMs and the direct coupling matrix C which, however, is chosen to be the
identity, C = 1, in all examples presented in [34].

4.1.2. A Complex 2D Waveguide

In order to test Alpeggiani’s expansion we devised a complex scattering geometry
similar to structures already studied in numerous publications [1, 3, 12, 16]. Note,
that we set off to solve the Schrödinger Equation (SE) instead of Maxwell’s equa-
tions or the Helmholtz equation4.

As shown in Figure 4.1, we started from a rectangular two-dimensional infinite
waveguide, in which we randomly placed 25 scatterers inside a quadratic region.
These circular scatterers have constant potential. Inside the waveguide the po-

4For many problems the Helmholtz equation describes the physics sufficiently, avoiding the need
to solve the full set of Maxwell’s equations. Furthermore, the Schrödinger and the Helmholtz
equation are, at least for our use-cases, equivalent [39]. So in a very limited sense it does not
matter which of the three equations is employed.
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Chapter 4. Quasi-Normal Mode Expansion of the Scattering Matrix

tential is zero and infinite at the boundaries or ‘walls’. Also, we enclosed the
scattering region by two additional walls, each with a slit, to increase the decay
time5 of the modes, leading to a more pronounced resonance spectrum. This meas-
ure prevents very broad resonances to occur which would be hard to incorporate
into our calculation. We are interested in the S-matrix over an energy interval
that allows up to eight open waveguide modes per side. Consequently, we need
to calculate an S-matrix of dimension 16 × 16. In order to verify whether or not
the QNM-expansion works, we expressed the reference S-matrix via the effective
Hamiltonian formula S = 1−iW †GeffW (Appendix A) and computed the effective
Green’s function through a recursive Green’s function approach [18].

In order to use Equation (4.9), we require the QNM far-fields and their complex
energies. Unfortunately, for our waveguide structure it is not clear how to reliably
calculate these quantities (see [26] for an overview). In the end, we opted for a
Perfectly Matched Layer (PML) approach. For the details we refer to [35]. How-
ever, it shall be noted that PMLs introduce a considerable amount of numerical
QNMs, i.e., unphysical QNMs, that have to be filtered out: most of them auto-
matically, some of them, however, manually, due to the lack of robust filtering
criteria. For the remainder of this work, we will not worry about such problems
and take the QNMs as given or derive them analytically. Nonetheless, making
the QNM-expansion work for ‘practical’ purposes requires an efficient QNM-solver
which, in general, poses a non-trivial problem.

4.1.3. Results for the Complex 2D Waveguide

Using Alpeggiani’s method on the complex 2D-waveguide presented in the previous
section leads to a strongly non-unitary S-matrix, as can be seen from the total
transmissions and reflections plotted in Figure 4.2. This glaring discrepancy led
Salihbegović to propose a unitarity correction to Alpeggiani’s approach with which
the total transmissions and reflections are reconstructed accurately as we will show
in the next section.

5Think of the wave as a particle which bounces back and forth inside the scattering region.
Since the only way it can leave is through the slits, it will take more time to escape if the
slits are narrower.
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Figure 4.2.: Total transmissions (red) and reflections (blue) (sum over row entries) reconstructed via Alpeggiani’s approach versus our numerical reference (grey).
Vertical lines mark the positions of the QNMs. Obviously, Alpeggiani’s reconstruction does not yield meaningful results, as it neither matches the
reference nor conforms to unitarity with peaks well above unity.
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4.2. Salihbegović’s Approach: a Unitarity Correction

4.2. Salihbegović’s Approach: a Unitarity

Correction

As seen in the previous section, Alpeggiani’s approach applied on our complex
waveguide structure leads to a strongly non-unitary S-matrix. In Salihbegović’s
master-thesis [35], one possible explanation is pointed out: under certain assump-
tions (see below) Alpeggiani’s S-matrix turns out to be non-unitary for complex-
valued far-field coefficients bm. Real-valued far-field coefficients, though, can only
be found for highly symmetric problems. Our waveguide does not fall under this
category as there is no inherent symmetry.

We repeat Salihbegović’s argument here: inserting Alpeggiani’s formula (4.9)
into the defining equation of unitarity for the S-matrix, SS† = 1, yields

(
C + i

∑

m

1

λm

bmb
T
m

ω − ωm

)†(
C + i

∑

m

1

λm

bmb
T
m

ω − ωm

)
= 1 . (4.10)

If we now assume C = 1, as is done for all examples presented in [34], and fur-
thermore assume that the system has only one QNM6, (4.10) becomes

i

λ∗1

(
b1b

T
1

)†

ω − ω∗1
− i

λ1

b1b
T
1

ω − ω1
+

1

λ1λ∗1

(
b1b

T
1

)†
b1b

T
1

(ω − ω1)(ω − ω∗1)
= 0 . (4.11)

Noting that

(
b1b

T
1

)†
b1b

T
1 = b

∗
1 b
†
1b1︸ ︷︷ ︸

=scalar

b
T
1 = b

†
1b1 b

∗
1b

T
1 ,

we cast (4.11) into a sum of three matrices, each multiplied by some scalar (for
fixed ω):

f1(ω)
(
b1b

T
1

)†
+ f2(ω)b1b

T
1 + f3(ω)b

∗
1b

T
1 = 0 , (4.12)

which has to hold for all ω and fi(ω) ­= 0. Therefore,
(
b1b

T
1

)†
, b1b

T
1 and b

∗
1b

T
1

have to be linearly dependent. Otherwise, (4.12) cannot hold except for the trivial
case. Here, linear dependence equates to the three matrices differing only by some
complex factor. While this is true for real-valued bm, it is not for complex-valued

6This assumption is justified as follows: even though we expect the number of QNMs to be
infinite for any system, it is not far-fetched to devise an example where only one QNM
is crucial for the description of the scattering process; at least over some restricted spectral
range. If a formalism cannot even yield a unitary S-matrix for this simple case (as Salihbegović
shows for Alpeggiani’s approach) it would be surprising if it did when including several modes.
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Chapter 4. Quasi-Normal Mode Expansion of the Scattering Matrix

bm as can be easily checked. However, as stated earlier, non-symmetric systems
will in general feature complex-valued bm.

Curiously, by exchanging the transpose with a complex transpose in (4.9) (BT →
B†) and flipping the sign modifies Alpeggiani’s expansion to be unitary in general.
Furthermore, the Λ-matrix, Λ = AAT , becomes AA† which is the Q-matrix given
in Equation (4.8). This renders the least squares fit, described in Section 4.1.1,
superfluous. The unitarity-corrected Alpeggiani expansion is thus:

Suc = 1 + iB(1ω − Ω̃)−1Q−1B† . (4.13)

4.2.1. Results for the Complex 2D Waveguide

Again, we tested the unitarity-corrected version of Alpeggiani’s expansion on our
complex waveguide problem described in Section 4.1.2. As expected, our S-matrix
is strictly unitary. The reconstructed total row transmissions and reflections, i.e.,
the sum over a row of entries of the corresponding submatrix,

∑
j T

left/right
ij and

∑
j R

left/right
ij , match the reference very well; see Figure 4.3. The peak around k ≈

4.1(7) presents a conspicuous exception to the otherwise faithful reconstruction.
It is most likely that the corresponding QNM was either not found or filtered out
accidentally. As reported in [35], computing the reference S-matrix at 3000 energy
points took about 11 hours on the Vienna Scientific Cluster (using 16 nodes) while
calculating the raw QNM-data merely took around 40 minutes on the same system.
The filtering and reconstruction (for the same 3000 energy points) was done on a
single-CPU system and required an additional hour or so8. This demonstrates the
enormous speed-up potential.

Nevertheless, the resulting S-matrix is not transposition-symmetric and thus vi-
olates reciprocity. As a consequence, the single entries T left/right

ij of the two trans-
mission submatrices differ and indeed both of them do not match the transposition-
symmetric reference, see Figure 4.4. Sums over columns are incorrect as well, as
can be seen in Figure 4.5.

7The exact units are arbitrary for our purposes and thus omitted altogether.
8Again, the filtering process required human intervention and was thus run on an office PC.

Without these issues, filtering could be done efficiently on the cluster; presumably adding
only a negligible amount of computation time.

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Figure 4.3.: Total transmissions T left
i, =

∑
j T

left
ij (red) and reflections Rleft

i, =
∑

j R
left
ij (blue) of the first three rows vs. the corresponding references (grey).

Vertical lines mark the positions of the QNMs. Disregarding the peak at k ≈ 4.1, the reconstruction is accurate.
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Figure 4.4.: First three erroneous single transmissions T left
1i (red) and reflections Rleft

1i (blue) versus the reference (grey) of the first row. Vertical lines mark the
positions of the QNMs. While each single entry does not match the reference, their sum, including the five transmissions and reflections of the same
row which are not shown here, surprisingly reconstructs the total transmission or reflection accurately, see the top plots of Figure 4.3.
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Figure 4.5.: Erroneous total transmissions T left
,j =

∑
i T

left
ij (red) and reflections Rleft

,j =
∑

iR
left
ij (blue) versus the reference (grey) of the first three columns.

Vertical lines mark the positions of the QNMs. Opposed to the total row transmissions and reflections, which get reconstructed correctly, the total
column transmission and reflections, shown here, do not match the reference.
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Chapter 4. Quasi-Normal Mode Expansion of the Scattering Matrix

4.2.2. Correcting the Correction

It is astonishing how Salihbegović’s unitarity constraint amends Alpeggiani’s ap-
proach, transforming its flawed results into solid reconstructions for the total scat-
tering quantities. What exactly our expansion is missing and why it works the
way it does remains unresolved, though. In an effort to correct these shortcom-
ings we tackled the problem from different angles which, albeit unsuccessful, are
documented here.

We started out seeking a possibly missing ‘background term’, Sbg, which would
correct the single entries and restore the transposition symmetry of Suc (Equation
(4.13)). We based our search on an ansatz that combines the Dyson equation
G = G0 + G0∆V G with the effective Hamiltonian expression for the S-matrix,
Equation (2.8):

S = 1− iW †GeffW = 1− iW †Geff,0W − iW †Geff,0∆V GeffW .

From the comparison

S = Sbg + Suc ←→ S = 1− iW †Geff,0W︸ ︷︷ ︸
=:Sbg

−iW †Geff,0∆V GeffW ,

we need to find Geff,0 or, equivalently, a perturbation term ∆V (which would allow
us to calculate Geff,0). The ansatz is universal and one can always construct such
an Sbg. However, we hoped to find a physically meaningful background this way:
by interpreting the Dyson equation, Sbg would describe a scattering system on its
own, that, perturbed by some ∆V , would yield the whole system described by S.
Unfortunately, we could not make this ansatz work.

While tinkering with this idea we invested some effort into better understand-
ing the effective Hamiltonian formalism that led to the derivation presented in
Appendix A. In essence, the formalism is based on Feshbach’s projection operator
formalism that separates the Schrödinger equation into two coupled equations, one
of which is defined on the so-called Q-space while the other is defined on the so-
called P -space. The Q-space is the ‘inner’ space containing the scattering region
while the P -space is the ‘outer’ space containing the asymptotic region9. Solving
the coupled equations subject to an incoming wave in P -space eventually leads to
the expression S = 1 − iW †GeffW , where W represents the coupling between P -
and Q-space and Geff describes the propagation of the incoming wave in Q-space.
In a work by Domcke [40], Feshbach’s theory is extended, such that an explicit
background term arises as a consequence of orthogonality scattering, which occurs
if the Q- and P -space bases are not chosen orthogonally. Using the fact that

9It shall be noted that the partition into P - and Q-space is arbitrary and does not necessarily
need to divide coordinate-space. However, this choice is most convenient for our use-case
since outside the scattering region there is only free space propagation.
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4.2. Salihbegović’s Approach: a Unitarity Correction

QNMs are complete inside the scattering region10 [19, 41], we explored the idea of
choosing the QNMs as the Q-space basis states in the hope that we could either fix
our approach by integrating Domcke’s background term or find another (working)
QNM expansion altogether. Neither could be achieved, although we cannot rule
out that our implementation failed to handle the technical and mathematical de-
tails correctly (for example the complicated completeness relation for the QNMs,
cf. Equation (C.6)). We still think that the combination of QNMs and Domcke’s
theory (or more generally Feshbach’s theory) is worth pursuing, especially since
Weiss noted that parts of his formalism for expanding the S-matrix—which will be
presented in the next section—could be derived in a more elegant manner within
this framework.

Another approach was to correct our S-matrix by finding a general pattern in the
error terms, see Figure 4.6. With the ansatz T left/right

uc,ij = T
left/right
ij +∆T

left/right
ij ,

where T left/right
uc is our erroneous (left or right) transmission submatrix, T left/right

is the correct reference submatrix and ∆T left/right contains the respective error
terms. In order to calculate all of the 2n2 error terms ∆T

left/right
ij , where n is

the number of open channels per side, we would need 2n2 linear and independent
equations. If we assume that our total transmissions are correct and demand
transposition symmetry we arrive at

∑

j

∆T left
ij = 0, ∀i

∑

j

∆T right
ij = 0, ∀i

∆T left
ij = ∆T right

ji , ∀i, j ,

amounting to 2n + n2 equations, i.e., too few. With a little bit of imagination,
however, we can spawn n/2 additional equations for each equation counted in the
2n term: inspecting Figure 4.6 reveals that neighbouring error terms (e.g. light
and dark orange) sum to zero. Of course, this poses a very crude approximation
but if it were true we could extend our previous set of equations by the pair-
ing equations ∆T

left/right
i(j+1) = −∆T left/right

ij , yielding the required 2n2 equations of
which, unfortunately, only 2n2 − 2n are linearly independent. Similar attempts
to define a correcting unitarity transform also failed due to too many degrees of
freedom.

10Otherwise, there would be an additional background term capturing non-trivial scattering
(meaning other than free-space propagation) in P -space.
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Figure 4.6.: Error terms ∆T left (top) and ∆T right (bottom) in solid lines for the respective first rows over a restricted section of the spectrum. The dashed line
is the total error which we treated as sufficiently flat and close to zero. Vertical lines mark the positions of the QNMs.
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4.2. Salihbegović’s Approach: a Unitarity Correction

Yet another approach was inspired by publications of Grigoriev [33] and Colom
[42]: any meromorphic function can be expanded through a Weierstrass factorisa-
tion, an infinite product over pole terms. By converting this product into a sum
via partial fractions, one obtains11

f(z) = A exp(iBz)

(
1 +

∑

m

rm
z − pm

)
,

with

A = f(0)
∏

m

pm
qm

,

iB =
df
dz

∣∣
z=0

f(0)
+
∑

m

(
1

qm
− 1

pm

)
,

rm = (pm − qm)
∏

n ­=m

pm − qn
pm − pn

,

where pm is the mth pole, qm is the mth zero and rm is the corresponding residue
(originating from the partial fraction expansion). Also note that we could employ
the symmetry relations of the QNMs p−m = −p∗m ⇒ r−m = −r∗m and qm = −pm
(time-reversal symmetry) to further simplify the expressions. Since we can incor-
porate only some finite number M of poles, i.e., QNMs, there will be a truncation
error for which Colom derives a compensation term [42]. After introducing afore-
mentioned term into Grigoriev’s expansion we get

f(z) = A exp(iBz)

(
1 +

M∑

m=−M

rm
pm

+

M∑

m=−M

+
rm

z − pm

)
. (4.14)

In [33], a diagonal S-matrix is assumed12 and consequently each diagonal entry is
expanded in the form (4.14). However, this method is limited. Firstly, it might
not be obvious which poles and zeros of the system have to be assigned to what
diagonal element. Secondly, when considering non-diagonal S-matrices and their
off-diagonal elements the corresponding zeros will be unknown (see Chapter 2).
Furthermore, entries that go to zero as ω → 0 would need to be expanded around
another point because in that case A = 0⇒ f(z) = 0. Remarkably, Salihbegović’s
form (4.13) is equivalent to (4.14) for scattering systems with only one channel13,
disregarding the factor A exp(iBz), which might, however, be inherently contained
in the far-field information and is arbitrary for this sort of simple system.
11See the supplemental material of [33] for a concise and beautiful derivation.
12This assumption is easily justified for spherically symmetric systems represented in a multi-pole

basis.
13With only one channel there can only be reflection. Consequently, the S-matrix becomes a

‘scattering scalar’, i.e., a complex phase of the form eiθ(k) (for unitary systems).
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Chapter 4. Quasi-Normal Mode Expansion of the Scattering Matrix

4.3. Weiss’ Approach

The last approach we pursued yields the most promising results. It is rooted in
the Resonant State Expansion (RSE)—a perturbation theory for QNMs—which
has been successfully demonstrated and extended in numerous publications [25,
43, 44, 45, 46, 47, 48]. It employs the analytical normalisation of QNMs [24, 25]
to express the Green’s function via the Mittag-Leffler (ML) expansion. Based on
this, an expression for the ML-expansion of the S-matrix is derived by Weiss [36].
Weiss’ derivation appears to be more solid when compared to Alpeggiani’s method
and yields very good results as is shown in detail for a simple one-dimensional
example in Section 4.3.5. However, in its current form it still requires the complete
information of the wave inside the scatterer in order to normalise the QNMs. So
in contrast to Alpeggiani’s approach, knowing just the far-fields of the QNMs does
not suffice. In the case of periodic structures, the QNMs can be computed via
the Fourier modal method in such a way that the resulting QNMs are already
normalised [49]. Unfortunately, we are not aware of a similarly convenient method
for computing the normalised QNMs for our complex waveguides.

Weiss formulates his S-matrix for Maxwell’s equations quite generally [25, 36].
We will work with a more specific formulation that is especially suited for the
Helmholtz Equation (HE) and is equivalent to the ‘old’ definitions found in earlier
publications, e.g. [24]. Furthermore, we will restrict this discussion to one- and
two-dimensional systems.

4.3.1. Basis States and Orthonormality

First, we present the orthonormality relations that must hold for the incoming, IN ,
and outgoing, ON , basis states which can otherwise be defined arbitrarily. These
states will be used to expand the prescribed incoming wave as well as the scattered
waves outside the scattering region that are generated by the aforementioned in-
coming wave. Inspired by Lorentz-reciprocity (cf. [13] Equation (6)) Weiss defines
the following operations

[φ(r)|ψ(r)]∂V =

∫

∂V

φ(r)∂sψ(r)− ψ(r)∂sφ(r)dS ,

〈φ(r)|ψ(r)〉V =

∫

V

φ(r)ψ(r)dV ,

where the integral
∫
∂V
. . . dS is taken along the surface of the minimal volume V

enclosing the scattering region and ∂s denotes the derivative along the surface’s
normal. With the above, Weiss specifies the orthonormality relations of the in-
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4.3. Weiss’ Approach

coming and outgoing basis states:

[IN |IN ′ ]∂V = [ON |ON ′ ]∂V = 0 , (4.15)

[IN |ON ′ ]∂V = − [ON ′ |IN ]∂V = δNN ′ . (4.16)

To better illustrate these relations let us give an example: In the one-dimensional

case we could choose I(z; k) =
√

1
2ik exp(ikz) and O(z; k) =

√
1

2ik exp(−ikz). The

‘surface’ (i.e. a point) is located at z = 0 and its normal is oriented in the −z-
direction. One easily verifies that Equations (4.15) and (4.16) hold in this case.
Note the difference to the typical orthonormality relation in quantum mechanics:
〈IN |IN 〉 = 1←→ [IN |ON ]∂V = 1. Also keep in mind that, while 〈·|·〉 is an integral
over all of space, the operation [·|·]∂V integrates only along the surface of the
scattering region. Moreover, the basis states are defined exclusively on the outside
plus the given surface. Their coupling to the inside is determined by surface terms
of the form

[
ON |F̃

]
∂V

where F̃ is the field inside the scattering region. In terms of

the Feshbach projection operator formalism (see Appendix A), we would say that
IN and ON are defined in P -space, and that the scattering in Q-space originates
from the surface source terms HQP |IN 〉 (HQP constitutes the ‘surface’).

Next, we expand the total field in the exterior as

F(r; k) =
∑

N

αin
N (k)IN (r; k) + αout

N (k)ON (r; k) ,

where the expansion coefficients are defined by employing the orthonormality re-
lations

αin
N (k) = [ON |F]∂V ,

αout
N (k) = [IN |F]∂V . (4.17)

It is easiest to choose the basis states IN and ON so that they coincide with the
states of the channel basis, e.g, our waveguide modes, for which we seek to calculate
the S-matrix; then



αout
1 (k)
αout
2 (k)

...


 = S(k)



αin
1 (k)
αin
2 (k)
...


 .

In the following we usually ‘activate’ a single incoming channel, i.e., αin
M (k) = 1

and αin
N (k) = 0 ∀N ­=M which simplifies the calculations; for instance αout

N (k) =
SNM (k)αin

M (k). The general case, αout
N (k) =

∑
M SNM (k)αin

M (k), is handled by
means of linearity.
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Chapter 4. Quasi-Normal Mode Expansion of the Scattering Matrix

4.3.2. Mittag-Leffler Expansion

According to the Mittag-Leffler (ML) theorem [50], there always exists a mero-
morphic function for a set of prescribed poles and residues, that exhibits said
poles and is determined by the corresponding residue in their vicinity. Indeed,
such an ML-expansion can be given explicitly, see [32] or Appendix C. Motivated
by this theorem Weiss chooses the Ansatz

S(k) = Sbg(k) +
∑

m

Rm

k − km
. (4.18)

The term
∑

m
Rm

k−km
contains the prescribed poles, km, and residues, Rm. The

‘background’ term, Sbg(k), constitutes some entire rest, i.e., it has no poles. Weiss
does not present a way to calculate the background solely based on the inform-
ation of the QNMs. It is, however, assumed that the background is sufficiently
smooth. This allows for a polynomial fit by computing the S-matrix through
other methods at a couple of reference points spread across the spectrum. Despite
the background-fit being computationally cheap, it prevents Weiss’ approach to
achieve the—maybe overly ambitious—goal of finding a semi-analytical expansion
of the S-matrix without any fit parameters. Again, it might be conceivable to
incorporate Domcke’s theory in order to express even the background in terms of
QNMs (cf. section 4.2.2).

Before we turn our attention to the calculation of the residues Rm, we need to
discuss the partition of the total field into a background and a scattered compon-
ent. Consider the HE (with appropriate boundary conditions) that describes our
scattering process:

D̂ F(r; k) := ∇×∇× F(r; k)− ε(r; k)k2F(r; k) = 0 .

D̂ is the differential operator describing the HE14 and for our scattering problems
ε(r; k) = εbg + ∆ε(r; k), where εbg is the constant dielectric permittivity of the
medium that embeds our scattering region. Inside the scattering region ∆ε(r; k) ­=
0, in the exterior ∆ε(r; k) = 0. Next, we make the ansatz

F = Fbg + Fscat . (4.19)

The background field Fbg is defined to be the part of the total field that solves the
HE for ε(r; k) = εbg; as if there was no scattering region at all, only free space.
For our purposes it is always generated by a single active channel carrying some
input state IN but it contains outgoing waves as well15. The scattered field is the
result of the incoming wave interacting with the scattering region.

14D̂ is the analogue to the Maxwell-operator M̂ in [36].
15Consider, for instance, the one-dimensional case where an incoming wave from the left propag-

ates through the scattering region to the right and becomes an outoing wave.
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4.3. Weiss’ Approach

Inserting Equation (4.19) into the HE, doing some rearranging and utilising that
Fbg fulfils the HE for ε(r; k) = εbg we get

D̂ Fscat(r; k) = ∆ε(r; k)k2Fbg(r; k) , (4.20)

which is a non-homogeneous HE: Fbg, impinging on the scattering region described
by ∆ε(r; k), gives rise to the source term (the right-hand side) which produces the
scattered field Fscat.

Equation (4.20) can be solved inside the scattering region with the ‘inverse’ of
D̂: the Green’s function G(r, r′; k). At this point the QNMs come into play since
the Green’s function can be ML-expanded in the interior [31] and takes the form

G(r, r′; k) =
∑

m

ϕm(r)⊗ ϕR
m(r′)

2km(k − km)
=
∑

m

ϕm(r)⊗ ϕm(r′)

2km(k − km)
, (4.21)

where ϕm(r) is the scalar field of the mth QNM, ⊗ is the outer product16, km
is the mth QNM-wavenumber and the superscript R denotes the reciprocal state.
These reciprocal states will not play a role for our waveguide geometries where
ϕR
m(r) = ϕm(r)17. After solving (4.20) for Fscat by employing the ML-expansion

of the Green’s function we obtain

Fscat = ∆ε(r; k)k2Ĝ(r, r′; k)Fbg(r; k) =

=
∑

m

ϕm(r)⊗ 〈ϕm(r′)|Fbg(r; k)〉V
2km(k − km)

. (4.22)

4.3.3. Residues of the Scattering Matrix

We now possess the tools to find the residues Rm which are actually matrices with
entries

Rm,NN ′ = Res
k=km

S(k)NN ′ = Res
k=km

S(k)NN ′αin
N ′(k) = Res

k=km

αout
N (k) . (4.23)

Keep in mind that the last equality in (4.23) holds in the context of only one
incoming channel N ′ being active. Substituting the ansatz (4.19) for the total
field in the definition of αout

N , Equation (4.17), and expressing the scattered field

16In bra-ket notation, ϕm(r)⊗ ϕm(r′) becomes
∫ ∫

|r〉 〈r|ϕm〉 〈ϕ∗

m|r′〉 〈r′| drdr′.
17This is due to the fact that incoming waveguide modes form a standing wave between the

waveguide walls in y-direction of the form sin(ynπ/L) ∝ eikyy − e−ikyy , where e−ikyy is the
reciprocal state of eikyy . Thus, the waveguide always carries the state in superposition with
its reciprocal which renders the distinction irrelevant. In general, one has to take reciprocal
states into account, cf. [24, 36].
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Chapter 4. Quasi-Normal Mode Expansion of the Scattering Matrix

through (4.22) we get

αout
N (k) =

[IN (r; k)|Fbg(r; k)]∂V +
∑

m

[IN (r; k)|ϕm(r)]∂V 〈ϕm(r′)|Fbg(r; k)〉V
2km(k − km)

. (4.24)

As the first term of the right-hand side in (4.24) does not contain any poles the
residues are

Rm,NN ′ = Res
k=km

αout
N (k) =

=
1

2km
[IN (r; km)|ϕm(r)]∂V 〈ϕm(r′)|Fbg, N ′(r; km)〉V , (4.25)

where Fbg, N ′ is the background field that arises due to a singly active incoming
state IN ′ . Notice, that Rm does not depend on k, only on km. Furthermore, we
need to identify an analytic continuation of the basis states IN (r; k) for complex
valued k [36]. For the plane-waves representing our waveguide modes this is as
simple as setting k = km.

If Green’s second identity holds, one can further simplify the expression for the
residues in (4.25) [36]

Rm,NN ′ = − 1

2km
[IN (r, km)|ϕm(r)]∂V [ϕm(r)|IN ′(r, km)]∂V . (4.26)

We can now insert the residues into the ansatz (4.18), fit the background term
Sbg(k) and finally obtain the sought after expansion of the S-matrix. Aside from
the background, it merely depends on the QNM-fields on the surface of the scatter-
ing region18 and the complex QNM wavenumbers km. The results for the quantum
mechanical one-dimensional Fabry-Pérot will be presented in Section 4.3.5.

4.3.4. Normalisation of the Quasi-Normal Modes

There remains one important aspect we did not discuss so far: the QNMs, ϕm(r),
have to be properly normalised. There have been many attempts to formulate such
a normalisation, see the appendix of [45] for a critical juxtaposition. Nonetheless,
for the ML-expansion of the Green’s function (4.21) we require the normalisation
presented in [45]19 which is a simplified version of a more general form; for periodic

18At this point it might seem that Weiss’ approach, just like Alpeggiani’s, only requires the
far-field information. Nonetheless, the QNMs need to be normalised which cannot be done
without the QNM field inside the scattering region.

19An equivalent formulation can also be found in much earlier works, e.g., in the context of
quantum mechanics, see the appendix of [51].
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4.3. Weiss’ Approach

structures solved in the context of the HE see [24] and for the most general case
of Maxwell’s equations see [25].

We briefly comment on how the normalisation is derived: assuming the ML-
expansion of the Green’s function for the scattered field given in Equation (4.21)
holds, the idea is to solve a non-homogeneous HE for some real k and some source
term σ(r; k): F(r; k) =

∫
G(r, r′; k)σ(r; k)dr′. Then, we continue the solution by

making k complex and steering it towards one of the km. Simultaneously, we
diminish the source term progressively until it is turned off as soon as k = km,
i.e., σ(r; k) = (k2 − k2m)σ̂(r) in the vicinity of km. Thus, the continued solution
will become the mth QNM20:

ϕm(r) = lim
k→km

∫
G(r, r′; k)σ(r; k)dr′ = ϕm(r) 〈ϕm(r′)|σ̂(r)〉V

=⇒ 〈ϕm(r′)|σ̂(r)〉V !
= 1 .

We can express σ̂ via the original HE, σ̂ = limk→km
D̂ F/(k2−k2m), and we obtain,

after some algebraic manipulations,
[
ϕm(r)

∣∣∣∣∣
∂ϕ̃m(r; k)

∂(k2)

∣∣∣∣
k=km

]

∂V

+

〈
ϕm(r)

∣∣∣∣∣
∂(k2ε(r; k))

∂(k2)

∣∣∣∣
k=km

ϕm(r)

〉

V

= 1 ,

where ϕ̃m is the continued solution near the pole km. It should be obvious that
the normalisation is not trivial and, most importantly, requires the knowledge of
the QNMs inside the scattering region. This fact is in stark contrast to Alpeg-
giani’s normalisation-free method, that, nonetheless, does not work for our com-
plex waveguide, on which we, unfortunately, could not test Weiss’ approach since
a corresponding implementation would have gone beyond the scope of this work.

4.3.5. Results for the One-Dimensional Fabry-Pérot

To see whether or not Weiss’ method could be adapted for our needs, we applied
it to solve the Schrödinger Equation (SE) for scattering on the one-dimensional
Fabry-Pérot cavity (1DFP). The solution is entirely analytical, including the back-
ground term. This allowed us to obtain a thorough understanding of the formalism
which we hoped, could explain the peculiar results obtained through Salihbegović’s
unitarity correction. Unfortunately, this was not the case but Weiss’ approach ap-
pears to be a superior alternative with respect to the quality of reconstruction—at
least for this simple example. The detailed derivation can be found in Appendix C.

20In our description the source term is a direct consequence of the incoming field (cf. Equation
(4.20)). If the source turns off when k = km, the incoming field consequently vanishes and
the (non-trivial) solution for this case is thus, per definition, a QNM.
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Chapter 4. Quasi-Normal Mode Expansion of the Scattering Matrix

z

−l L := 2l l

Figure 4.7.: Schematic of the one-dimensional Fabry-Pérot for an incoming wave
from the left. The potential consists of two Dirac deltas with weight γ
that are separated by a length L. The deltas act as semi-transparent
mirrors making up a cavity.

Even though we presented Weiss’ approach in the context of the HE, we can
easily apply it to the SE as both equations are—to a certain degree—equivalent
[39]: a quantum-mechanical potential V (r) translates to a dispersive medium, i.e.,
the equivalent permittivity is k-dependent: ε(r; k) = 1− 2V (r)/k2. For the 1DFP,
sketched in Figure 4.7, V (z) = γ(δ(z + l) + δ(z − l)). While the ‘translation’
of the potential is straightforward, the Dirac delta functions do not comply with
Green’s second identity. Thus, we had to resort to Equation (4.25) for expressing
the residues Rm instead of Equation (4.26).

The left column of Figure 4.8 depicts the transmission and reflection (top) as
well as their phases (bottom) obtained by Weiss’ expansion with 2×10 QNMs: 10
QNMs with real parts greater than zero, km>0, plus their mirrored counterparts,
km<0 = −k∗m>0. Not including the mirrored QNMs leads to non-unitary and thus
wrong results. The reconstructed transmission’s and reflection’s deviation from
the analytical reference (grey) is barely visible up to k = 1000. Even the phase is
matched accurately in that range.

For comparison, we applied Salihbegović’s reconstruction to the 1DFP. Note
that Salihbegović’s expansion is defined over energy which is proportional to k2.
Consequently, for a given QNM-energy Em, we cannot determine whether or not
the corresponding QNM-wavenumber, km ∝ ±

√
Em, is that of a pole (usual QNM)

or a zero (time-reversed QNM): from the energy-perspective the k-plane overlaps
with itself such that the zeros of the second quadrant lie exactly on top of the poles
from the fourth quadrant on another Riemann sheet. Likewise, the (mirrored)
poles from the third quadrant lie on top of the zeros from the first quadrant.
For the expansion we need to choose the QNM-energies that correspond to the
QNM-wavenumbers from the physical sheet, i.e., the sheet containing solutions for
outgoing boundary conditions, see [6] or cf. [44]. These energies have positive real
parts and negative imaginary parts. As there are no mirrored counterparts, only
half the amount of poles used in Weiss’ expansion is used here.
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4.3. Weiss’ Approach

As seen from the right column of Figure 4.8, Salihbegović’s reconstructed trans-
mission and reflection are slightly worse than Weiss’ with 10 QNMs. The phase
seems to be offset and exhibits a jump for the transmission amplitude around
k ≈ 125. Increasing the amount of QNMs to 2 × 20 or 20, Figure 4.9, further
improves the reconstruction in both cases as expected. For 2 × 60, Figure 4.10,
Weiss’ reconstruction can no longer be distinguished from the analytical reference,
unlike Salihbegovic’s method, which, however, seems to approach perfect recon-
struction. Note, that the phase jump vanished. Further increasing to 2 × 160
QNMs, Figure 4.11, does not change the results of Weiss’ expansion anymore.
While Salihbegovic’s transmission and reflection spectra still improve, the phase
worsens, seemingly converging to a constant offset from the true value. As this
discrepancy remains unexplained, it could point to a fundamental problem of the
expansion related to the issues discussed in Section 4.2.
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Figure 4.8.: Weiss’ method with 2×10 QNMs on the left, Salihbegovic’s method with 10 QNMs on the right. Reference in grey, transmission in red and reflection
in blue; absolute-squares on top, phase at the bottom. Vertical lines mark the positions of the QNMs. We sampled the cavity with Nz = 101
points with a spacing of ∆z = 1× 10−4. The Dirac deltas were positioned at the first and last point with a weight of γ = 5× 106/∆z. Clearly, the
reconstruction works very well for small k. For larger k, more QNMs are necessary for an accurate reconstruction, see Figure 4.9.
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Figure 4.9.: By doubling the amount of QNMs, as compared to Figure 4.8, Weiss’ reconstruction is almost perfect over the shown spectrum. Salihbegović’s
reconstruction improves but especially the phase is not reconstructed accurately.
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Figure 4.10.: With 2× 60 QNMs, Weiss’ method yields seemingly perfect results. For Salihbegović’s method with 60 QNMs, visible differences to the reference
remain which, however, appear to converge to zero.
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Figure 4.11.: There is no change to Weiss’ already perfectly reconstructed spectrum when going from 2 × 60 (Figure 4.10) to 2 × 160 QNMs, which comes to
no surprise because the QNMs that were added have large real parts and thus have no effect on the range of the shown spectrum. Salihbegović’s
reconstruction, on the other hand, shows further improvement, although subtle deviations are still visible. Peculiarly, the phase, that seemed to
converge to the reference for less QNMs, is clearly offset.
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Chapter 5.

Summary and Outlook

In this work we investigated several QNM-expansions of the S-matrix with the am-
bition of finding a representation depending only on the QNM far-fields without
any fit-parameters. We discussed Salihbegović’s work, which clearly shows that
Alpeggiani’s expansion [34] fails to reconstruct the S-matrix for the complex scat-
tering system presented in Section 4.1.2: the resulting S-matrix strongly violates
unitarity. Salihbegović’s unitarity correction [35] to Alpeggiani’s formula leads to
unitary S-matrices even for highly non-symmetric scatterers and allows to accur-
ately calculate the total transmissions and reflections. Nonetheless, the resulting
S-matrix violates reciprocity and reconstructs transmission or reflection between
single channels incorrectly. We attempted to explain and fix these shortcomings.
We studied the effective Hamiltonian formalism and its derivation through Fesh-
bach’s projection operators: it deepened our understanding of the matter, but
ultimately, we did not manage to employ the formalism to explain or resolve the
issues of Alpeggiani’s and Salihbegović’s expansions. Likewise, other attempts
to find a potentially missing background of the S-matrix, a pattern in the error
terms for deriving a generally valid correction, or a connection to the Weierstrass
factorisation presented in [33, 42] were unsuccessful. Finally, we turned our atten-
tion to Weiss’ formalism [36] and successfully applied it to the quantum mechanical
Fabry-Pérot cavity in one dimension. The resulting expansion is entirely analytical
since we were able to express the QNM-wavenumbers in terms of the generalised
Lambert-W function.

As the scope of this work was limited, we could not proceed with the next step,
namely, testing Weiss’ formalism on a more complex scattering geometry, for which
Salihbegović’s approach only partially succeeded. In order to do so, one would need
to normalise the QNMs of the system, which requires the QNM-wavefunctions
inside the scattering region. This and the need to fit the background are the main
disadvantages of Weiss’ method. However, it might be possible to come up with
a different normalisation scheme based on the S-matrix that would only depend
on the QNM far-fields as in Alpeggiani’s approach. Furthermore, one could try to
adapt the work of Domcke [40] and express Weiss’ background term solely through
QNMs without the need for a fit procedure. Generally, Domcke’s publication [40]
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Chapter 5. Summary and Outlook

holds some valuable pointers, for example, to another way to calculate the QNMs:
the correspondence between bound states and QNMs is captured by the so-called
level-shift matrix from which one might be able to extract the exact positions of
the QNMs efficiently, especially, since one can choose through which bound states
it should be represented. Choosing only one bound state at a time would make
the level-shift matrix a scalar, possibly yielding a simple equation for each QNM.
It might also be fruitful to review the vast literature from nuclear physics on this
topic in more depth. The Humblet-Rosenfeld expansion [6, 52] might be a suitable
candidate for further study as well as the works of Berggren [53, 54].

After all, the ability to efficiently calculate the QNMs and use them in a semi-
analytical expansion of the S-matrix would not only speed up its calculation but
also allow for deeper physical insights that cannot be brought to light by purely nu-
merical methods. A proper QNM-expansion would describe scattering phenomena
in a compact and transparent fashion with relevance to lasing theory [30], transmis-
sion eigenchannels in random media [55], the generalised Wigner-Smith operator
[1], exceptional points [56] and nanophotonics [26, 57]. While there are already
solid results for symmetric [33, 34] and periodic [36] systems with few resonances,
several obstacles remain to be overcome after our effort to find a QNM-expansion
for more complex scattering scenarios.
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Appendix A.

Derivation of the Effective

Hamiltonian Formula

Using the Feshbach projection formalism [51, 58] we can separate any Hamiltonian
into an inner space and an outer space. The respective projection operators are Q
and P for which

Q2 = Q ,

P 2 = P ,

i.e., the defining property of a projection operator and

Q+ P = 1 ,

QP = PQ = 0 ,

where 1 is the identity operator. Therefore, every wavefunction is entirely repres-
ented by its Q-space and P -space parts, Q |Ψ〉+ P |Ψ〉 = |Ψ〉

The P -space is chosen such that it contains the asymptotic behaviour of the
incoming and scattered wavefunctions. Solving the scattering problem is thus
equivalent to finding the P -space part of the wavefunction for a given input wave.
The Q-space, on the other hand, contains the scattering potential and represents—
on its own—a closed system.

Considering the Schrödinger Equation (SE) in a matrix representation the seg-
mentation can be visualised as follows:




QHQ QHP

PHQ PHP




︸ ︷︷ ︸
H




Q |Ψ〉

P |Ψ〉




︸ ︷︷ ︸
|Ψ〉

= E




Q |Ψ〉

P |Ψ〉




︸ ︷︷ ︸
E|Ψ〉

.
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Appendix A. Derivation of the Effective Hamiltonian Formula

We define HQQ := QHQ, HPQ := PHQ and so on. The blocks1 HQQ and HPP

describe the the Q and P parts of the Hamiltonian, respectively, while HPQ and
HQP constitute the coupling between the scattering system and its asymptotic
region. To find a scattering solution and ultimately express the S-matrix with
this formalism we rewrite the SE as a pair of coupled equations:

(E −HQQ)Q |Ψ〉 = HQPP |Ψ〉 , (A.1)

(E −HPP )P |Ψ〉 = HPQQ |Ψ〉 . (A.2)

As mentioned above we want to solve for P |Ψ〉. First, Equation (A.2) is rewritten
as a Lippmann-Schwinger equation

P |Ψ〉 = |ψ0〉+ (E(+) −HPP )
−1

︸ ︷︷ ︸
=:G

(+)
P

HPQQ |Ψ〉 , (A.3)

where ψ0 and G(+)
P are the free wave and the Green’s function in P -space, respect-

ively. Reinserting into (A.1) gives

(E −HQQ)Q |Ψ〉 = HQP |ψ0〉+HQPG
(+)
P HPQQ |Ψ〉

⇒ Q |Ψ〉 = (E −HQQ −HQPG
(+)
P HPQ)

−1HQP |ψ0〉 .

Using the expression for Q |Ψ〉 in Equation (A.3) finally yields

P |Ψ〉 = |ψ0〉+G
(+)
P HPQ(E −HQQ −HQPG

(+)
P (E)HPQ)

−1HQP |ψ0〉 .(A.4)

The term Heff := HQQ + HQPG
(+)
P HPQ is known as the effective Hamiltonian.

It couples the ‘closed system’ HQQ to the continuum, i.e. the P -space, via
HQPG

(+)
P HPQ. Taking the inverse yields the ‘effective’ Green’s function which

describes the propagation through the scattering region. P |Ψ〉 in Equation (A.4)
is the sum of the input wave |ψ0〉 and the scattered wave G(+)

P HPQGeffHQP |ψ0〉
which couples to the Q-space via HPQ where it is scattered (Geff), coupled out
again (HPQ) and is finally propagated as an outgoing wave through P -space via
G

(+)
P .
The Green’s function G(+)

P in the coupling term can be expanded [29]:

HQPG
(+)
P HPQ =

∑

n

∫ ∞

εn

HQP |k′, n〉 〈k′, n|HPQ

(E + i0)− E′ dE′ =

=
∑

n

P
∫ ∞

εn

HQP |k′, n〉 〈k′, n|HPQ

E − E′ dE′ − iπHQP |k, n〉 〈k, n|HPQ ,

1All blocks are typically of infinite size.
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where the integral was evaluated by the Sokhotsky-Plemelj theorem with P
∫
· dE′

the Cauchy principal value. εn is the minimum channel energy2 and |k, n〉 is a
free wave in P -space and channel n. We assume that all matrix elements of
HQP |k′, n〉 〈k′, n|HPQ qualify as complex functions χ(E′) (k′ = k(E′)) for which
the Kramers-Kronig relations hold. Then3

−πRe{χ(E)} = P
∫ ∞

−∞

Im{χ(E′)}
E − E′ dE′ ,

πIm{χ(E)} = P
∫ ∞

−∞

Re{χ(E′)}
E − E′ dE′ ,

and we see that χ(E) = −HQPG
(+)
P HPQ/π splits into its real and imaginary part

while prescribing the latter:

HQPG
(+)
P HPQ =

∑

n

−πRe{χ(E)}n − iπIm{χ(E)}n =

=
∑

n

−πRe{χ(E)}n −
i

2
WnW

†
n , (A.5)

with Wn =
√
2πHQP |k, n〉 and W †n =

√
2π 〈k, n|HPQ.

The S-matrix is given by Smn = δmn − 2πiTmn [59]. The on-shell T-matrix
elements in the channel representation follow immediately from Equation (A.4)

Tmn = 〈k,m|HPQ(E −HQQ −HQPG
(+)
P HPQ)

−1HQP |k, n〉 ,

and hence we obtain

Smn = δmn − 2πi 〈k,m|HPQ(E −HQQ −HQPG
(+)
P HPQ)

−1HQP |k, n〉

= δmn − iW †m(E −HQQ + πRe{χ(E)}+ i

2
WW †)−1Wn

Smn = δmn − iW †m
1

E −Heff
Wn . (A.6)

(W = (W1 W2 W3 ...) is the matrix containing all Wn as columns.)

2The energy below which the channel is closed.
3Be aware of the swapped sign in the denominator when comparing to the usual formulation.
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Appendix A. Derivation of the Effective Hamiltonian Formula

A.1. Demonstration: a Discrete Example

To see how this works for the discrete case consider a 1D example-Hamiltonian in
its tridiagonal form (in coordinate representation). By ‘removing’ two off-diagonal
elements we separate the Q- and the P -space.

H = − 1

2∆z2︸ ︷︷ ︸
=t

HQQ HQP


. . .
1 −2 1

1 −2 1
1 −2 1

1 −2 1
. . .




HPQ HPP

HPP is then equivalent to the Hamiltonian of a semi-infinite lead.
Keep in mind that whenever we handle discrete Green’s functions we need to

multiply by the step width ∆z since in the discrete case

(E −H)G =
1

∆z
.

Thus, the proper impulse response for some discrete Hamiltonian H will be the dis-
crete Green’s function accompanied by an extra ∆z: G̃ = G∆z. As a consequence
Equation (A.6) has to be altered slightly:

S = 1− iW̃ †Geff∆zW̃ ,

where the discrete coupling matrix has to be changed according to W =
√
∆z W̃ .

This also holds for the W contained in Geff as will be shown below.
Now, by inspecting the discrete version of our coupling term, HQPG

(+)
P ∆zHPQ,

we see that the Green’s function needs evaluation only at a single point namely
on the border of the Q-space. This is due to the single non-zero entry −t · 1 in
the coupling matrices HQP and HPQ. With the discrete Green’s function for the
semi-infinite lead at the border G(+)

P (z = zP,0, z
′ = zP,0) = − eik∆z

t∆z [60] we get

(
HQPG

(+)
P ∆zHPQ

)
zP,0,zP,0

= (−t)(−e
ik∆z

t∆z
)∆z(−t) =

= −te
ik∆z

∆z
∆z , (A.7)

which is exactly the boundary condition −teik∆z we add to the ‘closed’ Hamilto-
nian at (z = zP,0, z

′ = zP,0) for opening it up. Furthermore, we can determine the
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A.1. Demonstration: a Discrete Example

coupling matrices by comparing the imaginary part of (A.7) with that of (A.5)
and obtain

Heff = HQQ +Re{HQPG
(+)
P HPQ}∆z + i Im{HQPG

(+)
P HPQ}∆z︸ ︷︷ ︸

!
=−1/2WW †

⇒WzP,0,zP,0
=

√
sin(k∆z)

∆z2
,

and finally

S = 1− iW †GeffW =

= 1− iW † 1

E −HQQ +Re{HQPG
(+)
P HPQ}∆z − i

2WW †
W .

This expression for the S-matrix matches that given by Ambichl [17] —disregarding
a global phase of eiπ—even though the W s are defined differently. However, our
formulation does not require ‘arbitrary’ additions of ∆zs to the numerator in order
to get the dimensions right.
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Appendix B.

Analytical Solution for the 1D

Fabry-Pérot

The one-dimensional Fabry-Pérot (1DFP) is depicted in Figure B.1. We will calcu-
late the analytical scattering matrix by calculating the reflection and transmission
amplitudes under an incoming plane wave from the left, A exp(ikz), with A = 1.
We choose the typical ansatz:

ψ(z) =





eikz +Beik−z z < −l
Ceikz +Deik−z −l < z < l

Eeikz z > l

. (B.1)

In order to calculate the unknowns (B, C, D and E) we require the solution to
be continuous. On the other hand, by integrating the Schrödinger equation over
an infinitesimal range around the Dirac delta we see that the derivative of the

z

−l L := 2l l

A

B

C

D

E

Figure B.1.: Schematic of the one-dimensional Fabry-Pérot. The potential consists
of two Dirac deltas with weight γ that are separated by some length
L. They act as semi-transparent mirrors which make up a cavity. The
letters correspond to the complex amplitudes of the incoming, A, the
reflected, B, the transmitted, E, as well as the interior, C and D,
plane waves.
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Appendix B. Analytical Solution for the 1D Fabry-Pérot

solution must jump at that point (after setting ~ = m = 1):

∂ψ

∂z

(
l+
)
− ∂ψ

∂z

(
l+
)
= 2γψ(l) ,

with l± = limε→0 l ± ε.
Combining the continuity and discontinuity conditions we arrive at the following

linear system of equations for the amplitudes

A+B = C +D ,

ik (C −D − (A−B)) = 2γ (A+B) ,

CeiLk +De−iLk = EeiLk ,

ik
(
EeiLk − (CeiLk −De−iLk)

)
= 2γ

(
CeiLk +De−iLk

)
,

which is easily solved, e.g., with a computer algebra system like Maxima1. The
transmission amplitude is then given by t(k) = E

A = E and the reflection amplitude
is given by r(k) = B

A = B, i.e.,

t(k) =
k2

γ2 (e2iLk − 1) + k2 + 2iγk
, (B.2)

r(k) = − iγk
(
e2iLk + 1

)
+ γ2

(
e2iLk − 1

)

γ2 (e2iLk − 1) + k2 + 2iγk
, (B.3)

which are arranged as the entries of the S-matrix as

S(k) =

(
r(k) t(k)
t(k) r(k)

)
,

since the reflection and transmission amplitudes are equal on both sides due to
symmetry.

1http://maxima.sourceforge.net/
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Appendix C.

Derivation of Weiss’ S-Matrix

Expansion for the 1D Fabry-Pérot

In order to expand the S-matrix as S = Sbg +
∑

m
Rm

k−km
, we need to find the

Quasi-Normal Modes (QNMs) for the given problem. For the one-dimensional
Fabry-Pérot (1DFP), see Figure B.1, we obtain the wavenumbers km of the QNMs
as the solutions of (B.1) for A = 0, i.e., we are looking for solutions that fulfil
purely outgoing boundary conditions.

Due to the lack of an incoming wave, the problem is symmetric under the parity
transformation z → −z. As a consequence, solutions are either even ψ(z) = ψ(−z)
or odd ψ(z) = −ψ(−z). Thus, we make the ansatz:

ψ(z) =





±Neik−z z < −l
Deikz ±Deik−z −l < z < l

Neikz z > l

. (C.1)

Using the same continuity and jump conditions as in Appendix B and after some
algebraic manipulations of the ensuing system of equations we eventually arrive
at the transcendent equation determining km:

eikL = ± (ik/γ − 1) , (C.2)

where the choice of the plus or minus sign corresponds to the even or odd case,
respectively. The solutions km are [61]

ikm = γ − 1

L
W−⌊m2 +1⌋

(
−(−1)mLγeLγ

)
∀m ∈ Z \ {−1} ,

where Wn(·) is the nth branch of the generalised Lambert-W function. Even and
odd solutions correspond to even and odd m, respectively. The index m = −1
is excluded because k−1 = 0(1). Also note that for indices m ≥ 0, the km have
positive real parts, while negative indices indicate negative real parts. Of course,
all imaginary parts are negative as follows from the definition of the QNMs.
1This can be seen by using the defining equation of the real-valued Lambert-W function

W0(x)eW0(x) = x and inserting accordingly into (C.2).
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Appendix C. Derivation of Weiss’ S-Matrix Expansion for the 1D Fabry-Pérot

C.1. Weiss Formalism for the Helmholtz Equation

The Weiss formalism for Maxwell’s equations [36] can be formulated for the one-
dimensional2 Helmholtz Equation (HE)

D̂ϕ(z, k) :=
[
∇2 + ε(z, k)k2

]
ϕ(z, k) = 0 (C.3)

as follows: the Green’s function needs to be expanded as

Ĝ =
∑

m

ϕm(z)⊗ ϕm(z)

2km(k − km)
, (C.4)

with an additional factor 1
2km

. The bilinear ‘surface’ and ‘volume’ operators are
given by:

〈ϕ|ψ〉V =

∫

V

ϕ(z)ψ(z)dV ,

[ϕ|ψ]∂V =

∫

∂V

ϕ(z)∂sψ(z)− ψ(z)∂sϕ(z)dS ,

where ∂s is the derivative along the outward pointing surface normal. Green’s
second identity can then be written as

〈
ϕ
∣∣∣D̂
∣∣∣ψ
〉
V
−
〈
ψ
∣∣∣D̂
∣∣∣ϕ
〉
V
= [ϕ|ψ]∂V .

The incoming and outgoing basis states defined on the surface of the minimal
convex volume enclosing our scattering region must satisfy

[
ϕin
N |ϕout

N ′

]
∂V

= δN,N ′ , (C.5)
[
ϕin
N |ϕin

N ′

]
∂V

=
[
ϕout
N |ϕout

N ′

]
∂V

= 0 ,

where N is the channel index.
The QNMs ϕm are normalised according to

[
ϕm

∣∣∣∣
∂ϕ̃m

∂(k2)

]

∂V

+

〈
ϕm

∣∣∣∣
∂(k2ε(z, k))

∂(k2)

∣∣∣∣ϕm

〉

V

= 1 , (C.6)

where ∂ϕ̃m

∂(k2) is the derivative of ϕm’s expansion into outgoing basis states, ϕ̃m(k) =∑
N αNϕ

out
N (k), with respect to k2 evaluated at k = km.

Equations (C.3) to (C.6) are the building blocks for the Weiss formalism acting
on the HE. In order to apply it to the 1DFP, we need to translate our problem

2Considering the 1D case simplifies the procedure: there are no reciprocal states, surface integ-
rals reduce to a sum of two points and volume integrals correspond to line integrals.
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C.2. Definitions and Normalisation

that was originally formulated for the Schrödinger Equation (SE). This is possible
due to the equivalence of the HE and the SE [39]. It follows

ε(z, k) = 1− 2V (z)

k2
,

where V (z) = γ(δ(z+l)+δ(z−l)) is the 1DFP-potential. Thus, the k-independent
potential translates into a dispersive, i.e., k-dependent, dielectric function. Al-
though it will not play a role in the following derivations, keep in mind that, while
the equations are of the same form, their dispersion relation differs considerably:

HE: ω = ck ,

SE: ω = k2/2 .

C.2. Definitions and Normalisation

According to (C.5) we define incoming and outgoing basis states:

ϕin
l (z, k) =

√
1

2ik
eik(z+l) , ϕout

l (z, k) =

√
1

2ik
e−ik(z+l) ,

ϕin
r (z, k) =

√
1

2ik
e−ik(z−l) , ϕout

r (z, k) =

√
1

2ik
eik(z−l) ,

where the index l stands for left and the index r stands for right.
The QNMs, according to our ansatz (C.1), are

ϕm(z) =





(−1)mNme
ikmz z < −l

Dme
ikmz + (−1)me−ikmz −l ≤ z ≤ l

Nme
ikmz z > l

,

with the normalisation constant Nm. Dm is determined by the equation ϕm(l+) =
ϕm(l−):

Dm = − iNm(ikm − γ)
km

.

In order to calculate the normalisation constant Nm from (C.6), we take some
auxiliary steps by breaking down the surface term: first, since ϕ̃m(k) =

∑
N αNϕ

out
N (k)

where αN =
[
ϕin
N |ϕm

]
∂V

(cf. [36] Equation (22)) and the linearity of the surface
operator, the surface term becomes

∑
N αNβN with

βl/r :=

[
ϕout
l/r (z, km)

∣∣∣∣∣
∂ϕout

l/r (z, k)

∂(k2)

∣∣∣∣∣k=km

]

L/R

=
1

4k2m
,
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Appendix C. Derivation of Weiss’ S-Matrix Expansion for the 1D Fabry-Pérot

where L and R refer to the left and right ‘surfaces’. Furthermore,

αl =
[
ϕin
l (z, km)

∣∣ϕm(z)
]
L
= − (−1)mNm

√
2ikme

ikml ,

αr =
[
ϕin
r (z, km)

∣∣ϕm(z)
]
R
= −Nm

√
2ikme

ikml .

Substituting
∑

N αNβN into (C.6) yields:

α2
r + α2

l

4k2m
+

∫ l

−l

ϕm(z)
∂(k2ε(z, k))

∂(k2)
ϕm(z)dz =

α2
r + α2

l

4k2m
+

∫ l

−l

ϕ2
m(z)dz

!
= 1 ,

from which we obtain N2
m:

N2
m =

(−1)mk2m
2 (km + iγ)

2
L+ 2ikm − 2γ

. (C.7)

C.3. Residues

The residues Rm are derived analogously to [36], however, with an additional
factor 1

2km
:

Rm,NN ′ = − 1

2km

[
ϕin
N (z, km)|ϕm(z)

]
N

[
ϕm(z)|ϕin

N ′(z, km)
]
N ′ . (C.8)

It turns out that Green’s second identity, which is used for the derivation of (C.8),
does not hold for the 1DFP because neither ε nor ϕm are once or twice continuously
differentiable. Consequently, we have to resort to the form of the residues given
in [36], Equation (26):

Rm,NN ′ =

− 1

2km

[
ϕin
N (z, km)|ϕm(z)

]
N︸ ︷︷ ︸

=αN

〈ϕm(z)
∣∣∆ε(z, km)k2m

∣∣ϕbg
N ′(z, km)〉V . (C.9)

Here ∆ε(z) = − 2V (z)
k2 , where ε = εbg + ∆ε(z) is the deviation of the dielectric

function from the background in which the scatterer is embedded; in our case
vacuum, i.e., εbg = 1.

Now we choose ϕbg
N ′(z, km) to be an incoming plane wave from either the left,

i.e., N ′ = l or from the right, i.e., N ′ = r. This yields:

〈ϕm(z)
∣∣∆ε(z, km)k2m

∣∣ϕbg
N ′(z, km)〉V =

=




−Nmγ

√
− 2i

km
eikmL/2

(
(−1)m + eikmL

)
N ′ = l

−Nmγ
√
− 2i

km
eikmL/2 (−1)m

(
(−1)m + eikmL

)
N ′ = r

. (C.10)
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C.4. Background Through the Mittag-Leffler Expansion

Finally, by substituting (C.10) into (C.9) and by utilising (C.2) for simplification,
we arrive at

Rm = −N2
m (i+ km/γ)

(
1 (−1)m

(−1)m 1

)
.

C.4. Background Through the Mittag-Leffler

Expansion

So far the Mittag-Leffler Expansion (MLE) appeared only in (C.4) for the Green’s
function with which we derived the normalisation of the QNMs and the analytical
residues of the S-matrix. In order to find the analytical background Sbg(k), we
employ the MLE again, but this time on the analytical S-matrix itself.

Generally, the MLE for a meromorphic function f(k) with poles km takes the
form

f(k) = f(0) + f ′(0)k + ...+
f (p)(0)

p!
kp +

∑

m

Rm(k/km)p+1

k − km
, (C.11)

where we define the order of the MLE to be p + 1. An MLE of so-called zeroth
order consists only of the sum-over-m part of (C.11); Equation (C.4) would be
such an example disregarding the factor 1

2km
. Also, notice that the MLE assumes

the form of a truncated Taylor expansion plus a pole term. We can split the sum
over m by a partial fraction decomposition:

∑

m

Rm(k/km)p+1

k − km
=

...

kp+1
m︸ ︷︷ ︸
rest

+
∑

m

Rm

k − km
︸ ︷︷ ︸
resonant term

, (C.12)

where the second term on the right-hand side is the resonant part, while the trun-
cated Taylor series plus the rest of the partial fraction decomposition constitute
the background term.

In the previous sections we already derived the km and the residues Rm. Thus,
we know the resonant part of S(k). All that is left to do is to determine the
background and its required order. We obtain S(0) and its derivatives from the
analytical solution, cf. (B.2) and (B.3):

t(k) =
k2

γ2 (e2iLk − 1) + k2 + 2iγk
,

r(k) = − iγk
(
e2iLk + 1

)
+ γ2

(
e2iLk − 1

)

γ2 (e2iLk − 1) + k2 + 2iγk
.
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Appendix C. Derivation of Weiss’ S-Matrix Expansion for the 1D Fabry-Pérot

The order can be determined by examining the asymptotic behaviour |k| → ∞3

of the transmission and reflection. For the 1DFP it turns out that we need an
MLE of first order for the transmission entries in our S-matrix while the reflection
entries require an MLE of third order.

Hence, we see from (C.11) and (C.12) that the background terms are

tbg = t(0) +
∑

m

Rm,lr

km
, (C.13)

rbg(k) = r(0) + ∂kr(0)k + ∂2kr(0)k
2/2 +

∑

m

(
k2m + k km + k2

)
Rm,ll

k3m
,(C.14)

where ∂pkr(0) :=
(

dpr(k)
dkp

)
(0) and

t(0) = 0 ,

r(0) = −1 ,

∂kr(0) = −
2 i γ L+ i

2 γ2 L+ 2 γ
,

∂2kr(0) =
2L2 γ2 + 2Lγ + 1

2 γ2 (Lγ + 1)
2 .

C.5. Final Expression and Results

The S-matrix expanded via Weiss’ formalism is

S(k) =

(
rbg(k) tbg
tbg rbg(k)

)
−
∑

m

N2
m (i+ km/γ)

(
(−1)m 1

1 (−1)m
)
.

The expressions for rbg as well as tbg are given in Equations (C.13)-(C.14), while
Nm is given in (C.7). For a discussion of the results see Section 4.3.5.

3In fact, k must be sent infinitely far away from all poles. The resonant term in (C.11) will
then vanish and all that is left is the polynomial part.
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Appendix D.

Attachments

Attached to this pdf are three zip-archives.

• complex-waveguide-code-and-data.zip: Python code implementing Sali-
hbegović’s and Alpeggiani’s reconstruction as well as most of the plots of
this work as well as the raw QNM data (far-fields + complex energies) for
the complex waveguide.

• 1dfp.zip: Maxima code that was used for calculating the analytical expres-
sions of Weiss’ formalism and corresponding python code for the numerical
implementation of the 1DFP.

• blender-files.zip: Blender files used for plotting the 3D visualisation of
the waveguide (Figure 4.1). It also contains a file with the Teflon scatterer
positions.
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