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Deutsche Kurzfassung

Die Arbeit befasst sich mit der Theorie von Verallgemeinerten Dynamischen Faktormodellen. Diese

Modelle wurden vor ungefähr 10 Jahren von zwei Gruppen gleichzeitig vorgestellt und wurden seitdem

intensiv erforscht. Der Grund warum diese Modellklasse so attraktiv für mehrere Forschungsgruppen ist,

ist, dass es die zurzeit allgemeinste Klasse von Faktormodellen darstellt. Der neue Aspekt dieser Modelle

ist, dass das Spektrum der Fehler nicht mehr diagonal sein muss. Dies ist zulässig, da die Asymptotiken

simultan, sowohl für die zeitliche als auch für die Querschnittsdimension, durchgeführt werden. Die Di-

vergenz der Querschnittsdimension macht Sinn, da diese Modelle für hoch dimensionale Daten gedacht

sind.

Ein wichtiges Kapitel in dieser Arbeit handelt über die sogenannte Strukturtheorie der latenten Variablen.

Diese ist, zumindest so weit uns bewusst ist, die allgemeinste Form die latenten Variablen zu modellieren.

Dies hat seinen Preis, da wir mit singulären AR Prozessen konfrontiert sind. Diese Prozesse haben eine

autoregressive Darstellung, in welcher die Kovarianzmatrix der Innovation singulär ist. Theoretisch

bräuchten wir lediglich singuläre AR(1) Modelle betrachten, welche die Dynamiken eines minimalen

Zustandes beschreiben würden. Leider können wir nicht annehmen, dass der komplette Zustand aus den

latenten Variablen rekonstruiert werden kann. Trotzdem zeigen wir, dass, solange die Dimension eines

minimalen statischen Faktors größer ist als jene der Innovationen, der minimale statische Faktor gener-

isch eine singuläre Darstellung besitzt.

Konsequenter Weise beschreiben wir die Klasse der singulären autoregressiven Prozesse ausführlich,

welche in der existierenden Literatur kaum diskutiert wurde. Da die Regularität der Kovarianzmatrix der

Innovationen eine zentrale Rolle in der Theorie der regulären autoregressiven Prozesse darstellt, ist die

Verallgemeinerung auf den singulären Fall wesentlich schwieriger als man vielleicht vermuten möchte.

Ein interessanter Fakt ist, dass nicht nur rein linear reguläre stationäre Lösungen von singulären autore-

gressiven System existieren, im Gegensatz zum regulären Fall.

Zusätzlich diskutieren wir die Schätzung der Koeffizientenmatrizen und der minimalen Ordnung eines

singulären AR Prozesses. Wieder zerstört die Singularität der Kovarianzmatrix der Innovationen sämtliche
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Resultate aus dem regulären Fall.

Zu guter letzt diskutieren wir das Problem von Daten mit unterschiedlichen Abtastzeitpunkten. Das heißt,

nicht alle Variablen erscheinen mit derselben Frequenz. Möchte man zum Beispiel ein makroökonomisches

Modell analysieren in welchem das BIP und Arbeitslosenzahlen vorkommen, so wird das BIP nur vier-

mal pro Jahr berechnet wird, während die Arbeitslosenzahlen monatlich erfasst werden.
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Abstract

The thesis deals with the theory of Generalized Dynamic Factor Models. These models have been in-

troduced about 10 years ago by two groups simultaneously and have been discussed intensively since

then. The reason why this model class attracts so many different research groups is, that it is, up to now,

the most general class of factor models. The new aspect of these models is, that the spectrum of the

noise does not have to be diagonal anymore. This is possible as asymptotics, in both the time and the

cross-section, are regarded simultaneously. The divergence of the cross-section dimension is reasonable

as these models are designed for high dimensional data sets.

An important part of this thesis is the so called structure theory for the latent variables. It is, at least

to our knowledge, the most general way to model these variables. This has a price, as we are faced with

singular AR processes. These processes have an autoregressive representation where the driving white

noise has a singular covariance matrix. Theoretically we only need singular AR(1) models to describe the

dynamics of a minimal state. Unfortunately we cannot assume that the whole state can be reconstructed

by the latent variables. Nevertheless we have shown, that if the dimension of a minimal static factor is

larger than the dimension of the driving white noise, the minimal static factor has generically a singular

autoregressive representation.

Consequently we present a detailed description of singular autoregressive processes, which have been

poorly discussed in the existing literature. As the regularity of the covariance matrix of the driving white

noise plays a central role in the theory of regular autoregressive processes, the generalization to the sin-

gular case is much more complicated than one might expect. An interesting fact is, that not only purely

linearly regular stationary autoregressive processes exist, contrary to the regular case.

Additionally we discuss the estimation of the coefficients and the minimal order of singular AR pro-

cesses. Again the singularity of the covariance matrix of the noise destroys several results from the

regular case.

Finally we discuss the problem of mixed frequency sampling data, which means that not all variables
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have the same sampling frequency. Example given, if one wants to analyze a model in which the GDP

and the unemployment rate are used, the GDP is calculated only four times a year, whereas the unem-

ployment rate appears monthly.
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Symbol Index

vector processes:

yt . . . observations (N dimensional or of infinite dimension)

yNt . . . N dimensional vector of observations

χt . . . latent variables (N dimensional or of infinite dimension)

χNt . . . N dimensional vector of latent variables

ut . . . idiosyncratic noise (N dimensional or of infinite dimension)

uNt . . . N dimensional vector of idiosyncratic noise

xt . . . n dimensional (minimal) state

ft . . . r dimensional minimal static factor

νt . . . r dimensional minimal white noise with singular covariance matrix

εt . . . q dimensional (minimal) dynamic factor/ driving white noise

xt+1|t . . . one-step-ahead predictor of xt+1 given information up to time t

second moments:

γxj = Extx′t−j
Γxp = E[x′t−1, ..., x

′
t−p]

′[x′t−1, ..., x
′
t−p]

fx . . . spectral density of xt
Σν . . . (singular) covariance matrix of the white noise process νt
Σ . . . (full rank) covariance matrix of a driving white noise process (εt usually)

matrices:

I . . . identity matrix of suitable dimension

In . . . identity matrix of dimension (n× n)
O . . . Observability matrix

R . . . Reachability matrix

H . . . Hankel matrix

Hilbert space notations:
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Hy . . . span{yi,t|i ∈ N; t ∈ Z} or span{yi,t|i = 1, ..., N ; t ∈ Z}
Hy(t) . . . span{yi,t|i ∈ N; s ≤ t} or span{yi,t|i = 1, ..., N ; s ≤ t}

miscellaneous:

z . . . complex variable/ backward shift

L . . . Lesbegue measure



Chapter 1

Introduction

“We are facing a data tsunami.”

Bart de Moor, Panel discussion: “Econometrics and Systems Theory - Quo Vadis?”, Conference in honor

of Manfred Deistler, Vienna 2009.

In every empiric analysis collecting data is mandatory. Recently, especially high dimensional time series

are becoming more and more important in many disciplines, for example in financial time series analysis,

macro economic modeling, biomedicine and engineering. What the collected samples have in common

is that they are huge. Huge not only in the time dimension but in the cross-sectional dimension too. That

means that many sensors measure something simultaneously.

As long as the cross-sectional dimension is not too big, classic models are still reasonable such as un-

restricted AR or ARMA models. But as the parameter space of such models is proportional to N2, if

N is the cross-section dimension, it is obvious that the estimation of such models is problematic. The

problem is often called the “curse of dimensionality”. To be more precise, the curse of dimensionality is

not such a big problem if the time dimension of the sample, T say, is far bigger than N , but in practice

N and T are usually approximately of the same size.

Of course one could always estimate only univariate models or group some variables and estimate a

smaller ARMA model for each group, but this means that information is lost, as not all variables would

be used simultaneously. Furthermore a huge cross-sectional dimension has usually an explicitly reason

namely to observe co-movement, i.e. something like a common trend or even an oscillation.

Therefore models are needed to first handle these huge data sets and second to extract the co-movement.

Factor models are reasonable in this sense, as their parameter spaces grow only linearly with N and

extract the co-movement in (a few) factors.
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This thesis is concerned with Generalized Dynamic Factor Models (GDFMs). The theory of GDFMs

was developed about 10 years ago by two groups of researchers simultaneously: On the one hand Forni,

Hallin, Lippi and Reichlin ([Forni et al., 2000], [Forni and Lippi, 2001], [Forni et al., 2005]) and on the

other hand Stock and Watson ([Stock and Watson, 2002a], [Stock and Watson, 2002b]). Although Factor

Models have been introduced already 100 years ago, they have become extremely popular in recent years

for modeling macro economic and financial data, based on the results of the two groups mentioned above.

Apart from that, GDFMs have a huge potential of becoming very attractive for biomedicine and en-

gineering as the problem called “oversensoring” is becoming more and more important these days.

A factor model is characterized by the representation of the observed process yt as a sum of two un-

correlated processes

yt = χt + ut

where χt is called the process of the latent variables and ut is a so called idiosyncratic noise process.

Both the latent variables and the idiosyncratic noise are not directly observable. The idea is the following:

Every “co-movement” of the observed variables yt in the cross-section is collected in the latent variables

χt and the remainder is an idiosyncratic (i.e. only relevant for each component) noise part, i.e. χt is a

hidden unobserved process which is driven by a few factors and ut is the vector collecting the specific

error in each component (which does not have to be white noise). Another explanation is that a “true”

process χt can only be measured with noise. This is the theory of errors-in-variables models where the

process χt has a non-trivial left kernel and the noise ut occurs as yt is a noisy measurement of χt. In

Control theory one would call ut the measurement noise rather than idiosyncratic noise, which is used

by econometricians. However the observations yt have a common process χt, which is driven by a (far)

lower dimensional process ft, and an error process ut which is uncorrelated with χt or ft respectively.

The first factor models were designed to extract an Intelligence Factor from a large number of mea-

surements which were independently and identically distributed. These models assumed that the latent

variables had one common static factor and the idiosyncratic noise had a diagonal covariance matrix.

The idea remained the same over the years, namely to compress information, in the so called cross-

sectional dimension which is usually (very) large and additionally in the time dimension, into low di-

mensional factors. The continuative literature discussed models which allowed dynamics within the

latent variables and the idiosyncratic noise but still with the restriction of a diagonal spectrum of the

noise part (see for instance [Geweke, 1977], [Sargent and Sims, 1977], [Scherrer and Deistler, 1998]).
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Chamberlain and Rothschild were the first who introduced models which weakened the assumption of

strictly idiosyncratic noise (i.e. diagonal spectrum) [Chamberlain, 1983],

[Chamberlain and Rothschild, 1983]. They defined a static factor model with the additional assumption

that an infinite number of variables is available at each point in time. Therefore they could allow the

idiosyncratic noise to have (weak) correlations in the cross-section.

Generalized Dynamic Factor Models combine both innovations, namely the dynamic representation of

the latent variables and the idiosyncratic noise as well as the weakening of the assumption of a diagonal

spectrum of the errors, of course again under the assumption that the cross-sectional dimension tends to

infinity.

The popularity of Generalized Dynamic Factor Models is caused by the use of these models by sev-

eral central banks, for example given the ECB and the FED. As macro economic and financial data

always have a large cross-section the asymptotic of letting N, the cross-sectional dimension, going to

infinity is reasonable. Furthermore these models are potential candidates for other areas as for example

given the problem of oversensoring might be handled with GDFMs.

1.1 General Framework

Throughout the whole thesis we will deal with (wide sense) stationary processes only. Of course, in

many applications the true observations are obviously not stationary, such that de-trending and differenc-

ing procedures have to be applied first. We assume that these procedures result in a stationary process

(yt)t∈Z. For the sake of simplicity we will write only yt instead of (yt)t∈Z.

As already mentioned before, a factor model is characterized by a decomposition of the observed process

yt into two unobserved processes χt and ut

yt = χt + ut (1.1)

The processes yt, χt and ut fulfill the following assumption.

Assumption 1.
xt is a (wide sense) stationary zero mean linearly regular process with absolutely summable covariances,

such that the spectral density exists and it is the Fourier transformation of its covariance function

fx(λ) =
1

2π

∞∑
s=−∞

eisλγx(s) (1.2)

where fx(λ) denotes the spectral density and γx(s) the covariance function of xt.
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Assumption 1 implies for example that χt has a Wold representation

χt = w(z)εt =
∞∑
j=0

wjεt−j ,
∞∑
j=0

‖wj‖ <∞

where z denotes, throughout the whole thesis, a complex variable as well as the backward shift. Moreover

the processes yt, χt and ut fulfill

Assumption 2.

1. yi,t = χi,t + ui,t, i = 1, ..., N , where N is the dimension of yt.

2. Eχtu′s = 0,∀s, t ∈ Z, where (·)′ denotes the transpose of (·).

3. The spectral density fχ(λ) is rational and has rank q ∀λ ∈ [−π, π].

Obviously

γys = Eyty′t−s = Eχtχ′t−s + Eutu′t−s = γχs + γus (1.3)

holds and therefore the analogous statement holds for the spectral densities

fy(λ) = fχ(λ) + fu(λ) (1.4)

In the following we give a very short overview about other models related to Generalized Dynamic

Factor Models.

1.2 Principal Component Models

A very popular class of models for multivariate time series are Principal Component Models (PC mod-

els). The idea is to compress as much information of the N dimensional process yt as possible into a q

dimensional process, xt say, which is a linear transformation of yt, i.e. xt = B(z)yt, where B(z) is a

linear filter. With compressing as much information as possible it is meant, that the covariance matrix

of the remainder ut = yt − C(z)B(z)yt = yt − C(z)xt = yt − χt is minimized, where C(z) is also a

linear filter.

Static Principal Component Models

A static PCA model is characterized by B(z) = B...constant, C(z) = C...constant. That means, that

the process xt is a static transformation of the process yt. Thus, for given q, the goal is to minimize

E[yt − CByt]′[yt − CByt] (1.5)
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where C,B′ ∈ RN×q. It is a well known result that the minimum is achieved for C = B′ = O1, where

Eyty′t = OΛO′ = [O1, O2]

[
Λ1 0
0 Λ2

][
O′1
O′2

]
is the eigenvalue decomposition of Eyty′t and O1 is the

matrix consisting of the normalized eigenvectors corresponding to the q largest eigenvalues of Eyty′t (see

e.g. [Darroch, 1965]). The components O[, i]′yt, i = 1, ..., N are called the static Principal Components

of yt and O[, i] denotes the i-th column of O.

Dynamic Principal Component Models

Dynamic PC models are a generalization of static PC models, in the sense that nowB(z) =
∑∞

j=−∞Bjz
j

and C(z) =
∑∞

j=−∞Cjz
j are linear filters, and (1.5) has to be minimized. Thus, for given q, the task is

to minimize ∫ π

−π
[I − C(e−iλ)B(e−iλ)]∗fy[I − C(e−iλ)B(e−iλ)]dλ

where ∗ denotes conjugate and transpose. The solution is similar to the static case, namely C(e−iλ) =
B(e−iλ)∗ = O1(e−iλ) where O1(e−iλ) denotes the matrix consisting of the normalized eigenvec-

tors corresponding to the q largest eigenvalues of the spectral density matrix fy. The components

O[, i](e−iλ)∗yt, i = 1, ..., N are called the dynamic Principal Components of yt and O[, i](e−iλ) de-

notes the i-th column of O(e−iλ).

From a geometric point of view we can say, that in (static/ dynamic) PC models the observed pro-

cess yt is projected on the space spanned by its (static/ dynamic) principal components corresponding

to the largest eigenvalues of the covariance/ spectral density matrix of yt, for more details the reader

is referred to for instance [Jolliffe, 2002]. As this projection is an orthogonal one, we result in a pair

χt = O1(e−iλ)O1(e−iλ)∗yt, ut = [I − O1(e−iλ)O1(e−iλ)∗]yt = O2(e−iλ)O2(e−iλ)∗yt which is or-

thogonal. Furthermore, as the orthogonal projection is unique, the process χt and thus ut are uniquely

determined.

1.3 Factor Models with strictly idiosyncratic noise

Factor Models with strictly idiosyncratic noise commence from a diagonal spectrum of the noise. This

implies that the process χt which contains most of the information (variance) of the observed process yt
is not a linear transformation of yt contrary to PC models. Thus, things are much more complicate, e.g.

to identify the processes χt and ut.

The observed process yt satiesfies Assumption 1 and has a representation

yt = χt + ut
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such that χt and ut fulfill Assumptions 1 and 2. Moreover the spectral density of ut is diagonal, i.e. the

noise ut is strictly idiosyncratic.

Static Factor Models with strictly idiosyncratic noise

This model class is the simplest and best known class of factor models. One assumes additionally that yt
is iid, such that the covariances are the spectral densities times a factor 2π, which implies that γu = Eutu′t
is diagonal. As the spectral density and thus the covariance of χt has rank q we have

γy = γχ + γu = WγεW ′ + γu (1.6)

where W ∈ RN×q. Thus for identifying the model we have to identify γχ and γu first and have to select

W and γε afterwards.

It has been shown in [Scherrer and Deistler, 1998] that γχ and γu can be identified generically if q ≤
qmax holds, where qmax is the so called Lederman bound. The second selection can be easily done by

setting γε = Iq such that W is identified up to post-multiplication by orthogonal matrices.

Dynamic Factor Models with strictly idiosyncratic noise

This model class is the extension to the dynamic case of the models described above. The task is to

identify the spectral densities fχ and fu where fu is diagonal and fχ has rank q. Similar to the static case

a bound for q exists such that fχ and fu are generically identifiable (see [Scherrer and Deistler, 1998]).



Chapter 2

Generalized Dynamic Factor Models

In this section we want to introduce and discuss the so called Generalized Dynamic Factor Models

(GDFMs). In the previous section we have already mentioned static factor models and dynamic factor

models with strictly idiosyncratic noise. The essential feature of factor models with strictly idiosyncratic

noise is a diagonal spectrum of the noise. Unfortunately this feature is unrealistic in many applications

[Scherrer and Deistler, 1998]. The first models which weaken this assumption have been introduced by

Chamberlain and Rothschild [Chamberlain, 1983], [Chamberlain and Rothschild, 1983]. These models

are in a static framework and use the additional asymptotic of N going to infinity, to avoid the need

of a diagonal error covariance. GDFMs extend these models to the dynamic case and have been intro-

duced by two groups of researchers namely by Forni, Hallin, Lippi and Reichlin (see [Forni et al., 2000],

[Forni and Lippi, 2001], [Forni et al., 2005]) and by Stock and Watson (see [Stock and Watson, 2002a],

[Stock and Watson, 2002b]).

As already mentioned, the weakening of the assumption on the spectrum of the noise (diagonal spectrum)

is of big theoretical value as an uncorrelated noise process is highly unrealistic in almost all applications.

This together with the fact that a big cross-sectional dimension is not a drawback anymore, actually a big

cross-sectional dimension is theoretically even needed, makes these models so popular.

In the following we will first give a definition of a Generalized Dynamic Factor Model and second

present a characterization of GDFMs by using the eigenvalues of the spectral density of the observations.

Before we can define a GDFM we need some basics and preliminary definitions as the asymptotics

of GDFMs are with respect to the time dimension and the cross-sectional dimension.

The following sections we will repeat the major lemmas and theorems of the paper [Forni and Lippi, 2001]

which yields the basement of the theory of GDFMs.

9
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2.1 Basics

Let us recall that the linear space L2(P) of all zero mean complex valued square integrable random

variables, defined on a set Ω and P = (Ω, F, P ) is a probability space, is a Hilbert space with the inner

product 〈x, y〉 = Exȳ, where¯means conjugation. Strictly speaking we have to factorize the space by

the equivalence class of functions which are 0 almost everywhere first.

We will deal with doubly indexed sequences

(yi,t)i∈N,t∈Z (2.1)

For the sake of simplicity we will denote with yt the doubly indexed sequence (yi,t)i∈N,t∈Z. Let yNt be

anN dimensional vector process yNt =


y1,t

...

yN,t

, with components yi,t ∈ L2(P), then we can write (2.1)

also as

((yNt )t∈Z)N∈N (2.2)

Furthermore we denote by HyN the Hilbert space spanned by all components of yNt , i.e. HyN =
span{yi,t|1 ≤ i ≤ N, t ∈ Z}, where span{·} denotes the closure of the linear hull of {·} and by Hy the

Hilbert space span{yi,t|i ∈ N, t ∈ Z}. Of course HyN ⊆ Hy holds.

Let us denote by fy the infinite dimensional matrix whose upper leftN×N submatrix is the spectral den-

sity fNy of yNt . We will denote by λy
N

i (θ) the i-th largest (dynamic) eigenvalue of the (N dimensional)

spectral density matrix fyN (θ) and oNi (θ) will be the corresponding eigenvector, i.e.

fyN (θ) = [oN1 (θ), ..., oNN (θ)]diag[λy
N

1 (θ), ..., λy
N

N (θ)][oN1 (θ), ..., oNN (θ)]∗

Lemma 2.1.1. For i fixed λy
N

i (θ) is a non-decreasing sequence for growing N for all θ ∈ [−π, π], i.e.

λy
N

i (θ) ≤ λy
N+1

i (θ)

The Lemma can be proofed by Corollary 1 on page 293 in [Lancaster and Tismenetsky, 1985]. As a

consequence of this Lemma we can define λyi (θ) = lim
N→∞

λy
N

i (θ) = sup
N
λy

N

i (θ). Note that λyi (θ) =∞

is not excluded.

Let aN = [a1, ..., aN ] be an N dimensional row vector, then the complex linear space LN2 (Θ, fyN )
of all N dimensional vectors aN , where the components ai(θ) are measurable complex functions de-

fined on Θ = [−π, π] and
∫ π
−π aN (θ)fyN (θ)a∗N (θ)dθ < ∞ is a Hilbert space with the inner product

〈aN ,bN 〉f
yN

=
∫ π
−π aN (θ)fyN (θ)b∗N (θ)dθ.
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LN2 (Θ, fyN ) is also called the frequency domain of yNt and HyN the time domain. For every aN ∈
LN2 (Θ, fyN ) aN (z)yNt is well defined and has spectral density aNfyNa∗N .

Let L be the Lebesgue measure on R. Let us recall that a real function f : Θ → R is essentially

bounded if there exists a real M and a subset D of Θ such that L (D) = 0 and |f(θ)| < M, ∀θ ∈ Θ\D.

Moreover f is essentially bounded if and only if ess sup (f) = inf{M |L ({y|f(y) > M}) = 0} < ∞.

Now we are ready to define a GDFM.

2.2 The Definition of a GDFM

We start with a sequence of vectors of observations

((yNt )t∈Z)N∈N (2.3)

which is nested, i.e. the firstN−1 components of yNt form yN−1
t . For allN ∈ N, yNt has a representation

as

yNt = χNt + uNt = wN (z)εt + uNt (2.4)

and yNt , χ
N
t , u

N
t fulfill Assumption 1 and Assumption 2 respectively. The process εt is called a dynamic

factor process. Note that εt is not indexed by N which means that the finite, q say, dimensional process

εt drives the underlying latent process χNt . As the sequence of χNt is nested, the transfer functions

wN (z) and the sequence of the corresponding spectral densities are nested too. Another way of thinking

about the nestedness and non-dependence of εt on N is that an additional component of yt gives more

information on the process εt. Later we will see that εt is actually a limit of linear combinations of ys.

Definition 2.2.1. (dynamic averaging sequence). Let aN ∈ LN2 (Θ, IN ) ∩ LN2 (Θ, fyN ) for N ∈ N,

where Θ = [−π, π] and IN is anN dimensional Identity matrix. Then (aN )N∈N is a dynamic averaging
sequence (DAS), if lim

N
‖aN‖IN = 0, where ‖ · ‖IN denotes the norm induced by the inner product on

LN2 (Θ, IN ).

A very simple example for a DAS is the following.

Example 2.2.2. Let aN = 1
N [1, 1, ..., 1︸ ︷︷ ︸

N

] then lim
N→∞

‖aN‖IN = 0 obviously holds. This DAS produces

simply the arithmetic averages of the first N components for N →∞.

Definition 2.2.3. (weakly dependent). We say that ut = ((uNt )t∈Z)N∈N, where uNt fulfills Assumption

1 for all N ∈ N, is weakly dependent if lim
N
aN (z)uNt = 0 in mean square sense for any DAS (aN )N∈N,

i.e. lim
N
V ar(aN (z)uNt ) = lim

N
‖aN (z)uNt ‖IN = lim

N

π∫
−π

aNfuNa∗N = lim
N
‖aN‖f

uN
= 0.
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Note that strictly speaking we should use the wording weakly correlated as this definition only re-

quires properties of the spectral density of ut and therefore only the second moments are used. Another

wording for weakly dependent would be idiosyncratic as Forni and Lippi [Forni and Lippi, 2001] do

and this would also perfectly fit as a definition of an idiosyncratic noise, but we want to use the word

idiosyncratic independently from letting the cross-section go to infinity.

Theorem 2.2.4. ut is weakly dependent if and only if λu1 is essentially bounded.

Proof. (Theorem 2.2.4.) See also [Forni and Lippi, 2001].

“if”: For any DAS (aN )N∈N we have:

lim
N
V ar(aN (z)uNt ) = lim

N
‖aN (z)uNt ‖IN = lim

N

π∫
−π

aNfuNa∗N

≤ lim
N

π∫
−π

λu
N

1 aNa∗N ≤ lim
N

π∫
−π

λu1aNa∗N = lim
N

ess sup(λu1)

π∫
−π

aNa∗N = 0 (2.5)

“only if”: If λu1 is not essentially bounded, then it is not hard to see that there exists a sequence

(Ns)s∈N and a corresponding sequence (aNs)s∈N, with aNs ∈ LNs2 (Θ, INs) ∩ LNs2 (Θ, fuNs ) with

‖aNs‖INs = 1 and ‖aNs(z)uNt ‖2INs ≥ Ms with Ms → ∞. Thus bNs = aNs/‖aNs(z)uNt ‖INs is a

DAS, but ‖bNs(z)uNt ‖INs = 1 and therefore ut is not weakly dependent.

Now we can define a Generalized Dynamic Factor Model.

Definition 2.2.5. (Generalized Dynamic Factor Model). We say that yt = ((yNt )t∈Z)N∈N has a repre-

sentation as a Generalized Dynamic Factor Model, if there exists a q dimensional white noise process

εt = [ε1,t, ..., εq,t]′ and a doubly indexed sequence ((uNt )t∈Z)N∈N, such that

1.

yi,t = χi,t + ui,t = wi,1ε1,t + ..+ wi,qεq,t + ui,t (2.6)

holds ∀i ∈ N, and

yNt =


y1,t

...

yN,t

 = χNt + uNt =


χ1,t

...

χN,t

+


u1,t

...

uN,t

 (2.7)

fulfills Assumptions 1 and 2 for all N ∈ N

2. ut is weakly dependent

3. λχq (θ) =∞, a.e. in [−π, π]

Let us give a very simple example of a Generalized Dynamic Factor Model.
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Example 2.2.6. Let

yNt =


1
...

1

 εt +


u1,t

...

uN,t

 ,∀N ∈ N

with Eεt = Eui,t = 0, ∀i ∈ N, V ar(εt) = V ar(ui,t) = 1∀i ∈ N, then

fyN =


1 . . . 1
...

...

1 . . . 1


︸ ︷︷ ︸

f
χN

+ diag[1, ..., 1]︸ ︷︷ ︸
f
uN

where λχ
N

1 = N , λu
N

1 = 1, ∀N ∈ N.

2.3 Characterization of GDFMs

In the previous section we figured out which properties a doubly indexed sequence yt = ((yNt )t∈Z)N∈N

has to satisfy to have a Generalized Dynamic Factor Model representation, or sloppy speaking to be a

GDFM. Now we want to give necessary and sufficient conditions, on some eigenvalues of the spectral

density fy, such that yt is a Generalized Dynamic Factor Model. These conditions have been established

by Forni and Lippi in [Forni and Lippi, 2001], and will repeat the major theorems and proofs of this

paper here.

Theorem 2.3.1. The doubly indexed sequence yt = ((yNt )t∈Z)N∈N has a representation as a Generalized

Dynamic Factor Model if and only if:

(I) λyq(θ) =∞ a.e. in [−π, π]

(II) λyq+1(θ) is essentially bounded

The proof of the Theorem is not really easy and rather technical. The following definition is of central

importance and explains a lot.

Definition 2.3.2. (aggregate). We call vt ∈ Hy an aggregate if there exists a DAS (aN )N∈N such that

limN aN (z)yNt = vt holds. The space spanned by all aggregates will be denoted by A (y) and we will

call it the aggregation space of Hy.

Note that A (y) is a closed subspace of Hy (for a proof see Lemma 6 in [Forni and Lippi, 2001]).

The aggregation space is the set of random variables we are really interested in as it collects the whole

information of the latent variables. As we will see below the observed process can be split in the pro-

jection on the aggregation space and a remainder which is weakly dependent. The outline of the proof
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of Theorem 2.3.1 is the following. First it is shown that if yt has a Generalized Dynamic Factor Model

representation then (I) and (II) hold, which is easy. Then the other direction is shown within some steps.

The first will be to show that A (y) contains a q dimensional white noise process, (zt)t∈Z say. The sec-

ond that A (y) = Hz , and the third one will complete the proof by showing that the remainder ũt of the

element wise projection

yi,t = yi,t|Hz + ũi,t, i ∈ N (2.8)

is weakly dependent.

Assumption 3. λy
N

i ≥ 1 holds ∀N, i ≤ N

Note that Assumption 3 is no restriction at all as it is seen in the following. Let η = (ηi,t)i∈N,t∈Z with

V ar(ηi,t) = 1, ∀i ∈ N, t ∈ Z, Eηi,tyj,s = 0,∀i, j ∈ N, s, t ∈ Z and Eηi,tηj,s = 0,∀i, j ∈ N, s, t ∈ Z
and define ỹi,t = yi,t + ηi,t. Let us assume that Theorem 2.3.1 holds for ỹt. It is obvious that (I) and (II)

hold for ỹt if and only if they hold for yt as λỹ
N

i = λy
N

i + 1. Furthermore it is easy to see that if yt has a

Generalized Dynamic Factor Model representation this implies that ỹt has a Generalized Dynamic Factor

Model representation too as η is weakly dependent and orthogonal on yt. On the other hand if ỹt has a

Generalized Dynamic Factor Model representation it has the decomposition ỹt = χ̃t+ ũt = ỹt|A (y) + ũt.
By the definition of ỹt, ỹt|A (y) = yt|A (y) and therefore ỹt = χt + ũt = χt + ut + ηt holds. As ũt is

weakly dependent ut is weakly dependent as well and consequently yt has a Generalized Dynamic Factor

Model representation.

As the divergence of the eigenvalues in (I) is not uniformly in [−π, π] the following definition will

be helpful for the proof of Theorem 2.3.1.

Definition 2.3.3. (KD). Let D ⊆ [−π, π] then we denote by KD the set of q × q matrices C(θ) which

fulfill

• the elements C(θ)i,j , 1 ≤ i, j ≤ q are essentially bounded functions on [−π, π]

• C(θ)C∗(θ) = Iq for θ ∈ D

• C(θ) = 0q for θ /∈ D

i.e. C(θ) is unitary if θ ∈ D and zero else.

Proof. (Theorem 2.3.1.) See also [Forni and Lippi, 2001].

“only if”: By definition we have fyN = fχN + fuN which implies that fyN ≥ fχN holds and therefore

λy
N

i ≥ λχ
N

i , i = 1, ..., N follows which establishes (I). Furthermore it is not hard to verify that λy
N

i ≤
λχ

N

i + λu
N

1 , i = 1, ..., N holds (see Theorem 1 page 301 in [Lancaster and Tismenetsky, 1985]) and

therefore

λy
N

q+1 ≤ λ
χN

q+1 + λu
N

1 = λu
N

1 (2.9)
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holds, which proves (II).

“if”:
We define Π as the subset of [−π, π] such that L ([−π, π]\Π) = 0, λy

N

q+1(θ) ≤ W < ∞, ∀N ∈ N and

∀θ ∈ Π and λyq(θ) =∞, ∀θ ∈ Π.

Step 1 (A (y) contains a q dimensional white noise process):
Let us denote by pNt the q normalized dynamic principal components of yN corresponding to the q largest

eigenvalues of fyN , i.e. pNj,t = (λy
N

j )−1(z)oN∗j (z)yNt , j = 1, ..., q or equivalently

pNt = Λ−1/2
N (z)O∗N (z)yNt (2.10)

where

ΛN (z) = diag[λy
N

1 (z), ..., λy
N

q (z)] (2.11)

and

ON (z) = [oN1 (z), ..., oNq (z)] (2.12)

In the following products of vectors with matrices and matrices with matrices will be used which should

be indexed with their dimensions. As this notation would be awful we will understand a product with

different columns and rows as the product with the same matrices by adding zero columns or zero rows

to the smaller dimensioned vector or matrix. An example would be O∗N (z)fyN+1ON (z) = ΛN .

Let PN (z) = [oNq+1(z), ..., oNN (z)] be the matrix with the remaining dynamic eigenvectors of fyN , then

yNt = [ON (z)O∗N (z) + PN (z)P ∗N (z)]yNt

= ON (z)O∗N (z)yNt + PN (z)P ∗N (z)yNt = ON (z)Λ1/2
N pNt + PN (z)P ∗N (z)yNt (2.13)

Obviously the two summands on the right hand side in (2.13) are orthogonal and thus the first summand

denotes the orthogonal projection of yNt on the space spanned by pNt . The idea is to project pNt on the

space spanned by pMt with M > N , call the projected pNt pN,Mt , and to show that the distance between

pMt and pN,Mt tends to zero for N,M →∞. The limit of the just described sequence will be the desired

white noise process. The projection of pNt on the space spanned by pMt is obtained by pre-multiplying

(2.13) by C(z)Λ−1/2
N (z)O∗N (z), with C ∈ KD and observing that

C(z)Λ−1/2
N (z)O∗N (z)yMt = C(z)Λ−1/2

N (z)O∗N (z)yNt
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holds, such that we have

C(z)Λ−1/2
N (z)O∗N (z)yMt = C(z)Λ−1/2

N (z)O∗N (z)yNt

= C(z)pNt

= C(z)Λ−1/2
N (z)O∗N (z)OM (z)Λ1/2

M pMt + C(z)Λ−1/2
N (z)O∗N (z)PM (z)P ∗M (z)yMt

= E(z)pMt + F (z)yMt (2.14)

The largest eigenvalue of the spectral density of the remainder F (z)yMt of this projection is bounded

from above by

λ
F (z)yMt
1 ≤ λy

M

q+1/λ
yN

q (2.15)

which follows from the fact that [IM − PMP ∗M ] and [λy
M

q+1PMP
∗
M − PM Λ̃MP ∗M ] are positive semi defi-

nite, where Λ̃M = diag[λy
M

q+1, ..., λ
yM

M ], and thusCΛ−1/2
N O∗N [λy

M

q+1PMP
∗
M−PM Λ̃MP ∗M ]ONΛ−1/2

N C∗ =

λy
M

q+1CΛ−1
N C∗ − FfyMF ∗ is positive semi definite too.

Let D be a subset of [−π, π] with positive measure such that Λy
M

q (θ) ≥ αM , ∀θ ∈ D, where (αM )M∈N

is a monotonically increasing real sequence with limM→∞ αM =∞ and Λy
M

q+1(θ) < W <∞,∀θ ∈ D.

Furthermore let C ∈ KD then regarding the spectral densities of (2.14) for θ ∈ D

Iq = E(θ)E∗(θ) + F (θ)fyM (θ)F ∗(θ) (2.16)

holds, and thus, using (2.15) gives

λ
F (z)yMt
1 ≤ λy

N

q+1/λ
yM

q ≤W/αM (2.17)

As a consequence, 1−W/αM ≤ λEE
∗

j (θ) ≤ 1, j = 1, ..., q, holds, whereE(θ)E∗(θ) = H(θ)ΛEE∗H(θ)∗,
ΛEE∗ = diag[λEE

∗
1 (θ), ..., λEE

∗
q (θ)] and λEE

∗
j (θ) denotes the j-th largest eigenvalue of E(θ)E∗(θ).

Thus the filter

G(θ) =

H(θ)Λ−1/2
EE∗H

∗(θ)E(θ) for θ ∈ D

0q for θ /∈ D
(2.18)

is well defined, as there always exists an integer M0 such that 0 < 1−W/αM0 ≤ λEE
∗

q (θ), and it is of

course an element of KD. Summarizing the results we have the following Lemma.

Lemma 2.3.4. Assume that (I) and (II) hold, letD be a subset of Π with positive measure and (αM )M∈N

a monotonically increasing real sequence with limM→∞ αM = ∞. Furthermore assume that C ∈ KD

and Λy
M

q (θ) ≥ αM ,∀θ ∈ D. Then, given τ with 0 < τ < 2, there exists an integer Mτ such that
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W/Mτ < 1 and for N > M ≥Mτ the largest eigenvalue of the spectral density matrix of

C(z)pMt −G(z)pNt

is smaller than τ ∀θ ∈ Π, where G(θ) is defined by (2.18).

Proof. (Lemma 2.3.4.) See also [Forni and Lippi, 2001].

Using (2.14) we have

C(z)pMt −G(z)pNt = E(z)pNt + F (z)yNt −G(z)pNt = F (z)yNt + [E(z)−G(z)]pNt (2.19)

As F (z)yNt is orthogonal on pNt by definition the spectral density of the right hand side of (2.19) is the

sum of the spectral densities of its summands. Denoting S as the spectral density of the left hand side of

(2.19) and using (2.16) we have for θ ∈ D

S = Iq − E(θ)E∗(θ)− E(θ)E∗(θ)− E(θ)G∗(θ)−G(θ)E∗(θ) +G(θ)G∗(θ)︸ ︷︷ ︸
=Iq

= 2Iq − E(θ)G∗(θ)−G(θ)E∗(θ) = 2Iq − 2HΛ1/2
EE∗H

∗ = 2H[Iq − Λ1/2
EE∗ ]H

∗ (2.20)

The largest eigenvalue of the right hand side of (2.20) is 2(1 − λEE∗q ) ≤ 2W/αM < 2W/αMτ < τ for

a suitable Mτ .

The following Lemma is well known (see [Apostol, 1974]).

Lemma 2.3.5. Let (an)n∈N be a sequence of functions which are elements of L2([−π, π]) which is

convergent in the L2 norm. Then there exists a subsequence (anm)m∈N such that lim
m
anm(θ) = a(θ),

a.e. in [−π, π].

Definition 2.3.6. (costationary). Let xt be an n dimensional stationary process, then we say that an

m dimensional stationary process yt is costationary with xt if the crosscovariance Exi,tyj,t−k (we only

consider centered processes) does not depend on t for all i, j, k.

Lemma 2.3.7. Let the sequences of processes ((an,t)t∈Z)n∈N and ((bn,t)t∈Z)n∈N, whose components

belong to Hy∀N ∈ N, be costationary with (yt)t∈Z and lim
n
an,t = at and lim

n
bn,t = bt respectively.

Then there exists a sequence of integers (nm)m∈N such that

lim
m
S(anm,t, bnm,t) = S(at, bt), a.e. in [−π, π]

where S(a, b) denotes the cross spectral density of a, b.

Proof. (Lemma 2.3.7.) See also [Forni and Lippi, 2001].

Note that Eanm,tbnm,t = 〈anm,t, bnm,t〉 =
∫ π
−π S(anm,t, bnm,t) holds (see Lemma 2 in [Forni and Lippi, 2001]).



2.3. CHARACTERIZATION OF GDFMS 18

As the inner product is continuous we have that lim
m

∫ π
−π |S(anm,t, bnm,t) − S(at, bt)| = 0. Therefore

S(anm,t, bnm,t) converges in L1 norm to S(at, bt) and therefore in L2 norm too, and by Lemma 2.3.5

this implies the a.e. convergence.

We are now ready to establish the desired result. Lemma 2.3.8 shows that there exists a q dimensional

vector process which has a spectral density equal to Iq almost everywhere on a subset D of Π and whose

components are in the aggregation space A (y). Lemma 2.3.9 will extend this result to almost everywhere

in [−π, π].

Lemma 2.3.8. Assume that (I) and (II) hold and let D and (αM )M∈N be as in Lemma 2.3.4, then there

exists a q dimensional vector process vt with

• vj,t is an aggregate for j = 1, ..., q

• vt has a spectral density which equals Iq a.e. in D and 0q else

Proof. (Lemma 2.3.8.) See also [Forni and Lippi, 2001].

The proof is done by defining a sequence recursively which will turn out to be a Cauchy Sequence and

thus has a limit. Start with letting G1 be any element of KD, setting τ1 = (1/2)2 and Mτ1 such that

2W/αMτ1
< τ1 holds. After that define v1

t = G1p
Mτ1
t which has of course a spectral density which

equals Iq for θ ∈ D and 0q else.

Then set τ2 = (1/2)4 and Mτ2 such that 2W/αMτ2
< τ2 holds. Next determine E2 as in (2.14) by re-

placingC withG1,N withMτ1 andM withMτ2 . After thatG2 is defined as in (2.18) and v2
t = G2p

Mτ2
t .

Again the spectral density of v2
t equals Iq for θ ∈ D and 0q else. Furthermore, by Lemma 2.3.4, we have

that the largest eigenvalue of the spectral density of [v1
t − v2

t ] is bounded by τ1 a.e. in [−π, π], which

implies that ‖v1
j,t − v2

j,t‖2 <
∫ π
−π τ1dθ = 2π(1/2)2, j = 1, ..., q.

By recursion set τk = (1/2)2k and Mτk such that 2W/αMτk
< τk holds. Determine Ek as in (2.14)

by replacing C with Gk−1, N with Mτk−1
and M with Mτk . After that Gk is defined as in (2.18) and

vkt = Gkp
Mτk
t . Again the spectral density of vkt equals Iq for θ ∈ D and 0q else. Furthermore, by Lemma

2.3.4, we have that the largest eigenvalue of the spectral density of [vk−1
t − vkt ] is bounded by τk−1 a.e.

in [−π, π], which implies that ‖vk−1
j,t − vkj,t‖2 <

∫ π
−π τkdθ = 2π(1/2)k−1, j = 1, ..., q.

As

‖vkj,t − vk+h
j,t ‖ ≤ ‖v

k
j,t − vk+1

j,t ‖︸ ︷︷ ︸
<
√

2π 1

2k

+ ‖vk+1
j,t − v

k+2
j,t ‖︸ ︷︷ ︸

<
√

2π 1

2k+1

+...+ ‖vk+h−1
j,t − vk+h

j,t ‖︸ ︷︷ ︸
<
√

2π 1

2k+h−1

<
√

2π
1

2k−1



2.3. CHARACTERIZATION OF GDFMS 19

holds, (vkj,t)k∈N, j = 1, ..., q are Cauchy sequences. Therefore we can define vt as the vector of the

limits. vt has a spectral density which equals Iq for θ ∈ D and 0q else, as it is the limit of the sequence

(vkt )k∈N whose elements have the desired spectral density and Lemma 2.3.7 can be applied.

To see that the components vj,t, j = 1, ..., q are aggregates we have to show that (G̃k)k∈N , with

G̃k = GkΛ
−1/2
Mτk

O∗Mτk
is a DAS. By the definition of G̃k we have

G̃kG̃
∗
k = GkΛ−1

Mτk
G∗k

and thus

lim
k→∞

∫ π

−π
[G̃k(θ)][j,][G̃k(θ)]

∗
[j,]dθ = lim

k→∞

∫ π

−π
[Gk(θ)][j,]Λ

−1
Mτk

[Gk(θ)]∗[j,]dθ ≤ lim
k→∞

∫ π

−π
(λy

Mτk

q (θ))−1dθ = 0

where (G̃k)[j,] denotes the j-th row of G̃k, and the last equality follows from the Lebesgue Convergence

Theorem.

Lemma 2.3.9. Assume that (I) and (II) hold, then there exists a q dimensional white noise vector process

zt with spectral density Iq a.e. in [−π, π] such that its components zj,t, j = 1, ..., q are aggregates.

Proof. (Lemma 2.3.9.) See also [Forni and Lippi, 2001].

We start with defining D0 = Π. Then a sequence of integers vm is defined by

vm = min
N

L ({θ ∈ Dm−1, λ
yN

q (θ) > m}) > π

and

Dm = {θ ∈ Dm−1, λ
yvm
q > m}

for m = 1, 2, .... Note that vm is a non-decreasing sequence.

In the next step define N1 =
⋂∞
m=1Dm. The whole procedure is repeated by setting D0 equal to Π\N1

and using L (Π\N1)/2 instead of π.

For n > 2 start the whole procedure again by setting D0 equal to Π\
⋃n
m=1Nm and using

L (Π\
⋃n
m=1Nm)/2 as the boundary. As the Nms have no intersection

L (
∞⋃
m=1

Nm) =
∞∑
m=1

L (Nm) = 2π

Now Lemma 2.3.8 can be applied by using each Nm together with αM = m and we obtain a q dimen-

sional vector zmt whose components are aggregates and its spectral density matrix equals Iq a.e. in Nm

and 0q else. Defining zt =
∑∞

m=1 z
m
t , and noting again that the sets Nm have no intersection but the

union over all of them has Lebesgue measure 2π, we see that zt has indeed a spectral density Iq a.e. in
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[−π, π].

Thus step 1 is proofed.

Step 2 (A (y) = Hz):
Step 1 already implies A (y) ⊇ Hz , thus we have to show A (y) ⊆ Hz . In order to do this let wt be an

aggregate. If the remainder rt of the projection

wt = wt|Hz + rt (2.21)

is zero the result follows. Assume that rt is not equal to 0, then rt must be necessarily an aggregate by

definition. Next define z̃t = [z′t, rt]
′ with spectral density matrix fz̃ which has an Iq matrix in the upper

left q × q corner which implies that

det(fz̃) = fr (2.22)

As all q+1 components of z̃t are aggregates there exist q+1 dynamic averaging sequences (aj,N )N∈N, j =
1, ..., q + 1 such that

z̃j,t = lim
N→∞

aj,N (z)yNt , j = 1, ..., q + 1 (2.23)

holds. Furthermore lim
N→∞

‖aj,N‖ = lim
N→∞

π∫
−π
|aj,N (θ)|2dθ = 0 for j = 1, ..., q + 1, such that Lemma

2.3.5 implies that there exist subsequences which converge to zero almost everywhere in [−π, π]. Anal-

ogously there exists a subsequence of the spectral densities of z̃Nt = [a1,N (z)yNt , ..., aq+1,N (z)yNt ]′,
which converges a.e. in [−π, π] to fz̃ (Lemma 2.3.7).

Next define for j = 1, ..., q + 1, bj,N = aj,NON and cj,N = aj,N − bj,NO∗N , such that

aj,N = bj,NO∗N + cj,N (2.24)

Note that ON is the N × q matrix consisting of the eigenvectors of fyN belonging to the q largest

eigenvalues (see also (2.12)). As

[aj,NONO∗N ][aj,N − aj,NONO∗N ]∗ = 0

we have

|aj,N |2 = |bj,NO∗N + cj,N |2 = bj,N O∗NON︸ ︷︷ ︸
=Iq

b∗j,N + |cj,N |2 = |bj,N |2 + |cj,N |2 (2.25)

The Definition of bj,N and cj,N imply that

aj,N (z)yNt = bj,N (z)O∗N (z)yNt + cj,N (z)yNt (2.26)
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and thus the first summand denotes the orthogonal projection of aj,N (z)yNt on the space spanned by the

not normalized q dynamic principal components (compare to (2.10)) O∗N (z)yNt . Therefore the spectral

density matrix of z̃N , fz̃N , is the sum of the spectral density of

[b1,N (z)O∗N (z)yNt , ..., bq+1,N (z)O∗N (z)yNt ]′

f1
z̃N

say, and the spectral density matrix of

[c1,N (z)yNt , ..., cq+1,N (z)yNt ]′

f2
z̃N

say.

fz̃N = f1
z̃N + f2

z̃N (2.27)

As |aj,N |2 converges to zero a.e. in [−π, π], (2.25) implies that |cj,N |2 converges to zero a.e. in [−π, π]
too. As a consequence and realizing the fact that cj,N is orthogonal on oj,N , j = 1, ..., q we have that

the diagonal elements of f2
z̃N

= cq,NfyNc∗q,N , q = 1, ..., q + 1 are bounded from above by λy
N

q+1|cj,N |2

which converges to zero a.e. in [−π, π] as λyq+1 is essentially bounded. Thus f2
z̃N

converges to zero a.e.

in [−π, π].
Furthermore f1

z̃N
is singular by construction. Consequently det(fz̃) = fr = 0 a.e. in [−π, π] which

implies that rt = 0 a.e. in [−π, π].
Thus step 2 is proofed.

Step 3 (ũt is weakly dependent):

Definition 2.3.10. (Cauchy sequence of spaces). Assume that for all N ∈ N the following holds: Let

(zNt )t∈Z be a q dimensional white noise process belonging toHy and costationary with yt, which implies

that zNt is costationary with zMt ,∀N,M ∈ N. Consider the orthogonal projection

zMt = AM,N (z)zNt + δM,N (2.28)

then the sequence ((zNt )t∈Z)N∈N generates a Cauchy sequence of spaces if for a given ε > 0, for θ a.e.

in [−π, π] there exists an integer Mε(θ) such that ∀N,M > Mε(θ), tr(fδM,N ) < ε.

The outline of the proof of step 3 is as follows. First, Lemma 2.3.11 shows that ((pNt )t∈Z)N∈N

generates a Cauchy sequence of spaces. Second, Lemma 2.3.12 states that the sequence of projections

of yt on (pNt )N∈N converges in Hy. Third, Theorem 2.3.13 establishes that the limit of the sequence just

described, converges to the latent variables, which are the components yi,t projected on the aggregation

space A (y). And finally, Lemma 2.3.14 concludes the proof of step 3 and thus of Theorem 2.3.1 by

showing that ũt is idiosyncratic.
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Lemma 2.3.11. The sequence of dynamic principal components ((pNt )t∈Z)N∈N generates a Cauchy

sequence of spaces.

Proof. (Lemma 2.3.11.) See also [Forni and Lippi, 2001].

Recall formula (2.14) where M > N holds

C(z)pNt = E(z)pMt + F (z)yMt

Set C(z) = Iq and let δN,M = F (z)yMt , then we have

pNt = E(z)pMt + δN,M (2.29)

Furthermore recall formula (2.15)

λ
F (z)yMt
1 = λ

δN,M
1 ≤ λy

M

q+1/λ
yN

q

Letting M and N go to infinity, λδN,M1 goes to zero a.e. in [−π, π] and thus the trace of the q× q spectral

density of δN,M , which is the sum of its q eigenvalues, goes to zero too a.e. in [−π, π].
For N > M we have

pMt = E(z)∗pNt + δM,N (2.30)

taking the spectral densities of (2.30) and (2.29) we have

fpM = E(z)E(z)∗ + fδN,M = E(z)∗E(z) + fδM,N , a.e. in [−π, π] (2.31)

Consequently we have

tr(fδN,M ) = tr(fδM,N )

and the result follows.

Lemma 2.3.12. Let ŷNi,t denote the orthogonal projection of yi,t on the space spanned by (pNt )t∈Z, i.e.

ŷNi,t = yi,t|span{pNi,t|1≤i≤q,t∈Z}, then the sequence (ŷNi,t)N∈N converges in Hy.

Proof. (Lemma 2.3.12.) See also [Forni and Lippi, 2001].

Define

rNi,t = yi,t − ŷNi,t = yi,t −Ai,N (z)pNt

then we have

ŷNi,t − ŷMi,t = Ai,N (z)pNt −Ai,M (z)pMt = rMi,t − rNi,t



2.3. CHARACTERIZATION OF GDFMS 23

The spectral density of ŷNi,t − ŷMi,t is

fŷNi −ŷMi
= S(ŷNi,t − ŷMi,t , rMi,t − rNi,t) = S(ŷNi,t, r

M
i,t ) + S(ŷMi,t , r

N
i,t) (2.32)

where S(xt, yt) denotes the cross spectral density between xt and yt. Using (2.30) we can write

S(ŷMi,t , r
N
i,t) = S(Ai,M (z)pMt , r

N
i,t) = S(Ai,M (z)[E(z)∗pNt + δM,N ], rNi,t)

= S(Ai,M (z)E(z)∗pNt , r
N
i,t) + S(Ai,M (z)δM,N , r

N
i,t) = S(Ai,M (z)δM,N , r

N
i,t) (2.33)

Now as the squared entries of Ai,M (z) and the spectral density of rNi,t are bounded in modulus by the

spectral density of yi,t and tr(fδM,N ) → 0 for M,N → ∞ holds, as pNt generates a Cauchy sequence

of spaces, S(Ai,M (z)δM,N , r
N
i,t) converges to 0 a.e. in [−π, π]. The same holds for S(ŷNi,t, r

M
i,t ) and we

have shown that fŷNi −ŷMi → 0 for M,N →∞.

Since both fŷNi and fŷNi are dominated by fyi , the integral of the spectral density fŷNi −ŷMi also con-

verges to zero by the Lebesgue Convergence Theorem. Hence ŷNi,t − ŷMi,t is a Cauchy sequence and thus

converges.

We have already shown that the projection of the components of yt onto the spaces spanned by the

dynamic principal components converge in Hy. The next Theorem shows that the limit is actually what

we expect, namely the projection of yt onto the aggregation space A (y).

Theorem 2.3.13. For all i ∈ N

lim
N→∞

ŷNi,t = lim
N→∞

Oi,N (z)O∗N (z)yNt = yi,t|A (y)

in mean square holds.

Proof. (Theorem 2.3.13.) See also [Forni and Lippi, 2001].

We have already proofed that lim
N→∞

ŷNi,t = lim
N→∞

Oi,N (z)O∗N (z)yNt =: χ̃i,t ∈ Hy, in mean square holds

(Lemma 2.3.11 and Lemma 2.3.12), where Oi,N (z) denotes that i-th row of ON (z).

Note that (Oi,N (z)O∗N (z))N∈N is a DAS, as

lim
N→∞

‖Oi,N (z)O∗N (z)‖ = lim
N→∞

π∫
−π

Oi,N (θ)O∗N (θ)ON (θ)O∗i,N (θ)dθ

= lim
N→∞

π∫
−π

Oi,NO
∗
i,N (θ)dθ ≤ lim

N→∞

π∫
−π

fyi(θ)/λ
yN

q (θ)dθ = 0 (2.34)
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the inequality in (2.34) holds because of

Oi,N (z)ΛN (z)O∗i,N (z) ≥ λyNq (z)Oi,N (z)O∗i,N (z) (2.35)

Oi,N (z)ΛN (z)O∗i,N (z) = Oi,N (z)Λ1/2
N (z) fpN︸︷︷︸

=Iq

Λ1/2
N (z)O∗i,N (z) = fŷNi

≤ fyi (2.36)

and the last equality in (2.34) holds because of the Lebesgue Convergence Theorem. As χ̃i,t ∈ Hy

holds, the residuals ũi,t = lim
N→∞

ũNi,t = [yNi,t − lim
N→∞

ŷNi,t] are also elements of Hy. As ũNi,t is orthogonal

on (pNt )t∈Z by construction, the continuity of the inner product ensures that ũi,t is orthogonal on A (y).

As the orthogonal projection is unique the result follows.

Lemma 2.3.14. ũt = [ũ1,t, ..., ũ2,t, ...]′ is weakly dependent, where ũi,t = yi,t − yi,t|A (y).

Proof. (Lemma 2.3.14.) See also [Forni and Lippi, 2001].

Let fũMN for N > M be the M ×M spectral density matrix of ũMt,N = [ũN1,t, ..., ũ
N
M,t]

′ and λN,M1 be its

largest eigenvalue. As ũNi,t converges to ũi,t in mean square ∀i ∈ N, by Theorem 2.3.13, we have that by

Lemma 2.3.7 a subsequence of (fũMN )N∈N converges to fũM a.e. in [−π, π], where ũMt = [ũ1,t, ..., ũM,t]′.
Without loss of generality we can assume that lim

N→∞
fũMN

= fũM holds a.e. in [−π, π]. As the eigenvalues

are continuous functions of the matrices we have that

lim
N→∞

λN,M1 (θ) = λũ
M

1 (θ) a.e. in [−π, π] (2.37)

Furthermore we have that

λN,M1 (θ) ≤ λN,N1 (θ) = λy
N

q+1(θ), ∀θ ∈ [−π, π] (2.38)

where the inequality holds because the eigenvalues increase if additional rows and columns appear, and

the equality holds by the definition of ũNt,N = yNt − ON (z)O∗N (z)yNt . Hence we have by (2.37) and

(2.38)

lim
N→∞

λN,M1 (θ) ≤ lim
N→∞

λy
N

q+1(θ) (2.39)

⇒ λũ
M

1 (θ) ≤ λyq+1(θ) (2.40)

⇒ λũ1(θ) ≤ λyq+1(θ) a.e. in [−π, π] (2.41)

Thus λũ1(θ) is essentially bounded and therefore ũt is weakly dependent.
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Summarizing we have that (I) and (II) imply that

yi,t = yi,t|A (y) + ũi,t

yi,t = χ̃i,t + ũi,t

holds, where ũt is weakly dependent. Furthermore λχ̃q = lim
N→∞

λχ̃
N

q ≥ lim
N→∞

λy
N

q − lim
N→∞

λũ
N

1 = ∞
holds, as the inequality follows by Theorem 1 page 301 in [Lancaster and Tismenetsky, 1985], which

finishes the proof of Theorem 2.3.1.

2.3.1 Identification of the Latent Variables

A very important consequence of Theorem 2.3.1 is, that the components χi,t, and thus ui,t, are uniquely

determined which will be summarized in the following Theorem.

Theorem 2.3.15. Let yt = (yi,t)i∈N,t∈Z have a Generalized Dynamic Factor Model representation ful-

filling Definition 2.2.5, then

χi,t = yi,t|A (y)

Proof. (Theorem 2.3.15.) See also [Forni and Lippi, 2001].

On the one hand we have by Definition 2.2.5

yi,t = χi,t + ui,t = wi(z)εt + ui,t (2.42)

on the other hand Theorem 2.3.1 shows that

yi,t = yi,t|A (y) + ũi,t = w̃(z)zt + ũi,t (2.43)

with zt defined in Lemma 2.3.9, holds. As ut is weakly dependent we have A (y) ⊆ Hχ. Additionally

Hχ ⊆ Hε holds by construction and therefore we have

Hz = A (y) ⊆ Hχ ⊆ Hε

as zt and εt are both q dimensional white noise processes we have the equality Hz = Hε which implies

χi,t ∈ A (y). As ui,t is orthogonal on A (y) the result follows.



Chapter 3

Structure Theory of GDFMs

In the previous chapter we discussed the result that the observations have a representation as a Gener-

alized Dynamic Factor Model if and only if the largest eigenvalues of their spectral density diverge and

the remaining eigenvalues are bounded. Furthermore the latent variables are then uniquely determined

by the projection of the observations on its aggregation space.

Here we want to analyze what can be said about the transfer function corresponding to Wold decompo-

sition of the latent variables in the case that the spectral density of the latent variables is rational. The

general idea behind that theory, which uses the spectral density of an unobserved process, is, that useful

insights concerning the “true” system are used afterwards for estimation procedures.

From now on, in this section, we will deal with the latent variables χt of yt exclusively.

3.1 Spectral Factorization

Recall Assumption 2 which states that the spectral density of the latent variables fχ(λ) is rational and

has rank q ∀λ ∈ [−π, π]. That means that there exists an N0 such that for all N ≥ N0 the spectral

density fχN is a rational matrix of rank q. The question is how we factorize fχN in order to get a

“good” factorization. We will use the result of [Rozanov, 1967], which has been slightly corrected by

[Hannan, 1970], that we can always factorize such a spectral density in spectral factors with no zeros and

poles inside and on the unit circle, which are unique up to post-multiplication by constant orthogonal

matrices. For the sake of simplicity we will omit the superscript N until the contrary is stated explicitly.

Theorem 3.1.1. An (N × N) dimensional rational spectral density matrix fχ of rank q ≤ N can be

factorized as

fχ(λ) =
1

2π
w(e−iλ)w∗(e−iλ) (3.1)

where the (N × q) dimensional spectral factor w(z) z ∈ C is a rational full column rank matrix which

26
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has no poles and zeros for |z| ≤ 1.

Proof. (Theorem 3.1.1.)
See e.g. [Rozanov, 1967] Theorem 10.1. page 47 (or [Hannan, 1970]).

To select a unique spectral factor which fulfills the Theorem above (two spectral factors fulfilling

Theorem (3.1.1) are related by post-multiplication by a constant orthogonal matrix) one can use the

following proposition.

Proposition 3.1.2. Let A ∈ Rp×m with p ≥ m and rk(A) = m, then there exists a unique factorization

of A = RQ where Q ∈ Rm×m is orthogonal and R ∈ Rp×m is a quasi lower triangular matrix, i.e.

if the first row of A is not zero then r11 6= 0, and r1j = 0, j > 1, where rij is the [i, j] element of R,

otherwise r1j = 0, j ≥ 1. If the second row of A is linearly independent of the first, then r22 6= 0 and

r2j = 0, j > 2 and otherwise r2j = 0, j ≥ 2 etc.

Proof. (Proposition 3.1.2.)
The proof is straight forward from the following observation: Note that there exists an (m × m) sub

matrix of A which is regular and therefore has a unique QR description satisfying sign(rii) = 1. To be

more precise one has to pick the first regular sub matrix of A to achieve the result.

Up to now we have discussed how we get a unique q dimensional full column rank spectral factor

w(z) of the spectral density fχ. Note that w(z) satisfies all criteria for a Wold representation

χt = w(z)εt =
∞∑
j=0

wjεt−j (3.2)

namely

•
∑∞

j=0 ‖wj‖2 < ∞ for some matrix norm ‖ · ‖, which is fulfilled if ‖ · ‖ denotes the Frobenius

Norm as fχ = 1
2πw(e−iλ)w∗(e−iλ) is integrable.

• Hχ = Hε. Hχ ⊆ Hε is obvious and Hχ ⊇ Hε holds because

w−(z) := v−1(z)[l′(z)l(z)]−1l′(z)u−1(z)

is causal, where w = ulv denotes the Smith-Mc Millan form (compare to (9.16)) of w. Note that

the white noise process εt is a dynamic factor (compare to equation (2.4)).

Realizations of the transfer function



3.1. SPECTRAL FACTORIZATION 28

There are three different possibilities to realize an (N × q) rational transfer function w(z) of full column

rank and without zeros and poles within and on the unit circle. The first one is an ARMA realization

w(z) = a(z)−1b(z) (3.3)

where a(z) and b(z) are polynomial matrices of dimensions (N ×N) and (N × q) respectively. Further-

more the matrices a(z), b(z) can be chosen to be left coprime (Definition 9.1.2) and fulfill the stability

assumption

det(a(z)) 6= 0, |z| ≤ 1 (3.4)

as well as the mini-phase assumption

rk(b(z)) = q, |z| ≤ 1 (3.5)

Another possibility is a Right Matrix Fraction Description as is used in [Forni et al., 2005]

w(z) = c(z)d−1(z) (3.6)

where c(z) and d(z) are polynomial matrices of dimensions (N × q) and (q × q) respectively which are

right coprime (Definition 9.1.2).

Our approach is to use a State Space realization

xt+1 = Fxt +Gεt+1 (3.7)

yt = Hxt (3.8)

with

w(z) = H[I − Fz]−1G (3.9)

where F ∈ Rn×n, G ∈ Rn×q, H ∈ RN×n, the stability condition

λ1(F ) < 1 (3.10)

is fulfilled and the mini-phase condition (compare to Lemma 9.2.7)

rk

[
I − Fz −G
H 0

]
= n+ q, |z| ≤ 1 (3.11)
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holds.

In the following section we will describe how a “good” state space realization can be chosen for the

spectral factor w(z).

3.2 State Space Realization of the Latent Variables

We commence from a (unique) spectral factor of the spectral density of fχ. The first step will be to show

how a minimal state space system (3.7), (3.8) for the latent variables χt can be achieved. Therefore we

will restate the Theorem 2.4.1 in [Hannan and Deistler, 1988] and adopt it to our system.

Definition 3.2.1. (Hankel matrix). Let w(z) =
∑∞

j=0wjz
j be an (N × q) transfer function than the

infinite dimensional matrix

H =


w0 w1 w2 . . .

w1 w2 w3 . . .

w2 w3 . . .
...


is called the Hankel matrix of w(z).

Furthermore let us define w̃(z) := z−1w(z−1) =
∑∞

j=0wjz
−j−1 = ã−1(z)b̃(z), which will be very

useful for the theorem below. It is clear that w(z) and w̃(z) are in a one-to-one relation. Additionally if

the polynomial matrices ã(z), b̃(z) are left coprime, the degree of det(ã) is called the order of w̃.

Let h[i, j] denote the j-th row in the i-th block of rows of H , i.e. h[i, j] is the ((i − 1)N + j)-th

row of H .

Theorem 3.2.2. Let w(z) be an N × q transfer function than the corresponding Hankel matrix H has

the following properties:

(i) If h[i, j] is in the linear span of {h[i1, j1], ..., h[ik, jk]}, then h[i + 1, j] is in the linear span of

{h[i1 + 1, j1], ..., h[ik + 1, jk]}.

(ii) The rank of H is finite if and only if w is rational.

(iii) The order n of w̃(z) is equal to the rank of H .

Proof. (Theorem 3.2.2.)
See Theorem 2.4.1. in [Hannan and Deistler, 1988] page 51.

The following theorem completes our preparation for establishing a minimal state space system for

the latent variables.
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Theorem 3.2.3. Let [F,G,H] be a state space system with F ∈ Rn×n, then H has rank smaller than

or equal to n. If [F,G,H] is minimal equality holds.

Proof. (Theorem 3.2.3.)
See Theorem 2.3.2. in [Hannan and Deistler, 1988] page 47.

Let us summarize where we have ended up. We have started with the spectral density of the latent

variables and have got a spectral factor which is rational and has no zeros and poles within and on the unit

circle. Now from Theorem 3.2.2 we know that the Hankel matrix H has finite rank n say. Additionally

Theorem 3.2.3 tells us, that if we have an [F,G,H] system, it is minimal if its state dimension is equal

to n. All we have to show is that there exists an [F,G,H] system for w(z) which has a state dimension

n and this will be shown in the following.

Construction of a (canonical) State Space Model

The algorithm has been introduced by [Ho and Kalman, 1966] and [Akaike, 1974] and has been intro-

duced in the framework of GDFMs in [Zinner, 2008] and [Deistler et al., 2010a]. A detailed discussion

about State Space realizations and of this algorithm in particular can be found in [Hannan and Deistler, 1988]

and [Deistler, 2001].

At this point we want to use the index N again, indicating the dependence on the dimension of the

cross-sectional dimension of χNt .

From (3.2) we know that χNt = wN (z)εt is a Wold representation, i.e. εt is the “driving noise” and

wN (0)εt the one-step-ahead prediction error of χt. Note that εt does not depend on N . The reason for

this is, that by Assumption 2 the rank of fχN is constant from a certain N onwards. It is obvious that the

sequence of spectral matrices (fχN )N∈N is nested and thus the sequence of spectral factors (wN )N∈N is

nested too. Therefore we have
χNt

χNt+1

χNt+2
...

 =


wN0 wN1 wN2 . . .

wN1 wN2 wN3 . . .

wN2 wN3 . . .
...


︸ ︷︷ ︸

=H N


εt

εt−1

εt−2

...


︸ ︷︷ ︸

=:ε−t

+


0

wN (0)εt+1

wN (1)εt+1 + wN (0)εt+2

...

 (3.12)
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and thus the predictor for [χN
′

t , χN
′

t+1, χ
N ′
t+2, . . . ]

′ is
χNt

χNt+1|t
χNt+2|t
...

 =


wN0 wN1 wN2 . . .

wN1 wN2 wN3 . . .

wN2 wN3 . . .
...


︸ ︷︷ ︸

=H N


εt

εt−1

εt−2

...


︸ ︷︷ ︸

=:ε−t

= H Nε−t (3.13)

Assumption 4. The matrix H belonging to the ∞ × q dimensional transfer function w(z), such that

χt = w(z)εt holds, has finite rank n.

This assumption is important in our framework and excludes the case like in [Forni and Lippi, 2009]

where the state dimension can be infinity. It means that the dynamics of the transfer function are limited,

i.e. additional observations do not change the dynamics from a certain N onwards.

Let N be large enough such that the rank of fχN is already q and the rank of H N is already n, the

latter is also reasonable as the sequence (nN )N∈N is bounded by Assumption 4 and non-decreasing.

As the rank of H N is n we know that there exist n linearly independent rows of H N . We choose

the first linearly independent rows of H N and define a selector matrix SN , i.e. SN is an n × ∞ di-

mensional matrix which has in each row one entry equal to one and zeros elsewhere. According to that

selection we can define the Kronecker Indices {αN1 , αN2 , ...} where αNi = j means that the i-th row of

the first j blocks of rows of H N are in the basis. So we can define the n dimensional state

xt := SNH Nε−t = Hαε
−
t (3.14)

Note that xt can be chosen independently from N as the same rows which build a basis of H N build a

basis for H N+1 too. Further note that we can assume without any loss of generality that the Kronecker

Indices do not depend on N as by Assumption 4 they do not change from some N0 onwards (which does
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not need to be same N0 from which on nN0 = n holds). Thus we can define Hα = SNH N .

xt+1 = SNH Nε−t+1 = SN


wN0 wN1 wN2 . . .

wN1 wN2 wN3 . . .

wN2 wN3 . . .
...




εt+1

εt

εt−1

...



= SN


wN1 wN2 . . .

wN2 wN3 . . .

wN3 . . .
...



εt

εt−1

...

+ SN


wN0
wN1
wN2
...

 εt+1

= SNFNHαε
−
t + SN


wN0
wN1
wN2
...

 εt+1

= Fxt +Gεt+1 (3.15)

where FNHα =


wN1 wN2 . . .

wN2 wN3 . . .

wN3 . . .
...

 holds as the latter is a sub matrix of H N and can therefore be

expressed by the basis rows of H N . As SN will always pick the same rows (for growing N ), F =

SNFN and G = SN


wN0
wN1
wN2
...

 can be chosen independently of N . Finally HN is defined by expressing

the first block of rows of H N by the basis rows Hα

[wN0 , w
N
1 , w

N
2 , ...] = HNHα (3.16)

So we have established a state space realization for wN (z) with state dimension equal to n (the rank

of the Hankel matrix), which implies that the system is minimal. Next we want to show that the system

is indeed stable. Note that it is not sufficient to argue that the poles of wN (z) = HN [I − Fz]−1G lie

outside the unit circle and therefore the eigenvalues of F have to be smaller than one, as unstable eigen-

values can cancel out. But as the system is minimal, we will see that F is indeed stable:



3.2. STATE SPACE REALIZATION OF THE LATENT VARIABLES 33

In the construction of our state space system we use (3.14) to define the state. Obviously xt is

stationary by construction. Thus

Extx′t = γx0 = FExt−1x
′
t−1F

′ +GEεtε′tG′ = Fγx0F
′ +GΣG′ (3.17)

Suppose that y is an eigenvector of F with eigenvalue λ, |λ| ≥ 1, i.e. y′F = λy′, then

y′γx0 ȳ − y′Fγx0F ′ȳ = y′γx0 ȳ − λy′γx0F ′ȳλ∗ = (1− |λ|2)︸ ︷︷ ︸
≤0

y′γx0 ȳ︸ ︷︷ ︸
≥0

= y′GΣG′ȳ︸ ︷︷ ︸
≥0

(3.18)

As the right hand side must be zero, y′ is in the (left) kernel of G. Thus y′[λI − F,G] = 0 must hold

which is equivalent (see e.g. [Kailath, 1980] Theorem 2.4-9. page 136) to y′[G,FG, ..., Fn−1G] = 0,

which is a contradiction to the reachability of the pair F,G. Thus F must be stable.

Note that γx0 is regular as the stability of F implies that xt = [I − Fz]−1Gεt =
∑∞

j=0 F
jGεt−j holds.

Therefore the covariance can be decomposed in

Extx′t = [G,FG,F 2G, ...]


Σ 0 . . .

0 Σ 0 . . .

0 0 Σ 0
...

. . .
. . .

. . .




G′

G′F ′

G′F
′2

...

 (3.19)

where the first and the last matrix on the right hand side are of full row and column rank (reachability),

such that γx0 is regular.

Summarizing we have shown that an [F,G,HN ] state space system (3.7), (3.8) for wN (z) which is

minimal, stable and mini-phase (as wN (z) = HN [I − Fz]−1G the [F,G,HN ] representation must be

mini-phase) always exists.

Let us shortly discuss the relation between the dimensions of the observations and the latent variables

N , of the state n and of the driving noise (dynamic factors) q. As N goes to infinity and n is bounded

for N going to infinity N ≥ n holds. Furthermore n ≥ q is fulfilled by construction. Note that the state

is constructed by selecting the first linearly independent rows of the Hankel matrix, and as w(z) has no

zeros within the unit circle w(0) is of full rank q. Obviously this implies that the rank of the Hankel

matrix is greater than or equal to q.

Summarizing we have proved the following theorem.

Theorem 3.2.4. Let (wN (z))N∈N be a nested sequence of rational transfer functions of dimensions

(N × q) which have rank q and have no zeros and poles within and on the unit circle. Let N be large

enough such that Assumption 4 is fulfilled. Then there exist minimal stable state space realizations (3.7),
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(3.8) ofwN (z) = HN [I−Fz]−1G, such that F andG are independent ofN and the sequence (HN )N∈N

is nested.

In the following we will omit the superscript N again, for the sake of simplicity, until the contrary is

stated explicitly.

Up to now we know, how we can define our desired minimal [F,G,H] system. Unfortunately, we

cannot guarantee that the matrix H is of full column rank, which means that not all information of the

state is available from χt and therefore, we will define so called static factors.

3.2.1 Static Factors

In (2.4) and (3.2) we introduced already dynamic factors which we obtained by a spectral factorization of

the spectral density matrix of the latent variables. Analogously we define static factors by a factorization

of the zero lag covariance matrix of the latent variables.

γχ0 = Eχtχ′t = OΛO′ = O1Λ1O
′
1 (3.20)

where Λ is the diagonal matrix of the eigenvalues of γχ0 andO the matrix consisting of the corresponding

eigenvectors (columnwise). As γχ0 has finite rank, r say, which is smaller than N (if N is big enough),

r ≤ n < N , Λ1 is the r × r dimensional diagonal matrix consisting only of the non-zero eigenvalues of

γχ0 . O1 is defined in an evident way. Note that a minimal [F,G,H] system does not require a matrix H

of full column rank and although Extx′t has full rank n, rk(Eχtχ′t) = rk(H) = r ≤ n holds. Thus there

exists a regular matrix T such that HT = [H1, 0] holds, where H1 is of full column rank r.

Eχtχ′t = HExtx′tH ′ = H1Eftf ′tH ′1 (3.21)

where ft is a so called minimal static factor defined by

ft = [H ′1H1]−1H ′1χt (3.22)

Furthermore two equivalent minimal state space systems [F,G,H] and [F̃ , G̃, H̃] corresponding to a

rational function w(z) are related by a regular matrix T such that

H̃ = HT, F̃ = T−1FT, G̃ = T−1G

Note that the matrix H of the canonical state space model described in the previous section has already

this [H1, 0] structure. This can be seen as

χt = [w0, w1, w2, ...]ε−t (3.23)
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and (3.21) imply that [w0, w1, w2, ...] has rank r, which implies that the first r rows of Hα are sufficient

to describe [w0, w1, w2, ...]. Thus, as [w0, w1, w2, ...] = HHα, H must have this structure. An immedi-

ate consequence of this is, that ft in (3.21) is the process containing the first r components of xt. Also

note that a state is always a static factor, but it is a minimal one if and only if all Kronecker Indices are ei-

ther one or zero (that means that the first n linearly independent rows of H are in the first block of rows).

From the previous discussion we know χt = w(z)εt = H1ft, where H1 is of full column rank. Thus

ft = k(z)εt holds, where k(z) = [H ′1H1]−1H ′1w(z) is an r × q rational transfer functions for the static

factors ft.

Theorem 3.2.5. Let χt = w(z)εt = H1k(z)εt where w(z) and k(z) are rational matrices of dimensions

(N × q) and (r × q) respectively and H1 ∈ RN×r of full column rank, then w(z) is zeroless if and only

if k(z) is zeroless.

Proof. (Theorem 3.2.5.)
If z0 is a zero of k(z), i.e. k(z0)x = 0 for an x ∈ Rq of course w(z0)x = 0 holds too. If z0 is a zero of

w(z), i.e. w(z0)x = 0 for an x ∈ Rq, k(z0)x = 0 must hold too as H1 is of full column rank.

But not only the zeros of the transfer functions of w and k are the same:

Theorem 3.2.6. Let χt be an N dimensional process fulfilling Assumptions 1, 2 and 4 with an [F,G,H]
state space representation of order n of a spectral factor w of fχ obtained by Theorem 3.1.1. Let

rk(H) = r and w.l.o.g let H = [H1, 0], with H1 ∈ RN×r of full column rank, such that χt = w(z)εt =
H1k(z)εt holds, where w(z) = [H1, 0][I − Fz]−1G and k(z) = [H ′1H1]−1H ′1[H1, 0][I − Fz]−1G

are rational matrices of dimensions (N × q) and (r × q) respectively. Then the minimal static factors

ft = k(z)εt have a minimal [F,G,C] state space realization of order n

xt+1 = Fxt +Gεt+1 (3.24)

ft = Cxt (3.25)

where C = [Ir, 0], if and only if the [F,G,H] state space representation of χt is minimal.

Proof. (Theorem 3.2.6.)
As the matricesF andG in the representation of k(z) are the same as ofw(z) andC = [H ′1H1]−1H ′1[H1, 0]

we just have to show the observability statement. If the matrix


C

CF
...

CFn−1

 is of full column rank, then
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the matrix


H

HF
...

HFn−1

 =


H1 0 . . . 0

0 H1
. . .

...
. . .

. . .

0 . . . 0 H1




C

CF
...

CFn−1

 is of full column rank. And if the matrix


C

CF
...

CFn−1

 is not of full column rank the same holds obviously for


H

HF
...

HFn−1

.

As the matrices w and k have the same properties (dynamics) and k is of smaller dimension, of

course we want to model k instead of w.

3.3 Zeroless Transfer Functions

Now we want to discuss the very important and interesting property of zerolessness. We will see in the

next section that a rational function with more rows than columns is generically1 zeroless. The results

of this section allows us to emphasize the case where the minimal static factors have an autoregressive

representation, although the matrixH has not full column rank. This yields a generalization of the model

of [Stock and Watson, 2002a] who have only discussed the full rank case.

Note, that we have always worked with rational functions k which have no zeros and poles within and on

the unit circle. We know, that such a transfer function has always a causal left inverse (they can be used

for a Wold representation, compare to (3.2)) which can be seen by using the Smith-Mc Millan form

k = ulv (3.26)

and defining a left inverse

k− = v−1[l′l]−1l′u−1 (3.27)

which is causal as the matrix l contains all zeros and poles of k in its numerator and denominator poly-

nomials such that [l′l]−1l′ has again all its zeros and poles outside the unit circle. Obviously the zeros of

k become the poles of k− and the same holds for the poles of k and the zeros of k−. This implies that if

k has no zeros k− has no poles and is therefore a polynomial matrix instead of a rational one.

Thus we have the following theorem (see for instance [Deistler et al., 2010a])

Theorem 3.3.1. Let χt satisfy Assumptions 1, 2 and 4 and let ft be an associated minimal static factor,

1Genericity is a property of a set. Thus saying that a function is generically zeroless is very sloppy. A detailed discussion
can be found in the next section.
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of dimension r; then the following statements for

ft = k(z)εt (3.28)

are equivalent:

(i) The spectral factors k of the spectral density ff (of ft) satisfying the properties listed in Theorem

3.1.1, are zeroless

(ii) There exists a polynomial left inverse k− corresponding to (3.27) and thus the input εt in (3.28) is

determined from a finite number of outputs ft, ft−1, . . . , ft−L, for some L

(iii) ft is a stationary solution of a stable AR system

ft = a1ft−1 + · · ·+ apft−p + νt; ai ∈ Rr×r (3.29)

where

det [I − a1z − · · · − apzp]︸ ︷︷ ︸
a(z)

6= 0, |z| ≤ 1

and νt is a zero mean white noise process with rk Σν = q, Σν = E[νtν ′t].

Proof. (Theorem 3.3.1.)
In order to show (i)⇒ (iii), we commence from an ARMA representation for ft

ã(z)ft = b(z)εt (3.30)

where ã, b are left coprime and ã is stable. Since k(z) = ã−1(z)b(z) is zeroless, the same holds for

b(z). As is well known every zeroless tall polynomial matrix b can be completed by a suitable choice

of a polynomial matrix g to a unimodular matrix u = [b, g] by extending the Smith-McMillan form of

b = ũd̃ṽ to

[b, g] = ũ

[
d̃,

[
0
I

]][
ṽ 0
0 I

]
Then

ã(z)ft = u(z)

[
εt

0

]
and

u−1(z)ã(z)ft =

[
εt

0

]
(3.31)

gives an autoregressive representation, and pre-multiplying (3.31) by ã−1(0)u(0) gives the desired form

(3.29). The stability of a(z) follows from the stability of ã(z).
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That (ii) implies (i) is straightforward and that (iii) implies (ii) can be seen as follows: Let P satisfy

Σν = PP ′, P ∈ Rr×q, rkP = q (3.32)

Then pre-multiplying (3.29) by [P ′P ]−1P ′ yields a k− of the desired form.

In the previous section we have established the relation N ≥ n ≥ r ≥ q. That means that the N

dimensional vector of latent variables χt is driven by the dynamic factor process of far smaller dimension

q. Furthermore the dynamics of the system can be described by an AR(1) system for the n dimensional

state (where n should also be, and actually will be, far smaller than N for N big enough).

The reason why we are using the [F,G,H] state space representation is, xt is already a static factor,

although not necessarily a minimal one. The logical way to proceed is to get the state from the latent

variables by a linear transformation (a left inverse of H) and to use the AR(1) system of the state to get

a forecast of the state and therefore a forecast of the latent variables. There is only one problem which

might arise, namely that the matrix H does not need to have full column rank (that is not needed for

minimality) such that the state cannot be reconstructed by the latent variables.

Nevertheless we can reconstruct a minimal static factor from the latent variables, and if the transfer

function w of the latent variables is zeroless, we have shown with Theorem 3.2.5 and Theorem 3.3.1 that

the minimal static factor ft defined by (3.22) has an autoregressive representation (3.29). Thus we result

in a system for the latent variables:

ft = a1ft−1 + · · ·+ apft−p + νt (3.33)

χt = H1ft (3.34)

with ai ∈ Rr×r, H1 ∈ RN×r and νt = bεt with b ∈ Rr×q.

In the next section we will see that the assumption of a zeroless transfer function w and thus of k is

reasonable.

3.4 A Generic Set

Before we present the main Theorem 3.4.3 we need the two following lemmas.

Define

M(z) = I − Fz

with F ∈ Rn×n.
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Lemma 3.4.1. The set F = {F | rk(M(z)) ≥ n− 1, ∀z ∈ C} is open and dense in Rn×n

Proof. (Lemma 3.4.1.)

dense: Let F0 be an n×n real matrix with ∃z0 such that rk(M(z0)) = n− 2. (Note only the case where

the rank drops to n − 2 is analyzed as the generalization to n − j, j ≥ 2 is straightforward.) Therefore

there exists a 2-dimensional kernel ofM(z0). Let [x1, x2] be the span of two linearly independent vectors

x1, x2 of this kernel. We can always find two linearly independent vectors of this kernel which have a

permutation of a 2 × 2 identity matrix somewhere in their rows. Consequently we can manipulate one

entry of F0 such that one of the vectors is not in the kernel of the new M(z0) anymore, but the other one

still is. If the perturbation, ε0 say, is small enough, the other zeros of the new M(z) will be in a certain

neighborhood of the old zeros. Therefore there is a sequence of matrices M(z) (if ε0 → 0) which have

ranks n− 1 whose corresponding F s converge to F0.

open: F is open is equivalent to FC (= the complement of F ) is closed. Assume that FC is not closed,

i.e. there exists a sequence (Fm)m∈N with Fm → F0 where Fm ∈ FC and F0 ∈ F . Fm ∈ FC means

that there exists a 0 6= zm ∈ C with rk(M(zm)) ≤ n − 2. Consequently rk(Iz−1
m − Fm︸ ︷︷ ︸
=:Bm

) ≤ n − 2 ⇔

λn−1(Bm) = λnBm = 0 where λi(A) denotes the i-th largest eigenvalue of A. As Bm → B0 :=
Iz−1

0 −F0 holds as Fm → F0 holds and z−1
m is an eigenvalue of Fm and consequently z−1

m → z−1
0 holds,

λn−1(Bm)→ λn−1(B0) must hold. But as λn−1(B0) > 0 holds by assumption, we have a contradiction

to λn−1(Bm)→ 0 and the result follows.

Define

N(z) =

(
I − Fz −G
C 0

)
=

(
I −G
C 0

)
−

(
F 0
0 0

)
z =

 Ir 0 −G1

0 In−r −G2

C1 0 0

−
F11 F12 0
F21 F22 0
0 0 0

 z

with F ∈ Rn×n, G ∈ Rn×q, C ∈ Rr×n, C1 ∈ Rr×r, G1 ∈ Rr×q, G2 ∈ R(n−r)×q, with q < r ≤ n.

Moreover let

N2(z) :=

 0 −G11

0 −G12

In−r −G2

−
F12,1 0
F12,2 0
F22 0

 z

with F12,1 ∈ R(r−q)×(n−r), F12,2 ∈ Rq×(n−r), F22 ∈ R(n−r)×(n−r), G11 ∈ R(r−q)×q, G12 ∈ Rq×q and

G2 ∈ R(n−r)×q, and

N1(z) :=

(
0 −G12

In−r −G2

)
−

(
F12,2 0
F22 0

)
z

with G12 ∈ Rq×q and F12,2 ∈ Rq×(n−r).
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Lemma 3.4.2. Let F12,2 ∈ Rq×(n−r), F22 ∈ R(n−r)×(n−r), G12 ∈ Rq×q and G2 ∈ R(n−r)×q, then the

set N1 = {[F12,2, F22, G12, G2]| rk(N1(z)) ≥ n− r+ q− 1, rk(G12) = q} is open and dense in the set

{[F12,2, F22, G12, G2]| rk(G12) = q}.

Proof. (Lemma 3.4.2)

dense: Define T =

(
0 −G12

In−r −G2

)
and let zk be a zero of N1(z) such that rkN1(zk) = n− r + q − 2

holds. Furthermore let x1, x2 be two linearly independent vectors which span the corresponding kernel.

Therefore N1(zk)xi = 0, i = 1, 2 holds. Let xi = [x′i1, x
′
i2]′ with xi1 ∈ Rn−r, then x11, x21 must

be linearly independent because otherwise there would exist scalars a and b such that ax1 − bx2 =
[0, ax′12 − bx′22]′ with G12[ax12 − bx22] = 0 ⇒ ax12 = bx22 ⇒ ay1 − by2 = 0. Consequently we can

add to a certain entry of F22 a small ε such that the kernel of the new N1(zk) is only one dimensional

(see Lemma 3.4.1)

open: It is equivalent to show that the complement, N C
1 say, is closed. Assume that the complement is

not closed, i.e. there exists a sequence [F12,2,m, F22,m, G12,m, G2,m]m∈N → [F12,2,0, F22,0, G12,0, G2,0]
where [F12,2,m, F22,m, G12,m, G2,m] is in the complement of N1 for all m and

[F12,2,0, F22,0, G12,0, G2,0] ∈ N1. [F12,2,m, F22,m, G12,m, G2,m] ∈ N C
1 ⇔ ∃zm ∈ C : rk(Iz−1

m −

T−1
m

(
F12,2,m 0
F22,m 0

)
︸ ︷︷ ︸

Cm

) ≤ n + q − 2. As Cm → C0 := T−1

(
F12,2,0 0
F22,0 0

)
holds, λi(Cm) → λi(C0)

holds too. Furthermore Bm = [Iz−1
m − Cm] → [Iz−1

0 − C0] =: B0 holds as zm → z0, it follows that

λn−1(Bm)→ λn−1(B0) = 0 which is a contradiction to λn−1(B0) > 0 and the result follows.

Theorem 3.4.3. Let k(z) be an r×q dimensional rational matrix function with a minimal [F,G,C] state

space realization of dimension n, such that q < r ≤ n holds, then the set N0 = {[F,G,C]| rk(C) =
r, λ1(F ) < 1, rk(G) = q,N1(z) ∈ N1, rk(C[I−Fz]−1G) = q∀z ∈ C} is generic (i.e. open and dense)

in N = {[F,G,C]| rk(C) = r, λ1(F ) < 1, N1(z) ∈ N1, rk(G) = q}.

Note that the restrictions λ1(F ) < 1 and rk(G) = q are mandatory for the transfer functions we are

interested in. Furthermore Lemma 3.4.2 shows that the restriction of N1(z) ∈ N1 is negliable.

Proof. (Theorem 3.4.3.)
Note: C must have already the special form C = [C1, 0] which can be achieved without any loss of

generality.

A zero of N(z) means ∃z0 ∈ C, x = [x′1, x
′
2, x
′
3]′, x1 ∈ Rr, x2 ∈ Rn−r, x3 = Rq such that N(z0)x = 0

holds. Consequently x1 = 0, andN(z0)x = 0⇔

(
F12z0 −G1

In−r − F22z0 −G2

)(
x2

x3

)
= 0 = N2(z0)

(
x2

x3

)
.

Note that rk(G) = q implies that there must exist a square sub matrix of G which has full rank. Without

loss of generality assume that this sub matrix is G12.

dense: Using Lemma 3.4.2 the set of matrices corresponding to the square sub matrix N1(z) of N2(z)
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which have only zeros with one dimensional kernels is dense. It is clear that the set of matrices

[F12,1z,−G11] which is not orthogonal to any of the finite one dimensional kernels, is dense.

open: Assume that N C
0 is not closed. Then there exists a sequence of matrices

[F12,1, F12,2, F22, G11, G12, G2]m ∈ N C
0 which converges to [F12,1, F12,2, F22, G11, G12, G2]0 ∈ N0

with: ∀m∃zm and xm with N1(zm)xm = 0 and [F12,1zm,−G11]mxm = 0. N1(zm)xm = 0 is possi-

ble ∀m and occurs if and only if zm is an eigenvalue and xm the corresponding eigenvector (note that

N1(z) ∈ N1 implies that all eigenvalues are different) of T−1

(
F12,2,m 0
F22,m 0

)
(compare to Lemma 3.4.2).

But [F12,1zm,−G11]m︸ ︷︷ ︸
am

xm = 0 =< am, xm > implies limm→∞ < am, xm >=< a0, x0 >= 0 which

is a contradiction to [F12,1, F12,2, F22, G11, G12, G2]0 ∈ N0.

Remark 3.4.4. Theorem 3.4.3 uses the relation n ≥ r > q. If n < r the result follows immediately as

the matrices C and G are generically of full column rank.

Remark 3.4.5. The relation r > q is crucial as otherwise the “tall” argument does not exist anymore

and we have generically zeros.

Tall transfer functions have a lot of interesting properties. More discussions can be found for example

in [Anderson and Deistler, 2008a], [Anderson and Deistler, 2008b] and [Anderson and Deistler, 2009].



Chapter 4

Singular AR Systems

Autoregressive systems might be the most important models in time series analysis. Normally an AR

system has a driving white noise (input) process εt, which has the same dimension as the output process

and a regular covariance matrix Σ = Eεtε′t. In our structure theory we are facing the fact that the minimal

static factors ft are described by

ft = a1ft−1 + · · ·+ apft−p + νt (4.1)

ai ∈ Rr×r, where the driving white noise process νt, of dimension r has a covariance matrix which is

singular Σν = Eνtν ′t = bΣb′ with b ∈ Rr×q, q < r, such that νt can be described by νt = bεt where

εt is a white noise process of dimension q and has a regular covariance matrix Eεtε′t = Σ. As the reg-

ularity of the covariance matrix of the errors νt is of central importance for the existing theory of AR

systems many properties change in the singular case. Here will present some of the most important facts

and theorems of [Inouye, 1983], [Filler et al., 2009], [Deistler et al., 2010a] and our most recent paper

[Chen et al., 2010].

If we are talking about autoregressive models of the form (4.1) we always want the error νt to be

the one-step-ahead prediction error of ft. That means that νt is orthogonal on all past values of ft, i.e.

Eνtf ′s = 0, s < t. Furthermore we are interested in stationary solutions ft of (4.1) only and we know

that any solution ft of (4.1) is a sum of a particular solution fpt and a homogeneous solution fht , i.e.

a(z)fht = 0, such that

ft = fpt + fht (4.2)

a(z)fpt = νt = bεt (4.3)

a(z)fht = 0 (4.4)

42
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As ft has to be stationary we know that fht 6≡ 0 if and only if fht belongs to a zero z0 of unit modulus of

the polynomial matrix a(z), i.e. a(z0)fht = 0, |z0| = 1. From Wold’s Decomposition we know that ft
can also be represented as

ft = f rt + fst (4.5)

where f rt is a linearly regular process that admits a causal representation f rt =
∑∞

j=0 kjεt−j and fst a

linearly singular process with Ef rt fs
′
t = 0. We will see below that f rt = a(z)−1bεt is always a causal

linearly regular solution of (4.1). Note that we could also include degenerated systems such that Σν = 0
holds which would imply b = 0 (“the” particular solution is equal to 0). Thus the linearly singular

component is a homogeneous solution of (4.4) and is therefore a harmonic process.

4.1 Yule-Walker Equations

Let us commence from a stationary process ft which is a solution of an AR(p) system (4.1). Here we are

interested in the question whether the coefficients a1, ..., ap of the AR(p) system are unique and if not if

we can find a canonical representative.

As ft is stationary and has an AR(p) representation the Yule-Walker equations

[a1, ..., ap]Γp = [γ1, ..., γp] (4.6)

Σν = γ0 − [a1, ..., ap]Γp[a1, ..., ap]′ (4.7)

hold, where γj = Eftft−j and Γp =


γ0 γ1 ... γp−1

γ′1
. . .

. . .
...

...
. . .

. . . γ1

γ′p−1 ... γ′1 γ0

. Contrary to the regular case the matrix

Γp does not need to be regular such that the solution of (4.6) does not need to be unique. Also note,

that Γp+1 is always singular as b⊥[I,−a1, ...,−ap] with b⊥b = 0, is always in the (left) kernel of Γp+1.

However there always exists a solution of (4.6) as the (right) kernels of Γp and [γ1, ..., γp] are the same.

Furthermore Σν in (4.7) is always unique as the difference of two solutions of (4.6) is in the (left) kernel

of Γp. Nevertheless the next lemma shows that if the end matrix ap of a(z) has generic entries1 the

coefficient matrices [a1, ..., ap] are unique, which is equivalent to the condition that Γp be regular.

Definition 4.1.1. (observationally equivalent) Two ARMA systems [a(z), b(z)] and [ā(z), b̄(z)] with

ai, āi ∈ Rr×r and bi, b̄i ∈ Rr×q, q ≤ r, are called observationally equivalent if ∀Σ > 0 the spectral

densities a−1bΣb∗a−1∗ and ā−1b̄Σb̄∗ā−1∗ are the same.
1The wording: “If the matrix has generic entries” is a bit clumsy, but it means that the matrix fulfills the property on a

generic set.



4.1. YULE-WALKER EQUATIONS 44

Lemma 4.1.2. Let a(z) = I − a1z− ...− apzp and [a(z), b] be left coprime, then a(z) is unique among

all observationally equivalent matrix polynomials a(z) of maximal order p, with a(0) = I if and only if

[ap, b] has full rank.

Proof. (Lemma 4.1.2.) See also [Zinner, 2008].

As [a(z), b] is left coprime all observationally equivalent AR representations [ā(z), b̄], with ā(0) = I ,

fulfill [ā(z), b̄] = u(z)[a(z), b] with ū(0) = I and thus [ā(z), b̄] = [ā(z), b].If [ap, b] has not full rank

then there exists a matrix u1 6= 0 with u1[ap, b] = 0. Thus ā(z) := [I + u1z]a(z) is of order p and thus

a(z) is not unique.

Conversely if a(z) is not unique then there exists a u(z) = I − u1z − ... − umz
m of order m with

ā(z) = u(z)a(z) where the order of ā(z) is smaller or equal to p. Therefore umap = 0 holds, together

with umb = 0 this completes the proof.

So we know that the Yule Walker equations have a unique solution if Γp is regular and this result

is generic if the end matrix ap has generic entries. Of course the result even holds if sufficiently many

columns (if the matrix b has generic entries) of ap are generic.

Next we are concerned with a singular Γp. It is obvious that if [a1, ..., ap] is a solution of (4.7) then

[ā1, ..., āp] = [a1, ..., ap] + [l1, ..., lp] is also a solution for all matrices [l1, ..., lp] which are in the left

kernel of Γp. Nevertheless we can always choose a canonical representative by taking the row wise min-

imum norm (l2 norm) solution. It is well known that we get the minimum norm solution by using the

pseudo-inverse of Γp. Let

Γp =
[
O1, O2

] [Λ1 0
0 0

][
O′1
O′2

]
(4.8)

be the eigenvalue decomposition where the diagonal matrix Λ1 consists of the non zero eigenvalues of

Γp and O1 is the matrix consisting of the corresponding (normalized) eigenvectors. Hence

[a1, ..., ap] = [γ1, ..., γp]Γ#
p (4.9)

is the minimum norm solution, where Γ#
p = O1Λ−1

1 O′1.
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4.1.1 Discrete Ljapunov Equation

Suppose [a1, ..., ap] is an arbitrary solution of the Yule-Walker equations (4.6), (4.7), then the AR(p) sys-

tem for the process ft can be tranformed into an AR(1) system for the stacked process [f ′t , f
′
t−1, . . . , f

′
t−p+1]′

ft

ft−1

...

ft−p+1

 = A


ft−1

ft−2

...

ft−p

+


νt

0
...

0

 (4.10)

where A is the block companion matrix of the polynomial a(z) = I − a1z − ...− apzp

A =



a1 a2 . . . ap

I 0 . . . 0

0 I 0
...

...
. . .

. . .
. . .

0 . . . 0 I 0


(4.11)

As ft is stationary by assumption, the stacked process [f ′t , f
′
t−1, . . . , f

′
t−p+1]′ is stationary too. Therefore,

the discrete Ljapunov equation

Γp = E


ft

ft−1

...

ft−p+1

 [f ′t , f
′
t−1, . . . , f

′
t−p+1]′

= A E


ft−1

ft−2

...

ft−p

 [f ′t−1, . . . , f
′
t−p]

′ A′ + E


νt

0
...

0

 [ν ′t, 0, . . . , 0]′

= AΓpA′ +


Σν 0 . . .

0 0
...

. . .


︸ ︷︷ ︸

=:Q

= AΓpA′ +Q = AΓpA′ +BB′ (4.12)

holds, where B = [Σ1/2′
ν , 0, ..., 0]′. It is well known that (4.12) for given A and Q does not necessarily

have a unique solution Γp (see Theorem 2.1, page 16 in [Tummeltshammer, 2009]). This fact leads us to
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the following section.

4.2 (Unique) Solutions of Singular AR Systems

We know already that there are two difficulties in the theory of singular AR systems. First, the Yule-

Walker equations do not need to have a unique solution. Second, given a solution of the Yule-Walker

equations, the corresponding Ljapunov equation does not need to have a unique solution (for example if

the autoregressive polynomial has a zero on the unit circle). Nevertheless even in the worst case some

nice results are available.

The following lemma shows that a unique solution of (4.12) always exists, and that this solution is

even unique for different solutions of the Yule-Walker equations.

Lemma 4.2.1. Suppose equation (4.12) has a non negative solution Γp for fixed A and Q. Define

Γminp =
∑∞

j=0A
jQAj

′
. Then Γminp exists and satisfies (4.12), and any nonnegative solution Γp of

(4.12) satisfies Γminp ≤ Γp. Furthermore suppose that A1 and A2 are the block companion matrices of

two solutions of the Yule-Walker equations, then Γmin,1p =
∑∞

j=0A
j
1QA

j′

1 =
∑∞

j=0A
j
2QA

j′

2 = Γmin,2p

holds.

Proof. (Lemma 4.2.1.)
Define Γ(i) =

∑i
j=0A

jQAj
′
, such that Γ(0) = Q and Γ(1) = AΓ(0)A

′+Q. As Γp is a solution of (4.12)

we have Γp = AΓpA′ + Q ≥ Q = Γ(0). For induction assume that Γp ≥ Γ(i) holds. Consequently

Γp = AΓpA′ +Q ≥ AΓ(i)A
′ +Q = Γ(i+1). Therefore Γminp = lim

i→∞
Γ(i) is well defined and obviously

Γp ≥ Γminp holds for each solution Γp of (4.12).

Independency of the solution of the Yule-Walker equations:

It is trivial that [A1 − A2]Γp=0. It follows that [A1 − A2]Γp[A′1 − A′2] = 0 and then, because Γp ≥
Γmin,1p ,Γmin,2p there holds [A1−A2]Γmin,1p [A1−A2]′ = 0 and [A1−A2]Γmin,2p [A1−A2]′ = 0. Hence

[A1−A2][Γmin,1p ]1/2=0 orA1[Γmin,1p ]1/2 = A2[Γmin,1p ]1/2; likewise,A1[Γmin,2p ]1/2 = A2[Γmin,2p ]1/2.Now

recall that

Γmin,1p −A1Γmin,1p A′1 = Q (4.13)

It follows that

Γmin,1p −A2Γmin,1p A′2 = Q (4.14)

and likewise Γmin,2p satisfies both of these equations. Because Γmin,1p is the minimum solution of the first

equation, there holds Γmin,1p ≤ Γmin,2p and the reverse equality holds because Γmin,2p is the minimum

solution of the second equation. Hence Γmin,1p = Γmin,2p , as required.

It will be shown that Γminp is of central importance as it is the covariance of the linearly regular part

of the underlying stationary process ft. This is at first glance surprising as no stability requirement on the
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solution of the Yule-Walker equations is required, and therefore it is not clear whether the representation

f rt = a(z)−1bεt is indeed a causal linear transformation of the εt. Fortunately it is causal, as the zeros

which are not stable, i.e. not outside the unit circle, cancel out in a(z)−1b.

Theorem 4.2.2. Let [a1, ..., ap] be a solution of the Yule-Walker equations (4.6) and let Σν = bΣb′, then

a(z)−1b is a causal linear filter and is unique for all solutions [a1, ..., ap] of (4.6).

Proof. (Theorem 4.2.2.)
Causality:

If a(z) is stable the causality follows immediately. Now assume that a(z) is not stable. Let z0 =
λ−1 ∈ C, |λ| ≥ 1 be a zero of a(z) inside or on the unit circle. It is well known that a zero z0 of a(z)
corresponds to an eigenvalue z−1

0 = λ of the corresponding block companion matrix A, i.e. there exists

an x = [x′1, ..., x
′
p]
′ such that A′x = λx. This implies

a′1 I 0
a′2 0 I
...

a′p−1 I

a′p 0 . . . 0



x1

...

xp

 =


a′1x1 + x2

...

a′p−1x1 + xp

a′px1

 = λ


x1

...

xp

 (4.15)

Expressing in each block of equations the xj with the highest index, starting in the last block, and

replacing xj in the other blocks of equations with this expression, gives x′1[I−a1λ
−1− ...−apλ−p] = 0.

Additionally from the Ljapunov equation (4.12) we see that

x̄′Γpx− x̄′AΓpA′x = x̄′Γpx︸ ︷︷ ︸
≥0

(1− |λ|2)︸ ︷︷ ︸
≤0

= x̄′Qx︸ ︷︷ ︸
≥0

(4.16)

holds and therefore x̄′Qx = x̄′1Σνx1 = 0 follows which is equivalent to b′x1 = 0. Summarizing we

have x̄′1[a(λ−1), b] = 0 which is equivalent to (compare to Lemma 9.1.3) [a(z), b] is not left coprime

and therefore we can eliminate all unpleasant zeros until we result in a stable coprime pair such that the

causality is ensured.

Uniqueness: We know already that f rt = a(z)−1bεt is well defined.

F rt =


f rt

f rt−1
...

f rt−p+1

 =


a(z)−1bεt

a(z)−1bεt−1

...

a(z)−1bεt−p+1

 =


a(z)−1bεt

za(z)−1bεt
...

zp−1a(z)−1bεt

 = [I −Az]−1


bεt

0
...

0

 (4.17)
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because

[I −Az]−1 =



I − a1z −a2z . . . −ap−1z −apz
−Iz I 0 . . . 0

0 −Iz I 0
...

...
. . .

...

0 0 . . . −Iz I



−1

=


A11 A12

A21 A22



−1

=


A11 A12

A21 A22

 =

=


[A11 −A12A

−1
22 A21]−1 A12

−A−1
22 A21[A11 −A12A

−1
22 A21]−1 A22

 =



a(z)−1 x x x

za(z)−1 x x x
...

...
...

zp−1a(z)−1 x . . . x


(4.18)

where A−1
22 =


I 0 . . . 0
Iz I 0 . . .
...

. . .

Izp−2 . . . Iz I

 holds. Obviously EF rt F r
′

t = Γminp =
∑∞

j=0A
jQAj

′
is well

defined and is the same for different A. From (4.17) it follows that a(z)−1b must be the same for all

solutions a(z) of the Yule-Walker equations as otherwise Γminp cannot be unique.

So we know that no matter which solution of the Yule-Walker equations we choose, we will always

get the linearly regular part of the underlying stationary process and its covariance by taking the unique

solution Γminp of the Ljapunov equation which we denote from now on as Γrp. Now it is also clear what

the difference between the given covariance Γp and the covariance of the linearly regular part Γrp is. It

is the covariance of the linearly singular part, which of course cannot be reconstructed by the transfer

function a(z)−1b.

Theorem 4.2.3. Suppose an (rp× rp) matrix Γsp satisfies

Γsp = AΓspA
′
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then the random process F st generated by

F st+1 = AF st , t = 0, 1, ...

F st−1 = ΓspA
′Γs#p F st , t = 0, 1, ...

with initial conditions EF s0 = 0 and EF s0F s
′

0 = Γsp, where # denotes the pseudo inverse, is stationary.

Proof. (Theorem 4.2.3.)
See Lemma 6 on page 49 in [Inouye, 1983].

Of course the difference Γp − Γrp fulfills the requirement of Theorem 4.2.3 as both Γp and Γrp are

solutions of the Ljapunov equation.

Finally we can decompose the underlying stationary process ft in its linearly regular part f rt = a(z)−1bεt

and its orthogonal linearly singular part ft − f rt .

4.3 Properties of the Minimum Norm Solution

At the beginning of the previous section we stated that we commence from a stationary process ft which

has an AR(p) representation (4.1). Furthermore we have already mentioned in the introduction of this

chapter, that stationary solutions of an autoregressive system (4.1) may consist of a linearly regular and

a linearly singular component which is orthogonal on the regular one. Moreover we know already that

such a linearly singular component corresponds to a solution of the homogeneous solutions fulfilling

(4.4). Now, the questions arise as to when the minimum norm solution

[a1, ..., ap] = [γ1, ..., γp]Γ#
p (4.19)

is stable and as to when a linearly singular component is present.

4.3.1 There is an underlying stable system

Let us assume that we know that the stationary process ft has a stable AR(p) representation. Conse-

quently, there is at least one solution of the Yule-Walker equations which is stable. In the following, we

will show that in this case the minimum norm solution always yields a stable autoregressive polynomial.

Lemma 4.3.1. Let A be a matrix defined by

A = (0a×b Ia)T

(
0 0
Ic 0

)
T ′

(
0b×a
Ia

)

with T an orthogonal matrix. Then all eigenvalues of A have magnitude less than 1.
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Proof. (Lemma 4.3.1.)
See Lemma 3 page 218 in [Deistler et al., 2010a].

Theorem 4.3.2. Let Γp be as in (4.6), corresponding to an r dimensional stationary process ft which

has a stable AR(p) representation

ft = ā1ft−1 + ...+ āpft−p + νt (4.20)

and let ai, i = 1, . . . , p denote the minimum norm solution of the Yule-Walker equation (4.6) defined by

(4.19). Then the system defined by the ais is stable, and there are s (the rank of Γp) eigenvalues of A,

defined in (4.11), which are identical to the eigenvalues of Ā, the block companion matrix associated

with the āis.

Proof. (Theorem 4.3.2.) See also [Deistler et al., 2010a].

Let Op be the orthogonal matrix [O1, O2] as in (4.8) such that

O′pΓpOp =

[
Λ1 0
0 0

]

with Λ1 diagonal and nonsingular. For the purposes of the proof, most of our calculations will be carried

out in a changed coordinate basis defined by Op. Accordingly, define

[f̄1, f̄2, . . . , f̄p] = [ā1, ā2, . . . , āp]Op

[f1, f2, . . . , fp] = [a1, a2, . . . , ap]Op

Since

[f1, f2, . . . , fp]O′pΓpOp = [a1, a2, . . . , ap]ΓpOp

= [γ1, γ2, . . . , γp]Op

= [ā1, ā2, . . . , āp]ΓpOp

= [f̄1, f̄2, . . . , f̄p]O′pΓpOp

or equivalently

[f1, f2, . . . , fp]

[
Λ1 0
0 0

]
= [f̄1, f̄2, . . . , f̄p]

[
Λ1 0
0 0

]
we see that the first s columns of the block row matrix [f1, f2, . . . , fp] are identical with those of
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[f̄1, f̄2, . . . , f̄p]. Also, we can argue that the last rp− s columns are zero:

[f1, f2, . . . , fp] = [γ1, γ2, . . . , γp]Γ#
p Op

= [γ1, γ2, . . . , γp]Op

[
Λ−1

1 0
0 0

]

Now consider the block companion matrices Ā, A defined by the (āi)i=1,...,p and (ai)i=1,...,p respectively,

together with their transforms

F = O′pAOp

F̄ = O′pĀOp

Partition these two matrices in the same manner as the right side of O′pΓpOp, so that F11, F̄11 are s× s:

F =

[
F11 F12

F21 F22

]

F̄ =

[
F̄11 F̄12

F̄21 F̄22

]

Now the matrix F̄ satisfies the following transformed version of (4.12):[
Λ1 0
0 0

]
− F̄

[
Λ1 0
0 0

]
F̄ ′ = O′pQOp (4.21)

and similarly for F . The 22 block term on the left side is −F̄21Λ1F̄
′
21 while the 22 block term on the

right is nonnegative definite. It follows that F̄21 is zero. Likewise, F21 is zero, and so F̄ , F are both
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upper triangular. Now consider

F̄ − F = O′p[Ā−A]Op

= O′p



ā1 − a1 ā2 − a2 . . . āp−1 − ap−1 āp − ap
0 0 . . . 0 0
0 0 . . . 0 0
...

...
...

0 0 . . . 0 0


Op

= O′p



f̄1 − f1 f̄2 − f2 . . . f̄p−1 − fp−1 f̄p − fp
0 0 . . . 0 0
0 0 . . . 0 0
...

...
...

0 0 . . . 0 0


We have shown above that the first s columns of [f̄1, f̄2, . . . , f̄p] are identical with those of [f1, f2, . . . , fp],
and so the first s columns of the matrix on the right of the above equation are zero. This means that the

first s columns of F̄ and F are the same, i.e. F̄11 = F11. Since Ā and therefore F̄ has all eigenvalues

in |λ| < 1, the same is true of F11 = F̄11. We now have to examine the last rp − s columns of F , and

in particular the last rp− s rows of these columns; this is because F is block triangular, and it has to be

proved yet that the lower triangular block has all eigenvalues of modulus smaller than 1. Observe that

F = O′pAOp = O′p



a1 a2 . . . ap−1 ap

I 0 . . . 0 0
0 I . . . 0 0
...

...
...

0 0 . . . I 0


Op

= O′p



f1 f2 . . . fp−1 fp

0 0 . . . 0 0
0 0 . . . 0 0
...

...
...

0 0 . . . 0 0


+O′p


0 0 . . . 0 0
I 0 . . . 0 0
...

...
...

0 0 . . . I 0

Op

Now our interest is in the last rp−s columns, and the entries of the last rp−s columns of [f1 f2, . . . , fp−1, fp]
have all been shown to be zero. Since what is in the first s columns is irrelevant, we can say that the last
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rp− s columns of F are actually identical with the last rp− s columns of the matrix

O′p


0 0 . . . 0 0
I 0 . . . 0 0
...

...
...

0 0 . . . I 0

Op

Thus

F22 = [0(rp−s)×s, Irp−s]O
′
p


0 0 . . . 0 0
I 0 . . . 0 0
...

...
...

0 0 . . . I 0

Op
[

0s×(rp−s)

Irp−s

]

By Lemma 4.3.1, we know that |λ1(F22)| < 1. In summary,

F =

[
F̄11 F12

0 F22

]
(4.22)

where F12 is irrelevant, F̄11 has eigenvalues of magnitude less than 1 by hypothesis and the triangularity

of F̄ , and F22 has just been proved to have the same property.

Therefore, we know that if the underlying process is the solution of a stable AR system, the minimum

norm solution yields a stable AR polynomial.

4.3.2 There is not an underlying stable system

Now we want to analyze the situation where we do not have an underlying stable system, i.e. the Yule-

Walker equations do not have a stable solution. That means we have a stationary process ft which is a

solution of a system (4.1) which is not stable. That is the point where the difference Γp − Γrp is not zero.

Note that even in the case where Γp is regular the corresponding unique solution of the Yule-Walker

equations is not stable.

Although there does not exist a stable solution of the Yule-Walker equations, the minimum norm so-

lution still has some nice properties.

Theorem 4.3.3. Let ft be a stationary process of (4.1) and suppose that its covariance matrix Γp is

singular. Let [a1, ..., ap] be the corresponding minimum norm solution andA its block companion matrix.

If the AR system (4.1) is not stable, i.e. the process ft has a linearly singular part, then the characteristic

polynomial of the minimum norm solution has the following properties

(i) It cannot have zeros inside the unit circle and must have zeros both outside and on the unit circle.
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(ii) The number of unit circle zeros is equal to rk(Γp) − rk([B,AB, ..., Arp−1B]), where B is as in

(4.12).

(iii) It has the least number of unit circle zeros among all solutions of the Yule Walker equations.

(iv) It has the largest number of stable zeros among all solutions of the Yule Walker equations.

Proof. (Theorem 4.3.3.) See also [Chen et al., 2010].

(i): Let Γp = Op

[
Λ1 0
0 0

]
O′p, then as in (4.21) we have that F = O′pAOp fulfills

[
Λ1 0
0 0

]
− F

[
Λ1 0
0 0

]
F ′ = O′pQOp

and is therefore upper diagonal (as in (4.22))

F =

[
F11 F12

0 F22

]

Since Γp is singular F22 exists (all eigenvalues of F22 are inside the unit circle, compare to the proof

of Theorem 4.3.2) and therefore the minimum norm solution has at least one eigenvalue inside the unit

circle. According to the definition of F define

G = O′pB =

[
G1

0

]
(4.23)

such that the number of rows of G1 is equal to the number of rows of F11. We know that the pair

[F11, G1] is not reachable as otherwise all eigenvalues of F11 are of modulus smaller than one (compare

to (3.18))which is a contradiction to the assumption that the minimum norm solution is not stable. As

the pair [F11, G1] is not reachable it is well known (see for instance [Kailath, 1980]) that there exists a

regular matrix T such that

TF11T
−1 = F̄ =

[
F̄11 F̄12

0 F̄22

]
, Ḡ = TG1 =

[
Ḡ1

0

]
(4.24)

where the number of rows of Ḡ1 and F̄11 are the same, and the pair [F̄11, Ḡ1] is reachable. By construc-

tion the reachable modes of [A,B], which are the eigenvalues λ of A such that [λI −A,B] has full rank

(Definition 9.2.4), are the same as of

[[
F̄ TF12

0 F22

]
,

[
Ḡ

0

]]
. Now the eigenvalues of F̄11 are exactly the

reachable modes of F11 and therefore they must be of modulus smaller than one as

Λ1 − F11Λ1F
′
11 = G1G

′
1 (4.25)
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holds (compare (3.18)). Furthermore pre-multiplying T and post-multiplying T ′ on (4.25) we obtain

Λ̄1 − TF11Λ̄1F
′
11T
′ = ḠḠ′

where Λ̄1 = TΛ1T
′ =

[
Λ̄1,11 Λ̄1,12

Λ̄1,21 Λ̄1,22

]
, which implies

Λ̄1,22 − F̄22Λ̄1,22F̄
′
22 = 0

and therefore all eigenvalues of F̄22 lie on the unit circle. As the set of eigenvalues of A is the union of

the sets of eigenvalues of F22, F̄22 and F̄11 we have shown (i).

(ii): We know already that the number of zeros of modulus one of the minimum norm solution equals

the rank of F̄22, as all eigenvalues of F̄22 are of modulus one. The rank of F̄22 is equal to rk(Λ1) −
rk([G1, F11G1, ..., F

rp−1
11 G1]). As rk(Γp) = rk(Λ1) and

rk([B,AB, ..., Arp−1B]) = rk([G1, F11G1, ..., F
rp−1
11 G1]) holds, (ii) is shown.

(iii) and (iv): Recall from proof of Theorem 4.3.2 that the first s columns of F̃ = OpĀO
′
p, where Ā is

a block companion matrix corresponding to any solution of the Yule-Walker equations, equal the first s

columns of F = OpAO
′
p such that

F̃ =

[
F11 F12 + V12

0 F22 + V22

]
(4.26)

holds. As F22 has only eigenvalues of modulus smaller than one the result follows.

Remark 4.3.4. From (4.26) it is clear that all solutions of the Yule-Walker equations have a common

set of stable and unit modulus zeros corresponding to the eigenvalues of the matrix F11. The others,

corresponding to F22, vary. Of course this result also holds in the case where the minimum norm solution

is stable.

Let us give a simple example to show that the minimum norm solution does not need to be stable.

Example 4.3.5. Given the covariances

γ0 =

[
1.1061728 0

0 1

]
, γ1 =

[
0.3160494 0

0 1

]
and γ2 =

[
0.217284 0

0 1

]

we see that

Γ2 =


1.106173 0 0.3160494 0

0 1 0 1
0.3160494 0 1.106173 0

0 1 0 1


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is singular. Computing the minimum norm solution gives

[â1, â2] =

[
0.25 0 0.1250000 0

0 0.5 0 0.5

]

which is obviously not stable. Of course this is a very trivial example as we actually started with a system

ft =

[
0.25 0

0 0.5

]
ft−1 +

[
0.1250000 0

0 0.5

]
ft−2 +

[
1
0

]
εt

where we could have modeled the regular and the singular component seperately.

A far more complicated model would be the following

Example 4.3.6. Given the covariances

Γ2 =



1.402890 1.089555 1.145263 1.147196 0.6925516 0.6395243 0.6479484 0.6489144

1.089555 2.029612 1.048229 1.051525 0.192671 −0.8649423 0.1412201 0.1399458

1.145263 1.048229 1.079348 1.084143 0.3199951 0.2208047 0.2336144 0.2323454

1.147196 1.051525 1.084143 1.090505 0.3290454 0.2193521 0.2308703 0.2288655

0.6925516 0.192671 0.3199951 0.3290454 1.402890 1.089555 1.145263 1.147196

0.6395243 −0.8649423 0.2208047 0.2193521 1.089555 2.029612 1.048229 1.051525

0.6479484 0.1412201 0.2336144 0.2308703 1.145263 1.048229 1.079348 1.084143

0.6489144 0.1399458 0.2323454 0.2288655 1.147196 1.051525 1.084143 1.090505


and

[γ1, γ2] =


0.6925516 0.6395243 0.6479484 0.6489144 0.1082618 0.1047109 0.1031836 0.1032337

0.192671 −0.8649423 0.1412201 0.1399458 0.09678233 1.11157 0.1110588 0.1118255

0.3199951 0.2208047 0.2336144 0.2323454 0.1830316 0.1952257 0.1953497 0.1963567

0.3290454 0.2193521 0.2308703 0.2288655 0.1820901 0.2113735 0.2090648 0.2102938



we get the minimum norm solution

[â1, â2] =


0.5 −0.1312222 0.1302779 0.1259442 −0.1072777 −0.1312222 −0.3025917 0.3

0.25 −1.117207 0.8736488 0.1185584 −0.2669369 −0.1172071 0.2816035 1.025054e− 13

0.4 −0.09908457 0.01895525 −0.1198707 −0.08287562 −0.09908457 0.1595288 2.795523e− 13

0.5 −0.0721236 −0.06364235 −0.1642340 −0.1193951 −0.0721236 0.1486095 6.326255e− 13



whose corresponding block companion matrix has eigenvalues of modulus

{1, 4.823482 · 10−1, 4.617895 · 10−1, 4.617895 · 10−1, 2.106091 · 10−1, 2.106091 · 10−1, 1.124859 · 10−1, 5.050252 · 10−12}

and thus â(z) is not stable. The system was originated by modeling the linearly regular part as

frt =


0.5 −0.25 0.25 0.125

0.25 0.25 0.125 −0.5

0.4 0.2 0.1 −0.5

0.5 0.5 −0.3 −0.5

 frt−1 +


−0.125 −0.125 −0.3 0.3

0 0 0 0

0 0 0 0

0 0 0 0

 frt−2 +


1

1

1

1

 εt
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and the linearly singular part as

fst =


0

eiπtr + e−iπtr̄

0

0


where Er = Er̄ = 0 and Err̄ = 1/2

An immediate consequence of Theorem 4.3.3 is the following corollary which shows a possibility to

check whether the minimum norm solution is stable or not.

Corollary 4.3.7. Let ft be a stationary solution of (4.1) and suppose its corresponding Γp is singular.

Then the minimum norm solution [a1, ..., ap] is stable if and only if rk(Γp) = rk([B,AB, ..., Arp−1B]),

where A is the block companion matrix and B is defined by (4.12).

Proof. (Corollary 4.3.7.) See also [Chen et al., 2010].

The proof of Theorem 4.3.3 (ii) points out that the unreachable modes of [A,B] correspond to the eigen-

values of F̄22, and that the rank of F̄22 is equal to rk(Γp)− rk([B,AB, ..., Arp−1B]).

The last theorem in this chapter shows, that in the case of multiple solutions of the Yule-Walker

equations, no matter if there is an underlying stable system or not, there always exists a solution with at

least one unstable zero.

Theorem 4.3.8. Let ft be a stationary solution of (4.1) and suppose its corresponding Γp is singular.

Then there always exists a solution of the Yule-Walker equations which has at least one unstable zero.

Proof. (Theorem 4.3.8.) See also [Chen et al., 2010].

From (4.26) we know how two different solutions of the Yule-Walker equations are linked together. Our

interest is in V22, as we know that this part is responsible for the zeros which are not fixed. Let Op be

the matrix consisting of the eigenvectors of Γp, i.e. Γp = Op

[
Λ1 0
0 0

]
O′p, and let Op =

[
O11 O12

O21 O22

]
then it is easy to verify that V22 = O′21Φ for some Φ. O21 is of course not zero as otherwise Γp would

have zero rows and columns (as O12 would be zero too). Therefore the pair [F22, O
′
21] has at least one

reachable mode and thus there always exists a Φ such that the matrix F22 + O′21Φ has an eigenvalue

outside the unit circle.

4.4 Canonical Representatives

As the Yule-Walker equations do not have to have a unique solution one is interested in a canonical repre-

sentative. Here we will present three possibilities. The first is the already intensively discussed minimum

norm solution of the Yule-Walker equations. The second is achieved by using row polynomial-echelon

forms of certain rows of the autoregressive polynomial. And the third is inducted from a state space
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construction where the least number of past observations is used and therefore a set of columns in the

AR polynomial are zero.

In this section we will deal with linearly regular processes exclusively. This means we observe a sta-

tionary process ft which has a stable autoregressive representation

ft = a1ft−1 + · · ·+ apft−p + νt (4.27)

4.4.1 Canonical Representative I

We have already discussed many properties of the minimum norm solution. Here we want to point out

that the minimum norm solution is of course always unique and therefore yields a canonical represen-

tative in the class of all singular AR(p) systems. Nevertheless it has some drawbacks. First it is only

unique for fixed p (not surprisingly), i.e. one has to know the minimal lag of the underlying AR process

from which one only knows the sequence of covariances.

Example 4.4.1. Let

ft =

[
0.5 0
0.5 0.5

]
ft−1 +

[
0.25 0

0 0

]
ft−2 +

[
1
0

]
εt

be a stable stationary singular AR(2) process. Solving the discrete Ljapunov equation with

A =


0.5 0 0.25 0
0.5 0.5 0 0
1 0 0 0
0 1 0 0

 , Q =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


gives

Γ2 =


1.920000 1.105455 1.280000 0.930909
1.105455 1.376970 1.512727 1.241212
1.280000 1.512727 1.920000 1.105455
0.930909 1.241212 1.105455 1.376970


and

[γ1, γ2] =

[
0.5 0 0.25 0
0.5 0.5 0 0

]
Γ2 =

[
1.280000 0.930909 1.120000 0.7418182
1.512727 1.241212 1.396364 1.0860606

]
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such that

Γ3 =



1.920000 1.105455 1.280000 0.930909 1.120000 0.7418182
1.105455 1.376970 1.512727 1.241212 1.396364 1.0860606
1.280000 1.512727 1.920000 1.105455 1.280000 0.930909
0.930909 1.241212 1.105455 1.376970 1.512727 1.241212
1.120000 1.396364 1.280000 1.512727 1.920000 1.105455
0.7418182 1.0860606 0.930909 1.241212 1.105455 1.376970


and

[γ1, γ2, γ3] =

[
0.5 0 0.25 0 0 0
0.5 0.5 0 0 0 0

]
Γ3

=

[
1.280000 0.930909 1.120000 0.7418182 0.880000 0.6036364
1.512727 1.241212 1.396364 1.0860606 1.258182 0.9139394

]

Calculating the minimum norm solutions for p = 2, 3 gives

[â1, â2] =

[
0.5 0.08333333 0.2083333 −0.04166667
0.5 0.16666667 0.1666667 0.16666667

]

[â1, â2, â3] =

[
0.5 0.09375 0.203125 −0.015625 −0.015625 −0.015625
0.5 0.12500 0.187500 0.062500 0.062500 0.062500

]

which shows the dependence on the lag p.

Second the minimum norm solution does not necessarily result in a coprime pair [a(z), b].

Example 4.4.2. Take the same process as in Example 4.4.1 where the block companion matrices of the

original system and of the minimum norm solution are

A =


0.5 0 0.25 0
0.5 0.5 0 0
1 0 0 0
0 1 0 0

 , Â =


0.5 0.08333333 0.2083333 −0.04166667
0.5 0.16666667 0.1666667 0.16666667
1 0 0 0
0 1 0 0


with corresponding eigenvalues

EVA = {0.809017, 0.500000,−0.309017, 0}, EVÂ = {0.8090170, 0.5000000,−0.3090170,−0.3333333}

The smallest eigenvalues of both sets correspond to unreachable modes of the pair [A,B] and [Â, B]
respectively, where B = [1, 0, 0, 0]′. But as the eigenvalue −1/3 of Â corresponds to a zero 3 of the
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corresponding polynomial â(z), the polynomial a(z) has a zero at infinity and thus [a(z), b] is left co-

prime whereas [â(z), b] is not. Additionally we see that 3 eigenvalues are the same (Γ2 has rank 3) which

affirms the results of Theorem 4.3.2 and Theorem 4.3.3.

Especially the latter example shows that the minimum norm solution is not the ultimate solution of

singular AR systems, as coprimeness is something desirable.

4.4.2 Canonical Representative II

In our conference paper [Anderson et al., 2009] and our current working paper [Anderson et al., 2010]

we present a canonical representative of singular autoregressive models using row polynomial-echelon

or Popov forms for a certain set of rows of the AR polynomial. Contrary to the previous sections we will

not deal with an AR representation [a(z), b] with a(z) = I − a1z − ... − apzp but with representations

of the form

[
d(z),

[
I

0

]]
where d(z) = d0 − d1z − ...− dpzp is a stable polynomial and d(0) 6= I may

hold. Note that every representation [d(z), [I, 0]′] has a unique [a(z), b] = d(0)−1[d(z), [I, 0]′] but not

vice versa as any regular matrix A with Ab = [I, 0]′ yields a pair [d(z), [I, 0]′]. Of course such a matrix

A always exists, one example would be A =

[
(b′b)−1b′

b⊥

]
where b⊥ is a basis for the left kernel of b.

Thus we start with a pair

d(z) =

[
d1(z)
d2(z)

]
, c =

[
I

0

]
(4.28)

where d1(z) and d2(z) are defined in an evident way. The first lemma will show that we can assume

without loss of generality that this pair is left coprime.

Lemma 4.4.3. Let [d(z), c] be an arbitrary pair as in (4.28), then there exists an observationally equiv-

alent coprime pair [d̄(z), c] with v(d̄(z)) ≤ v(d(z)), where v(d(z)) denotes the degree of d(z).

Proof. (Lemma 4.4.3.) See also [Anderson et al., 2010].

It is clear that [d(z), c] is not left coprime if and only if the rank of d2(z) drops for some z0 ∈ C. Using

e.g. the Smith-McMillan form of d2 we find always a decomposition d2 = ed̄2 where d̄2 is of full rank

∀z ∈ C and with the same dimensions as d2. Thus [d2(z), c] =

[[
d1(z)
d̄2(z)

]
, c

]
is a left coprime pair and

it is observationally equivalent with [d(z), c] as [d(z), c] =

[
I 0
0 e(z)

][[
d1(z)
d̄2(z)

]
, c

]
. It remains to show

that the degree of d̄ is lower or equal to the degree of d.

Let us denote with d2,[i,] the i-th row of d2 and with ei,j the i, j element of e. As d2 can be assumed to

be row reduced without loss of generality (pre-multiplying with unimodular matrices will give us that)
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then by Theorem 6.3-13. on page 387 in [Kailath, 1980] there holds

v(d2[i,]) = max
j

(v(ei,j) + v(d̄2[j,]))

where v(a) = −∞ if all elements of a are zero. Let pmax = maxj(v(d̄2[j,])) then for each i the

corresponding row of e cannot have only zeros and thus v(d2[i,]) ≥ pmax holds for all i.

The members of the equivalence class of autoregressive polynomials of the form [d(z), c] are linked

by matrices of the form

v =

[
I v12

0 v22

]
(4.29)

If [d(z), c] is left coprime, all other observationally equivalent left coprime representations are linked via

a matrix v (4.29) where v22 is unimodular.

Choice of v22

Definition 4.4.4. (row polynomial-echelon or Popov form). An (m × n) polynomial matrix X(z) of

rankm is said to be in Popov form or row polynomial-echelon form if the following properties hold:

(i) It is row reduced and the row degrees are in descending order, say k1 ≥ k2 ≥ ... ≥ km.

(ii) For row i with 1 ≤ i ≤ m, there is a pivot index pi such that Xi,pi is monic and has degree ki, and

v(Xi,j) < ki for all j > pi

(iii) If ki = kj and i < j, then pi < pj , i.e. the pivot indices corresponding to the same row degree are

increasing

(iv) Xi,pj has degree less than kj if i 6= j.

Theorem 4.4.5. LetX(z) be an (m×n) row reduced polynomial matrix, thenX(z) can be transformed

by pre-multiplying unimodular matrices to Popov form. Moreover it is canonical, i.e. any other polyno-

mial matrix which is linked to X(z) by pre-multiplying X with a polynomial matrix, has the same Popov

form.

Proof. (Theorem 4.4.5.)
See Theorem 2 on page 500 in [Forney jr., 1975].

Therefore v22 is chosen to bring d2(z) into Popov form.
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Choice of v12

Note, that the choice of (the polynomial matrix) v12 is not affected by the choice of v22 as v12d2 =
v12v

−1
22 v22d2, and as we started with a left coprime pair [d(z), c], v22 is unimodular and thus v12v

−1
22 is

polynomial. So we start with a pair [d(z), c], where d2 is already in Popov form.

Note, that the Popov form also gives for each row a pivot index. For the ease of simplicity assume that

all pivot indices are in the first m columns such that

d =

[
d11 d12

d21 d22

]
(4.30)

where d21 contains all pivot indices of d2. Obviously d21 is column reduced. Then applying the Division

Theorem for Polynomial Matrices (Theorem 6.3-15. on page 389 in [Kailath, 1980]) we get unique

polynomial matrices ṽ12 and r1

d11 = ṽ12d21 + r1 (4.31)

where r1d
−1
21 is strictly proper. This implies, as d21 is column reduced (Lemma 6.3-11. on page 385 in

[Kailath, 1980]), that each column of r1 has degree less than the degree of the corresponding column of

d21. Thus choosing v12 = −ṽ12 yields a unique d̄1 = r1.

Summary

We started with an arbitrary pair [a(z), b] defining a singular AR system (4.27). Through pre-multiplying

by a regular matrix we yield in an observationally equivalent pair [d(z), c], where c = [I, 0]′. If [d(z), c]
is not left coprime one can always find an observationally equivalent pair [d̄(z), c] which is left coprime.

By pre-multipling this pair with a unimodular matrix v as in (4.29) gives the canonical representative, if

v22 and v12 are choosen to bring d̄2 to Popov form first and forcing the column degrees of the sub matrix

d̄11 to be bounded by the corresponding column degrees of the new d̄21 afterwards.

Let [d(z), c] be the canonical representative for the systems with c = [I, 0]′ then by pre-multiplying

[d(z), c] with d(0)−1 yields a canonical [a(z), b] which is coprime and has degree lower than or equal to

the degree of the starting polynomial.

4.4.3 Canonical Representative III

In our most recent paper [Deistler et al., 2010c] we present an additional way to choose a canonical

representative by defining a suitable minimal state containing past values of ft. Note that we can always

write an AR system

ft = a1ft−1 + · · ·+ apft−p + νt
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where νt = bεt, as a state space system

xt =



ft
...
...
...

ft−p+1


=



a1 a2 . . . ap

I 0 . . . 0
0 I 0 . . .
...

. . .
. . .

I 0





ft−1

...

...

...

ft−p


+



I

0
...
...

0


νt = Axt−1 +Bνt (4.32)

ft = [a1, ..., ap]xt−1 + νt (4.33)

where xt = [f ′t , ..., f
′
t−p+1] is an rp dimensional state if ft is r dimensional. Of course xt does not need

to be a minimal state. Thus we perform two steps.

Step 1

Choose the first independent components of xt−1 that build a basis for the linear span of xt−1. There are

indices 0 ≤ mi, i = 1, ..., r corresponding to the r components of ft such thatm1 + ...+mr = n1 where

n1 is the dimension of the basis. Anmi = 0 for some i means that the i-th component does not appear in

the state at all. The basis components are {ft−1,1, ..., ft−m1,1, ft−1,2, ..., ft−m2,2, ..., ft−1,r, ..., ft−mr,r},
where ft−i,j denotes the j-th component of ft−i. This can be seen as follows. Suppose that ft−i,j is

not linearly independent from the preceding components, i.e. ft−i,j = [ft,1, ..., ft−i,j−1]c for some c,

then ft−i−1,j cannot be linearly independent from its preceding components as ft−i−1,j = zft−i,j =
z[ft,1, ..., ft−i,j−1]c = [ft−1,1, ..., ft−i−1,j−1]c.

Of course x̃t−1 = [ft−1,1, ..., ft−m1,1, ft−1,2, ..., ft−m2,2, ..., ft−1,r, ..., ft−mr,r]′ = S1xt−1, where S1

is a selector matrix, is a state and the corresponding AR polynomial [ã1, ..., ãp] has zero columns corre-

sponding to non basis components such that ft = [ã1, ..., ãp]xt−1 holds. This polynomial is of course

unique as the corresponding Yule-Walker equations have a unique solution (Ex̃tx̃′t is regular).

Step 2

Although the components of x̃t−1 build a basis of the linear span of xt−1, and x̃t−1 is a state, x̃t−1 does

not need to be a minimal state as some components might not be necessary for any predictor. Thus we

pick only the components of x̃t−1 which are really needed and denote it as x̄t−1. Again there are indices

0 ≤ m̄i, i = 1, ..., r corresponding to the r components of ft such that

x̄t−1 = [ft−1,1, ..., ft−m̄1,1, ft−1,2, ..., ft−m̄2,2, ..., ft−1,r, ..., ft−m̄r,r]′. To see this note that if ft−i,j is

never used for a predictor ft+j|t−1, j ≥ 0 we get from ft|t−1 that the j-th column of ai is zero. As

ft+1|t−1 = a2
1ft−1 + [a1a2 + a2]ft−2 + ... + [a1ap−1 + ap]xt−p+1 + a1apxt−p we have that the j-th
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column of [a1ai + ai+1] and thus the j-th column of ai+1 must be zero. By induction the result follows.

This construction yields a state which has the minimal number of components of past ft and we have

x̄t = Āx̄t−1 + B̄εt (4.34)

ft = Cx̄t−1 +Dεt (4.35)

where B̄ = (b̄′, 0, ..., 0)′ and b̄ are the rows of b corresponding to the actually appearing elements of ft−1

in x̄t−1. Furthermore Ā is in a “quasi companion form” which means that Ā has almost the structure

of a block companion form, in particular the last rows have a structure [I, 0]S where S shuffles the

columns of [I, 0]. This can be seen as follows: The first block of rows of Ā corresponds to the one-step-

ahead predictor of ft|t−1. The remaining rows have the special structure [I, 0]S as the components of x̄t
corresponding to time t − 1, i.e. the components of ft−i which are in the state, are also in the shifted

state x̄t−1 as the same components of ft−i+1 must occur in x̄t.

Lemma 4.4.6. The system (4.34) is reachable if and only if it is stable.

Proof. (Lemma 4.4.6.)
Let y be an eigenvector of A with eigenvalue λ, i.e. y′A = λy′, then by (4.34) we have

(1− |λ|2) y′Γx̄ȳ︸ ︷︷ ︸
>0

= y′B̄B̄′ȳ︸ ︷︷ ︸
≥0

(4.36)

where Γx̄ = Ex̄tx̄′t. Obviously the left hand side of (4.36) is zero if and only if λ is of modulus one and

thus y′B̄B̄′ȳ is zero if and only if λ is of modulus one. Therefore [Iλ − Ā, B̄] is not of full rank for all

λ ∈ C if and only if Ā has an eigenvalue of modulus one.

Fill the quasi companion matrix Ā (with zeros or with coefficients corresponding to the one-step-

ahead predictor, if some elements of ft−1 are not in the state x̄t−1) such that A be the block companion

matrix corresponding to the state xt. Then A has the same eigenvalues as Ā plus some zero eigenvalues

corresponding to the components which cancel out through Step 1 and 2.

Example 4.4.7. Let ft be a stationary solution of an AR(3) process

ft =

[
ft,1

ft,2

]
=

[
x 0
x x

][
ft−1,1

ft−1,2

]
+

[
x 0
x 0

][
ft−2,1

ft−2,2

]
+

[
x 0
x 0

][
ft−3,1

ft−3,2

]
+

[
νt,1

νt,2

]
(4.37)

where the x entries are arbitrary subject to the polynomial is stable. Then
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x̄t−1 = [ft−1,1, ft−1,2, ft−2,1, ft−3,1]′ is a minimal state if its components build a basis. Thus
ft,1

ft,2

ft−1,1

ft−2,1

 =


x 0 x x

x x x x

1 0 0 0
0 0 1 0


︸ ︷︷ ︸

Ā


ft−1,1

ft−1,2

ft−2,1

ft−3,1

+


1 0
0 1
0 0
0 0


︸ ︷︷ ︸

B̄

[
νt,1

νt,2

]
(4.38)

is the stable AR(1) polynomial for the “minimal” state, where the coefficient matrix Ā has almost the

form of a block companion matrix, and the corresponding block companion matrix A for the state xt is

ft,1

ft,2

ft−1,1

ft−1,2

ft−2,1

ft−2,2


=



x 0 x 0 x 0
x x x 0 x 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


︸ ︷︷ ︸

A



ft−1,1

ft−1,2

ft−2,1

ft−2,2

ft−3,1

ft−3,2


+



νt,1

νt,2

0
0
0
0


(4.39)

By the Laplace expansion of det[λI − A] it is obvious that there are two and only two additional zero

eigenvalues of A compared to Ā.

Note, that if it happens that a component of ft−1, j say, is not in the minimal state x̄t−1, the first

block of rows in Ā has fewer rows than the first block of rows in A. In such a case the j-th column of A

has all entries equal to zero, except the one corresponding to the shift. This implies that the j-th column

of λI − A has only two entries namely the j-th entry, which is equal to λ, and the one corresponding to

the shift, which is equal to one. The latter cancels out by the Laplace expansion of the determinant of

λI −A and thus an additional zero eigenvalue occurs.

Example 4.4.8. Use the same example as above with one exception

ft =

[
ft,1

ft,2

]
=

[
x 0
x 0

][
ft−1,1

ft−1,2

]
+

[
x 0
x 0

][
ft−2,1

ft−2,2

]
+

[
x 0
x 0

][
ft−3,1

ft−3,2

]
+

[
νt,1

νt,2

]
(4.40)

Then the “minimal” state is x̄t = [ft−1,1, ft−2,1, ft−3,1]′ and the corresponding Ā =

x x x

1 0 0
0 1 0

. The
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block companion matrix A of xt is then

ft,1

ft,2

ft−1,1

ft−1,2

ft−2,1

ft−2,2


=



x 0 x 0 x 0
x 0 x 0 x 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


︸ ︷︷ ︸

A



ft−1,1

ft−1,2

ft−2,1

ft−2,2

ft−3,1

ft−3,2


+



νt,1

νt,2

0
0
0
0


(4.41)

In the two examples above we always started with a stable A (which corresponded already to an

extended version of a Ā matrix) which implied that Ā was stable and thus by Lemma 4.4.6 the system

(4.34), (4.35) was reachable.

Theorem 4.4.9. The system (4.34), (4.35) is reachable and stable if and only if there is an underlying

stable system.

Proof. (Theorem 4.4.9.)
One direction is evident. If there is no underlying stable system, Ā and thus the corresponding A (with

zero columns in the coefficient matrices) are not stable and thus not reachable. The other direction can

be seen as follows. If there is an underlying stable system the corresponding AR process ft is linearly

regular which implies that also x̄t is linearly regular. Thus

Γx̄ = [B̄, ĀB̄, ...][B̄, ĀB̄, ...]′

holds and as Γx̄ is regular, [B̄, ĀB̄, ...] must have full rank which implies reachability and by Lemma

4.4.6 stability.

Corollary 4.4.10. Let [a(z), b] be the pair where a(z) corresponds to the polynomial with block com-

panion matrix A which is the extended version of Ā from the system (4.34) and (4.35), then [a(z), b] is

left coprime and stable if and only if there is an underlying stable system.

Proof. (Corollary 4.4.10.)
The stability of a(z) is an immediate consequence of Theorem 4.4.9. Coprimeness of [a(z), b], i.e.

[a(z), b] has full rank for all z ∈ C, is equivalent to [Iλ − A,B] has full rank for all 0 6= λ ∈ C (can

be seen easily by (4.15) and the following paragraph), as a singularity for λ = 0 corresponds to a zero

of a(z) at infinity and a singularity for λ = ∞ is equivalent to a(0) is singular. As [Iλ− A,B] has full

rank for all 0 6= λ ∈ C (consequence of Theorem 4.4.9) the result follows.



Chapter 5

Estimation of Singular AR Systems

Here we want to present estimation procedures for singular autoregressive system

ft = a1ft−1 + ...+ apft−p + νt (5.1)

discussed in the previous section. First, it is shown, that given the integer parameters, such as p the

minimal order of the AR system and s the rank of the covariance matrix Γp, the minimum norm solution

can be estimated consistently. Second, procedures are presented to estimate the minimal order p.

5.1 Estimating the Minimum Norm Solution

Denote by

γ̂Tj =
T∑

t=1+j

ftft−j (5.2)

and for j ≤ h

γ̃T,hj =
T∑

t=1+h

ftft−j (5.3)

two estimates of the covariances γj = Eftf ′t−j . Consequently

Γ̂Tp =


γ̂T0 γ̂T1 ... γ̂Tp−1

γ̂T
′

1

. . .
. . .

...
...

. . .
. . . γ̂T1

γ̂T
′

p−1 ... γ̂T
′

1 γ̂T0

 (5.4)

67
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and if p ≤ h

Γ̃T,hp =


γ̃T,h0 γ̃T,h1 ... γ̃T,hp−1

γ̃T,h
′

1

. . .
. . .

...
...

. . .
. . . γ̃T,h1

γ̃T,h
′

p−1 ... γ̃T,h
′

1 γ̃T,h0

 (5.5)

We will use the following well known theorem to establish consistency of the estimation of the

minimum norm solution.

Theorem 5.1.1. Let ft be an AR(p) process generated by (5.1). If rk Γp = s ≤ pr and if all nonzero

eigenvalues of Γp are distinct, then

[ˆ̂a1, ..., ˆ̂ap] = [γ̂T1 , ..., γ̂
T
p ]Osp[Λ

s
p]
−1Os

′
p (5.6)

where Γ̂Tp = [Osp, O
x
p ]

[
Λsp 0
0 Λxp

][
Os
′
p

Ox
′
p

]
, defines a function of γ̂T0 , ..., γ̂

T
p which is continuous at γ0, ..., γp

(here the γ̂Tj as well as the ˆ̂aj are considered to be matrices with real entries).

Proof. (Theorem 5.1.1.) See also [Deistler et al., 2010a].

As the eigenvalues and the corresponding suitable normalized eigenvectors of a symmetric matrix are

locally continuous functions of the entries of the matrix, the right side of (5.6) is obviously a continuous

function at γ0, ..., γp.

Theorem 5.1.2. Let ft be an AR(p) process generated by (5.1). If rk Γp = s < pr and if all nonzero

eigenvalues of Γp are distinct, then

[ˆ̂a1, ..., ˆ̂ap] = [γ̂T1 , ..., γ̂
T
p ]Osp[Λ

s
p]
−1Os

′
p

as in Theorem 5.1.1, is a consistent estimator of the minimum norm solution of the Yule-Walker equations.

Proof. (Theorem 5.1.2.) See also [Deistler et al., 2010a].

As γ̂Tj yields a (strong) consistent estimator of γj for T → ∞, [ˆ̂a1, ..., ˆ̂ap] is (by the continuity result of

Theorem 5.1.1) a (strong) consistent estimator of [â1, ..., âp].

Remark 5.1.3. Of course Theorem 5.1.2 also holds if the covariance estimators γ̃T,hj are used. We

will call (5.6) the “Yule-Walker” estimator of the minimum norm solution and the estimator using γ̃T,hj

instead of γ̂Tj the “OLS” estimator.

The weak point of this estimating procedure is the need of the rank of the covariance matrix Γp.
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Fortunately there is a possibility to determine this rank by using Γ̃T,hp . Note that

Γ̃T,hp = 1/T


fp fp+1 ... fT

fp−1 fp ... fT−1

...
...

...

f1 f2 ... fT−p+1



f ′p ... f ′1
...

...

f ′t ... f ′T−p+1


has the same kernel as Γp and therefore they have the same rank. Thus we can “estimate” s by counting

the eigenvalues larger than a certain boundary near zero. Also note that

Γ̂Tp = 1/T


f1 ... fT 0 ... 0

0
. . .

. . .
. . .

...
...

. . .
. . .

...

0 ... f1 f2 ... fT





f ′1 0 ... 0
...

. . .
. . .

...

f ′p ... f ′1
...

...

f ′T ... f ′T−p+1

0
. . .

. . . f ′t−p+2
...

. . .
. . .

...

0 ... f ′T


has not exactly the same rank as Γp and will therefore have some eigenvalues not equal but near to zero.

The problem of estimating the rank will of course be even more complicated if the autoregressive process

is not observed but has to be estimated, as it is the case in factor models. A test on the eigenvalues might

be of interest. A possibility might be the test described in [Robin and Smith, 2000].

The next theorem shows, that a slightly different (we only remarked that slight difference in our paper

[Deistler et al., 2010a] in the proof) estimation of the minimum norm solution than (5.6) always yields

a stable polynomial, irrespective if the underlying system is stable or has a unit circle zero. Define the
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(T + p)× rp matrices

Z =



0 · · · 0
f ′1 0 · · · 0

f ′2
. . .

...
...

...
... f ′1

...
...

...
...

f ′T f ′T−1 · · · f ′T−p+1

0
. . .

. . .
...

...
. . . f ′T f ′T−1

0 · · · 0 f ′T



(5.7)

and

Y =



f ′1 0 · · · 0

f ′2
. . .

...
...

...
... f ′1

...
...

...
...

f ′T f ′T−1 · · · f ′T−p+1

0
. . .

. . .
...

...
. . . f ′T f ′T−1

... · · · 0 f ′T
0 · · · 0 0



(5.8)

and let

Z = U1Ω1V
′

1 = [U1s, U1x]

[
Ω1s 0
0 Ω1x

][
V ′1s
V ′1x

]
, Y = U2Ω2V

′
2 = [U2s, U2x]

[
Ω2s 0
0 Ω2x

][
V ′2s
V ′2x

]
(5.9)

be their “thin” Singular Value Decompositions1, and the submatrices indexed with s correspond to the s

largest singular values. It is easy to see that

V1sΩ2
1sV

′
1s = OspΛ

s
pO

s′
p

Theorem 5.1.4. (i) If rk Γp = pr holds, then the “Yule-Walker” estimator (5.6) of the minimum norm

solution yields a stable autoregression

1The singular value decomposition of Y ∈ Rm×h, m ≥ h is defined as Y = UΣV ′ with U ∈ Rm×m, Σ ∈ Rm×h, V ∈
Rh×h, whereas the “thin” singular value decomposition of Y ∈ Rm×h, m ≥ h is defined as Y = UΣV ′ with U ∈ Rm×h, Σ ∈
Rh×h, V ∈ Rh×h.
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(ii) For rk Γp = s < pr, the solution

[ā1, ..., āp] = [γ̄T1 , ..., γ̄
T
p ]Osp[Λ

s
p]
−1Os

′
p (5.10)

corresponds to a stable autoregression, where [γ̄T1 , ..., γ̄
T
p ] = [V2][1:r,]Ω2sU

′
2sU1sΩ1sV

′
1s and the

matrices V2,Ω2s, U2s, U1s,Ω1s and V1s are matrices of the Singular Value Decompositions of Y

and Z, and [A][i:j,] denote the rows i to j of a matrix A.

Proof. (Theorem 5.1.4.) See also [Deistler et al., 2010a].

(i) As we need to show det ˆ̂a(z) 6= 0, |z| ≤ 1 we proceed as follows: Let

ˆ̂
A =



ˆ̂a1 · · · · · · ˆ̂ap−1
ˆ̂ap

Ir 0 · · · 0 0

0 Ir
. . .

... 0
... · · · Ir 0 0
0 · · · 0 Ir 0


then det ˆ̂a(z) 6= 0, |z| ≤ 1 is equivalent to postulate that the roots of

det[ ˆ̂
A− zIrp] (5.11)

are within the unit circle. Note that Ω1 = Ω2 =: Ω and V1 = V2 =: V can be chosen because

Z ′Z = Y ′Y holds. Furthermore U1 = [0, U ′]′ and U2 = [U ′, 0]′ can be chosen because of the form of Z

and Y . It is straightforward to show that

ˆ̂
A = Y ′Z[Z ′Z]−1

and therefore
ˆ̂
A = V ΩU ′2U1Ω−1V ′

holds. The roots of (5.11) are the same as the roots of

det[Ω−1V ′[ ˆ̂
A− zIrp]V Ω] = det[U ′2U1 − zIrp]

Now we have

|λmax[U ′2U1]| ≤ max‖x‖=1|x∗U ′2U1x| < max‖x‖=1|x∗U ′1U1x| = 1

where the first inequality can be shown very easily and the strict inequality is valid because of the form

of U1 = [0, U ′]′ and U2 = [U ′, 0]′ (strict Cauchy-Schwarz inequality).
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(ii) First we want to repeat that, as is well known, the sample covariance matrix Γ̂p is “typically”

nonsingular. As we omit the smallest eigenvalues of Γ̂p we have to think about the consequences on the

matrices Y and Z defined above. We define by using the Singular Value Decompositions (5.9)

Z̄ = [U1s, U1x]

[
Ω1s 0
0 0

][
V ′1s
V ′1x

]
= U1sΩ1sV

′
1s (5.12)

and

Ȳ = [U2s, U2x]

[
Ω2s 0
0 0

][
V ′2s
V ′2x

]
= U2sΩ2sV

′
2s (5.13)

Following the argument in (i) it is clear that the last row of U2s is zero and we have U2s = [U ′s, 0]′,
where U1s = [0, U ′s]

′. Furthermore, as in (i), we can choose Ω1 = Ω2 =: Ω, V1 = V2 =: Vs and thus

Ω1s = Ω2s =: Ωs and V1s = V2s =: Vs. As can be easily seen V[1:r(p−1),]V
′ =

[
Ir(p−1), 0

]
, where

V[1:r(p−1),] is V from (5.12) without its last r rows. Now observe that

[Ȳ ′][1:r,]Z̄ = [Vs][1:r,]ΩsU
′
2sU1sΩsV

′
s (5.14)

holds, which is an estimate of T [γ1, . . . , γp]′ (note that if Ωx 6= 0 holds, then (5.14) does not correspond

to the sample covariances T [γ̂1, . . . , γ̂p]′). It follows that

[ā1, ..., āp] = [Ȳ ]′[1:r,]Z̄[Z̄ ′Z̄]# = [Vs][1:r,]ΩsU
′
2sU1sΩsV

′
sVsΩ

−2
s V ′s =

= [Vs][1:r,]ΩsU
′
2sU1sΩsΩ−2

s V ′s = [Vs][1:r,]ΩsU
′
2sU1sΩ−1

s V ′s

Therefore

Ā =



ā1 · · · · · · āp−1 āp

Ir 0 · · · 0 0

0 Ir
. . .

... 0
... · · · Ir 0 0
0 · · · 0 Ir 0


=

[
[Vs][1:r,]ΩsU

′
2sU1sΩ−1

s V ′s

V[1:r(p−1),]V
′

]
=

 [Vs][1:r,]ΩsU
′
2sU1sΩ−1

s V ′s

[[Vs][1:r(p−1),], [Vx][1:r(p−1),]]

[
V ′s

V ′x

]

=

[
[Vs][1:r,]ΩsU

′
2sU1sΩ−1

s V ′s

[Vs][1:r(p−1),]V
′
s + [Vx][1:r(p−1),]]V ′x

]

=

[
[Vs][1:r,]ΩsU

′
2sU1sΩ−1

s V ′s

[Vs][1:r(p−1),]V
′
s

]
+

[
0

[Vx][1:r(p−1),]V
′
x

]

holds. Call the first summand on the right hand side in the last equality aboveB and the second summand

Ṽ . Recall that we want to show that the roots of det[Â − zIrp] are within the unit circle. Now we have
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(with the penultimate equality following using (5.15) and (5.16) below)

det[Ā− zIrp] = det[B + Ṽ − zIrp] = det[V ′[B + Ṽ − zIrp]V ]

= det


Ω̃−1︷ ︸︸ ︷[

Ω−1
s 0
0 Irp−s

]
V ′[B + Ṽ − zIrp]V

[
Ωs 0
0 Irp−s

]
= det

[
Ω̃−1V ′[B + Ṽ ]V Ω̃− zIrp

]
= det

[[
U ′2sU1s Ω−1

s V ′s V̄

0 V ′xV̄

]
− zIrp

]
= det[U ′2sU1s − zIs]det[V ′xV̄ − zIrp−s]

with V̄ :=

[
0

[Vx][1:r(p−1),]

]
. As the matrices V ′xV̄ = V ′x

[
0

[Vx][1:r(p−1),]

]
= [V ′x, 0]

[
0
Vx

]
and U ′2sU1s

(strict Cauchy-Schwarz inequality) have all eigenvalues of magnitude less than 1 the result follows.

To obtain the background equalities, observe that (using a comparison of Z̄ and Ȳ to justify the third

equality)

B =

[
[Vs][1:r,]ΩsU

′
2sU1sΩ−1

s V ′s

[Vs][1:r(p−1),]V
′
s

]
=

[
[Vs][1:r,]ΩsU

′
2sU1sΩ−1

s V ′s

[Vs][1:r(p−1),]ΩsU
′
1sU1sΩ−1

s V ′s

]

=

[
[Vs][1:r,]ΩsU

′
2sU1sΩ−1

s V ′s

[Vs][r+1:rp,]ΩsU
′
2sU1sΩ−1

s V ′s

]
= VsΩsU

′
2sU1sΩ−1

s V ′s

where [Vs][r+1:rp,] is the matrix consisting of the last r(p− 1) rows of Vs. Therefore

Ω̃−1V ′BV Ω̃ = Ω̃−1V ′VsΩsU
′
2sU1sΩ−1

s V ′sV Ω̃

=Ω̃−1

[
Is

0

]
ΩsU

′
2sU1sΩ−1

s [Is, 0]Ω̃ =

[
Ω−1
s ΩsU

′
2sU1sΩ−1

s Ωs 0
0 0

]
=

[
U ′2sU1s 0

0 0

]
(5.15)
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and

Ω̃−1V ′Ṽ V Ω̃

=

[
Ω−1
s 0
0 Irp−s

]
V ′Ṽ V

[
Ωs 0
0 Irp−s

]
=

[
Ω−1
s 0
0 Irp−s

]
V ′

[
0

[Vx][1:r(p−1),]V
′
x

]
V

[
Ωs 0
0 Irp−s

]

=

[
Ω−1
s 0
0 Irp−s

]
V ′

[
0

[Vx][1:r(p−1),]

]
︸ ︷︷ ︸

V̄

V ′xV

[
Ωs 0
0 Irp−s

]
=

[
Ω−1
s V ′s V̄

V ′xV̄

]
[0, Irp−s]

=

[
0 Ω−1

s V ′s V̄

0 V ′xV̄

]
(5.16)

Remark 5.1.5. Note that (5.10) is of course a consistent estimator of the minimum norm solution as

1/T [Ȳ ′Z̄] is asymptotically equivalent to 1/T [Y ′Z], and the latter estimates the corresponding covari-

ances consistently.

5.2 Comparison of Solutions of the Sample Yule-Walker Equations

We pointed already out, that two estimation procedures exist which consistently estimate the minimum

norm solution. Nowadays the computer power is that tremendous that “almost” singular matrices, i.e.

very badly conditioned matrices, can still be inverted. In our case this means that Γ̂p can be inverted in

many cases. The question arises if the “truncation” of Γ̂p, i.e. setting the smallest eigenvalues to zero, is

reasonable. The answer is yes. The truncation ensures that the two estimation procedures are consistent

estimates. Furthermore it is shown that one of them always gives a stable polynomial (the second one

most likely gives a stable one too). Nevertheless, inverting Γ̂p, if possible, makes somehow sense too.

Note that

[ǎ1, ..., ǎp] =[γ̂T1 , ..., γ̂
T
p ]Γ−1

p = [γ̂T1 , ..., γ̂
T
p ][Osp[Λ

s
p]
−1Os

′
p +Oxp [Λxp ]−1Ox

′
p ]

=[ˆ̂a1, ..., ˆ̂ap] + [γ̂T1 , ..., γ̂
T
p ]Oxp [Λxp ]−1Ox

′
p ] (5.17)

and that lim
T→∞

[γ̂T1 , ..., γ̂
T
p ]Oxp = 0 which implies that the second term on the right hand side of the equa-

tion above has a “0 · ∞” behavior for T going to infinity. So it is not clear if it has a limit but for

forecasting purposes (and of course finite T ) [ǎ1, ..., ǎp] can be an appropriate tool. Especially as it is

somehow (the smallest eigenvalues are net equal to zero) another solution of the sample Yule-Walker

equations and thus it is not that important to result in a stable polynomial, as the unstable zeros corre-

spond to unreachable modes anyway (compare to section 4.3.2).
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We compare the three estimation methods

1. [ˆ̂a1, ..., ˆ̂ap] from (5.6)

2. [ā1, ..., āp] from (5.10)

3. [ǎ1, ..., ǎp] from (5.17)

where the third is calculated with the maximal number of eigenvalues of Γ̂p such that the (pseudo) in-

verse can be computed. The dimension of the process is set equal to r = 3, the driving white noise has

a dimension of q = 1 and the minimal order is set to p = 2. Furthermore the processes are simulated

for T = Tin + Tout = 150 + 100 time points, where Tin denotes the insample size and Tout denotes

the out-of-sample size, with coefficient matrices [a1, a2] =


x x x

x x x

x x x

 ,
x x x

0 0 0
0 0 0


, where the x

denotes an arbitrary entry, such that a(z) = I + a1z + a2z
2 is stable (the x entries are chosen arbitrarily

and are multiplied by 0.9 until the polynomial is stable). The special structure of a2 ensures that the true

covariance matrix Γ2 has at max rank 5, and can be of rank 4 if b = [1, 0, 0]′ (this is very unlikely to

happen as the entries of b are chosen arbitrarily too).

The three estimators are compared by simulating 100 different processes (with different coefficient ma-

trices) and calculating the mean of

• The Frobenius norm of the insample covariance matrix of the errors: ‖Σ̂ν,in‖F , where Σ̂ν,in =
1/Tin

∑Tin
t=3 ν̂tν̂

′
t and Tin denotes the insample size.

• The Frobenius norm of the out-of-sample covariance matrix of the errors: ‖Σ̂ν,out‖F , where

Σ̂ν,out = 1/Tout
∑Tout

t=1 ν̂tν̂
′
t and Tout denotes the out-of-sample size.

Furthermore

‖ˆ̂a− ǎ‖F = ‖[ˆ̂a1, ..., ˆ̂ap]− [ǎ1, ..., ǎp]‖F , ‖ˆ̂a− ā‖F = ‖[ˆ̂a1, ..., ˆ̂ap]− [ā1, ..., āp]‖F

and

‖ˆ̂a− ǎ‖F /‖ˆ̂a‖F = ‖[ˆ̂a1, ..., ˆ̂ap]− [ǎ1, ..., ǎp]‖F /‖[ˆ̂a1, ..., ˆ̂ap]‖F

‖ˆ̂a− ā‖F /‖ˆ̂a‖F = ‖[ˆ̂a1, ..., ˆ̂ap]− [ā1, ..., āp]‖F /‖[ˆ̂a1, ..., ˆ̂ap]‖F

are calculated.
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r = 3, q = 1, p = 2, Tin = 150, Tout = 100, using the “Yule-Walker” estimates for the covariances:

min. norm (ˆ̂a) “inverting” (ǎ)

stable models: 100 stable models: 100

# ŝ ‖Σ̂ν,in‖F ‖Σ̂ν,out‖F ŝ ‖Σ̂ν,in‖F ‖Σ̂ν,out‖F ‖ˆ̂a− ǎ‖F ‖ˆ̂a− ǎ‖F /‖ˆ̂a‖F
24 5 1.0840906 1.2171754 6 1.0833791 1.2174736 2.634527 1.730764

76 6 0.8119854 0.8681686 6 0.8119854 0.8681686 0.00000 0.00000

r = 3, q = 1, p = 2, Tin = 150, Tout = 100, using the “Yule-Walker” estimates for the covariances:

min. norm (ˆ̂a) min. norm modified (ā)

stable models: 100 stable models: 100

# ŝ ‖Σ̂ν,in‖F ‖Σ̂ν,out‖F ŝ ‖Σ̂ν,in‖F ‖Σ̂ν,out‖F ‖ˆ̂a− ā‖F ‖ˆ̂a− ā‖F /‖ˆ̂a‖F
24 5 1.0840906 1.2171754 5 1.0840916 1.2171754 3.021762e-02 2.120281e-02

76 6 0.8119854 0.8681686 6 0.8119854 0.8681686 2.888728e-12 4.983646e-13

All calculations are repeated with the “OLS” estimates of the covariances as this method is often

used in practice.

r = 3, q = 1, p = 2, Tin = 150, Tout = 100, using the “OLS” estimates for the covariances:

min. norm (ˆ̂a) “inverting” (ǎ)

stable models: 100 stable models: 100

# ŝ ‖Σ̂ν,in‖F ‖Σ̂ν,out‖F ŝ ‖Σ̂ν,in‖F ‖Σ̂ν,out‖F ‖ˆ̂a− ǎ‖F ‖ˆ̂a− ǎ‖F /‖ˆ̂a‖F
24 5 1.0823269 1.2179537 6 1.0798311 1.2184973 196.3141 96.40112

76 6 0.8112295 0.8688194 6 0.8112295 0.8688194 0.0000 0.0000

r = 3, q = 1, p = 2, Tin = 150, Tout = 100, using the “OLS” estimates for the covariances:

min. norm (ˆ̂a) min. norm modified (ā)

stable models: 100 stable models: 100

# ŝ ‖Σ̂ν,in‖F ‖Σ̂ν,out‖F ŝ ‖Σ̂ν,in‖F ‖Σ̂ν,out‖F ‖ˆ̂a− ā‖F ‖ˆ̂a− ā‖F /‖ˆ̂a‖F
24 5 1.0823269 1.2179537 5 1.0823269 1.2179537 3.863031e-03 5.048549e-04

76 6 0.8112295 0.8688194 6 0.8112295 0.8688194 1.711411e-09 7.152293e-11
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The following table summarizes the relative distances of the coefficient matrices of the 6 estimation

procedures, where the [i, j] entry is the mean of the 100 values of ‖ai − aj‖F /‖ai‖F and ai stands for

the estimation procedure corresponding to the row (column) name.

“YW” ˆ̂a “YW” ǎ “YW” ā “OLS” ˆ̂a “OLS” ǎ “OLS” ā

“YW” ˆ̂a 0.000000000 0.4153833 0.005088675 6.1772326157 39.14128 6.1772141251

“YW” ǎ 0.177130922 0.0000000 0.177211369 6.2117941034 26.25715 6.2117761834

“YW” ā 0.005099621 0.4158970 0.000000000 6.1781671285 39.14076 6.1781492104

“OLS” ˆ̂a 0.899327859 1.2114222 0.900065710 0.0000000000 23.13627 0.0001211652

“OLS” ǎ 1.014572210 1.0157145 1.014571321 0.2396362768 0.00000 0.2396362775

“OLS” ā 0.899344008 1.2114457 0.900082485 0.0001212050 23.13672 0.0000000000

The statistics show that the estimated coefficient matrices differ quite a lot, with one exception (and

that is not surprising): The minimum norm solution and the modified minimum norm solution are almost

the same if the same estimator for the covariances is used. Especially the “brutal” method (using all

eigenvalues which are numerically not zero) gives coefficient matrices which definitely do not coincide

with the estimators of the other methods. Nevertheless the fit of all methods is (almost) the same and all

polynomials are stable. For the practical point of view there is no winner.

5.3 Order Estimation

We have already discussed the problem of choosing a solution of the Yule-Walker equations, and have

seen that the minimum norm solution is a reasonable candidate. Nevertheless we have always assumed

that we know the lag (order) of the underlying autoregressive system. To be more precisely we have

always assumed to know the minimum lag of the underlying system. In the theory of regular AR systems

we do not face this problem as the lag of the AR system is uniquely defined by the highest index of the

last coefficient matrix unequal to zero, i.e. if an AR system of higher order is used all coefficient matrices

with higher index are zero. This property does not hold in the singular case as the AR polynomial is not

unique and the order of the system can be chosen arbitrarily large (without adding only zero matrices as

opposed to the regular case). This leads us to the following definition.

Definition 5.3.1. (minimal order) The minimal order of a singular autoregressive system [a(z), b] is

the smallest order p (a(z) = I − a1z − ...− apzp) of all observationally equivalent systems [ā(z), b].

We know already that for fixed p all solutions of the Yule-Walker equations result in the same covari-

ance matrix of the errors Σp
ν . Of course this implies, if p denotes the minimal order, that for p̃ > p the

population covariance matrices fulfill Σp̃
ν = Σp

ν . As the sample covariance matrix Σ̂p̃
ν =

∑T−p̃
t=1 ν̂ p̃t ν̂

p̃′

t ,

where ν̂ p̃t = ft − â1ft−1 − ... − âp̃ft−p̃, is a consistent estimator of Σp̃
ν , an Information Criterion,
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analogously to the regular case, such as AIC or BIC, seems to be reasonable.

AIC(p) = log(det(Σ̂p
ν)) + p ∗ r2 ∗ 2/T

BIC(p) = log(det(Σ̂p
ν)) + p ∗ r2 ∗ log(T )/T

where r is the dimension of the process. Unfortunately things are more complicated as AIC and BIC

use the logarithm of the determinant of the estimated covariance of the errors. If it happens, that the

theoretical covariance is singular from the minimal order onwards only, everything is fine as AIC(p) =
−∞would still select the correct minimal p (if one would decide that the order is the first value where the

Information Criteria is minus infinity). But the following example shows that this is not always fulfilled.

Example 5.3.2. Let

ft =

[
ft,1

ft,2

]
=

[
1/2 0
1 0

][
ft−1,1

ft−1,2

]
+

[
−1/4 0

0 0

][
ft−2,1

ft−2,2

]
+

[
εt,1

0

]

be a stable AR(2) process, where ft,2 = ft−1,1. Thus projecting ft onto ft−1 gives already a perfect

description of ft,2 and thus the corresponding error is zero, which implies that the covariance matrix of

the error is already singular. Consequently AIC(1) = −∞ and the order will be most likely underes-

timated. Note that the order can still be estimated correctly as the sample estimator of the covariance

matrix of the order does not have to be singular, but of course consistency cannot be shown.

This example is on the one hand a dumb example, because setting up a multivariate AR model for a

process whose first component is a univariate AR process and its second component is the same process

lagged by one, is not what AR models are made for. On the other hand it shows how easily such a

problem can occur if miss handled. The next example will show that the example above is not the only

possibility where this phenomenon can occur.

Example 5.3.3. Let

ft =

ft,1ft,2

ft,3

 =

1/2 −1/4 1/4
1/4 1/4 1/8
0 1/2 1/4


ft−1,1

ft−1,2

ft−1,3

+

1/8 −1/8 0
0 0 0
0 0 0


ft−2,1

ft−2,2

ft−2,3

+

1
1
1

 εt
be a stable AR(2) process. Obviously the best predictor for the components two and three is already

available if only one lag is used. Thus the covariance matrix of the error, fitting an AR(1), has already

the correct entries except at the [1, 1] position. Thus it is singular and the vector [0, 1,−1]′ is in its

kernel. That means that the linear combination ft,2 − ft,3 can be perfectly explained by ft−1.

Therefore we need an Information Criteria that can handle the singularity of the covariance matrix

of the errors. A possibility is to measure the covariance matrix with a norm instead of the determinant.
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We will see below that the Frobenius norm is a possible candidate.

Before we present the Information Criteria we will extend the results of [Whittle, 1963], where a re-

cursive algorithm for the coefficient matrices of the AR polynomial a(z) is presented, to the singular

case.

5.3.1 Recursive Algorithm

The recursive algorithm presented here shows how the coefficient matrices of certain solutions of the

Yule-Walker equations are related if the order increases. For this reason we have to introduce an addi-

tional index indicating how many lags are used

ft = ap1ft−1 + ...+ appft−p + νpt (5.18)

Let [ap∗1 , ..., a
p∗
p ] be a solution of the Yule-Walker equations

[ap1, ..., a
p
p]Γp = [γ1, ..., γp] (5.19)

such that

p∑
k=0

dp∗k γj−k = 0, j = 1, ..., p (5.20)

with dp∗0 = I and dp∗k = −ap∗k , k = 1, ..., p. Furthermore we will use the solutions of the equations

[α̃p1, ..., α̃
p
p] E


xt−p
...

xt−1

 [x′t−p, . . . , x
′
t−1]

︸ ︷︷ ︸
=:Γ̄(p)

= [γ′1, ..., γ
′
p] (5.21)

Such that for a solution [α̃p41 , ..., α̃p4p ] of (5.21) we have

p∑
k=0

αp4k γk−j = 0, j = 1, ..., p (5.22)

where αp40 = I and αp∗k = −α̃p∗k , k = 1, ..., p.
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Next we define the matrices

Σ∗p =
p∑

k=0

dp∗k γ−k

Σ̄4p =
p∑

k=0

αp4k γk

δ∗p =
p∑

k=0

dp∗k γp+1−k

δ̄4p =
p∑

k=0

αp4k γk−p−1 (5.23)

Lemma 5.3.4. Let ft have an AR(p0) representation ft = a1ft−1 + ...+ap0ft−p0 +νt, then the following

equalities hold, where the corresponding matrices are defined as above.

(i) Σp = Σ∗p = Σ5p

(ii) Σ̄p = Σ̄4p = Σ̄♦p

(iii) δp = δ∗p = δ5p

(iv) δ̄p = δ̄4p = δ̄♦p

(v) δp = δ̄′p

(vi) dp+1∗
k = dp5k + dp+1∗

p+1 α
p4
p−k+1, k = 1, ..., p

(vii) αp+14
k = αp♦k + αp+14

p+1 dp∗p−k+1, k = 1, ..., p

(viii) dp+1∗
p+1 Σ̄p = −δp, αp+14

p+1 Σp = −δ̄p

(ix) Σp+1 = [I − dp+1∗
p+1 α

p+14
p+1 ]Σp

(x) δp =
∑p

j=0

∑p
l=0 d

p∗
j γp+1−j−lα

p4′
l

Proof. (Lemma 5.3.4.)
(i)

Σ∗p =
p∑

k=0

dp∗k γ−k = γ0 + [dp∗1 , ..., d
p∗
p ][γ1, ..., γp]′

= γ0 − [ap∗1 , ..., a
p∗
p ]E[[x′t−1, ..., x

′
t−p]

′x′t] = γ0 − E[
p∑

k=1

ap∗k xt−kx
′
t]

= γ0 − E[x̂t|xt−1,...,xt−px
′
t] = γ0 − E[

p∑
k=1

ap5k xt−kx
′
t] = Σ5p
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where x̂t|xt−1,...,xt−p denotes the projection of xt onto the space spanned by the components of {xt−1, ..., xt−p}
(ii) the same as (i)

(iii)

δ∗p =
p∑

k=0

dp∗k γp+1−k = γp+1 + [dp∗1 , ..., d
p∗
p ][γ′p, ..., γ

′
1]′

= γp+1 − [ap∗1 , ..., a
p∗
p ]E[[x′t−1, ..., x

′
t−p]

′x′t−p−1] = γp+1 − E[
p∑

k=1

ap∗k xt−kx
′
t−p−1]

= γp+1 − E[x̂t|xt−1,...,xt−px
′
t−p−1] = γp+1 − E[

p∑
k=1

ap5k xt−kx
′
t−p−1] = δ5p

(iv) the same as (iii)

(v) Define εpt as the remainder after subtracting the projection x̂t|xt−1,...,xt−p from xt and ηpt = xt −
x̂t|xt+1,...,xt+p . So we have

δp :=
p∑

k=0

dpkγp+1−k = E[[
p∑

k=0

dpkxt−k]x
′
t−p−1] = E[εptx

′
t−p−1]

and

δ̄p :=
p∑

k=0

αpkγk−p−1 = E[[
p∑

k=0

αpkxt+k]x
′
t+p+1] = E[ηpt x

′
t+p+1]

and

E[εptx
′
t−p−1] = E[εpt [η

p
t−p−1 − α

p
1xt−p − ...− α

p
px
′
t−1]′] = E[εpt η

p′

t−p−1]

= E[ηpt−p−1ε
p′

t ]′ = E[ηpt ε
p′

t+p+1]′ = E[ηpt x
′
t+p+1]′

gives the disered result.

(vi)
p+1∑
k=0

dp+1∗
k γj−k =

p∑
k=1

dp+1∗
k γj−k + γj + dp+1∗

p+1 γj−p−1 = 0.

So if
p∑

k=1

[dp5k + dp+1∗
p+1 α

p5
p−k+1]γj−k + γj + dp+1∗

p+1 γj−p−1 = 0
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holds for all j = 1, ..., p the representation dp+1∗
k = dp5k + dp+1∗

p+1 α
p4
p−k+1, k = 1, ..., p is obviously valid.

p∑
k=1

[dp5k + dp+1∗
p+1 α

p4
p−k+1]γj−k + γj + dp+1∗

p+1 γj−p−1

=
p∑

k=0

dp5k γj−k︸ ︷︷ ︸
=0

+dp+1∗
p+1 [

p∑
k=1

αp4p−k+1γj−k + γj−p−1]

k̃=p−k+1
= dp+1∗

p+1 [
p∑

k̃=1

αp4
k̃
γj−(p−k̃+1) + γj−p−1]

= dp+1∗
p+1 [

p∑
k̃=0

αp4
k̃
γj−p−1+k̃] = dp+1∗

p+1 [
p∑

k̃=0

αp4
k̃
γk̃−j︸ ︷︷ ︸

=0

] = 0

(vii) the same as (vi)

(viii)

0 =
p+1∑
k=0

dp+1∗
k γp+1−k =

p∑
k=1

dp+1∗
k γp+1−k + γp+1 + dp+1∗

p+1 γ0

(vi)
=

p∑
k=1

[dp5k + dp+1∗
p+1 α

p4
p−k+1]γp+1−k + γp+1 + dp+1∗

p+1 γ0

=
p∑

k=0

dp5k γp+1−k + dp+1∗
p+1 [

p∑
k=1

αp4p−k+1γp+1−k + γ0]

= δp + dp+1∗
p+1

p+1∑
k=1

αp4p−k+1γp+1−k
k̃=p+1−k

= δp + dp+1∗
p+1

p∑
k=0

αp4
k̃
γk̃︸ ︷︷ ︸

=Σ̄p

The other equality can be shown in a similar way.
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(ix)

Σp+1 =
p+1∑
k=0

dp+1∗
k γ−k = γ0 +

p∑
k=1

dp+1∗
k γ−k + dp+1∗

p+1 γ−p−1

(vi)
= γ0 +

p∑
k=1

[dp5k + dp+1∗
p+1 α

p4
p−k+1]γ−k + dp+1∗

p+1 γ−p−1

= Σp +
p∑

k=1

dp+1∗
p+1 α

p4
p−k+1γ−k + dp+1∗

p+1 γ−p−1

= Σp + dp+1∗
p+1

p+1∑
k=1

αp4p−k+1γ−k
k̃=p+1−k

= Σp + dp+1∗
p+1

p∑
k=0

αp4
k̃
γ−p−1+k̃︸ ︷︷ ︸
δ̄p

(viii)
= Σp − dp+1∗

p+1 α
p+14
p+1 Σp

(x)

δp =
p∑

k=0

dp∗k γp+1−k = γp+1 +
p∑

k=1

dp∗k γp+1−k

(5.22)= γp+1 +
p∑

k=1

dp∗k

[
−

p∑
l=1

γp+1−k−lα
p4′
l

]

= γp+1 −
p∑

k=1

p∑
l=1

dp∗k γp+1−k−lα
p4′
l

δ̄′p=γp+1+
∑p
l=1 γp+1−lα

p4′
l=

= δ̄′p −
p∑
l=1

γp+1−lα
p4′
l −

p∑
k=1

p∑
l=1

dp∗k γp+1−k−lα
p4′
l

= δp −
p∑

k=0

p∑
l=1

dp∗k γp+1−k−lα
p4′
l︸ ︷︷ ︸

⇒=0
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Therefore

p∑
k=0

p∑
l=0

dp∗k γp+1−k−lα
p4′
l

=
p∑

k=0

dp∗k

[
γp+1−kα

p4′
0 +

p∑
l=1

γp+1−k−lα
p4′
l

]

=
p∑

k=0

dp∗k γp+1−k︸ ︷︷ ︸
δp

+
p∑

k=0

p∑
l=1

dp∗k γp+1−k−lα
p4′
l︸ ︷︷ ︸

=0

= δp

5.3.2 A Consistent Estimator

In this section we want to show (strong) consistency of the following Information Criteria using the

Frobenius norm of the estimated covariance matrix of the innovations.

IC(k) = ‖Σ̂k‖F + k ∗ c ∗ (2 ∗ log(log(T ))/T )2) (5.24)

where T denotes the sample size and c > 0 (r4 suggested, where r is the dimension of the AR pro-

cess).

We commence from an AR process ft which has a stable singular system

ft = a1ft−1 + ...+ apft−p + νt (5.25)

and denote by γ̂Tj = 1/T
∑T−j

t=1 ftf
′
t−j the sample covariance estimator of γj = Eftf ′t−j and by Γ̂Tp =

γ̂T0 γ̂T1 ... γ̂Tp−1

γ̂T
′

1

. . .
. . .

...
...

. . .
. . . γ̂T1

γ̂T
′

p−1 ... γ̂T
′

1 γ̂T0

.

Theorem 5.3.5. Let ft be generated by (5.25) and with minimal order p0. Then

‖ˆ̂apα̂pΣ̂ν,p−1‖F = O(T−2(2 log(log(T )))2), p > p0

where ˆ̂ap is the last coefficient of the minimum norm solution (5.6) and α̂p is the minimum norm solution

estimator for the coefficient αp of (5.21). X = O(c(T )) means that X/c(T ) is bounded almost surely.
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Proof. (Theorem 5.3.5.)

Note that the results of Lemma 5.3.4 are still valid if the sample covariances and the corresponding

estimated coefficient matrices are used.

Define B̂p = ˆ̂ap ˆ̄Σ1/2
ν,p−1. Note that ˆ̄Σ1/2

ν,p−1 = b̂ where ˆ̄Σν,p−1 = [b̂, 0]

[
Σ̂ 0
0 0

][
b̂′

0

]
and thus ˆ̄Σ1/2

ν,p−1 =

b̂Σ̂1/2 might not be square. Of course ˆ̄Σ−1/2
ν,p−1 is then defined by inverting the non zero eigenvalues only.

Thus B̂pB̂′p = ˆ̂ap ˆ̄Σ1/2
ν,p−1

ˆ̄Σ1/2
ν,p−1

ˆ̂ap = ˆ̂ap ˆ̄Σν,p−1
ˆ̂ap = ˆ̂apα̂pΣ̂ν,p−1 holds by Lemma 5.3.4 (v) and (viii) and

this implies that ‖ˆ̂ap+1α̂p+1Σ̂ν,p‖F = ‖B̂pB̂′p‖F =
∑n

i=1 λ
2
i , where λi is the i-th biggest eigenvalue of

B̂pB̂
′
p.

As Quinn has shown in [Quinn, 1980] that B̂p = O(T−1/2(2 log(log(T )))1/2) and has its limit points in

the interval [0, 1] (B̂p = −δ̂p ˆ̄Σ−1/2
ν,p−1), it follows that

∑n
i=1 λ

2
i = tr(B̂pB̂′pB̂pB̂

′
p) = O(T−2(2 log(log(T )))2)

and thus lim supT 2(2 log(log(T ))))−2tr(B̂pB̂′pB̂pB̂
′
p) = 1 (see [Hannan, 1980]).

Corollary 5.3.6. Let p̂ be chosen to minimize (5.24) over p = 1, ...,M with M ≥ p0. Then p̂→ p0, a.s.

if and only if c > 0 holds.

Proof. (Corollary 5.3.6.)
IC(p)− IC(p− 1) = ‖Σ̂ν,p‖ − ‖Σ̂ν,p−1‖+ c ∗ (2 ∗ log(log(T ))/T )2)
Consider the case p ≤ p0: ‖Σ̂ν,p‖ converges a.s. to ‖Σν,p‖, ‖Σ̂νp‖ is a non increasing function in p

and the inequality ‖Σν,p‖ < ‖Σν,p−1‖ certainly holds for p = p0. Thus there exists a T0 such that

‖Σ̂νp‖ < ‖Σ̂ν,p−1‖ a.s. holds ∀T ≥ T0 and therefore IC(p0) < IC(p), p < p0,∀T ≥ T0, a.s..

Next consider the case p > p0:

‖Σ̂νp‖ − ‖Σ̂ν,p−1‖ = ‖(I − Âppα̂pp)Σ̂ν,p−1‖ − ‖Σ̂ν,p−1‖ ≥
∣∣∣‖Σ̂ν,p−1‖ − ‖Âppα̂ppΣ̂ν,p−1‖

∣∣∣− ‖Σ̂ν,p−1‖

1. ‖Σ̂ν,p−1‖ ≥ ‖Âppα̂ppΣ̂ν,p−1‖ ⇒ ‖Σ̂νp‖ − ‖Σ̂ν,p−1‖ ≥ −‖Âppα̂ppΣ̂ν,p−1‖

2.

‖Σ̂ν,p−1‖ ≤ ‖Âppα̂ppΣ̂ν,p−1‖ ⇒‖Σ̂νp‖ − ‖Σ̂ν,p−1‖ ≥ ‖Âppα̂ppΣ̂ν,p−1‖ − 2‖Σ̂ν,p−1‖

≥ ‖Âppα̂ppΣ̂ν,p−1‖ − 2‖Âppα̂ppΣ̂ν,p−1‖ = −‖Âppα̂ppΣ̂ν,p−1‖

⇒
∣∣∣‖Σ̂νp‖ − ‖Âppα̂ppΣ̂ν,p−1‖

∣∣∣− ‖Σ̂ν,p−1‖ ≥ −‖Âppα̂ppΣ̂ν,p−1‖. From Theorem 5.3.5 we know that there

exists a T0 such that c ∗ (2 ∗ log(log(T ))/T )2)− ‖Âppα̂ppΣ̂ν,p−1‖ ≥ 0 a.s. ∀T ≥ T0.

Note that the proofs of Theorem 5.3.5 and Corollary 5.3.6 can be adopted also for the situation where

only weak consistent estimators of γj are available. In this case the ‖ˆ̂apα̂pΣ̂ν,p−1‖F will only converge

in probability, i.e. ‖ˆ̂apα̂pΣ̂ν,p−1‖F = Op(T−2(2 log(log(T )))2), p > p0, where X = Op(c(T )) means
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that plimT→∞X/c(T ) = M <∞.

Unfortunately the estimation is “only” consistent, that means it is nice to have this theoretical result

but the practical use of this Information Criteria is not even worth mentioning. Maybe it can be upgraded

in the future.

5.3.3 An Estimator for the Practice

The Information Criterion presented here consists of two criteria. The first one is similar to the AIC, with

the difference, that the determinant of a (q × q) matrix (where q is the dimension of the driving white

noise) is calculated. The second one estimates the dimension of the one-step-ahead prediction errors

for each lag. As this sequence is non increasing, the first order which selects the minimal dimension

is selected. Finally the order is estimated by taking the maximum of the orders selected by these two

criteria.

First Criterion

Let M be a fixed integer with M ≥ p, where p is the true minimal order of the system. Then Σν,M =
Σν,p, where Σν,p = bb′ is the covariance matrix of the one-step-ahead prediction errors. As Σν,k =
bb′+Ωk, where k is arbitrary, the rank of Σν,k is larger than or equal to q. Furthermore b′Σν,kb is regular.

Thus the first Information Criterion is

IC1(k) = det(b̂′Σ̂ν,k b̂) + kr22/T (5.26)

with Σ̂ν,M = b̂b̂′, and the order is estimated by minimizing (5.26) for k = 0, ...,M . Unfortunately

we cannot exclude the possibility that b′Ωkb = 0 holds for some k < p, and thus the order might be

underestimated systematically. Therefore the second criterion is needed.

Second Criterion

We have already pointed out in section 5.1 that the “OLS” estimate (5.5) of the covariance matrix Γp
has the same kernel as the true one and thus the rank of Γp can be estimated by counting the eigenvalues

which are larger than a (numerically) reasonable boundary, e.g. 10−6. Thus, the rank qk of the covariance

matrix, of the one-step-ahead prediction errors which is obtained by fitting an AR(k) model, can be

estimated by ŝk+1− ŝk where ŝk = rk(Γ̂k). Hence, qk = qp for k ≥ p, but the equality can also hold for

k < p (see e.g. example 5.3.2). Nevertheless, the criteria selects the smallest order which minimizes q̂k.



5.3. ORDER ESTIMATION 87

Final Criterion

We have shown, that none of the two criteria introduced above can estimate the true order. But the max-

imum of the orders selected by the two criteria is an estimate of the minimal order which can be seen

as follows: Note that if b′Ωkb = 0 holds for some k < p it follows that qk > qp. On the other hand if

qk = qp for some k < p, b′Ωkb 6= 0 holds.

Consistency of this estimation procedure might be shown in the future. We will see below that this

criterion works considerably well.

5.3.4 Comparison of Order Estimates

Here we want to compare the AIC, BIC and the estimator presented in the previous section. We fill fix

the sample size to T = 150. For the estimation of the coefficient matrices we will use the minimum

norm solution presented in section 5.1. As the rank of the “OLS” sample covariance estimate is the same

as the rank of the population covariance matrix we will determine all ranks which have to be used by

counting the eigenvalues which are of modulus larger than or equal to 10−6.

We will estimate the covariance matrices with what we call the “Yule-Walker” (compare to (5.2)) and

the “OLS” methods (compare to (5.3)).

“AICq” and “q” denote the “first” and “second” criterion described above. Consequently “combine”

denotes the “final” criterion.

r = 3, q = 3, 100 simulations:

“Yule-Walker” estimates “OLS” estimates

AIC BIC q AICq combine AIC BIC q AICq combine

p̂ = 0 0 0 93 0 0 p̂ = 0 0 0 93 23 20

p̂ = 1 27 62 2 27 24 p̂ = 1 30 50 2 13 13

p̂ = 2 66 38 3 66 67 p̂ = 2 50 48 3 44 45

p̂ = 3 7 0 2 7 9 p̂ = 3 5 0 2 5 7

p̂ > 3 0 0 0 0 0 p̂ > 3 15 2 0 15 15
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r = 3, q = 1, 100 simulations:

“Yule-Walker” estimates “OLS” estimates

AIC BIC q AICq combine AIC BIC q AICq combine

p = 0 0 0 0 4 0 p = 0 0 0 0 4 0

p = 1 40 54 5 92 5 p = 1 68 68 5 90 5

p = 2 45 36 74 4 74 p = 2 26 26 74 6 74

p = 3 8 4 21 0 21 p = 3 2 2 21 0 21

p > 3 7 6 0 0 0 p > 3 4 4 0 0 0

Summary

In the case of a regular AR process the “final” criterion has a similar performance as the AIC in the case

of “Yule-Walker” estimates of the covariances. In the case of “OLS” estimates the results of all criteria

are bad but AIC is still best.

In the singular case the “final” criterion is the clear winner.

Summarizing we can say that the “final” criterion performs almost as well as the AIC in the regular

case. In the singular case it outperforms the other estimation procedures and is indeed a good estimation

procedure.



Chapter 6

Structure Theory of GDFMs with
Oscillations

In chapter 2 the latent variables were assumed to be linearly regular stochastic processes. In our con-

ference paper [Deistler et al., 2010b] we discuss what happens if the latent variables have also linearly

singular components, to be more precise we allow the singular components to be harmonic processes.

We will see that in this case the static factors have linearly singular components too and therefore they

will have a singular AR representation (this is only a generic result of course) which has unit roots.

We commence from the observations

yt = ((yNt )t∈Z)N∈N

which can be represented by a sum of the latent variables χt and the idiosyncratic noise ut, which are

orthogonal to each other at any lead and lag

yi,t = χi,t + ui,t

Now the latent variables χt, can be represented by a sum of its linearly regular χrt and its linearly singular

part χst , which are also orthogonal to each other at any lead and lag (Wold decomposition)

χi,t = χri,t + χsi,t

The linearly singular part is assumed to be a harmonic process. This leads us to a modified Assumption

1:

Assumption 1’

1. yNt is a (wide sense) stationary zero mean process for all N ∈ N. Let yNt = yN,rt + yN,st be its
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decomposition in its linearly regular and linearly singular part. Then for all N ∈ N

yNt = yN,rt + yN,st = χN,rt + χN,st + uNt

holds, i.e. yN,st = χN,st , which means that only the latent variables have a linearly singular com-

ponent and thus the idiosyncratic noise is linearly regular.

2. yN,rt , χN,rt , uNt fulfill Assumption 1 and Assumption 2 respectively for all N ∈ N.

3.

χN,st =
h∑
j=1

CNj e
−iλjtrj (6.1)

with CNj ∈ CN×1 and the complex valued one dimensional random variables rj satisfy

• Erj = 0, j = 1, ..., h

• Erj r̄l = 0,∀j 6= l

• λj+1 = −λh−j , rj+1 = r̄h−j and CNj+1 = C̄Nh−j for j = 0, 1, · · · , bh/2− 1c

• |rj | = 1, j = 1, ..., h

Note that harmonic processes are in general non ergodic. Since only a single trajectory is observed the

randomness may be confined to the phases of rj . Thus the normalization |rj | = 1 can be justified.

Assumption 5.
The non zero eigenvalues of CNj+1C

N∗
j+1 + CNh−jC

N∗
h−j diverge for N →∞.

Note that by Assumption 1’ only the latent variables are allowed to have a linearly singular compo-

nent. As the latent variables are characterized by the projection of the observations on the aggregation

space, the random variables rj have to be in the aggregation space, and thus Assumption 5 is necessary.

Of course the theory of the previous chapters can be used for the linearly regular parts of yt and χt
and thus we recall that we generically have a system for χN,rt of the form

f rt = a1f
r
t−1 + ...+ apf

r
t−p + bεt (6.2)

χN,rt = HN
1 f

r
t (6.3)

where HN
1 ∈ RN×r has full rank. Obviously, the linearly singular part χN,st does not have a spectral

density as its spectral distribution has jumps at λj , j = 1, ..., h (and is constant in between).

As the linearly regular and linearly singular parts are orthogonal we have

EχNt χN
′

t = EχN,rt χN,r
′

t + EχN,st χN,s
′

t = HN
1 Ef rt f r

′
t H

N ′
1 +

h∑
j=1

CNj Erj r̄jCN∗j = HNftf
′
tH

N ′ (6.4)
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where ft is a factor process consisting of components and linear combinations of f rt and fst , where

fst =



1 0 . . . . . . 0 1
i 0 . . . . . . 0 −i
0 1 0 . . . . . . 0 1 0
0 i 0 0 −i 0

. . . . .
.

1 1
i −i




r1

...

rh

 (6.5)

Now let us discuss the dynamics of the r dimensional process ft. As the dimensions of the processes

f rt and fst do not have to be equal we decompose

ft = f̃ rt + f̃st (6.6)

according to Wold decomposition. This means that the Hilbert space spanned by ft is the orthogonal

sum of the Hilbert spaces spanned by f̃ rt and f̃st , i.e. Hf (t) = span{fi,s|i = 1, ...r, s ≤ t} = Hf̃r(t) =
span{f̃ ri,s|i = 1, ...r, s ≤ t} ⊕Hf̃s(t) = span{f̃ ri,s|i = 1, ...r, s ≤ t}. Therefore, as f̃st has an autore-

gressive representation with zero innovations process, ft has an autoregressive representation, which can

be seen as follows

ft+1|Hf (t) = f̃ rt+1|Hf (t) + f̃st+1|Hf (t) = f̃ rt+1|Hf̃r (t)⊕Hf̃s (t) + f̃st+1|Hf̃r (t)⊕Hf̃s (t)

= f̃ rt+1|Hf̃r (t) + f̃ rt+1|Hf̃s (t) + f̃st+1|Hf̃r (t) + f̃st+1|Hf̃s (t)

= f̃ rt+1|Hf̃r (t) + f̃st+1|Hf̃s (t) (6.7)

and as the one-step-ahead predictor of f̃ rt+1 and f̃st+1, given data until time t, only depend on a finite past,

the one-step-ahead predictor of ft+1 does so too and thus ft has an autoregressive representation. Note

that in the extreme case, when Eχtχ′t has rank r1 + h, where r1 denotes the dimension of f rt , i.e.

EχNt χN
′

t = [HN
1 , H

N
2 ]

[
Ef rt f r

′
t 0

0 Efst fs
′
t

][
HN ′

1

HN ′
2

]
(6.8)

holds, where [HN
1 , H

N
2 ] ∈ RN×(r1+h) is of full rank, the factor process ft =

[
f rt

fst

]
can be reconstructed

by a linear transformation of the latent variables. In this case we get the whole history of f rt and fst
separately and not a history of only a linear combination of them. Therefore, as fst has an autoregressive

representation with zero innovation process, the process ft has an autoregressive representation of the
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form

ft =

[
f rt

f st

]
= A1ft1 + ...+Ap̃ft−p̃ +

[
bεt

0

]
(6.9)

where the Ai ∈ R(r+h)×(r+h), i = 1, ..., p̃ are block diagonal. Note, that in general rk(Eχtχ′t) = r1 + h

will not hold and thus the AR system will not have the block structure. Nevertheless we always result in

a system of the form

ft = a1ft−1 + ...+ apft−p + νt (6.10)

χNt = HNft (6.11)

where the polynomial a(z) =
∑p

j=1 ajz
j has at least one unit root.



Chapter 7

Mixed Frequency

Traditional (multivariate) time series analysis is designed for time series which appear at each time point

simultaneously. We call that case the single frequency case, which means that all time series appear at

the same (sampling) frequency. Of course, the previous chapters follow exactly this assumption.

In this chapter we are concerned with the case where this assumption is no longer valid. To be more

precise we consider the case of different sampling frequencies and call that case the mixed frequency

case. An example for mixed frequency is a macro economic model, where the GDP and the employment

rate are used. Whereas the GDP appears only every third month, the number of unemployed people is

published every month.

One way to handle this situation is a very brutal one, namely to design a model for the data on the

slowest frequency only. All data which appears more often is thrown away (or summed up if the variable

is a flow variable). We will not discuss this approach in more detail as we want to use as much informa-

tion as possible.

The traditional approach commences from a model for the data at the highest frequency. That means

although not all data is available (observable), a theoretic model at the highest frequency is assumed and

is approximated by the data that is available.

Of course a model at the highest frequency is desirable, as everything can be done with such a model (if

available), such as forecasting and nowcasting. Of course there is a huge literature concerned with this

topic e.g. [Giannone et al., 2008], [Chen and Zadrozny, 1998], [Zadrozny, 1990], [Ghysels et al., 2006],

[Ghysels et al., 2007]. All of the listed papers have somehow an underlying model at the highest fre-

quency and suggest algorithms how to estimate/ reconstruct the model, or explain the slow frequency

variables via the high frequency variables only.
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The model/ theory presented in this chapter is designed for available data only. This is different to

the approaches mentioned above, as we do not present the theoretical model at the highest frequency, but

present a way how to optimally use the “incomplete” data.

Many of the following results followed from the intensive discussions with Manfred Deistler, Brian

Anderson and Weitian Chen.

7.1 Framework

We will restrict ourselves to the two frequency case as a multi frequency situation can be easily adopted.

We denote with yt =

[
yft
yst

]
the N dimensional vector of all variables at time t and it consists of two sub

vectors yft and yst , where yft (fast frequency) is the vector of components which are available for every

time and yst (slow frequency) is observed only every second (even) time point. The following table shows

the setting, where an x means that the variables are observed and a 0 that they are not observed.

t . . . 1 2 3 4 . . .

yft . . . x x x x . . .

yst . . . 0 x 0 x . . .

(yft )t∈Z and (yst )t=2s,s∈Z are (wide sense) stationary processes. That implies that covariances at all

lags are available for yft but only every second covariance of yst is available (defined). Furthermore the

cross covariances between yft and ysk depend only on the difference t− k.

We denote by Hy(t) = span{yi,s|i = 1, ...N, s ≤ t} the Hilbert space spanned by all past and present

variables of yt, where the not observed values of yst (for odd t) are treated as if they are zero and thus

have no additional information.

Furthermore, we here consider linearly regular processes only.

7.2 Wold representation

Before we present our approach we want to discuss the traditional approach shortly:

The Wold representation of the traditional approach would be

yt =
∞∑
j=0

kjζt−j
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where ζt denotes the innovation from t − 1 to t. This is too ambitious for the mixed frequency case

considered here. Thus it is not possible to use the well known one-step-ahead predictor

yt|t−1 =
∞∑
j=1

kjζt−j

as it requires the Hilbert space span{ζs|s ≤ t} which in the mixed frequency case is not “available”. To

illustrate this point we give a small example.

Example 7.2.1. Let yt = a1yt−1 + a2yt−2 + ζt be a theoretical model for the 2 dimensional process yt
whose second component is observed only every second time point. Assume that the matrices a1 and a2

are known, then the “best” one-step-ahead predictor according to Wold representation would be

yt|t−1 = a1yt−1 + a2yt−2 (7.1)

Now the second component of either yt−1 or yt−2 is missing for every t. It is clear that the one-step-

ahead error yt−yt|t−1 according to (7.1) is [a2][,2]yt−2,2+ζt, where [a2][,2] denotes the second column of

a2, for odd t, and [a1][,2]yt−1,2 + ζt for even t. We want to ask the question as to what information is lost

if the second component is not available every second time instance. As the coefficients a1, a2 belong

to the projection of yt onto the space spanned by all components of {yt−1, yt−2} it is clear that the

projection of yt onto the space spanned by {yt−1,1, yt−1,2, yt−2,1} for odd t and onto the space spanned

by {yt−1,1, yt−2,1, yt−2,2} for even t will differ. Hence using the coefficients according to the projection

of the only theoretically available space spanned by all components of {yt−1, yt−2} is not optimal.

The above example shows that a model at the highest frequency is nice to have in mind, but it is

not clear if it is really the “best” for e.g. forecasting. This is the reason why we want to introduce our

approach.

We will construct the Wold representation the same way as in the well known single frequency case:

yt = yt|Hy(t−1) + yt − yt|Hy(t−1)︸ ︷︷ ︸
=:εt

(7.2)

with the difference that Hy(t− 1) is the Hilbert space as defined above, namely consisting of observable

components only, and not the Hilbert space using also the theoretical variables of yst for odd t.

We know that εt is the new information of yt and it can be split into two parts namely into the part spanned

by the information coming from yft , and if t is even, the part spanned by the additional information

coming from yst . Thus, we can decompose the Hilbert space Hεt spanned by the components of εt into
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the orthogonal subspaces H
εft

and H
εf⊥t

(if the latter is not empty):

Hεt = H
εft
⊕H

εf⊥t
(7.3)

where

εft := yft − y
f
t |Hy(t−1) (7.4)

Therefore εf⊥t is the orthogonal complement of H
εft

in the space spanned by εt and is therefore a sub-

space of the space spanned by εst , where εst = yst − yst |Hy(t−1). Summarizing we have

Hy(t) = Hy(t− 1)⊕Hεt = Hy(t− 1)⊕H
εft
⊕H

εf⊥t
(7.5)

This construction ensures that Hf
ε (t) ⊕ Hf⊥

ε (t) = Hy(t) holds, where Hf
ε (t) = span{εfs |s ≤ t} and

Hf⊥
ε (t) = span{εf⊥s |s ≤ t} and note that εf⊥t is zero for odd t. Therefore yt can be written in terms of

εs, s ≤ t, where we have to distinguish between εf,ot and εf,et indicating if t is odd or even.

• yft

– t even: yft = εf,et +ke,f1,1ε
f,o
t−1 + ...+ke,f⊥1,0 εf⊥t +ke,f⊥1,1 0+ke,f⊥1,2 εf⊥t−2 +ke,f⊥1,3 0+ke,f⊥1,4 εf⊥t−4 + ...

– t odd: yft = εf,ot + ko,f1,1ε
f,e
t−1 + ...+ ko,f⊥1,0 0 + ko,f⊥1,1 εf⊥t−1 + ko,f⊥1,2 0 + ko,f⊥1,3 εf⊥t−3 + ko,f⊥1,4 0 + ...

• yst

– t even: yst = ke,f2,0ε
f,e
t +ke,f2,1ε

f,o
t−1+...+ke,f⊥2,0 εf⊥t +ke,f⊥2,1 0+ke,f⊥2,2 εf⊥t−2+ke,f⊥2,3 0+ke,f⊥2,4 εf⊥t−4+

...

where the coefficient matrices are defined in an evident way. It is important to distinguish between

odd and even t as the processes (εft )t∈Z and (εf⊥t )t∈Z are not stationary (as they are defined for all

t ∈ Z). Thus, for example, the coefficients ke,f1,1 and ko,f1,1 do not have to be the same. For yst it is

even more obvious as the coefficients ke,f2,i , i = 0, 1, 2, ... are certainly not zero whereas the coefficients

ko,f2,i , i = 0, 1, 2, ... would be zero (we have not even defined this coefficients as we do not consider yst
for odd t, but it would be the logical extension if we set yst = 0 for odd t).

We result in a representation of yt, depending on t, in terms of its innovations, but note, that (yt)t∈Z,

(εft )t∈Z and (εf⊥t )t∈Z are not stationary. Nevertheless we can use this representation to define a Wold

representation of a blocked process, where all variables are stationary (as regarded at the slow frequency),

which will be explained in the next section.
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7.3 Blocking

Blocking is nothing else than stacking, but only available components. It is a frequently used ap-

proach in control engineering and therefore a huge literature exists which connects the “blocked” and

the “unblocked” systems, see for instance [Colaneri and Longhi, 1995], [Bittanti and De Nicolao, 1993],

[Bittanti et al., 1988]. In our case that means that we stack, e.g. yft , y
s
t and yft+1. Thus we define

Yt+1 :=

 yft
yst

yft+1

 , Et+1 :=

 ε
f,e
t

εf⊥t
εf,ot+1

 (7.6)

Note that Yt+1 and Et+1 are defined only for even t. This construction ensures that the processes

(Yt+1)t=2s,s∈Z and (Et+1)t=2s,s∈Z are stationary. By using the Wold representation of the previous

section we get

Yt+1 =

 yft
yst

yft+1

 =

[ke,f1 (z2)]e [ke,f⊥1 (z2)]e [ke,f1 (z2)]oz2

[ke,f2 (z2)]e [ke,f⊥2 (z2)]e [ke,f2 (z2)]oz2

[ko,f1 (z2)]o [ko,f⊥1 (z2)]o [ko,f1 (z2)]e


 ε

f,e
t

εf⊥t
εf,ot+1

 = K(z2)Et+1 (7.7)

where

[ke,fi (z2)]e =
∞∑
j=0

ke,fi,2jz
2j , i = 1, 2 (7.8)

[ke,fi (z2)]o =
∞∑
j=0

ke,fi,2j+1z
2j , i = 1, 2 (7.9)

[ke,f⊥i (z2)]e =
∞∑
j=0

ke,f⊥i,2j z
2j , i = 1, 2 (7.10)

[ko,f1 (z2)]e =
∞∑
j=0

ko,f1,2jz
2j (7.11)

[ko,f1 (z2)]o =
∞∑
j=0

ko,f1,2j+1z
2j (7.12)

[ko,f⊥1 (z2)]0 =
∞∑
j=0

ko,f⊥1,2j+1z
2j (7.13)

Note that (7.7) is a Wold representation of Yt+1 by construction. Also note that K(0) has a lower block

triangular structure as εf⊥t is not relevant for yft and εf,ot+1 only effects yft+1 of course.
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7.4 Structure Theory

Analogously to the single frequency case we want to present a structure theory for the latent variables

in the mixed frequency case. Let us commence from the N dimensional vector of observations yt and

split this vector into the two sub vectors yft consisting of the components which are available every time

instance of dimension Nf and yst consisting of the components which are available only every second

(even) time instance of dimension N s. Clearly N = Nf +N s holds.

Let us denote with Yt+1 the (2Nf +N s) dimensional blocked vector

Yt+1 :=

 yft
yst

yft+1


This vector can be treated as our former yNt in the previous chapters such that

Yt+1 = Xt+1 + Ut+1 =

 χft
χst

χft+1

+

 uft
ust

uft+1

 (7.14)

where (Yt+1)t=2s,s∈Z, (Xt+1)t=2s,s∈Z and (Ut+1)t=2s,s∈Z fulfill Assumption 1 and Assumption 2 re-

spectively and the spectral density of Yt+1 satisfies the technical Assumption 3. That means if the q

largest eigenvalues of fY diverge, where q is the rank of fX , the latent variables Xt+1 can be identified

by letting 2Nf +N s go to infinity. Note that it is not necessary that Nf and N s diverge.

Thus it is feasible to model the latent variables Xt+1 by using the Wold representation introduced in

the previous section:

Xt+1 =

 χft
χst

χft+1

 =

[ke,f1 (z2)]e [ke,f⊥1 (z2)]e [ke,f1 (z2)]oz2

[ke,f2 (z2)]e [ke,f⊥2 (z2)]e [ke,f2 (z2)]oz2

[ko,f1 (z2)]o [ko,f⊥1 (z2)]o [ko,f1 (z2)]e


 ε

f,e
t

εf⊥t
εf,ot+1

 = K(z2)Et+1 (7.15)

Note that q, the rank of fX , equals qfe + qf⊥ + qfo where qfe , qf⊥ and qfo denote the dimensions of the

processes εf,et , εf⊥t and εf,ot+1 respectively. Also note that qfe = qfo does not have to hold.
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Let

H :=


K0 K1 K2 . . .

K1 K2 K3 . . .

K2 K3 . . .
...

 (7.16)

where K(z2) =
∑∞

j=0Kjz
2j from (7.15), then we have

Xt+1

X̂t+3|t+1

X̂t+5|t+1

...

 =


K0 K1 K2 . . .

K1 K2 K3 . . .

K2 K3 . . .
...




Et+1

Et−1

Et−3

...

 (7.17)

Consequently we can apply procedure presented in chapter 3 to define a state. If the blocked process

Xt+1 has a rational spectrum, K(z2) is a rational spectral factor, and therefore H has finite rank. At this

point we can again introduce the superscriptN forXN
t+1, as we want to point out, that under the standard

assumptions of the previous chapters, we can find again a state space representation which is independent

ofN from anN0 onwards. Note that the following structure theory has been already presented in chapter

3 for the single frequency case, and is repeated here for the sake of completeness. Let n < ∞ be the

rank of H ∞ for N = ∞, such that Assumption 4 is fulfilled. Then from some N0 onwards H N has

rank n. Let SN0 be the selector matrix which selects the first n independent rows of H N0 then we can

define a state by

xN0
t+1 := SN0H N0


Et+1

Et−1

Et−3

...


︸ ︷︷ ︸

=:E−t+1

= SN0


KN0

0 KN0
1 KN0

2 . . .

KN0
1 KN0

2 KN0
3 . . .

KN0
2 KN0

3 . . .
...




Et+1

Et−1

Et−3

...

 = Hα


Et+1

Et−1

Et−3

...

 (7.18)

Clearly the basis Hα := SN0H N0 for the rows of H N0 is also a basis for the rows of H N with

N ≥ N0. Therefore the state can be defined independently from the superscript N .

We want to recall, that we do not require that N s, the number of variables of χst , and Nf , the number of

variables of χft , tend to infinity. For example if χst,i, i.e the i-th component of χst , has further information

for χft+1 (for Nf → ∞ the number of components of χft+1, which are affected, has to tend to infinity;

for the sake of simplicity we assume that all components are affected), the divergence of the eigenvalue

of fX , corresponding to the associated component of εf⊥t can be guaranteed for Nf → ∞ (whereas N s
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does not have to tend to infinity).

xt+1 = SN0H N0E−t+1 = SN0


KN0

1 KN0
2 . . .

KN0
2 KN0

3 . . .

KN0
3 . . .
...


︸ ︷︷ ︸

=:H̃ N0


Et−1

Et−3

...

+ SN0


KN0

0

KN0
1

KN0
2
...

Et+1 (7.19)

Define F̃N0 by expressing H̃ N
0 in terms of the basis Hα (as H̃ N

0 is a submatrix of H N
0 )

H N0 = F̃N0Hα (7.20)

then we can define F independently of N

F := SN0F̃N0 (7.21)

with the consequence that

xt+1 = SN0H N0E−t+1 = SN0


KN0

1 KN0
2 . . .

KN0
2 KN0

3 . . .

KN0
3 . . .
...



Et−1

Et−3

...

+ SN0


KN0

0

KN0
1

KN0
2
...

Et+1 (7.22)

= SN0F̃N0 Hα


Et−1

Et−3

...


︸ ︷︷ ︸

xt−1

+SN0


KN0

0

KN0
1

KN0
2
...

Et+1Et+1 = Fxt−1 + SN0


KN0

0

KN0
1

KN0
2
...

Et+1 = Fxt−1 +GEt+1

(7.23)

as G := SN0


KN0

0

KN0
1

KN0
2
...

 can be chosen independently from N too. Defining HN0 by expressing the first

row block of H N0 in terms of Hα finishes the procedure.[
KN0

0 KN0
1 KN0

2 . . .
]

= HN0Hα (7.24)
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Therefore we result in

xt+1 = Fxt−1 +GEt+1

XN
t+1 =

χ
f,N
t

χs,Nt
χf,Nt+1

 = HNxt+1

7.5 Forecasting

Here we want to present the optimal forecasting procedure for our approach. A nowcasting procedure,

see e.g. [Giannone et al., 2008], would be also desirable but might be very difficult, as our approach uses

the space spanned by all observable components only.

In the previous section we have presented the state space construction for the blocked process

X̄N
t+1 =

χ
f,N
t

χs,Nt
χf,Nt+1

 (7.25)

x̄t+1 = F̄ x̄t−1 + ḠĒt+1 (7.26)

X̄N
t+1 =

χ
f,N
t

χs,Nt
χf,Nt+1

 = H̄N x̄t+1, t = 2s, s ∈ Z (7.27)

where Ēt+1 =

 ε
f,e
t

εf⊥t
εf,ot+1

. Thus it is very easy to build the best forecast for XN
t+3 having information up to

time t+ 1:
ˆ̄XN
t+3|t+1 = H̄N F̄ x̄t+1 (7.28)

Now as X̄N
t+1 =

χ
f,N
t

χs,Nt
χf,Nt+1

 it is clear that χf,Nt+3 could be forecasted better if information were available up

to time t + 2. Unfortunately, the described procedure cannot adopt to the new information and build a
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new/ better forecast χf,Nt+3|t+2. Thus we repeat the whole procedure described above for the vector

X̃N
t =

χ
f,N
t−1

χf,Nt
χs,Nt

 (7.29)

and obtain a second system

x̃t+2 = F̃ x̃t + G̃Ẽt (7.30)

X̃N
t =

χ
f,N
t−1

χf,Nt
χs,Nt

 = H̃N x̃t, t = 2s, s ∈ Z (7.31)

with Ẽt =

ε
f,o
t−1

εf,et
εf⊥t

. Thus

X̃N
t+2|t = H̃N F̃ x̃t (7.32)

Therefore, (7.28) and (7.32) can be used for the best forecasts

χ̂t+1|t (7.33)

and

χ̂t+2|t (7.34)

irrespective if the forecast is for the fast or the slow frequency variables and if t is odd or even.

7.6 Simulation

Here we want to give a comparison between our method and the naive method described at the beginning

of this chapter. We start with simulating a 2 dimensional zero mean stable AR(2) process

yt = a1yt−1 + a2yt−2 + εt

where ai ∈ R2×2, and εt are the white-noise innovations and Eεtε′t has full rank. We denote by Y the

(T × 2) sample of the process yt where T is the sample size and split the sample into an insample matrix

Yin and an out-of-sample matrix Yout of dimensions (Tin × 2) and (Tout × 2). Next we set the second

component of yt equal to zero for odd t and result in the modified sample Ỹ (again we split it in the

insample and out-of-sample matrices). We compare three (four) approaches:
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1. We use the sample Yin (which is not available in practice) to estimate the coefficients a1, a2. Next

we use the whole sample Y to get the one-step-ahead predictors (in- and out-of-sample). After

that the predictors for the second component for odd t are set equal to zero.

2. We stack the insample matrix Ỹin to two three dimensional matrices according to (7.25), (7.29)

and estimate for both samples an AR(1) system. Afterwards the one-step-ahead predictors of both

models using Ỹ are calculated. Of course we take always the best one-step-ahead forecasts which

are available, i.e. the predictor for odd t is taken from the model for (7.29) whereas for even t the

predictor is taken from the model for (7.25).

3. We estimate the coefficients a1, a2

(a) by using Ỹin, according to [Chen and Zadrozny, 1998], i.e. the columns of Γ̂p which have

zeros (by construction) are replaced by other columns until we have a square non singular

matrix.

(b) by using Ỹin and forget about the problem that certain covariances are zero.

After that the one-step-ahead predictors are calculated by using Ỹ . In the end all predictors corre-

sponding to odd t are set equal to zero.

All covariances are estimated by

γ̂j,[k,l] = 1/min(Tk, Tl)
T−j∑
t=1

yt+j,kyt,l, j ≥ 0

γ̂j,[k,l] = γ̂−j,[l,k], j < 0

where γ̂j,[k,l] denotes the [k, l] entry of γ̂j which is an estimate of γj = Eyty′t−j , yt,k denotes the k th

component of yt and Tk is the number of non zero (available) observations of yt,k, t = 1, ..., Tin.

The methods are compared by calculating the Frobenius norm of the sample covariances of the

insample and out-of-sample one-step-ahead prediction errors corresponding to the four methods

‖Σin‖F , ‖Σout‖F

and a multiple R2 statistic, by regressing the estimated ˆ̃Yin onto Ỹin and ˆ̃Yout onto Ỹout:

R2
in =

tr( ˆ̃Y ′inỸin[Ỹ ′inỸin]−1Ỹ ′in
ˆ̃Yin)

tr( ˆ̃Y ′in
ˆ̃Yin)

R2
out =

tr( ˆ̃Y ′outỸout[Ỹ
′
outỸout]

−1Ỹ ′out
ˆ̃Yout)

tr( ˆ̃Y ′out
ˆ̃Yout)
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The insample size Tin is set to 150, the out-of-sample size Tout is set to 100 and we simulate 100

processes with arbitrary coefficient matrices a1, a2 (subject to I − a1z − a2z
2 is stable). The following

table shows the mean and standard deviation of the statistics of the 100 simulations

‖Σin‖F , Tin = 150
all wold high freq. a high freq. b

mean 0.322 0.347 0.798 0.549

sd 0.30 0.29 0.70 0.59

‖R2
in‖F , Tin = 150

all wold high freq. a high freq. b

mean 0.775 0.745 0.671 0.664

sd 0.22 0.22 0.25 0.26

‖Σout‖F , Tout = 100
all wold high freq. a high freq. b

mean 0.350 0.399 0.857 0.625

sd 0.33 0.34 0.77 0.72

‖R2
out‖F , Tout = 100

all wold high freq. a high freq. b

mean 0.768 0.725 0.664 0.654

sd 0.23 0.25 0.26 0.27

Of course the method, using all data (although this can never happen in practice), performs best, but

our approach outperforms the naive method, which is very promising for future research.

7.7 Summary

We have introduced an approach for modeling mixed frequency data. We have restricted ourselves to the

two frequency case, but we claim that this approach can be extended to the multi frequency case quite

easily. It turns out that we have to be very careful about distinguishing between odd and even time points,

i.e. if all data is available or not, as the coefficients in our Wold representation depend on this distinction.

Especially the driving white noise, which is not stationary if considered for the “unblocked” system

(but is stationary if considered for the “blocked” system), depends on whether t is odd or even. As this

thesis is concerned with Generalized Dynamic Factor Models we have shown how this procedure can be
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embedded in the theory of GDFMs. Furthermore we have presented the optimal forecasting procedure

in our framework, by using two models which differ by blocking different components. Finally we have

compared this method to the naive method and it seems as if our approach is worth having a closer look

at it.



Chapter 8

Summary and Outlook

Summary

The thesis deals with high dimensional time series which are modeled as Generalized Dynamic Factor

Models. The basic assumption of factor models is, that the observations can be split into two orthog-

onal summands, the latent variables and the idiosyncratic noise. Generalized Dynamic Factor Mod-

els have been introduced in [Forni and Lippi, 2001], [Forni et al., 2000] and [Stock and Watson, 2002a],

[Stock and Watson, 2002b] and are used by many central banks, e.g. ECB and FED, for forecasting

macro economic time series.

Thus the first main chapter in this thesis presents the major results of the paper [Forni and Lippi, 2001]

which establishes the theoretical background and the characterization of this model class.

The following chapter presents what we call “Structure Theory”, i.e. commencing from the (theoretically

available) second moments of the latent variables we present a (the most general) possible procedure how

to model the latent variables. This structure theory uses a state space system where the minimal state

has a (singular) AR(1) representation. As the minimal state does not have to be a minimal static factor, a

generic result is presented, in which the minimal static factor can be modeled as a singular autoregression.

Consequently the next chapter deals with the theory of singular autoregressions, which have been poorly

discussed in the existing literature. We have presented an intensive study of the Yule-Walker equations

for these models, which do not have to have a unique solution opposed to the regular case. Therefore we

have focused on a special solution of the Yule-Walker equations, namely the minimum norm solution.

We have seen that if the underlying process is purely linearly regular, the minimum norm solution yields

a stable polynomial. If the underlying stationary process is the sum of a linearly regular and a linearly

singular process the minimum norm solution will yield in an autoregressive polynomial which has no
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zeros inside but has zeros both outside and on the unit circle. Furthermore it has the minimal number of

unit roots among all solutions of the Yule-Walker equations and the linearly regular part of the underlying

stationary process corresponds always to the transfer function and is given by f rt = a(z)−1bεt. Beside

the minimum norm solution we also present two different canonical representatives, as the minimum

norm solution does not have to result in a left coprime pair [a(z), b].

In the next chapter we have presented an estimation procedure for the minimum norm solution. It turns

out, that the estimated AR polynomial is, analogously to the regular case, always stable, even if a linearly

singular component is present. A simulation shows that the trivial way of estimating the AR coefficients

(namely inverting the corresponding covariance matrix as long as it is numerically possible) is possible

but the estimated coefficients seem to have a very large variance and it is not clear what happens for

T → ∞ (where T is the sample size). Furthermore, the simulation shows that the forecasting perfor-

mances are almost the same such that no winner can be identified. We have also presented possible ways

to estimate the order of a singular AR process, as the well known Information Criteria such as AIC and

BIC need a regular covariance matrix of the driving white noise. A consistent estimator is presented but

as the practical value of this procedure is not worth mentioning another estimator is introduced. It is

shown that our suggested estimating procedure produces comparable results to AIC in the regular case

and outperforms the AIC in the singular case.

Next it is shown, that in the case where the latent variables have linearly singular components (we

restricted ourselves to harmonic processes) the corresponding minimal static factor has such linearly sin-

gular components too and thus the corresponding autoregressive polynomial has a unit root. This case

can be handled of course with our structure theory as we also discussed singular AR processes with lin-

early singular components in the previous chapters.

The last chapter deals with the mixed frequency problem. This scenario appears if multivariate time

series are modeled where the variables appear with different sampling frequencies. We present a Wold

representation for this case and use this representation to present a mini-phase spectral factor of a blocked

(stationary) process. Furthermore this theory is embedded in the context of GDFMs such that the latent

variables can be modeled according to our mixed frequency procedure. Finally a small simulation com-

pares our approach to the naive method where our method seems to be clearly advantageous to the other

one.

Outlook

There are still a number of open questions concerning estimation procedures. Our idea, to estimate the

needed coefficient matrices, is the following:
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1. Denoise the data, i.e. apply PCA or dynamic PCA to obtain the latent variables.

2. Using the result from the first step and estimate a singular autoregression polynomial for the min-

imal static factor (which is obtained by a static linear transformation of the latent variables).

The problem is, that the first step is done without taking into account the dynamics of the minimal static

factor. Thus a recursive procedure might be a logical extension of our existing one.

Furthermore the estimation of s, the rank of the covariance matrix Γp, is not solved. If a true singu-

lar autoregressive process is observed, the suggested procedure is ok but not really exciting. Once the

singular AR process is not observed directly, but has to be estimated in a first step (as in the theory of

GDFMs), this problem is still open.

Of course the last chapter of this thesis concerning the mixed frequency problem is only a first step

for handling this situation. It is not clear up to now how to model the variables at their finest rates (to

unblock the system again), i.e. the fast variables at the fast frequency and the slow variables at the slow

frequency or maybe even at the high frequency. Consequently the interpolation, i.e. nowcasting, of the

slow variables is still open, which is a very interesting question as a nowcast of the GDP is very valuable.

Last but not least a generic zeroless result analogous to the single frequency case would be desirable too.



Chapter 9

Useful Preliminary Work

9.1 Polynomial Matrices

Here we want to summarize some properties of polynomial matrices

a(z) =
p∑
j=0

ajz
j (9.1)

where aj ∈ Rn×m.

Definition 9.1.1. (unimodular). An (n×n) polynomial matrix a(z) is called unimodular if its determi-

nant is a constant unequal to zero.

Definition 9.1.2. (coprime). Two polynomial matrices [a(z), b(z)] ([a(z)′, b(z)′]′) are called left (right)

coprime if the matrix [a(z), b(z)] ([a(z)′, b(z)′]′) has full row (column) rank for all z ∈ C.

Lemma 9.1.3. For the polynomial matrices [a(z), b(z)] (where det(a(z)) 6≡ 0) the following statements

are equivalent:

(i) [a(z), b(z)] is left coprime.

(ii) The identity matrix I is a greatest left divisor of [a(z), b(z)].

(iii) There exist polynomial matrices g, h such that

ag + bh = I (9.2)

holds.

(iv) The degree of det(a) is minimal among all matrices [ā(z), b̄(z)] with ā−1b̄ = a−1b.
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(v) [a(z), b(z)] has full rank for all z ∈ C.

Proof. (Lemma 9.1.3.) See Lemma 2.2.1 page 40 in [Hannan and Deistler, 1988].

Definition 9.1.4. (rowreduced). An (n ×m) polynomial matrix a(z) is called rowreduced (columnre-

duced) if its row (column) end matrix is of full rank. The i-th row (column) of the row (column) end

matrix is the i-th row (column) of the coefficient matrix of a(z), aj say, belonging to the maximal degree

j of the entries of the i-th row (column) of a(z).

9.2 Rational Transfer Functions

Rational transfer functions play an important role in many areas, especially in electrical engineering,

control theory and in time series analysis. As a rational transfer function can be described in different

ways we present here the most important ones and some properties and definitions of rational functions.

9.2.1 State Space Systems

The theory of state space systems is an important theory for many areas and therefore well discussed.

Here we will present only a few definitions and theorems which are useful for our structure theory. A

general form of a state space model is

x̃t+1 = Ãx̃t + et (9.3)

yt = C̃x̃t + ut (9.4)

where Ã ∈ Rñ×ñ, C̃ ∈ RN×ñ, yt is an N dimensional vector of observed outputs, x̃t denotes the ñ

dimensional state and et and ut are white noise vector processes of dimensions ñ and N respectively.

Note that et and ut do not have to be uncorrelated at the same time points but have to be uncorrelated for

different time points.

In [Hannan and Deistler, 1988] it is shown that a stable state space system (9.3), (9.4) (stable means that

the largest eigenvalue of A is smaller than one in modulus) can always be formulated as [A,B,C,D]
state space system

xt+1 = Axt +Bεt (9.5)

yt = Cxt +Dεt (9.6)

where A ∈ Rñ×ñ, B ∈ Rñ×N , C ∈ RN×ñ, D ∈ RN×N , xt denotes an ñ dimensional state and εt
denotes an N dimensional white noise process which is also the one-step-ahead prediction error, i.e. it

is the white noise process that drives the observed process yt.
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In both representations (9.3), (9.4) and (9.5), (9.6) it is assumed that the state collects the whole in-

formation from ys, s < t which is useful for the present and future observations ys, s ≥ t. These repre-

sentations and their properties are well discussed in [Kailath, 1980] and [Hannan and Deistler, 1988] for

instance.

In our structure theory we are using [F,G,H] state space systems of the form

xt+1 = Fxt +Gεt+1 (9.7)

yt = Hxt (9.8)

where F ∈ Rn×n, G ∈ Rn×q, H ∈ RN×n, xt denotes an n dimensional state and εt is a white noise

process of dimension q. Here, contrary to (9.5), (9.6), xt collects the whole information from ys, s ≤ t

which is useful for the present and future observations ys, s ≥ t. In the following we will discuss the

properties of (9.7), (9.8) which will turn out to be, not surprisingly, almost the same as the properties of

(9.5), (9.6).

Although the terminologies of observability and reachability are usually defined for [A,B,C,D] sys-

tems (9.7), (9.8) (see [Hannan and Deistler, 1988], [Kailath, 1980]) we will see in the following that all

results can be adopted for our [F,G,H] systems (9.7), (9.8).

Definition 9.2.1. (observable). A system (9.7), (9.8) is called observable if the matrix

O =


H

HF
...

HFn−1

 (9.9)

has full column rank n.

Therefore observability means that in the absence of noise we can determine the initial value of x0

from yt, t = 0, ..., n− 1.

Definition 9.2.2. (reachable). A system (9.7), (9.8) is called reachable if the matrix

R = [G,FG, ..., Fn−1G] (9.10)

has full column rank n.
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Using (9.7) we observe that

xt+k = [G,FG, ..., F k−1G]


εt+k
...

εt+1

+ F kxt (9.11)

holds. Therefore, for k ≥ n, reachability means that we can reach any state xt+k for given initial value

xt if the innovations εt+i, i = 1, ..., k are under our control.

Theorem 9.2.3. The reachability matrix R = [G,FG, ..., Fn−1G] is of full rank if and only if [λI−F,G]
has full rank for all λ ∈ C.

Proof. (Theorem 9.2.3.) See Theorems 2.4-8. on page 135 and 2.4-9. on page 136 in [Kailath, 1980].

If reachability does not hold one is often interested in certain eigenvalues of F .

Definition 9.2.4. (reachable mode). Let λ be an eigenvalue of F , then λ is a reachable mode of the pair

[F,G] if the matrix [λI − F,G] has full (row) rank. Otherwise λ is called an unreachable mode.

Definition 9.2.5. (minimal). A system (9.7), (9.8) is called minimal if it is observable and reachable.

Note that the definitions of reachability and observability for (9.7), (9.8) are the same as the defini-

tions for a system (9.5), (9.6) by taking into account the different indexing and meaning of the state.

It is worth noting that the dimensions ñ and n of the minimal states of the state space representations

(9.5), (9.6) and (9.7), (9.8) are not the same.

Let us look at a simple example to illustrate the difference between the systems (9.7), (9.8) and (9.5),

(9.6).

Example 9.2.6. Let yt = εt + εt−1 be an MA(1) where yt and εt are univariate processes. A minimal

[F,G,H] state space system would be

xt+1 =

[
εt+1

εt

]
=

[
0 0
1 0

][
εt

εt−1

]
+

[
1
0

]
εt+1 (9.12)

yt = [1, 1]xt (9.13)

whereas a minimal [A,B,C,D] state space system would be

xt = εt−1 = 0xt−1 + 1εt−1 (9.14)

yt = 1xt + 1εt (9.15)

Which shows that the dimensions of the states of the different systems differ.
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9.2.2 Zeros and Poles

Let w(z) be an (N × q), rational function of rank k ≤ min(N, q). It is well known (see for instance

[Hannan and Deistler, 1988] page 53) that the (finite) zeros and poles of w(z) can be defined by its

Smith-McMillan form Λ(z)
w(z) = u(z)Λ(z)v(z) (9.16)

where u(z) and v(z) are unimodular matrices of dimension (N ×N) and (q× q) respectively, and Λ(z)
is of dimension (N × q) and has zeros everywhere except in the diagonal of its upper (k×k) sub matrix.

The entries of this diagonal matrix are of the form

Λi,i = ni/di

where ni and di are relatively prime, ni divides ni+1 and di+1 divides di for i = 1, ..., k− 1. The matrix

Λ(z) is unique, whereas u(z) and v(z) are not. The zeros and poles of w(z) are then defined as the zeros

of the nis and dis respectively.

The following lemma gives a nice characterization of the zeros of w(z) using its representation as a

minimal state space system, which can be found in [Kailath, 1980] page 448.

Lemma 9.2.7. Let w(z) be an (N × q) rational transfer function such that yt = w(z)εt holds, and

let (9.7), (9.8) be a minimal state space system for yt with w(z) = H[I − Fz]−1G, then the matrices[
I − Fz −G
H 0

]
and

[
I 0
0 c(z)

]
, where c(z) is the numerator matrix of a right coprime matrix frac-

tion description c(z), d(z) of w(z) = c(z)d−1(z), where c(z) is of dimension (N × q) and d(z) is of

dimension (q × q), have the same Smith-Mc Millan form, i.e. they have the same (finite) zeros.

Proof. (Lemma 9.2.7.)
By definition we have

w(z) = c(z)d−1(z) = H[I − Fz]−1G

with

[
c(z)
d(z)

]
right coprime, and define k(z) = [I−Fz]−1G = c̃(z)d̃−1(z) with c̃(z), d̃(z) right coprime

such that c(z) = Hc̃(z) holds. Note that a full rank condition on H is not needed. By Lemma 9.1.3.(iii)

we know that there exist polynomial matrices X(z), Y (z), X̄(z), Ȳ (z) of dimensions (n × n), (q ×
n), (q × n) and (q × q) such that

[I − Fz]X(z) +GY (z) = In (9.17)

X̄(z)c̃(z) + Ȳ (z)d̃(z) = Iq (9.18)
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hold. As [I − Fz]c̃(z)−Gd̃(z) = 0 holds too we have[
I − Fz −G
X̄(z) Ȳ (z)

][
X(z) c̃(z)
−Y (z) d̃(z)

]
=

[
In 0
−Q(z) Iq

]
(9.19)

where Q(z) = −X̄(z)X(z) + Ȳ (z)Y (z). As the two square block matrices on the left hand side of

(9.19) are polynomial they are unimodular as the matrix on the right hand side of (9.19) is unimodular.

Thus we have[
In − Fz −G
H 0

][
X(z) c̃(z)
−Y (z) d̃(z)

]
=

[
In 0

HX(z) Hc̃(z)

]
=

[
In 0

HX(z) c(z)

]
(9.20)

As matrices which are related by a multiplication of a unimodular matrix have the same Smith-Mc Millan

form, the matrices

[
In 0

HX(z) c(z)

]
and

[
In − Fz −G
H 0

]
have the same Smith-Mc Millan form. As

[
In 0

−HX(z) IN

][
In 0

HX(z) c(z)

]
=

[
In 0
0 c(z)

]

holds, and the first matrix on the left hand side of the equation above is unimodular, the result follows.

9.2.3 McMillan degree

The McMillan degree is an important concept in the theory of linear systems. It is on the one hand an

indicator of the dynamics of a system and on the other hand it links a lot of properties. We will use this

concept for proper rational functions only.

Definition 9.2.8. (proper rational function). A rational transfer function matrix w̃(z) is said to be

proper if

lim
z→∞

w̃(z) <∞

and strictly proper if

lim
z→∞

w̃(z) = 0

Definition 9.2.9. (McMillan degree). Let w̃(z) be a proper rational function and Λ(z) its Smith-

McMillan form from (9.16), then the McMillan degree is the sum of the degrees of the denominator

polynomials of Λ(z).

The concept can be extended to non proper rational functions too, see [Kailath, 1980] page 466.

In our framework we always use a rational transfer function w(z) which is causal, i.e. has a power
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series representation within and on the unit circle w(z) =
∑∞

j=0wjz
j , and is therefore not proper. Thus

we define a rational strictly proper function w̃(z) which stands in a one-to-one relation with w(z)

w̃(z) = w(z−1)z−1 =
∞∑
j=0

wjz
−j−1 (9.21)

The interesting link for our structure theory is the following. Given a rational causal transfer function

w(z) then the McMillan degree of w̃(z) = w(z−1)z−1, n say, equals the dimension of a minimal state

of an [F,G,H] state space system of w(z) (see also Theorem 3.2.2 (iii)).

Note that w(z) and w̃(z) have in general different McMillan degrees.

Example 9.2.10. Let w(z) = 1 be a trivial transfer function which has McMillan degree 0, correspond-

ing to yt = εt. The corresponding w̃(z) = w(z−1)z−1 = z−1 has McMillan degree 1. And a minimal

[F,G,H] state space system for yt is of order 1.

xt+1 = 0xt + 1εt+1

yt = 1xt (9.22)
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