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Content-Aware Point Cloud Simplification
of Natural Scenes

Reuma Arav , Sagi Filin , and Norbert Pfeifer

Abstract— Laser scanning technology is becoming ubiquitous
in studies involving 3-D characterizations of natural scenes, e.g.,
for geomorphological or archeological interpretations. Setting the
point density in such scanning campaigns is usually dictated by
the objects of interest within the site yet is applied to the entire
scene. Such campaigns result in large data volumes, which are
difficult to analyze and where the objects of interest may be
hidden in the redundant data. To reduce these excessive vol-
umes, existing simplification strategies maintain smoothness and
preserve discontinuities in the point cloud but disregard the need
to preserve detail at the regions of interest (ROIs). To address
that, this article proposes a new, context-aware, subsampling
approach that retains the high resolution of objects of interest
while reducing the data load of less important regions. To do
so, we identify the ROI by means of visual saliency measures
and reduce the data volume only at the nonsalient regions.
To facilitate progressive subsampling, the reduction is based on
a hierarchical data structure that is surficial in nature. In this
way, the retained representative points describe the underlying
surface rather than an interpolation of it. We demonstrate our
proposed model on datasets originating from different scanners
that feature a variety of scenes. We compare our results to three
common simplification approaches. Our results show a reduced
point cloud that is similar to the original and allows analysis of
ROI at the required point resolution, regardless of the level of
simplification.

Index Terms— Ball tree, point cloud, reduction, simplification,
subsampling, visual saliency.

I. INTRODUCTION

LASER scanned 3-D point clouds have become an invalu-
able ingredient in support of a variety of applications,

including urban planning, archeology, cultural heritage, ecol-
ogy, and geomorphology (e.g., [1], [2], [3], [4], [5], [6],
[7], [8]). The eventual utilization of the 3-D clouds dictates
the point density during acquisition and is then applied to
the entire scene. As an example, to extract buildings within
urban regions, Guo et al. [9] used scans with up to 40-pts/m2

density, though only the building boundaries benefit from such
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a resolution. A similar density of 40 pts/m2 was also set
to scan and analyze rockfall activity [5], and a density of
2000 pts/m2 was applied to monitor paleolithic archeological
excavations [4]. Valuable as such densities may be for the
entities of interest, and in natural scenes, much of the recorded
data relates to the surrounding surface rather than the objects
of interest. The outcome is an inflated data volume that
makes downstream applications, such as registration, change
detection, or surface reconstruction, difficult and unmanage-
able [10], [11]. Moreover, the redundancy of the data may
also hide the regions of interest (ROIs) at certain scale levels.

To make processing accessible, it is customary to first
simplify the data by reducing its volume. In that respect,
mesh-based methods were initially proposed. Following the
construction of an irregular mesh, redundant cells were
removed according to a predefined criterion. As an example,
Luebke et al. [12] used mesh compression to simplify the
point cloud. In [13], a group of triangles was selected to
be simplified based on the angle between them. The authors
then iteratively simplified the selected group by recomputing a
Delauney triangulation under specific constraints (e.g., triangle
area, angle between neighboring triangles) and then rechose
the triangles. In [14], a Poisson disk was proposed to sample
points on the triangles. However, as noted in [15] and [16],
mesh-based approaches come with high computational cost for
the initial mesh construction, especially in large point clouds.
Moreover, the quality of the simplification relies heavily on
the initial mesh, which usually requires further tuning.

To alleviate the need for computationally intensive pre-
processing, direct approaches suggest working on the raw data.
Common approaches divide the point cloud into uniform spa-
tial cells and sample the data so that only a single point is left
within each one [17], [18], [19]. This spatial uniformity does
not correspond to the underlying surface features and leads to
loss of vital details and to a wrongful depiction of the scene
(see Fig. 1). To remove redundant points while maintaining
important features, researchers turn to study either shape- or
point-based simplification methods. Shape-based approaches
follow the notion that some structures can be simplified by
resampling points using an explicit equation of their paramet-
ric form, based on different reduction schemes. As an example,
in [20], a quadtree data structure was employed so that points
that are part of a plane were reduced by keeping a single
child node for each parent. In [21], only points that define
a “concave hull” of a plane were retained. Lin et al. [22]
resampled points using a fit plane equation to the original
points. Zhang et al. [16] extended the resampling process to

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1785-6238
https://orcid.org/0000-0001-9107-3288
https://orcid.org/0000-0002-2348-7929


5704712 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 1. Demonstrative application of a common point cloud reduction
algorithm using different radii (here using [19]). As the downsampling radius
reaches 0.05 m, the entities that were the focus of the scan disappear.

include simplification rules for cylinders and spheres. Still,
such approaches require special adaptation to natural scenes,
as parametric objects are uncommon there.

Achieving generality, direct point-based approaches have
aimed to reduce points according to a definition of their impor-
tance. Leal et al. [10] proposed to evaluate the importance of
each point according to its curvature. High curvature points
were retained, while the rest were subsampled so as to achieve
a minimal distance between the subsampled cluster points and
the original cloud. Li et al. [23] also defined high curvature
points as important. The authors computed the curvature val-
ues by differentiating between a point’s normal and that of its
surroundings. Ji et al. [15] evaluated a point’s importance by
a set of geometric features, such as normal vector difference,
projection distance, and spatial distance. Important points
were retained, while unimportant ones were reduced using
an octree data structure. Gong et al. [24] kept feature points
defined as an edge- or high-curvature-related points, while
nonfeature points were resampled over a Delaunay triangu-
lation. Entropy was also used for evaluating point importance.
Xuan et al. [25] computed the entropy of the angles between
neighborhood normals and a locally fit plane. The higher
the entropy, the more important the point. The simplification
stage was iterative: at each iteration, the least important
point was removed, the neighborhoods were updated, and
the importance was recomputed. The simplification terminated
when the specified number of points in the cloud was reached.
In [11] and [26], the point clouds were clustered at first, and
then, the entropy of each cluster’s curvature was estimated.
Only points with entropy higher than that of the cluster were
kept.

While existing methods focus on maintaining key fea-
tures, they do not consider the context of the acquired point
cloud. Therefore, the reduction is also applied to ROIs, even

when they are scanned in higher detail for further analysis
(c.f. Fig. 1). In this article, we propose a content-aware
solution to the point simplification problem. Inspired by the
human visual system, which works as a filter to allocate more
attention to pertinent regions, we utilize visual saliency to
maintain ROIs, while we simplify others. This is carried out by
using a hierarchical proximity strategy that captures the actual
distribution of the points in 3-D space. The resulting simplifi-
cation process focuses on important regions while promising
a reduction that is geometrically more similar to the original
one. We demonstrate the applicability of the proposed method
on four different datasets acquired by two types of laser
scanning platforms. We show that the proposed saliency-based
simplification produces a simplified cloud that has similar
geometric properties as the original one. The reduced point
cloud not only maintains the geometric characteristics of the
surface but also highlights regions with high visual attention
while reducing others. In this way, areas of interest that may
have been hidden by the excessive point data are coming to
light.

II. METHODS

Motivated by theories associated with visual attention, our
simplification model is governed by the detection of salient
regions. Our objective is to preserve the density therein
and downsample the rest of the point cloud. To facilitate
progressive subsampling, we introduce a distance-driven data-
aware hierarchical structure, from which points are sampled.
As a consequence, the simplification process is partitioned
into two main parts: 1) the evaluation of saliency, which
is based on geometric surface features (Section II-A), and
2) the downsampling phase, which is based on a designated
data structure we propose (Section II-B) The model was
developed and implemented in Python 3.8 and is openly
available online [27], except for certain parts that require
third-party software (details given in the following).

A. Surface Features and Saliency Estimation

In natural scenes, the entities of interest are embedded
within the topography. They may exhibit a sharp transition in
reference to the surrounding surface, e.g., gullies or crevasses,
or transition smoothly (such as bulbous rocks or mounds),
making the definition of their edge vague (c.f. [28], [29], [30]
for further discussion of vagueness). To trace such embedded
entities, the use of first-order features, which essentially seeks
strong curvature values, is likely to fail with the latter class.
The utilization of second-order features, which seeks strong
changes in curvature values, may help identify variations
around smoother object-to-background transitions. However,
it is likely to highlight only boundary points rather than the
object itself. Therefore, first-order methods are insufficiently
sensitive, and second-order ones may yield partial results.

Our aim here is to focus and preserve the entities themselves
rather than their boundary. To highlight them, we consider the
entities salient with respect to their surrounding and search
for geometrical surface features that can trace these entities
in their entirety. To do so, we deviate from the traditional
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Fig. 2. Saliency computation of a continuous surface. The saliency of the
center point in each neighborhood is being estimated. In neighborhood (a),
normals and curvature are approximately the same leading to nonsalient center
point; in neighborhood (b), the normals are different, but curvature is similar,
leading to a higher saliency value. (c) Both normals and curvature differ from
their neighborhood—highest saliency value is reached.

detection scheme. Assuming that pertinent regions differ from
their surroundings, we follow the neurological center-surround
principle, which asserts that neurons in the retina are more
sensitive to regions that stand out from their surroundings [31],
[32], [33]. Accordingly, a center-surround operator, which
measures the deviation between a point and its surrounding,
is being used. As the surface is continuous and smooth, the
change is unlikely to occur within the immediate neighborhood
of a point, but rather in reference to farther regions [34].
Therefore, we utilize a weighting function that assigns points
near the center with lower weights, while higher values are
given to those of the surrounding regions. The assignment
of the weights is dictated by a Gaussian-form-based radial
function whose center is at ρ (minimal object size) and
σ controls the breadth of the surrounding

Wi j(xi − xj) = 1

σ
√

2π
e

− 1
2

( ||xi −x j ||2−ρ

σ

)2

. (1)

Under such a setup, the center point has a weight of zero,
while the maximal is at ρ. Setting ρ and σ according to the
minimal size of the entities in the scene, we measure

dni = 1

K
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j=1

Wi j · (ni − n j )

dκi = 1

K

K�
j=1

Wi j · (κi − κ j) (2)

where K is the neighborhood size and ni and κi are the
estimated normal and curvature at point i , respectively. Both
dn and dκ measure the respective weighted mean difference
in normal and curvature between the surrounding surface and
the analyzed point @i . Fig. 2 shows the geometric meaning
of the saliency computation.

We normalize and address the unit difference by an expo-
nential normalization of both measures, leading the saliency
to be given by

Si = 2 − �
exp(−dni )) + exp(−dκ i)

�
. (3)

Note that textured areas and the effect of measurement
noise are expressed in low variance by the saliency measures.
Therefore, the variances of dn and dκ are tested statistically
for each point using the χ2-test. Statistically insignificant
responses are marked as zero and are not considered in the
overall saliency estimation.

We adopt the principal component analysis (PCA) method
for normal estimation. Given a point q and its set of k nearest

neighbors p, such that pi ∈ p, we define p̄i = pi − q and the
covariance matrix, C, by

C = 1

k

k�
i=1

p̄i · p̄T
i ; Cv j = λ j v j , j �{1, 2, 3} (4)

where v j and λ j are the eigenvector and values, respectively.
As C is positive semidefinite (0 ≤ λ3 ≤ λ2 ≤ λ1), we have v3,
corresponding to λ3, as the estimate of nq , the surface normal.
To disambiguate the normal sign, all normals are oriented
toward a single viewpoint, vp, such that

nq =
�

nq , if nq · (vp − q) ≥ 0

−nq , otherwise.
(5)

Curvature estimation is less forward, as there is no conven-
tion to its estimation within point clouds. In [34], we have
shown that a nonparametric curvature estimation describes the
change of the surface in an efficient way. This is achieved by
quantifying the convexity of the surface at each point accord-
ing to the characteristics of the points’ distribution around it.
Specifically, the nonparametric curvature is computed as the
sum of the projections of neighboring points on nq , i.e.,

κ = 1

k

k�
i=1

nq
T p̄i . (6)

Points whose distribution around q is uneven, e.g., at the
scan edges or near occluded areas are considered nonviable.
These are eliminated by projecting the neighborhood points to
the tangent plane at q and analyzing the barycenter deviation
from q

dq = 1

k

k�
i=1

�
I − nqnT

q

�
p̄i . (7)

A lower response-level bound σκ is estimated directly
from the measurement accuracy m0, i.e., σκ = m0. Assum-
ing normal distribution, i.e., N ∼ (ε, σκ), we establish a
Z-test to determine whether the computed curvature is sta-
tistically insignificant. In this way, only significant estimates
are assigned with a nonzero curvature value.

Curvature and saliency values were both computed using a
designated code developed for the purpose (openly available
at [27]; some parts are using OPALS [35], a third-party
licensed software).

B. Point Cloud Simplification

Two approaches can be applied for the point cloud simpli-
fication: one is driven by the reduction rate (or the number
of points) and the other is directed by the desired distance
between neighboring points. Motivated by the idea that salient
regions stand for important objects and should maintain their
resolution, such regions are not to be reduced. As the reduction
rate relies on the number of salient points and cannot be set in
advance, we prefer a distance-based simplification approach.
Normally, under this framework, the data are divided into
cells based on the desired distance and then reduced by
choosing one representative point from each cell (e.g., [15],
[18], [19]). Though voxel-grid and octree data structures are
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Fig. 3. Ball tree data structure: (a) partitioning of the data; Circle “A” holds
all the points, whose centroid is at I. It is then divided into “B” and “C,” whose
centers are at points 6 and 5. These cells are also subdivided to circles D–F.
(b) Tree hierarchy representation, corresponding to the division in (a).

usually used as partitioning schemes for the simplification
process, we adopt a ball tree representation [36]. In such
a scheme, the point cloud is partitioned into subsets that
correspond to the scanned, surficial, elements. Based on the
proximity, the ball tree is a binary structure that maintains
spatial data hierarchically. Each node in the tree defines a
region that consists of all the points bounded by a hypersphere
(in fact, a plane). Its interior child nodes are chosen so that
the distance between the two nodes is maximal. Construction
of the tree is performed iteratively for each cell, where at
each iteration, the centroid of the point set is computed.
For example, the first centroid in the first iteration of the
dataset presented in [Fig. 3(a)] is gray point I. The farthest
point from this centroid is set as the center of the first child
(point #6). The second child is set at the farthest point from
the first point (point #3). Points are then assigned to each
child node by their proximity (circles B and C). Note that
the sphere lines can intersect each other, but the points must
be clearly assigned to one cluster. The hierarchical subdivision
achieves nodes with decreasing size as the node-level increases
(circles D–G). The number of points per node level varies
based on their distribution. In our example, “A” holds all the
points, “B” holds points 1–5, “D” holds points 8 and 9, and
so on [Fig. 3(b)].

As such, trees capture the actual distribution of the points
in their native space, and querying might be significantly more
efficient [36]. Being distance-driven rather than coordinate, the
proposed data structure is invariant to translation and rotation,
a particularly important property when the data are acquired by
terrestrial laser scanners. Note also that balancing the number
of points per node is not prioritized as there is no constraint
on the number of points per node. This is a welcome property
as it suggests that the subsampling becomes less affected by
the varying density within the scan. Since the node level
corresponds to the area covered, choosing a point from each
cell at a certain level would be equivalent to sampling at the
corresponding distance.

Assuming that salient points belong to ROIs, cells that
include at least 60% of such points are kept untouched. Cells
with nonsalient points are reduced to one representative point.
Reduction is also carried for cells with zero saliency points.
In this way, we ensure that reduction will be performed when
there are no salient points in the dataset. Wishing to follow the
original point cloud, this point should represent the cell with
the least deviation from the original points. It is common to use

the averaged point in each cell (e.g., [18], [19]). However, this
inserts a deviation from the original point position. Avoiding
such modifications to the cloud, the chosen representative
point is the closest point to the average of all nonsalient points
in the cell. In this way, the representative point is chosen from
the original point cloud without introducing a different point.
In fact, as the ball tree retains shape-related surface properties,
the chosen point represents the surface covered by the cell.

The distinction between salient and nonsalient points is
decided by considering them as arriving from two different
distributions, which can be separated by clustering; otherwise,
it is considered “nonsalient” and will be reduced.

The ball-tree data structure was created using the Python
package scikit-learn v.0.23.2 [37] using a leaf size of 40 points
for all datasets. The downsampling procedure is independent
of the saliency and curvature computation and is openly
available at Arav [27].

C. Evaluation

For the evaluation, we use three baseline methods for
comparison.

1) Mesh-Based: Samples are uniformly pregenerated over
a mesh version of the point cloud. From these, a sample is
randomly selected and all samples within a sphere of r are
removed, while the selected sample remains [14]. We used
MeshLab [38, v2020.03+dfsg1] to generate the downsampled
datasets.

2) Voxel-Based: The 3-D space is divided into a voxel grid
of size r . From each cell, only the averaged point remains
(e.g., [18], [19]). This method was executed using the Python
package open3d v.0.13.0 [18].

3) Point-Based Curvature-Aware: Specifying a distance r
for low curvature values and 0 for high curvature values, points
are being picked from the original cloud. This is done so that
no point is closer to another point than the linearly interpolated
spatial distance. Therefore, regions with higher curvature val-
ues are retained, while others are reduced to the averaged point
in each cell. This approach was executed in CloudCompare
v2.11.1 [19] using the nonparameteric curvature computed for
the saliency estimation (Section II-A).

Evaluation of the models was carried out by means of
both visual inspection and by a set of quantitative measures
performed against the original datasets. We used four metrics
to quantify the results. The first refers to the eventual reduction
rate and the other three measure the geometric distortion
between original and simplified point clouds as follows.

4) Cloud-to-Cloud Distance: Here, we measure the shift
between the simplified cloud and the original. This is com-
puted by two-sided cloud-to-cloud (C2C) distances. Given the
points a j ∈ A in the original point cloud and bi ∈ B in the
simplified cloud, the C2C distance is computed by

dC2C
A,B =mean

⎛
⎝ 1

NA

�
∀a j ∈A

||E(i, j)||2, 1

NB

�
∀bi ∈B

||E( j, i)||2



(8)

where E(i, j) is the error vector between a j and the closest
point bi ∈ B, E( j, i) is the error vector from a point bi to
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TABLE I

PROPERTIES OF THE DATASETS USED IN THE STUDY

its closest point a j ∈ A, and NA and NB are the number of
points in A and B, respectively [39].

5) Cloud-to-Plane Error: The cloud-to-plane (C2P) metric
penalizes according to the points’ distance from the local plane
and is computed by

dC2P
A,B = 1

NA

�
∀a j ∈A

�
E(i, j) · n j

�2
(9)

where n j is the normal vector of point a j [39].
6) Deviation of the Normals: A good simplification method

retains the estimated normals following the reduction. This
deviation is evaluated by averaging the function of the angle
between normals of corresponding points

eDoN
A,B = 1

NA

�
∀a j ∈A

�
1 − ni · n j

�
(10)

where ni is the normal at point bi . Here, we use the nearest
neighbors within a specified radius, found via the ball-tree
data structure. This metric also eliminates the inherent disad-
vantage of the baseline methods in using the mean point as a
representative point rather than the original.

III. RESULTS

We demonstrate the application of our saliency-based
approach on datasets acquired by airborne and terrestrial
platforms. Each dataset features different point density and
presents a different set of entities, pronounced or subtle
(Table I and Fig. 4).

We applied each of the baseline methods (Section II-C) and
the proposed saliency-based reduction to every dataset at four
levels of simplification. For the airborne scans, we used the
sampling distance r of 1, 2, 5, and 10 m. As for the terrestrial
datasets, these were both reduced to sampling distance r of
0.05, 0.1, 0.5, and 1 m.

A. Dataset #I—Flat and Disturbed Terrain

The first dataset is an airborne laser scan acquired over the
Ze’elim alluvial fan, Israel (see Fig. 4(a) and [40, Table I]).
This region has been the focus of geomorphological study
over the past few years, mostly due to the accelerated landform

Fig. 4. Shaded reliefs of the studied point clouds. (a) Dataset #I—flat and
disturbed terrain. (b) Dataset #II—Alpine terrain. (c) Dataset #III—open-air
archeological site. (d) Dataset #IV—cave. Each dataset presents a different
set of challenges.

Fig. 5. Dataset #I (flat terrain): A closer look at regions with overlapping
scanlines (a) before and (b) after simplification at a 2-m sampling dis-
tance. The average distance between points corresponds to the simplification
distance.

processes that control the fan (e.g., [41], [42], [43], [44], [45]).
Gullies dissect the relatively flat surface of the fan at changing
depths and widths (2–6 and 5–9 m, respectively), while sink-
holes puncture it with depressions of varying diameters and
depths (4–20 and 0.5–4.5 m, respectively). The average point
density is 8.5 pts/m2 with a standard deviation of 5.5 pts/m2.
However, due to areas with overlapping scanlines, the density
varies abruptly from 10 ± 1.0 to 5 ± 0.5 pts2/m. An example
for such a change is presented in [Fig. 5(a)].

Being generally flat, the fan surface can be described
reliably with less points per square meter. However, the
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Fig. 6. Simplified point clouds of dataset #I (flat terrain) using different methods and sampling distances. Colors represent the angle of normal deviation
from the original cloud.

geomorphological features contain structural details, such as
side collapses, which require higher resolution documentation.
The versatile types of features in the scan, as well as the
high variability in point densities, pose a challenge in setting
a uniform distance-based simplification criterion. This can
be seen in the application of the mesh- and voxel-based
simplifications, which are driven by uniform sampling (Fig. 6),
where sinkholes are largely removed from the dataset at 1–2-m
sampling distances, whereas at 5- and 10-m gullies, they also
cleared away. Application of the curvature-aware approach
yields better visual results, especially at 2 m. However, at the
higher simplification levels of 5 and 10 m, most entities
disappear as well.

In the proposed simplification method, saliency was com-
puted with 2-m minimal object size, based on 0.5-m-radius
neighbors for surface features estimation (Fig. 7). Following
the simplification step, the entities are captured at all levels of
simplification, while the fan surface is described in less detail.
This is achieved while maintaining the predefined distance at
nonsalient regions [Fig. 5(b)]. The simplification is unaffected
by the changing resolutions in the scans. This can be seen
in the seamline that has disappeared after the reduction (see
Fig. 5 as an example).

Fig. 6 also shows the deviation of the normals (DoN) error
distribution within the data for the utilized methods. It reveals
that in all four methods, the largest errors were along the
seamlines of the lower and higher resolutions. Obviously, there
are some small geometric discrepancies, which lead, together

Fig. 7. Saliency estimation for dataset # I (flat terrain).

with very high point density, to wrongly estimated normals in
the original point cloud.

A quantitative analysis shows that the reduction rate of
the proposed method is lower than in other approaches
(Fig. 8 and Table II). Still, it achieves the highest similarity
to the original cloud in most reduction levels. This is evident
in the lower C2P and C2C distances, as well as in the low
DoN angles. The mean C2P distance for the saliency-based
method at a 10-m sampling distance reaches 0.5 m, compared
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Fig. 8. Quantitative analysis of the simplification methods in different
sampling distances in dataset #I (flat terrain). The graphs of the C2C and
C2P errors present the mean value of all errors; the DoN graphs show the
median value.

TABLE II

NUMBER OF POINTS REMAINING IN DATASET #I (FLAT TERRAIN)
AFTER REDUCTION AT EACH SIMPLIFICATION

LEVEL, FOR EACH METHOD USED

to 6.5, 4.0, and 3.6 m, for the mesh-, curvature-, and voxel-
based simplifications, respectively. The estimated normals in
the saliency-based simplified cloud differ by up to 0.35◦ from
the original estimations, irrespective of the downsampling
distance. These values are at least 0.5◦ lower than the DoN in
the other approaches.

B. Dataset #II—Alpine Terrain

The second dataset was acquired by a helicopter at Upper
Kaunertal, Austria (see Fig. 4(b) and [46, Table I]). Con-
trasting dataset #I, the present one features a mountainous
terrain with topographic variations and a general slope of 70%.
The dataset consists of ridges and wide gullies (approximately
13 m wide) whose banks rise up to 8 m above their thalweg.
In addition, rocks at various sizes are spread along the slopes
[Fig. 4(b)]. Application of the three baseline simplification
methods at 1- and 2-m sampling distances retains the main
characteristics of the surface (Fig. 9). On the higher levels
of reduction (i.e., 5 and 10 m) hardly, any points remain
(Table III). Of them, the voxel-based method produced clouds
with the most points: 543 at a 5 m and 140 at a 10-m sampling
distance. At such a level of reduction, no features or surfaces
are depicted.

Saliency values were computed with 1- and 1.5-m minimal
object sizes, based on 0.15-m-radius neighbors for surface

TABLE III

NUMBER OF POINTS REMAINING IN DATASET #II
(ALPINE TERRAIN) AFTER REDUCTION

features estimation (Fig. 10). It clearly shows that with smaller
object sizes, the ridges are more confined, while larger entities
(e.g., gullies) are not highlighted. As we wish to keep the gul-
lies as well, the downsampling was carried out using the 1.5-m
minimal object size. The application of the proposed method
produces simplified clouds that are similar to the original,
without affecting the topography characteristics. This is clearly
evident in the C2C, C2P distances, as well as in the DoN
angles (Fig. 11). For both C2C and C2P, the saliency-based
approach shows the lowest distances to the original cloud.
As for the DoN values, all simplification methods show high
discrepancies. The saliency-based approach leads to DoN
values that are between 13◦ and 15◦, as opposed to 15◦–22◦ in
the other simplified clouds. The inconsistency of the surface,
as well as the large variability of the salient morphological
features, leads to low reduction rates of the proposed method
where 42 961 points remaining at a 10-m sampling distance,
out of the original 268 161 (Table III). This allows further
geomorphological analysis, unlike the other simplified clouds.

C. Dataset #III—Open-Air Archeological Site

The third dataset is a terrestrial laser scan taken from a
single position. It documents an open-air archeological site
in Uvda Valley, Israel (Fig. 4(c) and Table I). The scan
records two animal-like figures made of small stones (mostly
0.01–0.05 m high) affixed to the ground. The surface around
the specimen is relatively flat. Therefore, it is possible to repre-
sent it with far fewer points, without affecting its description.
However, due to the small size of the artifact’s stones, the
uniform sampling of 0.05 m is likely to remove them from
the data. This can be seen when applying the mesh-based
method at such a distance (Fig. 12). Note that the voxel-based
simplified cloud does not eliminate the stones completely. Still,
it introduces patterns that do not exist in the original point
cloud. Such an effect can also be seen at a sampling distance
of 0.1 m. This is due to slight changes in the surface to the
right of the specimen, causing higher volumetric density at
some parts, which affects the downsampling. Application of
the curvature-aware method retains the artifact, but the stones
are lost at a 0.1-m sampling distance.

Saliency values in this dataset were computed with
a 0.05-m minimal object size. For surface features estima-
tion, occlusions dictated a neighborhood of at least 0.03 m.
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Fig. 9. Simplified point clouds of dataset #II (alpine terrain) using different methods and scales.

Fig. 10. Saliency estimation of dataset # II (alpine terrain) at (a) 1- and
(b) 1.5-m object sizes.

The resulting simplified cloud shows the site’s stones remain
intact (Fig. 12). This is achieved for all sampling distances
with the proposed method. The flat terrain around the stones
enables reduction rates of up to 95.8% without affecting the
similarity to the original (Fig. 13). The reduction rate is lower
than in other methods (95.1% on average). At a sampling
distance of 1 m, 9393 points are left out of 224 186, compared
to the 9, 16, and 11 points that are left after simplification with
the mesh-based, voxel-based, and curvature-aware methods,
respectively (Table IV). Clearly, these datasets after simplifica-
tion are unusable. Note that in nonsalient regions, the reduction
was similar to the curvature-aware method, pointing to good
results in regions that are uninteresting.

Examination of the DoN distribution in the data shows that
for all methods, most of the deviations are on the specimen’s

Fig. 11. Quantitative analysis of the simplification methods in different
sampling distances in dataset #II (alpine terrain). The graphs of the C2C and
C2P errors present the mean value of all errors; the DoN graphs show the
median value.

stones and in their vicinity (Fig. 12). Nonetheless, in the
proposed saliency-based point cloud, this deviation exists
only along the higher stones. These stones create occlusions,
which lead to biased normal estimations. Hence, following the
reduction, these normals show a higher discrepancy.

The C2C and C2P distances in the saliency-based simplified
clouds are close to zero for all reduction levels, where the C2P
distance is less than a millimeter (Fig. 12). This is probably
due to the generally flat nature of the dataset. The DoN is no
higher than 0.8◦. This is opposed to the other methods, which
introduce at least 1.5◦ for the higher simplification levels.
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Fig. 12. Simplified point cloud of dataset #III (archeological site) using different methods and scales. Colors represent the angle of normal deviation from
the original cloud. As almost no points were left at a 1-m sampling distance for the baseline methods, this level of simplification is not shown.

TABLE IV

NUMBER OF POINTS REMAINING IN DATASET #III
(ARCHEOLOGICAL SITE) AFTER REDUCTION

D. Dataset #IV—Cave

The last dataset was acquired terrestrially in the Untere
Traisenbacher Höhle cave that is located on the steep northern
slope of Ebenberg, Austria (see Table I and [47, Fig. 4]).
This dataset is intended to test the proposed method in a full
3-D environment. A closed cave, with its walls and ceiling,
provides such a complex scene. Inside the cave, small rocks are
lying on the floor, and there are pockets and niches within the
walls and ceiling [Fig. 4(d)]. A comprehensive morphological
survey would require their detailed documentation, while the
surface of the walls, floor, and ceiling is of less importance.

Saliency was computed with 0.3-m minimal object
size, based on 0.1-m-radius neighbors for surface features

Fig. 13. Quantitative analysis of the simplification methods in different
sampling distances in dataset #III (archeological site). The graphs of the C2C
and C2P errors present the mean value of all errors; the DoN graphs show
the median value.

estimation (Fig. 14). Blocks that are larger than the minimal
object size are marked as salient, as well as the pockets
and niches in the walls and ceiling [Fig. 14(a)]. At the
back of the cave, the notches were also marked as salient
[Fig. 14(b)]. Note that since the saliency is performed point-
wise and according to the available neighborhood within a
specific radius, the occluded regions did not affect the saliency
estimation.

Next, we turn to the simplification phase. Due to the com-
plexity of the dataset, a visual representation of the entire cave
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Fig. 14. Saliency estimation in dataset #IV (cave): (a) look from the entrance inside the cave and (b) look from the outside, showing niches and pockets
that were detected by the saliency. The red rectangle marks the focus of Fig. 15.

Fig. 15. Detail from the simplified point clouds of dataset #IV (cave) using different methods and scales. Colors represent the angle of normal deviation
from the original cloud. Due to the complexity of the dataset, this is only a representative detail instead of the entire set [which is marked as a red rectangle
in Fig. 14(b)].

after simplification was incomprehensible. While we analyze
the results for the entire cave, we demonstrate them only on
a specific detail [Fig. 15 (left)]. At 0.05- and 0.1-m sampling
distances, the mesh-based, voxel-based, and curvature-aware
models result in a smooth but detailed point cloud. However,
at 0.5 and 0.1 m, the minute details disappear or change
the entities’ form. As an example, the length of the niche
presented in (Fig. 15) shortens by 0.1–0.4 m between the
original cloud and the various downsampled versions at these
levels. This change of form does not occur in the proposed

saliency-based reduction, where both form and detail of the
niche are consistent in all levels of simplification and only the
wall surface is less detailed. Note also that for both curvature-
and mesh-based methods, the normal estimations differ for
the whole niche, while the voxel-based presents the lowest
deviation from the original normals. However, in the saliency-
based reduced point cloud, the normal discrepancies remain
constant in the higher reduction rates, while the voxel-based
(and the other methods) changes the surface completely. The
C2C distances correspond to this fact (Fig. 16), where the
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Fig. 16. Quantitative analysis of the simplification methods in different
sampling distances in dataset #IV (cave). The graphs of the C2C and C2P
errors present the mean value of all errors; the DoN graphs show the median
value.

TABLE V

NUMBER OF POINTS REMAINING IN DATASET #IV
(CAVE) AFTER REDUCTION

saliency-based method produces the closest simplified cloud
to the original (0.31 m). This is also true for the DoN angles,
where the lowest variation is in the saliency-based simplified
cloud, reaching up to 3.8◦, as opposed to 24◦, 22.8◦, and
22.5◦ for the voxel-, mesh-, and curvature-based point clouds.
Contrarily, the C2P distances of the proposed method are
higher than those of the voxel-based and curvature-aware point
clouds (0.4 versus 0.2 m, respectively). This can be attributed
to the strong local surface variability. As in the previous
datasets, the reduction rate of the proposed method is lower
than that of the other methods, standing on 93.4% at the higher
sampling distance (see Fig. 16 and Table V).

IV. CONCLUSION

In this article, we introduced a new point cloud sim-
plification approach driven by saliency and executed by a
hierarchical proximity data structure. Assuming that ROIs
should be represented in higher resolution, we proposed to
first evaluate the saliency of each point. Then, neighboring
points are defined using a ball tree data structure, which is
attuned to the surficial characteristics of laser scanning point
clouds. The simplification is then carried out by choosing one
representative point from each cell.

The application of the proposed method was tested on dif-
ferent scenarios, acquired by various laser scanners, at varying

resolutions. We have shown that point clouds simplified by our
method enable the representation of important details even
at high levels of reduction. We have also shown that the
proposed method highlights ROIs by retaining more points
there. We have shown that the saliency-based simplification
results in point clouds that are more similar to the originals
than those produced by other well-established methods.

It should be noted that the proposed simplification is less
efficient in extreme changes in topography, where conspicuous
regions are hard to define. Furthermore, the proposed method
can be improved by defining a different scheme for retaining
points, rather than a binary decision. Such an approach should
consider both the magnitude of the saliency values and their
nonsalient surroundings. Under such a model, differences in
normal estimations may be reduced and some reduction can
be made in salient regions.
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