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Abstract

The main focus of this Ph.D. thesis is on noncommutative models involving oscillator
terms in the action. The first one historically is the successful Grosse-Wulkenhaar (G.W.)
model which has already been proven to be renormalizable to all orders of perturbation
theory. Remarkably it is furthermore capable of solving the Landau ghost problem.
In a first step, we have generalized the G.W. model to gauge theories in a very straight-
forward way, where the action is BRS invariant and exhibits the good damping properties
of the scalar theory by using the same propagator, the so-called Mehler kernel. To be
able to handle some more involved one-loop graphs we have programmed a powerful
Mathematica R© package, which is capable of analytically computing Feynman graphs
with many terms. The result of those investigations is that new terms originally not
present in the action arise, which led us to the conclusion that we should better start
from a theory where those terms are already built in.
Fortunately there is an action containing this complete set of terms. It can be obtained
by coupling a gauge field to the scalar field of the G.W. model, integrating out the latter,
and thus “inducing” a gauge theory. Hence the model is called Induced Gauge Theory.
Despite the advantage that it is by construction completely gauge invariant, it contains
also some unphysical terms linear in the gauge field. Advantageously we could get rid of
these terms using a special gauge dedicated to this purpose. Within this gauge we could
again establish the Mehler kernel as gauge field propagator. Furthermore we where able
to calculate the ghost propagator, which turned out to be very involved.
Thus we were able to start with the first few loop computations showing the expected
behavior. The next step is to show renormalizability of the model, where some hints
towards this direction will also be given.
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Kurzfassung

Der Hauptfokus dieser Dissertationsarbeit liegt auf nichtkommutativen Modellen mit
Oszillatortermen in der Wirkung. Das historisch gesehen erste dieser Modelle ist das
erfolgreiche Grosse-Wulkenhaar (G.W.) Modell, von welchem bereits gezeigt wurde, dass
es zu allen Ordnungen der Störungstheorie renormierbar ist. Bemerkenswerterweise löst
es außerdem das Landau Geist Problem.
In einem ersten Schritt haben wir das G.W. Modell direkt auf Eichtheorien verallgemein-
ert, wobei die Wirkung BRS invariant ist und die guten dämpfenden Eigenschaften der
Skalartheorie beibehält, indem es denselben Propagator nutzt, den sogenannten Mehler
Kern. Um manche aufwändigere Einschleifenrechnungen bewältigen zu können, haben
wir ein Mathematica R© Paket programmiert, welches in der Lage ist, Feynman Graphen
mit vielen Termen analytisch zu berechnen. Das Ergebnis dieser Betrachtungen war,
dass neue Terme, die ursprünglich nicht in der Wirkung vorhanden waren, entstehen,
was uns zu dem Schluss führte, dass wir besser von einer Theorie wegstarten sollten bei
der diese Terme bereits eingebaut sind.
Glücklicherweise gibt es eine Wirkung die diese vollständige Menge von Termen enthält.
Sie kann erhalten werden, indem man ein Eichfeld an das Skalarfeld der G.W. Wirkung
koppelt und dann Letzteres ausintegriert. Auf diese Art und Weise “induziert” man eine
Eichfeldtheorie, welche deswegen Induzierte Eichfeldtheorie genannt wird. Trotz des
Vorteils, dass sie per Konstruktion eichinvariant ist, enthält sie auch einige unphysikalis-
che Terme, welche linear im Eichfeld sind. Vorteilhafterweise konnten wir diese Terme
durch eine Eichung, die für diesen Zweck konstruiert wurde, loswerden. In dieser Eichung
konnten wir wieder den Mehler Kern als Propagator für das Eichfeld etablieren. Weiters
schafften wir es, den Geistpropagator zu berechnen, was sich als sehr aufwändig her-
ausstellte.
Schließlich war uns deswegen die Möglichkeit gegeben, mit den ersten Schleifenrechnun-
gen anzufangen, welche auch das erwartete Verhalten zeigten. Der nächste Schritt ist die
Renormierbarkeit des Modells zu zeigen, wobei einige Hinweise in diese Richtung auch
gegeben werden.
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Chapter 1

Introduction

1.1 Outline of this Work

First, we will motivate noncommutativity in general by looking at three popular ex-
amples (Section 1.3). Next, we will introduce the noncommutative space on a formal
mathematical level, which will allow us to formulate field theories thereon (Section 1.4).
The work of people who put forward the first early models will be summarized in a small
historical section (Section 1.5.1,1.5.2). It is there where for the first time the UV/IR
mixing problem showed up, and solutions to it needed to be taken into concern (Section
1.5.3). Especially the so-called 1/p2 model will in this context be emphasized (Section
1.5.3), since the author has worked on this field also for quite some time. However, the
main focus of this Ph.D. thesis is to cover the field of Euclidean noncommutative field
models involving oscillator terms (Chapter 2), especially in the light of renormalization.
Essentially three such models are known:

1. The Grosse-Wulkenhaar (G.W.) model (Section 2.1) Historically the first
noncommutative model which has been shown to be renormalizable to all orders.
Compared to commutative models it furthermore has the advantage that it kills the
Landau ghost, which is roughly speaking a singular behavior of the beta function
in certain regions. A special subsection will be devoted to the propagator of this
model, the ’Mehler kernel’ (Section 2.1.1).

2. A simple gauge theory version of the latter1 (Section 2.2) The straightfor-
ward generalization of the G.W. model to gauge theories. It has also the favoured
“Mehler kernel” as a propagator, and therefore one expects good damping proper-
ties like in the scalar case. However it will turn out that within the renormalization
procedure, counterterms arise which weren’t originally present in the action. This
leads us to the next model in this list:

3. Induced Gauge Theory (Section 2.3) By coupling a gauge field to the scalar field
of the G.W. model and by integrating the latter out, one naturally “induces” new
gauge degrees of freedom. The corresponding action, referred to as ’Induced Gauge
Theory’, is by construction gauge invariant and features certain nice symmetries.
Despite the advantages, it contains also unphysical terms linear in the gauge field.

1Also referred to as the “Mehler kernel gauge model”.
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Fortunately, we will be able to find a gauge fixing which is capable of getting rid
of these terms (Section 2.3.2). The Feynman rules will be presented and some first
loop calculations will be performed.

To complete this outline, it shall be pointed out that in the appendix of this work, apart
from some detailed calculations associated with the respective chapters, one may also
find the description of a very powerful Mathematica R© package programmed by our team,
with which we were able to compute the most involved Feynman graphs (Appendix B).

1.2 Conventions

We use the Einstein summation convention on Euclidean space,

d∑
µ=1

AµBµ = AµBµ = AµBµ , (1.1)

where d denotes the dimension of the Euclidean space.
Furthermore, whenever a d-vector is multiplied with another one in an exponential, the
indices will be left out, that means

eAµBµ = eAB. (1.2)

We will use natural units, that is ~ = c = 1.
In the following we will define some conventions which are listed here for completeness
reasons. The definitions will make sense when deriving the structure of noncommutative
Euclidean space, Section (1.4).
A tilde on a position/momentum variable means contraction with the deformation Θµν ,
where the latter is describing noncommutativity of the coordinates (Θµν will be defined
a posteriori in Section 1.4):

x̃µ = Θ−1
µν xν , p̃µ = Θµνpν . (1.3)

Frequently we will use the × symbol to also indicate a contraction of the Theta matrix
with two momenta:

p× q = pq̃ = pµq̃µ = pµΘµνqν , (1.4)

and in position space we will use the ∧ symbol likewise

x ∧ y = xỹ = xµỹµ = xµΘ−1
µν yν . (1.5)

Further conventions concerning the noncommutative calculations will be made in Section
1.4.

1.3 Motivations for NCQFT

Why do we investigate noncommutative spaces? The three following examples might
motivate the reader why noncommutativity is such a great feature to look at.
We will first start with the Landau problem which is about a particle moving in a strong
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magnetic field. We will see that noncommutativity will emerge automatically when
describing this particle. Next we will investigate the Planck scale, where physics has to
be modified in order to avoid singularities. Noncommutativity is a good candidate fitting
this purpose. Finally we will look at the rotation group. It will be visually illustrated
that this group is noncommutative.

1.3.1 The Landau problem

The problem was first recognized by Landau in 1930 [1]. To describe it, we first start at
the classical action of a charged particle in an external magnetic field

S[~x, ~̇x, ~A] =
∫
dt

(
1
2
m~̇x2 + e ~A~̇x

)
, (1.6)

where e is the electric charge and ~A is the 3-dimensional vector potential. In order to
get a constant magnetic field in the third spatial direction we can assume for example

~A =

−B
2 y

B
2 x
0

 , (1.7)

because then rot ~A =

 0
0
B

.

From (1.7) we can also deduce that our problem is essentially two-dimensional. Plugging
in the special form of the vector potential into the Lagrange function we get

L =
1
2
m~̇x2 − e

B

2
εijxiẋj , (1.8)

with εij being the epsilon-tensor in 2 dimensions. In order to derive the Hamiltonian we
have to perform a Legendre transformation. The definition of the conjugate momentum
is

∂L

∂ẋ
= pi = mẋi − eB

2
εilxl , (1.9)

which allows us to rewrite the Lagrange function from the original variables (x, ẋ) to the
new ones (x, p), because from (1.9) we see that we can express all velocities in terms of
(x, p):

ẋi =
1
m

(
pi +

eB

2
εilxl

)
. (1.10)
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Hence we can perform a Legendre transformation

H(xi, pj) =piẋi − L(xi, ẋj)

=
pi

m

(
pi +

eB

2
εilxl

)
− m

2
1
m2

(
pi +

eB

2
εilxl

)2

+
eB

2
εij

1
m

(
pi +

eB

2
εilxl

)
xj

=
1

2m
pipi +

eB

2m
εijpixj +

1
8m

e2B2εijxjεilxl (1.11)

=
1

2m

(
pi +

eB

2
εijxj

)2

=
1

2m
(
pi − eAi

)2
, (1.12)

which shows that the vector potential is minimally coupled to the momentum. Defining
this as our new physical momentum Πi = pi − e ~A = pi + eB

2 ε
ijxj , we have

H =
1

2m
ΠiΠi . (1.13)

Quantization The quantization is defined in replacing xiand pi by hermitian operators

xi → x̂i

pj → p̂j , (1.14)

with

[p̂i, x̂j ] = −iδij . (1.15)

This allows us to calculate the commutator of the physical momentum which we just
defined:

[Π̂i, Π̂j ] =
[
p̂i +

eB

2
εilx̂l, p̂j +

eB

2
εjmxm

]
=
eB

2
εil [x̂l, p̂j ]︸ ︷︷ ︸

iδlj

+
eB

2
εjm [p̂i, x̂m]︸ ︷︷ ︸

−iδim

. (1.16)

Thus,

[Π̂i, Π̂j ] = ieBεij . (1.17)

Similarly, we can deduce the commutation relation of the coordinates. For that, we plug
(1.9) into (1.15)2

[pi, xj ] = [mẋi − eB

2
εilxl, xj ] = −iδij ,

[ẋi, xj ] − eB

2m
εil[xl, xj ] = − i

m
δij . (1.18)

2From now on we assume to have the Hamiltonian already quantized and leave out the hats.
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In the case of a strong magnetic field (corresponding to the limit of vanishing mass, as
justified in the next paragraph) the first term vanishes, and we get

[xk, xj] = − 2i

eB
εkj , (1.19)

which is nonzero! Thus we have also found a noncommutativity relation of the coordi-
nates.

Eigenvalues We may rewrite (1.11). For simplicity we set y = 0 and absorb a factor
1
2 into the B-field3. Then

H =
1

2m
pipi +

eB

2m
εijpixj +

1
8m

e2B2εijxjεilxl

=
1

2m
(p2

x + p2
y) +

eB

2m
(pxy − pyx) +

1
8m

e2B2(x2 + y2)

y=0, B
2
→B

=
1

2m
(p2

x + p2
y) +

eB

m
(−pyx) +

1
2m

e2B2x2

=
1

2m
p2

x +
1
2
mω2

c

(
x− py

mωc

)2

, (1.20)

with the cyclotron frequency, ωc = eB
m . This describes a harmonic oscillator shifted in x.

The corresponding eigenvalues are

En = ωc(n+
1
2
) , (1.21)

and are called the “Landau levels”. The separation of the eigenvalues is given by

∆E = ωc =
eB

m
. (1.22)

For a strong magnetic field, the separation energy is therefore also high so that the
particles are essentially confined to the lowest Landau level. This also corresponds to
take m→ 0, and a posteriori justifies this limit which we have taken to obtain (1.19).
There can be much more said about the Landau problem, especially about the fractional
Hall effect [2], but for now we leave it to the statement that indeed, as we have seen, the
Landau problem motivates a more detailed study of noncommutativity.

1.3.2 The Planck scale

The Planck scale can be obtained by making the following gedankenexperiment: If we
want to resolve a certain spatial region we have to deposit enough energy into that region.
Making this region smaller and smaller we come to a scale where the energy needed can
in principle create a black hole. This scale is called the “Planck scale”, and in SI units
it is around 10−35 meters corresponding to the energy 1.22 × 1019 GeV. A little more

3This corresponds to originally having chosen the gauge potential to be ~A =

0

@

0
B
2
x

0

1

A.
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formally we can obtain the Planck length in the following way:
We start at an arbitrary mass M . This mass corresponds to a Compton wavelength

λ =
h

Mc
, (1.23)

and to a Schwarzschild-radius

RS =
2GM
c2

. (1.24)

If we now demand this Schwarzschild radius to be of the order of the Compton wavelength
RS ∼ λ we get

h

Mc
=

2GM
c2

M =

√
hc

2G
∼
√
hc

G
=: MPl , (1.25)

where we have neglected the factor 2 because we are only talking about orders of magni-
tude anyway. Fascinatingly, we could now construct a mass purely in terms of constants
of nature. Plugging in this mass into (1.23) or (1.24) we get the Planck length

lPl =

√
Gh

c3
. (1.26)

The situation has been analyzed in detail by Doplicher, Fredenhagen, Roberts in 1995
[3], where they have generalized the one-dimensional consideration we have done here to
4 spacetime directions. In particular they obtained a commutation relation between the
coordinates, however in contrast to the Weyl-Moyal case we consider here (1.29) their
Theta matrix is x-dependent and constructed in a way that it is Poincare-invariant4.

1.3.3 The rotation group

When rotating a cuboid twice the outcome may differ depending on the order of the
respective rotation applied. This is depicted in Figure 1.1.
The reason for this is that the rotation group SO(3) is noncommutative. The generators
of infinitesimal rotations form a Lie algebra:

[T i, T j ] = iεijkT k , (1.27)

where i, j, k = {1, 2, 3}. A finite rotation g(x) is given by

g(x) = eiα
i(x)T i

, (1.28)

where α is the rotation angle. Since the T i’s don’t commute, the finite rotations g(x) do
neither.
Hence SO(3) is a good example for a noncommutative group and motivates to study
noncommutativity quite generally.

4This means that it is invariant under Lorentz transformations, Lorentz boosts, Lorentz translations
and time reversal.
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Figure 1.1: A rotated cuboid.

1.4 Mathematical Structure of NCQFT

In this section we will briefly introduce NCQFT on a formal level. We will take a closer
look at the Weyl-Moyal star product, and finally we will compute the symmetry factors
of Feynman graphs.

1.4.1 Structure of noncommutative Euclidean space

As motivated in the previous section, just like in quantum mechanics where one in-
troduces a commutator between coordinates and momenta, one aims to introduce a
nonvanishing commutator of the coordinates themselves5. This means that time does
not commute with space any more, and space with space neither does. The simplest way
to implement this is to put a constant, antisymmetric matrix on the r.h.s.6 This is called
the Moyal-Weyl case, formally

[x̂µ, x̂ν ] = iΘµν , (1.29)

5Such an nonvanishing commutator was for the first time written down by Snyder [4].
6However, it should be mentioned here that one could start with different noncommutative algebras,

for example one could start with a Lie-algebra ([xµ, xν ] = iCµν
ρ xρ) or even with the quantum group

space ([xµ, xν ] = iRµν
ρσxρxσ). As another possible generalization the Theta matrix can in principle be

x-dependent, as it is for example the case in emergent gravity models [5].
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where the hat symbol shall hint to that we are dealing with noncommutative operator-
valued objects. The deformation matrix Θµν is constant and antisymmetric, explicitly

Θµν = θ


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , (1.30)

in 4 dimensions and

Θµν = θεµν = θ

(
0 1
−1 0

)
, (1.31)

in 2 dimensions, with Theta having mass dimension -2. This simplest choice of Θµν is
sufficient to describe complete noncommutativity in space and time because one can see
from the block-diagonal form that it has full rank. It has to be antisymmetric because
the the commutator on the l.h.s. of Equation (1.29) is too.
A product on noncommutative space can be defined by assuming the fields to be of
Schwartz type, that is they decrease sufficiently fast at infinity. Then, a Fourier transform
of them is mathematically well defined. Since the algebra (1.29) is central, the Baker-
Campbell-Hausdorff formula terminates, and we find a closed expression which can be
defined as a new product, the so-called Moyal-Weyl star product:

f(x) ? g(x) = ei∂
x
µΘµν∂y

ν f(x)g(y)
∣∣∣
x=y

, (1.32)

or with momentum variables

f(x) ? g(x) =
∫
dk

∫
dk′ ei(k+k′)x− i

2
kµk′

νΘµν
f(k)g(k′). (1.33)

This star product connects noncommutative fields with ordinary commutative ones. It
has the following important properties

• Star product of higher orders

f1(x) ? f2(x) ? . . . ? fm(x)

=
∫

ddk1

(2π)d/2

∫
ddk2

(2π)d/2
. . .

∫
ddkm

(2π)d/2
e
i

m
P

i=1
kiµxµ

e
− i

2

m
P

i<j
ki×kj

f̃1(k1)f̃2(k2) . . . f̃m(km)

(1.34)

• Cyclic permutation under the integral∫
ddx f1(x) ? f2(x) ? . . . ? fm(x) =

∫
ddx f2(x) ? . . . ? fm(x) ? f1(x) (1.35)

This has the important consequence that when considering field theoretical models,
in bilinear expressions the star drops out:∫

ddx f1(x) ? f2(x) =
∫
ddx f1(x)f2(x) . (1.36)

This implies that propagators are essentially the same as in the commutative world.
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• Associativity

(f ? g) ? h = f ? (g ? h) (1.37)

• Variation

δ

δf1(y)

∫
d4x f1(x) ? f2(x) ? . . . ? fn(x) = f2(y) ? . . . ? fn(y) (1.38)

• Star product of two exponentials

eikx ? eik
′x = ei(k+k′)xe−

i
2
kΘk′

.

All related proofs can be found e.g. in my diploma thesis [6].
To close the general part, let me just mention that we can now build a field theory by
putting stars everywhere between the fields, which we will explicitly do in later chapters.
In the following subsection, we will develop some other formulas commonly used for the
star product, which are useful in one or the other context.

1.4.2 Other representations for the star product

One can write the kernel of the star product in terms of delta functions. To show this,
we start with

(f ? g)(z) = f(z) ? g(z) = f(z) ?z g(z) , (1.39)

and just note that in this case, the star is an operator with respect to z. One can write
each function, g(z) and f(z) individually in terms of delta functions

f(z) ?z g(z) =
∫
ddx δ(d)(z − x)f(x) ?z

∫
ddy δ(d)(z − y)g(y)

=
∫
ddx

∫
ddy δ(d)(z − x) ?z δ

(d)(z − y)f(x)g(y) . (1.40)

We can now interpret

δ(d)(z − x) ?z δ
(d)(z − y) =: K(x, y; z) (1.41)

as the kernel of the star product operation

f(z) ?z g(z) =
∫
ddx

∫
ddy K(x, y; z)f(x)g(y) . (1.42)

In the following we will show why we can interpret the star product as a convolution.
Our kernel can be written as

K(x, y; z) =
∫

ddk

(2π)d

∫
ddp

(2π)d
eik(z−x) ?z e

ip(z−y)

=
∫

ddk

(2π)d

∫
ddp

(2π)d
e−ikxe−ipyeikz ?z e

ipz . (1.43)
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The star product of two exponentials is given by (proof see my diploma thesis [6])

eikz ? eipz = ei(k+p)ze−
i
2
kΘp , (1.44)

so we conclude

K(x, y; z) =
∫

ddk

(2π)d

∫
ddp

(2π)d
e−ikxe−ipyei(k+p)ze−

i
2
kΘp

=
∫

ddk

(2π)d

∫
ddp

(2π)d
eik(z−x)eip(z−y+ 1

2
Θk)

=
∫

ddk

(2π)d
eik(z−x)δ(d)(z − y +

1
2
Θk) . (1.45)

Hence, the star product becomes

f(z) ?z g(z) =
∫
ddx

∫
ddy

∫
ddk

(2π)d
eik(z−x)δ(d)(z − y +

1
2
Θk)f(x)g(y) , (1.46)

and by performing a shift x→ x+ z, y → y + z∫
ddx

∫
ddy

∫
ddk

(2π)d
e−ikxδ(d)(−y +

1
2
Θk)f(x+ z)g(y + z) . (1.47)

The delta function over y solves the integral and we get

f(z) ?z g(z) =

∫
ddx

∫
ddk

(2π)d
eikxf(z + x)g(z +

1

2
Θk) , (1.48)

which is exactly the shifted form of the star product given in Rivasseau’s review [7]
page 29, or in Douglas/Nekrasov [8]. In this form one can also recognize the form of
a convolution, but slightly modified by the shift of 1

2Θk. This is a so-called twisted
convolution [7].
We now want to write the star product in x-space. We’ll start again at formula (1.45)
for our kernel ∫

ddk

(2π)d
eik(z−x)δ(d)(z − y +

1
2
Θk) , (1.49)

and substitute 1
2Θk → k′ with functional determinant 2d

|detΘ| . Then we arrive at

2d

|detΘ|

∫
ddk′

(2π)d
e2ik

′Θ−1(z−x)δ(d)(z − y + k′) . (1.50)

The delta function solves the integral:

1
|detΘ|

1
πd

e2i(y−z)Θ−1(z−x)

=
1
θd

1
πd

e−2i(y−z)Θ−1(x−z) , (1.51)
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where the special form of Θµν (1.30 and 1.31) has been used.
By reinserting this kernel into the star product formula (1.42) we end up at

f(z) ?z g(z) =
1

θdπd

∫
ddx

∫
ddy e−2i(y−z)Θ−1(x−z)f(x)g(y) (1.52)

=
1

θdπd

∫
ddx

∫
ddy e−2iyΘ−1xf(x + z)g(y + z) , (1.53)

which coincides with the literature.
This star product in position space can be generalized to higher orders. A proof won’t
be given in this thesis, but for completeness reasons the formula shall be stated (taken
from [7] and adapted to our conventions):

Lemma: For all j ∈ J1, 2n + 1K, let fj be an element of the noncommutative algebra.
Then

(f1 ? . . . ? f2n)(x) =
1

π2ddet2Θ

∫ 2n∏
j=1

dxjfj(xj)e
−2ix×

2n
P

i=1
(−1)i+1xi

e−2iφ2n , (1.54)

(f1 ? . . . ? f2n+1)(x) =
1

πddetΘ

∫ 2n+1∏
j=1

dxjfj(xj)δ
(
x−

2n+1∑
i=1

(−1)i+1xi

)
e−2iφ2n+1 , (1.55)

∀p ∈ N, φp =
p∑

i<j

(−1)i+j+1xi × xj , (1.56)

and if there is an integration present (like in the actions we consider), we are led to the
following
Corollary: For all j ∈ J1, 2n + 1K, let fj be an element of the noncommutative algebra.
Then∫

ddx (f1 ? . . . ? f2n)(x) =
1

πddetΘ

∫ 2n∏
j=1

dxjfj(xj)δ
( 2n∑

i=1

(−1)i+1xi

)
e−2iφ2n , (1.57)

∫
ddx (f1 ? . . . ? f2n+1)(x) =

1
πddetΘ

∫ 2n+1∏
j=1

dxjfj(xj)e−2iφ2n+1 , (1.58)

∀p ∈ N, φp =
p∑

i<j

(−1)i+j+1xi × xj . (1.59)

1.4.3 Symmetry factors

We have found no literature telling how to compute symmetry factors of various graphs,
especially of graphs with a higher number of external legs. Therefore we will give here
an idea of how this is done.
Instead of giving a general rule for computing symmetry factors we will follow a more
pedagogical point of view and explicitly calculate the symmetry factor step by step for
one specific example, a 3-point graph, namely the one with a 4-photon and a 3-photon
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vertex7. If one draws the disjoint pieces that build up the graph (Figure 1.2)

Figure 1.2: 3pt 4-photon 3-photon graph drawn disjoint.

one has 3 × 3 possibilities to connect one of the 3 external legs to the 3-photon vertex.
Taking this factor into account we can already connect one external line (Figure 1.3)

Figure 1.3: 3pt 4-photon 3-photon graph connected x1.

Now we have 4 × 3 possibilities to connect the remaining two external lines to the 4-
photon vertex (Figure 1.4)

Figure 1.4: 3pt 4-photon 3-photon graph connected x3.

because when we have already connected one external line with one of the 4 ends of the
vertex the remaining external line has only 3 possibilities left to connect to the vertex.

It remains to connect the 2 vertices to each other (Figure 1.5). We have two possi-
bilities to do so (straightforward or crosswise).
All together we have so far the combinatorial factor 3× 3× 4× 3× 2. We have to divide

7For a general rule how to derive the symmetry factors I recommend the Ph.D. thesis of Arnold Rofner
[9], where this is explained in detail.
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Figure 1.5: 3pt 4-photon 3-photon graph fully-connected.

this factor through 3! and 4!, for the corresponding vertex, respectively8. Those factors
are already contained in the algebraic expression for the vertices at tree level. All in all
our symmetry factor therefore is

3 × 3 × 4 × 3 × 2
3! × 4!

=
3
2
. (1.60)

8Note that for graphs with n identical vertices one would have to divide through a factor n! addition-
ally.
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1.5 Some Historical Introduction

In this section we will review what one could call the “näıve” attempts of introducing
noncommutative actions, i.e. by considering those known from the commutative world
and simply replacing pointwise by star products. We start with the noncommutative
scalar φ4 model and then continue to gauge theories. Linked to this we will point out
the known solutions to the related UV/IR mixing problem. Furthermore we will briefly
discuss an alternative approach known as Seiberg-Witten map. We will then round up
this section by looking at renormalization schemes.

1.5.1 Scalar field theories

In replacing the ordinary pointwise product by the star product, a noncommutative
extension to the scalar φ4 model is given by

S =
∫
d4x

(
∂µφ ? ∂

µφ+m2φ ? φ+
λ

4!
φ ? φ ? φ ? φ

)
. (1.61)

The first one to consider this action was T. Filk [10] who derived the corresponding
Feynman rules, noticing that — at least in Euclidean space — the propagator is exactly
the same as in commutative space, i.e. Gφφ(k) = 1/(k2 + m2), while the vertex gains
phase factors (in this case a combination of cosines) in the momenta. As a consequence,
new types of Feynman graphs appear: In addition to the ones known from commutative
space, where no phases depending on internal loop momenta appear and which exhibit
the usual UV divergences, so-called nonplanar graphs come into the game which are
regularized by phases depending on internal momenta. Other authors [11–15] performed
explicit one-loop calculations and discovered the infamous UV/IR mixing problem: Due
to the phases in the nonplanar graphs, their UV sector is regularized on the one hand,
but on the other hand this regularization implies divergences for small external momenta
instead.

For example the two point tadpole graph (in 4 dimensional Euclidean space) is ap-
proximately given by the integral

Π(Λ, p) ∝ λ

∫
d4k

2 + cos(kp̃)
k2 +m2

≡ ΠUV (Λ) + ΠIR(p) . (1.62)

The planar contribution is as usual quadratically divergent in the UV cutoff Λ, i.e.
ΠUV ∼ Λ2, and the nonplanar part is regularized by the cosine to

ΠIR ∼ 1
p̃2
, (1.63)

which shows that the original UV divergence is not present any more, but reappears
when p̃→ 0 (where the phase is 1) representing a new kind of infrared divergence. Since
both divergences are related to one another, one speaks of “UV/IR mixing”. It is this
mixing which renders the action (1.61) nonrenormalizable at higher loop orders.

1.5.2 Gauge field theories

In this section we will briefly overview the early attempts of understanding noncommu-
tative gauge field theories. For a general overview over gauge theories we recommend
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[16].
The pure star-deformed U(1) action of the Maxwell field is given by

SM =
∫
dDx

(
−1

4
Fµν ? F

µν

)
, (1.64)

where the field strength tensor is defined by

Fµν = ∂µAν − ∂νAµ − ig [Aµ
?, Aν ] (1.65)

= −i [x̃µ
?, Aν ] + i [x̃ν

?, Aµ] − ig [Aµ
?, Aν ] .

The corresponding Feynman rules for gauge field theories have been first worked out by
C.P. Martin and D. Sánchez-Ruiz [17]. M. Hayakawa included fermions [18, 19], which
leads to the action

SQED =
∫
dDx

(
−1

4
Fµν ? F

µν + ψ̄ ? γµiDµψ −mψ ? ψ̄

)
, (1.66)

with

Dµψ = ∂µψ − ig [Aµ
?, ψ] . (1.67)

Hayakawa’s loop calculations showed that UV/IR mixing is also present in gauge theories.
Independently, A. Matusis et al. [13] derived the same result. Further early papers in this
context are Refs. [20–23]. Explicitly, F. Ruiz Ruiz could even show that the quadratic
and linear IR divergences in the U(1) sector appear gauge independently9 [24], and are
therefore no gauge artefact. Furthermore, it was proven by using an interpolating gauge
that quadratic IR divergences not only are independent of covariant gauges, but also of
axial gauges [25]. As M. van Raamsdonk pointed out [26], the IR singularities have a
natural interpretation in terms of a matrix model formulation of YM theories.

Regarding the group structure of the noncommutative YM theory, A. Armoni stressed
the fact that SU?(N) theory by itself is not consistent [27, 28], and one should rather
consider U?(N). In his computations, he showed that the planar sector leads to a β-
function with negative sign, i.e. a running coupling g, and that the infamous UV/IR
mixing arises only in those graphs which have at least one external leg in the U?(1)
subsector. Furthermore, in the limit θ → 0, U?(N) does not converge to the usual
SU(N)×U(1) commutative theory, which shows that the limit is nontrivial. One reason
for this is that the β-function is independent from θ, meaning that the U(1) coupling
still runs in that limit.

Nevertheless, up to one loop order, U?(N) YM theory is renormalizable in a BRST
invariant way. Furthermore, the Slavnov-Taylor identity, the gauge fixing equation, and
the ghost equation hold [29]. As in the näıve scalar model of the previous subsection,
UV/IR mixing leads to nonrenormalizability at higher loop order.

Finally, the noncommutative two-torus has been studied by several authors [30–33].
A deformation of the Standard Model is discussed in [34]. The authors start with the

gauge group U?(3)× U?(2)× U?(1). In order to obtain the gauge group of the Standard
Model one has to introduce a breaking and hence additional degrees of freedom. An
alternative approach is to use Seiberg-Witten maps, described in the following subsection:

9However, one can improve the divergence behavior by introduction of supersymmetry.

22



Seiberg-Witten maps

The aim of this subsection is to touch the big subject of Seiberg Witten (S.W.) maps.
The origin of the latter lies in String theory. When investigating U(1) gauge theories,
Seiberg and Witten discovered [35] that different regularization schemes, cut-off reg. and
point-split reg., lead to different gauge transformations10,

δAµ = ∂µλ commutative

δ̂Âµ = ∂µΛ̂ + i
[
Λ̂ ?, Âµ

]
noncommutative . (1.68)

Consequently they argued that since physics should not depend on the regularization
scheme applied, there must be a map from one gauge transformation to the other one,
and hence from noncommutative to commutative gauge theory. Thus this map, the S.W.
map, must fulfill the gauge equivalence condition

Â[A+ δλA] = Â[A] + δ̂λÂ[A] , (1.69)

where δα denotes a commutative gauge transformation, and δ̂α a noncommutative one.
By using this relation and by furthermore assuming that the S.W. map is an expansion
in the formal parameter θ, one can derive the expansion for the gauge field itself

Âµ[A] = Aµ − θ

4
Θτν{Aτ , ∂νAµFνµ} + . . . (1.70)

Using this relation, one can formulate noncommutative gauge field theories in terms of
ordinary commuting fields. Explicitly, the noncommutative corrections then come in the
form of new vertices (with increasing number of legs per order), but suppressed by the
noncommutative parameter θ which decreases the contribution from order to order.
Finally it shall also be mentioned that this procedure can also be generalized to non-
abelian gauge theory [36, 37], even a full standard model has been established [38–41].
Currently the work in this direction goes very far, one is even hoping (depending on the
real value of θ) to find first signs of noncommutativity at the LHC collider at CERN.
This closes the short overview on S.W. maps, in the next section we will continue with
the alternative approach on treating NCQFT’s, i.e. we will look at

1.5.3 Solutions to the UV/IR mixing problem

In scalar theory, solutions to the UV/IR mixing problem are known. On the one hand
there is the Grosse-Wulkenhaar model, which kills the IR divergences by the introduction
of an oscillator-like term. On the other hand, the action of Gurau et al. [42] has also been
proven to be renormalizable to all orders. A counterterm of the form φ 1

p2φ is introduced,
which is able to take care of the IR-divergences, and hence we shall refer to the model
as the 1

p2 -model.
This subsection is mainly devoted to the latter, because the Grosse-Wulkenhaar model
will be broadly discussed in Section 2.1. For completeness reasons it should be mentioned
that a third model, put forward by Grosse and Vignes-Tourneret [43], is capable of
treating the UV/IR mixing problem too. In this model the authors started with an

10Quantities with hat fulfill noncommutative algebras.
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antisymmetric Theta matrix with rank 2, but in 4 dimensions, hence it has not full rank.
In this setting, the oscillator term alone is not sufficient to cure the UV/IR mixing mixing
problem, but by additionally introducing a quadratic nonlocal term in the action they
were able to show full renormalizability to all orders of perturbation theory.

The 1
p2 model

The action of the model is given by

S[φ] =
∫
d4p

(
1
2
pµφp

µφ+
1
2
µ2φφ+

1
2
a

1
θ2p2

φφ+
λ

4!
φ ? φ ? φ ? φ

)
, (1.71)

where a is a positive dimensionless parameter. This action leads to the following propa-
gator

1
p2 +m2 + a

θ2p2

, (1.72)

and one can already recognize from its form that taking the limit p→ 0 as well as p→ ∞
gives 0. This is the key feature of the model, which we will see will lead to a damping
behavior at higher loops. The rough argument, which is explained in more detail in [44],
will be explained in the following:
To one-loop order, the modified propagator doesn’t change anything. The divergence is
still of an 1

p̃2 -type (see Expression 1.63). However, one-loop renormalization is never a
problem (one can always add an appropriate counterterm to the action11), but higher
loop renormalization indeed is. Explicitly, we will therefore take a look at a tadpole
graph with n nonplanar insertions, depicted in Figure 1.6.

p

k

p

q

(a) with 1 insertion

p p

k

q1

q2

q3

(b) with 3 insertions

Figure 1.6: Non-planar 2-loop and 4-loop graphs.

11Which is in this case not even necessary, because
R

d4k 1
k2 is finite from a power-counting point of

view anyway.
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The mathematical expression for this Feynman graph is given by

Πn npl-ins.(p) ≡ λ2
∑

η=±1

∫
d4k

eiηkp̃(
k̃2
)n [

k2 +m2 + a2

k2

]n+1 , (1.73)

where the 1(
k̃2
)n factor comes from the n nonplanar insertions. For the näıve model

(where a = 0), the integral (1.73) involves an IR divergence for n ≥ 2, because the
integrand behaves like (k2)−n for k2 → 0. In contrast, for the model under consideration
(where a 6= 0), the integrand behaves like

1(
k̃2
)n [

a2

k2

]n+1 =
k̃2

(a′2)n+1 . (1.74)

Thus, the propagator (1.72) “damps” the IR-dangerous insertions and therefore cures
potential IR problems in the integral (1.73). This is a nice demonstration of the mecha-
nism leading to the renormalizability of the present model. In this respect we recall that
its renormalizability has been proved in reference [42] using multiscale analysis.

Gauge versions of the 1
p2 model Several attempts of formulating gauge theories

involving a 1
p2 term have been performed. I will present here step by step the essential

ideas developed by our group.
The näıve generalization starting from scalar theory is given in reference [45]: A gauge
invariant generalization of the φ 1

�φ term is just

Fµν ?
1

D2D̃2
? Fµν . (1.75)

However, the corresponding action suffers from an infinite number of gauge boson vertices
coming from the expansion of the additional term (1.75). Fortunately one can cure this
problem by the introduction of a multiplier field Bµν , leading to the following additional
contribution to the action

S
(add)
inv =

∫
d4x

[
a′Bµν ? Fµν −Bµν ? D̃

2D2 ? Bµν

]
, (1.76)

see also [46]. Integrating the Bµν field out leads back to (1.75). The main advantage is
now that the number of vertices is only finite. In return, one has additionally the Bµν

field, which indeed has dynamical degrees of freedom. To avoid this problem, one should
better guarantee that the additional field does not contribute to the Feynman rules. To
achieve this in the present case, we have taken over a technique using BRST doublets
from the Brazilian group Vilar et al. [47]. One introduces a BRST partner ψ̄µν for the
field Bµν [48], and within the doublet structure it is guaranteed that all those fields are
unphysical12. Thus one has achieved the 1

p2 damping behavior for the propagator like in
the scalar case, but has no additional degrees of freedom.
Unfortunately the model turned out to have a from loop order to loop order increasing

12As an alternative one could for example as well introduce a BRST partner for the coupling constant
of the nonlocal part of the action.
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degree of divergence for certain graphs with external Bµν field [49]. As a result of the
discussion how to overcome these problems the so called BRSW model was born [50, 51].
It is much simpler than the former model because the damping is implemented only in the
bilinear part. Therefore, no additional vertices than the standard ones are present, and
hence no Feynman graphs involving the Bµν field can be constructed. Thus the additional
divergences encountered in the former model are simply not present. Furthermore, in
the BRSW model the damping is implemented via a soft breaking term13, which is in
analogy to the Zwanziger solution [52] of the Gribov problem of QCD [53].
All in all the BRSW model seems to be a promising candidate for renormalization, and
a respective proof using Multiscale Analysis is currently work in progress.

1.5.4 Renormalization schemes

We finish this introduction by touching the topic of renormalization, which is the holy
grail of field theoreticians, because a renormalizable theory is a candidate of describing
nature.
In the following, we will sketch some prominent renormalization schemes:

• Algebraic Renormalization (AR) is built around the idea that rather than cal-
culating the necessary counterterms, all possible counterterms which the fields in
the action permit are written down and ruled out by Ward identities (and other
rules) exploiting the symmetry content of the theory. This relies on the so-called
Quantum Action Principle. For a review of AR, we recommend [54].
However, the situation is more complicated in noncommutative field theories, be-
cause the star product itself is nonlocal, and hence in principle an infinite number
of counterterms is possible by introducing dimensionless expressions like (θp2)n.
This situation is analyzed in detail in [55][56]. Fortunately power counting gets
rid of the problem since it rules out contributions by constraining the number of
powers of momenta.

• Polchinski Approach (PA) [57] is based on the work of Wilson [58]. In this
approach the propagator is multiplied with a cutoff function depending on the
scale14. The power counting degree of divergence of a graph then depends on
the topological data of that graph and on the scale. In this way, suitable scaling
dimensions provide a simple criterion to decide if a model has the chance of being
renormalizable or not. In a next step scale transformations lead to flow equations
connecting different loop graphs. These flow equations then need to be solved
iteratively.

• BPHZ is not really a renormalization scheme itself. It does not provide a method
of making an a priori infinite Feynman amplitude finite. However, when naively
summing up the perturbation series (consisting of already renormalized finite con-
tributions), subdivergences are not treated at all. In principle it can happen due
to them that the series does not converge. But this is exactly what BPHZ is made

13The notion “soft” refers to the fact that the dimension of Lsoft in Sbreak =
R

d4xγ2Lsoft is smaller
than 4 (γ is a parameter of mass dimension 1). The notion “breaking” means that this term breaks BRST
invariance, but as already discussed the latter can be restored by the introduction of BRST doublets.

14The scale idea due to Wilson is sketched in Appendix A.1.2.
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to take care of. It rewrites the series using the so-called forest formula to be able
to treat the subdivergences in a correct way. However, it still sums up too many
finite contributions, leading to the so-called Renormalon problem. The latter is
solved by Multiscale Analysis, described in the following.

• Multiscale Analysis (MA). In a first step within this procedure, propagators are
“sliced”, see Appendix A.1. By doing so, Feynman amplitudes can be up-bounded.
Thus, the maximal degree of divergence for a graph of arbitrary loop order can
be estimated. Hence all counterterms which could ever arise are known and when
they are all qualitatively present in the initial action they can all in principle be
absorbed into the constants.
Furthermore, MA provides us with a scheme how to usefully sum up the perturba-
tion series by classifying the graphs into dangerous and harmless ones. Instead of
summing up the forests, like BPHZ does, the most economic forests are summed
up. Further details can be found in [59][7].
Concerning gauge theories, it is a fact that MA breaks gauge invariance (since it
is dependent on a “scale”). However, by carefully introducing appropriate coun-
terterms into the renormalized action, especially by respecting the magic formula
relating the Zi’s, one is able to restore gauge invariance [60].
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Chapter 2

Models with Oscillator Terms

In order to avoid the UV/IR mixing problem, several models which involve an oscillator
like counterterm have been put forward. On the one hand such models explicitly break
translation invariance (which does not necessarily need to be kept beyond the Standard
model, that means when describing noncommutative photons1), but on the other hand
they in general show a much better divergence behavior at higher loops or are even (in
the case of the Grosse-Wulkenhaar model) proven to be renormalizable.
In the following we will present three such models.

2.1 The Grosse-Wulkenhaar Model

In 2004, the first renormalizable noncommutative scalar field model (in Euclidean R4
θ)

was introduced by H. Grosse and R. Wulkenhaar [61] (for a Minkowskian version see
reference [62]). Their trick was to add a harmonic oscillator-like term to the scalar φ4

action, i.e.:

Γ0[φ] =
∫
d4x

(
1
2
∂µφ ? ∂µφ+

µ2
0

2
φ ? φ+

Ω2

2
(x̃φ) ? (x̃φ) +

λ

4!
φ ? φ ? φ ? φ

)
, (2.1)

with x̃µ = (Θµν)
−1 xν (Θµν constant and antisymmetric). This action cures the infamous

UV/IR mixing problem. Indeed, for the bad IR-behavior found in the näıve model
(triggered by the kinetic part of the action), the oscillator term acts as a sort of counter
term. By exchanging x̃↔ p one can see that the action stays form invariant:

S[φ;µ0, λ,Ω] 7→ Ω2S[φ;
µ0

Ω
,
λ

Ω2
,
1
Ω

]. (2.2)

This symmetry is called Langman-Szabo duality [63] and at the self dual point, Ω = 1,
it is even exact.
The propagator of the model is the inverse of the operator −∆+Ω2x̃2 +µ2

0 and is called
the Mehler kernel. For the interested reader a detailed analysis of the Mehler kernel is
performed in the next section. Here, we just state that the Mehler kernel is given by (in

1The author believes that there is probably some sort of phase transition from normal photons to
noncommutative ones, when going down in scales towards the Planck length, but this is only speculation.
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position space and 4 dimensions)

KM (x, y) =

∞∫
0

dα
1

8π2ω sinh2 α
e−

1
4ω (u2 coth α

2
+v2 tanh α

2 )−ωµ2
0α, (2.3)

with ω = θ
Ω , u = x−y being a so-called short variable and v = x+y being a long variable.

This notation has been introduced by V. Rivasseau et al. [64]. They confirmed the
renormalizability of the model by making use of a technique called Multiscale Analysis,
additionally to the original renormalization proof of H. Grosse and R. Wulkenhaar which
has been given in the matrix base employing the Polchinski approach.
Another beautiful aspect of the model can be illustrated by a quick glance at the beta
function for λ, which we have taken from [65], see Fig. 2.1.

λ

Ω

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500

Figure 2.1: Beta function.

In contrast to the näıve scalar model (without oscillator term) the beta function becomes
constant for high energies. Hence it does not diverge, and is therefore free of the Landau
ghost problem [66–68].

2.1.1 The Mehler kernel

In this section we discuss some important properties of the Mehler kernel. For simplicity,
the mass µ0 is set to zero. Most generally, in position space and d dimensions the Mehler
kernel is given by

KM (x, y) =

∞∫
0

dα
ω

2(2πω sinhα)d/2
e−

1
4ω ((x−y)2 coth α

2
+(x+y)2 tanh α

2 ) . (2.4)
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In momentum space, it looks quite similar

KM (p, q) =

∞∫
0

dα
ω1+ d

2

2(2π sinhα)d/2
e−

ω
4 ((p−q)2 coth α

2
+(p+q)2 tanh α

2 ) , (2.5)

which nicely illustrates the Langmann-Szabo duality.
We will in the following state some properties of the Mehler kernel. Several of them I
have proven already in my diploma thesis [6]. For completeness reasons, I will however
give a short summary:

• Commutative limit:
In the limit Ω → 0 the Mehler kernel behaves like the ordinary propagator

lim
Ω→0

∫
d4pKM (p, q) =

1
q2
. (2.6)

• Kernel property:
One can see it best when renaming α to t (just for this paragraph), and defining

KM (x, y) =
∫
dtKM (x, y, t) . (2.7)

Exploiting the kernel property, which is

ψ(x, t) = eiHtψ(x) =
∫
ddy KM (x, y, t)ψ(y) , (2.8)

one can see that for t → 0, the Mehler kernel must behave like a delta function,
that is

KM (x, y, 0) = δ(d)(x− y) . (2.9)

One can see this also by directly taking the limit α→ 0 in the explicit form of the
Mehler kernel (2.4).

• Bounds:
In the light of Multiscale Analysis, used by V. Rivasseau et al. to renormalize the

G.W. model, the Mehler kernel can be sliced, KM (x− y, x+ y) =
∞∑
i=0

Ci, with

Ci(x− y, x+ y) =

M−2(i−1)∫
M−2i

dα
ω

2(2πω sinhα)2
e−

1
ω

coth(α
2 )(x−y)2+tanh(α

2 )(x+y)2 .

(2.10)

The zeroth slice usually gives only a finite contribution and the other slices can be
bounded, namely for some constants K (large) and c (small) we get:

Ci(x− y, x+ y) ≤ KM2ie−c(M i||x−y||+M−i||x+y||) . (2.11)

More mathematical details on Multiscale Analysis can be found in Appendix A.1.

In the following, I will list some other important properties of the Mehler kernel:
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Damping behavior The Mehler kernel features a damping behavior for high momenta
(UV) as well as for low momenta (IR). One can see this by comparison with the heat
kernel, which is the inverse of H0 = −∆ + µ2

0 and has the form

H−1
0 =

∞∫
0

dα
1

16π2α2
e−

(x−y)2

2α
−µ2

0α . (2.12)

For µ0 = 0, one finds the well-known form of the undamped propagator after integrating
over α and performing an expansion of the Bessel function

H−1
0 ' 1

4π2(x− y)2
. (2.13)

Equivalently, when setting y = 0 and µ0 = 0 in the Mehler kernel, one can perform the
integration over the auxiliary Schwinger parameter and obtain

KM (x) =
e−

x2

2ω

4π2x2
, (2.14)

which shows that the Mehler kernel has a much stronger convergence behavior for large
values of x, corresponding to small values of p. However, the price to pay seems to be
that translation invariance is broken, which can be seen directly in the action, because
of the explicit x-dependence of the oscillator term x̃2φ2. Recently it has been shown
that this term can be interpreted as a coupling to the curvature of a noncommutative
background space [69], giving it a nice geometrical interpretation.

Relation to the commutative propagator In a certain limit the Mehler kernel has
a close relationship to the commutative propagator. To see this, we start at the Mehler
kernel in momentum space (with for shortness reasons using the abbreviation of long
and short variables, as already introduced in the previous section)

KM (u, v) =
ω3

8π2

∞∫
0

dα
1

sinh2 α
exp

[
−ω

4
u2 coth(

α

2
) − ω

4
v2 tanh(

α

2
)
]
. (2.15)

We will now estimate the Mehler kernel for small parameters α. In zeroth order the
Mehler kernel then becomes

KM (u, v) =
ω3

8π2

∞∫
0

dα
1
α2

exp
[
−ω

4
u2 2
α
− ω

4
v2α

2

]
. (2.16)

Using the Leibbrandt formula [70], page 368, formula 9

∞∫
0

1
λn
e−Aλ−B 1

λ = 2
(
A

B

)n−1
2

Kn−1

(
2
√
AB
)
, (2.17)
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with Kn−1 being a modified Bessel function of the second kind, one gets2 for (2.16):

ω3

8π2

√
v2

u2
K1

(
2ω

√
v2u2

)
, (2.18)

for u2 > 0 and v2 ≥ 0. If the considered Mehler kernel is an external leg (like for example
when calculating corrections to the propagator), we can expand the Bessel function into
a series around small arguments3:

ω3

8π2

√
v2

u2
K1

(
2ω

√
v2u2

)
≈ ω2

4π2

1
u2

=
ω2

4π2

1
(k − k′)2

. (2.19)

For k′ = 0 this corresponds to the usual propagator in momentum space.

Parameter-independent form

We now want to find the form of the Mehler kernel when it is integrated out. In only 1
dimension, this is fully possible. In 2 or 4 dimensions, this can only be done when one
of the two coordinates is set to zero.

1 Dimension The defining equation for the Mehler kernel reduces to(
− d2

dx̄2
+

1
ω2
x̄2

)
KM (x̄, x̄′) = δ(x̄− x̄′) ,

1√
ω

(
− d2

dx2
+ x2

)
KM (x, x′) = δ(x− x′) , (2.20)

where we have used dimensionless coordinates
(
x = x̄√

ω

)
. As a side remark we want to

note here that this operator can be rewritten into Sturm-Liouville form:

LKM (x, x′) = δ(x− x′) , (2.21)

L =
1√
ω

(
− d2

dx2
+ x2

)
= − d

dx

(
p(x)

d

dx

)
+ q(x) , (2.22)

with p(x) = 1√
ω

and q(x) = x2
√

ω
.

In the following, we want to construct the solution of the inhomogeneous equation out
of the solution of the homogeneous one. For this topic we follow the procedure described
for example in the book of Arfken [71].
We will first solve the homogeneous equation(

− d2

dx2
+ x2

)
K

(0)
M (x, x′) = 0 , (2.23)

2In a theory without additional oscillator term the long variable v is zero and we are back at the heat

kernel KM (u) = ω3

8π2

∞
R

0

dα 1
α2 exp

ˆ

−ω
4
u2 2

α

˜

. However, integrating the latter out, we find the same result

(2.19).
3If the Mehler kernel we treat here is describing internal momenta, we aren’t allowed to do this because

later on according to the Feynman rules one has to integrate over internal momenta, from −∞ to +∞,
and we would make a significant error in this integration if we throw away the large momenta.
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whose solution is

K
(0)
M (x, x′) = C1D− 1

2

(√
2x
)

+ C2D− 1
2

(
−
√

2x
)
, (2.24)

where D± 1
2

are parabolic cylinder functions. The dependence on x′ is hidden in the
constants C1 and C2, which we will calculate in the following.
To include physical boundary conditions we require that KM (∞, x′) = KM (−∞, x′) = 0.
By looking at the divergence behavior of the two linear independent parabolic cylinder
functions we realize that to fulfill these boundary conditions we have to demand

K
(0)
M (x) =

{
G1(x) = C1D− 1

2

(
−
√

2x
)

for x < t

G2(x) = C2D− 1
2

(√
2x
)

for x > t ,
(2.25)

with some arbitrary t ∈ R. Additionally, in order to ensure the function to be continuous
we have to require

G2(x)
∣∣
t
= G1(x)

∣∣
t
,

C2D− 1
2

(
−
√

2x
) ∣∣∣∣

t

= C1D− 1
2

(√
2x
) ∣∣∣∣

t

. (2.26)

Furthermore we demand that the derivations of our homogeneous solutions should be
discontinuous at x = t, that is

d

dx
G2(x)

∣∣∣∣
t

− d

dx
G1(x)

∣∣∣∣
t

= − 1
p(t)

,

d

dx
C2D− 1

2

(√
2x
)
− d

dx
C1D− 1

2

(
−
√

2x
)

= −
√
ω . (2.27)

Solving equations (2.26) and (2.27) allows us to determine the coefficients

C1 →
√
ωe

t2

2 H− 1
2
(t)

4
√

2
(
H− 1

2
(t)H 1

2
(−t) +H− 1

2
(−t)H 1

2
(t)
) , (2.28)

C2 →
√
ωe

t2

2 H− 1
2
(−t)

4
√

2
(
H− 1

2
(t)H 1

2
(−t) +H− 1

2
(−t)H 1

2
(t)
) , (2.29)

which become dependent on t by this way. However, by the above requirements, we can
due to Arfken [71] conclude what the full solution is:

KM (x, x′) =
∫
dtK

(0)
M (x, t)f(t, x′)

=
∫
dtK

(0)
M (x, t)δ(x′ − t)

= K
(0)
M (x, x′) . (2.30)

33



Putting everything together the complete solution is given by

KM (x, x′) =

√
ωe

x′2
2 H− 1

2
(x′)

4
√

2
(
H− 1

2
(x′)H 1

2
(−x′) +H− 1

2
(−x′)H 1

2
(x′)

)D− 1
2

(
−
√

2x
)

forx < x′,

√
ωe

x′2
2 H− 1

2
(−x′)

4
√

2
(
H− 1

2
(x′)H 1

2
(−x′) +H− 1

2
(−x′)H 1

2
(x′)

)D− 1
2

(√
2x
)

forx > x′.

(2.31)

To illustrate that the result is correct we take a look at the special case x′ = 0. Then
the solution becomes

√
ω Γ

(
1
4

)
27/4

√
π
D− 1

2

(
−
√

2x
)

forx < 0,
√
ω Γ

(
1
4

)
27/4

√
π
D− 1

2

(√
2x
)
. forx > 0. (2.32)

By using the absolute value of x we can write these two piecewise defined functions as
one:
√
ω Γ

(
1
4

)
27/4

√
π
D− 1

2

(√
2|x|

)
=

√
ω Γ

(
1
4

)
27/4

√
π

√
|x|√
2π
K1/4

(
x2

2

)
=

√
ω Γ

(
1
4

)
4π

√
|x|K1/4

(
x2

2

)
,

(2.33)

and with the original coordinates x̄ = x
√
ω we end up at

ω1/4 Γ
(

1
4

)
4π

√
|x|K1/4

(
x2

2ω

)
. (2.34)

This is exactly the Mehler kernel in 1 dimension when one integrates out α (for x′ = 0),
which will be proven in the next paragraph.

Higher Dimensions In higher dimensions (explicitly 2 and 4), we cannot use the
method described above because e.g. in 2 dimensions one gets when solving the homo-
geneous problem 4 unknown constants, whereas one has only 2 matching conditions at
hand.
Instead we will start from the already known form of the Mehler kernel

KM (x, y) =

∞∫
0

dα
ω

2(2πω sinhα)d/2
e−

1
4ω (u2 coth α

2
+v2 tanh α

2 ) , (2.35)

where for simplicity we have set the mass equal to zero and u = x−y as well as v = x+y,
as usual. In general, this cannot be integrated, but when setting one variable equal to
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zero, this is possible, which we will show in the following.
For y = 0, the Mehler kernel becomes

KM (x, y) =

∞∫
0

dα
ω

2(2πω sinhα)d/2
e−

1
4ω (x2 coth α

2
+x2 tanh α

2 )

=

∞∫
0

dα
ω

2(2πω sinhα)d/2
e−

1
2ω

x2 coth α . (2.36)

By a substitution cothα = λ, with functional determinant dα
dλ = 1

1−λ2 , we get

ω

2

1∫
∞

dλ
1

1 − λ2

(
1

2πω
√
λ2 − 1

)d/2

e−
1
2ω

x2λ

=
ω

2

∞∫
1

dλ
1

(2πω)d/2

(
λ2 − 1

) d
4
−1
e−

1
2ω

x2λ , (2.37)

which can be integrated (e.g. by Mathematica R©). In 1,2 and 4 dimensions, the result
becomes rather simple, which one can summarize in a small table:

Dimension Mehler kernel Asymptotics for x� 1

1 ω1/4
√

|x|
4π K 1

4

(
x2

2ω

)
Γ
(

1
4

)
∼ const

2 1
4πK0

(
x2

2

)
∼ lnx

4 e−
x2

2ω

4π2x2 ∼ 1
x2

(2.38)

Hence, we have seen that it is indeed possible to integrate the Mehler kernel out, and
that it takes a very nice form for x′ = 0.

2.2 Extension to Gauge Theories

The aim is to obtain propagators for gauge models with a damping behavior similar
to the Mehler kernel in the scalar case. Since an oscillator term Ω2x̃2A2 is not gauge
invariant, there are more or less two possible ways to construct the model: either one
adds further terms in order to make the action gauge invariant (which will be discussed
in the following section) or one views the oscillator term as part of the gauge fixing.
D. Blaschke, H. Grosse and M. Schweda put forward a model which follows the latter
approach [72]. The action is given by4

Γ(0) = Sinv + Sm + Sgf ,

Sinv =
1
4

∫
d4xFµν ? Fµν ,

4Throughout this section we will stick to 4-dimensional Euclidean space.
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Sm =
Ω2

4

∫
d4x

(
1
2
{x̃µ

?, Aν} ? {x̃µ
?, Aν} + {x̃µ

?, c̄} ? {x̃µ
?, c}

)
=

Ω2

8

∫
d4x (x̃µ ? Cµ) ,

Sgf =
∫
d4x

[
b ? ∂µAµ − 1

2
b ? b− c̄ ? ∂µsAµ − Ω2

8
c̃µ ? s Cµ

]
, (2.39)

with

Fµν = ∂µAν − ∂νAµ − ig [Aµ
?, Aν ] ,

Cµ =
(
{{x̃µ

?, Aν} ?, Aν} + [{x̃µ
?, c̄} ?, c] + [c̄ ?, {x̃µ

?, c}]
)
,

x̃µ =
(
Θ−1

)
µν
xν . (2.40)

The gauge field Aµ transforms under the noncommutative generalization of a U(1) gauge
transformation which is infinite by construction of the noncommutative algebra. Once
more, we denote the gauge group by U?(1) in order to distinguish it from the commutative
U(1) gauge group. The multiplier field b implements a nonlinear gauge fixing5:

δΓ(0)

δb
= ∂µAµ − b+

Ω2

8

(
[{x̃µ

?, c} ?, c̃µ] − {x̃µ
?, [c̃µ ?, c]}

)
= 0 . (2.41)

The field c̃µ is an additional multiplier field which guarantees the BRST-invariance of
the action. The BRST-transformations are given by

sAµ = Dµc = ∂µc− ig [Aµ
?, c] , sc̄ = b,

sc = igc ? c, sb = 0,
sc̃µ = x̃µ, sx̃µ = 0

s2ϕ = 0 ∀ ϕ ∈ {Aµ, b, c, c̄, c̃µ} , (2.42)

Since c̃µ transforms into x̃µ, the part of the action including the Lagrange-multiplier field
c̃µ exactly cancels with Sm under the application of the BRST-operator s onto the whole
action. Sinv is BRST invariant anyway because it is even gauge invariant (hence the name
Sinv), and the gauge fixing part that is left over is also easily seen to be BRST invariant,
thus the full action fulfills this property, as it should. BRST invariance is generally a
good feature to impose on gauge models because then the positive definiteness of the
Hilbert space is guaranteed. Moreover, it kind of restores the old gauge invariance which
has proven to be the correct way to describe real photons.
With these BRST transformations the action (2.39) can be written in the following
beautiful form:

Γ(0) =
∫
d4x

(
1
4
Fµν ? Fµν + s

(
Ω2

8
c̃µ ? Cµ + c̄ ? ∂µAµ − 1

2
c̄ ? b

))
. (2.43)

5Notice, that in the limit Ω → 0 this becomes the Feynman gauge.
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2.2.1 Feynman rules

The action is full of stars and it is a priori not clear why they should all disappear in
the bilinear part, since x̃µ terms are involved. However, when we assume Θµν to be
antisymmetric and constant, i.e.

(Θµν) = θ


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , (2.44)

as defined in Section 1.4.1, the following property holds:

{Aµ
?, x̃µ} = 2x̃µAµ , (2.45)

which can be directly verified by inserting the definition of the star product (1.32). It is
therefore possible to reduce the bilinear parts of the action to one single star. The latter
can be removed by exploiting the cyclic permutation property of the star product (1.35),
and therefore the noninteracting part of the action is the same as in an undeformed
model. Hence the propagators are more or less just the Mehler kernels, like in the scalar
case (but without mass). In momentum space they are given by

GAA
µν (p, q) = (2π)4K̃M (p, q) δµν ,

Gc̄c(p, q) = (2π)4K̃M (p, q) , (2.46)

with the Mehler kernel in momentum representation

K̃M (p, q) =
ω3

8π2

∞∫
0

dα
1

sinh2 α
e−

ω
4
(p−q)2 coth α

2
−ω

4
(p+q)2 tanh α

2 . (2.47)

It has when compared to (2.3) a similar mathematical form, which is nothing else but
an expression of the Langman-Szabo duality [63].

The c̃bc-vertex involving the multiplier field c̃µ does not contribute to Feynman dia-
grams since a propagator connecting to that field does not exist. Similarly, a propagator
does exist for b, but the only vertex connecting to it is the c̃bc vertex, which, as explained,
does not contribute to loop diagrams. Hence, we will omit the related Feynman rules.

The vertices following from the action are just the usual noncommutative ones, as
can be found for example in [19]. Equipped with the complete Feynman rules we can
start deriving a power counting formula to estimate the worst degree of divergence of
our graphs, which via UV/IR mixing is directly related to the degree of noncommutative
IR divergence. A detailed derivation is given in Appendix A.2. Given the number of
external legs for the various fields (denoted by Eϕ,∀ ϕ ∈ {Aµ, b, c, c̄, c̃µ}) the degree of
UV divergence for an arbitrary graph in 4 dimensional space can be up-bounded by

dγ = 4 − EA − Ec/c̄ − E
ec . (2.48)

This bound, however, represents merely a crude estimate. The true degree of divergence
can (for certain graphs) be improved by BRST invariance. For example, for the one-loop
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boson self-energy graphs the power counting formula would predict at most a quadratic
divergence, but gauge invariance usually reduces the sum of those graphs to be only
logarithmically divergent. In our case we will show, however, that this does not happen
due to a violation of translation invariance. The corresponding Ward identity will be
worked out more explicitly in the next subsection.

2.2.2 Symmetries

In this subsection, we will take a closer look at the Ward identities (describing transver-
sality) and the Slavnov-Taylor identities (describing BRST invariance). Every symmetry
in general implies a conservation operator that gives zero when applied to the action. In
the case of the BRST symmetry this is s. Regarding s as a total derivation of Γ(0) we
can write

sΓ(0)[Aµ, b, c, c̄, c̃µ]

=
∫
d4x

(
sAµ ?

δΓ(0)

δAµ
+ sb ?

δΓ(0)

δb
+ sc ?

δΓ(0)

δc
+ sc̄ ?

δΓ(0)

δc̄
+ sc̃µ ?

δΓ(0)

δc̃µ

)
. (2.49)

By introducing external sources ρµ and σ for sAµ and sc, respectively

Γ = Γ(0) + Γext ,

Γext =
∫
d4x (ρµ ? sAµ + σ ? sc) , (2.50)

and making use of (2.42) we can write the Slavnov-Taylor identity in a more convenient
form:

S(Γ) =
∫
d4x

(
δΓ
δρµ

?
δΓ
δAµ

+
δΓ
δσ

?
δΓ
δc

+ b ?
δΓ
δc̄

+ x̃µ ?
δΓ
δc̃µ

)
= 0 . (2.51)

To arrive now at the Ward identity describing transversality, one has to take as usual
the functional derivative of the Slavnov-Taylor identity with respect to Aρ and c and
then one has to set all fields equal to zero. One immediately recognizes that the x̃µ-term
which originates from the oscillator term in the action gives an additional contribution.
The usual transversality is explicitly broken:

∂z
µ

δ2Γ
δAρ(y)δAµ(z)

=
∫
d4x

(
x̃µ

δ(3)Γ
δc(z)δAρ(y)δc̃µ(x)

)
6= 0 . (2.52)

The calculation leading to the explicit expression for the transversality breaking can be
found in Appendix A.3.
Graphically, relation (2.52) can be depicted as shown in Fig. 2.2.

2.2.3 Loop calculations

In this section, the reader may find a more detailed version of the 1-loop calculations
already presented in [73]:
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∂µ = x̃µ·

Figure 2.2: Ward identity replacing transversality.

+

Figure 2.3: Tadpole graphs.

The simplest graphs one may construct are the (one-point) tadpoles, consisting of just
one vertex and one internal propagator. They consist of two graphs which are depicted
in Fig. 2.3. According to the Feynman rules, their sum is straightforwardly given by

Πµ(p) = 2ig
∫
d4k

∫
d4k′δ4

(
p+ k′ − k

)
sin
(
kp̃

2

)
KM (k, k′)

[
2kµ + 3k′µ

]
. (2.53)

We may now transform to “long and short” variables

u = k − k′, v = k + k′ ⇒ k =
v + u

2
, k′ =

v − u

2
, (2.54)

with functional determinant 1
16 . Moreover, since we want to rise everything up to the

exponent in order to have simple Gaussian integrals, we make use of

sin
(
kp̃

2

)
=
∑

η=±1

η

2i
exp

(
iη
2
kp̃

)
, (2.55)

and plug in the explicit expression for the Mehler kernel (2.47). Altogether this leads to

Πε
µ(p) =

gω3

28π2

∑
η=±1

∫
d4v [5vµ − pµ]

∞∫
ε

dα
ηe

iη
4

vp̃

sinh2 α
exp

(
−ω

4

[
coth

(
α
2

)
p2 + tanh

(
α
2

)
v2
])

=
5igp̃µ

64

∞∫
ε

dα
cosh

(
α
2

)
sinh5

(
α
2

) exp
[
−1

4
coth

(α
2

)(
ω +

θ2

4ω

)
p2

]
, (2.56)

where in the last step the Gaussian integral has been solved and trigonometric identities
have been used. Furthermore, we have introduced a cutoff ε = 1/Λ2 which regularizes
the integral.

Näıvely, one could simply integrate out α and discover a divergence structure of
higher degree than expected, since it still contains a “smeared out” delta function. To
make this clear, consider the usual commutative propagator, which depends on a second
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momentum only through a delta function, i.e. G(k, k′) ∝ G(k)δ4(k − k′). In the present
case, due to the breaking of translational invariance, the delta function is replaced by
something which might be described by a smeared out delta function, which is contained
in the Mehler kernel, and hence one cannot simply split that part off. However, by
integrating over one external momentum one can extract the divergence one is actually
interested in. In some sense one can interpret this procedure as an expansion around the
usual momentum conservation. This is the general procedure we will use to calculate
the Feynman graphs. The 1-point tadpoles however are an exception: since they have
only one external momentum, integrating the latter out would equally mean to set p = 0.
(One can see this by noticing that the integrand is antisymmetric in p, and the integration
over the symmetric interval from −∞ to ∞ would thus give zero.) With this procedure
we would just hide the divergences. In conclusion, one can state that the integration
over an external momentum is applicable for graphs with more than one external leg.

For the 1-point graphs, we use the trick of coupling an external field to the graph
and expanding it around p = 0:∫

d4p

(2π)4
Πε

µ(p)
[
Aµ(0) + pν

(
∂p

νAµ(p)
∣∣
p=0

)
+
pνpρ

2

(
∂p

ν∂
p
ρAµ(p)

∣∣
p=0

)
+

+
pνpρpσ

6

(
∂p

ν∂
p
ρ∂

p
σAµ(p)

∣∣
p=0

)
+ . . .

]
. (2.57)

After smearing out the graph by coupling it to an external field, an integration over p is
allowed. All terms of even order are zero for symmetry reasons. Of the other terms, we
now show that only the first two, namely orders 1 and 3, diverge in the limit ε→ 0:

• order 1: ∫
d4p

(2π)4
pνΠε

µ(p) =

∞∫
ε

dα
5igθµν

32π2ω3
(
1 + Ω2

4

)3
sinh2(α)

=
5igθµν

32π2ω3
(
1 + Ω2

4

)3

[
1
ε
− 1 + O(ε)

]
. (2.58)

With the external field, we obtain a counter term of the form(
∂p

νAµ(p)
∣∣
p=0

)∫ d4p

(2π)4
pνΠε

µ(p) =

=
5gΩ2

32π2ω
(
1 + Ω2

4

)3

[
1
ε
− 1 + O(ε)

] ∫
d4x x̃µAµ(x) . (2.59)

• order 3:∫
d4p

(2π)4
pαpβpγ

6
Πε

µ(p) =
−5ig (δαβθµγ + δβγθµα + δαγθµβ)

24π2ω4
(
1 + Ω2

4

)4 [ln ε+ O(0)] , (2.60)
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and with the external field we get the counter term(
∂p

α∂
p
β∂

p
γAµ(p)

∣∣
p=0

)∫ d4p

(2π)4
pαpβpγ

6
Πε

µ(p) =

=
5g
8π2

Ω4(
1 + Ω2

4

)4 [ln ε+ O(0)]
∫
d4x x̃µx̃

2Aµ(x) . (2.61)

• order 5 and higher:
These orders are finite. The contribution to order 5 + 2n, n ≥ 0 is proportional to

∞∫
0

dα
sinhn α

2

coshn+4 α
2

=
4

(n+ 1)(n+ 3)
. (2.62)

Notice, that all tadpole contributions vanish in the limit Ω → 0 as expected. However
when Ω 6= 0 the unphysical tadpole contributions are nonzero. Since this can certainly
not describe nature, we must have started with a wrong vacuum. Furthermore, since we
get additional counter terms of mathematical structure which were not initially present
in the original action, we certainly need a new theory. Apparently this is the case here
because Eqn. (2.59) and (2.61) reveal counter terms linear in Aµ. Ultimately this means
that we will have to consider a whole new model, which will be the induced gauge theory,
but more on that in Section 2.3.

2.2.4 Two-point functions at one loop level

Here we analyze the divergence structure of the gauge boson self-energy at one-loop level.
The relevant graphs are depicted in Fig. 2.4.

a) b) c)

Figure 2.4: Gauge boson self-energy — amputated graphs.

As explained in the previous paragraph, we do not need to couple an external field
and expand around it in this case. The notion of long and short variables has proven to
be very useful and we will use it again here. In Appendix A.4.1 the graphs are calculated.
In this form, we can easily sum up all three graphs a), b) and c). The sum yields the
final result

Πdiv
µν (p) =

g2δµν

(
1 − 3

4Ω2
)

4π2ω ε
(
1 + Ω2

4

)3 +
3g2δµνΩ2

8π2p̃2
(
1 + Ω2

4

)2 +
2g2p̃µp̃ν

π2(p̃2)2
(
1 + Ω2

4

)2

+ logarithmic UV divergence . (2.63)
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In the limit Ω → 0 (i.e. ω → ∞), this expression reduces to the usual transversal result

lim
Ω→0

Πdiv
µν (p) =

2g2

π2

p̃µp̃ν

(p̃2)2
+ logarithmic UV divergence , (2.64)

which is quadratically IR divergent6 in the external momentum p and logarithmically
UV divergent. The single graphs (A.50), (A.58), however, do not show this behavior,
only the sum of all 3 graphs is transversal in the limit Ω → 0. When not taking this
limit we can see from the general result (2.63) that not only transversality is broken
due to the first two terms, but also that it has an ultraviolet divergence parameterized
by ε, whose degree of divergence is higher compared to the (commutative) gauge model
without oscillator term. Both properties are due to the term Sm in the action which
breaks gauge invariance (cf. (2.52)).

2.2.5 Vertex corrections at one-loop level

Corrections to the 3-point vertex

Due to the vast amount of terms that arise when calculating the graphs depicted in
Figure 2.5 it is practicable to use a computer. In fact, we taught Mathematica R© to

a) b) c)

Figure 2.5: One loop corrections to the 3A-vertex.

perform the same steps as we would have done by hand. A short description of the
functions used can be found in Appendix B.
Some important steps and calculation techniques, as well as a clear distinction into planar
and nonplanar part can be found in Appendix A.4.2.
Performing the same steps as in the previous chapter the calculation gives as a sum of
all 3 graphs

V 3A,IR
µνρ (p1, p2, p3) =

−8ig3

π2 (4 + Ω2)3

3∑
i=1

[
16p̃i,µp̃i,ν p̃i,ρ

p̃4
i

+
3Ω2

p̃2
i

(δµν p̃i,ρ + δµρp̃i,ν + δνρp̃i,µ)
]
,

(2.65)

which is linearly divergent.
Once more, this expression has additional terms due to the nonvanishing oscillator term

6In fact, this term is consistent with previous results [18, 24, 25] calculated in the näıve model, i.e.
without any additional x-dependent terms in the action.
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parameterized by Ω. However, in the limit Ω → 0 the usual result known from the
literature is recovered7 [13, 24, 27]:

lim
Ω→0

V 3A,IR
µνρ (p1, p2, p3) =

−2ig3

π2

3∑
i=1

[
p̃i,µp̃i,ν p̃i,ρ

p̃4
i

]
. (2.66)

In the ultraviolet, the graphs of Fig. 2.5 diverge only logarithmically.

Corrections to the 4-Photon Vertex

We essentially calculated the bubble graph (Fig. 2.6) as a representative of the 4 possible
4-pt. graphs.

pµ

p′µ q
ν

q′ν

Figure 2.6: The bubble graph

It shows logarithmic behavior both in the ultraviolet as well as in the infrared sector, as
expected from the power counting (2.48).

2.3 Induced Gauge Theory

Since in the previous section it has been shown that additional counter terms arise
which were not present in the original action it is natural to start with an action that
has those terms already built in, instead. Such an action is the “induced gauge theory”
of Refs. [74, 75]. Its major advantage is that it is, by construction, completely gauge
invariant.

2.3.1 Derivation from the G. W. model

Let us review how the induced action is derived.
One starts with the Grosse-Wulkenhaar model (2.1):

Γ(0)[φ] =
∫
d4x

(
1
2
φ ? [x̃ν

?, [x̃ν
?, φ]] +

Ω2

2
φ ? {x̃ν

?, {x̃ν
?, φ}}

− µ2

2
φ ? φ+

λ

4!
φ ? φ ? φ ? φ

)
(x) , (2.67)

where, in order to write the action in the previous form, the following important property
has been used:

[x̃µ
?, φ] = i∂µφ . (2.68)

7As in the case of the propagator corrections, the single graphs don’t show this behavior, only the
sum has the usual tensor structure in the limit Ω → 0, see Appendix A.4.2.
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Now, one introduces external gauge fields by generalizing the ordinary coordinates xµ to
covariant ones8 X̃µ, with

X̃µ = x̃µ + gAµ . (2.69)

These coordinates have the nice property that they gauge transform covariantly, which
is why they are named likewise. Therefore, the following action is gauge invariant by
construction: ∫

d4x

(
1
2
φ ?
[
X̃ν

?,
[
X̃ν

?, φ
]]

+
Ω2

2
φ ?
{
X̃ν

?,
{
X̃ν

?, φ
}}

− µ2

2
φ ? φ+

λ

4!
φ ? φ ? φ ? φ

)
(x) . (2.70)

It can be shown either by performing a heat kernel expansion [75], or by explicit loop
calculations [74] that to one loop order the action becomes

Γ(1l)[Aµ] =
∫
d4x

{
3
θ

(
1 − ρ2

) (
µ̃2 − ρ2

) (
X̃ν ? X̃ν − x̃2

)
+

3
2
(
1 − ρ2

)2((
X̃µ ? X̃µ

)?2
−
(
x̃2
)2)+

ρ4

4
Fµν ? Fµν

}
, (2.71)

where

ρ =
1 − Ω2

1 + Ω2
, µ̃2 =

µ2θ

1 + Ω2
. (2.72)

Notice also, that the field strength tensor Fµν = ∂µAν − ∂νAµ − ig [Aµ
?, Aν ] can be

written in terms of the covariant coordinates as

i
[
X̃µ

?, X̃ν

]
= θ−1

µν − gFµν . (2.73)

The field φ has been integrated out in order to arrive at the effective action (2.71), and
Aµ has been considered as a background field. However, through its coupling to Aµ,
the scalar field “induces” the effective one-loop action (2.71) above and Aµ becomes
dynamical.

As already mentioned in Section 2.2, all (UV-divergent) terms that arise in the loop
calculations of the previous model are present in the induced action. Hence, the chance
that any unexpected new contributions arise during loop calculations is improbable, es-
pecially since the whole action is gauge invariant. This gives good hope concerning the
renormalizability of the model. However, the problem that the tadpole graphs do not
vanish, and that we therefore have a nontrivial vacuum, is still present. Furthermore, cal-
culating the propagator of the induced gauge theory is a difficult task since the operator
which has to be inverted is nonminimal (i.e. no Lorentz scalar). Additionally, calculating
the propagator from the pure bilinear part seems not to be sufficient because, as already
mentioned, linear (tadpole) terms in Aµ are also present in the action. All those severe
problems are addressed in the following sections.

8Notice the slight difference to the Θ-expanded case where one usually introduces covariant coordinates
without tilde [76].
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2.3.2 Formulation in a way that the tadpole terms cancel

One may view (2.71) as a starting point for the new induced action. All prefactors
and constants, as well as the gauge fixing, may however be chosen individually. In this
section, we will present a gauge fixing which allows us to cancel the unphysical tadpole
terms. Another nice effect of this gauge will be9 that the photon propagator will become
just the Mehler kernel, from which we already know that it has a nice damping behavior
(see also Section 2.1.1). The induced action most generally consists of terms involving
the commutator and the anticommutator of the covariant coordinates X̃µ = x̃µ + gAµ,
and is given by

Sinv =
∫
d4x

[
− 1

4g2

[
X̃µ

?, X̃ν

]
?
[
X̃µ

?, X̃ν

]
+

Ω2

4g2

{
X̃µ

?, X̃ν

}
?
{
X̃µ

?, X̃ν

}]
. (2.74)

At first glance one can already see that the action is subject to a symmetry exchanging
the commutator and the anticommutator, and for Ω = 1, this symmetry is exact. Indeed,
this “extended Langmann-Szabo duality” has been investigated by J.C. Wallet, A. de
Goursac and T. Masson [77].
Furthermore, all terms which turned out to be missing in the Mehler kernel gauge model
(described in Section 2.2) are present here. However, (2.74) still contains so-called tad-
pole terms, i.e. terms linear in Aµ. We present in the following a gauge fixing designed
to get rid of these terms. Additionally, we use (2.73) and leave out the constant term(
− θ4

4

)
because it can be absorbed into the normalization constant of the path integral.

Then the complete action becomes

S = Sinv + SFP + Sgf , (2.75)

where the individual parts are given by

Sinv =
∫
ddx

1
4
Fµν ? Fµν +

Ω2

4g2

{
X̃µ

?, X̃ν

}
?
{
X̃µ

?, X̃ν

}
, (2.76)

SFP =
∫
ddx

i
2
{c̄ ?, x̃µ} ? Dµc , (2.77)

Sgf =
∫
ddx

(
− 1

8α

)(
{x̃µ

?, Aµ} + β {x̃µ
?, x̃µ}

)?2
. (2.78)

The gauge fixing is some kind of modified Fock-Schwinger gauge [78]. The BRS-transformations
are given by

sc̄ = − 1
2α

i
(
{x̃µ

?, Aµ} + β {x̃µ
?, x̃µ}

)
, sc = ic ? c , sx̃µ = 0 , sAµ = Dµc , (2.79)

where α and β are constant parameters, and applying s onto the whole action gives zero,
as it should.
The coefficients α,Ω will in the following be chosen such that we get a simple form of
our propagators. Additionally, β is chosen such that the tadpole terms, i.e. the ones
linear in Aµ, vanish. That means we have to choose β = 4αΩ2

g .

9Together with choosing Ω = 1.
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Varying the action leads to the e.o.m. (see appendix C.1)

δSbil

δAµ
:
(
−�δµν + (1 − Ω2)∂µ∂ν + (− 1

α
+ 8Ω2)x̃µx̃ν + 4Ω2x̃2δµν

)
Aν = −jµ (2.80)

δSbil

δc̄
: ix̃µ∂µc = −jc . (2.81)

In the following we will choose Ω = 1 and α = 1
8Ω2 , which yields β = 1

2g . Then the
photon propagator simply becomes the Mehler kernel10. Note that in the literature
another convention, x̃µ = 2θ−1

µν xν , is frequently used. In this case, other values for
the constants α, β have to be chosen in order that the propagator becomes the Mehler
kernel. But this is only a matter of convention and is not discussed any further in the
following. A more involved subject is the ghost propagator which contains the inverse of
the operator x̃∂, which we will calculate in the next section.

2.3.3 The Ghost Propagator

We follow the method introduced by Kummer and Weiser [79]. The first step is to
transform our Green function in just one variable:

ix̃∂G(x, x′) = δ(x− x′) ,

ix̃∂
∫

ddk

(2π)d
e−ikxG(k, x′) =

∫
ddk

(2π)d
e−ik(x−x′) ,

i
∫

ddk

(2π)d
G(k, x′)(−i)kx̃e−ikx =

∫
ddk

(2π)d
e−ik(x−x′) ,

i
∫

ddk

(2π)d
G(k, x′)kµΘ−1

µν ∂
k
ν e

−ikx =
∫

ddk

(2π)d
e−ik(x−x′) .

Now comes a partial integration (note that ∂k
µk̃µ = 0)

−i
∫

ddk

(2π)d
e−ikxkµΘ−1

µν ∂
k
νG(k, x′) =

∫
ddk

(2π)d
e−ik(x−x′) . (2.82)

Since the integration domain is the same on both sides we conclude

−ikµΘ−1
µν ∂

k
νG(k, x′) = eikx′

. (2.83)

The next step Kummer and Weiser take is to express everything only in terms of Lorentz
scalars G(k, x′) = G(k2, kx′, x′2, kx̃′). However, in the case of our operator one runs into
difficulties by continuing with this approach. Instead we will try to solve the differential
equation directly. For this, we first limit ourselves to 2 dimensions11. It is there where
(2.83) becomes very simple. One can see this by switching to polar coordinates

k0 = r cosφ , k1 = r sinφ , r =
√
k2

0 + k2
1 , φ = arctan

(
k1

k0

)
, (2.84)

10with ω redefined as ω = θ
2Ω

11Calculating the ghost propagator in 4 dimensions is work in progress.
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which yields

iθ
∂

∂φ
G(r, φ, x′0, x

′
1) = ei(x

′
0r cos φ+x′

1r sin φ) , (2.85)

and then complete the Fourier transformation to end up at G(k, k′). The integral over
x′ can be carried out and one gets

G(r, φ, k′0, k
′
1) = (−iθ)

φ∫
c

dφ′ δ(r cosφ′ − k′0)δ(r sinφ′ − k′1) . (2.86)

We will now return to the original momentum variables

G(k0, k1, k
′
0, k

′
1) = (−iθ)

arctan
k1
k0∫

c

dφ′ δ

(√
k2

0 + k2
1 cosφ′ − k′0

)
δ

(√
k2

0 + k2
1 sinφ′ − k′1

)
.

(2.87)

To solve the integral over φ′ one needs to find the zeros of one of the delta functions.
Unfortunately those are arbitrary many. Instead of trying to do so anyway, we will search
for a clever substitution to make the problem simpler. For example if we substitute
cosφ′ = λ, we arrive at

G(k0, k1, k
′
0, k

′
1) =

i
θ

k0√
k2
0+k2

1∫
cos c

dλ
1√

1 − λ2
δ

(√
k2

0 + k2
1λ− k′0

)
δ

(√
k2

0 + k2
1

√
1 − λ2 − k′1

)
.

(2.88)

The first delta function is now zero at λ = k′
0√

k2
0+k2

1

. Applying the formula δ(f(x)) =∑
i

δ(x−xi)
|f ′(xi)| , where the xi are the zeroes of f(x), we get

G(k0, k1, k
′
0, k

′
1) =

i
θ

k0√
k2
0+k2

1∫
cos c

dλ
1√

1 − λ2

δ

(
λ− k′

0√
k2
0+k2

1

)
∣∣√k2

0 + k2
1

∣∣ δ

(√
k2

0 + k2
1

√
1 − λ2 − k′1

)
.

(2.89)

By using the Heaviside Theta function ΘH to extend the upper integral bound to infinity

G(k0, k1, k
′
0, k

′
1) =

i
θ

∞∫
cos c

dλ

[
1 − ΘH

(
λ− k0√

k2
0 + k2

1

)]
1√

1 − λ2

δ

(
λ− k′

0√
k2
0+k2

1

)
∣∣√k2

0 + k2
1

∣∣
δ

(√
k2

0 + k2
1

√
1 − λ2 − k′1

)
, (2.90)
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we are able to solve the integral with the Dirac delta function (The constant c can always
be chosen such that the delta function lies within the integral bounds)

G(k0, k1, k
′
0, k

′
1) =

i
θ

√
1

k2
0 + k2

1 − k′20
δ

(√
k2

0 + k2
1 − k′20 − k′1

)[
1 − ΘH

(
k′0 − k0√
k2

0 + k2
1

)]
.

(2.91)

This is equivalent to12

G(k0, k1, k
′
0, k

′
1) =

i
θ

√
1

k2
0 + k2

1 − k′20
δ

(√
k2

0 + k2
1 − k′20 − k′1

)
ΘH

(
k0 − k′0

)
. (2.92)

We will now check whether this result is really right. For this aim we will apply the
operator iθ

(
k0

∂
∂k1

− k1
∂

∂k0

)
on (2.92). This gives

k1δ (k0 − k′0) δ
(√

k2
0 − k′20 + k2

1 − k′1

)
√
k2

0 − k′20 + k2
1

. (2.93)

Now we use the first delta function to set k′0 = k0 everywhere else, which yields

k1δ (k0 − k′0) δ
(√

k2
1 − k′1

)
√
k2

1

. (2.94)

This is only the result we desire for k1 ≥ 0. For k1 < 0 a solution for the propagator is
given by

G(k0, k1, k
′
0, k

′
1) =

−i
θ

√
1

k2
0 + k2

1 − k′20
δ

(
−
√
k2

0 + k2
1 − k′20 − k′1

)
ΘH

(
k0 − k′0

)
. (2.95)

Both regions can be combined by pulling out k1 of the square root:

G(k0, k1, k
′
0, k

′
1) =

i
θ

ΘH(k0 − k′0)δ
(
k1

√
k2
0−k′2

0

k2
1

+ 1 − k′1

)
k1

√
k2
0−k′2

0

k2
1

+ 1
(2.96)

and indeed, when applying the operator x̃∂ on it, this gives the 2-dimensional delta
function.
By using the properties of the delta function one can also rewrite this as

G(k, k′) =
iΘH(k0 − k′

0)δ
(
k1

√
k2
0−k′2

0

k2
1

+ 1 − k′
1

)
θk1

√
k′2
1

k2
1

. (2.97)

12ΘH

„

k′
0−k0√
k2
0+k2

1

«

=
R

dk′
0 δ

„

k′
0−k0√
k2
0+k2

1

«

1√
k2
0+k2

1
=

R

dk′
0 δ(k′

0 − k0) = ΘH(k′
0 − k0)

and 1 − ΘH(x) = ΘH(−x)
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One might argue that in this form, the propagator is not at all symmetric. However, by
playing around with the delta function and symmetrization, one may find that

G(k, k′) =
i
θ

(
sign(k1) + sign(k′1)

)
δ
(
k2

0 + k2
1 − k′20 − k′21

)
ΘH

(
k0 − k′0

)
(2.98)

is also a valid form of the propagator13. Side remark: the two signum functions in the
beginning take care of the other root of the delta function with the wrong overall sign,
which evolved due to taking the square of the original argument, and thus implying
additional solutions.

For later loop calculations, it may also prove wise to rewrite it once more, into a form
where one sees that the at first glance awkward delta function in reality plays the role
of overall conservation of the absolute value of the momenta:

G(k, k′) =
i

θ
√
k2

0 + k2
1

(
sign(k1) + sign(k′1)

)
δ

(√
k2

0 + k2
1 −

√
k′20 − k′21

)
ΘH

(
k0 − k′0

)
.

(2.99)

2.3.4 Vertices in momentum space

In this section we want to calculate the vertices of the induced action. To be as general as
possible, and by taking into account that we will probably extend the ghost propagator
to 4 dimensions one day, we calculate the vertices in arbitrary (Euclidean) dimensions.

There are different kinds of vertices appearing14 (without any constants and prefactors)

• The 2 ghost 1 photon vertex x̃µc̄ ? [Aµ
?, c]

• The standard 3 photon vertex ∂µAν ? [Aµ
?, Aν ]

• The local 3 photon vertex (x̃µAν) ? {Aµ
?, Aν}

• The standard 4 photon vertex Aµ ? Aν ? [Aµ
?, Aν ]

• The symmetrized 4 photon vertex Aµ ? Aν ? {Aµ
?, Aν}

In the following subsections we will calculate them all, where we sum up the respective
3 photon and 4 photon vertices.

The 2 ghost 1 photon vertex

Applying the star product formula yields

S c̄Ac
int =

∫
ddx x̃µc̄ ? [Aµ

?, c] =
∫
ddx

∫
ddk1 . . . k3

(2π)3d
ei(k1+k2+k3)xx̃µ˜̄c(k1)Ãµ(k2)c̃(k3)[

e−
i
2
(k1×k2+k1×k3+k2×k3) − e−

i
2
(k1×k2+k1×k3+k3×k2)

]
.

(2.100)

13Also the Heaviside Theta function may be symmetrized, but this complicates the expression.
14The expanded action may be found in Appendix C.1.
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One can now use k3×k2 = −k2×k3 and in this way transform the exponential to a sine.
Furthermore we leave out the tilde for the Fourier transformed quantities in order not
to run into danger of misinterpreting it as a contraction with the Theta matrix, as it is
the case for x̃µ = Θ−1

µν xν ,

S c̄Ac
int =

∫
ddx

∫
ddk1 . . . k3

(2π)3d
ei(k1+k2+k3)xx̃µc̄(k1)Aµ(k2)c(k3)

e−
i
2
(k1×k2+k1×k3)2i sin

(
k2 × k3

2

)
. (2.101)

The position coordinate on the r.h.s. becomes a derivation with respect to k1 acting
on the first exponential. After this it is possible to exchange the integral over x with
this derivation and thus integrate out the exponential into a delta function representing
momentum conservation. However, the derivation still acts on this delta function:

S c̄Ac
int =

∫
ddk1 . . . k3

(2π)3d
c̄(k1)Aµ(k2)c(k3)e−

i
2
(k1×k2+k1×k3)

sin
(
k2 × k3

2

)
2Θ−1

µρ

∂

∂kρ
1

(2π)dδ(d)(k1 + k2 + k3) . (2.102)

To be able to use the delta function to get rid of the exponential, we now need to perform
a partial integration.

S c̄Ac
int =

∫
ddk1 . . . k3

(2π)3d
e−

i
2
(k1×k2+k1×k3)

(
−2Θ−1

µρ ∂
k1
ρ c̄(k1) − i(k2 + k3)µc̄(k1)

)
Aµ(k2)c(k3) sin

(
k2 × k3

2

)
(2π)dδ(d)(k1 + k2 + k3) . (2.103)

Using the delta function eliminates the exponential and simplifies the expression in brack-
ets

S c̄Ac
int =

∫
ddk1 . . . k3

(2π)3d

(
2iΘ−1

µρ ∂
k1
ρ c̄(k1) + k1µc̄(k1)

)
Aµ(k2)c(k3)

i sin
(
k2 × k3

2

)
(2π)dδ(d)(k1 + k2 + k3) . (2.104)

Before varying this expression w.r.t. the different fields, one needs to partially integrate
once more

S c̄Ac
int =

∫
ddk1 . . . k3

(2π)3d
c̄(k1)Aµ(k2)c(k3)

i sin
(
k2 × k3

2

)(
−2iΘ−1

µρ ∂
k1
ρ + k1µ

)
(2π)dδ(d)(k1 + k2 + k3) . (2.105)

The variational process is very simple here because all 3 fields are different. The inte-
grations just cancel and the vertex is enlarged by a factor −(2π)3d. Additionally, with
our convention to vary with respect to the momenta with a minus sign (which is the
convention that all momenta of the vertex point inwards), we get delta functions with a
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plus sign and thus have to reverse the signs of the momenta in the end. In this case this
leads to an additional overall minus sign:

V c̄Ac
σ = −(2π)3d δ

δc(−q3)
δ

δAσ(−q2)
δ

δc̄(−q1)
S c̄Ac

int

= i sin
(
q2 × q3

2

)(
−2iΘ−1

σρ ∂
q1
ρ + q1σ

)
(2π)dδ(d)(q1 + q2 + q3) . (2.106)

Together with its prefactor g the vertex is given by

V c̄Ac
σ = ig sin

(
q2 × q3

2

)(
−2iΘ−1

σρ ∂
q1
ρ + q1σ

)
(2π)dδ(d)(q1 + q2 + q3) . (2.107)

In order to fit better to the conventions generally used, which is that the momenta are
counted clockwise, we will rename the momenta q1 ↔ q3. Furthermore we will call
q2 = k2 in order to emphasize that it is the momentum belonging to the photon leg.

V c̄Ac
σ = −ig sin

(
q1 × k2

2

)(
−2iΘ−1

σρ ∂
q3
ρ + q3σ

)
(2π)dδ(d)(q1 + q2 + q3) , (2.108)

We conclude this subsection by remarking that in loop calculations, it will be possible
to partially integrate and thus release the delta function.

The new 3 photon vertex

Together with its prefactor, the local 3 photon vertex is given by

S3A
int =

∫
ddx 2Ω2g(x̃µAν) ? {Aµ

?, Aν} . (2.109)

We apply the star product formula

S3A
int = 2Ω2g

∫
ddxd2k1d

2k2d
2k3 e

i(k1+k2+k3)xx̃µAν(k1)Aµ(k2)Aν(k3)[
e−

i
2
(k1×k2+k1×k3+k2×k3) + e−

i
2
(k1×k2+k1×k3+k3×k2)

]
. (2.110)

The next steps are identical to the last subsection, so we just get for the interaction term

S3A
int =2Ω2g

∫
ddk1 . . . k3

(2π)3d
Aν(k1)Aµ(k2)Aν(k3)

cos
(
k2 × k3

2

)(
−2iΘ−1

µρ ∂
k1
ρ + k1µ

)
(2π)dδ(d)(k1 + k2 + k3) . (2.111)

The variational principle for this vertex is in our conventions

V 3A
loc = −(2π)3d δ

δAτ (−k3)
δ

δAσ(−k2)
δ

δAρ(−k1)
S c̄Ac

int (q1, q2, q3) , (2.112)

which yields

V 3A
loc = −

∫
ddq1d

dq2d
dq3 2Ω2g cos

(
q2 × q3

2

)(
−2iΘ−1

µε ∂
q1
ε + q1µ

)
(2π)dδ(d)(q1 + q2 + q3)[

δσµδρτδ(k1 + q1)δ(k2 + q2)δ(k3 + q3) + δρσδτµδ(k1 + q1)δ(k2 + q3)δ(k3 + q2)
+ δρµδστδ(k1 + q2)δ(k2 + q1)δ(k3 + q3) + δρµδστδ(k1 + q2)δ(k2 + q3)δ(k3 + q1)
+ δτµδρσδ(k1 + q3)δ(k2 + q1)δ(k3 + q2) + δσµδρτδ(k1 + q3)δ(k2 + q2)δ(k3 + q1)

]
.

(2.113)
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We can solve the delta functions yielding

V 3A
loc = 2Ω2g cos

(
k2 × k3

2

)
[
δρτ

((
−2iΘ−1

σε ∂
k1
ε + k1σ

)
+
(
−2iΘ−1

σε ∂
k3
ε + k3σ

))
+ δρσ

((
−2iΘ−1

τε ∂
k1
ε + k1τ

)
+
(
−2iΘ−1

τε ∂
k2
ε + k2τ

))
+ δστ

((
−2iΘ−1

ρε ∂
k2
ε + k2ρ

)
+
(
−2iΘ−1

ρε ∂
k3
ε + k3ρ

))]
(2π)dδ(d)(k1 + k2 + k3) , (2.114)

and if we reorder the terms we arrive at a symmetric expression

V 3A
loc = 2Ω2g(2π)d cos

(
k2 × k3

2

)
[
δρτ

(
− 2iΘ−1

σε (∂k1
ε + ∂k3

ε ) + k1σ + k3σ

)
+ δρσ

(
− 2iΘ−1

τε (∂k1
ε + ∂k2

ε ) + k2τ + k1τ

)
+ δστ

(
− 2iΘ−1

ρε (∂k2
ε + ∂k3

ε ) + k3ρ + k2ρ

)]
δ(d)(k1 + k2 + k3) . (2.115)

Combination with the standard 3 photon vertex

The standard vertex is well known in the literature and is given by

V 3A
std =2ig(2π)dδ(d)(k1 + k2 + k3) sin

(
k2 × k3

2

)
[(k1 − k3)σδρτ + (k2 − k1)τδρσ + (k3 − k2)ρδστ ] . (2.116)

For Ω = 1, it is now possible to sum up both 3 photon vertices by expressing the
trigonometric functions as exponentials,

V 3A
ρστ = 2Ω2g(2π)d[

δρτ

(
e

i
2
k2×k3

(
− 2iΘ−1

σε (∂k1
ε + ∂k3

ε ) + k1σ

)
+ e−

i
2
k2×k3k3σ

)
+ δρσ

(
e

i
2
k2×k3

(
− 2iΘ−1

τε (∂k1
ε + ∂k2

ε ) + k2τ

)
+ e−

i
2
k2×k3k1τ

)
+ δστ

(
e

i
2
k2×k3

(
− 2iΘ−1

ρε (∂k2
ε + ∂k3

ε ) + k3ρ

)
+ e−

i
2
k2×k3k2ρ

)]
δ(d)(k1 + k2 + k3) . (2.117)
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The local 4 photon vertex

This vertex comes from the term

S4A
int =

Ω2g2

2

∫
ddxAµ ? Aν {Aµ

?, Aν} (2.118)

in the action. With our familiar star product formula this gives us

S4A
int =

Ω2g2

2

∫
ddx

∫
ddk1...k4

(2π)4d
ei(k1+k2+k3+k4)xÃµ(k1)Ãν(k2)Ãµ(k3)Ãν(k4)[

e−
i
2
(k1×k2+k1×k3+k1×k4+k2×k3+k2×k4+k3×k4)

+ e−
i
2
(k1×k2+k1×k3+k1×k4+k2×k3+k2×k4+k4×k3)

]
. (2.119)

We will leave out the tildes once more and use the momentum conservation to simplify
everything. Hence we get

S4A
int = Ω2g2

∫
ddk1...k4

(2π)4d
δ(
∑

i

ki)(2π)4Aµ(k1)Aν(k2)Aµ(k3)Aν(k4)

e−
i
2
(k1×k2) cos

(
k3 × k4

2

)
. (2.120)

The variation

V 4A
loc = −(2π)4d δ

δÃλ(−k4)
δ

δÃτ (−k3)
δ

δÃσ(−k2)
δ

δÃρ(−k1)
S4A

int (2.121)

symmetrizes the vertex and we get

V 4A
loc = −4Ω2g2δ

(∑
i

ki

)
(2π)d

[
cos
(
k1 × k2

2

)
cos
(
k3 × k4

2

)
(δρτδσλ + δρλδστ )

+ cos
(
k1 × k3

2

)
cos
(
k2 × k4

2

)
(δρσδτλ + δρλδστ )

+ cos
(
k1 × k4

2

)
cos
(
k2 × k3

2

)
(δρσδτλ + δρτδσλ)

]
. (2.122)

Combination with the standard 4 photon vertex

The term ∫
ddx

−g2

2
Aµ ? Aν ? [Aµ

?, Aν ] (2.123)
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in the action leads to the well known expression

V 4A
std = −4g2δ

(∑
i

ki

)
(2π)d

[
sin
(
k1 × k2

2

)
sin
(
k3 × k4

2

)
(δρτδσλ − δρλδστ )

+ sin
(
k1 × k3

2

)
sin
(
k2 × k4

2

)
(δρσδτλ − δρλδστ )

+ sin
(
k1 × k4

2

)
sin
(
k2 × k3

2

)
(δρσδτλ − δρτδσλ)

]
. (2.124)

Summing this up with (2.122) leads to

V 4A
ρστλ = −4g2δ

(∑
i

ki

)
(2π)d

[(
cos
(
k1 × k2

2

)
cos
(
k3 × k4

2

)
+ sin

(
k1 × k2

2

)
sin
(
k3 × k4

2

))
δρτδσλ

+
(

cos
(
k1 × k2

2

)
cos
(
k3 × k4

2

)
− sin

(
k1 × k2

2

)
sin
(
k3 × k4

2

))
δρλδστ

+
(

cos
(
k1 × k3

2

)
cos
(
k2 × k4

2

)
+ sin

(
k1 × k3

2

)
sin
(
k2 × k4

2

))
δρσδτλ

+
(

cos
(
k1 × k3

2

)
cos
(
k2 × k4

2

)
− sin

(
k1 × k3

2

)
sin
(
k2 × k4

2

))
δρλδστ

+
(

cos
(
k1 × k4

2

)
cos
(
k2 × k3

2

)
+ sin

(
k1 × k4

2

)
sin
(
k2 × k3

2

))
δρσδτλ

+
(

cos
(
k1 × k4

2

)
cos
(
k2 × k3

2

)
− sin

(
k1 × k4

2

)
sin
(
k2 × k3

2

))
δρτδσλ

]
.

(2.125)

We may now use trigonometric identities to finally get

V 4A
ρστλ = −4g2δ

(∑
i

ki

)
(2π)d

[[
cos
(
k1 × k2 − k3 × k4

2

)
+ cos

(
k1 × k4 + k2 × k3

2

)]
δρτδσλ

+
[

cos
(
k1 × k2 + k3 × k4

2

)
+ cos

(
k1 × k3 + k2 × k4

2

)]
δρλδστ

+
[

cos
(
k1 × k3 − k2 × k4

2

)
+ cos

(
k1 × k4 − k2 × k3

2

)]
δρσδτλ

]
. (2.126)

2.3.5 Vertices in position space

We will now in addition calculate all the vertices in position space, since there will in
the end appear no derivation in the respective expressions (this will turn out to be a
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feature linked to the star product formula of 3 fields in position space), and thus loop
calculations may become easier. Furthermore it is of general interest to compare the
final loop calculation results in both spaces, on the one hand to check them, and on the
other hand people who normally work in momentum space have often no idea how this
would look like in position space and vice versa, so it is nice to once see both.

Vertices appearing in the action

In this action, we have some kinds of different vertices appearing (without integral):

• The 2 ghost 1 photon vertex g(x̃µc̄) ? [Aµ
?, c]

• The standard 3 photon vertex −ig∂µAν ? [Aµ
?, Aν ]

• The local 3 photon vertex 2Ω2gx̃µAν ? {Aµ
?, Aν}

• The standard 4 photon vertex −g2

2 Aµ ? Aν ? [Aµ
?, Aν ]

• The symmetrized 4 photon vertex Ω2g2

2 Aµ ? Aν ? {Aµ
?, Aν}

In the following subsections we will calculate them all in position space, where we sum
up the respective 3 photon and 4 photon vertices.

The 3 photon vertex

For a star product of 3 fields we have the following formula in position space∫
ddx (f1 ? f2 ? f3)(x) =

1
πdθd

∫
ddxddyddz f1(x)f2(y)f3(z)e−2i(x∧y+y∧z−x∧z) . (2.127)

The term in the action for the standard 3 photon vertex is given by
∫
ddx (−ig)∂µAν ?

[Aµ
?, Aν ]. Applying formula (2.127) yields

−ig
πdθd

∫
ddxddyddz ∂x

µAν(x)Aµ(y)Aν(z)
(
e−2i(x∧y+y∧z−x∧z) − e−2i(−x∧y−y∧z+x∧z)

)
︸ ︷︷ ︸

−2i sin
(
2(x∧y+y∧z−x∧z)

) .

(2.128)

Partial integration leads to

2g
πdθd

∫
ddxddyddz Aν(x)Aµ(y)Aν(z)∂x

µ sin
(
2(x ∧ y + y ∧ z − x ∧ z)

)
=

4g
πdθd

∫
ddxddyddz Aν(x)Aµ(y)Aν(z) cos

(
2(x ∧ y + y ∧ z − x ∧ z)

)
(ỹ − z̃)µ . (2.129)

The same procedure is now applied to the local 3 photon vertex
∫
ddx 2Ω2g(x̃µAν) ?

{Aµ
?, Aν}. With Ω = 1, it becomes

2g
πdθd

∫
ddxddyddz x̃µAν(x)Aµ(y)Aν(z)

(
e−2i(x∧y+y∧z−x∧z) + e−2i(−x∧y−y∧z+x∧z)

)
.

=
4g
πdθd

∫
ddxddyddz x̃µAν(x)Aµ(y)Aν(z) cos

(
2(x ∧ y + y ∧ z − x ∧ z)

)
. (2.130)
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One can now combine the two interaction terms to one, namely

S3A
int =

4g
πdθd

∫
ddxddyddz Aν(x)Aµ(y)Aν(z) cos

(
2(x ∧ y + y ∧ z − x ∧ z)

)
(x̃+ ỹ − z̃)µ .

(2.131)

The corresponding vertex is now given by variation

V 3A
ρστ = −(2π)3d δ(3)

δAτ (−z)δAσ(−y)δAρ(−x)
S3A

int (x
′, y′, z′) , (2.132)

where we have chosen to vary with respect to minus the position variables to coincide
with the similar calculations in momentum space 2.3.4. The variational procedure gives

V 3A
ρστ = − (2π)3d 4g

πdθd

∫
ddx′ddy′ddz′ cos

(
2(x′ ∧ y′ + y′ ∧ z′ − x′ ∧ z′)

)
(x̃′ + ỹ′ − z̃′)µ[

δσµδρτδ(x′ + x)δ(y′ + y)δ(z′ + z) + δρσδτµδ(x′ + x)δ(z′ + y)δ(y′ + z)
+ δρµδστδ(y′ + x)δ(x′ + y)δ(z′ + z) + δρµδστδ(y′ + x)δ(z′ + y)δ(x′ + z)
+ δτµδρσδ(z′ + x)δ(x′ + y)δ(y′ + z) + δσµδρτδ(z′ + x)δ(y′ + y)δ(x′ + z)

]
.
(2.133)

Using the delta functions to solve the integrals leads to

V 3A
ρστ = (2π)3d 4g

πdθd

[
δρτ cos

(
2(x ∧ y + y ∧ z − x ∧ z)

)
(x̃+ ỹ − z̃)σ

+ δρσ cos
(
2(x ∧ z + z ∧ y − x ∧ y)

)
(x̃+ z̃ − ỹ)τ

+ δστ cos
(
2(y ∧ x+ x ∧ z − y ∧ z)

)
(ỹ + x̃− z̃)ρ

+ δστ cos
(
2(z ∧ x+ x ∧ y − z ∧ y)

)
(z̃ + x̃− ỹ)ρ

+ δρσ cos
(
2(y ∧ z + z ∧ x− y ∧ x)

)
(ỹ + z̃ − x̃)τ (2.134)

+ δρτ cos
(
2(z ∧ y + y ∧ x− z ∧ x)

)
(z̃ + ỹ − x̃)σ

]
.

One may now realize that the argument of the cosine is always the same
(
cos(−x) =

cos(x)
)

and we can therefore pull it out of the bracket. This gives

V 3A
ρστ =(2π)3d 4g

πdθd
cos
(
2(x ∧ y + y ∧ z − x ∧ z)

)
[
δρτ (x̃+ ỹ − z̃)σ + δρσ(x̃+ z̃ − ỹ)τ

+ δστ (ỹ + x̃− z̃)ρ + δστ (z̃ + x̃− ỹ)ρ

+ δρσ(ỹ + z̃ − x̃)τ + δρτ (z̃ + ỹ − x̃)σ

]
.

One may sum up the terms to yield the final result:

V 3A
ρστ = (2π)3d 8g

πdθd
cos
(
2(x ∧ y + y ∧ z − x ∧ z)

)[
δρτ ỹσ + δρσz̃τ + δστ x̃ρ

]
.

(2.135)
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The 4 photon vertex

For a star product of 4 fields we have the following formula in position space∫
ddx (f1 ? f2 ? f3 ? f4)(x) =

1
πdθd

∫
ddxddyddz f1(x)f2(y)f3(z)f4(x− y + z)e−2i(x∧y+y∧z−x∧z) . (2.136)

The contribution in the action is
∫
ddx

(
−g2

2

)
Aµ?Aν?[Aµ

?, Aν ]+Ω2g2

2 Aµ?Aν?{Aµ
?, Aν}.

For Ω = 1, this is just

g2

∫
ddxAµ ? Aµ ? Aν ? Aν . (2.137)

Applying formula (2.136) gives

S4A
int =

g2

πdθd

∫
ddxddyddz Aµ(x)Aµ(y)Aν(z)Aν(x− y + z)e−2i(x∧y+y∧z−x∧z) . (2.138)

The rather lengthy variation is performed in Appendix C.2.1. The result is (C.24):

V 4A = −(2π)4dg2

πdθd
4 cos

(
2(x1 ∧ x2 + x2 ∧ x3 − x1 ∧ x3)

)
·

·
(
δ(x1−x2+x3−x4)+δ(x1−x2−x3+x4)

)(
δρτδλσ+δστδλρ+δλτδρσ

) (2.139)

The 2 ghost 1 photon vertex

The expression in the action is

S c̄Ac
int =

∫
ddx g(x̃µc̄) ? [Aµ

?, c] . (2.140)

Using formula (2.127) gives

S c̄Ac
int =

g

πdθd

∫
ddxddyddz x̃µc̄(x)Aµ(y)c(z)

(
e−2i(x∧y+y∧z−x∧z) − e2i(x∧y+y∧z−x∧z)

)
︸ ︷︷ ︸

−2i sin(2(x∧y+y∧z−x∧z))

.

(2.141)

The variational procedure gives the vertex

V c̄Ac
σ = −(2π)3d δ

δc(−x3)
δ

δAσ(−x2)
δ

δc̄(−x1)
S c̄Ac

int , (2.142)

which is

V c̄Ac
σ = −(2π)3d g

πdθd
(−2i)

∫
ddxddyddz sin (2(x ∧ y + y ∧ z − x ∧ z)) x̃µ

δ(x+ x1)δ(y + x2)δσµδ(z + x3) , (2.143)

V c̄Ac
σ = 2ig

(2π)3d

πdθd
sin (2(x1 ∧ x2 + x2 ∧ x3 − x1 ∧ x3)) x̃1σ . (2.144)
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2.3.6 The photon propagator for arbitrary Ω

Despite of the fact that we have now obtained all Feynman rules for the case Ω = 1,
it would be nice to have general expressions for Ω 6= 1 too. This generalization only
modifies the photon propagator. We will try to calculate the latter in this section and
continue with the simpler case, Ω = 1, in the next section where we will compute loop
graphs.
We recall the e.o.m. for the gauge field (2.80):

δSbil

δAµ
:
(
−�δµν + (1 − Ω2)∂µ∂ν +

(
− 1
α

+ 8Ω2
)
x̃µx̃ν + 4Ω2x̃2δµν

)
Aν = −jµ

(2.145)

The expression in the brackets is a nonminimal operator in the Lorentz indices, and its
inversion will yield the photon propagator.
This is a very complicated task and we will limit us here to at least formally calculating
the propagator in terms of only Lorentz-minimal operators. For this we will use the
method of the field equations. In the following we will review this procedure.
We start with (2.145) and contract it with several operators in order to render it a
Lorentz scalar:

xµ
δSbi

δAµ
: − xµ�Aµ + (1 − Ω2)(x∂)(∂A) + 4Ω2x̃2(xA) = −(xj) , (2.146a)

x̃µ
δSbi

δAµ
: − x̃µ�Aµ + (1 − Ω2)(x̃∂)(∂A) +

(
− 1
α

+ 12Ω2
)
x̃2(x̃A) = −(x̃j) , (2.146b)

∂µ
δSbi

δAµ
: Ω2(−� + 4x̃2)(∂A) +

8Ω2

θ2
(xA) +

(
− 1
α

+ 8Ω2
)
(x̃∂)(x̃A) = −(∂j) ,

(2.146c)

∂̃µ
δSbi

δAµ
: (−� + 4Ω2x̃2)(∂̃A) +

(
− 1
α

+ 8Ω2
) 1
θ2

(d+ x∂)(x̃A) +
8Ω2

θ2
x̃A = −(∂̃j) .

(2.146d)

One can directly get the identities

∂µ(x̃ρAρ) = −Ãµ + x̃ρ∂µAρ ,

�(x̃ρAρ) = ∂µ

(
−Ãµ + x̃ρ∂µAρ

)
= 2(∂̃A) + x̃ρ�Aρ , (2.147)

i.e.

−x̃ρ�Aρ = 2(∂̃A) − �(x̃A) , (2.148)

and similarly

−xρ�Aρ = 2(∂A) − �(xA) . (2.149)
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which we use to simplify (2.146):

xµ
δSbi

δAµ
:
(
2 + (1 − Ω2)(x∂)

)
(∂A) + (−� + 4Ω2x̃2)(xA) = −(xj) , (2.150a)

x̃µ
δSbi

δAµ
: 2(∂̃A) + (1 − Ω2)(x̃∂)(∂A) +

(
− � +

(
− 1
α

+ 12Ω2
)
x̃2

)
(x̃A) = −(x̃j) ,

(2.150b)

∂µ
δSbi

δAµ
: Ω2(−� + 4x̃2)(∂A) +

8Ω2

θ2
(xA) +

(
− 1
α

+ 8Ω2
)
(x̃∂)(x̃A) = −(∂j) ,

(2.150c)

∂̃µ
δSbi

δAµ
: (−� + 4Ω2x̃2)(∂̃A) +

(
− 1
α

+ 8Ω2
) 1
θ2

(d+ x∂)(x̃A) +
8Ω2

θ2
x̃A = −(∂̃j) .

(2.150d)

In general one can now solve this system of 4 equations in the 4 variables x̃A, xA, ∂A, ∂̃A.
However, for simplicity reasons which are sufficient for the demonstration here, we set
α = 1

8Ω2 . This allows us to decouple the system, i.e. Equation (2.150a) and (2.150c) can
be solved separately from the others. For this special choice of α the system of equations
significantly reduces and we get

xµ
δSbi

δAµ
:
(
2 + (1 − Ω2)(x∂)

)
(∂A) + (−� + 4Ω2x̃2)(xA) = −(xj) , (2.151a)

x̃µ
δSbi

δAµ
: 2(∂̃A) + (1 − Ω2)(x̃∂)(∂A) + (−� + 4Ω2x̃2)(x̃A) = −(x̃j) , (2.151b)

∂µ
δSbi

δAµ
: Ω2(−� + 4x̃2)(∂A) +

8Ω2

θ2
(xA) = −(∂j) , (2.151c)

∂̃µ
δSbi

δAµ
: (−� + 4Ω2x̃2)(∂̃A) +

8Ω2

θ2
x̃A = −(∂̃j) . (2.151d)

For the e.o.m. it is now sufficient to calculate ∂A. We use Equations (2.151a) and
(2.151c) to express it. First Equation (2.151c) allows us to express xA

xA =
−θ2

8Ω2

(
∂j + Ω2(−� + 4x̃2)(∂A)

)
, (2.152)

which we plug into (2.151a):[
2 + (1 − Ω2)x∂ − θ2

8
(
− � + 4Ω2x̃2

)(
− � + 4x̃2

)]
(∂A) = −xj +

θ2

8Ω2
∂j . (2.153)

(∂A) is now in principle given by the inversion of the operator in the square brackets.
We can insert it into the e.o.m.(
− � + 4Ω2x̃2

)
Aµ = − jµ − (1 − Ω2)∂µ(∂A) ,(

− � + 4Ω2x̃2
)
Aµ =

−jµ − (1 − Ω2)∂µ

[
2 + (1 − Ω2)x∂ − θ2

8
(
− � + 4Ω2x̃2

)(
− � + 4x̃2

)]−1(
− xj +

θ2

8Ω2
∂j
)
,

(2.154)
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where now the difficulties of the calculation of the propagator have been reduced to the
calculation of the inverse of the operator

2 + (1 − Ω2)x∂ − θ2

8
(
− � + 4Ω2x̃2

)(
− � + 4x̃2

)
. (2.155)

In principle, we have shifted the problem of calculating the inverse of a nonminimal
operator to a minimal one. Despite of this success, calculating the inverse of (2.155)
is still an open question and work in progress. For simplicity we will therefore in the
next section switch to the case Ω = 1 where, as we have already seen, the gauge field
propagator becomes very simple, namely the Mehler kernel.

2.3.7 Loop Calculations

Various loop calculations have already been performed for the Induced Gauge Theory,
and all in all one can say that the graphs show the expected behavior. For simplicity
the calculations have been performed in 2 dimensions.

The 1-pt. photonloop tadpole

Nothing surprising is happening here, except that the 3-photon vertex has an additional
partial derivative, which has to be taken into account. Starting from

Tµ =
1
2

∫
d2k

(2π)2

∫
d2k′

(2π)2
GAA

νρ (k, k′)V 3A
µνρ(k

′, p,−k) , (2.156)

which is depicted by Figure (2.7)

pµ

kν

k′

ρ

Figure 2.7: Photon tadpole

one can calculate that the graph is logarithmically divergent, as shown in Appendix
C.3.1. The result is15

T (1)
µ =

113
25

iπgΘ−1
ρν ln (ε) . (2.157)

15The attentive reader may notice that there is a second Lorentz index ρ, which comes from the coupling
to an external field and an expansion around it, as shown in Appendix C.3.1. The result written down
here is the only divergent contribution, namely order one of this expansion.
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Position space The same calculation can be performed in position space, where the
number of terms is in principle bigger, but no derivations appear.
Algebraically, the graph is is given by

Tµ =
1
2

∫
d2x

(2π)2

∫
d2y

(2π)2
GAA

νρ (x, y)V 3A
µνρ(x, y, z) , (2.158)

where 1
2 is the symmetry factor. Plugging in the Feynman rules (2.135),(2.3) yields

Tµ =
1
2
(2π)2

∫
d2x

(2π)2

∫
d2y

(2π)2
δνρ

∞∫
0

dα
1

4π sinhα
e−

1
4ω ((x−y)2 coth α

2
+(x+y)2 tanh α

2 )

(2π)6
8g
π2θ2

cos
(
2(x× y + y × z − x× z)

)[
δνρx̃µ + δµρỹν + δµν z̃ρ

]
,

(2.159)

=
4g
π2θ2

(2π)4
∫
d2xd2y

∞∫
0

dα
1

4π sinhα
e−

1
4ω ((x−y)2 coth α

2
+(x+y)2 tanh α

2 )

cos
(
2(x× y + y × z − x× z)

)[
2x̃µ + ỹµ + z̃µ

]
, (2.160)

The Gaussian integrals are computed with the help of our Mathematica R© package. This
gives

Tµ =

∞∫
0

dα
16π3g

(
Ω2 + 4

)
csch(α)z̃µe

− 2z2Ω tanh(α
2 )

ΘΩ2+Θ

(Ω2 + 1)2
, (2.161)

and when one expands it in α and integrates one gets the expected divergence:

Tµ ' −
16π3g

(
Ω2 + 4

)
log(ε)z̃µ

(Ω2 + 1)2
Ω→1= −20π3g ln(ε)z̃µ . (2.162)

We can now conclude that calculations in position space do not show derivations in
the initial expression, but the lack of the delta function (which in momentum space
implements momentum conservation) makes them much larger in the amount of terms.
It will be a task of future computations of higher loop graphs to check which basis will
suit better to most efficiently end up at the result.
Furthermore we can conclude that Induced Gauge Theory indeed seems to be a good
candidate for the first renormalizable gauge field model since it has all desired features
and since the first loop calculations reflect the expected behavior.
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Chapter 3

Conclusion

In this work we have first motivated noncommutative QFT theory (Section 1.3) with
three interesting examples. We have then presented the mathematical structure of non-
commutative Euclidean space in order to be able to formulate field theories on it. Explic-
itly, we have described three interesting models involving oscillator terms. Historically
the Grosse Wulkenhaar model, Section 2.1, was the first one to solve the famous UV/IR
mixing problem. Indeed the G.W. model has been proven to be renormalizable to all
orders. This feature can also be nicely seen from the form of the respective propagator,
the so-called Mehler kernel (Section 2.1.1).
The logical next step in this picture has been to continue with gauge theories. The
straightforward generalization of the G.W. model to gauge theories is the Mehler kernel
gauge model (Section 2.2). The symmetry content of the model as well as the Feynman
rules have been examined. Again, the Mehler kernel is the propagator. Loop calculations
have been performed (Section 2.2.3) using a self-programmed powerful Mathematica R©

package (Appendix B). One of the main results of this procedure was that new terms
originally not present in the action arise. Those terms are already known from another
model, induced gauge theory, which follows from the scalar G.W. model by “inducing”
gauge fields (Section 2.3.1). It hence logically makes sense to already initially start from
this model instead.
However, the great problem of the unphysical so-called tadpole terms (terms linear in
Aµ) had to be solved. Indeed this has been achieved by using a gauge suited to this
problem (Section 2.3.2). Also the nontrivial exercise of calculating the new ghost prop-
agator has been managed (Section 2.3.3). Furthermore first loop calculations have been
performed (Section 2.3.7).
Despite this success the loop calculations involving the ghost propagator tend to be
rather involved and we have to admit that it will require still some effort to compute
more complicated graphs. The final aim is now however to show full renormalizability
of the induced gauge theory, where we are now one step closer to.
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Appendix A

Mehler Kernel Related
Calculations

A.1 Multiscale Analysis

A.1.1 Estimating the propagator

Let’s start with an easy propagator, namely the one of the commutative φ4 model. We
work in an Euclidean world. In momentum space, the propagator is given by the well-
known expression

Ĉ(p, q) = δ(q − p)
1

q2 +m2
, (A.1)

where the delta function represents momentum conservation. If we Fourier transform
the propagator

C̃(x− y) =
∫

ddp

(2π)d
eip(x−y) 1

p2 +m2
, (A.2)

and use Schwinger parameterization

C̃(x− y) =
∫

ddp

(2π)d

∞∫
0

dα eip(x−y)e−α(p2+m2) , (A.3)

we are able to solve the integral over p and come to the usual form of the propagator in
position space:

C(x, y) =

∞∫
0

dα

(4πα)d/2
e−

(x−y)2

4α
−αm2

. (A.4)

If we integrate over α and expand the resulting Bessel function, we will arrive at C(x, y) =
1

(x−y)2
, but we want to stick at the above form and try to find an approximation for it.

Multiscale Analysis does this job. It works as follows. We “slice” the propagator:

Ci(x, y) =

M−2(i−1)∫
M−2i

dα

(4πα)d/2
e−

(x−y)2

4α
−αm2

, (A.5)
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with i ∈ N and M > 1. The zeroth slice is given by

C0(x, y) =

∞∫
1

dα

(4πα)d/2
e−

(x−y)2

4α
−αm2

. (A.6)

This splits the α-space in a very convenient way (Figure A.1).

Figure A.1: Multiscale splitting of the space.

We can see that the dangerous region around α = 0 is splitted finer and finer as we

approach α → 0. Of course it is obvious that C(x, y) =
∞∑
i=0

Ci(x, y). One can even

introduce an UV-cutoff M−2g with i ≤ g at this stage.

The important point is now however that we can bound this sliced propagator, namely

Ci(x, y) ≤ K1M
(d−2)(i+1)e−KM2(i+1)(x−y)2 , (A.7)

where K and K1 are constants.
Proof: We use the first mean value theorem for integration, which states that

∃ ξ ∈ [a, b], s.t.

b∫
a

f(x)g(x)dx = f(ξ)

b∫
a

g(x)dx , (A.8)

where f is continuous and g integrable in [a, b]. For g = 1 this becomes

b∫
a

f(x)dx = f(ξ)|b− a| , (A.9)

with ξ ∈ (a, b) if f is continuous differentiable. If that is the case, it follows also that

b∫
a

f(x)dx ≤ sup
(
f(x)

)
|b− a| , (A.10)
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where f(ξ) in this case is the sup(f). If the function f is monotonically increasing and
b > a, sup

(
f(x)

)
= f(b), of course. That means

b∫
a

f(x)dx ≤ f(b)|b− a| . (A.11)

In our case the function f is

1
(4πα)d/2

e−
(x−y)2

4α
−αm2

, (A.12)

which is monotonically increasing in α for small values of α (The mass part gives only a
finite contribution and can be absorbed into the constants). Therefore we can state that

Ci(x, y) =

M−2(i−1)∫
M−2i

dα

(4πα)d/2
e−

(x−y)2

4α
−αm2

≤ |M−2(i−1) −M−2i| 1
(4πM−2(i−1))d/2

e
− 1

4M−2(i−1)
(x−y)2

, (A.13)

where we have plugged in the bigger integral bound (M−2(i−1) > M−2i) in the place of
α. We can simplify this expression

Ci(x, y) ≤M−2i(M2 − 1)Mdi(4π)−d/2e−
1
4
M2(i−1)(x−y)2

=M (d−2)i(M2 − 1)(4π)−d/2e−
1

4M2 M2i(x−y)2 , (A.14)

and if we define K = 1
4M2 and K1 = (M2 − 1)(4π)−d/2 we arrive as promised at

Ci(x, y) ≤M (d−2)iK1e
−KM2i(x−y)2 , (A.15)

which is the same as (A.7) if we shift i by 1.

We can do something similar with the zeroth slice:

C0(x, y) =

∞∫
1

dα

(4πα)d/2
e−

(x−y2)
4α

−αm2
. (A.16)

We split the mass part

C0(x, y) =

∞∫
1

dα

(4πα)d/2
e−

(x−y2)
4α

−αm2

2︸ ︷︷ ︸
f(α)

e−
αm2

2︸ ︷︷ ︸
g(α)

, (A.17)
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and use again the mean value theorem for integration (A.8),

C0(x, y) ≤ sup

(
e−

(x−y)2

4α
−αm2

2

) ∞∫
1

e−
αm2

2 dα . (A.18)

α0 = |x−y|
2m does the job of being the supremum (check by differentiation and setting =0)

and the remaining integral of K2 =
∞∫
1

e−
αm2

2 dα = 2
m2 e

−m2

2 is finite. Hence

C0(x, y) ≤ K2e
−|x−y|m . (A.19)

Now we come to the point why this is called Multiscale Analysis. If we view the propa-
gator (A.4) as a Gauss function (ignoring the massive part for the moment) we can state
that it is concentrated in the region where |x− y| < α−1/2. If we consider our bound for
the sliced propagator (A.7) and view it as a Gauss function we see that the main part
of the function is concentrated in the region where |x − y| ∼ M−i. According to this,
|x − y| is directly related to i. Therefore we conclude that fixing the scale attribution
(the size of x and y) means fixing the slice. Hence the name Multiscale Analysis.

Application of the slicing scheme to the Mehler kernel and the 1/p2 model

• The Mehler kernel:

KM (u, v) =
ω3

8π2

∞∫
0

dα
1

sinh2(α)
e−

ω
4

(
u2 coth(α

2 )+v2 tanh(α
2 )
)
−ωµ2

0α . (A.20)

In the region α ∈ (0, 1] the function is strictly monotonically increasing. Thus we
need to insert the upper bound for α. Since the hyperbolic functions behave for
small arguments like

coth
(α

2

)
≈ 2
α

tanh
(α

2

)
≈ α

2
, (A.21)

the estimation for the sliced Mehler kernel is

Ki
M (u, v) ≤ KM2ie−c(||u||M i+||v||M−i) , (A.22)

which can be cross-checked with Rivasseau’s review [7].

• The 1/p2 propagator:

∆(p) =
1

p2 +m2 + a
p2

=

∞∫
0

dα e
−α
(
p2+m2+ a

p2

)
. (A.23)
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The integration kernel is here a monotonically decreasing function in α. Therefore
the lower bound is our supremum.
The estimation for the sliced 1

p2 -propagator is therefore

∆i(p) ≤ e
−M−2i

(
p2+m2+ a

p2

)
. (A.24)

A.1.2 Wilson’s picture

If a certain scale is infinite one may come to a renormalized amplitude by subtracting

AR
G(p2, µ2) = AG(p) −AG(p2 = µ2) , (A.25)

where µ2 is the scale. How does this work in detail? We start at the partition function
of the φ4 model

Z =
∫
dµc(φ)e−

λ
4!

R

φ4
. (A.26)

Our field φ is now a sum of fields at different scales

φ = φj + φρ , (A.27)

where φj =
j∑

i=0
φi and φρ is our special scale. With this separation Z becomes

Z =
∫
dµcj (φj)dµcρ(φρ)e−

λ
4!

(φρ+φj)
4
. (A.28)

By writing dµcρ(φρ) in terms of dµcρ(φ) we are able to fully separate the scale ρ.
Since (−φj + φ)2 = φ2

j + φ2 − 2φjφ we have

dµcρ(φρ) = e−
1
2

R

φρC−1φρ
= e

R

φC−1φ︸ ︷︷ ︸
dµcρ (φ)

e
R

φ(Cρ)−1φj︸ ︷︷ ︸
source term

e−
1
2

R

φj(C
ρ)−1φj . (A.29)

We have now averaged over one scale (ρ) and are now at a higher scale with new Feynman
rules. Graphically this looks like Figure A.2.

Figure A.2: Averaging a scale.

A.2 Power Counting

To derive the power counting formula (2.48), we first of all state that the degree of
(ultraviolet) divergence is given by

dγ = 4L− 6IA − 6Ic + Vc + V3A + Vc̃ . (A.30)
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L is the number of integrations over 4-momenta. Since we are in 4 dimensions we therefore
have to multiply L with 4 because we have per integration 4 momenta in the numerator.
The propagator in a commutative theory behaves roughly like 1

k2 . Here we have Mehler
kernels which additionally to the 1

k2 factor are a smeared 4-dimensional delta function.
Hence they behave like 1

k6 . Thus we have to subtract from 4L the number of internal
propagators times 6.
The ghost, the 3-photon and the c̃-vertices have each one momentum in their prefactor.
Thus we have to add them once to our first degree of divergence estimation.

All these statements should be enough explanation to make formula (A.30) plausible.

7→ Secondly we need to find an expression for L. For our specific model it is given by

L = 2IA + 2Ic − (Vc + V3A + V4A + Vc̃ − 1) . (A.31)

The formula can be explained in the following way: The number of integrations over
internal momenta is mainly given by the number of internal propagators times 2 (because
in the Mehler kernel model we have no momentum conservation and therefore each
propagator has one ingoing and one outgoing momentum).
The vertices however always kill one integration (via the delta function which is contained
once in each vertex). Thus we have to subtract the number of vertices from our formula.

The little factor +1 in formula (A.31) can be at best understood by looking at a typical
example, see figure (A.3): The number of integrations in this example would be 4, coming

pp
δ( ) δ( )

k′

1 k1

k2
k′

2

Figure A.3: A typical two point 1 loop graph.

purely from the propagators, but one could naively say that the 2 vertices would reduce
the number of integrations down to 2 if one takes the 2 delta functions into account which
come with the 2 vertices. However, one forgets in these considerations that one delta
function has already been used to turn the outgoing momentum p′ into p, or equivalently
said, it has already been used to implement momentum conservation.

7→ Thirdly we now have to find relations between the connection of propagators and
vertices. They are given by:

Ec/c̄ + 2Ic = 2Vc + Vc̃ (A.32)

EA + 2IA = Vc + 3V3A + 4V4A + Vc̃ (A.33)
Ec̃ = Vc̃ . (A.34)
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This needs a little explanation:
Each external line is connected with one end to the graph, each internal line (=propaga-
tor) is connected with both ends. This number of connections must fit perfectly together
with the number of vertices in the graph, because each vertex has to be connected with
a (internal or external) propagator, of course. The formulas above describe per line the
ghost, photon or c̃ - connections.
Note for example that despite the fact that the 2 ghost 1 photon vertex has 3 ends to be
connected, in (A.33) it is only multiplied with a factor 1, because it has only one photon
line for connection.

Using all the formulas we have listed so far, we can easily algebraically come to the
following relation:

dγ = 2IA + 2Ic − 3Vc − 3V3A − 4V4A − 3Vc̃ + 4

⇒ dγ = 4 − EA − Ec/c̄ − Ec̃ . (A.35)

A.3 Transversality Breaking

We can explicitly calculate how the right side of eq. (2.52) looks like:∫
d4x

(
x̃µ

δ(3)Γ
δc(z)δAρ(y)δc̃µ(x)

)

=
∫
d4x

(
− Ω2

8
x̃µ

δ(2)

δcδAρ
s

(
{{x̃µ

?, Aν} ?, Aν}
))

=
∫
d4x

(
− Ω2

8
x̃µ

δ(2)

δcδAρ
s

(
x̃µAνAν + 2AνξµAν +AνAν x̃µ

))

=
∫
d4x

(
− Ω2

8
x̃µ

δ(2)

δcδAρ

(
x̃µDµcAν + x̃µAνDνc+ 2Dνcx̃µAν

+ 2Aν x̃µDνc+DνcAν x̃µ +AνDνcx̃µ

))

=
∫
d4x

(
− Ω2

8
x̃µ

δ(2)

δcδAρ

(
x̃µ∂νcAν + x̃µAν∂νc+ 2∂νcx̃µAν

+ 2Aν x̃µ∂νc+ ∂νcAν x̃µ +Aν∂νcx̃µ

))
.
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By partial integration and by using the relation ∂ν x̃µ = Θ−1
µν we get

=
∫
d4x

(
Ω2

8
x̃µ

δ(2)

δcδAρ

(
Θ−1

µν cAν + x̃µc∂νAν + Θ−1
µνAνc+ x̃µ∂νAνc

+ 2cΘ−1
µνAν + 2cx̃µ∂νAν + 2AνΘ−1

µν c+ 2∂νAν x̃µc

+ cAνΘ−1
µν + c∂νAν x̃µ +AνcΘ−1

µν + ∂νAνcx̃µ

)
+

Ω2

8
Θ−1

µν

δ(2)

δcδAρ

(
x̃µcAν + x̃µAνc+ 2cx̃µAν + 2Aν x̃µc+ cAν x̃µ +Aνcx̃µ

))
.

(A.36)

We can now execute the variation with respect to c and get

=
∫
d4x

(
Ω2

8
x̃µ

δ

δAρ

(
Θ−1

µνAν + x̃µ∂νAν + Θ−1
µνAν + x̃µ∂νAν

+ 2Θ−1
µνAν + 2x̃µ∂νAν + 2AνΘ−1

µν + 2∂νAν x̃µ

+AνΘ−1
µν + ∂νAν x̃µ +AνΘ−1

µν + ∂νAν x̃µ

)
δ(4)(x− y)

+
Ω2

8
Θ−1

µν

δ

δAρ

(
x̃µAν + x̃µAν + 2x̃µAν + 2Aν x̃µ +Aν x̃µ +Aν x̃µ

)
δ(4)(x− y)

)
,

(A.37)

and also with respect to Aρ

=
Ω2

8
ỹµ

(
Θ−1

µν δνρ + ỹµ∂νδνρ + Θ−1
µν δνρ + ỹµ∂νδνρ

+ 2Θ−1
µν δνρ + 2ỹµ∂νδνρ + 2δνρΘ−1

µν + 2∂νδνρỹµ

+ δνρΘ−1
µν + ∂νδνρỹµ + δνρΘ−1

µν + ∂νδνρỹµ

)
δ(4)(y − z)

+
Ω2

8
Θ−1

µν

(
ỹµδνρ + ỹµδνρ + 2ỹµδνρ + 2δνρỹµ + δνρỹµ + δνρỹµ

)
δ(4)(y − z) (A.38)

=
Ω2

8
ỹµ

(
Θ−1

µρ + ỹµ∂ρ + Θ−1
µρ + ỹµ∂ρ

+ 2Θ−1
µρ + 2ỹµ∂ρ + 2Θ−1

µρ + 2∂ρỹµ

+ Θ−1
µρ + ∂ρỹµ + Θ−1

µρ + ∂ρỹµ

)
δ(4)(y − z)

+
Ω2

8
Θ−1

µρ

(
ỹµ + ỹµ + 2ỹµ + 2ỹµ + ỹµ + ỹµ

)
δ(4)(y − z) (A.39)

=
Ω2

8

(
16ỹµΘ−1

µρ + 8(ỹµ)2∂ρ

)
δ(4)(y − z)

=
Ω2

θ2

(
− 2yρ + y2∂ρ

)
δ(4)(y − z) . (A.40)
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We now evaluate the left hand side of equation (2.52):

∂z
µ

δ(2)Γ
δAρ(y)δAµ(z)

=∂z
µ

(
δ(2)

δAρ(y)δAµ(z)
Ω2

8

∫
d4x {x̃µ

?, Aν} ? {x̃µ
?, Aν}

)
=∂z

µ

(
δ(2)

δAρ(y)δAµ(z)
Ω2

8

∫
d4x
(
x̃µAν x̃µAν +Aν x̃µx̃µAν + x̃µAνAν x̃µ +Aν x̃µAν x̃µ

))
=∂z

µ

(
Ω2

8
8z̃2δρµδ

(4)(z − y)
)

= ∂z
ρ

(
Ω2z̃2δ(4)(z − y)

)
=Ω2

(
2z̃ξΘ−1

ξρ + z̃2∂ρ

)
δ(4)(z − y) =

Ω2

θ2

(
− 2zρ + z2∂ρ

)
δ(4)(z − y) . (A.41)

The two sides of the equation coincide, and so we have indirectly verified the consistency
of the Slavnov Taylor identity with the action.

A.4 Calculation Details of Various Graphs

In this section we enlighten several details concerning the calculation of Feynman graphs
in the Mehler kernel gauge model. We are able to distinguish between the planar and
the nonplanar part already right from the start. Later on, we will however neglect the
UV-divergent part which can be treated by standard renormalization schemes anyway,
and focus on the IR region where the power of the oscillator damping term becomes
important.

A.4.1 Propagator corrections

The 2-pt 4A graph

Here we calculate graph (a), depicted in Figure 2.4. At a very basic level the graph reads

Πa
µν =

∫
d4k1

(2π)4

∫
d4k2

(2π)4
1
2
V 4A

µρσν(p,−k1, k2,−p′)(2π)4KM (k1 − k2, k1 + k2)δσρ , (A.42)

where the factor 1
2 is the symmetry factor corresponding to the graph. If we now switch

to long and short variables (functional determinant 1/16) this turns into∫
d4u

(2π)4

∫
d4v

(2π)4
1
25
V 4A

µσσν(p,−
v + u

2
,
v − u

2
,−p′)(2π)4KM (u, v) . (A.43)

Now we can simply insert the expression for the vertex and the Mehler kernel. One
straightforwardly arrives at

Πa
µν = −3g2δµν

8

∫
d4v KM (p− p′, v)

[
sin
(

(v+p′)p̃
4

)
sin
(

(v+p)p̃′

4

)
+ sin

(
(v−p′)p̃

4

)
sin
(

(v−p)p̃′

4

) ]
, (A.44)
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where we have eliminated the integral over u with the delta function coming from mo-
mentum conservation in the vertex. Some trigonometrics converts this to

−3g2δµν

8

∫
d4v KM (p− p′, v)

[
− cos

v(p̃+ p̃′)
4

+ cos
v(p̃− p̃′)

4
cos

p′p̃

4

]
. (A.45)

where we can already state which is the planar and which the nonplanar part:
If one sets p = p′ one has momentum conservation. This corresponds to not having
introduced the oscillator terms in the action, and hence to the näıve model, where it is
particularly easy to distinguish between the planar and the nonplanar part because the
latter is just the one where the phase remains. If we do this here we see that the right
hand side becomes 1 and on the left hand side the phase remains. So, − cos v(p̃+p̃′)

4 limits
towards the nonplanar part and cos v(p̃−p̃′)

4 cos p′p̃
4 limits towards the planar one. This

notion of defining the nonplanar part as the one where the phase remains is not at all
exact. In fact, a clear distinction can only be made at the end of the calculation (after
the Gauss integrations have been done): when solving the integral over α the nonplanar
part is the one where Bessel functions arise and the planar part is the one where Gamma
function come out, after introducing a cutoff ε, of course. Thus the notion of planarness
is coupled to the energy behavior: UV is planar and IR is nonplanar. Note, however, that
this approach is not the same as Rivasseau et al. use in their papers, where they couple
the distinction between planar and nonplanar to the genus of a graph. This goes in the
direction of renormalizability questions. One-loop graphs e.g. are alway renormalizable.

The next steps in the calculation are the following:

• For the cosine we will use

cos
(
kp̃

2

)
=
∑

η=±1

1
2

exp
(

iη
2
kp̃

)
. (A.46)

• We will approximate the hyperbolic functions in the Mehler kernel:

coth
(α

2

)
' 2
α
, & tanh

(α
2

)
' α

2
, & sinh(α) ' α , (A.47)

exactly around the dangerous region α = 0, where the kernel has a quadratic
pole, in order to extract the divergent parts of our Feynman graphs. With these
approximations the Mehler kernel simply becomes

K̃M (p, q) =
ω3

8π2

∞∫
0

dα
1
α2
e−

ω
4
(p−q)2 2

α
−ω

4
(p+q)2 α

2 . (A.48)

• We will, additionally to the inner momenta, integrate over the external momentum
p′ in order to reveal the divergence structure of the general result without the
“smeared out delta function”.

With all these steps the momentum integrations are just Gaussian integrals. We end up
at

Πa
µν =

∞∫
0

dα
3g2ω3δµν

4α2π2ω4
(
1 + Ω2

4

)2

(
e
− 2p̃2

4αω(1+Ω2
4 ) − e

− p̃2α

2∗4ω(1+Ω2
4 )

)
. (A.49)
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The last integration over α gives a Bessel function in the case of the nonplanar part and
a Gamma function (regularized by a cutoff ε for the lower bound of the integral) for
the planar part. By expanding them for small values of p (this is the IR-region we are
interested in) we get

Πa
µν = − 3g2δµν

4εω
(
1 + Ω2

4

)2 +
3g2δµν

2
(
1 + Ω2

4

)
p̃2
, (A.50)

where we have neglected logarithmic divergent and finite terms.

The 2-pt ghost- and photon loop graphs

Here we calculate the graphs (b)+(c), depicted in Figure 2.4. At the very basic level
the Feynman rules for the sum of those two graphs lead to (in terms of long and short
variables)

Πb,c
µν =

∫
d4u1

(2π)4

∫
d4u2

(2π4)

∫
d4v1
(2π)4

∫
d4v2
(2π)4

(2π)8KM (u1, v1)KM (u2, v2)(
1
2
V 3A

τµσ

(v2 + u2

2
,−p,−v1 + u1

2

)
V 3A

σντ

(v1 − u1

2
, p′,−v2 − u2

2

)
− V A2c

µ

(v2 + u2

2
,−p,−v1 + u1

2

)
V A2c

ν

(v1 − u1

2
, p′,−v2 − u2

2

))
,

(A.51)

where the relative symmetry factors (-1 for the ghost loop and 1/2 for the photon loop)
have already been included.
We now plug in the expressions for the vertices and use the delta functions to eliminate
the integrals over u2, v2. We could equivalently have chosen the other two inner momenta.
However we can’t choose for example two long variables to be eliminated, which would
be in favour of divergence behavior, but this is simple not possible due to the structure
of the delta functions. A more general treatment of this topic goes under the name of
position routing and is explained in detail e.g. in [80]. Additionally we will for simplicity
call u1 now u and v1 v.
Anyway, performing this simple step leads us to

Πb,c
µν =

g2

16

∫
d4u d4v KM (u, v)KM (u+ p− p′, v + p+ p′) sin

(
(v+u)p̃

4

)
sin
(

(v−u)p̃′

4

)
×
[

7
2(vµvν − uµuν) + 5

2(uµvν − vµuν) + 1
2p

′
µ(v + u)ν + 1

2(v − u)µpν

+ 2pµ(v − u)µ + 4(v + u)µp
′
ν + 2pµp

′
ν − 4p′µpν

+ δµν

(
v2−u2

2 + p′(v+u)
2 + (v−u)p

2 + 5pp′
) ]

. (A.52)
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Before we continue, there is something interesting to be mentioned about the phase
factors. The sines may be rewritten

sin
(

(v+u)p̃
4

)
sin
(

(v−u)p̃′

4

)
=

1
4

∑
ξ=−1,1

∑
η=−1,1

ξηe
iη
4

(v−u)p̃′e
iξ
4

(v+u)p̃′

=
1
4

∑
ξ=−1,1

∑
η=−1,1

ξηe
i
4
vp̃′(

κ︷ ︸︸ ︷
η + ξ)+ i

4
up̃′(

δ︷ ︸︸ ︷
ξ − η)

=
1
4

∑
κ=−2,0,2

∑
δ=−2,0,2

δ(2) − κ2

4
e

iκ
4

vp̃′+ iδ
4

up̃′

=
1
4

∑
κ=−1,0,1

∑
δ=−1,0,1

(δ(2) − κ2)e
iκ
2

vp̃′+ iδ
2

up̃′ . (A.53)

The prefactor gives only nonzero when either κ or δ is zero. In these cases, the other
variable is ±1 and yields a cosine:

=
1
2

[
cos
(
up̃′

2

)
︸ ︷︷ ︸

κ=0

− cos
(
vp̃′

2

)
︸ ︷︷ ︸

δ=0

]
. (A.54)

In this form, we can make some statements about the planarity of those graphs. Since
the short variable is approximately 0 (momentum conservation is only slightly violated
in this model, where slightly refers to the energy scale), the first cosine is approximately
1 and should be the planar part which gives in the end the most crucial divergence,
namely in zeroth order the 1

ε divergence. This case corresponds to κ = 0 or δ = ±1.
Conversely, the other term will lead us to the nonplanar divergence. Anyway, let us keep
on going with our main calculation.

The next steps are the same as in the case a) but technically much more difficult because
on the one hand the expressions are much longer and on the other hand the Gaussian
integrals often have a momentum attached to them in the beginning. Technically, espe-
cially when treating more complicated integrals like in the vertex renormalization case
(where we used the computer) it has proven useful to us to use the following elegant
trick: ∫

d4p pµe
−f(pµ) =

d

dzµ

∫
d4p e−f(p2)+pz

∣∣∣
z=0

. (A.55)

With this trick one can calculate the Gauss integral with a constant prefactor, where the
difficulties have been handed over to the differentiation with respect to z afterwards.
Thereby we are able to integrate the momenta out. The integral over α leads again to a
Bessel and a Gamma integral, like before. However, we have now two parameter integrals
α1 and α2 (because we have two Mehler kernels). However, even for n + 2 propagators
(and hence n+ 2 parameter integrals )we can perform the following change of variables
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(α1, . . . , αn+2) → (ξ1, . . . , ξn+1, λ) with

α1 = λ
n+1∏
i=1

ξi , α2 = λ(1 − ξ1)
n+1∏
i=2

ξi , . . . , αk = λ(1 − ξk−1)
n+1∏
i=k

ξi ,

. . . , αn+2 = λ(1 − ξn+1) ,
(A.56)

where ξi ∈ [0, 1] and λ ∈ [0,∞[. The integration measure transforms as

n+2∏
i=1

dαi = λn+1
n∏

l=1

(ξl+1)
l dλ

n+1∏
j=1

dξj , (A.57)

with which the integral over λ gives again a Bessel or a Gamma function, and hence
not only a calculation of the integral is easily possible, but also the distinction between
planar and nonplanar is clear. The integration over ξ1 is elementary. In the end we get

Πb,c
µν =

g2δµν

π2εω
(
1 + Ω2

4

)3 − 3g2δµν

2π2
(
1 + Ω2

4

)2
p̃2

+
2g2p̃µp̃ν

π2(p̃2)2
(
1 + Ω2

4

)2 . (A.58)

A.4.2 Vertex corrections

The 3-pt 4A3A graph

This is graph (a) in Figure (2.5). The external legs are labelled by pµ
1 , p

ν
2 , p

ρ
3. The graph

is given by (in terms of long and short variables)

V a
µνρ(p1, p2, p3) =

3
2

1
28

∫
d4u1

(2π)4

∫
d4v1
(2π)4

∫
d4u2

(2π)4

∫
d4v2
(2π)4

(2π)8KM (u1, v1)KM (u2, v2)

V 4A
µστν

(
p1,−

v1 + u1

2
,
v2 − u2

2
, p2

)
V 3A

σρτ (
v1 − u1

2
, p3,−

v2 + u2

2
) ,

(A.59)

where the factor 1/28 is the functional determinant from the substitution into long and
short variables and 3

2 is the symmetry factor. Inserting the propagators and vertices
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results in∫
d4(u, v, u′, v′)

3
29

(2ig)3KM (u, v)KM (u′, v′)���(−1)

δ(4)(p1 −
v + u

2
+
v′ + u′

2
− p2)δ(4)(

v − u

2
− p3 −

v′ − u′

2
)[(

− v′ − u′

2
+ p3

)
τ
δσρ +

(v − u

2
+
v′ − u′

2

)
σ
δτρ +

(
− p3 −

v − u

2

)
ρ
δτσ

]
sin

(
v−u

2 × v′−u′

2

2

)
���(−1)[

(δµσδτν − δµνδτσ) sin
(
p1 × v+u

2

2

)
sin

(
v′+u′

2 × p2

2

)

+ (δµτδσν − δµνδτσ) sin

(
p1 × v′+u′

2

2

)
sin
( v+u

2 × p2

2

)

+ (δµτδσν − δµσδτν) sin
(
p1 × p2

2

)
sin

(
v+u

2 × v′+u′

2

2

)]
. (A.60)

As a reminder, the symbol × is defined in the section Conventions, 1.2.
As in the previous graphs, we now need to eliminate the delta functions. We start with
eliminating v′, but then realize that no other long variable can be eliminated. As a
second variable to be eliminated we choose (for consistency also with a prime) the short
variable u′. Hence the two delta functions may be rewritten in the following way

δ(4)
(
p1 −

v + u

2
+
v′ + u′

2
+ p2

)
δ(4)
(v − u

2
− p3 −

v′ − u′

2

)
=24δ(4)

(
u′ − (u− p1 − p2 + p3)

)
δ(4)
(
v′ − (v − p1 − p2 − p3)

)
. (A.61)

Solving the delta functions yields∫
d4(u, v)

3
29

(2ig)3KM (u, v)KM (u− p1 − p2 + p3, v − p1 − p2 − p3)[(
− v − u− 2p3

2
+ p3

)
τ
δσρ +

(v − u

2
+
v − u− 2p3

2

)
σ
δτρ +

(
− p3 −

v − u

2

)
ρ
δτσ

]
sin

(
v−u

2 × ��v−u−2p3

2

2

)
[
(δµσδτν − δµνδτσ) sin

(
p1 × v+u

2

2

)
sin

(
v+u−2(��p2+p1)

2 × p2

2

)

+ (δµτδσν − δµνδτσ) sin

(
p1 × v+u−2(p2+��p1)

2

2

)
sin
( v+u

2 × p2

2

)

+ (δµτδσν − δµσδτν) sin
(
p1 × p2

2

)
sin

(
v+u

2 × ��v+u−2(p2+p1)
2

2

)]
. (A.62)
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We now do some trigonometric exercise using the formula sin(x + y) = sin(x) cos(y) +
sin(y) cos(x) and we rearrange the terms:∫
d4(u, v)

3
29

(2ig)3KM (u, v)KM (u− p1 − p2 + p3, v − p1 − p2 − p3)[(
− v − u

2
+ 2p3

)
τ
δσρ +

(
v − u− p3

)
σ
δτρ +

(
− v − u

2
− p3

)
ρ
δτσ

]
sin
( v−u

2 × p3

2

)
[
(δµσδτν + δµτδσν − 2δµνδτσ) sin

(
p1 × (v + u)

4

)
sin
(
p2 × (v + u)

4

)
cos
(
p1 × p2

2

)
+ (2δµσδτν − δµτδσν − δµνδτσ) sin

(
p1 × (v + u)

4

)
sin
(
p1 × p2

2

)
cos
(
p2 × (v + u)

4

)
+ (δµσδτν − 2δµτδσν + δµνδτσ) sin

(
p1 × p2

2

)
sin
(
p2 × (u+ v)

4

)
cos
(
p1 × (v + u)

4

)]
.

(A.63)

Writing the phases in exponential form we may further compactify the expression:∫
d4(u, v)

3
29

(2ig)3KM (u, v)KM (u− p1 − p2 + p3, v − p1 − p2 − p3)[(
− v − u

2
+ 2p3

)
τ
δσρ +

(
v − u− p3

)
σ
δτρ +

(
− v − u

2
− p3

)
ρ
δτσ

]
i

16

∑
κ

∑
ξ

∑
η

∑
ζ

κe
iκ
4

(v−u)p̃3+ iξ
4

(v+u)p̃1+ iη
4

(v+u)p̃2+ iζ
2

p1×p2

[
(δµσδτν + δµτδσν − 2δµνδτσ)ξη

− (2δµσδτν − δµτδσν − δµνδτσ)ξζ

− (δµσδτν − 2δµτδσν + δµνδτσ)ηζ

]
. (A.64)

At this stage of our calculation we are pretty easily able to distinguish between the
planar and the nonplanar part: when v vanishes in the phase factors we have a
pure planar part, because setting v = 0 means taking the limit of the Mehler ker-
nels to the Heat kernels, as explained in 2.1.1. This is exactly the case when either
ξ = η = 1 &κ = −1 or when ξ = η = −1&κ = 1.
The rest of the work to calculate this graph is performing the Gauss integrations, exe-
cuting the sums and solving the parameter integrals1 (of course after approximating the
hyperbolic functions, like we did with the 2-pt graphs) which yield Bessel functions (for
the nonplanar part) and Gamma functions (for the planar part). They may be expanded
for small momenta or for a small UV-cutoff ε, respectively. The UV part can be handled

1This has been done by hand and with the help of our MathematicaR© package as described in Ap-
pendix B.
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by standard renormalization procedures. The final result for the IR part of graph (a) is

V a
µνρ(p1, p2, p3) = −

24ig3 (p̃1,ρδµν + p̃1,νδµρ + p̃1,µδνρ) sin
(

(Ω2−4)(p1θp2)

2(Ω2+4)

)
π2Θ2 (Ω4 − 16) p2

1(p1θp2)

−
24ig3 (p̃2,ρδµν + p̃2,νδµρ + p̃2,µδνρ) sin

(
(Ω2−4)(p1θp2)

2(Ω2+4)

)
π2Θ2 (Ω4 − 16) p2

2(p1θp2)

−
12ig3 cos

(
1
2(p1θp2)

)
(p̃3,ρδµν + p̃3,νδµρ + p̃3,µδνρ)

π2Θ2 (Ω2 + 4)2 p2
3

, (A.65)

and when one expands the trigonometric function for small arguments up to zeroth order,
we get

V a
µνρ =

−24ig3

π2 (4 + Ω2)2

(
p̃1,τ

p̃2
1

+
p̃2,τ

p̃2
2

+
p̃3,τ

p̃2
3

)
(δµνδτρ + δµρδτν + δνρδτµ) . (A.66)

The 3-pt photonloop graph

This is graph (b) in Figure (2.5):

V b
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212
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(A.67)

where the symmetry factor is 1. Due to the long expressions occurring when calculating
this graph, we won’t write it down here. The techniques used to derive the result of
this graph are also nicely illustrated in the examples of graph (a) and (b). It shall be
just mentioned that we have eliminated the following momenta with the delta function:
u1, u2, u3. The computer solves the task of integrating the Gaussians and the parame-
ters2, and we get in the end for this graph

V b
µνρ =

−8ig3

π2 (4 + Ω2)3

[
18p̃1,µp̃1,ν p̃1,ρ

p̃4
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+
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+
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p̃4
3

− 13
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+
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2

+
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p̃2
3

)
(δµνδτρ + δµρδτν + δνρδτµ)

]
. (A.68)

2with the package described in Appendix B,
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The 3-pt ghostloop graph

This is graph (c) in Figure (2.5).

V c
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(A.69)

where the symmetry factor is (−2). Inserting the Feynman rules gives
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, (A.70)

where we have already inserted the approximation for the hyperbolic functions. We now
eliminate with the delta function the following momenta: u1, u2, u3. Then the graph
becomes
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. (A.71)

The next steps are rewriting the trigonometric functions into exponential form and solv-
ing the Gaussian integrals3. In the end one performs the change of variables (A.56) and
then gets as usual a Bessel function for the λ integral, which can be expanded, where
the zeroth order contains the most severe divergence. The integrals over ξ1, ξ2 change
only finite values and in the end we get

V c
µνρ =

8ig3

π2 (4 + Ω2)3

[
2p̃1,µp̃1,ν p̃1,ρ

p̃4
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+
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(δµνδτρ + δµρδτν + δνρδτµ)

]
. , (A.72)

3Which is a great job for the computer, see also Appendix B.
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Sum of the Vertex Graphs

When we want to sum up all 3 vertex graphs (A.66, A.68 and A.72), we have to multiply
graph (a) with a factor (4 + Ω2) in order to have the same denominator as the other 2
graphs. Thus, the numerical factor −24 gets multiplied by 4, at least when looking only
at the term not proportional to Ω. One can now see nicely that those terms (i.e. the
ones not proportional to Ω) in sum vanish,

−24 ∗ 4 − 8 + 8 ∗ 13 != 0 , (A.73)

as expected, because in the literature the usual term has the tensor structure
3∑

i=1

p̃i,µp̃i,ν p̃i,ρ

p̃4
i

,

whereas we have here additional terms, which are indeed proportional to Ω, so they are
obviously stemming from the oscillator potential.
Finally, the sum thus becomes

V 3A,IR
µνρ (p1, p2, p3) =

−8ig3

π2 (4 + Ω2)3

3∑
i=1

[
16p̃i,µp̃i,ν p̃i,ρ

p̃4
i

+
3Ω2

p̃2
i

(δµν p̃i,ρ + δµρp̃i,ν + δνρp̃i,µ)
]
,

(A.74)

which is (2.65), as conjectured.
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Appendix B

Description of the Mathematica R©

Package

In order to (analytically) calculate the more complicated graphs of the Mehler ker-
nel gauge model, Rene I. P. Sedmik, D. N. Blaschke and myself have programmed the
Mathematica R© package “VectorAlgebra” (http://sourceforge.net/projects/vectoralgebra/ )
dedicated to this job. The basics of this package can be summarized as follows:

• In the beginning, Rene has “taught” Mathematica R© to understand index notation
for vectors and matrices. He has furthermore implemented in this context new
versions of the Mathematica R© internal functions Limit, Simplify, Dot, Cross, D
(derivations) and Series by giving them the ability to treat objects with indices.
This big part was the footing on which Daniel and I built up the rest of the package.
More information on it can be found in Rene’s Ph.D. thesis, [81].

• Daniel and I have programmed together the function “IntGauss” which performs
d-dimensional Gauss integrals. This is the heart of the package. It can not only
treat noncommutative expressions like pµθµνqν in the exponent but also prefactors
which may carry indices or not, e.g.∫

d4p pµqνpσe
−a1p2+a2p×q+p.q+... . (B.1)

Especially nested expressions are treated in such a way that they don’t need to
be expanded. This was the key element for longer expressions which would have
otherwise flooded the Mathematica R© kernel.

• Various helpful functions have been programmed as well, like for example “SinTo-
Exp” which rewrites trigonometric functions into exponentials.

Below, the reader may find a list of all implemented functions and a short explanation
of each one, as it can also be found in the usage documentation of the package:

SetDimension: SetDimension[] is used to set the protected global variable ’$Dimension’
representing the Euclidean space dimension (4 is default).
DefVec: DefVec[symbol] defines ’symbol’ to be a 4-vector. This must be done for each
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vector appearing in subsequent calculations (Hint: DefVec also accepts a list of sym-
bols.).
ClearVec: ClearVec[symbol] undefines ’symbol’ to be a 4-vector. Thereafter it can be
used as a normal Mathematica R© symbol without special meaning (Hint: ClearVec also
accepts a list of symbols.).
In order to undefine all previously defined vectors, type ClearVec[] without any argu-
ment.
IsVec: IsVec[symbol] gives True if the given symbol has been defined to be a vector,
False in any other case. IsVec is aware of nonvectorial factors and indices of the argu-
ment.
KDelta: KDelta[i,j] gives $Dimension (=4 unless changed with SetDimension[]) if i
equals j, 0 otherwise. This modified version of the built-in KroneckerDelta[] is useful if
Einstein’s sum convention is presumed.
VCross: VCross[k,p] is a symbolic version of a matrix contracting two vectors. It acts
solely on vectorial objects defined by DefVec and is antisymmetric. In index-style (see
fct. ’IndexStyle[]’) it is represented by the symbol Θ supplemented by two indices, i.e.
IndexStyle[VCross[k,p]] is translated to kη1Θη1η2pη2 . Additional properties are controlled
by ’SetupVCross[]’.
Vsimplify: Vsimplify[expression, options : 0 . . .] does simplifications in the same way
as Simplify does, but is aware of the vectorial calculus and sum convention. It takes any
additional options Simplify takes with the exception of ’TransformationFunctions’ and
’ComplexityFunction’.
VSimplify: VSimplify[expression, options : 0 . . .] does simplifications in the same way
as FullSimplify does, but is aware of the vectorial calculus and sum convention. It takes
any additional options FullSimplify takes with the exception of ’TransformationFunc-
tions’ and ’ComplexityFunction’. A version using Simplify instead of FullSimplify is
given by ’Vsimplify[]’.
See also VLSimplify[] which reduces computation time for very long expressions.
VLSimplify: VLSimplify[expr,time,opt : 1,leaf : 250,verbose : 0] is a version of VSim-
plify (→ see VSimplify) for very long expressions ’expr’ which crawls through the given
formula piece by piece, thereby avoiding to give the whole expression to FullSimplify.
This (in most cases) shortens computational times. Set the optional verbose argument
to 1 to receive more progress information. The parameter leaf controls the allowed
complexity (i.e. the maximum LeafCount[]) of the subexpressions, opt = 1, 2 decides
whether to use VSimplify or Vsimplify internally, and time is the TimeConstraint which
is passed on to the internal Simplify-fcts.
(Hint: Calling VLSimplify[] a second time and/or increasing the value of the variable
leaf may in some cases lead to better results - but of course at the cost of increased
computation time.)
VLimit: VLimit[f(x), x→ x0, opt:OutputV ect] takes the limit x→ x0 for the function
f respecting all vectorial rules. Eventually the result contains the unit vector UV. If the
limit is to be taken in a variable that is not known to be a vector, VLimit utilizes the
Mathematica R©-internal Limit function. The optional 3rd parameter is a Boolean indi-
cating if the output is given in vec[] form (= 1) or in standard notation (= 0, default).
VSeries: VSeries[f(x), x, x0, ord] expands the function f(x) into a series around x0 up
to order ord. The result is a regular Mathematica R© expression (not a Series object as
for the standard Series function). VSeries respects analytic vectorial computation rules
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for defined vectors.
VD: VD is the vector analysis complement to the standard D derivation in Mathematica R©.
The syntax VD[f(x), x, index] has an additional parameter ’index’ - therefore repre-
senting a partial derivative regarding x with index ’index’. Furthermore, VD[f(x), x,n,
i1, . . . , in] can handle multiple derivations with respect to xi1xi2 . . . xi1 . Additionally, the
syntax VD[f(x1, . . . , xn), {x1, . . . , xn}, {i1, ..., in}] is accepted.
InternalVD: InternalVD is an internal function used by VD, see VD for more informa-
tion.
θ: The symbol representing VCross[] in index style (cf. ?VCross and ?IndexStyle).
UV: Symbolizes a unit vector.
IndexStyle: IndexStyle[expr] transfers a given expression into a form with regular
Times products, thereby writing all indices in an explicit form using the symbols η1, η2,
etc. Note that this deactivates the automatic simplification of vectorial expressions. Use
VectorStyle to retransform expressions into normal Dot and VCross syntax, and reacti-
vate the auto-simplification.
VectorStyle: VectorStyle[expr] activates the automatic vector simplification rules, and
transforms the given expression into a format writing Dot and VCross products wherever
possible. (However, depending on the complexity of ’expr’, additional simplifications and
subsequent replacements may be required to eliminate all previously introduced indices.)
SizeBrackets: SizeBrackets[expr] sizes brackets comparable to \left( and \right) in TeX.
WARNING: The output of this function is for display purposes only and cannot be taken
as an input to any further calculation!.
ColorBrackets: ColorBrackets[expr] colors each bracket level differently and sizes brack-
ets comparable to \left( and \right) in TeX.
WARNING: The output of this function is for display purposes only and cannot be taken
as an input to any further calculation!.
ApplyNCrules: ApplyNCrules[expr,time : 10] tries to simplify ’expr’ by applying sev-
eral simplification rules. It leaves the expression unchanged when the time needed is
larger than ’time’.
ReleaseDeltas: ReleaseDeltas[expr] treats expressions like KDelta[m1, s1] (3ps1+4qs1) →
(3pm1 + 4qm1).
DeltaInt: DeltaInt[expr,arg,resolve] integrates ’expr’ over ’resolve’ by using a Delta
function with argument ’arg’. If ’resolve’ is a vector, integration is 4 (or d) dimensional,
else 1-dimensional from -∞ to +∞. ’arg’ may be nonlinear in ’resolve’ provided ’resolve’
is a scalar (i.e. this is not implemented for vectors).
SinToExp: SinToExp[expr,opt : 0,ind:ζ,rec : 100,start : 0] combines several different
functions depending on the option ’opt’:
By default, i.e. opt = 0, it rewrites all Sin[] and Cos[] functions in their exponential form
(but not the hyperbolic functions).
If opt >0 the short notation with sum over ζi is used, but the 1/2*sums are not written
out. (ζ can be replaced by any other symbol using ’ind’.)
If opt < 0, the 1/2*sums over ζ1 − ζ100 are performed, i.e. this option is intended to
be used after calling SinToExp with opt > 0. If Limit[] is needed for a certain ζi, that
sum is skipped unless opt < (−1). (The ζi sums can also be replaced by sums over
’ind’(1 +′ start′) to ’ind’(’start’+’rec’).)
While working with expressions generated by SinToExp with opt = 1, it is often useful
to do some simplifications such as ζ2

i → 1 etc. This can be done by calling
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SinToExp[arg,{ζ1,ζ2, . . .}].
InternalInt: InternalInt[expr, p, time : 1, collect : 1, simplesum : 1, delete : 0, verbose :
0] integrates ’expr’ over (Euclidean) d4p, assuming it is a Gauss-integral with no oc-
curence of p in front of Exp[].
’time’ controls the time InternalInt gives VSimplify to simplify subcontributions.
’collect’ toggles whether InternalInt collects parts of the prefactor after expanding it.
’simplesum’ toggles whether InternalInt internally calls ’Simplesum’.
’delete’ toggles the call for ’DeleteZeroContribs’. ’verbose’ set to 6= 0 prints the Jacobian.
IntGauss: IntGauss[expr, arg] computes a 4 (or d) dimensional Gauss integral of ex-
pression ’expr’ with respect to the 4-momentum ’arg’.
Advanced syntax: IntGauss[expr, arg, time : 1, opt : 1, {InternalInt−options}, verbose :
0, tilde : 0], where ’time’ can be a time-constraint on internal simplify-calls, ’opt’ decides
which internal functions are used for integration (e.g. opt=2 calls faster but experimen-
tal algorithms which leave the expression unexpanded), the InternalIntoptions are passed
on to InternalInt[], and ’tilde’ is an optional list of momenta InternalDifz[] uses to let
ReplaceTilde[] simplify the differentiated exponent.
SimpleExpand: SimpleExpand[expr, verbosity : 0, recursionlimit : 100] represents a
faster version of Expand[] for long expressions.
ScanIndices: ScanIndices[expr, indexname : η, imax : 100, opt : 0] scans ’expr’ for oc-
currences of ’indexnamei’, where ’i’ is a number between 1 and ’imax’ (defaults to 100),
and prints the highest found value of i. If opt is not 0 the first found value of indexnamei
will be returned.
SimpleSum: SimpleSum[expr, indexname : η] renames indices ’indexnamei’, where i
are integers, to the lowest possible values.
Substitution: Substitution[expression, vari : 2, varname : α] substitutes ’vari’ vari-
ables varnamei to λ and ’vari − 1’ {ξi} in the expression, so that Sum[varnamei]=λ.
Alternatively, ’vari’ may also be a list of variables (in which case ’varname’ is ignored).
BGIntDivergent: BGIntDivergent[expr, arg] integrates ’expr’ (which is assumed to
have the form of a Bessel or Gamma integral) over ’arg’ from 0 to ∞ and returns the
divergent part assuming small coefficients B → 0 of exp(−B/arg), if that is part of
’expr’.
BGIntComplete: BGIntComplete[expr, arg, finite : 1] integrates ’expr’ over ’arg’
from 0 to ∞, taking into account finite terms when finite is set to 1 (=default value).
InternalRewritez: InternalRewritez[expr, arg, dername : z, indexstart : 1] rewrites
the momentum in the prefactor by a derivation with respect to dername, namely as a
symbol (for later Gauss integration and derivation).
InternalRewritezexp: Subfunction of InternalRewritez
Do not use separately.
InternalDifz: InternalDifz[expr, time : 1, name : z1, verbose : 0] explicitly performs the
derivation with respect to ’name’ whenever there is an operator ’dername’,as well as
simplifying the derivated expressions with time constraint ’time’.
InternalDifzSingleExp: =Subfunction of InternalDifz
Do not use separately.
InternalDifzSlow: same as InternalDifz, only slower (and currently more stable) be-
cause it expands expressions. . .
CleverResetIndices: CleverResetIndices[expr, index : η, start : 1, imax : (1000 +
$innerindex)] resets all ’indexname’ to the lowest possible Integers,
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starting with ’start’. In sums, saturated indices are reused.
ResetIndices: ResetIndices[expr, index : η, start : 1, imax : (1000 + $innerindex)]
resets all ’indexname’ to the lowest possible Integers, starting with ’start’. (See also
CleverResetIndices[].)
ScanAllIndices: ScanAllIndices[expr, indexname : η, imax : (1000 + $innerindex)]
scans ’expr’ for occurences of ’indexnamei’, where ’i’ is a number between 1 and ’imax’,
and prints a list of all found indices.
InternalLevelDepth: InternalLevelDepth[expr] counts how many Levels the function
has in terms of Head=Times or Head=Plus
SchwingerPara: SchwingerPara[expr, arg, x] rewrites expr using Schwinger parametriza-
tion for occurrences of 1/argn using Schwinger parameter x.
DeleteZeroContribs: DeleteZeroContribs[expr, arg] is an experimental function to re-
move some finite contributions concerning Gauss integration of expr over arg.
ReplaceTilde: ReplaceTilde[expr, arg : p] introduces abbreviations Subscript[pt, η1] for
Subscript[θ,η1,η2] Subscript[p,η2].
(Hint: ’arg’ may also be a list of vectors instead of the default p.)
PickTerms: PickTerms[expr, pattern] picks out the terms of ’expr’ which contain ’pattern’.
(Another version of this function which does not expand the expression, hence only pick-
ing out the ’highest order’ of a pattern, is given by ’CleverPickTerms’.)
See also the complementary function ’DropTerms’.
CleverPickTerms: CleverPickTerms[expr, pattern] picks out the terms of ’expr’ which
contain ’pattern’ without expanding the expression. Hence, only the ’highest order’ of a
’pattern’ is kept.
DropTerms: DropTerms[expr, pattern] drops the terms of ’expr’ which contain ’pattern’
and is hence equivalent to ’expr - Pickterms[expr, pattern]’.
IntegrandSeries: IntegrandSeries[f(p), p, 0, ord] is a function similar to VSeries, but
it ignores Sin[] and Cos[] functions appearing in f(p). It is meant to be used for extract-
ing potentially divergent terms in loop-calculations for noncommutative models before
integrating out the momenta.
VTeXForm: VTeXForm[expr] is an extended version of TeXForm[] which also handles
symbols/abbreviations introduced in this package when converting to TeX code.
SetupVCross: SetupVCross[blockdiagonal : 1, thetapara : θ] is used to control some
properties of VCross[], i.e. SetupVCross[1] (=default) assumes block-diagonal Θ-matrix
in even dimensions (with scalar parameter thetaparam = θ) allowing for additional sim-
plification rules. This may be turned off by invoking SetupVCross[0].
(Notice, that this function will likely be extended and hence its syntax change in future
versions of VectorAlgebra.)
CheckSyntax: CheckSyntax[expr] scans ’expr’ for errors in the use of defined vectors,
Dot[] and VCross[].

For readers interested in this package, it may be freely downloaded at
http://sourceforge.net/projects/vectoralgebra/
http://vectoralgebra.sourceforge.net
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Appendix C

Induced Gauge Theory Related
Calculations

C.1 Derivation of the E.o.M. of the Induced Action

C.1.1 Additional contributions to the dynamical part of the action

We will first compute the following expression∫
ddxAµ ? Aν ? x̃µ ? x̃ν , (C.1)

where for the star product we use the following formula

(f ? g)(x) = e
i
2
∂x

ρ θρσ∂y
σf(x)g(y)

∣∣∣∣
x=y

. (C.2)

For this task let us first evaluate the star product between two coordinates:

x̃µ ? x̃ν = e
i
2
∂x

ρ θρσ∂y
σ x̃µỹν

∣∣∣∣
x=y

=
(

1 +
i
2
∂x

ρθρσ∂
y
σ

)
x̃µỹν

∣∣∣∣
x=y

= x̃µỹν +
i
2
θ−1
µρ θρσ︸ ︷︷ ︸
δµσ

θ−1
νσ

∣∣∣∣
x=y

= x̃µx̃ν − i
2
θ−1
µν . (C.3)

Taking additionally into account that the expression
∫
d4xAµ ? Aν ? θ

−1
µν is zero because

a symmetric object is contracted with an antisymmetric one, expression (C.1) becomes∫
ddxAµ ? Aν ? x̃µ ? x̃ν =

∫
ddxAµ ? Aν ? x̃µx̃ν . (C.4)

We may now additionally leave out one star due to the cyclic property of the latter:∫
ddxAµ ? Aν ? x̃µ ? x̃ν =

∫
ddxAµ

(
Aν ? (x̃µx̃ν)

)
, (C.5)
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and so the task left over is to calculate

Aν ? x̃µx̃ν

=e
i
2
∂x

ρ θρσ∂y
σAν(x)ỹµỹν

∣∣∣∣
x=y

=
(

1 +
i
2
∂x

ρθρσ∂
y
σ − 1

8
∂x

ρ θρσ∂
y
σ∂

x
λθλγ∂

y
γ

)
Aν(x)ỹµỹν

∣∣∣∣
x=y

=Aν(x)ỹµỹν +
i
2
∂x

ρAν(x)θρσ

(
θ−1
µσ ỹν + θ−1

νσ ỹµ

)
− 1

8
∂x

ρ∂
x
λAν(x)θρσθλγ

(
θ−1
µγ θ

−1
νσ + θ−1

νγ θ
−1
µσ

) ∣∣∣∣
x=y

=Aν(x)ỹµỹν − i
2
∂x

ρAν(x) (δρµỹν + δρν ỹµ) − 1
8
∂x

ρ∂
x
λAν(x) (δλµδρν + δλνδρµ)

∣∣∣∣
x=y

=
(
x̃µx̃ν − i

2
x̃ν∂µ − i

2
x̃µ∂ν − 1

4
∂µ∂ν

)
Aν(x) (C.6)

The imaginary contributions cancel one another, which can be seen by a partial integra-
tion∫

ddx

(
− i

2

)
Aµx̃µ∂νAν =

∫
ddx

(
− i

2

)
Aν x̃ν∂µAµ

∫
ddx

part. int.=
i
2
Aµx̃ν∂µAν , (C.7)

So, all in all our desired formula is∫
ddxAµ ? Aν ? x̃µ ? x̃ν =

∫
ddxAµx̃µx̃νAν −

1

4
Aµ∂µ∂νAν , (C.8)

which shows that apart from the obvious contribution (which one naively expects by
leaving out the stars), there is an additional dynamical term, just like the terms coming
from FµνFµν . As described in the main sections, indeed, taking Ω equal to its fixed point
will thus lead to a very special form of the propagator.

C.1.2 Anticommutator of the covariant coordinates

The main modification of the action is of course the anticommutator of the covariant
coordinates, which will lead to the desired oscillator term and ultimately to the Mehler
kernel. In this subsection we will calculate how this term looks like when evaluating the
stars. By plugging in the definition of the covariant coordinates we get∫

ddx
{
X̃µ

?, X̃ν

}?2
=
∫
ddx {x̃µ + gAµ

?, x̃ν + gAν}?2

=
∫
ddx

(
2x̃µxν + 2gx̃µAν + 2gAµx̃ν + g2 {Aµ

?, Aν}
)?2

, (C.9)

where we have used the formula {x̃µ
?, f} = 2x̃µf . When expanding this expression, we

can leave out the star everywhere except for combinations with the last term {Aµ
?, Aν},
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because it’s the only star left (and due to the cyclic property of the star product we can
neglect this last star). Thus we get∫

ddx
{
X̃µ

?, X̃ν

}?2

=
∫
ddx

(
4(x̃2)2 + 16gx̃2(x̃A) + 8g2(x̃A)2 + 8g2x̃2A2 + 4g2x̃µx̃ν ? {Aµ

?, Aν}

+ 4g3x̃µAν ? {Aµ
?, Aν} + 4g3Aµx̃ν ? {Aµ

?, Aν} + g4 {Aµ
?, Aν} {Aµ

?, Aν}
)
. (C.10)

For the fifth term we can use the formula developed in the previous subsection, (C.8).
The next two terms are identical, which one can see by renaming the indices µ ↔ ν.
Also the last term can be simplified using this trick. Hence we are left over with∫
ddx

{
X̃µ

?, X̃ν

}?2
=
∫
ddx

(
4(x̃2) + 16gx̃2(x̃A) + 16g2(x̃A)2 + 8g2x̃2A2 − 2g2Aµ∂µ∂νAν

+ 8g3x̃µAν ? {Aµ
?, Aν} + 2g4Aµ ? Aν ? {Aµ

?, Aν}
)
, (C.11)

where we recognize one tadpole term (which we will bring away with the gauge fixing),
some propagator contributions, and two terms producing a new 3-pt. and a new 4-pt
vertex, respectively.

C.1.3 Alltogether

We are already used to the terms the F 2 part produces, so I will just state them:∫
ddxFµνFµν

=
∫
ddx

(
2Aµ (−�δµν + ∂µ∂ν)Aν − 4ig∂µAν ? [Aµ

?, Aν ] − 2g2Aµ ? Aν ? [Aµ
?, Aν ]

)
.

(C.12)

Together with the additional anticommutator of the covariant coordinates and by taking
into account all prefactors, the invariant part of the action (2.76) takes the form

Sinv =
∫
ddx

1
4

(
2Aµ (−�δµν + ∂µ∂ν)Aν − 4ig∂µAν ? [Aµ

?, Aν ] − 2g2Aµ ? Aν ? [Aµ
?, Aν ]

)
+

Ω2

4g2

(
4(x̃2) + 16gx̃2(x̃A) + 16g2(x̃A)2 + 8g2x̃2A2 − 2g2Aµ∂µ∂νAν

+ 8g3x̃µAν ? {Aµ
?, Aν} + 2g4Aµ ? Aν ? {Aµ

?, Aν}
)
. (C.13)

From this part alone we can already conclude that for the fixed point, Ω = 1, the not
Lorentz minimal derivative part1, Aµ∂µ∂νAν , will vanish. For the other coefficients we
need to compare this with the gauge fixing part (2.78):

Sgf =
∫
ddx

(
− 1

8α

)
({x̃µ

?, Aµ} + β {x̃µ
?, x̃µ})?2 =

∫
ddx

(
− 1

2α

)(
x̃A+ βx̃2

)2
=
∫
ddx

(
− 1

2α

)(
(x̃A)2 + 2βx̃2(x̃A) + β2(x̃2)2

)
. (C.14)

1nonminimal in the context of the e.o.m.
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By looking at the coefficient of (x̃A)2 we realize that we have to take α = 1
8Ω2 in order

to have the simple form of the Mehler kernel for the photon propagator. Additionally, in
order for the undesired tadpole term to vanish, we have to take β = 1

2g , which one can
see by looking at the coefficient of (x̃2x̃A).
It is also interesting to note that the term (x̃2)2 completely vanishes when choosing these
values for the constants.
When taking these values for the constants in the gauge fixing, the sum of the invariant
and the gauge fixing part becomes

Sinv + Sgf =
∫
ddx

1
2

(
Aµ

(
−�δµν + (1 − Ω2)∂µ∂ν + 2Ω2x̃2δµν

)
Aν

− 2ig∂µAν ? [Aµ
?, Aν ] + 4Ω2gx̃µAν ? {Aµ

?, Aν}

− g2Aµ ? Aν ? [Aµ
?, Aν ] + g2Ω2Aµ ? Aν ? {Aµ

?, Aν}
)
, (C.15)

and when varying this with respect to the gauge field, one directly ends up at (2.80).

The last task we will perform in this section is to look at the ghost part (2.77):

SFP =
∫
ddx

i
2
{c̄ ?, x̃µ} ? Dµc =

∫
ddx ic̄x̃µ ? Dµc

=
∫
ddx ic̄x̃µ∂µc+ gc̄x̃µ ? [Aµ

?, c] , (C.16)

where we recognize the ghost propagator which is largely discussed in this note (2.3.3),
as well as a new vertex for the ghosts.

C.2 Derivation of the Vertices

C.2.1 The 4 photon vertex

We start at (2.138). The variational principle leads us to the corresponding vertex

V 4A = −(2π)4d δ

δAλ(−x4)
δ

δAτ (−x3)
δ

δAσ(−x2)
δ

δAρ(−x1)
S4A

int . (C.17)

The first variation gives

V 4A = − (2π)4dg2

πdθd

δ

δAλ(−x4)
δ

δAτ (−x3)
δ

δAσ(−x2)

∫
ddxddyddz e−2i(x∧y+y∧z−x∧z)[

δ(x+ x1)Aρ(y)Aν(z)Aν(x− y + z) + δ(y + x1)Aρ(x)Aν(z)Aν(x− y + z)

+ δ(z + x1)Aµ(x)Aµ(y)Aρ(x− y + z) + δ(x− y + z + x1)Aµ(x)Aµ(y)Aρ(z)

]
.

(C.18)
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The second variation gives

V 4A = − (2π)4dg2

πdθd

δ

δAλ(−x4)
δ

δAτ (−x3)

∫
ddxddyddz e−2i(x∧y+y∧z−x∧z)[

δ(x+ x1)
[
δ(y + x2)δρσAν(z)Aσ(x− y + z)

+ δ(z + x2)Aρ(y)Aσ(x− y + z)

+ δ(x− y + z + x2)Aρ(y)Aσ(z)
]

+ δ(y + x1)
[
δ(x+ x2)δρσAν(z)Aν(x− y + z)

+ δ(z + x2)Aρ(x)Aσ(x− y + z)

+ δ(x− y + z + x2)Aρ(x)Aσ(z)
]

+ δ(z + x1)
[
δ(x+ x2)Aσ(y)Aρ(x− y + z)

+ δ(y + x2)Aσ(x)Aρ(x+ y + z)

+ δ(x− y + z + x2)δρσAµ(x)Aµ(y)
]

+ δ(x− y + z + x1)
[
δ(x+ x2)Aσ(y)Aρ(z)

+ δ(y + x2)Aσ(x)Aρ(z)

+ δ(z + x2)δρσAµ(x)Aµ(y)
]]
. (C.19)
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The third and the fourth variation give

V 4A = −(2π)4dg2

πdθd

∫
ddxddyddz e−2i(x∧y+y∧z−x∧z)[

δ(x+ x1)
[
δ(y + x2)δρσδτλ

(
δ(z + x3)δ(x− y + z + x4) + δ(x− y + z + x3)(z + x4)

)
+ δ(z + x2)

(
δρτδλσδ(y + x3)δ(x− y + z + x4)

+ δστδρλδ(x− y + z + x3)δ(y + x4)
)

+ δ(x− y + z + x2)
(
δρτδλσδ(y + x3)δ(z + x4)

+ δστδρλδ(z + x3)δ(y + x4)
)]

+ δ(y + x1)
[
δ(x+ x2)δρσδλτ

(
δ(z + x3)δ(x− y + z + x4) + δ(x− y + z + x3)δ(z + x4)

)
+ δ(z + x2)

(
δρτδλσδ(x+ x3)δ(x− y + z + x4)

+ δστδρλδ(x− y + z + x3)δ(x+ x4)
)

+ δ(x− y + z + x2)
(
δρτδλσδ(x+ x3)δ(z + x4) + δστδρλδ(z + x3)δ(x+ x4)

)]
+ δ(z + x1)

[
δ(x+ x2)

(
δστδρλδ(y + x3)δ(x− y + z + x4)

+ δρτδλσδ(x− y + z + x3)δ(y + x4)
)

+ δ(y + x2)
(
δστδρλδ(x+ x3)δ(x− y + z + x4)

+ δρτδλσδ(x− y + z + x3)δ(x+ x4)
)

+ δ(x− y + z + x2)δρσδλτ
(
δ(x+ x3)δ(y + x4) + δ(y + x3)δ(x+ x4)

)]
+ δ(x− y + z + x1)

[
δ(x+ x2)

(
δστδρλδ(y + x3)δ(z + x4) + δρτδλσδ(z + x3)δ(y + x4)

)
+ δ(y + x2)

(
δστδρλδ(x+ x3)δ(z + x4) + δρτδλσδ(z + x3)δ(x+ x4)

)
+ δ(z + x2)δρσδλτ

(
δ(x+ x3)δ(y + x4) + δ(y + x3)δ(x+ x4)

)]]
.

(C.20)
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We rearrange now the terms with respect to the tensor structure

V 4A = −(2π)4dg2

πdθd

∫
ddxddyddz e−2i(x∧y+y∧z−x∧z)[

δρτδλσ

[
δ(x+ x1)

(
δ(z + x2)δ(y + x3)δ(x− y + z + x4)

+ δ(x− y + z + x2)δ(y + x3)δ(z + x4)
)

+ δ(y + x1)
(
δ(z + x2)δ(x+ x3)δ(x− y + z + x4)

+ δ(x− y + z + x2)δ(x+ x3)δ(z + x4)
)

+ δ(z + x1)
(
δ(x+ x2)δ(x− y + z + x3)δ(y + x4)

+ δ(y + x2)δ(x− y + z + x3)δ(x+ x4)
)

+ δ(x− y + z + x1)
(
δ(x+ x2)δ(z + x3)δ(y + x4)

+ δ(y + x2)δ(z + x3)δ(x+ x4)
)]

+δστδλρ

[
δ(x+ x1)

(
δ(z + x2)δ(x− y + z + x3)δ(y + x4)

+ δ(x− y + z + x2)δ(z + x3)δ(y + x4)
)

+ δ(y + x1)
(
δ(z + x2)δ(x− y + z + x3)δ(x+ x4)

+ δ(x− y + z + x2)δ(z + x3)δ(x+ x4)
)

+ δ(z + x1)
(
δ(x+ x2)δ(y + x3)δ(x− y + z + x4)

+ δ(y + x2)δ(x+ x3)δ(x− y + z + x4)
)

+ δ(x− y + z + x1)
(
δ(x+ x2)δ(y + x3)δ(z + x4)

+ δ(y + x2)δ(x+ x3)δ(z + x4)
)]

+δλτδρσ

[
δ(x+ x1)δ(y + x2)

(
δ(z + x3)δ(x− y + z + x4) + δ(x− y + z + x3)δ(z + x4)

)
+ δ(y + x1)δ(x+ x2)

(
δ(z + x3)δ(x− y + z + x4) + δ(x− y + z + x3)δ(z + x4)

)
+ δ(z + x1)δ(x− y + z + x2)

(
δ(x+ x3)δ(y + x4) + δ(y + x3)δ(x+ x4)

)
+ δ(x− y + z + x1)δ(z + x2)

(
δ(x+ x3)δ(y + x4) + δ(y + x3)δ(x+ x4)

)]]
.

(C.21)
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Now we are able to solve the integrals with the help of the delta functions

V 4A = −(2π)4dg2

πdθd[
δρτδλσ

[
e2i(x1∧x3+x3∧x2−x1∧x2)δ(x1 − x3 + x2 − x4)

+ e2i(x1∧x3+x3∧x4−x1∧x4)δ(x1 − x3 + x4 − x2)

+ e2i(x3∧x1+x1∧x2−x3∧x2)δ(x3 − x1 + x2 − x4)

+ e2i(x3∧x1+x1∧x4−x3∧x4)δ(x3 − x1 + x4 − x2)

+ e2i(x2∧x4+x4∧x1−x2∧x1)δ(x2 − x4 + x1 − x3)

+ e2i(x4∧x2+x2∧x1−x4∧x1)δ(x4 − x2 + x1 − x3)

+ e2i(x2∧x4+x4∧x3−x2∧x3)δ(x2 − x4 + x3 − x1)

+ e2i(x4∧x2+x2∧x3−x4∧x3)δ(x4 − x2 + x3 − x1)
]

+δστδλρ

[
e2i(x1∧x4+x4∧x2−x1∧x2)δ(x1 − x4 + x2 − x3)

+ e2i(x1∧x4+x4∧x3−x1∧x3)δ(x1 − x4 + x3 − x2)

+ e2i(x4∧x1+x1∧x2−x4∧x2)δ(x4 − x1 + x2 − x3)

+ e2i(x4∧x1+x1∧x3−x4∧x3)δ(x4 − x1 + x3 − x2)

+ e2i(x2∧x3+x3∧x1−x2∧x1)δ(x2 − x3 + x1 − x4)

+ e2i(x3∧x2+x2∧x1−x3∧x1)δ(x3 − x2 + x1 − x4)

+ e2i(x2∧x3+x3∧x4−x2∧x4)δ(x2 − x3 + x4 − x1)

+ e2i(x3∧x2+x2∧x4−x3∧x4)δ(x3 − x2 + x4 − x1)
]

+δλτδρσ

[
e2i(x1∧x2+x2∧x3−x1∧x3)δ(x1 − x2 + x3 − x4)

+ e2i(x1∧x2+x2∧x4−x1∧x4)δ(x1 − x2 + x4 − x3)

+ e2i(x2∧x1+x1∧x3−x2∧x3)δ(x2 − x1 + x3 − x4)

+ e2i(x2∧x1+x1∧x4−x2∧x4)δ(x2 − x1 + x4 − x3)

+ e2i(x3∧x4+x4∧x1−x3∧x1)δ(x3 − x4 + x1 − x2)

+ e2i(x4∧x3+x3∧x1−x4∧x1)δ(x4 − x3 + x1 − x2)

+ e2i(x3∧x4+x4∧x2−x3∧x2)δ(x3 − x4 + x2 − x1)

+ e2i(x4∧x3+x3∧x2−x4∧x2)δ(x4 − x3 + x2 − x1)
]]
. (C.22)

93



We sort the expression and use the delta function to eliminate x4:

V 4A = −(2π)4dg2

πdθd[
δρτδλσ

[
e−2i(x1∧x2+x2∧x3−x1∧x3)δ(x1 + x2 − x3 − x4)

+ e−2i(x1∧x2+x2∧x3−x1∧x3)δ(x1 − x2 − x3 + x4)

+ e2i(x1∧x2+x2∧x3−x1∧x3)δ(−x1 + x2 + x3 − x4)

+ e2i(x1∧x2+x2∧x3−x1∧x3)δ(−x1 − x2 + x3 + x4)

+ e−2i(x1∧x2+x2∧x3−x1∧x3)δ(x1 + x2 − x3 − x4)

+ e−2i(x1∧x2+x2∧x3−x1∧x3)δ(x1 − x2 − x3 + x4)

+ e2i(x1∧x2+x2∧x3−x1∧x3)δ(−x1 + x2 + x3 − x4)

+ e2i(x1∧x2+x2∧x3−x1∧x3)δ(−x1 − x2 + x3 + x4)
]

+δστδλρ

[
e2i(x1∧x2+x2∧x3−x1∧x3)δ(x1 + x2 − x3 − x4)

+ e−2i(x1∧x2+x2∧x3−x1∧x3)δ(x1 − x2 + x3 − x4)

+ e2i(x1∧x2+x2∧x3−x1∧x3)δ(−x1 + x2 − x3 + x4)

+ e−2i(x1∧x2+x2∧x3−x1∧x3)δ(−x1 − x2 + x3 + x4)

+ e2i(x1∧x2+x2∧x3−x1∧x3)δ(x1 + x2 − x3 − x4)

+ e−2i(x1∧x2+x2∧x3−x1∧x3)δ(x1 − x2 + x3 − x4)

+ e2i(x1∧x2+x2∧x3−x1∧x3)δ(−x1 + x2 − x3 + x4)

+ e−2i(x1∧x2+x2∧x3−x1∧x3)δ(−x1 − x2 + x3 + x4)
]

+δλτδρσ

[
e2i(x1∧x2+x2∧x3−x1∧x3)δ(x1 − x2 + x3 − x4)

+ e2i(x1∧x2+x2∧x3−x1∧x3)δ(x1 − x2 − x3 + x4)

+ e−2i(x1∧x2+x2∧x3−x1∧x3)δ(−x1 + x2 + x3 − x4)

+ e−2i(x1∧x2+x2∧x3−x1∧x3)δ(−x1 + x2 − x3 + x4)

+ e2i(x1∧x2+x2∧x3−x1∧x3)δ(x1 − x2 + x3 − x4)

+ e2i(x1∧x2+x2∧x3−x1∧x3)δ(x1 − x2 − x3 + x4)

+ e−2i(x1∧x2+x2∧x3−x1∧x3)δ(−x1 + x2 + x3 − x4)

+ e−2i(x1∧x2+x2∧x3−x1∧x3)δ(−x1 + x2 − x3 + x4)
]]
. (C.23)

94



The exponential function can now be combined to a cosine which can be pulled out

V 4A = − (2π)4dg2

πdθd
4 cos

(
2(x1 ∧ x2 + x2 ∧ x3 − x1 ∧ x3)

)
(
δ(x1 − x2 + x3 − x4) + δ(x1 − x2 − x3 + x4)

)(
δρτδλσ + δστδλρ + δλτδρσ

)
.

(C.24)

C.3 Calculation Details of Various Graphs

C.3.1 The 1-pt photonloop tadpole

We start at (2.156):

Tµ =
1
2

∫
d2k

(2π)2

∫
d2k′

(2π)2
GAA

νρ (k, k′)V 3A
µνρ(k

′, p,−k) , (C.25)

where 1
2 is the symmetry factor. Plugging in the Feynman rules (2.117,2.5) yields

∫
d2kd2k′

1
2
δµν

ω2

4π

∞∫
0

dα
1

sinhα
e−

ω
4
(k−k′)2 coth(α

2 )−ω
4
(k+k′)2 tanh(α

2 )2Ω2g(2π)2

[
δµρ

(
e−

i
2
p×k
(
− 2iΘ−1

νε (∂k′
ε − ∂k

ε ) + k′ν

)
− e

i
2
p×kkν

)
+ δµν

(
e−

i
2
p×k
(
− 2iΘ−1

ρε (∂k′
ε + ∂p

ε ) + pρ

)
+ e

i
2
p×kk′ρ

)
+ δνρ

(
e−

i
2
p×k
(
− 2iΘ−1

µε (∂p
ε − ∂k

ε ) − kµ

)
+ e

i
2
p×kpµ

)]
δ(d)(k′ + p− k) . (C.26)

Evaluating the Kronecker delta changes this to

∫
d2kd2k′

1
2
ω2

4π

∞∫
0

dα
1

sinhα
e−

ω
4
(k−k′)2 coth(α

2 )−ω
4
(k+k′)2 tanh(α

2 )2Ω2g(2π)2

[
e−

i
2
p×k
(
− 2iΘ−1
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(
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i
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)
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δ(d)(k′ + p− k) . (C.27)
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One can now sum up some terms

∫
d2kd2k′

1
2
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4π

∞∫
0
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1
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ω
4
(k−k′)2 coth(α

2 )−ω
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À

]

δ(d)(k′ + p− k) . (C.28)

The next step is a partial integration to release the delta function. Unfortunately we have
(not yet) an integration over d2p on our disposal, so we will treat the Á-part separately
in the end (C.3.1), when we will couple an external field and make an expansion around
it. For now, we only calculate the À-part, and perform the mentioned partial integration:∫

d2kd2k′
1
2
δ(d)(k′ + p− k)2Ω2g(2π)2[
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2 ) . (C.29)

We let the derivations act on the right

∫
d2kd2k′

1
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4
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2 ) , (C.30)
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and are now able to use the delta function (k′ → k − p)

∫
d2k

1
2
2Ω2g(2π)2
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[(
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(α
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2 ) , (C.31)

which enables us to further sum up terms

∫
d2k

1
2
2Ω2g(2π)2
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2

)
Θ−1

ρε pε + 5iω tanh
(α

2

)
Θ−1

ρε (2k − p)ε + 2pρ

)
e−

i
2
p×k

+ e
i
2
p×kkρ − 2 sin

(
p× k

2

)
pρ

]
1

sinhα
e−

ω
4

p2 coth(α
2 )−ω(k− p
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2 ) . (C.32)

In order to solve the Gauss integral we need to shift k − p
2 → k̄

∫
d2k

1
2
2Ω2g(2π)2
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4π

∞∫
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]
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ω
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p2 coth(α
2 )−ωk2 tanh(α

2 ) , (C.33)
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where we have again renamed k̄ → k. We now collect all exponential factors and use the
trick to rewrite the momenta in the prefactor as derivations with respect to z

∫
d2k

1
2
2Ω2g(2π)2

ω2

4π
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0
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[(
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. (C.34)

We can solve the Gauss integral
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and execute the derivations
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. (C.36)
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Setting z = 0 simplifies this to
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Ω=1=
1
2
2g(2π)2
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0
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2 ) . (C.38)

By approximating the hyperbolic functions by their arguments this can be integrated,
and yields

Tµ =
16π2gωpρ

p2θ
+

1216iπ2gω2pεΘ−1
ρε

25p4θ2
. (C.39)

This high degree of divergence should not shock us since we haven’t coupled an external
field and integrated over the external momentum, like we did in the old model. This is
used to compensate for the Mehler kernel being a smeared out delta function.
Thus, we couple an external field to (C.38) in the following way∫

ddp

(2π)d
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+ . . .

]
. (C.40)

All even orders are zero for symmetry reasons. For the uneven orders, we get

• order 1:
∞∫
0

dα

(
−

32πgω tanh
(

α
2

)
δνρ

5θ2 sinhα
−

152iπgω2Θ−1
ρν

25θ2 sinhα

)
(C.41)

which gives when introducing a cutoff ε for the lower bound of α:

−32πgωδνρ

5θ2
(1 − tanh ε) +

152iπgω2Θ−1
ρν

25θ2
ln
(
tanh

(ε
2

))
(C.42)

'
152iπgω2Θ−1

ρν

25θ2
ln(ε) + finite contributions. (C.43)

This is the expected logarithmic divergence.

• order 3: Will be computed together with the second part below.
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The second part

The part Á of (C.28) we are discussing is given by∫
d2kd2k′

1
2
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We now couple an external field to this (C.40).

• Zeroth order
The zeroth order vanishes. This can be seen by two ways: one is directly: partial
integration brings down k̃ which is replaced by k̃′ + p̃ by the delta function. In-
tegration over k′ and p′ respectively are zero for symmetry reasons. Another way
to see this is that we could have equivalently taken k × k′ as the argument of the
phase when plugging in the vertex, since all legs are equal. In this case ∂p is a total
derivative and vanishes.
Using a similar argument for the other orders we can alter the phase in the following
way ∫
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which makes the calculation for us easier.

• First order
Partial integration gives∫
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(C.46)

Solving the integration over k leads us to

−2Ω2g6iΘ−1
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∫
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∞∫
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And the last Gauss integration over p evaluates to
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which yields when introducing a cutoff ε
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(C.49)

which is again a logarithmic divergence.
The sum of both parts, (C.43) and (C.49), is

T (1)
µ =

38iπgΘ−1
ρν

25
ln(ε) + 3πgiΘ−1

ρν ln (ε) =
113
25

iπgΘ−1
ρν ln (ε) , (C.50)

as conjectured in (2.157).

• Third order:
We will compute it all in one, part À and Á together. The third order in the
expansion in the external field of (C.38) is

∫
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Performing the Gaussian integral over p and then the parameter integral over α
yields

8πgω
125θ3

(
− 4i (−38ω (δρσΘµν + δνσΘµρ + 2δνρΘµσ) + 15(2π + i ln(2))δµνδρσ)

+ 45δµνδρσ + 15(3 − 8iπ + ln(16))δµσδνρ + 15(3 − 8iπ + ln(16))δµρδνσ

)
,

(C.52)

which is finite.
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