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Zusammenfassung

Informationsüberflutung ist längst nicht mehr nur ein modernes Reizwort,
sondern bereits ein ernstes Problem mit volkswirtschaftlicher Dimension.
So veröffentlichte das amerikanische Wirtschaftsforschungsunternehmen
Basex1 12/2008 eine Studie, in der allein die durch Informationsüber-
flutung verursachten Verluste der amerikanischen Wirtschaft auf $900
Milliarden beziffert wurden. Als geeignete Mittel zur Eindämmung oder
Entschärfung dieses Problems haben sich in den letzten Jahren vor allem
Personalisierungslösungen etabliert, die dem Benutzer individualisierte
Filtermechanismen zur Seite stellen. Dabei kommt dem sorgsamen
Umgang mit den verfügbaren Daten zentrale Bedeutung zu, da dies die
Brauchbarkeit bzw. Qualität dieses Services wesentlich beeinflusst.

In dieser Arbeit wird Adaptive Personalization, ein neuartiger Person-
alisierungsansatz vorgestellt, der die vorhandenen Informationen besser
verwertet als bisherige Verfahren. Im Gegensatz zu anderen kontextuellen
Verfahren werden zur Berechnung von Vorschlägen nur solche Informa-
tionen verwendet, die in jedem Standardszenario verfügbar sind. Die ef-
fiziente Nutzung dieser Informationen wird an Hand der Erstellung eines
neuartigen Profilmodells sowie verbesserter Algorithmen demonstriert. So
wird ein flexibles, mehrschichtiges Profilmodell vorgestellt, das neben
der Modellierung von kurz- und langfristigen Vorlieben sowie Vergessen
auch den Ursprung von Kundenbewertungen (context of origin) berück-
sichtigt. Zur Berechnung der k-nächsten Nachbarn eines Profils wird
der D2-Tree, eine neue Indexstruktur, präsentiert, der den dynamischen
Umgang mit (kontextuell) wechselnden Distanzfunktionen im Suchraum
unterstützt. Weiters wird ein neuartiger Collaborative-Filtering Algorith-
mus vorgestellt, der Konzepte aus Information Retrieval und Association
Rule Mining zur Steigerung der Vorhersagegüte nutzt und so bessere
Ergebnisse erzielt als Standardverfahren. Vorschläge für eine flexible,
skalierbare Systemarchitektur sowie für ein Vorgehensmodells zum Syste-
mentwurf vervollständigen die Präsentation des Adaptive Personalization
Ansatzes.

Zur Evaluierung der entwickelten Konzepte wurden unterschiedliche
Vorgehensweisen gewählt. So wurde die Brauchbarkeit des Profilmodells
empirisch an Hand von Echtdaten untersucht während für den D2-Tree

1http://www.basex.com; 2/2009
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eine klassische, ausführliche Kostenanalyse erstellt wurde. Die Güte des
Collaborative Filtering Algorithmus wurde, zur besseren Vergleichbarkeit
mit anderen Techniken, auf Basis von Standard Datensätzen und Metriken
evaluiert.

Auf Grund der neuartigen Nutzung vorhandener Informationen, des flex-
iblen Profilssystems, der effizienten Algorithmen und der robusten Ar-
chitektur stellt der hier präsentierte Ansatz einen sinnvollen und nützlichen
Beitrag zur Bewältigung der Informationsüberflutung dar.
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Abstract

Information overload has become a significant problem causing losses in
economic relevant dimensions. According to a study of Basex2 published
in 12/2008 only the U.S. economy loses at least $900 billion per year due
to lowered employee productivity and reduced innovation. Personalization
systems, generating individual suggestions based on user models, are
seen as one major concept for solving this urgent problem of information
overload. However, providing an appropriate personal assistance requires
a diligent usage of the available information.

In this thesis we propose a personalization approach – called Adaptive
Personalization – utilizing the available, context specific information in a
new and efficient way. In addition to other approaches tackling the incor-
poration of contextual information, we only rely on minimal data available
in standard recommendation scenarios. We will show how the knowledge
about the origin of user feedback – called context of origin – can be used
to construct an enhanced multi-view profile model, also incorporating long-
and short-term preference aspects as well as neglect. For solving the k-
nearest neighbors problem in a high dimensional search space, stretched
by the attributes of these profiles, a new index structure – called D2-Tree –
will be presented supporting the dynamic change of (contextual) distance
functions. Furthermore, we introduce a new collaborative filtering algorithm
where techniques borrowed from information retrieval and association rule
mining where used to improve prediction quality, outperforming established
approaches especially in contexts with minimal information. Additionally, a
robust and flexible architecture is presented suitable for large scale, real
world application scenarios together with a proposal for a procedure model
concerning system design. While the effectiveness of our profile model
was determined on the basis of real world data, the collaborative filtering
algorithm was evaluated using popular test data sets and metrics. Further-
more, detailed cost analyzes concerning the different index operations are
provided for the D2-Tree.

Due to this new and efficient utilization of the available information, its
light-weight profile model, the efficient algorithms and the flexible archi-
tecture, the Adaptive Personalization approach is a useful and valuable
contribution for solving the problem of information overload.

2http://www.basex.com as of 2/2009
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1. Introduction

In this chapter the motivation and research questions concerning the thesis
are set out together with a brief introduction to personalization.

1.1. Motivation

Large parts of this work were done in a series of research and devel-
opment (R&D) projects – starting 2002 – preparing and accompanying
the implementation of a personalization solution for a mobile download
platform, focused on music related content, such as full audio files,
wallpapers, etc. The first version of this application went on-line end of
2005 and was deployed in more than 15 countries all over the world.1

In the course of these R&D projects many of the existing and well-
known personalization/recommendation techniques were analyzed for
applicability in the given context with the result that a broader approach is
necessary to meet the given constraints. Beside the common problems
of recommender/personalization systems such as the cold-start problem,
the new item/user problem, etc.2 the domain of interest – mobile music –
bears some specific traps a personalization system must overcome.

Accessability : The access to content via mobile devices suffers from
several technical short comings: (i) exhausting interaction when entering
data, (ii) limited display area, and (iii) performance. These limitations
have strong impacts on the profiling process as well as on the appropriate
explanations of recommendations. These are:

Content Meta Data : Although available in principle, provided content
meta data is often hardly usable because of its bad quality. Music genres
are an often disgraced concept, however indispensable to a music portal.
The most serious problem with genres is that they are not standardized
and that they tend to be a source of dispute. For example, the AllMu-

1Ericsson’s Media Suite - Music (working title first launch)
2See Chapter 3 on page 15
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CHAPTER 1. INTRODUCTION

sicGuide3 offers 531 music styles, Amazon.com4 719 and MP3.COM5

about 430 (Uitdenbogerd and van Schnydel, 2002). Furthermore, in
commercial contexts the genre affiliation is often used as a marketing
instrument for promoting a specific artist. The results of these practices
range from excessive classifications of artists to different genres to
obviously personally motivated affiliations insisted by the artist her/himself.
Furthermore, content providers often do not or cannot deliver genre infor-
mation at all or they deliver a standard classification for many content items.

During the projects we were confronted with data sets, provided by
global content providers, having artists with more than 130 genre affil-
iations (e.g., Michael Jackson) or where 70% of all content items were
classified to one genre (e.g., “classic pop”). Furthermore, one global
content provider did not deliver genre meta data for 20% of it’s content due
to internal differences.

Content volume and life-cycle : Music portals often use huge music
archives with rapidly increasing content offering millions of songs to the
users (e.g., at the time of writing this document iTunes6 promised more
than 8 million audio tracks). Furthermore, the music industry produces
more and more “nine days wonders”, such as the annual “summer hits”
and their performers. From a recommender’s point of view, the complexity
of the new item problem7 (Herlocker et al., 2004; Adomavicius and Tuzhilin,
2005) rises.

User Meta Data : User meta data, stored in the databases of the
operators, could often not be used due to legal issues.

Customer retention : As observed in early mobile applications most
users tend to be occasional customers and do not return very frequently.
As presented in Chapter 8 more than 80% of the users only purchased
twice!

Cultural dependency : The cultural background of the music consumers
plays an important role (Uitdenbogerd and van Schnydel, 2002), because
it has many impacts concerning profiling and recommendation aspects.

Beside these more music specific constraints, a personalization system

3http://www.allmusic.com as of 08/2008
4http://www.amazon.com as of 8/2008
5http://www.mp3.com as of 8/2008
6http://www.itunes.com as of 8/2009
7The new item problem is common in recommender systems based on item ratings. The

problem is: How to recommend an item which was never rated/bought before?
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CHAPTER 1. INTRODUCTION

also has to face a variety of additional challenges, mainly addressing
technical or business issues. The most important are:

Performance and scalability : Millions of items together with potentially
millions of users define a high-performance scenario which must be
handled by the personalization system, concerning the quality of the
recommendation algorithms as well as the system response time due to
the amount of concurrent users.

Administrability : The person responsible for maintaining the person-
alization system must be optimally supported to allow effective tuning
of the system’s performance. This implies, that the system must be as
transparent as possible. Furthermore, many operators articulated the
need for manipulating recommendations as an instrument of implementing
market campaigns.

Cross domain support : Cross- and up-selling are magic words capa-
ble of opening doors for personalization solutions on a business level. Al-
though some standard techniques such as association rule mining (also
known as shopping cart analysis) (Agrawal and Srikant, 1994) or pure rat-
ing based solutions as Slope ONE (Lemire and Maclachlan, 2005) can be
applied on a domain agnostic level, the performance of such solutions can
often be improved significantly by adding domain-specific knowledge.

For example: recommending yet another book or song to a person
just having bought such an item (often explained as users who bought A
also bought...) might be a good idea but will not work well for ringtones
or wallpapers in most cases, because of the different usages of these
items8. Furthermore, applying domain specific techniques for defining
item similarity (e.g. sound similarity in the music domain (Aucouturier and
Pachet, 2002)) can dramatically improve the performance of the system.

Summing up, the main challenge was to develop a scaleable, domain in-
dependent personalization system capable of dealing with a minimum set
of available meta data. The concept to be developed was called Adaptive
Personalization9 which will be explained throughout this thesis. Although
the challenges mentioned above were tackled somehow in the course of
the different R&D projects (and most of the solutions found will be pre-
sented in this work) this thesis concentrates on how to get better results
out of existing information. More precisely: Is there any (still) unused infor-
mation available in standard scenarios and how can it be used to improve

8In many cases ringtones or wallpapers are used to restyle a hand-held device periodically
– but most users do not buy them ahead.

9This name was chosen due to the adaptive capabilities of this approach concerning the
users needs as well as the demands of the operators of a personalization system.

3



CHAPTER 1. INTRODUCTION

the recommendation process?

1.2. Research Question

As the basis of our research a set of research questions were formulated.

1.2.1. Main Question

Which existing contextual information can be used to improve a personal-
ization system and how can it be applied?

1.2.2. Sub Questions

• What are the existing techniques/approaches and why they are not
sufficient for the given task?

• How can contextual information be used to improve user and item
models?

• How can contextual information be used to improve rating based rec-
ommendation strategies?

1.3. Objectives

The major goal of this work is to provide a theoretical basis for the core
concepts of Adaptive Personalization, a pragmatic, domain independent
and flexible approach for creating scaleable personalization systems, ap-
plicable for real world scenarios. We will show how available information,
unused by other approaches, can be used to improve user and item mod-
els as well as rating based recommendation algorithms. In more detail, the
work presents

• how the context of user feedback can be used to improve user models

• how rating based collaborative filtering and k-nearest neighbor algo-
rithms can be improved by adding contextual information

• a flexible architecture for real world applications

4



CHAPTER 1. INTRODUCTION

1.4. A Brief Survey of Personalization

Although the amount of digital information accessible is increasing dramat-
ically every few months, the usability of this giant digital library or ware-
house is getting from bad to worse. This situation is well characterized by
the following quote

“We are drowning in information but starved for knowledge”

by John Naisbitt in his book Megatrends in 1982. Still valid today – more
than 25 years later – information overload is not a modern plague infecting
our information society. Barnabe Rich, a British author and soldier, com-
plained

“One of the diseases of this age is the multiplicity of books; they
doth so overcharge the world that it is not able to digest the
abundance of idle matter that is every day hatched and brought
forth into the world”

in 1613 almost 400 years before Amazon.com10 went on-line!

The application of personalization systems is seen as one major concept
to solve the problem of information overload.

1.4.1. What is Personalization?

Although the word personalization is very trendy in e- and m-commerce11,
it should be stressed, that this concept is not restricted to interactive media:

“Personalization involves customizing some feature of a product or
service so that the customer enjoys more convenience, lower cost, or
some other benefit.”

Following this definition, as found in the Glossary of Terms of the
Personalization Consortium12 in 2005, it is obvious, that no particular
technology, but a lot of information is required to implement an appropriate
personalization strategy. Therefore each retailer serving his/her customers
individually is performing personalization – e.g. by targeted recommenda-
tions of fitting items such as music, books, etc.

In the context of e- and/or m-commerce, personalization is the combined
usage of technology and information about customers to tailor electronic

10http://www.amazon.com as of 9/2008
11e- and m-commerce are abbreviations for electronic and mobile commerce
12http://www.personalization.org as of 2005
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CHAPTER 1. INTRODUCTION

commerce interactions between a business and each individual customer.
The purpose of this information technology combined with marketing prac-
tices is to:

• Better serve the customer by anticipating needs

• Make the interaction efficient and satisfying for both parties

• Build a relationship that encourages the customer to return for sub-
sequent purchases

1.4.2. The Benefits of Personalization

From a business point of view the advantages of personalization are
obvious: A better, targeted presentation/recommendation of items will lead
to more business, increasing the ARPU13. But why should a customer use
personalization – especially in view of the paradox of the active user14 and
the problem of privacy concerns?

A study, conducted by Swearingen and Sinha (2002) in the context of
using recommender systems for on-line stores selling books and movies,
compared the acceptance of recommendations created by systems to
those made by friends. Although users generally preferred recommenda-
tions given by friends to those made by a system, they expressed a high
level of satisfaction with the on-line recommendations. The reason for this
broad acceptance was that the users welcomed the opportunity to explore
their taste and learn about new items based on the huge set of data the
recommender system operates on.

1.4.3. The Heart of Personalization

As stated above, personalization is the attempt to best serve a user/cus-
tomer by knowing his/her individual needs and/or preferences. To solve
this task the following information is needed:

1. knowledge about the user and his/her needs also including the evo-
lution of personal preferences over time

2. knowledge or at least provision about items and their ability to satisfy
these needs

13ARPU stands for average revenue per user, a metric often used in the telecom industry.
14The paradox of the active user – introduced by Carroll and Rosson (1987) – postulates,

that users of software never read manuals, but start using it immediately, although they
would save time in the long term by spending some time to initialize the system.
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CHAPTER 1. INTRODUCTION

3. a process or algorithm for finding the best match between needs and
items

4. a process or strategy to gather information about the user – see item
1

Gathering information and processing it in an appropriate way is the
core task of personalization, often simplified as profiling&matching.

The first and the fourth item refer to the problem of the definition, creation
and refinement of user profiles which can be seen as the most critical task
in the area of personalization. Item two addresses the availability of special
domain knowledge and item three tackles algorithmical challenges.

1.5. Contributions of our Approach

While many available personalization systems are based on some recom-
mending algorithms, the approach at hand tries not only to tackle personal-
ization as a data mining and/or user modeling problem, but also sets it in a
broader context where the optimal satisfaction of the user’s needs as well
as the requirements of the operators are in focus. In contrast to other ap-
proaches tackling the incorporation of contextual information (Adomavicius
et al., 2005; Kim and Kwon, 2007), we rely on the information available in
standard recommendation scenarios consisting of:

1. explicit user actions, such as ratings, buys, etc.

2. information based on the navigation behavior of users

3. explicit data entered by the user (e.g. demographic or preference
information during a registration process)

4. meta data from the problem domain (e.g. information about genre
similarities)

We will show how this information is used to construct a domain agnostic
personalization approach facing the problems mentioned above. The major
building blocks of our concept are:

• a light-weight but sophisticated profile system for modeling different
views of users and items based on the Johari window, a cognitive
psychological tool developed by Luft and Ingham (1955)

• appropriate algorithms for efficiently using the information available

7



CHAPTER 1. INTRODUCTION

• a well-defined set of recommendation strategies focusing on the de-
mands and needs of the users

• a flexible architecture for real world scenarios

where the profile model (see Chapter 6) together with new recommender
algorithms as presented in Chapter 7 are our main contributions to recom-
mender research.

1.6. Dissemination

As mentioned above, parts of this work formed the scientific basis for
implementing a personalization engine serving a mobile music portal. This
personalization engine was launched in several countries in Asia, Europe,
and the USA.

Furthermore, parts of this work were used and further developed in na-
tional and international R&D projects such as:

• RASCALLI: Responsive Artificial Situated Cognitive Agents Living
and Learning on the Internet ; EU FP6-2004-IST-4

• SEMPRE: SEMantically aware Profiling for REcommenders; FIT-IT
2007

In RASCALLI the user modeling component of the Adaptive Personal-
ization approach was extended with the ability of neglect (see Chapter 6).
Furthermore, the improved collaborative filtering algorithm, presented in
Chapter 7, was partly developed within RASCALLI. In SEMPRE an imple-
mentation of the Adaptive Personalization approach, called easyrec15, was
used as the basis for the development of the demonstrators. While writing
this thesis, easyrec, is being prepared for going public as an open source
project.

Furthermore, some core concepts and results of this work were pre-
sented and published at the following conferences:

• Krenn et al. (2009): Adaptive Mind Agent. 9th International Con-
ference on Intelligent Virtual Agents, Amsterdam 14-16 September,
2009.

• Gstrein and Krenn (2006): Mobile Personalization at Work. Work-
shop on Recommender Systems, ECAI 06, Riva del Garda, 18-19
August , 2006.

15http://www.easyrec.org as of 7/2009
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• Gstrein et al. (2005): Adaptive Personalization: A Multi-Dimensional
Approach to Boosting a Large Scale Mobile Music Portal. In Fifth
Open Workshop on MUSICNETWORK: Integration of Music in Multi-
media Applications, Vienna, Austria.

While in (Gstrein et al., 2005) and (Gstrein and Krenn, 2006) the prin-
ciples and experiences of the Adaptive Personalization are presented, the
integration of the profile model for realizing an adaptive mind component
for virtual agents is described by Krenn et al. (2009). Furthermore, first
thoughts concerning some topics of the approach at hand were parts of
several publications e.g.,

• Krenn and Gstrein (2006): On Female and Male Avatars: Data from
a Web-Based Flirting Community. In Proceedings of the AVI 2006
Workshop on Gender and Interaction. Real and virtual women in a
male world, 2006.

• Krenn et al. (2004): Lifelike Agents for the Internet: A Cross-Cultural
Case Study. In Agent Culture: Human-Agent Interaction in a Multi-
cultural World, 2004.

• Gstrein (2003): The BPnD-Tree: An efficient search structure for high
dimensional profile based recommendation systems. Technical re-
port. Austrian Research Centers 2003.

• Krenn et al. (2002): What Can We Learn from Users of Avatars in Net
Environments? Proceedings of AAMAS 2002 Workshop:Embodied
Conversational Agents – Let’s Specify and Evaluate Them! July 15-
16 2002.

While in Gstrein (2003) the basics of the D2-Tree (see Chapter 7)
were developed, early versions of the profile models formed the basis of
analyses presented in Krenn and Gstrein (2006), Krenn et al. (2002) and
Krenn et al. (2004).

Furthermore, the R&D activities related to the approach at hand initiated
several master thesis accompanying the implementation of the person-
alization solution for Ericsson’s Media Suite - Music. Kleedorfer (2008)
developed an algorithm for finding similar songs based on lyrics analysis
for extending music recommendations to textual patterns. Schnabel
(2007) analyzed the applicability of different information visualization
techniques on user actions for supporting the recommender administrator
in finding appropriate system settings. In the course of his master thesis
Cerny (2008) implemented a generic recommender system, based on the
architecture of the Adaptive Personalization approach (see Chapter 5) in
Java.

9
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1.7. Overview

The rest of the document is structured as follows. First, in Chapter 2,
definitions, conventions and prerequisites are introduced forming the
basis of our discussion. In Chapter 3 a survey of the state-of-the-art in
recommender systems is given. Furthermore, a short overview of user
modeling servers is provided. A bird’s eye view concerning the concepts
of the Adaptive Personalization approach is presented in Chapter 4,
also demonstrating specific considerations concerning the Ericsson’s
Media Suite - Music, the mobile content download platform for which the
approach at hand was initially developed.

After these introductory chapters the core concepts of the approach at
hand are explained in detail. While the system architecture is presented at
a conceptual level in Chapter 5, the multi-view profile model is discussed
in detail in Chapter 6. Two new recommender algorithms are presented in
Chapter 7.

In Chapter 8 evaluation results based on two real world application sce-
narios – one from Europe and one from Asia – are presented. Due to
several restrictions the evaluation must be seen as an qualitative analysis
only. A short summary of the work together with future research directions
is presented in Chapter 10. Detailed evaluation results can be found in the
Appendix together with screen-shots of the Ericsson’s Media Suite - Music,
which are used to explain the realization of the presented concepts.

10



2. Conventions & Prerequisites

The definitions, conventions and prerequisites presented in this chapter are
used or referred to in the following discussions. While in the first section
definitions and conventions are provided, the second section is dedicated
to the Johari window (Luft and Ingham, 1955), a cognitive psychological
tool, which inspired the development of the multi-view profile model as de-
scribed in Chapter 6.

2.1. Definitions & Conventions

From the various descriptions of contextual information available in the lit-
erature (Brown et al., 1997; Pascoe et al., 1998; Schmidt et al., 1999), we
follow the definition provided by Dey and Abowd (2000):

“Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an
application, including the user and applications themselves.”1

Most personalization approaches incorporating contextual information
(e.g. (Kim and Kwon, 2007; Adomavicius et al., 2005)) rely on narrower
definitions and try to consider the user’s context when interacting with the
system e.g. “at work”, “with friends”, etc.2.

In contrast to these approaches, the term contextual information is
treated in a more differentiated way in the Adaptive Personalization ap-
proach. Concerning profile adaptation, the context describes the origin or
source of the feedback used for refinement. So, for example, the feedback
used for sharpening user profiles may come from (i) explicit rating actions
of the user (e.g. rating an item, buying an item), (ii) observing the users’s
navigation behavior by the system and (iii) feedback from other users (see
Chapter 6).

In the process of finding similar users, based on collaborative ratings,
contextual information refers to different aspects of the relationship of
these preference sets, incorporating information such as the number of
ratings, the frequency of rated items and the degree of overlap of the rating

1Dey and Abowd (2000); p. 3
2Some times called context of use see (Niederée et al., 2004)
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profiles (see Chapter 7).

Chapters are written as self-contained units, each providing a short in-
troduction as well as a summary. If a chapter directly addresses a research
question, this summary is named Contributions to the Research Question.
Furthermore, code snippets used for explaining algorithms are written in
pseudo-code similar to the Java programming language.

2.2. Johari Window

The Johari window (Luft and Ingham, 1955) was developed by two Amer-
ican psychologists, Joseph Luft and Harry Ingham, in the 1950s during
research concerning group dynamics3. The Johari window model, also
referred as a feedback/disclosure model of self awareness, classifies in-
formation about a person in relation to a group along the two dimensions
self/others and known/unknown in four different areas, as shown in 2.1.

Figure 2.1.: The Four Areas of the Johari Window

Quadrant 1, the open/free area or area of free activity (Luft and Ingham,
1955), consists of the information known by the individual him/herself and
by the community. This quadrant is the public arena where individuals have
their personal power and voice. Basically this quadrant is small for team
members providing no feedback.

Quadrant 2, the blind area or blind spot, contains information which the
individual about him/herself does not know but which is known by the oth-
ers. This area can also be referred to as ignorance about oneself or as-

3The name Johari was derived from a combination of the first names Joseph and Harry
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pects one is misguided. Thick-skinned people often have a large blind
area.

Quadrant 3, the avoided/hidden area or facade, contains information a
person knows about him/herself but which is hidden from the others. While
private information or feelings should remain hidden all team relevant infor-
mation of this area should be moved to quadrant 1 for improving teamwork.

Quadrant 4, the unknown area or area of unknown activity, contains
information about a user unknown by him/herself and the community.
Typically young people or those having little experience or self-confidence
have a large unknown area.

For optimizing group performance it is necessary to enlarge the
open/free area based on community feedback and self-disclosure as pre-
sented in Figure 2.2.

Figure 2.2.: Johari Window Model4

4 c©alan chapman 2003; cp. http://www.businessballs.com/

johariwindowmodeldiagram.pdf as of 11/2008
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3. Related Work

Although the term personalization became popular in the course of the rise
of e-commerce applications in the mid 90ties, research activities concern-
ing user adaptive systems can be traced back much further. Among others,
generic user modeling and recommender systems can be seen as the most
important research areas contributing to personalization. The presentation
of the state-of-the-art of these research fields is the goal of this chapter.
In the first section we will have a closer look at the history and state-of-
the-art in recommender systems, because this topic is more related to our
Adaptive Personalization approach than generic user modeling which will
be discussed in the second part of this chapter.

3.1. Recommender Systems

Recommender systems are systems that produce individualized sugges-
tions concerning interesting objects the user might like out of a large num-
ber of alternatives.

In absence of a common definition of recommender systems in the re-
search community, many authors follow the description given above (Ter-
veen and Hill, 2001; Ujjin and Bentley, 2001; Burke, 2002; Riedl and Dour-
ish, 2005). An earlier definition made by Resnick and Varian (1997) con-
strict recommender systems to applications aggregating recommendations
made by users and directing them to appropriate recipients. Furthermore,
the terms recommender systems and collaborative filtering are often used
in the literature interchangeable. Additionally, the term recommender sys-
tems is often picked to describe specific algorithms or techniques (Terveen
and Hill, 2001) such as collaborative filtering or content-based filtering.

In our work and this PhD thesis we use the definition of recommender
system given above (following e.g., Burke (2002)) and address the different
predicting approaches (e.g., collaborative filtering) as algorithms or tech-
niques (following e.g., Breese et al. (1998)). So, in our context, a recom-
mender system is an application/system generating item recommendations
for users by applying a set of different recommending approaches or tech-
niques.
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3.1.1. Historical Survey

Although the origin of recommender systems can be traced back to the late
70ties, research on this topic emerged as an own research area in the mid
90ties. Grundy1, a book recommender system based on user stereotypes
developed Rich (1979), can be seen as the first recommender system. In
1992 Goldberg et al. (1992) coined the term collaborative filtering during
the development of Tapestry a mail system supporting the user in handling
the stream of incoming mails, based on manually defined like minded user-
user relations.

Based on the findings of Tapestry and the concentration on rating based
recommendation approaches, the rise of recommender systems as an
independent research area started in the mid 90ties. Systems such as
Ringo (Shardanand and Maes, 1995), GroupLens (Konstan et al., 1997),
or Video Recommender (Hill et al., 1995) were the first recommender sys-
tems using collaborative filtering for automatically generating predictions.
Based on the findings of this research many improvements concerning
collaborative filtering algorithms were made subsequently (Breese et al.,
1998).

However, it was reserved to Amazon.com2 to make recommender
systems popular, even widely beyond the research community. In the
late 90ties Amazon.com launched a book recommending service, called
BookMatcher, on their e-commerce portal. But due to the fact, that
users had to provide about 20 to 30 ratings to get recommendations,
BookMatcher was hardly used. Based on these experiences Linden et al.
(2003) developed a new recommender system based on an item-based
collaborative filtering approach published by Sarwar et al. (2001). The
success of Amazon.com’s personalization solution had a great impact on
e-commerce and formed the bases for widely used terms such as long
tail3. Furthermore, the phrase “Amazon like recommendations” is widely
used as a common feature description in e-commerce business.

Based on experience with collaborative filtering approaches some
research on hybrid systems was conducted, by combining different
techniques to overcome the shortcomings of each approach. While Fab
– a system recommending web pages to user developed by Balabanović
and Shoham (1997) – is an early example of a hybrid recommender
combining content-based filtering with collaborative filtering, EntreeC – a

1Grundy is also referred as an early generic user modeling system see Kobsa (2001)
2http://www.amazon.com as of 6/2008
3Inspired by an event were Amazon.com’s recommender turned a shopkeeper into a best-

seller C. Anderson, chief editor of the Wired Magazine, coined the term long tail busi-
ness in 2004, http://www.wired.com/wired/archive/12.10/tail.html
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restaurant recommender system developed by Burke (2002) – combines
knowledge-based approaches with collaborative filtering.

Furthermore, contextual information was taken into account to improve
recommendation accuracy. Adomavicius et al. (2005) proposed a multi-
dimensional approach for calculating recommendations. In Figure 3.1 a
3-dimensional model is presented incorporating time into the recommen-
dation process. The basic idea is, that different contexts call for different
recommendations, even within the same domain and preference space.
So, for example, the decision which film a young guy want’s to see may
strongly depend on his companionship and/or day of week – if he attends
the cinema with his girl friend on Saturday or with his fellows during the
week.

Figure 3.1.: 3-dimensional model for User×Item×Time recommendation
space (Adomavicius et al., 2005)4

Reduction is one technique to generate contextual recommendations
where only the ratings assigned to a given context are considered dur-
ing computation. So, for example, the cinema visits at week-ends will be
calculated separately from those during the week.

4cp. Adomavicius et al. (2005), p. 115
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Rack et al. (2007) reported about their work on contextual recommenda-
tions based on the AMAYA recommender (Steglich et al., 2005). AMAYA
is a general purpose recommender consisting of four major components
– the data adapter, profile manager, a profile broker, and a recommender
subsystem (see Figure 3.2) – which form the basis for computing contex-
tual recommendations.

Figure 3.2.: AMAYA recommender system (Rack et al., 2007)5

The drawback of AMAYA is, that all contextual situations, like “being at
home”, “being at work” have to be modeled explicitly at a profile level. Fur-
thermore, the AMAYA subsystem does not perform the mapping between
preferences and situations by itself but leaves this task to well-known
techniques like Rocchio’s relevance feedback algorithm (Rocchio, 1971).

Another context-aware recommendation approach, developed for a
grocery store, is presented by Kim and Kwon (2007). They propose a
three step approach based on an ontology containing information about
(i) products, (ii) locations, (iii) records, and (iv) consumers. In a first step
the preferred items of a user are extracted from the consumer’s records.
Next, in the second step, the level of information provided to the user
is defined. Finally, in the third step, the recommendation of step two is
refined according to the consumer’s attention.

Beside these attempts to improve the performance of recommenda-
tion algorithms research was also done in other important areas, such
as security, privacy, trust, or the human-computer interface aspects of
recommender systems. Swearingen and Sinha (2001) presented a study
concerning HCI aspects of recommender systems as well as suggestions

5cp. Rack et al. (2007), p. 446
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concerning interaction design for recommender systems (Swearingen and
Sinha, 2002). The findings of this study showed that, beside accuracy of
recommendations, topics such as trust, transparent and traceable logic
of recommendations, detailed information of items, providing not-yet-seen
items, etc. had an high impact concerning the acceptance of the tested
systems. Although the probands preferred recommendations made by
friends, they expressed high satisfaction concerning the performance of
recommender systems because of their ability to generate new sugges-
tions out of an enormous set of alternatives. A list of design suggestions
for recommender systems, ranging from the usage of specific interactions
elements (e.g., continuous rating bars for implementing rating scales)
to the support of need driven strategies (e.g., broaden-my-horizon6

recommendation), were provided too.

As recommender systems gained more and more importance in e-
commerce, security aspects concerning the prevention of attacks became
important, especially in the context of collaborative filtering systems.
Some aspects of such attacks, e.g., how to detect attacks, which are
the properties of items being attacked, etc. are discussed by Lam and
Riedl (2004). The web-of-trust, a community driven approach where users
explicitly declare others as reliable, was presented by Massa and Avesani
(2004). Another approach concerning trust is presented by O’Donovan
and Smyth (2005) by introducing trust on an profile and item level.

Due to the fact that many recommender systems are based on user feed-
back, also privacy is an important topic in recommender research. Simply
navigating through the Web may result in a massive user profiling where a
lot of individual data, ranging from IP address, timing information, browser
settings, etc. is collected with far-reaching privacy implications (McSherry
and Mironov, 2009). Narayanan and Shmatikov (2008) published a de-
anonymization attack where records of the NetFlix Prize7 dataset where
linked with the public profiles of The Internet Movie Database (IMDb)8. Al-
though this is perhaps not a very disturbing scenario for the video or music
domain, privacy concerns may rise when it comes to health records or
working contexts. So, for example, a scientist, just writing a paper about a
certain topic, may not want to share his currently preferred literature with
others.

Baraglia et al. (2006) identified two privacy breaches in common recom-
mender systems. The first breach is based on the fact that recommenda-
tions are generated based on similar users. By getting some recommen-

6A recommendation strategy supporting the user in exploring his taste was called
broadening-the-user’s-horizon by Swearingen and Sinha (2002).

7http://www.netflixprize.com as of 11/2008
8http://www.imdb.com as of 11/2008
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dations a malicious user Umal attacking the system knows that there is a
group of users having the same preferences as him/herself. Furthermore,
this attacking user Umal is able to identify the existence of users with the
same preferences by simply stressing his/her profile as long as new rec-
ommendations are produced. This detection process is the second breach.
To overcome these privacy leaks Baraglia et al. developed πSUGGEST ,
a two-tier web recommender system, consisting of a browser plug-in and
server component – see Figure 3.3.

Figure 3.3.: πSUGGEST two-tier architecture Baraglia et al. (2006)9

While the server side of πSUGGEST is updating the knowledge base
on-line, the client side browser plug-in is establishing the list of preferred
pages.

Other research concerning privacy aspects were published by Ra-
makrishnan et al. (2001) and Lam and Riedl (2004). The former authors
presented a graph-theoretical model demonstrating how information
concerning user groups can be derived by observing the system’s
recommendations. Lam and Riedl suggested the usage of the value-of-
information (VOI) (Pennock et al., 2000) for deciding which information
should be used for personalization or when to stop collecting further user
data. The basic idea behind the VOI approach is that different pieces of
information may have a different discriminatory power concerning other
users. So, for example, personal preferences for a block-buster movie are
less useful for a recommender system than preferences for a rare film.

Some suggestions concerning research aspects for developing the next-

9cp. Baraglia et al. (2006), p. 560
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generation of recommender systems are presented by Adomavicius and
Tuzhilin (2005), proposing a deeper understanding of user and items, the
support of multi criteria ratings, etc.

3.1.2. Classification

From the several published classifications of recommender algorithms
(Resnick and Varian, 1997; Schafer et al., 1999; Terveen and Hill, 2001)
the most comprehensive one was presented by Burke (2002) which will
be used as our basis for further discussions. Burke identified the following
three characteristics for classification:

1. background data: the information that the system has, before produc-
ing recommendations

2. input data: the kind of data provided to the recommender systems in
order to get recommendations

3. process: an algorithm combing background data with the input to
generate recommendations

Based on these definitions Burke identified five different recommenda-
tion techniques used in the research community which are presented in
Table 3.1.

Additional to these basic recommendation techniques we will also have
a closer look to hybrid approaches.

Collaborative Approaches

Collaborative filtering (CF), the most successful technique applied in
recommender systems, takes the similarity of users as the basis for gen-
erating recommendations. The CF system asks the user to rate presented
items – so the knowledge “who likes what” is gathered. When asked for
recommendations a list of items, which where high rated by similar users
in the past, is generated by the CF system. The similarity between users
is calculated based on the rating behavior of common items, by using
e.g., the Pearson correlation coefficient (Resnick et al., 1994; Shardanand
and Maes, 1995; Breese et al., 1998). According to Breese et al. (1998)
collaborative approaches can be further divided into memory-based and
model-based techniques, depending on the data and algorithms they use
for generating predictions.

10(cp. from Burke (2002), p. 332)
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Technique Background Input Process
Collaborative user ratings of

items
a user is rating an
item

finding similar users for a
given user and generate
an item prediction based
on their ratings

Content-based feature vectors of
items

user is rating an
item

creation of a classifier that
matches the item features
to the rating behavior

Demographic demographic
data of users and
their item ratings

demographic
user information

finding demographically
similar users for a given
user and generate an
item prediction based on
their ratings

Utility-based feature vectors of
items

feature based
utility function
describing the
users prefer-
ences

defining the rankings of
items by applying the util-
ity function

Knowledge-
based

feature vectors
of items and
knowledge how
these features
corresponds to
the user’s needs

description of the
users needs

infer a match between the
user’s needs and a fea-
ture vector

Table 3.1.: Recommender Techniques as classified by Burke (2002)10
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Memory-based algorithms Memory-based algorithms take all available
ratings rv,i – made by user v on an item i – to generate the prediction p for
an unknown item j for a given user u. The prediction of an item j for a user
u is defined as the weighted sum of the votes of other users (Breese et al.,
1998):

pu,j = ru + f
n

∑

v=1

w(u, v)(rv,j − rv) (3.1)

where ru is the mean rating of user u, f is a factor for doing normalization
and w(u, v) is a weight describing the similarity between the two user u and
v. As mentioned above, the Pearson Correlation is one of the most used
similarity measurements based on the common ratings of user u and v.
The Pearson correlation is defined as:

w(u, v) =

∑n
i=1(ru,i − ru)(rv,i − rv)

√
∑n

i=1(ru,i − ru)2(rv,i − rv)2
(3.2)

where i refers to items, both users u and v have rated in the past.

The vector similarity, derived from the field of information retrieval (Heyer
et al., 2006), is another widespread function to calculate the similarity be-
tween users. In this case the ratings rv,i of users are seen as vectors where
the similarity is calculated based on the cosine of the angle, as defined in
Definition 3.3 on page 23.

w(u, v) =
n

∑

i=1

ru,irv,i
√

∑o
k=1 r2

u,k

√

∑p
l=1 r2

v,l

(3.3)

Using this definition of the vector similarity no distinction between
positive and negative ratings is made. All existing ratings are used for
similarity calculation and unrated items get a zero value. The dominator
in Definition 3.3 is used to normalize the calculated weight and to assure,
that the length of a vector is taken into account, avoiding that users with
more ratings have a higher similarity by default. (Note: k refers to the
ratings of user u and l to the ratings of user v).

The inverse user frequency (Breese et al., 1998), another borrowing
from information retrieval or data mining (Witten and Frank, 2005), com-
prises the discriminatory power of an item within the similarity calculation
of users. The main idea is, that items being preferred by many users have
less significance for similarity relations than rarely chosen ones. This infor-
mation gain g for discrimination is often defined as g(i) = log( n

ni
), where
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n is the number of all users and ni is the number of users who rated item
i. Standard techniques such as vector similarities or Pearson correlation
can now be improved by applying the inverse user frequency. For the vec-
tor similarity this is done by transforming the original ratings into adapted
ones, by simply multiplying them with their information gain g – see Defini-
tion 3.4 – where ´ru,i = g(i)ru,i.

w(u, v) =
n

∑

i=1

´ru,i ´rv,i
√

∑o
k=1 ´ru,k

2
√

∑p
l=1 ´rv,l

2
(3.4)

Another enhancement for the Pearson correlation is called default vot-
ing where missing ratings are replaced by default values. The main idea
behind this strategy is to enlarge the intersection of common ratings – the
ratings Pearson is operating on – and so to improve the similarity measure-
ment (Breese et al., 1998; Herlocker et al., 2004).

Case Amplification is another extension to memory-based algorithms
where the contributions of more/most similar users are emphasized by am-
plifying weights w(u, v) – as defined in Definition 3.1 on page 23 – close
to 1 and punishing lower values. The adapted weights are calculated as
follows:11

w(u, v)′ =

{

w(u, v)p w(u, v) ≥ 0
−(−w(u, v)p) w(u, v) < 0

(3.5)

The techniques discussed above all calculate the similarities of users
based on their ratings of items. In the context of modern recommender
systems, with millions of users and items, these approaches suffer from
two problem areas: (i) the sparsity of data and (ii) scalability issues.

• Sparsity : Modeling users as vectors of item ratings often leads to
very sparse search spaces in many commercial systems.

• Scalability : The costs of finding nearest neighbors increases with
the growing numbers of users and items.

To face these problems Sarwar et al. (2001) proposed an item-based
collaborative filtering algorithm where the similarity between two items i
and j is generated based on the ratings of a set users U having rated both
items. Given this set of users U and the target item i – the item, for which
a prediction should be generated – the algorithm takes all co-rated items
of the users u ∈ U and calculates the similarities with the target item i.

11Breese et al. (1998) used p = 2.5 for their experiments.
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In the case of Pearson correlation the similarity weight w between items
i and j can be defined on a user basis having rated i and j as

w(i, j) =

∑

u∈U (ru,i − ri)(ru,j − rj)
√

∑

u∈U (ru,i − ri)2(ru,j − rj)2
(3.6)

where ri denotes the average rating of item i.

When using the cosine-based vector similarity an item is seen as a vec-
tor of user ratings. The similarity weight between the two items i and j can
be adapted as follows:

w(i, j) =

∑

u∈U ru,iru,j
√

∑

u∈U r2
u,i

√

∑

u∈U r2
u,j

(3.7)

One important drawback of Definition 3.7 is, that the differences in rating
scale of the users are not taken into account. This can be avoided by using
the adjusted cosine similarity (Sarwar et al., 2001) function which subtracts
the average user rating, as defined in Definition 3.8

w(i, j) =

∑

u∈U (ru,i − ru)(ru,j − ru)
√

∑

u∈U (ru,i − ru)2
√

∑

u∈U (ru,j − ru)2
(3.8)

where ru denotes the average rating of user u.

Defining a user-item matrix – see Figure 3.4 – as the basis for generating
recommendations, the fundamental difference in the similarity computation
between the user-based- and item-based-collaborative approach is, that
the user-based technique generates the similarity along the rows of the
matrix while the item-based algorithms computes along the columns. By
doing so, a similarity relation between items (and not between users) is
established, which can be directly used in the on-line recommendation
process, once stored in the database. Due to the fact, that in on-line
systems the number of users exceed the number of items by far, the
scalability of these systems can be improved enormously.

The idea of using items instead of users as the basis for collaborative
filtering was picked by Amazon.com for creating their recommender
system (Linden et al., 2003) and was further developed by Deshpande and
Karypis (2004) creating item-based top-N recommendation algorithms.
Empirical comparisons of both approaches were presented by Deshpande
and Karypis (2004); Sarwar et al. (2001) where the item-based approaches

25



CHAPTER 3. RELATED WORK

Figure 3.4.: User Item Matrix

outperform the best user based techniques concerning computational
performance as well as recommendation quality.

Although hardly mentioned in the context of recommender systems, as-
sociation rule mining (ARM) (Agrawal and Srikant, 1994; Park et al., 1995;
Witten and Frank, 2005) can also be seen as a memory-based recom-
mender technique, because item-to-item relations (associations) are mined
on the bases of historical user actions. Standard shopping cart analysis
is often performed by applying ARM techniques where items, frequently
bought together, are determined. More formally, association rules are
terms of the form

{X1, X2, . . . , Xn} ⇒ Y (3.9)

with the meaning, that if items X1, ..., Xn (called antecedent) are found
in one user transaction (or basket) then there is a certain possibility also
to find item Y (called consequent). So, given a huge amount of data con-
sisting of several subsets of items belonging together – often called user
transactions or baskets – association rule mining tries to find those item
sets which appear at least n times in these subsets.

Sample: In a set of 100.000 baskets the items A and B appear together
2.000 times. Furthermore, within these 2.000 baskets item C can be found
800 times. All in all item C appears in 3.000 baskets. This assumption could
be described with the following association rule:

{A, B} ⇒ C (3.10)
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There are three important figures for controlling association rule mining.
The support describes the number of baskets containing all items of the
rule as defined in Definition 3.11:

support =
nrBasketsContaining(antecedent + consequent)

nrAllBaskets
(3.11)

So, for example, the support of the rule {A, B} ⇒ C is 800 or 0.8%
concerning all baskets.

The confidence of an association rule describes the probability that the
consequent will appear together with a given antecedent and is defined as
follows:

confidence =
support(antecedent + consequent)

nrBasketsContaining(antecedent)
(3.12)

The confidence of the sample rule {A, B} ⇒ C defined above is 40%
(0.4 = 800/2.000).

The third figure, called lift, can be interpreted as the importance of a rule
and is defined as the ratio of the confidence and the expected confidence

lift =
confidence

expectedConfidence
(3.13)

where the expected confidence is defined as

expectedConfidence =
nrBasketsContaining(consequent)

nrAllBaskets
(3.14)

Thus the lift value of the sample rule {A, B} ⇒ C is 13.33 computed as
0.4/(3.000/100.000) = 13.33.

In practice association rule mining is a very resource intensive task be-
cause the definition of frequent item sets (with different sizes!) is commonly
performed on very huge data sources. One of the best known approaches
for efficiently solving this problem is the a-priori algorithm, developed by
Agrawal and Srikant (1994), which works as follows:

1. Starting with a given support threshold s (e.g., 1% of all bas-
kets) all items Ik are determined appearing in at least s baskets
(support(Ik) ≥ s). This set of frequent items is called L1

12.

2. According to the a-priori principle pairs of items of L1 form candidate
set C2. Those pairs of C2 having a support value with at least s, form
the set L2

12Li describes a frequent item set with size i
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3. The candidate set C3 is build of those item triples {A, B, C} having
tuples of the form {A, B} , {A, C} , {B, C} in L2

4. This procedure can be continued until the sets get empty or a
predefined limit (e.g., L5) is reached.

The idea of using the pairwise occurrence of items as a basis of rec-
ommendations was also incorporated in the development of Slope One, a
family of algorithms for CF, developed by Lemire and Maclachlan (2005).
Slope One is a memory-based collaborative algorithm, predicting how a
user would rate a given item from other user ratings. Slope One is based
on a principle called popularity differential between items where the dif-
ference of how much better one item is liked than another is defined in a
pair-wise manner. This difference, simply computed as the difference of
the average ratings of the two items, can further be used to calculate item
predictions for users.

Sample: Given two users A and B and two items I and J . Furthermore
we assume, that user A rated item I with value 1 and item J with 1.5, while
user B only rated item I with 2. Based on this assumptions the prediction
of item J should be calculated for user B – see Figure 3.5 on page 28.

Figure 3.5.: Basis of Slope One Schemes (Lemire and Maclachlan, 2005)13

By observing that item J is rated higher than item I by 0.5 points (0.5 =
1.5−1), we can predict that user B will give item J a rating of 2.5 (2+0.5 =
2.5).

13cp. (Lemire and Maclachlan, 2005), p. 2
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Model-based algorithms In contrast to memory-based techniques,
where all ratings are used to calculate the predictions, model-based al-
gorithms take a subset of these ratings to learn a model, used for deriving
recommendations (Adomavicius and Tuzhilin, 2005; Breese et al., 1998).
Breese et al. (1998) proposes an probabilistic approach for computing the
assumed rating for an unobserved item i for a given user u on the basis of
what is known about this user u.

ru,i = E(ru,i) =
n

∑

k=0

k · Pr(ru,i = k|ru,l, l ∈ Iu) (3.15)

In Definition 3.15 it is assumed, that the ratings have integer values
ranging from 0 to n and that the probability expression is the probability
that user u will rate item i on the basis of the previously rated items (Iu

denotes the set of items user u has just rated). Furthermore, Breese
et al. (1998) proposes cluster models and Bayesian networks as possible
approaches for estimating the probability.

In cluster models users with the same tastes and preferences are
grouped together. So, given a certain cluster/group for a user and assum-
ing that the ratings of the user are independent, the naive Bayesian model
can be used. The different parameters of this model, e.g., probabilities of
class membership, conditional probabilities of ratings given a class, etc.
are learned from the training set of ratings by applying methods capable
of learning parameters for models with hidden parameters, e.g., the EM
algorithm (Witten and Frank, 2005).

In the case of a Bayesian network each item of the domain corresponds
to a node in the network and the ratings correspond to the states of these
nodes. After applying algorithms for learning Bayesian networks on the
training data the resulting networks contains a predecessor-successor re-
lation for each item where the predecessors are used as predictors for a
given item.

Seeing collaborative filtering as a classification task is proposed by
Billsus and Pazzani (1998) where a complex, machine learning based
framework is presented by using different techniques such as neural
networks, singular value decomposition etc.

Comparisons of memory-based with model-based approaches were
published by Billsus and Pazzani (1998) and Breese et al. (1998). Both
report, that in some cases the model-based approaches outperform the
memory-based techniques concerning accuracy14 of recommendations.

14Concerning recommender algorithms, accuracy describes the prediction quality, often
measured with metrics such as mean absolute error (MAE).
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But it must be mentioned that these results only rely on empirical studies
and that no theoretical proof was provided.

There are two main advantages of collaborative filtering compared to
other techniques which form the basis of their success in commercial as
well as in academic systems: (i) no information about items is necessary,
no machine readable profile of items must be provided and (ii) the basic
idea of relying on liked items of similar users provide an easy way to im-
plement cross (domain) recommendations. On the one hand, these cross
recommendations help the user to explore his/her taste better15 while on
the other hand a more diverse presentation of interesting items may in-
crease the volume of the portal.

The main drawback of the CF approach is known as the cold start prob-
lem consisting of the new user and the new item problem (Adomavicius
and Tuzhilin, 2005; Schein et al., 2002). New users have no or only a
very poor behavior profile (e.g., rated or bought items) thus the definition of
similar users is not possible. This problem applies e.g., to the Pearson cor-
relation coefficient, the most popular measure value used in CF systems,
which can only be applied to ratings of items, which all concerned users
have rated! Further problem areas of CF are the new item problem – de-
scribing the problem of how to present an item which was not rated before
– and the sparsity problem, which occurs when the number of rated items
is very small in relation to the total item set.

Content-Based Approaches

The concept behind the content-based approach is to suggest items
to users which are similar to ones they liked in the past. To compute
this similarity a description of the items must be provided in machine
readable form of profiles or feature vectors together with the users
ratings of these items. Based on this information a variety of machine
learning or information filtering techniques (Adomavicius and Tuzhilin,
2005; Pazzani and Billsus, 2007) can be applied to learn the users pref-
erences by identifying the relevant features/attributes of the items provided.

Because content-based approaches have their roots in the information
retrieval research community (Belkin and Croft, 1992), it is no surprise
that most such recommender systems rely on a textual description of
items as basis of the items feature vectors. A common technique for
creating meaningful item profiles out of text is to create vectors containing
the weighted, relevant phrases by applying the term frequency/inverse
document frequency (TF × IDF ) measure.

15named “broaden the user’s horizon” by Swearingen and Sinha (2002)
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The weight wt,d in Definition 3.16 describes the importance of a term t
for a given document d by using the term’s local importance – the term fre-
quency (TF ) – and it’s global discriminatory power, the inverse document
frequency (IDF ). While the TF part of Definition 3.16 describes how im-
portant/descriptive a term t is for a given document d by calculating the
relative frequency, the IDF defines how often t is used in other documents
too:

wt,d = TFt,d × IDFt =
ft,d

maxz(fz,d)
log

N

nt
(3.16)

In Definition 3.16 ft,d describes how often a term t appears in a docu-
ment d. maxz(fz,d) is used for normalization and defines the maximum of
all terms in d. Furthermore, N is the number of all documents and nt is
the number of documents containing term t.

Based on such feature vectors of items and the historical ratings of the
users several techniques can be applied to learn user profiles concerning
preferences of features. Pazzani and Billsus (2007) describe this process
of creating a user’s preference model as a kind of classification learning,
based on the e.g., binary categories liked/disliked items.

Decision tree learners such as ID3 or C4.5 (Quinlan, 1986; Witten and
Frank, 2005) are well studied, widely used and most successful algorithms
to solve this task. Based on a training set of classified feature vectors a
decision tree is created by recursively partitioning this set into subgroups
until all items of a subgroup belong to one single category (e.g., “liked
item”). The appropriate features, with the highest discriminatory power,
are identified by calculating the expected information gain. The expected
information gain E(C; F ) of a given feature F with respect to the class
attribute C can be defined as the reduction of uncertainty about the value
of C knowing F , where the uncertainty of C is defined by the entropy H(C).
Furthermore, the uncertainty of C, knowing F , is defined by the conditional
entropy of C, H(C|F )

E(C; F ) = H(C) − H(C|F ) (3.17)

When C and F are discrete variables, having values {c1, ..., cn},
{f1, ..., fm}, the entropy can be defined as

H(C) = −
n

∑

i=1

P (C = ci) lg2(P (C = ci)) (3.18)

while the conditional entropy is defined as follows:
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H(C|F ) = −
m

∑

j=1

P (F = fj)H(C|F = fj) (3.19)

Nearest neighbor methods are also common techniques to solve classi-
fication tasks, by defining the n most similar (just labeled) items to a given
unlabeled item I. In succession, Item I is associated with the classes of
the most similar items. Depending on the kind of data a variety of similarity
functions can be applied. While Euclidean distance metrics are often used
in the case of structured data, the vector space model (based on cosine
similarity of vectors, see Definition 3.3 on page 23 ) is often used in the
context of more complex descriptions, e.g., feature vectors based on texts.

Relevance feedback (Rocchio, 1971; Limbu et al., 2006; Pazzani and
Billsus, 2007) is an important ability of a user for improving the recommen-
dation results, called query refinement in the field of information retrieval.
The main idea is to improve the performance of the recommendation/re-
trieval algorithm incrementally by rating how good the returned items meet
the users information need. Rocchio’s algorithm (Rocchio, 1971) is widely
used to implement this feedback driven refinement by recursively adapt-
ing an initial query based on relevant and non-relevant feedback. More
formally

Qi+1 = κQi + λ
∑

rel

Di

|Di|
− µ

∑

nonrel

Di

|Di|
(3.20)

In this equation Qi denotes the user’s query, at iteration i, Di the re-
trieved documents at iteration i, and the weights κ, λ, µ are used to control
the different influences, e.g., original query and relevant/non-relevant
items. Although empirical experiments demonstrated the power of this
algorithm (Rocchio, 1971) no theoretical proof exists (Pazzani and Billsus,
2007) concerning the performance and/or convergence of this approach.

Furthermore, linear classifiers, algorithms that learn linear decision
boundaries, are appropriate techniques for learning user preferences
(Witten and Frank, 2005; Pazzani and Billsus, 2007). For classification
purpose a weight vector w, constructed during a training phase, is applied
(dot product) to an instance vector to be scored (e.g., vector space model
of a document) resulting in a numerical prediction. Algorithms like the
Widrow-Hoff rule or the exponentiated gradient (EM) (Pazzani and Billsus,
2007) can be used to learn vector w. Additionally, also probabilistic
methods like the naive Bayesian classifier can be applied, especially in
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the case of text classification.

Like collaborative approaches also content techniques suffer from the
new user problem because an efficient classifier can only be constructed
when having a sufficient number of ratings. Another, and perhaps more
important drawback, of the content-based approach is its tendency for over
specialization. A user, having high rated some items will only get recom-
mendations containing similar ones, a broadening of the user’s horizon is
not supported. Especially in the context of news recommendation overspe-
cialization becomes a serious problem, because articles telling the same
story the user has just read are recommended. The Daily Learner (Bill-
sus and Pazzani, 2000), a system recommending daily news, tackles this
problem by filtering articles that are too different as well as those being too
similar.

Knowledge-Based Approaches

The main characteristic of the knowledge-based approach (Towle and
Quinn, 2000; Burke, 2000, 2002; Lorenzi, 2007) is the use of functional
knowledge – knowledge of how a particular item meets the user’s needs
– to calculate recommendations. Similar to the utility-based approaches
no long-term user model is created and no set of historical ratings are
required. Any knowledge structure describing the user’s needs supporting
inference can be used as user profiles, ranging from simple queries (e.g.,
as used in Google16) to more complex descriptions as described by Towle
and Quinn (2000). Also the knowledge base used by the recommender
system can be provided in many forms. While Google uses links between
web pages to determine a popularity and authoritative measure other
approaches are using more explicit knowledge or ontologies (Middleton
et al., 2002, 2004). Entree, a restaurant recommender developed by Burke
et al. (1997), uses knowledge of cuisines to determine the similarity of
restaurants.

Entree is an example of a FindMe system (Burke et al., 1997; Burke,
1999), which allows a user to navigate through a web of products, without
being forced to define his/her preferences in advance. FindMe systems
have the following characteristics.

1. FindMe systems are example-based supporting a user in easily find-
ing similar products, given an item as a starting point.

2. They support user critiques concerning attributes (or bundles of at-
tributes) of recommended items to find new suggestions.

16http://www.google.com as of 5/2008
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3. Typically the list of recommended items is very comprehensive, con-
taining items ranked according to the expected goal.

So, for example, if a user finds a pretty but too expensive or vanguard
restaurant in Entree, he/she can get new suggestions by placing critiques
like "Less $" ore "More Traditional".

Beside this case-based approach constraint-based recommendations
form the second well-known technique for implementing knowledge-based
recommender systems. Basically, the constraint-based approach tack-
les the recommendation problem as a constraint satisfaction problem
(Felfernig and Burke, 2008). Based on product descriptions, constraints
and a set of questions a recommender knowledge base is composed
containing a pair of feature vectors (U, P ) and a set of constraints
(REQ, PROD, FILT ).

While the features ui ∈ U model all possible user requirements (e.g.,
delivery-period≤4, maximum-price≤100, etc.), the attributes pi ∈ P de-
scribe the product properties (e.g., price, product-id, etc.). REQ is a set
of compatibility constraints reqi describing dependencies between require-
ments, thus assuring expedient combinations (e.g., compi: A VISTA PC
requires more than 1 GB memory). Analogical to REQ, the constraints
prodi ∈ PROD restrict the number of possible products to a set of useful
offers. Filter constraints filti ∈ FILT model relations between require-
ments and products, often related to marketing strategies (e.g., PCs with
fast CPUs and video cards are reasonable for users who want to play video
games).

Based on the feature vectors and the set of constraints, a constraint-
based recommender system computes a solution by assigning the features
of (U, P ) without violating the given constraints REQ ∪ PROD ∪ FILT .

An advantage of the knowledge-based approach is that no cold start
problem exists, because no user ratings are required. On the other hand,
an appropriate knowledge base must be provided.

Demographic Approaches

The idea behind the demographic approach is using demographic-based
user categorizations (e.g., data such as age, gender, occupation, etc.) for
recommending items. Similar to the collaborative approach “user-to-user”
relations are created only based on demographic data – no history of user
ratings is needed. Thus, demographic systems rely on user descriptions
which must be provided in advance.
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The early book recommender system Grundy (Rich, 1979) can be seen
as demographic recommender system, because it is based on the usage of
predefined stereotypes. A stereotype is a collection of frequently occurring
characteristics of users, also called facets, having a name, a value range
and a rating value (between 0 and 1000) describing the degree of certainty.
In Figure 3.6 on page 36 some sample stereotypes of Grundy, describing
a “sports person” and a “feminist”, are presented.

Furthermore, the stereotypes are arranged in an inheritance structure
(referred as an directed, acyclic graph having generalization-of relations,
as presented in Figure 3.7 on page 37, also supporting multiple-inheritance
relations.

Stereotypes can be activated by instantiating one of its triggers, an
object being associated with a given situation. The information necessary
for activating stereotypes is collected throughout an interactive dialog with
the user.

The Lifestyle Finder, developed by Krulwich (1997), tries to classify a
user along a set of predefined clusters, provided by PRIZM19, using a
method called demographic generalization as shown in Figure 3.8 on page
37.

In a first step, the available user data is used to determine the best
matching clusters. If only one cluster is identified, all the data of that
cluster is used as the broad profile of the user. If several clusters are
appropriate, all similar values of these clusters form a partial user profile.
For refining profiles subsequently, the best differentiating demographic
variable concerning these clusters can be prompted to the user.

In their restaurant recommender Pazzani (1999) avoid the usage of an
interactive dialog for gathering demographic data, by using the home pages
of the involved users. While the HTML home pages of users who liked
a certain restaurant form the positive examples, the negative examples
correspond to home pages of users who expressed their disliking. The
Winnow algorithm (Littlestone, 1987), a simple text classifier suitable for
identifying relevant features in the presence of many attributes, was applied
to these samples for determining user profiles.

The Winnow algorithm works as follows. Basically, each word xi is
treated as a Boolean feature, thus having the values 0, 1. Winnow learns

17cp. (Rich, 1979), p. 336
18cp. (Rich, 1979), p. 337
19PRIZM is a marketing research database from Claritas Corporation dividing the popu-

lation of the United States into 62 clusters based on a set more than 600 variables.
Furthermore, each of the demographic clusters provides a mean and deviation value for
each variable, indicating the the likelihood of users in this cluster having this attribute.

20cp. (Krulwich, 1997), p. 38
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Figure 3.6.: 2 Sample Stereotypes of Grundy (Rich, 1979)17
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Figure 3.7.: Stereotype Inheritance Tree of Grundy18

Figure 3.8.: The Demographic Generalization Process (Krulwich, 1997)20
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the weight wi of word xi to form a linear threshold function, as defined in
Definition 3.21, where θ is the threshold.

n
∑

i=1

wixi > θ (3.21)

Initially, all weights wi are set to 1. Subsequently, each example of the
training set is evaluated by finding the sum of the weights wi of the words
xi that are found in the document (note: if a word is found in the document
xi = 1, otherwise xi = 0). If the calculated sum is above the threshold θ
and the user liked the document, the example is classified correctly and
the calculation stops. Otherwise the weights are adapted in the following
way. In the case, that the sum is above the threshold θ but the user disliked
the document, the weight associated with each word in the document is
divided by a constant value α (commonly α is set to 2). In contrast, if the
sum is below the threshold but the document was liked by the user, the
weight associated with each word in the document is multiplied by α. Due
to the appliance of the factor α, the Winnow algorithm rapidly converges on
a set of high weights wi being assigned to a small number of words.

The evaluations of the different demographic recommender systems, as
presented in (Rich, 1979; Krulwich, 1997; Pazzani, 1999), showed good re-
sults, although they are commonly outperformed by other approaches like
collaborative- or content-based filtering techniques. However, the strength
of this approach lies in the minimal information necessary for creating an
appropriate user profile forming the basis for generating recommendations.

Utility-Based Approaches

Utility-based techniques generate suggestions based on a utility function
matching the (attributes of) items with the user’s need. The focus of this
approach is not to construct long-term user models, but to filter items
in a given context based on an individual utility function. While also
non-product attributes such as availability, the vendor’s kindness, etc. can
be taken into account the main drawback lies in the challenge of how to
create an appropriate utility function.

The multi-attribute-utility theory (MAUT), a major approach in the field of
decision analysis (Edwards, 1977), can be used to construct an appropriate
utility function. Basically, building and applying such a function consists of
the following steps:

1. identify relevant attributes that contribute to a decision

2. define the value ranges of the attributes (e.g., upper- and lower
bounds)
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3. determine the user’s preferences, concerning an attribute

4. evaluate single-attribute-utility (SAU) function

5. use all SAUs to construct the multi-attribute utility (MAU) function

6. apply the MAU function to all alternatives and select that with the
highest value

More formally, a MAU function can be formulated as follows (Huang,
2008):

MAU(ui, . . . , un) =
n

∑

i=1

wiui (3.22)

where n is the number of attributes, wi is the weight of attribute i with
∑

wi = 1; (0 ≤ wi ≤ 1) and ui represents a single attribute utility function
for attribute i.

Huang (2008) compared several utility-based recommendation tech-
niques with standard content-based approaches in the context of two dif-
ferent domains, mainly differentiating in the use of nominal and numerical
attribute types. While movies, having attributes like genre, actors, com-
pany, etc., were chosen to represent the former domain, laptop computers
being described by attributes such as CPU speed, memory capacity, etc.
were chosen to represent the latter one.

Furthermore, a standard vector space model (VSM), using the co-
sine correlation (see Definition 3.3 on page 23) as the similarity mea-
sure, was used to implement the content-based recommender, the
SMARTER (Edwards, 1994) method and the radial basis function net-
works (RBFN)(Ghosh and Nag, 2001) approach were used to implement
the utility-based recommenders.

SMARTER21 is an improvement of the simple multi-attribute rating tech-
nique, provided by (Edwards, 1977), by simplifying the way how weights
are determined.

An artificial network, having radial basis functions22 as it’s activation
functions, is called a radial basis function networks (RBFN). Such networks
are often used for time series prediction and function approximation.

Concerning accuracy, the experiments of Huang (2008) showed, that the
VSM approach outperforms the utility-approaches RBFN and SMARTER
in the context of nominal attributes, while SMARTER provided the best
results in the case of numerical attributes. Also RBFN had an acceptable
accuracy (but on a lower level than VSM and RBF), showing only minimal

21SMARTER is the abbreviation of simple multi-attribute rating technique exploiting ranks
22A function, calculating the distance to some reference point, is called a radial basis func-

tion (RBF). The Euclidean distance function is a sample of an RBF.
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differences between nominal and numerical attributes.

Schäfer (2001) presented an approach how to apply MAUT for estimating
interests of users together with some guidelines on how to create appro-
priate utility functions were. Tête-à-Tête, an agent-mediated shopping sys-
tem, presented by Guttman (1998), is a good example of a MAUT based,
utility based recommender system.

Hybrid Approaches

Hybrid recommender systems (Burke, 2002) combine two or more recom-
mendation approaches to overcome the specific short-comings of each
individual technique. Because of its great success in e-commerce, collab-
orative approaches are most commonly combined with other techniques
(Balabanović and Shoham, 1997; Lemire et al., 2005; Pazzani, 1999).

Burke (2002) identified eight hybridization approaches for implementing
a recommender systems which are listed in Table 3.2 on page 41.

In case of the weighted approach, the weighted results of different rec-
ommendation techniques are used to produce the suggestions for the user.
The advantage of such a hybrid is its straight forward process and its sim-
plicity concerning adaptations. However, the implicit assumption of this
approach, that the performance of all provided techniques are more or
less equal concerning the current domain, is too optimistic and a poten-
tial source of problems.

In contrast, the switching technique uses different recommendation tech-
niques depending on the current situation. The basic idea is, that different
approaches have different performances concerning a given data source
and that applying the most suitable technique will lead to the best result. Al-
though a straight forward approach, the definition of an appropriate switch-
ing criteria is its pivot adding new complexity to the system.

The mixed hybridization technique can be applied in situations, where
the simultaneous presentation of the results of all provided recommenda-
tion techniques is possible.

In the case of feature combination the information of one approach is
used as features of a second technique. So, for example, in the context of a
collaborative/content-based approach, the collaborative information can be
seen as additional features for being used by the content-based approach.

A cascade hybrid uses a sequence of recommender strategies to pro-
duce a suggestion. While a first recommender creates a crude ranking of
the items, the second technique is used to refine this result. One advan-
tage of the cascade approach is, that the second technique can be limited

23cp. (Burke, 2002), p. 337
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Hybridization Approach Description
Weighted The suggestions of several recom-

mendation techniques are used are
used to construct the recommenda-
tion

Switching A switching between several pro-
vided recommendation techniques
is performed, based on the current
situation

Mixed The results of the provided recom-
mendation strategies are presented
parallel

Feature Combination Features from different data
sources are used together within
one recommendation technique

Cascade Several recommender algorithms
are sequenced, so that the succes-
sor refines the results of the prede-
cessor

Feature Augmentation The results of one technique is
used as the input of another recom-
mendation approach

Meta-level The model, learned by one tech-
nique, forms the input to another
approach

Table 3.2.: Hybridization Techniques (Burke, 2002)23

to the insufficiently differentiated items of the first phase.
In case of the feature augmentation one recommender technique is used

to produce classifications or ratings as the input of the second approach. In
contrast to the cascade approach, the second technique is not only applied
to the poorly classified items of the first stage. The difference from the
feature combination is that not only raw data is used in the second phase.

A meta-level hybrid is a recommender system, where the hybridization is
implemented on a model layer. A model is learned by a first recommender
which forms the input for the second approach. This technique differs from
the feature augmentation, where only features, and not the entire model,
is used for the second recommender.

Furthermore, Burke (2002) presents an interesting chart, where all
possible combinations of hybridizations are shown – see Figure 3.9
on page 42. The white boxes describe possible/useful hybridization
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techniques filled with examples, if available. While gray areas refer to
redundant solutions black boxes are used to define impossible or useless
combinations. Where appropriate, also the sequences of the hybridization
is taken into account. This is especially true for the cascade, augmentation
and the meta-level approach which are all order sensitive.

Figure 3.9.: Possible and Actual Hybrids (Burke, 2002)24

Another way of hybridization is to incorporate other techniques in the
recommendation process. With the rise of the Semantic Web25 although
some research efforts were directed to the combination of ontologies and
recommender systems.

Having its origin in philosophy ontologies were successfully adapted
by Artificial Intelligence researchers in the mid-1970 for building powerful
systems e.g., MYCIN (Shortliffe, 1974). Following the definition of Gruber
(1993) an ontology can be defined as an “explicit specification of a con-
ceptualization” thus providing a shared vocabulary which can be used for
modeling domains. Such a model consists of objects/concepts of certain
types, their properties and relations. Having its strength in modeling
domain knowledge, ontologies suffer from the knowledge acquisition

24cp. (Burke, 2002), p. 340
25based on concepts of Berners-Lee et al. (2001)
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problem, describing the bottleneck of initialization, updating, refining, etc.,
of the knowledge base.

Middleton et al. (2002) present the combination of a recommender sys-
tem with an ontology to solve the cold start as well as the knowledge acqui-
sition problem in the domain of on-line research papers. Quickstep (Mid-
dleton et al., 2001), a hybrid recommender system for suggesting on-line
papers to researchers, was combined with OntoCoPI (Alani et al., 2002),
an AKT26 ontology based community of practice identifier. The basic com-
ponents and their interrelations are shown in Figure 3.10.

Figure 3.10.: Recommender System and Ontology (Middleton et al.,
2002)27

In the system’s start-up phase the ontology feeds the recommender sys-
tem a list of publications for each registered user. These papers are then
correlated with Quickstep’s classified data base compiling historical inter-
est profiles of the users, thus overcoming the cold-start problem of the
recommender.

When a new user is joining the system the ontology provides his/her
historical publications and OntoCoPI derives a ranked list of similar users.
In a next step, the initial profile of the new user is constructed on the basis
of his/her publications and the profiles of similar users. This algorithm is
called the new-user algorithm. The recommender system performs user
profile refinement on a daily basis which are asserted into the ontology,
thus solving the interest acquisition problem28.

The SemTree, presented by Bouza et al. (2008), uses an ontology to
improve the creation process of a decision tree (Quinlan, 1986), by also

26http://www.aktors.org/akt as of 4/2009
27cp. (Middleton et al., 2002), p. 5
28The problem gathering the changing interests/preferences of users is called interest ac-

quisition problem – see (Middleton et al., 2002), p. 2
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considering superclass relations of item attributes (features). Basically
SemTree implements a classical recommender approach, where a user
has to rate a couple of items – described by a set of features – in advance.
Based on the user’s ratings and the feature vectors a decision tree
is learned for determining the user’s preferences. The new aspect of
SemTree is the consideration of superclass relations of features during
the construction of the decision tree. As a result, a node of the decision
tree can be constructed based on a feature of an item as well as of an
appropriate superclass.

In their position paper Buriano et al. (2006) analyze a variety of appli-
cations of ontologies in the context of mobile context-aware recommender
systems. Although not describing a running system the ideas of applying
ontologies are developed along the following features/components of rec-
ommender systems:

• context features and candidate items

• output representation

• representation of the recommendation process

• representation of functional modules

Using ontologies for describing contexts and candidate items has the
advantage that this data can easily be enriched or augmented with infor-
mation based on reasoning mechanisms. So, for example, high level cate-
gorizations such as “Important Meeting”, “Business Trip” or “Entertainment
Item/Service” can be generated to enrich the system.

Using a semantic representation of recommended items provides the
basis of an unambiguous merging of suggestions, coming from different
sources, into a single recommendation list. This is an important scenario in
the context of intelligent software agents, where different recommendation
services are used to solve a given problem. Ontologies can also be used
to describe the recommendation process or algorithm thus supporting the
user in better assessing the reliability of recommendations. Furthermore,
extending the semantic representation from algorithms to complete recom-
mender systems provides the opportunity that such functional modules can
be used in the context of the Semantic Web.

3.1.3. Example Systems

In this section some examples of recommender systems are presented.
These systems were chosen because of their importance for recommender
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research and their impact on the work of the author of this thesis.

Daily Learner : The Daily Learner (Billsus and Pazzani, 2000), is
a content-based recommender system suggesting daily news to the
reader. A user can browse through a variety of news categories and
access the full text by selecting an appropriate headline. The user can
give feedback by submitting a positive or negative rating by submitting
that an article was interesting or not interesting. Furthermore, the user
can inform the system, that he/she already knows something about a
given event or that he/she wants to read more about it. All these ratings
together with the news are taken as the input for a content-based learning
algorithm to construct the user’s interests profile which can be used as
the basis for generating a personalized news program. On an algo-
rithmic level, overspecialization is tackled by filtering articles that are too
different as well as those, being too similar to the currently read news story.

Entree/EntreeC : Entree (Burke et al., 1997) is a restaurant rec-
ommender using knowledge of cuisines to determine the similarity of
restaurants. Entree is an early example of a FindMe system (Burke et al.,
1997; Burke, 1999), which allows a user to navigate through a web of
products, without being forced to define his/her preferences in advance.
As mentioned before – see Section 3.1.2 on page 33 – FindMe systems
are example based which support a user in easily finding similar products.
Given an item as a starting point, the user submits critiques concerning
specific attributes (or bundles of attributes) of recommended items which
are used by the system to find appropriate suggestions. So, for example,
if a user finds a pretty but too expensive or vanguard restaurant in Entree,
he/she can get new suggestions by placing critiques like "Less $" or
"More Traditional". EntreeC (Burke, 2002) is the hybrid version and further
development of Entree, combining knowledge-based approaches with
collaborative filtering using a cascading hybridization approach.

Fab: Fab (Balabanović and Shoham, 1997) is a hybrid recommender
system29 suggesting web pages to users based on a combination of
content-based and collaborative filtering techniques. In Fab recommend-
ing pages was performed as a two step process: First appropriate pages
corresponding to specific topics were collected and stored in a database
followed by a selection process for particular users. Both tasks were per-
formed by a set of independent agents, referred as collection agents and
selection agents respectively, each having distinct profiles. Pages found
by the collection agents are send to a central router which forwards them
to those users having appropriate profiles. The personal selection agent

29Fab was part of the Stanford University digital library
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of a user additionally applies some individual filters, e.g., suppressing
already seen pages. Furthermore, the selection agent is responsible for
collecting the user’s feedback, necessary for refining the user’s profiles as
well as the topic profiles of the collection agents. Beside this refinement,
high rated pages of users are directly forwarded as suggestions to similar
users. Especially the topic related nature of the collection agents provide
a good basis for scalability, because normally there are much less topics
than users. Furthermore, the topic adaptive behavior of the system can
also easily be implemented by deleting collection agents with poor or no
feedback and by splitting high rated ones. Based on the hybrid nature
of the system, the collaborative features can also be extended to users
having rated similar pages instead of identical ones.

Grundy : Grundy (Rich, 1979), is a book recommender system based on
user stereotypes intended to suggest novels to users/visitors of a library
and can be seen as an early sample of a demographic recommender
system. The backbone of Grundy is a collection of user stereotypes,
arranged as an acyclic directed graph, containing weighted characteristics
(also called facets) of users being associated with. Typically, a facet of a
stereotype is a triple having a name, a value and a rating describing its
confidence. So, for example, the stereotype SPORTS-PERSON has a
facet Interests-Sports with a value of 4 (range: −5 to +5) and a confidence
rating of 800 (range: 0 · · · 1000) in Grundy. The different stereotypes are
activated by a set of triggers, e.g., during the dialog session with the
user required for creating the user model. A specific user model, called
user synopsis (USS), is established by combining information directly
derived from user actions with predications referred from the activated
stereotypes. Once a USS is constructed, recommendations are generated
by depicting novels best matching USS facets with high values. Beside
individual user models, user feedback is also used to adapt the domain
model by changing the facet values and ratings of stereotypes according
to the positive or negative feedback of users.

GroupLens . GroupLens, developed by Konstan et al. (1997), is a
collaborative filtering system for supporting Usenet30 users, working to-
gether, in finding relevant articles. For a given user, GroupLens selects an
appropriate group of other users, acting as personal moderators for a given
category of news (John et al., 1997). These moderators were determined
by selecting those users with similar assessments on articles red in the
past. Furthermore, also privacy aspects were concerned by allowing a
user to submit feedback using a pseudonym. Access to the GroupLens

30Usenet is a Internet based discussion system, developed by T. Truscott and J. Ellis in
1979
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functionality was gained by providing a specific client application. On the
server side, user ratings together with a correlation matrix were stored in a
database.

Lifestyle Finder : The Lifestyle Finder, developed by Krulwich (1997), is
a demographic recommender system designed for suggesting appropriate
Web pages to Internet users. The system is based upon a set of 62
predefined demographic clusters, derived from PRIZM, a commercially
available database. This database stores its information in more than 600
variables, each referring to a specific lifestyle characteristic or purchase
activity. Furthermore, each of the predefined clusters provide a mean and
standard deviation for each variable, describing the probability of people
in this cluster having this characteristic. The association of a user to one
or more of these clusters is performed by a process, called demographic
generalization. The basic idea behind this process is to determine either
a broad profile based on one (the best matching) cluster or to establish a
partial profile, based on the best matching variables of a list of clusters. By
determining and prompting the variables best splitting a set of matching
clusters, further refinement of the profiling process can be guaranteed
on a minimal amount of user involvement. An embodiment of the system
as an agent, named Waldo the Web Wizard, was chosen for a more
appealing and entertaining implementation of the dialog process with the
user. Different data areas were abstracted to formulate several high-level
question-answer pairs, each providing five to six answer alternatives
presented in a graphical way.

Netflix : Netflix, a movie rental platform31, is mentioned here not as
a sample of a recommendation engine, but because of its great impact
on collaborative filtering research due to the promised NetFlix Prize32.
In October 2006 Netflix opened a research competition, called Netflix
Prize, by promising an award of $1.000.000, to the first recommender
development team being able to implement a system that can improve
the performance/quality of the currently used system Cinematch33 by at
least 10%. As a training set for the algorithms, Netflix released a database
containing 100 million ratings, submitted by about 480.000 users over a
set of 18.000 movies. 3 million ratings from the same subscribers were
withheld, forming the test set. Furthermore, the root squared mean error
(Herlocker et al., 2004) was chosen as the test metric – see (Bell and
Koren, 2007; Bennett and Lanning, 2007). This enormous training set,
together with the fact of an extremly sparse user-item matrix (about 99%

31http://www.netflix.com as of 7/2009
32http://www.netflixprize.com as of 7/2009
33Cinematch is a collaborative filtering system, incorporating a variant of the Pearson cor-

relation.
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of all user-movie pairs had no ratings!) and last but not least the awarded
prize challanged a large number of researchers and developer. On July
2009, over 5,100 team from more than 185 countries had registered
for that competition. On the 26th of July, 2009 the contest was closed,
because two teams – The Ensemble34 and Bellkor’s Pragmatic Chaos35

– were able to beat the 10% threshhold. Interestingly, the performance
improvements of both teams were based on a better understanding how
people behave, derived from extensise analysis of the provided data set.
While the former team accounted for the different usage of the rating scale
by different persons (Potter, 2008), the latter team focussed on temporal
effects (Koren, 2009; Koren et al., 2009), such as that people tend to rate
older movies higher! In my opinion, the great merit of this award was
to guide more research attention to real world scenarios containing vast
amounts of data.

PHOAKS : PHOAKS36, developed by Terveen et al. (1997), is a
collaborative-filtering system recommending Web resources on the
basis of Usenet Netnews postings. PHOAKS analyzes messages for
the occurrence of Web links (URLs) and treats each mentioning as a
recommendation if several tests are passed, e.g., by checking if the
URL is not part of an advertisement. Remarkable distinction criteria
from other systems are the two design principles, role specialization and
reuse, which were realized in PHOAKS. In contrast to other systems
where role uniformity of all users is assumed, PHOAKS distinguishes
between recommendation providers and recipients. Furthermore, existing
recommendations (postings of links) are reused, so no extra effort for
generating recommendations is necessary. The generation of recommen-
dation is performed by three main processes: Search, Categorization and
Disposition. Messages are searched for special patterns like “http://” and
their contextual surroundings. During categorization, the patterns found
are classified and finally – the disposition phase – are processed in an
appropriate way, e.g., storing the information in a database or fetching the
content of a Web link.

Tapestry : Tapestry, an early collaborative filtering system created by
Goldberg et al. (1992), was designed to support small groups of people,
working together, in managing the problem of information overload.
Tapestry supports filtering of a variety of information streams including
e-mails, Usenet news, etc. Regarding this information, messages can
be rated or evaluated by users on a textual basis. Furthermore, users

34http://www.the-ensemble.com/ as of 10/2009
35http://www.research.att.com/~volinsky/netflix/bpc.html as of 10/2009
36PHOAKS is the abbreviation of People Helping One Another Know Stuff; http://www.

cs.indiana.edu/~sithakur/l542\_p3 as of 7/2009
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can define a list of preferred evaluators. To form a request in Tapestry,
the user can combine keyword with subjective criteria. So, for example,
“Give me all news containing the word computers that Steve has evaluated
containing the word excellent” is a valid request in Tapestry. Tapestry
showed an appropriate performance in communities with focused interests.

3.2. Generic User Modeling

User modeling is the attempt to construct models of human behavior in a
computer environment for exploiting them in assisting the user in certain
computing tasks. Furthermore, user modeling is a cross-disciplinary
research area not trying to imitate the behavior of a user – as done in
many other research fields of Artificial Intelligence – but affording a system
to “understand” a user’s preferences, goals or even plans. The represen-
tation of a user (e.g., his/her desires, preferences, plans, etc.) within a
system is called user model while the system hosting and exploiting this
model is called user modeling system.

3.2.1. Historical Survey

User modeling as a separate field of research emerged from the area of
natural language dialog systems and can be traced back to the late 70ties
where pioneering work concerning user adaptive systems were performed
e.g., by Perrault et al. (1978) in their work concerning speech acts for
speech recognition among agents. Rich (1979) proposed the evocation of
stereotypes – a cluster of characteristics describing (sub)groups of users –
as an appropriate mechanism for quickly creating user models only based
on a small amount of information. Based on these research results numer-
ous user adaptive applications in many different domains were developed
in succession. So in the 1980s a series of task oriented dialog systems
appeared assisting the user in different situations, like:

• Grundy, a system recommending novels to users of a library (Rich,
1979, 1983)

• XTRA, a system supporting users to complete their income tax form
(Allgayer et al., 1989)

• HAM-ANS, a system simulating a hotel manager trying to rent all
available rooms (Jameson et al., 1980; von Hahn et al., 1982)
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Although many user modeling systems are available on-line now (in
most cases in the form of personalized portals like Amazon.com37) the
benefit for the user is limited by the fact that these systems do not share
a common user model. Many complex tasks, especially in the context of
knowledge workers, consist of a series of actions performed on different
systems (e.g., writing a paper, preparing a presentation, etc.). Based on
the user’s need being supported best in all the single actions and boosted
by the shift of the computing paradigm toward service architectures (e.g.,
software as a service) in recent years some research on cross-system
personalization were performed. Niederée et al. (2004) present a multi-
dimensional, context sensitive user model, called Unified User Context
Model (UUCM), supporting cross system personalization. Furthermore,
in 2004 the W3C published the Composite Capability/Preference Profiles
(CC/PP) (W3C, 2004a) specification for defining the capabilities and
preferences of user agents. CC/PP – an extension of the Resource
Description Framework (RDF) (W3C, 2004b) – is designed to support the
tailoring and adaptation of content to specific end-devices.

Over the years of development, many attributes were identified of being
essential for generic user modeling systems. While in (Kobsa, 1995) a list
of frequently found services of user modeling shell systems is presented,
in (Kobsa, 2001) a set of characteristics of generic user modeling systems
is enumerated. Theses required attributes are:

• Generality : A user modeling system should be applicable in any do-
main.

• Expressiveness: A user model should be able to express a variety
of assumptions of the user, including goals, preferences, beliefs, etc.
and to perform appropriate reasoning upon that data. This require-
ment, derived from the Artificial Intelligence roots of user modeling,
lost importance during the rise of e-commerce applications, where
often only simple user models (e.g., interaction of the user with the
system) were available.

• Rapid Adaptation: A quick adaptation of the system to the user is
necessary. This is especially essential for commercial systems to
convince occasional customers to return again.

• Open Architecture: A generic user modeling system should provide
interfaces supporting a seamless integration with legacy systems
concerning extending the functionality and the exchange of data.

• Privacy and Security Aspects: When storing and processing person-
alized data the prevention of abuse is always a critical issue.

37http://www.amazon.comas of 5/2009
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Furthermore, also common technical requirements such as scalability,
performance, etc. should be fulfilled by generic user modeling systems.
More information concerning early user adaptive applications are pre-
sented by Kobsa and Wahlster (1989) and Kobsa (2001).

The two requirements – generality and expressiveness – were proposed
very early in the history of generic user modeling systems and can
therefore be seen as their basic characteristics being extended with
further attributes (see above) over time. Following Kobsa (1990, 2001) the
historical development of generic user modeling systems can be further
classified into user modeling shell systems and user modeling servers due
to their architectural differences.

3.2.2. Classification

User Modeling Shell Systems

From (user adaptive) application developer’s view a user modeling shell
system can be seen as domain independent module being config-
ured/adapted and integrated. The developer formulates and stores the
specific domain model in this shell system and integrates it in his/her ap-
plication. By doing so the user modeling shell systems became an integral
part of the application itself – all the available services are only provided to
this single application.

The term shell system – Kobsa (1990) claims being the first author using
this terminology in this context – was borrowed from the research field of
expert systems where the experiences and findings of the medical expert
system MYCIN (Shortliffe, 1976) formed the basis for the development of
EMYCIN, an domain agnostic, adaptable expert system. Examples of user
modeling shell systems are: GUMS (Finin and Drager, 1986), TAGUS
(Paiva and Self, 1995), BGP-MS38 (Kobsa and Pohl, 1995), etc.

User Modeling Servers

In contrast to user modeling shell systems user modeling servers provide
the modeling functionality as independent services not being integrated
in the application itself. From an (user adaptive) application developer’s
view a user modeling server acts like a self-contained application (e.g.,
like a database engine) offering services to a set of clients. Due to that
client-server architecture (i) user models can be (re)used by multiple

38It is worth being noted that the BGP-MS system is mentioned as a user modeling server
example in a later publication by Kobsa himself (Kobsa, 2001)
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applications too, (ii) the computational load of handling the model can
easily be shifted from the application to dedicated server and (iii) all model
relevant tasks like consistency checks, etc. can be performed more easily
(Kobsa, 2001).

3.2.3. Example Systems

A short overview of some examples of user modeling systems are pre-
sented in this section. A more detailed description is presented by Kobsa
(2001).

BGP-MS. BGP-MS (Kobsa, 2001) is a user modeling server where
assumptions about users and stereotypical assumptions about user
groups are represented in first-order predicates. Different views of the user
model can be defined by using hierarchically ordered partitions containing
different assumptions as well as stereotypes. Furthermore, BGP-MS can
also be used as a network server with multi-user and multi-application
capabilities.

CUMULATE : CUMULATE (Brusilovsky and Maybury, 2002) is a user
modeling server providing personalization to a student educational system.
The activities of students interacting with different systems are collected
and used for creating the individual user models by inferring their learning
characteristics. Inferences are performed by a set of agents, each respon-
sible for a specific property of the model e.g., the motivation or knowledge
level concerning courses. Furthermore, domain ontologies are used as
the basis for describing the knowledge-level of students concerning topics.

DOPPELGÄNGER . DOPPELGÄNGER (Orwant, 1994) is a user mod-
eling server gathering data about users from hardware sensors as well
as from software systems. User communities are established by applying
unsupervised clustering techniques acting as stereotypes. Unlike other
modeling servers, DOPPELGÄNGER uses a probabilistic approach to
model is-element-of relations to stereotypes.

GUMS: Developed by Finin and Drager (1986), GUMS is a user mod-
eling shell system allowing the definition of simple stereotype hierarchies.
Prolog clauses are used to describe stereotype memberships as well as
rules for reasoning. All predictions concerning users and stereotypes
together with the predicates describing the inference processes are stored
in one database.
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TAGUS: TAGUS (Paiva and Self, 1995) is a user modeling shell system,
based on stereotype hierarchies, representing assumptions about users
in first-order logic. Beside an inference mechanism TAGUS also provides
a truth maintenance system as well as a diagnose subsystem including
a library of misconceptions. Furthermore, a user simulation producing
predictions based on the current model, together with a diagnoses of
unexpected behavior, is provided too.

UMT: Developed by Brajnik and Tasso (1994), UMT is a user modeling
shell system supporting the definition of hierarchically ordered user
stereotypes. Moreover, rules for user model inferences and the detection
of contradictions can be defined. Information about a user, provided by the
application, is handled as an invariant premise or assumption. Receiving
new information concerning a user may lead to the activation of some
stereotypes resulting in the extension of the user profile with the content of
these stereotypes. Inference rules are applied to the set of assumptions
and premises to determine dependencies. Found contradictions are
solved by applying different resolution strategies.

UM. UM (Kay, 1990) is another sample of a user modeling shell system
coming as a toolkit for user modeling representing assumptions about
the user such as standard characteristics, preferences, knowledge, etc.
in form of key-value pairs. Information objects are adorned with a set
of evidences (containing information about the data source and a time
stamp) concerning its truth or falsehood.

UMS. UMS, developed by (Kobsa and Fink, 2006), is a user modeling
server based on the Lightweight Directory Access Protocol (LDAP).
Due to the use of LDAP, an international standard well adopted by the
industry, the user models in UMS can easily be shared, distributed and
synchronized across networks. User modeling modules are designed as
internal clients of the directory component, easily plug-able into the system.

3.3. Contributions to the Research Question

In this chapter a variety of different strategies for implementing personaliza-
tion solutions were presented. Most of these approaches were successfully
applied to certain problems thus demonstrating the power of personaliza-
tion techniques.

However, our main criticism is that these approaches do not use all the
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information available, even in situations with minimal information39. This
is perhaps not a big issue in classical e-commerce applications based on
standard web interfaces, but a problem in domains with limited access or
typical walk-in customers (as it is the case in m-commerce). For example,
typical collaborative-approaches such as the Pearson correlation (Breese
et al., 1998) or Slope One (Lemire and Maclachlan, 2005) only rely on user
ratings. Although improvements such as inverse user frequency (Breese
et al., 1998; Adomavicius and Tuzhilin, 2005) make better use of the avail-
able information (e.g., by considering the popularity of an item) no further
information, such as the size and overlap of rating sets, though easily avail-
able, is used.

Throughout this thesis, we will show how existing information can be
used to improve recommendation algorithms as well as user and item pro-
files.

39consisting of a user identifier, an item identifier and a performed action
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4. Adaptive Personalization: A
Bird’s Eye View

In this chapter an overview of the Adaptive Personalization concept is
presented, focusing on the big picture. Due to its origin, the creation of
a personalization component for a commercial music download platform,
many explanations refer to the music domain, although the concept itself
is domain independent. Basically, the Adaptive Personalization is a hy-
brid, self adapting personalization approach, combining the advantages of
collaborative- and item-based filtering approaches. The cornerstones of
this concept are:

• a highly sophisticated profile system, supporting contextual views

• a well defined set of recommendation strategies

• new collaborative-filtering and k-nearest neighbor algorithms for best
implementing the strategies

• a flexible architecture supporting large scale, real world scenarios

4.1. Adaptive Profile Model

In this section a short introduction to the profile model of our approach –
used for modeling users and items – is presented. A more detailed discus-
sion is presented in Chapter 6.

4.1.1. Modeling the User

Needs can be distinguished in well defined needs where the user is able
to characterize an appropriate means of satisfaction, and ill defined needs
where the user does not know how to satisfy or even how to define them.
Furthermore, users are normally not isolated during the usage of person-
alization systems; therefore, an effect is created within the relevant com-
munity. These effects can be very multifarious, ranging from deliberate
interactions such as the placement of ratings or recommendations to be a
(passive) example for other users or data mining algorithms. These consid-
erations led to a multi layer model, inspired by the work of Luft and Ingham
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(1955), where each user is represented by a profile consisting of three dif-
ferent views:

• self-assessment

• system observations

• community-assessment (assessment by others)

Each view is implemented by a vector of attributes best describing the
model to represent.

4.1.2. Modeling the Items

A similar structure is also used for the items, where the affiliation of items to
certain clusters (or genres) – being used to group items based on certain
characteristics – is modeled with three different views:

• the assessment of the domain expert

• the assessment of the (user) community

• cluster affiliations calculated by appropriate classifier systems, if
available.

Genres such as “Rock”, “Jazz”, etc. in the music domain, “Thriller” or
“Science-Fiction” in literature are samples of such clusters.

4.1.3. Clustering the Problem Domain

The basic idea behind the clustering of the problem domain is to introduce
domain specific knowledge on a conceptual level thus improving the per-
formance of the recommender system. A cluster can be seen as a named
container for items sharing commonalities in some respect. Associations
can be defined between clusters expressing some special relations such
as is-sub-cluster-of, is-similar-to, etc. The number and kind of associations
is mainly guided by the problem domain. Clusters can be created manually
by the administrator or can be created by some cluster analyzing programs
operating on the item set. The assignment Object – Cluster can be made
by hand, with the help of some classifier systems or simply by using exist-
ing information about domain specific clustering on the item level.
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4.1.4. Adaptive Capabilities

The self adapting or learning behavior of the Adaptive Personalization ap-
proach is realized by using data mining and instance-based learning algo-
rithms as well as a simple profile merging strategy. This adaptive behavior
is implemented on three different levels:

1. The individual level, where profiles of users are permanently refined
based on implicit (e.g. navigation observation) and explicit feedback
(e.g. ratings, buying behavior, etc.). Beside machine learning ap-
proaches such as decision tress (Quinlan, 1986) for learning item
attribute preferences, also a user profile refinement, based on merg-
ing strategies with item profiles is provided, thus supporting a simple
learning strategy also available in contexts with little user feedback.

2. The collaborative level, where the community ratings and/or classifi-
cations of items improve the recommendation quality. Furthermore,
the ongoing refinement of profiles leads to an improved “similarity”
relation among users and items.

3. The statistic level, where data mining algorithms are applied (e.g. as-
sociation rules) to generate new recommendations. Because these
algorithms also operate on data based on user-behavior (e.g. shop-
ping history, compilations of favored items, etc.) the quality will im-
prove over time.

4.2. Recommendation Strategies

Another key factor of an efficient personalization system is to provide an
appropriate set of recommendation strategies. Based on the suggestions
made by Swearingen and Sinha (2002), the following strategies were in-
corporated in the Adaptive Personalization approach:

1. Reminder recommendations

2. More like this recommendations

3. Hot Item recommendations

4. Broaden my horizon recommendations

5. Similar users like

6. Related Items
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Reminder recommendation should help the user not to forget or oversee
some important items he/she was willing to use or buy in the past. Theses
recommendations are based on a list which is maintained by the user
(for example, think of a black board feature or a simple remind-me-later!
feature).

More like this recommendation – probably the most common one
– should help the user to find similar items starting from a given one.
Hereby similarity is defined by a similarity function based on a set of
item attributes. Available user preferences are only used to filter results
(e.g. suppressing disliked items). Concerning the approach at hand,
common genre affiliations and sound similarity, derived from audio files by
music information retrieval methods (Pampalk et al., 2003), were used to
implement the similarity function for songs.

Hot item recommendation should support users to be up-to-date within
the range of their preferences. This recommendation also helps to satisfy
community needs, where a user wants to be best informed within his/her
social environment (e.g., more accurate than friends). This recommenda-
tion is generated based on the user’s preferences and the corresponding
item attributes.

Broaden my horizon is a recommendation strategy supporting the user
to explore his/her taste in a well guided manner. From an operators view,
cross-selling capabilities are stressed by this strategy. Starting from well
defined preferences (e.g. favored artists, preferred genres, etc.) the user
can explore his/her taste by allowing more and more explorative recom-
mendations guided by domain knowledge. The direction of this broadening
process is mainly defined by the domain specific structure of the item space
and the preferences of the user.

For the music domain the sound similarity of songs together with the
genre model and its abstractions defined by STOMP1 – see Figure 4.1 on
page 59 – were intended to guide this broadening process. As shown in
Figure 4.1 on page 59, the STOMP model associates 14 music genres
to four high level music preference dimensions, defined as: Reflective &
Complex, Intense & Rebellious, Upbeat & Conventional and Energetic &
Rhythmic.

This categorization together with the interrelation of these four dimen-
sions was used to guide the broaden my horizon process. So, for example,
a user preferring classical music will first receive jazz recommendations
before hip-hop or dance.

1Short Test Of Musical Preferences, developed by Rentfrow and Gosling (2003)
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Figure 4.1.: STOMP model: Correlations of Genres and Preferences

The similar users like recommendation addresses social aspects:
users want to know what others do. The similarity between users is
defined by the similarity of their profiles or a subset of profile attributes.
Furthermore, several different similarity relations can be defined either
based on the user’s behavior – for example, buying/rating history – and/or
on the model dimensions, e.g., socio-demographic data. So the collab-
orative aspect can be implemented very efficiently. Recommendations
are generated by finding the k-nearest neighbors based on the user’s
profile. Having found these similar users, their favored items are used for
assembling recommendations.

The related Items recommendation tries to find associations between
items which are not part of the item model or cannot be derived from
the available item attributes. This recommendation is generated by
using information retrieval approaches (e.g. music information retrieval
techniques for finding similar sounding tracks to a given one (Pam-
palk et al., 2003; Aucouturier and Pachet, 2004)) or statistical algorithms
e.g., association rule mining (Agrawal and Srikant, 1994; Park et al., 1995).

At least as important as the availability of appropriate algorithms is the
knowledge as to where, how, and when to apply them. In real world ap-
plications especially user profiles pass through several stages of quality.
Often the quality of profiles evolves from bad – at the very beginning where
often only basic information (e.g. only an identifier) is available – to ade-
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quate and hopefully to good with increasing maturity of the system. There-
fore, it is important to know which algorithms should be applied at which
state of profile quality.

The following table presents the strategies pursued in our approach con-
cerning

• user and item profiles in low and high quality2

• the different recommendation strategies as mentioned above, and the
algorithms used for implementation

User Pro-
file Quality

Item Pro-
file Quality

Strategies

high high reminder; broaden my horizon;
more like this; similar users like; re-
lated items

high low reminder; broaden my horizon; sim-
ilar users like; related items

low high reminder; more like this; related
items

low low reminder; related items

Table 4.1.: Profile Quality and Strategies Applied

2low means knowing only the identifier of an item and high implies the availability of a set
of meta data attributes

60



CHAPTER 4. ADAPTIVE PERSONALIZATION: A BIRD’S EYE VIEW

4.3. Architecture

The performance and scalability requirements are met by a very flexible
multi layer architecture as presented in Figure 4.2.

Figure 4.2.: Architecture Overview

Clients using the system for personalization are accessing the provided
functionality via the API layer, a well defined set of APIs (e.g. Web ser-
vices), forming the standard access interface. The personalization engine
– the core component of the application layer – is responsible for assem-
bling recommendations based on pre-calculated business rules, storing
user feedback and managing user and item profiles. A set of independent
generators (data mining layer) calculates specific business rules off-line
based on the provided data such as user actions and profiles. These rules
are stored explicitly in the database (database layer) to be accessed by
the personalization engine. This approach guarantees scalability and per-
formance also in heavy load environments. A detailed description of the
system architecture is provided in Chapter 5.
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4.4. Procedure Model

To provide guidance concerning the applicability of the tools and concepts
developed so far, a procedure model for applying these techniques was
developed during a series of R&D projects. Basically, the design of a per-
sonalization system can be divided into 2 phases:

1. domain specific considerations

2. technical design

In the course of our R&D projects we found evidence that each domain
has its own characteristics which have to be considered during the design
of a personalization solution. A personalization system for a portal mainly
serving occasional customers or offering goods with short life cycles
has to provide other solutions than a system designed to assist regular
customers. So, for example, a user just downloading an item (e.g.,
wallpaper, ring-tone, etc.) for styling his mobile device, will normally not be
interested in recommendations offering more items of the same type, while
in the context of books a user, just buying a thriller, will appreciate some
more suggestions from this genre. The different suitability of the same
strategy, presenting more-of-the-same items, is caused by the different
needs the two recommendations have to satisfy. In the former case, a
user will style his/her mobile device according to current trends and will
therefore not be interested in downloading items in advance. In the latter
case, a user is buying books according to his/her personal taste, which will
not change rapidly. The consideration of domain characteristics as well as
customer requirements are, although cornerstones for the development of
a successful personalization system, beyond the scope of this thesis and
will therefore not be discussed any further.

For creating the technical design the following steps are recommended:

1. Definition of objectives : The goals being achieved by the person-
alization system together with parameters, procedures, etc. for mea-
suring the achievements of objectives should be defined carefully.

2. Definition of constraints : The constraints applicable for the sys-
tem to be developed must be defined/elicited carefully. Basically the
quantity structure concerning items and users as well as require-
ments referring to the performance and/or response time of the sys-
tem are important constraints.

3. Definition of user profiles : The appropriate dimensions are identi-
fied/defined together with an questionnaire – if appropriate – the user
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should answer during a registration process. Furthermore, the di-
mensions must be assigned to the different views – self-assessment,
system observations, and community-assessment.

4. Definition of the item profiles : The appropriate dimensions are
identified/defined together with the procedure for their elicitation thus
avoiding attributes which cannot be instantiated in real world sys-
tems.

5. Definition of dimensions : Precise definition of the dimensions
used, concerning name, type, value range, and constraints.

6. Recommendation definition : Selection of the appropriate strate-
gies/algorithms as defined in Table 4.1 on page 60 and the appropri-
ate parameterization of these algorithms.

7. Sanity check : It should be validated that the combination of profiles,
dimensions, algorithms, as well as the procedure for measuring the
achievements of objectives is sound and that all sources of troubles
– as listed below – are eliminated:

• Avoid unused attributes/dimensions

• Avoid attributes/dimensions which cannot be ascertained

• Avoid evaluations which cannot be performed properly when
certain dimensions are missing

It is worth mentioning, that the first two items – the definition of goals and
constraints – should be seen as binding contracts being agreed upon by the
parties involved (e.g., the management and personalization engineering
team), most important for achieving a satisfying project result.

4.5. Summary

In this chapter a survey of the core aspects of the Adaptive Personalization
approach was presented, by introducing a multi-view profile model, a set of
needs driven recommendation strategies, a flexible and robust architecture
and a procedure model being used. In the following chapters we provide
a detailed discussion of the multi-view profile model and the algorithms
developed.
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5. Adaptive Architecture

In this chapter the system architecture and the underlying data model is
presented on a conceptual level. After defining the requirements in more
detail in the first section, the system’s architecture will be described, focus-
ing on the core components of the system. In the third section a closer look
to the definition of the data model is presented, forming the technical basis
for the realization of the Adaptive Profile Model – see Chapter 6. A short
summary concerning the main advantages of the architecture presented
so far will be given at the end of this chapter.

5.1. Requirements

As mentioned before, the development of the Adaptive Personalization
Approach was originated in the course of a series of R&D projects
accompanying the realization of the Ericsson’s Media Suite - Music, a
commercial download platform for music related content. This commercial
origin is also reflected by the evolutionary history of most of the design
principles or requirements chosen so far to realize the current approach.

The project goals, defined at the beginning of the project1, changed mas-
sively every few weeks thus forming a rapidly moving target the designers
of the personalization solution had to achieve. So, for example, the re-
quirements concerning the quantity structure of items changed from about
100.000 at the very beginning, to one million after some weeks and ended
up with no limitations at all.

By far more severe than these changes was the inability to appoint to
a certain application area impacting massively the definition of user and
item data models. Thus, starting as a music personalization system, the
requirements changed to deal with all kinds of items allowing any number
and types of attributes due to cross selling considerations. Furthermore,
also the definition of metrics for measuring the project’s success could
not be appointed in a sufficient way due to ongoing changes of the basic
business models2.

1According to the procedure model as presented in Section 4.4 on page 62
2The reasons for these moving targets were not an overstrained project management but

the complexity and speed of the project.
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This situation led to the definition of the following requirements and goals
which should be met/supported by an appropriate architecture:

• Scalability : The system must be adaptable also to heavy load sce-
narios.

• Performance: The system’s response time must be within the range
of standard applications supporting real time services.

• Adaptability : The system shall support any problem domain. Neces-
sary adaptations should be limited to specific optimizations only.

• Extensibility : Adding new data mining algorithms should be possible
with minimum efforts.

• Transparency : Recommendations shall be transparent to the user as
well as to an administrator, the person responsible for maintaining the
system.

• Manageability : Monitoring and tuning support must be provided. Fur-
thermore, an administrator shall be able to manipulate recommenda-
tions, e.g., define recommendations explicitly.

• Traceability : All actions concerning the system should be transparent
to the administrator.

5.2. System Architecture

For best achieving the requirements defined above, the following major
design decisions were made:

1. off-line computation and on-line assembling of recommendations

2. business rules – the results of different recommendation algorithms
– should be stored explicitly

3. development of a generic data model for defining item and user pro-
files

4. user actions and system responses should be logged continuously

5. recommendation/data-ming algorithms should be available as self
contained computation units

Furthermore, the personalization system should be accessible through
state-of-the-art interfaces (e.g., such as Web services) providing easy
integration on the client side thus forming the basis for software as a
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service3 usage scenarios.

These considerations led to a distributed architecture, presented in the
deployment/component diagram in Figure 5.1.

Client

<< component >>

Client Application

Personalisation Server

<< component >>

Personalization Engine

Database Server

<< component >>

Database

Datamining Server

<< component >>

Generator

Administration Server

<< component >>

Administration Tool

 

Figure 5.1.: System Overview

Client Applications are accessing the Personalization Engine by
sending input data such as user actions, profile information, etc. and/or
by requesting recommendations. All this information, together with the
business rules produced by the Generators , is stored in a Database .
The assembling of requested recommendations is mainly performed on
the basis of pre-calculated business rules, produced off-line by different
generators. Furthermore, with the help of the provided Administration
Tool the personalization engine can be monitored, configured, etc. by an
administrator. The core modules and their dependencies are illustrated in
the component diagram in Figure 5.2 on page 68 which will be the basis
for a more detailed discussion.

3Following the definition found in http://www.webopedia.com (as of 07/2009), software
as a service – short SaaS – is a software delivery method that provides access to
software and its functionality remotely as a Web-based service.
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As mentioned above, a Client Application is communicating with the
Personalization Engine by using the client interface which can further be
divided into an action interface, a profile management interface and a rec-
ommendation interface. By using the action interface, the client is able to
send information about actions a user is performing in the client application
such buying an item, voting or rating an item or even only viewing the pre-
sentation of an item. Basically, such action information can be described
by an action vector – see Definition 5.1 – consisting of (i) a user identifier,
(ii) an object identifier, (iii) the kind of action (e.g., buy, rate, etc.) and (iv) a
time-stamp describing when the action occurred.

Action = 〈 userId, objectId, actionKind, time〉 (5.1)

Additional to this action information a client application can provide more
details about users and items to the personalization system by using the
profile management interface. By doing so, the personalization engine
is enriched with domain knowledge – e.g., descriptions of users and
items – allowing more and even better recommendations. The provided
recommendations can be requested using the recommendation interface
returning a ranked list of objects.

The Personalization Engine is mainly responsible for handling the in-
put data, for assembling the requested recommendations and for providing
appropriate management interfaces. As shown in Figure 5.2 on page 68
this component is offering interfaces for:

• client applications being personalized

• administration tools supporting the management of the system

• data mining applications – called generators – responsible for
calculating the business rules

The received user actions together with all profile relevant input (such as
updating, removing, etc. of profiles) is handed over to the profile manager,
the component responsible for the creation and refinement of profiles.
The assembling of recommendations is mainly based on the information
provided by the profile manager, the rule manager and the configuration
manager. Furthermore, the personalization engine is informing the Logger
to track user actions and requested recommendations permanently.

The Configuration Manager is responsible for providing and managing
the definitions of the supported recommendations strategies. Strategies
(like Hot Items Recommendations see Section 4.2 on page 57) can
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be composed of different core data mining patterns or algorithms (e.g.,
available as pre-calculated rules) in a declarative way. Supporting the
administrator in configuring these definitions as well as to provide access
to the Personalization Engine are the main tasks of this component.

Furthermore, the personalization engine is supporting a registration in-
terface for business rule generators. Such a registration can be seen as a
contract between the on-line personalization system and the off-line data
mining modules containing the following information:

1. the kind of actions a generator wants to be informed

2. a description of the produced results

3. a description of the parameters an administrator can configure

By receiving a specific action, the personalization engine is informing
all generators registered for that action by forwarding the appropriate
information.

A Generator is a self contained data mining module responsible for
generating business rules based on the data provided. By registering at
the personalization engine the generator is providing information about
the kind of actions being used as an input and a description concerning
its result. Receiving an action the generator decides, based on local
settings, how to further proceed with this information. Possible strategies
are ranging from immediately starting calculations to storing the actions
locally being used by a time triggered batch process later. Basically
generators can produce two kinds of results – business rules, modeled as
associations of objects and refinement information concerning profiles –
which are send back to the personalization engine.

The Profile Manager is responsible for the creation, maintenance,
and refinement of profiles. User actions are collected, condensed, and
added to profiles. Furthermore, profile related retrieval methods being
used for assembling recommendations are supported. Also profile based
algorithms such as the D2-Tree, as presented in Chapter 7, are also
provided by that module.

The Rule Manager is responsible for the maintenance and selection of
appropriate business rules requested by the personalization engine. The
core items this component is operating on are associations between ob-
jects, called business rules, and constraints concerning the applicability of
these rules. Basically a business rule describes an association between
two objects having the form
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Rule = 〈 object1id,type, associatedToname,value, object2id,type, time〉 (5.2)

where the objects are described by an identifier and type information and
the association is specified by a name such as isSimilarTo, soundsLike,
boughtTogether, etc. and a value quantifying its strength.

The RuleConstraints are logical expressions being used as filters for the
appliance of the pre-defined rules. With these constraints an administrator
is easily able to define restrictions due to current business, legal or other
requirements without loosing the basic information provided by the gener-
ators.

Samples for such constraints are: Suppress rules containing items of
type ’Christmas Gift’ in summer, Suppress rules which are older than 1
year, etc.

For managing and monitoring the personalization system an administra-
tion tool is provided supporting the following functionality:

• statistics concerning the number and kinds of user actions, recom-
mendations and business rules

• statistics/analysis dedicated to measure the performance of the sys-
tem (business goals)

• statistics concerning the provided profiles

• viewing and manipulation of profiles, business rules, constraints and
clusters

• configuration and managing of generators

• overview concerning the system status (system health)

Although a very important tool in real world applications, the adminis-
tration tool is no core component of the personalization system and will
therefore not being discussed any further in this thesis.

5.3. Data Model

As imposed by the requirements defined above, flexibility and adaptability
were major concerns for the definition of the data model. Particular atten-
tion was turned to the creation of an object model based on the following
design criteria:
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1. the set of dimensions/attributes of a profile must be able to change
over time

2. the redefinition of profiles must be possible without programming,
so that domain experts as well as machine learning algorithms can
adapt profiles

3. dimensions/attributes must be able to represent more complex data
structures than just flat values e.g., hierarchical dimensions

The presentation of the data model developed for the Adaptive Per-
sonalization approach is divided into two diagrams, see Figure 5.3 and
Figure 5.4 on page 75, by reason of clarity. While the former diagram
is showing the core or first class objects of the data model, the latter is
focusing on the profile details.

RecommendableObject

-id:Identifier

-type:ObjectType

Association

-name:String

-value:Double

ItemUser Cluster

*

contains

Action

-kind:String

-time:Time

-data:String
refersTo

AdaptiveProfile

0..1
modeledBy

2

associatedWith

Recommendation

-time:Time

-strategy:String

0..1

receiver

Prediction

-explanation:String

-value:Double
*

0..1
reference

*
origin

performedBy

Figure 5.3.: Basic Data Model

As shown in Figure 5.3 all first class objects such as User , Item and
Cluster are derived from an abstract root class RecommendableObject ,
uniquely identified by an identifier and a type (e.g., type User ). Although
the type is somehow redundant as part of an identifier, unique keys can
be created more easily based on this information. Furthermore, the type
information can be used as a filter attribute even on low level interfaces
(e.g., calls to a database).

While User and Item objects are used to represent first class domain
entities such as customers or consumer articles, Clusters are used
to structure the problem domain. A Cluster can be seen as a named
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container for objects sharing commonalities in some respect. Between
clusters associations can exist expressing some special relations, such
as is-sub-cluster-of, is-similar-to, etc. modeled by the Association class.
The number and kinds of associations is mainly guided by the problem
domain. Music genres, often modeled as a hierarchy consisting of main-
and sub-genres, are good samples for such clusters. Clusters itself as
well as the association object-cluster can be created manually by the
administrator or automatically by some cluster analyzing programs. As
mentioned in Chapter 6 the cluster concept plays an important role in the
context of profile refinement.

An Association represents a directed, weighted, and named rela-
tion between two objects and is mainly used to model business rules
created by data mining modules or administrators. Association rule
mining algorithms (Agrawal and Srikant, 1994), as used for shopping
cart analyzes, are typical producers of such associations. The Associ-
ation class can be seen as an analogy to the RDF-triples4 as defined
by the W3C5 extended with a weight describing the intensity of the relation.

An Action object is used to describe the actions a user is able to
perform on a given item and consists, beside references to the given user
and item, of the action kind (e.g., buy, rate, search, etc.), some action data
(e.g., search string) and the time the action was performed.

The Recommendation class is used to model the systems responses to
recommendation requests. Basically, a Recommendation object contains
a ranked list of Prediction objects (e.g., a list of consumer articles)
representing the systems suggestions. This recommendation can be
dedicated to a specific user in the context of personal recommendations
and can be based on a specific object (e.g., “Users who bought product A
also bought B, C, ...”). Furthermore, a recommendation refers to a specific
strategy (e.g., Hot Item Recommendation) and contains time information
as well.

A Prediction object describes the adequacy of an object in context of a
specific recommendation. Beside the quality of this adequacy, described
by the prediction value, also information being used by explanation models
is provided. Because predefined business rules are one major source for
assembling recommendations, Association objects form an appropriate
basis for explanations.

4http://www.w3.org/RDF as of 07/2009
5World Wide Web Consortium, http://www.w3.org as 07/2009
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In the case that more detailed information is available for a Recom-
mendableObject an AdaptiveProfile object can be used, as presented in
Figure 5.4 on page 75.

Basically an AdaptiveProfile consists of a definition- and an instanti-
ation part. While the definition part contains a description of all possible
attributes (the gross quantity) the instantiation is modeled by up to 3
View objects, each containing a set of concrete values. A View object
represents one specific view of a profile (as defined in Chapter 6) and
contains a set of DimensionValue objects forming the net quantity of
the instantiated attributes of the given view. A DimensionValue object
represents an instance of a certain Dimension representing a specific
Value.

The Dimension class is used to model domain specific attributes (e.g.,
age, gender, etc.) and consists of a name (e.g., age), a specific Type (e.g.,
Integer) and an optional set of Constraints , describing restrictions/re-
quirements to be granted (e.g., 0 ≤ age ≤ 130). Note, Dimension objects
are used to define the gross quantity of attributes used for modeling an
AdaptiveProfile.

Type objects are used to model the basic characteristic of a Dimension
analog to the type hierarchies of programming languages. The Weighted-
Type , a subclass of Type , is of special interest because it is used to model
weighted attributes such as Preferences or Affiliations, as described in
Chapter 6.

The major advantage of the presented design is its flexibility concerning
adaptations. Due to the generic data model removing or adding attributes
can be performed easily by changing the profile definition.
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5.4. Summary

In this chapter a flexible and robust architecture was presented for best
achieving the requirements defined above. Concerning the system archi-
tecture the major advantages can be summarized as follows:

1. The on-line assembling of pre-calculated business rules and contex-
tual information (such as preferences and action history of the users)
to personal recommendations reduces complexity and increases per-
formance.

2. Storing business rules explicitly provide a complete overview to the
administrator and ease of maintenance.

3. Generating the business rules off-line by self-contained computation
units reduces complexity and increases scalability, stability, and per-
formance of the on-line system. Furthermore, extending the system
with additional data mining algorithms can be done easily and with
minimum risk.

4. A continuously logging of personalization relevant user actions (e.g.,
rating of an item, visiting of a page, etc.) as well as system responses
(e.g., provided recommendations) forms the basis for many kinds of
analyses, especially those closely related to business aspects (e.g.,
How many items, bought by users, were recommended in advance?)

Furthermore, the profile model supports an evolutionary system devel-
opment, because the complexity of the data model can be easily adapted.
The system designer may start with a simple solution, using and repre-
senting the knowledge currently available, and is not forced to hypothesize
about possible future directions and requirements. So the complexity of the
system is always as high as necessary, without limiting expansion toward
a more complex model.
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The more information available the better a personalization system can per-
form. In the contexts of recommender systems or user modeling servers
this information is commonly provided in form of profiles containing the de-
scriptions of the entities of interests such as users, items, or domain knowl-
edge. A profile can be seen as a collection of information items describing
a certain entity being available in many different forms:

• simple name-value pairs describing a certain attribute of an item such
as age, gender, price, etc.

• a set of user actions or feedback information (e.g., ratings of users,
tags of items, etc.) forming the basis for some learning algorithms

• more complex, compound attributes such as preference vectors
adding probability to certain attributes (e.g., produced by some learn-
ing algorithms)

• rules describing some specific associations/relations among entities

Beside an appropriate set of attributes, further improvements of per-
sonalization services can be achieved by introducing the concept of
context. In daily life users are interacting with information systems in a
variety of different contexts resulting in different and perhaps contradictory
context-profiles of a user. The usage of a search engine such as Google
can be different in work or home contexts, the selection of restaurants or
movies a person wants to book might be different concerning the day of
week – e.g., at weekend with family or after work with business partners
(Adomavicius et al., 2005).

Complex user modeling approaches such as the Unified User Context
Model (UUCM) (Niederée et al., 2004) tackle this problem (see Section 3.2
on page 49 ), but they often rely on additional information hardly available
in standard e-commerce applications (e.g., location information). In most
cases user actions, a fundamental data source for personalization services,
comprise of the following data:

• user identification, or at least session information in the case of
anonymous users
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• kind of action (e.g., buy, rating, etc.)

• item identification

• time of the action

Recommendation systems using time information for contextualization
often use reduction based approaches (Adomavicius et al., 2005) where
user actions (e.g., ratings) are clustered and analyzed along time con-
straints (e.g., all restaurant ratings on Sunday or Saturday vs. Monday till
Friday).

The Adaptive Personalization Approach extends the contextualization
to more psychological aspects of user feedback were the origin of an
action – implicit or explicit feedback – is taken into account. The user’s
preferences can be defined explicitly on a questionnaire basis (e.g., as
it is often performed during a registration process) and/or by analyzing
his/her navigation behavior. In the former case a user explicitly expresses
a self-assessment – the well defined needs – which has to be served by
a recommender system in any cases. The later case corresponds to the
ill defined needs which good personalization systems should be able to
identify. For example: If a user expresses his/her interests for culture on
a news portal but he/she is mostly reading articles about sports a good
personalization system should recommend articles of both domains for
satisfying the user’s (perhaps idealistic) self-assessment and his/her real
interests.

6.1. Modeling the User

As mentioned above, among the user’s needs, a distinction can be made
between well defined needs where the user is able to characterize an
appropriate means of satisfaction, and ill defined needs where the user
does not know how to satisfy or even how to define them. Furthermore,
users are normally not isolated during the use of a personalized system
also effecting the existing community. These effects can be very multifari-
ous, ranging from deliberate interactions, such as the placement of ratings
or recommendations, thus being a passive example for other users or
algorithms, to giving/receiving feedback from/to other user.

Different views concerning aspects of a user in the context of a com-
munity are well addressed by the Johari window (Luft and Ingham, 1955;
Thomas, 1992)1, a psychological model for illustrating and improving self

1http://www.businessballs.com/johariwindowmodel.htm as of 11/2008
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awareness and mutual understanding between individuals within groups –
see Section 2.2 on page 12.

In context of personalization the information placed within the four re-
gions of the Johari window can be seen as preferences or needs of a user
and their visibility to the user him/herself and to the others. Furthermore,
the role of the feedback contributor is shifting from the community to the
personalization system itself. The open/free area contains all well defined
preferences of a user within the personalization system (e.g., information
given during a registration process). The blind area corresponds to ill de-
fined preferences of a user which the system is able to identify. Identifi-
cation can be based on the observation and analyzes of the users inter-
action with the systems, as it is done in content- or collaborative filtering
approaches. The unknown area corresponds to preferences a user does
not have/know at the moment and which cannot be derived from the user’s
interaction behavior. The hidden area corresponds to well defined pref-
erences of a user which cannot be derived from the interactions by the
system.

Therefore, the profile refinement process can be interpreted as the en-
largement of the open/free area with means of feedback and disclosure as
presented in Figure 6.1.

Figure 6.1.: Profile Refinement

Concerning these four regions, a personalization system should provide
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the following functionality:

1. open/free area: Generating recommendations based on the explic-
itly defined needs or preferences of a user. This can be achieved by
using explicitly defined user preferences as the basis of recommen-
dations.

2. blind area: Refinement of the user’s profile concerning his/her pref-
erences (and generating new recommendations) based on the user’s
interaction with the system. This can be achieved by applying recom-
mendation approaches such as collaborative- and/or content-based
filtering.

3. hidden area: Encourage the user to extend/refine his/her profile so
that the system is able to improve the recommendation quality. This
can be achieved by periodically asking the user in a non-intrusive way
to complete/extend his/her profile.

4. unknown area: Broadening of the user’s horizon (see Swearingen
and Sinha (2002)) by supporting him/her in exploring his/her taste.
This can be achieved by guiding the user to new territories of
the item-space based on his/her current interests/preferences and
certain domain knowledge. So, for example, within the Ericsson’s
Media Suite - Music the broadening of the user’s musical horizon
was guided using the inter-genre relations of STOMP (Rentfrow and
Gosling, 2003) and his/her current interests as a starting point.

These considerations led to a multi-layer model where each user is mod-
eled by a profile comprised of three different views as presented in Fig-
ure 6.2 on page 81. These views are:

• self-assessment

• system observations

• community-assessment/assessment of others

Each view, or sub profile, is implemented by a vector of attributes best
describing the user model to represent. The self-assessment view is
used to model the self-portrait of the user concerning information such as
preferences, socio-demographic data such as age, gender, etc. mainly
used to serve the well-defined needs but also psychological attributes,
taken from models like the Five Factor Model (Tupes and Christal, 1992),
the Pleasure-Arousal-Dominance (PAD) framework (Mehrabian, 1996) or
Myers-Briggs Type Indicator (Myers and Myers, 1995), in order to get a
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Figure 6.2.: Structure of User Profiles

broader impression/image of the user.

The system assessment is a view, where the behavior-based profile of
a user is determined. The system observes the user while interacting in
order to create a dynamic user profile. In contrast to the self-assessment,
where users create representations of themselves (which is subjective, of
course), the system observation profile represents what users really do in
the system.

The community-assessment represents how a user is seen by others
and can be used as a feedback or rating on the self-assessment view.

This complex model forms the basis on which a wide range of needs
can be served. The information of the self-portrait can be used to satisfy
the obvious needs – even (and especially important) when this description
is somewhat idealized. The sub profile created and automatically refined
through the system observation view is used to identify and satisfy
behavior-based needs.

Where to place an attribute mainly depends on how this information can
be elicitated:
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• information such as socio-demographic data can only be defined by
asking the user, therefore they are part of the self-assessment view

• explicit expressions of interest, such as ratings or purchases, are part
of the self-assessment view

• implicit expressions of interest, such as visiting pages, are part of the
system observation view

• feedback of other users concerning a given user are part of the
community-assessment

The user profile structure as proposed for the Ericsson’s Media Suite -
Music supports the following groups of attributes:

1. Socio-demographic data, such as age, gender, and place of resi-
dence

2. Music genre preferences, currently referring to the genres used in the
STOMP model (Rentfrow and Gosling, 2003)

3. Music connotation preferences based on a collection of moods and
situations (e.g., car driving)

4. Compilations such as favored/unfavored artists, tracks, or playlists

5. Important aspects, such as preferred genres, importance of lyrics,
preferred instruments

6. Historical user data based on bought, viewed, etc. items

In the case of recommendations the three views can be used sepa-
rately or by combining them to a ’weighted-sum’ profile by using predefined
weights concerning the three views. The latter approach was implemented
in Ericsson’s Media Suite - Music.

6.2. Modeling the Items

A similar structure is also provided for the items to be recommended, where
the affiliation of items to certain clusters (like genres, see below) is modeled
with the help of three different views:

• the assessment of a domain expert

• the assessment of the (user) community

• affiliations calculated by a classifier systems as described later
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Figure 6.3.: Structure of Item Profiles

The structure is presented in Figure 6.3.

The domain expert’s view often represents the opinion or assessment of
the content owner, while the community view reflects how the content is
seen by the consumers/users. By providing both views the content owner
gets an important feedback and a better explanation model can be pro-
vided for the user concerning the recommended items. Especially in the
context of music the affiliation of artists or tracks to some given genres is
a very controversial topic, leading to arbitrary classifications and thus to
hardly acceptable recommendations. The classifier view can be seen as
an extension of the domain expert view, where ’third party’ information is
used to refine the item profile. This information can be provided simply by
a catalog or even an appropriate classifier system.2

In the case of recommendations the three views can be used separately
or a ’weighted-sum’ profile can be created. The latter approach was imple-
mented in Ericsson’s Media Suite - Music.

2Within the Ericsson’s Media Suite - Music project an audio classifier system, based on
Music Information Retrieval methods (Pampalk et al., 2003; Aucouturier and Pachet,
2004), was used to define sound similarities.
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6.3. Data Model

In the Adaptive Personalization approach, first class objects, i.e. users or
items, are modeled along a multi-view profile consisting of three different
views, as described above. Each view comprises of a set of dimensions
describing specific attributes, such as the age of a person, the price of an
item, etc., as shown in the conceptual data model in Figure 6.4.

Adaptive Profile View

3

Dimension

−name:String

1..*

Type
Value

User Profile Item Profile Characteristic

Constraint0..1

0..1

Figure 6.4.: Profile Data Model

Note, the model presented in Figure 6.4 represents a simplified, con-
ceptual view showing only information relevant for the discussions of this
section. This is especially true for the representation of the concept di-
mension where only the main attributes are depicted without any regards
to an appropriate class hierarchy. The complete, technical data model is
explained in Chapter 5.

A dimension itself is composed of

• a Name object (e.g., ’age’)

• a Value object (e.g., ’25’)

• a Data-Type (e.g., Integer)

• the optional Characteristic of the value (e.g., 80% association to
genre Pop)

• some optional Constraints concerning the value (e.g., min/max
boundaries or functional constraints e.g., a2 + b2 = c2)

The Name object of a dimension, an alphanumerical string, is used
as the dimension’s unique identifier within a view. The Value object of a
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dimension contains the current value, corresponding to the restrictions
defined in the Constraint, and is interpreted according to the dimension’s
Type. A variety of different data types, ranging from Integer, String, etc.
to more complex structures such as preference vectors, are provided
within the Adaptive Personalization approach supporting the creation of
appropriate domain models. Furthermore, these types form the basis
for distance functions used to implement k-nearest neighbor algorithms
as presented in Chapter 7. A more detailed technical description of the
supported or proposed data types is provided in Chapter 5.

The optional Characteristic object, having a value between min (e.g.,
−1) and max (e.g., 1), is used for dimensions where the value can have
different nuances concerning the intensity and is used to model skills, pref-
erences or the prototypicality of items for specific clusters. In the context
of the Adaptive Personalization approach, this information is used for pro-
file refinement as described in Section 6.4 on page 86. Furthermore, two
thresholds Tneg and Tpos are defined specifying if the intensity of a given
dimension value is strong enough to be considered. Given the value p of
a Characteristic object of a dimension di and the corresponding thresholds
Tneg and Tpos we can specify:

• if p ≤ Tneg then the value of the dimension di has to be interpreted
negatively

• if p ≥ Tpos then the value of the dimension di has to be interpreted
positively

• if Tneg < p < Tpos then the value of the dimension di can be ignored,
because it’s intensity is not strong enough

So, for example, the intensity of the preferences of a user for a specific
genre g of literature or music can vary from a negative maximum (e.g.,
−1 with the meaning hate it) to a positive maximum value (e.g., 1 with
the meaning love it). If the intensity is above Tpos then the system will try
to find and recommend items out of the genre g. If the intensity is below
Tneg then the system can use this information to construct a filter where
all items out of g are removed from recommendations. In the context
of recommendations, where a system is trying to find appropriate items,
the upper threshold Tpos is more important than Tneg. Hence, for ease of
discussion, T stands for Tpos.

Furthermore, a Constraint object can be defined to formulate specific
semantical conditions concerning the range of dimension values (min,
max values), logical expressions such as invariants, etc.
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6.4. Profile: Initialization and Refinement

The ongoing refinement of profiles is a core feature of a personalization
system mainly responsible for the performance and acceptance of the
system. This continuous adaptation is not only important for user profiles,
where a learning behavior of the system is expected by the user him/her-
self, but also for item profiles where the profile improvement can be used
for better serving target groups.

But in the context of a real world system a successful adaptive behavior
also has to meet the requirements reasonability and planability (see
Chapter 1 and Chapter 5). The former requirement addresses the effort a
user has to invest in training the system to learn his/her preferences and/or
needs – addressing the new user problem (Adomavicius and Tuzhilin,
2005; Schein et al., 2002) – while the later focuses on the operators
need exactly to define, adjust and communicate the preconditions which
have to be met for being personalized (addressing the cold start problem
(Adomavicius and Tuzhilin, 2005; Schein et al., 2002) ).

The first version of Amazon’s book recommender, called BookMatcher,
required at least 20 to 30 ratings of a user before personalized recommen-
dations could be generated. Not surprisingly this initial barrier was too
high for most users and so this service was hardly used and was replaced
by a better solution (Linden et al., 2003).

In this section a new, lightweight profile refinement approach is pre-
sented which is based on the following assumptions/preconditions:

1. each item3 has a profile containing domain relevant dimensions (at-
tributes), e.g., genre affiliation, etc.

2. these dimensions address some preferences/needs of users

3. all relevant actions of users on items (e.g., buy, rate, etc.) are logged
within this system

The first two of these preconditions imply that some domain specific meta
data is available which is relevant for the selection processes of users. In
context of real world systems this assumption is not too restrictive, because
some informative meta data must be available at least for presenting items
to users (e.g., on web portals).

3the objects being recommended
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6.4.1. User Profile: Initialization and Refinement

The initialization of a user profile, affecting the self-assessment view,
can be performed through an optional, questionnaire based registration
process asking for favored genres, artists, etc. As mentioned above, this
self-assessment view is used as a baseline for generating recommenda-
tions serving the well defined needs. Both other views, the observation
view and the community view, will start as empty profiles.

Standard machine learning approaches such as decision trees (Quinlan,
1986), clustering techniques (Witten and Frank, 2005; Pazzani and Billsus,
2007), etc. can be applied to the actions of the users thus forming the
basis of the standard refinement process concerning the different profile
views. So, for example, all items a user is viewing may form the basis for
the refinement of the observation view, while explicit actions such as rating
an item are dedicated to the self-assessment view.

Beside the applicability of these standard learning approaches a
lightweight refinement algorithm, based on the assumptions above, was
developed focusing on easily explainable and planable refinement strate-
gies especially during the cold start phase for a given user. The basic idea
of this profile refinement concept is to merge a defined set of dimensions
of an item (those responsible for the satisfaction of user needs) the user is
acting upon into the user’s preference profile weighted by the importance
of the action.

This merging process is based on an appropriate modeling of:

• the user’s profile dimensions concerning preferences

• the item dimensions responsible for need satisfaction

• an appropriate merging function for changing the user’s preference-
dimensions according to the corresponding item dimensions

User preferences can be modeled by using dimensions with the capa-
bility of a weighted value representation of a given dimension/attribute
as presented in Figure 6.4 on page 84. So the fact, that a given user
likes a specific item (e.g., an artist, book, etc.) or concept i (e.g., genre,
etc.) to a certain extend e can be modeled by using the identifier of i as
the dimension’s Value object and e to initialize the Characteristic object,
having a value between a minimum and maximum value (e.g., −1 to 1)
representing the different degrees of liking, ranging from strong dislike to
high preference.
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Also attribute values of items, such as the affiliation to a specific concept
c (like genre, etc.) with a certain strength s, can be modeled similar to
user preferences by using c as the value and s as the characteristic of the
dimension.

The merging function merge is responsible for an appropriate adapta-
tion of the current user profile ut (at time t) based on action a the user is
performing on item i resulting in a refined profile ut+1 – see Definition 6.1.

ut+1 = merge1(ut, a, i) (6.1)

The merging function merge only effects preference dimensions in the
user profile where only the corresponding Characteristic object is adopted
but not the Value object itself. Furthermore, the merging function can
create new preference dimensions if necessary.

So, for example, when a user is expressing high interest in a given item
(e.g., buying a book) some relevant dimensions of this item (e.g., author,
genre of the book) are merged into the user profiles where the Characteris-
tic of the value object of the appropriate preference dimension is adopted.
The set of relevant dimensions is specified by a filter f applied on the
dimension set of an item in a given context – see Definition 6.2, where
merge1 is extended with this filter.

ut+1 = merge2(ut, a, i, f) (6.2)

A simple merging function merge2 is presented in Definition 6.3 where
wa represents the predefined importance (weight) of the action a while the
expression f ∗ i defines the set of item dimensions to be considered in the
merging process.

ut+1 = merge2(ut, a, i, f) = ut + wa(f ∗ i) (6.3)

The drawback of the function merge2, presented in Definition 6.3, is its
tendency to collect and to reinforce preferences in real world contexts,
because users tend to give more positive feedback than negative – see
Chapter 8. This is especially true in the context of the observation view
refinement, where the behavior (e.g., navigation behavior) of the user is
taken into account because most users try to find items they are interested
in.

Therefore, a neglecting behavior is introduced – called reduction by ig-
noring – by applying a weakening function decr(u) on preference dimen-
sions of a user profile during the merging process. An appropriate weak-
ening function decr(u) degrades the value of the Characteristic object of
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a preference dimension toward a threshold T (e.g., 0) where the user’s
preference for the given item can be ignored – see Definition 6.4.

merge3(ut, a, i, f, decr) = decr(ut) + wa(f ∗ i) (6.4)

A simple implementation for decr is the usage of a neglecting constant κ
as presented in Definition 6.5

merge3(ut, a, i, f, κ) = κut + wa(f ∗ i); 0 ≤ κ < 1 (6.5)

which will reduce the value of the Characteristic object during a merging
process according to the course of the function presented in Figure 6.54.

Figure 6.5.: Neglect Characteristic κut with κ = 0.9

Based on the definition of a merging function merge, as presented in
Definition 6.5, we are now able to define the refinement/adaptation course
for a given preference dimension. According to Definition 6.3 on page 88
the refinement of the Characteristic object p of the preference dimension
di of a user profile u can be specified as follows

pt+1 = κpt + waq (6.6)

4In many cases smoother functions ( e.g., having a sigmoid characteristic S shape) like
the Gompertz function, are more appropriate for implementing the weakening behavior
of preferences.
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where q is the value of the Characteristic object of the item dimension
used by the merging function. By transforming this recursive equation we
get

pt = waq
t−1
∑

i=0

κi = waq

(

1 − κt

1 − κ

)

(6.7)

as the formula for calculating the value pt if p0 = 0 and t ≥ 1. Based on
the assumption that −1 ≤ wa ≤ 1 and −1 ≤ q ≤ 1 we have to normalize
the fraction 1−κt

1−κ
by using the lim

∑

∞

i=0 κi = 1
1−κ

as shown in Definition 6.8
on page 90.

pt = waq

(

1 − κt

1 − κ

)

(1 − κ) = waq(1 − κt) (6.8)

The course characteristic of the refinement function as presented in
Definition 6.8 is shown in Figure 6.6 on page 90.

Figure 6.6.: Refinement Characteristic with κ = 0.9, wa = q = 1

In the context of real world personalization systems it is important, es-
pecially for the operator of the system, to have a precise understanding
when the provided learning behavior will become effective resulting in gen-
erating personal recommendations. Based on the equation defined in Def-
inition 6.8 we are able to derive an appropriate threshold T for a given
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number of user actions necessary for incrementing the intensity of a spe-
cific preference dimension to be considered for personalization purposes.
A preference is called effective if the value of pt is above T after t merging
processes, as shown in Definition 6.9

waq(1 − κt) ≥ T (6.9)

Depending which parameters (e.g., wa, κ) are known Definition 6.9 can
be used to define the missing value. In most cases κ, the weakening
function, will be predefined as well as q which defines the average intensity
value of the corresponding dimension value of an item to be consid-
ered/merged. As a result, the weight of the action wa and the threshold T
have to be derived from Definition 6.9.

Transforming Definition 6.9 leads to a formula for the action value wa –
see Definition 6.10.

wa ≥
T

q(1 − κt)
(6.10)

To define an appropriate value for T the following requirements must be
considered

• because of wa ≤ 1 also T
q(1−κt) ≤ 1

• use the minimal number of the strongest actions – necessary for mak-
ing a preference effective – for defining T

leading to Definition 6.11

T ≤ q(1 − κt) (6.11)

implying that the minimal number of necessary actions t is 1.

Example: Given a portal offering items (e.g., books, music, etc.) which
are assigned to genres gradually expressing their prototypicality for the
given genres. The preference of a user for a given genre g should be
effective after viewing an item i of g with an item-genre affiliation intensity
of at least 80% for five times (t = 5). Furthermore, buying an item
is considered as the most expressive action and should be lead to an
effective preference after buying at least two items of g (t = 2). Based on
this information and the formula presented in Definition 6.9 on page 91 an
appropriate action weight for the user actions viewing and buying must be
derived. Furthermore, it is assumed that κ = 0.9.
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First we want to define an appropriate value for T . Based on Defini-
tion 6.11 on page 91 and the fact, that buying is the strongest action we
get (using t = 2):

T ≤ 0.8(1 − 0.92) = T ≤ 0.152 (6.12)

Having defined this value for T we are now able to define the weights
for the actions view wview and buy wbuy. Applying the given parameters to
Definition 6.10 on page 91 we get using t = 5)

wview ≥
0.152

0.8(1 − 0.95)
= wview ≥ 0.464 (6.13)

for the viewing action, and

wbuy ≥
0.152

0.8(1 − 0.92)
= wbuy ≥ 1 (6.14)

for the action buy (using t = 2). So, using these parameters, the
operator of this sample portal is able to configure the personalization
system precisely so that after 2 purchases or 5 viewing actions of a user
on items of a genre g the user’s preferences for g will be considered.

According to the refinement function as defined in Definition 6.6 on page
89 preference values can also be decreased, depending on the values of
the parameters. The most important cases for such a preference dilutions
are:

1. the contribution of the term waq is negative: This situation occurs
when a user is performing a negative action on item i, expressing his
dislike for i e.g., by giving a negative rating like “don’t like”. In this
case that the action weight is negative (wa < 0) this will lead to a
value decreasing during the merging process (assuming that q > 0).
Also a positive action on an item with q < 0 could lead to waq < 0 but
in domains, where the prototypicality of an item concerning a cluster
is modeled, this is not a very common use case.

2. the contribution of the term waq cannot compensate the effect of the
weakening function decr(u): This often occurs, when a user is per-
forming a low expressive action (e.g., viewing an item where |wa| is
nearby 0) on an item having e.g., a weak affiliation to a cluster.

3. the contribution of the term waq is 0: This we call reduction by ignor-
ing and is a special case of item 2. This occurs when a preference
dimension d of a user is considered within a merging process, but the
item i does not have a corresponding dimension for d. So, if a user

92



CHAPTER 6. ADAPTIVE PROFILE MODEL

with preferences for Classic Music is buying a Hard-Rock song – hav-
ing only affiliations to Hard-Rock – the users preference for Classic
Music will be decremented.

6.4.2. Incorporating Domain Knowledge

As already mentioned in Chapter 4 (and being discussed in more detail
in Chapter 5) structuring the problem domain is a core concept of the
Adaptive Personalization approach. Inter related clusters, often used to
represent domain knowledge (e.g., a genre tree or graph in the music
domain), are supported as primary concepts and can therefore be used
for user profile refinement.

Superclass relations, modeled as is-a associations among clusters,
can be used to propagate preferences from concrete concepts to more
abstract ones, by applying the merging strategies discussed so far along
the superclass paths concerning the cluster affiliations of items.

Example: Let us assume an item i (e.g., a song) being associated with
a cluster csub (e.g., genre Classic Pop) to a certain extent. Furthermore,
cluster associations exist containing an is-a relation between csub and a su-
perclass csuper (e.g., genre Pop). So, if a user is expressing his preference
for item i (e.g., by buying it) the merging function of Definition 6.8 on page
90 is not only being applied to the cluster association with csub but also,
adorned with some weakening factor, to csuper. The adapted formula can
be found in Definition 6.15, using the path length as the weakening factor.

psuper,t = waqsuper(1 − κt)
1

pathLength(sub, super) + 1
(6.15)

6.4.3. Short-Term and Long-Term User Preferences

With the merging strategy discussed so far we are able to precisely
configure the personalization system for individual recommendations,
based on the explicit and implicit user feedback. But a serious drawback
of this algorithm is its inflexibility concerning short time and long time
preferences. If a system is configured for promptly serving new customers
(e.g., by using a low value of κ and a low number of necessary actions)
– thus addressing the new user problem – it tends to overstate the latest
actions of the user and will mainly recommend items of the most current
usage context. This strategy may be quite sufficient for walk-in customers
but it will fail to satisfy regular clients. Otherwise, if the system is tuned for
a tentative behavior concerning preference learning (e.g., by using a high
value of necessary actions and a high value of κ) the system will suffer
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from the new user problem.

To overcome these limitations the merging strategy discussed above was
extended with a session based concept for an appropriate modeling of
short-term and long-term preference adaptations. The main idea is to split
a user preference profile in a short-term and long-term model where the
short-time preference profile is refined by the user feedback (e.g., actions)
within a session and the long-term model’s adaptation is based on a series
of short-term preference profiles. According to Definition 6.6 on page 89
we can formulate the following equation:

pt+1 = κlongpt + wshorts(pt) (6.16)

where κlong is the long-term weakening function and wshort is the weight
of the session based adaptation s(pt) of the user’s preference value. The
session based refinement is implemented by s(pt) and can be formulated
as follows:

s(pt) = κshortpt + waq (6.17)

where κshort is the short-term weakening function and wa is the action
weight, as defined above.

At the beginning of a session, e.g., the login of a user, the long-term
preferences are used to initialize the session based short-term preference
profile. Within the current session the profile is adapted on the basis of
the user’s actions (see Definition 6.17) as discussed above. After the
closing of a session (e.g., logout) the current short-term preference profile
is merged with the long-term profile as described in Definition 6.16.

Based on this distinction between short-term and long-term preferences
also the recommendation process can be optimized because both profiles
can be used separately. While the short-term profile can be used to
produce context relevant recommendations (context of use; e.g., more like
this recommendations, see Swearingen and Sinha (2002)) the long-term
profile can be used for generating more personal recommendations
(e.g., hot items recommendations; new items within preferred genres, as
proposed by Swearingen and Sinha (2002)).

6.4.4. Item Profile: Initialization and Refinement

Similar to the preference dimensions of user profiles also attribute values
of items can be modeled by using dimensions with the capability of a
weighted value representation. These dimensions are used to model

94



CHAPTER 6. ADAPTIVE PROFILE MODEL

affiliations/associations of items to specific concepts, such as clusters,
and are used for the item profile refinement process. The fact, that an
item i (e.g., book, song, etc.) is affiliated to a given cluster c (e.g., genre)
to a certain extend e can be modeled by using the identifier of c as the
dimension’s Value object and e to initialize the Characteristic object,
having a value between a minimum and maximum value (e.g., −1 to 1)
representing the different degrees of the item’s prototypicality concerning
cluster c.

Typically the item profile will be initialized by a domain expert – affecting
the domain expert view – either by manually classifying the items or
by using third party information as delivered by content providers. Item
descriptions, allocated by content providers (e.g., labels such as Sony,
BMG, etc., in the music domain), are imported/uploaded into the portal for
being presented to the user. In domains with a huge amount of items (e.g.,
music) this item description often has a poor quality.

Music genres, for example, are an often disgraced concept, but indis-
pensable to a music portal. The most serious problem with genre is that
they are not standardized and that they tend to be a source of dispute.
When it comes to music styles the AllMusicGuide5 offers 531, Ama-
zon.com6 719 and MP3.COM7 about 430 different genres (Uitdenbogerd
and van Schnydel, 2002). Furthermore, music content providers often do
not or cannot deliver appropriate genre information: So during the series
of R&D projects accompanying the Ericsson’s Media Suite - Music project
some providers did not deliver genre information for about 20% of their
content.

Appropriate strategies for portal operators to improve the item meta
data quality are using classifier systems or by involving the community.
Classifier systems, especially important in domains with large content
sets, can be used by content administrators to generate additional meta
data of items – affecting the classifier view of an item – either for com-
pensating a missing administrator view as well as for providing alternative
approaches to the item space. Applying a classifier on content data is a
typically recurrent process performed by the content administrator during
maintenance of the item’s life cycle (e.g., uploading/removing of items).

So, for example, in the context of the Ericsson’s Media Suite - Music
project an audio classifier system was used for finding similar sounding

5http://www.allmusic.com as of 11/2008
6http://www.amazon.com as of 11/2008
7http://www.mp3.com as of 11/2008
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songs automatically (Aucouturier and Pachet, 2004; Pampalk et al., 2003;
Aucouturier and Pachet, 2002), only based on signal analysis of the
provided audio files. The generated meta data was used to create play
lists – songs, that sound similar to a given one – as well as for providing
mood specific, alternative genre-clusters (e.g., ’sad songs’).

Feeding portals regularly with interesting and engaging content is a very
challenging and of course expensive task. The Adaptive Personalization
approach tries to tackle this problem by involving the users in this process
by encouraging them to post affiliations of items to predefined clusters8.
The community feedback was used to maintain and refine the content of
these clusters once defined and initialized by an administrator.

The community-assessment view is initialized as an empty profile and
is refined by the feedback of the users concerning the classifications of
items. In Ericsson’s Media Suite - Music the user can give feedback about
the cluster affiliation of items such as tracks, artists, etc.,

Figure 6.7.: Assigning a Track to a Cluster

The sample presented in Figure 6.7 on page 96, taken from Ericsson’s
Media Suite - Music, demonstrates a use case of a mobile music portal

8The use of predefined clusters instead of tagging – as used in Web 2.0 approaches – was
chosen in respect to the importance of the mobile channel and its limitation concerning
user interactions.
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where users can assign tracks to predefined music clusters according to
moods and/or situations. In Figure 6.7 on page 96 the user is asked, if
he/she would assign the given track to the music cluster First Love. Based
on the different feedback (YES/NO) the track will be added to or removed
from the specific cluster.

Based on these three different views an intensity value function val(i, c)
for defining the affiliation of an item i to a cluster c (or concept) can be
defined as the combination of the administrator assignment, the commu-
nity affiliation and the computation of a classifier system as described in
Definition 6.18

val(i, c) = wadmval(i, c)adm + wcomval(i, c)com + wsysval(i, c)sys (6.18)

where val(i, c)adm is the affiliation intensity assigned by the administrator,
val(i, c)com the overall assessment of the community and val(i, c)sys the
assignment calculated by a classifier system. The three different weights
wadm, wcom and wsys are used to define the importance of each view to the
overall affiliation. According to the preference dimensions of user profiles
discussed above, the following constraints are applied

−1 ≤ val(i, c)k ≤ 1
0 ≤ wk ≤ 1 k ∈ {adm, com, sys}
∑

wk = 1
(6.19)

to guarantee, that the value of val(i, c) is normalized between the range
of −1 and 1. Similar to the preference dimensions of user profiles, thresh-
olds Tneg and Tpos are defined for specifying the value range of val(i, c)
where the item-cluster affiliation have to be considered by the system. Ac-
cording to the explanation above, we will focus only on Tpos denoted simply
as T for ease of discussion. So, the affiliation of an item i to a given cluster
c is effective, when val(i, c) is above a given threshold T . More formally:

i ∈ c|val(i, c) ≥ T (6.20)

The most interesting part of val(i, c) as defined in Definition 6.18 is
wcomval(i, c)com, describing the affiliation information contributed by the
user community. This term is highly dynamic compared to the adminis-
trator’s or classifier’s view which are often only used for initializing an item’s
association to a given cluster by using specific values affadm, affsys (e.g.,
during the upload/import process of content items) – see Definition 6.21.

val(i, c) = wadmaffadm + wcomval(i, c)com + wsysaffsys (6.21)
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In contrast, the community-assessment val(i, c)com is based on the num-
ber of submitted items – cluster associations performed by different users
of the community. Concerning this community feedback the questions

1. how many user associations are necessary so that val(i, c) ≥ T for
an item i having no other classification information (val(i, c)adm = 0
and val(i, c)sys = 0)?

2. how many user associations are necessary to overrule a given item-
cluster initialization?

are highly relevant to the administrator or operator of a personalization
system. While the first question is addressing the problem of items having
no appropriate meta data the second one is focusing the problem of target
group relevant meta data. Answering both questions appropriately will
help the administrator to gather up-to-date meta data for his content.

In the Adaptive Personalization approach, the community based item-
cluster association is modeled within dimensions where the number
of positive and negative user associations are stored as the basis of
the affiliation intensity calculation. Furthermore, each user can only
submit one item-cluster affiliation for a given item i and a specified cluster
c to avoid manipulation – as a result, it is reserved to registered users9only!

The intensity of this item-cluster association is defined by a sigmoid func-
tion as defined in Definition 6.22

aff(x) =
2

1 + e−x
− 1 (6.22)

having a course characteristic as shown in Figure 6.8 on page 99
with the number of item-cluster affiliations submitted by the users as

the unit of the x-axis (absolutely or relatively). Furthermore, the inverse
function – used to define x given a specific value for aff(x) – is defined as

aff−1(y) = −ln(
2

y + 1
− 1) (6.23)

Equipped with these definitions we are now able to formulate the
answers for the questions above. First, an appropriate threshold T must
be defined so that n positive user affiliations – stressing the fact, that item
i is element of cluster c (i ∈ c) – will activate that affiliation.

9A user is registered when he/she passed through an identification process, e.g., the
typical ’registration’ use case provided in many portals.
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Figure 6.8.: Item-Cluster Affiliation Characteristic

So, for example, based on certain domain or user group specifics an
administrator can decide that the appropriate course characteristic of
aff(x) for T is at x = 2 and that at least nr = 15 (positive) user affiliations
are necessary to reach that point. Furthermore, the different weights
are defined as follows: wadm = 0.6, wcom = 0.4 and wsys = 0 indicating
that no classifier system is available. Based on these requirements
and the equations above T is defined as T = wcomaff(2) = 0.30. The
positive conversion factor fpos, concerning the number of item-cluster
affiliation submitted by the community for the x-axis unit, is defined as
fpos = x

nr
= 2

15 = 0.133.

Furthermore, the administrator can define, that at least 25 contrary com-
munity affiliations are necessary to neutralize his item-cluster association.
So the negative conversion factor fneg can be defined as follows:

wadmaffadm − wcomval(i, c)com ≤ T (6.24)

and can be derived to

val(i, c)com ≥
wadmaffadm − T

wcom
(6.25)

Applying the value of val(i, c)com to the inverse affiliation function
defined in Definition 6.23 on page 98 will result in an x-value which can be
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converted to the necessary number of user feedback.

Given the maximum intensity val(i, c)adm = affadm = 1 an administrator
can assign to an item-cluster relation and the variables defined above, the
value of val(i, c)com can be calculated as

val(i, c)com ≥
wadmaffadm − T

wcom
=

0.6 · 1 − 0.30

0.4
= 0.75 (6.26)

By applying this value 0.75 to Definition 6.23 on page 98 we get

x = aff−1(y) = −ln(
2

0.75 + 1
− 1) = −ln(0.14) = 1.95 (6.27)

In a next step we can define fneg as fneg = x
nr

= 1.95
25 = 0.08.

Summarizing we get the following results

• the value for the threshold T is set to 0.30

• the value for the positive conversion factor fpos for mapping positive
item-cluster affiliations (stressing i ∈ c) to the x-axis of the affiliation
function as defined in Definition 6.22 on page 98 is set to 0.13

• the value for the negative conversion factor fneg for mapping negative
item-cluster affiliations (stressing i /∈ c) to the x-axis of the affiliation
function as defined in Definition 6.22 on page 98 is set to 0.08

6.5. Evaluation

Due to severe back-up and operational problems of the referred real world
systems10 resulting in loss of data, only partial aspects of our profile model
could be evaluated. However, the results and conclusions presented in
this section should be seen as evidences for the argued value-add. The
full verification of the effectiveness of our profile model will be adduced in
future work.

The strength of the Adaptive Profile Model is its multi-view approach,
incorporating contextual information concerning the origin of a user action,
combined with the ability to define the adaptive or learning behavior
precisely. Based on the fact, that this adaptive behavior is limited to
predefined clusters or concepts (for which an appropriate dimension has to
be defined) this approach should be seen as an extension or supplement
to standard profile approaches relying on machine learning techniques.
Consequently a qualitative analysis approach was chosen for proofing its

10User feedback got lost because log tables were removed for saving disk space.
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effectiveness, based on real world data instead of the comparison with
standard techniques.

The analysis performed in this section is partially an anticipation of the
examinations of Chapter 8 focusing on profile issues only. For proofing
the effectiveness of the Adaptive Profile Model answers to the following
questions were derived from real world data sets:

1. Can the argued value-add of the multi-view concept be observed in
the context of user profiles and what is its effect?

2. Can the argued value-add of the multi-view concept be observed in
the context of item profiles and what is its effect?

6.5.1. Description of Data and Applied Procedures

The data for this analysis was taken from two different instances of the
Ericsson’s Meduia Suite - Music, being hosted in Europe and in Malaysia:

• A copy of the databases from the European server was taken at the
05/31/2006, covering a period of user actions ranging from 9/2005 to
5/2006 – about 9 months.

• A copy of the databases from the Malaysian server was taken at the
05/16/2006, covering a period of user actions ranging from 10/2005
to mid 5/2006 – about 7.5 months.

Among other’s, the databases contained the following information (for
more details please see Chapter 8):

• User profiles: User descriptions consisting of attributes like unique
identifier, age (optional), gender (optional), genre preferences, etc.

• Item profiles: Descriptions of items e.g., artist, tracks, products, etc.,
consisting of attributes such as identifier, type, description, genre af-
filiation, price, etc.

• User action: A history of user actions, stored in a specific database
table

• System behavior: A history of system reactions, such as responses
to recommendation requests, stored in a specific database table

These two sets of databases where installed locally on a MySql-Server.
Beside some necessary repair tables no extra manipulation of the data
was performed. Beside these two databases, no further information source
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was taken.

Furthermore, as explained in Chapter 8, the community view was not im-
plemented for the user profile in this version of the Ericsson’s Meduia Suite
- Music, so the user related analyzes is restricted to the self-assessment
and observation view.

6.5.2. Result

Based on examinations carried out in Chapter 8 the conclusion can be
drawn, that the multi-view concept is successful/useful, because there are
significant differences between the self-assessment and the observation
view.

A significant difference between the genre preferences stored in the
self-assessment view and the observation view could be found in the
context of user profiles . So, on the basis of the preferences stored
in the self-assessment view, the observation view accounts for 37% of
additional/other preferences in the European installation and about 75%
in Malyasia. Furthermore, 29% of the users in EU and 42% in MY get
more/other recommendations due to the observation view than they would
get only based on the self-assessment.

Concerning the cluster affiliation of items , significant differences be-
tween these two installations could be observed. While in Europe the
user-based classification of items was hardly used, it was well accepted
in Malaysia, where 43% of all artists and 16% of all tracks where classified
by the community! By comparing the administrator’s contribution to the
item affilition with the associations carried out by the community, we found
that the users were responsible for 96% of all artist- and 81% of all track
classification in Malysia!

6.6. Contributions to the Research Question

The concepts of the Adaptive Profile Model presented in this chapter are
directly addressing the second sub-question as defined in Section 1.2 on
page 4.

How can contextual information be used to improve user mod-
els?

Based on a psychological model of Joseph Luft and Harry Ingham - the
Johari Window (Luft and Ingham, 1955) – a multi-view profile model was
developed introducing the context of origin of user feedback. Concerning
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user profiles the three views – self-assessment, system observation and
community-assessment – are used for optimizing the recommendation
process for satisfying the well and ill-defined needs as well as for com-
prehensible explanation models. Furthermore, the incorporation of long-
and short-term aspects of preferences (context of sessions) will help to
build more stable user models, because context-driven variations of a
user’s behavior (e.g., searching for a gift for a friend) can be covered much
better. Evaluations performed on data gathered from real world systems
(see Chapter 8) showed strong evidences concerning the effectiveness of
this multi-view approach, by identifying a significant set of non-overlapping
preferences concerning the self-assessment and system observation view.

Additionally, the presented three fold item model supports the content
administrator in maintaining valuable content meta data which will lead to
better recommendations.
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7. Recommendation Algorithms

The determination of similarity is a core task recommender algorithms
try to solve efficiently. While collaborative filtering approaches establish
user similarity relations based on ratings for generating suggestions,
content-based techniques rely on the similarity of item attributes being
preferred by users. In this chapter we will present two new algorithms for
both of these research fields.

In the first section a new collaborative filtering algorithm is presented
where the contextual importance of items and the relations of preference
sets are combined in a new way for an improved similarity definition of
users. The motivation for developing this approach was not to use addi-
tional data (e.g., time in Adomavicius et al. (2005)) to improve standard
algorithms but the need to derive as much information as possible from
the data provided. Existing approaches such as Pearson Correlation or
inverse user frequency (Breese et al., 1998) do not meet this requirement
adequately.

In the second section a new data structure, called D2-Tree, is presented
for solving the k-nearest neighbor (kNN) problem in a search space
spanned by discretized attributes of profiles, a typical use case in the
context of content-based approaches. The development of the D2-Tree
was mainly driven by the requirement to provide the weighting of search
criteria attributes for each single request which is not supported by search
structures such as K-D-B trees (Robinson, 1981).

7.1. The Pretty Good Recommendation Family

In general, collaborative filtering recommender algorithms try to predict rat-
ings of items for a given user from a database of ratings of other users (see
Chapter 3). Following the definition of Breese et al. (1998) the core pro-
cedure for predicting a rating rui of user u for an item i in memory-based
approaches can be defined as

rui = ru + κ
n

∑

v=1

w(u, v)(rvi − rv); u 6= v (7.1)

105



CHAPTER 7. RECOMMENDATION ALGORITHMS

where ru is the average rating of user u, κ a normalizing factor, n
the number of users stored in the database and – most important – the
weight w(u, v), expressing the kind of relation between two users u and v
(e.g., similarity, correlation). Several different strategies such as Pearson
Correlation see Definition 3.2 on page 23, inverse user frequency see
Definition 3.4 on page 24, etc. exist for defining this weight.

Our main criticism concerning these strategies is, that their computation
is too simple and that important aspects concerning the complex relations
among users are ignored. Most of these approaches are only using the
set of common ratings of two users u and v as a basis (e.g., Pearson Cor-
relation, vector similarity) sometimes extended with further information as
done in default voting or inverse user frequency. Having a closer look at
the Pearson Correlation, the most common relation measure (see Defini-
tion 7.2), will demonstrate these shortcomings.

w(u, v) =

∑n
i=1(ru,i − ru)(rv,i − rv)

√
∑n

i=1(ru,i − ru)2(rv,i − rv)2
(7.2)

As a consequence of Definition 7.2 all users having the same relative
ratings ((rv,i − rv)) will get the same relation weight w(u, v) – which is not
a proper result.

But what are the characteristics of a good user-user relation? Which
aspects, beside the obvious rating values, should be considered? A simple
thought experiment will help us to answer this question basically.

Given a database containing favorite items Ij of users ignoring, for
simplification, the different levels of liking. Furthermore, we assume the
existence of 4 users, each having a set of preferred items Uk (k = 1..4) –
identified as ellipses – as shown in Figure 7.1 on page 107. As as result,
a ranked list of most similar users for U4 should be determined.

Not surprisingly, U3 is most similar to U4, because both users share the
same set of preferred items (U4 = U3). In other words, U3 can be seen as
an exact clone of U4 implying perfect similarity. Consequently, the second
best match would be a clone taken from the past, having one preferred
item less. In our example, U2 can be seen as this clone from the past,
because U2 is a real subset of U4 (U2 ⊂ U4). The weakest similarity relation
exists between U4 and U1 – although having the same intersection with U1

(U4 ∩ U1 6= {}) as U2 – because each of them has preferences, missing by
the other. So, by only considering the kind of intersections of the preference
sets, we could identify the following similarity order:

sim(Uu = Uv) > sim(Uu ⊂ Uv) > sim(Uu ∩ Uv 6= {}) (7.3)

106



CHAPTER 7. RECOMMENDATION ALGORITHMS

Figure 7.1.: Favorite Itemsets of Users

The inclusion of this kind of information in the process for defining the
best matching users is one major improvement of our algorithm – but still
further conclusions can be drawn from our sample.

Concerning the characteristics of an item rating, used for the definition of
like minded users, the following factors can be identified: (i) the strength of
the rating, (ii) its popularity concerning all users and (iii) its importance for
a specific user. By skipping the obvious first aspect, it is evident that items
being everybodies-darling, are less helpful than rare ones. So, for example,
item I2 being preferred by all 4 users is contributing nothing to the definition
of a ranking or sort order of users. The inverse user frequency1(Breese
et al., 1998) technique, an analogy to the inverse document frequency as
used in information retrieval (Heyer et al., 2006), is somehow addressing
aspect (ii) by applying weights, based on the rating frequency, to the users
ratings.

While this approach is addressing the discriminatory power of an item
rating concerning all users its local importance, stressed by aspect (iii),
is still missing. The underlying assumption is, that the importance of an
item within a preference set decreases with the size of this set, a concept
borrowed from the field of information retrieval where it is known as the
term frequency.

1log( n

nj
) where n is the number of users and nj is the number of users having rated item j
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Now armed with the consideration above, we are able to identify the pa-
rameters important to consider when defining a similarity measure w(u, v)
concerning two users u and v:

1. The similarity and strength of item ratings concerning elements out
of E where E = Ui ∩ Uj

2. The similarity of Ui and Uj : The smaller the number of items out of
Ui ∪ Uj not being part of the intersection E = Ui ∩ Uj – the better.
Best if Ui = Uj

3. The size of the intersection set |E| = |Ui ∩ Uj |. The larger this inter-
section – the better

4. The discriminatory power and the local importance of elements of E:
The higher the discriminatory power and the importance of elements
out of E the better.

While some of these factors are quite obvious and are already used by
certain collaborative filtering techniques (Herlocker et al., 2000; Breese
et al., 1998) the real innovation is introduced by how we are dealing with
item 2 and 4!

After having defined the set of relevant users vi new item suggestions for
a given user u can be generated on the basis of the user ratings and the
similarity correlation between u and vi. In the following sections we provide
the formal basis for the definition of an appropriate user correlation and how
appropriate items are calculated upon this set of users. Furthermore, our
approach is evaluated by comparing its performance with that of standard
algorithms. Thus, the basic idea that a smaller set of more relevant users
will produce better results than a larger set with less quality, will be proofed.

7.1.1. Finding Appropriate Users

In this section the definitions are introduced for defining an appropriate
similarity correlation. The preferences – positive or negative – of users uk,
concerning items ij are expressed by rating tuples of the following form:

Rui = 〈uk, ij , rui, time〉 ; rui...user rating; rmin ≤ rui ≤ rmax (7.4)

Where rmin, rmax are the minimum/maximum ratings a user can assign
to an item. Furthermore, the set of preferred items P of a user u is defined
by
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Pu = {i|i ∈ Rui} (7.5)

and the set of evaluators of an item i (e.g. users preferring a track or
artist) is defined by

Fi = {u|i ∈ Pu} (7.6)

Furthermore, we define the relative popularity pop of an item i as

pop(i) =
|Fi|

|U |
(7.7)

where |U | is the number of all users. The discriminatory power/factor
disc of an item i is defined on a basis of the inverse of the popularity pop –
also known as inverse user frequency – of an item i.

disc(i) = − lg2(pop(i)) (7.8)

Applying this function will lead to (i) a minimum value “zero” when the
popularity is maximal – e.g. when item i is liked by all users – and (ii) to a
maximum when only few users prefer item i (infinity when no user likes i).
Additional to the normalized standard rating

rate(u, i) =
rui

|rmax − rmin|
(7.9)

we introduce the definitions for relative rating and adjusted rating for eval-
uation purposes concerning different algorithm variants. Relative ratings
are used by standard algorithms such as Pearson Correlation. The nor-
malized, relative rating of an item i by a user u is defined:

raterel(u, i) =
rui − ru

|rmax − rmin|
; ru...average rating of user u (7.10)

One drawback of the relative rating is, that it tends to become zero, es-
pecially in the context of few or equal ratings. To avoid or soften this ef-
facement we introduce the adjusted rating by adding the normalized rating
to the relative rating:

rateadj(u, i) = raterel(u, i) + rate(u, i) (7.11)

By using Definition 7.11 the original rating classification (e.g. good,
neutral, bad) is, adjusted with the deviation from the average rating,
reintroduced in the calculation. The impact of Definition 7.11 is shown in a
a more complex use case below.
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Sample: Assuming we have a 5 score rating scale, ranging from 1
(very bad), 2 (bad), 3 (neutral), 4 (good), to 5 (very good) and two users
A and B with average ratings avgA = 1 and avgB = 4, furthermore
both users rated an item i with rate(A, i) = 2 and rate(B, i) = 5.
For both users A, B the relative rating for item i has the same value:
raterel(A, i) = 1/4 and raterel(B, i) = 1/4! By using the adjusted rating we
get: rateadj(A, i) = 1/4 + 2 = 2.25 and rateadj(B, i) = 1/4 + 5 = 5, cutting
off boundary overflows.

In further discussions we use rate as a placeholder for one of the three
possible rating variants.

Now having defined some different versions of item ratings we are able
to define the rating difference of two users u and u concerning a set of
common rated items by calculating the weighted mean

rateDiff (u, v) =

∑n
i=1 (rateui − ratevi) disc(i)

∑n
i=1 disc(i)

(7.12)

This rating difference, describing the average deviation concerning com-
mon ratings, will be used to calculate predictions for new items for a given
user. Next we introduce the local importance imp of an item i for a user
u as the ratio of the rating and the size of his/her preference set. The
importance imp(u, i) is defined as:

imp(u, i) =
rui

|Pu|
(7.13)

By replacing the item rating rui with the relative or adjusted rating we get
the appropriate (relative/adjusted) importance value. With the definitions
above we are now ready to define the quality q of the similarity (correlation)
between two users u, and v with

q(u, v) =

n
∑

i=1

(imp(u, i)imp(v, i)disc(i)); i ∈ Pu ∩ Pv, n = |Pu ∩ Pv| (7.14)

With Definition 7.14 we are addressing factors 1, 3 and 4 we defined
above – but 2 is still missing!

As mentioned above, the considerations behind factor 2 are that the
measure of the overlapping of two preference sets PrefA, PrefB has an
effect on the similarity of two users A and B. So, for example the fact, that
PrefA is a subset of PrefB implies a stronger similarity between A and
B than an intersection A ∩ B. Furthermore, this implies that the similarity
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relation between A and B is a directed relation.

But once more, we can borrow some concepts from other research fields.
A quality measure concerning overlapping can be found in the domain of
association rule mining (ARM) (Agrawal and Srikant, 1994; Park et al.,
1995). Based on a number of sets (baskets/transactions), each contain-
ing some items (goods), ARM tries to find significant item relations of the
form X → Y . ARM is a standard algorithm for shopping cart analysis. The
most important parameters in ARM are support and confidence. The sup-
port describes how often an item (or set of items) can be found in different
sets and is defined as:

sup(X) =
number sets containing X

number all sets
; X...a set of items (7.15)

The confidence is used to describe the quality of a relation X → Y and
is defined as

conf(X, Y ) =
sup(X ∪ Y )

sup(Y )
(7.16)

By using the sets Fi containing the evaluators/fans of an item as our sets
for the ARM algorithm where X and Y are sets of users (fans) of size 1, we
can use conf(X, Y ) as an overlapping measure of the preference sets.

So the similarity correlation between two users u and v – sim(u, v) – can
now be defined as

sim(u, v) = conf(u, v)q(u, v) (7.17)

7.1.2. Predicting Items

In contrast to other algorithms (Breese et al., 1998; Lemire and Maclachlan,
2005) the item prediction is based on two similarity measures: The rating
difference rateDiff (see Definition 7.12 on page 110) on the one hand and
the similarity correlation Definition 7.17 on the other. The prediction value
p(u, v, i) of an item i for user u – not having rated this item in advance – is
computed on the rating of user v in the following way:

p(u, v, i) = ratevi + rateDiff (u, v) (7.18)

By applying this pairwise prediction value on a list of similar users the
overall prediction value pred of the item i for the user u can be defined.
Given a user u we can create a sorted list Lu – corresponding to the simi-
larity weight/correlation value – of the most similar users by applying Defi-
nition 7.17 on page 111 to a set of users. The most similar users (e.g. the
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first n elements of list Lu) of u are used to compute the prediction value for
a given item i, based on the weighted rating differences

pred(u, i) =

∑k
v=1 (p(u, v, i)sim(u, v))

∑k
v=1 sim(u, v)

(7.19)

7.1.3. Evaluation

The algorithm was tested on the GroupLens2 100k Movielens data set us-
ing an averaged five fold test based on the available, prepared datasets.
This choice was made to produce comparable results which can be
used/referred by other researchers in the community.

Data set

The used data set for the evaluation, is one of the most used test data sets
for CF-algorithms in the recommender research community provided and
managed by GroupLens. The characteristics of this data set are:

• it contains 100.000 ratings from 943 users on 1682 movies

• the ratings range from 1(worst) to 5(best)

• each user has rated at least 20 movies

• 5 prepared (disjoint) data sets are provided for running 5-fold tests
with a training base consisting of 80% and a test set having 20% of
the overall ratings

Additional some simple demographic user information such as age, gen-
der, occupation, postal code, etc. is provided.

Test procedure

For producing comparable results we used the five prepared data sets
u1.base, ..., u5.base for training purpose and the corresponding test
data u1.test, ..., u5.test for evaluation in the course of an 5-fold cross
validation test. As a test metric we used the Mean Absolute Error (MAE)
– the standard metric for evaluating collaborative filtering algorithms – to
determine the prediction quality of the algorithms.

The MAE is defined as the average difference between the predicted
ratings and the real user ratings, as defined within the test sets. Formally,
MAE can be defined as:

2http://www.grouplens.org as of 11/2008
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MAE =

∑N
i=1 |pi − ri|

N
(7.20)

where pi is the predicted value for item i and ri is the user’s rating.

For evaluating the improvements achieved by our approach we per-
formed a 5-fold cross validation test upon the n% most similar users (con-
cerning the complete list of similar users), ranging from the best 2% up to
100% (all users). Furthermore, these tests were performed with 3 variants
of the Pretty Good Correlation (PGC) based on standard rating, relative
rating and adjusted rating. Additional an implementation of the Pearson al-
gorithm, as presented in (Resnick et al., 1994), was taken as the reference
implementation.

Test results

As shown in Figure 7.2 and Figure 7.3 on page 1143 each of the three
variants of the PGC family outperform Pearson by far, especially in the
context of using only few users.

Figure 7.2.: Overview: MAE of PGC Algorithms and Pearson

The PGC algorithm using the relative rating – PGC Rel Rating – (see
Definition 7.10 on page 109) showed the best performance with a minimum
MAE of 0.7245 using 50% of the available users (a table containing the

3Both figures show the same data – the diagram denoted as Zoom has a more fine grained
MAE scale
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Figure 7.3.: Zoom: MAE of PGC Algorithms and Pearson

values can be found in Appendix A on page 179). Although having the
minimal MAE values of all tested algorithms, the performance of PGC Rel
Rating dramatically changes to worse, when a larger number of users –
the more dissimilar onces – are taken into account! An explanation of this
behaviour is, that this algorithm is very sensible to real similarity and can
not deal very well with double false (opposite ratings of unsimilar users)
contributions to the similarity correlation.

But the most interesting fact of the presented algorithms is their good
behavior in the context of using only a limited number of similar users.
All three variants of the PGC family have a MAE about 0.77 when using
only the best 2% of the similar users which is about 25% better than the
corresponding MAE of Pearson (having 0.96).

Furthermore, also other algorithms such as Slope One (Lemire and
Maclachlan, 2005) are outperformed by our approach. In their paper
Lemire and Maclachlan (2005) published MAE values about 0.7524 for all
three variants – Bi-Polar Slope One, Weighted Slope One, Slope One – of
their algorithm, based on the Movielens 100k data set.

4Using the normalized value 0.188 – see (Lemire and Maclachlan, 2005), p. 474, 475
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7.2. Profile-Based Approach: The D
2-Tree

One major concept of the Adaptive Personalization approach is the user
driven creation and refinement of profile attributes. This aggregated in-
formation can be used for meta data based recommendations by finding
profiles with similar attribute values. In this section a new data structure
the Discretized Dimension Tree (D2-Tree) is presented for solving the k-
nearest neighbors problem in a high dimensional search space stretched
by dimensions of profiles. The D2-Tree is, similar as the K-D-B tree (Robin-
son, 1981), a combination of B-tree (Comer, 1979) and kD-tree (Procopiuc
et al., 2002) concepts adopted for data mining problems where profiles
with a high number of dimensions with limited number of discretized val-
ues form the search space. Unlike other trees for solving the k-nearest
neighbors problem the structure of the D2-Tree is not intended to reflect
the distances between the profiles directly but rather provides the infras-
tructure for appropriate algorithms solving this task dynamically.

7.2.1. Requirements

Finding a set of similar items to a given one is a core task of a recom-
mender system. While collaborative filtering approaches define user simi-
larity based on item ratings other approaches, e.g., content-based filtering,
rely on the similarity of common attribute values of the item descriptions.
Application areas for the latter approach, being addressed by the D2-Tree,
are:

• Body shops, where the best matches between the skill profile of a
user and job specifications have to be defined

• Gift finder, where item descriptions are matched against the prefer-
ences of a person

• Dating platforms, where personality descriptions must be compared
to find the most harmonic results

Applications like these are often based on a profile system for mod-
eling the items of interest and an appropriate matching functionality for
defining the accordance of profiles. Typically these profiles consist of
a variety of matching relevant attributes often having discretized value
ranges (e.g., age-group, dress size, etc.). The search for best match-
ing profiles to a given one can be described as the definition of the
k-nearest neighbors in a search space spanned by the profiles attributes.
Furthermore, the impact of an attribute concerning the result set must
often be handled on an individual level at each request and in real-time too.
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So an appropriate algorithm for solving the k-nearest neighbor problem
in this context has to meet the following requirements:

1. The search space is spanned by an extensive number dimensions,
corresponding to the attributes of the profiles

2. The value range of a dimension consists of discretized values

3. The definition of the k-nearest neighbors must be performed in real
time

4. The impact of dimensions concerning the result must be supported
on a request level (e.g. ignoring of a dimension, weighting of dimen-
sions)

It is the last requirement why well-known data structures such as kD-
trees (Procopiuc et al., 2002) or K-D-B trees (Robinson, 1981) cannot be
used because these approaches build a rigid structure reflecting the sim-
ilarity of profiles. Furthermore, the real time behavior is very important
especially in the context of real world applications. In the next sections a
new data structure, the D2-Tree, is presented meeting the requirements
defined above.

7.2.2. Definitions

For the consecutively considerations the following definitions will be used.

Profile: A profile is a description of an item consisting of a number of
attributes and a unique identifier. As a sample, a user of a system can
be modeled with the help of a profile containing attributes such as age,
gender, name, date of birth, etc.

Dimension: A dimension implements a search criteria within the search
space and consists of a unique identifier (e.g. dimension name), a type
and a set of discretized values, describing all possible characteristics of
this dimension. So, for example, the dress size of a person can be seen
as a sample of a dimension, having the type ordinal and a possible value
set of small, medium, and large.

Dimension type: The type of a dimension defines its discretized value
range as well as the set of operations which can be performed on the value
objects. Samples of possible types are integer, nominal, cardinal, set, etc.

Dimension value : Specific characteristics of a dimension are imple-
mented by dimension value objects, consisting of one of the provided
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dimension values.

Difference function : For defining the difference of two dimension val-
ues u and v of dimension i a function diffi(u, v) is provided defining the
normalized difference of two values. For ease of discussion, this function
can be defined as

diffi(u, u) =
u − v

|maxi − mini|
(7.21)

where maxi and mini are placeholders for the maximum and minimum
values of dimension i. Additional to these definitions a distance measure
for defining the similarity of two profiles is introduced in Definition 7.22

dist(P, Q) =

√

√

√

√

n
∑

i=1

wi · diffi(P, Q)2; wi ≥ 0; 0 ≤ diffi ≤ 1 (7.22)

describing the weighted Euclidean distance of two profiles P and
Q where wi is the weight of the i-th dimension and diffi(P, Q) is the
difference function of dimension i.

Defining an appropriate difference function for each dimension is a core
task in constructing the D2-Tree, because with diffi specific domain knowl-
edge is incorporated in the process of solving the k-nearest neighbors
problem. Typically these functions will be carefully handcrafted with re-
spect to the problem domain.

7.2.3. Structure

In contrast to common tree-based approaches for solving the k-nearest
neighbors problem (e.g. kD-trees) the structure of the D2-Tree does not
directly reflect the similarity of two profiles but provides indexing mecha-
nism and control information for solving this problem efficiently. A D2-Tree
is defined as follows:

1. The basic structure of a D2-Trees is implemented by a B-Tree, where
each layer of inner tree nodes corresponds to one dimension of the
underlying search space

2. While the leaf nodes of the tree contain the profiles, the inner nodes
only contain routing information to other subtrees. So, a D2-Tree
reflecting a n-dimensional search space consist of n+1 layers.

117



CHAPTER 7. RECOMMENDATION ALGORITHMS

Figure 7.4.: D2 Tree with 3 Dimensions

3. The more important a specific dimension is the nearer it is placed to
the root node, which is modeled by the most important dimension. If
no order of importance can be defined in advance, those dimensions
with the highest discriminatory power concerning the distribution of
profiles should be used to form the higher tree layers5.

4. Inner nodes contain triples of the form 〈valueID, (nrProfiles),→〉
where valueID is an identifier for a value object of the corresponding
dimension, (nrProfiles) describes the number of profiles stored in
leaf nodes available in that subtree the reference → is pointing to.

In Figure 7.4 a D2-Tree with three dimensions is shown, being an
example for a search space spanned by user attributes such as age,
height and weight.

Although the D2-Tree uses some concepts of B-trees and kD-trees there
are several important differences to these structures:

1. Due to the fact that the value range consists of well-known, prede-
fined values no splitting or merging of inner nodes is necessary based

5The root node is defined as the highest layer.
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on insertion or deletion operations. So potentially cascading tree or-
ganizations can be avoided in contrast to B-trees derivatives such as
B+- or B∗-trees (Samet, 2005). The consequence of this advantage
is not only an improved performance but also a better applicability
in the context of persistent indexes for databases (e.g. reduction of
locks).

2. The maximal depth and width of the D2-Tree does not depend on
the number of profiles being managed by this structure (in contrast
to kD-trees!) but only on the number of dimensions and their value
ranges.

3. A fast navigation through the tree structure is supported based on the
hash-table like structure of the inner nodes. Based on the fact, that
each reference to a subtree is identified by a value ID, these entries
can be accessed very efficiently either by using hash structures or by
supporting a direct indexing (array) in time critical applications.

4. By only storing the value IDs instead of the value objects within the
inner nodes reduces the amount of allocated memory, especially in
the context of memory intensive value objects (e.g. strings).

5. Due to the additional information concerning the number of profiles
available per subtree – the (nrProfiles) attribute of the inner node
triple 〈valueID, (nrProfiles),→〉 – efficient operations for solving the
kNN problem can be implemented (e.g. tree pruning). This is espe-
cially important in the context of recommender systems where typi-
cally a small but adequate number of recommended items should be
presented to the user.

Providing appropriate difference functions diffi for each dimension is a
key factor for the performance and applicability of D2-Trees. Although each
instance of a D2-Tree can have its own set of difference functions, these
functions are typically carefully modeled together with the corresponding
dimensions thus forming the standard behavior of a tree dimension for
a given domain. By providing explicit definitions of these diffi functions
also complex domain knowledge can easily be incorporated, e.g. by using
pre-calculated look-up tables.
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An example for the definition of a dimension gender is presented in XML
style in Listing 7.1.

1 <dimension name= ’ gender ’ >
2 <type name= ’ nominal ’ > </ type >
3 <value−range name= ’ values ’>
4 <value ID= ’ 1 ’>male </ value >
5 <value ID= ’ 2 ’>female </ value >
6 </ value−range>
7 < d i f f −f u n c t i o n name= ’ genderD i f f ’ >
8 < r u l e value= ’ 0 ’>male−male | female−female </ ru le >
9 < r u l e value= ’ 1 ’>male−female | female−male </ ru le >

10 </ d i f f −f unc t i on >
11 </ dimension >

Listing 7.1: Definition of a Dimension

This dimension with name gender has a nominal type with the value
range (male, female) having the value Ids 1 and 2. Here the difference
function is declared as a simple rule, expressing that the difference function
genderDiff will return 0 when both operands have the same value or 1 in
the case that they are different. Accordingly a D2-Tree can be defined by
providing the following information (see Listing 7.2):

1. a mapping between profile attributes and search space dimensions

2. associations of the dimensions to layers of the tree

3. appropriate difference functions, based on the profiles attributes

1 < t ree name=" simpleUserTree " >
2 < l e v e l nr= ’ 1 ’
3 dimension= ’ gender ’
4 a t t r i b u t e = ’ P r o f i l e . getGender ’>
5 </ l eve l >
6 < l e v e l nr= ’ 2 ’
7 dimension= ’ ageGroup ’
8 a t t r i b u t e = ’ P r o f i l e . getAgeGroup ’>
9 </ l eve l >

10 < l e v e l nr= ’ 3 ’
11 dimension= ’ dressSize ’
12 a t t r i b u t e = ’ P r o f i l e . getSize ’
13 d i f f −f u n c t i o n = ’ d i f fD ressS i ze ’>
14 </ l eve l >
15 < roo t l e v e l = ’ 1 ’ / >
16

17 < d i f f −f u n c t i o n name= ’ d i f fD ressS i ze ’>
18 . . .
19 </ d i f f −f unc t i on >
20 </ t ree >

Listing 7.2: Definition of a D2-Tree

Each level of the tree – identified with a number, starting with 1 at the
root level – is defined by a dimension (e.g. gender, ageGroup ), the cor-
responding attribute of a profile (e.g. Profile.getGender) and an (optional)
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difference function (here diffDressSize) to be used instead of the standard
implementation, provided by the dimension itself.

7.2.4. Tree Operations

Having these basic principles of the D2-Tree in mind, we will now have a
closer look to the operations supported by this data structure. Basically,
the following operations are provided by the D2-Tree:

• insert: A profile is inserted into the tree. If the tree does not exist it
will be created.

• remove: Removes a profile from the tree.

• get: Returns a list of profiles, exactly matching a set of given dimen-
sion values (search criteria).

• getNearestNeighbors: Returns a list of profiles best matching a set
of given dimension values (search criteria).

For the following explanations we assume the existence of a profile sys-
tem providing a set of profiles pi together with the corresponding definition
of the D2-Tree (dimensions, difference functions, etc.). Furthermore, we
assume that a mapping dimension – tree layer exists and that a root node
is available. A Java like notation is used to formulate the algorithms.

insert

With method insert(TreeNode node, Profile p, int level) – see Listing 7.3
on page 122 – a profile p is inserted into the tree defined by node. This
recursive function works as follows:

1. if node is a leaf node insert profile p in node and return

2. if node is an inner node check if a subtree for the appropri-
ate profile attribute for the current dimension exists (find a triple
〈valueID, (nrProfiles),→〉 where valueID = p.attribute)

3. if no subtree is found create a new node n, corresponding to the
current level, and insert it into the current node

4. take n as the current node and proceed with step 1

In Listing 7.3 on page 122 a code snippet containing the definition of the
method insert (see line 1 to 20) together with the calling sequence (line
23) is shown.
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1 i n s e r t ( TreeNode node , P r o f i l e p , i n t l eve lCn t )
2 {
3 wasInserted= fa lse ;
4 i f ( node . isLeafNode ( ) )
5 wasInserted=node . i n s e r t P r o f i l e I f N o t E x i s t s ( p ) ;
6 else
7 {
8 va lue Id = getValueIdOf ( leve lCnt , p ) ;
9 newNode = node . getSubTree ( va lue Id ) ;

10 l eve lCn t = leve lCn t +1;
11 i f ( newNode==nu l l )
12 {
13 newNode=createNodeForLevel ( l eve lCn t ) ;
14 node . addSubTree ( valueId , newNode ) ;
15 }
16 wasInserted = i n s e r t ( newNode , p , l eve lCn t ) ;
17 i f ( wasInserted )
18 newNode . incLeafEnt ryCounter ( ) ;
19 }
20 }
21 . . .
22 P r o f i l e p = . . . ;
23 i n s e r t ( root , p , 0 ) ;
24 . . .

Listing 7.3: Insert a Profile

The boolean variable wasInserted is used to increment the nrProfiles
counter of each inner node triple along the insertion path over the tree di-
mensions. The counter is increased (line 18) only if profile p was inserted
in a leaf node (line 5). Function getValueIdOf(levelCnt, p) returns the val-
ueID of the value of the profile’s attribute, corresponding to the dimension
at level levelCnt. Furthermore, function createNodeForLevel(levelCnt) cre-
ates a new node for the tree level defined by levelCnt. Both functions are
based on the relations Dimension− ProfileAttribute− TreeLevel as de-
scribed above.

remove

Method remove(TreeNode node, Profile p) removes the profile p from the
D2-Tree defined by node. This recursive function works as follows:

1. if node is a leaf node remove profile p and return

2. if node is an inner node check if a subtree for the appropri-
ate profile attribute of the current dimension exists (find a triple
〈valueID, (nrProfiles),→〉 where valueID = p.attribute)

3. return, if no subtree exists (profile p cannot be element of this tree)

4. take the subtree’s root node as the current node and proceed with
step 1
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1 remove ( TreeNode node , P r o f i l e p )
2 {
3 wasRemoved = fa lse ;
4 i f ( node . isLeafNode ( ) )
5 wasRemoved=node . r e m o v e P r o f i l e I f E x i s t s ( p ) ;
6 else
7 {
8 va lue Id = getValueIdOf ( leve lCnt , p ) ;
9 nextNode = node . getSubTree ( va lue Id ) ;

10 i f ( nextNode != nu l l )
11 {
12 wasRemoved = remove ( nextNode , p ) ;
13 i f (wasRemoved )
14 {
15 i f ( nextNode . isEmpty ( ) )
16 node . removeSubTree ( va lue Id ) ;
17 else
18 nextNode . decLeafEntryCounter ( )
19 }
20 }
21 }
22 }
23 . . .
24 P r o f i l e p = . . . ;
25 remove ( root , p ) ;
26 . . .

Listing 7.4: Remove a Profile

If no subtree (defined by nextNode) is found this method returns without
changing the tree. If the profile could be removed successfully, indicated
by the boolean variable wasRemoved, the counter for the available profiles
of this subtree is decremented or the whole subtree is removed.

get

Method get(TreeNode node, Profile p) returns a set of profiles pi, having
the same attribute values as p. This recursive function works similar to
remove.

1. if node is a leaf node, assign all profiles to the result set

2. if node is an inner node check if a subtree for the appropri-
ate profile attribute of the current dimension exists (find a triple
〈valueID, (nrProfiles),→〉 where valueID = p.attribute)

3. return, if no subtree exists (no profiles such as p can be elements of
this tree)

4. take the subtree’s root node as the current node and proceed with
step 1
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1 Set get ( TreeNode node , P r o f i l e p )
2 {
3 Set r e s u l t S e t = nu l l ;
4 i f ( node . isLeafNode ( ) )
5 r e s u l t S e t =node . g e t A l l E n t r i e s ( ) ;
6 else
7 {
8 va lue Id = getValueIdOf ( leve lCnt , p ) ;
9 nextNode = node . getSubTree ( va lue Id ) ;

10 i f ( nextNode != nu l l )
11 r e s u l t S e t = get ( nextNode , p ) ;
12 }
13 return r e s u l t S e t ;
14 }
15

16 . . .
17 P r o f i l e s e a r c h P r o f i l e = . . . ;
18 Set r e s u l t = get ( root , s e a r c h P r o f i l e ) ;
19 . . .

Listing 7.5: Get Profiles

As mentioned above, this method returns all profiles pi, having the same
characteristics (concerning the attributes covered by the tree dimensions)
as the search profile p.

getNearestNeighbors

The method getNearestNeighbors(TreeNode root, Profil p, int minNrPro-
files – see Listing 7.6 on page 127 – implements the k-nearest neighbor
search for the D2-Tree structure defined by root and tries to return at least
minNrProfiles profiles pi being most similar to the given search profile
p. The similarity of two profiles is based on the sum of the difference
functions of the tree dimensions, according to Definition 7.22 on page 117.

Given a D2-Tree with root node root, a search profile p and the constraint
that at least minNrProfiles should be returned, the non-recursive algorithm
works as follows:

1. S, the set of the current tree nodes, is initialized with the root node of
the D2-Tree

2. for each triple 〈valueID, (nrProfiles),→〉j of all nodes in S (in-
ner tree nodes) the difference dij of the valueID to the cor-
responding search profile attribute p of the current tree level
i is defined by applying the appropriate difference function
diffi(valueID, p.attributeV alue).

3. define the minimal set of triples T having the minimal sum of all level
differences (

∑i
j=0 d2

ij) covering at least minNrProfiles of leaf entries
(
∑

nrProfiles ≥ minNrProfiles).

124



CHAPTER 7. RECOMMENDATION ALGORITHMS

4. if triples exist being not elements of T but having the same difference
to the search profile p than these triples are also affiliated to T . This
strategy should avoid, that promising subtrees are pruned too early
in the calculation process. This situation can occur when a subtree,
being pruned at level i due to a marginal greater difference value
would provide far better results at level i + k than elements of T .

5. all tree nodes being referenced by the triples of T are used to form
the new set S (S = T )

6. if S consists of leaf nodes, the algorithms stops returning the profiles
of the lef nodes in S as a result

7. if S consists of inner nodes proceed with step 2

In Figure 7.5 on page 126 this process is shown in the context of an ex-
ample where (at least) 5 most similar profiles should be determined, given a
search profile p with the values < 1, 2, 1 > and a D2-Tree having 3 levels of
inner nodes. For ease of discussion we assume, that the valueIDs stored in
the triples correspond to the referenced values and that the difference func-
tions diffi of the three levels (i = 1, 2, 3) are only computing the absolute
value of the attributes differences: (diffi = |valueID − p.attributeV alue|).

1. starting with the root node, the set T of the best matching subtrees is
defined covering at least 5 leaf node entries (profiles). In our sample
presented in Figure 7.5 on page 126 the left triple with valueID = 1
is taken, because of its minimal distance dij = |1 − 1| = 0 to the
corresponding value of the search profile and the sufficient number
of obtainable profiles (15).This subtree adorned with the current dis-
tance 0 to the search profile p is stored.

2. the same operation is now repeated for the node found in step 1 (left
node of level 1 in Figure 7.5 on page 126) resulting in two subtrees
having the same overall distance 1 (calculated as

∑1
j=0 d2

ij) to the
search profile p. Although each of the two subtrees cover a sufficient
number of profiles (9 entries for the left and 6 entries for the right
triple) both are taken in respect for finding better results.

3. by proceeding the search process, two nodes are now analyzed at
level 2 (the first two nodes of dimension 3, see Figure 7.5 on page
126) resulting in two triples having the same difference value, pointing
to leaf nodes.

4. now having reached the leaf level of the D2-Tree the algorithm stops
returning the leaf node entries as the result
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Figure 7.5.: Searching 5 Nearest Neighbors of p =< 1, 2, 1 >

The advantage of the strategy regarding the pruning of equivalent
subtrees on a higher tree level (see step 2 at tree level 1) is shown in step
3. If only one of the two subtrees were taken at level 1, the result set would
have contained less optimal profiles. So, for example, by selecting the left
tree (triple: 〈1, (9),→〉) the result set would only contain 4 best matches
(profiles P243, P345, P98, P12) and in the case of choosing the right node
entry (triple: 〈3, (6),→〉) even only 2 best results (profiles P222, P321)
were found. The most obvious drawback of this strategy is that enlarging
the set of subtrees being analyzed will also rise the costs of computing
results. A Java like code snippet, showing the algorithm in more detail, is
presented in Listing 7.6 on page 127.
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1 TreeSet getNearestNeighbors ( TreeNode root , P r o f i l p , i n t minNrPro f i l es )
2 {
3 i n t sumLeafEntr ies =0;
4 TreeSet actSubTrees = nu l l ;
5 TreeSet nextSubTrees = nu l l ;
6 SetEntry en t ry = nu l l ;
7 TreeNode node = nu l l ;
8

9 nextSubTrees = createSubTreeSetForLevel ( 0 ) ;
10 r oo t . f indBestSubTrees ( p , 0 .0 , nextSubTrees ) ;
11

12 fo r ( i n t l eve lCn t =0; leve lCnt <nrTreeDimensions ( ) ; l eve lCn t ++)
13 {
14 actSubTrees=nextSubTrees ;
15 sumLeafEntr ies =0;
16

17 nextSubTrees = createSubTreeSetForLevel ( l eve lCn t +1 ) ;
18 while ( actSubTrees . hasNextEntry ( ) )
19 {
20 en t ry = actSubTrees . nextEnt ry ( ) ;
21 node = en t ry . getTreeNode ( ) ;
22 sumLeafEntr ies = sumLeafEntr ies + node . getLeafEntryCounter ( ) ;
23 node . f indBestSubTrees ( p , en t r y . ge tD i f f e rence ( ) , nextSubTrees ) ;
24

25 i f ( nextSubTrees . hasEnoughEntries ( sumLeafEntr ies , m inNrPro f i l es ) )
26 break ;
27 }
28 }
29

30 return actSubTrees ;
31 }
32

33 . . .
34 P r o f i l e s e a r c h P r o f i l e = . . . ;
35 TreeSet nearestNeighbours = getNearestNeighbors ( root , sea rchPro f i l e , 5 ) ;
36 . . .

Listing 7.6: Search Nearest Neighbors

The two methods findBestSubTrees and hasEnoughEntries are the core
elements of this code sample. While the former function is responsible
for the definition of the best matching subtrees (based on the algorithms
described above) the latter implements the constraint of returning a
minimal number of results. Both methods are proper starting-points for
optimizations, because of their major impact on the performance behavior
of the algorithm.

An important requirement defined above, the applicability of weights
at each request, was not considered in the discussion so far. Based
on the considerations presented above, the algorithm can easily be
extended for meeting these requirements, by introducing a weight vector
〈w1, ..., wi, ..., wn〉 containing individual weights for each dimension i being
used for weighting the differences (wid

2
ij) within the method findBestSub-

Trees. An adapted code sample can be found in Listing 7.7 on page 128.
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1 TreeSet getNearestNeighbors ( TreeNode root , P r o f i l p ,
2 Vector weights , i n t minNrPro f i l es )
3 {
4 i n t sumLeafEntr ies =0;
5 TreeSet actSubTrees = nu l l ;
6 TreeSet nextSubTrees = nu l l ;
7 SetEntry en t ry = nu l l ;
8 TreeNode node = nu l l ;
9

10 nextSubTrees = createSubTreeSetForLevel ( 0 ) ;
11 r oo t . f indBestSubTrees ( p , 0 .0 , weights , nextSubTrees ) ;
12

13 fo r ( i n t l eve lCn t =0; leve lCnt <nrTreeDimensions ( ) ; l eve lCn t ++)
14 {
15 actSubTrees=nextSubTrees ;
16 sumLeafEntr ies =0;
17

18 nextSubTrees = createSubTreeSetForLevel ( l eve lCn t +1 ) ;
19 while ( actSubTrees . hasNextEntry ( ) )
20 {
21 en t ry = actSubTrees . nextEnt ry ( ) ;
22 node = en t ry . getTreeNode ( ) ;
23 sumLeafEntr ies = sumLeafEntr ies + node . getLeafEntryCounter ( ) ;
24 node . f indBestSubTrees ( p , en t r y . ge tD i f f e rence ( ) , weights , nextSubTrees ) ;
25

26 i f ( nextSubTrees . hasEnoughEntries ( sumLeafEntr ies , m inNrPro f i l es ) )
27 break ;
28 }
29 }
30

31 return actSubTrees ;
32 }
33

34 . . .
35 P r o f i l e s e a r c h P r o f i l e = . . . ;
36 Vector personalWeights = . . . ;
37 TreeSet nearestNeighbours = getNearestNeighbors ( root , sea rchPro f i l e ,
38 personalWeights , 5 ) ;
39 . . .

Listing 7.7: Weighted Search Nearest Neighbors
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7.2.5. Ignoring Dimensions

The temporary ignoring of dimensions in a search space in the context of
a specific request is a very important use case and was therefore defined
as a requirement for the D2-Tree in Section 7.2.1 on page 115. In the D2-
Tree this can be achieved by simply skipping the tree level being ignored
and proceeding with the operation described above with the subtrees of
the ignored nodes.

Method get(TreeNode node, Profile p, Set result) must be adapted being
capable for handling set of subtrees. The necessary extensions are shown
in Listing 7.8.

1 get ( TreeNode node , P r o f i l e p , F i l t e r f i l t e r , Set r e s u l t )
2 {
3 i f ( node . isLeafNode ( ) )
4 r e s u l t S e t . add ( node . g e t A l l E n t r i e s ( ) ) ;
5 else
6 {
7 TreeNode node nextNode = nu l l ;
8

9 i f ( f i l t e r . ignoreDimension ( node . getDimensionId ( ) ) )
10 {
11 TreeSet a l l = node . getAl lSubTrees ( ) ;
12 fo r ( I t e r a t o r i t = a l l . i t e r a t o r ( ) ; i t . hasNext ( ) ; )
13 {
14 nextNode = i t . next ( ) ;
15 get ( nextNode , p , r e s u l t ) ;
16 }
17 }
18 else
19 {
20 va lue Id = p . getValueIdOf ( node . getDimensionId ( ) ) ;
21 nextNode = node . getSubTree ( va lue Id ) ;
22 get ( nextNode , p , r e s u l t ) ;
23 }
24 }
25 }
26

27 . . .
28 F i l t e r p e r s o n a l F i l t e r = . . . ;
29 P r o f i l e s e a r c h P r o f i l e = . . . ;
30 Set r e s u l t = new Set ( ) ;
31 get ( root , sea rchPro f i l e , p e r s o n a l F i l t e r , r e s u l t ) ;
32 . . .

Listing 7.8: Get: Ignoring Dimensions

The filter object (see signature) contains the information concerning the
dimensions being ignored, which can be requested by calling the method
filter.ignoreDimension(dimId) for a given dimension. The necessary adap-
tations for dealing with sets of subtrees can be found from line 7 to line
17.
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Incorporating filter aspects in the getNearestNeighbors method can be
done with minimum effort, by simply adapting the exit condition of the loop
in line 26 (see Listing 7.9).

1 TreeSet getNearestNeighbours ( TreeNode root , P r o f i l p ,
2 F i l t e r f i l t e r , i n t minNrPro f i l es )
3 {
4 i n t sumLeafEntr ies =0;
5 TreeSet actSubTrees = nu l l ;
6 TreeSet nextSubTrees = nu l l ;
7 SetEntry en t ry = nu l l ;
8 TreeNode node = nu l l ;
9

10 nextSubTrees = createSubTreeSetForLevel ( 0 ) ;
11 r oo t . f indBestSubTrees ( p , 0 .0 , nextSubTrees ) ;
12

13 fo r ( i n t l eve lCn t =0; leve lCnt <nrTreeDimensions ( ) ; l eve lCn t ++)
14 {
15 actSubTrees=nextSubTrees ;
16 sumLeafEntr ies =0;
17 nextSubTrees = createSubTreeSetForLevel ( l eve lCn t +1 ) ;
18 while ( actSubTrees . hasNextEntry ( ) )
19 {
20 en t ry = actSubTrees . nextEnt ry ( ) ;
21 node = en t ry . getTreeNode ( ) ;
22 doIgnore= f i l t e r . ignoreDimension ( node . getDimensionId ( ) ) ;
23 sumLeafEntr ies = sumLeafEntr ies + node . getLeafEntryCounter ( ) ;
24 node . f indBestSubTrees ( p , en t r y . ge tD i f f e rence ( ) , nextSubTrees ) ;
25

26 i f ( ! doIgnore && nextSubTrees . hasEnoughEntries ( sumLeafEntr ies , m inNrPro f i l es ) )
27 break ;
28 }
29 }
30

31 return actSubTrees ;
32 }
33

34 . . .
35 P r o f i l e s e a r c h P r o f i l e = . . . ;
36 TreeSet nearestNeighbours = getNearestNeighbours ( root , sea rchPro f i l e , 5 ) ;
37 . . .

Listing 7.9: GetNearestNeighbors: Ignoring Dimensions
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7.2.6. Cost Analysis

In this section a cost analysis of the standard D2-Tree methods is pre-
sented on the basis of counting the number of required operations. The
following characteristics (see Table 7.1) of the D2-Tree are important for
our analysis:

n ... the number of inner node tree levels (tree height is n + 1)
m ... the minimal number of profiles to be returned (if available)
v⊘ ... average number of node entries
k ... average number of subtrees to be considered (k ≤ v⊘)

Table 7.1.: D2-Tree Characteristics

The costs of the D2-Tree methods are defined by cost functions based
on the operations listed in Table 7.2:

H ... hash- or index function for finding a triple within a node
C ... compare function
I ... insert operation of a triple within a node
R ... remove operation of a triple within a node
N ... creation of a new node
D ... deletion of a node
S ... subtraction operation (applying difference function)
A ... addition operation

Table 7.2.: Basic Operations

Costs of Method: insert

For each of the n inner node levels of the D2-Tree method insert checks if
an appropriate subtree (modeled as a triple in a node) exists. This checking
is done by identifying an appropriate triple (hash access) and comparing it
with corresponding attribute value. Assuming a D2-Tree with n dimensions
and that no new node have to be created, the costs of this insert operation
are defined by n hash-operations and 1 insert operation of the profile in the
leaf node – see Definition 7.23

cost(insertStd) = nH + I (7.23)

If at tree level l no triple is found new nodes must be created too. The
adapted cost function can be found in Definition 7.24.

cost(insertNew) = cost(insertStd) + (n + 1 − l)(I + N) (7.24)

131



CHAPTER 7. RECOMMENDATION ALGORITHMS

Costs of Method: remove

Method remove behaves similar to insert also reflected by the cost function
– see Definition 7.25

cost(removeStd) = nH + R (7.25)

Removing the last entry of a node will also lead to the deletion of this
node from the tree, possibly causing restructuring operations within the
parent nodes. If, starting at level l, a path exists in the D2-Tree having
only 1 entry at each level, the removing of the leaf entry will also cause the
deletion of this subtree/path. The adapted cost function can be found in
Definition 7.26.

cost(removeDel) = cost(removeStd) + (n + 1 − l)(R + D) (7.26)

Costs of Method: get

Concerning the traversing of the inner nodes method get induces equiva-
lent costs as method remove or insert. If a specific profile, identified by an
ID, should be returned an additional hash operation in the leaf node must
be performed. The cost function is defined as:

cost(getStd) = (n + 1)H (7.27)

Costs of Method: getNearestNeighbors

The costs of the method getNearestNeighbors are defined by the oper-
ations needed to define the appropriate subtrees. Starting with the root
node, appropriate subtrees are determined by (i) calculating the differ-
ence between the node triples and the corresponding attribute of the given
search profile (costs: v⊘S) and (ii) finding the best k subtrees (costs:
C

∑k
i=1(v⊘ − i)) which is (iii) controlled by incrementing a profile counter

and comparing it with the number of of results to be returned (costs:
(k − 1)A + kC)) per subtree. The appropriate cost function for the root
node (level 1) is shown in Definition 7.28.

cost(getNN1) = v⊘S + C

k−1
∑

i=0

(v⊘ − i) + ((k − 1)A + kC) =

= v⊘S + kC(v⊘ −
k − 1

2
) + ((k − 1)A + kC) (7.28)

132



CHAPTER 7. RECOMMENDATION ALGORITHMS

Having found the best k subtrees the same operations are now applied
to all triples v⊘ of the root nodes of these trees (kv⊘). So, on level 2, the
cost function is defined as:

cost(getNN2) = kv⊘S + C
k−1
∑

i=0

(kv⊘ − i) + ((k − 1)A + kC) =

= kv⊘S + kC(kv⊘ −
k − 1

2
) + ((k − 1)A + kC) (7.29)

So, for a D2-Tree with n dimensions (levels), we can formulate an overall
cost function:

cost(getNNStd) =
n−1
∑

j=0

(kjv⊘S + C
k−1
∑

i=0

(kjv⊘ − i) + ((k − 1)A + kC))(7.30)

Obviously, the most important factors concerning costs are the number
of triples stored in nodes and the number of subtrees required for defining
the minimal number of profiles. Furthermore, if k and v⊘ have high values
and if k ≈ v⊘ the sorting term

∑k−1
i=0 (v⊘ − i) will have an order of O(v2

⊘).
In that cases sorting structures such as red-black-trees (Samet, 2005) can
be used for further optimizations.

Discussion

Assuming, for ease of discussion, that the costs of all operations are equiv-
alent to C, the cost functions of the tree methods can be simplified as
shown in Table 7.3.

Method Cost function Order
insertStd C(n + 1) O(n)
removeStd C(n + 1) O(n)
getStd C(n + 1) O(n)

getNNStd C
∑n−1

j=0 (kjv⊘ +
∑k−1

i=0 (kjv⊘ − i) +
2k − 1)

O(nv⊘) to O(vn+1
⊘ )

Table 7.3.: Cost Functions

As shown in Table 7.3 the standard versions of the methods insert,
remove and get have a linear behavior only depending on the depth n of
the D2-Tree.

In contrast, method getNN has a more complex cost function depending
on the depth n, the number of triples per node (defined as v⊘) and the
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number k of subtrees being considered. For defining the order of costs we
further simplify the cost function as shown Table 7.3 on page 133. After
resolving the function above, we get:

cost(getNNStd) = C
n−1
∑

j=0

(kjv⊘ +
k−1
∑

i=0

(kjv⊘ − i) + 2k − 1)) =

= C

n−1
∑

j=0

(kjv⊘ + kj+1v⊘ −
k(k − 1)

2
+ 2k − 1) (7.31)

Considering the constraints, that n >> 1 and v⊘ ≥ k the most relevant
term of the expression (kjv⊘+kj+1v⊘− k(k−1)

2 +2k−1) is kj+1v⊘ which will
be used user for approximating the overall costs. Thus, ignoring all other
terms, we get

cost(getNNStd) = C
n−1
∑

j=0

(kj+1v⊘) = C(v⊘
1 − kn+1

1 − k
− 1) ; k 6= 1 (7.32)

for k 6= 1 and

cost(getNNStd) = C
n−1
∑

j=0

(kj+1v⊘) = Cv⊘n ; k = 1 (7.33)

in the case that k = 1. While Definition 7.33 can directly be used to
define the lower threshold of our cost approximation, an upper threshold
can be found by assuming that k = v⊘. Thus, the formula presented in
Definition 7.32 can further be simplified:

cost(getNNStd) = C(v⊘
1 − vn+1

⊘

1 − v⊘
− 1) = C(

v⊘ − vn+2
⊘

1 − v⊘
− 1) ≈

≈ C
vn+2
⊘

v⊘
= Cvn+1

⊘ (7.34)

In contrast to Definition 7.33, where the costs have a pretty good
linear characteristics concerning n and v⊘, the upper bound costs of
Definition 7.34 rise to the power of n!

Having such a huge range concerning the theoretical costs of this
method, it is important to understand the role of the involved parameters
and how their characteristics will be (more likely) in real time applications.
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As shown in Definition 7.30 on page 133 the most critical parameters
concerning the performance of getNearestNeighbors are the number of
nodes being considered (v⊘) and the minimal number of requested profiles
m which is used to define the necessary k subtrees of the next level.
In order to produce high quality recommendations good personalization
systems try to produce a limited, manageable number of results instead
of long lists of items. In practice m is very small, typically within the order
of 10-th, in contrast to the number of items which often ranges from some
thousands (small shops) to even millions (e.g. on-line music stores). Thus,
also the number of subtrees k, necessary to produce the requested result,
will be very small in practice, especially concerning the higher levels (near
root) of the D2-Tree. Furthermore, also the value ranges of discretized
dimensions are typically covering moderate numbers of values.

Example: Given a D2-Tree with 10 dimensions (n = 10) each having a
value range of 5. Moreover we assume that the tree is completely filled,
so that one profile exists for each possible value combination (nr = 510),
resulting in v⊘ = 5. Based on that structure the m = 20 nearest neighbors
of a given search profile s should be defined. Starting at the root node,
each of the 5 available subtrees is containing vn−1

⊘ = 59 profiles and so
only one subtree must be considered (k = 1). The process continues,
using only one subtree, until the penultimate level (level = 9) is reached
where 4 subtrees (k = 4) are necessary for generating 20 results. So,
on the last inner node level of the D2-Tree (level = 10) 4 nodes, having
together 20 triples, must be considered for calculation.

Using these figures together with a cost function cost(v⊘, k)6 for given
values v⊘ and k – see Definition 7.35

cost(v⊘, k) = C(v⊘ + k(v⊘ −
k − 1

2
) + 2k − 1) (7.35)

we can calculate the real effort

cost(getNNSample) = C(8 · cost(5, 1) + cost(5, 4) + cost(4 · 5, 20)) =

= C(8 · 11 + 26 + 269) = 383C (7.36)

where the first term (8 · cost(5, 1)) describes the costs at the first 8 levels,
the second term the costs at the a single node on the 9th level and the last
term the costs for calculating 4 nodes of the last inner node level. So, as
a result, only ≈ 400 operations have to be performed for finding 20 profiles

6Derived from Definition 7.28 on page 132 assuming that all operations have the same
costs as C.
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out of 510 which is far more close to nv⊘ (50) than to vn+1
⊘ (511).

But the reduction to only one subtree at a given level bares some risks,
especially when (i) the number of profiles covered by the subtree is nearly
equal to the requested number and (ii) all levels of the D2-Tree have nearly
the same weights. In that case a subtree being ignored at level i, can
produce the best match at level i + 1. A proper strategy to handle such
situations is the extension of the minimal set of necessary subtrees (T ) by
a small number of next best alternatives.

7.3. Contributions to the Research Question

In this chapter we have shown, how adding contextual information can
improve recommendation algorithms without introducing new data (e.g.,
time) which standard approaches do not consider.
The pretty good recommendation approach, presented in the first section,
incorporated information concerning the importance of an item in local
(per user) and global (for all users) contexts as well as in the context of the
pairwise relations of preference sets. The evaluation showed, that the pre-
sented similarity correlation outperforms standard algorithms, especially in
a context with little information. Furthermore, it could be proofed, that the
incorporation of local and global item importance (concepts similar to the
TFxIDF measure used in text retrieval) together with the overlap degree
of the preference sets – computed using the confidence of association rule
mining – can improve the similarity relation of users.

The D2-Tree, presented in this chapter, is a new data structure for solv-
ing the k-nearest neighbors problem in a search space, spanned by a high
number of discretized dimensions. Although well-known concepts were in-
corporated in this structure, significant differences exist. In contrast to clas-
sic search trees the structure of the D2-Tree does not reflect the adjacency
of profiles but supports algorithms for defining this closeness dynamically.
The most important characteristics of the D2-Tree are:

• A D2-Tree has a constant height and a well-known maximum width,
allowing better performance/memory consumption estimations which
is especially important for time critical applications.

• Compared with other trees (e.g. B∗-, B+-trees) much less changes
of the tree structure will occur, operations such as merging or splitting
of nodes do not exist. Therefore, costly locks of tree nodes can be
reduced to a minimum, an important issue in the context of parallel
systems.
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• Due to its relatively constant structure the D2-Tree is particularly suit-
able for persistent applications, especially important in the context of
huge data sets.

• The separation of the tree structure and the closeness of the profiles,
obtained by the incorporation of the difference functions, supports a
weight-based approach for solving the kNN-problem.

• By using explicitly defined difference functions, domain knowledge
can easily be imported and adapted without effecting the search
structure.

• The performance of the tree mainly depends on the number of di-
mensions and their respective value ranges, and not on the number
of profiles.

The D2-Tree, presented in the second section, is a complement for
the Adaptive Profile Model providing an efficient solution for the k-nearest
neighbor problem. The most important advantages of the D2-Tree are the
support of weighted requests and the ability to incorporate domain knowl-
edge even dynamically, thus supporting the context of use concerning a
specific request.
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8. Evaluation and Examination

The analysis presented in this chapter should provide the basis for the
verification of major concepts of the Adaptive Personalization approach as
well as a deeper insight into a real world personalization system and the
constraints it has to deal with.

The data on which this examination is based on was provided by
two instances of the Ericsson’s Media Suite - Music (EMM), a content
download platform incorporating an implementation of the personalization
approach presented in this thesis. Because of the specifics of the music
domain, the limitations of this instant implementation (mostly triggered by
business constraints) and the shortcomings concerning system operations
(e.g. system problems, down-times, etc.) this examination can only be
seen as a qualitative analysis of the Adaptive Personalization concepts.

This chapter is organized as follows. In the first Section 8.1 a short in-
troduction to the EMM, explaining important aspects of its implementation,
is provided. Next, in Section 8.2 on page 146 the objectives and the ba-
sic conditions of this examination are discussed providing the basis for our
analysis, presented in Section 8.3 on page 148. The results and implica-
tions are discussed in Section 8.4 on page 165.

8.1. Ericsson’s Media Suite - Music

The Ericsson’s Media Suite - Music (EMM) is a content download platform
focusing on the delivery of music related content on the mobile channel
(a web interface was supported too) and went on-line in Europe, Asia,
and the USA. The personalization aspects of the Ericsson’s Media Suite
- Music were implemented on the basis of API calls – a proprietary XML
over HTTP protocol – to a self-contained recommender system, called
Recommender Engine (RE), being an implementation of the Adaptive
Personalization approach. Both applications, the EMM as well as the RE,
were implemented in Java and stored their data in a SQL database - see
Figure 8.1 on page 140.

Due to this separation of these two applications a data synchronization
process was implemented keeping the data in the RE database up-to-date.
Basically, changes concerning first class objects such as user and item
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EMM Server
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RE DB

 

Figure 8.1.: Deplyoment of Components

records in the EMM triggered an update processes in the RE immediately.
For importing huge sets of content items a special upload service, called
bulk upload, was provided. In the case of unavailability of the RE (e.g. RE
was not started in advance, RE stopped, etc.) no update or synchroniza-
tion process was performed or scheduled – resulting in divergent datasets
in EMM and RE. Furthermore, both systems were implemented meeting
multi-tenant requirements.

8.1.1. Data Model

In Figure 8.2 on page 141 an overview of the conceptual data model of the
first class objects of the EMM, being of interest for the personalization, is
given showing the inter-class associations.

The class Artist was used for modeling song writers/performers and
consisted of attributes such as name, identifier, a list of associated
clusters, etc. This artist information was used to present a given artist
of a track and/or album to the community. Furthermore, no distinction
was made between a group such as The Rolling Stones and actors e.g.,
Madonna. The Track class was used to represent single songs or tracks
on a conceptual basis by using attributes such as name of the track,
release date, list of associated clusters, etc. Different audio instances of a
given track (e.g. an MP3 audio file) were modeled as Assets associated
with that track – see Figure 8.2 on page 141.
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Figure 8.2.: EMM Item Object Model

Although no compilations of tracks could be downloaded by users, the
Album concept was introduced mainly based on marketing considera-
tions, containing attributes such as name of the album, release date, list
of associated clusters, etc. In contrast to artists and tracks, which were
presented as first class objects on dedicated areas of the portal – called
Artist Page and Track Page respectively – the album information was only
used in context with artists and tracks to provide e.g. a collection of albums
of an artist or as a hint where a given track can be found.

All download able products provided by the EMM were modeled as
Assets of different types such as full audio files, wall papers, ring tones,
games, etc. which could be associated with a track (e.g. full audio) or
artist (e.g. wall paper). An asset consisted of an asset type, name of the
asset, sales information such as first/last date for valid downloads, list of
associated clusters, etc.

Furthermore, all these classes included operational data such as
tenant identification, permissions, date of upload into the system, data for
representation (e.g. pictures like covers) etc. too.

All relevant information concerning the user was collected in User
objects, consisting of attributes such as socio demographic information
such as age and gender (both optional), personal preferences concerning
music genres, favored/unfavored artists and tracks, just bought assets,
compilations of songs1, the MSISDN2, the type of the current handset, etc.

1A user based compilation of tracks was called playlist, although it could not be played.
2MSISDN is the (most common used) abbreviation of Mobile Subscriber Integrated Ser-

vices Digital Network Number
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Cluster

Music Genre Mood&Situation

Main Genre Sub Genre
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Figure 8.3.: EMM Cluster

The item space was structured according to Figure 8.3. The traditional
Music Genres were modeled as a two layer structure consisting of main
genres (e.g. rock ) and sub genres (e.g. hard rock ) which could be man-
aged by the portal administrators allowing them to add and delete specific
genres. The Mood&Situation clusters, which can be seen as alternative
music genres, were introduced to provide a need based classification of
music related content. Samples of such clusters were

• Dance Party

• First Love

• Action&Sports

• Under Pressure

• In the Blues

which could be administrated by portal operators too. In contrast to the
music genres, where the classification process was solely performed by ad-
ministrators, the capability of assigning an item to a Mood&Situation cluster
was provided to the community too. The community based classification of
artists or tracks was called tuning. In Figure 8.4 on page 143 this tuning
use case is shown for the mobile channel, where the user is asked if a
given track, should be assigned to First Love cluster.

In contrast to the Web interface, where all possible options were pre-
sented to the user as a multiple choice list, in the the WAP3 interface only

3Wireless Application Protocol
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Figure 8.4.: Mobile Tuning of a Track

one option, being defined by some selection procedure4, was provided to
the user.

8.1.2. Personalization Aspects

In the context of the recommender engine a user was defined as regis-
tered if he/she passed through an optional registration process provided
by the EMM, where age, gender and genre preferences were requested
and stored in the self-assessment view of the user’s profile. Beside this
optional registration process the following information was used for imple-
menting profile refinement, as described in Chapter 6.

• purchase of assets: A purchase action occurred, when a user down-
loaded a product (e.g. a wall paper). The purchase action got the
highest action weight (wpurchase = 0.38).

• rating of artists and tracks: A rating action occurred, when a user
posted an explicit rating describing his liking or disliking of an item
(artist or track) (wliking = 0.21, wdisliking = −0.21).

4In the current version a random process was taken
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• viewing of artists, tracks and assets: A viewing action occurred, when
a user visited the presentation area of an item (wview = 0.09).

• pre-viewing of assets: A pre-viewing action occurred, when a user
pre-viewed an asset (e.g. listening of an audio file) (wpre−view = 0.09).

• add track to playlist : Adding a track to a playlist, a personal compila-
tion of tracks, was seen as an important feedback comparable to a
positive rating (wadd−playlist = 0.21).

Based on this information and the meta data of the content, the following
recommendation use cases were implemented:

• Hot Recommendation

• Songs, similar users like

• Assets, other users also bought

• Other artists you might like

• Other tracks you might like

The Hot Recommendation, available for registered users only, provided
songs based on the user’s genre preferences and the up-to-dateness of
the tracks. Songs, presented recently, were lower prioritized and disliked
tracks as well as tracks of unfavored artists were ignored. Furthermore,
tracks with no available products/assets for the user’s handset were ig-
nored. The Hot Recommendation itself was composed up to 5 (sub) rules
each contributing some items to the overall resulting list. The configuration
of these rules concerning the result list was done on the basis of a context
free grammar – see Figure B.6 on page 186 - on an administration level.
These rules were:

1. Take most recent tracks of favored artists out of the self-assessment
profile

2. Take most recent tracks of favored artists out of the observation pro-
file

3. Get high rated tracks of similar users

4. Most recent tracks of favored genres out of the self-assessment pro-
file

5. Most recent tracks of favored genres out of the observation profile
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As the standard setting a combination of rule 4 and rule 5 was chosen.
A sample, how this recommendation was presented to the user, is shown
in Figure B.1 on page 181 in Appendix B.

The Songs similar people like recommendation was available for reg-
istered users only. High rated tracks – implicitly (e.g. view the product
page) and explicitly – of similar users were used to calculate this recom-
mendation. The similarity relation between users was defined by: Age,
gender, genre preferences and country. Disliked tracks or tracks with
no products for the user’s handset were ignored. A sample, how this
recommendation was presented to the user, is shown in Figure B.2 on
page 182 in Appendix B.

The Assets, other users also bought recommendation referred to the
shopping history of users and was not limited to registered users. Based
on a given product a list containing items, bought by users having also
bought the given one, was generated. Furthermore, disliked products or
products not available for that user’s handset were ignored. A sample, how
this recommendation was presented to the user, is shown in Figure B.4 on
page 184.

The Other artists you might like recommendation was based on artist
relations and was available for registered and unregistered users. This
recommendation was composed up to two (sub) rules and could be config-
ured on an administration level. These rules were:

1. Take predefined artist-to-artist relations

2. Take high rated artists of similar users

Rule 1 referred to the case of the availability of 3rd party meta data con-
cerning artist relations (e.g. data from AllMusicGuide5). Rule 2 generated
a list of artists based on ratings of similar users, where user similarity
was based on: Gender, age, and genre preferences. Furthermore,
filters concerning unfavored artists, permissions and handling of explicit
information were applied. The standard behavior was implemented by
Rule 2!

The Other tracks you might like recommendation was based on different
track relations – given a specific track – and was provided for registered
and unregistered users. This recommendation was composed up to four
(sub) rules and could be configured on an administration level. These rules
were:

5http://www.allmusic.com as of 08/2008
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1. Take tracks that sound similar (was not provided for the version under
examination)

2. Take new tracks of the same artist

3. Take tracks based on shopping cart, starting with the given one

4. Take new tracks out of same genre

Furthermore, filters concerning unfavored tracks, tracks of unfavored
artists, permissions, and handling of explicit information were applied. The
standard behavior was implemented by rule 2 and rule 4. A sample, how
this recommendation was presented to the user, is shown in Figure B.3 on
page 183 in Appendix B.

8.2. Objectives and General Conditions

To check/verify the acceptance and potential of the personalization ap-
proach, answers to the following questions, closely related to the research
question, have to be found:

1. How efficient is the multi-view profile approach – what is the im-
pact/benefit?

2. Which features/concepts are accepted/rejected/ignored by the
users? (e.g. tunings of items, rating of items, playlists, etc.)

3. How far do the current recommendation use cases meet the users
requirements?

4. Which conclusions can be derived from the analysis?

Furthermore, these analysis should be applied to different instances of
the EMM.

8.2.1. Definitions

Throughout this chapter, the following shortcuts are used:

• EU: European installation, refers to the origin of the data

• DB: Database

• EMM: The Ericsson’s Media Suite - Music content download platform,
refers to the data stored in the EMM database only
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• MY: Malaysian installation, refers to the origin of the data

• RE: Recommender Engine, refers to the data stored in the recom-
mender database only

• #: ’Number of’

8.2.2. Description of Data and Applied Procedures

Two data sources were taken for this analysis:

• A copy of the databases (EMM-database, RE-database) from the Eu-
ropean server – taken at the 05/31/2006. The covered period to be
analyzed ranges from 9/2005 to 5/2006 – about 9 month. Multiple
tenants were hosted on the EU installation.

• A copy of the databases (EMM-database, RE-database) from the
Malaysian server – taken at the 05/16/2006. The period to be an-
alyzed ranges from 10/2005 to mid 5/2006 – about 7.5 month. The
MY installation was only used by one tenant.

These two databases where installed locally on a MySql6-database to
perform the analysis. Beside some necessary repair tables no extra ma-
nipulation (e.g. check if associations/entries are consistent) of the data
was performed. Beside these databases, no further information source
was taken. Although several operators were hosted on the EU installation
the Europe data was taken as a whole and not further divided into operator
specific data sets. Therefore, all conclusions/statements concerning oper-
ator specific adaptation/concepts in the EU context must be seen in that
light. For most analysis the data stored in recommender database was
taken.

8.2.3. Limitations and Short-Comings

Due to some handling errors during the copying process of the MY
databases log-entries of EMM got lost (e.g., behavioral data of users con-
cerning EMM features) and therefore no log specific analysis concerning
EMM were performed. Furthermore, the MY data is somewhat incomplete
because the recommender engine was sometimes stopped at peak-time
due to insufficient hardware infrastructure, resulting in a loss of some user
feedback. So, only a very small data set, concerning the call frequency of
recommendation strategies, was available for the MY installation7

6http://www.mysql.com as of 11/2008
7log entries of 06/16/2006, ranging from 1:00pm to 11:00pm
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8.3. Examination of On-line Systems

8.3.1. Users and Items

Concerning EU, we found 873.357 registered users in the RE but
1.017.495 in the corresponding EMM – a difference of 16% (base: recom-
mender database)!. In MY we found 755.744 registered users in the RE,
but 1.327.123 in the corresponding EMM DB - a difference of 75%!

Furthermore, 59% of all registered users in EU (basis RE) and 62% in
MY were active users. A user is classified as active, if he/she performed at
least one action e.g., view, buy, rate, etc. For further discussions, only the
active users were taken into account.

Concerning content, the differences between the synchronized
databases EMM and RE were not that dramatical in EU as well as in MY. In
EU this difference was about 1% while in MY it ranged between 1% (tracks)
and 4%(artists). Detailed data can be found in Table 8.1.

# of EU MY
Registered User RE 873.357 755.744
Registered User EMM 1.017.495 1.327.123
active Users
(%RE ; %EMM)

517.264
(59% ; 50%)

474.513
(62% ; 36%)

Artists RE 9.193 3.846
Artists EMM 9.295 4.005
Tracks RE 152.588 36.348
Tracks EMM 152.897 36.844
Assets RE 171.147 45.817
Assets EMM 172.282 48.093

Table 8.1.: Basic Data

In contrast to the content situation – where the synchronization between
RE and EMM is not a critical problem – we have enormous differences
concerning users in EU (16%) and MY (75%). The MY situation could be
explained by the fact, that the RE was sometimes stopped during peak time
– but this explanation cannot be applied to the EU installation. Most likely,
these differences are symptoms of an inadequate or missing synchroniza-
tion prozess concerning user registration which has to be considered in
further versions.

8.3.2. Meta Data Quality: Item-to-Genre Affiliation

The recommender engine under examination uses genre information of
items such as artists, tracks, etc. for basic recommendations and learning
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behavior (e.g. observed preferences). As mentioned above, the associa-
tion of items to specific music genres is done by the EMM content admin-
istrator mainly based on the meta data provided by content providers (e.g.
Sony BMG).

In the following tables and figures, the distribution of tracks and artists
concerning music genres is shown for the EU and MY content.

# of EU MY
available genres (subgenres) 67 40
tracks, associated with at least one
genre (% all tracks)

142.746
(93%)

36.021
(99%)

tracks without genre association
(%all tracks)

9.842
(7%)

327
(1%)

all track-genre associations 267.269 61.031
avg. associations per track 1,8 1,7
artists, associated with at least one
genre (% all artists)

9.193
(93%)

3.650
(94%)

artists without genre association
(% all artists)

641
(7%)

196
(6%)

all artist-genre associations 16.364 6400
avg. associations per artist 1,8 1,7

Table 8.2.: Genre Affiliation

In both installations (EU, MY) we have a very high number of associa-
tions, meaning that most tracks and artists (> 93%) are associated with at
least one cluster!

But examining the distribution of items along the given genres shows a
dissatisfying situation. Concerning tracks, the genre distribution is shown
in Figure 8.5 on page 150 for EU and in Figure 8.6 on page 150 for MY.
For reasons of clarity the figures do not contain any legend information
or numbers but they provide an impression concerning the distribution of
tracks along basic genres (a more detailed information can be found in
Appendix C on page 187).

The distribution of tracks concerning genres is a disaster for EU and by
far not optimal in MY. Concerning EU, 65% of all tracks were associated
with Classic Pop, 7% with Classic Rock, 5% with Jazz and 3% with Other
Pop resulting that four genres are covering about 80% of all track content!

In contrast, the content situation is slightly better in MY, because 80%
of the track content is covered by eight different genres. Furthermore, no
single genre covers more than 20% of the tracks! In MY the eight most
prominent genres and their coverage are: Other with 20%, Pop Danceclub
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Figure 8.5.: Track – Genre Distribution in EU

Figure 8.6.: Track – Genre Distribution in MY
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with 18%, Other Pop with 14%, Classic Rock with 8%, Chinese Pop with
7%, Classical with 6%, Jazz having 5%, and Hip Hop 4%.

Considering the high number of associated tracks (> 93%), the low
number of average associations (≈ 1.8) and the fact, that some content
providers do/can not deliver genre information for portions of their content
(up to 20%!) it seems that genres such as Classic Pop or Other are used
as default associations. As a result, the genre information can only be
used very carefully!

8.3.3. User Profiles

For each active user three profile views were stored, consisting of the
self-assessment view (SELF), the observation view (OBSRV) and a com-
bination of these two views (COMB). The community view, as proposed
in the Adaptive Personalization concept, was not implemented due to the
lack of a user-user based feedback functionality on the portal.

The self-assessment view was constructed during the optional registra-
tion process for obtaining access to the Hot Recommendations and Songs
similar people like functionality placed on a specific area of the portal
(called My Mobile Music area see Figure B.1 on page 181 and Figure B.2
on page 182). Within this registration process the user declared his/her
age, gender, and music genre preferences. As a consequence, the Hot
Recommendation and Songs similar people like recommendations were
only provided to users, having a SELF profile! The observation view was
constructed by observing the behavior of the user concerning actions like
rating or buying an item, visiting of item pages (e.g. artist page), etc. as
described in Chapter 6.

The combined view was constructed as a combination of the SELF and
OBSRV view, calculated as defined in Definition 8.1 on page 151

COMB = weightselfSELF + weightobsrvOBSRV (8.1)

with a higher prioritization of the SELF view (weightself = 0.6 and
weightobsrv = 0.4). The COMB profile was used for calculating rec-
ommendations and was introduced due to performance considerations
only. Furthermore, the COMB profile was only created/stored when it was
effective – when at least one preference value was above a given threshold.

In EU only 1.7% (9.172) of the active users had a SELF profile, 82%
(424.804) had a OBSRV profile and 12% (63.074) had a COMB profile. In
contrast, in MY 15% of all active users had a SELF profile, 85% had an
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OBSRV profile and 32% had a COMB profile.

By analyzing the music genre preferences of the users by counting the
number of genre associations we found:

• The average number of associations of a SELF profile is eight in EU
and MY

• The average number of associations of a OBSRV profile is five in EU
and eight in MY

• The average number of associations of the OBSRV profile, being not
covered by the SELF profile, is three in EU and six in MY

• The average number of associations of a COMB profile is nine in EU
and eight in MY

• At least 29% of the users having a SELF profile have a larger COMB
profile in EU and 42% in MY.

Surprisingly there is an enormous difference between the EU and MY
users, concerning the willingness/ability to perform a registration process
1.7% to 15% – about a factor of nine! Based on the current settings of the
RE (being equal for MY and EU) 12% of the active users in EU but 32%
in MY are benefiting from personalization in some way (e.g. by applying
filters).

Based on the data presented above the conclusion can be drawn, that
the multi-view concept is successful/useful, because there are significant
differences between the SELF and the COMB profile. So, on the basis of
the preferences of the SELF profile, the OBSERV profile accounts for 37%
of additional/other preferences in EU and about 75% in MY. Furthermore,
29% of the users in EU and 42% in MY get more/other recommendations
due to the OBSRV profile than they would get only based on the SELF
profile.

8.3.4. User Actions

In this section user activities, such as purchases, viewing artists or track
pages, etc. are analyzed.

Purchases

From the basic purchase statistics provided in Table 8.3, the following con-
clusions can be drawn:
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1. Not surprisingly, registered users are the better customers. In EU
0.6% of the active customers were responsible for 6% of all pur-
chases! In MY 6% of the active users were responsible for 29% of all
purchases

2. The portion of real customers were quite similar in EU (27%) and in
MY (31%)

3. Only a limited number – 9% in EU and 31% in MY – of all assets
were bought

# of EU MY Comment
all purchases 302.658 401.724
distinct purchases
(% of all purchases)

288.526
(95%)

330.196
(82%)

Ignoring multi pur-
chases of the same
item of a user!

purchasing users
(% of active users)

141.502
(27%)

147.868
(31%)

distinct purchased assets
(% of all assets)

15.537
(9%)

10.364
(31%)

purchases of registered
users
(% of all purchases)

18.579
(6%)

116.213
(29%)

User, having a SELF
profile

registered users who pur-
chased
(% of active users)

2.854
(0,6%)

29.758
(6%)

Table 8.3.: Basic Purchase Statistic

One important business ratio of download portals is the purchase fre-
quency which defines how many users are performing how many pur-
chases. This purchase frequency is shown in Figure 8.7 on page 154
and Figure 8.8 on page 1548 – more detailed information can be found in
Appendix C on page 187.

Although theses purchase statistics – especially for MY – are not far
away from well-known content download platforms such as JAMBA9 it
should be stressed, that the majority of the users are buying only once
or twice (85% in EU and 78% in MY) – a typical behaviour of occasional
customers!

8The 0% markers were caused by rounding
9http://www.jamba.de as of 12/2008
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Figure 8.7.: Purchase Frequency in EU

Figure 8.8.: Purchase Frequency in MY
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Item Tuning

An item tuning occurred when a user performs a classification of an item –
provided for artists (Table 8.4 on page 155) and tracks (Table 8.5 on page
156)– to one or more Mood & Situation Clusters.

# of EU MY Comment
tuned artists
(% of all artists)

945
(10,3%)

1.660
(43,2%)

# of artists, which
were visible as tuned
elements on the por-
tal.

artists tuned by the
administrator
(% of all artists)

84
(1%)

63
(2%)

Each administrator
tuning had an effect

artists tuned by the
community
(% of all artists)

895
(9,7%)

1.642
(42,7%)

Not every tuning
had an effect due to
thresholds

Web artist tunings
(% all tunings)

260
(8%)

n.a. Tuned via the WEB in-
terface

WAP artist tunings
(%all tunings)

3.181
(92%)

n.a. Tuned via the WAP in-
terface

Table 8.4.: Tuning of Artists

Comparing the two installations EU and MY is not reasonable, because
not all operators in EU offered item tuning to their subscribers. Concerning
the MY installation the item tuning feature seems to be widely accepted
by the users, because 43% of all artists and 15% of all tracks were tuned
and the lion-share of this classification was made by the community – see
Figure B.5 on page 185! Another interesting aspect is that this service
seems to be accepted also on mobile devives!

Definition of Liked/Disliked Artists

The user was able to add an artist to his/her list of preferred or disliked
artists. These artists were stored in a specific list manageable by the users.
Table 8.6 shows the acceptance of this feature by the community for EU
and MY.

In contrast to EU where only 3% of the active users defined a favourite
artist in MY this feature was well accepted by the community, because 14%
of all active users declared at least one artist as favourite.
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# of EU MY Comment
tuned tracks
(% of all tracks)

1.977
(1,3%)

5.710
(16%)

# of tracks, which are
visible as ’tuned’ ele-
ments on the portal

tracks, tuned by the
admin
(% of all tracks)

856
(0,6%)

1.036
(3%)

Each admin tuning
has an effect

tracks tuned by the
community
(% of all tracks)

1.239
(0,8%)

5.315
(15%)

Not every ’tuning’
has an effect due to
thresholds

Web track tunings
(% all tunings)

243
(5%)

n.a No data available for
MY

WAP track tunings
(%all tunings)

4.788
(95%)

n.a No data available for
MY

Table 8.5.: Tuning of Tracks

# of EU MY
users having favored artist list (in
SELF) (% of act users)

15.593
(3%)

65.647
(14%)

distinct favored artists (in SELF)
(% of all artists)

1.608
(17%)

2.027
(53%)

average size of favored artist list 1,3 1,9

users having unfavored artist lists
(% of active users)

1.119
(0,2%)

6.082
(1%)

distinct unfavored artists
(% of all artists)

428
(4%)

1.160
(30%)

average size of unfavored artist lists 1,1 1,3

Table 8.6.: Liked/Disliked Artist

156



CHAPTER 8. EVALUATION AND EXAMINATION

Definition of Liked/Disliked Tracks

By rating a track good (“I like this track”) or bad (“I don’t like this track” ) –
see Figure B.5 on page 185 this track was added to an appropriate like/dis-
like list in the user’s profile implicitly. These lists were used as filter criteria
only, e.g. by suppressing the appearance of a disliked track in personalized
recommendation lists.

# of EU MY
users having favored track list (in
SELF) (% of act users)

14.684
(3%)

67.982
(14%)

distinct favored tracks (in SELF)
(% of all tracks)

2.406
(2%)

6.101
(17%)

average size of favored track list 1,2 1,9

users having unfavored track list
(% of active users)

2.398
(0,5%)

8.432
(2%)

distinct unfavored tracks
(% of all tracks)

1.795
(1%)

3.432
(9%)

average size of unfavored track list 2 1,5

Table 8.7.: Liked/Disliked Tracks

These results are very similar to those found in the artist context. While
in EU only 3% of the active users defined a favourite track in MY this fea-
ture was well accepted by the community because 14% of all active users
rated at least one track as good ! This significant difference between EU
and MY could probably be explained by the different positioning of the two
installations. While in MY the EMM was launched as a music platform
also offering music relevant content, in EU (e.g., in Poland) the EMM was
more positioned as a content download platform, competing with platforms
as JAMBA10. Furthermore, users posted more positive than negative track
ratings, especially in MY.

Playlists

A playlist is a named collection of tracks, created by a registered user. The
name playlist is somewhat misleading because such a collection could not
be replayed! It’s use was limited to present personalized music collections
to the community.

In contrast to the EU installation, where this feature was not very popular,
it was accepted by the MY community very well. Once more, this difference
could be explained by the different usage scenarios. In MY, the platform

10http://www.jamba.de as of 11/2008
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# of EU MY
playlists 7.585 213.934
users having a playlist
(% of all active users)

6.307
(1%)

57.988
(12%)

all playlist entries (tracks) 10.151 259.372
of distinct entries
(% of all tracks)

1.648
(1%)

6.116
(13%)

tracks of an average
playlist

1,3 4,5

Table 8.8.: Playlists: Track Compilations

was launched with a focus on music which engaged users to experiment
and consume the provided feature, while in the context of styling a hand-
held device, play-lists are less important.

Visits of Artist Pages

The visit of a user on the artist page – the area of the portal where artist
information was presented – was called viewing action of an artist. All
multiple views of a user, concerning an artist, were eliminated in Table 8.9.

# of EU MY
viewed artists 277.537 1.615.663
distinct artists being viewed
(% all artists)

4.537
(49%)

3.329
(87%)

users viewing an artist
(% active users)

177.029
(34%)

313.197
(66%)

average viewed artists 1,6 5,2

Table 8.9.: Viewed Artist Statistic

Continuing the trend, that MY users are more active, there is a significant
difference between MY and EU concerning the number of viewed artist.
MY users are visiting an artist page about three times more frequently
than EU users! Furthermore, concerning MY, most available artists (87%)
have been viewed!

Figure 8.9 on page 159 and Figure 8.10 on page 15911 show the view-
ing frequency of users concerning artists with the sobering result that the
majority of the users – 90% in EU and 70% in MY – have only visited two
artist pages! More details can be found in Appendix C on page 187.

11The 0% markers were caused because of rounding
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Figure 8.9.: Artist Viewing Frequency in EU

Figure 8.10.: Artist Viewing Frequency in MY
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Once again, the significant difference between MY and EU could prop-
erly be explained by the multi-tenant setup in EU and the two different
usage scenarios.

Visits of Track Pages

The visit of a user on the track page – the area of the portal where track
information was presented – was called viewing action of a track. All mul-
tiple views of a user, concerning a track, were eliminated in Table 8.10 on
page 160.

# of EU MY
viewed tracks 823.423 2.814.584
distinct tracks being viewed
(% all tracks)

22.808
(15%)

20.905
(58%)

users viewing an track
(% active users)

391.318
(76%)

377.230
(79%)

average viewed tracks 2,1 7,5

Table 8.10.: Viewed Track Statistic

Also in the context of viewed tracks MY users are visiting different track-
pages about three times more often than EU users! The track viewing
frequency of users is shown in Figure 8.1112 and Figure 8.12. Detailed
numbers can be found in Appendix C on page 187.

Figure 8.11.: Track Viewing Frequency in EU

Concerning tracks, there is a significant difference between EU and MY,
showing that 80% of EU users only visited two track pages, compared to

12The 0% markers were caused by rounding
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Figure 8.12.: Track Viewing Frequency in MY

more than six page-visits of 80% of MY users!

Visits of Asset Pages

The visit of a user on the asset page – the area of the portal where informa-
tion of downloadable products was presented – was called viewing action
of an asset. All multiple views of a user concerning assets were eliminated.

# of EU MY
viewed assets 797.729 2.868.750
distinct assets being
viewed
(% all assets)

23.278
(14%)

20.166
(44%)

users viewing an asset
(% active users)

329.938
(64%)

382.748
(80%)

average viewed assets 2,4 7,5

Table 8.11.: Viewed Assets Statistic

Although the data shown in Table 8.11 is somewhat similar to the track
viewing behavior above, some differences exist:

• While in MY the same number of users are viewing tracks and as-
sets (79% vs. 80%) in EU more users are viewing tracks (76%) than
assets (64%)

• While in EU the portion of distinct viewed tracks and assets is quite
similar (15% to 14%) in MY only a smaller portion of the assets (44%)
is viewed, compared to tracks (58%)
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A more detailed statistic of viewed assets – concerning the viewing fre-
quency – is shown in Figure 8.13 on page 16213 and Figure 8.14 on page
163. Detailed numbers can be found in Appendix C on page 187.

Figure 8.13.: Asset Viewing Frequency in EU

Previewed Assets

A previewing action occurred when a user activated the provided preview
feature on an asset page (e.g. replaying an audio asset). No preview
actions could be identified in the MY database!

# of EU MY
viewed assets 3.949 0
distinct assets being
viewed
(% all assets)

691
(0.4%)

0

users viewing an asset
(% active users)

2.176
(0,4%)

0

average viewed assets 1,8 0

Table 8.12.: Pre-viewed Asset Statistic

The data shown in Table 8.12 on page 162 implies the following conclu-
sion:

• Previewing is a hardly used feature in EU: Although the DB entries
are well distributed over the analyzed period, less than 0.5% of all

13The 0% markers were caused by rounding
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Figure 8.14.: Asset Viewing Frequency in MY

users are using this feature – maybe this is also a consequence of
the multi-tenant setup in EU.

• Previewing is not active in MY, or no user never used it, or – most
likely – the call to the according RE API is missing.

Artist Rating

A rating action of an artist occurred, when a user posted an explicit rating I
like/don’t like this artist on the artist page.

Obviously users tend to give more positive ratings than negative once.
Another interesting fact – concerning MY – is, that a large number of artists
are rated and that only 1% of the users have rated 32% of all artists nega-
tively while 14% of all users have rated 53% of all artists positive!

Track Rating

A rating action of a track occurred, when a user posted an explicit rating I
like/don’t like this track on the track page – see Figure B.5 on page 185.

Obviously positive ratings are preferred to negative once by the commu-
nity.

Distribution of Recommendation

In this section the calling frequency of the different recommendation strate-
gies (see Section 8.1.2 on page 143) are analyzed.
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# of EU MY
like ratings of an artist 18.802 128.165
distinct liked artists
(% all artists)

1.622
(18%)

2050
(53%)

users liking an artist
(% active users)

15.748
(3%)

67.462
(14%)

average number of liked artist
per user

1,2 1,9

disliked ratings of an artist 1.345 8.779
distinct disliked artists
(% all artists)

454
(5%)

1.219
(32%)

users bad rating an artist
(% active users)

1.199
(0,2%)

6.863
(1%)

average number of disliked
artist per user

1,1 1,3

Table 8.13.: Good/Bad Rating of Artists

# of EU MY
like ratings of a track 17.392 130.906
distinct liked tracks
(% all tracks)

2.414
(1,5%)

6.122
(17%)

users liking a track
(% active users)

14.789
(3%)

68.659
(14%)

average liked tracks per user 1,2 1,9
dislike ratings of a track 4.838 13.453
distinct disliked tracks
(% all tracks)

1.801
(1%)

3.486
(9%)

of users disliking a track
(% active users)

2.461
(0,4%)

8.779
(2%)

average disliked tracks per
user

1,9 1,5

Table 8.14.: Good/Bad Rating of Tracks

Recommendation # of calls
Other tracks you might like 13.411
Assets, other users also bought 9.953
Hot Recommendation 9.121
Other artists you might like 1.003
Songs, similar users like 85

Table 8.15.: Number of Recommendation Requests in MY
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Although the recommendation strategies – Songs, similar users like and
Hot Recommendation – are both accessable within the My Mobile Music
area the former recommendation is hardly used compared with the latter
one.

8.4. Contributions to the Research Question

Although the provided data base is inadequate for detailed analysis and
conclusions it can be used as an indicator in which direction further inves-
tigations should be aligned. From our point of view, the most important
results of this analysis are, that the results of MY can be seen as an indi-
cator that the basic concepts of the Adaptive Personalization are valuable
approaches, accepted by the community. In more detail:

• Users are willing to create personal profiles – 14% of all active users
created a SELF profile. Although this value could not be compared to
other platforms14 it was considered as very high by the responsible
product management and sales departments of the EMM, who are
used to conversion rates between 3% and 5% concerning optional
features.

• The multi-view approach seems to be a value, because a signifi-
cant difference between the genre preferences collected in the SELF
and OBSRV profile view could be identified. Due to that difference
more/additional recommendations can be presented to the user to-
gether with an appropriate explanation.

• Item tuning is an accepted feature, unburdening the administrator
from maintaining the content.

Especially for MY the engagement of the community in the content
generation and/or quality refinement process can be observed, items
were tuned and feedback were given. In MY, 43% of all artists and 16%
of all tracks were classified, mainly by the community! Therefore, the
conclusion can be drawn that the community-based classification of items,
here implemented as Mood&Situation clusters, is a well accepted feature.
The partially significant differences between EU and MY must be analyzed
in more detail. Some differences, mainly concerning content and divergent
set of features, could be explained by the multi-tenant situation in EU.

The typical active user purchases two assets, views 1.5(EU)/5(MY)
artists and 2(EU)/7(MY) tracks. This implies that the users are no

14At the time writing this analysis, statistics of other mobile music platforms were hardly
available.
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heavy/frequent users (especially for EU) and therefore the development
and adaptation of a profile over time is less important. Concerning person-
alization this means, that there are only few chances to convince users of
the quality of recommendations. This can be seen as an affirmation of the
profile refinement approach, presented in Chapter 6, and its focusing on a
fast creation of a useful preference model.

Furthermore, due to the very diverse characteristics of these two instal-
lations, more efforts should be directed to an ongoing tuning/monitoring/-
analyzing process concerning recommendation quality, especially during
the warm-up/cold-start phase of the system.
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9. Future Work

In this chapter some directions for further research concerning core
concepts of the Adaptive Personalization approach are discussed.

9.1. Adaptive Profile Model

As mentioned in Section 6.5 on page 100, the strength of the Adaptive
Profile Model is its multi-view approach, incorporating contextual infor-
mation concerning the origin of a user action, combined with the ability
to define the adaptive or learning behavior precisely. Based on the fact,
that this adaptive behavior is limited to predefined clusters or concepts, for
which an appropriate dimension has to be defined, this approach should
be seen as an extension or supplement to standard profile modelling
approaches relying on machine learning techniques. Furthermore, our
multi-view model should be combined with other modeling approaches
incorporating contextual aspects. For example, the Unified User Context
Model (UUCM), developed by Niederée et al. (2004), could be a good
candidate for such a combination, because of it’s multi-dimensional model,
the usage of cognitive patterns and the capturing of the fact, that users will
interact with a system in different working contexts.

9.2. Recommendation Algorithms

One drawback of the collaborative-filtering algorithm discussed in Sec-
tion 7.1 on page 105 is its potentially bad runtime behavior when calcu-
lating the contribution of mainstream items to the similarity correlation. The
paradox of this situation is, that the less an item is contributing to the sim-
ilarity relation the more resources are needed to perform this calculation,
because of the O(n2) of the pairwise similarity calculation of all evaluators
of an item. This is especially problematic in contexts, where a large num-
ber of users (e.g., millions) are rating few items, thus creating typically “top
lists” such as the Top 40 songs in the music domain. Possible strategies to
solve this problem are:
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1. ignoring every-body’s-darlings (items having a disc(I) value below a
given threshold) during similarity computation

2. only taking the n most important items of each user, where n should
be as small as possible (e.g., the 7 most important items of each
user)

Although both approaches are focusing on important items, the latter
tends to stress user similarities defined by rare and high rated items, which
might lead to fewer but very valuable suggestions.

Another important topic is the consideration of time series in generating
recommendations. Especially in domains where the order of item con-
sumption will have an impact on the user ratings (e.g., in the domain of
books or articles) the consideration of a proper (time) order can be very
important. A person, being a rookie in a new domain will be overburdened
when confronted with an in-depth key paper instead of an easy readable
introduction. So the question arises, if and how this information can be
used to find the best timely order in which items should be recommended
to the user. Furthermore, these series can be seen as preference trajec-
tories which can be used not only to predict items but also to recommend
a complete preference evolution path to a user. This might especially be
valuable if the items can be clustered, because suggestions for the mid-
and long-term evolution of user preferences could be generated addition-
ally.
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10. Conclusion

Information overload is a serious problem with economic dimensions
affecting a rapidly growing number of people in a variety of circumstances.
Amongst others, personalization can be seen as a major concept to face
this problem. The creation of a user model and the derivation of predictions
from this model is the core task of a personalization system, requiring
appropriate information and adequate techniques. Thus, the careful and
broad usage of all the available information, implicitly or explicitly, is of
fundamental importance, especially in domains with no or poor meta data
(e.g., mobile commerce).

In this thesis we presented a new approach, called Adaptive Personaliza-
tion, integrating contextual information for improving user and item models,
as well as recommendation techniques. The core concepts of the Adaptive
Personalization approach were developed and presented along the follow-
ing three research questions as defined in Section 1.2 on page 4:

1. Which already known techniques/approaches exist and why they are
not sufficient for the given purpose?

2. How can contextual information be used to improve user and item
models?

3. How can contextual information be used to improve rating based rec-
ommendation strategies?

The first research question was tackled in Chapter 3, where a variety
of different strategies for implementing personalization systems were
presented. Most of these approaches were successfully applied to certain
problems, thus demonstrating the power of personalization techniques.
However, our main criticism is, that these approaches do not use all the
information available, even in situations with minimal information. This is
perhaps not a big issue in classical e-commerce applications based on
standard Web interfaces, but a problem in domains with limited access
or typical walk-in customers (e.g., m-commerce). Contextual solutions as
presented by Adomavicius and Tuzhilin (2005) or Niederée et al. (2004)
mainly discuss the detection or modeling of different contexts of use (e.g.,
at home, at work, with friends, etc.) but do not consider the context of origin
of user feedback (e.g., self-assessment of a user, observed user behavior,
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etc.). Furthermore, collaborative filtering techniques rely on user ratings
and the popularity of items (e.g., inverse user frequency improvement –
see Definition 3.4 on page 24) but they do not use all aspects of the set
characteristics of the user ratings (e.g., the overlapping of two rating sets,
size of the ratings or preference sets, etc.)

The second research question was addressed in Chapter 6. Inspired
by a psychological model created by Joseph Luft and Harry Ingham – the
Johari Window (Luft and Ingham, 1955) – a multi-view profile model was
developed introducing the context of origin of user feedback. Concerning
user profiles the three views – self-assessment, system observation and
community-assessment – are used for optimizing the recommendation
process for satisfying the well and ill-defined needs as well as for support-
ing comprehensible explanation models. Furthermore, the incorporation
of long- and short-term aspects of preferences (context of sessions) helps
to build more stable user models, because context driven variations of a
user’s behavior (e.g., searching for a gift for a friend) can be covered much
better. Evaluations performed on data gathered from real world systems
(see Chapter 8) approved the effectiveness of this multi-view approach, by
identifying a significant set of non-overlapping preferences concerning the
self-assessment and system observation view. Additionally, the presented
three fold item model supports the responsible person in maintaining
valuable content meta data which will lead to better recommendations.

In Chapter 7 the third research questions was tackled by showing how
existing contextual information, concerning the usage of ratings and rat-
ing sets, can be used to improve recommendation algorithms. The pretty
good recommendation approach, presented in the first section, incorpo-
rated information concerning the importance of an item in local (per user)
and global (for all users) contexts as well as in the context of the pairwise
relations of preference sets. We showed, based on a standard data set
for recommender systems, that our algorithm outperforms standard tech-
niques, especially in the context of less information.

The D2-Tree, presented in the second section of Chapter 7, is a
custom-made complement for the Adaptive Profile Model providing an
efficient solution for the k-nearest neighbor problem. The most important
advantages of the D2-Tree are the support of weighted requests and the
ability to incorporate domain knowledge even dynamically, thus supporting
the context of use concerning a specific request.

Furthermore, a bird’s-eye-view of the Adaptive Personalization was
provided in Chapter 4 by introducing the core aspects as well as other
important topics such as an appropriate procedure model or the de-
scriptions of applied recommendation strategies. A flexible architecture,
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concerning the profile module as well as the whole system, was presented
in Chapter 5, focusing on ease of use, scalability and extendability. An
extensive, qualitative evaluation of the Adaptive Personalization approach
was presented in Chapter 8, based on real world data sets provided by
an implementation of our approach, indicating the usefulness of the core
concepts. Further research issues mainly concerning the multi-view profile
model as well as the collaborative-filtering algorithm were presented in
Chapter 9.

In this thesis, we proposed a new approach for user and item modeling,
a new collaborative-filtering algorithm, a new index structure for solving the
k-nearest neighbor problem together with a proposal for an appropriate
and flexible architecture. Furthermore, we evaluated the performance of
our concepts using different approaches and proved their effectiveness.
Due to the new and broad utilization of the implicitly and explicitly available
information, the concepts of the Adaptive Personalization can easily be
combined with other personalization approaches or techniques.

Summing up, we believe, that the concepts of the Adaptive Personaliza-
tion approach are useful and valuable contributions to the research con-
cerning personalization and recommender systems providing support in
handling the problem of information overload efficiently.
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A. MAE Data Tables

Table A.1.: MAE data table

%Users PGC Rating PGC Rel Rating PGC Adj Rating Pearson
2 0.768453124 0.776312856 0.765740322 0.960838695
4 0.748419652 0.749547622 0.745901904 0.92169267
6 0.740386243 0.739413385 0.738277257 0.89332819
8 0.736463957 0.734397346 0.733976112 0.868696106
10 0.734686671 0.7315081 0.731963045 0.845937727
12 0.732947434 0.729293795 0.73040897 0.824837978
14 0.731946926 0.727883357 0.729813715 0.808983961
16 0.731488496 0.726824386 0.729513249 0.793988516
18 0.731237625 0.726107946 0.729147018 0.782305473
20 0.731030287 0.725623762 0.728989759 0.771587487
22 0.730998513 0.725280823 0.728978642 0.764091464
24 0.730821598 0.725093178 0.728927673 0.758792846
26 0.730751665 0.725073108 0.728953013 0.754171959
28 0.730800837 0.724989272 0.729007513 0.750370062
30 0.730846999 0.724762348 0.728922366 0.747931549
32 0.730746657 0.724716116 0.72900674 0.745944253
34 0.730652624 0.724721776 0.728994243 0.74421694
36 0.730694653 0.724736562 0.729023135 0.743286401
38 0.730666978 0.724644946 0.728931262 0.74232802
40 0.730680034 0.724625176 0.728958476 0.741617617
42 0.730575993 0.724580368 0.728888744 0.741052719
44 0.730585931 0.724589944 0.728923374 0.740768129
46 0.730566263 0.724589604 0.728880146 0.740542201
48 0.730448715 0.72458436 0.728888522 0.740354449
50 0.730402054 0.724557237 0.728942136 0.740062108
52 0.730479356 0.724587384 0.72887551 0.739832934
54 0.730391985 0.724594454 0.728842994 0.739727955
56 0.730403212 0.72470702 0.728851166 0.739832021
58 0.730373196 0.724847667 0.728890994 0.739858362
60 0.730333754 0.725087218 0.72889822 0.739894684
62 0.730323636 0.725384561 0.728886691 0.739882285
64 0.730335981 0.725961711 0.728857411 0.739846415
66 0.730285485 0.726601698 0.728875769 0.739805264
68 0.730258179 0.727387865 0.728868297 0.739732715

continued on next page
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%Users PGC Rating PGC Rel Rating PGC Adj Rating Pearson
70 0.730266202 0.728666422 0.728848072 0.739643285
72 0.730216159 0.730428495 0.728821375 0.739639567
74 0.730216718 0.732921495 0.728822875 0.739643587
76 0.730247551 0.736548515 0.728799377 0.739656914
78 0.730230387 0.741523843 0.728793185 0.739986711
80 0.730197141 0.747960674 0.728779297 0.740351356
82 0.730192994 0.756750809 0.728756911 0.740796408
84 0.73019 0.768255181 0.728754123 0.741439534
86 0.730173822 0.783944296 0.728759381 0.742078508
88 0.730162221 0.804836585 0.728761148 0.74293368
90 0.73017603 0.831918247 0.728779555 0.743813925
92 0.730182647 0.866903825 0.728810221 0.744726412
94 0.730175152 0.913343282 0.728800373 0.745848378
96 0.730201296 0.975858625 0.728833291 0.746896308
98 0.730195391 1.062518388 0.728841513 0.747885578
100 0.73018516 1.222174231 0.72892911 0.74894205

180



B. Samples from Online Systems

In this chapter some screen shots of the (white labeled) Ericsson’s Media
Suite - Music (EMM) are presented to the convenience of the reader.

B.1. Preference-Based Recommendations

The Hot Tips recommendation, as presented in Figure B.1, is based on the
users preferences and was provided to registered users only.

Figure B.1.: Hot Tips Recommendation List
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The People with similar tastes like recommendation, as presented in Fig-
ure B.2, is based on the users preferences and socio demographic data
and was provided to registered users only.

Figure B.2.: Similar Users Like Recommendation
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B.2. Item-Based Recommendations

The Other tracks you might like recommendation, as presented in Fig-
ure B.3, is based on different item similarities and was provided to reg-
istered and non-registered users.

Figure B.3.: Other Tracks a User Might Like
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B.3. Statistic-Based Recommendations

The Other users also bought recommendation, as presented in Figure B.4,
is based on shopping cart analysis algorithms and was provided to regis-
tered and non-registered users.

Figure B.4.: Products also Bought

184



APPENDIX B. SAMPLES FROM ONLINE SYSTEMS

B.4. User Feedback

As presented in Figure B.5, a user could rate an item (e.g., a track, an
artist) by choosing one of three alternatives, e.g., I like this track, I don’t
like this track, I don’t know.

Figure B.5.: User Feedback on a Track
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B.5. Configuration

Figure B.6.: Extraction of the Recommender Configuration
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C. Data from Online Systems

C.1. Profile Views

Table C.1 contains statistics concerning the three profile views, where
SELF is the placeholder for self-assessment, OBSERV for observation
view and COMB stands for combined profile.

EU MY Description
# SELF profiles (%of active
users)

9.172
(1.7%)

70.782
(15%)

# OBSRV profiles (% of active
users)

424.804
(82%)

401.764
(85%)

# COMB profiles (%of active
users)

63.074
(12%)

151.282
(32%)

AVG size SELF 8 8 # genre ids
AVG size OBSRV 5 8 # genre ids
AVG size COMB 9 8 # genre ids
AVG DIFF(SELF-OBSERV) 3 6 # genre ids

(not over-
lapping)

# size SELF == size COMB
(%SELF)

6.476
(70%)

32.963
(47%)

# size SELF < COMB
(%SELF)

2.685
(29%)

30.072
(42%)

Table C.1.: Profile Statistic
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C.2. Purchase Statistic

Table C.2 contains the data how many users purchased how many items
in EU and MY.

# of purchased assets # of customers EU # of customers MY
1 94.792 86.533
2 23.059 29.221
3 9.125 12.817
4 4.462 6.592
5 2.633 3.741
6 1.722 2.340
7-10 3.176 3.896
11-20 1.756 1.974
21-50 666 637
51-100 91 92
100 - 20 25

Table C.2.: Purchase Frequency

C.3. Artist Viewing Statistic

Table C.3 contains the information how many users viewed how many dif-
ferent artists in EU and MY

# of viewed artists # of customers EU # of customers MY
1 137.636 165.806
2 21.880 49.938
3 7.559 24.037
4 3.662 14.198
5 1.853 9.211
6 1.217 6.487
7-10 1.852 14.578
11-20 1.003 13.650
21-50 312 10.237
51-100 49 3.516
100 - 6 1.449

Table C.3.: Artist Viewing Frequency
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C.4. Track Viewing Statistic

Table C.4 contains the information how many users viewed how many dif-
ferent tracks.

# of viewed tracks # of customers EU # of customers MY
1 243.895 139.700
2 72.283 65.045
3 30.255 37.414
4 15.294 23.822
5 8.808 16.792
6 5.347 12.492
7-10 9.039 28.981
11-20 4.626 25.551
21-50 1.498 17.700
51-100 210 6.314
100 - 63 3.419

Table C.4.: Track Viewing Frequency

C.5. Asset Viewing Statistic

Table C.5 contains the information how many users viewed how many dif-
ferent assets.

# of viewed assets # of customers EU # of customers MY
1 193.151 133.784
2 61.102 64.173
3 27.609 38.293
4 14.574 25.575
5 8.831 18.292
6 5.753 13.489
7-10 10.376 31.641
11-20 5.997 28.432
21-50 2.169 19.652
51-100 310 6.442
100 - 66 2.975

Table C.5.: Asset Viewing Frequency
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C.6. Asset Pre-Viewing Statistic

Table C.6 contains the information how many users viewed how many dif-
ferent assets.

# of viewed assets # of customers EU # of customers MY
1 1426
2 399
3 141
4 75
5 52
6 27
7-10 35
11-20 18
21-50 3
51-100 0
100 - 0

Table C.6.: Asset PreViewing Frequency
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C.7. Genre Distribution of Tracks

The distribution of tracks concerning genres is shown in the following dia-
grams. For reason of clarity the diagrams were separated into two parts
where the Y-scaling of the second diagram was reduced by a factor of 100!

Figure C.1.: Track – Genre Distribution in Europe (1st part)
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Figure C.2.: Track – Genre Distribution in Europe (2nd part)
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Figure C.3.: Track – Genre Distribution in Malaysia (1st part)
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Figure C.4.: Track – Genre Distribution in Malaysia (2nd part)
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