Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

le FAKULTAT FUR !NFORMATIK

WIEN

A Replicated Experiment on the Effect of
Team Size and Individual Experience in
Software Architecture Evaluation

Diplomarbeit

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Wirtschaftsinformatik
ausgefiihrt von

Martin Stefan Heinisch
Matrikelnummer 0626982

am:
Institut fiir Softwaretechnik und Interaktive Systeme

Betreuung:
Betreuer: Univ.-Prof. Dr. Stefan Biffl
Mitwirkung: Dipl.-Ing. Dietmar Winkler

Wien, 11.11.20009.

(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universitat Wien
A-1040 Karlsplatz 13 Tel. +43/(0)1/58801-0 - http://www.tuwien.ac.at

Erkldrung zur Verfassung der Arbeit

Martin Heinisch,
Walserweg 47, 6700 Bludenz, Osterreich

“Hiermit erkldire ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit -
einschlieflich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.”

Wien, 11.11.2009

(Martin Stefan Heinisch)

Abstract

The design of the software architecture is a success-critical issue in software engineering.
Changes of non-functional requirements (or quality attributes), for example maintainability
and modifiability, can have a major impact on repair efforts, project duration and the total
project costs. If changes occur late in the development process their impact can be fatal.

Thus, a major goal is to identify possible changes affecting the architecture in the early stages
of software development. The identification of future goals and scenarios can support soft-
ware architects in focusing on most likely changes within a defined time period. Software
architecture reviews - embedded within evaluation processes, e.g., the architecture trade-off
analysis method (ATAM) - are effective and efficient approaches to explore various software
design options and to identify defects and weaknesses early.

Typically, conducting architecture reviews and identifying valuable scenarios depends
strongly on the qualification of individual reviewers. To strengthen individual review results,
1.e., focus on critical and most likely scenarios, teams can gain benefits through synergy effects
during team meetings through discussion and interaction. A major challenge is to identify the
effect of team sizes on the quality of scenarios. Based on previous studies in the area of archi-
tecture evaluation, the application of nominal teams, i.e., non-communicating teams, seems
to achieve better results, i.e., find more valuable scenarios, than real team meetings. One
important goal of this thesis is to replicate the previous study with respect to the impact of
experience and team size in scenario brainstorming processes.

Replication is a common technique in empirical software engineering to strengthen previous
findings with respect to a body of knowledge in architecture evaluation and scenario brain-
storming. An important factor is that all parameters must be comparable in the original and
replicated study. The results of this thesis (a) can support reviewers in conducting better sce-
nario brainstorming activities, (b) help project and quality managers in assessing better the
quality of software architecture according to future changes, and (c) provide a deeper insight
in architecture evaluation processes to increase empirical evidence.

The first part of this thesis aims to explore whether the results of both studies are compara-
ble with each other by considering them as a replication. Therefore, all analysis results are
repeated using the data collection of the original study. The second, and more extensive part,
discusses whether the two studies can be compared on a scientific level, or not. In order to get
sufficient answers, three main problem areas are considered:

e The comparability of the focus groups (degree of equality)
e Analyzing the kind of replication used including error finding with the procedure
e Known problems with replication of software studies

The third part of this thesis summarizes the results according to both studies including as-
pects of replication with respect to gaining empirical evidence on architecture evaluation and
scenario brainstorming processes. Regardless whether individuals or teams are considered it
turned out that the approach (top-down or bottom-up) of an evaluation process has no impact.
Teams lose scenarios but eliminate less-important scenarios. But experience of the individu-
als does help and teams with the size of three team members are most economic in terms o
efficiency.

Kurzfassung

Das Design einer Softwarearchitektur ist ein erfolgskritischer Faktor. Anderungen von nicht-
funktionalen Anforderungen (etwa Wartungsfreundlichkeit, Modifizierbarkeit) bzw. von
Qualitdtsattributen konnen sich stark auf die Projektdauer, etwaigen (spiteren) Repara-
tionsaufwand sowie auf die gesamten Projektkosten auswirken. Entstehen solche Anderungen
erst gegen Ende des Entwicklungsprozesses, so sind deren Auswirkungen mitunter fatal.

Eines der Hauptziele von Softwaretechnik ist es daher, mogliche notwendige Anderungen
betreffend die Architektur schon frith in der Softwareentwicklung zu identifizieren. Durch
die Identifizierung von zukiinftigen Zielen und Szenarios ist es leichter, den Fokus auf die
wahrscheinlichsten Anderungen in einer bestimmten Zeitspanne zu legen. Softwarearchitek-
turreviews - eingebettet in den Evaluierungsprozess (zB ATAM) - sind effektive und effiziente
Ansitze um verschiedene Designs zu durchleuchten und um Defekte und Schwichen friih zu
erkennen. Beides, die Durchfithrung von Architekturreviews als auch die Identifizierung von
gewichtigen Szenarios hingt stark von der Qualifikation der einzelnen Personen des Reviews
ab. Um die Einzelresultate zu verbessern - i.e. Fokussierung auf kritische und wahrschein-
liche Szenarien - konnen Kategorien fiir die Szenarios im Voraus definiert und wihrend der
Evaluierung verwendet werden. Teams konnen Synergieeffekte durch Diskussion und Inter-
aktion nutzen. Fine groBe Herausforderung ist, den Effekt der TeamgroBe auf die Qualitiit
der Szenarien umzulegen. Basierend auf fritheren Studien im Bereich Softwarearchitekturen
scheinen nominelle Teams bessere Resultate zu erzielen als reale Teams.

Replikation ist eine bewihrte Methode in empirischer Softwaretechnik um vorangegangene
Resultate zu iiberpriifen. Die Vergleichbarkeit aller Parameter mit der Originalstudie ist dabei
ein wichtiger Faktor. Das Ergebnis dieser Thesis kann (a) helfen, Aktivititen wie Scenario-
Brainstorming zu verbessern; (b) Qualitéts- und Projektmanagern helfen, zukiinftige Verin-
derungen in die Softwarequalitit besser einzubeziehen; (c) helfen ein tieferes Verstdndnis fiir
Softwareevaluation zu gewinnen um die empirische Beweislast zu erhohen.

Der erste Abschnitt dieser Thesis untersucht, ob die Ergebnisse beide Studien vergleichbar
bzw. replizierbar sind. Zu diesem Zweck wurden alle Analysen und Berechnungen mit den
neuen Datensédtzen wiederholt. Der zweite Teil beschiftigt sich damit, ob sich beide Studien
auch wissenschaftlich vergleichen lassen. Drei Hauptproblempunkte werden hierfiir disku-
tiert, um eine aussagekriftige Antwort zu erhalten:

Die Vergleichbarkeit der Fokusgruppen (Gleichheitsgrad/Vergleichbarkeitsgrad)
Die Analyse der Replikation als solche inklusive moglicher Fehler wihrend der
Durchfiihrung

e Bekannte Probleme von Replikationen von Softwarestudien

Der dritte Teil dieser Arbeit fasst die Resultate zusammen, auch im Bezug auf die Origi-
nalstudie. Der Aspekt dieser Replikation, die empirische Beweiskraft in Sachen Architek-
turevaluierung und Scenario-Brainstorming, zu erhohen, wird ebenfalls diskutiert. Im Endef-
fekt stellte sich heraus, dass die Vorgehensweise (top-down oder bottom-up) keinen Einfluss
auf die einzelnen Personen oder Teams hat. Zudem verlieren Teams Szenarien, eliminieren
dafiir Unwichtige. Zudem ist Erfahrung hilfreich und Teams mit drei Mitgliedern sind hochst
okonomisch.

Contents

1.1.
1.2.
1.3.

1.4.

1.3.1.
1.3.2.

. Introduction
Critical impacts of software design
Using scenarios in software architecture evaluation
IT-research gaps considering scenario based software evaluation
Research study replication
Researchgoals
Structure of the thesis

Software quality attributes
2.1. Classification of software quality attributes
2.2. Trade-offs of software quality attributes

2.3. Impact of software quality attributes on software architecture evaluation . . .

4.3.1.

Software architecture

Experience influencing software architecture evaluation

3.1. Scientific and historical background of software architecture . .
3.2. Softwarelifecycle
3.3. Software design techniques
3.3.1. Describing software architectures
332, Usecasemaps v o v v vi vt
3.4. Quality evaluation of software design
34.1. Costsoferrorfixing
342, Reviews e
3.4.3. Architecturereviews
4. Scenario-based software architecture evaluation
4.1. Scenarios
4.1.1. Benefits of using scenarios in software architecture evaluation
4.1.2. Direct and indirect scenarios
4.1.3. Development of change scenario categories
4.2. Evaluation Techniques
42.1. SAAM
422, ATAM. e
423. ALMA e
4.3. Influencing factors on individual and team performance

(O R R S

10
11

12
13
14
18
20
20
22
23
23
25

27
29
30
31
31
33
33
33
34
35
35

5.

VI

4.3.2. Team size and team meeting benefits

Replication

5.1. ReplicationsinIT-Science
5.2. Classification of the replicationstudy
5.3. Typical replication related problems

Research approach

6.1. Empirical study and replication L

6.2. Research hypotheses
6.2.1. Impact of change scenario categories on the scenario quality
6.2.2. Impact of experience on the scenario quality
6.2.3. Impact of team size on the effectiveness of scenario development

6.3. Variables

Experimental Process
7.1. Experimentdesign
7.1.1. Study procedure
7.1.2. Studyschedule
7.2. IT-Environment and study materials
7.2.1. Software systems
7.22. Study materials
7.2.3. QuUeStioNNAIreS v v v e e e e e e e e
7.2.4. Change categories v v v v v vt e e e
7.3. Scenariorating e e e e e e e
7.3.1. Scenario classificationo
7.3.2. Scenario rating based on scenario frequency
7.3.3. Scenario rating based on experts scoring
7.4. Individual setting
7.4.1. Study participants and study groups
7.4.2. Individual experienceo
74.3. Languageskills o .
7.5. Teamsetting
7.6. Nominal teams e
77, Validity oL
7.77.1. Internal validity
7.7.2. External validity

Findings of the replication study

8.1. Do change scenario categories help to find more or better scenarios?
8.1.1. Scenarios found by individuals
8.1.2. Scenarios found perrealteam
8.1.3. Scenarios found per nominalteam

38
39
40
42

47
47
48
48
49
50
50

52
52
53
55
56
56
57
58
59
59
60
61
62
63
63
64
67
68
68
69
69
70

72
72

8.2. Does experience help to find more or better scenarios?

8.3.

8.2.1.
8.2.2.
8.2.3.

8.2.4.

Reference profiles
Experience and scenario quality
Impact of participant experience on individual scenario brainstorming
effectiveness L L L
Comparison of scenario scoring and expert scoring

Does increasing the team size help to improve the effectiveness of scenario
development?

9. Discussion and interpreting the results

Individual performance L oL Lo
Real team performance
Nominal team performance
Impact of reference profiles and experience
Scenario and eXpert SCOringo a e
Team sizeeffects
Reasons for discrepancies of theresults

9.1.

9.2.

9.3.

94.

9.5.

9.6.

9.7.
9.7.1.
9.7.2.
9.7.3.
9.74.
9.7.5.
9.7.6.
9.7.7.
9.7.8.
9.7.9.
9.7.10.

10.Conclusion

A. Appendix

Type of study/replication
Study design
Timetable
Documentation L
Collaboration e
Participants
Samplesize
Culturalcontext
Knowledgebase
Summary L e e e

104

109
109
109
110
110
111
111
112
112
112
113
113
114
114
114
115
116
116

118

XXI

VII

List of Figures

1.1.
2.1.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.

4.1.
4.2.

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.
7.9.
7.10.
7.11.

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.

VIII

Traditional cost curve of software changes[1] 2
Trade-offs of software quality attributes 11
The V-Modell used in software development projects[2] 13
Rational unified process[3]o 15
Software development process - Spiralmodel 16
Software development process - Waterfall model 17
Project development costcurves 17
Usecasemap[4] o o o 21
Use case map - example of the notation 22
Costs of error fixing in percent in relation to the development phase 23
Example of a quality process[S] 24
Taxonomy of reviews in software development projects[6] 24
Software architecture analysis related techniques 29
The eight steps of the ATAM-Method 34
Basicstudy setup 53
Basicstudy procedureo Lo 54
Software and team setup change of the participants 55
LiveNet starting loginscreen 57
The change categories provided to the treatment group - LiveNet 59
The change categories provided to the treatment group - Wiki 60
Frequency of unique scenariofound 61
Sizes of the two study groups Lo 63
Calculated experience of the individuals 65
Average experience score of the participants per system 66
Distribution of English language skills 67
Comparison of the individual groups 75
Comparison of the individual groups specifically for each system 78
Comparison of therealteams 81
Comparison of the real teams specifically for each system 81
Number of scenarios found by nominal teams 84
Number of scenarios found by nominal teams for each system in specific. . . 84

8.7.
8.8.

8.9.

8.10.
8.11.
8.12.
8.13.
8.14.
8.15.
8.16.
8.17.

8.18.
8.19.
8.20.
8.21.
8.22.
8.23.
8.24.

8.25.
8.26.

9.1.

9.2.
9.3.

Number of scenarios found by nominal teams compared to real teams 85
Scenarios gained and lost by real teams compared to nominal teams (LiveNet-

System) e e 86
Scenarios gained and lost by real teams compared to nominal teams (Wiki-

System) e e e e e 86
Scenarios gained and lost by real teams compared to nominal teams 87
Individual scores concerning the reference profile 90
Box plot of individual scores concerning the reference profile 90
Experience against sCenario SCOre v v v v it 91
Experience classes in relation to scenario score of the LiveNet-System 93
Experience classes in relation to scenario score of the Wiki-System 94
Experience classes in relation to scenario score of both systems 96
Impact of experience on the effectiveness for the LiveNet-System/SC-F (Indi-

viduallevel) e 98
Impact of experience on the effectiveness for the LiveNet-System/SC-E (Indi-

viduallevel) e 99
Impact of experience on the effectiveness for the Wiki-System/SC-F (Individ-

uallevel) e 99
Impact of experience on the effectiveness for the Wiki-System/SC-E (Individ-

uallevel) e 102
Comparison of SC-F and SC-E for the LiveNet-System 103
Comparison of SC-F and SC-E for the Wiki-System 104
Impact of team size on brainstorming effectiveness - LiveNet (mean) 106
Impact of team size on brainstorming effectiveness - LiveNet (standard devia-

150 o) 107
Impact of team size on brainstorming effectiveness - Wiki (mean) 107

Impact of team size on brainstorming effectiveness - Wiki (standard deviation) 108

Answer distribution to question: Did you have enough time for scenario brain-

storming? e e 113
Answer set to the question: Did you follow the instructions? 115
Answer set to the question: Did find the instructions helpful to you? 116

IX

List of Tables

2.1.
2.2.

3.1.
3.2.

5.1

7.1.
7.2.
7.3.
7.4.
7.5.

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.
8.10.
8.11.
8.12.
8.13.
8.14.
8.15.
8.16.
8.17.
8.18.
8.19.

Quality attributes according to ISO9126 9
Quality attributes due to Lundbergetal.[7] 9
Examples of software architectures[2,8] 18
Average error reduction of the Fagan-Inspection[S5] 25
Common errors in scientificwork L 0000000 44
Study schedule 55
Total scenario classification oL L. 62
Range of experience classeso 65
Distribution of the experience of the groups per system 66
Team roles of a software evaluationteam 68
Average scenarios found per individual o000 oLl 73
Average scenario per class found by individualso L 74
Average scenario per class found by individuals (LiveNet) 76
Average scenario per class found by individuals (Wiki) 77
Average scenarios found perteam 79
Average scenario per class found by team 80
Average scenario per class found by nominal teams 83
Scenario gain and loss ratios of real teams 86
Reference profile list LiveNet 88
Reference profile list Wiki L. 89
Reference profile score of individuals in relation to their experience (LiveNet) 92
Reference profile score of individuals in relation to their experience (Wiki) . . 93
Reference profile score of individuals both systems and study groups combined 95
Scenarios assigned to classification sorted by classification technique 96
Individual effectiveness - LiveNet/SC-F 97
Individual effectiveness - LiveNet/SC-E 100
Individual effectiveness - Wiki/SC-F 101
Individual effectiveness - Wiki/SC-E 102
Impact of team size on brainstorming effectiveness - Descriptive Data 105

1. Introduction

The design of software is the principal focus of software engineering.[9, p.1] Like in any other
productive enterprise the design can be interpreted as the plan of the final product. No matter if
this is a skyscraper, an automobile or any other manufactured item. Software design contains
design related structural issues of the system. The aggregation of them leads to the software
architecture. Hence, software architecture is a (specified) form of software design.[10, p.3]
Any software architecture evaluation requires a (pre-) defined architecture which can be re-
viewed.

1.1. Critical impacts of software design

Despite technological improvements the challenges of software design today are quite the
same as forty years ago: How to design a set of programs into a complete software sys-
tem? How to design and build a system robust, tested and well-documented which contains
the necessary artifacts to obtain (pre-) defined goals?[9, p.3] Therefore, the software design
respectively the software architecture can be seen as success-critical for the whole software
project. Three fundamental issues are relevant [10, p.11]:

Mutual communication between stakeholders

The software architecture representing the software design is a high-level abstraction of the
software system. Most, if not all, system’s stakeholders can communicate with each other,
creating mutual understandings and forming consensus by using these design related docu-
ments.

Early design decisions

The software architecture represents early design decisions of the system. The impact of
these bindings on the system’s remaining development, its service in deployment and the
maintenance until the end of the life cycle is very high.

Transferable abstraction of a system

The software architecture defines how the system is structured and how the involved compo-
nents work together. However, this model is transferable across systems especially if they un-
derlie similar requirements. Large scale reuses of proved software design are possible too.

Another way of representing the critical aspects of the software design is trying to express
them quantitatively using the costs of a software project.

Impact of software design on software project costs

Due to the famous Department of Commerce’s National Institute of Standards and Technology
(NIST), errors, bugs or similar software problems created damage costs for the U.S. economy
of approximately $59,5 billion dollars in 2002.[11, 12] In other words, software failures add up
to extraordinary 0,6 percent of the U.S. gross domestic product. Really astonishing is the fact
that over a third of those errors, about $22,2 billion dollars worth, could be avoided through
improved testing environments whereby software defects can be identified and removed ear-
lier. A large percentage of those are produced within the development process but nearly half
of all of them are not detected during development or beta testing.[11]

However exhaustive testing of all possible features, situations, or paths is impossible for most
(large scale) software systems.[13, p.1] Moreover, if a certain level of software refinement
has been achieved further efforts spend to increase reliability will increase exponentially. The
right timing when to release a software system to the customers and stop testing it is important.
Especially when the total software costs as well as all future warranty and risk costs shall be
minimized.[13, p.1]

Cost
of Change

Reguirements Analysis and Coding Testing in the Production
Design Large

[Time

Figure 1.1.: Traditional cost curve of software changes[1]

Among others, decisions dealing with the architecture of a software system are the earliest
ones to make. Corrections or error fixing because of wrong or bad decisions dealing with

this matter are most costly.[14, p.1] As figure /. shows, changes and corrections of software
systems are getting more and more expensive in the process of time. In many cases those late
changes are necessary because of errors and bad decisions made within the early stages of a
software development project.[12, p.1]

As more and more components are based on previous work more and more corrections have
to be done if a problem made at the beginning of the project is covered up later on. In the run
up of software development the major task is to define the software design respectively the
software architecture and to ensure that as few mistakes as possible are made.

So, the focus of error avoiding is drawn to the design process. Software architecture evaluation
provides effective methods to find architecture related errors at the design stage of a software
development process.

1.2. Using scenarios in software architecture
evaluation

Main goal is to avoid bad or buggy software architecture design. In order to do so, the involved
persons must be able to assess the impact of their decisions on the desired quality objectives
respectively the quality attributes of the software by the time they are made.[14, p.1] Examples
of such attributes are the performance, the reliability or the functionality.

Software architectures are not intrinsically good or bad.[15, p.7] Instead the architecture has
to be evaluated with respect to the requirements of the stakeholders of the software project.
An effective way to achieve that is the usage of methods to evaluate the software architecture
in terms of design errors and the stakeholder’s requirements. Today a couple of such methods
exist. The most important ones are SAAM and ATAM.[15, p.2] Most of them are more or less
related to each other. Among many similarities they often use scenarios.

Software architecture analysis is a very cost-effective way to control risks and to maintain
the system quality throughout the software life cycle.[16, p.1] Especially important analyzing
issues are the software design, the software development and the maintenance work after the
software roll-out. Main purpose for scenario usage is to predict the software’s ability to fulfill
certain quality objects, so called quality attributes, currently and in the future. They are derived
from the requirements of the involved stakeholders.[14, p.2] If the software system does match
with the defined quality attributes the risk of cost-intensive changes and/or high maintenance
efforts is expected to be rather low. Thus, scenarios are considered as very important import
to software architecture evaluation methods. The accuracy of the results is heavily related to
the quality of the found scenarios.[16, 17]

1.3. IT-research gaps considering scenario based
software evaluation

According to recent research work scenario-based approaches for software architecture evalu-
ation are considered as useful and helpful.[18, p.1] Nevertheless there are still open questions
which currently cannot be sufficiently answered. One example is the impact of using change
scenario categories. Therefore further research work in I'T-science dealing with this topic is
necessary. Basically the goal is to find out how more and/or higher quality scenarios can be
elicited.

Currently there is only little empirical evidence of the relative effectiveness of scenario elici-
tation techniques.[17, 19] The approach applied by the stakeholders to elicit these scenarios is
also questioned. Either the whole process is done top-down or bottom-up. The first one uses
change scenario categorization for guiding the scenario elicitation process whereas the latter
approach does not.[17, 19] Another topic questioned in IT-science is the optimal team size for
evaluation teams again in terms of effectiveness.[6]

One point of interest is the effectiveness of scenario development meetings in terms of the
software architecture evaluation process.[20] This research question involves also the fact that
individuals on their own as well as evaluation teams are conceivable for the evaluation process
in the industrial world. Setting the focus on individuals and/or teams the impact of expe-
rience on the performance is also not quite clear.[6] Do well-experienced persons perform
better compared to experienced or less-experienced ones? Or do different scoring systems
(frequency-based, participants-based or expert scoring) rate scenarios differently considering
whether they are critical or not? Again the impact of experience is expected to affect the
people when they rate such scenarios.

1.3.1. Research study replication

During a controlled scientific study performed at the University of South Wales, Sydney, above
research topics have been investigated.[20, 17, 19, 6] This study as well as its results are the
initial position for this work.

As already mentioned, a lot of research still has to be done in this scientific area. However,
IT-researchers have covered up the problem that there is a lack of scientific replication work
too.[21] Basically, research results which cannot be proven are not scientifically valid.[22]

Therefore the original study was replicated at the Vienna University of Technology in June
2008. Main purpose was to re-investigate the scientific research questions and statements
made there and to probably be able to strengthen them. Like in Sydney, the study replication

was performed at a university observing the performance of IT-students. Again both under-
graduate (Bachelor) and graduate (Master) students were mixed. It was decided to repeat the
study conditions as exactly as possible in order to achieve similar results.

1.3.2. Research goals

Accordingly this replication is the main objective of this work. The design and preparation
work as well as the execution process is described in detail. Afterwards the results and findings
are presented. Of course this work refers to the original study as both are connected through
the same research purpose.

An important step is to compare and to evaluate the findings of the original with those of this
replication. The fundamental question is: “Can the results of both studies be compared at a
scientific level?” If the answer is yes, the statements derived from the original study can be
evaluated. Depending on the findings of the study replication it is possible to affirm or reject
those statements on a higher level. This is because more observed individuals and/or teams
worked similar under the same conditions producing larger data sets which provide bigger
confidence.

The second purpose of this work is to evaluate in terms of replication research whether both
studies can be compared on a scientific level or not. Known replication problems as well as
other possible affecting factors are considered. This shall either explain thinkable reasons for
different results and/or if research errors have occurred respectively have been made.

1.4. Structure of the thesis

The first part of this work, apart from the introduction, describes and explains the theoretical
background of this work. Considered is especially the current state of the art within the IT-
science regarding software architecture, scenario-based software architecture evaluation and
replication research, especially with reference to IT-studies. Additionally the topics software
product life cycle and software quality attributes are covered.

The fundamental issue of this thesis is, of course, the workload produced by the performed
study replication including the experiment preparation, the actual performance and data col-
lection, the analysis and calculation of results as well as the findings and conclusions. The
whole documentation of this is separated into three main parts.

Research approach and experiment description

Conducting a study or replication requires substantial efforts. The preparation, the execution
and the postprocessing tasks create a huge workload. This part describes the research approach
as well as the experiment proceedings in detail. The research approach involves the created
research hypotheses behind this work. Further the topic of “validity” is discussed.

Within the experimental process the design of the study and the basic procedure are explained.
Additionally study-related characteristics concerning the participants are presented in this
chapter. Basically the team setting and study groups are terms of interest. Further the classifi-
cation of the individuals regarding their experience and language skills are explained.

Research activities

The most extensive part deals with the actual research work. Creating the data set and per-
forming the data mining have taken a serious amount of time. This was necessary to correct
redundancy and eliminate not usable data. However, these activities do not belong to the study
research work and are not described within this thesis.

As the replication can be categorized as an “exact replication”, all original calculations had to
be repeated based on the new data sets. Additionally further calculations have been done. This
resulted from the fact that the replication was executed twice using both times two different
software systems - and their architectures - for evaluation. On finishing the calculations the
results are summarized and compared with those of the original study.

Comparability

Unfortunately aggregating results of different studies or replications is not that easy to do. In
particular the impossibility to achieve equal conditions and environment does provide a lot of
problem fields like variability of the results or performance affecting factors. Issues like bias,
a shortage of cooperation and communication often come along with them. So the last chapter
compares the original study with this replication. The main goal was to find out if and how
the results can be aggregated considering whether the findings of both studies are similar and
the statements can be affirmed on a wider basis or not.

Finally this work discusses if known replication related mistakes, documented in I'T-science,
during this research activities have been made. The reason is that through such mistakes
probably the results and findings cannot be compared and interpreted together with the original
study.

2. Software quality attributes

In several fields of engineering (e.g. civil engineering), quality concerns have a long-term
history.[23, p.1] For example, constructing high buildings always involves constant tests of
the buildings materials (e.g. concrete, steel) used. Otherwise it would have been impossible
to build constantly higher, larger and more complex houses, skyscrapers, bridges, tunnels or
else. Safety measures, costs and time schedules forced the planners to develop mechanisms to
ensure that the respective quality concerns are matched.

Yet, software development processes differ from manufacturing or civil engineering processes.
For example, the daily improvements cannot be seen that clearly whereas when building a
wall, the progress can be observed easily. Also defining, controlling and standardizing quality
attributes are quite tricky compared to civil engineering. A bridge’s quality attribute could be
that it has to withstand weights of 16 metric tons, which is a clear definition and there are
practical methods for checking this. By contrast, a software system might have the specifi-
cation to provide a good handling user interface. Especially in advance, it is hard to make
assumptions of what users prefer in terms of user interfaces. However, there are similarities
on both sides.

Determining quality aspects, attributes and goals are depends largely on the stakeholders in-
volved in the software development. Unfortunately, discrepancies frequently result from dif-
ferent opinions, wishes, ideas and technical knowhow. Limited resources make it impossible
to fulfill all quality aspects. Time, costs and quality are interconnected and manipulating one
of them affects the others - positively or negatively.

2.1. Classification of software quality attributes

Ultimately, inspection team meetings as a part of quality management are held to ensure the
quality of the software product, whereby the system, respectively its architecture, is of par-
ticular importance. Consequently, (pre-) defined quality attributes must match common or
additionally requested quality levels. In case of a software system, those attributes can be
divided into three categories.[24, p.3]

1. Whether Quality attributes exist, can be observed through the output of an existing sys-
tem given some test input. Usually they are described by names such as reliability,
security, availability et cetera. There are time-dependent ones like performance or data
throughput and others which are not.

2. Other qualities can be described by measuring the activities of a development mainte-
nance team. These include maintainability, portability, adaptability, and scalability.

3. Further, the activities of a particular user (or in some cases of another system) in con-
cert with the executing system can be measured and described. Usually, these include
usability, predictability and the ability to learn.

This differentiation seems to be rather vague and in fact, it would be very difficult to ana-
lyze a software architecture using this categorization system. Yet Kazman states that such a
classification turns out to be quite useful. Quality itself is occasionally tricky to measure.

Depending on a certain point of view a quality attribute can be important / unimportant, more
or less fulfilled or has a higher or lower priority. For example, certain software is able to run
on two different operating systems, but not on a third one. Is the program portable (enough)
or not?

What do users on both supported systems think in contrast to the users working on the third
operating system? At the present time and for the foreseeable future, no simple (e.g. scalar)
universal measurement for attributes such as security or portability does exist. Valid attributes
in the past have become obsolete now and today’s state-of-the-art attributes will be unusable
in the future.

Instead, only context-based or context-dependent measurements exist constantly. Addition-
ally, they are only meaningful in the presence of specific circumstances of execution or devel-
opment. Looking at the I1SO9126 Software Quality Attributes, the following classification is
presented:

Quality Attributes
Functionality Suitability
Accuracy
Interoperability
Compliance
Security
Reliability Maturity
Recoverability
Fault Tolerance
Usability Learnability
Understandability
Operability
Efficiency Time behavior
Resource behavior
Maintainability | Stability
Analyzable
Changeability
Testability
Portability Installability
Replaceability
Adaptability
Conformance
Table 2.1.: Quality attributes according to ISO 9126

ISO itself is also subsuming attributes under convenient classifications, though its approach is
less vague and abstract and therefore more precise. It should be pointed out that ISO9126 is a
standard for software quality attributes and must be adapted to individual cases. But this list
accommodates particularly requirements of software architecture quite well. Another example
is the categorization of Lundberg et al. [7] which provides only a very limited taxonomy. The
reason leading to this was that the authors created it during a specific experiment. Therefore
the categorization represents the quality attributes defined for that. Combined with the knowl-
edge about the topic, they were able to reduce the quality attributes needed to a minimum
which can solve many discrepancies between the stakeholders.

Quality Attributes
Performance | Throughput
Response time
Modifiability | Maintainability
Configurability
Table 2.2.: Quality attributes due to Lundberg et al.[7]

This subset was exhaustive enough to run the experiment. Although this classification is rea-
sonable, it is not useful for this kind of study. Lundberg et al. dealt with specific programs
to test exactly described architectural problems. Similarly, the procedure in our studies used

two software systems. But contrarily, the study related to this work uses scenarios which shall
be valid for more or less every kind of software or software architecture respectively. The
categorizations discussed so far were only used as examples. Dependent on the selected soft-
ware system, environmental constraints and other project conditions there is no answer which
software architecture classification or which quality attributes shall be defined or used. The
decision must be made specifically every time. Due to the limited time period of this replica-
tion study, the participants had to learn and handle the software in order to develop scenarios
for the predictable future. They had to define their own quality attributes which they wanted
to consider.

During the replication study, nearly all possible quality attributes were permitted. Neverthe-
less, in order to get usable results, scenario categories were provided to the treatment group.
So the range of the answer sets of these individuals or teams could be limited. Additionally, the
participants needed less time to get into the whole topic of (change) scenario based software
architecture evaluation.

2.2. Trade-offs of software quality attributes

Throughout the world computer systems use software applications or whole software systems.
Many of them are critical, since as failures could have serious consequences involving, among
others, danger to lives. Such critical software often has the following characteristics:[25,

p.11]

1. The life cycle of these systems may last several years or even decades. Updates or
upgrades are of evolutionary kind.

2. Operation of the application / software is required to be almost non-stop.

3. Quality attributes like timeliness, reliability, safety and interoperability are of paramount
importance.

Crucial for the success of software (systems) is to identify the requirements correctly. Merely
satisfying those to some degree can lead to fatal failures. The quality measure of a software
is the degree to which quality attributes or a combination of them are covered by the software
system.[25, p.13] Unfortunately, there exist trade-offs between quality attributes. Software
developers have to balance them in order to get the best results. To achieve this goal they
have to be evaluated. Accordingly, it is one of the ultimate goals to be able to quantitatively
measure the trade-offs. The starting point to find quality attributes which can be evaluated this
way is a description of the software architecture.[25, p.13]

10

Patfcrimanios ’/—‘—C—j'/- O Local (single attribute) optimum

@ Global (multiple attribute) optimum

/./ | Security

Dependability
Figure 2.1.: Trade-offs of software quality attributes

As shown in the figure right above, quality attributes related to performance, security and
dependability must be traded-off. The limiting factor is the software project budget. Therefore,
the costs of all three must not exceed this certain amount which forces to balance them.

2.3. Impact of software quality attributes on software
architecture evaluation

An important step is to implement the desired software quality attributes of a system into
the system’s architecture.[25, p.1] Further it is important that the architecture has to include
and consider as many quality attributes required by the stakeholders as possible. The main
purpose of the software architecture is to describe the system’s components as well as their
connections, their interactions and the interaction of the system and its environment.[14, p.
45] This enables software engineers to make objective decisions in terms of design trade-offs
and accurate predictions about the system’s attributes and their quality.

The specific interest of software developers in software architectures emphasizes the impor-
tance of the software architecture as a determining factor for the software quality.[14, p.1]
Decisions about the software architecture have great impacts on the quality attributes imple-
mented and as a consequence on the complete final software system. Main target of designing
a specific software architecture is to be able to quantitatively evaluate and to balance the mul-
tiple software quality attributes in order to achieve a better system (quality) overall.[25, p.1]

This explains why bad decisions or errors respectively mistakes during the design of the soft-
ware architecture can result in very costly fixing work later on. Therefore it is very meaningful
to evaluate the software design/software quality during that period and before the system is
actually built.

11

3. Software architecture

The design of application or system software that incorporates protocols and in-
terfaces for interacting with other programs and for future flexibility and expand-
ability. A self-contained, stand-alone program would have program logic, but not
a software architecture.[26]

Many definitions of software architecture exist. And actually there exist many different soft-
ware architectures as well. Principally, the design of the software architecture is one of three
major elements of the whole system design.[27, pp.187-188] Modelling interfaces and the
data capturing are the two other elements specified. Undeniably, thoroughly planned software
architectures are essential for building successful and high quality software systems. As the
complexity and size of an application increase, design problems exceed solutions based on
algorithms and data structures [28, p.1] and lead to the next level of problems, i.e. speci-
fying an overall system structure. Main issues pertain to organizational arrangements, team
coordination, scaling and performance, architectural design, et cetera.

Software architecture is high-level designing.[24, p.2], [29, p.23] Developers are concerned
with the configuration and integration of components which create the final architecture of
the system. Interfaces between those components are also part of the architecture. Though
the word software is used, in the end often software and hardware components provide the
functionality desired.

The software architecture defines software elements which are most common described as
a set of components.[29, pp.20-23] Further, the software architecture can be explained as
the structure of the system containing its elements, their properties and their relationships.
Notice, that no structure can assert itself as being the usual architecture used. Too large is the
range of problems given and the variety of solutions based on software. Consequently, several
architectures and even more varieties exist.

In this context, the software architecture serves somehow as a design plan. From another point
of view, a software architecture can be seen as an abstraction.[30, p.5] Handling the complexity
of programs is getting far more easily for both the development and evaluation team using such
abstractions. Lack of experience and missing guidelines are the main reasons, why wrong
details are considered, false steps are taken and important matters are missed. In economy,
for example for portfolio investments, managers use scenarios for decision making. Those
scenarios contain (environment) conditions, constraints, requirements, etc. and are created

12

to ensure that all important aspects are considered. Scenario descriptions are abstractions of
possible future events.

Consequently, it makes sense to develop scenarios for software architectures in order to deal
with them in evaluation meetings. Time shortage and different levels of knowledge and ex-
perience demand procedures which simplify and push the whole process in order to achieve
sufficient results.

3.1. Scientific and historical background of software
architecture

In IT-science it is common knowledge, that early software development stages are of sig-
nificant importance in order to produce successful software systems. The idea of software
engineering first came up in 1968.[27, p.29] The tenor was that the development of software
shows similar characteristics to other engineering disciplines (e.g. civil engineering). There-
fore, software engineers adopted their proved methods and proceedings. As a result, construc-
tion plans and procedure models usable for software projects emerged. Well-known examples
are the V-Model or the Waterfall-model. Furthermore, all phases before the actual coding have
become more and more important, especially the design phase, which is therefore included as
a major stage in most of the currently used procedure models.

/——— System Changes —\

Test Scenarios

Sy s e %
’ = N \
; * Engimeering \

System Architecture -=="
Baseline

Model/ Requirements Repository

e e e e e

-~

T o |t o | e I . e o e e e

Figure 3.1.: The V-Modell used in software development projects[2]

13

Since the mid 1980s, I'T-scientists began to create a new discipline, i.e. software architecture.
The main impulse was that software exceeded levels of range, complexity and size, which
could only be dealt with new data algorithms, right data structures, and so on. Consequently,
software systems tended to fail more often over time. The approach of designing software
architectures at the beginning of the development process is intended to counter such prob-
lems. Currently, such architecture is comparable to a construction plan of a building (or at
least to a certain degree). And, as in civil engineering, these plans are created before starting
the actual work. Logically, the decisions made within this period are of directive importance
for the whole project and cannot be changed easily later on. The design phase of a software
product strongly determines its success. The whole process is embedded into the software life
cycle.

3.2. Software life cycle

Der Software-Lebenszyklus (software life cycle) ist der Prozess der Entwicklung
von Software-Produkten und kennzeichnet alle Phasen und Stadien dieser Pro-
dukte von ihrer Entwicklung, Einfiihrung und Wartung bis zu ihrer Ablosung oder
Beseitigung. [31, p.17]

Translation:

The software life cycle is the process of the development of software products
and pertains to all phases and stages of these products from their development,
implementation and maintenance to their removal or elimination.

Every software product experiences several stages throughout its existence, similar to other
industrial products. IT-systems are often combinations of their hard- and software. But this
coexistence is not constant over time as hardware components might be replaced or substi-
tuted. Updates as well as upgrades of the software can occur. However, the average lifetime
of hardware components is often limited to two or three years whereas software components,
especially when application oriented, can be in use for more than ten years.[27, p.37]

Thus, software development has to be more conscious of future changes. Two main objectives
of software architecture are to diminish concomitant effects due to certain impacts caused
by them (like costs) and to decrease the likelihood of necessary adjustments by foreseeing
developments. Important in terms of technical and development of aspects in the software life
cycle is the introduction stage where software development processes are included.

14

Phases
Disciplines |Incaptinr‘n” Elaboration | Construction ||Trar=sa't’iun|

Business Modeling
Requirements

Analysis & Design

Implementation
Test
Deployment

Configuration
& Change Mgmt

Project Management ' H H
Environment | s e e

‘ Initial |.Lzlun #1‘ ‘ Elab #z"f’iﬁsjl_mn |c:1;‘at [TE“EJ
Iterations

Figure 3.2.: Rational unified process[3]

Within the IT sector, the introduction and the development stage respectively, are structured
according to a procedure model which is an abstract illustration of the software (development)
process.[2, pp.56-57] Various models have been created to organize and to illustrate the de-
velopment of software systems within their specific life cycle. Not surprisingly, they differ.
However, science divides them into two categories: [31, pp.103-110]

e sequential life cycle models having a relatively strict sequence of phases
e nonsequential life cycle models using feedbacks to jump from on phase to another

One of the most commonly used sequential life cycle models is the waterfall model. Further,
it is quite simple and therefore well suited as an example for demonstration. Even without
a software engineering or at least technical background it is easy to understand its software
development process. Several clearly defined levels exist.

When all the tasks related to one of them are finished, the next stage is entered. Of course,
the boarders are not completely fixed. But it is not intended to give an exact presentation.
Other representatives are the V-Model (see chapter introduction) or, to give an example of a
non-sequential one, the spiral model. The latter uses prototypes for progress monitoring.

15

A Cumulative cost

Progress

1. Determine objectives B 2. Identify and
resolve risks

Risk analysis \,
y Risk analysis A

! / Risk analysis 3\
. | i Require- \ \

Review | / ments plan | -~

< | I (

< t

\ \ operationat |
\ Prototype 1 | Prototype 2 | Prototype |
t f

\ Concept of | Canceptor / Require- |

operation | require- ments / Draft |
ety / / Detailed |
design /
Development | Verification
plan | & Validation
: Code
Test plan | Verification Integration
& Validation -
4. Plan the next Test
iteration Release | Implementation

——
3. Development and Test

Figure 3.3.: Software development process - Spiral model

Nevertheless, all of these types of models specifically include a design phase. This indicates
the importance of this part of software development. Decisions concerning the architectural
design within a software development project have to be made very early. Therefore, they are
very difficult to get correct. No one can foresee the future and creating applications can last
even for years. Especially later on, wrong decisions in the design stage cannot be changed
without great expense.

Thus, over time, software architecture design has become more and more important. As a
consequence its own place was created within the life cycle process of a software product.
Due to the gap between the lifetime of software and hardware, software systems must be
designed to handle changes of even critical (hardware) components without larger efforts.

Software developers therefore have to consider factors like which programming language to
choose, the implemented interfaces or which hardware standards to consider. In most cases
the question is which of them will be used midterm.[27, p.37] Studies show that early efforts
spent on system analysis and design are of great benefit later on.[32, p.151]

A graphical view will clarify this topic in a compact way. The B-curve represents old, an-
tiquated project proceedings. Investments in system analysis, system design and coding are
relatively small which cause, however, very high efforts with regard to testing and maintenance
costs.

Contrarily, the A-expenditure-curve represents up-to-date software development approaches.

Efforts spent on system analysis and designing the software system in the early phases of the
project are higher, which leads to smaller efforts needed for testing and error fixing later on.

16

.Speci-\(icat'\ohs-

\“\ validation

General
desigh

\\ Testing

Detyiled
desigh

\"\ Testing

Pregramming

\“\ Unit testing

Integiation

\"\ Integration testing

|mp|eme ntation

\:‘_ Validation

Maintenance

Figure 3.4.: Software development process - Waterfall model

Further, the software is finished earlier for roll-out. The main reasons for this are fewer errors
during the project development. The benefits exceed the extra costs for system analysis and
design by far. Extremely important is the step right after the design phase. Reviews, evaluation
and checks of the system architecture are essential for ensuring the quality of the product and
allow to reap the benefits of faster, cheaper testing and maintenance.[32, p.152]

Effort

Curve A Curve B

! Time
System | Design | Coding | Testingand

Analysis _ Implementation
Figure 3.5.: Project development cost curves

17

3.3. Software design techniques

The next step is to ensure that the software architecture is created extremely carefully in order
to avoid any bad decisions, errors and mistakes. This process is related to the overall software
design approach.

Basically, there are two ways to design software, top-down or bottom-up. In the first approach,
the architecture is created beginning from abstract ideas to concrete solutions. Bottom-up
means exactly the converse. Concrete solutions are arranged together until an abstract overall
design is built. In industrial practice, developers usually use and combine both methods. If
prefabricated modules exist in old libraries, bottom-up is more likely to be chosen and vice
versa.

An important aspect of software architecture is the future maintenance effort. Service efforts
are the major cost factor within the life cycle of a software product.[33, p.2] Not surprisingly,
the stakeholders are interested in designing an architecture allowing future implementation at
low costs.

Over time, several examples of software architectures have been designed and have achieved
broad acceptance. Primarily, evolutions and improvements in IT science and industrial pres-
sure have led to more and more complex software systems, demanding new approaches of soft-
ware development and, as a consequence, to enhancements of software architectures. Some
are designed for special kinds of software others for specific customers and their requirements.
The following list gives a short summary.

Software Architectures
Blackboard Client-Server
Database-centric architecture | Distributed computing
Event Driven Architecture Peer-to-peer
Pipes and filters Representational State Transfer
Service-oriented architecture | Three-tier model

Table 3.1.: Examples of software architectures|2, 8]

The problem is how to present and discuss software architecture if there is not a uniform
set. Searching for common elements, the solution found was to classify them into views.
Unfortunately, as there are many reasonable points of views to consider, many examples have
been developed and documented. One of the first classifications created distinguished three
main elements.[34, pp.40-52]

e (1) processing elements
e (2) data elements
e (3) connecting elements

18

The processing elements (1) are components which are used for transformation of the data
elements (2). These data elements themself store the actual information. The connection ele-
ments (3) are considered to be a kind of “glue” holding the pieces of the software architecture
together. Similar compact is the later on developed categorization of Hofmeister et al. which
separated the architectures into four views.[30, pp.11-12]

Code View

Initially, the source code for the first software applications was stored in one single file. Today,
this is simply not possible any more, even scripts often use more than one file. Structuring the
code into libraries, artifacts or binary code has been heavily supporting the reusability of the
code. Later on, the organization was enlarged with configuration management, version files,
directories et cetera.

Module View

Due to the increase of complexity and size, software systems needed more and more human
resources for development. In order to maximize effectiveness, interfaces were defined and
code encapsulated into modules.

Execution View

Old programs were commonly coded as strictly sequential. In the course of time, software sys-
tems became more and more complex, were distributed but also more interconnected. Turning
functional components into runtime entities became difficult. Interconnection languages arose
in order to cope with this challenge. Soon those issues became strategic enough to deal with
them in terms of software architectural components.

Conceptual View

Recently, software architectures have become so complex and extensive that system compo-
nent itself reached a level comparable to software architectures of whole programs some years
ago. Accordingly, this view considers major design elements of the software system.

This categorization is very common and is still taught at universities [35] although there ex-
ist several differing classifications of views. In terms of software architecture evaluation,
probably the most convenient definition of software architecture is provided by the IEEE
Institute.[36]

Architecture is the fundamental organization of a system embodied in its components, their
relationships to each other, and to the environment, and the principles guiding its design and

evolution.

Due to this definition, software architecture primarily deals with its own structure of software

19

components. It is important to understand and control the essential elements which are es-
sential in terms of utility, cost and risk. The IEEE standard does not explicitly exclude other
elements concerning those matters. Of course they can be created of physical components
including their relationships.

3.3.1. Describing software architectures

One major problem field of software architecture evaluation (whether scenarios are used or
not) is how to get an overview of the functionality of the specific software. Of course, the
architecture level is indeed abstract and somewhat simplified. But on a large scale, depen-
dencies in functions, linked components and so on may become quite complex to understand.
One way, especially in architecture-based development processes, is to use architectural de-
scription languages like ADL or MIL.[37, p.2] Also possible is the use of view models. Most
common are documents standardized in UML 2.0. Basic examples are:

Activity Diagram

Class Diagram
Communication Diagram
Component Diagram
Composite Structure Diagram
Deployment Diagram
Interaction Overview Diagram
Package Diagram

Sequence Diagram

State Machine Diagram
Timing Diagram

Use Case Diagram

Another possibility of getting an abstract visualization is the use of Use Case Maps which are
described in more detail in the following section. The advantage of such maps is the level of
abstraction they provide.

3.3.2. Use case maps

With UCM (Use Case Maps) there further exists a modeling technique to describe scenario-
based software architectures. Originally, UCM was developed as a tool to help understand
especially large software systems.[38, p.1] Graphical abstraction is much more effective than
skimming thousands or ten thousand lines of code, probably written a long time ago by another
programmer. Major application areas are [39, p.2]:

20

e Requirements Capture
e Architectural Evaluation
e Transformations to Designs and Tests

Basically, this technique closes the gap between requirements (engineering) and design. In
the software development process, UCM is applied between defining the requirements and
the (detail) design stage. Use cases link and help to visualize the behavior combined with
the structure of a software system at the architecture level. Note that message exchange and
component behavior are at a lower level. This allows drawing scenario paths within the system
visualizing the behavior of the system to new scenarios. It is then possible to study the negative
effects of the interaction of several scenarios. Understanding Software is well crucial.

AddBroadcasterMessage

ModifySubscriberDetails

HTTP
+ L +
T
End Usar Server .| | Message Details
|
=
——

‘ Sabscriber Details

L

Figure 3.6.: Use case map[4]

Research in the 1980s showed nearly thirty years ago, that understanding a program just
through its code represents between 50 to 90 percent of the maintenance work. Today’s pro-
grams are at least at that level of complexity or most likely above. Exploring architectural
problems requires the exact representation of source information. The more abstractly this
information is presented, the more easily and faster it can normally be understood. This is
the purpose of use case maps. Use case maps can be derived from use case diagrams or from
informal defined requirements.[40, p.3]

The image above shows a small and simple UCM. The two lines represent scenarios which
can happen to the system.

3.3.2.1. Use case maps - A short introduction

A UCM itself consists normally of path elements as well as of software components.[40, p. 4]
In basic path notation, an operator casually links responsibilities in sequences.[40, p.4] Such

21

sequences can be functions, methods or something similar. Basically these responsibilities
alternate, or occur in sequence or parallel fashion respectively, thus enabling pipelining proce-
dures. More advanced operators are also able to structure UCMs hierarchically. Further, they
can be used to represent exceptional scenarios and dynamic behavior. Components are used
for the description of entities in a system. They can be of different types or nature.

\ \ Logic
'\\ \\
\ \‘- ProcessMsg MsgToTool

‘\\ \ l

\ Socket \ l
SendMsg \

\

._ _)(':“ MsgSentToTool
GetRequést-_ \,

Responsibilities

x

Figure 3.7.: Use case map - example of the notation

Figure 3.3 shows a UCM with two different paths drawn. Each of them represents a sequence
of methods. The crosses indicate that the component is bound to the sequence at this point.
This component is then in charge to carry out the function, task or action represented by the
responsibility. Use case maps are neither a standard of software architecture evaluation nor of
UML 2.0. Nevertheless, they provide a very good visualization of the software architecture
concerning the functionality, respectively their requirements. This enables the evaluation team
to gain better knowledge about the software architecture in less time and helps to come up with
high-quality attributes perhaps within a broader range of viewpoints.

3.4. Quality evaluation of software design

However, the best way is to avoid mistakes and errors completely. Although this may be the
best method, ironically it is quite impossible to do so. Therefore, tools and methods have been
created to find errors as early as possible, which should be even before any coding begins.
Hence, software reviews have been introduced.

22

3.4.1. Costs of error fixing

Basically the objective of software reviews is to avoid costs because of software problems.
There are two different kinds of such problems, called bugs, can be addressed in software
development. The first to be mentioned are code errors. Commands can be used wrongly, or
the syntax of the code contains failures, similar to spelling mistakes in conventional typewrit-
ing. The second class of errors are more abstract, often much more complex or complicated
and due to these characteristics costlier to repair. The reason is that these errors happen most
often during the design and conception phases. A large impact on the future correcting effort
needed has the point in time, the error is covered up. Barry W. Boehm, one of the pioneers of
cost analyzing of large software projects, has been researching for years in I'T-science. Due to
his work, the cost of error fixing is rapidly increasing during the progress of development.[41,
p-96] Notice that correcting errors right after they were made is not that problematic.

Relative costs of error fixing

120%

100%
B0%
£0%
40%
20% .
0% — - -

Reguirement Design Coding Testing Acceptance test Running
analysis with customer

Figure 3.8.: Costs of error fixing in percent in relation to the development phase

The figures used have to be considered as factors. To repair an error at the testing phase is,
relatively seen, 25 times higher than the normal working costs. If these factors are allocated a
variable of €400, it is astonishing, how large sums become, if errors are discovered late in the
process. Getting back to the testing phase, an error costs €10.000 accordingly. Other studies
have come up with similar results, strongly affirming these findings.

3.4.2. Reviews

Not surprisingly, people in charge of software development soon realized that controlling this
phase is a key issue of becoming much more efficient and sufficient. Scouting out for tech-
niques in order to achieve those goals the software engineers and designers encountered the
quality management. (Deming cycle, military, ...). Edward Deming was not the first one using

23

such working process but one of its industrial pioneers. Based upon those ideas, Michael Fa-
gan, employed at IBM at that time, began in the 1970s to adopt them for software engineering,
thereby becoming world-renowned with his article in the IBM Journal 1976.[5]

Basically his invention, the “Code inspection”, is a structured workflow split into several
sub-processes. The main focus is on finding any defects the development documents in-
cluding specifications, design, actual code and other stages of the software creation process.
Thereby, the inspection follows similar rules as for example quality ensuring methods within
the TQM.

!

Planning » Overview » Preparation » Meeting » Rework

Follow-up

A 4

Figure 3.9.: Example of a quality process[5]

Through further research in the IT-science, the “Fagan inspection” was allocated to the taxon-
omy of review techniques.[42, p.11] Reviews are qualitative methods in order to improve the
quality of both development processes and software products. Whereby the latter is the main
target. However, there are many similarities between inspection and review methods. Using
readable documents the product is checked against guidelines and given norms in order to find
errors. Thereby not a single person but a review team is created to do the job. Due to further
research and gained industrial experience review methods with or without the presence of the
customer(s) have been developed.

Reviews
With Customer Without Customer
SRR MR
(Software Requirements Review) (Management Review)

PDR

(Preliminary Design Review)

(Fagan) Inspection

CDR

[Critical Design Review)

Code Walkthrough

| IPR |

) Technical Review
i [In-Process Review)

Figure 3.10.: Taxonomy of reviews in software development projects[6]

24

Throughout several modifications, research, and experience several evaluation techniques have
been developed based on the “Fagan inspection”. However, the basic idea has stayed the
same. Software architecture evaluations are important examples. Somehow they can be seen
as successors of Fagan’s work. Within this work, special evaluation techniques using scenarios
as a fundamental source are of interest.

3.4.3. Architecture reviews

Software architecture evaluation and software inspections are quite similar. Both of them serve
to improve the quality of software artifacts.[6, pp.2-3] Some inspection techniques even use
scenarios. In contrast to software evaluation, inspection-result reports uncover defects. They
are primarily done to find (possible) errors, also in very early stages like the specification or
design phase of software development.[41, p.97].

However, software architecture evaluation aims to find quality attribute (change) scenarios for
evaluating the software architecture in terms of impacts of future events. Thus, inspections
are rather concerned with current problems whereas evaluations try to predict future ones.
Nevertheless, both methods are similar enough so that experiences gained during inspections
can be transferred to study different aspects of the architecture evaluation process.

One representative of an inspection method is the “Fagan inspection”, named after the inven-
tor of software inspections. Applied equally to reviews and most evaluation techniques, this
method is used in teams where a specific role is allocated to every member.[41, pp.97-99] It
turned out, that this influences the results positively as long as everybody fully understands
his role and knows how to act accordingly. Studies prove that “Fagan inspections” reduce
costs and improve the quality of the final product. As both methods can be compared to a
certain degree it is possible to assume that these results can be applied to software architecture
evaluations.

Phase Error per KLOC atthe end of Error per KLOC at the end of the
the phase, without Fagan phase, with Fagan Inspection
Inspection
Analysis of requirements 20 5
Design 40 10
Coding 100 15
Module testing 50 7
Integration test 20 3
System test 10 1

Table 3.2.: Average error reduction of the Fagan-Inspection[5]

The main difference between inspections and software architecture evaluation is their specific
focus. Inspections are used to find errors in early stages before the actual coding starts or,
if possible, to avoid making mistakes at all. So the target is the software system as it is
designed. Evaluation of software architecture targets possible changes which then necessitate

25

adjustments or changes in the software system in the foreseeable future. The architecture of
the software is not strictly tested against bugs. Contrarily, the architecture is tested against
future events to increase the ability of adjusting the software, if necessary.

Software architectures inhibit or support/enable a system’s quality attributes.[29, p.30] Thus
bad design and/or lack of care about architecture planning diminish the quality of the software
system. Throughout a large number of industrial software projects such negligent procedure
is the main reason for cost explosions, which often results in their crashes.

26

4. Scenario-based software
architecture evaluation

Software architecture and its quality management are classical problems of the software de-
velopment process.[43] Scenario-based software architecture evaluation is a method to deal
both of them. However, this technique focuses rather on quality aspects within the develop-
ment process.[20, p.1] Nevertheless, when performing such an evaluation, feasible architec-
tures together with their specific strong points and weaknesses are the main focuses during the
scenario developing process.

The effectiveness of this method heavily depends on the scenarios developed by the stake-
holders of the related software development project.[44, pp.59-78] Their ability to create high-
quality scenarios is of crucial importance, since the adopted scenarios are the main input to
the whole evaluation process. Scenario-based software architecture evaluation has recently
become an important tool in software development. But controversial debates have arisen,
questioning whether this method has a major influence on the software project. And if it
does, it is not clear whether it contributes positive, negative or insignificant effects. Therefore,
studies have been done which simulate such situations and their replications shall confirm the
results.

In the last few years the main focus has rested on optimizing inspection team meetings facing
the challenge that team meetings are expensive and must not be conducted ineffectively [20,
p-1]. Unfortunately, only rare efforts have been made to research team meetings that develop
quality attribute scenarios. The original study of this replication was, among others things,
motivated to explore the effects of lost and gained scenarios within such a meeting. Based on
this study, a blind study was performed a year later. The reason for this work was to find out
whether the results of the original study can be reproduced and whether a common statement
about the effectiveness of inspection team meetings to develop (change) scenarios is valid.

Underpinning the statements in this work so far, studies have shown, that currently 50 to
70 percent of the total life cycle costs of a software system are required for evolving the
system.[33, p.1] As already mentioned, considering changes in advance is less expensive to
solve than reacting ad hoc. Hence, it is important to consider the changes most likely to happen
at the development stage within the software life cycle. The software engineers are probably
able to come up with design solutions considering changes in the future. Unfortunately, hardly
any techniques exist to find out the level of modifiability of any given software architecture.

27

Finding a technique for the comparison of software architecture designs with regard to the
same view poses a similar problem (see chapter 3.2 “Software design”). The research field of
“Software architecture analysis” deals with these issues. Nowadays, some methods for such
an analysis do exist. The list below shows the currently existing methods [45, p.1]:

ALMA, Architecture Level Modifiability Analysis
ATAM, Architecture Trade-off Analysis Method
CBAM, Cost Benefit Analysis Method

FAAM, Family- Architecture Analysis Method
SAAM, Software-Architecture Analysis Method

The list is far from being complete. There exists a pool of other representatives like “PASA”,
“ARID” or “ABAS”. Comparable to other methods, the quality attributes of the future soft-
ware product are evaluated. But in contrast to them, these predictions are made before an
actual code is available. As the first efforts to achieve quality are made within the software ar-
chitecture design, techniques must enable to predict the quality of the system at this important
point of the development process. At the design stage, different stakeholders have different
views about these matters. It is even more complicated to foresee possible environmental
changes in the future concerning the software system.

To deal successfully with both problem fields, software architecture evaluation is based on
scenarios.[46, p.2] Normally, these scenarios consider both, current requirements and future
effects possibly affecting the software. Why is the use of scenarios meaningful? The best
argument is that scenarios are concretized.[33, p.5] So, the impact of the scenario on the
software system can be predicted very precisely. Unfortunately, this includes a potential threat
to the whole technique: If the scenarios are not of high-quality, the results of the evaluation
can be faulty or just wrong.

In software architecture analysis, two methods are used to select a set of scenarios in order
to obtain only high-quality scenarios. In advance, equivalent classes are created for the sce-
narios and in a second step, a classification structure is used within these classes to search for
scenarios.[44, p.5] This matches the procedure of this study. Generally, software architecture
evaluation is a related technique of software architecture analysis:

28

Scenario
elicitation
technique

Goal of the
analysis

Scena!jio Architecture
evaiuz.itlon description
technique technique

D —
determines

Figure 4.1.: Software architecture analysis related techniques

Most of the methods listed above are refinements of SAAM (Software Architecture Anal-
ysis Method), which was probably the first one, or ATAM (Architecture Tradeoff Analysis
Method). Probably they are the best-known and most often used ones. Unfortunately, there
has been only limited research done in the past on how effective these methods are or if they
are even worth the effort.

4.1. Scenarios

Scenarios are used for estimating the probable effects of one or more variables, and from an
integral part of situation analysis and long-range planning.[47]. When creating a scenario,
one tries to predict certain consequences under given circumstances. As mentioned above, the
definition of quality is often in the eye of the beholder. Using scenarios moves the quality
definition onto a more objective basis.[29, p.69] Scenario building is heavily used in the area
of risk management. During the phase of requirement finding, scenarios are well known and
commonly used. Furthermore, scenarios help to compare design alternatives.[24, p.3]

Unfortunately, scenarios used for quality aspects are seldom applied. Even within software
architecture evaluation this approach is often omitted. The scope of scenarios differs strongly
in breadth and depth. In order to get sufficient results, you can either shorten the scope by
explicitly given scenario descriptions or subsume them into categories, which is the approach
used in this work. The quality of the found or given scenarios influences the effectiveness of
evaluation meetings. But also the costs for meetings to develop such scenarios depend on the
requested quality.[20, p.1]

The same problem concerning quality attributes is true for the scenario finding: subjectivity.
Every person involved defines his own quality attributes or rates existing ones differently

29

according to his point of view. Hence, it is recommended to create and adjust scenarios for
the different roles involved in a software (development) project. Primarily, these roles imply
the stakeholders of a software project. Necessarily, every stakeholder must be represented
through an appropriate role since their requirements have to be considered even in the early
design stage of the life cycle process.

The use of scenarios forces especially the development team and the project management
to estimate the foreseeable future. Which requirements will become obsolete, which will
be more important and, of course, what kind of changes may have to be made within the
software system? Besides, architectural analysis is not able to handle this matter sufficiently
because it demands quality measures like “How scalable is the system?”.[24, p.4] Seldom can
a future event be expressed like this enabling numeric answers. As mentioned, quality cannot
be defined or measured exactly either. Contrarily, scenarios lead to open questions like "‘How
can the software architecture handle these changes?"’.

To be more specific, the type of scenarios involved within a software architecture evaluation is
called “Change Scenarios” which contains particular events within the life cycle of a software
system causing the system to be modified according to these changes.[37, p.2]

4.1.1. Benefits of using scenarios in software architecture
evaluation

There are several good reasons and benefits which justify scenario elicitation efforts. Some
of them occur during the creation or collection others are covered up during the analysis of
scenarios.[16, pp.4-5]

Better understanding of requirements: When scenarios are mapped onto an architecture con-
flicts and effects of requirements become clearer.

Stakeholder buy-in and shared understanding: Stakeholders can see how their scenarios are
implemented into the software architecture. This increases their confidence that their require-
ments are considered. Further their understanding of the architecture itself increases.

Better documentation: A “walk through” or other documentation are helpful for software anal-
ysis. Lacks in the documentation are covered up when evaluation packages are created. Ad-
ditionally, mapping scenarios on architecture requires an abstract image of it. If the involved
people are not able to understand that the level of abstraction might be adequate.

Requirements traceability at the architectural level: The satisfaction of requirements is fre-

quently not attributable to a single software component, or even a small set of components.
The best way to understand requirements completely is to map them onto the whole soft-

30

ware architecture. Treating requirements like scenarios for mapping them is a meaningful
solution.

Analysis of quality attributes: When mapping scenarios onto a software architecture helps
to find out how easy or difficult it will be to achieve a scenario. Thus, it helps the stake-
holders manage risk, plan resource allocation, determine an ordering of activities based upon
their achievability, and reason about the trade-offs that inevitably occur when design deci-
sions are being made. The most important impact of analyzing quality attributes is on cost;
scenario-based architectural analysis has been proven to uncover architectural faults early in
the software development life cycle.

Sure, some of these benefits can be achieved by using other analysis techniques (requirements
engineering or domain analysis).[16, p.5] But scenario-based analysis are very cost-effective
and help stakeholders to focus on areas where scenarios interact.

4.1.2. Direct and indirect scenarios

A scenario contains somehow an anticipated or desired use of the software. Let us assume
any kind of scenario has been created, describing an anticipated change to the software in the
future. Two possible situations can arise from of this. The first one is that the system is able
to handle the challenges without any modification. The other possible situation is that the
scenario problem cannot be solved without a modification which may concern one or more
components, or their connections of them. Maybe a new component has to be developed
and implemented or a complete substitute for all of them combined is necessary. The worst
possible outcome would be the overall replacement of the application. The first case is called
direct scenario while the second one is called indirect scenario.[24, p.4]

4.1.3. Development of change scenario categories

Finding or devising high-quality (change) scenarios is strongly correlated to the stakeholders
who are actually developing them.[33, p.11] Experience, practice, know-how, invested time
and further engagement of the participants of a scenario based software evaluation are essential
factors which result in suitable benefits.

Additionally, the developed scenarios have to be properly documented. Not surprisingly, the
amount of possible scenarios for a given software system architecture is nearly limitless.
Hence, measurements for sorting, limiting and rating are urgently required. Basically, two
techniques have been proven to be especially effective:[33, p.11]

31

e (1) equivalent classes
e (2) classification of change categories.

(1) can be compared to similar actions applied in software testing. By dividing the range
of scenarios into such classes enables treating one single scenario as a representative of one
class. This limits the number of scenarios which have to be considered. Unfortunately, this
limitation does not render the selection of meaningful or relevant scenarios superfluous. One
or more criteria for selection must be created, which is the objective of (2). Thus, attention
is drawn to scenarios which will satisfy the selection criterion or criteria. Nevertheless, there
can still be too many scenarios left. In addition a stopping criterion is therefore required, thus,
the main goal is to come up with a set of scenarios which are both relevant and manageable.

Top-down

At the very beginning, predefined classifications for change categories are given to the evalua-
tion team to help search for scenarios. These classifications can be created out of a domain of
interest, from the knowledge of potential complex scenarios or from other external knowledge
sources.[33, p.11-12]

Bottom-up

With this approach, the stakeholders have to come up with scenarios without guidance or
structural help. It is assumed, that they are familiar with some categorization systems.

The question in both cases is at what point a limiting criterion or process comes into play.
Which element will be chosen as a trigger to set the limiting process into motion, deciding
that enough scenarios have been found? In fact, the cut-off process has to occur within the
categorization system regardless of whether it is explicit (top-down) or implicit (bottom-up).
The scenario finding process continues until a sufficient amount of scenarios coverage of the
classification is available.

According to Bengtsson et al. both approaches are often combined in practice.[33, p.11]
Change scenario classifications are derived from interviewing stakeholders and their resulting
scenarios. Afterwards, the defined classifications are used in a second round to find further
change scenarios. Enough scenarios are (normally) found if all the change categories are
explicitly covered and if new change scenarios do not affect those categories any more.

32

4.2. Evaluation Techniques

Over time several variations of software architecture evaluations have been developed. Those
methods using scenarios are of special interest for this work because such an evaluation was
used for the study. Anyhow, an exact classification which method was exactly used is not
possible. The experimental environment and constraints required many adaption and adjust-
ments. Therefore the best description would be a composition of the methods SAAM, ATAM
and ALMA. In order to get a better idea how those methods work all three of them are ex-
plained in the follow-up.

4.2.1. SAAM

Logically, before this method can be used, any architecture must have been designed in ad-
vance. In short, SAAM contains four basic steps.[33, p.6] Developing scenarios is the first
part of the technique. To be more specific, scenarios which could probably affect the sys-
tem are collected. Describing and analyzing potential software architecture(s) is the following
step. Logically one type of architecture or variants of adequate architectures are envisioned.
SAAM implies that all persons involved are capable of understanding the technique. In step
three, those scenarios are being evaluated before the results lead into step number four. More
specifically, possible effects on the architecture are analyzed. In the final step an overall anal-
ysis is made of both, the scenarios as well as the potential architecture is performed. All
components of the candidate architecture which are affected by the scenarios are considered.
SAAM is focused on scenarios on evaluating software architectures.[48, p.3]

4.2.2. ATAM

This evaluation technique can be seen as the successor to SAAM. ATAM uses quality attributes
too, but in a different way. Only a certain number of qualities are considered are at the same
time. ATAM works like a framework. Quality attributes are analyzed together in order to find
tradeoff points between them. These areas are considered the highest risk factors in software
architecture.[48, p.1] Every attribute is considered isolated. Only this ensures that the soft-
ware architecture is analyzed with regard to components which are concerning and affecting
multiple quality attributes. Based upon these findings, scenarios are developed. Afterwards,
the architecture can be modified until the best solution is found. ATAM can be split into eight
major steps, beginning with zero.[48, pp.2-3]

33

Step 0:

Planning/information exchange

Meeting to explain ATAM and
expectations to stakeholders; gathering
their quality attributes and presenting
initial architecture and scenarios

Step 1:

Scenario brainstorming

Actual start of ATAM; gathering all
stakeholders; scenario brainstorming;
analysts add scenarios based on their
knowledge and experience plus upon
quality attributes under review

Step 2:

Architecture presentation

Detail presentation of the architecture;
normal usage scenarios are mapped for
understanding

Step 3:

Scenario coverage checking

Selected quality attributes to check
proper scenario covering (including
boundary conditions)

Step 4:

Scenario grouping and prioritization

Stakeholders vote on scenarios; limitation
to 10-15 scenarios

Step 5:

Mapping of high priority scenarios onto
architecture

Architectures check scenario influence
(e.g. modifiability) and the response of
architecture design (e.g. for quality
attributes)

Step 6:

Performing quality attribute-specific
analyses:

Analysis of the architecture using models
based on the architecture’s information.
By manipulating parameters, crucial
points of the design are tested. Sensitive
points are correlated with scenarios.

Step 7:

Identifying trade-off points

Exploring all important architectural
elements with multiple sensitivities to
find tradeoffs.

Step 8:

Consolidating findings and developing an
action plan:

Development of a plan to improve the
architecture based on recommendations
resulting from the analysis. Probable need
of further documentation

If in Step 8, the decision is made to modify architecture, the method returns back to step 1. In
a certain this evaluation way reminds one of the principles of the “Deming Cycle” or manage-
ment principles like “TQM”. In literature, ATAM is described as a spiral model (see chapter
“Life cycle” in this work) where both, the design and the analysis, are required together.[48,
p-3] Without design no analysis is possible and vice versa. ATAM checks software architec-

Figure 4.2.: The eight steps of the ATAM-Method

tures based on quality attributes but not whether the architecture itself is correct.

4.2.3. ALMA

Like ATAM, ALMA is based on SAAM and consequently based on (change) scenarios too.
Unsurprisingly, ALMA then again is organized into steps.[37, p. 2] Altogether, there are five

of them:

34

Step 1: Goal defining: Setting the purpose of the analysis

Step 1: Description of the (relevant parts) of the software architecture
Step 1: Developing a range of (relevant) change scenarios

Step 1: Evaluating the change scenarios; What are their effects?

Step 1: Interpreting the findings of the analysis

Now, what are the differences compared to SAAM? Dealing with ALMA, the differences
between the various techniques used for the analysis are very important. ATAM or SAAM
does not necessitate the use of a certain one. The involved persons are more or less free to
choose which technique they want to use. Additionally, each analysis instance in ALMA must
have only one single goal which distinguishes itself from every other one.

To sum it up, there are some major similarities in all those models.[23, p.2] At least five steps
or activities are part of most of them. (1): A planning phase at the beginning is included
where the analysis or the evaluation is prepared. (2): The architecture or rather the different
approaches are explained, usually to the stakeholders. (3): Quality scenarios are developed.
(4): Analyses the design approaches of step 2. (5): The findings are presented, interpreted and
evaluated.

4.3. Influencing factors on individual and team
performance

There is a difference whether an architecture evaluation is performed as a individual brain-
storming session or a team meeting. As individual experience may have an impact on both
methods, teams probably can benefit from synergy effects.

4.3.1. Experience influencing software architecture evaluation

Basically the whole process of a (scenario-based) software evaluation, despite of the tech-
nique used, is performed by individuals.[49, p.132] In most cases the participants are persons
involved within the software project. This includes the presence of the various stakeholders.
It is recommended that all involved stakeholders should be fully integrated into the whole
process. Consequently they have to join the evaluation sessions/reviews as well.[50]

The purpose of an evaluation session is to find as much errors in the design or architecture as
possible. In order to support the reviewers, the review and the related documents have to be
design to make it easy for them to do so. If an error escapes the attention of the reviewer, the
review itself failed. The problem is that many of them are hard to find because they were made

35

earlier and it takes a lot of experience and knowledge to find them.[49, p.133] Therefore the
evaluation method has to use the maximum of the skills and the know-how of the reviewers
available.[49, p.132] Not surprisingly a main source of problems with software architecture
evaluation or design reviews is the presence of unqualified or simply wrong people.

Biffl et al discovered that people with industrial experience seem on average perform better
during exercises. Further they better understand the theoretical concepts behind architecture
evaluations.[6, p.1] Hence, more-experienced stakeholders are expected to achieve better re-
sults during such reviews. Either they find more respectively more critical defects or more
respectively more important scenarios within scenario-based software architectures. Unfortu-
nately well-experienced people are costly and probably unavailable too.

Obviously project managers are forced to work with less experienced stakeholders. The chal-
lenge is to still achieve good results.[6, p.1] Two basic options are thinkable. Either the process
of software architecture evaluation is supported actively or review teams are applied in order
to get synergy effects.[51],[20, p.3] Probably these effects enable the stakeholders to find ad-
ditional scenarios.

One possible active support is to guide the reviewers by giving them predefined change sce-
nario categories (top-down approach).[33, p.11-12] Probably this leads to an increase in the
number of found errors or scenarios. The same target is focused to achieve from team synergy
effects. Unfortunately there is danger that because of rivalry or other factors the teams loose
defects/scenarios.

4.3.2. Team size and team meeting benefits

Already within the Fagan’s software inspection the team meetings are considered as a key
process.[5] As mentioned before experienced and well skilled persons are expensive. Hence
team meetings require larger efforts than individual inspections. The point of interest is there-
fore the benefit or the effectiveness of teams. Are team meetings worth the money charged
for? Fagan himself stated that teams are very effective.[5]

Larger team sizes increase the heterogeneity which leads to diverse expertise in IT. Together
with further knowledge in various areas this is desirable.[52, p.1] On the other hand the com-
munication requirements increase exponentially with the increase of the time size. Contrarily
several more recent research results showed different results.[53, p.1],[54, p.114] Researchers
found following potential benefits of team meetings.

36

Synergy

Basic theory behind this issue is that team meeting dynamics lead to higher defect finding
rates. Anyhow, there is only little evidence about this positive effect. Unfortunately recent
research work does not affirm this. Changes in the team size seems not lead to higher defect
detection rates.[53]. In some studies the teams found only few new scenarios (1 out of 10)
compared to individual work or the losses of team meetings exceed the possible gains.[54,
p-109]

Correction of False Positives

Recent research findings provide evidence that team meetings are effective in detecting true
defects and eliminating false positives.[55, p.306] These findings are supported by Land et al.
They report that team meetings are superior to individuals in distinguishing between defects
and false positives[56].

Soft benefits

Besides above mentioned points teams allow the share of (review) experience of their
members.[57] Further product/system related knowledge can be passed on to reviewers with
a lack of it. Probably some kind of team spirit emerges which leads to a collective feeling of
responsibility of the product/system and its quality.[54]

However, finding false positives and soft benefits seem not to justify the high costs of team
reviews.[6, p.3] Nevertheless the fact that a software project involves many people and a lot of
stakeholders do have certain interests and responsibilities related to it, teamwork is inevitable.
This emphasizes the importance of exploring those aspects within the context of software
architecture evaluation. This work deals like its original predecessor with the topics of team
size effectiveness, participant experience and the usage of nominal teams.

37

5. Replication

The “basement” of any scientific work is (critical) scientific thinking which is based on three
things.[58] The first one is to seek empirical evidence followed by logical rationalism and pos-
sessing a skeptical attitude. Without those principals, no scientific work would be possible.
Empirical evidence can be experienced by others and is repeatable. It is the only evidence sci-
entific decisions are based on. Empirical research studies are necessary to gain such evidence.
A replication is basically a repeat of an already existing respectively performed scientific re-
search study.[21, p.1] The main goal of such a repeated activity is to control the original work
whereas the replications are considered successful if it was possible to reproduce the previous
results. On the other hand, a reproduction can be seen as an expansion of a research study.
Two possible ways can lead to such a reproduction:

e scientific improvement - using the same data but new methods
e generalization - using the same methods but new data

So, a reproduction itself requires a successful replication. Otherwise a reproduction would not
make a lot of sense, as earlier results have not been proven. There exists also a taxonomy for
replications.[59, p.3].

e statistical replication - different sample, but identical underlying model and popu-
lation

e scientific replication - different sample, different population but similar model (per-
haps advanced or adapted)

The second type, scientific replication, is used most commonly and comprises best what re-
searchers normally choose for their work. Replication is one of the basic requirements of
science.[21, p.1] McCullogh/Vinoud defined: “Research that cannot be replicated is not sci-
ence, and cannot be trusted either as part of the profession’s accumulated body of knowledge
or as a basis for policy.”[22] Hence, work which cannot be replicated (perhaps the author is
covering data material) should be ignored! Unfortunately, replications are only practiced in a
limited way.[59, p.3] In literature, two overall classifications exist.

Experiments and studies do have the same purposes in the I'T-area as in other scientific dis-
ciplines. New technology, procedures, methods, etc. are tested and evaluated in industrial

38

(real) or scientific environments (e.g. laboratory). Regarding I'T-science, they are used to im-
prove the software development process (practically and theoretically). Replications are an
important part of that work.

In particular both the internal and external validity of a research field are tested.[60, p.1] In
short, this helps the research community to create and extend its knowledge about results and
observations, and under which conditions they hold and vice-versa. However, replications can
either successfully affirm or reject original results. Hence, a replication has to be judged on its
own, apart from any previous study.

Exact replication

As the name already indicates, the researchers are conducting a replication by following the
original experiment as closely as possible. The main question is whether the same results can
be obtained or not.[60, p.2] Notice that the definition “exact” is used gradually. It is quite
impossible to repeat the same experiment in exactly the same manner when human beings are
involved or tested. Furthermore, this taxonomy contains those replications which modify the
pool of subjects or experimental conditions (time, location ...) but keep the original procedures
the same.

Regarding exact replications, two sub-categories are described in the literature. One where the
researches are following the original experiment as closely as possible and another one where
major conditions are changed deliberately in order to address a specific research question more
specifically. Example: In an experiment was explored if kids like candy. Now a replication
study shall find out if kids specifically like chocolate.

Conceptual replication

Similar to the above replications this variation tries to test the same hypothesis and research
questions. The huge difference, however, is that totally different procedures are used. In
addition the research variables are often changed completely (e.g. artifacts, population ...).

5.1. Replications in IT-Science

There are several reasons why a study or a replication is launched. Common topics are either
the benefit or the effect of a process or a technique on a software product or cost prediction
and environmental constraints. Yet, there is often not a big difference whether the study is an
experiment or more of an observation.[61, p.1] In the end, in many cases the results will help
to build better software in practice.

39

A controlled experiment in I'T-science provides the same benefits as it does in other scientific
areas. The proceeding can be well designed and focused delivering significant answers to
clearly stated questions and hypotheses. Independent and dependent variables can be used
and result in key variables which explain certain phenomena. Furthermore, the relationship of
these variables can be investigated.[61, p.2]

However, one single experiment has only restricted significance. Studies must be replicated.
Moreover, also changing the conditions (to observe effects under different circumstances),
the design and following new or evolved questions from previous studies must be consid-
ered. Combining all the results is a reasonable way to build up knowledge of a specific
topic. And also negative findings must be integrated as they can help to improve this pool
of knowledge.[61, p.2]

The goals of replications are not strictly limited to hypotheses and statistic values. Often re-
searchers try to gain more data to add to a given data set hoping to reach statistical significance
so they can prove some effects. Interpreting the enlarged data set researchers can find, merely
by chance, subsets which uncover some interesting effects. For this reason and from another
point of view this approach is quite disliked. Software engineering practices must have a pos-
itive influence. Otherwise no one is willing to invest in them. To change an investor’s mind,
new techniques and practices must be significantly better in a large range of environments
compared to previous ones in use. Searching just by chance, without a definite idea is there-
fore a questionable procedure. Concentrating on software engineering, two major research
goals are of interest:[60, p.2]

1. It is possible to reproduce and/or to test results (implies that the results found in an ex-
periment are true for industrial situations). These replications strengthen the confidence
in the results of an experiment.

2. Discovering and knowing the reasons for the variability influencing the results. This is
useful in order to find out which project types best fit which techniques. From this, the
range of the results can be understood.

5.2. Classification of the replication study

In theory, there exist to different ways of statistical experiments, “group case research design
(or cluster analysis)” and “single-subject (or case) research design (or analysis)”. But this
categorization is mostly used in the fields of psychology, education or human behavior. In
fact, this replication work demonstrates more typically characteristics of group analyses.[62,

pp-5-6]

40

First, single individuals are observed in the first stage while in the second stage two relatively
homogeneous groups are formed and analyzed. Furthermore, the sample sizes differ signif-
icantly, from n = 55 in the individual proceeding to n = 2 at the group level. The workload
of getting sufficient data is above-average, because it is not that easy to simulate a group of
software engineers. Therefore, validating results and statements (hypotheses) is quite a chal-
lenge.

Single-case analysis

Two possible variations are conceivable. If the single-case analysis is to only describe and
only one single case is to be observed, then a single spot test is adequate. If the analysis is
only interested in a few cases, most often the possibility of replicating the single spot test is
chosen.

Due to the small size of sample(s), the measurements can be repeated arbitrarily as the tech-
nical and organizational aspects are easy to handle. This fact ensures a good error checking
factor over time (as more and more single spot tests are performed). Further, a generalization
of the results is possible because of this. But the more complex the specific issue gets the less
possible are replications.

Group analysis

Contra to the above characteristics, group analysis with repeated measurements uses large
samples considered at a few points in time (around 2 or 3). The main reasons for these few
measurements are technical and organizational aspects. Further, this implies that the error
checking factor over time is limited. Another consequence is that the “mean-reversion-effect”
is very strong and cannot be corrected at all or can hardly be corrected.[63] The validity of the
results must be tested using a cross-validation in order to be able to interpret them. Performing
group analysis is often an elaborate task.

Hypothesis testing

In the original study and consequently in this replication, universal and more generous hy-
potheses are created and shall be tested. So the problem is how to manage this task with a
group case research design.

This work tries to use replication to compare the two studies in an effort to validate the original
findings. Cross-validating the questionnaires is quite hard to do as it is very difficult to find
enough appropriate participants to check the questionnaires on the one hand, and to do a
replication on the other hand. So, single-subject research design methods must be applied.

41

The problem is that in case of single-subject research designs, only singular or pseudo-singular
hypotheses can be validated. Through a gradually performed replication, a single hypothesis
can be generalized (to a certain degree);[62, p.12] or, opposite, a general hypothesis can be
created and a single hypothesis can be conducted. However, also a group case analysis can be
derived from a single-subject analysis.

5.3. Typical replication related problems

Conducting a replication to a previously performed study seems to be rather straight forward.
Instead it is very difficult to avoid problems and errors which are coming along with replication
work.

The interest factor

It does make a difference who conducts a study, experiment, survey or a replication. Basi-
cally, two possible situations can occur. Either the researcher has strong interests in the results
or not. And if he or she does, the follow-up question is whether they are wanted to be af-
firmed or rejected. This decisions affect the creation of hypotheses as well as the whole study
proceeding. [60, p.3]

There exists evidence that replications conducted by researchers without a vested interest have
less bias and more potential value.[60, p.3] Unfortunately, they first have to be convinced
through enough evidence to work on a replication that their engagement is worth it. In most
cases, the initial evidence is presented to them by researchers with a vested interest in the
resulting outcome.

Documentation

Nevertheless, whatever the goal of a replication may be, a comprehensive documentation of
the previous study is quite helpful. Frequently, researchers claim that in papers relevant details
and information are often missing or are excluded. So called “lab packages™, a collection
of detailed reports, could be a solution.[60, p.4] Of course, only providing or using such a
package does not result in good replications. Researchers working on a replication should
not just follow the given procedure without examining it. Some mistakes may have been
made or the replicator concludes that a dependent replication with minor changes is adequate.
Or conversely, he decides to perform an independent replication with a completely different
experiment design. However, the replicator might even consider to disregard the original study
and to test the hypothesis completely differently. No matter which decision is chosen, such a
“lab package” furnishes the replicator with valuable information.

42

Unfortunately, it is nearly impossible to prevent small errors or slight changes when perform-
ing replications. It is all too easy that some slight changes in the experiment design or within
the performance itself are introduced. Often those happen without the awareness of the repli-
cators. As a consequence, even solid results can be weakened, diminished or even nullified.

Training

If a process itself, like software inspection, is the investigated object, training of the subjects
has an important impact on the results. Hence, even if the same materials are used it is very
difficult that two independent instructors can deliver the same training without coordinating
their work. But if the trainings cannot be compared then the results/the findings are expected to
differ.[60, p.5] If the evaluated process is developed anew, then the “issue of training quality” is
moved on to the next level. At this point, any given knowledge is most often not yet introduced
to external researchers.

Language

As human knowledge increases more and more rapidly, the cultural aspect of language be-
comes an issue of growing interest. Especially languages that do not count as world languages
have major problems to keep “alive” in modern science. But even in these countries, broken
English has become the standard scientific language.[64]

The ability to speak English has become a factor in science to get the chance of doing research.
Without any knowledge of this language, it is rather difficult to become a scientist in most
countries. Non native-speakers have to deal with some disadvantages when they are forced to
work in a foreign-language environment. This may lead to minor productivity, high translation
efforts and a higher possibility of making mistakes.

Along with the stress factor, it can be assumed that the output of a non-native speaker in
a certain language might be lower compared to a native-speaker. Especially for untrained
individuals tasks could even get insoluble due to language problems.

Environment

Researchers might be forced to change the setup of an experiment when repeating it as a
replication. Due to a different environment this happens in particular when the replication
is performed at another location (another university, city, country, or something else). Not
surprisingly, it can occur that guidelines are omitted, the length of activities is changed or
artifacts are modified. However, it does not matter whether this happens accidently or not.
The results are quite possibly affected.

43

To prevent these such sources for errors, scientists advise that only a strict, exact and complete
documentation like a lab package or a technical report can help researchers to make a valid
replications.[60, p. 6]

Of course, sticking to such guidelines only allows for more or less dependent replications. An
independent study possesses a more confirming value. Lab packages might help to avoid bias,
questionable protocols or procedures, or similar problems related to the replication. Depen-
dent replications further help to reduce costs for re-designing a complete experiment about
the same issue. And of course, they help to convince researchers without a vested interest in
the topic to run a replication. Since these scientists are probably more aware of the required
efforts, such a lab package can reduce those a lot.

After all, results and findings of such a dependent replication are often useful and should not be
disregarded. But they have to be viewed with care and discussed, just because the replication
was not independent.[60, p.6]

Doing a scientific work necessitates considering regulations and guidelines as well as working
meticulously and accurately. Otherwise, the results contain errors or a failure in the design
can occur. Consequently, that particular research cannot be used anymore. Replication and
reproduction are methods to control and check scientific output.

Problem/Error Verifying Method
Error in sampling Reproduction
Errors made by scientists Reproduction
e Faulty data collection Reproduction
also: interview faking
* Faulty data evaluation Replication
Imitation Replication
® Manipulating results Replication
e Omission of differing data ~ Reproduction
e Changing of differingdata Reproduction
e Faking data Reproduction

Table 5.1.: Common errors in scientific work

As displayed in table 5.7, both methods are used to validate different aspects. Sometimes
replication and reproduction are used together, as for example, to cover up errors caused by
the authors or scientists. The number of wrong scientific statements proven to be false through
those methods is high. Normally, a negligent or inaccurate work method is the main cause for
publishing wrong results. Unfortunately, scientists are often put under pressure, particularly
by their stakeholders. Sometimes yet often enough, incorrect results and statements are pub-
lished on purpose. Honor, fame, the prospect of a lucrative job also affect and lure scientists.
Especially this is the case, when the chances of being checked are minimal. To be fair, the
more promising, interesting or important a research field is, the more likely and another one is
doing research work too. Nevertheless, science requires replication and reproduction in order
to explore new areas and to prove the validity of new findings in general.

44

In vitro to in vivo

Most problematic is the fact that throwbacks occur, thereby increasing the costs of scientific
work. Hence, many studies tend to deal with very limited models relying on small sample
sizes, few and small artifacts and other resource constraints (e.g. time).[61, p.3] This then
poses one of the biggest threats to achieving validity of an experiment and is, at the same
time the step from in vitro to in vivo. Although scientists and researchers try their best to
achieve satisfying designs, it is all too easy to make a mistake or to miss an important point.
Subjects might be “contaminated” and there are always some kinds of learning effects on both
sides: researchers and subjects. Running an experiment twice can produce different results
just because of the people involved.[65, p.1] A key element in a well-executed experiment is
efficient teamwork between the researchers - these should be several -and the people (as many
as possible) who review the design.[61, p.3]

Communication of information

To run a replication in software engineering is rather difficult. One of the main problems is
shared with similar set-ups in other science areas. Quite often it is impossible to get an equal
setting like at the original experiment/study.[66, p.1] Thus, changes and modifications are
necessary. A second important issue is the transfer of knowledge by the original researchers to
the replicators. Information in the form of “lab package” or “replication package” is important
but also the direct communication between researcher and replicator is of value.

Fundamentally, a replication package is vital for a successful replication (knowledge).[66, p.3]
On the other hand, occasional communication is insufficient.[66, p.4] For a proper communi-
cation a couple of meetings is necessary.[66, p.10]

Lack of replications

Important for an experiment or a study is the fact that the results must be measurable some-
how. So measurements have to be created in advance. Additionally, the findings have to be
interpreted afterwards. This requires a kind of “framework™ which allows an interpretation of
the data.[65, p.1] Today researchers involved in software engineering claim that too few em-
pirical evaluations are carried out. Researchers investigating this topic agree with them.[66,
p-11,[67, p.1] There is a huge amount of studies which is isolated and not replicated. More-
over, Zannier et al. found a remarkable absence of replications of studies and experiments
within the I'T-science.[65, p.1]

Throughout this study, some astonishing facts appeared. Around a third of the studies or exper-

iments have not been replicated at all. Self-evaluation is quite a rare practice in I'T-science.[65,
p-2;5] Furthermore, the findings show nearly a complete absence of negative results of studies.

45

These data lead to the question whether those findings are always realistic and how efficient
the applied review processes really are.

Compilation of results

After reviewing the results of several experiments and studies, the successful aggrega-
tion of the results of scientific studies with their replications is quite impractical and
disappointing.[66, p.1] Only if the experimenters combine the results with own replications
significant results could be found. So one key element of a successful replication is to design
the setting as closely as possible compared to the original one.[66, p.1]

Unfortunately, many conditions are nearly impossible to copy. For an example, it is very
unlikely that identical subjects can be found or that the same resources are available (e.g. time,
subjects, environment). Concerning the subjects again, their knowledge about the technology
or technique evaluated is most likely not of the same level and also some other qualifications
may be different- if not worse in some cases.[66, p.1]

Human subjects

Several issues have to be taken into account regarding human subjects in scientific research.
Basically, people can take over two fundamental roles. Either they are the researchers conduct-
ing the experiment respectively the study or they are participants or subjects of it. Following
threats to validity have to be taken into account. The first on is the variability of human behav-
ior. The difficulty of isolate confounding factors is also a major threat. People can be disturbed
by many things like things are the environment, the working conditions or other participants.
The bias of researchers is a problem to validity too.[67, p.1]

Experiments with human subjects can lead to highly variable results. Reasons for these dif-
ferent results are the attention of the participants, their skills and knowledge, their prior expe-
rience or their motivation and expectations. Because of that, replications are urgently needed.
Unfortunately, as already mentioned, exact replications are nearly impossible to achieve. One
solution is to conduct a theoretical study or replication with adoption to the population and
their characteristics.[67, p.2] In terms of human subjects factors like education, time, nation-
ality and cultural background are inevitable issue leading to replication problems. Furthermore
it is very difficult to find skilled subjects.[67, p.2] In the end it is more fruitful to perform a
theoretical than a literal replication as there are too much variables which are incalculable.[67,

p-10]

46

6. Research approach

This chapter deals with the design, planning and execution of the study replication. The
focus is on the guidelines of the original study. As it is the case with many replications, it
was impossible to carry out an exact copy. Making adaptations and minor modifications was
inevitable. Environmental conditions and restrictive circumstances forced the replicators to do
so [see 7.1 “Experiment description”].

Different environments as well as different lecturers, another university in another country, et
cetera affected the planning and design. But this had not only negative effects. For example, it
was possible to recruit more individual participants of two separate modules for the replication.
Further, two software systems were used enabling two complete study rounds.

6.1. Empirical study and replication

The basis of the whole work is an empirical study performed at the “Vienna University of
Technology”. Main goal was to gain and to confirm knowledge of scenario-based software
architecture evaluation. Participants of the experiment were students visiting two different
subjects of computer science. They were randomly assigned to two study groups. One was
using a top-down approach using predefined scenario categories. The other group performed a
bottom-up approach which means that they had to find scenarios without any help. In general,
most of the design of the study was adopted from its predecessor. Further details are described
1n section.

Due to the fact that a previous study had been performed this one served as a replication of
that. Replication of research work is essential in science. Every result, finding and statement
in the scientific environment must be repeatable in order to prove them. This puts scientists
in a position to evaluate scientific work in order to avoid that falsity is spread misleading or
diminishing further research work.

47

6.2. Research hypotheses

Being the replication of an already existing study, it is the purpose of this study to verify the
results of the original one. Accordingly, its main objective is to find out whether the originally
proposed hypotheses hold up to the findings of the replication. Therefore the hypotheses are
used again in this work[17, 20, 19].

Informally, the big picture is about scenarios and the effects of the support of (change) sce-
nario categories:[17, p.2] “The usage of domain specific categories of software changes can
help stakeholders generate better quality scenarios that characterize the future changes in a
system.” However, there are further factors investigated. Experience may have an impact on
the performance of an individual. Probably the size of the team as well has positive or negative
effects too.[6, 19] Out of this all, three basic research questions/topics have been created.

6.2.1. Impact of change scenario categories on the scenario
quality

Do change scenarios categories help find more or better scenarios? This question involves two
possible configurations. Either an individual person can be supported by such categories or
whole teams. According to this, following two different hypotheses have been created.

H1.1: The provision of software change categories will not improve the quality of scenario
profiles developed for software architecture evaluation at an individual level.

H1.2: Teams who are given the software change categories for use in scenario elicitation
perform similar to teams who are not given the software change categories.

It is expected, that both hypotheses can be rejected. Scenario categories should help especially
less experienced individuals and teams. At the beginning they probably give them some ideas
to start with and avoid any late beginning. Further they support a broad range of scenarios as
categories might help the individuals or teams to think about many aspects of the evaluated
software architecture.

Possibly, the availability of scenario categories does help persons or to come up faster with
scenarios and/or enables those to produce better ones. The study design includes a two-stage
individual scenario development process to get two different result-sets of individual created
scenarios or team created ones. Based on these findings, the hypotheses are checked. The
process is explained in detail later in this chapter.

48

Anyhow, referring to the teams there it is possible to evaluate the calculated results with nom-
inal teams of the same size. As only few (real) teams existed, it is meaningful to use a larger
data set, even though the additional teams and their results are notional.

H1.3: Nominal teams who are given the software change categories for use in scenario elic-
itation perform similar to nominal teams who are not given the software change categories.

The same expectations made for the individual and real team are valid for the nominal teams.
This is because they are completely based on the individual results. Again the process of
creating these nominal teams is explained later in this chapter.

6.2.2. Impact of experience on the scenario quality

Does experience help to find more or better scenarios? Contrarily to above research ques-
tion the factor experience is only be considered at an individual level. But there are too few
real teams to get sufficient results in order to make predictions. Further the comparison with
nominal teams is not meaningful out of the same reason.

H2.1: Extensive and less experienced participants will identify a similar number of scenar-
i0s.

As software architectures can be quite complex and complicated it requires a lot of know-how
and experience to be able to evaluate one professionally and to achieve good results. Out
of that reasons it is expected that extensive experienced individuals perform better than less
experienced ones. However, according to the original study it is also tested whether average
individuals or teams perform similar as experts. Underlying of course this involves that experts
do have significantly more experience.

H2.2: The number of identified critical scenarios is similar for expert ranked and frequency
related scores.

It is quite difficult to make any assumptions here. Therefore the original study is the basis
for the prediction of the results. The number is expected to be similar and that the hypothesis
cannot be rejected.

49

6.2.3. Impact of team size on the effectiveness of scenario
development

Does increasing the team size help find more or better scenarios? Important in terms of review
cost (an evaluation still is a kind of review) is the number of persons involved. The smaller
the team is the cheaper the whole procedure. Nevertheless, on single individual will surely
find fewer scenarios than a group. Target is to find that specific team size where the gain of
efficiency is the biggest compared to the smaller team size before. Unfortunately, no data sets
of comparable teams with various sizes are available. Actually it would have been impossible
with the given resources to do so. To overcome this problem again nominal teams have been
created based on the individual data sets. A detailed description of this proceeding is given
later in this chapter.

H3.1: The number of identified scenarios is similar for all nominal teams independent of
team size.

As more team members will most probably lead to more scenarios found it is expected that
above hypothesis can be rejected based on the calculated results.

6.3. Variables

These hypotheses were tested by applying several statistical calculations. As in every re-
gression, one or more independent and one or more dependent variables are needed. The
independent variables in this study were:

e The domain specific change categories
e The prior qualification of the individuals
e The size of the nominal teams

The domain specific change categories, acting as one of the independent variables, were pro-
vided to the treatment group whereas the control group did not receive them. The qualification
of the participants was based on a calculated index which regarded all individual qualifications.
Now the frequency of each scenario found served as the dependent variable. The frequency of
a scenario is determined through:

50

e [ndividual brainstorming: Amount of scenarios per individual and, in the case of
the treatment group, also per scenario category recorded on an individual scenario
list.

o Team meetings: Amount of scenarios per team (three-persons) and, in case of the
treatment group, also per scenario category. Findings are recorded on a combined
team list.

o Simulated team meetings: Amount of scenarios per nominal team (three-persons).
These teams are formed with the help of a random generator, but the persons do
not meet. The scenarios of each team member are pooled with the ones of the other
individuals in the group. This way, a scenario list is created by each team.

Comparing individual brainstorming and team meetings (no matter whether real or nominal)
with regard to scenarios, there are two possible options: A scenario can be created within a
team meeting or it can be lost. In other words, within the team meeting a new one can be
developed which did not exist on any individual scenario list. Or, the other way round, a
scenario which showed up on one of the individual’s lists is not selected for the combined
team scenario list. It is important to point out that two different systems allowed two different
runs of the study replication. Within those rounds the above mentioned variables existed.
Furthermore, the systems themselves act as an additional variable when comparing the results
of both runs.

51

7. Experimental Process

Apart from the above mentioned problems, the main target was the replication itself. It was
decided to design, plan and execute the whole procedure as exactly as possibly compared to
the original study. This involved an introductory lecture, an individual brainstorming session
and team meetings. However, several constraints (e.g. environment, timetable) as well as
some adjustments, details follow later on within this work, were inevitable.

Due to these modifications the individual experience, the scenario ratings and other factors
concerning the evaluation had to be treated slightly differently. Explanations about details
concerning these aspects are also provided in this chapter. Given the guidelines of replication,
of course the hypotheses are similar to the ones of the original study. This is absolutely
necessary to be able to compare the results. What is the aim of such a replication? The basic
target question and follow-up questions pursued are:

Was it possible to reproduce the original results using the data set of the replication? If they
are similar, how strongly do they affirm the statements made? If they are not similar, what
factors may contribute to the differences? In order to answer both secondary questions, the
thematic replication in I'T-science is explored if and what kinds of problem fields exist in terms
of general and specific IT viewpoints.

7.1. Experiment design

Basically, the whole study was designed as a two two-stage scenario process according to the
guidelines of.[20, 44] At the beginning, each participant had to construct a scenario profile
(a set of scenarios) on his/her own. In a second step, individuals were selected into teams in
order to put the findings together to a group scenario profile.

In order to achieve two separate but comparable data sets, the whole proceeding had to be done
two times, each time on a different platform - Wiki and LiveNet. So everybody had to take
part in two individual brainstorming sessions and two team meetings. By providing flexible
schedules it was hoped to get as many participants as possible.

52

Experience Questionnaire
Categories used No Categories used)
Individual || Phase NSy
Feedback Individual Questionnaire
Team || Phase
F2F || Tool F2F " Tool 60 minutes
Feedback Team-Meeting Questionnaire
Break 30 minutes
No Categories used Categories used
Individual || Phase 45 minutes
Team || Phase
Tool || F2F Tool || F2F 60 minutes
Feedback Team-Meeting Questionnaire
Final Questionnaire Overall 15 minutes

Figure 7.1.: Basic study setup

Due to timetable and participant schedule problems, the experiment was run on two days. The
participants were split up between the two experiment runs. All other experiment conditions
stayed the same. These measures were taken to provide the same circumstances as exactly
similar as possible. Unfortunately this design involved one serious problem. As participants
switch the study groups, learning effects probably occurred. The reasons for this as well as
further details about that topic are described later on.

7.1.1. Study procedure

In the run-up of the actual experiment performance, everybody received the same initial lec-
ture introducing the topic of software architecture evaluation meetings using scenarios, some
examples as well as explanation about the procedure of the study. The lecturer was Professor
Muhammad Ali Barbar from the University of Limerick, Ireland who does research in this
area and was responsible for the initial study at the University of New South Wales, Sidney.

Then, the study materials were handed out (see appendix). These materials differed in terms
of group affiliation. The participants were randomly assigned to the two study groups - the
treatment group or the control group. To prevent group building because of friendships, the
selection was done in the initial phase. One group, the treatment group, received additional
predefined scenario categories. This was to help the participant to find scenarios which he
then had to classify into the given categories. The control group did not receive this helping
categorization.

53

So, the participant had to find all the scenarios without any hint from given categories. Fur-
thermore, he or she had to specify the categories on their own and assign his or her found
scenarios to them. After a short break, the participants had to group themselves according to
their group assignment and hold a team meeting. To prevent falsification, no mixing of groups
was allowed. Teams were composed only of individuals who had either been supported by
(change) scenario categories or not. Each team consisted of three team members.

Afterwards the teams had to create a team scenario list. They could use the scenarios they had
found or develop new ones. Two different meeting styles had been organized. One half of the
teams met face-to-face and could discuss their findings verbally. The other half met virtually,
using a software system for group discussions.

LiveNet - Wiki r\

Introduction 'r.]d'\”dua.l Team meeting
Brainstorming

Wiki - LiveNet - Ve

//

s

Figure 7.2.: Basic study procedure

Now, in the first run, these two stages were performed at one of the two given software systems.
Both, the first and the second stage occurred on the same system. As already mentioned, the
first system used was a Wiki-System and the second one the LiveNet-System. Both systems
will be explained later on.

A balanced design was of utmost importance. Both groups were supported to be of the same
size in order to be comparable in terms of the results. In the second run, every single par-
ticipant changed to the other software system, performing both the individual brainstorming
and the team meeting again. Also, the groups switched. If the student had been given sce-
nario categories (treatment group) in the first run, he now had to work without them and vice
versa.

As mentioned above, learning effects have been worried. The participants allocated to the
treatment group in the first run worked with scenario categories. The problem was that when
the study groups were switched that these individuals would remember the scenario categories
they had used before in the second run. That would negatively affect the results of the repli-
cation. Nevertheless was decided to keep this study design.

54

Individual Team
LiveNet LiveNet

i System change

| Team change

Individual Team
Wiki Wiki

L A

Figure 7.3.: Software and team setup change of the participants

At the end of each task, the participants had to hand in their results. For the individual brain-
storming, this comprised the individual scenarios and for the team meetings, the group had to
deliver the merged team scenario list.

7.1.2. Study schedule

The timetable as well as the locations were the same in both sessions. This ensured that both
sessions provided the same environment and the same conditions for all the participants. In
order to combine all the data for the evaluation of the study, this was necessary.

Study Schedule

Duration Activity
= |ntroduction / Repetition of the practical exercise
= Distribution of the study material
= (Collecting of the individual background and experience
30 min + 15 min extra time ® Individual Scenario Brainstorming following provided guidelines
Lecture Room = Collecting of individual feedback on scenario brainstorming
= Team Meeting (two different meeting styles)

o Group 1: Face-to-Face meeting at the lecture room
Group 2: Virtual team meeting at the information laboratory

30 min
Lecture Room

60 min
Lecture Room / Information laboratory

8]

(Tool)
= Collecting of team meeting feedback
30 min BREAK
30 min = Individual Scenario Brainstorming following provided guidelines
Lecture room = Collecting of individual feedback on scenario brainstorming

= Team Meeting (two different meeting styles)
o Group 1: Face-to-Face meeting at the lecture room
Group 2: Virtual team meeting at the information laboratory
(Tool)
= Collecting of team meeting feedback

Table 7.1.: Study schedule

60 min
Lecture Room / Information laboratory

a

The only difference in the two sessions was the introductory lectures. The speaker at the
second session was different because of time and geographical constraints. But as the complete
presentation material as well as the complete study materials and the presentation itself were
exactly the same, this should not have had any positive or negative effects. Furthermore, the
primary speaker, Muhammed Ali Babar, did not join the replication proceedings regardless of
the session.

55

The entire individual brainstorming sessions actually lasted 15 minutes longer than planned.
More time was needed to answer all the questionnaires and due to minor language problems
some individuals required more time to read through the study materials.

7.2. IT-Environment and study materials

Like in most studies a study package was required too by this specific one. It was necessary
to give the participants enough information to fulfill the tasks, to gain information about the
participants and feedback from the participants and to get the results of the study.

The first part contained several questionnaires which were necessary for capturing important
data about the participants. Within the following part an introduction, theoretical background,
the study guidelines and the study tasks were included. The last sheets handed out contained
the team allocation, the data capturing sheets and the feedback questionnaires.

Additional to this package two collaboration tools were needed out of two reasons. The first
one is necessary to provide the students a platform to use during the study. The second reason
is to provide examples of software architectures to evaluate.

7.2.1. Software systems

Using two different and separate systems enables to get two comparable result-sets. Further, a
combined result-set can be created. Of course, the validity is lower because the software sys-
tems are not completely comparable and in the second run, the control group may remember
the given categories and have an advantage, respectively is not free of minor influences.

LiveNet

Principally, the program can be described as a web-based collaborative tool. It is very simple,
helping the users to discuss topics via several communication platforms like chat, forum, or
email. Small files can also be up- and downloaded. A detailed description can be found
in.[68]

Supported are synchronous (chat) and asynchronous (forum, ...) ways of communication be-
tween one or more discussion participants. The user is allocated a specific role involving
different access rights. Accordingly, it is possible to create, schedule and assign tasks to other
users. Furthermore, documents can be uploaded, read, changed and downloaded according to
the user’s rights.

56

The participants of the study replication were introduced to the system as an industrially used
tool. They were registered according to their role within the team. Based on this, the task was
to communicate with one of the given communication tools, creating documents and to try as
many functionalities as possible. Drawing on that experience, the teams were told to create
team scenario lists (using their individual or new change scenarios).

Firmered Yy

[P —
Emtrepere Hibaes Struts

Figure 7.4.: LiveNet starting login screen
Wiki

In this study, a copied version of the program Wikipedia was used. Its modus operandi is
exactly the same like the original one known from the “world wide web”. The program simply
can be described as an encyclopedia. People can place their contribution in the form of texts or
graphics or other multimedia forms which then can be discussed in communication functions
like the chat room, a forum or similar modes. A description of the system can be found on the
homepage of the original portal: www.wikipedia.org.

7.2.2. Study materials

Two different and separate packages of study materials existed. Both contained basic intro-
ductory information and general guidelines. Further, a description of the study, its schedule
and tasks were given to the participants. Primarily, the packages differed in terms of the soft-
ware systems. One package included the description and information concerning the LiveNet-
System, the other one for the Wiki-System.

Then, these two main packages were separated a second time depending whether the partici-
pant initially worked with given categories (treatment group) or without them (control group).
Since individuals changed their group within the study proceedings, they had to hand in their
initial, personalized package and received another one, depending on their following tasks
(group selection and system).

57

7.2.3. Questionnaires

Several questionnaires and a data collection sheets were the main source for gathering all the
required information of the study replication (including the individual participants and the
created teams).

Experience Questionnaire

It was handed out at the beginning of the whole study replication whose basic goal was it
to get an overall picture of the students experience. Based upon the given answers the, in-
dividuals were classified into the categories A (well experienced), B (experienced) and C
(less-experienced). Due to this classification, it was possible to get more detailed information
about the individual performances by using the evaluation of the results.

Feedback questionnaire - individual brainstorming

After the individual session this follow-up questionnaire was handed out to get the opinion of
the participants about the organization and the design of this part of the study replication. The
questions pertained to the timing, the study material package, what was considered good and
what could be improved, and so on.

Feedback questionnaire - team meeting

Since two different meeting styles existed - face2face and tool supported -, also two slightly
different questionnaires were developed. Hence, the focus of the questions was basically put
on the quality of the communication. On the one hand, the topic was direct communication
between the team members and on the other hand, the communication supported by collabo-
ration software.

Final questionnaire

On finishing the complete procedure, the participants were given this last questionnaire. They
had to answer the question in which meeting style they had probably performed better. Ad-
ditionally, the group performance and group cooperation had to be ranked. This helped to
compare the actual results with the self-estimation of the participants.

58

Data capturing sheet

On this form the participants (individual and team) had to write down the found scenarios
together with a short description. Further, they had to rank the scenarios in terms of their
importance and their likelihood of happening. The ranking ranged from A to C, i.e. from
critical/very likely to less-important /unlikely.

7.2.4. Change categories

Due to the fact that this work is a replication and therefore the environment, the study design,
the parameters, etc. are the same (at least to the most part) the change categories have to be the
same as well. In the original study, the categories were established by the researchers and the
developers of the software system LiveNet together.[17, p.4] As the same software systems
were used for this research work the categories stayed the same too:

Change categories - LiveNet

e User interface changes (Ul)

¢ Security policy changes (SP)

» Performance & scalabilty changes (PC)

« Communication channels and/or mechanism
changes (CM)

* Workflow management changes (WF)

« Content management requirements changes (CM)

Figure 7.5.: The change categories provided to the treatment group - LiveNet

The user interface (UIl) comprises changes concerning the applications used for the user in-
terface. Necessary changes in the security policy category (SP) pertain to all the applications
involved as well as to the content of the system. The category performance and scalability
deals with changes required to improve the performance of the system(s) (PS) for a faster re-
sponse time or to handle more users without a drop in performance. Workflow management
(WM) supports the various business processes in a company and includes all the changes con-
cerning them. Last, Content management (CM) covers all the aspects dealing with content
management itself.

7.3. Scenario rating

Basically, scenario prioritization can be done either by experts or is based on the frequency
of a given scenario. If scenarios are rated by (external) experts, higher efforts for categoriza-
tion and classification have to be considered mainly because they are costlier than internal

59

Change categories - Wiki

User interface changes (Ul)
Security policy changes (SP)
Performance changes (PC)
Notification policy changes (NP)
Content editing rules changes (CE)
Meta data related changes (MD)

Figure 7.6.: The change categories provided to the treatment group - Wiki

employees. In accordance with the original study, the scenarios are prioritized in both ways.
Moreover, a third scenario prioritization was performed by the individuals themselves. This
was not proceeded within the original study. The reason for this was to find out whether the
individuals rate scenarios similar to the frequency they found them overall.

7.3.1. Scenario classification

To actually be able to work with the individual scenarios, they had to be made somehow
“comparable”. Some scenarios are more important or critical than others. The problem is how
to define which one is more or less important than another one. In accordance with the original
study, scenario marking profiles were created. Furthermore, the performance of an individual
or a team (both real and nominal) can be measured as well using such profiles.

These profiles act like a rating scheme/system and are based on the frequency of the scenarios.
If a scenario is developed, found and frequently chosen, its importance is rated higher. So,
often found scenarios are rated higher than the ones picked less often. All in all, a classification
which uses three graduations was created: A, B and C. Thus, depending on their frequency
and in accordance with the original study, class A implies roughly the top 20 percent of found
scenarios. Class B contains the next 40 percent and the last 40 percent are classified as C.
Logically, the order within every classification descends from the most to the least often found
scenario.

Individual classification

Diverging from to the original study, this one offered the participants the possibility to rate
their scenarios on their own (at an individual and a team basis). Two different criteria, im-
portance and likelihood were used. For both, the ratings (A), (B) and (C) were available.
For example, a scenario importance rated (A) expresses the scenario to be critical or very
important. A classification going from (B) to (C) represents minor importance. The same ap-

60

plies to likelihood: A (C)-rating means the scenario is expected to occur seldom in the future
whereas (B) and (A) express a higher probability that these change scenarios might happen in
the future.

7.3.2. Scenario rating based on scenario frequency

The importance of a scenario is rated according to its frequency. The overall number of sce-
narios is taken into account. Analysis and calculation regarded all unique scenarios found.
As described in this chapter, section 7.5.1 “Scenario Classification”, all of them are divided
into three main categories (A, B, C). The input data contain both individual and team found
scenarios. Further, the achievements of individuals, teams as well as of the nominal teams
are measured. It should be remembered, that the real teams and the nominal teams always
consisted of three team members.

Totally, 367 unique scenarios were developed, respectively were found. 174 of them are as-
sociated with the LiveNet-System and 193 belong to the Wiki-System. Not surprisingly, most
of them were found during the individual brainstorming. During the team meetings (F2F and
tool supported), only few scenarios were additionally created. In the original study, they were
also classified according to their frequency. The top 20 percent fall into class A, the follow-
ing 40 percent into B and the last 40 percent into class C. Unfortunately, this approach is not
applicable with the data here. There are too many scenarios which show the same frequency.
If the original approach were applied, the scenario range for Class A would reach scenar-
ios with a frequency of two. As a consequence, no meaningful differentiation would be left.
Instead, both scenario lists (LiveNet and Wiki) were compared with the frequencies of their
scenarios.

Frequency of unique scenarios found

g ——LiveNet
S

z Wiki

2

£ 20 -

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Figure 7.7.: Frequency of unique scenario found

It was decided not to just simply use the frequency for scenario ranking. Instead the scenarios
developed during the team meeting have been valorized. If a scenario is created by a team,
minimum two team members have to agree to put it on the team scenario list whereas during

61

the individual brainstorming only the opinion of a single person is arbitrative. Therefore
following “formula” for calculating the frequency of a scenario was used:

e The frequency of the scenario of the individual brainstorming plus two times the fre-
quency of the scenario of the team meeting yields the overall scenario frequency.

Interestingly, both distributions of frequency of both systems are very similar. This is also true
for the values of the means (LiveNet: 4,14 / Wiki: 4,15) and for the medians (LiveNet: 2 /
Wiki: 1,5). However, it was decided to set the range of frequencies for class A from five to
the maximum (both systems). Class B contains all scenarios with a frequency including two,
three and four for the LiveNet-System, and also two, three and four for the Wiki-System. All
scenarios which were found only once were selected for class C. Overall, 19 percent fall into
class A, another 41 percent into class B and the remaining 40 percent into class C. As can be
seen from figure 7.11 as well as from table 7.5 in this section, the participants found an equal
number of critical scenarios as well as more important scenarios within the Wiki-System.

Class A Class B | Class C | Total
No. | % No. | % MNo. | % No. | %
31| 18 84 | 48 59 | 34 174 | 100
No. | % No. | % MNo. | % No. | %
39| 20 68 | 35 86 | 45 193 | 100
No. | % No. | % No. | % No. | %
70|19 152 | 41 145 | 40 367 | 100

Table 7.2.: Total scenario classification

Not surprisingly, the amount of scenarios found exceeds the amount of the original study by
far as the number of participants was much larger. For the Wiki-System, about 6 percent
more unique scenarios were found than for the LiveNet-System. The spread along the various
classes is quite different too. Concerning the LiveNet-System, the data set of 18148134 is very
similar to the original study of 20140140. But the Wiki-system shows some kind of “dent”
turning the classification more into a 20135145 distribution. According to the conclusion of the
original study and the conclusion of this replication, the results are better in this case. Under
industrial circumstances mostly class A scenarios would be selected for any system adoption.
However, in many cases, time and money will most likely not be sufficient for solving class C
scenarios.

7.3.3. Scenario rating based on experts scoring

Expert rating requires knowledge in terms of the domain and the impact on business values
in order to find the most important scenarios. Unlike the original study, two members of
the experiment team conducted the classification process. Based on an unsorted scenario

62

list, separate for both systems, they simply ranked the scenarios in accordance with their
opinions.

7.4. Individual setting

Overall, 59 participants took part in the study. All of them were students of the University of
Technology of Vienna. They were recruited from two different courses. 19 students attended
the course Software Testing, which is a master course and therefore these participants were
master students. The remaining 36 students took part in an undergraduate course in Software
Quality Assurance. For the quality assurance course, the study was actually part of the pro-
gram, whereas the master students could optionally take part in the study for extra points for
their course. It was not possible to motivate all the students to take part in the study.

7.4.1. Study participants and study groups

Altogether 59 participants were recruited from a software testing course (Master students) and
from a software quality assurance course (Bachelor students). Unfortunately, only 54 data
sheets (software testing 19, software quality assurance 35) were of good enough quality to be
considered. The remaining examples were either incomplete or of poor quality. Participants
leaving before finishing their tasks happened too. However, in the end only 47 participants
handed in all given data sheets and questionnaires. Nevertheless the missing data sheets only
contained the feedback ones. So despite of this matter still 54 participant data sets have been
usable for evaluation.

Treatment group Control group
(change categories provided) (change categories not provided)

Treatments

Material
System Livenet 27 >< 27
System Wiki 27 25

Figure 7.8.: Sizes of the two study groups

Above table shows the number of participants of each group. In the first run, the treatment
group was consisted of 27 participants and the control group of 27 individuals. Note, that
in the second run, the participants switched their groups. So, the 27 individuals went to the
control group whereby one student had got lost (possibly left). Accordingly, the 27 students
of the control group also switched, whereby two students got lost here too.

63

7.4.2. Individual experience

Rating the experience of the individuals is based on the experience questionnaire handed to
them in the run-up of the study. Unlike in the original study, it was decided to ascertain the
experience of the students not only by their years as students or as professionals but to consider
more aspects of the retrieved data set. Concretely, all the questions except the first four are
used for calculation.

Since all the individuals were students, age was not a significant factor and did not provide any
meaningful information about their experience. Neither is their ability to understand English
as a foreign language an indicator of their knowledge of computer science. Nevertheless,
weak language skills might cause significant performance decreases. Therefore, that topic is
discussed separately in this work.

Surely, the amount of attended programming courses is a criterion and increases experience.
Unfortunately, the received answers were largely disparate. A certain amount of students did
not give any feedback at all and others stated a large number of attended programming lessons
which are very unlikely for a normal computer science student. The problem is probably
estimated with the definition of programming course. For some, such a course is strictly about
programming and others take courses into account like dealing with UML or something else.
Anyhow, it was decided to disregard this question because of the data set given.

The fourth and last question not considered is the one about a self-assessment of the indi-
vidual about his or her software engineering experience. As these answers tended to be very
subjective and are hard to prove, they cannot be taken into account.

Ordinal data

Except for two questions (E_FB09 and E_FB10), all the ones considered deliver ordinal data.
They were collected and summed up for each student.

Nominal data

The two questions left are concerned with the experience in terms of working as a professional.
More in detail, the individual had to state how long he or she had worked within real software
projects and how large the biggest project was in which he or she had ever participated. Then
the students were rated as experienced or less experienced by giving them a score of 4 or only
1 point. The cut-off point for this classification was in both cases a score of 5. Above that
we classified the individual as experienced and below as less experienced. The mean of both
scores was calculated and used.

64

Calculation of the Experience

Now, the sum of all ordinal data questions was divided by the mean experience drawn from
the questions about professional work. Unfortunately, the results produced a data cloud which
did not provide any hint for a meaningful categorization of the individuals in terms of experi-
ence.

Experience of the Individuals

35

@
&
32,5 @ 3
c L4
3 2 1e % > *
o
s | e vore
&3 o A_.__4r’_,_t_._‘_“__._.3_-
15 S ¢ ~ -
. * . +*
® &
F ’ i &
o* s ® ’. M ®
e * ¢

05

a 10 20 30 40 50 =]
Number of Students

Figure 7.9.: Calculated experience of the individuals

Therefore, a classification of the experience was introduced. To be more specific, the clas-
sification was extended to three variables, well experienced (A), experienced (B) and less
experienced (C), similar to the classes of the scenarios. The original study used only two
classes, individuals with more than 3 years of IT experience and individuals with less than 3
years of IT experience. Taking a normal distribution as a point of reference, the ranges of the
variables are:

Experience Class Range of Experience Score # of Individuals per Class
A >2,24 8
B <2,25 35
C <0,96 5

Table 7.3.: Range of experience classes

Figure 7.8 shows that the experience of the individuals is broadly based. A situation where
half of the participants are well experienced and another one is less-experienced was not the
case. Additionally, it was investigated whether the experience scores of the individuals were
evenly distributed. As (nearly) all participants worked with both systems and were once part
of the treatment group and the control group, there should be no difference.

65

Categories

ot used
Hused

3137
20677
2,507

2,257

2,00+

1,837

3 1,757
c

[} |
£ 158

2

2150
1,42
1,33

1,21

1,00

794

&7

Li\-'eINet \"\-Iiki
Application
Figure 7.10.: Average experience score of the participants per system

As can be seen from the box plot, the expected results appeared. The individuals of both
groups received almost the same experience score regardless of the system used. The mean
for the control group is 1,54 and for the treatment group 1,56. The same findings can be
seen in the medians which are 1,58 for the control group and 1,50 for the treatment group.
The standard deviation within the systems are negligibly small (LiveNet: control group 0,65
- treatment group 0,64; Wiki: control group 0,64 - treatment group 0,65). Furthermore the
difference between the means of the two systems is too tiny to be of any significance.

Control Group - LiveNet Control Group - Wiki Control Group - Total
Experience No Share No Share No Share
Class A 3 11% 4 16% 7 13%
Class B 18 67% 16 64% 34 65%
Class C 6 22% 5 20% 11 21%
Total 27 100% 25 100% 52 100%
Treatment Group - LiveNet Treatment Group - Wiki Treatment Group - Total
Experience No Share No Share No Share
Class A 3 19% 3 11% 8 15%
Class B 17 63% 18 67% 35 65%
Class C 5 19% 6 22% 11 20%
Total 27 100% 27 100% 54 100%

Table 7.4.: Distribution of the experience of the groups per system

The p-value of 0,979 indicates that there is no difference between the systems. The box plot
7.9 shows that one study group was diminished in terms of experience. The reason is that,
as pointed out under 7.3.1 “Study grouping”, two students left the experiment between the
first and the second run. To summarize, table 7.3 shows a table of both groups but separate

66

for each system. Again, the overall distribution is almost the same for both system and for
both groups. Following table presents the distribution of the experience classes for both used
software systems.

7.4.3. Language skills

The complete study replication was executed in English. Examples are the introduction lec-
ture, all materials, the systems, the tasks, the questionnaires and other parts used within the
study procedure. As German is the by far most-widely spoken language in Austria, English
skills are expected to be lower compared to their German and to the English skills of the
participants of the original study.

In the experience questionnaire, the individuals were also asked about their overall English
skills. Of course the answers to this question were based on self-estimation. As nearly no
one likes to rate himself lower than he actually is, there is a certain probability that the scores
are higher than the “realistic” actual level. The possible answer set was ranked from zero (no
experience) to five (excellent skills).

5 Individual language knowledge (English)

25

20

25
15
12
10
10 2
5 S
0
0
2 3 4 5

1

Number of answers

Language knowledge classification

Figure 7.11.: Distribution of English language skills

As expected, no individual marked zero. Using the mean value of 2,54 at a standard deviation
of 0,99 the predicted average skill level is rather good. But about 20 percent of the people
questioned stated that they only had minor language experience. Taking into account that quite
a number of special expressions and vocabulary were used in the whole study replication there
exist major disadvantages for those individuals.

67

7.5. Team setting

The created teams consisted of three team members each. Conform to the team roles defined
for the “Fagan inspection” each of the team members had to take on a certain role.[5] Every
role implied several responsibilities. In addition, to fit a role, the person was supposed to
have some specific characteristics. Logically, with only three members randomly assigned to
a specific team, there was not much choice. Nevertheless, the participants were encouraged to
keep to their roles and to treat them with care.

Role Responsibilities Desirable Characteristics/Skills

Moderator Facilitates the generating of scenarios; Responsible to Good facilitation skills; Careful observation skills —
keepteam focus on the task; Ensures that team follow able to intervene when discussions stuck; social
the guidelines/process competences required

Scenario Writer | Responsible foractual scenario documentation; Pedantic, exact; good typing skills required

Captures exact agreed wording; Moving on to next
scenario not allowed until exact agreed wording is
written down

Timekeeper Helps the team managing the allocated time. |s warning | Pedantic; good sense of time; dutiful
if the discussion on one single scenario goes on too long
{normally 3 minutes).

Table 7.5.: Team roles of a software evaluation team

7.6. Nominal teams

In order to classify the team performances, they have to be compared to each other and/or to
some kind of index. The latter is useful, as it provides a less subjective measurement. Another
possibility is the comparison with the nominal teams in addition to the comparison with the
results of the original study

A nominal team is a fictitious team but consists of real individuals. For comparison with
real teams there are again three members to a team. In order to test the effectiveness of
several team sizes, nominal teams were build up to seven team members. The difference to
the real teams is that the team members never met in reality. To achieve that goal a simple
computer script was written (in Java) operating like a random generator. The input consisted
in a list of the individuals together with their individual scenario lists. From that list, all the
possible combinations of teams with sizes of three, four... seven and eight were created. It was
important to avoid redundancy. The nominal team with the individuals 9-12-27 for example
was not to exist again as 12-27-9.

Of course, random means that the actual real team comparisons exist as nominal team too. But
the scenario list of the nominal team was not the same since the nominal team scenario lists
were taken from the individually found ones of each member. Every unique scenario found
by the team members are collected and put in the team scenario list. Again, all redundancies
were eliminated. So the nominal teams represent somehow the optimal solution for a team

68

with regard to all their created scenarios. Nominal teams with more than three team members
were used to measure possible gains or losses in efficiency within team meetings of larger
team sizes.

Unfortunately, the calculations of nominal teams faced some restrictions. A java program was
written to match all possible team combinations. Further, all scenarios found by the individ-
uals of a specific team are put into a specific team list for that team. Due to IT infrastructure
limitations, only teams up to 7 team members where calculated. Calculating 6 team members
produced results of around 16.000.000 combinations and text files of nearly one gigabyte in
size. This resulted in Database problems. The limit for a database is two gigabyte of the file
size which is nearly exceeded with this amount of data. Therefore nominal teams with 6 and
7 team members were calculated by sampling.

7.7. Validity

Every replication has to deal with at least similar validity problems like their predecessor
study/studies. This is especially true if the replication method is an exact replication.

7.7.1. Internal validity

Internal validity or validity of (causal) interferences in scientific studies is mostly threatened
by causal relations between variables. This can lead to following problems:[69]

1. The “cause” precedes the “effect” in time (temporal precedence)
2. The “cause” and the “effect” are related (covariation)

3. There are no plausible alternative explanations for the observed covariation

However, to counter bias problems when attributing the values of dependent variables to the
experimental variables, the assignment of the participants to the various groups [LiveNet
(treatment and control) and Wiki (treatment and control)] was done randomly. In the run-
up, all the participants were put on a list and then randomly selected for groups before the
experiment started. The participants did not have any information on their group affiliation
and had no influence on it afterwards.

Unfortunately the threat of learning effects probably existed. As described in chapter 7.1

“Experiment design” of this work the individuals working in the first run with the scenario
categories would have been able to remember them in the second run. As the groups had to

69

switch they had to simulate persons who have not been given these scenario categories too.
It was intensively debated whether to change the study setup to avoid this problem, or not.
However, the replicators favored changes but the researchers of the original study asserted to
keep the design. The probable learning effects have been considered less problematic.

The scoring system respectively the appropriateness of the approach to classify the scenarios
based on their frequency represents another threat to the internal validity. However, this ap-
proach has been used in the original study as well as in several other empirical studies.[44, 19]
The various threats regarding this procedure have been discussed and addressed during that
studies.

Along with this approach another problem exits: The skill, bias and knowledge of the person
in charge recording the scenarios, eliminating duplicates and joining scenarios which are se-
mantically the same before counting their frequency can be a threat to the internal validity.
Therefore, three researchers performed these tasks independently. Any disagreements were
resolved before the scenarios were counted.

The second system used a categorization developed by two experts. All of them were familiar
with the two systems (LiveNet and Wiki) as well as with the software architecture, software
requirements and scenario finding. However in this context these threats have only little influ-
ence on the overall results of the experiments.

7.7.2. External validity

External validity defines to which degree the results of scientific research work can be gen-
eralized, or compared with respectively transferred with similar situations. In particular the
question is: Are the participants representative enough for stakeholders performing architec-
ture evaluation within an industrial context and are the experimental materials and processes
representative enough for materials and processes used within industrial software architecture
evaluations? Compared with the original study, the participants do not completely match the
industrial stakeholder’s background (e.g. marketing, sales, controlling, computer science, and
SO on).

All the students have a variety of backgrounds (educational and professional) in computer sci-
ence and software engineering. But the differences of experiences may not be large enough for
a significant impact. Therefore, it is more appropriate to generalize the results of stakeholders
with a technical background. The same restrictions existed using the LiveNet and the Wiki
system. In industry, the stakeholders would have more knowledge and experience with the
systems than the people in this study. The participants had only limited knowledge, especially
with the LiveNet-System. Hence, they can more likely be compared with stakeholders who
have also limited knowledge about the current system that is being evaluated.

70

But there is evidence in I'T-science that I'T-students can replace professionals, working in I'T-
industry, within empirical studies.[70] The participating individuals within this study repli-
cation were all computer science students and attended several computer science lectures.
Further most of them had some experience working in the I'T-industry and therefore had the
necessary technical skills and knowledge.

Another problem area arises within the methods of software architecture evaluation and sce-
nario finding. The participants did not have any or only little experience with those. According
to [17, p.5], companies nowadays do not provide extensive training to their employees con-
sidering software architecture evaluation or methods to find quality-sensitive scenarios. Thus,
the experience of the participants in this study can be compared with the experience of stake-
holders involved in software evaluation processes in industry.

The software requirement specifications used in this replication (and in the original study) are
relatively short and simple. An industrial sample would be much more detailed and complex.
But the stakeholders would also have much more time for the software evaluation and the
scenario finding. Finally, there is a threat to the external validity if the scenario development
process in this replication is not representative with industrial practices of scenario-based soft-
ware architecture evaluation. However, the scenario development process in this replication
was comparable to the one used for most of the scenario-based architecture evaluation meth-
ods creating scenarios for quality requirements characterization. These requirements are to be
fulfilled by proposed software architecture through brainstorming workshops like QAW. [17,

p- 3]

71

8. Findings of the replication study

For the statistical analyses, common and proven methods of descriptive statistics were used:
Mean, standard deviation and median. Diagrams and box plots represent findings in visual-
ized form. The results are tested using p-tests with a 95% confidence interval whereas the
null hypothesis always states that there is no significant difference between the samples. To
provide a good clarity, the order of the research questions discussed in section 6.1 “Research
hypotheses” is kept the same for the presentation of the results.

8.1. Do change scenario categories help to find more
or better scenarios?

This research question contains individual results, team results and nominal team results. All
of them are viewed separate and compared to each other. Additionally findings are discussed
showing scenario losses and scenario gains of real teams compared to nominal teams.

8.1.1. Scenarios found by individuals

As mentioned in the chapter 7.1 “Experiment design”, only 47 participants handed in the
complete data set. In most cases, the participants left the study between the individual brain-
storming session and the team meetings. Hence, nearly all of the other participants carried
out the individual brainstorming. Due to the fact that only minor (change) scenarios were
developed during the team meetings, it is acceptable to assume that each of the 55 participants
was average in his performance. The various groups differed only slightly in size. For the
LiveNet-System, the control group consisted of 27 participants whereas the treatment group
comprised 27 students. Within the Wiki-System, 25 people made up the control group and 27
the treatment group.

The average number of scenarios found per student is around 6-7, which is not really that

close to the 9 scenarios found per individual in the original study. On average the individuals
found fewer scenarios within this study replication. Regarding the overall performance, the

72

individuals working with the LiveNet-System found around 20 % less scenarios compared to
the ones using the Wiki-System.

Scenarios found by individuals

System Categories Mean N Std. Deviation Median
LiveNet not used 6,04 27 3,611 6.00
used 6,19 27 2,869 6.00
Total 6,11 54 3,231 6.00
Wiki not used 7.64 25 3,277 7.00
used 7,07 27 2,541 6.00
Total 7.35 52 2,903 7.00
Total not used 6,81 52 3,515 7.00
used 6,63 54 2,722 6,00
Total 6,72 106 3,122 6,00

Table 8.1.: Average scenarios found per individual

Extraordinarily, the individuals performed that much better with the Wiki-System, regardless
of whether the treatment groups or the control groups are compared with each other.

Instead, between the treatment and the control group, no statistically significant difference
could be found. A t-test on a 95 percent confidence interval scored a p-value of 0,287, which
is above 0,05 and therefore affirms the null hypothesis that providing change categories does
not produce or produces hardly differences in results.

So the differences in the data set may have been arrived at by chance. However, working either
with the Wiki-System or the LiveNet-System has no effect on the results as indicated by a p-
value of 1,000. Thus, an individual working on the Wiki-System does not find significantly
more or fewer scenarios.

Without further parameters, no good explanation can be given for these findings. Unfortu-
nately, it seems that providing (change)scenario categories in advance does not help finding
more scenarios on an individual level. But this does not imply that the support is meaningless
in general.

Perhaps the treatment group found more scenarios of higher quality which make them more

useful. Or vice-versa, the supported individuals found fewer unimportant ones. Following are
more diversified calculations covering these questions.

73

Number of scenarios found by individuals

Systemn Categories Mean Std. Deviation Median

LiveMet not used A 3,30 27 2,035 4,00
B 1.74 27 1,457 2.00

c 1,00 27 1.209 1.00

Total 2,M 81 1,854 2,00

used A 3,30 27 1.6680 3.00

B 1.70 27 1.295 2,00

c 1,18 27 1.711 1,00

Total 2,086 81 1.781 2,00

Total A 3,30 54 1,838 3,00

B 1,72 54 1,366 2,00

Cc 1,09 54 1.470 1,00

Total 2.04 162 1.817 2,00

Wiki not used A 4,80 25 2,363 5,00
B 1.36 25 852 1,00

C 1,48 25 1,503 1,00

Total 2,55 75 2,327 2,00

used A 4,04 27 2,008 3,00

B 1,22 27 1,783 1.00

C 1.81 27 1,311 2.00

Total 2,36 81 2,057 2,00

Total A 4,40 52 2,199 4,00

B 1,29 52 1,433 1,00

c 1,65 52 1,312 1,50

Total 2,45 156 2,186 2,00

Total not used A 4,02 52 2.305 4,00
B 1.56 52 1.243 1,00

c 1,23 52 1,368 1,00

Total 2,27 156 2,105 2,00

used A 3,67 54 1.863 3,00

B 1,46 54 1,563 1,00

Cc 1,50 54 1.483 1,00

Total 2,21 162 1.828 2.00

Total A 3,84 108 2,088 4,00

B 1.51 108 1.409 1,00

G 1,37 108 1,416 1,00

Total 2,24 318 2,014 2,00

Table 8.2.: Average scenario per class found by individuals

Now, pertaining to scenario classification as a further differentiation, the students working
with the Wiki-System performed better concerning especially critical scenarios. The overall
total amount of scenarios found per individual serves as the used index. Let us focus on the
LiveNet-System first. Looking at table 8.2 more in specific, the treatment group found a little
bit more scenarios than the control group regarding important (class B) scenarios. However,
both found almost an equivalent number.

Considering critical and less important scenarios, again the treatment group performed very
similar. Overall, class A scenarios were found most often in both groups in spite of the fact that
there are small differences in the performance. The situation is distinct regarding the Wiki-

74

System. The control group performed significantly better regarding class A and B scenarios.
Only in the case of less-important scenarios the treatment group was able to find slightly more
scenarios. Further, the difference between the two groups regarding critical scenarios within
the Wiki-System is rather large. Similarly to the LiveNet-System, most of all class A scenarios
were found.

Overall, the control group found slightly more class A and class B scenarios as well as
marginally fewer class C scenarios. A t-test with a 95 percent confidence interval investi-
gating the mean values of the two systems resulted in a p-value of 0,066. This indicates that
there is no or only a slight statistical difference between the means.

Notable is the fact that within a 10 % interval the null hypothesis would have been rejected.
Hence, differences observed between the systems are probably minor due to chance. But
nevertheless, it does not make any difference for an individual performance whether he or she
works with the LiveNet- or the Wiki-System.

Now, the same test considering the control and the treatment group results in a p-value of
0,320. This means that there is no significant statistical difference between them. Providing
change categories as a support did not help the individuals to find more (or better) scenarios.
However, the statistical evaluation test did not produce a stable finding.

Class Class

e Y
12+ 12+

ms ms

Oc Hc

a4 a1

&7 &7

of scenarios
I
1

of scenarios
I
1

T T T T
LiveHst Wiki not used used

System Categories

Figure 8.1.: Comparison of the individual groups

The box plot above visualizes the differences between the two systems and the two groups.
With regard to the systems, the individuals working with the Wiki-System performed better
concerning critical scenarios and slightly better in terms of less-important ones. Only for class
B scenarios, the individuals working with the LiveNet-System found a few more scenarios.
Comparing the two study groups the differences in the performances are smaller.

75

Interestingly, the range of scores for critical scenarios stays the same; just the median indicates
the better performance of the control group. The boxes for class B and class C scenarios show
similar results. The performance of both groups is more or less the same.

Number of scenarios found by individuals (LiveNet)

System Categories Class Mean N Std. Deviation Median

LiveNet not used A 3.30 27 2,035 4.00
B 1,74 27 1,457 2.00

c 1,00 27 1,209 1,00

Total 2,01 81 1,854 2,00

used A 3.30 27 1,660 3.00

B 1,70 27 1,295 2,00

& 1,19 27 A 1,00

Total 2,06 81 1.791 2,00

Total A 3.30 54 1,839 3.00

B 1.2 54 1,366 2.00

c 1,09 54 1,470 1,00

Total 2,04 162 1,817 2,00

Total not used A 3.30 27 2,035 4,00
B 1,74 27 1,457 2.00

c 1,00 27 1,208 1,00

Total 2,01 81 1,854 2,00

used A 3.30 27 1,660 3.00

B 1,70 27 1,298 2.00

e 1,19 27 1.711 1.00

Total 2,06 81 1,791 2,00

Total A 3,30 54 1,839 3.00

B 12 54 1,366 2.00

c 1,09 54 1,470 1.00

Total 2,04 162 1,817 2,00

Table 8.3.: Average scenario per class found by individuals (LiveNet)

In order to get more detailed answers, both systems are reviewed on their own. If the LiveNet-
System is looked at by itself, a test of the means of the two study-groups results in a p-value
of 0,633 whereas the same procedure for the Wiki-System produces a p-value of 0,397.

The following box plots (figure 8.2) present an overview of those more specific data sets.
Regarding the LiveNet-System the control group performed a little bit better in the case of
critical scenarios. But all in all, both groups produced nearly equal results. Looking at the
Wiki-System presents quite a similar picture. Again, the control group found more class A
scenarios. Compared to the box plot above, the general statement there is confirmed.

76

Number of scenarios found by individuals (Wiki)

System Categories Class Mean N Std. Deviation Median

Wiki not used A 4,80 25 2,363 5.00
B 1,36 25 952 1,00

C 1.48 25 1,503 1,00

Total 2,65 75 2327 2,00

used A 4.04 27 2,009 3.00

B 1,22 27 1,783 1,00

C 1.81 27 1.111 2.00

Total 2,36 81 2,057 2.00

Total A 4,40 52 2,199 4,00

B 1,29 52 1433 1,00

c 1,65 52 1.312 1,50

Total 245 156 2,186 2.00

Total not used A 4,80 25 2.363 5.00
B 1,36 25 952 1,00

c 1.48 25 1.503 1,00

Total 2,55 75 2327 2.00

used A 4,04 27 2,009 3.00

B 1,22 27 1,783 1,00

c 1,81 27 1,111 2,00

Total 2,36 81 2,057 2.00

Total A 4,40 52 2,199 4,00

B 128 52 1433 1.00

c 1,65 52 1,312 1,50

Total 245 156 2,186 2,00

Table 8.4.: Average scenario per class found by individuals (Wiki)

In brief, no evidence has been found that scenario change categories helped the individuals to
find more scenarios. Neither did they help to find scenarios of higher quality. Unfortunately,
these findings do not confirm the results of the original study.

Comparison to the original study

The individuals found fewer scenarios this time. This is true for both systems and for both
study groups. Then the treatment group found 10 and the control group 9 scenarios. Here the
participants developed only 6 to 7 scenarios. Additionally the influence of scenario categories
measured in the original study cannot be found.

7

Class Class
Ea Ha

Bc Bc

of scenarios
.
1

of scenarios
o
1

T T T T
not used used net used used

LiveNet Wiki
Figure 8.2.: Comparison of the individual groups specifically for each system

8.1.2. Scenarios found per real team

Analyzing both groups (control, treatment) and both systems (LiveNet, Wiki) combined, every
team found around 10 scenarios on average. Comparing the overall individual performance
with the the overall team one, the teams developed 30 to 40 % more scenarios. It is important
to remember that the individual brainstorming session lasted only 45 minutes whereas the
team session took 60 minutes.

Remarkable is the fact that the difference between the two systems is smaller compared with
those of the individuals. There, about 20 % more scenarios were developed for the Wiki-
System than for the LiveNet. At the team level, however, this gap shrank to half of this
amount, which is to 10 %. To answer the question why is quite difficult. At this point no
sufficient answer can be given using the available data.

Probably, the possibility to discuss problems within a team helps to overcome insecurities
generated by a foreign environment, in this case represented by the LiveNet-System. Due
to the spread of “Wikipedia” it is most likely that the Wiki-System is quite familiar to the
individuals, more so than the LiveNet-System. The latter was created for university research
purposes and is virtually unknown beyond that realm.

According to a p-value of 0,116, working with different systems seems to have no influence on

the performance. The same assumption can be made for the treatment and the control group.
A t-test resulted in a p-value of 0,174.

78

Both indicate, like for the individuals, that neither the allocation to a certain system nor to a
specific replication group affected the performance of the teams. But the values are not really
very high (either), which would make them more convincing for supporting predictions more
strongly.

Scenarios found by teams

System Categories Mean N Std. Deviation Median
LiveNet not used 9,00 9 3,000 9.00
used 9.90 10 2,514 10,50
Total 9,47 19 2,716 10,00
Wiki not used 10,89 g 3.855 11,00
used 10,00 9 3,162 9,00
Total 10,44 18 3.451 10,00
Total not used 9,94 18 3,489 9,00
used 9,95 19 2,758 10,00
Total 9.95 37 3.091 10.00

Table 8.5.: Average scenarios found per team

Referring to the original study, the difference which was calculated there between the teams
and the individuals was 90 %. Now within this study, the teams performed still better. But the
difference is much smaller. There are no reasonable facts or data sets which could explain this
big gap. Possibly, the students in the original study knew each other well as there were only
24 participants.

Therefore, they may not have had to introduce them to such a setting. Looking at the current
study again it is conspicuous that the teams working with the Wiki-System achieved better
results. But it cannot be stated that the treatment or the control group did make a better job.

Taking more variables into account presents a more detailed picture. More specifically, the
amount of scenarios found per team can be split up into sub-variables. An average (real) team
found 3 (change) scenarios per class. In general, the treatment groups performed not even 1
% better, which is quite negligible.

Concerning only on class A scenarios, real teams developed more than 6 scenarios on average.
But the gap between the study groups is again only around 1 %. The treatment groups even
found slightly fewer class B scenarios.

Viewing the systems separately, the big picture remains more or less the same. The control
groups working on the Wiki-System found most critical and more important scenarios than
the treatment groups. However, the treatment groups using the LiveNet-System found, by
contrast, more class A and B scenarios. Regarded combined, both groups produced the same
results.

79

Scenarios found by teams

Application Categories Class Mean N Std. Deviation Median

LiveMst not used A 5,78 9 1,822 5.00
B 3,22 9 1.641 3.00

c 00 9 000 00

Total 3,00 27 2,787 3,00

used A 8,00 10 2,160 5,50

B 3,90 10 1.595 4,50

5] 00 10 000 0o

Total 3.30 30 2,938 3,50

Total A 5.89 19 1.997 5,00

B 3,58 19 1,610 4,00

c 00 19 ,000 .00

Total 3.18 57 2,846 3.00

Wiki not used A 7.00 B 2,179 6,00
B 3.89 g 2,522 3,00

c ,00 9 ,000 .00

Total 3,63 2T 3.455 3,00

used A 6,89 9 2,147 6,00

B 3,11 9 1,965 3,00

o] 00 9 000 Helo]

Total 3,33 27 3,293 3,00

Total A 8,94 18 2.100 6,00

B 3,50 18 2,229 3.00

5] 00 18 000 0o

Total 3,48 54 3,346 3,00

Total not used A 6.39 18 2,090 6.00
B 3,56 18 2,093 3.00

o] 00 18 000 .00

Total 3,31 54 3,125 3,00

used A 8,42 18 2,143 6,00

B 3,53 18 1,775 3,00

c 00 19 ,000 .00

Total 3,32 57 3.083 3,00

Total A 8,41 37 2,088 6,00

B 3,54 37 1.909 3,00

c ,00 37 ,000 .00

Total 3,32 111 3,090 3,00

Table 8.6.: Average scenario per class found by team

Intended to validate the findings, t-tests were applied focusing on the systems and the study
groups. For the systems the resulting p-value of 0,156 indicates that the system has no effect
on the team performance. Much more sound and clear is the p-value of 0,972, testing the
group scores. Hence, support in the form of scenario categories does not have any impact on
the performance of the team. As mentioned, the same is true for the systems but may not be
that strong.

However, all the teams together did not have any class C scenarios on their result list. It seems
that teams are better than individuals in terms of the quantity and even better in terms of the
quality of found (change) scenarios! The box plots (figures 8.3 and 8.4) visualize the above
mentioned findings. It can be seen that the results are quite closely-set.

When both systems were separately analyzed, the following p-values comparing the means
were calculated for each respective control group/treatment group. For the LiveNet-System
the result was 0,479 and for the Wiki-System 0,549. These figures somewhat weaken the
results of the above mentioned values. Any possible impact of the system seems to be lower
and the one of the group allocation higher. But still they are within similar range, which leads

80

Scenarios

-

T
Livehst

T
Wik

Application

Class
Ha
Bc

Scenarios

-

T
not used

Categories

Figure 8.3.: Comparison of the real teams

T
used

Class
Ha

Oc

to the same conclusions. Neither the systems nor the scenario categories influenced the teams
respectively their results.

Scenarios

. v,

T
not used

T
used

LiveNet

Class

Scenarios

T

T
not used

Wiki

T
used

Figure 8.4.: Comparison of the real teams specifically for each system

Class
Ea

dc

More specific box plots, figure 8.4, provide an overview of the data sets. Surely, differences
can be identified but in the end the tendency towards the figure 8.3 is generally observed
again.

81

Comparison to the original study

Interpreting the results for the real teams, they recall the statements made for the individuals.
No evidence was found that the support of (change) scenarios has an influence (neither positive
nor negative) on the results of the team session. Also the different systems did not affect
the performance either. This is contrarily to the original study which summarized that, for
real teams, scenario categories do help teams to perform better. The teams at the original
study found on average 15 scenarios whereas during the study replication the average was 10
scenarios.

8.1.3. Scenarios found per nominal team

Notice that these results are abstract. As described in section 7.6 “Nominal teams”, the mem-
bers of this teams never met each other. Logically, as all possible combinations were matched,
the real teams also appear. But also this time, the nominal teams were randomly picked. Yet,
several factors were involved which definitively have to be considered. Real individuals need
some time to introduce themselves to each other. They need some time to feel comfortable, to
deal with each other.

Furthermore, if the real teams work tool supported, they even have to get used to the system
first. In addition, real team members discuss all their results and argue pro or contra scenarios
before they probably put one on their list. Nominal teams, however, do not simulate human
behavior. Instead, the drawing up scenario lists are “ideal”. So the comparison of real and
nominal team performance is more a comparison of real results against optimal theoretical
results.

Generally, a nominal team found some 18 (change) scenarios. Accordingly, this is an increase
of approximately 80 % over the real teams with around 10 scenarios per team. Focusing on
critical scenarios (class A), nominal teams found on average 9,5 scenarios whereas real teams
only found 6,4. This time the difference was about 50 %.

For class B scenarios, the compared samples differed not that strong. The nominal teams found
about 25 % more scenarios than the real teams. For less important scenarios, the nominal
teams found on average about 4 scenarios which is not comparable as real teams did not find
any class C scenarios at all.

82

Scenarios found by nominal teams

System Categories Class Mean N Std. Deviation Median

LiveNet net used A 8.44 2925 2,517 8.00
B 5,158 2925 2,320 6,00

c 3.00 2925 1,975 3.00

Total 5.53 8775 3.185 5,00

used A 8.05 2925 2,254 8.00

B 5.07 2925 2,081 5.00

C 3,56 2925 2.784 3.00

Total 5,56 8775 3.041 5,00

Total A 8,25 5850 2,397 8.00

B 5.1 5850 2,208 5.00

(5] 3.28 5850 2,435 3.00

Total 5,54 17550 3119 5,00

Wiki not used A 11.786 2300 2.818 11,00
B 3,94 2300 1.478 4,00

c 4,44 2300 2443 4.00

Total 6,72 6900 4,260 5.00

used A 10.08 2925 2,583 10,00

B 3.61 2925 2.860 3.00

c 5.44 2925 1.814 5.00

Total 6,37 8775 3.664 6,00

Total A 10,81 5225 2.824 11,00

B 3.75 5225 2,360 3.00

c 5,00 5225 2172 5.00

Total 6,52 15675 3.941 6,00

Total not used A 9.90 5225 3,125 10,00
B 4,62 5225 2.081 4.00

c 3.63 5225 2.307 3.00

Total 6,05 15673 3.748 5.00

used A 9,08 5850 2,628 9.00

B 4.34 5850 2.609 4,00

c 4,50 5850 2,538 4.00

Total 5,96 17550 3.381 6,00

Total A 9.48 11073 2.904 9,00

B 447 11075 2,379 4.00

c 4.09 11075 2,469 4.00

Total 6.01 33225 3.564 5.00

Table 8.7.: Average scenario per class found by nominal teams

Comparing the nominal teams among each other, the overall trend continued that the Wiki-
System gained more scenarios. Especially for critical scenarios (A), a lot scenarios more were
developed than for the LiveNet-System. However, reviewing class B scenarios, the situation
is vice-versa. Within the LiveNet-System, the control group performed slightly better in terms
of critical scenarios as well as in terms of class B scenarios. The findings are about the same
with the Wiki-System.

A 2-tailed t-test considering the two groups resulted in a p-value of 0,028. Hence, there is
some statistical difference between them. Concentrating on the LiveNet-System the same test
scored a p-value of 0,503. On the other hand, testing the study groups the Wiki-System, the
score is < 0,001. According to these figures providing (change) scenario categories had an
impact on the individuals using the LiveNet-System and had no impact on the individuals
working with the Wiki-System. Taking both systems into account the data states that giving
(change) scenario categories to (nominal) teams has a statistical influence.

On reviewing the figures 8.5 and 8.6, [] the following conclusions can be drawn: The control
group (not supported by change scenario categories) and the treatment group found nearly

83

equally as many scenarios whereas there are slight indications that the control group developed
a few more scenarios in terms of critical and important scenarios. However there is some
difference between the systems. The nominal teams working with the LiveNet-System found
less critical but more important scenarios. Unfortunately a 2-tailed t-test resulted < 0,001. The
allocation to a system has an impact too.

Class Class
219 Wa 21 Ha
20 HB 20 Ee
19 Oc 19 Oc

18- 15 TR
17 174 At
16+ 16
15+ 15
14 —i— 14
13 =i 13

124 8 12
11 - & 117
10 S 10
9 @ o

.
7
5
i
o
3
-
11

o —i— —= o

Scenarios

T T T T
LiveNet Wiki not used used

System Study groups
Figure 8.5.: Number of scenarios found by nominal teams

Class Class
15 Ha 215 e
ms 20 @s
149 = Oc 19 Cc
131 18]
12+ s N
161
iy 15+
10 144
o 13
8 2127
CRCH §11~
3 @ 107 =
Qo o g
(7] 7]
6 il
59 7
n &1 e
P

2]
2
1
| 14
o o A
T T T T
not used used not used used

LiveNet Wiki
Figure 8.6.: Number of scenarios found by nominal teams for each system in specific

Comparing both real and nominal teams as visualized in figure 8.7, shows considerable con-
trasts. The nominal teams performed much better in terms of the amount and quality of their
scenarios. But real teams avoided less-important scenarios all together. Nevertheless, nominal
teams do perform better than real teams. Even if the above factors and differences between
nominal and real teams are taken into account, the difference is quite big.

84

Class
i Ha
20+ He
19 Bc
18-
17
16
15
144
13-
o 12
E 114 =
S 10
B o
.
+
5
=
4
3
o S
1
0 e
] T
Morminal Real
Teams

Figure 8.7.: Number of scenarios found by nominal teams compared to real teams

As already pointed out, real teams must be compared carefully to nominal teams. Time con-
suming actions like discussions and interaction have to be considered. But the difference in
the performance leads to the conclusion that rivalry is going on within real teams, thereby
reducing the output.

To find out how many scenarios are lost and gained, the output of the real teams is compared
with the mean output of the nominal teams. If both systems are counted there are 37 real teams
and 11075 computed nominal teams, so this approach was considered meaningful.

The figures 8.8 and 8.9 are representing the box plot diagram (figure 8.7) in terms of scenario
losses and gains of real teams compared to nominal teams (respectively their means). Real
teams gain nearly no scenarios compared to the nominal teams.

This is true regardless which system was used or whether (change) scenario categories were

provided or not. The biggest gap occurs at class C scenarios which is not surprising, as no real
team had any class C scenario at all.

85

LiveNet - control group LiveNet - treatment group
e

AR :
1/l A

— |

—&—Gain —4—Gain

—
et
Scenarios
=
b_‘-“
(—

Scenarios
w

—fi— Loss —B—loss

AAAMAAAAAABBBBEBBBBBCCCCCCCCC AAMAAAAMAAAABBEBBBEBBBBCCCCCCCCCC

Figure 8.8.: Scenarios gained and lost by real teams compared to nominal teams (LiveNet-
System)

However, overall these results are quite logical since the nominal teams represent somewhat
the optimal solution as every scenario found by the team members was automatically put
on the team scenario list. Nevertheless, could some real teams possibly have found more
scenarios of one category or avoided less important scenarios?

Wiki - control group Wiki - treatment group

e
=}
~d

A 1 - = = —4—Gain

Scenarios
Scenarios

& Loss Loss

| - o
h

L= - ST R

AAMAAAAAAABBBBBBBBBCCCCCCCCEC AAMAAMAAAAABBBBEBBBBCCCCCCCCC

Figure 8.9.: Scenarios gained and lost by real teams compared to nominal teams (Wiki-
System)

Judged from the viewpoint of the real teams, the best ratio between gains and losses occurred
for class B scenarios. For every scenario gained a real team lost around 7 others. Looking at
critical scenarios, the ratio shrank significantly. The real teams lost on average 34 scenarios
when gaining one single scenario. By going deeper into the data pool, some surprising figures
appeared.

System | Group arios L Important Scenarios’
Losses Gains Losses
LiveNet CG 0,0622 | 2,7244 0,0944 | 2,0222
TG 0,195 | 2,245 0,093 | 1,263
Wiki CG 0 4,76 1,02 | 1,0711
TG 0,1044 | 3,2756 0,4878 | 0,9867

Table 8.8.: Scenario gain and loss ratios of real teams
Teams belonging to control groups tend to have fewer losses than treatment group teams.

Again, the ratios are much better regarding class B scenarios. Unfortunately, this indicates
that real teams lose particularly critical scenarios in comparison to the nominal teams.

86

According to these figures, in particular less-important scenarios were eliminated. Real teams
did not put any class C scenario on their lists. Unfortunately, this is the only advantage mea-
sured. As mentioned, within real team meetings a lot of scenarios got lost. Testing the influ-
ence of (change) scenario categories produces p-values of 0,455 (gains) and 0,243 (losses). It
seems that there is also no influence by them. To sum it up, the support of (change) scenario
categories had no influence on whether the real teams lost or gained scenarios.

Losses and Gains of realt teams compared to nominal teams (overall)

Gain

Loss

Number of loss and gain

il I I
IV T T I
1 AR WA
: AN Al -

AAAAAMAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBCCCCCCCCCCCCCCcCCCCC

Scenario categories

Figure 8.10.: Scenarios gained and lost by real teams compared to nominal teams

Comparison to the original study

The results are, in terms of the nominal teams differ compared to the original study but not
the same. Nominal teams found much more scenarios compared to the individuals and the
real teams. Also there is evidence that (change) scenario categories do help to find more
and/or better scenarios. But the control group (no scenario categories given) achieved better
results.

However, terms of losses and gains between the real and the nominal teams the findings are
similar to the original study. The real teams found more scenarios than the individuals and
they lost more A and B scenarios than they gained, compared to nominal teams. But this time
the real teams eliminated all class C scenarios, giving them an advantage compared to the
nominal teams.

87

8.2. Does experience help to find more or better
scenarios?

Experience is an important factor in computer science. It is expected that individuals who
have more experience achieve better results compared to less experienced ones. Within the
section 7.3 “Individual setting” is explained how the individuals are categorized in terms of
their experience.

8.2.1. Reference profiles

In order to evaluate whether experience improves the effectiveness or not, the quality of the
scenarios found by each individual must somehow be determined. To be able to compare, the
approach of the original study was applied again. Through this approach the scenario quality
was scored by combining the scenario lists of the individuals with an overall top scenario list.
The basic idea behind that list is similar to the classification of Class A, B and C scenarios.
The more often a scenario was found, the more important it should be.

Reference Scenario Profile LiveNet

Score| F | Scenario Description

15 45 ||ntEgratinn of external communications (e.q. video conference, VolP, ..)

14 40 Management of access rights

13 138 Versioning (undo function); data storage + old version viewing; viewing of changes
]17_ |34 |Scaiahi|ity/?nr’[ah|lity (e.g. distributed systems)
i 16 [Converting to other file formats (pdf, ..):

10 Il Livenet portable for mobile devices (small sereens)

4 14 Multiple access of many users to documents

8 4 |Automated notification about new/changed artifacts in group
l? 14 |SE|‘.’E chat history for later reviews

13 MNew roles defined and implemented

13 |Database enlargement (for big documents, forum, users, files)

10 [Support of various (new) evaluation techniques

B
a
4 i [ffline Made;- local saving/sync function
3
2

d Suppart different browser (same display)

]? 8 |Ajax or similar technology for better performance / efficiency

Table 8.9.: Reference profile list LiveNet

Again, all unique found scenarios (see classification in [] Experiment_Description) were put
into a pool. Afterwards, the frequency of each scenario was counted. Then, the scenarios
obtaining the highest frequency were collected and sorted into the reference profile list. In the
original study, all in all 10 scenarios found their way into the profile list. There, 108 unique
scenarios have been found. In this study 161 and 172 (LiveNet and Wiki) scenarios, found at

88

individual brainstorming and team sessions, had to be considered. To accommodate with this
increase of 60 percent, the scenario profile list was increased by 5 additional scenarios.

Figures 8.10 and 8.11 show the two reference profile lists for both systems, LiveNet and Wiki.
“F” stands for the frequency of the respective scenario. Only these scenarios are scored.
Logically, the scenario with the highest frequency gets the highest score. As there are 15
items, the maximum amount of points for the top scenario is 15 dropping down to 1 point for
the lowest scenario.

Reference Scenario Profile Wiki
Score| F Scenario Description
13 |36|Supporting different kinds of media files, e.g. pictures, videos, sounds (within text)

14 |43 |Online editor far graphics, farmulas, texts, ... (tinyMCE (WYSIWYE), possibility to pimp content)
13 |33|Management of access rights
12 |31 |Versioning (undo function); data storage + old version viewing; viewing of changes

il 25 Make Application/Layout customizable to adapt to corporate identity; General layout-management possible;
I0 24|Subscribing to change history through RSS feed:

2! |Possibility to rate articles + average rating of all the articles of one author

14 |lmply search function based on mata-data (xml)

13 |Multilingual

13 |Converting ta other file formats (pdf, ..);

12 |Scalability/Portability (e.q. distributed systems)

{2 |Ban user

{0 |Detailed settings for notification (prompt, perindical, subscribing only for certain categaries only, ...)

10 |Using HTML and CSS tags for writing articles, also Latex;

Ajax or similar technology for better performance / efficiency

=== Ea | = en | th | | ta to

q
S |Support for adding attachments to pages
9 |Make pages non editable / lock them for specific users and/or IP-addresses

Table 8.10.: Reference profile list Wiki

This approach is different to the one applied in the original study. The reason is that if the
frequency would result the scenario score in the study replication the values would be very
large and huge gaps would occur. For example, the highest scenario score for the LiveNet
system would have been 45, the second highest 40. And the fifteenth score in the reference
list would only be 9. So the above method was chosen to get more conservative scores and
introduce a linear scoring system which is more comparable and repeatable.

89

Reference profile score of the individuals

System Categories Mean N Std. Deviation Median
LiveNet not used 24,11 27 15,863 24,00
used 26.30 27 12,477 29,00
Total 25,20 54 14,178 27,00
Wiki not used 32,28 25 16,157 28.00
used 29,33 27 15,874 26,00
Total 30,75 52 15,873 28,00
Total not used 28,04 52 16,374 27,00
used 27,81 54 14,278 28,00
Total 27,892 106 15,269 27.50]

Figure 8.11.: Individual scores concerning the reference profile

The data-results of table 8.7/ show the remarkable fact that the individuals produced higher
scores using the Wiki-system regardless to which study group they belonged. Interestingly, the
control group performed slightly better than the treatment group. For the LiveNet-System the
opposite is true. The treatment group produced better results despite a worse score overall.

Since more scenarios were also found for the Wiki-system, it seems that people performed
better on well-known or easy to handle software architectures/programs. Further, providing
them with predefined scenario categories does not have a positive impact on the results. But
this thought cannot be proven with the available data set.

Categaries

M ot used
Wused

F @
=] =]
L 1

Reference profile score (individuals)
T

T
Livehet Wik

System
Figure 8.12.: Box plot of individual scores concerning the reference profile

There is no statistically significant difference between the two systems means referring to a
p-value of 0,206 at a 95% confidence interval. Looking at the box plot it is easy to see that
providing scenario categories does not help to produce better results. Just like with the system,
there is a statistical difference between the control group and the treatment group resulting in
a p-value of 0,184 which rejects the null hypothesis that there exists a statistical difference
between the groups.

90

Comparison to the original study

Reviewing the data and the figures the findings of the original study were not replicable. Re-
garding the LiveNet-System the control group did find more scenarios but this is not true
considering the Wiki-System. Overall providing change scenarios does not help the individ-
uals to perform better. This matches the findings under section 8.1.1 “Scenarios found by
individuals” above.

8.2.2. Experience and scenario quality

It is important to explore whether possible differences in the results could be produced or
influenced by the respective experience of the treatment and the control group. As figure 8.13
shows, it is expected that no divergences should occur due to differing experience.

Categories
| Cinot used
70 used
w -
- 60
= ;
= 3 & i OC
=) o
= O =
= 50 !
I~ 0
o g ®) =
fui i L {
5 O O
@ 40 C @ . e
- _ QX s O0q O
- P e L =
IE i 8] L] O
- A D
o 5 _ b
o A =) o e "H":—’
e o 8. 6 O C
@ 1y = b ™ R
L O] & ~
Wy O =
[: o o
o o g ; Q : Q —'C o
_’30 Op g i
. e 0 2]
10 o 0O 0 €
Q

[u] T T T ;ﬁ T -.I T |ﬁ T T T
&7 B3 100 125 142 154 175 188 225 258 313

Experience score (individuals)
Figure 8.13.: Experience against scenario score

The correlation “r” between experience and scenario score is 0,052 indicating that there is no
(linear) correlation. This is supported by a p-value of 0,866. Surprisingly, this could state
that I'T experience does not have any influence on the quality of the found scenarios. But this
figure is only true for all individuals overall, regardless of any system or study group. The
next step is to investigate if the situation is the same compared to all three experience classes
or if within them there are significant correlations. Further, there two systems could produce
correlations too.

91

LiveNet

Analyzing the box plot for the LiveNet-System gives rise to the speculation that experience
does have some impact on individuals. Further this seems to be true regardless if they get
support through provided change categories, or not. Interestingly, the performance of the
individuals allocated to the treatment group with regular experience is nearly the same. Con-
trarily, in the control group well experienced participants reached significantly better results.
On the other hand, within the treatment group both extreme cases (Class A and C experience)
were conspicuously moderate. The well experienced individuals had scored lower and the less
experienced ones reached much better scores on average compared to the control group. A
p-value testing the impact of scenario categories scored 0,085. Considering a 95 % confidence
interval this states that there is no statistical influence by them. But on a 10 % interval this
null hypothesis had to be rejected.

Now testing the impact of experience on the scenario score (both study groups regarded)
results in a p-value of 0,683. Only viewing the control group the same test achieves a score of
p = 0,883 whereas for the treatment group the results is p = 0,807. The figures show no impact
of experience on scenario scores. This is astonishing as well experienced individuals achieved
the highest scores. But as experienced participants scored lower than less experienced ones
the overall pictures seems to be differentiate.

Reference profile score in relation to experience (LiveNet)

Categories Exp_Class Mean N Std. Daviation Median
not used A 27,00 3 13,856 35,00
B 23,50 18 15,621 25,50
G 24,50 6 19,887 18,00
Total 24,11 27 15,863 24,00
used A 29,80 5 7,082 29.00
B 25,29 ¥t 14,717 28,00
G 26.40 5 8,792 28,00
Total 26,30 27 12,477 29.00
Total A 28.63 8 9,242 29.50
B 24,37 35 14,992 27.00
c 25,36 1 15,154 27,00
Total 25,20 54 14,179 27,00

Table 8.11.: Reference profile score of individuals in relation to their experience (LiveNet)

Wiki

The above results are somewhat confirmed as shown in the box plot for the Wiki-System.
Again in class A the experienced individuals reached a higher score in the control group. And
although the picture is not the same, it is clearly similar. But this time the p-value testing
the impact of the scenario categories reached 0,850. Within the Wiki-System no significant
influence was measured.

92

Exp_Class

[FS
0= s
Oc
50
40

()
=]
1

Reference Profile LiveNet Score
b

104

not dsed usled
Study groups
Figure 8.14.: Experience classes in relation to scenario score of the LiveNet-System

Switching to the experience a p-value of 0,121 indicates no influence on the scenario score.
Isolating the control group the p-value is 0,224 and vice-versa (treatment group) the result of
the t-test is p = 0,320. The figures of the LiveNet-System are calculated again which leads
to the same statements for the Wiki-System. The experience of the individuals does influence
the scenario score.

Reference profile score in relation to experience (Wiki)

Categories Exp Class Mean N Std. Deviation Median
riot used A 44.00 4 14,306 47,00
B 31,50 16 16,436 28,50
C 2540 5 14,170 22.00
Total 32,28 25 16,157 28,00
used A 29,33 3 12,503 35.00
B 32,22 18 16,728 27,00
(2] 20,67 5] 13.880 19,50
Total 29,33 27 15,974 26,00
Total A 37,71 7 14,694 38.00
B 31.88 34 16,342 28,00
C 22 .82 11 13,519 22.00
Total 30,75 52 15,973 28,00

Table 8.12.: Reference profile score of individuals in relation to their experience (Wiki)

93

ExperienceClass

WA
Hs
e

60

40

Reference Profile Wiki Score

209

not L:sed usled
Study groups
Figure 8.15.: Experience classes in relation to scenario score of the Wiki-System

Both systems

Putting the systems aside and looking at the descriptive data overall, the well experienced in-
dividuals performed better in terms of critical scenarios within the control groups. Comparing
important scenarios the results are vice-versa. A p-value of 0,206 at a 95 % confidence interval
indicates that the systems do not have a significant impact on the individual sores.

Hence, it is rather by chance that the individuals of one system have higher or lower scores
compared to others working with another system. Testing interdependencies between the
scenario score and the type of group (control or treatment) the p-value is 0,185. Like the
system, giving the support of (change) scenario categories does not to have any influence on
the quality score.

These findings lead to the conclusion that a framework similar to scenario categories is not of
any help if it is the aim to find more critical scenarios or if less important scenarios should be
avoided. In terms of the impact of experience the statistical figures show no influence on the
scenario score.

As already mentioned, one possible factor could be the system itself. Possibly, if an individual
is very familiar with one system he achieves a higher quality score and maybe more scenarios.
There is no data available to confirm that the individuals knew the Wiki-System better than
the LiveNet-System. But since Wikipedia is a very popular software used world-wide and
LiveNet is only a small system built for research purposes, it is most likely that the individuals

94

Reference profile score of individuals (both systems combined)

Cateqories Exp_Class Mean N Std. Deviation Median
not used A 36,71 7 15,777 35,00
B 27,26 34 16.277 27,00
G 24.M 1 16.682 21.00
Total 28.04 52 16,374 27.00
used A 28,50 8 8,569 29,50
B 28,86 35 15,943 28.00
9] 23,27 i 11,671 27,00
Total 27.81 54 14,278 28,00
Total A 32,87 15 12,541 35.00
B 28,07 68 16,009 27.00
G 24,09 22 14,074 23,00
Total 27,92 108 15,268 27,50

Table 8.13.: Reference profile score of individuals both systems and study groups combined

had much more knowledge about the Wiki-System.

Comparison to the original study

The results of the study replication do not affirm those of the original study. The treatment
group had not achieved significantly better scenario scores. The same is true for the impact of
experience. But the descriptive data shows that well experienced individuals are achieving the
best scenario scores. Perhaps further research work can solve this strange picture.

8.2.3. Impact of participant experience on individual scenario
brainstorming effectiveness

As above applied reference profile showed no significant impact of experience, the effective-
ness of the individuals was measured in terms of individual experience. Therefore, the primary
scenario scoring technique (frequency-based) was used again.

Additionally it was confronted with a scenario ranking made by experts. Possibly the well-
experienced participants show better results when critical scenarios, ranked by experts, are
used. Because when applying a frequency-based system, actually minor important scenarios
can get high ranks if many (minor experienced) students found them.

The two categorization techniques are discussed in section 7.5 “Scenario rating”. The number

of assigned scenarios to each classification is shown below in table 8.7/4. Astonishingly, the
system of classification of the two techniques derivates from the set 20:40:40 to 20:60:20.

95

Exp_Class

Ha
He
Cc

@
(=]
L

Reference Profile Score both System
b £
o o
1 L

not L’JSE!d usied
Study groups
Figure 8.16.: Experience classes in relation to scenario score of both systems

SC-Frequency SC-Expert
LiveNet Wiki LiveNet Wiki
Scenarios No. Share No. Share No. Share No. Share
Class A 31 18 % | 39 20 % | 36 2., % | 35 19 %
Class B 84 48 % | &8 35 2| 95 57 %1060 56 %
Class C 59 34 % | 86 45 % | 37 22 % | 45 25 &
Total 174 100 & 193 100 & 169 100 & 180 100 %

Table 8.14.: Scenarios assigned to classification sorted by classification technique

Further, the variation concerning the systems within one technique is minor for the expert
based one. Note that this study, like the original one, focuses more on Class A, B & C sce-
narios for the following calculations for evaluation purposes. As already mentioned in this
work, due to external limitations (time & money), mainly class A scenarios and some class
B scenarios will most likely be considered. Nevertheless this study replication considered all
three categories for the sake of completeness.

Generally, effectiveness is calculated by looking at the number of scenarios found by an in-
dividual in relation to the scenarios developed overall and results in a percentage point. Of
course, the scenario category and the experience category are considered.

Comparing the two systems (looking at both systems as a whole) which each other, the de-
scriptive data clearly shows that well experienced individuals are most effective. Surprisingly,
the effectiveness of a group with experienced individuals is very similar compared to groups

96

with less experienced people. If the groups are divided and looked at separately this result
only holds true for the control groups.

LiveNet

Concentrating on the LiveNet-System and applying the frequency-based scenarios ranking
system the descriptive data shows that, regardless of the scenario importance and the study
groups, well experienced individuals were most efficient.

A t-test checking the influence of the scenario categories scored 0,800 which indicate that
giving such categories has no impact on the effectiveness. Testing experience score against
effectiveness (both SC-F and SC-E) achieved a p-value of < 0,001 stating that experience has
a huge impact on the individual performance.

Effectiveness of the individuals in relation to scenario class (LiveNet/SC-F)

Scen_Class Exp_Class Mean N Std. Deviation Median
A A 12,5000 8 4.02072 12,9032
B 10,5991 35 5,83230 12,9032
C 9,3842 11 7.41999 65,4516
Total 10,6332 54 5,83265 9.6774
B A 28274 8 1,90237 2,3810
B 1,8937 35 1,91589 1,1905
G 2,1645 11 2,11745 2,3810
Total 2,1520 54 1,84014 2,3810
c A 3.8136 8 4.41515 25424
B 1,4820 35 1,81540 1,47086
c 1,5408 1 2,06954 1,6948
Total 1,8384 54 2,48759 1,6949
Total A 56,3803 24 562699 4 8233
B 4,6916 105 5,57306 2,3810
c 4.3632 33 5,74549 2.3810
Total 4 8749 162 561780 3,0835

Effectiveness of the individuals in relation to the study groups (LiveNet/SC-F)

Categories Exp_Class Mean N Std. Deviation Median
not used A 7.3566 9 6,11633 5,0847
B 4,3391 54 5,58553 1,6949
G 4,9050 18 5.24970 3.4808
Total 4,8001 81 578577 2,3810
used A 5,7946 18 5.44615 3.5714
B 5.0648 51 5.58074 3.3898]
C 3.7129 15 521477 1.6949
Total 4.8498 81 5,48936 3.2258
Total A §.3803 24 562699 4,9233
B 4.6918 105 5,57306 2.3810
c 4,3632 33 5,74549 2,3810
Total 4,8749 162 561790 3,0835

Table 8.15.: Individual effectiveness - LiveNet/SC-F

97

On viewing the box plots it can be clearly seen that experience increases the effectiveness.
Unfortunately the allocation to a certain study group involving the help of scenario categories
did not produce better results.

Exp_Class Exp_Class

[WA
30,00 Ee 30,00 Ee
Oc Oc

20,004 20,004

10,009 10,009

Effectiveness of the individuals [%]
Effectiveness of the individuals [%]

o

oo T T oo T
A B 3] not used used

Scenario classification Study groups
Figure 8.17.: Impact of experience on the effectiveness for the LiveNet-System/SC-F (Indi-
vidual level)

Moving on to the expert-based scoring system shows more or less the same picture. Still well
experienced participants achieved the best results. And again providing (change) scenario
categories has no impact on the effectiveness (p-value 0,615). The box plots provide a better
oversight.

As expected, the well experienced individuals achieved a higher effectiveness on applying an
expert ranking system. However, somehow all participants gained more efficiency. Perhaps
this is a result of the fact that the experts had ignored some scenarios because they had been
not usable.

Wiki

Regarding the Wiki-System, while using the frequency-based ranking system, the descriptive
data is similar to the LiveNet-System. Again the more experienced an individual was the more
effective he worked.

In terms of class A scenarios surprisingly experienced participants achieved nearly the same
results than well experienced ones. Regarding the median, they are even slightly better. But
overall the picture is the same as for the LiveNet-System. Unfortunately the scenario cate-
gories still did not influence the effectiveness. A p-value of 0,189 affirms this statement.

Again testing experience score in relation to effectiveness scored in both cases (SC-F and SC-
E) < 0,001. Like for the LiveNet-System experience does influence the effectiveness of the

98

Exp_Class Exp_Class

2 ma Ha
50,00 Es 50,00 Es
Oe Bec

40,00 40,00

30,00 30,00

20,00 20,00

Effectiveness of the individuals [%]
Effectiveness of the individuals [%]

Scenario classification Study groups
Figure 8.18.: Impact of experience on the effectiveness for the LiveNet-System/SC-E (Indi-
vidual level)

individuals.

The box plots visualize the findings. The similarity to the LiveNet-System can be seen easily.
Remarkable is the box plot showing the effectiveness between the two study groups. Both, the
treatment and the control group, achieved very close results. This indicates that the (change)
categories did not affect the individuals.

Switching to the expert-based ranking system does not change the big picture. Again a p-value
of 0,455 states no impact of giving scenario categories to the individuals. Very astonishing is
the fact that all medians for class B scenarios are very much the same. No explanation for this
phenomenon can be given.

Exp_Class Exp_Class
ma Ha
40,00 Hs 40,00 HE
Hc dc

30,00 30,00

20,00 20,00

Effectiveness of the individuals [%]
Effectiveness of the individuals [%]

10,00

1 00

10,00

Scenario classification Study groups
Figure 8.19.: Impact of experience on the effectiveness for the Wiki-System/SC-F (Individual
level)

99

Effectiveness of the individuals in relation to scenario score (LiveNet!SC-E)

Scen Class Exp Class Mean N Std. Deviation Median
A A 236111 8 10,70693 19.4444
B 15,8730 35 7,33606 16.6667
C 15,6566 1 11.068049 13.8889]
Total 16.9753 54 8,97538 16.6667
B A 4,0365 8 3.45201 3,6458
B 24702 35 1.82332 2.0833
C 2,6515 11 2.52434 2.0833
Total 2,7392 54 2,28304 2,0833
c A 3.0405 8 3.36871 2,7027
B 2.1907 35 213119 2.7027
c 22113 11 3,15608 ,0000
Total 2,3208 54 2,52661 2,7027
Total A 10,2294 24 11,64351 4.,6875
B 6.8447 105 7.83113 3,1250
o 6,8308 33 9,13508 3.1250
Total 7.3451 162 8,77633 3.1250
Effectiveness of the individuals in relation to the study groups (LiveNet/SC-E)
Catagories Exp Class Mean) N Std. Deviation Median |
not used A 12,6814 9 12.42716 8.3333]
B 6,0790 54 7.38667 2,7027
C 8.4157 18 11,16452 4.6875
Total 7.3319 81 9.08967 27027
used A 8,7581 15 11,32660 3.1250
B 7.6554 51 B,27158 3,1250
c 4.9487 15 5,68858 2.7027
Total 7.3583 81 8,50813 3,1250
Total A 10,2294 24 11.64351 4.6875
B 6.8447 105 7.83113 3,1250
& 6.8398 33 9,13506 3,1250
Total 7.3431 162 8 77833 3,1250

Table 8.16.: Individual effectiveness - LiveNet/SC-E

Viewing the box plots does not provide any further answers to this. Contrarily all means and
standard deviations are different. Probably the scenario ranking list for the Wiki-System is
rather likewise to the frequency-based list.

However, analyzing the systems combined the picture is blurred. Well experienced partici-
pants worked more effectively on the LiveNet-System. The statement is supported by a p-value
of 0,042 testing the overall effectiveness depending on the overall experience score. Remark-
able is the fact that for experienced and less experienced individuals the effectiveness is closer
between both systems. Astonishingly, testing the influence of experience within the systems,
the p-values change to 0,149 for the LiveNet-System and 0,601 for the Wiki-System.

Applying a p-test shows that differences between the systems can be expected (p-value:
0,038). This might be the answer to the changing t-test results above. The gain or loss in
effectiveness cannot be explained by the experience of the individuals alone, the systems play
a certain role too.

100

Effectiveness of the individuals in relation to scenario score (Wiki/SC-F)

Scen_Class Exp_Class Mean N Std. Deviation Median
A A 12,8205 T 8.63206 10,2564
B 11,4630 34 5.09841 11,5385
C 10,0910 T 551132 7.6823
Total 11,3555 52 5,67350 10,2564
B A 1,3505 7 1.46987 1,4706
B 1.7734 34 1.65031 1,4706
c 24637 11 3.32184 1.4706
Total 1,8625 52 2.07348 1,4706
Cc A 2,3256 T 1,89883 2,3256
B 1.9436 34 1.55815 1,4289
c 1,7970 1 1.50388 2,3256
Total 1,8640 52 1.56934 2,0102
Total A 5,4989 21 7.23832 29412
B 5,0600 102 5,65729 2,7526
C 4,7839 33 5.31471 2,9412
Total 5.0807 156 5,72349 28412
Effectiveness of the individuals in relation to the study groups {Wiki/SC-F)
Categories Exp_Class Mean N Std. Deviation Median
not used A 6.7567 12 5.63668 2,9485
B 53161 48 5.88884 2,3256
c 4,5479 15 5,04643 2.9412
Total 5,3930 5 6.23708 2,3256
used A 3.8218 8 4,25159 29412
B 4,8323 54 5.29043 3,4884
c 4,9808 18 5.66628 2.6334
Total 4,7530 g1 5,22362 3,4884
Total A 5,4989 21 7.23832 2.9412
B 5.0800 102 5,65729 27528
c 4,7839 33 5,31471 29412
Total 5,0607 156 572349 2,9412

Table 8.17.: Individual effectiveness - Wiki/SC-F

Comparison to the original study

Assuming that the individuals were much more familiar with the Wiki-System, it seems that
experience still does have a relevant impact on the effectiveness of the individuals. But the
support of change scenario categories does not. This is contrary to the original study where
the (change) scenario categories did influence the individuals.

But, as mentioned, experience seems to have some impact on the effectiveness of the individu-

als (during a brainstorming session). The findings of the original study concerning this matter
have been not replicable.

101

Effectiveness of the individuals in relation to scenario score (Wiki/SC-E)

Scen_Class Exp_Class Mean N Std. Deviation Median
A A 11,0204 7 4,48588 85714
B 10,2521 34 5.12636 85714
c 9.3434 11 5,29218 8.5714
Total 10,1633 52 5,01251 85714
B A 3.2857 7 3.03942 2,0000
B 2.7966 34 1,88642 2,0000
Cc 2.7348 11 257035 2,0000
Total 2,8494 52 217157 2,0000
e A 1.9048 7 1,53348 2,2222
B 1,9749 34 1,71373 22222
c 2,2659 11 1,72741 22222
Total 2,0270 52 1.66681 22222
Total A 5,4036 21 514175 4,0000
B 5.0079 102 4,97086 3,0000
c 4,7814 33 4,74536 27778
Total 5,0132 156 4,91868 3,0000
Effectiveness of the individuals in relation to the study groups (Wiki/SC-E)
Categories Exp_Class Mean N Std. Deviation Median
not used A 6.6997 12 5.95065 47222
B 4,9688 48 5,03728 3,0000
c 4,3392 156 4,26844 2,7027
Total 5,1198 5 5.04388 3,0000
used A 3.6755 8 3,29673 2,2222
B 5,0426 54 4,95819 3,0000
c 5,1499 18 5,20258 3,611
Total 4,9146 81 4,82923 3,0000
Total A 54036 21 514175 4,0000
B 5.0079 102 4,97086 3,0000
(o} 4,7814 33 4, 74536 27778
Total 5.0132 156 4,91868 3,0000

Table 8.18.: Individual effectiveness - Wiki/SC-E

20,00

15,00

10,00

Effectiveness of the individuals [%]

5,004

Exp_Class

Wa
Es 20,00

Oc

15,00

10,00

Effectiveness of the individuals [%]

5,00

v}

-
B

Scenario classification

oo

T
nat used

Study groups

T
used

Exp_Class
Ha
Hs
Oc

Figure 8.20.: Impact of experience on the effectiveness for the Wiki-System/SC-E (Individual

102

level)

8.2.4. Comparison of scenario scoring and expert scoring

Now, as figures for the frequency-based ranking system and the expert-based ranking system
are similar the question is whether it is meaningful in an industrial context to charge (external)
experts for scenario ranking, or not.

As a first step, the frequency oriented and the expert oriented techniques are compared with
regard to their tasks of assigning scenarios to a specific category. “Similar Classification”
comprises all the scenarios which are classified equally as the same or similar in both tech-
niques. For the LiveNet-System 161 scenarios and for the Wiki-System 170 scenario could
have been compared. The reason was that only scenarios which were in both ranking lists
were usable for comparison.

LiveNet

About 43 % of all scenarios have been ranked similar in both ranking approaches. “Closely
Matched” summarizes all the scenarios with only minor differences within their classification.
Basically this involves the cases A-B, B-C and vice versa. Here, 53 % have been collected.
The variable “Different” counts those scenarios which are rated completely differently (A-C
and C-A). Only 4 % of all the scenarios fit this category.

a0 85 60%
&0

53%

50%
70 |

60 |- 40%

50 |-

30%

a0 -

30 0%

Change in Categorization [No.]
Change in Categorization [%]

20
s 10% FT3
= Il 0% |

Similar Classification Closely Matched Different Similar Classification Closely Matched DGifferent

Figure 8.21.: Comparison of SC-F and SC-E for the LiveNet-System

10
0

Wiki

Contrary to the LiveNet-System “Similar Classified” scenarios are most common category
with 49 %. “Closely Matched” ones are second with 45% but are still very close to the top.
The group “Different” scenarios is the lowest, with a rating equally to the LiveNet-System.

103

100

g

- a9%

g
&

80 74
70 - —

&
&

50 5 —
2
30

w
&
&

20%

Change in Categorization [No.]
Change in Categorization [%]

| . .
g —F I
a 0%

Similar Classification Closely Matched Different Similar Classification Oosely Matched Cifferent

Figure 8.22.: Comparison of SC-F and SC-E for the Wiki-System

-
=}
®

Both Systems

Thus the findings of both systems are very close to each other stating that overall, the partic-
ipants classified the scenarios similar to the experts. Hence, this suggests that a frequency-
based prioritization can substitute an expert rating.

Comparison to the original study

Like in the original study the figures state that the individuals ranked the scenarios similar
compared to experts. Getting back to the industrial context it can be stated, that it is not
worth to hire expensive experts for scenario classification - if the individuals developing the
scenarios are selected thoroughly.

8.3. Does increasing the team size help to improve the
effectiveness of scenario development?

Two heads are better than one. That teams find more scenarios than individuals has been
proven above. But in industrial projects the cost are often a key factor. So the efficiency of
such teams is important.

Individual brainstorming offers the advantage that everyone can think without any interrup-
tion or influence. On the other hand, serious disadvantages have to be considered. Several
important aspects are missing: The broader experience of team (involvement of more brains),
avoiding of mistakes and overlapping scenarios or different points of views (e.g. of different
stakeholders) etc.

According to the findings so far teams perform especially well regarding change scenarios of
higher quality. Therefore only class A and class B scenarios are considered for measurement.

104

Theoretically, teams should perform better than individuals. Nevertheless, this will most likely
not be a linear growth. Moreover it is expected to see some kind of turning point where there
will be only slightly better results for every growth in team size.

Descriptive Data

As expected, every new team member improves the effectiveness of the scenario brainstorm-
ing (theoretically). The highest gain in effectiveness is achieved by adding a second team
member. Increasing the team size more and more lowers the growth rate of a productive out-
put. Nevertheless, the improvement in the effectiveness of the scenario brainstorming remains
still significant. The findings hold true for both systems as well as for the treatment and control
groups within the system.

Mean Teamsize 1 2 3 4 5 [7
TG, Class A 10,63% 15,06% 25,98% 31,86% 37,01% 41,49% 45,60%
LiviNat CG, Class A 10,62% 19,60% 27,22% 33,74% 39,36% 44,65% 48,91%
TG, Class B 2,36% 4,71% 7,03% 9,34% 11,63% 13,81% 16,02%
CG, Class B 2,41% 4,79% 7.14% 9,45% 11,73% 13,86% 16,08%
TG, Class A 13,02% 23,58% 32,44% 40,07% 46,76% 52,28% 57,72%
Wiki CG, Class A 15,48% 27,80% 37,54% 46,54% 54,00% 60,889&? 66,65%
TG, Class B 2,46% 4,40% 6,55% 8,67% 10,75% 15,45% 17,67%
CG, Class B 2,22% 4.86% 7,16% 5,40% 11,56% 13,45% 15,51%
Std.Dev. Teamsize 1 2 3 4 5 6 7
TG, Class A 5,36% 6,62% 7,25% 7,66% 7,88% 8,14% 8,22%
LiveNgt CG, Class A 6,57% 7,75% 8,14% B.17% 2,03% 7.63% 747%
TG, Class B 1,81% 2,45% 2,91% 3,27% 3,56% 3,74% 3,90%
CG, Class B 2,03% 2,73% 3,23% 3.61% 3,85% 4,10% 4,259%
TG, Class A 6,49% 7,78% 8,38% 8,66% 8,77% 8,63% 8,65%
Wiki CG, Class A 7,63% 8,71% 5,11% 8,26% 5,28% 5,13% 5,14%
TG, Class B 3,24% 4,38% 5,20% 5,83% 6,32% 7,16% 7,25%
CG, Class 8 1,74% 2,31% 2,70% 2,50% 3,23% 3,63% 3,53%

Table 8.19.: Impact of team size on brainstorming effectiveness - Descriptive Data

Along with the shrinking of the growth rate, the standard deviation increases when the team
size is enlarged. Hence, the larger the team size, the more certain are the calculations. The
relation between both figures is not constant meaning that the standard deviation gets less
important with every increase of the team size. It is important to add that the calculations for
the teams with 6 and 7 team members are based on samples as the data set had become too
large for calculations with desktop database programs (here MS-Access).

105

LiveNet

Interpreting the diagrams for several mean values and standard deviations, the similarity be-
tween the treatment and the control group is salient. While the growth rate of the mean value
for class A scenarios flattens during increasing the team size, almost no decrease for class B
scenarios is noticeable. The curves for the treatment group and the control group regarding
class B scenarios are so close that they are overlaying.

However, the growth rate of the standard deviation decreases more at the beginning and levels
off more and more after the team size has been further increased. Notice that the curves for
the treatment and the control group for class B are nearly exately the same.

Impact of Team-Size on Brainstorming Effectiveness - LiveNet
(Mean)

60,00%

50,00%

40,00%

——T7G Class A

30,00%
——CG Class A
TG Class B
20,00% / ——CGClass B
10,00% //

0,00%

Effectiveness of Scenario Brainstorming (3}

1 2 3 4 3 & 7

Team Size

Figure 8.23.: Impact of team size on brainstorming effectiveness - LiveNet (mean)

Wiki

The big picture is more or less about the same for the Wiki-System. Again for class B scenar-
10s, the mean values are very close to each other and the growth rate shows only very small
decreases. But the standard deviations of the treatment group in case of class B scenarios are
higher than those of the control group.

This is largely due to the varying group sizes. There were only 25 individuals in the treatment
group entailing higher standard errors.

106

Impact of Team-Size on Brainstorming Effectiveness - LiveNet
(Std. Dev.)

9,00%

8,00%

e / /’\

o)
E
5 600%
£ /
B
2 500%
2 ——TG Class A
5
]
‘g 4.00% ——CG Class A
5 //__,____.——- ——TGClass B
»
2 _—
g 3,00% = ——CG Class B
] "
T e
% 2,00%

1,00%

0,00%

1 2 3 4 5 6 7
Team Size

Figure 8.24.: Impact of team size on brainstorming effectiveness - LiveNet (standard devia-

tion)
Impact of Team-Size on Brainstorming Effectiveness - Wiki
{Mean)
50,00%
70,00%

e /

50,00% /

40,00% ——TG Class A
// ——CGClass A

30,00% // ——TG Class B

——CGClass B

Effective ness of Scenario Brainstorming (%)

20,00% // _',—“‘-ﬂ_—:-_-—.__—_?-ﬂ

10,00%

0,00%

=
r
w
-
wn
@
-

Team Size

Figure 8.25.: Impact of team size on brainstorming effectiveness - Wiki (mean)

107

Impact of Team-Size on Brainstorming Effectiveness - Wiki
(std. Dewv.)

10,00%

9,00%

8,00%

7,00%

6,00%

5.00% ——TGClass A

——CG Class A

b - TG Class B

——CGClass B
3,00%

Effectiveness of Scenario Brainstorming (38)

2,00%

1,00%

0,00%

1 2 3 4 5 6 7

Team Size

Figure 8.26.: Impact of team size on brainstorming effectiveness - Wiki (standard deviation)

Conclusion

According to the results, teams with 2 or 3 teammates seem to be most economic and effective
supporting the findings of the original study. Furthermore, larger teams continue to make
sense since the rate of effectiveness keeps increasing. The question is the economic value.
How much costs are produced by a team meeting in relation to the scenarios found. This
involves the problem of how many scenarios must be found. No general answer can be given
as the decisions have to be made during the actual software project.

Comparison to the original study
The results affirm the statements of the original study. In fact both findings are very similar.

Adding members to the team leads always to a gain in effectiveness. But on exceeding a team
size of three, this gain is diminishing more faster.

108

9. Discussion and interpreting the
results

So far all data sets, figures, calculations and values have been discussed. Well, what major
findings can be concluded from them? In short, the major ones are that the support of (change)
scenario categories is quite unimportant. Real teams are best to avoid less-important scenarios
but the team members may be rivaling. Experts do not necessarily do a better job and the
optimal team size seems to be three. In the follow up, these various points are considered in
detail.

9.1. Individual performance

First, the focus is on the individual sessions. Analyzing the figures again, it seems that the
support with (change) scenario categories did not have any influence on the resulting outcome.
Furthermore, the system used has not helped or hindered the participants to create (high)
quality scenarios. The rather large gap in terms of found scenarios between the original study
and this replication is conspicuous. Unfortunately, no good explanation can be given, why
fewer scenarios were created this time. The hypothesis HI.1, stating that the provision of
software change categories will not improve the quality of scenario profiles developed for
software architecture evaluation at an individual level, cannot be rejected.

9.2. Real team performance

Similar conclusions apply to the real teams. Those who were given the (change) scenario
categories did not produce significantly different results. Additionally, the allocation to a
certain system did not affect the quantity/quality of the output of the real teams. Unfortunately
real teams loose scenarios compared to individuals working on their own.

However, preferring real teams to individual brainstorming has a big advantage. This advan-
tage is also present when comparing real to nominal teams. They are optimal in eliminating or

109

avoiding less-important (also unimportant) scenarios. Again the hypothesis H/.2, stating the
same as H1.1 but considering real teams, cannot be rejected.

9.3. Nominal team performance

Nominal teams cannot be evaluated just in isolation. They have to be compared with real
teams. In their virtual environment the nominal teams performed better than the real teams.
Contrarily to the individuals and the real teams, the support of (change) scenario categories
and the allocation to one of the systems seem to have some impact on the performance over-
all. But, in terms of the LiveNet-System standalone, no impact of scenario categories was
measurable.

But the optimal virtual solutions impressively showed the amount of discussion effort and/or
rivalry between the real team members. Not only did the nominal teams produce more sce-
narios. Comparing the gains and losses of both, the real teams lost more Class A than class B
scenarios. Not only did they lose in terms of quantity but also in terms of quality.

The hypothesis HI.3 can be (carefully) rejected. Nominal teams who are given software
change categories do perform slightly better. But the data and p-values state that also the
system influences the results. Further research activities is necessary in this area.

9.4. Impact of reference profiles and experience

Using reference profiles shows similar results when comparing frequency based and expert
based rankings. The individuals performed similarly regardless of the system or the study
grouping. A group of IT-experienced individuals assesses the quality of scenarios as well as
IT-experts.

At any rate, it seems that individuals with above-average experience tend to find more critical
scenarios. But the margins of the figures are very slight. Nevertheless, also the effectiveness
of well experienced individuals is slightly higher. Yet again, the support of (change) scenario
categories and the allocation to a system do not exercise any significant influence.

Therefore the hypothesis H2.1 can be rejected. Experience does improve the performance and
the effectiveness.

110

9.5. Scenario and expert scoring

Expert and frequency related scoring/ranking can be viewed in a more economic way. A
review of the deviations between the different scenario classes shows again that the frequency
ranking is very similar as to the one of the experts. Therefore, especially when real teams in
combination with individual sessions come into play, no external experts have to necessarily
be used in an industrial environment. Of course the involved stakeholders must have certain
skills, knowledge and education. It is assumed that the people in charge of software projects
are carefully considering this.

Yet, one important fact should be pointed out. The experts rated already found scenarios af-
terwards. It would be an interesting comparison if the experts tried to find and rate scenarios
themselves. Perhaps then the two scenario lists would be more different or not even compara-
ble anymore. Nevertheless, the hypothesis H2.2 cannot be rejected. The number of identified
critical scenarios is similar for expert ranked and frequency related scores.

9.6. Team size effects

What would be the effect if the team size is smaller or larger? How do such changes influence
effectiveness and is there an optimal team size? At the beginning, the curve depicting effec-
tiveness rises strongly but increasingly levels off when adding more and more team members.
As soon as the (team) size of a limited population increases, this is the mathematically logical
consequence. If the nominal team size were at its maximum, i.e. all participating individuals,
then the effectiveness would be 100 percent and the standard deviation zero. Similar findings
are true for the standard deviation. But the curve does not level off evenly; it decreases more
when a certain team size has been exceeded.

Similar to the original study, it can be stated, that the optimal economic team size is around 2 to
3 team members. If the team size increases further the effectiveness to be gained is shrinking.
Of course, this statement is offered without taking into account any further variables like
costs per additional team member and benefits of gained (critical) scenarios. Therefore the
hypothesis H3.1 can be rejected. If the team size is enlarged by additional team members the
number of identified scenarios rises too.

111

9.7. Reasons for discrepancies of the results

On reviewing and comparing the results of both the original and the study replication, devia-
tions have obviously occurred. Stating that one of them is correct is rather hazardous. In fact,
it would be the right approach to explore why differences possibly happened and to question
what factors might have influenced and affected the results.

Replications often involve the problem of compatibility with the original study and its con-
ditions and environment including their constraints. Contrary results do not always entail
rejection of established findings. Rather replications often get results under various condi-
tions by exploring variables and factors which have a significant influence on the results and
therefore also on the evaluated technique, procedure or others.

This chapter deals with possible problem areas pertaining to such factors and variables. Re-
search in I'T-science (see above in this work) and the evaluation of the experience and feedback
questionnaires are used to find for possible hints.

9.7.1. Type of study/replication

As described in the chapter 5 “Replications” this study replication can more or less be accepted
as a “literal” or “exact” replication. The work of (Lung et al.) states that in I'T-science that
kind of replication type has some disadvantages, especially because of the involvement of
human subjects. Variability between the original study and replications as well as between
replications themselves is inevitable. The variety of changed conditions and changes in the
environment is large. It can be concluded that different results may not nullity those of the
original study, as several factors could be affecting the replication. But nevertheless, they
provide further insight about the topic which must be considered.

9.7.2. Study design

The fact that the treatment group in the first run of the experiment was acting as the control
group in the second run was probably leading to learning effects. As the change categories,
unlike within the original study, did not have any influence on the performances, these effects
might have occurred. This would diminish the information value of this replication.

112

9.7.3. Timetable

Time is a fundamental aspect in relation to productivity as more results in less time using the
same input often means less cost per defined unit. Unfortunately, a lack of this resource can
result in a diminished output. Human beings perform negatively under stress so that both the
quantity and quality of their work suffers.

In the section about study scheduling (see section 7.1.2 “Study schedule”) it was already
pointed out that the individual brainstorming session had to be extended due to time prob-
lems. The individuals were asked in the feedback questionnaire whether they had enough
time to complete their tasks or not. Possible answers were “zero” respectively yes, and “one”
respectively no.

M Yes

H No

Figure 9.1.: Answer distribution to question: Did you have enough time for scenario brain-
storming?

According to the figure above the majority stated having had time. But this is just slightly
more than half of the participants. Even with a time extension of 15 minutes, 44 percent of the
individuals still did not have enough time. Thus can be assumed that the quantity and/or the
quality of the results of a large number of participants is below their normal standard.

9.7.4. Documentation

Corresponding to recent papers in IT-science (Shull et. al, Vegas et al), providing replica-
tor with exhaustive documentations is a key issue for enabling sufficient replications. There
should be included an exact description of the experiment, study processes, descriptions, re-
sults, interpretation, etc. in such a “lab package”.

The package about the original contained a lot of information, including design details, process
guidelines, the used software systems, the original results, and more. Unfortunately, this doc-

113

umentation provided no explanation or commentary about the original findings. Furthermore,
several analysis approaches were only mentioned in papers and had to be reconstructed.

Compared to recent I'T-studies, the specific package of documentation was probably of good
quality and contained substantial material. Nevertheless, important parts were lacking.

9.7.5. Collaboration

In conformity with the literature (Vegas), the cooperation between the researchers and the
replicators can be described as “occasional”. During the design and planning phases of the
replication, only limited coordination and teamwork took place. During the actual perfor-
mance of the replication, some meetings and advice as well as support during the execution
were given. Due to the required efforts (distance, time, workload ...) hardly any collaboration
besides email or a similar communication channel would have been possible.

Despite these factors, there might have been more adjustments between the two studies pos-
sible. It is hard to say whether factors adulterating the results could have been avoided or
eliminated.

9.7.6. Participants

This is probably the factor differing most widely to the original study. By contrast, during this
experiment more less- experienced individuals were involved. On average, the individuals in
the original study shared at least a similar educational level and had gained more experience
from industrial work. Additionally they received two lectures of 2 hours, dedicated exactly
to the experiment.[17, p.3] Furthermore, there were entry-barriers in the form of a minimum
exam-success to join the research experiment. [17, p.3] It can therefore be conjectured that
these participants may have been better prepared.

9.7.7. Sample size

Compared to the original study the number of participating individuals is almost double. A
small sample size often leaves room for errors when compared to the whole or a larger subset
of the population considered.[61] It is important to mention that not only the size but also the
variety of the population should be reflected by the sample.

114

Due to the data set available, it cannot be established whether the sample size caused errors
to happen and, if that was the case, which results were affected more. Nevertheless, this issue
must be considered.

9.7.8. Cultural context

Due to the findings of (Lung), this involves several “problem areas”.[67] The most important
factor is probably the aspect of the language. The original study was held in English and
the whole study materials were written in this language as well. Since the location was in a
country whose mother tongue was actually English, this was warranted and surely the most
efficient way.

On average Austrian students do have (or should have) competitive skills in English, of course.
It is safe to say that most of the individuals participating in the replication would have been
more productive if they could have used their mother tongue. Furthermore, some of individ-
uals did not have a German speaking background (e.g. family background) or were exchange
students. Especially during the individual brainstorming sessions quite some problems arose.
A few students really had problems understanding the study materials and recognizing what
their tasks were. One major obstacle was the use of lots of rarely used expressions and spe-
cific vocabulary. Recalling the average self-estimate of the individuals, it showed that most of
them did not have very good let alone excellent language skills [see section 7.3.3 “Language
skills™].

Categorization of the language skills of the individuals revealed some gaps in knowledge.
Together with the fact that many participants suffered under time stress it is reasonable to
assume that these circumstances diminished the quantity and quality of the results. According
to the questionnaires, 26 percent did not follow or only barely followed the guidelines. Only
17 percent executed the tasks strictly according to the instructions.

359 - 33%
30%
25%
25% -
a, y

200 17% 17%
15%
10% - 8%
5%

1%
0% - —— '

0 1 2 3 4 5

Figure 9.2.: Answer set to the question: Did you follow the instructions?

115

Moreover, about 25 percent marked the study instructions as not or barely helpful and only
13 percent found them very helpful. Unfortunately, almost none of the participants made any
further comments. Therefore it can be assumed that, along with other factors, language skills
were problematic and a decisive element.

40% -
34%

I]
5

4

35%
30% -

259%
25%
20% -
15% 12%
10% - 2%
5%
0 2 2 3

Figure 9.3.: Answer set to the question: Did find the instructions helpful to you?

9.7.9. Knowledge base

As already pointed out, the participants were ranked behind those of the original study partic-
ularly in terms of working experience. Accordingly, their knowledge of software architectures
as well as of evaluation techniques might also be less distinctive. Taking these two factors into
account, this has a possible impact on the performance of the individuals.

Another difference between the individual participants of the original experiment and the study
replication is the educational and/or university background. Enrollment restrictions and (con-
siderably) university fees in the Anglo-American states may have inducted a number of people
to participate in the study, but also because they were interested either in the topic or they
wanted to accumulate extra credit points. For sure, this is quite a vague theory but some minor
influence may be given.

9.7.10. Summary

It cannot be measured, not even estimated if and to what extent all of the mentioned issues
had an impact on the results. According to the sources in I'T-science considered here, there is
evidence that they do have at some small impact. Some of the relations and their consequences
seem reasonable, of course. Yet, it cannot be proven that in this specific replication they led
to any effects. It may be beneficial for further research work to pay more attention to specific

116

cultural issues. Whereby the shortage of resources barely allows to spend efforts and money
to solve this matter. However, translating the study materials or at least the instructions for the
tasks could have a positive impact on the performance of the participants, especially if they do
not have a certain level of experience.

117

10. Conclusion

Replication work is essential in science.[21, 22] It is important that calculations and studies
are repeated, results and findings are compared and that, in general, scientific research work
is evaluated. Performing a replication to an already existing study is quite difficult. Many
constraints and factors must be considered, often forcing the replicators to make adoptions.
Therefore the comparability of the results is sometimes limited.

Unfortunately, some findings of this study replication question the knowledge gained by the
original study. Again the data set was collected during an empiric experiment which was
designed very similar to its predecessor (see chapter 8.1 “Experiment design”). But more
participants joined the experiment and two separate systems were used. The researchers were
put into the position to be able to perform two separate experiment runs. This improved the
data set and made the information more valuable.

This thesis presents the results of a repeated empirical study. One major topic was to gain
further knowledge about individual brainstorming and team meeting effects. Further it aimed
at assessing the impact of the chosen approach for the scenario finding process of a software
architecture evaluation (top-down and bottom-up). Either software categories were used to
guide the individuals respectively the teams, or not. In order to get more insight into the topic,
real teams were also compared to nominal counterparts. The results showed that teams lose
scenarios, unfortunately also critical ones, compared to individuals. But they also sorted out
all less-important scenarios.

The suggestion of the original study, to use an architecture evaluation process without a meet-
ing in order to maximize effectiveness of scenario development, is still valid. Also the sug-
gestion to introduce new approaches in order to keep the scenario gains while avoiding any
losses - especially of high-quality scenarios keeps relevant.[20, 19] The findings regarding the
usage of scenario categories are contrarily. No statistical impact of using scenario categories
for scenario finding processes has been found. Therefore, the effort to define and chose such
categories is questioned. Further research work is urgently required.

Due to the original study as well as to prior research work, the impact of (individual) expe-
rience on the results of design reviews was measured.[6, 10] The idea behind this research
topic is still the same: The presence of wrong people during review sessions is a major prob-
lem with conventional designs of review approaches. But it is claimed to involve stakeholders
actively. The original study postulated that they should have as much experience possible in

118

order to successfully conduct software architecture evaluation including the development of
high-quality scenarios. The findings there supported this statement and were supported too by
the ones of this replication.

Like in the original study, the scenario brainstorming effectiveness was measured to achieve
comparability between the scenario classes. Again the rate of effectiveness is best in terms of
critical scenarios regardless of the experience. But in contrast to the original study, the expe-
rience had some impact on the effectiveness. Thus it is suggested again for future empirical
studies to consider participants with more variety of backgrounds (e.g., different architectural
backgrounds, usage-oriented rather than technical backgrounds). Considering the different
approaches and the individual experience the opposite of the original study was found. There
is no statistical evidence that providing change categories helped or hindered individuals re-
gardless of their experience. Probably, the number and the variety of the participants were too
small. Further research work is required to answer that.

Another hypothesis made in the original study was that the experience of teams (expressed
by the size of the real or nominal team) probably leads, based on individual brainstorming
activities, to additional scenarios. The benefits of an increased team size as well as its cost
are important factors in software architecture evaluating.[20] The findings of this replication
support the statements of the original study. Also nominal teams were used for calculations
this time. Larger teams found more scenarios and more critical scenarios. And the optimal
team size in economic terms is around 3 team members. But for critical software projects it is
probably advisable to apply evaluations with more team members in order to get a large rate of
effectiveness. Considering larger teams it might be meaningful to have a diverse background
of experience. Perhaps more and better scenarios can be found that way. But as mentioned in
the original study, further research work is necessary to evaluate that recommendation.

This work showed the problems of replication work in science. Not infrequently, it is im-
possible to exactly repeat an empiric study. Therefore any adoptions or modifications must
be carefully considered. Nevertheless, more data was gathered delivering more insight into
the topic of scenario creating processes and scenario-based software architecture evaluating.
Also, if not all findings were replicable, new and important questions have been made. The
cultural context, learning effects and different systems can probably lead to different results.
It seems meaningful not only to do more research but to concentrate, respectively isolate, on
certain variables in order to check their influence in detail.

Future work

Besides or additionally the thoughts, conclusions and suggestions mentioned above, following
pursuing research work might be worth to consider specifically. The impact of the evaluation
approach (using predefined scenario categories or not) has to be tested more carefully. Both
results - of the original study and the study replication - are contrary. But the design of the

119

replication probably caused learning effects which diminished the value of the findings.

Along with that the advantages or disadvantages of real teams compared to individuals have
to be investigated more specifically. Teams find more scenarios but lose many and important
scenarios. The question is whether team evaluation or individual brainstorming is to favor in
terms of effectiveness and efficiency.

Finally the team size effectiveness has to be considered especially in terms of economic as-
pects. Basically the point of interest is how much a certain team size costs compared to its
effectiveness and efficiency. This is important to know in order to convince industrials to adopt
the research suggestions.

120

Bibliography

[1] Open System Lab Pervasive Technology Labs at Indiana University. Extreme program-
ming, 2005. Available from: http://www.osl.iu.edu/~lums/swc/www/xp.
html [cited 08.10.2009].

[2] Sommerville I. Software Engineering. Addison-Wesley, 2001.
[3] IBM. Rational unified process, 2009. Available from: http://www.ibm.com/

developerworks/rational/library/jun05/norlund/norlundfig2.
gif [cited 08.10.2009].

[4] Thomas M. Usecasemap, 2009. Available from: http://www.
softwarepractice.org/mediawiki/images/1/1b/M2UCM1.png [cited
08.10.2009].

[5] Michael Fagan. Design and code inspections to reduce errors in program development.
pages 575-607, 2002.

[6] Winkler D. Biffl S., Ali Babar M. Impact of experience and team size on the quality of
scenarios for architecture evaluation. Proceedings of the 12th international conference
on evaluation and assessment in software engineering, 2008. p. 1 - 10.

[7] Lars Lundberg, Jan Bosch, Daniel Hggander, and Per olof Bengtsson. Quality attributes
in software architecture design. In Proceedings of the IASTED 3rd International Con-
ference on Software Engineering and Applications, pages 353-362, 1999.

[8] Starke G. Effektive Software-Architekturen: ein praktischer Leitfaden. Hanser, Miinchen,
2008.

[9] Richard N. Taylor and Andre van der Hoek. Software design and architecture the once
and future focus of software engineering. In FOSE ’07: 2007 Future of Software
Engineering, pages 226-243, Washington, DC, USA, 2007. IEEE Computer Society.
doi:http://dx.doi.org/10.1109/FOSE.2007.21.

[10] Linda M. Northrop Paul C. Clements. Software architecture: An executive overview.

XIII

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

X1V

Technical report, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, Pennsylvania, 1996.

Department of Commerce’s National Institute of Standards and Technology. Software
errors cost U.S. economy $59.5 billion annually, 2002. Available from: http://www.
nist.gov/public_affairs/releases/n02-10.htm [cited 08.10.2009].

John C. Knight. Focusing software education on engineering. SIGSOFT Softw.
Eng. Notes, 30(2):3-5, 2005. doi:http://doi.acm.org/10.1145/1050849.
1050852.

Hoang Pham and Xuemei Zhang. A software cost model with warranty and risk costs.
IEEE Trans. Comput., 48(1):71-75, 1999. doi:http://dx.doi.org/10.1109/
12.743412.

Lloyd G. Williams and Connie U. Smith. PasaSM: a method for the performance as-
sessment of software architectures. In WOSP ’02: Proceedings of the 3rd international
workshop on Software and performance, pages 179-189, New York, NY, USA, 2002.
ACM. doi:http://doi.acm.org/10.1145/584369.584397.

Rick Kazman, Len Bass, Gregory Abowd, and Mike Webb. Analyzing the properties of
user interface software falsch? Technical report, Pittsburgh, PA, USA, 1993.

Rick Kazman, S. Jeromy Carriere, and Steven G. Woods. Toward a discipline of
scenario-based architectural engineering. Ann. Softw. Eng., 9(1-4):5-33, 2000. doi:
http://dx.doi.org/10.1023/A:1018964405965.

Dietmar Winkler, Stefan Biffl, and Muhammad Ali Babar. Eliciting better quality ar-
chitecture evaluation scenarios: A controlled experiment on top-down vs. bottom-up. In
ESEM °08: Proceedings of the Second ACM-IEEE international symposium on Empiri-
cal software engineering and measurement, pages 348-350, New York, NY, USA, 2008.
ACM. doi:http://doi.acm.org/10.1145/1414004.1414078.

Gyuhyun Kwon, Dong Han Ham, and Wan Chul Yoon. Evaluation of software usability
using scenarios organized by abstraction structure. In ECCE ’07: Proceedings of the
14th European conference on Cognitive ergonomics, pages 19-22, New York, NY, USA,
2007. ACM. doi:http://doi.acm.org/10.1145/1362550.1362557.

Dietmar Winkler, Stefan Biffl, and Muhammad Ali Babar. An empirical investigation of
scenarios gained and lost in architecture evaluation meetings. In ESEM ’08: Proceedings
of the Second ACM-IEEE international symposium on Empirical software engineering
and measurement, pages 348-350, New York, NY, USA, 2008. ACM. doi:http:
//doi.acm.org/10.1145/1414004.1414078.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Dietmar Winkler, Stefan Biffl, and Muhammad Ali Babar. An empirical investigation of
scenarios gained and lost in architecture evaluation meetings. In ESEM ’08: Proceedings
of the Second ACM-IEEE international symposium on Empirical software engineering
and measurement, pages 348-350, New York, NY, USA, 2008. ACM. doi:http:
//doi.acm.org/10.1145/1414004.1414078.

J. Briderl. Replikation in der sozialwissenschaften, 2008. Available from:
http://www.sowi.uni-mannheim.de/lehrstuehle/lesas/studium/
hauptstudium.pdf.

B. D. McCullough and H. D. Vinod. Verifying the solution from a nonlin-
ear solver: A case study: Reply. American Economic Review, 94(1):391-396,
March 2004. Available from: http://ideas.repec.org/a/aea/aecrev/
v94y2004i1p391-396.html.

Cat Kutay and Muhammad Ali Babar. Teaching three quality assurance tech-
niques in tandem - lessons learned. Quality Software, International Conference
on, 0:307-312, 2005. doi:http://doi.ieeecomputersociety.org/10.
1109/QSIC.2005.62.

Bass L. Clements P. Kazman R., Abowd G. Scenario-based analysis of software architec-
ture. Software, IEEE, 1995. Volume: 13, Issue: 6 On page(s): 47-55 ISSN: 0740-7459.

Klein M. Weinstock C. Barbacci M., Longstaff T. Quality attributes. Technical report,
Carnegie Mellon University, Pennsylvania, USA, 1995.

PCMag-The independent guide to technology. Definition of: software architectur,
2008. Available from: http://www.pcmag.com/encyclopedia_term/0,
2542, t=software+architecture%&i=51662, 00.asp [cited 06.01.2009].

Mayr H. Projekt Engineering. Carl Hanser Verlag, Leipzig, 2001.

Tortora G. Ambriola V. Advances in Software Engineering and Knowledge Engineering.
World Scientific Pub Co, London, 1993.

Kazman R. Bass L., Clements P. Software Architecture in Practice. Addison-Wesley,
Amsterdam, 2003.

Soni D. Hofmeister C., Nord R. Applied Software Architecture: A Practical Guide for
Software Designers. Addison-Wesley, Amsterdam, 1999.

Dumke R. FEine Einfiihrung fiir Informatiker und Ingenieure: Systeme Erfahrungen,
Methoden, Tools. Vieweg & Sohn, Wiesbaden, 2001.

XV

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

XVI

Koreimann D. Grundlagen dr Software-Entwicklung. Oldenburg Verlag, Miinchen,
2000.

PerOlof Bengtsson, Nico Lassing, Jan Bosch, and Hans van Vliet. Architecture-level
modifiability analysis (alma). J. Syst. Softw., 69(1-2):129-147, 2004. doi:http:
//dx.doi.org/10.1016/50164-1212(03)00080-3.

Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software archi-
tecture. SIGSOFT Softw. Eng. Notes, 17(4):40-52, 1992. doi:http://doi.acm.
org/10.1145/141874.141884.

Keller W. Software engineering fiir grof3e informationssysteme. Vorlesungsunterla-
gen. Available from: http://www.schmidp.com/public/segbis07/ (01la)
Organisatorische%$20Einfuehrung.pdf.

IEEE. Ieee standard 1471-2000, 2007. Available from: http://ieeexplore.
ieee.org/ISOL/standardstoc. jsp?punumber=4278470.

Van Vliet H. Bosch J. Lassing N., Bengtsson P. Experiences with alma: Architecture-
level modifability analysis. The Journals of Systems and Software Volume 61, 2002.

Mussbacher G. Amyot D., Mansurov N. Understanding existing software with use case

map scenarios. In Telecommunications and beyond: The Broader Applicability of SDL
and MSC, pages 124-140, 2007.

Mussbacher G. Amyot D. Introduction to use case maps, 2001. Available from: www .
itu.int/itudoc/itu-t/coml7/urn/urnp5_pp7.ppt [cited 08.10.2009].

Amyot D. UCM quick tutorial version 1.0, 1999. Available from: http://jucmnav.
softwareengineering.ca [cited 08.10.2009].

Thaller G. Software-Qualitit. VDE Verlag, Berlin, 2000.

Biffi S. Qualititssicherung. Script, 2004. Available from: gse.ifs.tuwien.ac.
at/courses/skriptum/.../05P_QS_WID_20040204.pdf.

CEFE-CAD/CAM Entwicklungsgesellschaft Arbeitsgruppe 19 Wendt D. Klassische
fehler in der software-entwicklung. Firmeninterner Artikel, 1995.

Bosch J. Bengtsson P. An experiment on creating scenario profiles for software change.

Annals of Software Engineering, 2000. pp. 59-78;.

Obbink H. Ionita M, Hammer D. Scenario-based software architecture evaluation

[406]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

methods: An overview. Available from: http://en.wikipedia.org/wiki/
Scenario [cited 15.01.2009].

Van Vliet H. De Bruin H. Scenario-Based Generation and Evaluation of Software Ar-
chitectures, pages 128—-139. Springer Berlin/Heidelberg, 2008.

Business Dictionary. Definition of scenario, 2009. Available from: http:
//www.businessdictionary.com/definition/scenario.html [cited

28.07.2009].

Klein M. Carriere J. Kazman R., Barbacci M. Experience with performing architecture
tradeoff analysis. In Proceedings of the International Conference on Software Engineer-
ing, New York: ACM Press, pages 54—63, 1999.

D. L. Parnas and D. M. Weiss. Active design reviews: principles and prac-
tices. J. Syst. Softw., 7(4):259-265, 1987. doi:http://dx.doi.org/10.1016/
0164-1212(87)90025-2.

Kazman R. Klein M. Clements, P. Evaluating software architectures: methods and case
studies. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

Dietmar Winkler, Michael Halling, and Stefan Biffl. Investigating the effect of expert
ranking of use cases for design inspection. In EUROMICRO ’04: Proceedings of the
30th EUROMICRO Conference, pages 362-371, Washington, DC, USA, 2004. IEEE
Computer Society. doi:http://dx.doi.org/10.1109/EUROMICRO.2004.
49.

Parag C. Pendharkar and James A. Rodger. The relationship between software develop-
ment team size and software development cost. Commun. ACM, 52(1):141-144, 2009.
doi:http://doi.acm.org/10.1145/1435417.1435449.

Adam Porter, Harvey Siy, Audris Mockus, and Lawrence Votta. Understanding the
sources of variation in software inspections. ACM Trans. Softw. Eng. Methodol., 7(1):41—
79, 1998. doi:http://doi.acm.org/10.1145/268411.268421.

Lawrence G. Votta, Jr. Does every inspection need a meeting? In SIGSOFT ’93: Pro-
ceedings of the 1st ACM SIGSOFT symposium on Foundations of software engineering,
pages 107-114, New York, NY, USA, 1993. ACM. doi:http://doi.acm.org/
10.1145/256428.167070.

Lesley Pek Wee Land, Chris Sauer, and Ross Jeffery. Validating the defect detection
performance advantage of group designs for software reviews: report of a laboratory ex-
periment using program code. In ESEC '97/FSE-5: Proceedings of the 6th European

XVII

SOFTWARE ENGINEERING conference held jointly with the 5th ACM SIGSOFT inter-
national symposium on Foundations of software engineering, pages 294-309, New York,
NY, USA, 1997. Springer-Verlag New York, Inc. doi:http://doi.acm.org/10.
1145/267895.267917.

[56] Chris Sauer, D. Ross Jeffery, Lesley Land, and Philip Yetton. The effectiveness of
software development technical reviews: A behaviorally motivated program of re-
search. IEEE Transactions on Software Engineering, 26(1):1-14, 2000. doi:http:
//doi.ieeecomputersociety.org/10.1109/32.825763.

[57] Adam A. Porter and Philip M. Johnson. Assessing software review meetings: Results of
a comparative analysis of two experimental studies. /IEEE Trans. Softw. Eng., 23(3):129—
145,1997. doi:http://dx.doi.org/10.1109/32.585501.

[58] Steven D. Schafersman. An introduction to science, 1994. Available from: http:
//www.freeinquiry.com/intro-to-sci.html.

[59] Hamermesh D. Replication in economics. Technical report, National bureau of economic
research, 2007. Available from: http://www.nber.org/papers/wl13026.
pdf?new_window=1.

[60] Forrest J. Shull, Jeffrey C. Carver, Sira Vegas, and Natalia Juristo. The role of replica-
tions in empirical software engineering. Empirical Softw. Engg., 13(2):211-218, 2008.
doi:http://dx.doi.org/10.1007/s10664-008-9060-1.

[61] Victor Basili. The role of controlled experiments in software engineering research.
In Empirical Software Engineering Issues. Critical Assessment and Future Directions,
pages 33-37, Berlin, Heidelberg, Germany, 2007. Springer.

[62] Hussy W. Einzelfallforschung und zeitreihenanalyse. Script, 1999. Available
from: www.uni-koeln.de/phil-fak/fs-psych/serv_pro/skripte/
evalua/Grundlagen.rtf.

[63] F. Galton. Regression towards mediocrity in hereditary stature. The Journal of the
Anthropological Institute of Great Britain and Ireland, pages 246-263, 1886.

[64] Michael J. Barany. Science’s language problem, 2005. Available from:
http://www.businessweek.com/technology/content/mar2005/
tc20050317_4179.htm.

[65] Carmen Zannier, Grigori Melnik, and Frank Maurer. On the success of empirical stud-
ies in the international conference on software engineering. In ICSE ’06: Proceed-
ings of the 28th international conference on Software engineering, pages 341-350, New

XVIII

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

York, NY, USA, 2006. ACM. doi:http://doi.acm.org/10.1145/1134285.
1134333.

Sira Vegas, Natalia Juristo, Ana Moreno, Martin Solari, and Patricio Letelier. Analysis
of the influence of communication between researchers on experiment replication. In
ISESE °06: Proceedings of the 2006 ACM/IEEE international symposium on Empirical
software engineering, pages 28-37, New York, NY, USA, 2006. ACM. doi:http:
//doi.acm.org/10.1145/1159733.1159741.

Jonathan Lung, Jorge Aranda, Steve M. Easterbrook, and Gregory V. Wilson. On the
difficulty of replicating human subjects studies in software engineering. In ICSE ’08:
Proceedings of the 30th international conference on Software engineering, pages 191—
200, New York, NY, USA, 2008. ACM. doi:http://doi.acm.org/10.1145/
1368088.1368115.

Robert P. Biuk-Aghai and Igor T. Hawryszkiewycz. Analysis of virtual workspaces. In
DANTE ’99: Proceedings of the 1999 International Symposium on Database Applica-
tions in Non-Traditional Environments, page 325, Washington, DC, USA, 1999. IEEE
Computer Society.

Brewer Marilynn. Research design and issues of validity. Handbook of Research Meth-
ods in Social and Personality Psychology, 2000.

Martin Host, Bjorn Regnell, and Claes Wohlin. Using students as subjects—a com-
parative study ofstudents and professionals in lead-time impact assessment. Empiri-
cal Softw. Engg., 5(3):201-214, 2000. doi:http://dx.doi.org/10.1023/A:
1026586415054.

Helic D. Software architecure - quality attributes, 2008. Available from: http://
coronet.iicm.tugraz.at/sa/s5/sa_ga.html [cited 01.01.2009].

International Organization for Standadization. 1s09126, 2008. Available from: http:
//en.wikipedia.org/wiki/IS0O_9126 [cited 01.01.2009].

SoftwareArchitectures. Discipline » designing architecture » quality attributes,
2009. Available from: http://www.softwarearchitectures.com/go/
Discipline/DesigningArchitecture/QualityAttributes/tabid/
64/Default.aspx [cited 01.01.2009].

Uwe Z. Software-architektur fiir groe informationssysteme, 2005. Available from:
http://wi.wu-wien.ac.at/home/uzdun/teaching/oo/05-swarch.
pdf [cited 06.01.2009].

Ann M. Hickey, Douglas L. Dean, and Jr. Jay F. Nunamaker. Establishing a foundation

XIX

[76]

[77]

[78]

[79]

[80]

XX

for collaborative scenario elicitation. SIGMIS Database, 30(3-4):92—-110, 1999. doi:
http://doi.acm.orqg/10.1145/344241.344247.

Emmanuel Letier, Jeff Kramer, Jeff Magee, and Sebastian Uchitel. Monitoring and con-
trol in scenario-based requirements analysis. In ICSE ’05: Proceedings of the 27th in-
ternational conference on Software engineering, pages 382-391, New York, NY, USA,
2005. ACM. doi:http://doi.acm.org/10.1145/1062455.1062527.

Christian Seybold, Silvio Meier, and Martin Glinz. Scenario-driven modeling and val-
idation of requirements models. In SCESM ’06: Proceedings of the 2006 international
workshop on Scenarios and state machines: models, algorithms, and tools, pages 83—
89, New York, NY, USA, 2006. ACM. doi:http://doi.acm.org/10.1145/
1138953.11389609.

Neil Maiden and Suzanne Robertson. Developing use cases and scenarios in the re-
quirements process. In ICSE ’05: Proceedings of the 27th international conference on
Software engineering, pages 561-570, New York, NY, USA, 2005. ACM. doi:http:
//doi.acm.org/10.1145/1062455.1062555.

Hussy W. Replikationen. Script, 2005. Available from: www.psych-methoden.
uni-koceln.de/veranstaltungen/evaluation/einzelfall/
Einzelfall-09-Replikation-2005.pdf.

Rick Kazman, Len Bass, Mark Klein, Tony Lattanze, and Linda Northrop. A basis for
analyzing software architecture analysis methods. Software Quality Control, 13(4):329-
355, 2005. doi:http://dx.doi.org/10.1007/s11219-005-4250-1.

A. Appendix

XXI

800¢'G0" L€ -ONnss|

‘00p-aJreuonsany eousliadxy (9|4

juonnquiuod InoA 10} noA jyueyl

"SJUBWIWOD
[euonippe 1o} abed sy} Jo apisyoeq 8y} asn ases|d

IETERE] aoualadxs ou

IET[ERYE] aoualadxs ou

"sjuawinoop ubisap pue

‘goualladxe Juswabeuew 108loud InoA a1eWIST G

IETERNE] aoualiadxa ou

(010 ‘0Ol
‘adAys) Bumeyo ul eousiadxa JNoA ajewnsy ‘gl

T ERE] aoualiadxa ou

‘S|00}
aAlleloge|[0o Buisn ul 9ousLiadxe JnoA erewnsy /|

IETERE] aoualiadxa ou

‘soueu
-99s Jo Buidojansp ul @ousiadxa JNOA ajewnsy ‘91

EERG @oualadxe ou

"SMBIAB
2.n1081IyoJe YylIiM 9oudliadxa INoA alewisy ‘G|

IETERE] aoualiadxa ou

;uonoadsul / mainal
ubisag aJem)os ul aousliadxe JNoA arewnsy v

aoualiadxa ou

1U8||0X8

'S9SBN) 89S YIM aoualiadxa InoA ajewnsy i

sjuswalinbas yum oousiuadxas JNoA slewisy ‘g| e
ITETERYE] a@oualiadxa ou
vy & ¢ 0 ‘goualiadxa
jus||adxs 9oudLIadxa ou Bulesuibus asemyjos [eiousab Jnok slewnsy v
‘(Auedwoo e
ul Bujiom *6°9) JuswuoIIAUS [eUOISS8)04d B Ul
aouelnsse Aljenb ul 8ousliadxa InoA arewnsy | ¢ papuane
noA aney sasinod Buiwwelboid Auew moH ¢
14 € [1 0 v e 2 L 0
ITETERNE] aouaLiadxa ou 1ua|[20Xe aoualiadxa ou
‘oourInsse Alfenb ul aouaiadxe noA a1ewnsy 0} ¢, SIUAWINo0P ys]|
-Bug puelsiepun o1 Aljige JnoA ajel NnoA op MOH g
(sreak/syiuow uosiad ul) ul pajedioied Japuar) aby
noA ‘109lo.d 1sebue| ay) Jo 8zIs ay) SleWNST 6 ereq oydeibowag |
‘'spJemiaye
. sasodind uonenjeas Jo} paleyieb eiep |euos.ad |e
(sieak / syiuow SAOWAI [[IM S\ ‘SHOda) OLBUSDS INOA 0} SISMSUE
ul) s108foid Buuosuibus a1em)os [BUOISSD) INOA U] 01 PasN aq [|IM SWeU pue | INoA “Ajsnow
-04d ur Bunedioied ate noAk ‘swiy 8yl WNST '8 _fuoue poleall oq [IM SJOMSUB INOA 18Ul ‘S10N
v & ¢ 1+ 0 "allreuuonsanb siy) ul suonsanb ay) Jomsue ases|d
IE]EleE aoualiadxa ou
‘(Auedwoo e ul Bul w9 sunf pig sunp uoISSa
-yiom ““B°9) JUSWIUOIIAUS [BUOISS)04d B Ul 8Jem ‘Aepli4 ‘Repsan | 15898
-yjos Buidojaasp ul @ouaadxa JNoA ajewisy / ualsal [AA-SO [VAT
14 € 4] 0 QENZ
IETERE] aoualiadxa ou
‘(uoneuswa|dwi) Jusw dal-luspnis
-dojonsp a1em)jos ul aousladxa INoA ayewnsy ‘9

alleuolsanp asualiadx3y

uolen|BAg 8Inj08lyoly — aiieuuonsany) aousuadxg

(re'oe'uamny syiresby:dny) Buussuibug asemyos Alend

Quality Software Engineering (http://gse.ifs.tuwien.ac.at) LiveNet Requirements — Architecture Evaluation

Software Requirements Specifications for a collaborative tool to support
distributed software architecture evaluation process

A collaborative application to support the distributed software architecture (SA) evaluation process is
required. This web-based application will support synchronous (same-time, different places) and asyn-
chronous (different time- different places) activities for SA process. This collaborative application
shall provide an intuitive and user friendly environment to perform various activities (i.e., planning,
scenario development and prioritisation, identifying architectural approaches, documenting and anno-
tating design patterns, viewing architectural design, evaluating architectural design with respect to sce-
narios, interpreting results etc.) of SA evaluation process.

A member of SA evaluation team accesses the application using a web browser. Once successfully
connected to the application, a team member can perform a number of tasks according to his/her role in
the process. For example, evaluation team leader can plan the evaluation session by identifying various
participants and scheduling their diaries. He/she can also perform a number of activities to make sure
all the required documents and SA descriptions and required views will be available before the evalua-
tion starts. The evaluation participants may use the tool to access and study the artefacts assigned to
him/her. This application allows a user to add, remove, edit, or copy various artefacts during the proc-
ess. A user can use a web browser at his/her desktop computer to view and annotate an artefact as-
signed to him/her. All annotation is viewable by all participants. Participants may use various architec-
tural views to document and annotate architectural design decisions. Software architect may access
different patterns to show their use in the architecture. The evaluation team may use various evaluation
techniques, e.g. checklist-based, scenarios-based, questionnaire, prototyping, simulations etc. during
the evaluation sessions. It is quite useful if the technique to be used in the process and relevant support
material are available online. It is also quite handy for evaluation manager to find information about
the level of expertise, skills, and availability of various members of the organization who can be as-
signed the role of an evaluator.

A web-based tool to support generic collaborative activities has been developed. This collaborative
tool, LiveNet, has been implemented with the following features:

e A user can register with the system. Once registered, a user is assigned a portal to perform a
number of collaborative and knowledge management activities. For example, a user can create
a number of workspaces, one for each unique activity that needs to be performed, a number of
roles can be created and these roles can be assigned to various activities and individual partici-
pants of those activities can be placed in those groups for ease of privilege and security man-
agement.

e Once registered and assigned to a particular portal or workspace, a user can use a web browser
to access and view an online version of the documents prepared and uploaded to the work-
spaces.

e All the users have full editing privileges to any artefact assigned to the user. A user needs to se-
lect the desired artefact and click "edit" link to make changes to that artefact.

e A user can provide a brief description of the artefact created in a workspace. The system makes
this brief description available to all the users who can access that particular artefact.

e If this tool is used to support a particular activity of software development process, a large
number of documents can be made available to the members of the team by uploading those

File: LiveNet - Requirements.doc, Issue: 23.05.2008

Quality Software Engineering (http://gse.ifs.tuwien.ac.at) LiveNet Requirements — Architecture Evaluation

documents. For example, design diagrams, checklists to ensure the quality of the process, an
online version of any standards that must be complied with.

e A user can send text message to other members of the team on various issues of importance. A
user can also use discussion forum to discuss various issues and discussion forums can serve
like organisational memory to be accumulated over the life time of the project.

e A user can assign various artefacts to different team members.

e The system provides an online chat room that can be used for synchronous meetings, while dis-
cussion forum can be used for asynchronous meetings.

e A user can send an email to other members involved in the same activity.

® A user can invite new members to join a group or activity.

Now suppose that your organisation plans to use LiveNet regularly to support a distributed software
architecture evaluation process. To successfully support a distributed SA evaluation process, LiveNet
needs to provide a number of features to help various roles (such as evaluation team leader, evaluation
manager, evaluators, participants etc.) to perform various tasks. Try to think of the changes that would
be required in LiveNet in its current as well as next three years life. Specify those required changes in
terms of the change scenarios to characterise modifiability (using the skill you learned during training
sessions).

File: LiveNet - Requirements.doc, Issue: 23.05.2008

Quality Software Engineering (http://gse.ifs.tuwien.ac.at) LiveNet Categories — Architecture Evaluation

Software Requirements Specifications for a collaborative tool to support
distributed software architecture evaluation process

Change Categories

Change categories are expected to address possible occurring changes over the next period, e.g., over
the next three years. The system architecture and scenarios must consider these issues. Based on busi-
ness analysis, we identified 6 basic change categories.

Try to come up with at least one scenario for each of the following categories and refer to them in the
data capturing sheet.

1. User interface changes (UI)
2. Security policy changes (SP)
3. Performance changes (PC)
4. Communication channels and/or mechanism changes (CM)
5. Workflow features changes (WF)

6. Content management requirements changes (CM)

File: LiveNet - Change Categories.doc, Issue: 23.05.2008

Quality Software Engineering (http:/gse.ifs.tuwien.ac.at) Wiki Requirements — Architecture Evaluation

Software Requirements Specifications for Wiki System

Wiki is a web-based collaborative content management system (CMS). It provides an intuitive and user
friendly environment to create and organize various contents.

A user can access the Wiki system using a web browser. Once within the Wiki system environment, a
user can create new pages and edit existing pages on the fly. All the pages can be linked between each
other by using hyperlinks under a naming convention. This means a user can transverse between differ-
ent pages by just clicking on the appropriate link. Wiki system uses very simple and common text for-
matting rules to simplify the process of writing new pages and linking them to each other. The idea
behind the simple text formatting rules is to keep text editing task quite easy and intuitive.

The Wiki system is implemented on an open source framework, which provides some common content
management system services. A simple working prototype has been developed with the following fea-
tures:

e All the users have full editing privileges to any page they want to edit. A user can click "edit"
link on the desired page to change the text on that page using an editing form.

e Wiki system follows a naming convention for a page name. The naming convention is: capital-
ized words joined together. For example: APageName, SoftwareEngineering, IssuesOnDesign-
Quality etc.

e Wiki system formats and links the text content according to the simple structured text format-
ting rules.

e When the Wiki system finds a text content following its naming convention, it makes that text a
hyperlink for a target page. If the target page does not exist, a question mark is placed at the end
of the hyperlink to remind the user that this page needs to be created.

e Wiki system keeps the log of changes made in a page. This log can be displayed in unix diff
format.

e Users can subscribe to the page change through email.

e Wiki system allows the users to make certain changes in the environment through option setting
page. E.g. name, email, time zone etc.

Now imagine that you are a regular user of the Wiki system for managing and sharing your content
using the web-based system. Try to imagine the changes you would like to see in this system over the
next three years. Please document those possible changes in terms of the change scenarios (using the
skill you learned during training sessions).

However, please do NOT propose large functionality changes which are not in align with the basic
principles of the system.

File: Wiki - Requirements.doc, Issue: 23.05.2008

Quality Software Engineering (http://gse.ifs.tuwien.ac.at) Wiki Requirements — Architecture Evaluation

Screenshots of the Wiki-System

1. Front Page

|j TQMWikiFrontPage ‘

& subscribers

diead 2004-02-12 14.26:05 by adnin

:_|'||I K TOMWiki contents

| . FrontPage.

+ This is the front page
= AnotherWikiPage? named in wiki naming convention
v |f AnotherWikiPage? does not exist yet click the question mark to create it
v |f OneWikiPage exists, the name will be a fink and lead you to that page.
o This wiki has some very simple structured text rules
o Click the "edit” link at the right bottom to edit this page

o Click the page title to see a hierarchical relationship between pages

full simple minimal UserOntions RecentChanges
2. Editing Form
] TQiWiki editing FrontPage |

Editing FrontPage

(%

‘help edit

* This is the front page
* AnotherWikiPage named in wiki naming convention
* If AnotherWikiPage does not exist yet, click the question mark to create it.
If OnebikiPage exists, the name will be a link and lead you to that page.
¥ This wiki has some *very* simple **structured text rules**
® (lick the "edit” link at the right bottom to edit this page

* (lick the page title to see a hierarchical relationship between pages

Change FrontPage

File: Wiki - Requirements.doc,

Issue: 23.05.2008

Quality Software Engineering (http://gse.ifs.tuwien.ac.at) Wiki Requirements — Architecture Evaluation

3. Change History

D hittp:f fwaldhorn.c.QMFrontPage/diff (X

ful history | << previous edt | nextedt >» | [EIUM [0 page

?72changed:

(Hck the "edit" Tink at the right bottom to edit this page

4. User Option

|| ToMWikiUser0ptions %)

0-subscribers last edited 2004-02-11 14:27:11
TOMWiki contents
g.l i
]

= .UserQOptions

o Wiki

Set your site preferences below. You can also change your display mode by clicking the links at bottom-left.
User name; (identifies your edits in RecentChanges etc)
Email address: (saves time when subscribing)

Time zone: Your local time is [z04022¢004017 Gy +](localizes page modification times)

Show page hierarchy ? [ves +[(This wiki maintains a page hierarchy. You can use this or ignore it)

Set options | Forget options

full simple minimal UserOptions RecentChanges help edit

File: Wiki - Requirements.doc, Issue: 23.05.2008

Quality Software Engineering (http://gse.ifs.tuwien.ac.at) Wiki Change Categories — Architecture Evaluation

Software Requirements Specifications for Wiki System

Change Categories

Change categories are expected to address possible occurring changes over the next period, e.g., over
the next three years. The system architecture and scenarios must consider these issues. Based on busi-
ness analysis, we identified 6 basic change categories.

Try to come up with at least one scenario for each of the following categories and refer to them in the
data capturing sheet.

1. User interface changes (UI)
2. Security policy changes (SP)
3. Performance changes (PC)
4. Notification policy changes (NP)
5. Content editing rules changes (CE)
6. Meta data related changes (MD)

File: Wiki - Change Categories.doc, Issue: 23.05.2008

800¢°S0°E¢ -enss| ‘oop|enpiAlpu| - Buunide) ejeq 9|14

Solobajen oueuasg | pooyldyil | 9duenoduwy uonduosag-olLeuads ‘ON
"0)JUl }I} P|NOD OLIBUBDS SIY) AloBajed YoIym Ul UMOp 8)lIM :pasn | ON saluobajey o
:sobed 00} sbuojaqg oleuass siyy Alobo1ed ay) umop ajum :pasn saliobajeny o
xSol0ba)e) oLleUDIS »
:uoneing “Aixiun - 9 “Aley1 g ‘Aj@I| 1Sow *** 7 1INdJ0 0} OLIBUSDS BUj} JO POOYI[dYI| 8Y) Sjews (pooyl@yI] =
oWl oU uepodwi ssa| 9 ‘yuepodwl g ‘(jueniodwi AISA) [EO1IIO Y (0lIBUSOS By} Jo douelodwl 8y} a1ewns] :eouepodw] =
-ouilL pu3 (Moys)1 desay) oueusos paliuapl ay) Jo uonduosaq :uol3diLosap oLeUdIS =
‘oW YIS Jaquinu BuiobuQ = JaquinN :ON =
) :SOJON
pasn 1oN O] MmO w9 sunp ‘Aepuq [usysel [dweN
pssn | BNaAn [pig sunp ‘Aepsen) [NnA-so [al-uspnis
:,Sa1obajen oueuang uonesiddy juawubissy uoissag juawubissy 9sino) uoleoiuap|

| :9bed Bujwiolsulelg oLeuddg [enpIAIpuU|

uolenjeAg a4n10811yoly — Bulwioisulelg OLBUSOS [BNPIAIPU| (1e*oe’usmny’'sii'asby/:dny) Buliesuibug asemyjos Alllend

800¢°S0°E¢ -enss| ‘oop|enpiAlpu| - Buunide) ejeq 9|14

LSalobajen oueusdg | pooyleyi] | adsuenoduwy uonduosag-olieuass | 'oN

:abed :aweN :dl-juapnis Bulwiolsulelg olIBUSDG [ENPIAIPU|

uonenjeAd 84njo9}iyoly — Bulllioisulelg OLIeUSOS [enpIAIPU| (1e'oe"uBIMny'syI*asby/:dny) Buliesulbug asemyos Aljenp

8002'S0°€C :Onss|

‘oop*wies] - Buunyde) ejeq 9|4

Solobajen olleuadg | pooyldyi] | asueuodw uonduosag-oLeuadS "'ON
"0JUl 11} PINOY OLIBUaDS SIY} A1o6ajed Ydiym Ul UMop 8jlm :pasn | ON sauobajey o
:sabed 00} sbuojaq oueuads siy} Alobaied ayj umop ajlum :pasn saliobajey o
x.Souobaje) oLeuadg =
:uonelinqg “Ayiun -~ 9 “Ajoyj1 g ‘A|oyi| }sow *** v :NOJ0 O} OLIBUSDS BU} JO POOYIDXI| BY} djeWws :pooyl|dxI] =
oWl oU juepodwi ssa| 9 ‘yuepodwi g ‘(Juepodwi Al9A) [EO1ILD Y 0LBUSDS 8y} JO 9ouepodwl 8y} sjewiisy :9ouepodw] =
oLl pu3 (Hoys 11 desy) oueuads payiuap! ay) Jo uonduosaq :uol3didsap OLeUdIS =
‘oW Yers Jaquinu BuiobuQ = JaquinN :ON =
' 'SOJON
d¢4 [Moddnsjoo] [] pesN 10N [] pesn] MM 18NBAIT] uig sunp ‘Aepuq [] pig aunp ‘Aepsan)]
91y Bunesp :;,Souobaje) oueuasg uones|ddy jJuswubissy uoissag

ueyse] NA-SO [] 3|0y EEN :QluspniS | ¢ Jaquisy wea |
uejse] [] NA-SO [] 9|0y :aweN :gl-luepniS |z 4equispy wea |
ueysel] NA-SO [] 3|0y N ‘QluspnIS | | Jaquisy wea]

| :9bed Bunesy wea

uolnenjeAg ainyo8lIyoly —Bunssy wes |

(yeroe uamnysyi-asby/:dyy) Buussuibug atempos Ajlenp

800¢°S0°E¢ -enss| ‘oop wes] - Buunide) ejeq 9|14

Souobajen oueuasg | pooyldyil | 9sueuoduwy uonduosag-oleuads "ON

:(¢) aiyuspms :(2) aruepmsg (1) a1 uepms
:obed Bunesy wea

uonenjeA ainjoalyoly —bunssiy wes | (yeroe uamnysyi-asby/:dyy) Buussuibug atempos Ajlenp

800¢'G0" L€ ‘anss| ‘oop-Bulwiolsuielg [eNpIAIpU| YoBgPaa 9|14

S 14 € [I 0
juonnqguiuod unok 1oy nok yueyy ains Alop ainsun
Juoneuwnsa InoA yum noA ale jJuspiuod moH o8 c v ot z 1 o
. awin ayl Iv J9ASN
SJUSWIWOD | o6/ < |%G/-0G | %0G-GE | %SE-02 | %02-01| %0L-0

[euonippe 1o} abed siy} Jo apIsHoeq 8y} 8sn asesd|d ¢uonnoaxa ayl Bulinp poylaw paidde ay)
J0 (sauydpinB) suononiisul 8yl mojjoy noA pig ¢

"soleu
-90s payiuap! Jo [%] abejusoied ay) erewnsy 'qg

%SGL < |%SL-0G | %0G-G€ | %GE-0¢ | %02-0F| %0+-0

¢(semnuiw ui) pssu

-S9110081eD 0LIBUSDS INOYHIM PUNO) SABY PINOM noA pjnom awi} [UOIHIPPE Yonw moy ‘jou §| g

. ¢Anuapl noA pip soueuads Auew moH eg
NoA ‘Sol/eusds [BO)ID JO Jaquinu ay} arews3 ‘00| SOLIBUSOS JO JaqWINU [[BISAD 6

I 0
%SGL< |%GL-0S | %0S-GE | %GE-02 | %02-01| %01-0 s v & 2z 1 o D N D SOA
SOA ON ¢Bulwiols
L -ulelq olleuads Joj awl ybnous aney nok piq |
sa110681eD 0LIBUSIS INOYLIM PUNO} SABY £,2IMNy 8Y} U1 BUILLIO}S
pInom noA ‘solieusds Jo Jaquinu sy sjewnsy "qot _UIBJq OLIBUSOS JO] POUISW a1 8SN Nk PINOA. '8 spIEMIGLE
sosodind uoneneas 1o} paiayieb elep jeuosiad |e
, gy £ g v 0 s v e g b+ 0 aAOWaJ ||IM S\ ‘SH0da) OLIBUSIS INOA O} SIomsue
soA ‘Alsuuleq e 1e 10N Injosn A1ap\ InJ8sn 10N NOA 3ui| 0] pasn aq |IM aweu pue (| JNoA “Ajsnow
¢ Bulwioisurelq soLeusds ¢ SOLIBUOS -Auoue pajeall aq |M Siemsue InoA eyl ‘eloN
Jo} |nydjay sauobaled oleudds ay) puly noA pig eot Amuepi 0] poylew paidde ayj st njesn moH "2
salio0bha)jes onieuass paldde noA i ‘Ajlup 01 ‘alreuuonsenb siy} ul suonsenb sy} Jemsue ases|d
S 14 € 4 I 0
S v € 2 L 0 |njasn >_®> |njosn JO0N pasn 10N D pasn D mw_._omwwﬂo
ains Alop ainsun ¢ INJosN sI poyloW OLIeUddS
Juoneuwnsa InoA yum noA ale Juspiuod MoH 06 Bulwoisurelq oLBUSIS 8yl 1Byl Julyl nok og 9 MmO IEINET e I uoneoiddy
S v € 2 L 0 ylg aunp pJg aunp
%GL < |%SGL-0G | %0G-GE | %SGE-02 | %02-0+| %01-0 : Oy . O] uoIssa
ynowIQ odwis Aepu Aepsen S
, paidd A . uslse -
'SOLIBUBDS 20 (paljdae 8q 0} Ases poylaw syl puly noA pig g 1ss] [] NA-SO [VA1
-0 pauap! Jo [%] ebejusoled sy erewnsy ‘g ¢ ¥ £ 2z 1 0 alweN
SOA ON
. . . "JoaYsS SIY} JO SpISHOB] Y} UO JusLl ar-iuspms
¢MIUSPI NOA PIPp SOLBUSJS [EJN1IO AUBW MOH "B6 -onoidwi o) suonsebbns apinoid ases|d ‘jou
SOLIBUIS [EONIID JO JISqWINN 6 1] ¢NOA 01 |nydjay UdSQ SUOIONIISUI BYL BABH ¥ e e e |

uolen|BAg 81nj081IY2Jy — SJIBUUOIISBNY) YOBgPa3 [ENPIAIPU| (1e-oe°uaImny syiasby:diy) BuussuiBug aremyog Aljenp

800¢'G0" L€ -ONnss|

‘00p° 424 - bunesN-wes] Yoeqpesd 9|4

juonnqguuod unok 1oy nok yueyy

Bunssw wes) 80e4-0 | -9084 8y}
UO SJUBWIWOD [euONIPPE J0o} 8bked siy) 8sn ases|d

aAljeladoon

aAlfeluswnbIy

Bunsalou|

a|qeaa.by

Jueses|q

aAoaye Alop BAI108}}0 10N

¢Bunesw ay}
BuLinp uonREBOIUNWIWOD 8yl SBM BAII08JE MOH ‘0

poysies paysiresun

¢ Bunesw wea) s Aepoj Jo 8wWod
-INO UOISSNOSIP 8yl YIIM NOA aie palsies MOH ‘6

paysiies paysnesun

¢ Bunesw wea) s Aepoy
Ul UoISSNISIP 8yl Ylm nok ale paysies moH '8

paysiies paysnesun

9a1by AjBuons "

v € 4 b 0 aalbesip AiBuons " 0

¢ elouab
ur Bunsaw wes} ayl yim nok ale paysines moH “/

:SOLIBUSOS BUISSNOSIP 10} SloquiawW Wes) JNoA
YlIM pey NoA UOIIBSIDAUOD 8Y) 81I0SOp 8sed|d 2|

xajdwon gdwig
[ewJo4 [ewoyu|
Ase3 unoyIq
pooY peg
|[euosiad [leuosiaduw
vlelje|ltL]|o0

:wea) JnoA ul soeuads Bunelauasb o) pasn
noA ssaooid uonedIUNWWOD 8y} dles ased|d ||

¢ (semnuiw ui) pesu
NOA PINOM BLUI} [BUORIPPE YONW MOY ‘Jou §| €

I 0
[Jon [
¢bul
-lJosw wes} ay] Joj awi ybnous aAey noA piq ‘g

4 3 0

¢Bunssw sy oy
Joud mouy noA pip siequiaw-wes] Auew MOH |

‘'spiemialje
sasodind uonenjeas Jo} palayieb eiep |euosiad |e
dAOWAl |IM S\ "SHodas oueuads INOA 0} siemsue
INOA Mul| 01 pasn aq [|Im aweu pue | JnoA "Ajlsnow
-Auoue pejeals) aq [[IM SJOMSUE JNOA Jeyl ‘9loN

"alreuuonsanb siyy ul suonsenb ay) Jemsue ases|d

v e g + 0 saliobaje)
asn 10 oS :
SOA ON P oN [posn [oleuads
LUONELIDNS OLIBUSDS MmO 19NeAT [| uoneonddy
Joj [nydjay s1 Bunesw wea) e eyl yuiyi nok ogq 9 o
yig sunp pig aunp
v & z 1 0 ‘AeplH O ‘Aepsan | H uolsses
SoA N uslse| [] NA-SO [VAT
"199ys SIY} JO apIsyOBg 8y} UO Jusw
-onoidwi o) suonsebbns apinoid ases|d ‘jou al-weay
1] ¢NOA 01 |nydjay UdaQ SUOIONJISUI BYl BABH G
awepN
14 € 4 I 0
swin syl ||V 19ASN daj-iuspnis

guonnoaxa syl Buunp poyisw paidde ay}
J0 (sauldpinB) suononiisul ayl mojjoy noA pig v

(424) a4reuuollsanp Yoeqpasy wea|

uolien|BAg 8injosliyoly — 99B4-0}-80B- — BUlled|\ WES | 3Orqpas

(re'oe'uamny syiresby:dny) Buussuibug asemyos Alend

800¢'G0" L€ -ONnss|

‘oop|o0o] - mc_ﬁww_\/_-rc.mwl_.lv_omﬁu_bwwn_ 9|4

aAljeladoon v e z 1 o ¢(sanuiw ui) peaau
aAleuswnbiy InydioH Inydjay 10N NOA PINOM SUIl} [EUOIIPPE LoNW MOy 0 | g
Bunsalew| ¢ PunddwW By} Ul SOLBUSIS SSNISIP O} SBM |00} . 0
uoljeloge|joo 8y} aAaljeq nok op |nydiey MoH 0O} D ON D SOA
a|qesa.by 5
14 € 4 I 0 0 C_
ueses - :
} Id POUSIIES pousIESUN 190w wes} ay] Joj awi ybnous aAey noA piq ‘g
9a1by AjBuons " ¥
Vi€l e| L]0 sapesp AiBuons - 0 ¢Bunesw wes) s Aepoj Jo 8WOD 2 1 0
- -IN0 UOISSNISIP dYl YUM NOA dJe palsiies moH ‘6
:soueu
-90s BuIsSsnasIp 40} sidquidw wea)l JNoA yum v e oz 1 o 2 Buneaw siy} o}
pey NoA uollesIaAuO0d Sy] 9quUOSap 9sedld 1| polsies polsIESUN soud mouy oA pIp Siequiaw-wes] AUBW MOH ‘|
, Buesw wea) s Aepoy .
xa|dwo aidwi S . . spiemisye
| o IS Ul UOISSNOSIP BU} LM NOA oJe paysies mMOH g sasodind uonenjeas Jo} palayieb eiep |euosiad |e
[ew.o [ewIOfu] . e 2z 1 o OAOWAI [IM OAA “SH0dal oLeuSdS INOA 01 siamsue
Ase no INOA Mul| 01 pasn aq [|Im aweu pue | JnoA "Ajlsnow
E HnoLHd Pausties paystesun -Auoue pejeals) aq [[IM SJOMSUE JNOA Jeyl ‘9loN
poon) peg ¢ |esouab
[BUOSIOY ruosiadu| ur Bunsaw wes} ayl yim nok ale paysines moH “/ "alreuuonsanb siyy ul suonsenb ay) Jemsue ases|d
ylelzltlo v € e + 0 saliobaje)
pesnioN [] pesn [:
s9 o}
:wea} JnoA ul soueuads Bunelauab 1oy pasn A N OHeusIs
NnoA ssa204d uoneoIUNWWOS 8yl djel asea|d 'Sl ¢UONeldIS oleusds MM O IEINE I uoneoddy
Joj [nydjay s1 Bunesw wea) e eyl yuiyi nok ogq 9 o
o aunp pig aunp
v €& 2 1 0 : . uoIssag
anoaye Aiap SINEIERN o L o Aepu Aepsen
¢ Buneaw ay} : usisel [] NA-sO [VA1
BuunNp uoIEOIUNWWOD By} SBM BAII0BHS MOH ‘2l 1938ys sy} JO spIsxoe(q 8y} uo Jusw
-onoidwi o) suonsebbns apinoid ases|d ‘jou al-weay
e 2z 1 o 1] ¢NOA 01 |nydjay UdaQ SUOIONJISUI BYl BABH G
llom Kiap lom 10N s e s 1 o SwenN
¢Bunssw sy ui suedioned awin sy} I JanaN dj-luepnis
2]o0WaJ 8y} ylIm 1oeIajul NOA pINod [|8M MOH "} | 5
guonnoaxa syl Buunp poyisw paidde ay}
10 (sauldpinb) suononiisul syl mojjo} noA piq v (100}) aireuuonsanp yoeqpaa wesy

uolnenjeAg aJnjoalyaly — uoddnsjoo] — Bunesyy wes | yoeqpas

(re'oe'uamny syiresby:dny) Buussuibug asemyos Alend

800¢'G0" L€ -ONnss|

‘oop|o0o] - @c_ﬁww_\/_-rc.mw._.lv_omﬁuvoon_ 9|4

juonnquuod InoA 1o} noA jyueyl

‘Juswanoidwi Joy
suonsabbns pue Bunesw wes) pauoddng-j00] 8y}
uo sjuswwod [euolippe Joj abed siyl asn ases|d

SOA ON

;ain)
-nj 8y} ul 19NBAI 8yl |00l B Aldde noA pinop ‘91

SOA ON

¢ Punesw
-wea} 8y} Joj |nyjasn JBNSAIT puly nok pig ‘Gl

uolieneAg 8injosliyoly — uoddns|joo| — Bunesyy wes | yoeqpss

(re'oe'uamny syiresby:dny) Buussuibug asemyos Alend

800¢'G0" L€ -ONnss|

‘00pTYHIAQ dileuolsany [euld :9ji4

‘Bunesw aor}-01-808] B 0]
paJtedwoo Buieaw dnoib inoA uo pey |00}
SAIJRIOQE(|00 Byl Jeyl 10910 8yl aquoseq (e

‘(aareuuonsanb siy1 Jo apisyoeq
osje oas) soidoy Buimojo} ay; Buipsebas aous
-11edxa InoA Jo sjuswwoo awos apinoid ases|d

|00}
anieioge|[0o Buisn Juswabuelre painquisiq

‘Juswabue.le 80e}-0}-808) B

‘sjuswabuee yjoq

Juswoabuelle 8oe)-0]-808

|00} 8Al
-eJoge||0o ay} Buisn jusweabueiie panquisip e

1001 8AleIOqR(|02 B Buisn uswabuelle paingul
-SIp 10 90B}-0}-90B} B ‘soleuads Bunesauab o)
|| pjnom noA Bunasw jo adA} 1eym ‘lelenQ

‘Ul sjuswalinb
-8J |euolouUNj-uoU J0} soueuads Buidojensp ul

9 ||lom pawuopad dnoab InoA (984 NoA pIp ‘BIeAD ‘g

ON SOA

‘Juswoabuelle aoe}-0)-908) B

¢alqissod sy
3 AisnowAuoue Bunesw e Buunp senssi oAl
-Isuas uo uoluido JnoA a1ngLuUod 01 81| NoA oQ

‘S -eJoge||0o ay Buisn juswabuelle painquisip e

‘sjuswabueie yloq
'|o0} &A1

$JUBIDI}}D SS9

Jul sjusw
-alinbal |euonounj-uou Jojy soleudds Buidojen

saione Arenbe

-op ul ||om pawJopad noA |98} noA pip lelonD |

$1uIo111e alow

‘spJemis)je

s1 Bunesw
dnouf paseq |00} aABIOgE||00 B JBy)] |99} NOA
op ‘Bunsaw dnoib aoe}-01-908) Yum pasedwon

sasod.ind uonenjeas Jo} paleyieb eiep |euosiad |e
dA0OWal |IM S\ "SHodas oueuads INOA 0} siemsue
INOA Mul| 01 pasn aq [|Im aweu pue | JNoA "Ajlsnow

108})0 anebau oble

10840 annebau [lews

1091} ON

10848 aAnIsod [ews

10848 anyisod able

ON SOA

¢ Bunasw aoe}-0]-9908) By}
ul Se ||[om Se solreudds Bunelausb pue Buiwiols
-uleiq uo d)eJjudadU0I 0} 9|ge NoA a1om ‘soleu
-90s ajelouab 0] |00] aAlRIOgR||0D Buisn Sy

"(10944o annjebau B) sanssi ssNIsIp
0] 1JN21}JIp @Jow U punoj aAney Aew noA 1o (10840
anllisod e) Apoinb aiow senssi ssnosip 0} 9|qe
usaq aney Aew noA “BHe suoissnasip dnoib
InoA uo 109} annebau Jo aalsod Aue pey
[00]1 @ANeIOQR||00 8yl Buisn 1ey) |99} nok piq

Y _fuoue paleasl 8q |Im Sidmsue InoA eyl ‘8loN
"aJieuuonsanb siy1 ul suonsanb ayl Jamsue asea|d
pesnioN [] pesn [won_v.__ww—www
ot O B O] uosses
usisal [] nA-so [VA1

sweN

al-iuspnis

e alleuuolnsanp |eulq

uollen|BAg 8Inj08lIyoly — aJleuuonsany) [eul4

(re'oe'uamny syiresby:dny) Buussuibug asemyos Alend

800¢'G0" L€ ‘anss| ‘00p TIVHIAQ odieuonseny |euld 914

juonnqLiuod InoA 1o} noA jyueyl

£,9S10J9X8 SIy}
Buunp sjuswsalinbas jeuonounj-uou Ayoads
0] soueusds Buidojpasp ojiym pade) NnoA

¢ UOISSNOSIP 0LIBUBDS
lusioje passpuly/palel|ioe; jey) Bunsaw

S9NSSI }NoIHP Isow 3auy} sy} ase jeypy (@ painquisip ay} Jo sjoadse Aue syl alep (0
1001

aAlleloge|00 B AQq pauoddns juawabuel ¢ UOISSNOSIP OLIBUSDS

-Je Buneaw painquisip ay} JO SSaUBAIDB}0 oIo1e patapuly/palel|ioe} leyl bBunesw

pue Aouaioiye ay} anosdwi am ued moH (p 90e}-0]-998} 9y} Jo sjoadse Aue alayl aiopy (g

uolleNnjeAs ainjoa)iydly — a4reuuolsany [euld (1e-oe"uamny syrasby/:dny) Buleauibug asemyos Alend

