
Robust Self-organizing Pulse
Synchronization in Wireless

Sensor Networks

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Robert Leidenfrost

Matrikelnummer 0426381

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: Priv.-Doz. Dr. Wilfried Elmenreich

Wien, 09.11.2009
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

http://www.tuwien.ac.at

Robust Self-organizing Pulse Synchronization in Wireless
Sensor Networks∗

Robert Leidenfrost
09.11.2009

∗Supported by the Austrian Science Fund (FWF) project P18060N04.

Declaration

Robert Leidenfrost
Attemsgasse 5/1/207
1220 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
– einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle
als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift)

i

Abstract

Tremendous advance in technology requires and allows us to build complex architectures by
decomposing it into smaller manageable and loosely coupled components. The meaningful
exchange and comparison of observations among these components then requires a system
wide agreement on a common notion of time. This is, for example, an important issue in
the case fault tolerance is implemented by replication. Whereas many wired distributed sys-
tems provide enough capabilities in order to achieve agreement, Wireless Sensor Networks
demand much higher standards of the available energy resources and consequently necessi-
tate an energy-efficient communication protocol. This is usually achieved by synchronized
sleep-wakeup schedules. As a consequence, clock synchronization in complex distributed
systems is inevitable to provide composability, dependability, and temporal coordination.

This thesis presents a well-studied and simple fault-tolerant distributed clock synchro-
nization algorithm which was modified for the use in sensor networks and extended in order
to be self-stabilizing, i.e., independent of the initial configuration, all devices eventually be-
come synchronized. In other words, the presented approach combines the advantage of two
different synchronization algorithms. In detail, whereas the convergence to a synchronized
system state is ensured in the fault-free case, synchronicity is maintained even in the pres-
ence of at most f < n

5 Byzantine nodes. The algorithm also works in unstructured multi-hop
networks by exploiting the existence of redundant communication links. Several simulation
results with respect to different network topologies are presented and promise an improved
network-wide synchronization precision, an acceptable convergence time, energy efficiency
through a low message complexity, and robustness against different kinds of faults.

ii

Zusammenfassung

Die enormen Fortschritte verschiedenster Technologien erfordern und ermöglichen es, dass
komplizierte Architekturen in kleinere und lose gekoppelte Einheiten zerlegt werden, wel-
che überschaubarer und kontrollierbarer sind. Ein sinnvoller Austausch und Vergleich von
Beobachtungen unter diesen Einheiten erfordert die Übereinstimmung der lokalen Zeit al-
ler Einheiten mit einer systemweiten gemeinsamen Zeitbasis. Dies ist auch eine wichtige
Voraussetzung für die Implementierung von Fehlertoleranz durch Replikation und gilt ne-
ben verdrahteten verteilten Systeme ebenso für drahtlose Sensornetzwerke. Zusätzlich haben
Knoten innerhalb von drahtlosen Sensornetzwerken hohe Anforderungen an die effiziente
Nutzung von Ressourcen und benötigen folglich ein energieeffizientes Kommunikationspro-
tokoll. Dies wird für gewöhnlich durch synchronisierte Schlaf-Wach-Phasen erreicht. Als
Folge ist Uhrensynchronisation eine unabdingbare Notwendigkeit in nahezu allen verteilten
Systemen um Komponierbarkeit, Zuverlässigkeit und zeitliche Koordination zu erreichen.

Diese Arbeit basiert auf einen allgemein bekannten, fehlertoleranten, verteilten Uhren-
synchronisationsalgorithmus, welcher für die Anwendung in drahtlosen Sensornetzwerken
modifiziert und erweitert wurde. Der modifizierte Algorithmus verbindet die Vorteile zweier
unterschiedlicher Ansätze, sodass schlussendlich Selbststabilisierung in fehlerfreien Netz-
werken und eine hohe Synchronisationsgenauigkeit in fehlerbehaftete Netzwerken in der
Anwesenheit von maximal f < n

5 Byzantinische Knoten erreicht werden kann. Selbststabi-
lisierung im generellen Sinne beschreibt dabei die Eigenschaft eines Systems, sich selbst
aus einem beliebigem Ausgangszustand in einen definierten Endzustand, also die Synchro-
nisation aller Einheiten, zu versetzen. Der Algorithmus funktioniert weiters auch in unstruk-
turierten, zumindest (5 f + 1)-verbundenen, Multi-hop Netzwerken durch Ausnützung der
hohen Redundanz der Kommunikationsverbindungen. Verschiedenste Simulationsergebnis-
se in Bezug auf unterschiedliche Netzwerktopologien werden diskutiert und zeigen, dass
eine annehmbare Konvergenzzeit und eine hohe netzwerkweite Synchronisationsgenauig-
keit bei gleichzeitig niedriger Nachrichtenkomplexität und großen zeitlichen Verzögerungen
der Nachrichtenübertragungen erreicht werden kann.

iii

Acknowledgements

I am heartily thankful to my supervisor, Wilfried Elmenreich, who made this thesis possible.
His encouragement and support were very helpful in order to improve the quality of the
work. Further, I would like to thank Johannes Klinglmayer for his constructive comments
and feedback. Lastly, and most importantly, I wish to gratefully acknowledge my parents
and Iris for their support and understanding.

iv

Contents

Declaration i

Abstract ii

Zusammenfassung iii

Acknowledgements iv

Contents v

1 Introduction 1
1.1 Motivation . 3
1.2 Objectives . 5
1.3 Structure of the Thesis . 6

2 Fundamental Concepts 7
2.1 Distributed Systems . 8
2.2 Clocks, Time, and Clock Synchronization 15

3 System Model of WSNs 35
3.1 Communication Model . 36
3.2 Attacker Model . 39
3.3 Clock Model . 39
3.4 Problem Statement . 39

4 Related Work 41
4.1 Resilient Clock Synchronization . 42
4.2 Distributed Clock Synchronization . 54
4.3 Self-stabilizing Pulse Synchronization . 56
4.4 Digital Clock Synchronization . 57

5 Design Approach 58
5.1 Reachback Firefly Algorithm . 59
5.2 Improved Pulse Synchronization using RFA 61
5.3 Introducing Robustness and Fault Tolerance 68
5.4 Improvements in Single-hop Networks . 75
5.5 Discussion . 87

6 Evaluation by Simulation 89
6.1 Simulating the MAC Layer . 90
6.2 Evaluation Types . 93

v

CONTENTS vi

6.3 Evaluation Metrics . 94
6.4 Network Characterization . 96
6.5 General Simulation Parameters . 97
6.6 Simulating Single-hop Topologies . 97
6.7 Simulating Multi-hop Topologies . 107

7 Discussion 116

8 Conclusion 119
8.1 Fault-tolerant Clock Synchronization in Wireless Sensor Network (WSN)s . 119
8.2 Robust Self-organizing Synchronization 120
8.3 Performance Aspects . 121
8.4 Outlook . 122

A Acronyms I

B Bibliography III

C Moved Proofs XVII

D Simulation Results XX
D.1 Fault-free Single-hop System . XX
D.2 Coherent Single-hop System . XXVII
D.3 Fault-free Chain-structured Multi-hop System XXXIII
D.4 Fault-free Grouped Multi-hop System . XXXVI
D.5 Fault-free Regular Grid-structured Multi-hop System XXXIX
D.6 Fault-free Ring-structured Multi-hop System XLII
D.7 Fault-free Randomly-structured Multi-hop System XLV
D.8 Coherent Grouped Multi-hop System . XLVIII

CHAPTER 1
Introduction

Current research in wireless technology and the smaller feature size in Very Large Scale
Integration (VLSI) chips leads to the integration and interconnection of small, mostly
battery-powered, devices like mobile phones as well as simple low-cost sensor nodes.
Tremendous potential lies in wireless networking of smart transducers in harsh environments
where no external energy source and time reference is available. The general definition of
a WSN embossed by early research projects is a distributed, large-scale, ad-hoc, multi-hop,
unpartitioned network of largely homogeneous, tiny, resource-constrained, and mostly im-
mobile sensor nodes [RM04]. However, the requirements and characteristics of a WSN may
vary due to the wide range of applications today. Whereas the development was originally
motivated by the military domain, such networks have found their application in a variety
of other domains including but not restricted to environmental, industrial, medical, scien-
tific, and home networks. Several sample projects using WSNs and their classification with
respect to the design space can be found in [RM04]. One of the main reasons for the in-
creasing interest in such networks has been the technological advance in miniaturization of
Microelectromechanical Systems (MEMS) during the last decade. In [WLLP01], the authors
introduced the term of smart dust and discuss how a complete autonomous sensing, comput-
ing, and communication system could be packed into a cubic-millimeter mote. Although
such devices are not yet available on the market, many companies already build centimeter-
scale hardware.

The main advantage of this distributed sensing is that it allows a closer placement to
the phenomenon and, by means of data fusion, calculate a single measurement value from
the data of hundreds of sensor nodes resulting in a better Signal-to-noise Ratio (SNR) as
an individual sensor could provide [EGPS01]. This demonstrates that the basic opera-
tion in such networks is the efficient aggregation of the measured sensor data to usually
a single sink which executes a fusion algorithm to provide an accurate and reliable result
[PK00, YKT03, GM04]. In practice, hundreds of such sensor nodes are randomly scattered
in a usually inaccessible, dangerous, and possibly hostile environment of interest to reli-
ably monitor a certain physical phenomenon (e.g., temperature, humidity, sound, pressure,
seismic vibrations, motion, pollutants).

The importance of clock synchronization in this area can be shown by numerous exam-
ples: In [SML+04], a WSN is used to locate snipers and the trajectory of bullets by the
use of acoustic sensors. This is a typical sensor-sink based application where the sensors
are largely distributed forming a multi-hop ad-hoc network. By comparing the timestamped
events of the acoustic shock measured by each node, the sniper can be located with an ac-

1

CHAPTER 1. INTRODUCTION 2

curacy of about one meter. The time-stamping in this example necessitates that each sensor
is synchronized to a common notion of time which is provided by a clock synchronization
protocol. Other examples requiring the nodes to agree on a common notion of time are
the relative ordering of events received from different nodes as stated in [Lam78] or con-
figuring a beam-forming array or setting a Time Division Multiple Access (TDMA) radio
schedule [ZG04, HE04]. Furthermore, due to the limited power the nodes can harvest or
store and the fact that the devices generally must have a lifetime on the order of months to
years [RSPS02] without battery replacement, an energy efficient protocol has to be estab-
lished. To overcome this problem, several sophisticated energy scavenging techniques have
been developed. However, beside computation the communication is a key energy consumer.
In [PK00], the authors have shown that the energy cost transmitting 1Kbit of data at a dis-
tance of 100 meters is about 3 joules and equals the execution of 3 million instructions on a
general-purpose processor with 100 MIPS/W. According to [YHE04], the major sources of
energy waste are packet collisions, overhearing, control packet overhead, and idle listening.
Note that many Media Access Control (MAC)-protocols such as IEEE 802.11 spend more
than 50 percent on idle listening [YHE04]. For this reason, most existing protocols focus on
low duty-cycling, where the nodes try to reduce energy waste by synchronously switching on
the transceiver only if it is required [ACFP09]. Several other approaches have been proposed
to improve energy efficiency focusing mostly on clustering mechanisms, routing algorithms,
energy dissipation schemes, synchronized listen/sleep schedules. Likewise, many of these
techniques require some kind of synchronization among the nodes.

Intensive research over the last few decades have lead to wealth results about distributed
clock synchronization in wired networks. Several algorithms assume a combination of inter-
nal and external clock synchronization in order to achieve a time synchronization with high
accuracy. For instance, Network Time Protocol (NTP) [Mil91] is a well-established proto-
col in computer networks and achieves accuracies on the order of a few microseconds with
respect to real-time. Note that distributed synchronization algorithms generally require the
nodes to periodically acquire knowledge about the state of the global time counters of the
other nodes [Kop97]. This communication is usually done by exchanging messages among
the nodes. Such an approach is less suitable for designing a distributed synchronization al-
gorithm for WSNs which we have to stand for, because this dissipates a lot of bandwidth.
Furthermore, an external time reference like Global Positioning System (GPS) is broadly
not ubiquitous available in WSNs, because the field of application has in general no infras-
tructure providing such signals (e.g., indoors or underwater). Additionally, the high power
demand of these peripheral devices prohibits the use on low-cost sensor nodes with a small
and finite energy source. Last but not least, the complexity of NTP and the limited band-
width as well as the unstable network topology in wireless networks make the use beyond all
questions. Several other aspects why NTP is not the best choice are discussed in [ER03]. As
a result the nodes often implement internal software-based clock synchronization, because
this is cost-efficient and more appropriate. In detail, these types of algorithms are aimed at
achieving high clock precision with respect to all other clocks, but may strongly deviate with
respect to real-time. In contrast, time synchronization requires that the nodes additionally
approximate the real time.

Examples for fault-tolerant distributed internal clock synchronization algorithms in wired
point-to-point communication networks are Fault-tolerant Averaging (FTA) [KO87], Fault-
tolerant Midpoint (FTM) [LL84a], Differential Fault-tolerant Averaging (DFTA) [ND00],
Differential Fault-tolerant Midpoint (DFTM) [FC95], Fault-tolerant Daisy-chain clock syn-
chronization [Lön99], and so on. Note that most of these algorithms are based on a periodic
resynchronization where the processors exchange their clock values or perform remote clock
reading at the resynchronization points. This implies a high communication bandwidth.

CHAPTER 1. INTRODUCTION 3

However, the broadcast medium and the more complex challenges in wireless networks,
comprising up to several thousands of sensor nodes, makes the direct deployment of these
algorithms unsuitable. For instance, omission failures, unidirectional links and message col-
lisions can not completely be avoided. As an example, in [GKW+02], empirical studies have
shown that a dense WSN results in an increasing number of messages lost due to contention
loss. Furthermore, many wireless systems have high requirements on energy consumption,
fault tolerance, availability, scalability, graceful degradation, and dependability. This is much
more difficult to incorporate if the topology is created ad-hoc and, additionally, may change
over time. For this reason, WSNs often necessitate algorithms, which provide robustness
and some kind of self-configuration for clock synchronization and message routing in the
case of a changing topology.

1.1 Motivation

Clock synchronization is an important issue in WSNs as already mentioned above. Good
surveys on clock synchronization algorithms in wireless networks can be found in [ER03,
SY04, SBK05, Fai07, RLK+09]. Other interesting surveys regarding traditional resp. fault-
tolerant clock synchronization are stated in [Sch87, Cri89, SWL90, AP98]. However, most
of them do not discuss completely distributed internal clock synchronization algorithms
without the need for dedicated nodes. In contrast, many of them establish a master/slave
like synchronization. In other words, designing such a distributed algorithm for autonomous
WSNs, especially considering multi-hop ad-hoc networks, is an interesting and new chal-
lenge in this scientific domain. Above all, considering Byzantine failures which can behave
arbitrarily in an adversary manner is an additional important issue (for more on Byzantine
failures, see [LSP82]). Whereas many proposed algorithms already assume such a mali-
cious system model, they generally act on the assumption of initially synchronized clocks
and do not consider the case that the number of transient faults may exceed the maximum
number of tolerating faults. This may result in a corruption of the local and consequently
the global state of the nodes such that they never return to a consistent global state, even
if the network behaves coherently again. On this account, self-stabilizing clock synchro-
nization algorithms avoid this dilemma by not assuming initially synchronized nodes. In
detail, an algorithm is called self-stabilizing if it can tolerate transient faults in the sense
that if the transient faults leave the system in an arbitrary state and the system behaves co-
herently for a sufficiently long period of time, then the system converges back to a consis-
tent global state. An introduction and a short survey on self-stabilization can be found in
[Dij74] resp. [BS00, Sch93]. An extensive study was done by S. Dolev in [Dol00]. Re-
cently, Dolev et al. have investigated several algorithms which provide both self-stabilizing
digital clock synchronization and Byzantine tolerance based on a lock-step round execution
[ADG92, DW93, DW04, DD05, DDP06, HDD06, Hoc07, DH07b, BODH08]. Other impor-
tant work was done by Gouda et al. [GH90], Papatriantafilou et al. [PT94], and Malekpour
[Mal06]. These protocols can be classified into probabilistic and deterministic approaches.
A further characteristic is given by the number and type of faulty nodes.

Lock-step round execution in our case means that nodes execute in lock-step by regularly
receiving a common “pulse” in tight synchrony. The digital clock synchronization problem
was first studied by Even and Rajsbaum [ER90] and describes the problem how clocks even-
tually can operate in step in a synchronous system where all clocks have an identical initial
integer value, but starting at different time instants, such that as long as the nodes remain
correct, they will continue to hold the same value increased by one at each step [ADG92].
Note that the digital clock synchronization problem differs from the traditional clock syn-

CHAPTER 1. INTRODUCTION 4

chronization problem [Sch87, Cri89] in the following way that, in clock synchronization, a
synchronous system is not assumed. In detail, in the presence of bounded drift rates, the
clocks have to be maintained such that they never drift too far apart. However, digital clock
synchronization may be implemented on top of clock synchronization.

Alternatively, digital clock synchronization may also use pulse synchronization as an un-
derlying building block. However, whereas several pulse synchronization algorithms have
been proposed [DDP08, DD08, DH07a] providing mostly an optimal linear convergence
time with respect to [DHS84], all of them have a high message complexity or are too com-
plicated and assume a system model which is not appropriate for the use in WSNs. For
instance, both [DH07a] and [DD08] are created upon the execution of the SS BYZ AGREE
algorithm [DD06] each cycle. Since this algorithm has a message complexity of O(f · n2)
[DH07a], a node has to transmit more than one message per cycle. This is unacceptable in
a WSN, where the number of messages sent per cycle should be kept to a minimum due
to the energy efficiency. The only interesting work with respect to our system model is the
biologically inspired algorithm stated by Daliot et al. [DDP08], because therein, each node
transmits exactly one message per cycle. Although it has a convergence time of O(f) cycles,
this algorithm is more appropriate for the use in wireless networks. In other words, it is
better to have a longer convergence time than a high message complexity in each round.

Note that the first report regarding pulse synchronization in biological species was done
by J. Buck and E. Buck. in [BB76, Buc88] and deals with the synchronous flashing of
thousands of male fireflies observed in the Southeast Asia. Based on the observations, they
have devised two different synchronization models, namely the phase-advance and phase-
delay synchronization model. Independently, Peskin devised a mathematical model of the
oscillations of the neurons in the cardiac pacemaker and is known as the pulse-coupled
integrate-and-fire model [Pes75]. However, most important work was done by Mirollo
and Strogatz in [MS90, SS93], where they developed the general Pulse-coupled Biological
Oscillators (PCO) model, which corresponds to the phase-advance synchronization princi-
ple. Several other biological examples can be found in [SS93]. Note that with respect to
WSNs, the PCO model was already adapted by Wernerl-Allen et al. in [WATP+05] for
the use in wireless networks and is known as the Reachback Firefly Algorithm (RFA). In
detail, the original PCO model assumes that each node broadcasts a message when a node
invokes a new pulse (or resets the counter to start a new cycle). Note that the message com-
plexity in this case is optimal with respect to pure distributed synchronization algorithms.
In a dense wireless network, however, a lot of sensors may compete for the same wireless
communication medium at the same time which may result in strongly delayed or even lost
messages due to the Carrier Sense Multiple Access (CSMA) scheme. This makes a direct
deployment useless, but can be circumvented by assuming sparsely connected networks or
in the extreme case a cell based structure. For this reason, the main adaption belongs to an
additional message staggering delay such that the messages are sent some random time prior
the original pulse invocation. This relaxes the MAC contentions. Note that this principle can
be applied to all other similar algorithms originally developed for wired networks, where
messages are sent simultaneously (e.g., FTA, FTM, etc.). This already reflects a general
modification and adaptation scheme of distributed synchronization algorithms from wired
to wireless networks. Additional analyzations regarding the RFA were done in [LE08]. Al-
though this algorithm is self-stabilizing and provides the necessary message complexity, it
is not resilient to Byzantine nodes. However, independently of the proposed RFA scheme,
Daliot and Dolev developed a Byzantine tolerant variant of the PCO model in [DDP08],
where the message complexity keeps the same and as well provides a convergence time of
O(f) cycles with a near optimal synchronization precision. With an additional message stag-
gering delay, this algorithm seems to be suitable for the use in wireless networks, because

CHAPTER 1. INTRODUCTION 5

they additionally assume a similar system model as proposed in this thesis (e.g., bounded
clock drifts, bounded message transmission delay).

1.2 Objectives

This thesis deals with the adaptation of a fault-tolerant distributed clock synchronization
algorithm for WSNs and additionally considers the aspect of self-stabilization. Throughout
the next chapters, the following research questions are treated and discussed:

• Do there already exist protocols for fault-tolerant clock synchronization in wireless
networks? If so, how can they be classified and compared?

• How can a multi-hop WSN be globally synchronized even under the presence of
Byzantine faults?

• What is the achievable precision under various failure models and network topologies?

To come straight to the result, a well-studied distributed clock synchronization algorithm
named FTA was combined with a modified version of the RFA approach and consequently
provides the advantages of both, a high achievable synchronization precision in the presence
of Byzantine faults, and robust self-stabilization in the presence of erroneous nodes that do
not behave in an adversary manner. More precisely, let f < n

5 be the maximum number of tol-
erable faulty nodes. The RFA algorithm was taken and modified such that a node discards the
f largest and the f smallest time differences. The resulting approach is then used to establish
a more robust coarse synchronization. If a node notices that all received events (excluding
the f largest and f smallest time differences) are within a predefined precision, then the node
performs a state transition from the coarse synchronization protocol to a fine synchroniza-
tion protocol. The fine synchronization protocol then can be any distributed fault-tolerant
synchronization algorithm, which originally required initially synchronized clocks. In this
thesis, the FTA algorithm was chosen for the fine synchronization due to its simplicity and
elegance. Clearly, both protocols make use of the same messages and therefore do not af-
fect the message complexity. As a proof of concept, the algorithm has been evaluated by
simulation with different topologies. The results are promising and give realistic figures for
the precision of the pulse synchronization and the achievable savings in power consumption
due to a coordinated listen/sleep schedule. This has the inherent advantage that the clock
synchronization no longer suffers from a single-point of failure as it would be in a central
master clock synchronization approach. Furthermore, this type of synchronization does not
need any explicit cooperation between the nodes. To sum up, this thesis focuses on the
synchronization of largely distributed and completely autonomous mobile wireless networks
comprising hundreds of nodes and additionally evaluates the behavior in multi-hop topolo-
gies. To give an application example, assume that each node is equipped with a sensor and
an actuator and all execute the same program. The objective of this example could be that
all nodes simultaneously activate their actuators in dependence of the fused data. In other
words, the nodes have to achieve agreement in a decentralized network even under the pres-
ence of byzantine faults. In the literature, a variant of the aforementioned application is also
known as the firing squad problem. Recently, in [LH08], Leu et al. have already designed
such an agreement algorithm for WSNs. In detail, the authors propose a protocol for an ar-
chitecture without a sink, where several nodes are placed in a room and form an autonomous
cluster targeted to measure the temperature (e.g, to establish a fire fighting application). If
a node measures a temperature higher than 50 degree Celsius, then it sets the initial value
to 1, otherwise to 0. The proposed protocol ensures agreement among all nodes in consid-
eration of Byzantine faults such that either all nodes or none of them activate the actuator.

CHAPTER 1. INTRODUCTION 6

Since the protocol is based on rounds, the nodes have to establish a round based synchro-
nization which can be ensured by a digital clock synchronization built upon our proposed
pulse synchronization algorithm.

1.3 Structure of the Thesis

The thesis is structured in the following way: Chapter 2 first gives general insights in the
area of distributed systems and clock synchronization. In detail, several properties and de-
sign principles of such systems are discussed. This chapter also gives an overview about
different types of synchronization which are suitable for establishing a common notion of
time among the sub-systems. Chapter 3 presents a modification of the formal message-
passing model according to Attiya et al. [AW04] in order to be more applicable for WSNs.
This chapter also formally defines the self-stabilizing pulse synchronization problem which
is the main focus of this thesis. Since clock synchronization is a wide-spread scientific area
and contains a lot of different problem definitions and solutions, Chapter 4 presents the most
interesting scientific papers related to the topic covered in this work. Chapter 5 then contains
the step-wise development of an efficient and robust pulse synchronization algorithm which
is applicable in single-hop as well as in multi-hop networks. Simulation results with respect
to different network topologies and parameter choices are presented and compared in Chap-
ter 6. A discussion about the outcome of the simulations is given in Chapter 7. The thesis
finally ends up in Chapter 8 which reviews the results and presents an outlook of the future
work regarding this topic.

CHAPTER 2
Fundamental Concepts

OVERVIEW

This chapter explains several concepts, terms, definitions, and requirements for efficient
clock synchronization in wireless distributed systems. Note that the semantics of some terms
may differ due to the different applications and purposes of clock synchronization and dis-
tributed wireless systems. Further, throughout this work the terms system or architecture are
used to refer to a distributed system.

The first part introduces the definitions and design principles of a distributed system with
respect to WSNs. Afterwards, the focus lies on clock synchronization and a taxonomy for
classifying the algorithms.

7

CHAPTER 2. FUNDAMENTAL CONCEPTS 8

2.1 Distributed Systems

There are many definitions for a distributed system which primarily depend on the appli-
cation area and research field. A loose characterization is given in [TS06] which defines a
distributed system to be a collection of independent computers that appears to its user as a
single coherent system. With respect to WSNs, such a system is characterized as follows: A
distributed system comprises lots of homogeneous and loosely coupled sensor nodes forming
a connected communication system and performing a decentralized task in order to maintain
a reliable global state based on the unreliable local states of the individual nodes. Such a
decentralized task could be data fusion or simple information gathering in order to control
a single or distributed set of actuators based on the reliable representation of the distributed
sensor values. Note that the concept of homogeneous nodes is a typical aspect in WSNs and
differs from many distributed systems in other application areas, because WSNs generally
contain many autonomous nodes of the same type which have the same hardware and soft-
ware and perform the same tasks. Secondly, loosely coupled nodes are of more importance,
since the wireless nodes are mostly battery powered and hence should exchange messages
very seldom in order to maintain some kind of energy conservation. The unreliability of
communication links in the wireless medium is a further aspect which communication pro-
tocols have to take into account. Distributed systems are usually assumed to form a con-
nected communication system. This is reasonable, because unconnected nodes are not able
to participate in the synchronization process with the rest of the network. Note that such
a communication system can reach from simple fully connected networks to complex net-
works including many hops which may complicate the communication exchange between
two far away nodes. The decentralized task is a representation of the distributed software
implemented by the user. The goal of such a software is to provide a reliable service or
global state which must be continuously available, even in the presence of different types
of network-, communication-, or node-failures. For instance, some nodes may run out of
energy and consequently become inactive. This already illustrates why the individual nodes
cannot be assumed to be reliable.

Nodes, Communication Systems, Software, and States. Generally, a distributed system
consists of multiple, autonomous components, which are called nodes. A node consists of its
own hardware (e.g., oscillator, processor, memory, interfaces) and software (e.g., application
programs, operating systems) to perform a well-defined distributed communication pattern.
The software is an algorithmic description that determines the behavior of a node’s system. In
our context the software also determines the coordination of the activities for each individual
sensor node to maintain a shared state, which defines the relevant parts of a local state of the
distributed system. Additionally, the node’s software can be divided into two data structures
[Kop97, p. 76]: The initialization-state (i-state) and the history-state (h-state). The i-state is
a static data structure that contains the re-entrant program code and the initialization data and
is usually stored in a Read-only Memory (ROM). On the other hand, the h-state reflects the
dynamic data structure of the node which can change its content over computational progress
and must be stored in a Random Access Memory (RAM). The nodes are interconnected by a
network called communication system which allows them to communicate among each other
respectively to exchange data. “The state enables the determination of a future output solely
on the basis of the future input and the state the system is in.” [MT89]. Further, the global
state of a system is defined as the union of the local states of its components [Sch93].

Components. The term component or node is used to describe a part of the distributed
system which cannot be decomposed for a given level of abstraction. In contrast to a com-

CHAPTER 2. FUNDAMENTAL CONCEPTS 9

ponent, a system can be decomposed into subsystems. A component is characterized by its
autonomy (self-containment), the fact that it is used as a building block of a system, and
the optional provision of some kind of service to its environment through a well-specified
interface [KS02, EPS04]. In this thesis a node is assumed to be composed of a hardware in-
cluding a processor, I/O interfaces, the software running on it, and the component’s state. A
component provides a service through its service interfaces. The external state of a compo-
nent declares the part of the component’s state which is perceivable at the service interfaces.
The remaining part corresponds to the internal state. Thus, the behavior of a component,
system, or node is defined by the sequence of its external states.

The following sections describe several orthogonal design principles of distributed sys-
tems. Some of them are based on the goals of a distributed system according to Tanenbaum
et al. [TS06].

2.1.1 Accessibility

A very important property of a distributed system is that the shared state of a node has to
be easily accessible for the applications and users. This enables the application to efficiently
control the sharing and exchange of its own state. The shared state could be nearly anything
of the local state which a node wants to share among other nodes. A typical content contained
in a shared state could be the state of the measured entity or the state of an actuator connected
to a node. It could also be a fusion of the shared states of several other nodes in order to
obtain an agreed value among all participants.

2.1.2 Distribution Transparency

A distributed system which intentionally pretends the applications and users to be a single
virtual system despite the fact that its processes and resources are physically distributed is
said to be transparent. The International Standards Organization (ISO)’s Reference Model
for Open Distributed Processing (RM-ODP) [IEC96, p. 5] identifies eight different types of
distribution transparency which should be considered in the specification and implementa-
tion of a distributed service in order to hide system complexity and are listed below. A more
detailed description can be found in [Put01]. Note that a resource or an object are equivalent
definitions for a shared state of some node.

Access transparency masks differences in data representation and hides the user and ap-
plication from the methodology used to access the shared state. This is especially
important in the case of a heterogeneous distributed system where the nodes run dif-
ferent operating systems and thus may have different naming conventions with respect
to the file system or the data representation.

Location transparency describes the property of a service to provide an interface for ac-
cessing a distant object without the knowledge of its physical location. Instead, logical
naming is usually used for binding the interface to the resource.

Migration transparency allows the system to change the location of an object without af-
fecting its access scheme.

Relocation transparency is similar to migration transparency, but stronger in the sense that
it allows the system to unnoticeably change the location of a resource while it is in use.

Replication Transparency hides the users or applications from the fact that there exist mul-
tiple instances of the same resource used to enhance dependability and/or performance.

CHAPTER 2. FUNDAMENTAL CONCEPTS 10

Failure transparency masks the failure and possible recovery of one or more resources
from the application or user as well from other resources to guarantee a continuous
operation. This makes the system resilient to failures in order to enable fault tolerance.
Note that this is the major aspect classifying a distributed system.

Persistence transparency hides the fact that node resources needed by an object are not
continuously available (e.g., due to scheduling reasons). This is usually done by de-
activation and a later reactivation of the objects involved in the interaction with this
object.

Transaction transparency maintains the consistency of the objects involved in an overlap-
ping or concurrent execution by masking the scheduling and a possible recovery of the
transaction actions.

In [TS06], the last two transparencies are represented by concurrency transparency. Con-
currency transparency generally describes the masking of the effect that several applications
or users compete for the same shared object. This can be implemented by both persistence
transparency or transaction transparency.

2.1.3 Openness and Flexibility

Openness is one of the most important architectural aspects of a distributed system and
primarily refers to standardized interface design such that the services and interfaces offered
by a component comply with standard rules that describe the properties of the interface. An
interface is a common boundary between two or more components or subsystems. In [KS02],
Kopetz et al. distinguish between the data and temporal properties of an interface. The data
properties describe the syntax and semantics of the data crossing the interface. Whereas the
syntax is usually formally specified in an Interface Definition Language (IDL), the semantics
are documented by means of natural language [TS06]. The temporal properties defines the
temporal conditions to maintain validity of the messages crossing the interface.

Blair and Stefani state in [BS98] that a complete and neutral interface definition is manda-
tory for interoperability and portability. Interoperability defines the degree to which two
systems, implemented by different manufacturers and offering interfaces as specified by a
common standard, can work together by using each other’s services. The IEEE society de-
fined the term interoperability as “. . . the ability of two or more systems or components to
exchange information and to use the information that has been exchanged.” [IEE90]. In
contrast, portability defines the degree to which a distributed system can be replaced by
a different distributed system that implements the same interface without any modification.
For comparison with IEEE, portability is defined as “. . . the ease with which a system or com-
ponent can be transferred from one hardware or software environment to another.” [IEE90].
Referring to [TS06], a careful interface definition is also required to provide an extensible
distributed system. Extensibility means that the distributed system allows the composition,
addition, and replacement of components solely based on their interface definition indepen-
dent of their realization and implementation of different developers. With respect to IEEE,
extensibility defines the “. . . ease with which a system or component can be modified to in-
crease its storage or functional capacity.” [IEE90]. A distributed system is defined to be
flexible, if it provides interoperability, portability, and extensibility. According to IEEE,
flexibility is also defined as “. . . the ease with which a system or component can be modi-
fied for use in applications or environments other than those for which it was specifically
designed.” [IEE90].

CHAPTER 2. FUNDAMENTAL CONCEPTS 11

2.1.4 Scalability

In [Hil90], Hill states that there exists no generally-accepted exact definition of scalability.
Scalability may be necessary, if a distributed system has to be upgraded or extended to im-
prove some system specific properties or Quality of Service (QoS) (e.g., system load, system
complexity, administrative complexity, performance, maintainability, timeliness, reliability,
etc.). In order to meet such demands, the system must allow a proper handling of new re-
sources or components. According to [Neu94], scalability of a system can be threefold.

1. Size scalability. Size scalability ensures that the system allows the addition of new
components without increasing system complexity or degrading any other system spe-
cific properties to some extent. This type of scalability is the most common aspect of a
distributed system and requires that the system is flexible.

2. Geographical scalability. This type concerns the scalability of the system with respect
to the distance between any two nodes in the system. In other words, the system
guarantees to work properly, even if two nodes lie far apart.

3. Administrative scalability. This dimension of scalability means that the system keeps
manageable even if the number of independent administrative organizations scales up.
Examples are network domains with different policies regarding security, resource us-
age, or management.

Note that scalability does not necessarily mean that it can handle infinitely many compo-
nents, administrative domains, or components which are infinitely far apart. Instead, if the
term scalability is used in some context, it has to be properly defined with respect to some
degradation function and a degradation bound. Examples for the degradation function can
be the uncertainty of the communication or the complexity of the system as a function of
the network size. As long as the result of the degradation function is below the degrada-
tion bound, the system has a good command of scalability. Otherwise, the system may fail
or brake down. Note that this does not mean that the bound will eventually be exceeded
since the degradation bound can also increase at the same rate like the degradation func-
tion. In this case, we speak about a soft degradation. Otherwise, if the degradation function
can eventually exceed the degradation bound, then we speak about a hard degradation. A
hard degrading system is usually a system which is designed with respect to some intended
maximum scalability (e.g., predefined maximum system size).

A further system distinction can be made with respect to the rate of degradation. For in-
stance, if the degradation function grows at most linearly, we speak about a graceful degrada-
tion. Otherwise, if the function grows exponentially, we say the degradation is not graceful.

Thus, scalability can be seen as a methodology which guides the design and implemen-
tation process [Sat88] and always comes along with a properly definition with respect to the
relevant system properties.

2.1.5 Composability

A distributed system is said to be composable with respect to a specified property (e.g., ac-
cessibility, timeliness, testability, reliability, etc.), if the property is maintained at the system
level after system integration in the case it was already established at the subsystem level.
Note that composability implies that the system has to be open and flexible. Typically, a
composable distributed system emerges new services at the system level which were not
established at the subsystem level (e.g., synchronization or agreement).

In [KS02], Kopetz et al. identify four principles a distributed system has to maintain with
respect to the Communication Network Interface (CNI)s and real-time in order to support
composability. These are listed below.

CHAPTER 2. FUNDAMENTAL CONCEPTS 12

1. Independence of components: In order to establish the two-level design methodology,
the components have to be designed and developed independently based on the precise
component service and interface specification in the value and time domain which was
done in the architecture-level design process.

2. Invariance of component services: Composability requires that the properties provided
by a component must be maintained after the integration into an encompassing system
or system-of-systems. This has to be considered during the component-level design
and is known as the stability-of-prior-service principle.

3. Size scalability: Composability requires scalability with respect to the performance of
the communication system. In detail, a properly working system comprising n com-
ponents should not be affected after integrating the n + 1st component. This may be
established by the use of a dynamic resource manager which also has to consider the
critical instant where all components request for the resource at the same time.

4. Replica determinism: This is a sub-principle of scalability in the case fault tolerance is
implemented by replication. Then the system has to support replica determinism. That
is, all correct members of a set of replicated components must produce the same output
at virtually the same time with respect to the internal system-time [Pol94].

2.1.6 Dependability and Security

Dependability and Security are two different concepts of a system, but share some common
attributes. The definition of dependability is twofold [LR04]. Originally, dependability de-
fines the ability of a system to deliver some kind of service which can justifiably be trusted.
An alternate definition of dependability is the ability of a system to avoid service failures to
guarantee an acceptable reliability level. The definition and taxonomy of both concepts have
emerged over a refinement process of several decades and dates back to 1980. The latest
work by Laprie et al. at the time of writing this thesis is according to [LR04]. This publi-
cation is self-contained and presents a detailed and excellent elaboration of both concepts
primarily targeted on students and practitioners of this field. On this account, only the im-
portant parts and definitions in order to understand this work and the association with several
terms are presented here. In addition, some parts are extended where necessary.

Dependability is a generic concept and subsumes the attributes of availability, reliability,
safety, integrity, and maintainability. According to Laprie et al., other concepts similar to
dependability are high confidence, survivability, and trustworthiness [LR04]. Security fo-
cuses mainly on confidentiality and shares the attributes of availability and integrity with the
dependability concept. Figure 2.1 visualizes the relationship between the attributes, threats,
and means of dependability and security. Note that security encompasses only a few of
the listed attributes and the attribute of confidentiality only relates to the security aspect of
a distributed system. A detailed description of the previous introduced terms will follow
throughout this section.

2.1.7 Self-organization and Emergence

Generally there exist two types of natural systems: unorganized and organized systems. The
composability property of distributed systems classifies them as organized systems, since
they are usually made up of hierarchically organized building blocks. A system which is
organized in a global manner is defined as an external organized or statically organized
system. The opposite are self-organized systems.

The best appropriate informal definition with respect to WSNs is stated by Dressler and
defines self-organization as “. . . a process in which structure and functionality (pattern) at

CHAPTER 2. FUNDAMENTAL CONCEPTS 13

Dependability
and

Security

Attributes

Availability
Reliability
Safety
Confidentiality
Integrity
Maintainability

Threats
Faults
Errors
Failures

Means

Fault Prevention
Fault Tolerance/Robustness
Fault Removal
Fault Forecasting

Figure 2.1: Dependability and security tree [LR04].

the higher level of a system emerge solely from numerous interactions among the lower-level
components of a system without any external or centralized control. The system’s compo-
nents interact in a local context either by means of direct communication or environmental
observations, and, usually without reference to the global pattern.” [Dre07].

Simply said, self-organized systems are organized in a local manner in order to emerge a
coherent global behavior, i.e., the individual components only act with respect to the infor-
mation of its neighbors.

Furthermore, Dressler defines emergence as the provision of a system’s behavior “. . . by
the apparently meaningful collaboration of components (individuals) in order to show capa-
bilities of the overall system (far) beyond the capabilities of the single components” [Dre07].
Thus, in contrast to self-organization which refers to general emerging patterns at the system
level, emergence refers to the appearance of properties (or patterns) at the system level that
were not previously observed as a functional characteristic of the system or its components.

The concept of self-organization originates from biology and was first analyzed by
Ashby [Ash62]. A detailed discussion on self-organization in biological systems is done
by Camazine et al. [CFS+03]. Self-organization can be used to achieve robustness and
adaptivity to changing environmental conditions [GFH+03]. Furthermore, self-organization
can be seen as a collective term for several self-X capabilities (e.g., self-configuration, self-
management, self-diagnosis, self-protection, self-healing, self-repair, self-optimization, self-
stabilization, etc.) [Dre07]. According to [HdM08], the main properties of self-organization
are:

• Autonomy: The individual components interact only the local information of its neigh-
bors and without any external (global) control.

• Emergence: The local interaction among the components emerges new coherent pat-
terns and services at the system level that cannot be understood by simply combining
the provided properties and services of the individual components. In other words, “the
whole is more than the sum of its parts”.

• Robustness/Adaptivity: Changing environments do hardly affect the behavior of the
system.

• Decentralization: The system is not globally controlled by a few entities. Instead it is
self-controlled by all components and participants as a result of their interactions.

Self-organized systems reduce the amount of global state information by achieving
the system behavior (emergence) based on local interaction or probabilistic approaches
only [Dre07]. Thus, self-organized distributed systems can be a remedy to the complexity cri-
sis [KC03] of the growing complexity of integrated and networked architectures, especially

CHAPTER 2. FUNDAMENTAL CONCEPTS 14

if constrained resources (e.g., limited communication bandwidth) prohibit the maintenance
of a global state information [Dre07]. In other words, self-organization introduces a new
concept for controlling and managing completely autonomous or massively distributed sys-
tems beyond the concept of classical distributed systems. This is of particular importance to
WSNs which are very large and out of control of humans. On this account, self-organization
in WSNs has received a great deal of attention (e.g., for energy efficient protocol design
including scheduling, topology discovery and control, and localization).

Formal definition

To the best of our knowledge, the first appropriate formal definition for classifying a system
to be self-stabilizing was given by Herrmann et al. in [HWM06]. Due to the importance of
self-organization to this thesis, this formal model is stated below.

The formal model from Herrmann et al. requires the definition of three terms, namely
adaptivity, structure, and decentralization.

Herrmann et al. use the definition of adaptivity from Zadeh [Zad63] and is formulated
as follows: Consider a system S with Sγ be the set of all possible time-dependent input
functions forS where γ defines a parameter set describing its environment. The family of all
input functions with respect to a specified set of environmental conditions Γ then corresponds
to {Sγ |γ ∈ Γ}, in short {Sγ}. Let P(Sγ) be a function that measures the performance of S
with respect to all input functions of Sγ . System S is said to perform acceptably well under
Sγ , if P(Sγ) is in a prescribed class W of performance functions: P(Sγ) ∈W . Zadeh then
defines adaptivity of system S as follows:

Definition 1 (Adaptivity). A system S is adaptive with respect to {Sγ} and W if it performs
acceptably well (i.e., P(Sγ) ∈W), with every source in the family {Sγ}, γ ∈ Γ. More com-
pactly, S is adaptive with respect to Γ and W if it maps Γ into W.

The structure of a system is a measure for self-organization. However, Herrmann et
al. state that a concrete definition is not possible since it varies depending on the specific
system [HWM06]. Therefore, the authors abstractly define the structure of a system to
be “. . . the property of a system by which it constrains the degrees of freedom of its com-
ponents.” [HWM06]. Nevertheless, the authors suggest that in most cases the concept of
entropy from thermodynamics and from Shannon’s theory of information [Sha01] can be
used as a measure for structure, since entropy is very similar and describes the measure for
the degree of disorder in the system [HWM06]. The definition of information entropy with
respect to Shannon is given in Equation 2.1.

H(P) =−∑
s∈S

P(s) · logP(s) (2.1)

Therein, S belongs to a discrete state space (i.e., all possible states) of the system, and P is
a probability distribution according to S such that with respect to a single state s ∈ S, P(s)
defines the probability that the system remains in it. As a result, the entropy decreases if the
system resides in a smaller subspace of its state space (i.e., the system contains some kind
of order/structure). In other words, similar to self-stabilization, a self-organizing system
usually contains one or more attractors which eventually brings the system into a stable state
of structure.

For a formal definition of a decentralized system, Herrmann et al. first define a system as
follows [HWM06]:

Definition 2 (System). A system S comprises of a set of well-defined interacting compo-
nents. S is identified with the set of its components, and any subset of S is called a subsys-
tem. Furthermore, every system S has well-defined function fS.

CHAPTER 2. FUNDAMENTAL CONCEPTS 15

Note that the term “software system” is replaced by “system”, since it is more general in
the context of this thesis. Furthermore, with respect to the definition of a distributed system,
fS may correspond to the system behavior as the sequence of external states. With respect to
Herrmann et al., decentralization is defined via the absence of a central controller [HWM06]:

Definition 3 (Central controller). A central controller C of a system S with respect to fS is
a subsystem of S that controls the actions of the remaining subsystem S′ = S\C such that
S is able to perform fS but C is unable to perform fS in isolation (i.e., without S′).

According to Herrmann et al., the classification of a system to be self-organizing requires
a precise definition of the system’s key elements (e.g., system components, environment,
good versus bad system structure). Based on these definitions, the class of self-organizing
systems SO is defined as follows [HWM06]:

Definition 4 (Class of self-organizing systems). SO is defined as the class of self-organizing
systems and SO as its complement. A system S is in SO under a description D (denoted as
SD ∈ SO), if SD (1) is adaptive, (2) adapts by changing its structure, and (3) does not employ
central control.

2.2 Clocks, Time, and Clock Synchronization

This section introduces concepts and terms used for clock synchronization in distributed
systems and mainly refers to [Kop97, p. 45ff].

2.2.1 Concepts of Clocks

In distributed systems, the participants often measure events at a specific point in time. This
measurement is done by the use of the node’s own local clock which acts independently of
each other node. This may be problematic, since most applications and algorithms used in
sensor networks are based on the comparison and aggregation of events measured by many
different nodes. In other words, every node must have a local view of a global time so that the
measured events among different nodes can be reordered in a distinct way. For this concept
some new terms must be introduced.

Hardware Clock. Every processor pk is equipped with a local clock for keeping track of
time. This local clock is referred as the hardware clock1 HCk of processor pk. Such a clock
is implemented as a timer which consists of a counter and a physical oscillator mechanism
that periodically generates events with a well-defined frequency in order to continuously
increase the counter. This periodic event is called microtick whereas the duration between
any two microticks is called granularity. The granularity is conditioned by the parameters
of the physical oscillator (e.g., oscillator type, frequency, ambient temperature, etc.) and
is responsible for the digitalization error. The digitalization error denotes the difference
between the digital clock value and a corresponding continuous-valued reference time.

Hereinafter the time of hardware clock HCk is called microtickk. Further, microtick i of
clock k is denoted by microtickk

i . The time measurement of some event e with the hardware
clock HCk is denoted by HCk(e).

Reference Clock. A reference clock z is a clock with a very small granularity compared
to the hardware clock and is usually not observable by the nodes. Hence, in most cases the
resulting digitalization error is negligible.

1In the literature, the term physical clock is often used and equals our definition of hardware clock.

CHAPTER 2. FUNDAMENTAL CONCEPTS 16

Whenever an event e is timestamped by the reference clock z and z is the single reference
clock in the system, then z(e) is called the absolute timestamp of event e.

The concept of a reference clock allows the use of simple models, because in contrast to
the dense real-time, the reference clock represents the real-time as a natural number. This
simplifies the ordering of timestamped events to simple integer arithmetics.

Drift Rate of a Clock. In practice, a set of n hardware clocks will always slightly drift
apart from each other, since the underlying oscillators and crystals cannot provide a perfect
and constant nominal frequency.

The drift of a hardware clock HCk is determined by the ratio between the actually mea-
sured duration of the granularity of this clock and the nominal expected number of microticks
nk of reference clock microticks. Since the clock drift varies over time, it is calculated for a
distinct granule between microtick i and microtick i+1:

dri f tk
i =

z(microtickk
i+1)− z(microtickk

i)
nk

Hence, a perfect clock has always a drift of 1. In the literature, the drift is sometimes defined
with respect to a reference clock z that has the same granularity like the hardware clocks,
i.e., for a perfect hardware clock HCk, the equation HCk(microtickz

i) = i is always valid. As
a result, the alternative definition of the drift of hardware clock HCk with respect to z for two
natural values t2 > t1 equals:

dri f tk
i =

HCk(microtickz
t2)−HCk(microtickz

t1)
t2− t1

Note that if it is obvious from the context that t denotes the time value of reference clock z,
then we simply write HCk(t) instead of HCk(microtickz

t).
In most cases, the clocks are accurate enough and have a clock drift that is close to 1.

For reasons of notational convenience, another term called drift rate is introduced. The drift
rate of hardware clock HCk at the instant of microtick i is indicated by ρk

i and declares the
absolute deviation of the clock drift with respect to the drift of the perfect clock:

ρ
k
i =

∣∣∣dri f tk
i −1

∣∣∣
In reality, the drift rate of a clock results from the drift rate of the underlying oscillator

technology and varies over time due to environmental influences (e.g., temperature, vibra-
tion, voltage level, aging effects). Furthermore, the amount of uncertainty of the change of
the drift rate strongly differs with respect to oscillator technology (e.g., different cuts of a
crystal). However, in most cases the environmental influences can be constrained to keep
within a specification such that the drift rate of a resonator can be assumed to be bounded by
a maximum drift rate ρk

max. For instance, in the case of a real-time hardware clock, then it
can be assumed that the clock stays within a linear envelope of the real-time and is formally
defined as follows:

Definition 5 (Bounded drift). For all times t2 > t1 and a given maximum drift rate ρ of a
hardware clock HCk,

(t2− t1)(1+ρ)−1 ≤ HC(t2)−HC(t1)≤ (t2− t1)(1+ρ).

Note that due to simplification reasons in proofs, the bounded drift condition is sometimes
defined as

(t2− t1)(1+ρ)−1 ≤ HC(t2)−HC(t1)≤ (t2− t1)(1−ρ)−1

CHAPTER 2. FUNDAMENTAL CONCEPTS 17

or
(t2− t1)(1−ρ)≤ HC(t2)−HC(t1)≤ (t2− t1)(1+ρ),

because both conditions include the original bounded drift condition.
For notational convenience, the drift rate is often quoted in parts per million (ppm). A

typical watch crystal has about 20ppm that results in an error of about 1.73sec/day.

Oscillator Stability The drift of an oscillator mainly depends on the drift rate of the un-
derlying technology, e.g., crystal or RC-oscillator. For this reason, the next two paragraphs
describe the drift of crystals and RC-oscillators in more detail.

Stability of crystal oscillators. According to [Sch88], the drift rate of a crystal oscil-
lator consists of a systematic error and a stochastic error whereas the systematic error, that
determines the nominal drift rate, is constant and the stochastic error, that is a random drift
within a specified interval, changes over time. This is true for short observation periods in
the range of seconds and minutes. On the other hand, for longer observations the systematic
error changes similarly to the stochastic error. The stochastic drift rate is usually two orders
of magnitudes smaller than the nominal drift rate and consequently negligible [Sch96]. It
should be noted that this generally applies to oscillators based on crystals, but the clock drift
additionally changes due to environmental influences and mainly depends on the oscillator
type and cut of the crystal. In [Vig00], Vig categorizes the environmental impacts into time-,
temperature-, acceleration-, ionizing radiation-, and other influences. The time can influ-
ence the frequency in a short term (e.g., noise) or in a long term (e.g., aging). Short term
means in the order of seconds up to minutes. In contrast, long term means in the order of
days. Further, the temperature has the biggest influence on the crystal’s frequency and is dis-
tinguished between static frequency-temperature effects and dynamic frequency-temperature
effects (e.g., warm-up, thermal shock). The other categorizations hardly affect the crystal
and are not explained in detail in this work. The short-term stability of crystal oscillators are
discussed in detail in [Sch95].

According to Armengaud et al. [ASH07] and to Sullivan et al. [SAHW90], the instanta-
neous drift rate of node’s p crystal oscillator can be modeled as shown in Equation 2.2.

ρp(t) = ρ
i
p +ρ

a
p(t)+ρ

n
p(t)+ρ

e
p(t) (2.2)

Therein, ρ i
p denotes the initial drift rate at start-time which is assumed to be constant

over time. ρa
p(t) incorporates the drift variation due to aging effects, ρn

p(t) considers the
drift rate jitter due to short term noise (e.g., radiation), and ρe

p(t) adds the jitter resulting
from other environmental effects (e.g., temperature). Table 2.1 lists the value range with
respect to the different drift parts according to [Sch95, Com97]. These values show that
the initial drift dominates the other parts, especially if small time durations in the order of
seconds and a nearly constant environment (e.g., no abrupt strong temperature variations)
are considered. These assumptions usually hold in most cases and can be formalized in a
bounded-drift-variation model as stated in Definition 6.

Definition 6 (Bounded drift variation). The amount of instantaneous drift rate variation
dρ(t)/dt of a clock for all t is bounded according to∣∣∣∣dρ(t)

dt

∣∣∣∣≤ ϑ ,

where ϑ is the oscillator stability.

CHAPTER 2. FUNDAMENTAL CONCEPTS 18

Table 2.1: The range of the different drift rate components [Sch95, Com97].

Component Drift rate

ρ i
p up to 10−5

ρa
p(t) up to 10−7

ρn
p(t) 10−8 · · ·10−12

ρe
p(t) up to 10−5

A more established methodology for defining the short-term stability of an oscillator in
the time domain is expressed by the use of the Allan variance [iee99] and is defined in
Equation 2.3:

σ
2
y (τ) =

1
2(N−2)τ2

N−2

∑
k=1

(xk+2−2xk+1 + xk)2, (2.3)

where
N is the number of time measurements
τ is the nominal sample time
xk,xk+1, . . . are time residual measurements after removing

systematic effects (e.g., frequency drift)
at tk+i = tk + τ for all k ≥ 1.

Note that the removing of the systematic effects is required in order to get an unbiased
variance σ2

y (τ).
Table 2.2 lists typical Allan deviations for different oscillator technologies according to

[Kli97].

Table 2.2: Typical Allan deviations for different oscillator technologies [Kli97].

τ = 1 sec τ = 1 day τ = 1 month
Quartz 10−12 10−9 10−8

Rubidium 10−11 10−12 . . .10−13 10−11 . . .10−12

Cesium Beam 10−10 . . .10−11 10−13 . . .10−14 10−13 . . .10−14

Hydrogen Maser 10−13 10−14 . . .10−15 10−13

Stability of RC-oscillators. RC-Resonators are generally used for internal oscillators
in controllers. Due to the fact that it is cheaper to use the implemented oscillator than to
extend the controller with an external crystal oscillator, many applications for embedded
systems not aimed at high clock accuracy make use of the internal RC-oscillator for generat-
ing the system clock and consequently the microticks of the local hardware clock. This can
result in big problems, especially if the nodes in a distributed system have to accomplish a
distributed clock synchronization based on such imprecise oscillators. However, a clock rate
correction could slightly compensate this problem and thus improve the precision.

Virtual Clocks In our work a clock must have the possibility for adjusting the frequency
and further for changing the state, i.e., the content of the counting register. The latter con-
dition is usually no problem whereas the change of the frequency of an oscillator seems
to be a problem for so, because many controllers are equipped with Commercial Off-the-
shelf (COTS) oscillators so far which cannot adjust their frequency. A more sophisticated
solution could be the use of Voltage Controlled Crystal Oscillator (VCXO)s. However, this
is too expensive and therefore unthinkable for sensor networks. For this reason, the problem

CHAPTER 2. FUNDAMENTAL CONCEPTS 19

must be solved at the software level by the use of virtual clocks which abstract from hard-
ware dependent parameters. Throughout this thesis the term local clock or logical clock is
sometimes used instead of virtual clock.

A processor p j is said to implement a virtual clock VC j, if it abstracts the hardware clock
HC j. A realization of such a virtual clock providing the two adjustment criteria is based
on the concept of macroticks. A macrotick is represented by a tick of the virtual clock and
comprises of a number of microticks that are generated by a hardware clock. Let T th

j (t)
denote this amount of microticks at p j. In other words, T th

j (t) can be seen as the actual
threshold value at time t. Any software implemented on p j then reads the time only from
VC j. As a consequence, the granularity of the virtual clock is based on the number and
granularity of the comprised microticks.

By adjusting T th
j (t) over time, the granularity and consequently the time duration of one

macrotick can be increased or decreased. Let Tnom denote the nominal threshold level and
H j(t) the absolute adjustment value such that T th

j (t) = Tnom + H j(t). The corresponding

relative adjustment value is h j(t) = H j(t)
Tnom

. Algorithm 1 shows the principle of this virtual
clock. Therein, HC j is a variable which stores the content of the last invoked macrotick.

Algorithm 1: Virtual Clock VC j(t): code for p j

Init: HC j := HC j(t), VC j(t) := 0, T th
j (t) := Tnom1

upon event HC j(t) = HC j +T th
j (t) do // threshold reached2

HC j := HC j +T th
j (t)3

adjust H j(t)4

T th
j (t) := Tnom +H j(t) VC j(t) := VC j(t)+15

Periodically increment HC j(t) according to the oscillator frequency and actual drift6

In practice, the implementation of such a virtual clock is simply realized by a counter
register that is continuously incremented with respect to the microticks of the underlying
hardware clock. In every incrementation event, the value of the timer or counter is then
compared with respect to the actual threshold value T th

j . If the comparison matches, then the
register will be reset to 0 and a macrotick incrementation is invoked.

Offset. The offset is defined as the time difference of the clocks2 of two different processors
p j and pk at the microtick respectively macrotick i measured with respect to the reference
clock z.

o f f set jk
i =

∣∣∣z(microtick j
i)− z(microtickk

i)
∣∣∣

In the case of virtual clocks, we would have

O jk
i =

∣∣∣z(macrotick j
i)− z(macrotickk

i)
∣∣∣

Precision. In an ensemble of clocks, the precision defines the maximum offset in reference
clock microticks between any two clocks during a period of interest. So the precision of an
ensemble with n clocks over all interesting microticks i is defined as

Π = max
∀1≤ j,k≤n;i

{o f f set jk
i }

2The clocks can be either virtual or hardware clocks.

CHAPTER 2. FUNDAMENTAL CONCEPTS 20

or with respect to virtual clocks as

Π = max
∀1≤ j,k≤n;i

{O jk
i }.

Note that the real-time is usually used as the reference clock for measuring the precision.

Accuracy. The accuracy denotes the maximum offset of a given clock with respect to
a reference clock z over an interval of interest. Hence, for the hardware clock HCk, the
accuracy is defined by

accuracyk = max
∀i
{o f f setkz

i }

where i can take all microtick values that are of interest. This equally applies to virtual clocks
and is specified by:

accuracyk = max
∀i
{Okz

i }

Note that a good accuracy implies a good precision, but from a given precision nothing can
be said about the accuracy.

2.2.2 Clock Synchronization

Clock synchronization is an important mechanism in every distributed system. The need
for distributed synchronous clocking can be energy constraints as well as the global time-
stamping of events. Particularly sensor networks are often multi-hop topologies and there-
fore usually need a decentralized solution for maintaining synchronization. However, the
fact that the clocks have different clock drifts make it difficult to bring the time of the clocks
in close relation with respect to each together. A general approach is a frequently resyn-
chronization, but this is not applicable for sensor networks as this will increase the com-
munication and therefore also strongly increases the energy consumption. Consequently,
alternative mechanisms like clock rate calibration must be incorporated. The precision is a
typical measure for the quality of clock synchronization.

Internal Clock Synchronization. Internal clock synchronization is required in an ensem-
ble of clocks where the precision must be kept to a minimum. This is done by mutual
resynchronization of the clocks. It should be noted that this type of synchronization does not
necessarily mean synchronization to real-time, because all clocks can have a similar clock
drift and therefore may be synchronized within a very good precision, but the accuracy with
respect to real-time might be unacceptable. This type of synchronization is also sometimes
referred to synchronicity. The duration for a period of resynchronization is called resynchro-
nization interval Rint . After a resynchronization event, the clocks run free and may drift apart
with respect to a maximum drift rate ρ as stated in Definition 5. Note that ρ does not declare
if a clock ticks faster or slower than the reference clock. At the end of each resynchronization
interval, the offset of the clock with respect to a reference clock z can be±ρ ·Rint . Therefore,
a new term called drift offset Γ is introduced with Γ = 2 ·ρ ·Rint .

The Synchronization Condition. Due to uncertainties in communication delay and
clock drift, the synchronization is usually bounded within a small interval and affects the
precision. Further, convergence-based synchronization algorithms [Sch87] additionally can-
not synchronize the nodes better as expressed by its convergence function Θ. The synchro-
nization condition then states that such a synchronization algorithm can only synchronize
the ensemble of nodes with precision Π, if the following equation holds:

Θ+Γ≤Π

CHAPTER 2. FUNDAMENTAL CONCEPTS 21

In other words, for a given Θ and Γ, the worst case precision cannot be better than Θ+Γ.

Lower Bounds for Internal Clock Synchronization. Any convergence function based
synchronization algorithm[Sch87] has a lower bound for the optimal maximum deviation.

Srikanth and Toueg showed that in an ensemble of clocks, the maximum drift rate achiev-
able by a fault tolerant internal clock synchronization algorithm is lower bounded to the
maximum drift rate of all clocks in that ensemble [ST87].

Another important lower bound was introduced in [LL84b] and depends on the number of
clocks N and the communication jitter ε . Assuming the clocks have no clock drift, Lundelius
and Lynch state that the worst case precision in an ensemble of clocks is lower bounded to

Π = ε ·
(

1− 1
N

)
.

According to the aforementioned synchronization condition, we can deduce that a con-
vergence based synchronization algorithm cannot have a convergence function better than
Θ < ε · (N − 1)/N. Thus, the worst case synchronization precision is limited to ε · (N −
1)/N +Γ≤Π.

Last but not least, according to [DHS84], any clock synchronization algorithm applied
on an ensemble of perfect clocks with no clock drift and for any communication network
graph G, the precision has a lower bound of:

Π≥ UG

2

UG declares the uncertainty in transmission time of the network graph G and is defined as the
maximum of any minimal delay jitter ε(σ) whereas σ can be any communication sequence
starting with node p and ending with node q. In more detail

UG = max{min{εG(σ) | ∀σ ∈ S(p,q)} | ∀p,q ∈ G; p , q}

whereas S(p,q) contains all possible sequences of nodes starting with p and ending with
q. Further, εG(σ) is referred to as the delay jitter of the communication sequence σ =
(p0, . . . , pn) consisting of nodes pi, for i from 0 to n, and is calculated as followed:

εG(σ) =
n−1

∑
i=0

(εG(pi, pi+1))

Moreover, εG(pi, pi+1) = UG(pi, pi+1)−LG(pi, pi+1) and defines the variation in transmis-
sion and processing time for messages between pi and pi+1. Consequently, UG(pi, pi+1)
defines the upper bound and LG(pi, pi+1) the lower bound on transmission and processing
time for messages between pi and pi+1. In addition to that, the authors proof that there exist
algorithms such that for all communication networks the precision is not greater than the
uncertainty UG.

External Clock Synchronization. Considering an ensemble of clocks, external clock syn-
chronization always requires one or more reference clocks that are not part of this ensemble.
This kind of synchronization is performed with a periodic resynchronization of the clocks
with respect to the reference clock and keeps the ensemble within a bounded precision of the
reference clock. The quality of external clock synchronization is measured by the accuracy.
Additionally, external synchronization of an ensemble of clocks with an accuracy A results
in internal synchronization with a precision of at most 2 ·A. The converse is not true.

CHAPTER 2. FUNDAMENTAL CONCEPTS 22

Clock State Correction vs. Clock Rate Correction. Clock synchronization usually uses
two different approaches to achieve an accurate precision: State correction and rate correc-
tion. For state correction the calculated correction term is immediately applied to the local
clock whereas rate correction modifies the rate of a node’s clock. Clock rate correction
can be implemented either by changing the number of microticks between two consecutive
macrotick of a virtual clock or in the case of a VCXO by adjusting the supplied voltage.
However, in the case of an implemented rate correction but in the absence of an external
clock synchronization, it might occur that the drift rate of all virtual clocks continuously in-
crease or decrease in the same way, because the uncertainty in communication delay makes
a perfect rate adjustment impossible. This effect is known as the common mode drift. To
avoid this common drift, the rate correction algorithm should incorporate a compensation
to control this effect. In the case of a simple fully connected network, this can be done by
an evaluation of the average rate correction terms among all clocks which should be close
to zero. However, in the general case where the network topology is not known a priori,
the effect of the common mode drift usually can only be reduced to some extent but not
completely eliminated.

Principle of Operation of Distributed Clock Synchronization. Every distributed clock
synchronization algorithm usually proceeds in the same way and can be distinguished in
three different phases:

1. Phase: Collection of clock time values. In order to achieve a good precision, the
algorithm must satisfy that in any synchronization period, every node obtains the local clock
state of the global time counter of all other participating nodes. Otherwise, the precision
degrades or the synchronization may completely fail.

2. Phase: Calculation of correction values. Depending on the convergence function
of the synchronization algorithm and on all or some of the collected clock states, every node
calculates a correction value for the local clock representing the global time counter. In the
case of a correction value greater than a predefined precision, the synchronization algorithm
must ensure that either the node deactivates itself or the other nodes ignore it until it is again
synchronized.

3. Phase: Clock correction. Lastly, every node has to apply the correction term from
Phase 2 to the local clock. This is done by the use of the aforementioned virtual clock.
However, in many cases it must be guaranteed that the correction term is bounded by some
maximum value. This is usually formalized in a worst case correction term.

2.2.3 Pulse Synchronization

In contrast to the previously investigated traditional clock synchronization, pulse synchro-
nization refers to the internal synchronization of periodic time intervals instead of a contin-
uously increasing time such that all nodes invoke the pulse indicating the beginning respec-
tively ending of the time period together Cycle time apart. In other words, all nodes invoke
pulses within a short interval that refers to the precision of the pulse synchronization and
afterwards wait for about a Cycle time before invoking again a pulse. In the literature, this
type of synchronization is sometimes referred to as tick or beat synchronization.

The cycle concept used by the nodes is established via the concept of pulse clocks. There-
fore, we denote the pulse clock of processor p j by PC j(t) which abstracts the hardware clock
HC j(t) in the following way:

CHAPTER 2. FUNDAMENTAL CONCEPTS 23

Algorithm 2: Pulse Clock PC j(t): code for p j

Init: HC j := HC j(t), T th
j (t) := Tnom1

upon event HC j(t) = HC j +T th
j (t) do // threshold reached2

HC j := HC j +T th
j (t)3

adjust H j(t)4

T th
j (t) := Tnom +H j(t)5

invoke pulse6

PC j(t) =
⌊

Φth · (HC j(t)−HC j)/T th
j (t)

⌋
7

Periodically increment HC j(t) according to the oscillator frequency and actual drift8

In other words, the time duration between two consecutive pulses equals T th
j (t) mi-

croticks. The constant Tnom defines the nominal number of microticks which represents
the cycle time. However, in many situations it is necessary to adjust the time duration of a
cycle to some extent. On this account, the variable H j(t) represents an adjustable element
which can be externally set.

Note that the value domain of a pulse clock should always be the same with respect to
some predefined threshold value Φth. That is, the pulse clock is periodically cycling from 0
up to a predefined Φth−1 and can be formally expressed as

PC j(t)≡

⌊
Φth ·

HC j(t)−HC j

T th
j (t)

⌋
, (2.4)

where HC j stores the number of microticks of the last pulse invocation.
Since many embedded systems do not support floating point operations, the calculation

of Equation 2.4 incorporates a digitalization error which increases if Φth decreases. For
the rest of this paper, Φth is assumed to be large enough such that the digitalization error
is negligible. On this account, a continuous phase clock can be supposed. Such a clock is
characterized by the fact that it provides a normalized phase variable ϕi = PC j(t)/Φth which
is defined in the range ϕi ∈ [0,1). Definition 7 gives a formal description of this normalized
pulse clocks.

Definition 7 (Phase clock). The phase clock ϕ j(t) of processor p j is a phase variable that
has the following properties:

1. ϕ j(t) ∈ [0,1),
2. dϕ j(t)/dt = 1/T , where T denotes the cycle period and
3. ϕ j = 0 at the beginning of a cycle.

To give a formal definition of pulse synchronization, a definition of the pulse state is
required and presented below according to [DD08]:

Definition 8 (Pulse state). The pulse state P(t) of a system comprising of n nodes at real
time t is defined as

P(t) = (ϕ0(t),ϕ1(t), . . . ,ϕn−1(t)).

The formal definition for a pulse-synchronized set of nodes in the phase domain is given
in Definition 9.

Definition 9 (Pulse synchronization - Phase domain). A set of nodes N is called pulse-
synchronized for a given maximum phase deviation ΦΠ at real time t, if for all nodes
pi, p j ∈ N, either |ϕ j(t)−ϕi(t)| ≤ΦΠ, or |ϕ j(t)−ϕi(t)| ≥ 1−ΦΠ.

CHAPTER 2. FUNDAMENTAL CONCEPTS 24

Similarly to [DD08], the term of a synchronized pulse state is introduced in Definition 10.
It should be noted that in the case that all nodes in a system are pulse-synchronized, we say
that the system has achieved synchronicity. This state corresponds to the term of internal
synchronization. In contrast, time synchronization refers to both the previously introduced
term of external synchronization and internal synchronization.

Definition 10 (Synchronized pulse state). Let G be the set of all possible pulse states of a
system. Then P ∈ G is a synchronized pulse state of the system at real time t, if the set of
correct nodes is pulse-synchronized at real time t.

However, a more interesting definition belongs to the maximum allowed deviation in real
time between a set of pulse synchronized nodes:

Definition 11 (Pulse synchronization - Time domain). A set of nodes N is called pulse-
synchronized with precision Π till real time t0, if for all nodes pi, p j ∈ N and t ≥ t0, pi and
p j are synchronized according to Definition 9 for some given ΦΠ, and there exists some t ′

with |t− t ′| ≤Π such that either ϕi(t) = ϕ j(t ′), or ϕi(t ′) = ϕ j(t).

2.2.4 Clock Desynchronization

Clock Desynchronization is the logical opposite of synchronization and is an interesting and
novel approach, first published by Degesys et al. [DRPN07, PDN07, DN08]. Therein, the
authors propose a self-stabilizing algorithm DESYNC for periodic resource sharing without
the necessity of a global clock. In detail, with respect to the previously defined pulse clocks,
the algorithm guarantees that the nodes eventually invoke their pulses as far away as possi-
ble from all other nodes, i.e., a set of n nodes pulse at evenly spaced time intervals (T/n)
throughout the time period. Furthermore, the algorithm automatically adapts to the actual
number of participating nodes in the system. This can be used for a collision-free TDMA
communication for transmitting messages in a broadcast medium (similar to a round-robin
schedule), or the organization of sleep cycles for energy reduction. However, convergence
has been proven only for fully connected networks, since multi-hop networks may suffer
from the hidden-terminal problem.

Since the clock desynchronization primarily addresses the desynchronization of pulse
clocks, the term pulse desynchronization is used instead. With respect to the definition of
pulse state (Definition 8), pulse desynchronization is formally defined as follows:

Definition 12 (Pulse desynchronization). A set of nodes N = {p1, p2, . . . , pn} is called pulse
desynchronized at real time t, if for all nodes pik , 1 ≤ k < n, with ϕik(t) ≤ ϕik+1(t), the
following holds:

ϕik+1(t)−ϕik(t) = 1−ϕin(t)+ϕi1(t) = 1/n.

Definition 13 (Desynchronized pulse state). Let G be the set of all possible pulse states of a
system. Then P ∈ G is a desynchronized pulse state of the system at real time t, if the set of
nodes is pulse desynchronized at real time t.

Clearly, due to the presence of drift and other influences, the set of nodes of a system will
only approximate the desynchronized pulse state.

2.2.5 Digital Clock Synchronization

Digital clock synchronization assumes an underlying pulse synchronization as an established
basic-level concept such that the nodes can execute in lock-step rounds by periodically re-
ceiving a common pulse. For this, each node pi has an integer variable pi.clock which counts

CHAPTER 2. FUNDAMENTAL CONCEPTS 25

the pulses (or beats) of the underlying pulse model. Digital clock synchronization then aims
at synchronizing all nodes with respect to their clock variables. In the literature, this type of
synchronization is sometimes referred to as round or slot number synchronization. For the
sake of simplicity, if it is clear from context, this type of synchronization is always simply
denote as clock synchronization,

According to Ben-Or et al., a clock synchronized system is defined with respect to the
pulse number as follows [BODH08]:

Definition 14 (Digital clock-synched state). A system is digitally clock-synched at pulse r
with value Clock(r), if at the end of beat r, all nodes have the same clock value, and it is
equal to Clock(r).

Since the counter variable is usually bounded either due to the limited bit width or due to
a limited value domain, the digital clock synchronization problem is expressed with respect
to a modulo operation [BODH08].

Definition 15 (Digital k-Clock synchronization). The digital k-Clock synchronization prob-
lem consists of

1. (Convergence) starting from any state, eventually the system becomes clock-synched
with value Clock(r), and

2. (Closure) from this point on the system stays clock-synched such that at beat r + i it is
clock-synched with value Clock(r)+ i (mod k).

2.2.6 Threats to Clock Synchronization in WSNs

The only attacks considered so far proceed from the assumption of faulty nodes that can
fail arbitrarily. The attacker models presented below are especially aimed at degrading the
time synchronization in wireless networks. Since clock synchronization is usually achieved
through the exchange of time-sensitive messages, it is easy for an adversary to forge and
modify these messages such that the time synchronization degrades or even fails. Differ-
ent aspects, effects, and countermeasures against time synchronization attacks are stated in
[MRS05]. Generally, the attacks can be classified into internal and external attacks.

External Attacks

In contrast to internal attackers, an external attacker does not compromise the nodes or pre-
tends the other network nodes to be a correct node. Instead, they exploit several features of
the easily accessible communication medium. In other words, the content of the exchanged
messages are not modified, but the messages itself may be delayed or destroyed. According
to Ganeriwal et al. [GČHS05], an external attack can affect time-sensitive messages in the
following three ways:

1. The attacker modifies the content of the message.
2. The attacker forges or replays messages.
3. The attacker delays the reception of messages, also known as the pulse-delay attack.

The first two attacks usually affect the integrity of the message and therefore can be detected
by security primitives. However, the presented algorithms in this thesis do not assume the
existence of such primitives. In contrast to the other attacks, the pulse-delay attack is hard to
treat, especially in the case of multi-hop topologies.

Pulse-delay attacks. The pulse-delay attack concerns the delay attack of time-sensitive
messages and was first described by Ganeriwal et al. [GČHS05]. This attack proceeds in
three steps.

CHAPTER 2. FUNDAMENTAL CONCEPTS 26

First, the attacker eavesdrop the communication channel for a new message transmission.
If so, then he buffers a copy of this message. The second phase is performed meanwhile the
first step. Therein the attacker simply jams the communication channel during the transmis-
sion of the time-sensitive message such that the reception at the receiver is prevented. For the
sake of completeness, it is assumed that the jamming cannot be detected at both the sender or
the receiver. Ganeriwal et al. state that the radio transmitting techniques of Direct-sequence
Spread Spectrum (DSSS) and Frequency-hopping Spread Spectrum (FHSS), both used in
many available sensor network platforms, are still vulnerable to broadband jamming. In the
third and last step, the attacker replays the buffered copy of the synchronization message
resulting in a delayed reception.

Wormhole attacks. Wormhole attacks and defenses against these attacks were analyzed
by Hu et al. [HPJ01, HPJ03]. A wormhole attack is a serious threat in multi-hop wireless
networks and is performed in the following three steps:

1. The attacker first gathers the packets or a part of them at one location in the network,
2. then tunnels them to another (possible far away) location,
3. and retransmits the packets or forwards the bits there into the network.

The tunneled transmission is usually a low latency and high bandwidth communication chan-
nel that spans over several hops of the normal wireless transmission range. The transmission
over such a channel leads to a sooner reception of the packets at the destination. However,
such “wormholes” may also delay or even drop the time-sensitive packets.

Wormhole attacks are especially problematic for establishing routing protocols in ad-hoc
multi-hop networks, since a node may wrongly assume that it is in the transmission range
of some other node. Hu et al. proposed a defense against wormhole attacks, called packet
leashes. A leash is the additional information added to the packets in order to restrict the
transmission distance. They distinguish between geographical and temporal leashes. The
geographical leash restricts the distance of packet transmission. The temporal leash restricts
the lifetime and consequently again the communication distance of a packet. Based on the
leash information, the receiver is able to detect if the communication delay of a packet is
smaller than the leash allows. However, such an approach requires synchronized clocks
which again illustrates the importance of clock synchronization in wireless networks.

Denial-of-Service (DoS) Attack. The most critical attack in WSNs is radio jamming. This
means that the attacker continuously transmits unwanted and disruptive packets such that
he occupies the full range of communication bandwidth. As a result, the concerned sensor
nodes in that region are unable to communicate with each other. This attacker model is
sometimes referred to as a babbling idiot failure of the concerned sensor node. However,
the attacker can also be a malfunction of a device which suffered from, for example, strong
radiation resulting in an erroneous state and consequently in such a misbehavior. The size
of the affected region heavily depends on the available power, height above ground, antenna
design, and obstacles [WSS03] in front of the attacker. The most serious problem of jamming
attacks is that either nothing or only with prohibitive amount of cost and complexity can be
done to avoid or prevent the network against it.

On this account Wood et al. elaborated an alternative approach which exploits that fact
that WSNs usually yield large redundant multi-hop networks due to the small radio range
of an individual sensor node or attacker with respect to the large size of the network dis-
tribution [WSS03]. In detail, the network tries to obtain the information about the location
and shape of the jammed region and consequently excludes this area from routing and other
communication dependent functions. This is done by the use of a jamming detection and
mapping protocol. In detail, nodes within the border of a jammed region notify the outside

CHAPTER 2. FUNDAMENTAL CONCEPTS 27

world of this dilemma. The receivers outside this regions the form groups which collaborate
with each other such that the affected region is shielded from the rest of the world.

Internal Attacks

An internal attacker may takeover a certain number of sensor nodes in the sense that it knows
all secret keys and consequently is able to completely control these nodes. These nodes
then are called compromised nodes. As a result, compromised nodes appear as legitimate
nodes to the other ones and can forge, modify, or eavesdrop messages. Note that a non-
compromised node may also misbehave due to the cause of faults or environmental effects
and a subsequent error in the system state. Such nodes are also dedicated as internal attacks.
Generally, internal attacks ca be classified according to the following fault types:

Definition 16 (Crash fault). A node suffers from a crash fault, if it stops executing the algo-
rithm at some time.

Definition 17 (Omission fault). A node suffers from an omission fault, if it randomly omits
the transmission of messages.

Note that for sake of simplicity, message losses due to environmental influences and
interferences are assumed to result from omission faults at the origins although the sender is
non-faulty.

Definition 18 (Timer fault). A node suffers from a timer fault, if it does not satisfy the
bounded drift assumption of Definition 5. The node transmits messages with a minimum
inter-transmission time in order to prohibit radio jamming.

Definition 19 (Byzantine fault). A node suffers from a Byzantine fault, if it behaves arbitrar-
ily, i.e., the receivers may receive messages with different arbitrary contents. Nodes suffering
from Byzantine faults can also collude to perform the worst case damage. The node transmits
messages with a minimum inter-transmission time in order to prohibit radio jamming.

Note that the assumption of a minimum inter-transmission time as stated in Definition 18
and Definition 19 can be achieved by the use of a hardware implemented guardian. In the
case of Byzantine faults in a broadcast medium, the receivers usually receive the same pos-
sible faulty message. On this account, an additional fault type must be defined:

Definition 20 (Consistent fault). A node suffers from a consistent fault, if it behaves Byzan-
tine, but the receivers either receive the same message or no message at all.

Sybil attacks. A compromised node may present multiple identities in order to undermine
the redundancy mechanisms. Douceur first analyzed such an attack in the context of peer-
to-peer networks and named it Sybil attack [Dou02]. He showed that it is impossible to
defeat a Sybil attack without the existence of a trusted and logically centralized authority that
certifies identities. Later, Newsome et al. elaborated Sybil attacks in WSNs in more detail
and proposed a taxonomy of the different forms of the Sybil attack [NSSP04]. They further
elaborated a promising approach against the Sybil attack named random key distribution
which associates the key of a node with its identity.

2.2.7 Classification of Clock Synchronization Algorithms

During the last few decades, an enormous amount of more than hundred clock synchro-
nization algorithms for distributed systems and WSNs, respectively, were proposed. How-
ever, only during the last few years more emphasis was put on clock synchronization in

CHAPTER 2. FUNDAMENTAL CONCEPTS 28

wireless networks since traditional algorithms designed for wired systems do not provide
the robustness especially required in WSNs. Typical aspects of WSNs which have to be
considered are the limited energy of battery-powered devices, the limited bandwidth of the
broadcast medium, and especially the unstable network connection (e.g., high population of
nodes, small communication range, hidden terminal problem, interference problems, multi-
hop networks, changing topologies in mobile ad-hoc networks, omission failures, high com-
munication jitter, etc.). The resulting large variety of synchronization algorithms makes the
identification and selection for a specific application without an appropriate classification
technique nearly impossible. On this account, a well suited taxonomy that covers all these
algorithms is inevitable. Therefore, the classification techniques according to Sundararaman
et al. [SBK05] and Römer et al. [RBM05] are combined with our own contribution and is
presented in Figure 2.2.

It should be noted that the presented taxonomy primarily addresses the synchronization
of clocks with respect to physical time (i.e., external clock synchronization) and does not
consider algorithms which are aimed solely on the internal synchronization for providing
synchronized logical clocks. Further note that this thesis presents a scheme for pulse syn-
chronization without the approximation to an external time reference. However, several
aspects of the classification methodologies also fit to purely internal (logical) clock synchro-
nization (e.g., pulse synchronization or digital clock synchronization).

According to Sundararaman et al., a synchronization protocol can be classified with re-
spect to the synchronization issues and application-dependent features [SBK05]. The differ-
ent classification entities according to these aspects are illustrated in Figure 2.2.

Asymmetric versus Symmetric

Asymmetric clock synchronization algorithms require the existence of dedicated nodes that
serve as synchronization masters or play a different role than other nodes. A typical example
is the master-slave clock synchronization which corresponds to the client-server principle.
Therein, a dedicated node acts as the master (server) that provides the reference time and
the others as the slaves (clients). The slave then synchronizes their clocks according to
the master. Note that this centralized approach implies several problems for WSNs and are
already discussed within the distribution transparencies. This approach is sometimes referred
to as server-based or centralized clock synchronization.

Within a symmetric clock synchronization scheme, each processor executes the same al-
gorithm and consequently plays the same role. A typical symmetric clock synchronization
algorithm is a peer-to-peer clock synchronization protocol, where each node communicates
with each other in order to establish clock synchronization. This prevents the existence of
a single point of failure as it would be in the case of a master-slave synchronization fash-
ion. Furthermore, the peer-to-peer scheme usually provides more flexibility, adaptivity, and
robustness which are important requirements in WSNs. This approach is also known as
server-less or distributed clock synchronization.

Internal versus External

These two aspects of a synchronization algorithm were already introduced in the previous
section. In short, internal clock synchronization aims at reducing the minimizing the preci-
sion among the participating clocks.

In contrast, external clock synchronization requires the presence of an external standard
source of time such as Universal Time Coordinated (UTC) that provides a reference time.
The nodes then have to synchronize according to this reference time such that the accu-
racy with respect to this reference time and consequently the precision is minimized. Note

CHAPTER 2. FUNDAMENTAL CONCEPTS 29

Synchronization
Protocol

Synchronization
Issue

Internal
External
Rate synchronization
State synchronization
Asymmetric
Symmetric
Continuous
On-demand
Clock correction
Timescale
transformation
Probabilistic
Deterministic
Sender-to-receiver
Receiver-to-receiver
Global
Local

Application-
dependent
Features

Network
topology

Single-hop
Multi-hop
Stationary
(Static)
Mobile
(Dynamic)
Engineered
Ad-hoc

Approach
Mac-layer
based
Standard

Figure 2.2: Classification of clock synchronization protocols in WSNs.

that external synchronization implies that the synchronization is performed in a master-slave
fashion.

Rate versus State

Rate synchronization concerns the calibration of the clock frequency and consequently its
clock drift in order to establish an approximate agreement with respect to the clock drift
among all participating nodes. As a result, all clocks measure the same interval duration
between the global appearance and disappearance of an event. Note that rate synchronization
is not necessary for establishing a simple logical time synchronization like the Lamport’s
happens-before relation.

Contrary, state synchronization belongs to the agreement of all nodes’ clock values such
that all clocks take the same value at some specific time instant. This is necessary for com-
bining the temporal relation between the observance of events at different nodes.

Continuous versus On-demand

Continuous and on-demand clock synchronization belong to the lifetime aspect of a clock
synchronization protocol during which the condition of synchronized clocks is feasible. In
classical wired distributed system, the continuous approach is a well established method.

CHAPTER 2. FUNDAMENTAL CONCEPTS 30

Therein, the nodes are continuously, usually in a periodic manner, resynchronized such that
the synchronization precision among all clocks can be bounded to some value. The periodic
resynchronization approach is sometimes referred to proactive synchronization.

In contrast, on-demand synchronization or reactive synchronization does not require the
clocks to be periodically synchronized. Instead, the clocks are free-running until the recogni-
tion of some event. This strongly reduces the communication complexity and consequently
energy consumption. According to Römer et al. [RBM05], there exist two different kinds of
on-demand synchronization, namely event-triggered and time-triggered:

• Event-triggered on-demand synchronization exploits the fact that synchronization is
only required immediately after the recognition of an event. In other words, the
occurrence of an event is time-stamped, and afterwards triggers a resynchronization
point.The real time-stamp with respect to the other clocks can then be back calculated
after synchronization is completed. Post facto synchronization is a typical representa-
tive of this synchronization scheme [EGE02].

• Time-triggered on-demand synchronization is also known as pre facto synchronization
and is used if an event (e.g., sensing or actuating) has to be triggered simultaneously
at many different nodes. This can be either performed immediately where the nodes
are globally triggered by the reception of a special message, or via anticipated syn-
chronization. The latter type requires that the nodes are synchronized such that they
autonomously perform the dedicated task at the same time instant somewhere in the
future and in the absence of a globally visible triggered event. Anticipated synchro-
nization is especially important in networks where such nodes are several hops away
from the other nodes.

Clock Correction versus Timescale Transformation

Clock synchronization can be performed in two different ways. Clock correction is based
on the adjustment of the local clocks according to the clock state and/or the clock rate. The
local clocks can be corrected either on-demand or continuously. According to [AP98] and
[RSB90], clock state correction methods are based on the obtained clock estimates of the
neighboring nodes and can be divided into three general groups as stated below. Note that
the clock estimates may be either performed through broadcasting, remote clock reading,
or other techniques. In the case a history of several consecutive clock readings are avail-
able, a node may also perform linear regression [EGE02] or simple averaging to estimate a
neighbors clock more precisely.

• Convergence-averaging algorithms: Algorithms based on this method apply a conver-
gence function on a set of clock estimates of the neighboring nodes. The node then
adjusts the local clock to the result of the function. As the name implies, the conver-
gence function calculates some kind of averaging (e.g., midpoint, median, mean, etc.).
In [Sch87], Schneider gives an overview of several fault-tolerant convergence functions
developed before 1987 that additionally tolerate Byzantine faults. Generally, resilience
against up to f malicious faults is provided by excluding the f lowest and f highest
values in the set of clock estimates before applying the convergence function. Another
technique is based on discarding those clock estimates that exceed some threshold. An
overview of other convergence functions is also presented in [AP98].

• Convergence-non-averaging algorithms: According to [RSB90], this technqiue cor-
responds to discrete-update algorithms where all nodes periodically synchronize to a
single synchronizer. However, in contrast to a master-slave principle, all nodes seek to
become this single synchronizer. This election mechanism may be established through
a leader election algorithm. Alternatively, the nodes may initially agree on a common

CHAPTER 2. FUNDAMENTAL CONCEPTS 31

schedule such that each node has the same probability to become the synchronizer.
Fault tolerance is usually achieved through detection of the faulty synchronizer and a
consequent re-election of a new synchronizer. In other words, in the case the synchro-
nizer is faulty, the other nodes take over and synchronize without the faulty node.

• Consistency algorithms: Consistency algorithms establish agreement among the clock
values of all nodes by using an interactive consistency algorithm [LSP82]. In the
presence of Byzantine nodes, this algorithm ensures that each non-faulty node has the
same consistent (possible faulty) view of all other nodes in the network. A node then
usually selects the median from the consistent set to be the new clock value. However,
in contrast to the convergence based algorithms, the consistency algorithms have much
more overhead with respect to the information exchanges.

In contrast, the timescale transformation approach establishes a common notion of time
by leaving the clocks untethered and transforming the local time of one node into local times
of other nodes if required (e.g., for reasons of comparison). This is usually done by main-
taining a table which contains the transformation values for each participating node in the
network. Event-triggered on-demand clock synchronization can be grouped into timescale
transformation techniques.

Probabilistic versus Deterministic

As the name implies, probabilistic clock synchronization algorithms provide a probabilistic
guarantee on the worst case synchronization precision respectively accuracy. Probabilistic
algorithms usually require fewer message transmission. This is also the reason why most
wireless protocols are of this type.

The deterministic upper bound of the synchronization precision in deterministic clock
synchronization protocols are of peculiar interest in distributed real-time systems.

Sender-to-receiver versus Receiver-to-receiver

Sender-to-receiver clock synchronization is a standard approach which generally is per-
formed in three steps:

1. A receiver requests a timestamp from the sender.
2. The sender sends a time-stamped message back to the receiver.
3. Based on the received time-stamp, the receiver synchronizes its clock to the sender and

additionally calculates the end-to-end delay by measuring the round-trip time.
A disadvantage of this method is that the communication jitter in wireless networks is usually
very high. As a result, the calculation of the round-trip time usually has to be based on the
average of several measurements which consequently implies an increase in the message
overhead. The sender-to-receiver approach can be sub-classified into one-way dissemination
and two-way exchange.

• One-way dissemination allows the transmission of time information only from the syn-
chronized nodes to the unsynchronized nodes and not conversely. However, one-way
synchronization schemes are incapable of handling external attacks like pulse-delay
attacks [GPČS08].

• Two-way exchange based algorithms synchronizes the nodes by exchanging packets
between synchronized and unsynchronized nodes.

In the presence of multi-hop networks with high propagation delay, one-way protocols usu-
ally result in high average synchronization error and the two-way protocols result in high
variance but low average error [HDQK09]. It should be noted that some synchronization
algorithms rely on a N-way exchange such that both the initiator node and the receiver node

CHAPTER 2. FUNDAMENTAL CONCEPTS 32

can synchronize their clocks according to a recorded set of up to N time samples. A typical
example for such an approach is the SPS-SE protocol proposed in [San07].

Receiver-to-receiver clock synchronization exploits the existence of a physical broadcast
medium. In detail, the broadcast medium provides the claim that any two nodes receive
the same synchronization message in a single-hop transmission at nearly the same time. By
exchanging the reception times of a reference broadcast among both receivers, the nodes
can synchronize to each other. The main advantage of this approach is that it eliminates
the communication delay that does not belong the receiver.3 The only disadvantage may be
the fact that this approach does not allow the receivers to synchronize to the sender of the
reference message.

Global versus Local

This classification type belongs to the scope of synchronization which defines the nodes
in the network that have to be synchronized. For instance, global clock synchronization
protocols are aimed at the synchronization of all nodes within a connected network that may
be a large multi-hop topology. This can be done either by a completely distributed algorithm,
or step-wise by first executing a clustering algorithm and selecting cluster heads for inter-
cluster and intra-cluster clock synchronization. This synchronization type is also known as
network-wide clock synchronization.

Local clock synchronization protocols are aimed at the synchronization of a subset of
nodes in the network, usually a cluster where each node is in the transmission range of each
other node. For instance, the focus may be the synchronization of all nodes which are at
most one hop away from each other to a single cluster-head. Such algorithms can be part
of a network-wide synchronization protocol (e.g., by creating a clustered network through a
clustering algorithm).

A special case of the local synchronization is the pairwise synchronization approach
which is targeted on high precision clock synchronization between pairs of neighbor nodes
(either through sender-to-receiver or receiver-to-receiver based techniques).

Single-hop versus Multi-hop Network Topology

A single-hop network is a fully connected network where each node is capable of communi-
cating with each other node in the network. Many synchronization algorithms assume such
a network topology.

In WSNs, however, the nodes usually randomly distributed and thus span in an unco-
ordinated way over several hops resulting into a multi-hop network topology. This makes
the synchronization more complex, especially for the startup synchronization. Furthermore,
each hop degrades the synchronization precision to some extent. Note that if the network is
created in a controlled and coordinated way, then intermediate nodes can be dedicated for
acting as a gateway between several distinct network domains.

Static versus Dynamic Network Topology

In a static network topology, or also known as a stationary network, the nodes in the network
do not change their local position. This simplifies the synchronization strategy.

In contrast, the structure of a dynamic or mobile network topology may change over
time, that is the actual communication links may disappear and new links may be created
dependent on the communication range of a sensor node. This requires robust and adaptive
synchronization algorithms as presented in this thesis.

3Note that the propagation delay in a wireless medium is usually negligible compared to other delays.

CHAPTER 2. FUNDAMENTAL CONCEPTS 33

Infrastructure-dependent versus Ad-hoc Network

Infrastructure-dependent networks are structured artificially (e.g., hierarchically) in order
to provide a fixed infrastructure for clock synchronization or other services. Examples are
networks where compositional design evolves into a structured and robust network topology
(e.g., Triple Modular Redundancy (TMR) systems, dedicated gateway nodes for cluster-wise
synchronization, etc.). A further example belongs to the cellular wireless networks used for
mobile phones. However, in WSNs the large amount of nodes makes the manual positioning
of the nodes nearly impossible and consequently belong almost exclusively to the type of
ad-hoc networks.

Ad-hoc networks are networks which are created on-demand for a specific purpose with-
out any available infrastructure. In contrast to infrastructure-dependent networks, the nodes
in ad-hoc networks act as an end system and additionally as a network element [Dre07,
p. 68].

Several synchronization algorithms for ad-hoc multi-hop networks assume a structured
network (e.g., tree-like structure or clustered network). Such structures can be established
through the execution of special distributed algorithms. The different network structures are
explained in more detail below. Whereas structured networks usually require a re-structuring
in the case the network topology changes (e.g., due to mobile nodes), synchronization algo-
rithms based on unstructured networks are mostly immune to topology changes.

Unstructured. Unstructured networks do not make any assumption on the connectivity
among the sensor nodes. However, since unconnected networks make no sense in the case
of clock synchronization, the network is assumed to be at least connected. In the case fault
tolerance is required, additional assumptions may be required. For instance, a k-connected
network is a network where each node has at least k disjoint paths to any other node.

Clock synchronization algorithms designed for unstructured networks do not try to first
discover the network and then establish some kind of structure. In contrast, such algorithms
exchange information in the same way between any pair of groups or nodes. In other words,
any node executes the same algorithm and there exist no dedicated nodes that serve as a
gateway or master node. Such algorithms are typically completely local, that is, a node does
not require the knowledge about the global state (e.g., who is the cluster head). Furthermore,
such algorithms are very effective in the presence of mobility, because they do not require
to maintain and update the global state about the network structure in the case the topology
changes.

Cluster structure. Many clock synchronization algorithms assume the existence of a clus-
tered network. A cluster typically consists of a single cluster head (CH) and several cluster
members. Each node in a cluster can communicate with each other node in the same clus-
ter. A clustered network is a network where the nodes are partitioned into a set of clusters.
In large ad-hoc multi-hop WSNs, such a partitioning is usually established by executing a
clustering algorithm. For instance, the algorithms proposed in [MK06, MFLT05, NOKM08]
divide the nodes into non-overlapping and approximately equal-sized clusters. An excellent
survey on clustering algorithms is given in [AY07].

Tree structure. A tree structure is the most desired one in the fault-free case, because clock
synchronization in such networks is very deterministic and achieves the best precision and
accuracy. Furthermore, the root of the tree is assumed to be a more powerful device which is
synchronized to an external time server (e.g., UTC time). Algorithms that are based on a tree
structure usually make use of a pairwise synchronization along the edges of the tree. Similar

CHAPTER 2. FUNDAMENTAL CONCEPTS 34

to the clustering algorithms, there exist a lot of algorithms that construct a tree structure out
of an unstructured ad-hoc multi-hop network (e.g., [vGR03]).

Ring structure. A physical ring structure is a topology structure that hardly occurs in a
WSN. However, there exist algorithms that create a virtual ring which is a communication
path that passes each node at least once. A typical synchronization protocol that assumes
such a structure is the all-node-based synchronization approach as stated by Li et al. in
[LR06]. According to [AP98], clock synchronization algorithms that are based on a virtual
ring scheme are classified to be symmetric or peer-to-peer based.

MAC-layer Based versus Standard Synchronization

The MAC-layer is part of the Data Link Layer of the Open System Interconnection (OSI)
model and is responsible for providing a reliable and collision-free communication. The
MAC-specific services may depend on the underlying physical layer.

Whereas standard synchronization protocols do not utilize the MAC-specific services,
MAC-layer based protocols exploit some specific features provided by the MAC-layer in
order to reduce energy consumption or communication jitter (e.g., through the support of
MAC-layer time-stamping).

CHAPTER 3
System Model of WSNs

OVERVIEW

The system model enables a common foundation for a formal analysis and comparison of
the synchronization protocols. Therefore, we first define the used computational and com-
munication model and then introduce an appropriate clock model.

35

CHAPTER 3. SYSTEM MODEL OF WSNS 36

3.1 Communication Model

With respect to WSNs an appropriate system model is the bounded delay model in a message-
passing system that supports a broadcasting environment. For this, we first adapt the formal
definition of a message-passing system from Attiya et al. [AW04]. In such a message-
passing system, the processors exchange information by sending messages over commu-
nication channels. In wireless networks, these communication channels belong to the trans-
mission range of a node through the wireless medium. The connections among the nodes
can be represented by a directed communication graph where the nodes correspond to the
component of the system and a directed link from node pi to p j is present if and only if p j is
within the transmission range of pi. If the connection is bidirectional, then both nodes are in
the transmission range of each other. In this case we say that both nodes are neighbors.

The pattern of connections between the nodes is the topology of the system. In this
thesis, we will only treat connected topologies. We denote the network to be the collection
of all connections in the system. An algorithm is based on the topology of a transition
system and consists of the local program of all nodes in the system. The local program of
processor pi is modeled as a state machine with state set Qi. A message-passing system
consists of n processors p0, . . . , pn−1 where each processor corresponds to a distinct node or
component in the communication graph. We say that an algorithm is anonymous, if it does
not depend on the existence of unique identifiers for the nodes. Consequently, all processors
have the same state machine. Additionally, we say that an algorithm is uniform, if it does not
depend on any system-specific parameters (e.g., system size, topology, maximum number
of connections, etc.). Since we do not assume a point-to-point communication, rather a
broadcast communication, each node pi consists of a single inbu fi component which holds
all messages that have been delivered to pi but have not yet been processed with an internal
computation step.

In a message-passing system, there exist two kinds of events: Delivery and computation
events. The delivery of message m from pi to p j, denoted by event del(i, j,m), is modeled
via a First-in First-out (FIFO) queue. Therefore, let queuei, j contain all messages sent by
processor pi to p j, but not yet delivered by p j. If pi sends a new message m to p j, then
m is enqueued. In the case p j delivers message m, that is it receives m from pi, then m is
dequeued from the front of the queue. Consequently, a bidirectional connection between
pi and p j is modeled by two FIFO queues queuei, j and queue j,i. The computation event
comp(i) represents an atomic computation step of processor pi. We further assume an inter-
leaving computation model. Therein, at each time instant only a single processor is allowed
to execute an atomic computation step. Each computation consists of an internal computa-
tion and a possible single communication operation (i.e., a transmission or delivery event).
However, in wireless networks the harsh environment may induce message losses during
the transmission due to unreliable communication channels and other environmental effects
(e.g., hidden terminal problem, interferences, etc.). In this case, we assume that the message
loss results from an omission failure at the sending node. In other words, we assume that the
communication network is reliable and all faults belong to the nodes.

The state of a message-passing system at a particular time is described via the config-
uration C and comprises the state of every processor and the content of every queue, that
is

C = (q0, · · · ,qn−1,queue1,2,queue1,3, · · · ,queuei, j, · · · ,queuen,n−1)

where qi ∈ Qi is the state of pi, 0 ≤ i < n, and queuei, j, i , j, is the FIFO queue from pi to
p j. Based on the definition of the system state, the future behavior can be determined solely
from its current state.

CHAPTER 3. SYSTEM MODEL OF WSNS 37

The behavior of a system over time is expressed as a sequence of configurations Ci,
i≥ 0, alternating with events Φi which can be either a computation or delivery event. In our
case, such a sequence usually must satisfy two conditions: Safety and liveness condition.
A safety condition holds in every finite prefix of E. In contrast, a liveness condition is a
logical predicate that eventually holds a certain (or infinite) number of times. In the case
the sequence satisfies all required safety conditions, then we say that this sequence is an
execution, denoted as E = C0,Φ1,C1,Φ2, · · · . If an execution E additionally satisfies all
required liveness conditions, then we speak about an admissible execution.

In our bounded delay computation model, an execution is admissible, if each processor
infinitely often performs computation events (processors do not fail) and every message sent
is eventually delivered within a bounded transmission delay. The schedule of an admissible
execution is an admissible schedule.

An execution segment α(E) is a finite (or infinite) sequence of the form

α(E) = C0,Φ1,C1,Φ2, · · ·

which ends in a configuration in the case α is finite and satisfies the following two conditions:
• If Φk = del(i, j,m): In this case, m is the next message present in the FIFO queue

queuei, j, that is m is the oldest message in queuei, j which is then dequeued and after-
wards added to the inbu fi component of pi resulting in a change in configuration such
that Ck−1ΦkCk with Ck−1 ,Ck.

• If Φk = comp(i): Based on the actual state of pi and the set of messages stored in the
inbu fi component, pi performs an internal computation step, that is it changes its state
from qi to q′i according to its transition function and adds at most one message m to
each FIFO queue queuei, j where p j is a neighbor of pi. This transmission behavior
realizes a broadcast communication.

In the case the starting configuration C0 of α is an initial configuration, we simply say that
α is an execution of the specified algorithm. The schedule (or schedule segment) of an exe-
cution (or execution segment) E is the corresponding sequence of events S(E) = Φ1,Φ2, · · · .
In the following, if we talk about executions we always consider timed executions. A timed
execution is an execution that globally associates a nonnegative real number with each event
(i.e., the time at which that event occurs). We assume that the time starts at 0 and strictly
increases for each individual node. Note that events that occur at the same time must not
occur at the same processor.

3.1.1 Bounded Transmission Delay

The communication delay in WSNs is highly nondeterministic due to its contention-based
media access strategy. Generally, the delay of a message between sending it from a sender
to a receiver involves the following five parts.

1. Send time [tsend]: The time between the start of message construction at the sender and
the time instant when the message was passed to the MAC layer. This time duration
may be highly variable, because it includes delays introduced by the operating system
(e.g., scheduling delays, interrupt handling, etc.).

2. Access time [tacc]: The time the sender waits for a clear channel assessment such that
it thereafter is able to start a highly probable collision-free transmission over the com-
munication channel. This time duration strongly depends on the implemented media
access strategy and its parameter configuration. In wireless networks, the contention-
mechanism is usually based upon a Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) mechanism with a backoff scheme, that is if the sender per-
ceives an occupied media, then it postpones the transmission by a random backoff

CHAPTER 3. SYSTEM MODEL OF WSNS 38

until a clear channel assessment is identified. This time duration strongly varies due
to the exponentially increasing backoff delay after each additional backoff until the
backoff counter reaches a preconfigured maximum number. On this account, this part
introduces the most significant delay jitter or the message transmission may be even
aborted.
Note that we do not assume the existence of a Request To Send / Clear To Send (RT-
S/CTS) strategy which consequently implies the high possibility of hidden terminal
problems. The hidden terminal problem occurs, if two nodes A and C are not in the
transmission range of each other and both want to communicate at the same time to
node B which is in the transmission range of both. As a result, the messages from A
and C will collide at B.

3. Serialization delay [tsd]: This delay corresponds to the time between the start of trans-
mission or reception and the end of transmission or reception of a message at the sender
or receiver, respectively, and strongly depends on the bit rate and the amount of bytes
to be transmitted. We assume that this delay is the same at the sender and the receiver.

4. Propagation delay [tprop]: This delay corresponds to the amount of time it takes for
a bit to be transferred from the sender to the receiver over the wireless medium and
depends on the distance between two nodes. However, since the propagation speed in
a wireless medium is about v = 200.000km/s and the worst case distance in WSNs is
about 200−300m, this part is usually neglectable.

5. Receive time [trecv]: The time the MAC layer at the receiver requires to completely
pass the received message to the next upper layer, after the last bit of the message was
physically transferred. Similarly to the send time, the delay jitter of this communication
part mainly results from the operating system.

Based on the informal elaboration of the communication delay, we can now formally
define the message delay of a message to be the time duration between the computation
event that sends the message and the computation event that processes the message.

We further assume that, as long as the message is eventually delivered, the message delay
d(m) of message m is always in the range d(m) ∈ [d,d + ε] where d defines the constant
part of the communication delay and ε the additional jitter of the communication delay.
Furthermore, we assume a uniform distribution of the message delay for all communication
channels. Note that if we assume the existence of a sophisticated time-stamping technique
established below the MAC layer, then the send time tsend , the access time tacc, and the
receive time trecv and their corresponding delay jitters are not included in the final message
delay. In this case, we the message delay reduces to d(m) = tsd(m).

3.1.2 Complexity Measures

Usually, there exist two important complexity measures: Message and time complexity.
However, the determination of both measures requires a notion of algorithm terminating.
Therefore, we assume that the state Qi for all processors pi, 0 ≤ i < n, includes a subset
of terminated states Ti ⊆ Qi. We say that the algorithm (or system) has terminated, if all
processors are in terminated state and all transmission queues queuei, j are empty.

Definition 21 (Message complexity). The message complexity of an algorithm is the maxi-
mum, over all possible admissible executions of the algorithm, of the total number of message
broadcasts.

Definition 22 (Time complexity). The time complexity of an algorithm is the maximum time
until termination, over all possible admissible executions of the algorithm, in which the
maximum message delay is at most one.

CHAPTER 3. SYSTEM MODEL OF WSNS 39

3.2 Attacker Model

Similar to Ganeriwal et al. [GPČS08] we assume the existence of an omnipresent but com-
putationally bounded adversary that controls a distinct number of communication channels
in the sense that she inserts, modifies, eavesdrops, and blocks arbitrary messages.

We assume the existence of only internal attacks, i.e., the faulty nodes are compromised
and controlled by an adversary that knows all secret keys for an authorized communication
with the other nodes within the network. We further exclude the presence of Sybil attacks.
External attacks like jamming or pulse-delay attacks are also beyond the scope of this thesis.

3.3 Clock Model

This thesis primarily elaborates a distributed algorithm for Byzantine-fault tolerant self-
stabilizing pulse synchronization in WSNs. On this account, we consider the already in-
troduced concept of phase clocks as stated in Definition 7 and assume that each node pi,
0 ≤ i < n, is equipped with a phase clock ϕi(t) that acts according to the frequency of the
underlying hardware clock HCi. Consequently, we take on the notion of pulse state (Defini-
tion 8) and pulse synchronization (Definition 9). We further assume a bounded drift model
as stated in Definition 5 with the maximum drift rate ρ among all participating nodes. There-
fore, we can redefine the phase clock to a drifting phase clock as follows:

Definition 23 (Drifting phase clock). Let ρ be the maximum drift rate of a hardware clock
among all nodes in the network and T be the nominal real-time duration of a cycle period.
The phase clock ϕ j(t) of processor p j is a phase variable that has the following properties:

1. ϕ j : t 7→ [0,1) = ϕ j(t),
2. ∀t0,∆ t with 0 < ∆ t� T · (1−ρ) and ∆ϕ = ϕ j(t0 +∆ t)−ϕ j(t0) , 0:

• if ∆ϕ > 0: (1+ρ)−1 ≤ T · ∆ϕ

∆ t ≤ (1−ρ)−1

• if ∆ϕ < 0: (1+ρ)−1 ≤ T · 1+∆ϕ

∆ t ≤ (1−ρ)−1

3. and ϕ = 0 at the beginning of a cycle.

Note that within this thesis, the above definition of the bounded drift is sometimes simply
stated as (1+ρ)−1 ≤ T · dϕ j(t)

dt ≤ (1−ρ)−1 for sake of simplicity, but should be interpreted
as defined in Definition 23.

Finally we assume that the the drift variation |dρ(t)/dt| is bounded by ϑ as stated in
Definition 6 and that ϑ is so small for a given resynchronization interval that it can be
assumed to be neglectable (ϑ ≈ 0), i.e., we have a constant rate model.

3.4 Problem Statement

We assume that each node pi is equipped with a unique identifier idi. A node communicates
via broadcasting with a bounded message delay in the range [d,d + ε].We also assume a
neglectable processing time of π = 0 time units. Each node is equipped with a local drift-
ing phase clock ϕi(t) with a nominal cycle time of T real-time time units and a bounded
drift where ρ is the maximum drift rate among all nodes. This enables the definition of
a non-faulty node and a non-faulty communication network as stated in Definition 24 and
Definition 26. We additionally define both terms in the perfect case.

Definition 24 (Non-faulty node). A node is non-faulty at time t if for time t ′ ≥ t, it behaves
according to its algorithm, processes messages in no more than π time units, has a drifting

CHAPTER 3. SYSTEM MODEL OF WSNS 40

phase clock with a bounded drift, and has a neglectable drift variation. A node that is not
non-faulty is assumed to be Byzantine faulty as stated in Definition 19.

Definition 25 (Perfect node). A node is perfect if it is non-faulty and has a bounded drift of
ρ = 0.

Definition 26 (Non-faulty communication network). A communication network is non-faulty
at time t if all broadcasted messages m at time t ′ ≥ t are received by the neighboring non-
faulty nodes with a bounded message delay of d(m) ∈ [d,d + ε] time units.

Definition 27 (Perfect communication network). A communication network is perfect if it is
non-faulty and for each message m, d(m) = 0.

Definition 28 (Coherent system). A system is coherent at time t if the communication net-
work is non-faulty and there are at least n− f non-faulty nodes.

Definition 29 (Fault-free system). A system is fault-free or non-faulty at time t if the com-
munication network is non-faulty and all n nodes are non-faulty.

Since we do not restrict our attention to simple single-hop networks and the fact that a
multi-hop topology requires some kind of redundancy in order to tolerate Byzantine nodes,
Definition 30 realizes such a measure of redundancy and is termed k-connected network.

Definition 30 (k-connected). A communication network is called k-connected, if there exist
at least k disjoint paths between any two non-faulty nodes.

Definition 31 formalizes the final synchronization problem. Note that the definition re-
quires a fault-free system for converging, but then still maintains synchronicity in a coherent
system. This may differ to other definitions in the literature. Informally, the goal of an algo-
rithm solving this problem is to reach a synchronized pulse state in a fault-free system which
is then maintained even in a coherent system. Note that we sometimes say that a system
or network achieved synchronicity which means that it entered a synchronized pulse state.
The second closure condition ensures that even faulty nodes do not broadcast more than one
message during one complete cycle. This is feasible since we assumed that faulty nodes do
not perform jamming or Sybil attacks. However, within the wireless communication we have
to consider the case a single message originating from a faulty node can disrupt the message
originating from another node. As already mentioned we assume that such a message loss is
assumed to be an omission failure from the sender node. In other words, the communication
network is always assumed to be non-faulty and the number of faulty nodes must be chosen
large enough in order to have a neglectable probability of additional disregarded message
losses. Clearly, this requires a high redundant communication network as they commonly
exist in WSNs.

Definition 31 (Self-stabilizing pulse synchronization problem). A system solves the self-
stabilizing pulse synchronization problem, if the following two conditions hold:

• Convergence: Starting from an arbitrary system state, if the set of non-faulty nodes of
a fault-free system reaches a synchronized pulse state according to Definition 9 after a
finite amount of time.

• Closure: If P(t0) is a synchronized pulse state of the system at real-time t0, then ∀t ≥ t0,
1. the pulse state P(t) of a coherent system at real-time t is a synchronized pulse

state, and
2. each (non-faulty or faulty) node broadcasts at most one message in any interval

[t, t +T · (1+ρ)].

CHAPTER 4
Related Work

OVERVIEW

Time synchronization in wireless networks was given a lot of attention during the last
decades. As a result of intensive research, manifold approaches and protocols have been
proposed. This chapter covers only a few of them which are relevant with respect to this
thesis. Since we discuss different aspects of time synchronization mechanisms, we partition
the related work into the area of the different synchronization approaches. Therefore, Sec-
tion 4.1 and Section 4.2 first present selected resilient clock synchronization protocols which
are asymmetric and symmetric, respectively. Section 4.3 then discusses recent publications
in the area of self-stabilizing pulse synchronization protocols that are resilient against Byzan-
tine faults. Finally, Section 4.4 gives a short overview about related work for establishing
digital clock synchronization.

41

CHAPTER 4. RELATED WORK 42

4.1 Resilient Clock Synchronization

This part captures selected works during the last years in the area of network-wide clock syn-
chronization protocols in wireless networks that are resilient to compromised nodes. Note
that we do not concentrate on security aspects of the protocols (e.g., eavesdropping, etc.). An
excellent overview of several protocols can be found in [SBK05]. Other surveys on synchro-
nization protocols in wireless networks are proposed in [SY04, RBM05, Fai07, RLK+09].
Therefore, many popular and well-established protocols are not discussed due to their
absence of fault tolerance. For instance, in [MRS05], Manzo et al. present several at-
tacks on the Reference Broadcast Synchronization Protocol [EGE02], the Flooding Time-
Synchronization Protocol (FTSP) [MKSL04], and the Timing-Sync Protocol for Sensor Net-
works (TPSN) [GKS03a, GKS03b]. According to Sun et al. [Sun05], other interesting pro-
tocols that are not resilient against internal attacks are the protocol presented by Mock et
al. [MFNT00b, MFNT00a] which is based on the Master/Slave synchronization scheme of
the IEEE 802.11 standard, Timestamp synchronization (TSS) [Röm01], Lightweight Tree-
based Synchronization (LTS) [vGR03], Tiny-Sync and Mini-Sync (TS/MS) [SV03], Hu and
Servetto’s protocol [HS03], Tsync [DH04], Adaptive Clock Synchronization [PSJ04], Asyn-
chronous Diffusion (AD) [LR06], and [Liu08].

To give an overview of the huge amount of other published synchronization protocols
that do not provide fault-tolerant clock synchronization in wireless networks, we list a
few of them: Directed Diffusion [IGE00] does not consider compromised nodes; SPINS
[PST+02] is a suite of security protocols comprising SNEP and µTESLA that provide a se-
cure broadcast authentication protocol for local authenticated broadcast but do not handle
resilience to compromised nodes; Delay Measurement Time Synchronization for Wireless
Sensor Networks (DMTS) [Pin03] is based on a Master/Slave synchronization; the Timing
Synchronization Function (TSF) [iee03] used in IEEE 802.11 Independent Basic Service Set
(IBSS) ad-hoc networks specified in the IEEE 802.11 standards is a completely distributed
synchronization algorithm but is hardly scalable [HL02] and suffers from the fastest node
asynchronization problem as stated in [LZ03] which makes it prone to compromised nodes;
Adaptive Timing Synchronization Procedure (ATSP) [HL02] is an improvement of the TSF
algorithm which is more scalable and reduces the problem of the fastest node asynchro-
nization, however, fault tolerance is not considered; Tiered ATSP (TATSP) [LZ03] is an en-
hancement of the ATSP protocol where a set of fastest nodes is classified through estimation
techniques, however, synchronization attacks are again not assumed; Automatic Self-time-
correcting Procedure (ASP) [SCS04] considers time synchronization in IEEE 802.11 based
multi-hop networks but again does not provide fault tolerance to internal attacks; Rentel
et al.’s protocol [RK04] is a IEEE 802.11 compatible synchronization algorithm that is
not aimed at preventing internal attacks; Self-adjusting Timing Synchronization Function
(SATSF) [Zho05] is compatible with IEEE 802.11 TSF, scalable, accurate, bounded, and
adaptive to mobility, but is not resilient to any kind of synchronization attacks; Probabilis-
tic Clock Synchronization [JPS03] does again not handle internal attacks; Tulone’s Clock
Reading Protocol (DCR/PCR) [Tul04] is not resilient to faulty nodes; Meier et al.’s protocol
[MBT04] handles internal clock synchronization and improves the protocol from [Röm01]
but is not fault-tolerant; Back-Path Interval Synchronization Algorithm (BP-ISA) [BMT04]
is an improved version of the algorithm IM from [MO83] but again does not consider fault
tolerance; Multi-hop Timing Synchronization Function (MTSF) [SV04] is a network-wide
time synchronization algorithm which is fully distributed and self-stabilizing similar to our
approach where the nodes synchronize to the fastest one, however, it does not handle inter-
nal attacks; Control Time Protocol (CTP) [GK04] from Graham et al. is not designed for
the presence of malicious nodes; Time-Diffusion Synchronization Protocol (TDP) [SA05]

CHAPTER 4. RELATED WORK 43

consists a set of algorithms for self-determining master nodes, creating a temporary tree-like
structure via elected diffused leader nodes, and consequently for establishing a network-wide
time synchronization where the Allan variance is used for determining the deviations be-
tween two clocks, but again does not consider the possible presence of compromised nodes;
Routing Integrated Time Synchronization (RITS) [SKLD06] (reactive time synchronization)
and Rate-Adaptive Time Synchronization (RATS) [GGH+05, GGS+05, KDL+06] (proac-
tive time synchronization) are aimed at network-wide long-term time synchronization for a
given application-specific precision bound that can adapt to changing environment condi-
tions and clock-drift, but is prone to several kinds of attacks; The distributed asynchronous
time averaging algorithm by Giridhar and Kumar [GK06] and Solis et al. [SBK06] exploit
the existence of loops in the network and therefore belongs to a infrastructure-dependent syn-
chronization approach which additionally do not consider internal attacks; Dynamic Contin-
uous Clock Synchronization (DCCS) [MBRS08] is a Master/Slave synchronization approach
based on 802.15.4 standard that consequently implies a single-point of failure; Adaptive In-
ternal Clock Synchronization [JFF08] is an internal clock synchronization algorithm that
handles only crash failures and does not consider the existence of Byzantine nodes; The hy-
brid time synchronization protocol [HDQK09] (combination of one-way dissemination and
two-way exchange approach) assumes a tree-structured network which is improper in the
presence of compromised nodes.

In contrast to the previous presented approaches, the following protocols are of particular
interest within this thesis, since they provide resilience to at least internal attacks and addi-
tionally are based on a completely distributed synchronization approach. Whereas some of
them are based on the detection of malicious nodes, others assume the persistent presence
of up to f faulty nodes and exclude them from the synchronization algorithm. For instance,
Generalized Extreme Studentized Deviate Many-Outlier Procedure (GESD) [SZC05] is a
modified version of the Extreme Studentized Deviate (ESD) test which aims at detecting
multiple outliers of malicious time offset information resulting from compromised nodes or
delay attacks in the context of RBS and is based on the assumption that the time offsets
among the nodes follow a similar distribution. In addition to the GESD approach, Song et
al. also propose a threshold-based detection technique which requires less reference nodes.
However, Song et al. only consider the synchronization of neighboring nodes and is there-
fore only of little interest since we require a network-wide synchronization in multi-hop
networks.

4.1.1 Synchronizer Ring

This protocol is a fault-tolerant cluster-wise synchronization algorithm where the nodes in
the cluster can directly communicate with each other. Message authentication is established
via lightweight symmetric cryptography [ZSJ03] that exploits the broadcast medium instead
of costly and complex digital signatures. The main concept behind this protocol developed
by Sun et al. [Sun05] is that in contrast to traditional fault-tolerant clock synchronization
algorithms which usually require a periodic exchange of messages among all nodes, the
Synchronizer Ring protocol elects one node as the cluster-head in each round. This cluster-
head then serves as a synchronizer and all other nodes adjust their clocks with respect to this
node. Consequently, only one authenticated synchronization message that does not contain
any time information is broadcast during each round. This dramatically reduces the prob-
ability of message collisions and therefore the uncertainty of message delay. Additionally,
fault tolerance is provided through a round-robin based rotation of the synchronizers. In
detail, a synchronization message is considered to be faulty if it exceeds an a priori defined
maximum clock difference between any non-faulty node and a non-faulty synchronizer. This

CHAPTER 4. RELATED WORK 44

approach is similar to the previously introduced threshold-based detection technique. The
algorithm further guarantees an upper bound of the clock difference.

The Synchronizer Ring cannot be used for inter-cluster synchronization, only for intra-
cluster synchronization. However, in the case the network is partitioned into a set of clusters
(e.g., through a clustering-algorithm), the proposed protocol can be used as a building block
of a global clock synchronization algorithm.

However, the proposed protocol assumes that the nodes are initially synchronized and
that the nodes within a cluster agree on the round-robin order in which they serve as the
synchronizer. In the case, the clocks are initially synchronized, the order agreement can
be achieved through fault-tolerant digital clock synchronization. The authors state that the
initial synchronization can be either established by a bootstrapping phase where the nodes
adjust their clocks to trusted reference nodes or by the use of the initial synchronization al-
gorithm proposed by Lundelius and Lynch [LL84a]. This initial clock synchronization algo-
rithm is based on the simple fault-tolerant averaging technique. However, the latter approach
is only applicable in fully-connected networks and does not consider a network-wide initial
synchronization. In contrast, the approach proposed in this thesis guarantees a network-wide
self-stabilizing pulse synchronization even in the presence of multi-hop networks.

4.1.2 Asynchronous Diffusion

In [LR06], Li et al. discuss four methods for achieving global clock synchronization in sensor
networks:

1. The all-node-based method,
2. the cluster-based method,
3. the fully localized diffusion-based method, and
4. the fault-tolerant diffusion-based method.
Global clock synchronization means that all nodes in the network have approximately

the same clock value, irrespective of their relative distance. The first two methods do not
consider fault tolerance neither are useful for WSNs due to their improper assumptions (see
[LR06] for details). On this account, we concentrate only on the diffusion-based methods.

Generally, time-diffusion synchronization protocols [SA05] achieve global clock syn-
chronization by spreading the local synchronization information to the entire network. Time
synchronization is usually initiated by a master node. The neighboring nodes then adjust to
the master node and additionally diffuse this clock adjustment to the other neighbors and so
on. Contrary, the time-diffusion methods presented by Li et al. do not assume any specific
master or diffusion nodes. Instead, the presented methods are fully localized (i.e., they syn-
chronize without a global synchronization initiator) and fault-tolerant. This means that every
node can be a master node or diffusion node. In other words, the presented approach is a
completely distributed algorithm and therefore of great importance within this thesis.

The authors propose two different diffusion-based algorithms: The Rate-Based Syn-
chronous Diffusion Algorithm and the Rate-Based Asynchronous Diffusion Algorithm. The
synchronous diffusion algorithm requires a set order for their local operations and is based
on weighted averaging which ensures the flow conservation among the clock values. The
asynchronous diffusion algorithm does not require any constraints on the order of local op-
erations, that is, a node can synchronize with its neighbor at any time in any order and is
therefore of particular interest.

The main idea of the asynchronous diffusion algorithm is presented in Algorithm 3. In
detail, a node periodically gathers the clock values from its neighbors (clock reading) and
then averages them. The averaged value is sent back to the neighbors (and itself), which
update their clock to this value. The authors proved that, as long as the network is con-

CHAPTER 4. RELATED WORK 45

nected, after some rounds each node eventually converges to the global average time. The
only requirement is that a node executes the algorithm with nonzero probability and the se-
quence of operations must be atomic, that is, in the case a node is involved in several average
operations, then these operations must be sequenced.

Algorithm 3: Asynchronous Averaging Algorithm: code for pi, 0≤ i < n
for each node pi with uniform probability do1

Read value from pi and its neighbors2
Average the readings3
Send the new value back to the neighbors (write values to pi and its neighbors)4

The authors additionally propose a modification of the above algorithm which is resilient
to some fraction of Byzantine nodes. For this, they assume the existence of tamper-proof
nodes together with normal nodes. A tamper-proof node can always be trusted and can only
experience crash failures. Such nodes also serves as cluster heads for the normal nodes.
However, since such nodes may be too costly for WSNs, this approach is improper and
therefore not discussed in more detail. Furthermore, this assumption contradicts the idea
of a fully localized and completely distributed synchronization algorithm where each node
executes the same algorithm.

4.1.3 Chen et al.’s protocol

In [CL07], Chen et al. propose two synchronization protocols for a network-wide, server-
less, and proactive time synchronization in IEEE 802.11 IBSS ad-hoc networks: Single-hop
secure time synchronization procedure (SSTSP) and Multi-hop secure time synchronization
procedure (MSTSP). Both consider an attacker model consisting of both external and internal
attacks. The main differences of this contribution to many other published protocols are that
the protocols are scalable and totally distributed, i.e., the synchronization does neither require
a single source node (e.g., a synchronization leader) nor a synchronization hierarchy (e.g.,
tree-structured network). Furthermore, their approach is fully localized since it is not based
on information flooding.

SSTSP

SSTSP is aimed at time synchronization in single-hop ad hoc networks and makes use of a
periodic exchange of time information through beacons similar to the TSF approach in IEEE
802.11 IBSS networks. The period time is defined by the Beacon Period (BP).

Synchronization is achieved through two phases: Bootstrapping phase and synchroniza-
tion phase. The bootstrapping phase makes use of the contention mechanisms of TSF. In
detail, in the beginning all nodes content to emit synchronization beacons. The winner is
elected as the reference node and the nodes switch to the synchronization phase. During the
synchronization phase, only the single reference node broadcasts a synchronization beacon
in the beginning of every BP. The other nodes then synchronize to the reference node. If
a node does not receive synchronization beacons during the last few BPs (e.g., because the
reference node may left the network), the nodes will initiate a new bootstrapping phase.

Similar to the Synchronizer Ring Protocol, security and integrity of the synchronization
messages are achieved through symmetric cryptography by the use of µTESLA [PST+02]
instead of costly digital signatures. A clock drift check is used to detect time attacks (e.g.,
replay attacks, pulse-delay attacks), i.e., if the message delay of a beacon exceeds the thresh-
old of the clock drift check, then the beacon is assumed to be faulty. For this, in order to

CHAPTER 4. RELATED WORK 46

measure the message delay, each node acknowledges the reception of a packet with an ACK
packet and therefore can be classified as a two-way exchange protocol.

The authors make the assumption of a bounded drift model and that each pair of nodes ini-
tially share a pairwise secret key for the local authenticated broadcast mechanism during the
bootstrapping phase. Furthermore, they assume the existence of MAC-layer time-stamping.

MSTSP

Global time synchronization via MSTSP is achieved through the following two phases: First,
a multi-hop network is automatically partitioned into several overlapping single-hop clusters
by simply executing SSTSP which additionally enables the intra-cluster synchronization.
The second phase concerns the inter-cluster synchronization, i.e., all cluster reference nodes
are synchronized by exchanging synchronization beacons via bridge nodes.

For this, SSTSP was extended in three ways: First, the reference node waits a random
time before broadcasting the synchronization beacon in order to reduce the probability of
message collisions with other reference nodes. Secondly, bridge nodes are introduced and
correspond to the nodes in overlapping cluster areas which then periodically exchange the
time information among the cluster reference nodes in an asynchronous way. Thirdly, a
reference node collects the time information of the other reference nodes via bridge nodes
and synchronizes to the fastest one, i.e., the fastest cluster.

Robustness against compromised nodes is achieved by observing the time differences
between the cluster reference nodes. This is done at the bridge nodes which notify the
neighbors about this misbehavior, if the time difference exceeds a certain threshold. In the
case multiple bridge nodes detect such a misbehavior, the synchronization process is re-
initiated.

4.1.4 Secure Group Synchronization

The Secure Group Synchronization (SGS) protocol is part of the seminal work about secure
time synchronization in sensor networks [GPČS08] which is a refinement of [GČHS05].
Therein, Ganeriwal et al. propose several protocols: Secure Pairwise Synchronization (SPS),
Enhanced SPS (E-SPS), Lightweight SGS (L-SGS), SGS, Secure Simple Multi-hop Syn-
chronization (SSM), Secure Transitive Multi-hop (STM) synchronization, and Secure Direct
Multi-hop (SDM) synchronization.

However, only the SGS protocol is of particular interest with respect to this thesis, since
the pairwise synchronization protocols (i.e., SPS and E-SPS) do not provide countermeasures
against internal attacks. Furthermore, the pairwise synchronization protocols are inefficient
with respect to the message complexity in the case of large network topologies. Note that the
SPS protocol is a secure version of the TPSN protocol and the E-SPS protocol is similar to
the later discussed TinySeRSync protocol. Similarly, a network-wide time synchronization
via SSM or STM are again of less interest, because both protocols are based on the pairwise
synchronization approach without considering compromised nodes.

SGS is an enhanced version of the L-SGS protocol and additionally tolerates internal
attacks resulting from compromised nodes. SGS is aimed at achieving instantaneous group
consensus instead of a periodic resynchronization assuming that all nodes in the group can
directly communicate with each other. Therefore, any node is able to initiate SGS. The sys-
tem assumptions for SGS are that a compromised node is unable to send valid messages
on behalf of some other node and that every received message can be authenticated. To
overcome these assumption, the authors suggest the use of symmetric or asymmetric cryp-
tography that is usually based on costly digital signatures. However, according to the authors,

CHAPTER 4. RELATED WORK 47

symmetric cryptography enables only a small group cardinality of up to at most 15 nodes,
because a node has to attach a message authentication code for each receiving node and the
computational complexity is bounded due to time requirements. On this account, the SGS
protocol is hardly scalable. Resilience against internal attacks is achieved through the Secure
time synchronization OM (SOM) algorithm, which is a Byzantine agreement protocol based
on the OM algorithm [LSP82] and the COM algorithm [LMS85]. SGS executes in six steps
where N denotes the group cardinality:

1. Some node initiates SGS by broadcasting a challenge packet that contains its id and a
challenge nonce. If the other nodes receive a challenge packet for the very first time,
then they react in a random order by sending also a challenge packet. If a node receives
more than Nmin ≤ N−1 such packets from different nodes, then it proceeds with step
2. Additionally, each node pA stores the sending time tA,1 and the receipt time tB,1 of
the challenge packet received from pB.

2. Each node pB broadcasts a single response packet that consists the receipt time, the
nonce, and the node id from pA of each received challenge packet and the node’s send-
ing time tB,2 in combination with a message authentication code for each receiving
node.

3. Based on the information of the received response packets and the receipt time tA,2 of
the response packet, each node pA then calculates the average message delay dAB to
any neighbor node pB by

dAB = ((tB,1− tA,1)+(tA,2− tB,2))/2. (4.1)

A threshold verification on dAB (dAB ≤ d∗) excludes possible pulse-delay attacks from
an external attacker. The pairwise time offsets δAB with the other resulting nodes pB
are added to the offset set OA = OA∪δAB where

δAB = ((tB,1− tA,1)− (tA,2− tB,2))/2. (4.2)

4. Each node pA broadcasts the gathered offset set OA in addition with N− 1 message
authentication codes.

5. Based on all received offset sets, each node pA runs the SOM(b(N−1)/3c) algorithm
in order to calculate the estimated clock value CAB of each neighbor node pB.

6. The median of the resulting set of clock estimates CAB and the local clock CA is then
taken as the group clock CA

g .

The SOM Algorithm

The SOM algorithm is a recursive algorithm which is executed in several rounds of compu-
tation in order to estimate the clock value of a neighboring node, based on the information
gathered from all nodes in the group. SOM requires the number of faulty nodes as an argu-
ment. Since the algorithm accepts at most one third of faulty nodes f and only the group
cardinality N is known by the nodes, the authors suggest the use of f = b(N− 1)/3c. The
only disadvantage of this assumption is that the algorithm may execute in more rounds than
necessary. In other words, the algorithm guarantees that each node agrees on the same (pos-
sible faulty) value of a Byzantine node. Consequently, all nodes also agree on the group
clock value which is the median among all clock estimates. Algorithm 4 gives a pseudo code
presentation of the SOM algorithm. Therein, Ckr

i j denotes the local clock estimate of node p j
at pi using node pk after r executed rounds of SOM. For a detailed explanation, the reader is
referred to [GPČS08].

CHAPTER 4. RELATED WORK 48

Algorithm 4: SOM(f) to estimate Ci j: code for pi , p j, 0≤ i, j < N
return median{SOM(j,k, f) | 0≤ k < N, k , j}1

procedure SOM(j,k,r) to estimate Ckr
i j :2

if r = 1 then3

return Ci +δik +δk j4

else5

return median{SOM(k, t,r−1) | 0≤ t < N, t , k , j}+δk j6

4.1.5 TinySeRSync

TinySeRSync by Sun et al. [SNW06b] is an improved version from the protocol stated in
[SNW06a] and is intended for a secure and resilient time synchronization. Sun et al. propose
two protocols. The first one is aimed at secure single-hop pairwise time synchronization
using hardware-assisted, authenticated MAC-layer time-stamping which can handle high
data rates and is an extension to the SPS approach from [GČHS05]. The second protocol is
a secure and resilient global time synchronization protocol.

Secure Single-hop Pairwise Time Synchronization

For the pairwise time synchronization, the authors assume that every pair of nodes share
a secret pairwise key (e.g., through TinyKeyMan1). Security and integrity aspects of the
pairwise synchronization approach are enabled through authentication of the synchronization
messages by adding a prediction-based Message Integrity Code (MIC) that is based on the
shared secret key. The timeliness aspect is enabled by adding a MAC layer timestamp.

The pairwise synchronization between some node A and B is based on a two-way ex-
change approach in order to determine the clock difference and the estimated transmission
delay. In detail, if node A initiates the synchronization by sending message M1 containing
its timestamp tA,1, then node B receives M1 at tB,1 and responds with message M2 at time
tB,2. Since M2 contains all three timestamps, after node A receives M2 at tA,2 it is able to
calculate the clock difference with

∆AB = (tB,1− tA,1)− (tA,2− tB,2) (4.3)

and the estimated message delay

dAB = (tB,1− tA,1 + tA,2− tB,2)/2. (4.4)

Thus, node A is able to prevent external attacks like pulse-delay attacks or wormhole attacks
by verifying the transmission delay according to the aforementioned GESD or threshold
based detection approach [SZC05]. Internal attacks like message modifications or forged
messages will be detected due to the authentication approach and consequently protects the
source, content, and timeliness of the synchronization messages. Replay attacks are pre-
vented by exploiting the uniqueness of the sender’s timestamp. To obtain a precise time
synchronization, this protocol is executed periodically

Secure and Resilient Global Time Synchronization

For the global time synchronization, the authors assume that there exists a single trusted
source node S that is accurately synchronized to an external time source (e.g., UTC) and
the other nodes have to synchronize to S. To deal with ad-hoc wireless networks, Sun et al.

1http://discovery.csc.ncsu.edu/software/TinyKeyMan/

CHAPTER 4. RELATED WORK 49

propose a protocol that consists of two phases which are executed individually and inde-
pendently in a periodic manner. During the first phase, a secure pairwise synchronization is
established. After the first phase finished, the second phase is initiated by the source node and
enables a secure and resilient global time synchronization which is resilient against external
attacks and compromised nodes. Security is achieved through local authenticated broadcasts
via an adaption of µTESLA [PST+02] instead of costly digital signatures.

Let Ci be the local clock of node pi. For global clock synchronization, each pi obtains
the direct clock difference to each neighbor node p j, denoted by ∆i, j = C j−Ci. This is done
by the use of the secure pairwise time synchronization protocol. Each node pi further main-
tains a source clock difference δi,S with respect to the source node S. After the source node
initiates a synchronization by broadcasting a synchronization message, the direct neighbors
can obtain the source clock difference directly, since all nodes know the identity of S. All
other nodes pi have to estimate ∆i,S indirectly. For this, the direct neighbors broadcast their
source clock difference and so on. Resilience to compromised nodes is achieved through re-
dundancy, i.e., in order to tolerate up to f compromised neighbor nodes, a node pi that is not
a direct neighbor of S has to receive the source clock difference from at least 2 f +1 different
neighbors p j. Node pi then takes the median of the corresponding 2 f + 1 candidate source
clock differences ∆

j
i,S = ∆ j,S + ∆i, j. Let ∆i,S denote the median. The estimated global clock

at pi then equals Ĉi
S = Ci +∆i,S. Afterwards, pi rebroadcasts the resulting own source clock

difference in order to flood the time information throughout whole network. High accuracy
is maintained through a periodic synchronization initiation of the source node.

4.1.6 Sanchez’s Protocol

In [San07], Sanchez presents a network-wide, proactive, energy-efficient time synchroniza-
tion protocol for clustered multi-hop networks which is based on the combination of SPS
with sample exchange (SPS-SE), RATS, and µTESLA. In detail, SPS-SE is used for the se-
cure pairwise time synchronization, RATS maintains the accuracy throughout longer resyn-
chronization periods, and, similar to the other protocols, µTESLA enables local authenti-
cated broadcasts. Energy-efficiency is achieved through low duty-cycling and a low message
complexity.

The presented protocol is resilient against external and internal attacks and assumes the
existence of a trusted base station which is synchronized to UTC time and under human
control. Security through µTESLA assumes that each pair of nodes pA, pB share a pair-
wise secret key KAB. The protocol further requires a clustered network structure consisting
of cluster heads (CH) which can be established through a clustering algorithm. However,
it is necessary that communication network of the cluster heads is connected such that they
can directly communicate. For achieving high precision, the authors also assume that time-
stamping is done below the MAC-layer. Since the protocol considers long-term synchro-
nization, it is assumed that the drift rate of the clocks remain constant during a given period
of time, termed as epoch. The relative clock model between two nodes pA and pB is assumed
to be P-degree polynomial with P = 1 as used in the RATS protocol [GGS+05]. In detail,
the estimated time t̂B(tA) of pB at pA equals

t̂B(tA) =
P

∑
p=0

(βp · t p
A)+υ (4.5)

where υ corresponds to the error due to measurement and clock variations. Thus, given a
set {(tA,i, tB,i) | 0 ≤ i < W} of W consecutive time observations where W is termed as the

CHAPTER 4. RELATED WORK 50

window size, rate adaptive synchronization is performed through the simple calculation of
β0 and β1 such that the residual sum of squares (RSS) is minimized:

RSS = min
∀β0,β1

W

∑
i=1

(tB,i− [
1

∑
p=0

(βp · t p
A,i)])

2 (4.6)

The authors state that W = 8 with a sample period of S = 60 seconds, where S is the time
duration between two consecutive observations, is optimal for indoor environments.

Based on the aforementioned assumptions, Sanchez’s protocol establishes a network-
wide synchronization through the periodic execution of the following two phases: Secure
CH pairwise re-synchronization and secure cluster re-synchronization. Both use SPS-SE for
the pairwise synchronization.

SPS-SE is very similar to SPS [GPČS08]. However, whereas SPS implements a two-
message exchange protocol, SPS-SE extends SPS such that up to τ time observations are
securely exchanged. In detail, the following sequence illustrates the message exchange in
SPS-SE:

1. pA(tA,1)→ (tB,1)pB: idA, idB, tA,1, τ

2. pB(tB,2)→ (tA,2)pA: idB, idA, tB,1, tB,2, MACKAB(· · ·)
3. pA(tA,3)→ (tB,3)pB: idA, idB, tA,2, tA,3, MACKAB(· · ·)
4. pB(tB,4)→ (tA,4)pA: idB, idA, tB,3, tB,3, MACKAB(· · ·)
5. · · · (τ−3 additional steps)

Note that MACKAB(· · ·) denotes the appended message authentication code based on the
shared secret key KAB. According to Equation 4.2 and Equation 4.1 which are also used
in the original SPS approach, both nodes then calculate the time difference and the message
delay such that they are able to synchronize together.

Secure CH Pairwise Re-synchronization

As already mentioned, pairwise cluster head re-synchronization requires a clustered network.
However, due to possible compromised CHs and changing environments, the authors suggest
a periodic re-clustering with period time R.

For the pairwise synchronization between two cluster heads pA and pB, the authors pro-
pose the segmentation of the time into a number of variable pairwise time periods Sk

A,B,
1 ≤ k ≤ rk, with ∑

rk
k=1 Sk

A,B = R where the first period S1
A,B starts right after pA and pB have

discovered each other. This provides capabilities to establish listen/sleep schedules.
Initial pairwise synchronization is performed during the first period by the exchange of

several time samples according to the default window size WA,B via the SPS-SE protocol.
Pairwise re-synchronization is initiated at the beginning of the subsequent periods Sk

A,B, 2≤
k ≤ rk, by the use of SPS-SE. However, only one new time sample is exchanged in these
periods.

A time of guard Tguard in dependence of the measured maximum clock drift is introduced
at the beginning of each period Sk

A,B. During this time, a node is only allowed to receive
messages. This ensures that a node does not miss a message due to a late wake up resulting
from the drifting clocks in the case duty-cycling is enabled. The first node leaving Tguard
initiates a re-synchronization.

The optimal pairwise window size W k
A,B and the corresponding optimal period time Sk

A,B

is calculated for each period Sk
A,B at both nodes via RATS [GGS+05]. The time estimation

of a neighbor node is calculated by the use of Equation 4.5 and Equation 4.6 based on the
exchanged time samples.

CHAPTER 4. RELATED WORK 51

Secure Cluster Re-synchronization

For the cluster synchronization with cluster head pCH , the authors propose the segmentation
of the time into a number of variable cluster time periods S j

Cl , 1≤ j ≤ r j, with ∑
r j
j=1 S j

CL = R
where the first period S1

CL starts right after the cluster is formed. This provides capabilities
to establish listen/sleep schedules.

In order to provide secure broadcasts via µTESLA, pCH first generates a sequence of
q keys Ki by hashing a random value KCL, i.e., Ki = hi(KCL) with 0 ≤ i ≤ q. Initial clus-
ter synchronization between pCH and any cluster member pu is performed during the first
period by the exchange of several time samples according to the default window size WCL
via the SPS-SE protocol. Additionally, pCH broadcasts the last key hq(KCL) in one of the
SPS-SE messages. Cluster re-synchronization is performed through the secure pairwise re-
synchronization between pCH and any cluster member pu at the beginning of the subsequent
periods S j

CL, 2 ≤ j ≤ r j, by the use of SPS-SE. However, only one new time sample is ex-
changed in these periods. Additionally, a cluster member pu calculates and sends t̂CL(tu) to
pCH in each period.

A time of guard Tguard is again introduced at the beginning of each period S j
CL in order to

allocate different time slots for inter-cluster and intra-cluster synchronization. After Tguard ,
pCH is the only node within the cluster which is allowed to communicate. This ensures a
contention-free medium access for pCH . A cluster member pu is only allowed to communi-
cate after it received an initial message from pCH .

The optimal cluster window size W j
CL = max{W j

CH,u | pu is cluster member}= W j
CH,x for

some cluster member px and the corresponding optimal period time S j
CL is calculated for each

period S j
CL at the cluster head pCH via RATS [GGS+05]. pCH then broadcasts the new values

in a secured message. A cluster member pu estimates t̂CL(tu) by the use of Equation 4.5 and
Equation 4.6 based on the exchanged time samples.

Security Aspects

External attacks are prevented through authenticated synchronization messages. Further-
more, wormhole or pulse-delay attacks are detected since the corresponding measured mes-
sage delays are usually beyond the expected end-to-end delay.

In the case multiple communication routes among the cluster heads exist, then a com-
promised cluster head during the secure pairwise CH re-synchronization can usually be de-
tected which is then added to a blacklist of untrusted nodes in and a re-clustering is initiated.
Similarly, a compromised cluster member during secure cluster re-synchronization can be
detected by the cluster head and is again added to a blacklist. A compromised cluster head
during secure cluster re-synchronization can be prevented, if the cluster head commits the
identity of the selected cluster member px for calculating the maximum window size W j

CL.
In the case both the cluster head and px are compromised, lower and upper bounds for S j

CL
are calculated to reduce the impact of an increasing duty-cycle for the complete cluster.

4.1.7 Fast Fault-Tolerant Time Synchronization

Fast Fault-Tolerant Time Synchronization (FFTS) was proposed by Lee et al. [LJP08]. FFTS
is a very fast, network-wide, proactive, fault-tolerant, and energy-efficient time synchroniza-
tion protocol for unstructured multi-hop networks. Additionally, FFTS is completely dis-
tributed and supports duty-cycling. The authors only address internal clock synchronization.

They make the assumption of a bounded drift model and that at most f out of all nodes
are faulty such that they either suffer from timer faults (Definition 18) or crash faults (Def-

CHAPTER 4. RELATED WORK 52

inition 16). The protocol requires the assumption of a (f + 1)-connected network [RSB90]
comprising N sensor nodes, that is, the network has at least f +1 disjoint paths between any
two non-faulty nodes. The protocol uses MAC-layer time-stamping and drift rate adjustment
via linear regression. The protocol uses two delay constants: MAXBACKOFF and PERIOD.
MAXBACKOFF is used to solve the medium access contention problem. In detail, when we
say a node broadcasts with a random backoff delay, then the node delays the transmission by
a random time between 0 and MAXBACKOFF . The PERIOD parameter corresponds to the
resynchronization interval. Based on these assumptions, FFTS proceeds in three phases:

Phase 1: INIT

This phase is executed once at the beginning of the node’s lifetime. It assumes that, initially,
each node resets its clock to 0. Afterwards, each node proceeds as follows:

1. Broadcast an INIT packet containing the local time with a random backoff delay.
2. If an INIT packet is received for the very first time, then cancel all pending transmis-

sions and adjust the local clock according to the time in the packet.
3. If two or more INIT packets are received from different nodes, then adjust the local

clock according to the latest one.

Phase 2: SYNC

This phase is periodically initiated every PERIOD time units after the reception of the last
INIT or SY NC packet and proceeds according to the following steps:

1. Broadcast an INIT SY NC packet containing the local time with a random backoff delay.
2. If an INIT SY NC packet is received while waiting the backoff delay, then cancel all

pending transmissions and
a) if the packet contains < 2 f +1 time values, then append the local time and broad-

cast the updated INIT SY NC packet.
b) if the packet contains≥ 2 f +1 time values, then select the median value for drift-

rate adjustment and broadcast a SY NC packet containing the median.
3. If a SY NC packet is received for the very first time in the current period, then can-

cel all pending transmissions, record the time value stored in the packet for drift-rate
adjustment, and broadcast the updated SY NC packet.

4. If two or more SY NC packets are received in the current period, then select the largest
time value among all packets for drift-rate adjustment and broadcast the revised value
in a SY NC packet.

Phase 3: RESYNC

This phase is only initiated by a node pi, after pi wakes up from a suspended mode and
consequently executes the following steps:

1. Broadcast a RESY NC packet with a random backoff delay.
2. If an INIT SY NC or SY NC packet is received in the current period, then cancel all

pending transmissions.
3. If a RESY NC packet is received in the current period, then broadcast a SY NCREPLY

packet containing the local time with a random backoff delay.
4. If a SY NCREPLY packet is received in the current period, then cancel a possible pend-

ing SY NCREPLY transmission and pi adjusts the local clock according to the time in
the packet.

CHAPTER 4. RELATED WORK 53

SR
A

D
M

ST
SP

SG
S

Ti
ny

Se
R

Sy
nc

Sa
nc

he
z

FF
T

SP
O

ur
ap

pr
oa

ch

C
la

ss
es

A
sy

m
m

et
ri

c
vs

.s
ym

m
et

ri
c

A
S

A
S

A
A

S
S

In
te

rn
al

vs
.e

xt
er

na
l

I
I

I
I

I+
E

I+
E

I
I

St
at

e
vs

.R
at

e
S

S
S

S
S

S+
R

S
S

C
on

tin
uo

us
vs

.o
n-

de
m

an
d

C
C

C
O

C
C

C
C

C
lo

ck
co

rr
ec

tio
n

vs
.t

ra
ns

fo
rm

at
io

n
C

C
C

C
C

C
C

C
Pr

ob
ab

ili
st

ic
vs

.d
et

er
m

in
is

tic
D

D
D

D
D

D
D

D
Se

nd
er

-v
s.

re
ce

iv
er

-t
o-

re
ce

iv
er

S
S

S
S

S
S

S
S

O
ne

-w
ay

/t
w

o-
w

ay
/n

-w
ay

ex
ch

an
ge

O
O

T
T

T
N

T
a

O
G

lo
ba

lv
s.

L
oc

al
G

G
G

G
G

G
G

G

Sy
st

em
as

su
m

pt
io

ns
Si

ng
le

-h
op

vs
.m

ul
ti-

ho
p

M
M

M
S

M
M

M
M

St
at

ic
vs

.d
yn

am
ic

to
po

lo
gy

S
D

S
S

S
S

S
D

C
lu

st
er

ed
/t

re
e-

lik
e

/u
ns

tr
uc

tu
re

d
C

U
C

T
U

C
U

U
Se

cu
ri

ty
(e

xt
er

na
la

tta
ck

s)
X

X
X

X
X

R
es

ili
en

ce
(i

nt
er

na
la

tta
ck

sb)
B

C
+O

T
B

S
C

C
+T

B
Fa

ul
td

et
ec

tio
n

vs
.f

au
lt

ac
ce

pt
an

ce
D

D
A

A
D

A
A

C
lo

ck
st

at
e

co
rr

ec
tio

n
te

ch
nq

iu
ec

N
A

N
C

N
N

N
A

Pe
rf

or
m

an
ce

M
es

sa
ge

co
m

pl
ex

ity
d

1
N

1
3N

O
(n

2)
O

(N
)

N
M

es
sa

ge
si

ze
H

ig
h

L
ow

L
ow

H
ig

h
L

ow
L

ow
L

ow
Ti

m
e

co
m

pl
ex

ity
(C

on
ve

rg
en

ce
tim

e)
L

ow
H

ig
h

L
ow

L
ow

L
ow

L
ow

L
ow

H
ig

h
A

ve
ra

ge
pr

ec
is

io
n

(S
in

gl
e-

ho
p)

<
50

0µ
s

e
∼

5µ
s

f
47

µ
s

g
16

µ
s

h
2µ

s
i

<
50

µ
s

j

D
ut

y-
cy

cl
e

su
pp

or
t

X
X

X
X

Ta
bl

e
4.

2:
O

ve
rv

ie
w

of
re

si
lie

nt
sy

nc
hr

on
iz

at
io

n
pr

ot
oc

ol
s.

a T
he

au
th

or
s

do
no

ts
ta

te
w

hi
ch

co
m

m
un

ic
at

io
n

sc
he

m
e

is
us

ed
.H

ow
ev

er
,a

no
de

re
qu

ir
es

th
e

kn
ow

le
dg

e
ab

ou
tt

he
es

tim
at

ed
m

es
sa

ge
de

la
y

w
hi

ch
is

ob
ta

in
ed

th
ro

ug
h

tw
o-

w
ay

ex
ch

an
ge

.
b

W
e

us
e

th
e

fo
llo

w
in

g
ab

br
ev

ia
tio

ns
to

di
st

in
gu

is
h

be
tw

ee
n

th
e

di
ff

er
en

tt
yp

es
of

fa
ul

ts
:(

C
)r

as
h

fa
ul

t,
(O

)m
is

si
on

fa
ul

t,
(T

)i
m

er
fa

ul
t,

C
on

(s
)i

st
en

tf
au

lt,
(B

)y
za

nt
in

e
fa

ul
t

c W
e

us
e

th
e

fo
llo

w
in

g
ab

br
ev

ia
tio

ns
:C

on
ve

rg
en

ce
-(

a)
ve

ra
gi

ng
,c

on
ve

rg
en

ce
-(

n)
on

av
er

ag
in

g,
(c

)o
ns

is
te

nc
y

te
ch

nq
iu

e.
d T

he
m

es
sa

ge
co

m
pl

ex
ity

is
de

cl
ar

ed
as

th
e

m
ax

im
um

nu
m

be
ro

fb
ro

ad
ca

st
s

pe
rr

ou
nd

in
a

si
ng

le
-h

op
to

po
lo

gy
co

m
pr

is
in

g
N

no
de

s
af

te
rt

he
in

iti
al

sy
nc

hr
on

iz
at

io
n

ph
as

e.
e R

es
ul

ts
ar

e
w

or
st

ca
se

si
m

ul
at

io
n

re
su

lts
in

th
e

ab
se

nc
e

of
at

ta
ck

s
ac

co
rd

in
g

to
[S

un
05

]w
ith

a
dr

if
tr

at
e

ρ
=

10
−

6 ,a
de

la
y

jit
te

rε
=

10
0µ

s,
an

d
a

re
sy

nc
hr

on
iz

at
io

n
pe

ri
od

of
tw

o
m

in
ut

es
.

f R
es

ul
ts

ar
e

ac
co

rd
in

g
to

[C
L

07
]a

nd
ar

e
ba

se
d

on
IE

E
E

80
2.

11
co

m
pl

ia
nt

de
vi

ce
s

in
th

e
ab

se
nc

e
of

at
ta

ck
s.

g R
es

ul
ts

ar
e

ac
co

rd
in

g
to

[G
PČ

S0
8]

an
d

ar
e

ba
se

d
on

M
ic

a2
m

ot
es

in
th

e
ab

se
nc

e
of

at
ta

ck
s.

h R
es

ul
ts

ar
e

ac
co

rd
in

g
to

[S
an

07
]a

nd
ar

e
ba

se
d

on
M

ic
a2

m
ot

es
in

th
e

ab
se

nc
e

of
at

ta
ck

s.
i R

es
ul

ts
ar

e
ac

co
rd

in
g

to
[L

JP
08

]a
nd

ar
e

ba
se

d
on

M
ic

az
m

ot
es

in
th

e
ab

se
nc

e
of

at
ta

ck
s.

j R
es

ul
ts

ar
e

ba
se

d
on

th
e

si
m

ul
at

io
n

of
30

IE
E

E
80

2.
15

.4
co

m
pl

ia
nt

no
de

s
in

th
e

ab
se

nc
e

of
at

ta
ck

s
an

d
a

m
es

sa
ge

de
la

y
be

tw
ee

n
2.

2m
s

an
d

2.
7m

s.

CHAPTER 4. RELATED WORK 54

4.1.8 Discussion

The above presented protocols are selected due to their resilience against different types of
faults. To give the reader the opportunity to directly compare these protocols with respect
to the introduced clock synchronization issues, we have summarized them in Table 4.2. Ad-
ditionally we have tried to point out the strengths and weaknesses of the protocols by com-
paring several performance issues. However, it should be noted that the stated performance
values should not be taken seriously, because it is nearly impossible to directly compare all
protocols. For instance, the performance evaluation stated in the proposed papers are based
on different assumptions and are mostly based on different hardware platforms. Further-
more, it is impossible to compare the precision degradation according to internal attacks,
since the protocols assume different failure modes. On this account, a direct comparison
would only be serious, if the protocols were evaluated with respect to the same underlying
system assumptions. However, since this is not an objective of this thesis, we do not inves-
tigate this issue in more detail. The last column in the table corresponds to our proposed
synchronization protocol. However, it should be noted that whereas all other protocols solve
the clock synchronization problem, our protocol is aimed at pulse synchronization.

We further distinguish between two types of resilient clock synchronization protocols.
Those that belong to the first type try to achieve resilience against internal attacks through
fault detection (e.g., if the time difference exceeds some threshold) and a consequent exclu-
sion. Examples for fault detection mechanisms are discussed in [SZC05]. The other type
of protocols achieve resilience through fault acceptance where the nodes usually require the
knowledge of the maximum number of faulty nodes. Fault acceptance based protocols are
mostly based on a Byzantine agreement or approximate Byzantine agreement algorithm.

All presented protocols except the AD protocol assume the existence of a structured
network and therefore are not applicable in dynamic network topologies. Only our proposed
approach and the AD protocol are fully localized and therefore do not have to maintain or
periodically update the global state about the network topology. This makes them appropriate
for the use in highly dynamic sensor networks. It should be noted that this is also a typical
feature of self-organization.

According to the authors, there exist only three protocols that are resilient to Byzantine
attacks. These are the SR protocol, the SGS protocol, and our proposed protocol. Whereas
the SR protocol uses detection mechanisms for fault prevention, the other two approaches are
based on some kind of Byzantine agreement. However, the SOM algorithm used in the SGS
protocol is very inefficient with respect to the computational complexity and requires the
exchange of large-sized messages. On this account, the authors state that the SGS protocol
is appropriate for networks containing at most 15 sensor nodes. Furthermore, due to the
distributed behavior, any cluster member is able to initiate the SGS protocol. Thus, if a
single cluster member is compromised, it may frequently initiate a synchronization which
consequently leads to a battery depletion attack.

TinySeRSync uses authenticated pairwise synchronization and a single trusted source
node that initiates the synchronization for global time synchronization. However, selecting
the median out of 2 f + 1 clock differences does not provide resilience against Byzantine
nodes. Instead, only consistent faults are tolerated since 3 f + 1 nodes would be necessary
for the worst case attack.

4.2 Distributed Clock Synchronization

In contrast to clock synchronization in wireless systems, research on clock synchronization
in wired distributed systems was given a lot of attention during the last decades. Therefore,

CHAPTER 4. RELATED WORK 55

there exist much more algorithms and approaches with respect to different system assump-
tions than in the area of WSNs. It should be noted that the fault-tolerant clock synchro-
nization problem is very similar to the Byzantine agreement problem [LSP82]. An excellent
comparison and performance evaluation of several fault-tolerant distributed clock synchro-
nization algorithms is presented by Anceaume et al. in [AP98]. In this thesis, we make use
of a convergence-averaging algorithm named FTA. On this account we first give a short
overview of algorithms that belong to this synchronization type and then discuss the FTA
approach in more detail.

In [DLP+83], Dolev et al. present two simple fault-tolerant convergence functions for
approximate agreement in the presence of f Byzantine faults in a fully connected network.
These functions are based on the calculation of the midpoint and the mean among the ob-
tained neighbor values after removing the f highest and f lowest values. Another fault-
tolerant convergence function which takes the midpoint of the range of the remaining clock
values is presented in [LL84a]. Differential Fault-tolerant Midpoint (DFTM) [FC95] and
Differential Fault-tolerant Averaging (DFTA) [ND00] are the improved versions of the mid-
point convergence function and the mean convergence function, respectively. Other conver-
gence functions are stated in [Sch87, AP98]. Fault Tolerant Daisy Chain (FTDC) [Lön99]
clock synchronization is an alternative approach which exploits the TDMA communication
in a broadcast medium such that re-synchronization is performed after each clock reading
instead of applying a convergence function on a set of clock readings.

4.2.1 Fault Tolerant Averaging

In [KO87], Kopetz et al. analyze the precision of a fault-tolerant clock synchronization al-
gorithm named FTA which is based on the synchronous approximate agreement protocol
using the mean convergence function. The algorithm assumes a fully connected network
comprising N nodes where at most f < dN/3e nodes are Byzantine. Additionally, the com-
munication system is assumed to be reliable and the clocks must be initially synchronized.
That is, the FTA algorithm is not self-stabilizing. Since FTA is a proactive clock synchro-
nization algorithm, each node performs the following three steps at the end of each round in
a synchronous system.

1. Each node pi collects the clock differences to all neighboring nodes p j, including itself.
2. If the clock difference to some neighboring node is not obtained, then p j is faulty

and pi takes some arbitrary default value for p j. As a result, every node has a set V
containing exactly N clock differences.

3. Each node removes the f lowest and f highest clock differences in V and calculates the
average among the remaining N−2 f values. The result is applied to the local clock.

The worst case precision Π of the FTA algorithm depends on the delay jitter ε , the number
of faulty nodes f , and the drift offset Γ as defined in Section 2.2.2:

Π(N, f ,ε,Γ) =
N−2 f
N−3 f

· (ε +Γ) (4.7)

In [DLP+86], Dolev et al. present an improved version of the mean convergence function
as used in the FTA algorithm which provides a faster convergence time. Furthermore, they
state that no convergence function provides a uniformly faster convergence. In detail, in
the synchronous case, after removing the f highest and f lowest deviations, only every f -th
value in increasing order is taken for the average calculation.

CHAPTER 4. RELATED WORK 56

4.3 Self-stabilizing Pulse Synchronization

Many aforementioned clock synchronization protocols for WSNs assume initially synchro-
nized nodes. However, this is inappropriate in the case of multi-hop networks, since there
hardly exist distributed algorithms that guarantee self-stabilization such that all nodes are
eventually synchronization, independent of their initial states. This is especially a problem
in the case of the pulse synchronization problem. Therefore, the objective of this thesis
is to present a self-stabilizing pulse synchronization algorithm for WSNs in the presence
of Byzantine faults. For this, a lot of work was done by Dolev et al. in the area of wired
distributed system. For instance, in [DD05], Dolev et al. state how to enhance an existing
Byzantine algorithm to become self-stabilizing by the use of pulse synchronization.

In [DW04], Dolev et al. present two algorithms that solve the self-stabilizing pulse syn-
chronization problem in the presence of Byzantine faults. The first algorithm assumes a syn-
chronous model where all nodes periodically receive the same common pulse. The second al-
gorithm assumes a bounded-delay model. However, the algorithms assume a fully connected
network and both are based on randomization and, consequently, are non-deterministic in the
convergence time. The authors state that the algorithms converge in exponential time.

In [DD08], Dolev et al. developed the AB-PULSE-SYNCH algorithm which is based on
the Byzantine agreement protocol SS-BYZ-AGREE [DD06] and assumes a bounded-delay
model in a fully connected network. It does not require a broadcast primitive, scales very
well, and provides an excellent linear convergence time of O(1). The BALANCED PULSER
algorithm [DH07a] is a much simpler protocol also based on the SS-BYZ-AGREE algorithm
and assumes the same bounded-delay model. However, both algorithms have a very high
message complexity per cycle due to the use of the SS-BYZ-AGREE algorithm and, therefore,
is inappropriate for the use in WSNs.

The Byzantine self-stabilizing clock synchronization protocol by Malekpour [Mal06] is
deterministic and provides a linear convergence time. The algorithm achieves only a coarse
synchronization precision which, however, is precise enough such that other fine clock syn-
chronization algorithms that require initially synchronized clocks can be built on top of the
proposed protocol. The only disadvantage is the high message complexity and that the pro-
tocol is restricted to fully connected network.

In [DDP08], Dolev et al. propose a biologically inspired pulse synchronization protocol
named BIO-PULSE-SYNCH which is based on the model of a PCO [MS90]. This algorithm is
the most appropriate protocol for WSNs, because it is very simple, provides a low message
complexity of at most n messages per cycle with small sized messaged, a tight precision of
at most the message delay, and assumes a bounded-delay model in a broadcast environment.
However, the only disadvantage of this algorithm for the use in WSNs is that the broadcast
medium usually does not allow the nodes to broadcast a message at the same time. Conse-
quently, messages will be strongly delayed and even lost in the case of a large number of
participating nodes. Additionally, a node is usually deaf during the transmission.

Independently, Werner-Allen et al. developed the RFA approach which takes the afore-
mentioned broadcast and deafness problem in WSNs into account [WATP+05]. The algo-
rithm is also based on the PCO model [MS90]. They evaluated the algorithm by simulation
with TOSSIM in contrast to several parameter choices in single-hop and multi-hop topolo-
gies. In [TAB07], Tyrell et al. introduce a time advance strategy based on the PCO model,
which takes the delays in wireless systems into account. Similarly to [WATP+05], they in-
corporate the fact that a node cannot transmit and receive at the same time. Other papers
regarding clock or pulse synchronization in wireless networks that are based on the PCO
model are [MM96], [TAB06], [BL05], [LW04], [HS05], and [DBR08]. However, none of
them consider the presence of Byzantine faults.

CHAPTER 4. RELATED WORK 57

In [DRPN07, PDN07, DN08], Degesys et al. present a novel alternative approach re-
garding self-stabilizing pulse desynchronization as formally stated in Definition 12 and is
called the DESYNC algorithm. The algorithm assumes a single-hop network and works as
follows: Each node records the received pulses until it knows the events immediately before
and after its own pulse invocation. Afterwards, the node adjusts its phase to the average of
both neighboring events. The authors have proven that the nodes eventually enter a pulse
desynchronized state.

4.4 Digital Clock Synchronization

Digital clock synchronization can be built upon pulse synchronization in order to establish
clock synchronization. In principle, this approach corresponds to pulse synchronization in
a synchronous system and was first treated by Dolev et al. in [DW04]. Since this thesis
does not cover the approach of digital clock synchronization, related work about this type of
synchronization are not discussed herein. In [BODH08], Ben-Or, Dolev, and Hoch present
a good overview of self-stabilizing digital clock synchronization algorithms in the presence
of Byzantine faults.

CHAPTER 5
Design Approach

OVERVIEW

The objective of this thesis is to build an effective synchronization algorithm for global clock
synchronization in WSNs. Since pulse synchronization is a very powerful and fundamen-
tal primitive that can be used as a building block in other algorithms, we concentrate on
the development of a robust and effective pulse synchronization that additionally tolerates
Byzantine faults in the case the network already converged to a synchronized pulse state
(Definition 31).

Since the RFA is one of the most simple self-stabilizing pulse synchronization protocols
that is appropriate for the use in WSNs, we first devise an improved version of the RFA and
then modify the algorithm such that it is more robust to erroneous nodes. The main advantage
of the resulting algorithm is that, in the absence of rate calibration, it is anonymous. That is,
the nodes need not be equipped with unique identifies.

We further propose an algorithm for fault-tolerant rate calibration which can be executed
in parallel to the pulse synchronization approach. The rate calibration algorithm is non-
anonymous and ensures that each node approximately agrees on the same cycle period even
in the presence of Byzantine faulty nodes.

Since the main contribution of this thesis is based on the RFA approach from Werner-
Allen et al. [WATP+05], Section 5.1 first presents the theory and backgrounds of RFA.
Afterwards, Section 5.2 extends the algorithm such that it provides a shorter convergence
time and a better precision. This section also introduces a model for clock rate calibration.
It should be noted that several parts from our previous work in [LE09] are reused and re-
fined in this section. In Section 5.3, we discuss how to make the extended RFA approach
more robust against erroneous nodes which do not collide or perform attacks in an adver-
sary manner, but are still able to send different wrong messages to each distinct neighbor.
Therein, we also enhance the RFA approach in order to improve the achievable precision
by dynamically switching to the FTA synchronization algorithm. A technique that reduces
the convergence time in fully connected network topologies is discussed in Section 5.4.1.
Further improvements in single-hop networks are presented in Section 5.4.

58

CHAPTER 5. DESIGN APPROACH 59

5.1 Reachback Firefly Algorithm

The RFA was introduced in [WATP+05] and supports scalability, graceful degradation, and a
low computation complexity. The algorithm can be classified as a self-stabilizing distributed
proactive pulse synchronization algorithm. The concept is based on the PCO phase advance
synchronization model [MS90], but with the difference that it is more appropriate for the
practical implementation in wireless networks. For instance, the following assumptions from
the original PCO model make a practical application very difficult: 1. The oscillators have
identical dynamics, 2. Nodes can instantaneously invoke pulses, 3. Every pulse is observed
immediately, 4. All computations are performed perfectly and instantaneously.

To understand the principle behind the main concept of the PCO model, consider the
following simple example: Assume two persons A and B want to synchronize their wrist
watches but can only inform the others if the own watch indicates twelve o’clock. Let cA
and cB denote the time of the persons’ clocks. Every time a person is notified, it advances
the own watch by a factor (in our example 1.25) to at most twelve o’clock. Consequently,
the higher the multiplication factor, the faster the clocks converge, but the system becomes
less robust to faulty notifications. This algorithm describes the simplified phase advance
synchronization model of the fireflies, which is described in more detail in the next section.
Based on the initial configuration cA =12:00 and cB=08:00, Table 5.1 shows that after 5
periods the clocks are synchronized.

Table 5.1: A demonstration of the PCO model. The columns correspond to the ongoing time
sequence.

cA 12:00 02:00→ 02:30 12:00 00:08→ 00:10 12:00
cB 08:00→ 10:00 12:00 09:30→ 11:52 12:00 11:50→ 12:00

However, in the case all clocks are synchronized, they all indicate the synchronization
event at the same time. Using wireless broadcast communication, this implies a high proba-
bility of message collisions and the problem that transmitters cannot receive messages while
being in transmission mode1.

The problem can be bypassed by sending the synchronization messages with a random
offset, while packing the chosen offset into the message. The receiver can then reconstruct
the intended synchronization instant and perform a clock adjustment with respect to the
received offset values. Obviously, this random offset results in an out-of-order reception of
synchronization messages which causes a problem in the case of the simple synchronization
approach as demonstrated above. A solution to this problem is to gather all synchronization
events until reaching the period end and then react to the received time information from the
last period. This idea was introduced in [WATP+05] and is called reachback response.

The formal description is based on the fact that each node pi is equipped with a pulse
clock that has a cycle period of T time units. Let φi ∈ [0,1] be the corresponding phase
variable. We further denote the event where a node invokes a pulse to be a firing event. Let
x = f (φ) denote the state variable which corresponds to the charge of a firefly [Buc88]. In
[MS90], Mirollo and Strogatz have proven that the state function f : [0,1]→ [0,1] must be
a smooth, monotonically increasing, and concave down function in order to achieve syn-
chronicity. Therefore, the authors have stated a general state function as shown in Equa-
tion 5.1 where the form of the curve depends on a parameter named dissipation factor, de-

1In [TAB08], the authors discuss this deafness problem in the context of slot synchronization.

CHAPTER 5. DESIGN APPROACH 60

noted by b, and determines the extent to which f (φ) is concave down. Figure 5.1 visualizes
the state function for different dissipation factors.

f (φ) =
1
b
· ln(1+[eb−1] ·φ) with b > 0 (5.1)

The coupling between the oscillators is defined by the firing function g(φ) and depends on

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Φ

x=
f(
Φ
)

b=10

b=5

b=1

Figure 5.1: The state function dependent on different dissipation factors.

the state function and the pulse strength ε , where f−1 denotes the inverse state function:

φnew = g(φ) = min(1, f−1(f (φ)+ ε)) (5.2)

The firing function is calculated immediately after an oscillator receives a pulse (or flash in
case of a firefly). We further use the term of phase advance to define the increase in the
phase-domain, denoted by ∆(φ) = g(φ)− φ . Due to the concave down state function, a
constant addition in the state-domain results in a variable increase in the phase-domain such
that a phase advance in the beginning of a cycle is smaller than later in the cycle.

To combat the assumption problems of the PCO model in wireless networks, the RFA
makes use of a reachback response and pre-emptive message staggering technique.

Reachback response. In the original PCO model, an oscillator immediately reacts to each
firing event. In contrast, the reachback response records the timestamps of all received firing
events and calculates an overall phase jump once at the end of each period which is then
applied at the beginning of the next cycle. Thus, if a node reaches the period end, it “reaches
back in time” and reacts to the firing events of the past period. This principle is visualized in
Figure 5.2.

Pre-emptive message staggering. In the case of a synchronized network, all nodes in the
PCO model will trigger the transmission event for the synchronization message at the same
time. As a result, the messages will collide and the collision avoidance mechanism of the
CSMA/CA scheme takes effect resulting in a high delay jitter and even message loss. This
delay jitter can be reduced by using MAC time-stamping. However, in order to relax the
problem of message collisions, the RFA approach introduces an additional random time
offset at the application layer such that a node broadcasts a synchronization message some
random time before reaching the period end.

CHAPTER 5. DESIGN APPROACH 61

(a) (b)
Figure 5.2: Comparison of the original PCO model (a) and the RFA (b). In the PCO-model,
an oscillator immediately reacts to a firing event. In contrast, The RFA applies the overall
phase jump at the beginning of the next cycle: ∆ = ∆(∆(φ1)+φ2).

5.2 Improved Pulse Synchronization using RFA

5.2.1 Pulse Synchronization

Similarly to the original RFA approach, we reuse the definition of the smooth, monotonically
increasing, and concave down state function of Equation 5.1 to calculate the overall phase
advance ∆. Consider that the dissipation factor b > 1 and the pulse strength is within 0 <

ε < 1, then the phase advance equals

∆(φ) = min(1, f−1(f (φ)+ ε))−φ . (5.3)

The direct implementation of all these functions would result in a time-consuming cal-
culation process. Therefore, we simplified the equation by inserting the inverse function
f−1(x) = ebx−1

eb−1 in Equation 5.3. Let α = eεb and β = α−1
eb−1 , then Equation 5.3 can be trans-

formed to

∆(φ) = min(1,α ·φ +β)−φ . (5.4)

Assuming a strong dissipation factor b� 1 and a small pulse strength such that 0 < ε� b−1,
then we can replace eεb by the first order approximation of the Taylor expansion 1+ εb and
thus β is negligible. The phase advance then can be reduced to

∆(φ) = min(1,α ·φ)−φ . (5.5)

As a result, we have a linear Phase Response Curve (PRC) where the coupling factor α

specifies the strength of coupling between the oscillators and depends on the product of the
dissipation factor b and the pulse strength ε . This result is similar to the simplified firing
function described in [WATP+05].

In contrast to the original RFA algorithm, our approach achieves a better synchronization
precision and a faster convergence time by indirectly performing a clustering of the received
firing events. This is done by ignoring all events which are within the phase advance of
the last event to which a node would react. In fact, this corresponds to the introduction
of a short refractory period. Additionally, we do not allow a node to react to firing events
which originally (i.e., if the synchronization message would be sent without a random time
offset) would occur after the node reaches the period end. This ensures that in the case
of synchronized nodes, the fastest node does not advance its phase anymore, resulting in a
better precision. The algorithm is formally analyzed in more detail and guarantees network
synchronization as long as the bounds for several parameters are maintained. Algorithm 5

CHAPTER 5. DESIGN APPROACH 62

explains the behavior of this extended RFA (E-RFA) algorithm by the use of pseudocode.
The refractory period is implemented by the condition in Line 9. The variable eventset
contains the corrected phase of all received firing messages and offseti denotes the random
time offset for the preponed transmission with at most the maximum message staggering
delay rmax

msd and at least the minimum message staggering delay rmin
msd . Note that we always

assume a normalized threshold of 1. In reality, a pulse clock is usually implemented by the
use of a hardware clock that periodically increments a counter up to some threshold Φth. If
necessary, we use Φmax

msd = rmax ·Φth and Φmin
msd = rmin ·Φth to denote the absolute maximum

and minimum message staggering delay with respect to Φth, respectively.

Algorithm 5: E-RFA: code for pi, 0≤ i < n
Init: eventset := /0, ∆i := 0, ϕi := 0, offseti := 1−random(rmsd)1

upon event ϕi(t) = 1−offseti do // preponed transmission2

trigger broadcasti(ϕi(t)) // broadcast current phase to all neighbors3

upon event recvi(ϕ j) from p j do // received sync-message4

if ϕi(t)−ϕ j < 0 then // check timeliness5

add (ϕi(t)+1−ϕ j) to eventset6

upon event ϕi(t) = 1 do // threshold reached7

ϕlast := δlast := ∆i := 0 // clean up8
for each event ϕ j ∈ eventset in increasing order do9

if ∆i +ϕ j < 1 and ϕlast +δlast < ϕ j then10

δlast := min(1,(ϕ j +∆i) ·α)− (ϕ j +∆i)11

∆i := ∆i +δlast12
ϕlast := ϕ j13

ϕi(t) := ∆i // Apply reachback response14

offseti := random(rmax
msd − rmin

msd)+ rmin
msd // Calculate firing offset15

eventset := /016

Lower bound for the coupling factor α . We now show that in the case of two non-faulty
nodes that are initially synchronized, Algorithm 5 maintains the synchronized pulse state
with a worst case precision as stated in Definition 11. That is, the precision is defined with
respect to real-time (i.e., Newtonian time). For the following proofs, we define R = 1+ρ

1−ρ
and

Γ = 2ρT be the drift offset as stated in Section 2.2.2.

Lemma 1. In the case of a fault-free fully connected system comprising two nodes, if α >(
1− rmax · (R−1)− ΠU−d

T ·(1−ρ)

)−1
and ρ < 1

7 , then for ΠU +d+ε

T ·(1−ρ) < rmin ≤ rmax < 1
2 , Algorithm 5

keeps the network synchronized with a worst case precision of

Π
U = (1+ rmax)Γ+ ε ·R+max(Γ · rmax,d ·R). (5.6)

Note that in the case of a fully connected network comprising more than two nodes, all
nodes synchronize to the fastest one due to Line 4 and Line 9 of Algorithm 5. Especially
the condition ϕlast + δlast < ϕ j in Line 9 ensures that if a node advances its phase due to
some received firing event ϕ j, all events immediately follow some short time after ϕ j are
ignored. This condition is necessary. Otherwise, assume n nodes are perfectly synchronized.
Consequently, a node would perform n times a phase advance, which results in a mutual
excitation in the case n is very large.

CHAPTER 5. DESIGN APPROACH 63

Theorem 1. In the case of a non-faulty communication network comprising n≥ 2 non-fault

nodes, if α >
(

1− rmax · (R−1)− ΠU−d
T ·(1−ρ)

)−1
and ρ < 1

7 , then for ΠU +d+ε

T ·(1−ρ) < rmin ≤ rmax <
1
2 , Algorithm 5 keeps the network synchronized with a worst case precision of

Π
U = (1+ rmax)Γ+ ε ·R+max(Γ · rmax,d ·R). (5.7)

Upper bound for the coupling factor α . One may ask why not setting α = ∞ such that
a node immediately adjusts its phase to a neighboring clock every time receiving a firing
message from this clock. However, the following lemma shows that there exist a basic upper
bound which holds for every network. For this we first define the notion of a firing state.

Definition 32. A firing state C(N,k,m) = (ϕ0,m,ϕ1,m . . .∆k,m . . .ϕn−1,m) = P(t) of a fully con-
nected network N comprising n nodes with ϕi,m = ϕi(t) is defined to be the pulse state P(t)
of the system at time t when pk just reached the threshold for the m-th time and consequently
applied the phase advance ∆k,m.

Lemma 2. In a perfect fully connected communication network N comprising n = 2 perfect
nodes, if the coupling factor α ≥ 3

2 , then the nodes may never become pulse-synchronized.

Since the algorithm ignores all firing events immediately following some short time after
a previous firing event due to Line 9, a node may realize a set of nodes as a single node and
therefore Lemma 2 also applies to networks comprising more than two nodes. We now ex-
ploit the intuition behind Lemma 2 and extend this problem to a general network comprising
n≥ 2 nodes.

Definition 33. C(N,k,m) is called to be an infeasible firing state, if there exists a positive
integer i > 0 such that C(N,k,m) = C(N,k,m+ i) and the network is not synchronized.

Lemma 3. The maximum phase advance a node can perform in a perfect fully connected
communication network N comprising n perfect nodes equals ∆ = (2α−1)n−1−1

(2α−1)n−1+1 .

A weak upper bound results from the fact that we do not want a node to perform a phase
advance which is greater than 1/2 and directly follows from Lemma 3.

Corollary 1. In a perfect fully connected communication network comprising n≥ 2 perfect

clocks, if the coupling factor α <
n−1√3+1

2 , then in every admissible execution a node will
never perform a phase advance which is greater than 1/2.

Note that if the weak bound is maintained, it can be still shown that there exist infeasible
firing states. However, due to imprecisions in calculations, the varying short-term drift,
the delay jitter, and due to several other indeterministic environmental effects, this bound is
generally applicable in fully connected networks. By contrast, multi-hop networks especially
ring topologies have to maintain the stronger bound as discussed next.

A stronger bound was devised from empirical studies in fully connected networks which
have shown that infeasible firing states highly likely do not exist, if the maximum phase
advance ∆max < 1

n+1 . The resulting bound for α can be deduced from Lemma 3.

Theorem 2 (unproven). In a perfect fully connected communication network comprising

n≥ 2 perfect clocks, if α ≥ 1
2

(
1+ n−1

√
1+ 2

n

)
, then the system may enter a stable infeasible

firing state.

CHAPTER 5. DESIGN APPROACH 64

Rate of synchronization. Theorem 3 analyzes the time to sync for the case of two perfect
nodes. The authors of [MS90] have also analyzed the case of n > 2 nodes. However, consid-
ering a multi-hop topology requires a more sophisticated solution and is treated in [LW04].
For the following proofs, we consider a perfect communication network N comprising only
two perfect nodes pA and pB. Let γ = α − 1 and Φ0 = ϕA−ϕB denote the initial phase
difference between the two nodes with ϕB ≤ ϕA.

Lemma 4. The infeasible firing state C(N,A) = (∆∗A;ϕ∗B) with ∆∗A = α−1
3−α

and ϕ∗B = 1
3−α

is a
unique fixpoint and has a phase difference of δ ∗ = 2−α

3−α
.

Proof. If we set C(N,A,k+1) =C(N,A,k), we get ∆A,k+1 = ∆A,k = (∆A,k +1−ϕB,k) ·(α−1)
and ϕB,k+1 = ϕB,k = ϕB,k ·α−∆A,k. Thus we can deduce that ∆∗A = α−1

3−α
and ϕ∗B = 1

3−α
. �

Although this fixpoint is a repeller, the roundoff error in the calculation may cause a node
to enter the fixpoint. This is especially a concern if the granularity of the hardware clock is
very low. The rate of sync with respect to different initial phase differences is visualized in
Figure 5.3. It is obvious that there exist a special initial configuration Φ∗0 which causes the

0 10 20 30 40 50 60 70 80 90 100
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Iteration [k]

P
h

a
s

e
 d

if
fe

re
n

ce
 [

δ
]

Figure 5.3: The rate of sync for different initial configurations with α = 1.01.

network to enter this fixpoint. To analyze this initial configuration, we first transform the
recursion of the dynamic system into a closed term.

Lemma 5. The phase difference δk of C(N,A,k) for k ≥ 1 equals

δk = δ
∗+((A2 · γ(1− γ)−A1) · z−k

1 +(B2 · γ(1− γ)−B1) · z−k
2)/γ

2 (5.8)

where z1 = 1+2γ+
√

1+4γ

2γ2 , z2 = 1+2γ−
√

1+4γ

2γ2 , A1 = 1−Φ0−z1γ

z1−z2
, B1 = z2γ−1+Φ0

z1−z2
, A2 =

z2
1

(1−z1)·(z1−z2)
, B2 = −z2

2
(1−z2)·(z1−z2)

, and δ ∗ from Lemma 4.

Proof. Let C(N,A,1) = (∆A,1,ϕB,1) be the initial firing state with ∆A,1 < ϕB,1 where ∆A,1 = 0
and ϕB,1 = 1−Φ0. The phase difference when pA reached the threshold for the k-th time
is δk = ϕB,k −∆A,k. From Lemma 2 we know that C(N,A,k + 1) = (∆A,k+1;ϕB,k+1) with
∆A,k+1 = (∆A,k + 1− ϕB,k) · (α − 1) and ϕB,k+1 = ϕB,k · α − ∆A,k. If we substitute γ for
α − 1 and consider the phase difference δk of C(N,A,k), we get ∆A,k+1 = γ(1− δk) and
ϕB,k+1 = δk + γ ·ϕB,k which yields δk+2 = δk+1 · (1+2γ)−δk · γ2− γ(1− γ) for k ≥ 1. The
dissolving of the recursion is left to the reader and leads to the solution as stated. �

Lemma 6. There exist a unique initial phase difference Φ∗0 ∈ (0,1) where the network even-
tually enters the fixpoint of Lemma 4 and equals Φ∗0 = 1− z2γ · 1−z2γ

1−z2
with z2 from Lemma 5.

Proof. If the network enters the fixpoint in C(N,A,m) for some m > 1, then we have a phase
difference of δk = δ ∗ for k ≥ m with δ ∗ from Lemma 4. Using Equation 5.8 then yields

CHAPTER 5. DESIGN APPROACH 65

(
z2
z1

)k+1
=−B2·γ(1−γ)−B1

A2·γ(1−γ)−A1
. Since z1 > z2 we get lim

k→∞

(
z2
z1

)k+1
= 0 and thus B2 ·γ(1−γ) = B1.

Using B1 and B2 from Lemma 5 results in δ1 = z2γ · 1−z2γ

1−z2
. The initial phase difference then

has to be Φ∗0 = 1−δ1 as stated. �

Theorem 3. The number of iterations k until synchrony is at most k≤ logz2
B2·γ(1−γ)−B1

(δ ∗−δ)·γ2 with
B1, B2, and z2 from Lemma 5 and

δ =

{
1 if Φ0 ≤Φ∗0
0 if Φ0 > Φ∗0

. (5.9)

Proof. Note that lim
k→∞

C(N,A,k) = (∆A,k,ϕB,k) either converges to (0,0) or (1,1) as visualized

in Figure 5.3. Therefore, we simply equate Equation 5.8 with 1 if Φ0 ≤ Φ∗0 or with 0 if
Φ0 < Φ∗0. Since z1 > 7 for α < 3

2 and the multiplicative factor is smaller than 1, the term with
respect to z−k−1

1 does not influence the rate of sync for larger k and hence can be neglected.
This leads to the equation as stated. �

Note that Theorem 1 validates the closure condition and Theorem 3 the convergence
condition of the self-stabilizing pulse synchronization problem for a fault-free system com-
prising n = 2 nodes.

So far, we have only considered the convergence time for the case of two nodes where
the pulse state repels from a single fixpoint and converges to a stable fixpoint. Fortunately,
we can assume that a system highly likely exits an unstable fixpoint due to the inaccuracies
in calculation, delay jitter, and other imprecisions. Therefore, for the rest of this thesis
we assume that a system always exits an unstable fixpoint configuration which allows the
definition of eventual convergence.

However, a generalization of Theorem 3 for n > 2 requires much more mathematical
insights and is beyond the scope of this thesis, because beside the stable fixpoint of the
synchronized pulse state, a fully connected network with n > 2 contains much more fixpoints
which are very complex to identify. Fortunately, due to our assumption that the system never
keeps in an unstable fixpoint configuration, we can assume that the system eventually enters
the synchronized pulse state as long as no other infeasible firing states and consequently no
other stable fixpoint configurations do exist. For that reason, we have to introduce lower and
upper bounds for all parameters which ensure that no stable fixpoint configuration except the
synchronized pulse state do exist.

Note that the persistence of the system in one of the aforementioned unstable fixpoint
configurations can be also treated as a symmetry breaking problem. As we have stated, the
exact identification of such configurations in a fully connected network is too complex for
the case of n > 2. However, in the case of a simple ring topology, such unstable fixpoint
configuration can be simply identified. In detail, assume a ring topology containing n ≥ 2
processors p0, p1, · · · , pn−1. Without loss of generality assume that at t = 0, p0 just reached
the period end and started a new round with a phase advance of ∆0 = min(1,α · (n−1)/n)−
(n−1)/n. Further assume that, afterwards, ϕ0 < ϕ1 < · · ·< ϕn−1 with ϕk = k/n for 1≤ k < n.
The next node which reaches the period end then is pn−1 and consequently applies a phase
advance of ∆n−1 = min(1,α ·(n−1)/n)−(n−1)/n. As a result, every node applies the same
phase advance irrespective of the coupling factor α which leads to the fact that the system
forever keeps in an infeasible firing configuration. However, the aforementioned unstable
fixpoint configurations may be also stable, if the coupling factor is too great. Therefore, we
devised Theorem 4 that applies to ring topologies and other multi-hop topologies that contain
ring-like subnetworks.

CHAPTER 5. DESIGN APPROACH 66

Theorem 4. Let dmax = d + ε be the maximum possible message delay in a non-faulty com-
munication network as stated in Definition 26 and c = 1

n −
dmax

T −
2ρ

1−ρ2 . In a fault-free ring

system comprising n ≥ 2 nodes, if α ≥ 1
1−c , then the system may enter a stable infeasible

firing state.

Proof. Assume that the phase of the nodes are distributed in an equidistant way on the ring.
Then the distance between two neighboring nodes equals 1/n. In the case the two neigh-
boring nodes pi and p j with ϕi(0) < ϕ j(0) = ϕi(0) + 1/n are situated at the beginning of
the pulse period, then in the worst case the phase difference between both nodes at the pe-
riod end after T real time units reduces to 1/n− 2ρ/(1− ρ2) due to the clock drift. We
now have to ensure that a node does not perform a phase advance which is greater than
1/n−2ρ/(1−ρ2)−dmax = c. Otherwise, each node pi will only change its position to the
phase of the next node pi+1 minus the maximum message delay dmax and the synchronized
pulse state will never be entered. Therefore, we require that (1− c) · γ < c and consequently
α < 1/(1− c). �

Note that in the case of a ring topology, the tight upper bound for the coupling factor as
stated in Theorem 2 is no more valid and since the aforementioned identified upper bound
of Theorem 4 is more tight than the weak bound identified in Corollary 1, Theorem 4 is the
only upper bound for the coupling factor for ring topologies.

5.2.2 Rate Calibration

The concept of clock rate calibration combats the problem of frequency deviations due to the
high clock drift of the RC-oscillators usually used in low-cost devices. This approach should
allow a longer resynchronization interval with the same synchronization precision. Note that
the rate correction can be performed completely independent from the clock state correction
scheme.

The core concept of our rate calibration algorithm is that a processor p j implements a
pulse clock PC j with the threshold value Φth as defined in Algorithm 2 such that PC j(t) ∈
[0,Φth−1). Let HC j be the underlying hardware clock. By adjusting T th

j = Tnom + H j, the
period time of the pulse clock can be increased or decreased. Note that Tnom is a constant
that determines the nominal number of microticks and H j is the adjustable variable which
can be set by an algorithm. Let h j(t) = H j(t)/Tnom be the corresponding relative adjustment
value.

In order to perform the rate calibration, every node p j periodically broadcasts a synchro-
nization message m j. Let PC j(m j) and HC j(m j) denote the timestamps of the pulse clock
and hardware clock at p j, respectively, at the time when p j broadcast m j. Let PCr(m j) and
HCr(m j) denote the timestamps of the pulse clock and hardware clock at pr, respectively, at
the time when pr received m j from p j. Let mr

j,k be the k-th message that pr received from
p j and m j,k be the k-th message p j broadcast. We further assume that m j,k+1 is not received
at some pr before m j,k is received for k ≥ 1 and that each message contains all necessary
timestamps.

The rate correction algorithm works as follows: Based on the timestamp HC j(mr
j,k) stored

in mr
j,k, the receiving processor pr calculates p j’s relative adjustment value in its own granu-

larity, denoted by hr
j,k+1, with hr

j,k+1 =
HCr(mr

j,k+1)−HCr(mr
j,k)

(HC j(m j,k+1)−HC j(m j,k))/(1+h j,N) −1. Therein, the term
h j,N denotes the latest received adjustment value from p j, i.e., the relative adjustment value
contained in the latest received message m j,N from p j. In order to reduce the impact of the
delay jitter, we should choose the time interval between the two received messages as large

CHAPTER 5. DESIGN APPROACH 67

as possible2. However, the optimal time interval also depends on the underlying oscillator
type. In our case, we store the last N received messages from each node and calculate the
relative deviation with respect to the buffer size N. To visualize the impact of the delay jit-
ter, we replace HCr(mr

j,k) by HCr(mr
j,k)+dk, where dk corresponds to the message delay of

message mr
j,k in pr’s clock granularity. From this it follows

hr
j =

HCr(mr
j,N)−HCr(mr

j,1)
(HC j(mr

j,N)−HC j(mr
j,1))/(1+h j,N)

−1+
(dN−d1) · (1+h j,N)

HC j(mr
j,N)−HC j(mr

j,1)
. (5.10)

In our implementation we set N = 8, reducing the impact of the jitter with respect to the
resynchronization period to at about ∼ ε/8.

Let Pr be a set of processors that are within the broadcast domain of pr such that for all
p j ∈ Pr, pr is in the broadcast domain of pr and pr < Pr. The next step of the algorithm is to
calculate the average relative phase adjustment value of all nodes p j ∈ Pr, i.e.,

h̄r =
hr +∑p j∈Pr hr

j

|Pr|+1
. (5.11)

The main challenge, however, concerns the adjustment of h̄r to the new relative adjust-
ment value hr

new of pr. Due to natural imprecisions and the influence of the delay jitter, a
direct adjustment of hr

new = h̄r usually leads to a continuous increase or decrease of the real
overall average relative adjustment value. This effect is also known as the common-mode
drift. In general, the common-mode drift cannot be avoided, but the effect can be reduced
by carefully choosing a large enough N with respect to the delay jitter. A further approach
for the reduction of the common-mode drift depends on the parametrized adjustment of h̄r

by the use of a smoothing factor σ as shown in Equation 5.12. This ensures that the pulse
clocks smoothly converge to the same overall average cycle time.

hr
new = hr

old +(h̄r−hr
old) ·σ . (5.12)

Note that there is a tradeoff between convergence time and rate stability with respect to the
smoothing factor. For instance, a smaller smoothing factor results in smaller rate variations,
but increases the convergence time. In contrast, a greater smoothing factor decreases the
convergence time, but results in wider rate variation. Empirical tests and simulations have
shown that a value of σ = 1

4 is a good compromise between the extended convergence time
and a better rate stability.

In order to overcome the common-mode drift, we developed a drift stabilization approach
which makes use of the calculated slope sr(t,Ns) of the adjustment value hr(t). In detail,
each node pr calculates sr(t,Ns) at time t, based on the gathered adjustment values of hr(t)
during the last Ns synchronization periods. Let hr,k, 1 ≤ k ≤ Ns, be the gathered values
at some pr where hr,1 and hr,Ns terms the oldest and latest adjustment value of the current
synchronization round, respectively. The assignment of the new adjustment value hr

new is
then done with respect to the calculated slope as shown in Equation 5.13.

hr
new = h̄r− sr(t,Ns). (5.13)

The slope is calculated by assuming a linear regression model and using the linear least
square computation technique for minimizing the sum of squared residuals. This leads to the
following slope calculation equation:

sr(t,Ns) = ∑
Ns
k=1(k−(Ns+1)/2)·(hr,k−havg)

∑
Ns
k=1(k−(Ns+1)/2)2 with havg = 1

Ns
∑

Ns
k=1 hr,k (5.14)

2Note that there still exist an upper limit due to the long-term stability of an oscillator, which is usually in the order of
minutes.

CHAPTER 5. DESIGN APPROACH 68

One may assume that this recalibration will stop the common-mode drift at some time.
However, the fact that the nodes have different time basis and the existence of imprecisions
and jitter again invalidates the aforementioned argument. Nevertheless, the common-mode
drift is dramatically reduced with the advantage of an unaffected convergence speed in con-
trast to the smoothing approach.

One way to completely overcome the common-mode drift is that the nodes incorporate
the drift deviation with respect to some globally fixed reference value. Note that a solution
solely based on locally fixed reference values (e.g., the local drift adjustment value at some
fixed time t) requires that all nodes fix their reference value at nearly the same time which
would result in complex algorithms. Therefore, the agreement on the globally fixed refer-
ence value is based on continuously averaging the averaged locally fixed reference values of
all neighbors and the own node. For this, the locally fixed reference value is based on the
integrated slope over time since a node entered the sync-state.3 Let Σsr(t) denote the summa-
rized slope at time t. In detail, at the end of each synchronization period, the actual calculated
slope sr(t,Ns) is added, i.e., Σ ′sr(t) = Σsr(t)+ sr(t,Ns). The basic idea then is to additionally
incorporate this “integrated” slope into the calculation of the new drift adjustment value as
follows:

hr
new = h̄r− sr(t,Ns)−Σ

′
sr(t)/Ns (5.15)

The only problem in Equation 5.15 results from the fact that there may exist some node px
which started the integration process for Σsr(t) much more earlier than the other nodes. As a
consequence, the summarized slope value of this node can become exploding high according
to the other nodes. In the presence of a multi-hop topology and the case that all nodes except
px have a very small summarized slope value, then px will always perform a too excessive
rate adjustment. Indeed, the common-mode drift is stopped, but at the price of a possible
strong rate instability.

A remedy to this problem is based on keeping all summarized slope values at nearly the
same global level. The simplest approach to do this is by implementing a distributed aver-
aging mechanism which incorporates all neighboring summarized slope values. According
to the set of processors Pr, pr then calculates the new summarized slope as follows, where s j
denotes the received summarized slope of p j of the last synchronization period:

Σ
′
sr(t) =

Σsr(t)+∑p j∈Pr s j

1+ |Pr|
+ sr(t,Ns) (5.16)

5.3 Introducing Robustness and Fault Tolerance

In this section, we modify the proposed E-RFA algorithm and the rate calibration scheme
such that both are robust or even tolerant to f Byzantine faults. For this, we assume that
the system is fault-free in the case of E-RFA and coherent in the case of the rate calibration
scheme. In the coherent case, in Definition 31 we stated that a non-faulty node receives at
most one message from a faulty node in each period. This simplification is necessary in
order to maintain the determinism of the algorithm. Furthermore, this constraint is feasible
since we do not assume the existence of radio jamming attacks.

The robust version of the E-RFA algorithm works in single-hop topologies in the pres-
ence of at most f permanent erroneous nodes, if the number of nodes n≥ 5 f +1. The algo-
rithm is also admissible in constraint multi-hop networks as long as the network is (5 f +1)-
connected. Note that the aforementioned assumption of a single-hop network is a special
case of a (5 f + 1)-connected network. We will also show that there exist executions where

3Note that choosing a reference value which is directly based on the local drift adjustment value is inappropriate, because
all nodes may have strongly deviating initial adjustment values.

CHAPTER 5. DESIGN APPROACH 69

the algorithm will never converge in a coherent system. Hence, the R-RFA algorithm is not
resilient to Byzantine faults, but robust against erroneous nodes which do not behave in an
adversary manner.

5.3.1 Robust RFA

The first idea is to incorporate the same concept used in the FTA algorithm. In detail, be-
fore a node calculates the phase advance, it first removes the f lowest and f highest phase
deviations from the multiset variable eventset. This behavior is illustrated in Algorithm 6.
Note that in the case of a wired distributed system, the assumption of n≥ 3 f +1 is adequate.
Unfortunately, in wireless networks our assumption of a Byzantine node allows it to jam the
medium in order to destroy the message transmission of at most one non-faulty node. We
assume the same for an erroneous node. Consequently, in the worst case the f erroneous
nodes may always prevent f non-faulty nodes from broadcasting their messages. However,
if a node receives only 2 f messages in the case of n = 3 f + 1, then we cannot assume that
all messages origin from non-faulty nodes due to the unreliability of the wireless communi-
cation channels. On this account, a node always removes the f lowest and f highest phase
deviations independent of the number of received messages. In order to provide robust-
ness with respect to the previous mentioned attack, this fact then requires the assumption of
n≥ 5 f +1 or according to general network topologies a (5 f +1)-connected network.

Note that the phase deviations are symmetric with respect to ±1
2 . On this account we

define the set S of symmetric phase deviations according to the stored events in the eventset
variable as defined below. For this we use the symmetrization function s(ϕ j).

S(eventset) = {s(ϕ j) | ϕ j ∈ eventset}, with s(ϕ j) =


ϕ j if ϕ j < 1

2

ϕ j−2 if ϕ j ≥ 3
2

ϕ j−1 else

. (5.17)

Let jmin = min∀ϕ j{ j | s(ϕ j) = min(S)} and jmax = max∀ϕ j{ j | s(ϕ j) = max(S)} be the small-
est and greatest array indices of the subset of phase deviations that have the same minimum
or maximum symmetric phase deviation, respectively. Note that the algorithm uses the array
indices to refer to the distinct received phases. This does not mean that each node requires a
unique identifier. Consequently, we can define the function reduce as follows:

reduce(eventset) = eventset \{ϕ jmin ,ϕ jmax}.

Since we want to remove a set of lowest and highest deviations, we use reducek to denote
the k-fold iteration of the function reduce.

A lot of experimental studies have shown that this approach nearly always converges in
the presence of simple erroneous nodes (e.g., omission failure) as long as the parameters are
correctly chosen according to Theorem 1 and Theorem 2. However, if the erroneous nodes
act in an adversary manner (i.e., they are Byzantine faulty), then they are always possible to
prevent the system from converging. For instance, consider the configuration as visualized
in Figure 5.4. Therein, a group of nodes is already synchronized and the node pi is outside
the group. Assume that pi has a higher drift (i.e., pi is much more faster) compared to the
other nodes in the group and consequently diverges from the group. Let p f be a Byzantine
faulty node which transmits a message to each node in the group in each round with the
information as it would be situated exactly c phase units in front the group. Further let ∆i
be the phase advance performed by node pi in some round. Consequently, if f = 1, then
p f can chose a different c > 1/L for each node of the group such that the phase advance ∆g
of all these nodes is the same and equals ∆i. This leads to the fact that the phase difference
between each group node and pi never changes over time and convergence is never achieved.

CHAPTER 5. DESIGN APPROACH 70

Algorithm 6: R-RFA: code for pi, 0≤ i < n, n≥ 5 f +1
Init: eventset := /0, ∆i := 0, ϕi := 0, offseti := random(rmax

msd − rmin
msd)+ rmin

msd1

upon event ϕi(t) = 1−offseti do // preponed transmission2

trigger broadcasti(ϕi(t)) // broadcast current phase to all neighbors3

upon event recvi(ϕ j) from p j do // received sync-message4

add (ϕi(t)+1−ϕ j) to eventset5

upon event ϕi(t) = 1 do // threshold reached6

ϕlast := δlast := ∆i := 0 // clean up7

reduce f (eventset) // remove f highest and lowest deviations8
for each ϕ j ∈ eventset in increasing order do9

if ∆i +ϕ j < 1 and ϕlast +δlast < ϕ j then10

δlast := min(1,(ϕ j +∆i) ·α)− (ϕ j +∆i)11

∆i := ∆i +δlast12
ϕlast := ϕ j13

ϕi(t) := ∆i // Apply reachback response14

offseti := random(rmax
msd − rmin

msd)+ rmin
msd // Calculate firing offset15

eventset := /016

Figure 5.4: Demonstration of a configuration where R-RFA will never converge in a coherent
system for all admissible executions.

Beside the problem of convergence, we further show that the closure condition does not
hold in the presence of drift.

Theorem 5. In any coherent system with a fully connected network comprising n ≥ 5 f + 1
nodes for f > 0, Algorithm 6 does not satisfy the closure condition of the self-stabilizing
pulse synchronization problem.

Proof. Assume that initially all nodes are perfectly synchronized and that all nodes (even the
erroneous nodes) initially behave non-faulty. Let pi be the fastest non-faulty non-erroneous
node. Consequently, due to Line 8 the other nodes will exclude pi from their phase ad-
vance calculation. Since a node never advances more than the difference to the fastest node
included in the phase advance calculation, and pi never sets its phase back, the phase differ-
ence between pi and any other node increases after each iteration until the pulse state is no
more synchronized. �

As a consequence of Theorem 5 and the fact that the algorithm provides robust conver-
gence in a fault-free system, the nodes periodically enter a synchronized pulse state, keep
therein for some time, and then become unsynchronized until the fastest node again comes
close to the other nodes.

In order to maintain the synchronized pulse state, we extended the algorithm by the FTA
approach. The main advantage of the combination with the R-RFA algorithm is that both can
calculate the phase advance solely on the messages stored in the eventset variable. Further-
more, we can reuse the formal results of FTA to determine the worst case precision. In other
words, we use the R-RFA to provide convergence with a coarse synchronization precision
in a fault-free system and if the precision is small enough, the nodes then switch to the FTA

CHAPTER 5. DESIGN APPROACH 71

approach which provides a fine synchronization precision in a coherent system. Clearly, the
coarse precision must be small enough to validate the assumption of initially synchronized
nodes for the FTA algorithm, but must be great enough to have enough time until all nodes
switched to the FTA approach. A second reason for the switching to the FTA approach is
that FTA provides a much better precision, especially in the fault-free case. In more detail,
the worst case precision of FTA improves with an increasing number of nodes participating
in the synchronization process. In contrast, the worst case precision of the E-RFA approach
is about the maximum message delay and independent of the number of nodes as stated in
Theorem 1 and therefore worse compared to the FTA approach.

Algorithm 7 illustrates the cooperation of both approaches. Therein, we make use of
the symmetrization function s(ϕ j) and the symmetrized set S(eventset) as defined in Equa-
tion 5.17. The switching condition is defined in Line 13 and depends on the maximum
deviation a node identified. In detail, if the maximum deviation exceeds 1/L, then the R-
RFA approach is chosen. Otherwise, if the deviation is less than 1/L, then the FTA approach
is chosen. The parameter L is named the FTA convergence threshold, because it depends on
the worst case scenario where the FTA approach may never converge. In order to get the
worst case scenario, we first define the term of a Basic Rest Circle (BRC) in an undirected
communication graph N = (V,E) which represents the communication network topology for
a given system. In detail, the vertex set V contains all nodes of the system and the edge set
E represents the topology of the system, that is, an edge (u,v) ∈ E means that both pu and
pv are in the transmission range of each other.

Definition 34 (Path set). For a given undirected communication graph G = (V,E) and any
two nodes pi, p j ∈ V with pi , p j, P(pi, p j) denotes the set of all possible paths from pi to
p j within G. If there exists no such path, then P(pi, p j) is empty.

Definition 35 (Length of a path/circle). For a given path p = 〈p0, p1, . . . , pk〉, l(p) = k de-
notes the length of path p. Similarly, for a given circle c = 〈p0, p1, . . . , pk, p0〉, l(c) = k + 1
denotes the length of circle c.

Definition 36 (Basic Rest Circle). A BRC of an undirected communication graph G = (V,E)
is a closed simple path C = 〈p0, p2, . . . , pk, p0〉 which starts and ends at the same node, but
has no other repeated nodes and satisfies the following condition:

1. ∀0≤ i < j ≤ k : @p ∈ P(p j, pi) : l(p) < min(j− i,k +1− (j− i))

Condition 1 in Definition 36 ensures that the basic rest circle C passes only different
broadcast domains. For instance, if two nodes pi, p j ∈C with i+1 < j are in the transmission
range of each other (i.e., (pi, p j) ∈ E), then C is no basic rest circle. More informally, any
two nodes pi, p j ∈ C with i + 1 < j are not in the transmission range of each other. Note
that from Definition 36 it follows that the smallest BRC Cmin with l(Cmin) , 0 equals a ring
comprising three nodes4 such that l(Cmin) = 3. Smaller BRCs do not exist.

Definition 37 (Maximum Basic Rest Circle). The Maximum BRC Cmax of an undirected
communication graph G = (V,E), is a BRC such that there exists no other BRC Ci in G with
l(Ci) > l(Cmax).

Theorem 6. Let Cmax be the maximum BRC of the system. In the case at most f nodes are
erroneous and n ≥ 5 f + 1, Algorithm 7 may never converge if the convergence threshold
L≤max(l(Cmax),4)/2.

4Note that such a ring also corresponds to an all-to-all topology.

CHAPTER 5. DESIGN APPROACH 72

Proof. The proof consists of two parts. The first part shows that there exist configurations
such that the FTA approach will never converge if L ≤ max(l(Cmax),2)/2. The second part
proofs that L≤max(l(Cmax),4)/2 must hold to cover the general case.

The simplest network topology comprising n nodes with the maximum possible BRC of
l(Cmax) = n is a simple bidirectional ring topology. In other words, Cmax equals the complete
communication topology such that l(Cmax) = 〈p0, p1, . . . , pn−1, p0〉. Let the initial pulse state
at t = 0 be P0 = 〈ϕ0,ϕ1, . . . ,ϕn−1〉= 〈0, 1

n , 2
n , . . . , n−1

n 〉. Clearly, the successive pulse state P1
after each node applied the FTA approach then equals the initial pulse state. Consequently,
the pulse state will never change over time and the algorithm will never converge. This proof
can be applied on any topology that contains a ring and thus has l(Cmax) , 0.

The second part is based on the fact that the FTA approach only converges if the nodes
are initially synchronized to some coarse precision. Therefore, the worst case precision
where the nodes in an all-to-all topology converge equals exactly 1/2. That is, any two
nodes are no more than 1/2 apart. This leads to the fact that L > 4 must hold in order to
provide convergence of the FTA approach in any all-to-all topology. Consequently, if L ≤
max(l(Cmax),4)/2, then the FTA approach may not converge in a connected communication
topology. �

In order to incorporate the effect of inaccuracies and drift, we finally set the FTA conver-
gence threshold to L = max(l(Cmax),4). However, in the next section we will see that there
exists an even more tight lower bound for L which was identified for ring topologies but also
applies to all topologies which contain a maximum BRC Cmax with l(Cmax) > 0.

Algorithm 7: FTA-RFA: code for pi, 0≤ i < n, n≥ 5 f +1
Init: eventset := /0, ∆i := 0, ϕi := 0, offseti := random(rmax

msd − rmin
msd)+ rmin

msd1

upon event ϕi(t) = 1−offseti do // preponed transmission2

trigger broadcasti(ϕi(t)) // broadcast current phase to all neighbors3

upon event recvi(ϕ j) from p j do // received new sync-message4

eventset := eventset∪{ϕi(t)+1−ϕ j}5

upon event ϕi(t) = 1 do // threshold reached6

ϕlast := δlast := ∆i := 0 // clean up7

ftaset := eventset∪{1} // copy set for FTA approach8

reduce f (eventset) // remove f highest and f lowest deviations9

devmax := max(S(eventset))10

devmin := min(S(eventset))11

dev := max(devmax−devmin, |devmax|, |devmin|)12

if dev≥ 1/L then // Execute E-RFA13
for each ϕ j ∈ eventset in increasing order do14

if ∆i +ϕ j < 1 and ϕlast +δlast < ϕ j then15

δlast := min(1,(ϕ j +∆i) ·α)− (ϕ j +∆i)16

∆i := ∆i +δlast17
ϕlast := ϕ j18

else // Execute FTA19

∆i :=−avg(S(reduce f (ftaset)))20

ϕi(t) := ∆i // Apply reachback response21

offseti := random(rmax
msd − rmin

msd)+ rmin
msd // Calculate firing offset22

eventset := /023

To sum up, whereas the R-RFA part of Algorithm 7 provides a robust convergence to a
coarse synchronization precision in a fault-free system, the FTA part provides a fault-tolerant
synchronization with a fine precision even in the presence of Byzantine faults.

CHAPTER 5. DESIGN APPROACH 73

Further Bounds for L

So far we have only devised a lower bound for L to guarantee that the FTA part in the
FTA-RFA algorithm converges. However, this does not ensure that every fault-free system
executing FTA-RFA converges to a synchronized pulse state. If anything, it is apparently
impossible to prove convergence in general connected fault-free systems. On this account,
we try to identify all possible stable fixpoint configurations which lead to an infeasible firing
state and further try to find bounds to eliminate the existence of such system states. There-
fore, based on the simulation results of ring topologies, we identified further bounds which
are formally defined in Theorem 7 and Theorem 8. Note that both theorems of course also
hold true in general connected network topologies that contain a maximum BRC Cmax with
l(Cmax) > 0. In this case n must be replaced by l(Cmax). Note that Theorem 8 was devised
from empirical studies with ring topologies which have shown that the system sometimes
entered an infeasible firing state.

Theorem 7. Assume a fault-free ring system comprising n nodes and let dmax = d + ε be
the maximum possible message delay in a non-faulty communication network as stated in
Definition 26. Algorithm 7 may never converge, if L≥ T

n·dmax
.

Proof. The proof is based on the fact that the best real-time precision between two neigh-
boring nodes achieved solely through the RFA part of Algorithm 7 is at least dmax. As a con-
sequence, the best achievable real-time precision according to the E-RFA approach among
all nodes is at least (n− 1) · dmax. Since in this case the FTA part of Algorithm 7 should
be activated at all nodes in order to improve the synchronization precision, the inequation
1/L > (n−1) ·dmax/T must hold. �

Theorem 8. Assume a fault-free ring network N comprising n nodes that suffers from no
drift (ρ = 0). Let dmax be the maximum possible message delay of the system. Algorithm 7
may never converge if the following inequality is invalid:

L · (6 · γ/α−2dmax · (2α
n · (n+1)+5γ)) > 3 · (n−2) · (αn−1)+3γ

Proof. The proof is based on the assumption that the initial configuration corresponds to a
stable fixpoint which leads to an infeasible firing state. In detail, we assume that the nodes
are placed exactly 1/(2L) apart such that they just execute the FTA part of Algorithm 7.
However, the first and the last node still execute the RFA part due to their increased phase
distance. Let C(N, p0,1) be the corresponding firing state when the first node p0 reaches the
period end for the first time. In this case, we have C(N, p0,1) = (∆p0,1,ϕp1,1, · · · , ,ϕpn−1,1)
with ϕpk,1 = 1− k/(2L) for 1 ≤ k < n− 1. Since the last node pn−1 always executes the
RFA part and the fact that the RFA algorithm cannot synchronize two nodes better than the
maximum message delay dmax, we have ϕn−1 = ϕn−2−dmax/T . Based on this initial firing
state, we now devise bounds for the parameters such that the phase difference between p0
and pn−1 is getting smaller over time. Therefore, let ΦΠ = (n−2) ·1/(2L)+dmax/T be the
initial maximum phase difference.

Due to the existence of the message delay dmax and the fact that the nodes execute the
FTA algorithm, all nodes pk, 1≤ k < n−1, adjust their pulse clock backward by a phase of
2dmax/(3T). Note that this applies only once for p1, because afterwards p1 will recognize
a phase difference greater than 1/L and consequently executes the RFA part. In contrast,
pn−3 adjusts their pulse clock at most (n−3) times backward by a phase of 2dmax/(3T). On
this account, after p0 reaches the period end the (n− 1)th time, in the worst case we then
have C(N, p0,n− 2) = (∆p0,n−1,ϕp1,n−1, · · · ,ϕpn−1,n−1) with ϕpn−2,n−1 = ϕpn−2,1− (n− 1) ·
2dmax/(3T)) and again ϕpn−1,n−1 = ϕpn−2,n−1− dmax/T . Note that in the same round, pn−2

CHAPTER 5. DESIGN APPROACH 74

executes the RFA part and consequently, pn−2 recognizes a phase deviation between pn−1
and pn−3 that is greater than 1/L.

As a result, the next time when p0 reaches the period end, pn−2 executes the RFA part and
we get C(N, p0,n−1) = (∆p0,n,ϕp1,n, · · · ,ϕpn−1,n) with ϕpn−2,n = ϕpn−2,n−1 + ∆pn−2,n where
in the worst we get a smallest ∆pn−2,n of ∆pn−2,n ≥ (1−1/(2L)−2dmax/(3T)−∆pn−3,n−1−
dmax/T) · γ and ∆pn−3,n = γ/(1 + γ). In order to ensure convergence, the inequality 1−
ϕpn−1,n +∆p0,n < 1−ϕpn−1,1 +∆p0,1 must hold. This inequality is valid, if ∆pn−2,n > (n−2) ·
2dmax/(3T)+∑

n
k=1 ∆p0,k is true. Note that in the worst case we can assume that ∑

n
k=1 ∆p0,k ≤

(ΦΠ +(n−2) ·2dmax/(3T)+dmax/T) · (αn−1). Replacing the variables finally leads to the
inequality as stated. �

5.3.2 Fault-tolerant Drift Compensation

The fault-tolerant variant of the previously presented drift calibration technique is based on
the same idea like the FTA approach. That is, we exclude a set of highest and lowest values.
However, since this algorithm requires the distinction of the different messages with respect
to the different sender nodes, each synchronization message used for the drift calibration
scheme must contain the unique identifier of the origin. In other words, this algorithm is
non-anonymous. Unfortunately, this fact makes it impossible to tolerate f Byzantine nodes,
if n = 3 f + 1, because the calculation of the drift compensation is based on the individual
history of the last N received messages for each neighboring node. In detail, the calculation
as stated in Equation 5.10 and realized in Line 25 of Algorithm 8 depends on the content
of two received messages from the same node. The fact that a faulty node may transmit
with different ids in each round and the assumption that a faulty node cannot transmit more
than one message per round (Definition 31) requires at least n≥ 5 f +1 nodes. For instance,
assume the case that the oldest message of f different nodes are forged and additionally the
latest message of f other different nodes are forged. Consequently, in the worst case we
would have at most 2 f incorrect drift calculations of neighboring nodes. By excluding the
2 f highest and 2 f lowest values, we can be sure that the average of the remaining drift values
agrees to some extent with the average at the neighboring nodes. This proves that at least
n≥ 5 f +1 nodes are required.

If the real world would behave exactly according to our system assumption, then every-
thing would be alright. For instance, if a node receives less than n− 2 f messages, then we
can assume that the faulty nodes performed a jamming attack such that the messages are
transmitted exactly at the same time when a non-faulty node started the message transmis-
sion. In other words, the f faulty nodes corrupted the transmission of at most f non-faulty
nodes resulting in the fact that a non-faulty node receives at least n− 2 f − 1 messages. In
this case, all received messages can be assumed to be correct.

In practice, the aforementioned situation is inappropriate, because messages may be tem-
porarily lost due to environmental influences, or non-faulty nodes may run out of energy.
Consequently, a node has to remove the 2 f lowest and highest values irrespective of the
overall number of received messages. In the case there are no remaining values after the
removal process, a node does not change its drift rate. However, as already explained in the
previous section, consider the case the f faulty nodes always jam f other non-faulty nodes
which is valid due to our definition of a Byzantine node. Hence, a non-faulty node always
receives at most n− 2 f messages and removes the 2 f highest and 2 f lowest values from
n− 2 f corresponding drift values. In the case n = 5 f + 1, every node will never have re-
maining values after the removal process and consequently will never adjust its drift rate.
To overcome this situation, we require that n ≥ 7 f + 1 for the robust version of the drift
calibration scheme.

CHAPTER 5. DESIGN APPROACH 75

Algorithm 8 illustrates this fault-tolerant version named Robust Fault-tolerant Drift Cal-
ibration (FT-DC)5. All variables used in the algorithm are described in short in Table 5.2.
Similar to Algorithm 7, Algorithm 8 makes use of the reduce(M) function for removing the
lowest and highest value contained in the multiset M.

Table 5.2: Variables of the FT-DC algorithm.

offset the actual phase offset of pi for broadcasting the synchronization message
hi(t) the actual relative rate adjustment value of pi at time t

HCi(t) the actual microtick of hardware clock HCi of pi at time t
Σsi(t) the periodically summarized slope of pi at time t

si(t,Ns) actual slope of pi, calculated by linear regression over the last Ns periods
htmp stores the relative rate adjustment value of the previous round

h̄ the average relative rate adjustment value among all nodes
eventset is a set that contains all event messagesall received during a complete round

idset is a multiset that contains all received neighboring identifiers
tmpidset is used to select a single message if more messages with same id exist
rateset is a multiset that contains all received relative rate adjustment values

slopeset is a multiset that contains all received averaged summarized slope values
history[id] contains the timestamped history of received adjustment values for each id

N the history length to be stored (same for all nodes)
rmax
msd , rmin

msd the maximum and minimum message staggering delay (same for all nodes)

The proof of convergence of Algorithm 8 is skipped for sake of clarity. However, intu-
itively it is clear that the drift of all nodes smoothly converge to a common average drift, as
long as the network is (7 f +1)-connected. In short, this argument results from the fact that
the lowest and highest existing drift adjustment value cannot become smaller and higher,
respectively. The simulation results presented in Chapter 6 additionally emphasize the cor-
rectness of this approach. Note that the algorithm also implements the compensation of the
common-mode drift in Line 29-31. The calculation of the slope variable si(t,Ns) directly
follows Equation 5.14 and is omitted in the algorithm in order to keep the algorithm small.

Note that Algorithm 7 and Algorithm 8 use the same messages and can be easily com-
bined to provide both a drift correction and a state correction in order to precisely solve
the pulse synchronization problem. For sake of simplification we assume that after a long
enough time, the drift correction algorithm hardly affects the precision among the nodes
with respect to their pulse clocks. In detail, the precision degradation resulting from the drift
correction algorithm is assumed to be orders of magnitudes smaller than the achievable pre-
cision of the state correction algorithm. This is an important assumption, since otherwise,
we would have to incorporate the precision degradation of the drift calibration algorithm into
the worst case precision of the FTA algorithm at the pulse clock level.

5.4 Improvements in Single-hop Networks

So far, we have considered general network topologies that provide redundancy to some de-
gree. If we restrict our attention to single-hop networks, then several additional concepts can
be implemented. This results from the fact that the assumption of a single-hop topology is a
powerful constraint which allows the development of efficient and deterministic algorithms
even in the presence of Byzantine faults.

5 Note that the index i at some variables is often omitted when it is clear from context that the variable corresponds to node
pi.

CHAPTER 5. DESIGN APPROACH 76

Algorithm 8: Robust FT-DC: code for pi, 0≤ i < n, n≥ 7 f +1
Init: eventset = idset = /0, ϕi = htmp = 0, offset = random(rmax

msd − rmin
msd)+ rmin

msd1

upon event ϕi(t) = 1−offset do // preponed transmission2

trigger broadcasti(idi,HCi(t),hi(t),Σsi(t)) // broadcast local timestamp3

upon event recvi(id j,HC j,h j,Σs j) from p j do // received sync-message4

idset := idset∪{id j}5

add (id j,HC j,h j,HCi(t),Σs j) to eventset // HCi(t) is the local timestamp6

upon event ϕi(t) = 1 do // threshold reached7

offset := random(rmax
msd − rmin

msd)+ rmin
msd // calculate new random offset8

slopeset := /0 // slopeset is a multiset9

/* Initialize local variables */

h̄ := hi(t)10
tmpidset := /011

rateset := {hi(t)}12

/* Update event history */
for each (id j,HC j,h j,HCi,Σs j) ∈ eventset do13

slopeset := slopeset∪{Σs j}14

if id j < tmpidset then // ensure a single event for each id15

tmpidset := tmpidset∪{id j}16

history[id j] := history[id j]∪ (HCi,HC j,h j)17

for each id j ∈ idsetr tmpidset do // indicate omissions18

history[id j] := history[id j]∪ (HCi(t),⊥,⊥)19

eventset := /020

/* Calculate new rate adjustment value */
for each id j ∈ idset with |history[id j]|= N do21

Let (HCi,N ,HC j,N ,h j,N) ∈ history[id j] be the latest stored message22

Let (HCi,1,HC j,1,h j,1) ∈ history[id j] be the N-th oldest stored message23

if HC j,1 ,⊥ and HC j,N ,⊥ then24

h j := (HCi,N−HCi,1) · (1+h j,N)/(HC j,N−HC j,1)−125

rateset := rateset∪{h j} // note that rateset is a multiset26

reduce2 f (rateset)27

if |rateset|> 0 then h̄ := (∑∀h j∈rateset h j)/|rateset|28

slopeset := {Σsi(t)}∪reduce f (slopeset)29

Σsi(t) := avg(slopeset)+ si(t,Ns) // common-mode drift compensation30

hi(t) := h̄− si(t,Ns)−Σsi/Ns // adjust drift rate of pulse clock31

continuously do // Ongoing cleanup32

if pi remains in the unsync-state, then Σsi(t) := 0 and si(t,Ns) := 033
for each id j ∈ idset do34

delete history[id j], if no message was received during the last N periods35

keep only the latest N entries in history[id j] and delete the rest36

5.4.1 Clique Discovery

The main drawback of the FTA-RFA approach (Algorithm 7) is the long convergence time in
single-hop topologies in the case all but one are initially synchronized. For instance, consider
the fault-free case of n > 2 nodes, where all nodes except some pi are initially synchronized.
Algorithm 7 ensures that the nodes keep synchronized and that pi is attracted to the other
nodes. The convergence time then equals the case of two nodes and is already analyzed in
Theorem 3.

CHAPTER 5. DESIGN APPROACH 77

Based on the aforementioned example, we devise a simple extension for the FTA-RFA
algorithm such that a node first performs a clique discovery. If a clique is detected, then a
node directly adjusts its phase to the clique by executing the FTA algorithm solely on the
information received from the nodes within this clique. The synchronization information of
the other nodes is discarded. Consequently, the convergence time of the mentioned example
is reduced to exactly 1 round, independently of the initial phase difference between pi and the
other synchronized nodes. In practice, the additional clique discovery approach effectively
speeds up the convergence time, because completely equidistant distributed initial phases
hardly occur in reality and even randomly initiated networks often contain cliques.

Another advantage of the clique discovery approach is the fact that it can be used for
the bootstrapping phase. For instance, in the case a new node wants to join an already
synchronized network, then the bootstrapping phase ensures that the other nodes are not
desynchronized. This is done by not actively participating in the synchronization process. In
detail, the new node only listens to the medium for one complete period without transmitting
any messages and then adjusts its phase directly to the discovered clique by executing the
FTA algorithm based on the information of the nodes within this clique.

Algorithm 9 extends the basic FTA-RFA Algorithm 7 by the use of a clique discovery
approach. Therein, Line 8 executes the CD(eventset) function which is described in more
detail in Algorithm 10. An important detail within the clique discovery approach is that the
passed multiset for the clique discovery function must contain the nodes’ own phase, that is,
it includes always the phase ϕ = 1. In short, the function returns a subset clique⊆ eventset
that corresponds to a discovered clique. In the case no clique was identified, then the function
simply returns the original passed multiset eventset∪ {1}. This fact is used in Line 9 in
order to set the boolean variable discovered. In the case a clique was discovered, then the
algorithm directly performs the FTA approach on the identified clique. However, if no clique
was discovered and all nodes are very close together, then FTA is again executed instead of
the original RFA approach. Fortunately, the FTA approach can be directly applied on the
returned clique as shown in Line 21, because this set already contains the nodes’ own phase
as required by the FTA approach. For this, the avg(M) function applied on a multiset M is
defined as avg(M) := ∑∀ϕ∈M ϕ/|M| and returns 0 if M is empty.

Algorithm 10 presents the pseudocode of the clique discovery approach for n > 3 f in the
presence of at most f Byzantine nodes. The code makes use of a trivial distance function
d(ϕA,ϕB) which calculates the normalized absolute phase difference between both ϕA and
ϕB. The formal definition is given in Equation 5.18.

d(ϕA,ϕB) =

{
|ϕA−ϕB| if |ϕA−ϕB|< 1

2

1−|ϕA−ϕB| else
(5.18)

The vic(S,ϕr,k) function, formally defined in Equation 5.19, returns a subset C⊆ S of phase
values which are in the k-vicinity of a reference phase ϕr. In Algorithm 10, the parameter ϕr
sometimes corresponds to an element or a multiset of phase values. However, in the case of
a multiset, all elements in ϕr have the same phase value and, therefore, this does not matter.
In the case the multiset S or ϕr is empty, the vicinity function returns an empty set too.

vic(S,ϕr,k) = {ϕ ∈ S | d(ϕr,ϕ)≤ k} (5.19)

In each round, the algorithm simply tries to find the two greatest cliques which are at
least 1/k apart. However, it must be ensured that all nodes consistently discover the same
two cliques. On this account, a node only stores the greatest clique, if it contains at least 2 f
more phase values than the second greatest clique. This ensures that Byzantine nodes cannot
introduce inconsistencies by sending different values to the distinct nodes. Furthermore, if

CHAPTER 5. DESIGN APPROACH 78

Algorithm 9: FTA-RFA with CD: code for pi, 0≤ i < n, n≥ 5 f +1
Init: eventset := /0, ∆i := 0, ϕi := 0, offseti := random(rmax

msd − rmin
msd)+ rmin

msd1

upon event ϕi(t) = 1−offseti do // preponed transmission2

trigger broadcasti(ϕi(t)) // broadcast current phase to all neighbors3

upon event recvi(ϕ j) from p j do // received new sync-message4

eventset := eventset∪{ϕi(t)+1−ϕ j}5

upon event ϕi(t) = 1 do // threshold reached6

ϕlast := δlast := ∆i := 0 // clean up7

clique := CD(eventset∪{1}) // perform clique discovery8

if |clique|= |eventset|+1 then discovered := false else discovered := true9

reduce f (eventset) // remove f highest and f lowest deviations10

devmax := max(S(eventset))11

devmin := min(S(eventset))12

dev := max(devmax−devmin, |devmax|, |devmin|)13

if discovered = false and dev≥ 1
L then // Execute E-RFA14

for each ϕ j ∈ eventset in increasing order do15

if ∆i +ϕ j < 1 and ϕlast +δlast < ϕ j then16

δlast := min(1,(ϕ j +∆i) ·α)− (ϕ j +∆i)17

∆i := ∆i +δlast18
ϕlast := ϕ j19

else // Execute FTA20

∆i :=−avg(S(reduce f (clique)))21

ϕi(t) := ∆i // Apply reachback response22

offseti := random(rmax
msd − rmin

msd)+ rmin
msd // Calculate firing offset23

eventset := /024

the greatest clique contains more than 2 f phase values, then the algorithm refines the clique
discovery by executing a further round with a smaller vicinity size which is the half of the
previous round. This is continuously done until the smallest vicinity size of 1/w is reached
or the greatest clique contains ≤ 2 f phase values. For this, the precision window w contains
the estimation of the achievable worst case precision. In other words, the precision window
defines the lower bound of the clique discovery resolution such that a highly probable consis-
tent clique discovery among all nodes can just be guaranteed. The algorithm finally returns
the subset C⊆ S which contains the unique greatest discovered clique with the smallest pos-
sible clique discovery resolution. In the case no unique clique was discovered, the algorithm
simply returns the complete original set S.

5.4.2 Message Delay Estimation

Message Delay Estimation (MDE) is usually done by implementing a two-way message
exchange mechanism as used in MSTSP (Section 4.1.3), SGS (Section 4.1.4), or TinySeR-
Sync (Section 4.1.5). However, a two-way message exchange approach would result in an
increased message complexity and further ruins the simplicity and advantages of one-way
dissemination. In contrast, our approach preserves one-way dissemination by exploiting the
homogeneity within a WSN. That is, all nodes are based on the same hardware and usually
execute the same software. Note that this assumption only applies to WSNs and is inappro-
priate in the case of general wireless or wired distributed systems.

The basics behind the algorithm is that the message delay estimation does not rely on
the information of a single node. Contrary, the calculation is distributed over the complete

CHAPTER 5. DESIGN APPROACH 79

Algorithm 10: Clique Discovery (CD)
procedure CD(S)1

k := 4, C := S2
repeat3

k := min(b1/wc,2k)4

/* Find cliques with greatest size */

SA := {ϕA ∈ S | |vic(S,ϕA, 1
k)|= max∀ϕ∈S |vic(S,ϕ, 1

k)|}5

if |SA|= 1 then6

/* Find cliques with second greatest size */

SB := {ϕB ∈ S | |vic(S,ϕA, 1
k)|= max∀ϕ∈S |vic(S,ϕ, 1

k)| ∧ d(SA,ϕB) > 1
k}7

/* Check if greatest clique is unique */

if |vic(S,SA, 1
k)|− |vic(S,SB, 1

k)|> 2 f then8

C := vic(S,SA, 1
k) // Store discovered unique clique9

until k = b1/wc or |vic(S,SA, 1
k)| ≤ 2 f10

return C11

network such that a node estimates the delay by averaging the estimates over all neighboring
nodes.

Algorithm 11 presents the extended version of Algorithm 7 for single-hop networks. The
new code lines are highlighted within the code and realize the message delay estimation.
The main advantage of our distributed message delay estimation is that it is based on one-
way dissemination and adds only one new value to the synchronization message. Basically,
in Line 28 the algorithm calculates the average deviation over all received synchronization
messages after removing the f highest and f lowest values. This deviation then is broad-
casted within the synchronization message as shown in Line 3. During each period, a node
gathers all received deviations in the devset variable. This multiset is cleared at the end of
each period in Line 29. Since the calculation of the overall average message delay among all
average deviations of the neighboring nodes also includes the calculated average deviation
of the own node of the previous period, the devset variable initially contains the calculated
average deviation of the last period.

The final message delay estimation is done in Line 16 by simply averaging all received
neighboring message delay estimates. However, it should be noted that a fraction of the
resulting message delay estimate may not belong to the real message delay and thus must be
removed. Otherwise, especially within multi-hop topologies, simulation results have shown
that the phase deviation among the nodes will periodically increase and decrease over time.
To avoid this swinging behavior, we decided to remove half the maximum deviation among
the neighboring nodes (excluding the own node), because this deviation is a good measure
for the real actual precision that does not include the imprecision due to the message delay.

The estimation of the average message delay is only performed, if the corresponding
node remains in the sync-state, i.e., the deviation to all neighboring nodes is smaller than
the predefined synchronization window w. Otherwise, the calculation would make no sense.
Therefore, Line 15 clears the devset variable, if the node recognizes a deviation which is
greater than w. Thus, if a node recognizes that the maximum deviation with respect to all
neighboring nodes is less than w for several consecutive synchronization rounds, then it
determines itself to be synchronized. In order to minimize the influence of outliers and keep
the average message delay mde nearly constant and stable, Line 17 smoothly adapts the new
mde′ value by the use of the smoothing factor σmde. During all our simulations, we set σmde
to the value of 1/2. Line 9 finally makes use of the actual estimated average message delay.

CHAPTER 5. DESIGN APPROACH 80

In detail, the clique discovery algorithm is executed on the gathered events, shifted by the
estimated average message delay.

Algorithm 11: FTA-RFA with CD and MDE: code for pi, 0≤ i < n, n≥ 5 f +1
Init: eventset := devset := /0, ∆i := ϕi := devavg := mde := 0,1

offseti = random(rmax
msd − rmin

msd)+ rmin
msd

upon event ϕi(t) = 1−offseti do // preponed transmission2

trigger broadcasti(ϕi(t), devavg)3

upon event recvi(ϕ j, dev j) from p j do // received new sync-message4

eventset := eventset∪{ϕi(t)+1−ϕ j}5

devset := devset∪{dev j}6

upon event ϕi(t) = 1 do // threshold reached7

ϕlast := δlast := ∆i := 0 // clean up8

clique := CD({ϕ−mde | ϕ ∈ eventset} ∪{1}) // clique discovery9

if |clique|= |eventset|+1 then discovered := false else discovered := true10

reduce f (eventset) // remove f highest and f lowest deviations11

devmax := max(S(eventset))12

devmin := min(S(eventset))13

dev := max(devmax−devmin, |devmax|, |devmin|)14

if dev > w then devset := /015

mde′ := max(0,avg(reduce f (devset))− (devmax−devmin)/2)16

mde := mde+(mde′−mde) ·σmde17

if discovered = false and dev≥ 1
L then // Execute E-RFA18

for each ϕ j ∈ eventset in increasing order do19

if ∆i +ϕ j < 1 and ϕlast +δlast < ϕ j then20

δlast := min(1,(ϕ j +∆i) ·α)− (ϕ j +∆i)21

∆i := ∆i +δlast22
ϕlast := ϕ j23

else // Execute FTA24

∆i :=−avg(S(reduce f (clique)))25

ϕi(t) := ∆i // Apply reachback response26

offseti := random(rmax
msd − rmin

msd)+ rmin
msd // Calculate firing offset27

devavg := avg(S(eventset))28

devset := {devavg}29

eventset := /030

5.4.3 Automatic Passive Mode for Single-hop Networks

The efficient use of energy is an important keystone in WSNs but also in nearly all battery-
powered devices. Since message transmission is one of the major energy consumers in
wireless nodes, the design of an energy-efficient communication protocol often focuses on
the transmission of small-sized messages. In addition to that, we investigated the fact that
many nodes unnecessarily participate in the synchronization process. For instance, assume a
single-hop topology comprising hundreds of nodes where at most f nodes are permanently
Byzantine faulty. Instead that a node always receives a synchronization message from each
neighboring node in each round, it is sufficient enough that a node receives messages from at
least≥ 3 f +1 distinct nodes (including itself). In other words, the main approach is to let all

CHAPTER 5. DESIGN APPROACH 81

but at least 3 f + 1 nodes enter a passive state. The remaining nodes keep in an active state.
If a node is in the active state, then it behaves like before and broadcasts a synchronization
message in each round. Contrary, if a node is in the passive state, then it only listens to the
medium for broadcasted synchronization messages but never broadcasts a message itself.
Consequently, the active nodes will be the first that may run out of energy at some time t.
However, in the simple approach without containing passive nodes, all nodes may run out of
energy very frequently. A further advantage of the passive nodes approach is that if active
nodes run out of energy, the passive nodes recognize this dilemma and can re-enter the active
state such that again at least 3 f +1 nodes are active. Depending on the energy ratio r = Et/El
between the energy consumed for transmitting and only listening on the medium, then the
network lifetime can be extended by a factor of at most min(n/(3 f + 1),1/r). In other
words, we exploit the redundancy of the number of nodes in order to increase robustness and
network lifetime.

The Automatic Passive Mode (APM) approach for single-hop networks is a simple algo-
rithm and consists of two parts. The first part considers the recognition if too many nodes
are active. If so, then the second part determines if a node has to enter the passive state or
can remain in the active state. Algorithm 12 demonstrates the approach as an extension to
Algorithm 11 and makes use of the APM-procedure which is coded in Algorithm 13. The
new code lines are again highlighted.

In more detail, we introduce a new multiset variable named recvset. This variable gath-
ers the local reception phase at the receiving node for each received synchronization mes-
sage during one synchronization period. This procedure is implemented in Line 6 in Al-
gorithm 12. A further new boolean variable is termed active and represents one of the two
states a node persists in, namely active state (active = true) or passive state (active = f alse).
In order to use this boolean variable within mathematical calculations, we use the binary
value of 1 to represent the true state and 0 to represent the f alse state. Initially, active is
set to 1. However, if active was set to 0 in the previous round, then some calculations must
be modified, because then the own node must not be incorporated in the calculation process.
Examples of the modified lines are Line 11, and Line 12 of Algorithm 12. For instance,
if active equals 0, then the clique detection procedure must not incorporate the own node
(Line 11). Consequently, the state of the active variable must be incorporated for setting the
discovery variable in Line 12. Based on the content of the recvphase set, the actual state
of the active variable and the last offset-value, Line 29 then sets the active variable for the
next round. However, in the case a node recognizes that at least some other node deviates
more than the allowed worst case precision as defined via the precision window w, then the
node always actively participates in the synchronization process. This fact is implemented
in Line 30.

Algorithm 13 presents the code for determining the new state of the active variable.
Therein, Line 5 returns 1, if a node recognizes that too many nodes are active. Similarly,
Line 6 ensures that at least max(5 f ,3) nodes are always active. In other words, the proce-
dure implements some kind of hysteresis such that after some time, the nodes stably stay
within the active or passive state, irrespective of the behavior of the Byzantine faulty nodes,
until several active nodes run out of energy or other environmental effects change the struc-
ture of the network. The diff variable in Line 4 contains the absolute difference between
the number of synchronization messages that were received before the own message broad-
cast and the number of synchronization messages that were received after the own message
broadcast.

Since the lower threshold in Line 6 directly follows from the condition that at least
max(5 f ,3) nodes must be active for Algorithm 12 in order to overcome the Byzantine nodes,
we concentrate on the upper threshold in Line 5. Note that in the case f = 0, we require that

CHAPTER 5. DESIGN APPROACH 82

at least 4 nodes participate in the synchronization process in order to provide some synchro-
nization precision. If a higher synchronization precision is required, then one may increase
both threshold requirements by some k > 0. Clearly, if we would simply implement the
condition |recvphase| ≥ max(8 f ,5) + 2 in Line 5 without the diff variable, then all nodes
simultaneously may enter the passive state and in the next round re-enter the active state in
a periodic manner. Note that the reception phases are stored in the recvphase variable and is
the most consistent information a node gathers from the other nodes. Consequently, this in-
formation is used for electing a limited number of nodes to become passive. On this account,
we decided that a node is only allowed to enter the passive state, if the phase offset of the last
broadcast was in the middle with respect to all other nodes according to the reception phases
of the received synchronization messages. In the perfect case, a node recognizes itself to
be in the middle, if diff equals 0. Unfortunately, this leads to the fact that in each round at
least 1 node or at most f + 2 nodes become passive and consequently requires a long time
until the upper threshold is underrun in the case n is very high. Therefore, we relaxed the
condition of diff = 0 to diff ≤ k for some k > 0. For this, Lemma 7 proofs the worst case
upper and lower bound of the number of nodes that may become passive at the end of the
current round.

Lemma 7. For a given single-hop network comprising n ≥ 8 f + 3 active nodes at the be-
ginning of some synchronization round where at most f nodes are permanently Byzantine
faulty, Algorithm 13 with the condition diff ≤ k for some k > 0 instead of |recvphase| ≥
diff +max(8 f ,5)+2 in Line 5 ensures that at least max(0,k− f) nodes and at most k+ f +2
nodes can become passive at the end of the current round.

Lemma 7 applied on the original Algorithm with condition diff ≤ |recvphase|− 8 f − 2
for f > 0 in Line 5 then directly leads to Corollary 2.

Corollary 2. For a given single-hop network comprising n ≥ 8 f + 3 active nodes at the
beginning of some synchronization round where at most f nodes are permanently Byzantine
faulty, Algorithm 12 ensures that at least max(0,n− 9 f − 3) nodes and at most n− 7 f − 1
nodes become passive at the end of the current round.

Proof. Follows directly from Lemma 7 with k = (n−1)−8 f −2 = n−8 f −3. �

From Corollary 2 we can deduce that, if the nodes are synchronized, then the Byzantine
nodes can keep the number of active nodes n′ within the interval 7 f +1≤ n′ ≤ 9 f +3. This
fact is finally summarized in Theorem 9.

Theorem 9. If the network of a coherent system comprises n ≥ 8 f + 3 synchronized active
nodes at the beginning of some round, then Algorithm 12 ensures that at least 7 f +2 and at
most 9 f +4 nodes are active in the following rounds.

It should be noted that the APM approach as stated in Algorithm 13 is designed for the
FTA-RFA and not for the drift compensation approach of Algorithm 8. Fortunately, if Algo-
rithm 8 is used in combination with Algorithm 12, then the only difference according to Al-
gorithm 8 is that Line 11 must be replaced by rateset := /0. Additionally, Algorithm 13 must
be modified such that Line 5 contains the condition |recvphase| ≥ diff +max(10 f ,5)+2 and
Line 6 contains the condition |recvphase| < max(7 f ,3). That is, both the upper and lower
threshold are increased by 2 f . This comes from the fact that, in contrast to Algorithm 12
which requires n≥ 5 f +1 nodes, Algorithm 8 requires n≥ 7 f +1 nodes. In this case, The-
orem 9 must be modified such that at least 9 f + 2 and at most 11 f + 1 nodes are active for
n≥ 10 f +3.

CHAPTER 5. DESIGN APPROACH 83

Algorithm 12: FTA-RFA with CD, MDE, and APM : code for pi, 0≤ i < n, n≥ 5 f +1
Init: eventset := devset := recvphase := /0, ∆i := ϕi := devavg := mde := 0,1

active := 1, offseti := random(rmax
msd − rmin

msd)+ rmin
msd

upon event ϕi(t) = 1−offseti and active = 1 do // preponed transmission2

trigger broadcasti(ϕi(t),devavg)3

upon event recvi(ϕ j,dev j) from p j do // received new sync-message4

eventset := eventset∪{ϕi(t)+1−ϕ j}5

recvphase := recvphase∪{ϕi(t)}6

devset := devset∪{dev j}7

upon event ϕi(t) = 1 do // threshold reached8

ϕlast := δlast := ∆i := 0 // clean up9

clique := CD({ϕ−mde | ϕ ∈ eventset}∪{1})10

if active = 0 then clique := CD({ϕ−mde | ϕ ∈ eventset})11

if |clique|= |eventset|+ active then discovered := false else discovered := true12

reduce f (eventset) // remove f highest and f lowest deviations13

devmax := max(S(eventset))14

devmin := min(S(eventset))15

dev := max(devmax−devmin, |devmax|, |devmin|)16
if dev > w then devset := /017

mde′ := max(0,avg(reduce f (devset))− (devmax−devmin)/2)18

mde := mde+(mde′−mde) ·σmde19

if discovered = false and dev≥ 1
L then // Execute E-RFA20

for each ϕ j ∈ eventset in increasing order do21

if ∆i +ϕ j < 1 and ϕlast +δlast < ϕ j then22

δlast := min(1,(ϕ j +∆i) ·α)− (ϕ j +∆i)23

∆i := ∆i +δlast24
ϕlast := ϕ j25

else // Execute FTA26

∆i :=−avg(S(reduce f (clique)))27

ϕi(t) := ∆i // Apply reachback response28

active := APM(active, recvphase,offseti) // Check for passive mode29

if dev > w then active := 130

offseti := random(rmax
msd − rmin

msd)+ rmin
msd // Calculate firing offset31

devavg := avg(S(eventset))
devset := {devavg}32

eventset := recvphase := /033

APM in Multi-hop Networks

Unfortunately, multi-hop networks do not offer the same elegance like single-hop networks.
For instance, in single-hop networks the single variable n which represents the number of
nodes in the system is enough to determine the complete network topology. In contrast, in
multi-hop networks this variable useless without additional information about the connectiv-
ity in order to make points about the network topology. However, the process of gathering
information which can be used to make assumptions about the connectivity is not a trivial
task and usually goes along with an increased message complexity and maybe invalidates
the advantage of our one-way dissemination approach. Furthermore, the presence of up to f
Byzantine faulty nodes makes it worse, because it has to be ensured that the network keeps
(5 f + 1)-connected or even (7 f + 1)-connected if the drift compensation approach is used.

CHAPTER 5. DESIGN APPROACH 84

Algorithm 13: Automatic Passive Mode (APM)
procedure APM(active, recvphase,offset)1

prior := {ϕ ∈ recvphase | ϕ +offset < 1}2

posterior := {ϕ ∈ recvphase | ϕ +offset≥ 1}3

diff := ||prior|− |posterior||4

if |recvphase| ≥ diff+max(8 f ,5)+2 then return 05

if |recvphase|< max(5 f ,3) then return 1 else return active6

In [JL09], Jang et al. state that this is a NP-hard problem. On this account, we do not make
attempts to implement APM in multi-hop networks.

There exist a lot of work in the scientific literature which concerns this problem. In detail,
nodes have to determine itself to become passive in order to reduce the network complex-
ity to be minimal k-connected. Jang et al. give a short overview of related work in [JL09]
and also present the Decreasing Coverage (DECC) and the Distributed DECC (DECCdist)
algorithm for an efficient reduction of the network connectivity to become approximately
minimal k-connected. Unfortunately, all proposed algorithms make use of unique identifiers
and therefore do not fit into our concept of our anonymous FTA-RFA algorithm. However, in
the case the non-anonymous drift compensation algorithm is used in parallel to the FTA-RFA
approach, then such a k-coverage reduction algorithm makes sense. However, the implemen-
tation of such an approach goes beyond the scope of this thesis and therefore is no treated
herein.

5.4.4 Internal Desynchronization

The principle of clock desynchronization was already discussed in Section 2.2.4. With re-
spect to our FTA-RFA algorithm, we adapted this approach for the message staggering delay
in order to provide a desynchronized preponed message transmission. This reduces the num-
ber of message collisions compared to the simple random offset approach.

Algorithm 14 presents the code of the extended FTA-RFA approach from Algorithm 12 in
combination with the desynchronization scheme. The new or modified code lines are again
highlighted. Since the offset desynchronization concerns only the adjustment of the offset
variable, Algorithm 14 is mostly similar to Algorithm 12 except that the new offset is now
set by the DESYNC procedure (Algorithm 15) in Line 31. A negative return value of the
DESYNC procedure means that there is no more bandwidth available for the exchange of
synchronization messages, because the bandwidth between the two predefined offset bounds
rmin

msd and rmax
msd is completely occupied by the other active nodes. If so, then the only opportu-

nity is to become passive and try to synchronize to the active nodes (Line 32). It should be
noted that a careful parametrization of all variables should avoid or even minimize the prob-
ability of the occurrence of this case. For instance, the available bandwidth between rmin

msd and
rmax

msd has to be large enough to overcome this problem and further has to be small enough to
provide a small duty-cycle of the listen/sleep schedule in order to reduce the consumption of
energy.

Algorithm 15 presents the insights of the desynchronization scheme. In order to reduce
the number of code lines, we make use of two new functions, namely the prev(S,ϕr)) and
the next(S,ϕ)) function. As the name implies, the former function returns the nearest phase
value ϕprev ∈ S with respect to ϕr with ϕprev < ϕr. Similarly, the latter function returns
the nearest phase value ϕnext ∈ S with respect to ϕr with ϕnext > ϕr. Equation 5.20 and
Equation 5.21 define both functions in a formal way and make use of the distance function
as previously presented in Equation 5.18. Since both functions may return a multiset that

CHAPTER 5. DESIGN APPROACH 85

contains the same value several times, we assume that in this case the multiset corresponds
to a single element of the set. In the case the function returns an emptyset, we assume that
the prev-function and the next-function return −∞ and +∞, respectively. This behavior is
finally expressed in Equation 5.22 and Equation 5.23.

fprev(S,ϕr) = {ϕprev ∈ S | ϕprev < ϕr ∧ min(d(ϕprev,ϕr))} (5.20)

fnext(S,ϕr) = {ϕnext ∈ S | ϕnext > ϕr ∧ min(d(ϕnext ,ϕr))} (5.21)

prev(S,ϕr) =

{
ϕ ∈ fprev(S,ϕr) if fprev(S,ϕr) , /0
−∞ else

(5.22)

next(S,ϕr) =

{
ϕ ∈ fnext(S,ϕr) if fnext(S,ϕr) , /0
+∞ else

(5.23)

The DESYNC procedure requires four parameters. The first one is a multiset variable
termed recvphase. It contains the measured phase of all received synchronization messages
during one period at the time the message was received. The offset parameter is the offset
a node used for the preponed broadcast of its synchronization message during the previous
round. The mde parameter is the estimated message delay. In the case the average message
delay is high, it is very important to incorporate this delay in the desynchronization process.
Otherwise the nodes will never correctly desynchronize. The last two parameters correspond
to the allowed lower and upper bound for the offset variable.

The DESYNC procedure works in a simple manner: Initially, every node calculates
and transmits with a random offset. This fact is implemented in the code that invokes the
DESYNC procedure. A node is required to gather the offset values of all neighboring nodes
by measuring the actual phase at the time a synchronization message was received. There-
fore, the recvphase variable contains these values for one round. The procedure then simply
looks in the recvphase variable for the nearest previous and next phase value in accordance
with the own offset and the actual estimated message delay. Next, the own offset is adapted
to the middle of both values. However, if the own transmission of the synchronization mes-
sage was omitted due to a failed clear channel assessment, then the actual selected bandwidth
is highly probably occupied by another node and thus the procedure tries to jump to a differ-
ent offset time where enough bandwidth for the message transmission is available. Note that
in the absence of faulty nodes, Line 5 of Algorithm 15 could be replaced by a check if the
time difference between the previous and the next phase value with respect to the own offset
underruns the bandwidth limit of 2B. However, a single Byzantine node may send different
synchronization messages to all other nodes such that each correct nodes receives an offset
event which is in the vicinity of the own offset event and consequently may underrun the
aforementioned bandwidth limit. On this account, a bandwidth limit check cannot be used in
the presence of Byzantine faults. Instead, the result of the Clear Channel Assessment (CCA)
of the last message transmission must be checked.

The bandwidth limit B defines the minimum distance between two transmissions which is
required in order to avoid message collisions and transmission overlapping. The parameter B
depends on the transmission delay d(m) of a message m and the worst case synchronization
precision Π. Assuming a bounded transmission delay of d(m) = [d,d +ε] (if m is eventually
delivered), then B must be at least

B≥ d +2ε +Π.

If several possible offset values were found (i.e., fallowset , /0), then the procedure ran-
domly elects one out of all values by executing the rand function on the set (Line 11). Oth-
erwise, the procedure returns a negative value which has to be verified by the caller.

CHAPTER 5. DESIGN APPROACH 86

Algorithm 14: FTA-RFA with CD, MDE, APM, and DESYNC : code for pi, 0≤ i < n
Init: eventset := devset := recvphase := /0, ∆i := ϕi := devavg := mde := 0,1

active := 1, offseti := random(rmax
msd − rmin

msd)+ rmin
msd

upon event ϕi(t) = 1−offseti and active = 1 do // preponed transmission2

trigger broadcasti(ϕi(t),devavg)3

upon event recvi(ϕ j,dev j) from p j do // received new sync-message4

eventset := eventset∪{ϕi(t)+1−ϕ j}5

recvphase := recvphase∪{ϕi(t)}6

devset := devset∪{dev j}7

upon event ϕi(t) = 1 do // threshold reached8

ϕlast := δlast := ∆i := 0 // clean up9

clique := CD({ϕ−mde | ϕ ∈ eventset}∪{1})10

if active = 0 then clique := CD({ϕ−mde | ϕ ∈ eventset})11

if |clique|= |eventset|+active then discovered := false else discovered := true12

reduce f (eventset) // remove f highest and f lowest deviations13

devmax := max(S(eventset))14

devmin := min(S(eventset))15

dev := max(devmax−devmin, |devmax|, |devmin|)16
if dev > w then devset := /017

mde′ := max(0,avg(reduce f (devset))− (devmax−devmin)/2)18

mde := mde+(mde′−mde) ·σmde19

if discovered = false and dev≥ 1
L then // Execute E-RFA20

for each ϕ j ∈ eventset in increasing order do21

if ∆i +ϕ j < 1 and ϕlast +δlast < ϕ j then22

δlast := min(1,(ϕ j +∆i) ·α)− (ϕ j +∆i)23

∆i := ∆i +δlast24
ϕlast := ϕ j25

else // Execute FTA26

∆i :=−avg(S(reduce f (clique)))27

ϕi(t) := ∆i // Apply reachback response28

active := APM(active, recvphase,offseti) // Check for passive mode29
if dev > w then active := 130

offseti := DESYNC(recvphase,offseti,mde,rmin
msd ,r

max
msd)31

if offseti < 0 then active := 0 // Check on successful offset desync32

devavg := avg(S(eventset))33

devset := {devavg}34

eventset := recvphase := /035

Clearly, the developer must again ensure that the difference between the two predefined
offset bounds rmin

msd and rmax
msd is large enough. For instance, for some given bandwidth limit B

and the assumption that the system never contains more than nmax nodes configured in single-

hop topology, the inequality nmax <
⌊

rmax
msd−rmin

msd
B

⌋
must always hold. Interestingly, several

simulation results have shown that the bound has to be even tighter, that is

nmax <

⌊
rmax

msd − rmin
msd

2B

⌋
.

In [DRPN07, PDN07, DN08], the authors analyzed and proved the correctness of the desyn-
chronization approach in the case of a single-hop network. They also analyzed multi-hop
networks. However, due to several indeterministic properties of multi-hop networks (e.g.,

CHAPTER 5. DESIGN APPROACH 87

hidden terminal problem), no guarantees can be made for the correctness and convergence
time in multi-hop networks.

In spite of everything, we decided to use the desynchronization approach also in multi-
hop networks and compare the results with the standard approach. This comparison is pre-
sented and discussed in the next chapter.

Algorithm 15: Offset desynchronization
procedure DESYNC(recvphase,offset,mde,rmin

msd ,r
max
msd)1

ϕprev := max(1− rmax
msd ,prev(recvphase,1−offset+mde)−mde)2

ϕnext := min(1− rmin
msd ,next(recvphase,1−offset+mde)−mde)3

offset := 1− (ϕnext +ϕprev)/24

if CCA failed during last transmission then5
fallowset := /06

for each ϕ ∈ recvphase∪{1− rmax
msd +mde,1− rmin

msd +mde} do7

ϕnext := next(recvphase,ϕ)8
if ϕnext , ∞ and ϕnext −ϕ > 2B then9

fallowset := fallowset∪{1− (ϕnext +ϕ)/2+mde}10

if fallowset , /0 then offset := rand(fallowset) else offset :=−111

return offset12

5.5 Discussion

Within this chapter, we developed an efficient and robust pulse synchronization algorithm for
single-hop networks and general multi-hop topologies. It must be noted that our approach
mainly differs from other synchronization protocols in wireless networks from the fact that
we establish pulse synchronization. The main advantage is that, in most cases, this primitive
provides a faster convergence time compared with other clock synchronization algorithms
(e.g., Asynchronous Diffusion [LR06]). Furthermore, in contrast to the implementation of
general clocks, pulse clocks make use of a simple cycle concept. The simplicity and elegance
of this concept allows it to be used as an optimal building block for complex communication
protocols. In addition to that, a pulse clock can be simply implemented either in hardware
or in software. Unfortunately, there may exist initial configurations which are in the vicinity
of an unstable fixpoint and consequently affect the convergence time. However, in complex
networks the probability that the nodes initialize exactly in such a fixpoint is neglectable.
In addition to that, even if the network entered such a fixpoint, it highly likely exits this
configuration due to natural imprecisions resulting from the delay jitter and the calculation.

We have shown that the original RFA cannot be used for self-stabilizing pulse synchro-
nization in the presence of Byzantine faulty nodes. Another weakness of this approach is
the bad synchronization precision which results from its asymmetric behavior. This problem
was compensated by switching to the FTA scheme. The switching is based on the actual
precision and the FTA convergence threshold L as shown in Algorithm 7. In Theorem 6,
we analyzed the parametrization of this constant and found out that this parameter heavily
depends on the network topology. Unfortunately, the nodes in a WSN are usually randomly
scattered. This does not allow an a priori analysis of the network structure. However, with
respect to this problem, an interesting elaboration of random networks was done by Wang
et al. in [WC03]. In short, networks can be characterized according to some basic concepts.
These are the network size N, the average path length L, the clustering coefficient C, and the
degree distribution P(k).

CHAPTER 5. DESIGN APPROACH 88

As we have shown, single-hop networks are powerful topologies which allow the estab-
lishment of several improvement strategies. For instance, beside the precision improvement
and the distributed message delay estimation, the lifetime of highly redundant networks can
be increased by establishing a listen/sleep schedule and additionally an APM approach. In-
terestingly, the presented message delay estimation, originally developed for single-hop net-
works, also works well in multi-hop networks as shown via simulations in the next chapter.
This is of major importance in cases where MAC-layer time-stamping6 is not provided by the
MAC layer as it is the case for IEEE MAC 802.15.4. However, multi-hop networks implicate
a problem. For instance, in the case of f Byzantine faulty nodes, it has to be ensured that the
communication topology is at least (5 f + 1)-connected or in the additional use of the drift
compensation approach at least (7 f +1)-connected. This constraint cannot be guaranteed, if
the network is randomly created. On this account, straight randomly scattered WSNs are of
less interest, if faulty nodes have to be considered. Therefore, it is essential to interfere in the
network creation process such that the connection constraint can be guaranteed with a higher
probability. One technique of such a creation strategy can be a grouped multi-hop topology
and is analyzed in more detail in Chapter 6. Therein, nodes are assumed to be scattered in a
clustered way which allows a better exploitation for fault tolerance.

By the use of offset desynchronization, single-hop networks additionally offer the pos-
sibility to implement a self-organizing resource management strategy. This means that the
nodes have knowledge of the occupied and available bandwidth for exchanging synchroniza-
tion messages. This reduces the probability of message collisions and comes along with an
improved synchronization precision.

6MAC-layer time-stamping was first proposed in [GKS03b].

CHAPTER 6
Evaluation by Simulation

OVERVIEW

The main objective of this chapter is threefold. First, simulation results are used to validate
correctness and theoretical aspects of the devised algorithms presented in Chapter 5. Fur-
thermore, this kind of evaluation allows us to easily gain more insights about the behavior
of the different approaches. A third important reason for simulation is that several properties
can be measured much easier and faster. In the beginning of this chapter, different evaluation
metrics are presented in order to reasonably compare the algorithms according to their flex-
ibility and performance aspects with respect to different network topologies and parameter
choices. Since many communication protocols used in WSNs are based on a non-beacon en-
abled IEEE 802.15.4 MAC [Soc03] layer, we analyzed this communication standard in order
to get some important communication specific parameters. Section 6.1 gives an overview of
the used simulator and the modifications we have done in order to simulate the presence of
clock drift and the behavior of a non-beacon enabled IEEE 802.15.4 communication stack.
The corresponding parameters are illustrated in detail in Section 6.5. Several evaluation
metrics that are necessary for a solid comparison of the simulation results are presented
and discussed in Section 6.3. In contrast to single-hop networks, randomly created multi-
hop topologies cannot be characterized solely on the number of comprised nodes. On this
account, Section 6.4 discusses different basic concepts that can be used for characterizing
general complex network topologies. These concepts are later used for comparing the sim-
ulation outcomes with respect to different network characteristics and topologies. A lot of
simulation results regarding single-hop networks are illustrated and discussed in Section 6.6.
Similarly, Section 6.7 presents and discusses the results regarding different types of multi-
hop topologies reaching from simple chain networks to complex grid and ring topologies.
Therein, emphasis is also put on a special topology type named grouped multi-hop topology.
Such networks are very robust with respect to Byzantine faulty nodes and therefore give rise
to establish new concepts in WSNs.

89

CHAPTER 6. EVALUATION BY SIMULATION 90

6.1 Simulating the MAC Layer

We used a probabilistic wireless sensor network simulator called JProwler1 which is basi-
cally configured to simulate the behavior of the Berkeley Mica Motes running TinyOS with
the B-MAC protocol. It is a Java version of the Matlab-based Prowler[SVML03] network
simulator. Both Prowler and JProwler can be used for verifying and analyzing commu-
nication protocols of ad-hoc wireless sensor networks. Since the B-MAC communication
protocol is very similar to the IEEE 802.15.4 standard (e.g., both implement the same CS-
MA/CA mechanism), we simply modified several MAC layer specific attributes in order to
simulate the behavior of an IEEE 802.15.4 MAC layer.

According to the identified parts of the transmission delay (Section 3.1.1), the serializa-
tion delay tsd is based on the amount of transmitted data. In our case, we assume that the
synchronization frame contains at least a frame-identifier (8 bit), the actual phase ϕi(t) (24
bit), the average phase deviation devavg (24 bit), and a checksum (8 bit). We further as-
sume that the frame also contains the parameters required by the drift calibration algorithm.
These are the unique identifier of the sender idi (16 bit), the phase adjustment value hi(t) (16
bit), the summarized slope Σsi(t) (16 bit), and the timestamp of the sender’s hardware clock
HCi(t) (32 bit). In sum, the application needs about 18 bytes for a single synchronization
message. The real amount of transmitted data is greater due to the payload of the MAC and
the physical layer. According to the IEEE 802.15.4 MAC standard, the complete payload is
about 15 byte (9 byte from the MAC layer and 6 byte from the physical layer). Assuming
that the system works in the 2.4GHz ISM band, the bit rate is 250kbps. As a result the serial-
ization delay equals tsd = [33 ·8/250000]s = 1056µs and is hereinafter assumed to be about
1ms. To calculate the propagation delay tprop, we need the maximum radio range which
is typically at most 100 meters in the case of WSNs. If we assume a typical propagation
velocity of v = 200.000km/s, then the propagation delay is about tprop = 0.5µs.

The estimation of the send time tsend and the receive time trecv is more difficult, because
both mainly depend on the implementation layer where the transmission is invoked and the
reception event is finally triggered. This delay can be influenced by interrupts and buffer han-
dling. In our case, we assume that the synchronization algorithm is directly based upon the
MAC layer an consequently introduces a small average delay of about 1ms in combination
with a relatively small delay jitter of about 500µs.

The access time tacc solely depends on the configuration of the backoff scheme in the
CSMA/CA mechanism and can introduce a high average delay of at least 8ms with a de-
lay jitter of 4ms or higher. For instance, in [Mah06, p. 44], Mahalik states that if the IEEE
802.15.4 MAC layer is configured with the default parameters and if we set the MAC at-
tribute macMinBE to 0, then the average delay does not exceed 8ms.

However, this high delay jitter is unacceptable for our synchronization algorithms, if we
want to achieve a worst case synchronization precision which is lower than 1ms. There
exist two alternatives for eliminating the highly variable access delay. The first one may be
the additional implementation of MAC layer time-stamping. That is, at the sender side, the
MAC layer measures the time between the broadcast invocation and the time when the first
bit is transmitted. This time duration is added to the corresponding message. Similarly, at
the receiver side, the MAC layer measures the time between the reception of the first bit and
the time when the reception event is triggered. Since the serialization delay is deterministic,
the receiver is able to calculate a highly accurate estimation of the complete transmission
delay. The remaining average uncompensated delay and the corresponding delay jitter may

1ISIS, Institute For Software Integrated Systems: http://www.isis.vanderbilt.edu/Projects/nest/jprowler

CHAPTER 6. EVALUATION BY SIMULATION 91

be in the order of microseconds. Unfortunately, the IEEE 802.15.4 standard does not provide
mechanisms which can be used for such a low level time-stamping.

A second approach which reduces the amount of delay jitter is based on a reconfiguration
of some MAC specific attributes that control the CSMA/CA algorithm. These parameters
are described in the MAC PAN information base (PIB) [Soc03]. In detail, we assume that
both MAC attributes macMinBE and macMaxCSMABackoffs are set to 0. As a consequence,
the backoff scheme and the collision avoidance mechanism of the CSMA/CA algorithm are
disabled. In other words, if a transmission is invoked, the MAC layer directly performs
CCA which requires 20 symbol periods2. Afterwards, if the channel is assessed to be free,
the message will be transmitted. Otherwise, a channel access failure is declared. Clearly,
this may dramatically decrease the message throughput. However, several simulation results
have shown that with respect to time determinism, in many cases it is better to omit messages
than to transmit strongly delayed messages that additionally observe a high delay jitter. To
sum up, the second approach reduces the access time to exactly the time duration used for
the CCA. That is, tacc = 128µs.

It should be mentioned that the DESYNC approach in Algorithm 14 requires knowledge
about the result of the last CCA. Therefore, a real world implementation requires a MAC
layer that provides such a service. A further requirement of the underlying MAC layer is
that it must not postpone the transmission, if a current transmission of another message or a
reception process is active. If so, then we associate this operation with a failed clear channel
assessment such that the DESYNC algorithm (Algorithm 15) tries to allocate a new offset
where enough bandwidth is available. JProwler’s virtual MAC layer class was modified to
overcome this preconditions.

Finally, when using the disabled backoff approach and the requirement that a transmis-
sion is discarded instead of a suspension if a transmission or reception process is currently
going on, then we can assume that, as long as some message m is eventually delivered,
the message delay d(m) of message m is always in the range d(m) ∈ [d,d + ε] where
d = 2.2ms and ε = 500µs. These parameters are reflected in JProwler’s specific MAC
constants sendMinWaitingTime, sendRandomWaitingTime, sendMinBackOffTime, sendRan-
domBackOffTime, and sendTransmissionTime. We additionally implemented a new MAC
constant named csmaMaxBackOffCnt which represents the macMaxCSMABackoffs attribute
of the IEEE 802.15.4 standard. Table 6.1 lists the configured parameters of JProwlers virtual
MAC layer. Note that these parameters are used for all simulations. Further note that the
simulated jitter is uniformly distributed and therefore affects the communication more than
in reality where the delay jitter usually follows a Gaussian distribution.

Table 6.1: Parameter configuration of JProwler’s virtual MAC layer.

sendMinWaitingTime 1.2 ms
sendRandomWaitingTime 0.5 ms

sendMinBackOffTime 1 ms
sendRandomBackOffTime 2 ms

csmaMaxBackOffCnt 0
sendTransmissionTime 1 ms

The configuration of the transmission strength and noise is the same as originally imple-
mented for the Mica2 motes and corresponds to a transmission range of about 25 meters.
JProwler originally provides two methods for simulating noise. Since our simulations are
based on statically placed nodes, we used the Gaussian radio model. Thus, if a node starts a

2According to [Soc03], if the 2.4GHz ISM band is used, then one symbol equals 16µs.

CHAPTER 6. EVALUATION BY SIMULATION 92

transmission, all other nodes perceive an additional Gaussian noise which strongly depends
on the geographical distance of the origin.

Beside the modified MAC layer of JProwler, the graphical user interface was enhanced
by several new dialogs which enables the user to modify various parameters during the simu-
lation. We further extended the simulator by an oscillator model. Thus, every virtual node is
based on an adjustable oscillator (e.g., RC-oscillator or several crystal cuts). This allows the
simulation of clock drift and its influence on the clock synchronization. Due to the fact that
the frequency of an oscillator heavily depends on the supply voltage and the ambient temper-
ature, the enhanced JProwler also contains the simulation of the ambient temperature. Other
new features consider the adjustment of the simulation speed and enabling/disabling nodes
during the simulation. The supply voltage and its influence on the drift was not incorporated
in the modification, because this was of less importance with respect to this thesis.

6.1.1 Simulating Erroneous Nodes

Simulating the behavior of an erroneous fault is not a simple task, especially if a set of nodes
should be Byzantine faulty in a way that they behave in an adversary manner and conse-
quently are able to collaborate in order to perform the worst case attack against the system.
Since such a worst case attack usually assumes that the attackers have unbounded processing
resources and the fact that the adversary is only a theoretical model, it is nearly impossible
to practically implement such a faulty behavior. On this account, we implemented erroneous
nodes instead of Byzantines nodes which are still able to send different incorrect messages
to the distinct neighbors, but do not collaborate or perform special worst case attacks. In
other words, erroneous nodes have a limited attack coverage compared to Byzantine nodes,
but provide realistic settings in a way that they have a strong impact on the convergence time
and the precision.

Fault tolerance mechanisms are usually aimed at removing outliers. In our case, we do not
only detect and remove the outliers. Instead, we assume a fixed upper bound f of erroneous
nodes that may simultaneously exist in the network and always remove the f highest and
smallest values of the gathered information of all nodes that participate in the synchroniza-
tion process. If the system is highly redundant, then this strategy is very effective, especially
if the parameters received from the faulty nodes are out of range according to an a priori
defined value domain. A typical worst case attack with respect to the FTA algorithm occurs
when a subset of correct nodes receive the same incorrect values from the faulty nodes which
are situated at the left end of the deviation set, and the remaining correct nodes receive in-
correct values which are all situated at the right end of the deviation set from the same faulty
nodes (two-faced malicious behavior). However, with respect to the RFA approach, such
extreme faulty values have only a little impact on the convergence behavior, because in this
case a node reacts stronger to a node that is in the vicinity of the own node.

A combination of both attacks affecting the FTA-RFA approach is realized by randomly
selecting one out of three predefined attacker models as listed below. All three attacks only
modify the content of the transmitted actual phase ϕi of the faulty node pi. For sake of
simplicity, all three attacks chose a random value within the interval [0,w] for the average
phase deviation devavg, because this parameter hardly affects the synchronization precision.

1. Out of range attack: The values contained in a faulty message are randomly chosen
and are usually beyond the reasonable value domain. Therefore, the faulty messages
can be also easily detected as outliers. In detail, the actual transmitted phase ϕi is a
random value between 0 and 1. This attack should degrade the precision of the FTA
synchronization approach.

CHAPTER 6. EVALUATION BY SIMULATION 93

2. Strong vicinity attack: This type of attacks is aimed at affecting the RFA part of the
presented synchronization approach. Therefore, the actual phase contained in the faulty
synchronization message is randomly set either to ϕi = ϕ j(tr)−w or to ϕi = ϕ j(tr)+w
such that the receiving node just reacts to the information. For this, ϕ j(tr) denotes the
time when the receiver node p j receives the message at real-time tr.

3. Weak vicinity attack: This attack is similar to the second attacker model, but selects a
random value between ϕ j(tr)−w and ϕ j(tr)+w for ϕi.

In the case the drift compensation approach of Algorithm 8 is implemented in addition
to the FTA-RFA approach, an erroneous node is also able to forge several more parameters.
In detail, an erroneous node pi can transmit different incorrect unique identifiers idi, phase
adjustment values hi, summarized slope values Σsi , and different timestamps of the sender’s
hardware clock HCi(t) to all distinct neighbors. Similarly to the aforementioned FTA-RFA
attacks, an erroneous node may also transmit different random values for all three parameters
to all distinct neighbors.

Since the vicinity attack require some knowledge of the receiver node, all attacks are
implemented and simulated at the receiver side of each node. In detail, an erroneous node
correctly synchronizes to the rest of the network, broadcasts the correct message, but the
receiver then modifies the received information to simulate the two-faced malicious behavior
of the erroneous nodes.

Additionally, an erroneous node does not pay attention on the actual transmission of an-
other node and ignores a failed clear channel assessment. In other words, an erroneous node
may intentionally start a transmission immediately after a neighboring node started its trans-
mission and consequently causes a message collision. To simulate this behavior, several parts
of the virtual MAC layer were modified in order to support the opportunity of a forced mes-
sage transmission. In order to increase the number of message collision, a Byzantine node
always calculates a random offset irrespective of an activated desynchronization approach
and then always performs a forced transmission based on this offset.

6.2 Evaluation Types

We mainly distinguish between two evaluation approaches:
1. Prepared evaluation: This scheme is based on an a priori defined initial system con-

figuration including the number of nodes, network topology, and initial phase and drift
settings. Different variants of the synchronization algorithm are then executed with the
same initial configuration. This allows a reasonable comparison as it would be in the
case of a randomized initial system configuration.

2. Randomized evaluation: This comparison scheme is based on a randomized initial
configuration whereas the network topology and the number of nodes is assumed to be
the same. Only the phase and drift settings are initialized in a random way. Different
variants of the synchronization algorithm are then executed hundred times, each based
on such a random initial configuration. Worst case and average results among these
simulations are then used for sake of comparison. This scheme is especially used
for comparing the average time required until achieving network synchronicity with
respect to different algorithm variants and parameter choices.

Whereas the prepared evaluation is mainly used for the performance comparison with
respect to different synchronization variants and parameter choices, the randomized evalu-
ation is used for covering other configurations and provide statistical statements about the
performance aspects (e.g., average time to sync).

CHAPTER 6. EVALUATION BY SIMULATION 94

6.3 Evaluation Metrics

The comparison of the simulation results according to different parameter choices is done
with respect to several evaluation metrics that together represent the performance aspect of
an implemented approach.

Percentage of synchronized nodes psync(t): As the name implies, this evaluation parameter
declares the percentage of nodes that entered the synchronization state. Note that a
node only enters this state, if the measured maximum absolute deviation with respect
to the neighboring nodes is within the synchronization window w for 10 out of the
last 11 periods. This ensures that, in the border case, the nodes do not frequently
alternate between the synchronized and the unsynchronized state. This is of major
importance in the case the time until all nodes persist in a stable synchronized state has
to be measured. Empirical studies turned out that a number of 10 periods is enough to
ensure a highly probable stable synchronization state.

Percentage of active nodes pactive(t): This parameter is only interesting, if the APM ap-
proach is activated. If so, then pactive(t) declares the percentage of nodes that are
active and thus participate in the synchronization process. Otherwise, this parameter
always equals 100%.

Time to sync tsync: This evaluation parameter defines the duration of real-time until all nodes
have entered the synchronization state (i.e., psync(tsync) = 100%) and keep therein until
the simulation ends at time te (i.e., psync(t ′) = 100% for all tsync ≤ t ′ ≤ te).

Average interval duration Tavg(t): This evaluation parameter declares the average over the
actual real-time duration of a cycle of all nodes in the system. This parameter is of ma-
jor importance if the drift compensation approach (Algorithm 8) is activated in parallel
to the FTA-RFA algorithm. This parameter should be kept almost constant over time.

Precision Π(t): The precision parameter Π(t) declares the maximum deviation between any
two nodes in real-time at time t. According to Definition 11, Π(t) must not be greater
than the worst case precision Π, if the pulse synchronization problem should be solved.
If Tavg(t) is getting very small compared to the nominal cycle time duration T , then the
nodes may strongly deviate with respect to their phase, however, the precision may still
be small. Thus, the precision parameter is useless without the declaration of Tavg(t).
On this account, we use the definition of group spread as described next instead of Π(t)
in order to characterize the quality of synchronization precision.

Relative Group spread ϕΠ(t): The relative group spread ϕΠ(t) is the actual maximum
phase deviation between any two nodes in the system over the time and cannot be
greater than 1/2. The corresponding absolute group spread is simply scaled by the cy-
cle granularity Φ and is defined as ΦΠ(t) = ϕΠ(t) ·Φ. According to Definition 9, ΦΠ(t)
should never exceed a predefined maximum phase deviation ΦΠ in order to solve the
pulse synchronization problem. For sake of illustration, we hereinafter use the defi-
nition of the group spread in the time domain. That is, TΠ(t) = ϕΠ(t) ·T where T is
the nominal time duration of one cycle. Note that if the average interval Tavg equals
the nominal time interval T , then the precision Π(t) also equals TΠ(t). However, if
Tavg > T , then Π(t) > TΠ(t) and reversely.

Maximum phase adjustment ϕad j(t): This parameter declares the maximum phase adjust-
ment among the latest phase adjustments of all nodes in the system at time t. If ϕad j(t)
is very small, then the nodes hardly deviate at the beginning of the phase. However,

CHAPTER 6. EVALUATION BY SIMULATION 95

a large ϕad j(t) means that the nodes strongly adjust their phase clock after a synchro-
nization period but may still maintain a very small worst group spread throughout the
rest of the phase (ignoring the part where not all nodes have already performed their
phase adjustment). A large ϕad j(t) is also very problematic, if the coordination of a
nodes’ application depends on a small phase value which is smaller than the phase ad-
justment. For sake of illustration, we use the maximum phase adjustment in the time
domain, denoted by Tad j(t) = ϕad j(t) ·T .

Number of message omissions per round Nom(t): Nom(t) denotes the number of message
omissions at all sending nodes per period over time t. A message omission at node
pi occurs if the broadcast transmission of a message was discarded due to a failed
clear channel assessment. That is, the wireless medium was occupied at the time pi
wanted to transmit a message. A perfect communication network should never contain
message omissions. The presence of Byzantine nodes and a small message staggering
delay increases the number of message omissions per period.

Number of message collisions per round Ncol(t): Ncol(t) denotes the number of message
collisions at all receiving nodes per period over time t. A message collision at node
pi occurs if the reception of a message was corrupted due to high noise or interference
resulting from a forced transmission of a faulty node or the hidden terminal problem.
A perfect communication network should never contain message collisions. The pres-
ence of Byzantine nodes and a small message staggering delay increases the number
of message collisions per period.

Since the comparison of the aforementioned evaluation metrics over time with respect
to different simulations in one single plot is very confusing, we decided to compare only
some characteristic distribution parameters. In particular, we use the concept of box plots as
visualized in Figure 6.1. A boxplot is typically constructed by the use of a box and an error
bar in both directions which are called whiskers. The bottom and top of the box represent the
25th and 75th percentile, respectively. The box is also divided by a line which indicates the
50th percentile (i.e., the median). The range of the box (i.e., the range between the 25th and
75th percentile) is called the Interquartile Range (IQR). Data values which are situated more
than 1.5 · IQR lower than the 25th percentile or 1.5 · IQR higher than the 75th percentile
are considered as outliers. The end of a whisker is indicated with a small horizontal line
and represents the smallest or highest data value which is not an outlier. The end of the
whiskers are connected with the corresponding minimum and maximum existing data value
by a dashed line.

Figure 6.1: Demonstration of a simple boxplot.

CHAPTER 6. EVALUATION BY SIMULATION 96

In order to avoid incorrect results due to settling effects during the startup phase, we
decided to calculate the distribution parameters only in the time interval [(ts +te)/2, te], where
ts is the first time when all nodes achieved synchronicity for a sufficient long time period and
te is the time when the simulation ends.

6.4 Network Characterization

In the following, different network topologies are presented, each typically used for compar-
ing the effectiveness and quality of the applied algorithms. Note that JProwler allows only
an indirect definition of the network topology by a geographical placement of the nodes in a
virtual environment. As a consequence, a change in the signal power will lead to a change in
the communication structure and thus can be used to control the topology. Note that JProwler
does not consider fading and shadowing effects.

The All-to-all Topology This topology is the most simple one and corresponds to a fully
connected communication network. The only network parameter used in this case is the
number of contained nodes n. The all-to-all topology is of major importance with respect to
scalability tests regarding different network sizes.

The Regular Grid Topology This evaluation topology distributes the nodes on a two di-
mensional regular grid such that the inner nodes have exactly four neighboring nodes, one in
each direction. Therein, a node can only communicate with its direct neighbors. This topol-
ogy can be compared with the regular distribution of radio cells in a cellular network. As
later discussed, simulation results in such a network are promising regarding the achievable
precision and time to sync. Within this thesis, we use only squared grid topologies. There-
fore, the grid size g defines the number of nodes in both directions (e.g., g = 4x4, g = 6x6,
etc.) and is the only important network parameter in this case. In order to reduce interfer-
ence noise, two neighboring nodes are geographically situated exactly 15 meters apart. This
definitely ensures connectivity and less message collisions.

The Chain Topology This topology equals a simple multi-hop network where the nodes
are arranged along a chain. Thus, whereas the two border nodes can only communicate with
one neighbor, the inner nodes have two neighbors. The only network parameter in this case
is the network size n, where n−1 indicates the number of hops in the network. Similarly to
the grid topology, two neighboring nodes are again geographically situated 15 meters apart.

The Grouped Multi-hop Topology The grouped multi-hop topology is a special commu-
nication topology, we suggest for a more robust synchronization in large multi-hop networks,
especially if Byzantine faulty nodes are present. This topology type results from the assump-
tion that it is possible to interfere in the network creation process such that the nodes form
several groups where nodes within the same group are configured in an all-to-all topology
and the groups itself are distributed in a chain-like topology. As a consequence, all nodes
in one group can communicate with all nodes in the direct neighboring groups. An example
of such a scattering technique may be the periodic drop of a group of nodes out of an air
plain while flying over an area which has to be observed. The reason of the more robust
nature in this case is the fact that, in the case of a group size of k nodes, this increases the
probability of a k-connected network. In contrast of a uniform dropping sequence, this prob-
ability will shrink. This leads to the fact that a maximum number of faulty nodes can be
tolerated to exist in parallel in each group. The topology parameters used to describe the

CHAPTER 6. EVALUATION BY SIMULATION 97

network characteristics in this case are the group size g, and the number of groups G. In or-
der to avoid a high rate of message collisions due to noise and interference, two neighboring
groups are geographically situated 15 meters apart. However, nodes within the same group
are geographically situated at most 1 meter apart.

The Ring Topology The ring topology is of special theoretical interest with respect to the
possibility of self-stabilization in the case the FTA convergence threshold value L is set too
low. In contrast to the bidirectional communication pattern, we sometimes simulate ring
topologies with a unidirectional communication pattern where the nodes can only communi-
cate clockwise. In this case, the pattern is explicitly mentioned. The only topology parameter
is the number of nodes n. In order to avoid interference and noise, the nodes are distributed
in an equidistant order around a circle which has a diameter of d = 10 · n/π meters. Con-
sequently, the geographical distance on the circle between two neighboring nodes equals 10
meters.

Random Geometric Topology The random geometric topology type is of more practical
interest. Therein, we assume that the nodes are scattered randomly on a two dimensional
square field of 100x100 meters. Simulation results are then performed with a network size
of n = 100 nodes and with respect to different parameter choices. The network size n is also
the only important topology parameter in this case.

6.5 General Simulation Parameters

Beside the fixed configuration of the MAC layer, several other parameters required by the
implemented algorithms are almost the same and listed in Table 6.2. In order to illustrate the
effectiveness of the drift compensation approach, we assume that every node suffers from
a different clock drift. Therefore, JProwler was extended to support virtual oscillators. In
detail, the nodes local clock is based on the drift rate of the underlying virtual oscillator
relative to the global simulation time. Since RC-oscillators typically suffer from the greatest
and most sensitive drift rate, we parametrized the virtual oscillator to have a random initial
drift rate between −105ppm and +105ppm. Typical existing wireless nodes used in WSNs
(e.g., Mica2 motes) have a nominal clock frequency of fclk = 8MHz. Thus, the best achiev-
able granularity would be about 125ns and is better than the granularity of 1µs as used in
our simulation environment. Since we expect a worst case synchronization precision in the
order of a few milliseconds, we set the synchronization window w to 10ms. The virtual time
duration of a simulation is set to be at least 10000 seconds or longer where necessary. We
further assume that the ambient temperature is almost stable or at least varies very slowly
(e.g., 1°C per minute). The meaning of the other parameters is already described in the pre-
vious chapter. Most of the parameters are assumed to be the same in all simulations unless
mentioned otherwise.

In the case of a prepared simulation evaluation, all nodes pi have a pre-defined initial
phase ϕi(0) and drift-rate ρi. These parameters for up to 100 nodes are stated in Table 6.3.

6.6 Simulating Single-hop Topologies

This section presents and discusses the quality improvements that can be achieved by using
different combinations of the presented approaches with respect to the network size and other
parameters in an all-to-all topology. Therefore, we first consider the fault-free case and then
compare the results with the existence of f erroneous nodes.

CHAPTER 6. EVALUATION BY SIMULATION 98

Table 6.2: The general parameter choice used in all simulator experiments.

Parameter Symbol Value
Oscillator technology RC-oscillator
Maximum drift rate ρ 105 ppm
Period time T 1 s
Granularity Φth 106 ticks/period
Minimum relative message staggering delay rmin

msd 0.01
Maximum relative message staggering delay rmax

msd 0.3
Coupling factor α 1.01
Synchronization window w 10 ms
Evaluation end te 10000 periods

Robust FT-DC approach (Algorithm 8) enabled
FTA-RFA approach (Algorithm 7) enabled
FTA convergence threshold L 4
Clique discovery approach (Algorithm 10) enabled
MDE approach (Part of Algorithm 11) enabled
MDE smoothing factor σmde 1/2
APM approach (Algorithm 13) enabled
Offset desynchronization approach (Algorithm 15) enabled
Bandwidth limit B 4 ms

6.6.1 The Fault-free Case

An extensive study about the results with respect to different coupling factors was already
done in [WATP+05] and [LE09]. Therein, the main outcome is that the group spread does not
depend on α , if α maintains the lower bound. A higher coupling factor mostly reduces the
time to sync as long as it maintains the upper bound. On this account, we do not concentrate
on the simulation with respect to different coupling factors. Instead, we adjust α as denoted
in Table 6.5 in dependence of the network size and compare the results with respect to the
different variants of our FTA-RFA approach.

Table 6.5 summarizes the upper bound for different values of α with respect to Corol-
lary 1. The stronger bound of Theorem 2 was neglected due to the fact that most network
simulations using the weak upper bound with a random initial configuration have achieved
synchronicity. For sake of simplicity, all simulations are done with a coupling factor of
α = 1.01 as presented in Table 6.2. In our case, this is valid for systems containing at most
100 nodes. However, even in the case of n = 100, all simulations with α = 1.01 achieved
synchronicity. The time to sync calculated in Table 6.5 are based on Theorem 3 for an initial
maximum phase difference of Φ0 = 0.4.

In the case of an enabled drift calibration approach, we have to get an estimation of the
achievable drift among the nodes in order to calculate the worst case precision. On this
account, a simulation based on a network comprising 8 nodes was performed. Since the
presence of Byzantine nodes usually degrade the achievable drift deviation, we configured
one node to simulate a Byzantine-like behavior. The message staggering delay is further
assumed to be large enough to keep the amount of message omissions and collisions very
small. Therefore, the maximum relative message staggering delay rmax

msd was set to 0.3. The
real-time deviation of the pulse clock duration between the slowest and the fastest node
over time of this simulation is visualized in Figure 6.2b. This histogram compares two ap-
proaches, one with disabled and the other with enabled drift stabilization. The maximum
interval deviation never exceeded 70µs whereas the simulation with a disabled drift stabi-
lization contained some outliers of up to 130µs. Figure 6.2a further visualizes the average
real-time duration Tavg of the pulse clock periods over the time and demonstrates the effec-
tiveness of the drift stabilization approach. In detail, whereas the drift stabilization approach

CHAPTER 6. EVALUATION BY SIMULATION 99

Table 6.3: Initial node configuration for a prepared simulation evaluation.

idi phase ϕi(0) drift rate ρi [ppm] idi phase ϕi(0) drift rate ρi [ppm]

0 0/1000 −100000 1 500/1000 100000
2 50/1000 −100000 3 550/1000 50000
4 100/1000 −50000 5 600/1000 33333
6 600/1000 −25000 7 600/1000 25000
8 920/1000 42000 9 910/1000 41000

10 900/1000 40000 11 890/1000 39000
12 880/1000 38000 13 870/1000 37000
14 860/1000 36000 15 850/1000 35000
16 840/1000 34000 17 830/1000 33000
18 820/1000 32000 29 810/1000 31000
20 800/1000 30000 21 790/1000 29000
22 780/1000 28000 23 770/1000 27000
24 760/1000 26000 25 750/1000 25000
26 740/1000 24000 27 730/1000 23000
28 720/1000 22000 29 710/1000 21000
30 700/1000 20000 31 690/1000 19000
32 680/1000 18000 33 670/1000 17000
34 660/1000 16000 35 650/1000 15000
36 640/1000 14000 37 630/1000 13000
38 620/1000 12000 39 610/1000 11000
40 600/1000 10000 41 590/1000 9000
42 580/1000 8000 43 570/1000 7000
44 560/1000 6000 45 550/1000 5000
46 540/1000 4000 47 530/1000 3000
48 520/1000 2000 49 510/1000 1000
50 500/1000 0 51 490/1000 −1000
52 480/1000 −2000 53 470/1000 −3000
54 460/1000 −4000 55 450/1000 −5000
56 440/1000 −6000 57 430/1000 −7000
58 420/1000 −8000 59 410/1000 −9000
60 400/1000 −10000 61 390/1000 −11000
62 380/1000 −12000 63 370/1000 −13000
64 360/1000 −14000 65 350/1000 −15000
66 340/1000 −16000 67 330/1000 −17000
68 320/1000 −18000 69 310/1000 −19000
70 300/1000 −20000 71 290/1000 −21000
72 280/1000 −22000 73 270/1000 −23000
74 260/1000 −24000 75 250/1000 −25000
76 240/1000 −26000 77 230/1000 −27000
78 220/1000 −28000 79 210/1000 −29000
80 200/1000 −30000 81 190/1000 −31000
82 180/1000 −32000 83 170/1000 −33000
84 160/1000 −34000 85 150/1000 −35000
86 140/1000 −36000 87 130/1000 −37000
88 120/1000 −38000 89 110/1000 −39000
90 100/1000 −40000 91 90/1000 −41000
92 80/1000 −42000 93 70/1000 −43000
94 60/1000 −44000 95 50/1000 −45000
96 40/1000 −46000 97 30/1000 −47000
98 20/1000 −48000 99 10/1000 −49000

CHAPTER 6. EVALUATION BY SIMULATION 100

Table 6.4: Abbreviations of the different simulated algorithm variants. Note that all vari-
ants assume the parallel execution of Algorithm 8, which implements both approaches, drift
calibration (DC) and drift stabilization (DS).

Algorithm R-RFA / FTA-RFA DC DS CD MDE DESYNC APM

V1 Alg. 6 R-RFA X X
V2 Alg. 7 FTA-RFA X X
V3 Alg. 9 FTA-RFA X X X
V4 Alg. 11 FTA-RFA X X X X
V5 FTA-RFA X X X X X
V6 Alg. 12 FTA-RFA X X X X X
V7 Alg. 14 FTA-RFA X X X X X X
V8 FTA-RFA X X X

takes effect after a settling time of about 50 periods resulting in a constant average interval,
the other approach shows the occurrence of a common-mode drift where the average interval
continuously decreases over time.

Note that the interval deviation of 70µs with respect to the average interval Tavg results
in a new maximum drift rate ρ ′ = 70µ/Tavg. If we additionally assume a worse interval
deviation of 100µs, then the new maximum drift rate can be assumed to be upper bounded
by ρ ′max = 100µs · (1+ρ)/T with T = 1s and ρ = 106 ppm and consequently equals ρ ′max =
110ppm. Therefore, if we assume that the rate calibration scheme reduces the worst case
drift to ρ = 110ppm, then based on the parameters from Table 6.2 and Theorem 1, the worst
case precision for α > 1.002 equals ΠU = 2.322ms. Note that without the rate calibration
scheme, we would have ΠU = 322ms.

Table 6.5: Calculated bounds for the coupling factor and the time to sync.

Number of Nodes n 5 10 20 50 100
Upper bound for α 1.158 1.065 1.030 1.011 1.006

Tight upper bound for α 1.0439 1.0102 1.0025 1.0004 1.0001

Coupling factor α 1.15 1.1 1.05 1.01 1.005
Estimated time to sync [s] 7 10 18 82 163

(a) Average interval diagram

[0
,1

0)

[1
0,

20
)

[2
0,

30
)

[3
0,

40
)

[4
0,

50
)

[5
0,

60
)

[6
0,

70
)

[7
0,

80
)

[8
0,

90
)

[9
0,

10
0)

[1
00

,1
10

)
[1

10
,1

20
)

[1
20

,1
30

)

0%

10%

20%

30%

40%

50%

DS disabled DS enabled

interval deviation [µs]

fr
eq

ue
nc

y
di

st
rib

ut
io

n

0

20

40

60

80

100

120

140

in
te

rv
al

 d
ev

ia
tio

n
[µ

s]

(b) Interval deviation histogram

Figure 6.2: Demonstration of the drift stabilization (DS) approach in a network comprising 8
nodes, where one node is erroneous, and a configured maximum relative message staggering
delay of 0.3.

CHAPTER 6. EVALUATION BY SIMULATION 101

Algorithm version V1

The simulation results of Figure D.1 are according to algorithm version V1. That is, we
executed the proposed E-RFA algorithm with respect to different network sizes and maxi-
mum message staggering delays. First, Figure D.1a compares the distribution of the time
required for reaching a synchronized pulse state. Note that each distribution is based on
hundred simulations, each started with a random initial configuration. The network always
achieved synchronicity independent of the used parameter choices. From the diagram, we
can deduce that, in average, the network achieves synchronicity after about 100 periods with
outliers up to 400 periods, independent of the number of nodes and the maximum message
staggering delay. Clearly, there exists a limit of the network size due to the upper bound of
the coupling factor where the network may not achieve synchronicity any more. Similarly,
there exists also a limit for the message staggering delay due to an increasing number of
message omissions until the nodes are not able to communicate with each other any more.
Fortunately, within the all-to-all topology, this limit is very small, because there are no faulty
nodes which may disrupt the communication and the reception of at least the fastest node is
enough to maintain network synchronicity.

The other diagrams are based on a prepared evaluation with an initial configuration of the
nodes as stated in Table 6.3. The group spread distribution in Figure D.1c is almost the same
for each block of simulations with the same network size. In general, we can deduce that
the average group spread equals the message delay which agrees with our theoretical results.
Note that in the case of 5 nodes, the group spread variance is much more higher compared
to the other network sizes. This comes from the fact that the deviation of the cycle periods
among the nodes is very high due to an increasing variation of the drift calibration. If more
nodes are present, then more information about the average interval is available resulting in a
more accurate clock adjustment. The higher group spread variance in the case of 100 nodes
and rmax

msd = 0.05 is due to the limited communication bandwidth resulting in an exponentially
increasing message collision and omission rate as shown in Figure D.1e and Figure D.1f,
respectively. Consequently, less information is available for an accurate synchronization.
To sum up, the main advantage of this approach is that the clock adjustments are always
positive and additionally very small as visualized in Figure D.1d, because in the case of a
synchronized network, the nodes always adjust to the fastest node.

Algorithm version V2

Simulation results from algorithm V2 are presented in Figure D.2 and show a lot of simi-
larities with respect to variant V1. For example, the time to sync distributions, the message
collision distributions, and the message omission distributions are almost the same compared
to Figure D.1. The only main difference concerns the group spread and the clock adjustment
distribution. In detail, Figure D.2c shows that the average group spread of V2 equals about
ε/n where ε is the delay jitter of 500µs and n denotes the network size. This is a typical
property of the FTA algorithm. In detail, the FTA approach guarantees an upper bound of
the synchronization precision even in the presence of f Byzantine faulty nodes as stated in
Equation 4.7. Since we assume that f = 0, the group spread should never exceed ε +Γ with Γ

be the drift offset as defined in Section 2.2.2. Note that in this case, this worst case precision
is independent of the number of nodes. Consequently, an increasing number of message col-
lisions and omissions should hardly affect the precision as long as some few nodes are able
to communicate among each other. Note that the aforementioned statement contradicts the
results of Figure D.2c. The reason for the increasing precision comes along with a smaller
deviation among the clock cycle periods due to a more precise calculation of the average
cycle period in the case of an increasing number of nodes. Additionally, since the delay jitter

CHAPTER 6. EVALUATION BY SIMULATION 102

ε is equally distributed, the averaging function also reduces the influence of ε , if the network
size is very large. Unfortunately, the advantage of the better group spread deviation is at
the expense of an increased clock adjustment value as presented in Figure D.2f. The reason
for the increased clock adjustment lies in the fact that the calculated adjustment value is al-
ways smaller than the negated constant message delay of d = 2.2ms. For instance, assume
two perfectly synchronized nodes with a constant message delay jitter of d(m) = 2.2ms for
each message m (ε = 0). In this case, the synchronization information based on the received
message from the other node indicates that the clock always loses 2.2ms.

Algorithm version V3

Prepared simulation results for algorithm V3 are depicted in Figure D.3. The only difference
between V3 and V2 concerns the activated Clique Discovery (CD) approach. This approach
fastens up the average time to sync through recognizing existing cliques of nodes during
the startup phase. This behavior is exactly what can be observed in Figure D.3a. In detail,
the median of all simulations is situated at about 25 periods and all distributions have a
very small variance compared to V2. As a consequence, we can say that the CD approach
speeds up the average convergence time by at least a factor of 2. However, it should be
noted that in the case of equidistant initialized nodes (i.e., no cliques are present), then the
time to sync of algorithm V3 would be the same as algorithm V2. This case is not covered
due to the randomized initialization of the nodes and therefore Figure D.3a does not contain
such outliers. The other diagrams show similar results compared to V2, because the Drift
Calibration (DC) approach only takes effect until the network achieved synchronicity.

Algorithm version V4

The simulation evaluation of algorithm V4, depicted in Figure D.4, shows promising results
regarding a small group spread distribution in combination with small clock adjustments due
to the activated MDE approach. In detail, V4 provides a similar group spread distribution
as V3 and is typical for the FTA algorithm, but additionally provides adjustment values in
the same order as identified in the E-RFA approach as used in algorithm V1, except the fact
that the adjustment values are negative. The reason for the improvement of the maximum
absolute adjustment value in V4 comes from the fact that a node estimates the minimum
message delay. Consequently, the lost time of a received clock value from a neighboring
node can be compensated by adding the estimated minimum message delay. As a result, the
median of the adjustment value distribution is reduced by exactly the estimated minimum
message delay. The presented approach hardly affects the group spread among all nodes as
long as all nodes estimate the same minimum message delay and thus add the same time to
a received clock value. However, it should be noted that, in the case of a multi-hop network,
the amount of time which is used for compensating the lost time should not exceed the lower
limit d of the message delay. Otherwise, if the estimated message delay of all nodes is greater
than the lower limit (e.g., equals exactly d + ε/2), then the actual delay of some received
messages is higher or lower due to the delay jitter. Since the actual message delay of the same
message received at different nodes may be different due to the variation in processing time
at the receivers, some nodes may re-estimate a new minimum message delay which is higher
respectively lower than d + ε/2, even if the additional delay jitter at the receiver is orders of
magnitudes smaller than ε . This effect worsens if messages are not received at all nodes due
to message collisions or additionally Byzantine faulty nodes are present. The deviation of the
re-estimated minimum message delay among the nodes results in the fact that the nodes do
not adjust to the same average clock value, even if all nodes are exactly synchronized and the
calculated adjustment value before the time compensation is the same at all nodes. This lead

CHAPTER 6. EVALUATION BY SIMULATION 103

to a vicious circle, because the degraded group spread increases the deviation of the message
delay estimation which again degrades the group spread. On this account, the estimated
minimum message delay for the time compensation should never exceed the constant part d
of the general message delay assumption d(m) = [d,d + ε]. For this, Figure D.4g visualizes
the distribution of the minimum and maximum estimated message delay values among all
nodes in the time interval [(ts + te)/2, te] for each simulation. Therein, we can see that the
configured algorithm parameters ensure that the MDE value hardly exceed the lower limit
of 2.2ms, especially if more than 20 nodes are present. Note that if the distributions of the
adjustment value diagram is shifted by such a constant time of about 2.2ms, then the clock
adjustment distributions would look similar with respect to the one presented for algorithm
V3. Finally note that the difference between the maximum and minimum measured overall
clock adjustment value in general does not exceed the delay jitter of ε = 500µs, because in
the case of no message collisions and omissions, the achievable precision would be upper
bounded by ε +Γ.

Algorithm version V5

In contrast to algorithm V4, algorithm V5 additionally applies the offset desynchronization
scheme which we expect to decrease the average number of message collisions and omis-
sions. For this, Figure D.5 again presents all required simulation results. As we can see in
Figure D.5c, the average group spread of V5 almost equals the results from V4. However,
the outliers of V4 are lower compared to V5. Similarly, the clock adjustment distributions
of V5 are similar to V4. Further, Figure D.5e shows that the number of message collisions
equals V5, except the case of the network comprising 20 nodes. In this case, we can observe
that no collisions occurred at all, whereas V4 contained some few rounds where the reception
of the same single message was disrupted at nearly all nodes. However, the aforementioned
narrow differences between V4 and V5 do not justify the effectiveness of the offset desyn-
chronization approach. Nevertheless, if we consider the number of message omissions as
shown in Figure D.5f, then we can see that the approach takes effect and the omissions were
completely eliminated as long as enough bandwidth was available for the message exchange
among all nodes. Otherwise, if the available bandwidth is too small, then the omission rate
nearly equals the results from algorithm version V4. For instance, in our case we configured
a bandwidth limit of B = 4ms. Consequently, in the case rmax

msd = 0.2 (which equals 200ms, if
T = 1s), then there is enough bandwidth available for at most (rmax

msd− rmin
msd/B) = 190/4 = 47

nodes. This fact is exactly what can be observed in Figure D.5f. Therein, the number of mes-
sage omissions is greater than 0 and additionally increases, if (rmax

msd − rmin
msd/B) < n, where n

is the network size. Summing up, the offset desynchronization approach is an effective and
powerful feature that improves the average number of message omissions and consequently
the synchronization precision. Note that the other diagrams (e.g., the message delay estima-
tion distribution in Figure D.5g), are very similar to the results of V4. As a consequence, the
other parameters are hardly influenced by the offset desynchronization approach.

Algorithm version V6

Compared to algorithm version V4, V6 additionally executes the APM approach which in-
creases the overall network lifetime by letting some nodes passively participate in the syn-
chronization process. All simulation results regarding V6 are prepared in Figure D.6. For
this, Figure D.6h shows the maximum measured number of active nodes between the time
interval [(ts + te)/2, te]. Interestingly, after a settling time of about 25 rounds, each simulated
network converged to synchronicity where exactly 8 nodes are active and the rest changed
to the passive mode, independently of the initially configured network size. Consequently,

CHAPTER 6. EVALUATION BY SIMULATION 104

all other results are very similar to the simulation result of a network comprising 8 nodes.
Since the offset desynchronization approach is disabled in V6, some message omissions are
still present due to the random nature of the preponed message transmission. Note that the
algorithm can be modified in order to let more than 8 nodes remain in the active state. This
can be necessary, if the synchronization precision has to be improved.

Algorithm version V7

Algorithm version V7 finally activates the offset desynchronization in addition to the APM
mode as already discussed within the results of algorithm V6. At first view, the simula-
tion results between V7 and V6 as shown in Figure D.7 and Figure D.6, respectively, are
almost the same. However, if we consider the number of message omissions as presented
in Figure D.7f, then we can see that V7 completely eliminates all omissions in nearly all
simulations. This comes from the fact that even in the case of rmax

msd = 0.05, there is enough
bandwidth available for at most 22 nodes. Since the number of active nodes is always lower
than 22, the offset desynchronization approach greatly takes effect and the message omis-
sions are strongly reduced.

6.6.2 The Faulty Case

Within this section, the same simulations like in the previous section are performed, but with
the difference that erroneous nodes are simulated. The prepared evaluations use the same
initial configuration as presented in Table 6.3. However, if a network contains f erroneous
nodes, then we assume that these nodes belong to the nodes with the configured ids in the
range between 0 and f−1. Note that this does not mean that these nodes transmit with this id.
Instead, the two-faced malicious behavior allows them to transmit with a different randomly
chosen id to each distinct neighbor. We further use the abbreviation “ f /n simulated network”
to mean the simulation of a network comprising n nodes where f nodes are erroneous.

Algorithm version V1 (with disabled DC)

Within the theoretical discussion of the R-RFA algorithm, we stated that this approach no
more provides the property of self-stabilization even in a fault-free system, because of the
invalidity of the Closure condition as required for Definition 31. However, the Convergence
condition still holds with a degraded synchronization precision. An empirical proof of this
fact was simply done by simulating a network comprising eight nodes, where one node is
simulated to be erroneous in such a way that it simply omits all message transmissions. Since
the R-RFA algorithm applies the E-RFA algorithm only on the received synchronization
information where the f highest and lowest deviations are excluded, all non-faulty nodes
eventually synchronize to the (f + 1)-fastest node, but not to the fastest node as it would
be in the non-faulty case. This is necessary, because the erroneous nodes may simulate
different and strongly deviating clock drifts with respect to each individual neighboring node,
resulting in the fact that each non-faulty node may synchronize to a completely different
phase. Thus, only the (f + 1)-fastest node is a node where the received phase is definitely
situated within the other non-faulty nodes. This leads to the fact that, under certain conditions
which are discussed in Chapter 5, the non-faulty nodes eventually achieve synchronicity with
respect to the (f +1)-fastest non-faulty node with a lower bounded synchronization precision
that degrades with an increasing number of erroneous nodes. However, since the f fastest
non-faulty nodes eventually overtake the other nodes and are consequently excluded from the
synchronization process, these nodes then get away from the synchronized group and, after
some time, resynchronize to the rest of the nodes until they get away again. Exactly this

CHAPTER 6. EVALUATION BY SIMULATION 105

behavior can be observed in Figure 6.3. In order to worsen the effect, we decided to switch
off the DC approach, and initially configure the nodes as presented in Table 6.6. Hence, the
fastest non-faulty node equals the node with id = 7 and periodically resynchronizes to the
rest of the group, but always desynchronizes after some time, because in the case of complete
network synchronicity the other non-faulty nodes eventually ignore the information received
from this node and thus do not adjust their clocks with respect to the fastest non-faulty node
any more.

Table 6.6: Initial node configuration for a prepared simulation evaluation of V1 with deacti-
vated DC.

idi phase ϕi(0) drift rate ρi [ppm] idi phase ϕi(0) drift rate ρi [ppm]

0 600/1000 2 1 600/1000 −2
2 600/1000 3 3 100/1000 −5
4 550/1000 5 5 50/1000 −3
6 500/1000 10 7 0/1000 −10

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

100000

200000

300000

400000

500000

time t [s]

g
ro

u
p

 s
p

re
ad

 [
µ

s]

Figure 6.3: Demonstration of the impossibility of maintaining synchronicity in the case of
the R-RFA algorithm with f = 1 in a fault-free system comprising eight nodes.

Algorithm version V4

In contrast to V1, V4 now validates the required Closure condition through automatically
switching from the R-RFA to the FTA approach. As a consequence, V4 should solve the
self-stabilizing pulse synchronization problem as formulated in Definition 31. For sake of
comparison, Figure D.8 visualizes the distributions of all important quality aspects, based
on the prepared simulation results of different network configurations. Similarly to the fault-
free case, the main outcome is that the network still does not achieve synchronicity, if the
available bandwidth for message communication is too small. For instance, Figure D.8a
shows the number of achieved network synchronicities out of 100 simulations, each started
with a randomly initialized configuration. From the diagram we can deduce that the configu-
rations 10/71 and 10/100 never achieved synchronicity, because too much faulty nodes were
present. These faulty nodes are able to force a transmission even if a transmission of a non-
faulty node is currently in process. Consequently, the f faulty nodes are able to continuously
occupy a fixed amount of bandwidth and additionally destroy the message transmissions of
at most f non-faulty nodes. Similar problems occur if rmax

msd is set too small. If so, then too
less synchronization information will be exchanged and the drift calibration or even the state

CHAPTER 6. EVALUATION BY SIMULATION 106

synchronization approach will not work at all. This behavior can be observed for smaller
values of rmax

msd in the case of 5/36, 5/71, and 5/100 configured networks. Furthermore, if
too less nodes are present (3 f + 1 < n < 7 f + 1), then the state synchronization will work,
but the drift calibration approach cannot take effect even if enough bandwidth is available.
This is especially the case for the 1/5 configured network. As a consequence, the time un-
til synchronicity dramatically increases and results in a degraded synchronization precision.
Note that in the worst case where all f faulty nodes continuously destroy the synchroniza-
tion messages of exactly f distinct non-faulty nodes, then the 1/5 configured network will
never achieve synchronicity due to the impossibility of convergence for the drift calibration
approach.

Algorithm version V5

This section discusses the improvements achieved by enabling the offset desynchronization
approach in addition to algorithm version V4. The resulting distributions of several evalu-
ation metrics are presented in Figure D.9 and mostly follow the results from algorithm V4
as discovered in Figure D.8. The only difference can be observed with respect to the mea-
sured number of message omissions per round. For example, compared to V4, Figure D.9f
shows improvements in the case of 1/8, 1/36, and 1/100 configured networks, if rmax

msd ≥ 0.15,
because it is ensured that enough bandwidth is available for efficient offset desynchroniza-
tion. However, the number of message omissions and collisions worsen, if the available
bandwidth underruns the required limit, that is, (rmax

msd − rmin
msd/B) < n. This explains the more

frequent occurrence of outliers which are additionally higher than it can be observed in Fig-
ure D.9e for algorithm V4. Other quality aspects of V5 are similar to algorithm version V4
and therefore not discussed.

Algorithm version V7

Simulation results regarding algorithm version V7 are presented in Figure D.10. In con-
trast to version V4, V7 additionally executes the APM feature. Consequently, the number
of active nodes should be reduced to at least 7 f + 2 and at most 9 f + 4 as proven in The-
orem 9. This theoretical aspect is practically verified by the simulation results presented
in Figure D.10h. Therein, the number of active nodes for the 1/36, 1/71, and 1/100 sim-
ulated networks are constantly reduced to 14 (or 13 nodes in the case of rmax

msd = 0.1), as
long as enough bandwidth is available (i.e., rmax

msd ≥ 0.1). Clearly, the degraded group spread
of the simulated networks where the APM approach takes effect comes along with the re-
duced number of synchronization information a node receives from its neighbors. Note that
in the case of a 5/71 or 5/100 simulated network, we would expect a maximum number of
46 active nodes per round. However, Figure D.10h shows that this is not true. The rea-
son for the increased number of active nodes originates from the higher number of message
omissions. The same statement applies for the 1/36, 1/71, and 1/100 simulated networks
with rmax

msd = 0.05. More important, Figure D.10e and Figure D.10f show a dramatically re-
duced number of message collisions and omissions, respectively, which comes along with the
smaller number of active nodes. Note that the smaller number of active nodes also requires a
small number of message collisions and omissions. Therefore, the process of reducing both
the number of active nodes and the number of message collisions and omissions are inter-
linked with each other and depend on a carefully configured maximum message staggering
delay for providing enough bandwidth. This leads to the conclusion that the maximum mes-
sage staggering delay rmax

msd can be reduced after the nodes recognize that synchronicity is
achieved. However, this aspect is beyond the scope of this thesis and may be studied in a
future work. To sum up, the APM approach is very effective as long as enough bandwidth is

CHAPTER 6. EVALUATION BY SIMULATION 107

available, but comes along with a degraded synchronization precision compared to the results
if APM is disabled. For instance, in the case of the 1/36 simulated network, Figure D.10c
shows that the maximum measured group spread degrades from 40µs to 100µs. However,
in many situations a small duty-cycle is required and, hence, requires a tradeoff between a
small bandwidth and a sufficient synchronization precision. Other undiscussed evaluation
metrics are similar to algorithm version V5.

Finally, the diagram in Figure D.10i plots the standard deviation of the measured real-
time durations of the pulse clock cycle period among all nodes over time t. The simulated
network in this case comprises 71 nodes where 10 nodes are Byzantine faulty. Therein, we
can see that the higher rate of message omissions prevents the drift calibration algorithm
from converging the nodes to a common average cycle period. Consequently, the time until
synchronicity dramatically increases and even can be infinite. The reason for this dilemma
lies again in the fact that too less bandwidth is available and too much messages are omitted
due to the presence of the faulty nodes.

6.7 Simulating Multi-hop Topologies

In contrast to fully connected networks, achieving a network-wide synchronization in multi-
hop topologies is a more interesting attempt with respect to real world applications. For
instance, many sensor networks are based on a source-to-sink communication topology with
a communication path consisting several hops. Therefore, different types of topologies are
simulated in dependence of the network size and other parameter choices. The results then
should give a feeling about the robustness, achievable precision, and average time to sync
for the use in applications which have a similar topology structure.

6.7.1 The Fault-free Case

In a fault-free system, no faulty or erroneous nodes exist by definition. However, message
omissions and collisions due to interfering message transmissions are an inherent problem
in all wireless communication networks. Since the CD, APM, and offset desynchronization
approach are not aimed for the use in multi-hop networks and simulation results have shown
that the establishment of these approaches worsened the results in such topologies, we only
concentrate on the simulation of the three algorithm variants V1, V2, and V8.

Chain Topologies

Figure 6.4: Visualization of the communication topology of a chain-structured multi-hop
network comprising 10 nodes. The arrows visualize a bidirectional communication link.

This communication topology is the simplest multi-hop topology and is used to evaluate
the scalability property of the algorithms with respect to the network size n. Figure 6.4 shows
a typical chain topology containing 10 nodes.

Algorithm version V1. The first algorithm version executes the E-RFA approach. For the
case of 2 nodes, Theorem 1 states the achievable worst case precision as long as every mes-
sage is received within the predefined bounds. However, since in the worst case, every pair
of nodes over each hop cannot synchronize better than this bound, we expect an achievable

CHAPTER 6. EVALUATION BY SIMULATION 108

worst case precision of a chain network comprising n nodes to be about (n− 1) ·ΠU with
ΠU from Theorem 1. Generally, we can say that in the worst case, if a network contains at
most h hops, then the E-RFA approach cannot synchronize better than h ·ΠU with ΠU from
Theorem 1.

Figure D.11 presents the simulation results of chain networks with a network size of
n = 5, n = 10, n = 20, and n = 30 nodes. Based on the aforementioned precision estimation,
we expect a worst case precision of Π = (n− 1) ·ΠU with ΠU = 2.94ms for rmax = 0.2,
ε = 0.5ms, and d = 2.2ms. Consequently, we get Π = 11.76ms, Π = 26.5ms, Π = 55.87,
and Π = 85.28ms for n = 5, n = 10, n = 20, and n = 30, respectively. This is exactly
what we observe in Figure D.11c. We see that the worst case group spread comes in the
vicinity of these bounds, but never exceeds them. However, this heavily depends on the
number of message omissions and collisions which is very low due to the low number of
neighboring nodes (at most 2 neighbors) as presented in Figure D.11e and Figure D.11f.
The major strengths of the E-RFA approach, however, is the fact that a node adjusts its clock
only forward and only by a small amount as it can be seen in Figure D.11d. Thus, in the
worst case, the nodes usually adjust their clocks in the order of some few microseconds but
with the disadvantage that two neighboring nodes are worse synchronized. Figure D.11a
further shows that nearly all randomized simulation evaluations achieved a synchronized
pulse state within 1000 rounds with an average time to sync in the order of some hundred
rounds as presented in Figure D.11b. Note that further practical tests have shown that the
few simulations that did not achieve a synchronized pulse state within 1000 rounds achieved,
achieved this state at most after 2000 rounds.

Algorithm version V2. The simulation results of the FTA-RFA approach without message
delay estimation as presented in Figure D.12 are closely related with the results of the same
approach applied in fully connected networks. For instance, the precision is much better
compared to V1 due to the fact that the constant part of the message delay is no more included
in the worst case precision. This comes along with the high negative clock adjustments as
shown in Figure D.12d. Based on Equation 4.7, the worst case precision in the case of FTA
applied on topologies containing at most h hops is expected to be Π = h ·(ε +Γ). Thus, if we
assume that ε = 0.5ms, then we expect a worst case precision of Π = 2.8ms, Π = 6.3ms, Π =
13.3ms, and Π = 20.3ms for n = 5, n = 10, n = 20, and n = 30, respectively. Interestingly,
all simulated networks with a configured maximum relative message staggering delay of
rmax

msd = 0.2 did not exceed this theoretical bound. However, a lower rmax
msd clearly increases

the number of message omissions and collisions and consequently also the worst case group
spread among the nodes as shown in Figure D.12c. As anticipated, the number of maximum
message collisions and omissions per round are similar to V1. Finally, similar to V1, at most
all simulated systems with a random initial configuration achieved a synchronized pulse state
within 1000 rounds. The remaining simulation that did not achieve this state, achieved this
state some rounds later.

Algorithm version V8. Simulation results regarding algorithm version V8 are presented
in Figure D.13. Therein, Figure D.13g shows that the MDE approach takes effect and every
node estimates a minimum message delay which is not very accurate, but mostly situated
between 2.2ms and 2.7ms in the case of rmax

msd = 0.3. The inaccuracy comes from the fact
the a node has at most 2 neighboring nodes for the estimation process. In contrast, the
grouped multi-hop approach should eliminate this problem as presented in the next section.
The main advantage of the MDE approach is that the maximum clock adjustment values
are reduced by about this MDE value and is visualized in Figure D.13d. Interestingly, the
average and worst case group spread is almost a little bit better than the corresponding results

CHAPTER 6. EVALUATION BY SIMULATION 109

from algorithm V2, except the case of n = 30 nodes. The number of achieved network
synchronicities is a little bit worse compared to V2, especially for the case of n = 10 and
n = 20. However, the systems which did not achieve synchronicity within 1000 rounds still
entered the synchronized pulse state some rounds later. Finally, the time to sync distribution
is almost similar to that from V2.

Grouped Multi-hop Topologies

Figure 6.5: Visualization of the communication topology of a grouped multi-hop network
with a group size of g = 5 and 10 groups. The shaded area demonstrates the transmission
range of a complete group.

A grouped multi-hop topology is similar to a chain topology, except that the nodes are
replaced by groups comprising several nodes. Whereas the nodes in such a group are fully
connected, the groups are connected in a chain-like way. Further, all nodes in a group have
a bidirectional communication link to all nodes in the immediate neighboring groups. Fig-
ure 6.5 demonstrates such a topology with a group size of g = 5 and 9 hops. Note that all
simulated grouped multi-hop systems comprise exactly 10 groups and thus suffer from at
most 9 hops. Simulation evaluations are performed with different group sizes and parameter
choices.

Algorithm version V1. Simulation results regarding this algorithm version are presented
in Figure D.14. All simulated systems entered the synchronized pulse state within 1000
rounds and have an average time to sync of about 200 rounds. Interestingly, the group spread
distribution strongly deviates among all simulations and therefore seems to be independent
of the group size. This comes from the fact that the E-RFA approach cannot synchronize
better than at least the maximum message delay. If we assume that ρ = 100ppm, ε = 0.5ms,
d = 2.2ms, and rmax

msd = 0.05, then the resulting worst case precision is greater than Π =
9 · 2.9ms > 26ms. Figure D.14c shows that this upper precision bound is never exceeded,
even in the presence of a high number of message omissions and collisions. The inherent
advantage of the E-RFA algorithm again corresponds to the small clock adjustment values
as demonstrated in Figure D.14d.

Algorithm version V2. Figure D.15 contains the simulation results of the FTA-RFA ap-
proach. The general outcome of this simulation evaluation is that an increasing group size
slightly improves the average group spread and thus also the real-time precision. This comes
from the fact that a node has more neighboring nodes and is able to perform a more accurate
estimation of the minimum message delay. Furthermore, a higher number of neighboring
nodes additionally improves the behavior of the drift calibration approach. Compared to V1,
the number of achieved network synchronicities within 1000 rounds and the average time
to sync of 200 rounds for all simulated systems is very similar. Furthermore, the average
group spread among all simulated systems dramatically improved to about 1.5ms due to the

CHAPTER 6. EVALUATION BY SIMULATION 110

FTA approach. In addition to that, the maximum measured group spread never exceeded the
theoretical worst case precision for the FTA approach of Π = 7ms. The only disadvantage is
again the high negative average clock adjustment as presented in Figure D.15d which is, as
expected, in the order of the minimum message delay. To sum up, the FTA-RFA approach
seems to be very robust even in the presence of high message omissions and collisions.

Algorithm version V8. Simulation results are presented in Figure D.16 and are very sim-
ilar to the results of V2 except the fact that the average group spread among all simulations
improved a bit to about 0.5ms. Furthermore, the nodes performed an accurate estimation of
the message delay for g≥ 3 and rmax

msd >= 0.1 (Figure D.16g). Compared to V2, this leads to
a reduction of the adjustment value by about 2ms. The average time to sync and the message
omission and collision distributions are the same as evaluated for V2.

Regular Grid Topologies

p
1

p
2

p
3

p
5

p
6

p
0

p
7

p
8

p
4

Figure 6.6: Visualization of the communication topology of a regular grid-structured multi-
hop network with a network size of 3x3. The arrows visualize a bidirectional communication
link.

A typical regular grid topology containing 9 nodes (3x3 grid) is visualized in Figure 6.6.
Simulation results regarding this topology type should give a feeling about the size scalability
property in more than one dimension (as it is in chain topologies). Furthermore, such a
topology may be of more practical interest than the previous ones.

Note that every regular grid topology contains at least one maximum BRC Cmax with
l(Cmax) = 4. On this account, the inequality of Theorem 8 should be valid in order to reduce
the probability of existing stable infeasible firing configurations. For instance, the resulting
lower bound for L according to this inequality with α = 1.01, dmax = 2.7ms, and n = 4 would
be L > 92.96. Furthermore, the upper bound for L according to Theorem 7 with dmax = 2.7ms
and n = 4 (length of the maximum BRC Cmax in a regular grid topology) is L < 92.6. Clearly,
this reveals that the algorithm is not very scalable, if the network contains BRCs, because
in this case it is impossible to eliminate the occurrence of unwanted stable system states.
However, a remedy can be the appropriate reconfiguration of the other parameters. In detail,
the lower bound for L according to Theorem 8 with α = 1.02, dmax = 2.7ms, and n = 4 now
equals L > 9.5. Note that all simulations were performed with the same parameter settings
as used for the other topologies and thus may contain system states that never converge to a
synchronized pulse state.

Algorithm version V1. Simulation evaluations based on algorithm V1 are presented in
Figure D.17. Nearly all randomized simulations achieved synchronicity within 1000 periods
as shown in Figure D.17a. The remaining simulations still achieved a synchronized pulse
state some rounds later. Note that the theoretical upper bound for the worst case precision
in the case of no message loss is about Π = 2 · 2.9ms = 5.8ms, Π = 4 · 2.9ms = 11.6ms,
Π = 8 ·2.9ms = 23ms, and Π = 18 ·2.9ms = 52ms for a 2x2 grid, 3x3 grid, 5x5 grid, and a

CHAPTER 6. EVALUATION BY SIMULATION 111

10x10 grid, respectively. All simulated systems never exceeded this bound as shown in Fig-
ure D.17c. Therefore, we can deduce that the algorithm is very robust and provides graceful
degradation in the case the number of message omissions and collisions is increasing. Inter-
estingly, the group spread diagram shows that the average group spread sometimes improves
with a smaller maximum relative message staggering delay rmax

msd within the same network
size. This is especially the case, if the message loss does not dramatically increase with a
decreasing rmax

msd . Lat but not least, the clock adjustments are again very small which comes
along with a degraded precision.

Algorithm version V2. The FTA-RFA approach again shows its strength in the group
spread diagram of Figure D.18 and provides an improved worst case group spread of at least
a factor of 2 compared to V1. Furthermore, nearly all simulated systems with rmax

msd = 0.2 (ex-
cept the 2x2 grid) maintained the theoretical worst case bound of Π = 2(k−1) ·0.7ms for a
kxk grid network. As expected, the clock adjustments are in the order of the message delay.
Unfortunately, only 70 percent of the randomized simulations with a 10x10 grid structure
and rmax

msd = 0.2 achieved a synchronized pulse state. Further experiments have shown that
the remaining 30 simulations never achieved at all till 10000 rounds. This may come from
the fact that the inequality of Theorem 8 is not valid in the case of α = 1.01 and L = 4.

Algorithm version V8. The main difference to V2 concerns the number of syncs diagram
and the group spread diagram in combination with the reduced clock adjustment diagram in
Figure D.19. In detail, in contrast to V2, it seems that the probability of algorithm version
V8 for achieving a synchronized pulse state is higher, especially for larger systems. The
MDE approach again takes effect and additionally improved the group spread by a factor
of 2 compared to V2. Furthermore, the average clock adjustments are reduced by about
1.5ms which results in a worst case adjustment in the order of some few microseconds. The
diagram in Figure D.19g further shows that the 2x2 grid network with rmax

msd = 0.2 estimated
the minimum message delay most accurately with the smallest variance.

Ring Topologies

p
1

p
2

p
7

p
3

p
6

p
0

p
5

p
4

Figure 6.7: Visualization of the communication topology of a ring-structured multi-hop net-
work with a ring size of n = 8. The arrows visualize a bidirectional communication link.

The ring topology (Figure 6.7) was simulated in order to evaluate the scalability property
of the algorithms with respect to an increasing BRC and to practically test the correctness
of Theorem 8. Based on this theorem, Table 6.7 lists the required bounds for the coupling
factor α and the FTA convergence threshold L in order to reduce the probability of entering
an infeasible firing state. As a consequence, we can say that the FTA-RFA algorithm is
worse with respect to the size scalability in the dimension of an increasing BRC. However,

CHAPTER 6. EVALUATION BY SIMULATION 112

FTA-RFA is still scalable in flat topologies that contain only small BRCs. In contrast, RFA
works well independent of the network size, but may require a long time for convergence.

Figure 6.8 provides a more detail insight in the devised lower bound theorem for L.
It visualizes the lower bound in dependence of the coupling factor α and the worst case
message delay dmax = d + ε for different sized networks. Note that a negative lower bound
does not mean that any L is possible. In contrast, this means that the inequation of Theorem 8
never holds and the possibility of stable infeasible firing states cannot be eliminated. In the
case of n = 5, Figure 6.8a shows that there is enough space for choosing an appropriate
value for L. However, for n ≥ 10 it is not possible to chose an L which is smaller than
100 with dmax = 2.7ms (as assumed in our system model) and any α . This demonstrated
the impossibility of FTA-RFA to provide scalability in communication that suffer from high
message delays and additional contain BRCs.

Table 6.7: Calculated bounds for the coupling factor α and the convergence threshold L in
ring topologies.

Ring size n Theorem Assumption 5 10 20 50
Upper bound for α Theorem 4 dmax = 2.7ms, ρ = 100ppm 1.240 1.107 1.049 1.017
Upper bound for L Theorem 7 dmax = 2.7ms 74 37 18 7
Lower bound for L Theorem 8 α = 1.07, dmax = 2.7ms 13 150 ∞ ∞

Lower bound for L Theorem 8 α = 1.01, dmax = 0ms 9 43 201 1564

Algorithm version V1. The number of syncs diagram in Figure D.20 shows that the E-RFA
approach did not always achieve synchronicity within 5000 rounds, especially in the case of
big-sized rings. One reason may be the increased message loss. However, we were not able
to completely identify the reason for this problem and belongs to future research. Generally,
we can say that the average time to sync is about 20 · n rounds. Furthermore, in the case
network synchronicity is achieved, the worst case group spread of Π = n · 2.9ms is always
maintained, even in the case of high message collisions and omissions. The group spread
distribution of simulations with big-sized rings comprising 50 nodes and rmax

msd ≤ 0.1 that
never achieved synchronicity are also included in Figure D.20c. Interestingly, these systems
never synchronized better than 200ms and therefore were not able to achieve synchronicity.
The main reason behind this problem highly likely belongs to the increased message colli-
sions and omissions in this case. Finally, the main advantage of the E-RFA algorithm again
concerns to the very low clock adjustments as presented in Figure D.20d.

Algorithm version V2. Results regarding V2 are presented in Figure D.21. Compared to
V1, V2 provides a decreased percentage of achieved network synchronicities, especially for
the case of n = 50 nodes. The reason for this is twofold. First, similar to V1 the increasing
message loss prohibits the network from entering a synchronized pulse state. In addition to
that, the invalidity of the inequation of Theorem 8 is also responsible for reduced number of
network syncs. The worst case group spread for rmax

msd = 0.2 improved by at least a factor of 2.
Similar to the previous simulations, FTA-RFA suffers from high average clock adjustments
in the order of 2ms. The remaining diagrams are almost similar to V1.

Algorithm version V8. The main difference of V8 with respect to V2 concerns the clock
adjustment diagram of Figure D.22. In detail, the MDE approach approximately estimates
the message delay and leads to a reduction of the clock adjustments by about 1.5ms. Note
that in the case of small-sized rings in combination with a high maximum message staggering
delay, the network estimated the message delay more accurately than big-sized rings.

CHAPTER 6. EVALUATION BY SIMULATION 113

1

1.05

1.1

0

1

2

3
x 10−3

0

20

40

60

80

100

coupling factor α

X: 1.068
Y: 0.0027
Z: 12.78

FTA threshold factor L for n=5

max msd delay d
max

 [s]

F
T

A
 th

re
sh

ol
d

fa
ct

or
 L

(a) Lower bounds for L with n = 5

1 1.02 1.04 1.06 1.08 1.1

0

1

2

3

x 10−3

0

100

200

300

400

500

X: 1.07
Y: 0.0027
Z: 149.2

coupling factor α

FTA threshold factor L for n=10

max msd delay d
max

 [s]

F
T

A
 th

re
sh

ol
d

fa
ct

or
 L

(b) Lower bounds for L with n = 10

1

1.05

1.1 0
1

2
3

x 10−3

−100

0

100

200

300

400

500

max msd delay d
max

 [s]

FTA threshold factor L for n=20

coupling factor α

X: 1.001
Y: 0
Z: 182.4

F
T

A
 th

re
sh

ol
d

fa
ct

or
 L

(c) Lower bounds for L with n = 20

1

1.05

1.1

00.20.40.60.81

x 10−3

0

2000

4000

6000

8000

10000

coupling factor α

X: 1.01
Y: 0
Z: 1563

FTA threshold factor L for n=50

max msd delay d
max

 [s]

F
T

A
 th

re
sh

ol
d

fa
ct

or
 L

(d) Lower bounds for L with n = 50

Figure 6.8: Lower bounds for the FTA convergence threshold L in ring topologies according
to Theorem 8. (X,Y,and Z correspond to the coupling factor α , the worst case message delay
dmax, and the resulting lower bound for L, respectively.)

Random Geometric Topologies

The simulation of a random geometric topology is of major practical interest and demon-
strates the robustness of the applied algorithms in the case of randomly connected networks.
In our case, we scattered always 100 nodes on a 100x100 square meter field. Since the com-
munication range of single node is at most 20 meters, this should ensure a high probability
of a connected communication network.

Algorithm version V1. From Figure D.23, we can deduce that the V1 algorithm applied
in a random geometric topology as described is very powerful. In detail 99 percent of the
performed randomized simulations achieved synchronicity within 1000 rounds and required
an average time to sync of about 250 rounds. Note that the theoretical upper bound for the
worst case precision in such a network equals Π = 2 · (100/25− 1) · 2.9ms > 17ms. This
comes from the fact that in the worst case, a connected network in such a two dimensional
square field comprising 100 nodes, each having a transmission range of at most 25 meters,
contains at most 2 · (100/25− 1) hops and corresponds to a 4x4 grid network. The group
spread diagram of Figure D.23d shows that this bound is never exceeded. The clock adjust-
ments are again very small which is typical for the RFA approach and comes along with a
degraded precision.

CHAPTER 6. EVALUATION BY SIMULATION 114

Algorithm version V2. Most simulations results for V2 as presented in Figure D.24 are
similar to V1. Clearly, the group spread distributions are better due to the use of the FTA
approach for maintaining the clocks synchronized. The simulations again hardly exceeded
the theoretical upper bound for the worst case precision in the absence of message loss of
Π = 2 · (100/25−1) ·0.7ms > 4.2ms. Only the system configured with rmax

msd = 0.1 contained
some few outliers exceeding this threshold. This may result from the fact that the randomly
initiated communication topology reacted more sensitive to message loss. Note that the
average clock adjustment of 2.5ms also equals the average group spread.

Algorithm version V8. The improvements of V8 mainly concerns the reduction of the
average clock adjustment by about 2ms as shown in Figure D.25. Consequently, the nodes
mostly adjusted their clocks in the order of the delay jitter ε . Generally, the group spread
distributions also improved a little by about 1ms which is traced back to the decreased clock
adjustment value and the more or less accurate estimation of the minimum message delay in
the order of 2.25ms.

6.7.2 The Faulty Case

In the faulty case, we assume the existence of erroneous nodes in a fault-free system. Note
that this is in contrast to a coherent system where Byzantine faulty nodes that behave in an
adversary manner are allowed and therefore theoretically never converge as proven in the
previous chapter. In our case, the erroneous only transmit different random values to the
distinct neighbors, but do not behave in an adversary manner. Simulation results based on
such a system yield estimations about the robustness property of the applied algorithm.

Grouped Multi-hop Topologies

Figure 6.9: Visualization of the communication topology of a grouped multi-hop network
with a group size of g = 8, 10 groups, and each group containing one erroneous node. The
shaded area demonstrates the transmission range of a complete group. The arrows visualize
a bidirectional communication link.

The grouped multi-hop topology with a group size g is the simplest topology that main-
tains g-connectivity. That is, there exist at least g different communication paths between
any two nodes. This is a major requirement in the case an algorithm has to provide resilience
against Byzantine nodes. In detail, we require that the group size g≥ 7 f +1 in order to cor-
rectly execute the fault-tolerant drift calibration algorithm in the presence of unpredictable
message loss. Furthermore, the R-RFA approach additionally requires at least a (5 f + 1)-
connected network as discussed in the previous chapter. Figure 6.9 presents a schematic
structure of such a grouped multi-hop topology with a group size of g = 8. Note that the
main advantage of the grouped multi-hop network is that it allows the presence of at most
fg faulty nodes in each group. In our case, we assume f = 1 and the faulty nodes are high-
lighted with red filled circles. In contrast, whereas our definition of a grouped multi-hop

CHAPTER 6. EVALUATION BY SIMULATION 115

network comprising k groups allows the presence of at most k · fg erroneous nodes (or fg
Byzantine nodes after convergence) with the constraint of at most fg faulty nodes in each
group, general (7 f +1)-connected networks are resilient to at most f faulty nodes.

However, note that we assume that each node knows the exact number of neighboring
faulty nodes. This means that in our topology example of one faulty node in each group
(fg = 1), all nodes of the border groups assume f = 2 and the remaining nodes assume
f = 3. This is important, since otherwise, if all nodes would assume f = 3, then all nodes
of the border groups may never converge to the remaining nodes if g = 7 f + 1, because
they may ignore all information received from the neighboring group. Note that it is still
possible to configure all nodes with the same number of faulty nodes f = 3 fg. However,
if so then the group size must satisfy g ≥ 18 fg + 1. This comes from the fact that in the
worst case, at least one node of each neighboring group must be included in the calculation
process. That is, assume a group gk having two neighboring groups, each containing at most
fg faulty nodes. Thus, a node of gk will always exclude the 2 · (3 fg) lowest and 2 · (3 fg)
highest deviations as stated in the drift calibration algorithm. However, the 3 fg faulty nodes
may always corrupt the message transmission of 3 fg other correct nodes and thus a node
will never receiver messages from more than (3g− 1)− 6 fg neighboring nodes. This node
further excludes the 6 fg highest and 6 fg lowest deviations from these received messages
leading to at most (3g− 1− 18 f) remaining values for the calculation process. Since at
least one remaining value is required from each neighboring group in order to guarantee
convergence, the inequality (3g− 1− 18 fg) > 2 fg + 1 ensures this due to the pigeon hole
principle. Thus, in the case every node assumes the same f = 3 fg, the group size must be at
least g≥ 18 fg +1.

Algorithm version V2. The simulation results of algorithm version V2 in a f /g = 1/8
grouped multi-hop topology as visualized in Figure 6.9 are presented in Figure D.26. The
behavior of this algorithm for the two system configurations with rmax

msd = 0.3 and rmax
msd = 0.2 is

very similar. Only the system with rmax
msd = 0.1 presented worse results compared to the other

ones, because only 24 out of 100 simulations achieved synchronicity due to the increased
number of message omissions. The average time to sync for the two other systems is about
250 rounds. The worst case groups spread never exceeded 2.5ms. Note that the theoretical
upper bound for the worst case precision in this situation equals Π = 9 ·0.7ms > 6ms. Thus,
we can say that both the drift calibration and the FTA approach work well in such a topology.
The average clock adjustment also equals about 2.5ms.

Algorithm version V8. For sake of comparison, algorithm version V8 is applied on the
same grouped multi-hop topology as used for V2. The resulting distribution diagrams are
visualized in Figure D.27. Therein, we can deduce that the activated MDE additionally
improves the group spread by a factor of 2 compared to V2. In detail, for the case of rmax

msd =
0.3, the nodes never deviated more than 1.2ms. All randomized simulations for rmax

msd = 0.3
and rmax

msd = 0.2 achieved network synchronicity within 1000 rounds with an average time
to sync of about 250 rounds. A further important improvement due to the MDE approach
belongs to the very small clock adjustments which are mostly in the order of 0.25ms. This
means, that the MDE approach reduced the average clock adjustments by about 2.2ms which
is exactly the minimum message delay. Figure D.27f further shows that the MDE works
effectively, because in average the nodes estimate the minimum message delay with 2.25ms
and only deviates by 50µs from the correct real minimum message delay.

CHAPTER 7
Discussion

In this thesis, a robust and efficient pulse synchronization algorithm that satisfies the conver-
gence condition in fault-free systems and additionally maintains synchronicity by the use of
FTA even in coherent systems is presented. FTA-RFA, presented in Section 5.3.1, comprises
several topology-dependent mechanisms that improve different quality aspects.

For example, simulation results have shown that the FTA-RFA approach in combination
with the MDE feature of Section 5.4.2 is very robust and works well in a variety of topolo-
gies. Furthermore, the combination with the FTA approach provides a much better precision
than the E-RFA will ever achieve. This comes from the fact that, in the case of synchronized
nodes, FTA adjusts the clock by the average message delay and thus provides an upper bound
of the worst case precision which is in the order of the delay jitter ε . However, this precision
improvement comes along with high clock adjustments in the order of the message delay.
The E-RFA or R-RFA approach proposed in Section 5.2, in turn, perform only very small
clock adjustments in the order of some few microseconds. Nevertheless, the main disadvan-
tage of the RFA approach is the fact that it cannot synchronize two nodes better than at least
the message delay as proved in Theorem 1. Thus, a logical consequence was to combine the
advantages of both the RFA approach and a convergence-averaging mechanism in order to
provide self-stabilization and an improved worst case precision, respectively. So the advan-
tages of the FTA-RFA with MDE are twofold. First, it overcomes the problem of the worse
synchronization precision resulting from the E-RFA algorithm through dynamically switch-
ing to the FTA approach. Second, the MDE feature establishes a distributed message delay
estimation which allows the nodes to efficiently reduce the average clock adjustments. In
addition to that, simulation results have shown that the MDE further improves the worst case
and the average group spread by a factor of two as long as the number of message omissions
and collisions are very low. To sum up, the FTA-RFA algorithm in combination with MDE
seems to be a powerful and robust synchronization primitive with a low message complexity
for pure internal pulse synchronization of low-cost sensor nodes in nearly all connected net-
works where no external time sources are available and the nodes additionally are suffering
from high clock drift but low drift variation with respect to the resynchronization period.

Beside the FTA-RFA approach, an efficient and fault-tolerant drift calibration approach
(Section 5.3.2), which is resilient against at most f Byzantine nodes, was developed. This
algorithm can be executed in parallel to the aforegoing discussed state correction mechanism
in any (7 f + 1)-connected coherent system without an increase in the message complexity.
The main advantage of our drift calibration scheme is the fact that it does not suffer from
a common-mode drift and reaches approximate agreement through distributed fault-tolerant

116

CHAPTER 7. DISCUSSION 117

average consensus in the absence of an external time server. As a result, in combination
with a state correction algorithm like FTA-RFA, the system achieves synchronicity with a
high precision, but the synchronization period may strongly deviate from real-time. This is
exactly the reason why the algorithm achieves synchronicity rather than time synchroniza-
tion. However, in many situations, a precise internal synchronization is more important than
a high accuracy with respect to, e.g., the UTC time base.

Theoretical studies of the RFA approach have shown that every connected system con-
taining more than two nodes eventually converges to one out of 2n different stable fixpoints
which correspond to a synchronized pulse state. Consequently, the state space contains an
infinite amount of possible fixpoint states that the system theoretically will never exit in the
perfect case. However, the assumption of practical inaccuracies (e.g., calculation inaccu-
racies, delay jitter) usually guarantees that the system is eventually pushed out of such an
unwanted fixpoint state as long it is a repeller and the calculation granularity is high enough.
Note that exiting such a state in the perfect case equals the symmetry breaking problem,
which is impossible to solve in an anonymous system. Unfortunately, beside the aforemen-
tioned metastable states, many systems still consist of stable states that do not correspond
to the synchronized pulse state and, therefore, the system will never exit even in the case of
high inaccuracies and delay jitter. On this account, upper and lower bounds for all param-
eters in the fault-free case were elaborated. In practice, this should dramatically reduce the
existence of such unwanted stable states.

However, the main outcome of a theoretical analysis is that the FTA-RFA approach is
not very scalable with respect to an increasing BRC. As a result, FTA-RFA scales well in
all connected networks as long as the maximum message delay and the maximum BRC is
very small. As a consequence, FTA-RFA does not scale well in ring topologies. In contrast,
the RFA approach without FTA scales well in rings, but provides a worse synchronization
precision. Beside this problem, it is nearly impossible to devise theoretical bounds which
cover all possible unwanted stable states. This is exactly what practical evaluations have
shown: Systems that maintained the devised theoretical parameter bounds have shown a
very high probability of convergence. However, in some few cases, a randomly initialized
system was not able to converge or required a very long time to sync in the order of several
thousands of rounds. In most cases, a high number of message collisions and omissions was
the reason for the impossibility of convergence.

Fortunately, real WSNs usually do not behave like ring topologies. In contrast, the nodes
are randomly scattered. Therefore, practical evaluations with random networks have shown
that FTA-RFA is still scalable in random geometric networks, because the probability of
big BRCs is very small in such topologies. This is exactly what is known as the small-
world phenomenon [WC03, p. 13]. Therein, Wang et al. state that the ability to achieve
synchronization in a large-sized nearest neighbor coupled network, as it is typical for ring
topologies, can be drastically improved by adding some few nodes that connect far away
nodes together. As a consequence, the network evolves to a small-world model. In our case,
this means that the BRC of length n in a ring topology comprising n nodes is dramatically
reduced and, consequently, the probability of achieving synchronicity is much higher.

Last but not least, our approach is in the class of self-organizing systems as formally
described in Definition 4 due to the fact that the algorithm is self-stabilizing. In detail,
according to Definition 1, let Sγ be the set of all possible initial configurations for a connected
network γ . Thus, Γ denotes the set of all possible initial configurations for all possible
connected network structures. Let the performance function P(Sγ) be the probability that the
system achieves a synchronized pulse state after some time. In the case of the assumption that
the system always exits an unwanted metastable state, then W should be 1. However, in many
cases, it is sufficient that the probability of achieving synchronicity exceeds some threshold

CHAPTER 7. DISCUSSION 118

pt . This is exactly what was empirically analyzed by simulation such that a statement can be
made about P(Sγ) ∈W with W = [pt ,1]. In other words, the algorithm performs acceptable
well with every source in the family {Sγ}, γ ∈ Γ, for W = [pt ,1]. Beside the adaptivity
property, the system executing our algorithm further adapts by changing its structure as long
as the system is fault-free (as assumed for guaranteeing convergence). Finally, since the
algorithm is distributed, it does not employ any centralized control.

CHAPTER 8
Conclusion

The main contributions of this thesis are manifold: Based on an intensive research about ex-
isting clock synchronization protocols for WSNs, we applied a classification taxonomy in or-
der to compare some selected approaches. This comparison revealed important requirements
that a perfect synchronization protocol should satisfy. These are: Self-organization, asym-
metric global synchronization, high synchronization precision, robustness against Byzantine
attacks, scalability with respect to network size, low message complexity, small-sized mes-
sages, low computational complexity, and anonymity. The RFA [WATP+05] turned out to
be an appropriate algorithm maintaining most of the aforegoing identified requirements and
therefore was taken as a groundwork for our ongoing research. Within this thesis, we ex-
tended and devised new approaches for this algorithm in order to overcome the disadvantages
of RFA. A formal analysis and an evaluation by means of simulation provided promising re-
sults regarding the robustness aspect and the average achievable synchronization precision.
The main contributions with respect to the devised objectives in the beginning of this work
are briefly reviewed in the following sections.

8.1 Fault-tolerant Clock Synchronization in WSNs

This work presents a meticulous research about existing work in the area of robust and fault-
tolerant clock synchronization protocols in WSNs. A comparison among the protocols with
respect to a classification taxonomy lead to the result that only few algorithms provide re-
silience against Byzantine nodes and that many approaches suffer from a high message com-
plexity which is inappropriate in the case of wireless communication. Beside traditional
clock synchronization, this thesis concentrates on a more interesting basic synchronization
approach named pulse synchronization. Tremendous research with respect to pulse syn-
chronization exists in the area of wired distributed systems. However, in the case of wire-
less communication only the RFA approach was found to be a practically usable algorithm
for self-stabilizing pulse synchronization. Furthermore, in contrast to other synchronization
protocols, RFA is based on simple calculations and is aimed at establishing a network-wide
(global) synchronization in an ad-hoc multi-hop network without the requirement of struc-
ture (e.g., clustered network). Within this thesis, an extended and more robust version of
RFA is devised. This algorithm reduces several problems of the original RFA approach
(i.e., a long exponential convergence time, a worse achievable synchronization precision,
and strongly degrading synchronization qualities in the presence of Byzantine attacks).

119

CHAPTER 8. CONCLUSION 120

8.2 Robust Self-organizing Synchronization

Throughout this thesis E-RFA, an improved version of RFA, is presented. E-RFA provides a
bit better synchronization precision through introducing a short refractory period. Within this
period, a node does not react to the firing events of other nodes anymore. A robust version
of E-RFA, namely R-RFA, is devised in Section 5.3.1. It is based on a fault acceptance
mechanism as used in the FTA synchronization algorithm. Therefore, in the presence of
f erroneous nodes, R-RFA calculates the new phase advance according to the remaining
received clock values after excluding the f lowest and f highest clock deviations. Note that
R-RFA only provides robustness and not fault tolerance. That is, it practically converges
with a very high probability in the presence of at most f erroneous nodes. In contrast to
Byzantine nodes, erroneous nodes do not collude or behave in an adversary manner, but
are still capable of transmitting different randomly chosen incorrect values to the distinct
neighbors. A further important assumption in our system model is that a faulty or erroneous
node does not transmit more than one message per round and additionally is able to corrupt
the broadcast of at most an other node through an intentional transmission at the same time.
This assumption was necessary to prohibit jamming attacks which are impossible to defeat
in the case redundant communication channels are not available.

This thesis proves that, in the case of R-RFA, Byzantine nodes which behave in an ad-
versary manner are always able to prevent the system from converging to a synchronized
pulse state. Unfortunately, in the presence of clock drift and f > 0 erroneous nodes, R-RFA
is able to practically converge to a synchronized pulse state, but is not able to maintain this
state. Theoretical results and simulation evaluations have shown that a combination of both
the RFA and the FTA approach resolves this problem and provides a robust and more precise
pulse synchronization. In detail, whereas the R-RFA approach is used for ensuring conver-
gence in a fault-free system, the synchronized pulse state is maintained through dynamically
switching to the FTA algorithm and thus ensures the closure condition in a coherent system
comprising at most f Byzantine nodes.

Beside this basic synchronization scheme, some additional optional features in depen-
dence of the network topology are presented. For instance, the MDE feature enables the
nodes to establish a distribute estimation of the average message delay in the overall system.
Consequently, the nodes are able to reduce the clock adjustments by this amount. This is
an important improvement in the case the minimum message delay is very high and FTA
is executed, because without MDE the nodes in average adjust the amount of the message
delay in every round. Whereas the FTA-RFA approach in combination with the MDE feature
is feasible in any (5 f + 1)-connected multi-hop networks, an additional feature named CD
is presented solely for the use in single-hop networks. In detail, this feature allows the node
to continuously discover the existence of cliques in a single-hop network. If so, then the
nodes instantaneously adjust their clock to the average of this clique instead of performing
several phase adjustments due to the RFA part of FTA-RFA until the clique is entered. In
the average case, this dramatically reduces the convergence time as it would be without CD
in single-hop networks. A further important feature applicable in single-hop networks is the
APM mechanism. This feature dynamically switches a desired amount of nodes into a pas-
sive mode in a self-organized manner. In this mode, a node does not actively participate in
the synchronization process anymore. In contrast, such a node only listens to the medium
for new synchronization messages and adapts its clock according to this information. As a
consequence, the system’s life time can be increased. Last but not least, the offset desyn-
chronization approach is a special feature which allows the nodes to select an offset value in
a self-organized way for the preponed transmission of the synchronization message without

CHAPTER 8. CONCLUSION 121

the existence of collisions. This dramatically reduces the number of message collisions and
message omissions in single-hop networks.

In parallel to the FTA-RFA approach, a fault-tolerant drift calibration approach which
ensures approximate agreement of the real-time duration of the period time among all par-
ticipating nodes in any (7 f + 1)-connected coherent system is presented and implemented.
This is very usable for low-cost nodes which usually suffer from a drift rate in the order of
ρ = 105ppm. If the assumption of no drift variation with respect to the chosen resynchro-
nization interval is valid, then practical evaluations have shown that this approach reduces
the worst case drift rate to about ρ = 100ppm. The presented algorithm also eliminates the
problem of common-mode drift such that the nodes eventually stabilize at some constant av-
erage interval duration. This implicates that the nodes do not establish time synchronization
with respect to real-time. In contrast, our approach only performs internal synchronization
with a high precision, but may suffer from high inaccuracies with respect to real-time.

8.3 Performance Aspects

The main advantage of the FTA-RFA approach in combination with MDE is that it is an
anonymous algorithm (no ids required) and the message complexity is limited to at most
n broadcasts per round, even if the non-anonymous drift calibration algorithm is executed
in parallel. This comes from the fact that RFA and FTA share the same synchronization
messages and the information required for drift calibration can be packed into this synchro-
nization messages. A further advantage of FTA-RFA is that it transmits only small-sized
messages.

Based on the afore discussed approaches and the system model presented in Chapter 3,
a detailed evaluation by simulation was performed in order to get a feeling about the per-
formance aspects (e.g., the average time to synchronicity, the achievable average and worst
case synchronization precision, etc.). The main results of this evaluation are that FTA-RFA in
combination with MDE provides a high probability of convergence and a very high average
synchronization precision in the order of the delay jitter ε in nearly all connected networks,
even in the presence of at most f erroneous nodes (in the case R-RFA is executed) or at most
f Byzantine nodes (in the case FTA is executed). In the case of single-hop networks, the
activation of the additional features took effect and thus were able to mostly reduce the time
to synchronicity to a constant number of rounds irrespective of the network size. However,
whereas the simulation results have shown that the FTA-RFA approach is very effective in
nearly all connected multi-hop topologies, it is hardly scalable in ring topologies and there-
fore also less applicable in multi-hop topologies that contain rings. In contrast, the simple
E-RFA approach is also scalable in rings, but provides a worse synchronization precision.
Last but not least, a special topology type named grouped multi-hop topology is presented.
Based on this topology, a simulation of the FTA-RFA algorithm in combination with MDE
and fault-tolerant drift calibration provided promising results. In detail, 10 groups of nodes
each containing 7 f + 1 nodes and f erroneous nodes are connected in a chain-like struc-
ture. Simulation results in such a 8-connected network (f = 1) have shown that FTA-RFA
performs well and achieves an average synchronization precision of 500µs with an average
clock adjustment of−250µs. These results are promising regarding the fact that the message
delay is randomly distributed in the interval [2.2ms,2.7ms]. In other words, it seems that it
is possible to synchronize a multi-hop network with an average synchronization precision in
the order of the delay jitter ε without knowing the constant part of the message delay.

CHAPTER 8. CONCLUSION 122

8.4 Outlook

Future research will rely on a more detailed formal analysis of the convergence speed of
E-RFA and R-RFA in fully connected networks in the general case of n > 2. Additionally,
a formal proof of the convergence speed of the drift calibration will be useful and may be
based on the average-consensus proof as stated in [OSS05]. Beside this formal aspect, it
may be possible to improve the duty-cycle of the synchronization algorithm by dynamically
reducing the maximum message staggering delay after reaching synchronicity. This may
be especially important in the case of activated APM in large-sized networks. Therein, the
nodes usually require a large bandwidth for a consistent convergence, because otherwise a
small bandwidth (small maximum message staggering delay) will increase the number of
message collisions and message omissions and thus may prevent the network from getting
synchronized. After reaching synchronicity, the maximum message staggering delay can
be dramatically reduced, because the reduced number of active nodes resulting from the
activated APM feature do not require a large communication bandwidth. A further research
question can be the optimal setting of the minimum and maximum message staggering delay
with respect to the number of nodes and the underlying communication topology. Beside
these improvements, other future work may build on making the APM feature feasible for the
use in general multi-hop topologies. An interesting paper that can be used as a groundwork
for solving this problem is published by Jang and Lee [JL09]. Last but not least, a practical
evaluation on a real testbed system will be useful in order to confirm the correctness of the
simulation results.

APPENDIX A
Acronyms

APM Automatic Passive Mode

BP Beacon Period

BRC Basic Rest Circle

CCA Clear Channel Assessment

CD Clique Discovery

COTS Commercial Off-the-shelf

CNI Communication Network Interface

CSMA Carrier Sense Multiple Access

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

DC Drift Calibration

DFTA Differential Fault-tolerant Averaging

DFTM Differential Fault-tolerant Midpoint

DoS Denial-of-Service

DSSS Direct-sequence Spread Spectrum

FHSS Frequency-hopping Spread Spectrum

FIFO First-in First-out

FTA Fault-tolerant Averaging

FTM Fault-tolerant Midpoint

GPS Global Positioning System

IDL Interface Definition Language

IQR Interquartile Range

ISO International Standards Organization

I

APPENDIX A. ACRONYMS II

MAC Media Access Control

MDE Message Delay Estimation

MEMS Microelectromechanical Systems

MIC Message Integrity Code

NTP Network Time Protocol

OSI Open System Interconnection

PCO Pulse-coupled Biological Oscillators

PIB PAN information base

PRC Phase Response Curve

QoS Quality of Service

RAM Random Access Memory

RFA Reachback Firefly Algorithm

RM-ODP Reference Model for Open Distributed Processing

ROM Read-only Memory

RTS/CTS Request To Send / Clear To Send

SNR Signal-to-noise Ratio

TDMA Time Division Multiple Access

TMR Triple Modular Redundancy

UTC Universal Time Coordinated

VCXO Voltage Controlled Crystal Oscillator

VLSI Very Large Scale Integration

WSN Wireless Sensor Network

APPENDIX B
Bibliography

[ACFP09] G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella. Energy conserva-
tion in wireless sensor networks: A survey. Ad Hoc Networks, 7(3):537–568,
2009.

[ADG92] A. Arora, S. Dolev, and M. G. Gouda. Maintaining digital clocks in step.
In WDAG ’91: Proceedings of the 5th International Workshop on Distributed
Algorithms, pages 71–79, London, UK, 1992. Springer-Verlag.

[AP98] E. Anceaume and I. Puaut. Performance evaluation of clock synchronization
algorithms. Technical Report PI 1208, Institut de Recherche en Informatique
et Systèmes Aléatoires, October 1998.

[Ash62] W.R. Ashby. Principles of the self-organizing system. In H. von Foerster and
G.W. Zopf, editors, Principles of Self-Organization, pages 255–278. Pergamon
Press, 1962.

[ASH07] E. Armengaud, A. Steininger, and A. Hanzlik. The effect of quartz drift on
convergence-average based clock synchronization. 12th IEEE Conference on
Emerging Technologies and Factory Automation, September 2007.

[AW04] H. Attiya and J. L. Welch. Distributed Computing: Fundamentals, Simulations
and Advanced Topics (Second Edition). McGraw-Hill, 2004.

[AY07] A.A. Abbasi and M. Younis. A survey on clustering algorithms for wireless
sensor networks. Computer Communications, 30(14-15):2826–2841, 2007.

[BB76] J. Buck and E. Buck. Synchronous fireflies. Scientific American, 234:74–9,
82–5, May 1976.

[BL05] A. Bletsas and A. Lippman. Spontaneous synchronization in multi-hop em-
bedded sensor networks: Demonstration of a server-free approach. In Wireless
Sensor Networks, Second European Workshop, pages 333–341, January 2005.

[BMT04] P. Blum, L. Meier, and L. Thiele. Improved interval-based clock synchroniza-
tion in sensor networks. In IPSN ’04: Proceedings of the 3rd International
Symposium on Information Processing in Sensor Networks, pages 349–358,
New York, NY, USA, 2004. ACM.

III

APPENDIX B. BIBLIOGRAPHY IV

[BODH08] M. Ben-Or, D. Dolev, and E. N. Hoch. Fast self-stabilizing byzantine toler-
ant digital clock synchronization. In PODC ’08: Proceedings of the Twenty-
seventh ACM Symposium on Principles of Distributed Computing, pages 385–
394, New York, NY, USA, 2008. ACM.

[BS98] G.S. Blair and J.B. Stefani. Open Distributed Processing and Multimedia.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998.

[BS00] J. Brzezinski and M. Szychowiak. Self-stabilization in distributed systems - a
short survey. Foundations of Computing and Decision Sciences, 25(1), 2000.

[Buc88] J. Buck. Synchronous rythmic flashing of fireflies. The Quarterly Review of
Biology, 63(3):265–289, September 1988.

[CFS+03] S. Camazine, N.R. Franks, J. Sneyd, E. Bonabeau, J.-L. Deneubourg, and G .
Theraula. Self-Organization in Biological Systems. Princeton University Press,
Princeton, NJ, USA, 2003.

[CL07] L. Chen and J. Leneutre. Toward secure and scalable time synchronization in
ad hoc networks. Computer Communications, 30(11-12):2453–2467, 2007.

[Com97] H.-P. Company. Fundamentals of quartz oscillators. HP Application Note 200-
2, September 1997.

[Cri89] F. Cristian. Probabilistic clock synchronization. Distributed Computing,
3(3):146–158, 1989.

[DBR08] J. Degesys, P. Basu, and J. Redi. Synchronization of strongly pulse-coupled
oscillators with refractory periods and random medium access. In SAC ’08:
Proceedings of the 2008 ACM Symposium on Applied Computing, pages 1976–
1980, New York, NY, USA, 2008. ACM.

[DD05] A. Daliot and D. Dolev. Self-stabilization of byzantine protocols. In T. Herman
and S. Tixeuil, editors, Self-Stabilizing Systems, volume 3764 of Lecture Notes
in Computer Science, pages 48–67. Springer, 2005.

[DD06] A. Daliot and D. Dolev. Self-stabilizing byzantine agreement. In PODC ’06:
Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 143–152, New York, NY, USA, 2006. ACM.

[DD08] A. Daliot and D. Dolev. Self-stabilizing byzantine pulse synchronization (re-
vised version). The Computing Research Repository (CoRR), abs/cs/0608092,
February 2008. informal publication.

[DDP06] A. Daliot, D. Dolev, and H. Parnas. Linear-time self-stabilizing byzantine
clock synchronization. The Computing Research Repository (CoRR), ab-
s/cs/0608096, 2006.

[DDP08] A. Daliot, D. Dolev, and H. Parnas. Self-stabilizing pulse synchronization in-
spired by biological pacemaker networks. The Computing Research Repository
(CoRR), abs/0803.0241, 2008.

[DG06] A. K. Datta and M. Gradinariu, editors. Stabilization, Safety, and Security
of Distributed Systems, 8th International Symposium, SSS 2006, Dallas, TX,
USA, November 17-19, 2006, Proceedings, volume 4280 of Lecture Notes in
Computer Science. Springer, 2006.

APPENDIX B. BIBLIOGRAPHY V

[DH04] H. Dai and R. Han. Tsync: A lightweight bidirectional time synchronization
service for wireless sensor networks. ACM SIGMOBILE Mobile Computing
and Communications Review, 8:125–139, 2004.

[DH07a] D. Dolev and E. N. Hoch. Byzantine self-stabilizing pulse in a bounded-delay
model. In T. Masuzawa and S. Tixeuil, editors, SSS, volume 4838 of Lecture
Notes in Computer Science, pages 234–252. Springer, 2007.

[DH07b] D. Dolev and E. N. Hoch. On self-stabilizing synchronous actions despite
byzantine attacks. In Andrzej Pelc, editor, Distributed Algorithms, volume
4731/2007 of Lecture Notes in Computer Science, pages 193–207, September
2007.

[DHS84] D. Dolev, J. Halpern, and H. R. Strong. On the possibility and impossibility of
achieving clock synchronization. In Proceedings of the Sixteenth Annual ACM
Symposium on Theory of Computing STOC ’84, December 1984.

[Dij74] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
munications of the ACM, 17(11):643–644, 1974.

[DLP+83] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl. Reaching
approximate agreement in the presence of faults. In Symposium on Reliability
in Distributed Software and Database Systems, pages 145–154, 1983.

[DLP+86] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl. Reach-
ing approximate agreement in the presence of faults. Journal of the ACM,
33(3):499–516, July 1986.

[DN08] J. Degesys and R. Nagpal. Towards desynchronization of multi-hop topologies.
In SASO ’08: Proceedings of the 2008 Second IEEE International Conference
on Self-Adaptive and Self-Organizing Systems, pages 129–138, Washington,
DC, USA, 2008. IEEE Computer Society.

[Dol00] S. Dolev. Self-Stabilization. MIT Press, 2000.

[Dou02] J.R. Douceur. The sybil attack. In IPTPS ’01: Revised Papers from the First
International Workshop on Peer-to-Peer Systems, pages 251–260, London, UK,
2002. Springer-Verlag.

[Dre07] F. Dressler. Modeling Complex Systems (Graduate Texts in Contemporary
Physics). John Wiley & Sons, 2007.

[DRPN07] J. Degesys, I. Rose, A. Patel, and R. Nagpal. Desync: self-organizing desyn-
chronization and tdma on wireless sensor networks. In IPSN ’07: Proceedings
of the 6th international conference on Information processing in sensor net-
works, pages 11–20, New York, NY, USA, 2007. ACM.

[DW93] S. Dolev and J. L. Welch. Wait-free clock synchronization. In PODC ’93: Pro-
ceedings of the Twelfth Annual ACM Symposium on Principles of Distributed
Computing, pages 97–108, New York, NY, USA, 1993. ACM.

[DW04] S. Dolev and J. L. Welch. Self-stabilizing clock synchronization in the presence
of byzantine faults. J. ACM, 51(5):780–799, 2004.

APPENDIX B. BIBLIOGRAPHY VI

[EGE02] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization
using reference broadcasts. In OSDI ’02: Proceedings of the 5th Symposium
on Operating Systems Design and Implementation, pages 147–163, New York,
NY, USA, 2002. ACM.

[EGPS01] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the world with
wireless sensor networks. In In Proceedings of the International Conference
on Acoustics, Speech and Signal Processing (ICASSP 2001), May 2001.

[EPS04] W. Elmenreich, S. Pitzek, and M. Schlager. Modeling distributed embedded
applications on an interface file system. In Proceedings of the 7th IEEE In-
ternational Symposium on Object-Oriented Real-Time Distributed Computing,
pages 175–182, May 2004.

[ER90] S. Even and S. Rajsbaum. Unison in distributed networks. In Sequences: com-
binatorics, compression, security, and transmission, pages 479–487. Springer,
New York, NY, USA, 1990.

[ER03] J. Elson and K. Römer. Wireless sensor networks: a new regime for time syn-
chronization. SIGCOMM Computer Communications, 33(1):149–154, January
2003.

[Fai07] Y. R. Faizulkhakov. Time synchronization methods for wireless sensor
networks: A survey. Journal on Programming and Computer Software,
33(4):214–226, 2007.

[FC95] C. Fetzer and F. Cristian. An optimal internal clock synchronization algo-
rithm. In Proceedings 10th Annual IEEE Conference on Computer Assurance,
Gaithersburg, MD, June 1995.

[GČHS05] S. Ganeriwal, S. Čapkun, C.C. Han, and M.B. Srivastava. Secure time synchro-
nization service for sensor networks. In WiSe ’05: Proceedings of the 4th ACM
Workshop on Wireless Security, pages 97–106, New York, NY, USA, 2005.
ACM.

[GFH+03] Giovanna, N. Foukia, S. Hassas, A. Karageorgos, S.K. Mostéfaoui, O.F. Omer,
M. Ulieru, P. Valckenaers, and C. Van Aart. Self-organisation: Paradigms and
applications. In G.D.M. Serugendo, A. Karageorgos, O.F. Rana, and F. Zam-
bonelli, editors, Engineering Self-Organising Systems, volume 2977 of Lecture
Notes in Computer Science, pages 1–19. Springer, 2003.

[GGH+05] S. Ganeriwal, D. Ganesan, M. Hansen, M.B. Srivastava, and D. Estrin. Rate-
adaptive time synchronization for long-lived sensor networks. In SIGMETRICS
’05: Proceedings of the 2005 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pages 374–375, New York,
NY, USA, 2005. ACM.

[GGS+05] S. Ganeriwal, D. Ganesan, H. Shim, V. Tsiatsis, and M.B. Srivastava. Estimat-
ing clock uncertainty for efficient duty-cycling in sensor networks. In SenSys
’05: Proceedings of the 3rd international conference on Embedded networked
sensor systems, pages 130–141, New York, NY, USA, 2005. ACM.

[GH90] M. G. Gouda and T. Herman. Stabilizing unison. Information Processing
Letters, 35(4):171–175, 1990.

APPENDIX B. BIBLIOGRAPHY VII

[GK04] S. Graham and P.R. Kumar. Time in general-purpose control systems: the
control time protocol and an experimental evaluation. volume 4, pages 4004–
4009 Vol.4, Dec. 2004.

[GK06] A. Giridhar and P.R. Kumar. Distributed clock synchronization over wireless
networks: Algorithms and analysis. pages 4915–4920, Dec. 2006.

[GKS03a] S. Ganeriwal, R. Kumar, and M.B. Srivastava. Network-wide time synchro-
nization in sensor networks. NESL Technical Report, May 2003.

[GKS03b] S. Ganeriwal, R. Kumar, and M.B. Srivastava. Timing-sync protocol for sensor
networks. In SenSys ’03: Proceedings of the 1st International Conference on
Embedded Networked Sensor Systems, pages 138–149, New York, NY, USA,
2003. ACM.

[GKW+02] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker.
An empirical study of epidemic algorithms in large scale multihop wireless
networks. Technical Report IRB-TR-02-003, Intel Research, March 2002.

[GM04] J. Gehrke and S. Madden. Query processing in sensor networks. IEEE Perva-
sive Computing, 3(1):46–55, 2004.

[GPČS08] S. Ganeriwal, C. Pöpper, S. Čapkun, and M.B. Srivastava. Secure time syn-
chronization in sensor networks. ACM Transactions on Information and System
Security, 11(4):1–35, 2008.

[HDD06] E. N. Hoch, D. Dolev, and A. Daliot. Self-stabilizing byzantine digital clock
synchronization. In Datta and Gradinariu [DG06], pages 350–362.

[HdM08] R. Holzer and H. de Meer. On modeling of self-organizing systems. In Au-
tonomics ’08: Proceedings of the 2nd International Conference on Autonomic
Computing and Communication Systems, pages 1–6, ICST, Brussels, Belgium,
Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering).

[HDQK09] P.H. Huang, M. Desai, X. Qiu, and B. Krishnamachari. On the multihop per-
formance of synchronization mechanisms in high propagation delay networks.
IEEE Transactions on Computers, 58(5):577–590, 2009.

[HE04] B. Huber and W. Elmenreich. Wireless time-triggered real-time communica-
tion. In Proceedings of the Second Workshop on Intelligent Solutions for Em-
bedded Systems (WISES’04), pages 169–182, Graz, Austria, June 2004.

[Hil90] M.D. Hill. What is scalability? SIGARCH Comput. Archit. News, 18(4):18–21,
1990.

[HL02] L. Huang and T. Lai. On the scalability of IEEE 802.11 ad hoc networks. In
MobiHoc ’02: Proceedings of the 3rd ACM International Symposium on Mo-
bile Ad Hoc Networking & computing, pages 173–182, New York, NY, USA,
2002. ACM.

[Hoc07] E. N. Hoch. Self-stabilizing byzantine pulse and clock synchronization. Mas-
ter’s thesis, School of Engineering and Computer Science, The Hebrew Uni-
versity of Jerusalem, Israel, March 2007.

APPENDIX B. BIBLIOGRAPHY VIII

[HPJ01] Y. Hu, A. Perrig, and D.B. Johnson. Wormhole detection in wireless ad hoc
networks. Technical Report TR01-384, Department of Computer Science, Rice
University, December 2001.

[HPJ03] Y. Hu, A. Perrig, and D.B. Johnson. Packet leashes: a defense against worm-
hole attacks in wireless networks. In INFOCOM 2003. Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications Societies. IEEE,
volume 3, pages 1976–1986 vol.3, 2003.

[HS03] A. Hu and S. D. Servetto. Asymptotically optimal time synchronization in
dense sensor networks. In WSNA ’03: Proceedings of the 2nd ACM Interna-
tional Conference on Wireless Sensor Networks and Applications, pages 1–10,
New York, NY, USA, 2003. ACM.

[HS05] Y. Hong and A. Scaglione. A scalable synchronization protocol for large scale
sensor networks and its applications. IEEE Journal on Selected Areas in Com-
munications, 23(5):1085–1099, May 2005.

[HWM06] K. Herrmann, M. Werner, and G. Mühl. A methodology for classifying self-
organizing software systems. International Transactions on Systems Science
and Applications, 2(1):41–50, 2006.

[IEC96] ISO IEC. Information technology - open distributed processing - reference
model: Architecture. international standard iso/iec 10746-3:1996(e), 1996.

[IEE90] IEEE. IEEE standard glossary of software engineering terminology. IEEE Std
610.12-1990, December 1990.

[iee99] IEEE standard definitions of physical quantities for fundamental frequency and
time metrology - random instabilities. IEEE Std 1139-1999, 1999.

[iee03] Information technology- telecommunications and information exchange be-
tween systems- local and metropolitan area networks- specific requirements-
part 11: Wireless lan medium access control (mac) and physical layer (phy)
specifications. ANSI/IEEE Std 802.11, 1999 Edition (R2003), pages i–513,
2003.

[IGE00] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable
and robust communication paradigm for sensor networks. In MobiCom ’00:
Proceedings of the 6th annual international conference on Mobile computing
and networking, pages 56–67, New York, NY, USA, 2000. ACM.

[JFF08] Z. Jerzak, R. Fach, and C. Fetzer. Adaptive internal clock synchronization. In
SRDS ’08: Proceedings of the 2008 Symposium on Reliable Distributed Sys-
tems, pages 217–226, Washington, DC, USA, 2008. IEEE Computer Society.

[JL09] U. Jang and S. Lee. Reduced node k-coverage in dense wireless sensor net-
works. Software Technologies for Future Dependable Distributed Systems,
0:225–229, 2009.

[JPS03] D. Johnson, S. PalChaudhuri, and A. Saha. Probabilistic clock synchroniza-
tion service in sensor networks. Technical Report TR03-418, Department of
Computer Science, Rice University, Houston, TX, April 2003.

[KC03] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

APPENDIX B. BIBLIOGRAPHY IX

[KDL+06] B. Kusy, P. Dutta, P. Levis, M. Maroti, A. Ledeczi, and D. Culler. Elapsed
time on arrival: a simple and versatile primitive for canonical time synchroni-
sation services. International Journal of Ad Hoc and Ubiquitous Computing,
1(4):239–251, 2006.

[Kli97] P. A. Kline. Atomic Clock Augmentation for Receivers Using the Global Po-
sitioning System. Dissertation, Bradley Department of Electrical Engineering,
Faculty of the Virginia Tech, 1997.

[KO87] H. Kopetz and W. Ochsenreiter. Clock synchronization in distributed real-time
systems. IEEE Transactions on Computers, C-36(8):933–940, 1987.

[Kop97] H. Kopetz. Real-Time Systems, Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, Boston, Dordrecht, London, 1997.

[KS02] H. Kopetz and N. Suri. Compositional design of RT systems: A conceptual
basis for specification of linking interfaces. Research Report 37/2002, Tech-
nische Universität Wien, Institut für Technische Informatik, Vienna, Austria,
2002.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

[LE08] R. Leidenfrost and W. Elmenreich. Establishing wireless time-triggered com-
munication using a firefly clock synchronization approach. In Proceedings of
the Sixth International Workshop on Intelligent Solutions in Embedded Systems
(WISES’08), pages 227–244, Regensburg, Germany, June 2008.

[LE09] R. Leidenfrost and W. Elmenreich. Firefly clock synchronization in an 802.15.4
wireless network. 2009.

[LH08] J. Leu and H. Hsieh. An autonomous wireless sensor network with fault re-
silience. In WIMOB ’08: Proceedings of the 2008 IEEE International Confer-
ence on Wireless & Mobile Computing, Networking & Communication, pages
223–227, Washington, DC, USA, 2008. IEEE Computer Society.

[Liu08] J. Liu. Scalable synchronization of clocks in wireless sensor networks. Ad Hoc
Networks, 6(5):791–804, 2008.

[LJP08] S. Lee, U. Jang, and J. Park. Fast fault-tolerant time synchronization for wire-
less sensor networks. In ISORC ’08: Proceedings of the 2008 11th IEEE Sym-
posium on Object Oriented Real-time Distributed Computing, pages 178–185,
Washington, DC, USA, 2008. IEEE Computer Society.

[LL84a] J. Lundelius and N. Lynch. A new fault-tolerant algorithm for clock synchro-
nization. In Proceedings of the 3rd Annual ACM Symposium on Principles of
Distributed Computing, pages 75–88, Vancouver, Canada, August 1984.

[LL84b] J. Lundelius and N. Lynch. An upper and lower bound for clock synchroniza-
tion. Information and Control, 62(2/3):190–204, August–September 1984.

[LMS85] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of
faults. J. ACM, 32(1):52–78, 1985.

APPENDIX B. BIBLIOGRAPHY X

[Lön99] H. Lönn. A fault tolerant clock synchronization algorithm for systems with
low-precision oscillators. In EDCC-3: Proceedings of the Third European
Dependable Computing Conference on Dependable Computing, pages 88–105,
London, UK, 1999. Springer-Verlag.

[LR04] J.-C. Laprie and B. Randell. Basic concepts and taxonomy of dependable and
secure computing. IEEE Transactions on Dependable and Secure Computing,
1(1):11–33, 2004. Fellow-Avizienis,, Algirdas and Senior Member-Landwehr,,
Carl.

[LR06] Q. Li and D. Rus. Global clock synchronization in sensor networks. IEEE
Transactions on Computers, 55(2):214–226, 2006.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, July
1982.

[LW04] D. Lucarelli and I-J. Wang. Decentralized synchronization protocols with near-
est neighbor communication. In SenSys ’04: Proceedings of the 2nd interna-
tional conference on Embedded networked sensor systems, pages 62–68, New
York, NY, USA, 2004. ACM.

[LZ03] T. Lai and D. Zhou. Efficient and scalable IEEE 802.11 ad-hoc-mode timing
synchronization function. In AINA ’03: Proceedings of the 17th International
Conference on Advanced Information Networking and Applications, page 318,
Washington, DC, USA, 2003. IEEE Computer Society.

[Mah06] N. P. Mahalik. Sensor Networks and Configuration: Fundamentals, Standards,
Platforms, and Applications. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[Mal06] M. R. Malekpour. A byzantine-fault tolerant self-stabilizing protocol for dis-
tributed clock synchronization systems. In Datta and Gradinariu [DG06], pages
411–427.

[MBRS08] O. Mirabella, M. Brischetto, A. Raucea, and P. Sindoni. Dynamic continuous
clock synchronization for IEEE 802.15.4 based sensor networks. pages 2438–
2444, November 2008.

[MBT04] L. Meier, P. Blum, and L. Thiele. Internal synchronization of drift-constraint
clocks in ad-hoc sensor networks. In MobiHoc ’04: Proceedings of the 5th
ACM International Symposium on Mobile Ad Hoc Networking and Computing,
pages 90–97, New York, NY, USA, 2004. ACM.

[MFLT05] N. Mitton, E. Fleury, I. G. Lassous, and S. Tixeuil. Self-stabilization in self-
organized multihop wireless networks. In ICDCSW ’05: Proceedings of the
Second International Workshop on Wireless Ad Hoc Networking, pages 909–
915, Washington, DC, USA, 2005. IEEE Computer Society.

[MFNT00a] M. Mock, R. Frings, E. Nett, and S. Trikaliotis. Clock synchronization for
wireless local area networks. pages 183–189, 2000.

[MFNT00b] M. Mock, R. Frings, E. Nett, and S. Trikaliotis. Continuous clock synchroniza-
tion in wireless real-time applications. pages 125–132, 2000.

APPENDIX B. BIBLIOGRAPHY XI

[Mil91] D.L. Mills. Internet time synchronization: the network time protocol. IEEE
Transactions on Communications, 39(10):1482–1493, October 1991.

[MK06] V. Mittal and V. Kulathumani. A fault-local self-stabilizing clustering service
for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed
Systems, 17(9):912–922, 2006. Member-Demirbas, Murat and Senior Member-
Arora, Anish.

[MKSL04] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi. The flooding time synchroniza-
tion protocol. In SenSys ’04: Proceedings of the 2nd International Conference
on Embedded Networked Sensor Systems, pages 39–49, New York, NY, USA,
2004. ACM.

[MM96] R. Mathar and J. Mattfeldt. Pulse-coupled decentral synchronization. SIAM J.
Appl. Math., 56(4):1094–1106, 1996.

[MO83] K. Marzullo and S. Owicki. Maintaining the time in a distributed system. In
PODC ’83: Proceedings of the Second Annual ACM Symposium on Principles
of Distributed Computing, pages 295–305, New York, NY, USA, 1983. ACM.

[MRS05] M. Manzo, T. Roosta, and S. Sastry. Time synchronization attacks in sensor
networks. In SASN ’05: Proceedings of the 3rd ACM workshop on Security
of Ad Hoc and sensor networks, pages 107–116, New York, NY, USA, 2005.
ACM.

[MS90] R. E. Mirollo and St. H. Strogatz. Synchronization of pulse-coupled biological
oscillators. SIAM Journal on Applied Mathematics, 50(6):1645–1662, Decem-
ber 1990.

[MT89] M. D. Mesavoric and Y. Takahara. Abstract Systems Theory, volume 116 of
Lecture Notes in Control and Information Sciences. Springer-Verlag Berlin,
Heidelberg, Germany, 1989.

[ND00] K. A. Noordin and K. Dimyati. Differential fault-tolerant average for inter-
nally synchronising clocks within distributed environments. TENCON 2000.
Proceedings, 3:234–236 vol.3, 2000.

[Neu94] B.C. Neuman. Scale in distributed systems. In Thomas Lee Casavant and
Mukesh Singhal, editors, Readings in Distributed Computing Systems, pages
463–489. IEEE CS Press, Los Alamitos, CA, USA, 1994.

[NOKM08] G. Nishikawa, F. Ooshita, H. Kakugawa, and T. Masuzawa. A stable clus-
tering algorithm for mobile ad hoc networks based on attractor selection. In
BIONETICS ’08: Proceedings of the 3rd International Conference on Bio-
Inspired Models of Network, Information and Computing Sytems, pages 1–6,
ICST, Brussels, Belgium, 2008. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

[NSSP04] J. Newsome, E. Shi, D. Song, and A. Perrig. The sybil attack in sensor net-
works: analysis & defenses. In IPSN ’04: Proceedings of the 3rd International
Symposium on Information Processing in Sensor Networks, pages 259–268,
New York, NY, USA, 2004. ACM.

[OSS05] R. Olfati-Saber and J.S. Shamma. Consensus filters for sensor networks and
distributed sensor fusion. In 44th IEEE Conference on Decision and Control
and European Control Conference, pages 6698–6703, December 2005.

APPENDIX B. BIBLIOGRAPHY XII

[PDN07] A. Patel, J. Degesys, and R. Nagpal. Desynchronization: The theory of self-
organizing algorithms for round-robin scheduling. In SASO ’07: Proceedings
of the First International Conference on Self-Adaptive and Self-Organizing Sys-
tems, pages 87–96, Washington, DC, USA, 2007. IEEE Computer Society.

[Pes75] C. S. Peskin. Mathematical aspects of heart physiology. Technical report,
Courant Institute of Mathematical Sciences, New York University, USA, 1975.

[Pin03] S. Ping. Delay measurement time synchronization for wireless sensor net-
works. Technical Report IRB-TR-03-013, Intel Research, Berkeley, June 2003.

[PK00] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Communi-
cations of the ACM, 43(5):51–58, 2000.

[Pol94] S. Poledna. Replica Determinism in Fault-Tolerant Real-Time Systems. PhD
thesis, Technische Universität Wien, Institut für Technische Informatik, Vi-
enna, Austria, 1994.

[PSJ04] S. PalChaudhuri, A. K. Saha, and D. B. Johnson. Adaptive clock synchroniza-
tion in sensor networks. In IPSN ’04: Proceedings of the 3rd International
Symposium on Information Processing in Sensor Networks, pages 340–348,
New York, NY, USA, 2004. ACM.

[PST+02] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler. Spins: security
protocols for sensor networks. Wireless Networks, 8(5):521–534, 2002.

[PT94] M. Papatriantafilou and P. Tsigas. On self-stabilizing wait-free clock synchro-
nization. In SWAT ’94: Proceedings of the 4th Scandinavian Workshop on
Algorithm Theory, pages 267–277, London, UK, 1994. Springer-Verlag.

[Put01] J.R. Putman. Architecting with RM-ODP. Prentice Hall, 2001.

[RBM05] K. Römer, P. Blum, and L. Meier. Time synchronization and calibration in
wireless sensor networks. In Ivan Stojmenovic, editor, Handbook of Sensor
Networks: Algorithms and Architectures, pages 199–237. John Wiley & Sons,
September 2005.

[RK04] C.H. Rentel and T. Kunz. Network synchronization in wireless ad hoc net-
works. Technical Report SCE-04-08, Carleton University, Systems and Com-
puter Engineering, July 2004.

[RLK+09] I. Rhee, J. Lee, J. Kim, E. Serpedin, and Y. Wu. Clock synchronization in
wireless sensor networks: An overview. Sensors, 9(1):56–85, 2009.

[RM04] K. Römer and F. Mattern. The design space of wireless sensor networks. IEEE
Wireless Communications, 11(6):54–61, December 2004.

[Röm01] K. Römer. Time synchronization in ad hoc networks. In MobiHoc ’01: Pro-
ceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Net-
working & computing, pages 173–182, New York, NY, USA, 2001. ACM.

[RSB90] P. Ramanathan, K.G. Shin, and R.W. Butler. Fault-tolerant clock synchroniza-
tion in distributed systems. Computer, 23(10):33–42, 1990.

[RSPS02] V. Raghunathan, C. Schurgers, S. Park, and M.B. Srivastava. Energy-aware
wireless sensor networks. IEEE Signal Processing Magazine, 19(2):40–50,
March 2002.

APPENDIX B. BIBLIOGRAPHY XIII

[SA05] W. Su and I. F. Akyildiz. Time-diffusion synchronization protocol for wire-
less sensor networks. IEEE/ACM Transactions on Networking, 13(2):384–397,
2005.

[SAHW90] D. B. Sullivan, D. W. Allan, D. A. Howe, and F. L. Walls. Characterization
of clocks and oscillators. NASA STI/Recon Technical Report N, 91:22539–+,
March 1990.

[San07] D. Sanchez. Secure, accurate and precise time synchronization for wireless
sensor networks. In Q2SWinet ’07: Proceedings of the 3rd ACM Workshop
on QoS and Security for Wireless and Mobile Networks, pages 105–112, New
York, NY, USA, 2007. ACM.

[Sat88] M. Satyanarayanan. On the influence of scale in a distributed system. In ICSE
’88: Proceedings of the 10th international conference on Software engineering,
pages 10–18, Los Alamitos, CA, USA, 1988. IEEE Computer Society Press.

[SBK05] B. Sundararaman, U. Buy, and A. D. Kshemkalyani. Clock synchronization for
wireless sensor networks: A survey. In Ad-Hoc Networks, 3(3):281–323, May
2005.

[SBK06] R. Solis, V.S. Borkar, and P.R. Kumar. A new distributed time synchronization
protocol for multihop wireless networks. pages 2734–2739, Dec. 2006.

[Sch87] F. B. Schneider. Understanding protocols for byzantine clock synchronization.
Technical report, Department of Computer Science, Ithaca, NY, USA, 1987.

[Sch88] W. Schwabl. The Effect of Random and Systematic Errors on Clock Synchro-
nization in Distributed Systems. PhD thesis, Technische Universität Wien, In-
stitut für Technische Informatik, Inst.-Nr. E182/1, October 1988.

[Sch93] M. Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45–67, 1993.

[Sch95] A. V. Schedl. The short-term stability of crystal oscillators: Experimental re-
sults. Technical Report 1/95, Technische Universität Wien, Institut für Tech-
nische Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, January 1995.

[Sch96] A. V. Schedl. Design and Simulation of Clock Synchronization in Distributed
Systems. PhD thesis, Technische Universität Wien, Institut für Technische In-
formatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, April 1996.

[SCS04] J.P. Sheu, C.M. Chao, and C.W. Sun. A clock synchronization algorithm for
multi-hop wireless ad hoc networks. pages 574–581, 2004.

[Sha01] C.E. Shannon. A mathematical theory of communication. ACM SIGMOBILE
Mobile Computing and Communications Review, 5(1):3–55, 2001.

[SKLD06] J. Sallai, B. Kusy, A. Ledeczi, and P. Dutta. On the scalability of routing
integrated time synchronization. 3rd European Workshop on Wireless Sensor
Networks (EWSN 2006), February 2006.

[SML+04] G. Simon, M. Maróti, A. Lédeczi, G. Balogh, B. Kusy, A. Nádas, G. Pap,
J. Sallai, and K. Frampton. Sensor network-based countersniper system. In
SenSys ’04: Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems, pages 1–12, New York, NY, USA, 2004. ACM.

APPENDIX B. BIBLIOGRAPHY XIV

[SNW06a] K. Sun, P. Ning, and C. Wang. Secure and resilient clock synchronization in
wireless sensor networks. IEEE Journal on Selected Areas in Communications,
24(2):395–408, February 2006.

[SNW06b] K. Sun, P. Ning, and C. Wang. Tinysersync: secure and resilient time syn-
chronization in wireless sensor networks. In CCS ’06: Proceedings of the 13th
ACM Conference on Computer and Communications Security, pages 264–277,
New York, NY, USA, 2006. ACM.

[Soc03] IEEE Computer Society. IEEE Standard for Information technology – Telecom-
munication and information exchange between systems – Local and metropoli-
tan area networks – Specific requirements. Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless
Personal Area Networks (LR-WPANs). Institute of Electrical and Electronics
Engineers, September 2003.

[SS93] St. H. Strogatz and I. Stewart. Coupled oscillators and biological synchroniza-
tion. Scientific American, 269(6):102–108, December 1993.

[ST87] T. K. Srikanth and S. Toueg. Optimal clock synchronization. Journal of the
ACM, 34(3):626–645, July 1987.

[Sun05] Kun Sun. Fault-tolerant cluster-wise clock synchronization for wireless sen-
sor networks. IEEE Transactions on Dependable and Secure Computing,
2(3):177–189, 2005. P. Ning and C. Wang.

[SV03] M. L. Sichitiu and C. Veerarittiphan. Simple, accurate time synchronization for
wireless sensor networks. Wireless Communications and Networking, 2003.
WCNC 2003. 2003 IEEE, 2:1266–1273 vol.2, March 2003.

[SV04] J. So and N.H. Vaidya. Mtsf: A timing synchronization protocol to support syn-
chronous operations in multihop wireless networks. Technical report, UIUC,
January 2004.

[SVML03] G. Simon, P. Volgyesi, M. Maroti, and A. Ledeczi. Simulation-based optimiza-
tion of communication protocols for large-scale wireless sensor networks. In
Proceedings of the IEEE Aerospace Conference, volume 3, pages 1339 – 1346,
March 2003.

[SWL90] B. Simons, J. L. Welch, and N. Lynch. An overview of clock synchroniza-
tion. In Fault-tolerant Distributed Computing, pages 84–96. Springer-Verlag,
London, UK, 1990.

[SY04] F. Sivrikaya and B. Yener. Time synchronization in sensor networks: a survey.
Network, IEEE, 18(4):45–50, July 2004.

[SZC05] H. Song, S. Zhu, and G. Cao. Attack-resilient time synchronization for wireless
sensor networks. pages 8 pp.–772, November 2005.

[TAB06] A. Tyrrell, G. Auer, and C. Bettstetter. Fireflies as role models for synchro-
nization in ad hoc networks. In BIONETICS ’06: Proceedings of the first
international conference on Bio inspired models of network, information and
computing systems, page 4, New York, NY, USA, 2006. ACM.

APPENDIX B. BIBLIOGRAPHY XV

[TAB07] A. Tyrell, G. Auer, and C. Bettstetter. Biologically inspired synchronization for
wireless networks. In F. Dressler and I. Carreras, editors, Studies in Computa-
tional Intelligence, volume 69, pages 47–62. Springer, 2007.

[TAB08] A. Tyrell, G. Auer, and C. Bettstetter. Emergent slot synchronization in wireless
networks. to be appear in IEEE Transactions on Mobile Computing, 2008.

[TS06] A. S. Tanenbaum and M. Steen. Distributed Systems: Principles and
Paradigms (2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
2006.

[Tul04] D. Tulone. A resource–efficient time estimation for wireless sensor networks.
In DIALM-POMC ’04: Proceedings of the 2004 joint Workshop on Founda-
tions of Mobile Computing, pages 52–59, New York, NY, USA, 2004. ACM.

[vGR03] J. van Greunen and J. Rabaey. Lightweight time synchronization for sensor
networks. In WSNA ’03: Proceedings of the 2nd ACM International Confer-
ence on Wireless Sensor Networks and Applications, pages 11–19, New York,
NY, USA, 2003. ACM.

[Vig00] J. R. Vig. Quartz crystal resonators and oscillators, January 2000.
http://www.am1.us/Papers/U11625

[WATP+05] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal. Firefly-
inspired sensor network synchronicity with realistic radio effects. In 3rd Inter-
national Conference on Embedded Networked Sensor Systems, pages 142–153,
November 2005.

[WC03] X. F. Wang and G. Chen. Complex networks: small-world, scale-free and
beyond. Circuits and Systems Magazine, IEEE, 3(1):6–20, 2003.

[WLLP01] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister. Smart dust: Communi-
cating with a cubic-millimeter computer. Computer, 34(1):44–51, 2001.

[WSS03] A. D. Wood, J. A. Stankovic, and S. H. Son. Jam: A jammed-area mapping
service for sensor networks. In RTSS ’03: Proceedings of the 24th IEEE In-
ternational Real-Time Systems Symposium, page 286, Washington, DC, USA,
2003. IEEE Computer Society.

[YHE04] Wei Ye, John Heidemann, and Deborah Estrin. Medium access control with
coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans-
actions on Networking, 12(3):493–506, 2004.

[YKT03] W. Yuan, S. V. Krishnamurthy, and S. K. Tripathi. Synchronization of multiple
levels of data fusion in wireless sensor networks. In In Proceedings of IEEE
Globecom, pages 221–225, 2003.

[Zad63] L.A. Zadeh. On the definition of adaptivity. Proceedings of the IEEE,
51(3):469–470, 1963.

[ZG04] F. Zhao and L. Guibas. Wireless Sensor Networks: An Information Processing
Approach (The Morgan Kaufmann Series in Networking). Morgan Kaufmann,
July 2004.

APPENDIX B. BIBLIOGRAPHY XVI

[Zho05] D. Zhou. A compatible and scalable clock synchronization protocol in IEEE
802.11 ad hoc networks. In ICPP ’05: Proceedings of the 2005 International
Conference on Parallel Processing, pages 295–302, Washington, DC, USA,
2005. IEEE Computer Society.

[ZSJ03] S. Zhu, S. Setia, and S. Jajodia. Leap: efficient security mechanisms for large-
scale distributed sensor networks. In CCS ’03: Proceedings of the 10th ACM
conference on Computer and communications security, pages 62–72, New
York, NY, USA, 2003. ACM.

APPENDIX C
Moved Proofs

Proof. (of Lemma 1)
Assume the two clocks pi and p j are initially synchronized to−ΠU ≤Π≤ΠU . W.l.o.g. let pi
be the faster node. We further use pi as the reference for the precision Π(ϕ) = rtϕ j=ϕ−rtϕi=ϕ

where rtϕ j=ϕ denotes the real time when p j’s phase ϕ j reached ϕ . We further assume that
the next time pi reaches the threshold 1 is at time t = 0. Let Π0 = Π(0) be the corresponding
precision at t = 0. For t ≤ 0 we then have ϕi(t) = 1 + t

T ·(1−ρ) and ϕ j(t) = 1 + t−Π0
T ·(1+ρ) . Let

ri resp. r j denote the relative message staggering delay the node pi resp. p j has calculated
for the last transmission. If the last fire event of pi was at ϕi = 1− ri, then with respect
to the communication delay d, p j received the phase at ϕrecv

j = 1 + −ri·T ·(1−ρ)+d−Π0
T ·(1+ρ) and

consequently adds the offset ri leading to ϕ
f ire
j = 1 + ri · (1− 1

R)+ d−Π0
T ·(1+ρ) . Similarly, a fire

event from p j with offset r j is received by pi at phase ϕ
f ire

i = 1− r j · (R−1)+ d+Π0
T ·(1−ρ) . Let

ϕ
f ire
j,min, ϕ

f ire
j,max, ϕ

f ire
i,min, ϕ

f ire
i,max be the minimum resp. maximum possible phases of the calculated

firing events. If α > max
(

1
ϕ

f ire
i,min

, 1
ϕ

f ire
j,min

)
, then it is guaranteed that ∆(ϕ f ire

i) = 1− ϕ
f ire

i

resp. ∆(ϕ f ire
j) = 1−ϕ

f ire
j . Since ϕ

f ire
i,min < ϕ

f ire
j,min, we have α > 1

ϕ
f ire

i,min
as stated.

Based on the current precision Π0 and the phase advance of pi and p j at time t = 0 labeled
by ∆i = ∆(ϕ f ire

i) and ∆ j = ∆(ϕ f ire
j), we are able to calculate the precision Πnext the next time

pi reaches the threshold. That is, Πnext = Π0 +Γ+T · (∆i · (1−ρ)−∆ j · (1+ρ)). However,
we have to distinguish between three cases depending on Π0. In detail, if Π0 ∈ [0,ΠU],
then (1) ∆i = 0 and ∆ j > 0, or if Π0 ∈ [0,Γ), then also (2) ∆i > 0 and ∆ j > 0, or finally if
Π0 ∈ [−ΠU ,0], then due to Line 4 of Algorithm 1 we have (3) ∆i > 0 and ∆ j = 0. Note that
the overlapping of (1) and (2) is volitional, because if Π0 ∈ [0,ΠU], then both cases can occur
and hence must be considered. Further note that the bound of Γ ensures that the interception
point of the phase of both nodes is within the last period. In order to keep the clocks within
the precision, the inequality −ΠU ≤Πnext ≤ΠU must be valid for all three cases. From the
first case we get ΠU ≥ (1 + rmax)Γ + d + ε and rmin ≥ −1− ΠU +d

Γ
. From the third case it

follows ΠU ≥ (1 + rmax)Γ−d and rmin ≥ −1− ΠU−d−ε

Γ
. Note that rmin is always valid due

to the definition of ΠU . From the second case, it can be derived that ΠU ≥ (1+2rmax)Γ+ ε

and rmin ≥ ε−ΠU

2Γ
. Again, ΠU ensures that rmin is valid. The worst case precision with respect

to these three cases then equals ΠU = (1+ rmax)Γ+ ε +max(Γrmax,d).

XVII

APPENDIX C. MOVED PROOFS XVIII

Note that the correctness of the proof requires that a node advances its phase at most once
per period. However, if Π0 > 0, then p j may initiate a firing event after pi already passed the
threshold. Simply setting rmin ≥ ΠU +d+ε

T ·(1−ρ) avoids this effect.
In order to get the worst case precision, we further have to incorporate the precision (I)

Π(∆i) and (II) Π(∆ j) for all three mentioned cases. In detail, for Π0 ∈ [0,ΠU] we additionally
have to analyze for case (1) if the equation −ΠU ≤ Π0−∆ j · (1− ρ) · T ≤ ΠU holds and
for case (2), if −ΠU ≤ (∆i−∆ j) · (1 + ρ) · T + Π ≤ ΠU and −ΠU ≤ Π− (∆ j −∆i) · (1−
ρ) · T ≤ ΠU are valid. Similarly for Π0 ∈ [−ΠU ,0] it must be ensured that −ΠU ≤ ∆i ·
(1+ρ) ·T +Π≤ΠU . From these equations we can derive the following additional bounds:
R−2
4−3R ≤ rmax ≤ 1

R−1 , and ΠU ≥ (d +ε)R−ΓRrmin. Therefore, if we want that rmax is bounded
between [0,1], then ρ < 1

7 must hold. Furthermore, in the case of ρ = 0, we have to adapt
the worst case precision to ΠU = (1+ rmax)Γ+ εR+max(Γrmax,dR) which now equals the
worst case upper bound, since all possible cases were considered.

Finally, it should be mentioned that the maximum relative message staggering delay rmax
must be smaller than 1

2 . Otherwise, assume the case where both nodes are initially 1
2 apart.

Then both nodes will never perform a phase advance due to Line 4 of the algorithm. �

Proof. (of Lemma 2) The proof is based on the fact that if α is too large, then the nodes
will infinitely often enter the same firing state. Let pA and pB be the two participating
processors where pA is the first node reaching the threshold. The initial firing state then
is C(N,A,1) = (∆A,1,ϕB,1) with ∆A,1 < ϕB,1. Next, pB reaches the threshold leading to
C(N,B,1) = (ϕA,1;∆B,1) with ϕA,1 = ∆A,1 + 1−ϕB,1 and ∆B,1 = ∆(ϕB,1). The next time pA
reaches the threshold is at C(N,A,2) = (∆A,2;ϕB,2) with ∆A,2 = ∆(∆A,1 +1−ϕB,1) and ϕB,2 =
∆(ϕB,1)+ϕB,1−∆A,1. Finally pB again reaches the threshold at C(N,B,2) = (ϕA,2;∆B,2) with
ϕA,2 = ∆(∆A,1 +1−ϕB,1)+1−∆(ϕB,1)−ϕB,1 +∆A,1 and ∆B,2 = ∆(∆(ϕB,1)+ϕB,1−∆A,1).

If we assume that (1) α · (ϕB,1)≥ 1, then the phase advance can be reduced to ∆(ϕB,1) =
1−ϕB,1. The same applies to (2) α · (∆A,1 +1−ϕB,1)≥ 1 and (3) α · (1−∆A,1)≥ 1. Thus,
if all three conditions are true, C(N,B,2) can be redefined to C(N,B,2) = (ϕB,1,∆A,0). In
other words, the nodes will infinitely often enter the initial firing state. We now have to find
the lowest α where the inequation α ≥ max

(
1

ϕB,1
, 1

1−∆A,1
, 1

1+∆A,1−ϕB,1

)
is valid. Equalizing

all three conditions yields ∆A,1 = 1
3 and ϕB,1 = 2

3 . Thus we get α ≥max
(3

2 , 3
2 , 3

2

)
= 3

2 . �

Proof. (of Lemma 3) The maximum phase advance occurs if the firing events are at close
quarters such that no event is ignored due to Line 9 of Algorithm 5. In detail, assume a node
received the firing event at the phases ϕ0 < ϕ1 < · · · < ϕn−1 = 1. The first phase advance
then equals λ0 = ϕ0 ·γ , where γ = α−1. Due to Line 9 of Algorithm 5, the earliest next time
the node performs a phase advance can only be at ϕ1 = ϕ0 +λ0 and equals λ1 = (ϕ1 +λ0)γ .
Generally, ϕk+1 = ϕk + λk and λk+1 = (ϕk+1 + ∑

k
i=1 λi)γ for 0 ≤ k < n− 1. Solving the

recursion leads to ϕk = ϕ0 +∑
k−1
i=0 λi and thus λk+1 = (ϕ0 +2∑

k
i=0 λi)γ . Solving the equation

for λk+1− λk then yields λk = (1 + 2γ)kγϕ0. The overall phase advance thus equals ∆ =
∑

n−2
i=0 λi = γ ∑

n−2
i=0 (1 + 2γ)i = ((1 + 2γ)n−1− 1)ϕ0/2. Since the maximum ∆ occurs when

ϕn−1 = 1, we finally get ∆ = (1+2γ)n−1−1
(1+2γ)n−1+1 . �

Proof. (of Lemma 7) Let P1 = 〈ϕ0,ϕ1, . . . ,ϕn−1〉 be the pulse state at the beginning of the
round. W.l.o.g., we assume that ϕi < ϕ j for all 0 ≤ i < j < n. For sake of simplicity we do
not assume that ϕi≤ ϕ j. In the perfect case with f = 0, if n is odd, then the condition diff ≤ k
is valid for all nodes pi with b(n−1)/2c−bk/2c ≤ i≤ b(n−1)/2c+ bk/2c. Consequently,
exactly bk/2c · 2 + 1 nodes become passive at the end of the round. Similarly, if n is even,
exactly b(k +1)/2c ·2 nodes become passive at the end of the round.

APPENDIX C. MOVED PROOFS XIX

If we consider the fact that f > 0, then the Byzantine nodes can vary the number of nodes
that can become active at the end of the round between some lower and upper bound. The
lower bound simply results from the fact that at most f out of the elected nodes are Byzan-
tine. Since these nodes do not adhere to the code, they may keep active. Consequently, at
least max(0,k− f)≤max(0,min(bk/2c ·2+1− f ,b(k+1)/2c ·2− f)) definitively become
passive at the end of the round.

For the upper bound, consider the same case like for the lower bound where n is odd,
except the fact that none of the elected nodes are Byzantine and that all nodes pi for all
b(n−1)/2c−bk/2c ≤ i≤ b(n−1)/2c+ bk/2c receive the same synchronization messages.
However, the f Byzantine nodes then can send different synchronization information to the
other nodes. For this, we generally assume that the nodes pi for all 0 ≤ i < f1 and n−
f2− 2 ≤ i < n with f1 + f2 = f are faulty. The worst case scenario then occurs when all
correct nodes pi, i < b(n−1)/2c−bk/2c, receive different synchronization messages from
the set of Byzantine nodes {pn− f2−2, pn− f2−1, . . . , pn−1} such that ϕn− f2−2 < ϕn− f2−1 < · · ·<
ϕn−1 < ϕ0 < ϕ1 < · · · < ϕn− f2−3 and all correct nodes p j, j > b(n−1)/2c+ bk/2c receive
different synchronization messages from the set of Byzantine nodes {p0, p1, . . . , p f1−1} such
that ϕ f1 < ϕ f1+1 < · · · < ϕn−1 < ϕ0 < ϕ1 < .. .ϕ f1−1. As a result, all nodes pi with b(n−
1)/2c−bk/2c− f2 ≤ i ≤ b(n−1)/2c+ bk/2c+ f1 can become passive and corresponds to
number of bk/2c ·2 + f + 1 nodes. Similarly, if n is even, at most b(k + 1)/2c ·2 + f nodes
can become passive. Since k + f +2≥max(bk/2c ·2+ f +1,b(k +1)/2c ·2+ f), generally
at most k + f +2 nodes can become passive at the end of the round. �

APPENDIX D
Simulation Results

D.1 Fault-free Single-hop System

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

50

100

150

200

250

300

350

400

450

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ti
m

e
to

 s
yn

c
[s

]

(a) Time to sync diagram (Randomized evaluation)
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

50

100

150

200

250

300

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ti
m

e
to

 s
yn

c
[s

]

(b) Time to sync diagram (Prepared evaluation)

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
1700

1800

1900

2000

2100

2200

2300

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

50

100

150

200

250

300

350

400

450

500

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

20

40

60

80

100

120

140

160

180

200

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

10

20

30

40

50

60

70

80

90

100

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

Figure D.1: Results according to algorithm version V1 in a fault-free all-to-all topology.

XX

APPENDIX D. SIMULATION RESULTS XXI

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

50

100

150

200

250

300

350

400

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ti
m

e
to

 s
yn

c
[s

]

(a) Time to sync diagram (Randomized evaluation)
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

50

100

150

200

250

300

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ti
m

e
to

 s
yn

c
[s

]

(b) Time to sync diagram (Prepared evaluation)

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

100

200

300

400

500

600

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

-2500

-2300

-2100

-1900

-1700

-1500

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

20

40

60

80

100

120

140

160

180

200

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

10

20

30

40

50

60

70

80

90

100

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

Figure D.2: Different quality aspects of algorithm version V2 in a fault-free all-to-all topol-
ogy.

APPENDIX D. SIMULATION RESULTS XXII

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

5

10

15

20

25

30

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ti
m

e
to

 s
yn

c
[s

]

(a) Time to sync diagram (Randomized evaluation)
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

50

100

150

200

250

300

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ti
m

e
to

 s
yn

c
[s

]

(b) Time to sync diagram (Prepared evaluation)

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

100

200

300

400

500

600

700

800

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

-2500

-2300

-2100

-1900

-1700

-1500

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

20

40

60

80

100

120

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

10

20

30

40

50

60

70

80

90

100

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

Figure D.3: Different quality aspects of algorithm version V3 in a fault-free all-to-all topol-
ogy.

APPENDIX D. SIMULATION RESULTS XXIII

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

5

10

15

20

25

30

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ti
m

e
to

 s
yn

c
[s

]

(a) Time to sync diagram (Randomized evaluation)
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

50

100

150

200

250

300

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ti
m

e
to

 s
yn

c
[s

]

(b) Time to sync diagram (Prepared evaluation)

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

50

100

150

200

250

300

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

-600

-400

-200

0

200

400

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

20

40

60

80

100

120

140

160

180

200

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

20

40

60

80

100

120

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 d
el

ay
 e

st
im

at
io

n
[µ

s]

(g) Message delay estimation diagram

Figure D.4: Different quality aspects of algorithm version V4 in a fault-free all-to-all topol-
ogy.

APPENDIX D. SIMULATION RESULTS XXIV

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

5

10

15

20

25

30

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ti
m

e
to

 s
yn

c
[s

]

(a) Time to sync diagram (Randomized evaluation)
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

50

100

150

200

250

300

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ti
m

e
to

 s
yn

c
[s

]

(b) Time to sync diagram (Prepared evaluation)

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

50

100

150

200

250

300

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

-600

-400

-200

0

200

400

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

50

100

150

200

250

300

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

20

40

60

80

100

120

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 d
el

ay
 e

st
im

at
io

n
[µ

s]

(g) Message delay estimation diagram

Figure D.5: Different quality aspects of algorithm version V5 in a fault-free all-to-all topol-
ogy.

APPENDIX D. SIMULATION RESULTS XXV

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

5

10

15

20

25

30

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ti
m

e
to

 s
yn

c
[s

]

(a) Time to sync diagram (Randomized evaluation)
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

50

100

150

200

250

300

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ti
m

e
to

 s
yn

c
[s

]

(b) Time to sync diagram (Prepared evaluation)

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

50

100

150

200

250

300

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

-600

-400

-200

0

200

400

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

1

2

3

4

5

6

7

8

9

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

1

2

3

4

5

6

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 d
el

ay
 e

st
im

at
io

n
[µ

s]

(g) Message delay estimation diagram
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

10

20

30

40

50

60

70

80

90

100

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ac
tiv

e
no

de
s

[%
]

(h) Active nodes diagram

Figure D.6: Different quality aspects of algorithm version V6 in a fault-free all-to-all topol-
ogy.

APPENDIX D. SIMULATION RESULTS XXVI

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

5

10

15

20

25

30

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ti
m

e
to

 s
yn

c
[s

]

(a) Time to sync diagram (Randomized evaluation)
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

50

100

150

200

250

300

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ti
m

e
to

 s
yn

c
[s

]

(b) Time to sync diagram (Prepared evaluation)

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

50

100

150

200

250

300

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

-600

-400

-200

0

200

400

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

0,5

1

1,5

2

2,5

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

5 nodes 10 nodes 20 nodes 50 nodes 100 nodes
2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 d
el

ay
 e

st
im

at
io

n
[µ

s]

(g) Message delay estimation diagram
5 nodes 10 nodes 20 nodes 50 nodes 100 nodes

0

10

20

30

40

50

60

70

80

90

100

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ac
tiv

e
no

de
s

[%
]

(h) Active nodes diagram

Figure D.7: Different quality aspects of algorithm version V7 in a fault-free all-to-all topol-
ogy.

APPENDIX D. SIMULATION RESULTS XXVII

D.2 Coherent Single-hop System

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until 1000s in 100 randomized simulations

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
10

100

1000

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized evaluation)

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
1

10

100

1000

10000

100000

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
-6000

-5000

-4000

-3000

-2000

-1000

0

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
-3000

-2500

-2000

-1500

-1000

-500

0

(d) Clock adjustment diagram

Figure D.8: Different quality aspects of algorithm version V4 in a faulty all-to-all topology.

APPENDIX D. SIMULATION RESULTS XXVIII

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
0

100

200

300

400

500

600

700

800

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
0

10

20

30

40

50

60

70

80

90

100

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 d
el

ay
 e

st
im

at
io

n
[µ

s]

1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

(g) Message delay estimation diagram

Figure D.8: Different quality aspects of algorithm version V4 in a faulty all-to-all topology.

APPENDIX D. SIMULATION RESULTS XXIX

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until 1000s in 100 randomized simulations

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
10

100

1000

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized evaluation)

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
1

10

100

1000

10000

100000

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
-5000

-4000

-3000

-2000

-1000

0

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
-2000

-1500

-1000

-500

0

(d) Clock adjustment diagram

Figure D.9: Different quality aspects of algorithm version V5 in a faulty all-to-all topology.

APPENDIX D. SIMULATION RESULTS XXX

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
0

100

200

300

400

500

600

700

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
0

10

20

30

40

50

60

70

80

90

100

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 d
el

ay
 e

st
im

at
io

n
[µ

s]

1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

(g) Message delay estimation diagram

Figure D.9: Different quality aspects of algorithm version V5 in a faulty all-to-all topology.

APPENDIX D. SIMULATION RESULTS XXXI

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until 1000s in 100 randomized simulations

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
10

100

1000

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized evaluation)

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
1

10

100

1000

10000

100000

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
-5000

-4000

-3000

-2000

-1000

0

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
-3000

-2500

-2000

-1500

-1000

-500

0

(d) Clock adjustment diagram

Figure D.10: Different quality aspects of algorithm version V7 in a faulty all-to-all topology.

APPENDIX D. SIMULATION RESULTS XXXII

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
0

100

200

300

400

500

600

700

800

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
0

10

20

30

40

50

60

70

80

90

100

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 d
el

ay
 e

st
im

at
io

n
[µ

s]

1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
1500

1700

1900

2100

2300

2500

2700

2900

3100

3300

3500

(g) Message delay estimation diagram

1/5 1/8 1/36 5/36 1/71 5/71 10/71 1/100 5/100 10/100
0

10

20

30

40

50

60

70

80

90

100

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

Ac
tiv

e
no

de
s

[%
]

(h) Active nodes diagram

1 10 100 1000 10000
0

5

10

15

20

25

30

35

40

45

50

0

10

20

30

40

50

60

70

80

90

100

interval standard deviation
node synchronicity

time t [s]

in
te

rv
al

 s
td

 d
ev

ia
tio

n
[m

s] node synch ronicity [%
]

(i) Interval deviation diagram of a network comprising 71
nodes, where 10 nodes are Byzantine faulty, and a maximum
relative message staggering delay of 0.3.

Figure D.10: Different quality aspects of algorithm version V7 in a faulty all-to-all topology.

APPENDIX D. SIMULATION RESULTS XXXIII

D.3 Fault-free Chain-structured Multi-hop System

n=5 n=10 n=20 n=30
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until 5000s in 100 randomized
simulations

n=5 n=10 n=20 n=30
10

100

1000

10000

MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized evaluation)

n=5 n=10 n=20 n=30
0

10000

20000

30000

40000

50000

60000

70000

80000

MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
n=5 n=10 n=20 n=30

0

200

400

600

800

1000

1200

1400

MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

n=5 n=10 n=20 n=30
0

1

2

3

4

5

6

7

8

9

10

MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
n=5 n=10 n=20 n=30

0

2

4

6

8

10

12

14

16

MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

Figure D.11: Different quality aspects of algorithm version V1 in a fault-free chain topology.

APPENDIX D. SIMULATION RESULTS XXXIV

n=5 n=10 n=20 n=30
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until 5000s in 100 randomized
simulations

n=5 n=10 n=20 n=30
10

100

1000

10000

MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized evaluation)

n=5 n=10 n=20 n=30
0

5000

10000

15000

20000

25000

MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
n=5 n=10 n=20 n=30

-5000

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

n=5 n=10 n=20 n=30
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

Ac
tiv

e
no

de
s

[%
]

(e) Message collision diagram
n=5 n=10 n=20 n=30

0

2

4

6

8

10

12

14

MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

Figure D.12: Different quality aspects of algorithm version V2 in a fault-free chain topology.

APPENDIX D. SIMULATION RESULTS XXXV

n=5 n=10 n=20 n=30
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until 5000s in 100 randomized
simulations

n=5 n=10 n=20 n=30
10

100

1000

10000

MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized evaluation)

n=5 n=10 n=20 n=30
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
n=5 n=10 n=20 n=30

-4000

-3000

-2000

-1000

0

1000

2000

MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

n=5 n=10 n=20 n=30
0

1

2

3

4

5

6

7

8

9

10

MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
n=5 n=10 n=20 n=30

0

2

4

6

8

10

12

14

MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

n=5 n=10 n=20 n=30
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03
MaxMSD=.3 MaxMSD=.1 MaxMSD=.05 MaxMSD=.03

m
es

sa
ge

 d
el

ay
 e

st
im

at
io

n
[µ

s]

(g) Message delay estimation diagram

Figure D.13: Different quality aspects of algorithm version V8 in a fault-free chain topology.

APPENDIX D. SIMULATION RESULTS XXXVI

D.4 Fault-free Grouped Multi-hop System

g=2 g=3 g=5 g=10
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until 1000s in 100 randomized
simulations

g=2 g=3 g=5 g=10
0

100

200

300

400

500

600

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized evaluation)

g=2 g=3 g=5 g=10
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
g=2 g=3 g=5 g=10

0

50

100

150

200

250

300

350

400

450

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

g=2 g=3 g=5 g=10
0

50

100

150

200

250

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
g=2 g=3 g=5 g=10

0

10

20

30

40

50

60

70

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

Figure D.14: Different quality aspects of algorithm version V1 in a fault-free grouped multi-
hop topology.

APPENDIX D. SIMULATION RESULTS XXXVII

g=2 g=3 g=5 g=10
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until 1000s in 100 randomized
simulations

g=2 g=3 g=5 g=10
0

100

200

300

400

500

600

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized evaluation)

g=2 g=3 g=5 g=10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
g=2 g=3 g=5 g=10

-3400

-3200

-3000

-2800

-2600

-2400

-2200

-2000

-1800

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

g=2 g=3 g=5 g=10
0

50

100

150

200

250

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
g=2 g=3 g=5 g=10

0

10

20

30

40

50

60

70

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

Figure D.15: Different quality aspects of algorithm version V2 in a fault-free grouped multi-
hop topology.

APPENDIX D. SIMULATION RESULTS XXXVIII

g=2 g=3 g=5 g=10
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until 1000s in 100 randomized
simulations

g=2 g=3 g=5 g=10
0

100

200

300

400

500

600

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized evaluation)

g=2 g=3 g=5 g=10
0

500

1000

1500

2000

2500

3000

3500

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
g=2 g=3 g=5 g=10

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

g=2 g=3 g=5 g=10
0

50

100

150

200

250

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
g=2 g=3 g=5 g=10

0

10

20

30

40

50

60

70

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

g=2 g=3 g=5 g=10
0

500

1000

1500

2000

2500

3000

3500

MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05
MaxMSD=.3 MaxMSD=.25 MaxMSD=.2 MaxMSD=.15 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 d
el

ay
 e

st
im

at
io

n
[µ

s]

(g) Message delay estimation diagram

Figure D.16: Different quality aspects of algorithm version V8 in a fault-free grouped multi-
hop topology.

APPENDIX D. SIMULATION RESULTS XXXIX

D.5 Fault-free Regular Grid-structured Multi-hop System

2x2 3x3 5x5 10x10
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until 1000s in 100 randomized
simulations

2x2 3x3 5x5 10x10
0

100

200

300

400

500

600

700

800

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized evaluation)

2x2 3x3 5x5 10x10
0

5000

10000

15000

20000

25000

30000

35000

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
2x2 3x3 5x5 10x10

0

50

100

150

200

250

300

350

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

2x2 3x3 5x5 10x10
0

10

20

30

40

50

60

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
2x2 3x3 5x5 10x10

0

5

10

15

20

25

30

35

40

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

Figure D.17: Different quality aspects of algorithm version V1 in a fault-free regular grid
topology.

APPENDIX D. SIMULATION RESULTS XL

2x2 3x3 5x5 10x10
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until 1000s in 100 randomized
simulations

2x2 3x3 5x5 10x10
0

100

200

300

400

500

600

700

800

900

1000

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized evaluation)

2x2 3x3 5x5 10x10
0

2000

4000

6000

8000

10000

12000

14000

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
2x2 3x3 5x5 10x10

-6000

-5000

-4000

-3000

-2000

-1000

0

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

2x2 3x3 5x5 10x10
0

10

20

30

40

50

60

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
2x2 3x3 5x5 10x10

0

5

10

15

20

25

30

35

40

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

Figure D.18: Different quality aspects of algorithm version V2 in a fault-free regular grid
topology.

APPENDIX D. SIMULATION RESULTS XLI

2x2 3x3 5x5 10x10
0

20

40

60

80

100
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until 5000s in 100 randomized
simulations

2x2 3x3 5x5 10x10
0

500
1000
1500
2000
2500
3000
3500
4000

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized evaluation)

2x2 3x3 5x5 10x10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
2x2 3x3 5x5 10x10

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

2x2 3x3 5x5 10x10
0

10

20

30

40

50

60

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
2x2 3x3 5x5 10x10

0

5

10

15

20

25

30

35

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

2x2 3x3 5x5 10x10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 d
el

ay
 e

st
im

at
io

n
[µ

s]

(g) Message delay estimation diagram

Figure D.19: Different quality aspects of algorithm version V8 in a fault-free regular grid
topology.

APPENDIX D. SIMULATION RESULTS XLII

D.6 Fault-free Ring-structured Multi-hop System

n=5 n=10 n=20 n=50
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until 5000s in 100 randomized
simulations

n=5 n=10 n=20 n=50
0

200

400

600

800

1000

1200

1400

1600

1800

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized evaluation)

n=5 n=10 n=20 n=50
1000

10000

100000

 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
n=5 n=10 n=20 n=50

0

100

200

300

400

500

600

700

800

900

1000

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

n=5 n=10 n=20 n=50
0

1

2

3

4

5

6

7

8

9

10

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
n=5 n=10 n=20 n=50

0

2

4

6

8

10

12

14

16

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

Figure D.20: Different quality aspects of algorithm version V1 in a fault-free ring topology.

APPENDIX D. SIMULATION RESULTS XLIII

n=5 n=10 n=20 n=50
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until 5000s in 100 randomized
simulations

n=5 n=10 n=20 n=50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized evaluation)

n=5 n=10 n=20 n=50
10

100

1000

10000

100000

 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
n=5 n=10 n=20 n=50

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

n=5 n=10 n=20 n=50
0

1

2

3

4

5

6

7

8

9

10

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
n=5 n=10 n=20 n=50

0

2

4

6

8

10

12

14

16

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(f) Message omission diagram

Figure D.21: Different quality aspects of algorithm version V2 in a fault-free ring topology.

APPENDIX D. SIMULATION RESULTS XLIV

n=5 n=10 n=20 n=50
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until 5000s in 100 randomized
simulations

n=5 n=10 n=20 n=50
0

500

1000

1500

2000

2500

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized evaluation)

n=5 n=10 n=20 n=50
10

100

1000

10000

100000

 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

gr
ou

p
sp

re
ad

 [µ
s]

(c) Group spread diagram
n=5 n=10 n=20 n=50

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(d) Clock adjustment diagram

n=5 n=10 n=20 n=50
0

1

2

3

4

5

6

7

8

9

10

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(e) Message collision diagram
n=5 n=10 n=20 n=50

0

2

4

6

8

10

12

14

16

18

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

m
e

ss
ag

e
 o

m
is

si
o

n
s

/ r
o

u
n

d

(f) Message omission diagram

n=5 n=10 n=20 n=50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

MaxMSD=.2 MaxMSD=.1 MaxMSD=.05
MaxMSD=.2 MaxMSD=.1 MaxMSD=.05

m
es

sa
ge

 d
el

ay
 e

st
im

at
io

n
[µ

s]

(g) Message delay estimation diagram

Figure D.22: Different quality aspects of algorithm version V8 in a fault-free ring topology.

APPENDIX D. SIMULATION RESULTS XLV

D.7 Fault-free Randomly-structured Multi-hop System

n=100
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until
1000s in 100 randomized simulations

n=100
0

100

200

300

400

500

600

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized
evaluation)

n=100
0

50

100

150

200

250

300
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

Ti
m

e
to

 s
yn

c
[s

]

(c) Time to sync diagram (Prepared
evaluation)

n=100
0

2000

4000

6000

8000

10000

12000

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

gr
ou

p
sp

re
ad

 [µ
s]

(d) Group spread diagram
n=100

0

50

100

150

200

250

300

350

400

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(e) Clock adjustment diagram

n=100
0

20

40

60

80

100

120

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(f) Message collision diagram
n=100

0

5

10

15

20

25

30

35

40

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(g) Message omission diagram

Figure D.23: Different quality aspects of algorithm version V1 in a fault-free random geo-
metric topology.

APPENDIX D. SIMULATION RESULTS XLVI

n=100
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until
1000s in 100 randomized simulations

n=100
0

100

200

300

400

500

600

700

800

900

1000

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized
evaluation)

n=100
0

50

100

150

200

250

300

350

400

450
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

Ti
m

e
to

 s
yn

c
[s

]

(c) Time to sync diagram (Prepared
evaluation)

n=100
0

1000

2000

3000

4000

5000

6000

7000

8000

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

gr
ou

p
sp

re
ad

 [µ
s]

(d) Group spread diagram
n=100

-6000

-5500

-5000

-4500

-4000

-3500

-3000

-2500

-2000

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(e) Clock adjustment diagram

n=100
0

10

20

30

40

50

60

70

80

90

100

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(f) Message collision diagram
n=100

0

5

10

15

20

25

30

35

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(g) Message omission diagram

Figure D.24: Different quality aspects of algorithm version V2 in a fault-free random geo-
metric topology.

APPENDIX D. SIMULATION RESULTS XLVII

n=100
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until
1000s in 100 randomized simulations

n=100
0

100

200

300

400

500

600

700

800

900

1000

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized
evaluation)

n=100
0

50

100

150

200

250

300
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

Ti
m

e
to

 s
yn

c
[s

]

(c) Time to sync diagram (Prepared
evaluation)

n=100
0

1000

2000

3000

4000

5000

6000

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

gr
ou

p
sp

re
ad

 [µ
s]

(d) Group spread diagram
n=100

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(e) Clock adjustment diagram
n=100

0

500

1000

1500

2000

2500

3000

3500

4000

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

m
es

sa
ge

 d
el

ay
 e

st
im

at
io

n
[µ

s]

(f) Message delay estimation diagram

n=100
0

10

20

30

40

50

60

70

80

90

100

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(g) Message collision diagram
n=100

0

5

10

15

20

25

30

35

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(h) Message omission diagram

Figure D.25: Different quality aspects of algorithm version V8 in a fault-free random geo-
metric topology.

APPENDIX D. SIMULATION RESULTS XLVIII

D.8 Coherent Grouped Multi-hop System

f=1, g=8
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until
1000s in 100 randomized simulations

f=1, g=8
0

100

200

300

400

500

600

700

800

900

1000

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized
evaluation)

f=1, g=8
0

500

1000

1500

2000

2500

3000

3500
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

Ti
m

e
to

 s
yn

c
[s

]

(c) Time to sync diagram (Prepared
evaluation)

f=1, g=8
0

2000

4000

6000

8000

10000

12000

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

gr
ou

p
sp

re
ad

 [µ
s]

(d) Group spread diagram
f=1, g=8

-6000

-5000

-4000

-3000

-2000

-1000

0

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(e) Clock adjustment diagram

f=1, g=8
0

20

40

60

80

100

120

140

160

180

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(f) Message collision diagram
f=1, g=8

0

5

10

15

20

25

30

35

40

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(g) Message omission diagram

Figure D.26: Different quality aspects of algorithm version V2 in a grouped multi-hop net-
work containing one erroneous node in each group with g = 8.

APPENDIX D. SIMULATION RESULTS XLIX

f=1, g=8
0

10

20

30

40

50

60

70

80

90

100
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

nu
m

be
r o

f s
yn

cs

(a) Number of achieved syncs until
1000s in 100 randomized simulations

f=1, g=8
0

100

200

300

400

500

600

700

800

900

1000

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

tim
e

to
 s

yn
c

[s
]

(b) Time to sync diagram (Randomized
evaluation)

f=1, g=8
0

500

1000

1500

2000

2500

3000

3500

4000

4500
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

Ti
m

e
to

 s
yn

c
[s

]

(c) Time to sync diagram (Prepared
evaluation)

f=1, g=8
0

2000

4000

6000

8000

10000

12000

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

gr
ou

p
sp

re
ad

 [µ
s]

(d) Group spread diagram
f=1, g=8

-5000

-4000

-3000

-2000

-1000

0

1000

2000

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

cl
oc

k
ad

ju
st

m
en

t [
µs

]

(e) Clock adjustment diagram
f=1, g=8

0

500

1000

1500

2000

2500

3000

3500

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

m
es

sa
ge

 d
el

ay
 e

st
im

at
io

n
[µ

s]

(f) Message delay estimation diagram

f=1, g=8
0

20

40

60

80

100

120

140

160

180

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

m
es

sa
ge

 c
ol

lis
io

ns
 /

ro
un

d

(g) Message collision diagram
f=1, g=8

0

5

10

15

20

25

30

35

40

MaxMSD=.3 MaxMSD=.2 MaxMSD=.1
MaxMSD=.3 MaxMSD=.2 MaxMSD=.1

m
es

sa
ge

 o
m

is
si

on
s

/ r
ou

nd

(h) Message omission diagram

Figure D.27: Different quality aspects of algorithm version V8 in a grouped multi-hop net-
work containing one erroneous node in each group with g = 8.

	Declaration
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure of the Thesis

	2 Fundamental Concepts
	2.1 Distributed Systems
	2.2 Clocks, Time, and Clock Synchronization

	3 System Model of WSNs
	3.1 Communication Model
	3.2 Attacker Model
	3.3 Clock Model
	3.4 Problem Statement

	4 Related Work
	4.1 Resilient Clock Synchronization
	4.2 Distributed Clock Synchronization
	4.3 Self-stabilizing Pulse Synchronization
	4.4 Digital Clock Synchronization

	5 Design Approach
	5.1 Reachback Firefly Algorithm
	5.2 Improved Pulse Synchronization using RFA
	5.3 Introducing Robustness and Fault Tolerance
	5.4 Improvements in Single-hop Networks
	5.5 Discussion

	6 Evaluation by Simulation
	6.1 Simulating the MAC Layer
	6.2 Evaluation Types
	6.3 Evaluation Metrics
	6.4 Network Characterization
	6.5 General Simulation Parameters
	6.6 Simulating Single-hop Topologies
	6.7 Simulating Multi-hop Topologies

	7 Discussion
	8 Conclusion
	8.1 Fault-tolerant Clock Synchronization in WSNs
	8.2 Robust Self-organizing Synchronization
	8.3 Performance Aspects
	8.4 Outlook

	A Acronyms
	B Bibliography
	C Moved Proofs
	D Simulation Results
	D.1 Fault-free Single-hop System
	D.2 Coherent Single-hop System
	D.3 Fault-free Chain-structured Multi-hop System
	D.4 Fault-free Grouped Multi-hop System
	D.5 Fault-free Regular Grid-structured Multi-hop System
	D.6 Fault-free Ring-structured Multi-hop System
	D.7 Fault-free Randomly-structured Multi-hop System
	D.8 Coherent Grouped Multi-hop System

