
  
 

 
 

 
 

 

Dissertation 

 

Integration of Personal Services into 

Global Business 

 

ausgeführt zum Zwecke der Erlangung des akademischen  
Grades eines Doktors der Sozial- und Wirtschaftswissenschaften  

unter der Leitung von 

O. Univ.-Prof. Dipl.-Ing. Dr. A Min Tjoa 
E188 

Institute of Software Technology and Interactive Systems 
Vienna University of Technology, Austria 

 

eingereicht an der Technischen Universität Wien 
 

Fakultät für Informatik 

von 

Mag. Dipl.-Ing. Amin Anjomshoaa 
0227286 

Kammelweg 10/212, A-1210 Wien 

 
 
Wien, 20. November 2009 ____________ 

 
 
Diese Dissertation haben begutachtet: 
 
 
………………             ……………… 

 
 
Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek 
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). 
 
The approved original version of this thesis is available at the main library of 
the Vienna University of Technology  (http://www.ub.tuwien.ac.at/englweb/). 

 



  
 

 
 

            



  
 

i 
 

 

Kurzfassung 

 
Das Management und die Organisation einer lebensbegleitenden Speicherung 

sämtlicher anfallender Informationen stellt eine wissenschaftliche Herausforderung 

der Informatikforschung seit der bahnbrechenden Publikation von Vannevar Bush im 

Jahre 1945. Zur Zeit der Veröffentlichung war das vorgestellte Konzept   noch hoch 

spekulativ. Memories for Life bildete eine große wissenschaftliche Herausforderung 

für die nächsten 50 Jahre nach dieser Veröffentlichung. Die vorgestellte Vision von 

Vanevar Bush wurde als eine der Grand Challenges der Informatik in den 90er 

Jahren ausgewählt, die nun  als eine multidisziplinäre Herausforderung betrachtet 

wird, welche Aspekte des Knowledge Management, Information Retrieval, 

Security/Privacy und der Mensch Machine Interaktion  umfasst. Mit dem 

Aufkommen von Semantic Web wurden neue Möglichkeiten der Organisation  von 

Memories-for-Life-Entitäten und deren Assoziationen durch sogenannte Semantic 

Desktops eröffnet. In der Literatur existieren jetzt eine Handvoll Semantic Desktop 

Lösungen und Prototypen. Diese Lösungen beschränken sich allerdings vorrangig  

auf die Speicherung und Retrieval der Entitäten und der zugehörigen Assoziationen 

der Semantic Desktops. 

Ein nächster  wichtiger Schritt zur Erreichung der  ambitionierten Ziele einer 

Memory for Life Grand Challenge ist die Integration einer Semantic Desktop Lösung 

für betriebliche „Services“ und Soziale Netzwerke. Die immer komplexer werdenden 

betrieblichen Prozesse machen es notwendig die lebensbegleitenden Informationen 

der Benutzer in globale betriebliche Prozesse einzubetten. Dieser Aspekt der 

lebensbegleitenden Berücksichtigung der persönlichen Geschichte der 

Eigenschaftsausprägungen  auf globale und soziale Netzwerkservices wurde bislang 

kaum untersucht. Um dies zu bewerkstelligen wird eine Serviceebene vorgeschlagen, 

die eine sichere Verfügbarkeit dieser Schichte sowohl  für den Benutzer als auch für 

globale Prozesse ermöglicht. In dieser Arbeit werden mehrere Herangehensweisen 

der Informationsintegration vorgeschlagen, wobei Mashup-Architekturen ein 

besonderes Augenmerk finden. Mashup Architekturen nützen viele der Vorteile von 

Web 2.0, welches einen Schub der Entwicklung des Internet Computing in der 



  
 

ii 
 

letzten Dekade bewirkte. Das Web 2.0 bietet neue Möglichkeiten für eine bessere 

Mensch-Computer-Interaktion mit Hilfe von Anwendungen wie Mashups, welche 

eine benutzergetriebene Integration von Web-zugänglichen Daten ermöglichen. 

Mashups sehen den Aufbau effektiver und leichtgewichtiger 

Informationsverarbeitungslösungen basierend auf den Web Services von 

Organisationen vor. Solche  Web Services können von einfachen Web Services wie 

RSS und REST-basierten Diensten bis hin zu BPEL-Diensten für komplexere 

Anwendungsfälle reichen. 

Das Ziel dieser Dissertation ist es, die Lücke zwischen persönlichen Informationen 

und der globalen Prozesse der Geschäftswelt durch die Einführung von semantischen 

Mashups zu schließen. Dies bewerkstelligt einerseits die sichere und intuitive 

Erstellung und den Austausch von Informationen und neuen Diensten basierend auf 

lifetime memories, und fördert andererseits das Internet Computing Paradigma via 

Geschäftsprozesse, welche die Vorteile von benutzerdefinierten persönlichen 

Diensten ausnützen. 



  
 

iii 
 

ABSTRACT 

 

Managing lifetime memories has been a blurry challenge ever since it was originally 

proposed by Vannevar Bush in his seminal paper (1945). At the time, the concept 

was extremely speculative and indeed, Memories for Life has remained a challenging 

problem for the next five decades. Recently this idea was declared one of the grand 

challenges in computing research where its scope has been expanded and the 

problem has been outlined as a multidisciplinary problem that should address issues 

such as knowledge and databases, information retrieval, security/privacy, and 

human-computer interaction. New possibilities for Memories for Life emerged with 

the introduction of Semantic Web technologies that make it possible to model a 

diverse range of memory items and their associations in so-called Semantic 

Desktops. Today, there are a handful of Semantic Desktops that are to some extent 

able to organize and manage personal life items. However, their application is 

limited to the storage and retrieval of various personal items.  

The next step towards the goals of the Memories for Life grand challenge is to 

integrate this organized information in the business and social network services. 

With the emergence of complex business processes, there is a growing need to 

automatically map and embed the user's information context into global business 

services. This aspect of lifetime memories, which may have a great effect on 

extending the footprint of such memories for interactions with global and social 

network services, has not yet been explored. In order to realize such use cases, the 

major obstacle to face, is providing a secure and comprehensible service layer that 

can be easily used by both end-users and business processes. In this proposal some 

information integration approaches will be introduced and among them the Mashups 

architecture will be explored in more details. The Mashup architecture utilizes the 

advantages of Web 2.0 that has recently hit the mainstream of Internet computing 

and continues its rapid evolution. Web 2.0 has introduced new possibilities for a 

better human computer interaction via rich applications such as Mashups that provide 

a user-driven micro-integration of web-accessible data. Mashup envisions building 

effective and light-weight information processing solutions based on the exposed 



  
 

iv 
 

Web Services of organizations. Such Web Services may range from simple Web 

Services such as RSS and REST based services to complex BPEL services for more 

serious use cases. 

The ultimate goal of this dissertation is to bridge the gap between the personal 

information world and the global business world by introducing semantically-aware 

Mashups that on one hand facilitates the secure and intuitive creation and sharing of 

information and new services based on lifetime personal information, and on the 

other hand fosters the Internet computing paradigm via business processes that take 

advantage of user-generated personal services. 

 

  

 



  
 

v 
 

 

ACKNOWLEDGEMENTS 

 

This work is the successive result of some project done in the Institute for Software 

Technology and Interactive Systems (Vienna University of Technology) under the 

supervision of Prof. A Min Tjoa. Without his inspiration, advices, guidelines and 

continuous support this thesis would not have been possible. 

I would like also to thank my colleagues at institute, especially the members of 

SemanticLIFE project and the colleagues in Secure Business Austria that I had the 

privilege to work with for the fruitful discussions and for creating such a nice work 

atmosphere.  

I am very grateful to Reza Rawassizadeh and Andreas Hubmer for their great work 

and contribution to the implemented prototypes. 

I owe a special thank to my wife Ferial for her patience during past months, and 

taking care of our little sunshine Kian that allowed me to work long hours in front of 

computer.  

I wish also to thank my mother Zari who bore me, raised me, supported me, taught 

me, and loved me. Unfortunately my father passed away some months ago and I will 

not have the chance to share this success with him, but his life's work and lessons 

will live on in my heart and mind. To him, my Mother, my brother Eiman, and my 

sister Aida I dedicate this thesis. 

Lastly I would like to dedicate this work to all brave Iranians who have sacrificed 

their lives for my Land and those who are advancing the Green Movement toward a 

better future for Iran.  

 

 



  
 

vi 
 

 

 

Table of Contents 
 
 

CHAPTER 1 INTRODUCTION AND MOTIVATIONS .............................................. 1 

1.1 PERSONAL INFORMATION INTEGRATION ................................................................... 2 

1.2 RESEARCH QUESTIONS .......................................................................................... 6 

1.3 THESIS CONTRIBUTIONS ........................................................................................ 7 

1.4 THESIS ORGANIZATION ........................................................................................ 10 

CHAPTER 2 INFORMATION INTEGRATION ....................................................... 11 

2.1 INFORMATION RESOURCES ON WEB ...................................................................... 12 

2.2 WEB SERVICES & SOA........................................................................................ 15 

2.3 WEB 2.0 AND RICH INTERNET APPLICATIONS .......................................................... 17 

2.3.1 MASHUPS ..................................................................................................... 18 

2.3.2 MASHUPS PROVIDERS ..................................................................................... 22 

2.4 SECURITY AND PRIVACY REQUIREMENTS ................................................................. 25 

2.5 INFORMATION INTEGRATION USE CASES ................................................................. 27 

2.5.1 PERSONALIZED SERVICES .................................................................................. 27 

2.5.2 PERSONAL SERVICES FOR PEOPLE WITH SPECIAL NEEDS ........................................... 28 

2.5.3 GLOBAL BUSINESS PROCESSES ........................................................................... 29 

CHAPTER 3 SEMANTIC DESKTOP ..................................................................... 31 

3.1 SEMANTICLIFE ARCHITECTURE ............................................................................. 34 

3.1.1 DATA FEEDS AND SEMANTIC STORE .................................................................... 35 

3.1.2 DATA SERVICES AND MESSAGING ...................................................................... 36 

3.1.3 USER PROFILE ................................................................................................ 39 

3.1.4 COLLABORATION AND INFORMATION SHARING ..................................................... 40 

3.2 INFORMATION INTEGRATION IN SEMANTICLIFE ....................................................... 42 

3.2.1 PIPELINES ...................................................................................................... 43 

3.2.2 SERVICE BUS .................................................................................................. 49 

CHAPTER 4 WEB FORM INTEGRATION ............................................................ 54 

4.1 SEMANTIC XFORMS ............................................................................................ 55 

3.1.1 WEB APPLICATION DESIGN ............................................................................... 59 

3.1.2 PERSONAL SERVICE INTEGRATION ...................................................................... 62 

3.1.3 WEB FORM ACCESSIBILITY ................................................................................ 63 

4.2 WEB FORM SERVICES ......................................................................................... 66 

4.2.1 WEB FORM SERVICE ARCHITECTURE ................................................................... 70 

CHAPTER 5 SEMANTIC MASHUPS FOR ENTERPRISE ......................................... 76 

5.1 SEMANTIC MASHUP USE CASES ............................................................................ 78 

5.1.1 AEC USE CASE ............................................................................................... 78 



  
 

vii 
 

5.1.2 PERSONAL SERVICE USE CASE ........................................................................... 82 

5.2 MASHUP TO BPEL CONVERSION ........................................................................... 83 

5.3 HUMAN INTERACTION USING XFORMS ................................................................... 87 

5.4 SYSTEM ARCHITECTURE ....................................................................................... 90 

5.5 IMPLEMENTATION .............................................................................................. 93 

CHAPTER 6 RESULTS AND OUTLOOK ............................................................... 98 

APPENDIXES ..................................................................................................... 102 

BIBLIOGRAPHY ................................................................................................. 123 

CURRICULUM VITAE ......................................................................................... 130 

 



  
 

viii 
 

List of Figures 
 
 
Figure  1.1 : Gartner’s emerging technologies hype cycle in 2009 .............................. 5 

Figure  2.1: Long tale of open requirements ............................................................... 11 

Figure  2.2: Top APIs for creating Mashups ............................................................... 20 

Figure  2.3: Mashup product classification ................................................................. 25 

Figure  2.4: Personalized Services .............................................................................. 28 

Figure  2.5: A typical trip planning process ................................................................ 29 

Figure  3.1: SemanticLIFE’s system architecture ....................................................... 35 

Figure  3.3: User model in SemanticLIFE framework ................................................ 39 

Figure  3.4: SemanticLIFE collaboration model ......................................................... 42 

Figure  3.5: An example of service extension from the SemanticLIFE project .......... 51 
Figure  3.6: Service transparency in SOPA ................................................................ 53 

Figure  4.1: XForms's Service integration methodology ............................................ 58 

Figure  4.2: Domain ontology connecting the form elements to validating services .. 60 

Figure  4.3: Domain ontology and element relationships ........................................... 61 

Figure  4.4: Xform's Model Rendering methodology ................................................. 65 

Figure  4.5: Google Finance service for latest stock quotes ....................................... 67 

Figure  4.6: Yahoo Finance service for currency conversion ..................................... 68 

Figure  4.7: A business process that uses Web Form Services ................................... 70 

Figure  4.8: Web Form Service architecture overview ............................................... 71 

Figure  5.1: Google Sidewiki example ........................................................................ 77 

Figure  5.2: Mashup solution for energy smulation .................................................... 80 

Figure  5.3: Mashup widget description using IFC ontology ..................................... 80 

Figure  5.4: Highlighting of target ports based on semantic description of widgets .. 81 

Figure  5.5: Automatic completion of mashups using semantic of available service . 82 

Figure  5.6: Mashup and SOA relationship ................................................................. 84 

Figure  5.7: SOA Solution vs. Mashup Solution ......................................................... 85 

Figure  5.8: Simple calculation Mashup ..................................................................... 86 

Figure  5.9: The generated BPEL process for Simple calculation Mashup ................ 87 

Figure  5.10: The generated BPEL process for People Interaction ............................. 89 

Figure  5.11: Semantic Mashup architecture overview ............................................... 91 

Figure  5.12: WSDL description of simple math web service .................................... 94 

Figure  5.13: Mashup editor prototype ........................................................................ 94 

Figure  5.14: Relation part of mashup repository ....................................................... 95 

Figure  6.1: Overview of proposed Solution ............................................................. 100 

 



  
 

ix 
 

List of Tables 
 
 
Table  2.1: Comparison of Mashup Products .............................................................. 25 

Table  5.1: Mashup tasks and their equivalent BPEL methods .................................. 86 

 
 
 

List of Listings 
 
 
Listing  3.1: A simple pipeline .................................................................................... 43 
Listing  3.2: Multiple calls to SOPA services ............................................................. 45 

Listing  3.3: Pipeline’s multiple call execution results ............................................... 45 

Listing  3.4: Nested call to SOPA services ................................................................. 46 

Listing  3.5: Pipeline’s nested call execution results .................................................. 46 

Listing  3.6: Pipeline’s conditional structure for “if” .................................................. 46 

Listing  3.7: Pipeline’s conditional structure for “choose” ......................................... 47 

Listing  3.8: Pipeline call with XPath-based parameters ............................................ 47 

Listing  3.9: Pipelines calling another pipeline ........................................................... 48 

Listing  3.10: automatic generated pipeline from WSDL file ..................................... 48 

Listing  3.11: Calling the remote pipeline ................................................................... 49 

Listing  3.12: A complete pipeline based use case...................................................... 49 

Listing  3.13: Abridged version of the business services extension-point schema. .... 51 

Listing  3.14: Abridged version of a service description as an extension ................... 51 

Listing  3.15: Calling a service plugged into the Services Bus. .................................. 52 

Listing  4.1: Anatomy of XForms ............................................................................... 57 

Listing  4.2: XForms’s submitted data ........................................................................ 57 

Listing  4.3: Web Form Service configuration for currency convertor....................... 72 

Listing  4.4: Web Form Service authentication .......................................................... 75 

Listing  5.1: SPARQL query for finding appropriate widget ports ............................ 82 

Listing  5.2: XForms example for calling a web service ............................................ 90 

Listing  5.3: Running standalone mashup widgets ..................................................... 92 

Listing  5.4: Loading a mashup ................................................................................... 96 

 

 
List of Appendixes 
 
 
Appendix 1: SemanticLIFE’s Pipeline component .................................................. 102 

Appendix 2: Pipeline examples from SOPA framework ......................................... 108 

Appendix 3: Part of Mashup Widget code ............................................................... 111 

Appendix 4: Wire class for connecting Mashup Widgets ........................................ 114 

Appendix 5: Part of Mashup Editor code ................................................................. 116 
Appendix 6: Part of Mashup Panel code .................................................................. 118 
Appendix 7: A simple input widget that extends the MashupWidget class ............. 122 

 



  
 

x 
 

 
 
 
 
 



Introduction and Motivations 1 
 

 
 

 

Chapter 1  
 

 

 

INTRODUCTION AND MOTIVATIONS 

The drive to create helper tools is a basic function of human being. We have been 

doing it since our ancestors made axes during the Stone Age period, and we are still 

doing it today by inventing modern intelligent devices that help us in different ways.  

The idea of “Memories for Life” is the dream of creating an intelligent device that 

captures and stores the lifetime information of individuals in order to assist human in 

daily tasks. In 1945, Vannevar Bush has named this intelligent device “Memex” and 

defined it in his famous article “As we may think” as follows (Bush, 1945):  

Consider a future device for individual use, which is a sort of mechanized 

private file and library. It needs a name, and, to coin one at random, 

“Memex” will do. A Memex is a device in which an individual stores all 

his books, records, and communications, and which is mechanized so 

that it may be consulted with exceeding speed and flexibility. It is an 

enlarged intimate supplement to his memory. 

The number of atomic facts that the average person knows is astronomical and there 

are many issues to be addressed before this amount of data can be efficiently used in 

individuals’ daily life and the Memex dreams comes true. The Memex idea has been 

renewed again in 2004 by the UK Computing Research Committee (UKCRC) who 

declared the “Memories for Life” as one of the grand challenges in computing 

research (Fitzgibbon, 2004). The grand challenge has expanded the scope of 

Memories for Life and outlined it as a multidisciplinary problem that should address 

issues such as knowledge and databases, information retrieval, security/privacy, and 

human-computer interaction. New possibilities for Memories for Life emerged with 



Introduction and Motivations 2 
 

 
 

the introduction of Semantic Web technologies that make it possible to model a 

diverse range of memory items and their associations in so-called Semantic 

Desktops.  

Today, there are a handful of Semantic Desktops, such as SemanticLIFE (developed 

at the Vienna University of Technology), Gnowsis (Gnowsis, 2009) and IRIS (IRIS, 

2009) that are to some extent able to organize and manage personal life items. The 

next step towards the goals of the Memories for Life grand challenge is to integrate 

this organized information with the open world's business and social network 

services. 

It is also important to note that due to recent advances of web and emergence of Web 

2.0 and social networks, the concept of “personal life items” is no more limited to the 

resources that are stored locally on our personal computer or isolated data 

repositories, but is extended to our social networks and various information that we 

share on the web such as YouTube videos, Flickr images, weblog entries, Twitter 

twits, maps, GIS location, etc. Unfortunately, most of the existing Semantic Desktop 

solutions are now limited to the storage and retrieval of locally stored personal items 

and the user’s contributed information on social networks is not yet supported.  

With the emergence of complex business processes, there is a growing need to 

automatically map and embed the user's information context into global business 

processes. This aspect of lifetime memories, which may have a great effect on 

extending the footprint of such memories for interactions with global and social 

network services, has not yet been explored. The ultimate goal of this dissertation is 

to bridge the gap between the personal information world and the global business 

world by introducing Personal Web Services based on lifetime personal memories 

and Semantic Web technologies.  

1.1 Personal Information Integration 

Information Integration is the process of merging information resources that are 

having different contextual, structural and conceptual representations (Information 

Integration 2009). It is important to note that information integration process, like 

many other abstract concepts, has its roots in instinctive human behaviors. Every 

human is non-consciously engaged in the information processing activities to 



Introduction and Motivations 3 
 

 
 

acquire, retain, and use the incoming information. After receiving this information, 

our brain tries to conform them to our pre-existing model of reality. In other words 

our brain integrates the incoming information into our existing knowledge context 

and verifies the information consistency. As a result the accuracy of our pre-existing 

information indicate how close our perceptions, approximate the real world.  

From information technology point of view, Information integration is typically done 

via a mediator schema that maps heterogeneous set of source schemas to each other 

or to a common target schema. This kind of information integration is a highly 

moderated process that needs human contribution. In other words both source 

schema and target schema should be known first and human user will configure and 

supervise the integration process. The moderated information integration has been 

implemented successfully in many information exchange scenarios using generic 

middleware software or dedicated software mediators. Apparently such high-tech 

solutions cannot be easily adopted and used by non-expert users who need to 

incorporate the outside-world data in their processes or to feed the external business 

processes with their personal data.  

The personal information integration use cases can be roughly broken into three main 

categories:  

• Outward information integration: In this kind of information integration 

scenarios, the personal information is utilized to feed external processes that 

need such information. At the moment, lots of such integrations take place by 

intensive human intervention. A simple example of these integrations is the 

online web forms that are filled out by end users who provide their personal 

data such as name, date of birth, social security number, etc.  

• Inward information integration: unlike the outward information integration 

scenarios that information flow is from user to external processes, the inward 

information integration deals with consumption of external information 

resources such as World Wide Web information, to empower internal 

processes. For instance the information available on web can be used to select 

the cheapest flight that meets user requirements. Most of such information 

integration scenarios are currently done via end-user involvement. 



Introduction and Motivations 4 
 

 
 

• Compound information integration: the information integration scenarios of 

this kind require both inward and outward information integrations to 

complete their tasks. An example of complex processes is the trip planning 

that needs inward information integration to integrate and adopt the available 

online resources such as flight and hotel information into user’s context. This 

process also needs to use outward information integration to submit the user 

data to proper services and make the required reservations. 

The integration systems are formally defined as a triple <G,S,M> where G is the 

global (or mediated) schema, S is the heterogeneous set of source schemas, and M is 

the mapping that maps queries between the source and the global schemas. In other 

words, the mapping M consists of assertions between queries over G and queries 

over S. When users pose queries over the data integration system, they pose queries 

over G and the mapping then asserts connections between the elements in the global 

schema and the source schemas (Data Integration, 2009). Generally building and 

applying, integration triples is not feasible without intensive human contribution who 

uses his/her pre-existing knowledge of the source and target entities to formulate 

mappings between them. In this context, the Semantic Web technologies might be 

helpful to facilitate data integration by introducing a computer-readable description 

of schemas that supports a better computer to computer and computer to human 

interactions. In other words, the Semantic Web aims to align the content of current 

web to an explicit specification of conceptualization which is known as ontology 

(Gruber, 1995). This idea can be also seen as a data integration process that maps the 

global web schema (outside-world) to user’s world and processes. Semantic Web 

technology has been widely accepted and used to capture and document context 

information in many domains. It plays a significant role in information sharing 

scenarios and interoperability across applications and organizations (Anjomshoaa, 

2006). This added-value opens the way to integrate huge amount of data and 

becomes extremely useful when used by many applications that comprehend this 

information and bring them into play without human interaction. 

In Semantic Web based data integration approach, the computer-readable concepts 

are captured in ontologies that are shared among data integration actors. More 

importantly ontologies can also afford handling higher-order information by 



Introduction and Motivations 5 
 

 
 

determining whether source and target entities are semantically map-able to each 

other. Answering such questions requires the precise definition of metadata that is 

theoretically feasible by means of appropriate ontologies.  

Even though the Semantic Web technologies have flourished consistently in the past 

few years, it is unlikely to achieve the Semantic Web goals on global Web in near 

future and the initial expectations such as turning the World Wide Web to a machine-

comprehendible medium is far away from current state. Likewise the dream of 

“turning the World Wide Web to an environment in which information is given well-

defined meaning, better enabling computers and people to work in cooperation” 

(Berners-Lee, 2001), has not yet come true. The best proof of this is a look at the 

current status of World Wide Web and few websites and services that are 

Semantically-enabled. Furthermore according to Gartner’s report, the Semantic Web 

which had been among the emerging technologies in the past few years is vanished 

from the emerging technologies hype cycle in 2009 (see Figure  1.1).  

 

Figure  1.1 : Gartner’s emerging technologies hype cycle in 2009 

The basic reason for this situation is that so far it is not easy to get people to learn 

and apply Semantic Web concepts in their Web content and use Semantic Web 

technologies efficiently in their daily life. The real breakthrough in Semantic Web 



Introduction and Motivations 6 
 

 
 

implementation happens by emergence of semantic-enabled content authoring and 

management tools that make the paradigm shift from Traditional Web to Semantic 

Web feasible. 

The proper personal information integration solution should not only be able to share 

user information with little human intervention, but should also take the security and 

privacy considerations into account. The need for usable and trusted privacy and 

security is a critical area in the management of personal information. The Computing 

Research Association (CRA) Conference on Grand Research Challenges in 

Information Security and Assurance has identified the ability to “give end-users 

security controls they can understand and privacy they can control for the dynamic, 

pervasive computing environments of the future” as a major research challenge 

(CRA, 2003). This goal demands not only efficient security and privacy policies but 

also requires improvements to the usability of security aspects. In fact, poor usability 

can have a negative impact on security, making usability a particularly critical aspect 

for security and privacy systems.  

1.2 Research Questions 

There are several specific questions regarding the social, theoretical and technical 

aspects of realizing personal information integration for closing the gap between user 

information and open world business processes. Some of the questions that are the 

main focus of this thesis are: 

• How can the semantics of personal information and their associations be 

modeled accurately for open world interactions? 

• How to define personal information sharing services that can interact with 

global services and share useful information about a specific person in a 

secure and trustworthy way? 

• How can user requirements and preferences be represented and how should 

they be taken into account in tailoring global services to a particular user? 

• How security and privacy policies can be applied to information flow 

between personal information and global web? 



Introduction and Motivations 7 
 

 
 

• How information integration solutions can be created and managed intuitively 

by end users who are not IT experts? 

1.3 Thesis Contributions 

This thesis is dedicated to different information integration methods that make user 

interaction with global web easier and more efficient. In this context the Semantic 

Personal Services are introduced in order to leverage process interoperability, which 

in turn boosts global business processes. Personal services aim to take over parts of 

the business processes that are directly related to Semantic Desktop’s life items. 

Furthermore the personal services should also cooperate with global business 

processes to share the knowledge in a trustworthy and secure way. 

More specifically this thesis tackles the information integration problem using 

different methods such as Semantic Desktop service pipelines, XForms, Web Form 

Services, and Semantic Mashups. In the rest of this section we will briefly introduce 

the main contribution of this thesis. 

One of the noteworthy contributions of this research work is the introduction of Web 

Form Services. Nearly all human-computer interactions are happening through Input 

forms which are responsible for receiving the user input and sending it to appropriate 

component for further processes. Particularly, a large portion of Internet advances 

owes the human-computer interaction and data exchange via web forms and we are 

using them extensively in our daily activities. Current complex Internet applications 

demand a significant amount of time for development and maintenance of web forms 

which are solely designed for human users. 

To extend the footprint of Web Forms, a novel component has been implemented to 

translate the Web Forms to a plain Web Service that can be described semantically 

and integrated in more complex solutions. This Web Services are referred to as Web 

Form Services in the rest of this paper. Similar to normal Web Services, the Web 

Form Services present themselves to the end users by means of WSDL conventions.  

The Web Form Services accept the web form entries as their input element and the 

expected response of web form as output. On the backend, Web Form Services are 

supported by a user imitation service that reads a Web Form configuration and 

imitates the Web Service functionality.   



Introduction and Motivations 8 
 

 
 

The implemented Web Form Service prototype shows the feasibility of this approach 

to turn web sites to web services. The Web Form Server needs just a simple XML 

configuration which describes the target website and the interactions with 

corresponding forms. To handle more complex scenarios, the user authentication, 

caching, and multistep user inputs (wizard-like forms) are supported.  

The Semantic Mashup approach which is the main contribution of this thesis will be 

explored with more details. Mashup Architecture which is one of the outcomes of 

Web 2.0 paradigm is currently being used for user-centric information processing. At 

the moment mashups are mainly used for less fundamental tasks such as customized 

queries and map-based visualizations; however, it has the potential to be used for 

more fundamental, complex and sophisticated tasks in combination with Semantic 

Web technologies.  

The bidirectional support of Semantic Web and Mashups can provide a solid basis 

for many interesting applications. The Semantic Web support for Mashups is very 

credible and has its roots in Semantic Web Services that are aiming to automate 

service discovery and composition without human intervention. The basic difference 

between Semantic Web Services and Semantic Mashups approaches is derived from 

their different target users. The Semantic Web Services are mainly managed and 

used by IT experts who are aware of underlying data structures and corresponding 

services, however the Semantic Mashups’ target group is ordinary users who need to 

combine the Mashup Widgets for their specific purposes. 

On the other hand, mashups have the potential to facilitate the transition from 

traditional Web to Semantic Web era and support this paradigm shift with “zero 

footprints” on the Web pages. In order to distinguish our proposed approach we 

introduce the concept of Annotation Mashup. Annotation Mashup is an ad-hoc 

mashup that on one hand connects to the preconfigured information resources and 

processes their data and on the other hand maps its context data to the relevant 

domain ontology. In other words, instead of embedding the semantic meaning in the 

Web content, the semantic is attached to relevant content via mashups in a dynamic 

and loosely coupled manner. This approach has the following advantages:  

• Unlimited number of ontological mappings can be defined for the same 

content depending on the context of use. As a result two different users can 



Introduction and Motivations 9 
 

 
 

extract and use the same data but interpret it differently according to their use 

cases. So for example an extracted price from a Web page can be mapped to 

income_amount concept for being used in an accounting system and in 

another use case the same price is mapped to costs_amount concept for a 

private user. 

• Semantic meaning can be added by community and it is not limited to the 

content owners. As mentioned before the content owners are reluctant to 

embed semantic meanings in their Web contents. Using Annotation Mashups 

the semantics can be added to Web pages on the fly with no need to 

manipulate the original content.  

• Semantic Mashups may also support the “open model” communication 

between organizations. At the moment the conceptualization of business 

processes and their relevant objects and entities are limited at organizational 

level. Semantic Web and ontologies are potential candidates to harmonize the 

inter-organizational data exchange via open models; however, the 

implementation progress of such systems is time and money extensive. 

Annotation Mashups as a flexible light-weight component can facilitate the 

creation of semantic-enabled “open models” that can be shared and 

understood by business partners via shared ontologies. 

Mashups are very helpful in creating fast solutions for data integration, however a 

major drawback of mashups is the fact that such solution are fragile and not as stable 

as formal business processes. As the number of serious Enterprise Mashups 

increases, there is a growing need to make the mashups more stable. To provide a 

solid basis for such applications, the proposed approach includes a Mashup-BPEL 

convertor that transforms the user generated mashups to a formal BPEL process. As 

a result the end user will benefit from simple service composition of Mashups and at 

the same time the process will be managed and controlled by well established 

business process engines. Furthermore all complexities of a business process such as 

defining the partner links, services, etc will be hidden from the end user point of 

view.  



Introduction and Motivations 10 
 

 
 

1.4 Thesis Organization 

This thesis is comprised of three major parts: Semantic Desktop (chapter two), 

Information Personalization and Integration approaches (chapters three and four) and 

Semantic Mashup prototype (Chapter 5).  In the first part the Semantic Desktops in 

general and the specific case of SemanticLIFE will be discussed and its exclusive 

method of data integration by means of data pipelines will be explained. The second 

part explores the different approaches that can be used for information integration 

and their potential applications in personal information integration. The last part 

presents the Semantic Mashup prototype as a proof of concepts for the proposed 

approach of this thesis. The chapters are described in more detail below: 

• Chapter 2: provides theoretical background and summarizes relevant research 

work in the area of information integration.  

• Chapter 3: provides an introduction of Semantic Desktops. A main part of this 

chapter is dedicated to SemanticLIFE prototype and its data integration 

backbone which is called “Service Oriented Pipeline Architecture (SOPA)”. 

• Chapter 4: presents two novel approaches for enabling web forms for better 

integration into business processes namely Semantic XForms and Web Form 

Services. 

•  Chapter 5: is dedicated to Mashups and presents Semantic Mashup 

architecture as a business enabler. This chapter also includes the different use 

cases that can be addressed using the proposed architecture. 

• Chapter 6: summarizes the research work presented in this thesis and presents 

the main results that have been concluded from the work. Finally the research 

questions that were listed previously will be revisited to show how the 

proposed solution will address the challenging issues 

 



Information Integration 11 
 

 

Chapter 2  
 
 

 
Information Integration 

Today, the business informatics has to deals with a highly interdisciplinary network 

of knowledge resources that are coming from different domains. In most of the cases 

the analysis of scattered business information and deploying them in different 

business solution is not conceivable without huge contribution of human users who 

take over the complex task of information integration. As a matter of fact, a big 

portion of IT processes deal with the information integration issues which are 

necessary to shape the information for their specific use cases. In most of the cases 

such information integration processes are created by IT experts and presented as a 

service to end users. One of the bottlenecks of these knowledge integration solutions 

is that the IT solutions typically focus on 20% of user requirements that affect the 

most users and the long tale of requirement is usually ignored by IT providers 

(Figure Figure  2.1) (Hoyer, 2008b). 

 

Figure  2.1: Long tale of open requirements 

Some field studies has shown that the "Hidden Costs of Information Work" – for 

covering the long tale of requirements - in an organization with 1,000 employees is 



Information Integration 12 
 

 

over $10 million annually for reformatting and recreating information (Feldman, 

2005).  

In this chapter the theoretical background of information integration and the 

corresponding approaches will be discussed. In particular the information integration 

between personal information and global internet processes will be explored in more 

details. It is important to note that the personal information integration scenarios can 

be easily extended to organizational services for sharing the organizations’ business 

information with trusted partners and other business processes. 

 

2.1 Information Resources on Web 

Back in 1967, Doug Engelbart coined the collective IQ of organizations and of 

society as a grand challenge and the Global Web is an attempt to come a step closer 

to this vision. It is believed that central principle behind the success of the giants 

born in the Web 1.0 era who have survived to lead the Web 2.0 era appears to be this, 

that they have embraced the power of the web to harness collective intelligence 

(O'Reilly, 2005). 

One of the simplest and most common approaches for collective intelligence is the 

full-text search methods which allow people to search a large data set using some 

key words. The query results are ranked according to some criteria such as frequency 

of key words in target resource and/or trustworthiness of the resource publishers. 

Algorithms for full-text searches are among the most important collective 

intelligence algorithms and a deciding factor for the success of search engines. For 

instance the rapid rise of Google from an academic project to the world's most 

popular search engine was based largely on their specific PageRank algorithm 

(O'Reilly Media, 2007). Despite all advantages of full-text search engines and their 

great contribution to information retrieval, in several cases the results are not 

relevant. For instance if you search any of the famous search engines for terms 

“Semantic Web” and “Architecture”, the top ranked results are mostly about 

“architecture of Semantic Web technology” which is misleading for a person who 

was looking for applications of Semantic Web in Architecture, Engineering and 

Construction (AEC)  field. This misunderstanding is because of the different 



Information Integration 13 
 

 

applications of term architecture in different fields and the fact that computers deal 

with concepts as string of bytes. 

One of the important outcomes of Web 2.0 is a large collection of semi-structured 

data that are used to empower the collective knowledge systems. The quality of such 

collective knowledge gets better as more people participate in data creation process 

and their contributions improve the quality of information. A good example for such 

collective knowledge system is the Wikipedia project. The database size of 

Wikipedia is increasing exponentially and many pages are being added each day. 

The Web 2.0 approach for creating data has made the created data more structured in 

comparison to traditional web contents. For instance the taxonomy of weblog entries 

includes title, description, creation date, author name, tags, and some comments; 

however this structure is not yet enough for making advanced use of data for more 

complex use cases that require a richer semantic of web content. To address this 

problem there are two major research areas namely: 

• deep syntactic and semantic analysis of human language 

• automatic extraction of semantic relations from the text 

The first method which has been a fundamental challenge for many years is still a 

complex task and many applied computational linguists have now switched to easier 

challenges such as text classifiers, text-to-speech converters, grammar checking and 

statistical machine translation. The second group of research activities is focusing on 

extraction of semantic relation of text and its context. The semantic relations can be 

events, properties of objects, or geo temporal information that will be used to make a 

semantic understanding of the texts.  

The proposed project is aiming to benefit the advantages of the both text analysis 

methods and combine the results with the taxonomy of Web 2.0 applications. So on 

one hand there will be a rather comprehensive understanding of the text and on the 

other hand taxonomy of different applications of Web 2.0 will help to join and unify 

this result for the sake of more complex processes such as information integration 

scenarios. 

There are several methods for classification and analysis of Web contents. One of the 

classification methods, that has been widely used is tagging. In this method users add 



Information Integration 14 
 

 

an atomic token about what they think about a specific item on the web. For instance 

a blog entry that explains the recipe of “Wiener schnitzel” might be tagged with 

cooking, recipe, and Vienna. The tag’s quality improves as number of people that are 

tagging the same item increases. Some Web 2.0 systems use the tag statistics and 

suggest the top ranked tags to the end users. It is important to note that such 

recommendation systems have no idea about meaning of tags. The tag count and 

matching is done by recommendation system, but the tag semantics are in the users’ 

mind. In other words the linguistic meanings of the items are not injected into the 

machine via tagging. One possible approach for capturing the meaning of entries is 

mapping the tag tokens to an upper ontology that defines and connects the domain 

concepts. This can be done either by the text analysis or text matching techniques 

over the assigned tags. 

A more elegant and more precise approach for enriching the Web content is to 

embed the semantic information in the web content at creation time so that machines 

can read and interpret the content without the overhead of natural language 

processing methods. One such solution for making the web contents more intelligent 

is the W3C’s initiative RDFa (RDFa, 2009) which provides a set of HTML attributes 

to augment visual data with machine-readable hints. It is highly beneficial to express 

the structure of web data in context; as users often want to transfer structured data 

from one application to another, sometimes to or from a non-web-based application, 

the user experience can be enhanced. For example, information about specific 

rendered data could be presented to the user via right-clicks on an item of interest 

(RDFa, 2009). The rules for interpreting the RDFa are generic, so that there is no 

need to define different rules for different formats; this allows authors and publishers 

of data to define their own formats without having to update software, register 

formats via a central authority, or worry that two formats may interfere with each 

other. There are many major use cases where embedding structured data in HTML 

using RDFa provides significant benefit. For example people’s contact information, 

events and content’s license (for example creative commons) can be included in web 

contents using RDFa syntax and relevant namespaces.  

The RDFa is not the only solution for providing more intelligent data on the web. A 

similar approach for embedding machine-readable data in web content is 



Information Integration 15 
 

 

microformats (microformats, 2009) which is supposed to be coinciding with the 

design principles of "reduce, reuse, and recycle". The main difference between these 

approaches has historical background. The microformats has grown out of the work 

of blog developer community as an easy and ad-hoc response to common 

applications, but RDFa, on the other hand, is built with a more systematic vision of 

the W3 Semantic Web group and its associated thinkers. 

2.2 Web Services & SOA 

The fast growth of the World Wide Web and the emerging pervasiveness of digital 

technologies within our information society have significantly revolutionized 

business transactions, trade and communication between people and organizations. 

(Medjahed, 2003). Besides the augmentation effect, business-related information is 

characterised by the fact that it also originates from heterogeneous sources and get 

more and more complex in structure, semantic and communication standard. 

Therefore, mastering heterogeneity becomes a more and more challenging issue for 

research in the area of Business Process Management. This challenge involves all 

facets of process integration, composition, orchestration, and automation amongst 

heterogeneous systems. Fortunately, Web Services (Web Services, 2009) which are 

built on top of the existing Web protocols and open XML standards are considered as 

a systematic and extensible framework for application-to-application interaction. 

Web services which are the fundamental block of Service Oriented Architecture 

(SOA), allow automatic and dynamic interoperability between systems to accomplish 

business tasks. SOA separates functions into distinct units, or services, which 

developers make accessible over a network in order to allow users to combine and 

reuse them in the production of applications (Bell, 2008).   

The business processes are then built on top of the existing Web Services and are 

formulated by the Business Process Execution Language for Web Services (WS-

BPEL, 2009) which provides a mean to formally specify business processes and their 

interactions. By doing so, WS-BPEL extends the Web Services interaction model 

and enables it to support business transactions and defines an interoperable 

integration model that should facilitate the expansion of automated process 

integration in both the intra-corporate and the business-to-business spaces (WS-



Information Integration 16 
 

 

BPEL, 2009). In this context the process of assembling the pieces of functionalities 

into a complex business process is often done with significant human involvement 

and the main reason for this is the fact that the basic SOA components describe the 

services at the syntax level and do provide an explicit semantic context for those 

services. Such semantic context can benefit various service discovery and 

composition use cases which have been centre of attention in SOA during the recent 

years.  

To address the semantic requirements of SOA, the Semantic Web technologies have 

come to help by introduction of Semantic Web Services that are aiming to automate 

service discovery and composition without human intervention. At the moment there 

is a handful of successful Semantic Web Service frameworks such as WSMF 

(WSMF, 2002), OWL-S (OWL-S, 2009), WSMO (WSMO, 2009), and METEOR-S 

(METEOR-S, 2009) that are trying to take the semantic concepts to SOA world.  

The service registry, as a standard part of the Service Oriented Architecture (SOA) 

supplies the business processes with the description, discovery and integration 

services. However as explained above traditional service registries support solely the 

syntax of service interface specifications and do not capture service semantics. 

Capturing the service semantics is one of the most important plug-in tasks and will 

be used in both “locating appropriate services” and “ranking the competitor 

services”. The W3C’s “Semantic Mark-up for Web Services” (OWL-S) defines 

standards to capture the functional description of the service in terms of the 

transformation effected by the accordant service. Specifically, it specifies the inputs 

required by the service and the generated outputs. Furthermore, a service may require 

external conditions to be satisfied, and it has the effect of changing such conditions, 

the profile thus describes the preconditions required by the service and the expected 

effects that result from the execution of the service. For example, a selling service 

may require a valid credit card as a precondition. It then requires the credit card 

number and the expiration date as input, and generates a receipt as the output. 

Despite all advantages of SOA and Semantic Web Services, they are complex and 

cost-intensive technologies and not suitable for non-IT professionals. They are 

complex technologies which need a thorough understanding of these technologies, 

their underlying standards and programming capabilities. In other words, there are 



Information Integration 17 
 

 

not suitable for end-users who lack these capabilities. Another shortcoming of SOA-

based approaches is their inability to react rapidly to the changes in the environment, 

as implementation of such systems are cost and time intensive and any changes in the 

environment may require some modifications in the system. An important 

characteristic of systems for end-users is their capability for personalization and 

customization. Most of today’s business processes and SOA-based solutions are still 

mainly designed to satisfy the mass of users. Unfortunately customization and mass 

generic production are at odd with each other. As mentioned before, IT solutions 

typically focus on 20% of user requirements that affect the most users and the long 

tale of requirement is usually ignored by IT providers. The issue is even more critical 

in case of Semantic Desktops and variety of users with different requirements. It is 

too difficult for an ordinary user to take benefit of the available services by 

composing the appropriate services together. For this reasons, SOA-based 

approaches are mainly in the hands of IT-departments of big firms who have a 

complex stack of technologies to realize SOA-based scenarios. End users require 

simple, cost-effective techniques which enable them to design solutions in an ad-hoc 

“quick and dirty” manner. 

2.3 Web 2.0 and Rich Internet Applications 

Recently the Web 2.0 has set a new trend in Rich Internet Application (RIA) world. 

It makes better use of the client machine’s processing power and at the same time 

pushes the SOA paradigm to its limits. At the moment most SOAs are conceptually 

trapped inside an organizations’ intranet and Web 2.0 envisions building collective 

intelligence and mashed up functionality based on web services. In this environment, 

Internet will play the role of a global operating system that hosts the web services. In 

other words the Web 2.0 is a step toward the global cloud computing idea where 

business services are presented on Internet and developers should select and weave 

them together to create new compound services. 

Thus Web 2.0 is much more than adding a nice facade to old web applications, rather 

it is a new way of thinking about software architecture of RIAs. In comparison to 

traditional web applications, the application logic of modern Web 2.0 applications 

tends to push the interactive user interface tasks to the client side. The client 



Information Integration 18 
 

 

components on the other hand negotiate with remote services that deal with user 

events. 

A set of six key business applications are motivating overall RIA spending, 

consisting of enhancement of existing web applications, high-transaction and event-

driven Internet applications, next-generation portals, enhanced business intelligence 

solutions, application modernization, and peer-to-peer or mashup solutions. Market 

analyzers expect spending on each of these areas to increase rapidly over the next 

three years, exceeding $500 million by 2011 (Schmelzer, 2006). On the other hand 

information sharing in RIA collaboration environment adds new dimension to web 

application security. The most "Web 2.0"-oriented, exist only on the Internet, 

deriving their effectiveness from the inter-human connections and from the network 

effects that Web 2.0 makes possible, and growing in effectiveness in proportion as 

people make more use of them (O'Reilly, 2006). As a result a huge amount of 

information is created by this group of Web 2.0 applications that needs to be 

managed in a machine-processable way. An interesting use case of this approach is 

inter-organization trust where lots of entities such as social networks and weblog 

entries are analyzed and enriched semantically to assess a trust indicator for 

organizational cooperation.  The same method can be also used by individuals to 

make a self-test of their web 2.0 contributions and find out what inferences will be 

derived from their web presence. 

Unfortunately the content description methods are not being used by all content 

owners and the Web 2.0’s Achilles’ heel in my belief is the lack of semantic 

information that can be used to link this huge amount of information efficiently and 

this is the reason that some web specialists are expecting another web which is called 

Web 3.0 to complete the deficiencies of current web. Without the explicit semantic 

context, the process of data analysis and putting the data to work in business process 

safely is still unthinkable without significant human involvement and exactly at this 

point, Semantic Web can fit, to make the data machine-processable. 

2.3.1 Mashups 

Web 2.0 has also introduced new possibilities for a better human computer 

interaction via rich applications such as Mashups that provide a user-driven micro-



Information Integration 19 
 

 

integration of web-accessible data (Reliability, 2009). The term mashup originates 

from music industry where a song or composition is created by blending two or more 

songs, usually by overlaying the vocal track of one song seamlessly over the music 

track of another (Music Mashups, 2009). Mashups owes its popularity and fast 

improvements to its two basic blocks namely Web 2.0 and SOA. Mashup envisions 

building effective and light-weight information processing solutions based on the 

exposed Web Services of organizations. Such Web Services may range from simple 

services such as RSS (RSS, 2009) and REST (REST, 2000) based services to 

complex BPEL services for more serious use cases; however the Mashups benefits 

for the latter use cases is not yet known to IT decision makers (Anjomshoaa, 2009). 

According to market research reports, this situation is going to change quickly in the 

coming years.  Mashups are identified among top 10 strategic technologies for 2009 

(Gartner, 2008) and it is expected that by 2012, one-third of analytic applications 

applied to business processes will be delivered through coarse-grained application 

mashups” (Gartner, 2009). The power of mashups is also being examined in real 

world information management scenarios and has attracted many attentions (Hoyer, 

2009). Mashups can be applied to a broad spectrum of use cases ranging from simple 

data widgets to more complex use cases such as task automation and system 

integration. The mashup applications are roughly categorized under the following 

groups: 

• Consumer Mashups (Presentation Mashups): are the simplest group of 

Mashups that are used to facilitate the creation of information portals from 

different resources for presentation purpose. This group of mashups have the 

lowest degree of customization and are usually implemented as pre-built 

widgets that can be added to user interfaces. A well-known example of 

consumer Mashups is iGoogle (iGoogle, 2009) which is a personal web portal 

with capability of adding Web feeds and Google Gadgets such as email, 

scratch pad, news, weather, etc. 

• Data Mashups: which are used to integrate data and services from different 

resources such as Web Services, RESTful APIs, Web Extractors, RSS Feeds, 

etc. These kind of mashups aim to facilitate the data access and cross-

referencing between resources. They may also benefit from presentation 



Information Integration 20 
 

 

gadgets or visualization APIs to deliver the results. Nowadays a handful of 

mashable resources are available on the Web and plenty of useful Mashups 

have been created using them. A good example of data mashups is geo-based 

Mashups that integrate the information from different resources into Web-

based maps such as Google Maps (Google Maps, 2009) or Yahoo Maps 

(Yahoo Maps, 2009). Figure  2.2 shows the top APIs for Mashups and their 

percentage of utilizations in community-created mashups (Programmable 

Web, 2009). 

 

Figure  2.2: Top APIs for creating Mashups 

• Enterprise Mashups (Logic Mashups): always involve programming and 

therefore are the most complex mashup category. They connect two or more 

applications, automate certain tasks and include awareness of workflow 

(Mashup Basics, 2009). Enterprise mashups usually depend on some server-

side components and compete with data integration and service orchestration 

technologies such as BPEL and Enterprise Service Buses (ESBs). 

Among the introduced categories of mashups, Enterprise Mashups have gained 

momentum during the last years. By empowering actual business end-users to create 

and adapt individual enterprise applications, Enterprise Mashups implicate a shift 

concerning a collaborative software development and consumption process. 

Upcoming Mashup tools prove the growing relevance of this paradigm in the 

industry, both in the consumer and enterprise-oriented market. Market research 

companies like Gartner (Gartner, 2008), Forester (Forester, 2008) or the Economic 

Intelligence Unit (EIU, 2007) forecast a growing relevance of this paradigm in the 

next years. (Hoyer, 2008a). 



Information Integration 21 
 

 

To effectively adopt the Enterprise Mashups in organizations the following “Five 

Cs” principle is used to identify the different enterprise requirements (Mashup 

Guide, 2008):  

• Consume: Users need to consume public and private Web-enabled SOA-style 

services and mashups on demand.  

• Create: Users need to create new enterprise mashups from existing SOA-style 

services and mashups, preferably in a visual editor. 

•  Customized: Users need to customize (e.g. filter, annotate, etc.) existing 

mashups and create variants which can be published visually in standardized 

user-interfaces such as portals. 

• Collaborate: Users need to tag, describe, publish, and share their mashups 

with others in their community. 

• Confidence: Users need to be confident that all mashup consumption, 

creation, customization and collaboration occur in a secured and governed 

environment. 

Today organizations are confronted by business pressures to decrease costs, reduce 

workforce and transform their business from an internally focused organization into a 

service oriented and customer centric organization, which target the need of their 

customers. Therefore organizations have to deal with different domains and bring 

them together which in turn means also dealing with lots of common business 

process concepts and architectures. 

SOA (Service Oriented Architecture) and RIA (Rich Internet Application) are 

leading the standardized access to business functionality and data with desktop-like 

interaction over Web. But for users like non-IT experts, it's really difficult to use 

these new technologies to improve their daily business. Companies, who are using 

and "living" the SOA approach to get faster business responds and cost reducing 

effects, have the problem to manage and provide information on how the services 

interact and whether they are used in a right way. Mashups enable users to get access 

to data sources through SOA by a user-driven Process with short development cycles 

for new Mashup applications. 



Information Integration 22 
 

 

As the main contribution of this thesis, Semantic Mashups will be introduced in the 

next chapters. This novel concept is considered to be a key enabler for information 

integration solutions in business use cases. 

2.3.2 Mashups Providers 

The power of mashups is also being examined in real world information management 

scenarios and has attracted many attentions. The best proof for this assertion is the 

various Mashups solutions that are released by main IT players such as Google, IBM, 

and Microsoft.  Mashups are also in focus of different research programs such as 

FAST EU FP7 project (FAST, 2008) that aims at providing an innovative visual 

programming environment that will facilitate the development of next-generation 

composite user interfaces. It constitutes a novel approach to application composition 

and business process definition from a top-down user-centric perspective. 

In this section a short survey of main industrial mashup solution-providers will be 

provided.  

One of the Web2.0 pioneers in the last few years is Google. Google started with a 

native web application – a revolutionary search engine – which was delivered as a 

service to the public. At this time Google was not focusing on Web2.0 and therefore 

did not put too much emphasis on topics like web standards, social communities or 

web services.  

In the course of years Google come up with a handful of user-centric Web2.0 

projects such as Blogger, online collaboration tools, Google Earth, etc. This 

mushrooming of projects led also to Mashup solutions with a focus on the web user. 

Application areas of their Data Mashup solutions are Google Maps and Google 

Mashup Editor (which is deprecated and will be merged into the Google App 

engine). Especially Google Maps can be seen as the initiator of Data Mashup trend. 

Users got easy and intuitive access over their web browser to an amazing application 

and move around on the map. For this reason users wanted to have also access to 

company data, data from other sources, feeds, services, etc over web and as easy as  

Google Maps.  



Information Integration 23 
 

 

Companies like Yahoo with Yahoo! Pipes (Yahoo Pipes, 2009) and Microsoft with 

Microsoft Popfly (Popfly, 2009) developed also web based Data Mashups. These 

Mashup solutions are really easy to use via a visual programming environment to 

integrate data from different sources like WebPages, RSS feeds or web services. 

With Microsoft Popfly (in BETA phase) users can in addition to Mashups also create 

web pages and games and share them with other users. Popfly is based on the 

Silverlight technology but for presentation reasons, besides Silverlight also AJAX 

and DHTML are used. With Mashups, Microsoft also tries to expand the Windows 

personalization features by giving the user the possibility to embed Mashups in the 

Windows Sidebar. Therefore users can get access to the Popfly Mashups directly 

through their personalized desktop environment. 

A newcomer to the market of Mashup solutions is Intel with the Intel Mash Maker 

(Mash Maker, 2009) product. Intel has developed an innovative service which allows 

users to extract content from websites and merge them with the Intel Mash Maker 

solution in a user friendly and intuitive way. The Intel Mash Maker can be installed 

as a browser plug-in on all common web browsers in the market. This integration to 

the web browser brings personalization possibilities directly to the end-user. 

Especially using the existing websites and enriching them with new and personalized 

information is a strengths point of Intel's solution. 

Compared to Presentation and Data Mashups, Enterprise Mashups have the 

pretension to deliver content and services with the necessary grade of automation. 

Enterprise Mashups solutions have to provide also an easy way of collaboration and 

documentation with adequate guidance. JackBe (JackBe, 2009) is one of the leading 

Mashup Solution providers in the business market. With their Enterprise Mashup 

solution Presto, they are focusing on enterprise customers, especially companies with 

an affinity to Web2.0 and the necessary enablers like SOA and RIA. JackBe’s 

solution is not considering the personalization and user-centric aspects of mashups. 

JackBe has a data-driven approach by offering a lot of integrated data connectors. 

The server-side mashup components facilitate the exchange and reuse of created 

Mashups for internal and also external use cases in a secure and trustworthy way. 

Serena, playing in the same league as JackBe, is more focusing on the user-centric 

aspects of mashup solutions via their Mashup Composer application. Serena’s 



Information Integration 24 
 

 

solution enables users to design Mashups via a graphical interface to automate 

business activities. 

Another important player in this market of enterprise Mashup solutions is IBM. 

Recently IBM has developed a number of Web2.0 and Mashup products such as 

QEDWiki (QEDWiki, 2009), Lotus Mashup, etc. Lotus Mashup is an enterprise-

grade Mashup editor developed and distributed by IBM as part of the IBM Mashup 

Center solution (Mashup Center, 2009). Parts of the suspended QEDWiki are also 

integrated into the IBM Mashup Center. The main focus of IBM lies on integration 

of different data sources and creating the so called widgets and sharing them for 

reuse by other end users. 

Some other Mashup providers such as Kapow technologies (Kapow, 2009) have 

focused on Web Intelligence solutions that cover features from all three kinds of 

mashups. Kapow Mashup Server offers access to different data sources and services 

where users can easily access content and analyze data on their desktop. Especially 

monitoring and management tools can be integrated with the necessary scalability, 

high availability, security and automation. 

The evaluation matrix (Table  2.1), delivers a survey of Mashup products according 

to the different functionality features of the three mashup categories introduced. 



Information Integration 25 
 

 

 

Mashup 
Type 

 
Feature / Product 

IBM 
Mashup 
Center 

Serena 
Presto 

JackBe Yahoo 
pipes 

Dapper Intel 
Mashup 
Maker 

Microsoft 
Popfly 

Consumer  
Visualization Widgets 

� � � � � � � 
Screen Scrapping 

� � � � � � �
a 

Data  
Visual Data Assembly 

� � � � � � � 
Use Web 2.0 Resources 

� � � � � � � 
Advanced Data Aggregation 

� � � � � � � 
Advanced Data Flow 

� � � � � � � 

Enterprise 
Workflow 

� � � � � � � 
Enterprise Integration 

� � � � � � � 
Server-based  

� � � � � � � 
a. Microsoft Popfly can indirectly support screen scrapping via embedding Dapper artifacts 

Table  2.1: Comparison of Mashup Products 

The result of the above table is summarized in Figure  2.3 which clearly shows the 

priority of introduced mashup categories for different mashup providers. 

 

Figure  2.3: Mashup product classification 

2.4 Security and Privacy Requirements 

The security and privacy use cases have the potential to give a significant boost to 

the semantic technologies. Combination of Semantic Web technologies and the 

power of Web 2.0 content can be used for assessing general reliable indicators for 

security and privacy scenarios. It is worthy to note that the “general trust” is a key 

factor for inter-organizational trust scenarios. While there are efficient ways of 

measuring trust in individual systems, it is still a big challenge to aggregate such 



Information Integration 26 
 

 

information across systems and make an overall inference. For instance number of 

edits that are made by members of a specific organization in Wikipedia and the 

further corrections to the contributed data can be considered as a good indicator for 

reliability of that organization in Wikipedia, however there is no straightforward way 

to aggregate this information with the contributions on Flicker and YouTube to make 

a general inference about organization’s trustworthiness. 

On the other hand, the disclosure of personal information is an emerging demand of 

today's industrialized world where sharing information for different purposes with 

organizations around the world is efficient, productive and nearly essential. 

Unfortunately, there are various different, unstructured ways to develop privacy and 

security policies, and as a result there is no single standard solution for secure and 

efficient interaction between end-users and organizations. Designing transparent, 

usable systems in support of personal privacy, security, and trust includes everything 

from understanding the intended use of a system to users' tasks and goals, as well as 

the contexts in which the users will use the system. 

Obviously new security and privacy schemas are required to cover the requirements 

of Web 2.0 applications which are being raised due to the following reasons: 

• Web services are the building block of Web 2.0 applications and freeing the 

web services from organization environments, make it necessary to have 

appropriate information disclosure and information usage policies. 

• Web 2.0 has made the content creation much easier and as a result a huge 

amount of data is created by people every day. The volume of the data on the 

web is doubled since the emergence of Web 2.0 technologies. The data 

mining in the user generated entities and extracting the derived knowledge 

and information patterns is the new threat to privacy of individuals. We 

would need more elaborated methods for analyzing the web contents in order 

to facilitate data sharing and data reuse in a trustworthy and efficient way. 

Moreover targeted data mining in the web data might be helpful in some use 

cases such as inter-organization trust. 

• As mentioned before, the Web 2.0 architecture is tending to utilize the client-

side processing power. This attribute of Web 2.0 can be used intelligently for 



Information Integration 27 
 

 

better integration of user data with global business processes. In other words 

user desktop can interact with the real world processes and provide the 

requested data without human interaction. Before such dreams can come true, 

we would need an efficient mechanism to define user’s security and privacy 

policies.  

2.5 Information Integration Use cases 

In this section, some categories of information integration scenarios will be presented 

that are either not fully supported by existing technologies or needs a complicated 

stack of technologies that in practice make it impossible for novice users to realize 

the scenarios by their own efforts. Some of these use cases will be revisited once 

more in the next chapters of this thesis, to show how the presented solution of this 

thesis can facilitate information integration for end users. 

2.5.1 Personalized Services 

Now a day, the end users can create a personal information repository for themselves 

in different ways. The personal information store can range from a simple excel 

sheets that keeps the detail of user’s contact people to more sophisticated methods 

such as Semantic Desktops.  Disregarding the repository’s technical aspects and size 

of solution, they are generally used to answer the queries that user is facing in his/her 

daily activities. Nevertheless to extract and deliver the required information, either 

end user should be familiar with the structure of underlying data and corresponding 

query schema, or queries will be limited to the system predefined queries. In order to 

answer more complex queries, end users should be able to create situational solutions 

based on the confronted circumstances. Such situational solutions can be seen as 

personal-services that can be shared and used by trusted contacts or business 

processes. For instance a user may create a personal service that provides a list of 

his/her publications that contain particular keywords. This specific personal service 

can be then called for each member of an online community and be accumulated to 

create a ranked list of people who are interested in a specific research topic. 

A more complex example could be an online shopping use case (Figure  2.4), where 

the price limits should be first tested against user’s bank account and credit 



Information Integration 28 
 

 

information. A personal service is able to call the external bank web services in a 

trusty way and calculate the user’s shopping limit based on user's cache amount in 

the banks and the planned monthly loans. It is also important to note that the security 

and privacy perspective are vital parts of such use cases and none of the user 

information should be disclosed unnecessarily during the interaction with business 

processes. 

 

Figure  2.4: Personalized Services 

Personal Services that are some customized web services, available on end-user's 

device, are closely related to the entities that are typically used in everyday life such 

as emails, appointments, web pages, etc. These services are customized for their 

owner and not only vary from user to user; they also vary depending on the context 

of use. 

2.5.2 Personal Services for People with special needs 

Despite the advances in design and implementation of web applications, the human 

interaction with the applications is still a frustrating experience for most of the users. 

The user with “normal” cognitive abilities is able to combine the application's logic 

and goals with his / her experiences and knowledge to accomplish the use of Internet 

applications. On the other hand, the users with severe cognitive limitations either 

face difficulties in identifying the data model behind the web form, or cannot map 

the model to their knowledge models. Moreover the recent Web 2.0 applications are 



Information Integration 29 
 

 

not supported by assistive technologies such as screen readers and this has made the 

web interaction of people with disabilities more difficult.  

To address these requirements, some international initiatives have proposed 

standards and guidelines to make the information accessible to people with special 

needs. One of such recent initiatives is the Web Accessibility Initiative for 

Accessible Rich Internet Applications (WAI-ARIA, 2009). In spite of such standard 

and guidelines a high percentage of web content is not yet accessible and the content 

authors are moving very slowly toward WAI-ARIA goals.  

As a result it is necessary to have a temporary and personal solution for people with 

special needs for the transition phase from traditional web to modern web pages that 

support accessibility features.  

2.5.3 Global Business Processes 

We are daily dealing with some processes that need parts of our personal information 

to complete. The fact is that most of this personal information are scattered among 

files, emails, web pages, etc and we manage to feed them into the right process at 

appropriate time using our memory and reasoning power.  

As an example consider the scenario of planning for a vacation. The typical flow of 

this process is depicted in Figure  2.5. 

 

Figure  2.5: A typical trip planning process 



Information Integration 30 
 

 

Each step in this process can be equipped and supported by some personal life items 

like emails, photos, web pages, etc. Additionally in such processes a data exchange 

between the global processes and our personal information repository is necessary to 

facilitate data contribution to business processes.  

 

 

 
 



Semantic Desktop 31 
 

 

Chapter 3  
 
 

 
Semantic Desktop 

 

 

Today there is a handful of semantic applications such as semantic navigation & 

search tools, annotating and authoring tools, semantic calendars, annotated photo 

albums, and semantic wikis. In this context, Semantic Desktop is a trend of software 

programs that are aiming at realizing the goals of “Memories for Life” grand 

challenge. The grand challenge has expanded the scope of Memories for Life and 

outlined it as a multidisciplinary problem that should address issues such as 

knowledge and databases, information retrieval, security/privacy, and human-

computer interaction. A more concrete definition of Semantic Desktop has been 

formulated as follows (Sauermann, 2005): 

“A Semantic Desktop is a device in which an individual stores all her 

digital information like documents, multimedia and messages. These are 

interpreted as Semantic Web resources, each is identified by a Uniform 

Resource Identifier (URI) and all data is accessible and query-able as 

RDF graph. Resources from the web can be stored and authored content 

can be shared with others. Ontologies allow the user to express personal 

mental models and form the semantic glue interconnecting information 

and systems. Applications respect this and store, read and communicate 

via ontologies and Semantic Web protocols. The Semantic Desktop is an 

enlarged supplement to the user’s memory.” 



Semantic Desktop 32 
 

 

As stated in this definition, the Semantic Web and ontologies play a significant role 

in Semantic Desktops and has accelerated the research toward realizing the dream of 

“Memories for Life” by modeling a diverse range of memory items and their 

associations. Today, there is a number of Semantic Desktop solutions, such as 

SemanticLIFE (developed at the Vienna University of Technology), Blackman 

(Blackman, 2007), Gnowsis (Gnowsis, 2009), and IRIS (IRIS, 2009) that are to some 

extent capable of organizing and managing the personal life items. However, their 

application is limited to the storage and retrieval of various personal items. The next 

step towards the goals of the Memories for Life is extending the footprint of such 

memories for interactions with global and social network services.  

 One of the earliest Semantic Desktop implementation is the Gnowsis system 

(Gnowsis, 2009) which consists of two parts: the Gnowsis server that performs the 

data processing, storage and interaction with native applications; and the graphical 

user interface (GUI) part, implemented as Swing GUI and Web-based interfaces. 

External applications such as Microsoft Outlook or Web browsers are integrated 

using standardized interfaces. The upper ontology of the personal information 

management (PIM) ontology, used by Gnowsis, is assumed to reconcile different 

models for information to make that information available over a common 

conceptual model. However, The Gnowsis system lacks a formalism to represent 

context and the conceptual view determined by the upper ontology and cannot be 

changed to represent the reconciled information in different contexts as required by 

different tasks.  

A similar Semantic Desktop system is the Haystack project (Haystack, 2009) which 

aims at connecting application data and let people manage their information using 

personalization; however, the Haystack client is a rather complicated and extensive 

application. Haystack supports several PIM tasks and is extensible by a plug-in 

mechanism that allows to implement new functionality and to integrate new 

information. Similar to the Gnowsis prototype, Haystack allows to associate different 

pieces of information to each other, organize them, e.g. in collections and reuse them 

in particular Haystack modules. Plug-ins, however, implement their own, application 

specific models that do not necessarily conform to the conceptualization of existing 

and future Haystack plug-ins. 



Semantic Desktop 33 
 

 

 

Both projects, Gnowsis and Haystack, enable the linking of information and the 

classification of that information by user defined ontologies. Nevertheless, they miss 

means for context representation and the broad conceptual scope that allows to 

integrate and to inter-relate information managed with arbitrary PIM tools. They lack 

a profound conceptual model that enables the reuse of information across contexts 

and that provides the extensibility to integrate new applications that require new 

contextual views onto existing information. Support for information reuse and a 

reconciliation of PIM applications is limited to applications that do not require 

different conceptual views as those would conflict with domain models of these 

applications. 

A slightly different approach has been followed by the Nepomuk project (Gorza, 

2007) which is aiming to enhance data sharing and exchange across social and 

organizational relations and creating social Semantic Desktops. The social Semantic 

Desktop will support the personal aspects of knowledge work by developing tools for 

knowledge articulation and visualization, the interfaces and data structures of the 

personal Semantic Web, and integration of support for personal work processes. It 

supports the social aspects of communication, distributed collaboration and social 

exchange by providing solutions for distributed search and storage and of semantic 

social networks and knowledge exchange (Nepomuk, 2009). 

Our SemanticLIFE project (SemanticLIFE, 2004) is another effort to implement a 

PIM system over a Human Lifetime using ontologies as a basis for the representation 

of its content. In the framework of the SemanticLIFE project, we have built a 

semantic repository of lifetime personal data from a variety of sources such as 

emails, contacts, running processes, Web browsing history, calendar appointments, 

chat sessions, and other documents. This PIM system acts as a digital memory and 

provides an ontology-based profile for users.  

In addition to the acquisition, annotation, and storage of data, SemanticLIFE also 

provides an intuitive and effective search mechanism based on the stored semantics. 

The whole SemanticLIFE system has been designed as a set of interactive plug-ins 

that fit into main application and this guarantees the flexibility and extensibility of 

the SemanticLIFE platform. Communication within the system is based on a service-



Semantic Desktop 34 
 

 

oriented design with the advantage of its loosely coupled characteristics. The Service 

Oriented Pipeline Architecture (SOPA) 1 has been introduced in order to compose 

complex solutions and scenarios from atomic services of SemanticLIFE plug-ins. 

The SOPA solution is one of our basic approaches for implementing the information 

integration of various information resources. Due to the significant role that SOPA 

plays in SemanticLIFE framework, it will be explored with more details in the 

succeeding section. 

SemanticLIFE has been developed using the Eclipse Rich Client Platform (Eclipse 

RCP) technology following the industry standard Eclipse IDE. Eclipse RCP offers 

several advantages over traditional Java rich client applications. From its plug-in 

architecture, our project has been benefiting the most. The whole SemanticLIFE 

system has been designed as a set of interactive plug-ins that fit into the main RCP 

application. To clarify the system architecture and information integration approach, 

more details on some plug-ins of SemanticLIFE application will be provided in the 

next section.  

3.1 SemanticLIFE Architecture 

In this section the overall architecture of SemanticLIFE framework will be presented 

and the functionality of its basic plug-ins will be explored in more details. Figure  3.1 

depicts the architecture of SemanticLIFE framework that has been used to realize 

PIM use cases.  

                                                 
1 SOPA Framework has been selected among top 10 finalists of Jax Innovation Award in 2006 
together with other notable nominations such as Spring Framework and Rich Ajax Platform 
(http://jax-award.de/jax_award06/nominierungen_en.php) 



Semantic Desktop 35 
 

 

 

Figure  3.1: SemanticLIFE’s system architecture 

3.1.1 Data Feeds and Semantic Store 

An important component of SemanticLIFE framework is data acquisition which is 

responsible for acquiring the life items such as emails, browsed web pages, files, etc. 

At the early stages of project development, the project team started to build multiple 

connectors and data processors for various data feeds. The result of these attempts 

was realized as several data connectors such as Firefox plug-in for reading browsed 

web pages, a Microsoft Outlook connector for accessing the emails and calendars, 

and a file system watchdog to monitor the altered files. After a while we found out 

that this approach will be a never-ending cycle of programming which is necessary to 

support the new data feeds and new version of applications. To get rid of such issues, 

we made a strategic change and decided to use one of existing desktop search 

program. In this way, the search engine will be responsible to deal with the 

complexity of data feeds and the Semantic Desktop solution will merely focus on 

semantifying this information.  

For this purpose we have selected Google Desktop as desktop search solution and 

added a specific plug-in for data import from Google Desktop’s repository. In this 

way the Google Desktop plug-in captures the user information items that can be of 



Semantic Desktop 36 
 

 

various types such as browsed web pages, emails, chat, images, audio or video 

streams, etc and hand it to the SemanticLIFE system. In SemanticLIFE system these 

information entities are associated with one’s lifespan entities and are then stored in 

an ontological way according to the already established RDF metadata. This will 

then facilitate semantic queries, life trails and processing of life events.  

Furthermore, this established set of information items enables the SemanticLIFE 

system to rank and filter the queries and events based on user interest and 

preferences. Unlike the desktop search programs which are mostly based on full-text 

content indexing, the SemanticLIFE framework is aiming at taking into consideration 

the dynamic, long term activities of user to find out the user interests which may be 

even change from time to time. The information captured by this plug-in can later on 

further be refined and annotated by the user in order to make a more precise user 

behavioral model.  

3.1.2 Data Services and Messaging 

In the SemanticLIFE architecture, the Web Service and Message Bus plug-ins are the 

two core components that are responsible for messaging and communication with 

internal and external services. In this section these plug-ins will be explored.  

The Message Bus plug-in provides an infrastructure for plug-in interactions. All 

SemanticLIFE processes and their corresponding information exchanges are  

designed via a Message Bus plug-in. SemanticLIFE plug-ins that need to negotiate 

with other system components should register themselves to this backbone by 

extending the Message Bus extension point. Then at runtime all messages and calls 

will be routed to relevant system services that are backed by the implemented plug-in 

collection. Another important functionality of Message Bus is to supply a level of 

abstraction between system services which greatly improves the flexibility and 

transparency of system use cases; i.e. all system-wide offered services including 

external web services, business functions and data analysis services will be served 

uniformly by this plug-in. 

The second plug-in, Web Service plug-in, is on the other hand responsible for 

providing a uniform access layer to internal and external services and their 

semantics. Internal system services include some SemanticLIFE-specific composite 



Semantic Desktop 37 
 

 

services that are called pipelines and other services provided by system plug-ins. 

External services can be plugged at anytime to the SemanticLIFE system by locating 

the corresponding web service configurations (URL of the WSDL files).  

Ideally the services offered by the Web Service plug-in should have a machine 

interpretable description to automate the service discovery and service composition 

scenarios in an unambiguous way. For achieving certainty and machine-

interpretability, semantics are added to Web Services to explicitly present 

requirements and capabilities. The Web Service plug-in is aimed to manage the web 

service annotation and defining the meaning of terms, such as the meaning of 

parameters or business objects and the meaning or intent of an operation. This 

information will be extremely helpful for running semantic search phase in which the 

services’ semantics and the corresponding input/output parameters are evaluated to 

match a specific query. For example we may search the repository of all services that 

accept a country name and provide the list of touristy cities of that country. Finding 

such services will be a more or less straightforward task, provided that the country 

and city concept are matured in the system’s ontology and also service parameters 

are annotated with the domain ontology. The Web service plug-in offers the 

following three categories of services: 

• Service-finder services: these services are responsible for finding the 

appropriate services for a specific request. The return-value of such a service 

is a list of services ranked by the user preference. An example of a service-

finder service is a service that provides a list of web services for hotel 

reservations in a specific city.  

• Service-invocation service: This service invokes the requested service using 

the SemanticLIFE platform service calling mechanism that is mainly 

implemented in Message Bus plug-in. Based on the requested service type, 

the invocation mechanism may call an internal pipeline, an internal service or 

an external web service. 

• Semantic-recommender service: This service will invoke the recommendation 

pipeline of SemanticLIFE for a given service. The pipeline in turn will invoke 

that service, semantically rank and enrich the service-result, provide a ranked 

list of options for user choices and finally return the selected item. For 



Semantic Desktop 38 
 

 

example, when calling the semantic-recommender service for a hotel-finder 

service, the corresponding SemanticLIFE pipeline firstly runs the web service 

(hotel-finder), then ranks the results and finally display a selection list to the 

user. A user will select his/her choice from the list and this value will be 

returned to the system to further continue with the execution of business 

processes.  

In addition to services that are available on Internet as web services, the user's 

desktop can also provide some web services that are based on personal information. 

As explained in the previous chapter, Semantic Desktop systems such as 

SemanticLIFE contribute some personal services that can be used in service 

composition scenarios. These services are enriched with semantic information and 

can be queried based on the service parameters and/or service intent.    

To clarify the issue, consider a web page rendering service that is provided by the 

user's Semantic Desktop. A non-semantic service will simply render the web pages 

according to some predefined formatting or logical rules. The drawback of a “non-

semantic” service is that the service is not able to conceive the web page content and 

instantly visualize it according to user preferences and restrictions. On the other hand 

the semantic personal rendering service may perform more sophisticated tasks such 

as highlighting the items and connect them to user's history items. Such personal 

rendering services are especially helpful for memory impaired users that cannot 

remember their previous interactions about specific subjects. Another use case of 

personal services is applying the appropriate style to the web pages according to the 

end-user's visual restrictions for sight impaired users.   

Personal services can be also categorized according to their internal complexity. 

Some personal services perform a simple one step action whereas more complex 

services may be composed of multiple actions and additional conditions and service 

calls. BPEL processes fall under the category of more complex processes. A 

Semantic Desktop that supports BPEL processes might be seen as an information 

resource that extract and process the data about from personal items or appropriate 

services and hand in the useful information to external world.  



Semantic Desktop 39 
 

 

3.1.3 User Profile  

The SemanticLIFE framework is equipped with a dedicated plug-in to manage the 

user profile consisting users’ static and dynamic profile. Part of the user profile such 

as the user demographics, user interests, contacts etc. can be considered as the static 

part of the profile. However in the long term these data will be elaborated and 

enriched either by automatic or manual annotation and additions. For example the 

user interests may be ranked by the number of relevant web pages and other items 

that are tagged for each interest item. So after a while of user monitoring, the system 

can infer if the user is more interested in football rather than skiing due to the 

number of related items that are attached to each interest item.  Figure  3.2 shows a 

fragment of the user model used in the SemanticLIFE system.  

 

Figure  3.2: User model in SemanticLIFE framework  

This schema will help the system to create a matching behaviour model for user and 

enhance the user modelling in the following ways: 

• User will have a unique profile that can be reused for many business 

processes. 



Semantic Desktop 40 
 

 

• User model is dynamic and will be adjusted based on the long term user 

interactions.  

3.1.4 Collaboration and Information Sharing  

The common limitation and a major shortcoming of Semantic Desktops approaches 

is the fact that their scope is limited to users’ desktops and the precious semantic 

information are not yet effectively used in business processes and tasks that people 

are dealing with in their daily life. One of the basic goals of the SemanticLIFE 

project was to leverage the application of Semantic Desktops, beyond the rather 

complicated semantic queries and putting the information to work for their owners in 

a trustworthy way. It is important to note that trust plays an important role in the 

integration of information spaces; however applying trust in information integration 

scenarios is not always straightforward and usually there are many intangible and 

project-specific aspects that should be considered for a successful trust 

implementation. Basically trust can be gained from a person/agent’s own experiences 

with an entity and has the following characteristics: 

• Context specific: Trust is context specific and depends on the (different) roles 

of the entity. 

• Multi-faceted: Even in the same context, there is a need to develop 

differentiated trust in different aspects. 

• Dynamic:  Trust can increase or decrease with further experience. 

There are multiple approaches for implementing and applying trust to IT systems: 

• Centralized & decentralized systems: Whether a system is centralized or 

decentralized determines the feasibility and complexity of a trust and 

mechanism. In a centralized system, a central node will take all the 

responsibilities of managing reputations for all the members. In a 

decentralized system, e.g. a peer-to-peer system, there is no central node. The 

members in the system have to cooperate and share the responsibilities. 

• Person & Resource based systems: Systems can be also classified as person 

systems or resource systems. In person systems, the focus is on modeling the 



Semantic Desktop 41 
 

 

trust of people or agents, acting on behalf of people. In resource systems, the 

focus is on modeling trust of resources, which could be products or services.  

• Global and personalized systems: In global systems, the reputation of a 

person, agent, product or service is based on the opinions from the general 

population, which is public and visible to all the system members, while in 

personalized systems, the reputation of a person, agent, product or service is 

built on the opinions from a group of particular people. 

Formulating the business policies in formal ways, is one of the important approaches 

for applying trust in IT systems. There are number of candidate policy 

implementation languages like SWRL (SWRL, 2004), KAoS (KAoS, 2003) and REI 

(REI, 2003) and also there are number of policies that are needed to facilitate the 

information interchange in a collaborative environment. Users define these policies 

for some specific operation, e.g. project resource sharing policies, project member 

access policies, stakeholder access policies etc. Take an example where the Person-

P1 asks for documents related to a project. Person-P1 can be granted access if he is 

member of that project and his status matches to the confidentiality of that document. 

Figure  3.3 below shows different components of SemanticLIFE and how policies and 

filters are used to control the information flow between SemanticLIFE-enabled 

workstations. Basically the information flow on the user desktops will be affected by 

domain ontologies that are defined for each collaboration environment separately and 

include the abstraction of the surrounding business entities. Based on these business 

entities, users and organization will setup their information sharing and information 

filtering policies. Finally the service invocation mechanisms that were explained 

before will take care of information exchange at lower levels.  



Semantic Desktop 42 
 

 

 

Figure  3.3: SemanticLIFE collaboration model 

3.2 Information Integration in SemanticLIFE 

Designing complex and large business processes requires a language that supports 

component integration and process automation. Service Oriented Architecture aims 

to address these requirements which are proved to be two of the most important 

issues facing the organizations today. In the context of SemanticLIFE framework, we 

developed our own service composition and information integration framework 

which is called Service Oriented Pipeline Architecture (SOPA) and provides a 

paradigm to describe the web service compositions as pipelines. The proposed SOPA 

framework is mainly discussing the enabling components of the SOPA systems for 

Java and particularly Eclipse developers community. The SOPA framework has two 



Semantic Desktop 43 
 

 

basic components (plug-ins) namely “Services Bus” and “Pipeline”. In the 

subsequent sections these components will be explored in more details. 

3.2.1 Pipelines 

A “Pipeline” in SOPA terminology can be defined as a uniquely named set of 

service-calls and intermediate transformations. The pipelines are defined using an 

XML structure that specifies pipeline steps and relevant transformations. In SOPA 

paradigm a pipeline may be composed of other pipeline or services and as a result the 

pipelines are highly reusable. The pipeline concept provides a higher level of 

abstraction between services and applications that are benefiting SOA. SOPA 

provides some mechanisms for orchestration of services and transformation of 

results. It also supports many data processing features and flow management. In the 

SemanticLIFE architecture pipeline plug-in provides the SOPA features and plays a 

central role in the orchestration of basic system services and also in the creation of 

new business services.  

The pipeline idea has been inspired from Apache Cocoon (Cocoon, 2009) which is a 

web development framework built around the concepts of separation of concerns and 

component-based web development. Cocoon implements these concepts around the 

notion of “component pipelines” and each component on the pipeline specializing on 

a particular operation. This makes it possible to use a Lego-like approach in building 

web solutions and hooking together components into pipelines without any 

programming required. Listing  3.1 shows a simple pipeline which is identified by its 

name at the first line. 

 
1. <pipeline  name="square" > 
2. <parameters > 
3.         <parameter  name="num"  type ="xsd:double" />  
4. </ parameters > 
5. <call  service ="org.example.arithmatics"  operation ="multiply" > 
6.         <parameter >{num} </ parameter > 
7.         <parameter >{num} </ parameter > 
8. </ call > 
9. <transform  method ="xml"  stylesheet ="result.xsl" />  
10. </ pipeline > 
 

Listing  3.1: A simple pipeline 



Semantic Desktop 44 
 

 

Each pipeline may receive some input parameters that might be used anywhere 

inside the pipeline’s scope. Lines two to four (see Listing  3.1) show the parameter 

section and definition of a parameter which is called num. The most interesting part 

of a pipeline which distinguishes our approach from other such solutions is the 

service-call part. At line 5 (see Listing  3.1) the “multiply” operation of the service 

org.example.arithmatics  is requested. The operation call can consume 

parameters of pipeline.  

The results returned by the services may be transformed during the execution of a 

pipeline. This feature let the results be transformed and converted to required format. 

The transformation is performed by applying an XSLT transformation to the current 

pipeline results. The pipeline plug-in keeps the results internally and finally at 

serialization phase the results are rendered in specified format. The supported 

serialization formats are TEXT, XML, HTML, and XSWT (XSWT, 2009). 

The created pipelines will be used by other system components and may provide a 

range of services covering the business logic, visualization features, or a combination 

of these two. A pipeline can make multiple calls to other services or pipelines and 

finally returns the final result to the calling application. The pipelines on the higher 

levels can be documented and reused as new business services. Visual rendering and 

styling of the results is also an edge of pipelines that combines the results of business 

processes with different visualization options. As a result a specific set of results can 

be rendered differently based on the context and user requirements. 

The pipeline concept also supports a higher level of services that may be compared 

with BPEL for Web Services that provides some mechanisms for orchestration of 

services and transformation of results. The advantage of SOPA in the proposed 

framework is that is provide a much simpler information integration approach by 

encapsulating small pieces of functionalities in pipelines. In contrast BPEL language 

currently does not support the explicit definition of business process "fragments" that 

can be invoked from another (or the same) business process. The only way to 

approximate similar behavior today is by defining a complete business process as an 

independent service and invoking it as a separate activity. The fact that the invoked 

activity is really implemented as another process is completely hidden from the 



Semantic Desktop 45 
 

 

parent process, in other words, there is no chance to establish any coupling of 

process instance lifecycles (BPEL Sub-processes, 2009). 

A pipeline may contain multiple calls to SOPA services.  The call results can be then 

coupled together using the internal data management and data manipulation of 

SOPA. For example the example presented in Listing  3.2 shows how the add  and 

multiply  operations of org.example.arithmatics  service are called one after 

another. 

 
1. <pipeline  name="combined"  serialization ="xml" > 
2.  <parameters > 
3.      <parameter  name="first"  type ="xsd:double" />  
4.      <parameter  name="second"  type ="xsd:double" />  
5.  </ parameters > 
6.  <call  id ="firstCall"  service ="org.example.arithmatics"  operation ="add" > 
7.       <parameter >{first} </ parameter > 
8.       <parameter >{second} </ parameter > 
9.  </ call > 
10. <call  id ="secondCall" service ="org.example.arithmatics" operation ="multiply" > 
11.           <parameter >{first} </ parameter > 
12.           <parameter >{second} </ parameter > 
13.  </ call > 
14. </ pipeline > 
 
 

Listing  3.2: Multiple calls to SOPA services 

After processing the pipeline with input parameters 5 and 6 the result would be 

returned as shown in Listing  3.3. 

 
1. <result > 
2.    <firstCall >  
3.       11 
4.    </ firstCall > 
5.    <secondCall > 
6.       30 
7.    </ secondCall > 
8. </ result > 
 

Listing  3.3: Pipeline’s multiple call execution results 

Please note that the name of result nodes are taken from ID attribute of call in the 

corresponding pipeline.  

It is also possible to make nested calls to SOPA services; i.e. the services may be 

chained together to exchange the parameters and results. The example presented in 

Listing  3.4 depicts such situation. 

 



Semantic Desktop 46 
 

 

 
1. <pipeline  name="nested"  serialization ="xml" > 
2. <parameters > 
3.           <parameter  name="input"  type ="xsd:double" />  
4. </ parameters > 
5. <call  id ="parent"  service ="org.example.arithmatics"  operation ="multiply" > 
6.      <parameter  type ="xsd:double" >2</ parameter > 
7.      <parameter > 
8.          <call  service ="org.example.arithmatics"  operation ="add" > 
9.               <parameter  type ="xsd:double" >15</ parameter > 
10.               <parameter >{input} </ parameter > 
11.           </ call > 
12.      </ parameter > 
13. </ call > 
14. </ pipeline > 
 

Listing  3.4: Nested call to SOPA services 

As shown in Listing  3.4 the first service call (see line 5) takes two parameters, the 

first parameter is 2 and the second one is the output of a call to another service. The 

result of calling this pipeline with an input parameter value of 5 is shown in 

Listing  3.5. 

 
1. <result > 
2.    <parent >40</ parent > 
3. </ result > 
 
 

 Listing  3.5: Pipeline’s nested call execution results 

The pipeline plug-in provides a set of tags that allow us to call services based on 

some XPATH-like conditions. For this purpose two conditional structures are 

provided which are “if” and “choose”. In both conditional structure a test condition 

which can be an XPath token (this may also include variable replacement operator) 

will be checked and based on check results the appropriate service will be called. The 

pipeline given in Listing  3.6 shows an “if” structure (see line 5) with test condition 

{input} > 0 . 

 
1. <pipeline  name="nested"  serialization ="xml" > 
2. <parameters > 
3.           <parameter  name="input"  type ="xsd:double" />  
4. </ parameters > 
5. <xsl:if  test ="{input} > 0" > 
6.         <call  id ="parent"  service ="org.example.arithmatics"  operation ="multiply" > 
7.           <parameter >2</ parameter > 
8.           <parameter >{input} </ parameter > 
9.     </ call > 
10. </ xsl:if > 
11. </ pipeline > 
 
 

Listing  3.6: Pipeline’s conditional structure for “if” 



Semantic Desktop 47 
 

 

An example of a pipeline using “choose” structure is given in Listing  3.7. 
 
 
1.  <pipeline  name="nested"  serialization ="xml" > 
2. <parameters > 
3.      <parameter  name="input"  type ="xsd:double" />  
4. </ parameters > 
5. <xsl:choose > 
6.   <xsl:when  test ="{input} > 0" > 
7.     <call  id ="parent"  service ="org.example.arithmatics"  operation ="multiply" > 
8.            <parameter >2</ parameter > 
9.            <parameter >{input} </ parameter > 
10.     </ call > 
11.   </ xsl:when > 
12.   <xsl:otherwise > 
13.     <call  id ="parent"  service ="org.example.arithmatics"  operation ="multiply" > 
14.        <parameter >2</ parameter > 
15.        <parameter >10</ parameter > 
16.     </ call > 
17.   </ xsl:otherwise > 
18. </ xsl:choose > 
19.  </ pipeline > 
 
 

Listing  3.7: Pipeline’s conditional structure for “choose” 

 

Up to now three kinds of parameters for service calls have been introduced: 

• Literals: in this case the relevant parameter value is passed to services directly 

• Pipeline parameter: in this case the parameter value will be replaced with the 

value of pipeline parameter at run-time. 

• Service call parameter: in this case the result of a service call is fed as input 

parameter of another service call 

Now a new type of parameter will be introduced that will have interesting 

applications. This parameter type will extract its value by applying an XPath 

statement to current XML results.  The following example shows such a situation 

that the parameter value is extracted by XPath statement: 

 
1. <call  id ="parent"  service ="org.example.arithmatics"  operation ="multiply" > 
2.    <parameter >{xpath:/result/previous} </ parameter > 
3.    <parameter >{input} </ parameter > 
4. </ call > 
 

Listing  3.8: Pipeline call with XPath-based parameters 

An important benefit of service composition as pipelines is to create new complex 

services based on the existing services. The created pipelines can be called again and 

reused by other pipelines or SOPA components via their names. The provided 



Semantic Desktop 48 
 

 

example of Listing  3.9 demonstrated the reuse of a pipeline in another pipeline. At 

line 4, a call has been made to square  pipeline and then the results are forwarded to 

second parameter of multiply  service.  

 
1. <call  id ="parent"  service ="org.example.arithmatics"  operation ="multiply" > 
2.   <parameter >5</ parameter > 
3.    <parameter > 
4.        <call  id ="parent"  service ="org.sopa.pipeline"  operation ="square" > 
5.           <parameter >6</ parameter > 
6.        </ call > 
7.     </ parameter > 
8. </ call > 
 

Listing  3.9: Pipelines calling another pipeline 

The SOPA framework is equipped with a Web Service component that can capture a 

WSDL file and provide its operations to SOPA environment as pipelines. As a result 

the end-user just needs to drag and drop the WSDL file into the system. SOPA Web 

Service component will then generate the corresponding pipelines for Web Service 

operations and finally the can be called like any other SOPA service. The pipeline 

shown in Listing  3.10 demonstrates a sample of automatic generated pipelines for a 

given WSDL file. 

 
1. <pipeline  name="add"  serialization ="xml" > 
2.   <parameters > 
3. <parameter  name="a"  type ="xsd:string" />  
4. <parameter  name="b"  type ="xsd:string" />  
5.   </ parameters > 
6.   <call  service ="org.sopa.webservice"  operation ="wsCall"  return ="xsd:string" > 
7.      <parameter  name="wsdlLOC"  type ="xsd:string" > 
8.           http://127.0.0.1:8080/axis/HelloWorld. jws?wsdl 
9.      </ parameter > 
10. <parameter  name="serviceName" type ="xsd:string" >HelloWorldService </ parameter > 
11. <parameter  name="portName"  type ="xsd:string" >HelloWorld </ parameter > 
12. <parameter  name="operName"  type ="xsd:string" >add</ parameter > 
13. <parameter >{a} </ parameter > 
14. <parameter >{b} </ parameter > 
15.  </ call > 
16. </ pipeline > 
 

Listing  3.10: automatic generated pipeline from WSDL file 

For many collaborative use cases of SemanticLIFE we need to make calls to other 

desktop systems or expose parts of user information via a service call. For that 

reason, pipelines allow to submit calls to distributed services which are located on 

peer SemanticLIFE systems. For this purpose it is enough to include the IP address 

of the destination system in the service call as shown in Listing  3.11. 

 



Semantic Desktop 49 
 

 

 
1.   <call  service ="at.slife.search@192.168.1.100"  operation ="mailSearch" > 
2.   <parameter >anjomshoaa@ifs.tuwien.ac.at </ parameter > 
3.   </ call > 
 

Listing  3.11: Calling the remote pipeline 

To illustrate and evaluate the proposed approach a business process which has been 

realized using SOPA framework will be presented. In this scenario, the weather 

condition of some cities should be extracted using multiple calls to corresponding 

services. For this purpose, first the listCities  service will be called which is an 

internal service, then the weather-conditions for each city will be queried from an 

external web service and finally the results will be ranked and rendered using an 

XSL style sheet.  

 
1.  <pipeline  name="checkWeather"  serialization ="xswt" > 
2.    <parameters > 
3.  <parameter  name="startDate"  rdf:datatype ="xsd:date" />  
4.  <parameter  name="endDate"  rdf:datatype ="xsd:date" />  
5.    </ parameters > 
 
6.    <call  id ="cities"  service ="org.sopa.webservice"  operation ="listCities" />  
7.  
8.    <xsl:for-each  select ="/result/cities/city" > 
9. <call  id ="city-weather"  service ="org.sopa.webservice"  operation ="getWeather" > 
10.   <pipe:attribute  name="city" >{xpath:cityName} </ pipe:attribute  > 
11.   <parameter >{xpath:cityNmae} </ parameter > 
12.   <parameter >{startDate} </ parameter > 
13.   <parameter >{endDate} </ parameter > 
14. </ call > 
15.   </ xsl:for-each > 
 
16.    <call  id ="my-destinations"  service ="at.slife.profile"  operation ="rankData" > 
17.      <parameter >{xpath:/result/city-weather} </ parameter > 
18.    </ call > 
19.    <transform  stylesheet  = "weather.xsl" />  
20.  </ pipeline > 
 
 

Listing  3.12: A complete pipeline based use case  

3.2.2 Service Bus 

The heart of Eclipse framework is its plug-in and extension point mechanism. A 

particular plug-in can expose extension points where other plug-ins can be connected 

(Eclipse Plug-ins, 2009). A set of basic extension points and corresponding registries 

are provided along with the Eclipse platform for managing, mostly GUI intensive, 

extensions. A common example is ViewsRegistry  for Views. Although different 

third party plug-ins exists for developing web services and deploying to already 

configured servers, but unfortunately Eclipse platform doesn’t support plug-n-play 



Semantic Desktop 50 
 

 

mechanism for web services as it does for Views. Such a mechanism can ease the 

web services development process by shifting the burden of service deployment from 

developers to the services management component. Consequently, service 

developers can focus on the functionality of the service instead of taking care of 

deployment details. 

One part of the SOPA solution is Services Bus offering the extension point for 

service developers to publish their standard Java classes as web services. The 

standard extension point mechanism of Eclipse facilitate visual configuration of 

extensions with the extension provider. During the application start-up, the Service 

Bus loads all the connected services and automatically deploys them using embedded 

instance of Jetty servlet container and Apache Axis for creating and deployment of 

web services. The deployment scripts are created on the fly from the service 

description. Thus developers can, at the same time, benefit from Rich Client 

environment of Eclipse and Java web services using the this uniform and coherent 

mechanism.  

The rationale behind the development of Services Bus is to achieve the vision of 

plug-n-play web services using plug-in and extension mechanism of Eclipse 

platform. First of all an extension-point was configured by following the service 

specification and deployment standards such as WSDL and WSDD. An abridged 

version of the extension point schema is depicted in Listing  3.13. The non-abridged 

version of the schema also includes its alignment with the above mention standards. 

 
<schema targetNamespace ="org.sopa.sbus" > 
   <element  name="service" > 
      <complexType > 
         <sequence > 
            <element  ref ="operation"  minOccurs ="1"  maxOccurs ="unbounded" />  
         </ sequence > 
         <attribute  name="name"  type ="string"  use ="required" > 
         </ attribute > 
         <attribute  name="class"  type ="string"  use ="required" > 
            <annotation > 
               <appInfo > 
                  <meta.attribute  kind ="java" />  
               </ appInfo > 
            </ annotation > 
         </ attribute > 
      </ complexType > 
   </ element > 
 
   <element  name="operation" > 
      <complexType > 
         <sequence > 



Semantic Desktop 51 
 

 

            <element  ref ="parameter"  minOccurs ="1"  maxOccurs ="unbounded" />  
         </ sequence > 
         <attribute  name="name"  type ="string"  use ="required" > 
         </ attribute > 
         <attribute  name="returnType"  use ="required" > 
         </ attribute > 
      </ complexType > 
   </ element > 
 
   <element  name="parameter" > 
      <complexType > 
         <attribute  name="type"  use ="required" />  
         <attribute  name="name"  type ="string" />  
      </ complexType > 
   </ element > 
</ schema> 
 

Listing  3.13: Abridged version of the business services extension-point schema. 

Importantly the Services Bus exposes this extension point whereas the web services 

developers consume it to publish standard Java classes as services (see Figure  3.4 and 

code listing Listing  3.14). Thus the web services could be developed and maintained 

analogous to other Eclipse plug-ins. The Services Bus on the other hand reads 

configuration details of all the connected services during application start-up. It then 

automatically creates the WSDD based deployment script and uses embedded Jetty 

and Apache Axis to complete the task. 

 
<extension  point ="org.sopa.sbus.services" > 
 
<service  name="org.example.arithmatics"  class ="org.example.Arithmatics" > 
  <operation  name="multiply"  returnType ="xsd:double" > 
    <parameter  name="first"   type ="xsd:double" />  
    <parameter  name="second"  type ="xsd:double" />  
  </ operation > 
</ service > 
 
</ extension > 
 

Listing  3.14: Abridged version of a service description as an extension 

 

 

 
Figure  3.4: An example of service extension from the SemanticLIFE project 



Semantic Desktop 52 
 

 

The Services Bus can be seen as the door to the Eclipse based SOPA systems. It is 

responsible for routing the service call requests to the actual connected service. An 

important functionality of Services Bus is to deliver a level of abstraction between 

system services which greatly improves the flexibility of SOPA systems. Thus it 

provides a uniform access layer and transparency to internal and external services. 

Service Call: The services plugged into the Services Bus could be called using either 

the utility classes provided by the Services Bus (see the code listing x) or by using 

Apache AXIS. The former shares the same naming conventions for class and method 

names of the later, and both type of calls return exactly the same results. Additionally 

for local services specifying only their name is sufficient but calling external web 

services requires providing complete end-point URI. 

 
Object[] params = ... 
Call client = new Call(" at.slife.store "); 
Object result = client. invoke(" sparkle ", params); 
 

Listing  3.15: Calling a service plugged into the Services Bus. 

As explained in the previous section, the available services in the SOPA environment 

are routed via the Service Bus plug-in; i.e. all services will be requested from 

Services Bus which is responsible for finding and then invoking the corresponding 

service to do the task. This feature provides a service transparency in the whole 

SOPA environment. As stated earlier the services in SOPA are not limited to plug-in-

exposed services but optionally may include pipelines and external Web Services 

too. As a result the SOPA system brings the service orchestration scenarios to a new 

horizon. The business scenarios developed under Eclipse programming framework 

can combine resources coming from internal or external components via a single 

service routing plug-in (Services Bus plug-in). Figure  3.5 depicts the service 

transparency and the fact that SOPA framework presents a holistic view of all 

available services including pipelines, plug-in services, and also external web 

services. 

 
 



Semantic Desktop 53 
 

 

 

Figure  3.5: Service transparency in SOPA 

 

Plug-in Services Pipelines External Web Services 

Services Bus 
Plug-in 



Web Form Integration 54 
 

 

 

Chapter 4  
 
 
 
Web Form Integration  

 

 

Nearly all human-computer interactions are happening through Input forms which 

are responsible for receiving the user input and sending it to appropriate component 

for further processes. Particularly, a large portion of Internet advances owes the 

human-computer interaction and data exchange via web forms and we are using them 

extensively in our daily activities. Current complex Internet applications demand a 

significant amount of time for development and maintenance of web forms which are 

solely designed for human users. 

Over two decades history of World Wide Web, the Internet has evolved from a 

unidirectional information stream to an enterprise application framework; however, 

the web forms and their structure have remained unchanged. The traditional web 

forms are simple interfaces that aim to transfer data between server side components 

and browser application. An interesting attribute of web forms is that they contain 

atomic elements that can be more efficiently interpreted and processed, compared to 

the text content of web pages.  

Despite the advances in design and implementation of web applications, the human 

interaction with the applications is still a frustrating experience for most of users. 

Every day, we are dealing with some processes that are scattered among different 

web based systems and the only way to run such processes successfully is to manage 

the data flow in the various web forms manually. In most of the cases we need to use 



Web Form Integration 55 
 

 

our previous experiences and knowledge to glue up the different steps of a process in 

our mind. In other words, human should play the role of a smart middleware who 

understands the logic behind the web forms, keeps track of the steps of main process, 

and interchanges the data between diverse sub-processes. In this context, the web 

forms are nothing more than an instant data exchange method with end user. As an 

example consider the typical use case of trip planning that requires interaction with 

several reservation systems, calendar items, and payment systems. In order to 

complete this process, the complex flow of events should be followed in a self-

administered procedure.  

Another issue that makes the web form interaction even more difficult is the usability 

issues. The fact is that most of web forms are being designed by programmers whose 

center of attention is undertaking the technical aspects of web applications and the 

usability and accessibility issues are not their main concern. 

In this chapter, two novel approaches for overcoming the web form integration 

namely Semantic XForms and Web Form Services are presented and some of the 

corresponding use cases are discussed with more details.   

4.1 Semantic XForms 

The W3C solution for modernizing the web forms is called XForms with the mission 

to address the patterns of intricacy, dynamism, multi-modality, and device 

independence that have become prevalent in Web Forms Applications around the 

world (Forms, 2009). XForms offers separation of the form's purpose from its 

presentation and allows processing of data to occur using a declarative model 

composed of form elements for data calculations and constraints. It is also equipped 

with a view layer composed of intent-based user interface controls that are bound to 

the model. Finally XForms provides an imperative controller for orchestrating data 

manipulations, interactions between the model and view layers, and data 

submissions.  Thus, XForms accommodates the reuse of form component, fosters 

strong data type validation, eliminates unnecessary round-trips to the server, offers 

device independence and reduces the need for scripting (XForms, 2009). 

Additionally, XForms offers a browser-neutral approach that concentrates on the data 

model first and then as a second step renders the data model for different 



Web Form Integration 56 
 

 

applications. The primary application of this concept is for interacting with end-users 

who are using various tools to access the web forms. In the XForms approach, forms 

are comprised of a section that describes what the form does, called the XForms 

Model, and another section that describes how the form is to be presented (XForms, 

2009).  

An XForms model is an XML structure that is included in the header part of the 

XHTML document and its elements are conforming to the documents' name spaces. 

Listing  4.1 shows an XForms example that includes a model for typical registration 

information. This model is then bounded to presentation components such as select 

and input fields. Furthermore some restriction can be added to each form elements 

and finally the submission element specifies target of the submitted data.  

 
<html  xmlns ="http://www.w3.org/1999/xhtml"   
 xmlns:ev ="http://www.w3.org/2001/xml-events"   
 xmlns:conf =http://sample-conference.com/registration  
       xml:lang ="en" > 
<head > 
 <title >XForms Sample </ title > 
 
 <model  xmlns ="http://www.w3.org/2002/xforms" > 
    <instance > 
      <conf:registration  as ="register" > 
        <conf:reg-type  />  
        <conf:first-name  />  
        <conf:last-name  />  
      </ conf:registration > 
    </ instance > 
    <submission  action =http://sample-conference.com/register  
                method ="post"  id ="submit"  />  
    <bind  nodeset ="/conf:registration/conf:reg-type"  required ="true()" />  
    <bind  nodeset ="/conf:registration/conf:first-name"  required ="true()"  />  
    <bind  nodeset ="/conf:registration/conf:last-name"  required ="true()"  />  
 </ model > 
</ head > 
<body > 
    ... 
    <group  xmlns ="http://www.w3.org/2002/xforms" > 
        <select1  ref ="/conf:reg-type" > 
          <label >Select Registration Type </ label > 
          <item > 
              <label >Member</ label > 
              <value >member</ value > 
          </ item > 
          <item > 
              <label >Student </ label > 
              <value >student </ value > 
              <message  level ="modeless"  ev:event ="xforms-select" > 
              Please send a copy of your Student Ca rd per fax. </ message > 
          </ item > 
        </ select1 > 
         
        <input  ref ="/conf:first-name" > 
          <label >First name </ label > 
        </ input > 



Web Form Integration 57 
 

 

         
        <input  ref ="/conf:last-name" > 
          <label >Last name </ label > 
        </ input > 
         
        <submit  submission ="submit" > 
          <label >Register </ label > 
        </ submit > 
    </ group > 
    ... 
  </ body > 

</ html > 

Listing  4.1: Anatomy of XForms  

 

The instance  element of XForms model essentially holds the skeleton of XML 

document that gets updated as the user fills out the form. It gives the author full 

control on the structure of the submitted XML data, including namespace 

information. When the form is submitted, the instance data is serialized as an XML 

document and sent to specified target in the submission  element. In the given 

example an instance of submitted data will look like the Listing  4.2. 

 
<conf:registration > 
 <conf:reg-type >student </ conf:reg-type > 
 <conf:first-name >Amin</ conf:first-name > 
 <conf:last-name >Amin</ conf:last-name > 
</ conf:registration > 
 

Listing  4.2: XForms’s submitted data 

With the emergence of complex business processes, there is a growing need to 

embed the web forms into user's information context. In other words the generic web 

forms should be personalized according to user history and context information. The 

W3C' XForms standard is a candidate to realize this goal. In this section a novel 

approach will be presented that focuses on exploring the role that the XForms model 

can play to connect an XHTML form to other available services and models by using 

Semantic Web technologies.  

For this purpose the Semantic XForms concept is introduced that uses the official 

definition of data model’s namespace in order to attach the model elements to a 

known ontology. So every element is specified with its fully qualified URI and this 

URI can be selected to be identical with the name space of any given domain 



Web Form Integration 58 
 

 

ontology.  For instance the first name item of the data model in Listing  4.1, 

document has the URI of http://www.sample-conference.com/first-name  

which in context of an ontology with the same name space, will be completed with 

all other required information and rules about first name concept.  In other words the 

form elements are mapped to an ontology via the XForms embedded model. As soon 

as the form elements are bounded to the ontology space, the application would 

benefit from all advantages of Semantic Web technologies. For example the XForms 

data model can be coupled to semantic description of some business services to 

facilitate the information integration of business services. Alternatively the XForms 

data model can benefit the user ontology and feed the web forms with useful 

information from personal services which are supported by a Semantic Desktop 

solution such as SemanticLIFE. The semantic coupling with personal services would 

be especially important for people with memory and learning impairments where the 

“lifetime memories” of Semantic Desktops can help them to recall and track the 

interconnection of events and information items. 

Figure  4.1, depicts how XForms data model is used to connect the form elements to 

business or personal services. 

 

Figure  4.1: XForms's Service integration methodology 

 

In the rest of this section the possible scenarios that have the potential to be 

addressed by Semantic XForms concept will be explored. 

 



Web Form Integration 59 
 

 

3.1.1 Web Application Design 

Web forms contain atomic elements that can be better processed in comparison to 

web pages and natural text. Elements that appear on a typical form usually convey a 

logical relationship between elements. For example if a web form contains a city 

name and country name, there is a high likelihood that the city should be located in 

the specified country. Traditionally, such relation can be identified only by human 

users and the semantic of element relationships cannot be interpreted by computers. 

The logic behind a web forms is a determining factor for programmers to check the 

data consistency before passing the data to backend business processes. With the 

current advances of Semantic Web technologies, the form elements and their 

relationships can be described in a machine processable way which turns them to 

usable resources in business processes. In other words the form elements are mapped 

to ontologies via the XForms embedded model and this will enable the system to 

utilize semantic processes on form elements. 

An interesting use case of this style is to apply the validation services to form 

elements via appropriate web services that are also annotated and described by the 

same domain ontology. The domain ontology which plays an important role in the 

presented solution, should include the description of all form elements and more 

importunately the relationships between them. In a typical web application, the basic 

ontology can be extracted from the database schema and then completed by system 

designer.  

After mapping the XForms's data model to domain ontology by means of Semantic 

XForms, the domain ontology may support the programmer in the following ways: 

• First of all the domain ontology can specify the checks that can be done based 

on those elements that appear on the web page and their relationships. For 

instance if the page contains a country name and a city name as parts of user's 

address, then the city should be located in the specified country. This result is 

inferred from the ontology predicate in the domain ontology that connects a 

city to country with a locatedIn  relationship.  

• The domain ontology can also be used to find the appropriate validation 

services from semantically-enabled service repository. In this approach the 



Web Form Integration 60 
 

 

required logical tests that should be applied to form elements will be deduced 

from the domain ontology. As the next steps the service repository will be 

searched for the services that can fulfill the logical tests and the chain of such 

services will outline the form validation process that might force the user to 

correct the data before submission.  

To clarify the proposed method, consider a typical conference registration form that 

is shown in Figure  4.2.  

 

Figure  4.2: Domain ontology connecting the form elements to validating services 

The relationship and logic behind the elements of registration form can be deduced 

from domain ontology.  

Figure  4.3 shows the domain ontology that has been used for the registration use 

case. According to domain ontology city name should be located in the specified 

state and country or the telephone and fax number should match the country and city 

codes. 



Web Form Integration 61 
 

 

 

Figure  4.3: Domain ontology and element relationships 

These logical relationships can be detected from the given domain ontology and 

consequently following set of logical tests is produced:  

• city should be located in specified state 

• state should be located in specified country 

• the syntax of telephone number should match the city and country codes 

It is supposed that the corresponding services to perform these checks are either 

available as web service or as a well defined API. Moreover the validation services 

should be also described using the domain ontology. So to generate the validation 

component, system will consult the repository of validating services and find the 

relevant functions. Then these functions will be composed into one validating 

procedure that calls the validation web services one after another to validate the 

submitted web form data. The resulted validation procedure can be then either:  

• added to web form as an Ajax web service call that makes the checks during 

the user-interaction with  the web form. Or  

• implemented as a server-side validation function that is invoked as soon as 

the submitted data arrives.  

It is important to note that the resulted validation procedure can be automatically 

regenerated according to the latest configuration of form elements. In the context of 

the conference registration use case, adding a new form element for Fax number, 

should add the corresponding check for fax number to the validation procedure. 



Web Form Integration 62 
 

 

According to domain ontology the fax number is assumed to be a Land Line (see 

Figure  4.3) and as a result the telephone checking web service can be also used for 

checking the validity of fax numbers.  

This scenario is also true when a field is removed from the web form. So for example 

by removing the city name from registration form the validation function should be 

changed and the telephone and fax numbers will be only checked to be valid in 

combination with selected country. Additionally the city-state checking will not be 

necessary anymore and corresponding check will be removed from validation 

function.  

3.1.2 Personal Service Integration  

Another interesting aspect of Semantic XForms that will be explored in this section 

is the role that it can play in the integration of desktop information (user's world) 

with other business processes. More precisely, the Semantic Web should bridge the 

gap between user information and external processes by mapping the user resources 

to those needed by a specific web form. As an example consider an online shopping 

system that requires the payment information from the user. Such data should be 

provided by each shopping (or once per shopping system); however, this could be 

avoided by integrating the user information which reside on the user's Semantic 

Desktop.  

Semantic XForms may facilitate the integration of user profile information into web 

forms via the shared common understanding of form elements and user profile items. 

In this context the form elements that are mapped to domain ontology via XForms 

model, will be queried and their corresponding value will be extracted from user 

profile. For instance a required first-name  element in a web form is automatically 

connected to the user’s first name in his/her profile and user does not need to fill it 

out many times in different forms.  

The required form elements are not always a primitive value as indicated in previous 

example, but in some cases the extraction of element values involves using 

appropriate personal services or applying the semantic inferences. An example of 

such use cases is feeding the hotel reservation form with the preferred location and 

correct start and end date that match a specific conference event. In this case the 



Web Form Integration 63 
 

 

user’s calendar and its associated personal services will be contacted for finding the 

suitable hotel and carrying out the reservation process.  

3.1.3 Web Form Accessibility 

The current complex Internet applications are not easy to use for people with 

cognitive impairments and they usually use the Internet as a publication platform. 

The human interaction issues gets even more complex when the web forms should be 

used by people with special needs who have their specific limitation and 

requirements. The Internet as the widest medium for business and communication 

can be effectively adapted to the requirements of differently-abled people.  

To change this state, the web forms, as the basic block of Internet applications, 

should be made accessible for people with varying levels of cognitive abilities, 

especially for severely challenged users in this category. New technologies such as 

the Semantic Web and XForms can be combined to make the Web applications more 

accessible for these people. In this section, the possible application of XForms in 

combination with the Semantic Web technology is explored and a solution model for 

providing accessibility for people with cognitive and visual impairments is presented.   

Elements that appear on a typical web form usually convey a kind of logical 

relationship between the elements. These relationships can be easily understood and 

modeled by a normal user during the interaction with a specific web form; however, 

the users with different type of impairments (e.g. Visual, memory and cognitive 

impairments) may not easily conceive those relations. There might be many causes 

that disable such user to capture this model. For example, some users with vision 

impairments may use software tools that magnify a small area of the screen and show 

it on the whole screen. As a result, the screen area visible to the user will be limited 

and the logical connections of a specific field under focus with surrounding fields 

cannot be identified by the user. As another example, consider the case of a user with 

cognitive impairments that cannot clearly connect the items together or forgets the 

previous items when focusing on part of a Web form. The capture of form logic is 

especially important for people with cognitive impairments who are not able to 

detect the logical relationship between elements or keep in mind longer chain of 

relationships, and consequently cannot use web forms efficiently.  



Web Form Integration 64 
 

 

The user with normal cognitive abilities is able to combine the application's logic and 

goals with his / her experiences and knowledge to accomplish the use of Internet 

application; however, the users with severe cognitive limitations either face 

difficulties in identifying the data model behind the web form, or cannot map the 

model to their knowledge models. Also relating the page contents with lifelong 

memory of end users which might be of the great advantage for memory impaired 

people, is not possible in many cases. 

Semantic XForms is an attempt to bridge the gap between user's world (Semantic 

Desktop and Personal Services) and global world (global web services, business 

processes, etc.). In this section some possible solutions based on XForms and 

Semantic Web are presented and the feasibility of implementation of corresponding 

use cases is discussed in details.  

Similar to the use cases of the previous sections, the Semantic XForms concepts can 

be again helpful to address the accessibility use cases by applying the appropriate 

semantic mappings between form elements and the domain ontology. So for example 

in a typical web form that requires both city name and country name, the given city 

name should match the selected country. This relationship which has already been 

captured in data model ontology can be combined with the user ontology to find out 

the appropriate rendering option according to user's cognitive abilities. A possible 

rendering solution can be providing a color guide map and coloring the relevant 

fields with same color. Another solution is to provide additional help text to the 

relevant fields that implies the relation of a field with other fields on the web form.  

Figure  4.4 shows how XForms data model can be combined with data model and 

user ontology that will empower a customized rendering of form elements. 



Web Form Integration 65 
 

 

 

Figure  4.4: Xform's Model Rendering methodology 

Beside the element dependency visualization that is discussed above, there is another 

type of visualization that is dealing with visual impairment issues. The latter type of 

visualization, adopt the web pages according to end user's capability and restrictions. 

For example to overcome the colorblindness of the end user, it is required that some 

specific color get rendered differently. The rendering process can also be automated 

using the user's profile and applying the inferred rules to web pages. An interesting 

use case of SemanticLIFE system was dedicated to realization of this scenario where 

the ontologies formally describe the mapping information about user’s impairments, 

and the available interface characteristics (Shuaib, 2006)( Shuaib, 2007). Especially 

important for such use cases, is the semantic profile of the end-user (people with 

cognitive or visual impairments) that includes the user’s physical and perceptual 

capabilities as well as the user preferences. 

Dealing with cognitive problems, the proposed solution has among others to deal 

with the linguistic vocabulary of the user which may not be very broad. That might 

be because of learning deficit or memory problems. Also, it is challenging for such 

types of users to associate a concept with another, for example, natural association of 

cities with countries, and gender with title on the input forms. The XForms can adopt 

themselves with the software applications that use them and present the forms 

according to user’s requirements. This well-known aspect of the XForms provides a 

great possibility to make web forms more accessible for users with special needs. 

The presented Semantic XForms solution can also provide customized help texts 

based on the user's cognitive level and user's history.  



Web Form Integration 66 
 

 

Another issue that should be considered for people with different levels of memory 

impairment is lifetime data consistency. In the long periods of time a memory 

impaired persons might forget the detail of their interactions with a service provider 

and submit some data that is in conflict with previously provided data. For example, 

user's name or address might be spelled differently (e.g. Special characters in 

European languages) and it can cause ambiguities and inconsistencies at the backend 

systems. An XForms data model that is mapped to a personal ontology can help to 

add a consistency check before submitting the data. So the user's history is consulted 

to avoid such problems.  

Moreover, similar Internet applications usually require a common set of data that 

should be provided by the end-user. For example to register in an online shop, a user 

needs to provide the payment information, the delivery address, etc. The Semantic 

Desktop can help the user by auto completion of common fields. Again the XForms 

data model that is mapped to user ontology can be used to query the Semantic Store 

and extract the required information. The auto completion web forms using the user's 

profile or personal services will significantly ease the web form completion for 

people with memory, cognitive or motor impairments. 

XForms as the next generation of web forms has attracted the attentions and many 

scenarios can be realized more efficiently using that. In this section, the feasibility of 

combining the XForms and ontologies was presented in order to leverage the web 

form semantic and realize advanced information integration scenarios. To our belief, 

the emergence of Semantic PIM systems like SemanticLIFE plus Semantic XForms 

mappings makes the integration of personal desktops into real world business 

processes, conceivable.  

4.2 Web Form Services 

As explained in the previous section the web forms play an important role in human-

computer interactions; however, there are two basic obstacles that should be defeated 

first in order to utilize the full power of web forms: 

• The semantic behind web forms is yet understood and used by human users 

based on their previous knowledge and experiences 



Web Form Integration 67 
 

 

• The business processes that use scattered web forms to exchange the required 

data are running manually and depend on human actors. 

The Semantic XForms solution that was presented in previous section tackles the 

first obstacle and tries to exploit the semantic of web forms and embed its 

information into user context. In order to solve the second problem, the web forms 

and the services behind them should be turned into well-defined pieces of 

functionality. In this way the web forms can be employed by more complex 

processes and get executed automatically without human intervention. 

To clarify the Web Form Service concept consider the simple scenario of getting the 

latest stock quotes of Google in Euro currency. Although this service is one of the 

most primitive services of stock exchange programs and the result can be acquired 

gracefully from one of service providers in this field, we assume that calling the 

relevant web forms is the preferred approach for a specific end-user. It is important 

to note that there are numerous web forms whose services are not as simple as the 

proposed scenario and no straightforward way for calling their functionality is 

available.  

Apparently the proposed problem can be simply answered in two steps. As step one 

the Google Finance page can be queried for Google Inc. stock quotes. The result of 

this query is the latest stock quote of Google in U.S. Dollar. Figure  4.5 shows the 

Google Finance page and the query results after submitting the query for term 

Google.  

 

Figure  4.5: Google Finance service for latest stock quotes 

As the next step the result of first step should b converted to Euro. This task can be 

also done using a currency conversion service such as Yahoo Finance. Figure  4.6 

shows the web form of Yahoo Finance that accepts the input currency, output 



Web Form Integration 68 
 

 

currency, and the amount to be converted in order to calculate the amount in target 

currency.  

 

Figure  4.6: Yahoo Finance service for currency conversion  

In the process of using web forms there are some common flow of standard steps that 

will be interesting for the proposed solution:  

• Step 1: browsing to the URL that contains the required web form  

• Step 2: entering the input values into the web form. In the proposed scenario, 

to fulfill this step for the Yahoo Finance page, the input currency should be 

set to U.S. Dollar, output currency to Euro, and input amount to the given 

amount. Finally the corresponding form should be submitted. 

• Step 3: extracting the results from resulting page. For the proposed scenario 

the result of Google Finance query will be extracted from the resulting 

HTML page.  

A human user can follow these steps one by one and transfer the required values to 

the other web forms or service; however, a more generic view of the proposed 

process shows that this process might also get automated. In this regard and to extend 

the footprint of web forms, we have implemented a novel component to translate the 

web forms to a plain formal Web Service that can be described semantically and 



Web Form Integration 69 
 

 

integrated in more complex solutions. This web services are referred to as Web Form 

Services in the rest of this section. Similar to normal web services, the Web Form 

Services also present their definitions to the end users via WSDL convention. 

Furthermore the end-users will not be aware of the form-based nature of these 

services and will merely see them as formal web services. 

It is interesting to note that the Web Form Services do not necessarily needs an input 

parameter and may simply return some values when they are called. For example a 

simple weather web service will return the weather of a default location for each 

received call and requires no input parameter. The equivalent of this situation for 

Web Form Services happens when a web page is simply browsed and its content 

contains some useful information that should be extracted.  An example of such web 

pages is the extraction of latest news from a university website. This kind of data 

extraction methods which is also known as web scraping or web harvesting is a 

specific case of Web Form Services; however the Web Form Services in addition 

provide a web service interface for extracted data which makes the reuse and 

integration of the resulting data more convenient. 

This idea is especially helpful in automating the tasks between multiple web 

applications in a formal way. It is now very common in the big enterprises to use 

web applications for different systems and usually there is no unified system that can 

take over all the tasks. So the enterprises are now encountering a bunch of different 

web applications such as accounting, personnel management, etc, and each 

application is responsible for part of the business activities. In use cases requiring 

data records that are managed by different applications, end users should either wait 

for some complex backend integration from software architects, or manually transfer 

the data between applications to get the required results. In this context Web Form 

Services provide a unified way of describing the services and reusing them for 

different business activities. 

Another interesting aspect of Web Form Services is that, they can be mixed with real 

web services in context of business processes. For instance the proposed scenario of 

this section is solved using two Web Form Services for Google Finance and Yahoo 

Finance. These services can be combined in a business process that calls them one 

after another to fulfill its goals. Figure  4.7 shows such a business process that 



Web Form Integration 70 
 

 

invokes these two Web Form Services and uses the results to calculate the volume of 

investments in Euro currency. The Investment calculator service in this business 

process, simply multiplies the stock quote of the given company by number of shares 

that is taken from another service that can be an instance of a personal service. 

 

Figure  4.7: A business process that uses Web Form Services 

4.2.1 Web Form Service Architecture 

In this section an architectural overview of required components for realizing Web 

Form Services (WFS) is presented. These components support the process of 

translating web forms to formal web services and are implemented as server-side 

components. Figure  4.8 depicts different components of WFS server. 

 



Web Form Integration 71 
 

 

 

Figure  4.8: Web Form Service architecture overview 

The core element of WFS architecture is its configuration files that define the 

necessary interactions between system and a specific web form to achieve the 

required results.  The configuration file captures such interactions in a formal way 

and at runtime the system will use these documented interactions to simulate the 

actions of a human user.  

The configuration files are also used to generate the definition of corresponding web 

services and presenting them as WSDL files that include input and output 

parameters. Listing  4.3 shows a typical Web Form Service configuration which 

defines the currency converter web service using Yahoo finance services. The 

configuration file defines one method for each data exchange process with the target 

web form. The methods are then exposed as formal web service operations in the 

corresponding WSDL file and can be called by any web service client program.  

Each method is composed of a sequence of actions which describe the precise user 

interactions with target web form (see point 3 in Listing  4.3). For instance in 

Listing  4.3, after browsing to the start URL (defined in point 1), the system should 

perform some actions such as:  

• puttext  : for filling out the text box of amount 



Web Form Integration 72 
 

 

• select  : for selecting the appropriate currency and setting “from currency” 

and “to currency” fields.  

• click  : for simulating the click on the “calculate” button. 

• getvalue  : to extract the selected value from resulting page. 

For selection of the appropriate HTML element in order to perform required actions, 

the XPath query language has been used.  

 
<?xml  version ="1.0"  encoding ="UTF-8" ?> 
<service  name="CurrencyConverter"   
         xmlns ="http://www.tuwien.ac.at/serviceenabler/service" > 
 

<login  startUrl =http://de.finance.yahoo.com/waehrungsrechner  � 
 validTime ="604800" > 
  < actions  />  
</ login > 
 

<method  name="convert"  validTime ="28800" > � 

  < actions > � 
    < puttext > 
 <xpath >//input[@name="amt"] </ xpath > 
 <argname >amount </ argname > 
    </ puttext > 
 
    < select > 
 <xpath >//select[@name="from"] </ xpath > 
 <argname >from </ argname > 
    </ select > 
 
    < select > 
 <xpath >//select[@name="to"] </ xpath > 
 <argname >to </ argname > 
    </ select > 
 
    < click > 
 <xpath >//input[@value="Umrechnen" and @type="submit"] </ xpath > 
    </ click > 
 

    < getvalue  name="value" > � 
 <xpath >//div[@id='converter']/table/tbody/tr/td[1]/table[3 ]/ 
              tbody/tr/td/table/tbody/tr[2]/td[5] 
 </ xpath > 
    </ getvalue > 
 
    < getvalue  name="date" > 
 <xpath >//div[@id='converter']/table/tbody/tr/td[1]/table[3 ]/ 
              tbody/tr/td/table/tbody/tr[2]/td[3] 
 </ xpath > 
    </ getvalue > 
  </ actions > 
</ method > 
</ service > 
 

Listing  4.3: Web Form Service configuration for currency convertor 



Web Form Integration 73 
 

 

Another component of WFS server is the caching component that is responsible for 

keeping track of results and reusing them if possible. Although the WFS are 

behaving link formal web services from end-user’s point of view, but they are a little 

bit slower. This is because of the fact that Web Form Services needs to negotiate 

with the corresponding web form and follow the steps which are specified in 

configuration file one by one. To improve the competence of WFS, the caching 

mechanism will try to reuse the previous results for answering new service calls. 

This feature is realized by a timeout attribute which is added to each defined method 

in configuration file. For instance in the currency convertor configuration file  results 

of convert method can be reused within the specified timeout period which is set to 

eight hours and will get outdated after that (see Listing  4.3, point 2). 

 The web service view of WFS is supported by the “Web Service Interface” 

component that reads the configuration files as input and offers a web service 

operation for each defined method of web form. After receiving each call, the web 

service interface will load the corresponding configuration file and delegate the task 

to WFS runner component. The runner component uses the HtmlUnit (HtmlUnit, 

2009) library which is a GUI-Less browser for Java programs. It models HTML 

documents and provides an API that allows programs to invoke pages, fill out forms, 

click links, etc.  

A major drawback of approaches such as WFS that use web harvesting techniques to 

achieve their goals is that the web pages that host the required data might change 

their content or presentation style and this will invalidate the web harvesting 

procedure. A workaround that has been applied in WFS architecture is a verification 

mechanism that checks the document structure before web harvesting action. For this 

purpose, the configuration file is equipped with some defined tests that must be 

verified on the target page first to ensure that the web page structure has not been 

changed since the definition of method configurations. Listing  4.4 shows such 

verification test (see point 2) that extracts a node value from web page and checks it 

against a static value. In case the verification fails, the corresponding WFS will get 

invalidated and service provider is notified to fix the configuration file by 

considering the changes of target web page.  



Web Form Integration 74 
 

 

Another challenge of WFS approach is that many web pages with useful information 

and important web forms are protected by appropriate authorization and 

authentication mechanism. Thus to enable the WFS to access protected pages and 

extract required data, the WFS server should also manage the authentication issues. 

For this purpose the WFS configuration file includes a login section that submits the 

username and password to the target platform and receives a valid session for 

authenticated user. Using this session, WFS server will be able to access internal 

pages of web application and follow the commands of configuration file to feed the 

web service interface.  

Similar to WFS caching mechanism for recent calls, the authenticated sessions are 

also cached to ease multiple calls to the internal pages of the same web application. 

In this regard, each authenticated session will have a time-to-live that is specified by 

validTime  attribute of login section in configuration files (see point 1 in 

Listing  4.4). Since the authentication tokens are directly stored in configuration file, 

the proposed method is not that secure and more elaborated mechanisms should be 

used for this purpose. As the main concern of the WFS approach is the data 

integration, we have used this simple authentication method to demonstrate the 

feasibility of such solution. There are many best practice solutions that can replaced 

the proposed approach and provide a better security solution.   

The WFS configuration file also defines the output value that should be returned by 

corresponding web service invocation. The return value of a web service can be an 

atomic value or a collection of data records. Listing  4.4 shows a real world example 

for the latter case, where the return value is the list of courses of a specific student 

(with defined authentication information) that is extracted from the TUWIS++ (the 

student information system of Vienna University of technology). The extracted 

information is a collection of courses that includes course title, course hours, and 

course link. The web service interface component of WFS server will translate the 

specified collection to equivalent XML data and will include it in the web service 

responses.  

 
<?xml  version ="1.0"  encoding ="UTF-8" ?> 
<service  name="TUWIS"  
xmlns ="http://www.tuwien.ac.at/serviceenabler/service" > 
 

<login  startUrl ="https://tuwis.tuwien.ac.at/"  validTime ="600" > � 



Web Form Integration 75 
 

 

  < actions > 
 
    < puttext > 
 <xpath >//input[@name="mn"] </ xpath > 
 <argname >matrnr </ argname > 
 <constantvalue >0123456 </ constantvalue > 
    </ puttext > 
 
    <puttext > 
 <xpath >//input[@name="pw"] </ xpath > 
 <argname >password </ argname > 
 <constantvalue >********** </ constantvalue > 
    </ puttext > 
 
    < click > 
 <xpath >//form[@name="mnrform"]//input[@type="submit"] </ xpath > 
    </ click > 
  </ actions > 
</ login > 
 
<method  name="tuwisCourseList" > 
  < actions > 
    < click > 
 <xpath >//a[. = "Abonnierte LVAs "] </ xpath > 
    </ click > 
 

    < verify > � 
      < xpath >//table//th[5]/a </ xpath > 
      < expected >Titel </ expected > 
    </ verify > 
 
    < gettable  name="lvas" >  
 <column > 
   <name>Titel </ name> 
   <xpath >//table//td[5] </ xpath > 
 </ column > 
 <column > 
   <name>Stunden </ name> 
   <xpath >//table//td[6] </ xpath > 
 </ column > 
 <column > 
   <name>Link </ name> 
   <xpath >//table//td[5]/a/@href </ xpath > 
 </ column > 
    </ gettable > 
  </ actions > 
</ method > 
</ service > 
 
 

Listing  4.4: Web Form Service authentication  



Semantic Mashups for Enterprise 76 
 

 

 

Chapter 5  
 
 
 
SEMANTIC MASHUPS FOR ENTERPRISE 

 

As explained in the previous chapters the Semantic Web and Mashups can provide a 

solid basis for many interesting applications and boost each other. The Mashup 

support for Semantic Web has come into view via the ad-hoc mashups that on one 

hand connects to the preconfigured information resources and processes the data of 

these resources and on the other hand maps its context data to the relevant domain 

ontology. In other words, instead of embedding the semantic meaning to the web 

content, the semantic is attached to relevant content via mashups in a dynamic and 

loosely coupled manner. Today, there are a handful of projects such as Google 

Sidewiki (Google Sidewiki, 2009), Dapper (Dapper, 2009), and Lixto (Lixto, 2009) 

that follow this approach to extract and enrich web page information; however in 

most of the cases the process remains at simple data extraction and text annotation 

level and semantic aspects are not covered completely. For example the Google 

Sidewiki which is a browser sidebar and has been released recently, lets users to 

contribute and read information alongside any web page. Google Sidewiki does not 

provide any semantic support at the moment and just aims to use the power of crowd 

to enrich metadata of web pages. The interesting part of this approach is the free 

annotation of page content which may overlap each other. In other words part of the 

page content can be annotated differently by different end-users based on their target 

applications and use cases. Also the quality of user annotations will be evaluated by 

crowd and better annotations appear on top of the list. Figure  5.1 shows an example 



Semantic Mashups for Enterprise 77 
 

 

of Google Sidewiki that adds some description to parts of my home page that are 

related to the dissertation topics.  

 

Figure  5.1: Google Sidewiki example 

In near future, the Mashup support for Semantic Web will play an important role in 

realizing the Semantic Web goals and transforming the current web to an information 

space that can be interpreted and used by machines for advanced use cases.  

The other facet of relation between Mashups and Semantic Web is the support that 

Semantic Web and ontologies can provide for Mashups to facilitate the creation of 

Mashups for novice users. This application of Semantic Web has its roots in 

Semantic Web Services that are aiming to automate service discovery and 

composition without human intervention. The basic difference between Semantic 

Web Services and Semantic Mashups approaches is derived from their different 

target users. The Semantic Web Services are mainly managed and used by IT experts 

who are aware of underlying data structures and corresponding services; however, 

the Semantic Mashups target group is novice users who need to combine the Mashup 

Widgets for their specific purposes (Hoyer, 2009). This issue is especially important 

for creation of Enterprise Mashups that always involve programming and include 

awareness of workflow. Enterprise mashups usually depend on some server-side 



Semantic Mashups for Enterprise 78 
 

 

components and compete with data integration and service orchestration technologies 

such as BPEL and Enterprise Service Buses (ESBs). In Semantic Mashup context, 

these server-side components are described by appropriate domain ontology that 

eases the composition of mashup widgets and creating new mashups.   

One of the major drawbacks of Mashup based solutions is the fact that such solutions 

are fragile and not as stable as formal business process. To provide a solid basis for 

more serious business application, the gap between mashups and well established 

BPEL solutions should be covered. In this chapter a novel approach for bridging this 

gap will be provided which enables the end user to benefit from simple service 

composition of Mashups and at the same time to manage and control the process by 

stable business process engines. 

5.1 Semantic Mashup Use Cases 

Mashups provide a paradigm to describe the user-defined service compositions and 

data resources as pipelines. It enables the end user to use existing data resources and 

make customized data integrations for user-specific scenarios. The result will be a 

new data resource that can be again reused by other Mashups as a data resource. By 

applying the Semantic Web concepts the mashups will have a machine-

understandable description and this will enable the end-users to use the services and 

also the composed mashups easily and efficiently. 

In this section the two interesting applications of Semantic Mashups and its added-

value to different uses cased will be presented. These selected use cases that have a 

big potential for exploiting Semantic Mashup concept are:  

• Semantic Mashups support for Architecture, Engineering, and Construction 

(AEC) fields 

• Semantic Mashup Support for Personal Service integration 

5.1.1 AEC Use Case 

The Architecture, Engineering and Construction (AEC) industry is composed of 

multiple knowledge domains that are formed corresponding to the needed skills and 

professions. Sharing and exchanging knowledge is the key factor to success in such a 



Semantic Mashups for Enterprise 79 
 

 

collaborative environment; however the distributed nature of AEC knowledge has 

lead to knowledge gaps between AEC related domains. Each domain has its own 

tools and applications and the data exchange between domain applications is not 

straightforward. In the other words the inter-domain communication is done only by 

the knowledge of expert building constructors (Shayeganfar, 2009). The vital need 

for more efficient data integration in Architecture, Engineering and Construction 

domains has forced the emergence of new data integration methods that can smartly 

share the building information among the stakeholders. 

In this context Mashups can be considered as a business enabler in AEC domain that 

has the capability to cross the borders of different AEC knowledge domains and ease 

the creation of new situational solutions for various scenarios.  

As an example consider the use case of energy simulation for the specific area of a 

building. For this purpose the end-user may create a situational solution based on 

some existing elementary AEC web services and widgets such as energy simulation 

web service, weather web service, and zone selector.  

Figure  5.2 depicts this situational solution where zones and building location are 

extracted from building model widget and passed to appropriate web services. 

Without the Mashup solution, users should deal with complexity of parsing the 

building model, extracting zones and building location, and finally implement the 

corresponding web service client to communicate with required web services. All the 

above mentioned tasks can be transparent to user by creating a rich set of elementary 

services. Accordingly the user community may create and share new mashup 

services that can be reused in other mashups.  

 



Semantic Mashups for Enterprise 80 
 

 

Figure  5.2: Mashup solution for energy smulation 

 

Another issue that can assist the end-users to create mashups more efficiently and 

easily is the application of Semantic Web to mashup widgets. Similar to Semantic 

Web services, mashups can also benefit the Semantic Web and ontologies to describe 

the service profile, process model, and service grounding (OWL-S, 2009). This will 

enable the end-users to query and discover the appropriate services and properly 

compose them in their situational solution based on the service’s inputs, outputs, and 

preconditions. In the context of AEC domain, the process model of a widget can be 

created based on Semantic Web service ontologies such as OWL-S and the proper 

domain ontology which in our case would be the Industry Foundation Classes (IFC) 

ontology. Figure  5.3 shows how the mashup widget input and output ports are 

mapped to IFC ontology which includes the proper description for all AEC related 

concepts such as temperature, humidity, etc.  

 

Figure  5.3: Mashup widget description using IFC ontology 

Using the semantic definition of a widget that includes proper ontology mappings for 

input and output parameters, end-user would be notified about candidate input ports 

that can accept the results of selected output port. In the proposed scenario, the user 

notification is done by highlighting the candidate target ports. Figure  5.4 

demonstrates the case when Temperature field of weather web service widget has 



Semantic Mashups for Enterprise 81 
 

 

been selected. The mashup editor will then highlight the input ports of other widget 

that have a matching data type.   

It is also important to note that, in some cases the comparison of data types would 

not be enough and a more sophisticated widget annotation is needed. As an example 

consider the SetPoint port of the cooling system in Figure  5.4 which defines the ideal 

temperature in the space when cooling is required. The meaning of setpoint is 

semantically different from the meaning of current temperature; however both are 

measured by a temperature unit. To avoid such situations, either the ports should be 

described more precisely or the end-user will select the correct port according to 

his/her knowledge.  

 

Figure  5.4: Highlighting of target ports based on semantic description of widgets 

In order to find candidate bindings, a semantic query will be constructed based on the 

semantic description of selected port and will run against the semantic description of 

widgets in the current mashup. Result of this query is a list of ports that will be 

highlighted to assist the end-user in composition of required widgets. Listing  5.1 

shows a SPARQL query that is used to select the proper target ports for Temperature 

port of weather web service. 

 
PREFIX rdf : < http://www.w3.org/1999/02/22-rdf-syntax-ns# >  
PREFIX ifc : < http://www.buildingsmart.at/IFC2X3.owl# >  
PREFIX mash: < http://www.bit-future.com/Mashup.owl# >  
 
SELECT ?widget ?input WHERE {  
 
   ?widget mash:hasInput mash:input .  
   ?input  rdf :type ifc :IfcThermodynamicTemperatureMeasure  
 



Semantic Mashups for Enterprise 82 
 

 

} 
 

Listing  5.1: SPARQL query for finding appropriate widget ports 

5.1.2 Personal Service Use Case 

To clarify the usefulness of the Semantic Mashup concept and the role it can play in 

empowering the Semantic Desktop services and personal data integration, another 

semantic mashup use case will be presented as follows:  

A user wants to make a GeoRSS feed of the interesting locations nearby 

the conference he/she is attending and show them on a map. 

To make this happen, one may use his/her “Calendar Event” (Personal Service of 

Semantic Desktop) and feed the location to a “City Explorer” (external Web Service) 

service to get the customized GeoRSS feed that can be directly displayed on Google 

Maps (Google Maps, 2009). This mashup solution is shown in the upper part of 

Figure  5.5. 

 

Figure  5.5: Automatic completion of mashups using semantic of available service 

Although this process looks to be straightforward, the Location attributes of 

“Calendar Event” and “City Explorer” might be of different types. For instance 

suppose that the location of calendar item is formed as typical postal addresses and 

includes street name, postal code, city name, etc and the required location field of 



Semantic Mashups for Enterprise 83 
 

 

city explorer service web service is a geographic coordinate. In a semantically 

enriched mashup environment such inconsistency of concepts can be easily inferred 

from widget semantics. Similar to AEC use case, a semantic query is constructed to 

select the appropriate target port. Assuming that the widgets are well-annotated, the 

result of this query on proposed mashup will be an empty set. As a result end-user 

will not be able to fulfil the task; however, an expert user can complete the mashups 

by employing a web service such as “Google Maps API Geocoding REST Service” 

(Geocoding, 2009) to convert the location address of event item into required 

geographic coordinates of city explorer web service.  

The same job is doable by a novice user if the mashup editor could be aware of such 

geo-coding service and automatically inserts the geo-coding service between these 

two inconsistent location ports. To achieve this goal again the semantic of available 

widgets may assist the user to know that these location attributes are subtypes of the 

“Location” concept in the Semantic Desktop ontology and one of them (Address) can 

be converted to the other one via a publicly available service (geo-coding web 

service). In this context the Semantic Mashup will automatically add the convertor 

service as soon as these two location ports are connected (see lower part of 

Figure  5.5). 

5.2 Mashup to BPEL Conversion 

As explained before Mashups are very helpful in creating fast solutions for data 

integration, however a major drawback of Mashup based solutions is the fact that 

such solutions are fragile and not as stable as formal business process. To provide a 

solid basis for more serious business application, the gap between mashups and well 

established BPEL solutions should be covered.  

A closer look into main mashup categories (presentation, data, and enterprise 

mashups) reveals that the functionality of mashups is to some extent similar to SOA 

and its service composition; however the overlap with SOA is much greyer for logic 

(enterprise) mashups than the other two categories. Client-side mashups compete 

with server-side orchestration technologies such as BPEL (Business Process 

Execution Language), but that hasn't stopped large enterprise SOA vendors IBM, 

Microsoft, BEA, Sun and Oracle from embracing enterprise mashups. The reason is 



Semantic Mashups for Enterprise 84 
 

 

that, like BPEL, mashups depend on standardized Web services and APIs, all of 

which SOA is aimed at making available. This doesn't mean that mashups depend on 

SOA. In a field survey, nearly two thirds of enterprises that use browser-based 

mashups have done so without SOA, and one of the biggest advantages of mashup 

technology is the low barrier to entry, with many applications using free services on 

the Internet (Dornan, 2007). 

Figure  5.6 (Watt, 2007) lays out the mashup framework and its relation with SOA to 

create situational application. In this context mashup provides a face or visual 

representation for services which consequently facilitates access to the properties and 

features of the service as well as the ability to reflect relationships (wiring) between 

services (Watt, 2007). 

 

Figure  5.6: Mashup and SOA relationship 

As the number of serious enterprise mashups grows and they get used for more 

serious tasks, there is a growing need to make the mashups more stable and robust 

for complex business scenarios. As a matter of fact, in context of SOA and Mashup 

solutions, stability and ease are at odd with each other (see Figure  5.7). In a mashup-

based approach the services can be easily composed to create a situational solution; 

however the result is not that stable. On the other hand a SOA-based approach 

provides a stable basis for creating and running the business processes for expert 

users who are familiar with complex stack of SOA, but a novice user will not be able 

to create solutions based on available services.  



Semantic Mashups for Enterprise 85 
 

 

 

Figure  5.7: SOA Solution vs. Mashup Solution 

To change this situation, a novel approach will be proposed that benefits from 

advantages of both SOA and Mashup solutions to facilitate creation of situational 

solutions that are also stable and business process can rely on them.   

The core idea of the proposed approach is to break the design-time and runtime 

processes between Mashup and SOA environments respectively. In other words the 

solutions will be first created in a mashup environment and benefits from all 

advantages of mashup solutions. As the next step the Mashup will be translated to a 

formal business process using a Mashup-BPEL convertor. Finally any stable BPEL 

engine can run the process and take care of process management issues. As a result 

the end user will benefit from simple service composition of mashups and at the 

same time the process will be managed and controlled by well established business 

process engines. In this way, the process of running a mashup is safely transferred 

from the browser on the client computer to a BPEL engine on server-side. This 

approach might not be that helpful for presentation and data mashups, but will be of 

great advantage for enterprise mashups.  

It is also important to note that, the proposed approach is not trying to reinvent the 

wheel and duplicate a BPEL editor. Unlike a typical BPEL editor, the proposed 

approach hides the complexities of a business process such as defining the partner 

links, services, etc and saves the end-users from technical details and they can solely 

concentrate on the their use case.  

The challenging part of this approach is of course the Mashup-BPEL convertor that 

should translate the mashup steps to formal steps of a business process. The basic 

tasks of an Enterprise Mashup can be roughly categorized as follows:  



Semantic Mashups for Enterprise 86 
 

 

• Data manipulation 

• Formatting and presentation 

• Support of conditional cases 

• Data acquisition  

Interestingly many of the known tasks of a mashup can be also described and 

implemented by BPEL methods. As a proof of concept, a list of mashup tasks and 

their equivalent BPEL methods are presented in Table  5.1.  

Task Category Examples BPEL equivalent methods 

Data manipulation • adding result sets 
• subtracting result sets 
• merging datasets 
• applying data filters 

• assign and copy elements 
• XPath  
• Calling external services 

Formatting and presentation • Styling the data 
• Format conversions 

• XSL transformation 
(bpel:doXslTransform) 

Support of conditional cases • If-then-else 
• while 

• structured activities (if, 
while, sequence, etc) 

Data acquisition • Calling web services / 
REST services 

• RSS feeds 
• User inputs  

• Invoking web services 
• Invoking the wrapper web 

services 

Table  5.1: Mashup tasks and their equivalent BPEL methods 

To demonstrate the feasibility of this approach a small use case will be presented that 

shows how a simple BPEL process can be generated from its corresponding mashup. 

This use case is based on the basic math services that can be combined to do more 

complex calculations. Figure  5.8 depicts a simple Mashups that uses math services 

and delivers the result to display.  

 

Figure  5.8: Simple calculation Mashup 



Semantic Mashups for Enterprise 87 
 

 

The corresponding BPEL process for this mashup is shown in Figure  5.9. The 

Mashup-BPEL convertor uses the available widgets and connections of mashups and 

formulates the widget services as BPEL invoke actions. The resulted business 

process can be then deployed on any BPEL engine for execution. At runtime, user 

will submit the required input values to this process and the rest of steps will be 

handled by BPEL engine. 

 

Figure  5.9: The generated BPEL process for Simple calculation Mashup 

5.3 Human Interaction using XForms 

The proposed approach of previous section for converting the mashups to BPEL 

processes can get more complicated when end-user’s contribution is required.  

Unlike mashups that the user inputs are simply added on screen, the BPEL does not 

include the human interactions in its domain. Despite wide acceptance of Web 

services in distributed business applications, the absence of human interactions is a 

significant gap for many real-world business processes. To fill this gap, 

BPEL4People extends BPEL from orchestration of Web services alone to 

orchestration of role-based human activities as well (BPEL4People, 2009). 

In context of the proposed approach, the required user interactions are implemented 

using XForms to send the missing data to the business processes and provide a 

simplified BPEL4People integration. To clarify this, consider the previous example 

that was presented in Figure  5.8 and suppose that the dashed connection between 



Semantic Mashups for Enterprise 88 
 

 

input and multiply widget is removed.  As a result the corresponding BPEL can be 

run in one service call and will break on “multiply web service” invocation. At this 

point the end-user needs to provide the missing parameter for continuation of 

business process.  

In order to include the user contribution in the target business process, the Mashup-

BPEL convertor will detect the location of missing parameter and inserts a people 

notification web service call before this location. In the proposed example an invoke 

activity ( InvokePeopleNotification ) and its corresponding receive activity are 

added before invocation of multiply web service as depicted in Figure  5.10. The 

functions of these two extra activities are as follows:  

• InvokePeopleNotification  will call a web service that is responsible to 

notify the end-user about required interaction via appropriate communication 

method such as email, instant message, SMS, etc. This web service creates a 

link and sends it to user via the selected communication method. By browsing 

the created link,  an XForm will be displayed that will submit the required 

data to the business process. 

• ReceiveMissingPart  will wait for the user input that will be contributed via 

the XForm and then complete the missing parts of messages with the received 

data. In the proposed use case the submitted values will be used to prepare the 

input message of multiply web service. 



Semantic Mashups for Enterprise 89 
 

 

 

Figure  5.10: The generated BPEL process for People Interaction 

One of the great advantages of XForms is the fact that an XForms client can send its 

data as XML. This capability can be elegantly used to send a SOAP message which 

is also encoded in XML to end point of web service. In the context of the proposed 

solution, this feature of XForms has been used to receive the missed parameters from 

user. Listing  5.2 shows an XForms example that displays the missing parameter as an 

input field and asks the user to complete and submit it. 

 
<html  xmlns ="http://www.w3.org/1999/xhtml"   
 xmlns:ev ="http://www.w3.org/2001/xml-events"   
 xmlns:conf =http://sample-conference.com/registration  
       xml:lang ="en" > 
 
  <head > 
    <title >XForms Web Service Call </ title > 
 
   <xforms:model  id ="MultiplyService" > 
 
     <xforms:instance  id ="messages" > 
 
       <SOAP-ENV:Envelope   
            xmlns:SOAP-ENV ="http://schemas.xmlsoap.org/soap/envelope/"   
            xmlns:xsi ="http://www.w3.org/1999/XMLSchema-instance"   
            xmlns:xsd ="http://www.w3.org/1999/XMLSchema" >  
          <SOAP-ENV:Body>  
             <ns1:getTemp  xmlns:ns1 ="urn:xmethods-Temperature"   
                SOAP-ENV:encodingStyle = 
                       "http://schemas.xmlsoap.org/soap/encoding/" >  
                <b xsi:type ="xsd:double" >0</ b>  
             </ ns1:getTemp >  
          </ SOAP-ENV:Body>  
       </ SOAP-ENV:Envelope >  
 
     </ xforms:instance > 



Semantic Mashups for Enterprise 90 
 

 

 
     <xforms:submission  id ="calculation"  
           method ="text-xml-post"  
           replace ="instance"  
           action ="http://localhost:9080/Mashup/BPEL_CalculateMashup" />  
 
   </ xforms:model > 
 
   <xforms:input  ref ="instance('messages').//b" > 
     <xforms:label >b value: </ xforms:label > 
     <xforms:hint >Provide the missing value for Multiply service. 
     </ xforms:hint > 
  </ xforms:input > 
 
</ body > 
</ html > 
 
 

Listing  5.2: XForms example for calling a web service 

The given XForms of Listing  5.2, is generated by the servlet that reads the metadata 

of missing parameter (this has been previously stored by PeopleNotification  web 

service) and return the XForms to end-user. By submission of this form the data will 

be directly sent to business process and the ReceiveMissingPart  activity of this 

business process will receive the data and will follow with the rest of business 

process steps. 

5.4 System Architecture 

To address the requirement of these use-cases, a three-layer architecture is proposed.  

Figure  5.11 demonstrates the main idea of the proposed architecture graphically. 

• Service layer: This layer provides the basic data acquisition and analysis 

methods for handling the web data. It includes the Web Form Services for 

dealing with web forms and also web annotation services to facilitate 

extraction of useful information from website. 

• Mashup layer: The Mashup layer facilitates the integration of global web 

services which also includes the Web Form and annotation services in a 

uniform way. This layer also includes the required ontologies for describing 

the services and resulting Mashups. 

• Business Process layer: The business layer includes the required services for 

translating mashups to formal business processes with added value of human 

interactions. 



Semantic Mashups for Enterprise 91 
 

 

 

Figure  5.11: Semantic Mashup architecture overview 

The details of system architecture and its components have been already explored in 

the previous sections. It is also interesting to note that the Semantic Desktop services 

which are supported by personal items (Personal Services) can also be used and 

integrated in Mashups via the web service component in the service layer. 

In the context of the proposed architecture, the Semantic Mashups for enterprise 

applications are generally translated to a formal business process with human 

interaction support and get executed by business process engine. Alternatively any 

single widget of an Enterprise Mashups can be directly executed in the end-user’s 

browser. This method is especially helpful to debugging the enterprise mashups and 

preparing them for getting translated to business processes. For this purpose user 

may call the runWidget  (see Listing  5.3) remote method via the mashup editor. This 

method receives the widget ID and its input parameters and then tries to run the 

widget’s embedded service by loading its corresponding WSDL file and executing 

the appropriate operation. The presented method in Listing  5.3 is a generic execution 



Semantic Mashups for Enterprise 92 
 

 

method that dynamically calls the web service and returns the result as a 

LinkedHashMap . 

 
public LinkedHashMap<String, String> runWidget 
       ( long widgetId, HashMap<String, String> inputs) { 
 Session session = null; 
 LinkedHashMap<String, String> results;  
 Transaction transaction = null; 
 try { 
  session = HibernateContext. getSessionFactory ().openSession(); 
   
  WidgetType wt = (WidgetType)session.load( 
                                         WidgetType . class, widgetId); 
  switch (wt.getMethodId()) { 
  case WidgetType. WEB_SERVICE: 
   try { 
    org.json.JSONObject details = new 
                             org.json.JSONObject(wt.getDetails()); 
    String wsdl = (String) details.get( "wsdl" ); 
    String operation = (String) 
                                             detail s.get( "operation" ); 
    return WebServiceInvoker. run (wsdl,  
                                             operat ion, inputs); 
   } catch (Exception e) { 
    e.printStackTrace(); 
    break; 
   } 
 
  case WidgetType. REST_SERVICE: 
 
   . . . 
 
   break; 
  default: 
 
   . . . 
 
   break; 
  } 
   
  return null; 
 } catch (RuntimeException e) { 
  e.printStackTrace(); 
  throw e; 
 } finally { 
  if (session != null) { 
   session.close(); 
  } 
 } 
} 

Listing  5.3: Running standalone mashup widgets 

 
 

 



Semantic Mashups for Enterprise 93 
 

 

5.5 Implementation 

The proposed approach of this thesis has been implemented as a prototype. A major 

part of the implementation activities are invested on the web based user interface that 

is of great importance for mashup frameworks. The main task of web based user 

interface is to support users in creating mashups.  

In order to simplify the user interaction, the front end has been implemented using 

the Google Web Toolkit framework that has set a new trend in Rich Internet 

Application (RIA) world. The Google Web Toolkit (GWT, 2009) is an open source 

Java software development framework that allows web developers to develop Ajax 

applications in Java and benefit the Java best practices at implementation phase. 

However at runtime, the GWT compiler will translate the Java code to browser-

compliant JavaScript and HTML that only needs a web server for launching the 

application pages and as a result no java-enabled server components will be needed 

at runtime.  

The implemented system includes a mashup editor component that facilitates 

interaction of the end-user with registered services such as web services and Web 

Form Services. In order to import available services and make them visible to end-

user, the WSDL file of required services should be provided. The server-side 

components of system will the take care of parsing the WSDL file and adding the 

web service operations to the system. The widgets and their parameters can be 

further improved by adding the semantic annotation using the existing domain 

ontologies. As an example consider the WSDL file of the simple math web service 

(see Figure  5.12) that can be added to system as widgets with all input and output 

parameters. 

 



Semantic Mashups for Enterprise 94 
 

 

 

Figure  5.12: WSDL description of simple math web service 

The imported operations will be then appear on the mashup editor interface as 

services (widgets) that can be combined with other services. Figure  5.13 shows the 

three basic services of simple math web service that are listed among mashup editor 

services. It also shows that the input and output parameters of these services are 

automatically imported from WSDL file and correctly displayed in mashups that use 

these services. 

 

Figure  5.13: Mashup editor prototype 

For implementation of mashup editor, canvas element has been used that is part of 

HTML 5 and allows for dynamic scriptable rendering of bitmap images. The canvas 

element realizes the connecting lines (wires) between mashup widgets that should 

also get updated whenever the widget elements are moved. 



Semantic Mashups for Enterprise 95 
 

 

The Mashup Editor is also supported by a mashup repository that allows loading and 

storing of mashups. Mashup repository is composed of the following parts:  

• A relational part that stores the widget types, widgets, and mashups:  

o Widget types are abstract services that can be used in composition of 

new mashups and are defined by their attributes such execution 

details, UI renderer class, ports, etc.  

o Mashup widgets are instantiated from widget types and store the 

visualization information of widget in the mashup context such as 

position. 

o Mashups that are composed of widgets and the connections (wiring) 

configuration between them. 

• A semantic part that stores the semantic description of different item. The 

URI of these items are generated according to the ID of corresponding item in 

relational part and as a result the items can be traced bidirectional between 

relational and semantic parts. The semantic repository of mashups will be 

used for querying the appropriate services and supporting the users when 

creating mashups in mashup editor. 

Figure  5.14 demonstrates the relational part of mashup repository and the 

relationship between different items.  

 

Figure  5.14: Relation part of mashup repository  



Semantic Mashups for Enterprise 96 
 

 

The mashup configurations are transferred in JSON (JSON, 2009) convention which 

can be simply parsed and rendered in browsers. Listing  5.4 shows the mashup 

loading function that is used to load a mashup and render its widgets and connections 

on the page. 

 
public void loadMashup() { 
  mashupService .get( "mashupId" ,  
 new AsyncCallback<String>() { 
     public void onFailure(Throwable caught) { 
  GWT. log ( "Remote Procedure Call - Failure" , null); 
   } 
 
   public void onSuccess(String result) { 
 
  JSONValue json = JSONParser. parse (result); 
  JSONArray widgets = json.isObject().get( "widgets" ).isArray(); 
 
  for ( int i = 0; i < widgets.size(); ++i) { 
 
    JSONObject widgetObject = widgets.get(i).isObje ct(); 
       
    MashupWidget box = MashupFactory. makeWidget ( 
   widgetObject.get( "type" ).isString().stringValue(), 
   widgetObject.get( "id" ).isString().stringValue(), 
   widgetObject.get( "title" ).isString().stringValue()); 
 
  JSONValue portsNode = widgetObject.get( "ports" ); 
  if (portsNode != null) { 
    JSONArray ports = widgetObject.get( "ports" ).isArray(); 
 
    for ( int j = 0; j < ports.size(); ++j) { 
 
   JSONObject port = ports.get(j).isObject(); 
   box.addTerminal(      
    port.get( "label" ).isString().stringValue(), 
    ( int)port.get( "type" ).isNumber().doubleValue()); 
    } 
  } 
    
  addMashupWidget(box, 
                    ( int)widgetObject.get( "x" ).isNumber().doubleValue(), 
         ( int)widgetObject.get( "y" ).isNumber().doubleValue()); 
       
     } 
      
  display(); 
      
  JSONArray wireNames = json.isObject().get( "wires" ).isArray(); 
 
  for ( int i = 0; i < wireNames.size(); ++i) { 
    String wireName = wireNames.get(i).isString().s tringValue(); 
    drawWire(wireName); 
       
  } 
      
      
     } 
 }); 
} 
 

Listing  5.4: Loading a mashup 



Semantic Mashups for Enterprise 97 
 

 

In addition to mashup editor, the system is also supported by a collection of server 

side components such as WFS server, BPEL engine, and XForms generator for 

human interactions which are already explored in previous sections. 

 

  



Results and Outlook 98 
 

 

Chapter 6  
 

 
 
RESULTS AND OUTLOOK 

 

The shift away from traditional Web 1.0, is forced by the growing need for more 

efficient information sharing, collaboration and business processes. Mashup 

Architecture is one of the outcomes of Web 2.0 paradigm that has been widely 

accepted and used for user-centric information processing. At the moment mashups 

are mainly used for less fundamental tasks such as customized queries and map-

based visualizations; however it has the potential to be used for more fundamental 

and sophisticated tasks too.  

As more serious applications make use of mashup architecture, there is a growing 

need to study the business chances and feasible scenarios of mashup architecture and 

foster its applications for organizational use cases.  

In my belief, mashups have the potential to facilitate the transition from traditional 

web to Semantic Web era and support this paradigm shift with “zero footprints” on 

the web pages. Furthermore the mashups can leverage the application of Semantic 

Desktops and facilitate the integration of their data into business processes.  

The research presented in this thesis is aiming at demonstrating the uniform 

integration of different services such as web services, personal services, and Web 

Form Services in an easy way. More specifically, it shows how elaborate different 

information integration solutions in combination with mashups can be used to 

facilitate the information integration in business processes and support creation of 

situational solutions that can be shared and reused by other users. Furthermore the 

translation of enterprise mashups to stable business processes can accelerate the 



Results and Outlook 99 
 

 

application of mashups for more serious use cases such as organizational data 

sharing and data integration scenarios. Finally the propose solution of this thesis can 

be summarized in three pillars:  

• Resources and basic services including 

o Personal services that are served by Semantic Desktops. In the 

presented solution, SemanticLIFE framework has been used and 

personal services are created using innovative concept of SOPA 

pipelines  

o Web Form Services that are served by WFS Server and turn the 

traditional web forms to formal web services  

o Other web resources such as web services, REST services, mashups, 

RSS feeds, GeoRSS feeds, etc. 

• Mashup core components 

o Semantic Mashup Editor that supports query and composition of 

services based on their semantic description and as a result facilitates 

the creation of mashups for novice users.  

o BPEL convertor that allows translating the mashups to BPEL 

processes. As a result end-user will benefit from simple service 

composition of Mashups and at the same time the process will be 

managed and controlled by well established business process engines. 

o Human Interaction component that bridges the gap between human 

users and business process in the proposed framework using a 

sophisticated application of XForms. 

• Mashup repository that stores the situational solution created for solving 

different information integration use cases. These mashups can be also shared 

and reused by other users for creating new solutions.  

Figure  6.1 depicts an overview of proposed solution and its components which were 

described above.  

 



Results and Outlook 100 
 

 

 

Figure  6.1: Overview of proposed Solution 

In this rest of this section the research questions that were raised at the beginning of 

this thesis will be revisited to show how the proposed solution will address the 

challenging issues.   

 

How can the semantics of personal information and their associations be modeled 

accurately for open world interactions? 

Personal Services that are supported by Semantic Desktop solutions have the 

potential to share the user information with business processes and facilitate the user 

interaction with open world. These services are enriched with semantic information 

and can be queried based on the service parameters and/or service intent.   

 

How to define personal information sharing services that can interact with global 

services and share useful information about a specific person in a secure and 

trustworthy way? 

Creating the services that are able to query and share the appropriate data with global 

services is a challenging task. In the proposed approach of this thesis, the mashups 



Results and Outlook 101 
 

 

have been introduced as a user-driven micro-integration of web-accessible data that 

can be easily created and managed by novice users. Mashups and the security and 

privacy services of Semantic Desktops, create a solid basis for trustworthy 

information sharing with external services.  

 

How can user requirements and preferences be represented and how should they 

be taken into account in tailoring global services to a particular user? 

Each user has a unique set of requirements and preferences. Supporting the diverse 

use cases of all users in a single system is not realistic; however the mashups may 

bridge this gap by providing an easy method for service composition. In other words 

the end-users themselves can create their required services based on some elementary 

services and apply their requirements and preferences in the solutions they create.  

How security and privacy policies can be applied to information flow between 

personal information and global web? 

The security and privacy requirements can be supported by Semantic Desktops that 

on one hand have access to semantic repository of personal items and on the other 

hand can apply semantic rules and sharing policies to data interactions with the 

outside world. 

 

How information integration solutions can be created and managed intuitively by 

end users who are not IT experts? 

The mashups can facilitate the creation of situational solutions for the novice users. 

In the presented use cases of this thesis, some practical solutions were provided that 

shows how Semantic Web and domain ontologies can leverage the creation of new 

services using mashups. Especially the BPEL translation of mashups provides a solid 

basis for extending the footprint of mashups into more complex use cases and let the 

business processes to rely on them for implementing efficient data integration 

scenarios. 

 

 



Appendixes 102 
 

 

Appendixes 

Appendix 1: SemanticLIFE’s Pipeline component 

 
package at.slife.pipeline; 
 
import java.util.HashMap; 
import java.util.Iterator; 
import java.util.List; 
import java.util.Vector; 
 
import javax.xml.transform.Transformer; 
import javax.xml.transform.TransformerConfigurationExcept ion; 
import javax.xml.transform.TransformerException; 
import javax.xml.transform.TransformerFactory; 
import javax.xml.transform.stream.StreamSource; 
 
import org.dom4j.*; 
import org.dom4j.io.DocumentResult; 
import org.dom4j.io.DocumentSource; 
import org.dom4j.io.SAXReader; 
 
import java.io.File; 
import java.io.IOException; 
import java.io.StringReader; 
 
import at.slife.xmas.Call; 
 
 
/**  
 * This is the manin class that manages a pipeline,  the main responsibility 
of this class is  
 * to parse the pipeline and create sub - elements like calls that do the 
service calling  
 * @author Amin Anjomshoaa  
 */  
public class Pipeline { 
 
    /**  
     * hash map of pipeline parmeters  
     */  
    private HashMap<String, Parameter> parameters ; 
     
    /**  
     * body of pipeline as XML  
     */  
    private Element body  = null; 
     
    /**  
     * the pipeline space name  
     */  
    private String pipeSpace  = null; 
     
    /**  
     * callMap as XML document taht stores all pipe lines  
     */  
    private static Document callMap  = null ; 



Appendixes 103 
 

 

     
     
    /**  
     * pipeline results  
     */  
    public String result  = "" ; 
     
     
 /**  
  * pipeline constructor, to initialize the callMap  at first run  
  */  
 public Pipeline() { 
  if ( null == callMap ){ 
   loadPipelines(); 
  } 
   
 } 
  
 /**  
  * reads the specific pipeline and extract the rel eated parameters  
  * @param pipeName  
  */  
 public void loadPipeline(String pipeName){ 
  setPipeSpace(pipeName.substring(0,pipeName.indexO f( ':' ))); 
   
  Node node = callMap .selectSingleNode( 
                    "/pipelines/pipeline[@name='" +pipeName+ "']"  ); 
   
  body  = (Element)node; 
   
  parameters  = new HashMap<String, Parameter>(); 
  Element params = (Element) body .selectSingleNode( "parameters" ); 
  System. out .println(params.asXML()); 
  for (Iterator i = params.elementIterator( "parameter"  );  
                   i.hasNext(); ) { 
            Parameter param = new Parameter((Element) i.next()); 
            parameters .put(param.getName(),param); 
        }   
 
 } 
 
     
 /**  
  * constructor to load a named pipeline  
  *  
  * @param theName pipeline name  
  */  
 public Pipeline(String theName) { 
  if ( null == callMap ){ 
   loadPipelines(); 
  } 
   
  setPipeSpace(theName.substring(0,theName.indexOf( ':' ))); 
   
  Node node = callMap .selectSingleNode(  
                "/pipelines/pipeline[@name='" +theName+ "']"  ); 
   
  body  = (Element)node; 
   
  parameters  = new HashMap<String, Parameter>(); 
  Element params = (Element) body .selectSingleNode( "parameters" ); 
  System. out .println(params.asXML()); 
  for ( Iterator i = params.elementIterator( "parameter"  );  
                    i.hasNext(); ) { 
            Parameter param = new Parameter((Element) i.next()); 
            parameters .put(param.getName(),param); 
        }   



Appendixes 104 
 

 

 } 
  
 
 /**  
  * returns the paramneter value of the given param eter name  
  * @param paramName the parameter name  
  * @return the value of given parameter  
  */  
 public Parameter getParameter(String paramName){ 
  return parameters .get(paramName); 
 } 
  
 /**  
  * setter method for pipe space  
  * @param thePipeSpace  
  */  
 private void setPipeSpace(String thePipeSpace) { 
  pipeSpace  = thePipeSpace; 
 } 
  
 /**  
  * getter method for pipe space  
  * @return the pipe space  
  */  
 public String getPipeSpace(){ 
  return pipeSpace ; 
 } 
  
 /**  
  * invokes the named pipeline with given parameter s  
  * @param pipeName name of th epipeline to be invoked  
  * @param xmlParams pipeline parameters  
  * @return pipeline process results as string  
  */  
 public String invokePipe(String pipeName,String xmlParams ){ 
  result  = "" ; 
  loadPipeline(pipeName); 
  setParameterValues(Util. parseParams (xmlParams)); 
   return processPipeline(); 
 } 
 
 /**  
  * this is the main process that runs a pipeline a t request.  
  * @return the pipeline call results  
  */  
 public String processPipeline(){ 
     for ( int i = 0, size = body .nodeCount(); i < size; i++ ) { 
            Node node = body .node(i); 
            String name = node.getName(); 
            if ( null != name){ 
             // the sub-node is aso a call  
             if (name.startsWith( "call" )){ 
             CallElement call = new CallElement((Element) node, this); 
              // the previous results will be cleaned  
     if (name.equals( "call-clean" )) 
      result  = call.invoke(); 
     else 
      result  += call.invoke(); 
             } 
             // the next node is an XSLT transformation  
             else if (name.equals( "transform" )){ 
     Element elm = (Element) node; 
     transform(elm.attributeValue( "xsl" )); 
             } 
             // pipeline process is finished, result should be s erializes  
             else if (name.equals( "serialize" )){ 
     Element elm = (Element) node; 



Appendixes 105 
 

 

  / call the relevant serializer (browser, form, xml,  etc)  
                 Call client = new Call(elm.attributeValue( "service" )); 
           try { 
            Object[] content =  
                                   {getResultDocume nt().asXML()}; 
           
 client.invoke(elm.attributeValue( "operation" ),content); 
           } catch (Exception e) { 
            e.printStackTrace(); 
           } 
            
             } 
            } 
        }   
  return result ; 
 } 
 
 /**  
  * setter method for parameter  
  * @param name name of the parameter  
  * @param val value of the parameter  
  */  
 public void setParameterValue(String name, String val) { 
  Parameter param = parameters .get(name); 
  param.setValue(val); 
  parameters .get(name).setValue(val); 
 } 
 
 /**  
  * setting all pipeline parameters from given stri ng array  
  * @param vals parameter values  
  */  
 public void setParameterValues(String[] vals) { 
  int i = 0; 
  for (String paramName : parameters .keySet()){ 
   parameters .get(paramName).setValue(vals[i++]); 
  } 
 } 
  
 /**  
  * setting all pipeline parameters from given obje ct array  
  * @param vals parameter values  
  */  
 public void setParameterValues(Object[] vals) { 
  int i = 0; 
  for (String paramName : parameters .keySet()){ 
   parameters .get(paramName).setValue( "" +vals[i++]); 
  } 
 } 
  
 /**  
  * returns the value of given parameter name  
  * @param name name of parameter  
  * @return value of parameter  
  */  
 public String getParameterValue(String name) { 
  return parameters .get(name).getValue(); 
 } 
  
 /**  
  * loads all pipelines from pipeline folder and st ores them in 
callMap for  
  * further processes  
  */  
 private void loadPipelines(){ 
 
  File dir = null; 



Appendixes 106 
 

 

   
  try { 
   dir = PipelinePlugin. getResource ( "pipelines" ); 
  } catch (IOException e1) { 
   e1.printStackTrace(); 
  } 
   
  SAXReader reader = new SAXReader(); 
   
  callMap  = DocumentHelper. createDocument (); 
        Element root = callMap .addElement( "pipelines"  );; 
     
  File[] files = dir.listFiles(); 
   
  for( int i=0,count=files. length ;i<count;i++) { 
   String fileName = files[i].getName(); 
   if (fileName.toUpperCase().endsWith( ".XML" )) { 
    String prefix =  
                            fileName.substring(0,fi leName.indexOf( '.' )); 
     
          try { 
    Document doc = reader.read(files[i]); 
    Element pipes = doc.getRootElement(); 
 
    for ( int j = 0, size = pipes.nodeCount();  
                               j < size; j++ ) { 
               Node node = pipes.node(j); 
               if ( null != node && node.hasContent()){ 
                Element elm = (Element)node; 
                elm.addAttribute( "name" ,  
                                 prefix+ ":" +elm.attributeValue( "name" )); 
                root.add(elm.detach()); 
               } 
     } 
      
    } catch (DocumentException e) { 
     e.printStackTrace(); 
    } 
   } 
    
  } 
  System. out .println( callMap .asXML()); 
 } 
  
  
 /**  
  * applys an XSLT transformation to the pipeline r esults  
  * @param xslFile name of the XSL file  
  */  
 public void transform(String xslFile){ 
  File xsl = null; 
  try { 
   xsl = PipelinePlugin. getResource ( "styles/" +xslFile); 
 
         // load the transformer using JAXP  
         TransformerFactory factory =  
                        TransformerFactory. newInstance (); 
         Transformer transformer; 
   transformer = factory.newTransformer(  
       new StreamSource(xsl)  
   ); 
 
         // now lets style the given document  
         DocumentSource source = new  
                               DocumentSource(getRe sultDocument()); 
         DocumentResult target = new DocumentResult(); 
         transformer.transform( source, target ); 



Appendixes 107 
 

 

  
         // return the transformed document  
         result  = target.getDocument().getRootElement().asXML(); 
  } catch (IOException e1) { 
   e1.printStackTrace(); 
  } catch (TransformerConfigurationException e) { 
   e.printStackTrace(); 
  } catch (TransformerException e) { 
   e.printStackTrace(); 
  }  
 } 
 
 /**  
  * running an XPATH query on the results to extrac t parameter values  
  * for next calls  
  *  
  * @param xpathQuery the XPATH query string  
  * @return the selected part of pipeline result as string  
  */  
 public String runXPathQuery(String xpathQuery) { 
  String items= "" ; 
  List list = getResultDocument(). 
                         selectNodes( "/result" +xpathQuery ); 
 
  boolean isArray = false; 
  if (list.size() > 1) 
   isArray = true; 
    
  for (Object obj : list){ 
   String name = obj.getClass().getName(); 
   String temp = "" ; 
   if (name.equals( "org.dom4j.tree.DefaultElement" )) 
    temp = ((Element)obj).asXML(); 
   else if(name.equals( "org.dom4j.tree.DefaultAttribute" ))  
    temp = ((Node) obj).getText(); 
   else if (name.equals( "org.dom4j.tree.DefaultText" )) 
    temp = ((Text) obj).getText(); 
    
   if (isArray) 
    items += "<item>" +temp+ "</item>" ; 
   else 
    items += temp;  
  } 
  return items; 
 } 
  
  
 /**  
  * returns the pipeline results, the results are s tored locally in  
  * and will be returned to the calling program in XML format  
  *  
  * @return the pipeline results as string  
  */  
 public Document getResultDocument(){ 
        SAXReader reader = new SAXReader(); 
  Document doc = null; 
  try { 
   if ( result .startsWith( "<?xml" )) 
     result  = result .substring( result .indexOf( "?>" )+2); 
     doc = reader.read( 
                         new StringReader( "<result>" +result +"</result>" )); 
  } catch (DocumentException e) { 
   e.printStackTrace(); 
  } 
  return doc; 
 } 
  



Appendixes 108 
 

 

 /**  
  * returns the paramneter value of the given param eter name  
  * @param paramName the parameter name  
  * @return the value of given parameter  
  */  
 public String[] getParamArray(){ 
  String[] params = new String[ parameters .size()]; 
  int i = 0; 
  for (String paramName : parameters .keySet()) 
   params[i++] = paramName; 
  return params; 
 } 
  
  
} 
 
 

 

Appendix 2: Pipeline examples from SOPA framework 

 
<?xml  version ="1.0"  encoding ="UTF-8" ?> 
<pipelines > 
 
  <!--  a simple pipeline for math calculations -->  
  < pipeline  name="square" > 
 
 <parameters > 
   <parameter  name="input"  type ="int" />  
 </ parameters > 
 
 <call  service ="at.slife.test"  operation ="multiply" returns ="int" > 
      <parameter  type ="int" >{input} </ parameter > 
      <parameter  type ="int" >{input} </ parameter > 
 </ call > 
 
 <serialize  type ="xml" />  
  </ pipeline > 
 
  <!--  a simple pipeline for math calculations -->  
  < pipeline  name="addPipe" > 
 <parameters > 
  <parameter  name="a"  type ="int" />  
  <parameter  name="b"  type ="int" />  
 </ parameters > 
 <call  service ="at.slife.test"  operation ="add"  returns ="int" > 
     <parameter  type ="int" >{a} </ parameter > 
        <parameter  type ="int" >{b} </ parameter > 
 </ call > 
 <transform  xsl ="test.xsl" />  
 <serialize  type ="xml" />  
  </ pipeline > 
  
  <!--  a simple pipeline for math calculations with fix inputs -->  
  < pipeline  name="multiplyPipe" > 
 <parameters />  
 <call  id ="first"  service ="at.slife.test"  operation ="multiply" 
            returns ="int" > 
      <parameter  type ="int" >5</ parameter > 
      <parameter  type ="int" >10</ parameter > 
  </ call > 
  <transform  xsl ="test.xsl" />  
  <serialize  type ="xml" />  
 </ pipeline > 



Appendixes 109 
 

 

  
  <!--  a complex pipeline with multiple and nested c alls -->  
  < pipeline  name="sample" > 
 <parameters > 
  <parameter  name="a"  type ="int" />  
  <parameter  name="b"  type ="int" />  
 </ parameters > 
 
 <call  id ="node"  service ="at.slife.test"  operation ="multiply" 
                  returns ="int" > 
     <parameter  type ="int" >{a} </ parameter > 
     <parameter  type ="int" >{b} </ parameter > 
 </ call > 
 
 <call  id ="node"  service ="at.slife.test"  operation ="add" 
             returns ="int" > 
    <parameter  type ="int" >{b} </ parameter > 
    <parameter  type ="int" > 
            <!-- calling a pipeline with given namespace and na me -->  
      <call  service ="at.slife.pipeline"  operation ="complex:square" > 
      <parameter  type ="int" >{b} </ parameter > 
      </ call > 
    </ parameter > 
 </ call > 
 <transform  xsl ="transformer.xsl" /> 
 
      <!-- calling remote services:localhost is replaced with IP Address-->  
 <call  id ="node"  service ="at.slife.test@localhost"   
             operation ="add"  returns ="int" > 
         < parameter   
             type ="int" >{xpath:/html/body/number[1]/text()} </ parameter > 
    <parameter   
             type ="int" >{xpath:/html/body/number[2]/text()} </ parameter > 
 </ call > 
 <serialize  type ="xml" />  
  </ pipeline > 
 
  <!-- embedding a SPARQL query in a pipeline with br oser serializer -->  
  < pipeline  name="query" > 
 
 <parameters > 
   <parameter  name="predicate"  type ="String" />  
   <parameter  name="format"  type ="String" />  
 </ parameters > 
 
      < call  service ="at.slife.query"  operation ="runQuery" returns ="String" > 
   <parameter  type ="string" > 
  <![CDATA[   
  PREFIX  rdf:    <http://www.w3.org/1999/02/22-rdf -syntax-ns#> 
  PREFIX  rdfs:   <http://www.w3.org/2000/01/rdf-sc hema#> 
  PREFIX  owl:    <http://www.w3.org/2002/07/owl#> 
  PREFIX  daml:   <http://www.daml.org/2001/03/daml +oil#> 
  PREFIX  google: <http://www.ifs.tuwien.ac.at/slif e-google#> 
      
  SELECT  ?subject ?object 
  WHERE   { ?subject ]]>   
  {predicate} 
  <![CDATA[  ?object } ]]>  
   </ parameter > 
   <parameter  type ="string" >{format} </ parameter > 
 </ call > 
 <transform  xsl ="triple.xsl" />  
 <serialize  service ="at.slife.browser"  operation ="render" />  
  </ pipeline > 
 
  <!-- embedding a SPARQL query in a pipeline with sp ecific serializer -->  
  < pipeline  name="itemTimeline" > 



Appendixes 110 
 

 

    < parameters />  
    < call  service ="at.slife.query"  operation ="runQuery"  returns ="String" > 
    < parameter  type ="string" > 
 <![CDATA[   
 PREFIX  rdf:    <http://www.w3.org/1999/02/22-rdf- syntax-ns#> 
 PREFIX  rdfs:   <http://www.w3.org/2000/01/rdf-sch ema#> 
 PREFIX  owl:    <http://www.w3.org/2002/07/owl#> 
 PREFIX  daml:   <http://www.daml.org/2001/03/daml+ oil#> 
 PREFIX  google: <http://www.ifs.tuwien.ac.at/slife -google#> 
      
 SELECT  ?subject ?object 
 WHERE   { ?subject ]]>   
 {predicate} 
 <![CDATA[  ?object } ]]>  
    </ parameter > 
    < parameter  type ="string" >xml </ parameter > 
    </ call > 
    < transform  xsl ="triple.xsl" />  
    < serialize  service ="at.slife.timeseries"  operation ="renderTime" />  
  </ pipeline >  
 
 
  <!--  a pipeline to call an external web service -- > 
  < pipeline  name="check" > 
 <parameters > 
  <parameter  name="acccessCode"  type ="string" />  
  <parameter  name="blz"  type ="string" />  
  <parameter  name="account"  type ="string" />  
  <parameter  name="country"  type ="string" />  
 </ parameters > 
 <call  service ="at.slife.wsrep"  operation ="callWS"  returns ="string" >    
          <!--  returns a soap response -->  
   <parameter  name="wsdl"  type ="string" >test.wsdl </ parameter > 
   <parameter  name="service"  type ="string" >accountService </ parameter > 
   <parameter  name="port"  type ="string" >Account </ parameter > 
   <parameter  name="operation"  type ="string" >check </ parameter > 
   <parameter  type ="string" >{acccessCode} </ parameter > 
   <parameter  type ="string" >{blz} </ parameter > 
   <parameter  type ="string" >{account} </ parameter > 
   <parameter  type ="string" >{country} </ parameter > 
 </ call > 
 <serialize  type ="xml" />  
  </ pipeline > 
</ pipelines > 
 
 

 



Appendixes 111 
 

 

Appendix 3: Part of Mashup Widget code 

 
package com.bit.mashup.client; 
 
import java.util.Iterator; 
import java.util.LinkedHashMap; 
import java.util.NoSuchElementException; 
 
import com.google.gwt.user.client.ui.AbsolutePanel; 
import com.google.gwt.user.client.ui.Composite; 
import com.google.gwt.user.client.ui.DecoratorPanel; 
import com.google.gwt.user.client.ui.Label; 
import com.google.gwt.user.client.ui.Widget; 
import com.google.gwt.user.client.DOM; 
 
public class MashupWidget extends Composite  { 
 
    /**  
     * The widget that goes into the header.  
     */  
    private Widget header ; 
    /**  
     * The widget contains content to display in th e center of the panel.  
     */  
    private AbsolutePanel content  = null; 
    public LinkedHashMap<String, Terminal> terminals  = new  
                          LinkedHashMap<String, Ter minal>(); 
    private String widgetId  = null; 
     
    // absolute position of containing panel  
    private int panelX ; 
    private int panelY ; 
    private static int last  = 1; 
     
     
    public void makeUnique() { 
     widgetId  += "_" +last ; 
     last ++; 
    } 
     
    public int getRelativeLeft() { 
  return this.getAbsoluteLeft() - panelX ; 
 } 
 
    public int getRelativeTop() { 
  return this.getAbsoluteTop() -  panelY ; 
 } 
     
 public void setPanelPosition( int x, int y) { 
  panelX  = x; 
  panelY  = y; 
 } 
 
 // controls the visibility of terminal labels  
    boolean visibleLabels  = true; 
     
     
     
    public MashupWidget(String theWidgetId, String widgetTitl e) { 
      
     widgetId  = theWidgetId; 
        this. header  = new Label(widgetTitle); 
        content  = new AbsolutePanel(); 
 



Appendixes 112 
 

 

        DecoratorPanelWithHeader panel = new DecoratorPanelWithHeader(); 
        initWidget(panel); 
         
        setStyleName( "roundedContainerWithHeader" ); 
    } 
     
    public void setVisibleLabels( boolean isVisible){ 
     visibleLabels  = isVisible; 
    } 
     
    public void appendBody(Widget body){ 
        content .add(body); 
    } 
     
    public Widget getHandle() { 
     return header ; 
    } 
     
    public String getWidgetId(){ 
     return widgetId ; 
    } 
 
    public void addTerminal(String terminalName, int theType) { 
     Terminal t = new Terminal(terminalName, widgetId , theType); 
     terminals .put(t.getName(), t); 
     if ( visibleLabels ) { 
         Label terminalLabel = new Label(terminalName); 
         terminalLabel.setStyleName( "terminal-Type-" +theType); 
      appendBody(terminalLabel); 
     }  
    } 
     
     
    public Terminal getTerminal(String name) { 
     return terminals .get(name); 
    } 
     
    /**  
     * Extend the DecoratorPanel.  
     */  
    private class DecoratorPanelWithHeader extends DecoratorPanel { 
 
        private DecoratorPanelWithHeader() { 
            setHeader( header ); 
            add( content ); 
        } 
 
        /**  
         * Set the widget that goes in the center o f the top row.  
         *  
         * @param header The widget.  
         */  
        private void setHeader(Widget header) { 
            DOM. appendChild (getCellElement(0, 1), header.getElement()); 
            adopt(header); 
        } 
 
        public Iterator<Widget> iterator() { 
            final Iterator<Widget> superIterator = super.iterator(); 
            return new Iterator<Widget>() { 
                boolean hasHeader  = header  != null; 
 
                public boolean hasNext() { 
                    return superIterator.hasNext() || hasHeader ; 
                } 
 
                public Widget next() { 



Appendixes 113 
 

 

                    if (superIterator.hasNext()) { 
                        return superIterator.next(); 
                    } else { 
                        if ( hasHeader  && ( header  != null)) { 
                            hasHeader  = false; 
                            return header ; 
                        } else { 
                            throw new NoSuchElementException(); 
                        } 
                    } 
                } 
 
                public void remove() { 
                    throw new UnsupportedOperationException(); 
                } 
            }; 
        } 
    } 
     
    /*  
     * checks the mandatory input fields to make su re all  
     * required fields are provided  
     */  
    public boolean isReady() { 
     for (String terminalId: terminals .keySet()) { 
      Terminal t = terminals .get(terminalId); 
      if (!t.isOptional() && !t.isAttached()){ 
       return false; 
      } 
  } 
     return true; 
    } 
 
 public Terminal getWireEndTerminal(String wireId) { 
  int pos = wireId.indexOf( '/' , wireId.indexOf( '/' )+1)+1; 
  return terminals .get(wireId.substring(pos)); 
 } 
} 
 
 

 



Appendixes 114 
 

 

Appendix 4: Wire class for connecting Mashup Widgets 

 
package com.bit.mashup.client; 
 
import gwt.canvas.client.Canvas; 
 
/**  
 * Wire Canvas for drawing connectors between Mashu p widgets  
 *  
 * @author Amin Anjomshoaa  
 */  
public class WireCanvas extends Canvas { 
  
 // relative position of start  
 private Point start  = null; 
  
 // absolute position of canvas  
 private Point position  = null; 
  
 // coordinate of end point  
 private int endPosX  = -1;  
 private int endPosY  = -1;  
  
 public WireCanvas( int startX, int startY) { 
  start  = new Point(0, 0); 
  position  = new Point(startX,startY); 
  setBackgroundColor( TRANSPARENT); 
  setStyleName( "connector-wire" ); 
 } 
  
 public int getEndPosX(){ 
  return endPosX ; 
 } 
  
 public int getEndPosY(){ 
  return endPosY ; 
 } 
  
 /*  
  * stores end position locally  
  */  
 public void saveEndPosition( int x , int y){ 
  endPosX  = x; 
  endPosY  = y; 
 } 
  
 public void setStart( int startX , int startY){ 
  start  = new Point(startX- position . x, startY- position . y); 
 } 
 
 /*  
  * returns the appropriate canvas position  
  * the input coordinates values are absolute  
  */  
 public Point drawTo( int endX, int endY) { 
  // make target position non-absolute  
  Point end = new Point(endX - position . x,endY - position . y); 
   
  int coeffMulDirection = 100; 
      
    int distance = start .distanceTo(end); 
     
    if(distance < coeffMulDirection){ 
       coeffMulDirection = distance / 2; 
    } 



Appendixes 115 
 

 

 
 
    Point d1 = new Point(1 * coeffMulDirection, 0); 
    Point d2 = new Point(-1 * coeffMulDirection, 0); 
     
    Point[] points = new Point[4]; 
    points[0] = start ; 
    points[1] = new Point( start . x + d1. x, start . y +d1. y);  
    points[2] = new Point(end. x + d2. x, end. y + d2. y);  
    points[3] = end; 
     
  Point min = start .clone(); 
  Point max = start .clone(); 
   
  for ( int i=1; i < 4; i++) { 
   if (points[i]. x  < min. x) { 
    min. x = points[i]. x ; 
   } 
   if (points[i]. y  < min. y) { 
    min. y = points[i]. y ; 
   } 
    
   if (points[i]. x  > max. x) { 
    max. x = points[i]. x ; 
   } 
   if (points[i]. y  > max. y) { 
    max. y = points[i]. y ; 
   } 
  } 
   
   
     int lw = max. x - min. x; 
     int lh = max. y - min. y; 
      
   setPixelSize(lw+20, lh+20); 
   clear(); 
 
     for ( int i= 0; i < 4;i++) { 
      points[i].moveDelta( -1 * min. x , -1 * min. y ); 
     } 
      
     // Draw the border  
     setLineCap( Canvas . ROUND); 
     setStrokeStyle( "#0000ff" ); 
     setLineWidth(5); 
     beginPath(); 
     moveTo(points[0]. x+15,points[0]. y+15); 
     cubicCurveTo(points[1]. x,points[1]. y,points[2]. x, 
                              points[2]. y,points[3]. x+10,points[3]. y+10); 
     stroke(); 
      
     // Draw the inner bezier curve  
     setLineCap( Canvas . ROUND); 
     setStrokeStyle( "#ADD8E6" ); 
     setLineWidth(3); 
     beginPath(); 
     moveTo(points[0]. x+15,points[0]. y+15); 
     cubicCurveTo(points[1]. x,points[1]. y,points[2]. x, 
                           points[2]. y,points[3]. x+10,points[3]. y+10); 
     stroke(); 
      
     position .moveDelta(min. x, min. y); 
     return position ; 
 } 
  
} 
 



Appendixes 116 
 

 

Appendix 5: Part of Mashup Editor code 

 
 
package com.bit.mashup.client; 
 
import java.util.Collection; 
import java.util.HashMap; 
import java.util.LinkedHashMap; 
 
import com.bit.mashup.client.remote.MashupRemote; 
import com.bit.mashup.client.ui.WidgetLink; 
import com.bit.mashup.domain.Mashup; 
import com.bit.mashup.domain.WidgetType; 
import com.google.gwt.core.client.GWT; 
import com.google.gwt.event.dom.client.ClickEvent; 
import com.google.gwt.event.dom.client.ClickHandler; 
import com.google.gwt.user.client.Window; 
import com.google.gwt.user.client.rpc.AsyncCallback; 
import com.google.gwt.user.client.ui.Button; 
import com.google.gwt.user.client.ui.Composite; 
import com.google.gwt.user.client.ui.DecoratedStackPanel;  
import com.google.gwt.user.client.ui.HorizontalPanel; 
import com.google.gwt.user.client.ui.VerticalPanel; 
 
public class MashupEditor extends Composite { 
  
 private static MashupPanel mashupPanel ; 
 // Mashup Data Object  
 private Mashup mdo = null; 
 private VerticalPanel services  = null; 
  
 public MashupEditor(){ 
  HorizontalPanel panel = new HorizontalPanel(); 
  mashupPanel  = new MashupPanel(800, 500); 
   
     DecoratedStackPanel stackPanel = new DecoratedStackPanel(); 
     stackPanel.setWidth( "200px" ); 
 
     . . . 
      
     services  = new VerticalPanel(); 
  listServices(); 
  stackPanel.add( services , "Services" , false); 
  VerticalPanel actions = new VerticalPanel(); 
  stackPanel.add(actions, "Actions" , false); 
  Button  loadButton = new Button( "Load Mashup" ); 
  actions.add(loadButton); 
  loadButton.addClickHandler( new ClickHandler() { 
   public void onClick(ClickEvent event) { 
    loadMashup(); 
   } 
  }); 
  Button  saveButton = new Button( "Save Mashup" ); 
  actions.add(saveButton); 
   
  saveButton.addClickHandler( new ClickHandler() { 
   public void onClick(ClickEvent event) { 
     
    saveMashup(); 
     
   } 
  }); 
   
  Button  runButton = new Button( "Run Mashup" ); 
  actions.add(runButton); 



Appendixes 117 
 

 

   
  runButton.addClickHandler( new ClickHandler() { 
   public void onClick(ClickEvent event) { 
     
    runMashup(); 
     
   } 
  }); 
      
     panel.add( stackPanel ); 
     panel.add( mashupPanel ); 
      
     initWidget(panel); 
 
 } 
  
 public static void addBox(MashupWidget aWidget){ 
  mashupPanel .addMashupWidget(aWidget, 100, 100); 
 } 
  
 public void loadMashup(){ 
  mashupPanel .clear(); 
  mashupPanel .loadMashup(); 
 } 
  
 public void listServices(){ 
  MashupRemote.Util. getInstance ().listWidgetTypes( 
                      new AsyncCallback<Collection<WidgetType>>(){ 
 
   @Override  
   public void onFailure(Throwable caught) 
   { 
    Window. alert (caught.getMessage()); 
   } 
   @Override  
   public void onSuccess(Collection<WidgetType> widgets) 
   { 
       for (WidgetType widgetType : widgets) { 
     services .add( new WidgetLink(widgetType)); 
    } 
   } 
  }); 
 } 
  
 public void saveMashup(Mashup mdo){ 
   mdo.setBoxList( mashupPanel .getBoxes()); 
   mdo.setPathList( mashupPanel .getPaths()); 
    
   MashupRemote.Util. getInstance ().saveMashup( 
                                  mdo, new AsyncCallback<Long>(){ 
    @Override  
    public void onFailure(Throwable caught) 
    { 
     Window. alert (caught.getMessage()); 
    } 
 
    @Override  
    public void onSuccess(Long result) 
    { 
     Window. alert ( "Mashup has been saved" ); 
    } 
     
   }); 
  } 
 } 
} 
 



Appendixes 118 
 

 

Appendix 6: Part of Mashup Panel code 

 
package com.bit.mashup.client; 
 
import java.util.ArrayList; 
import java.util.HashMap; 
import java.util.HashSet; 
import java.util.Set; 
 
import com.allen_sauer.gwt.dnd.client.DragContext; 
import com.allen_sauer.gwt.dnd.client.drop.AbsolutePositi onDropController; 
import com.bit.mashup.domain.Box; 
import com.bit.mashup.domain.Path; 
import com.google.gwt.core.client.GWT; 
import com.google.gwt.json.client.JSONArray; 
import com.google.gwt.json.client.JSONObject; 
import com.google.gwt.json.client.JSONParser; 
import com.google.gwt.json.client.JSONValue; 
import com.google.gwt.user.client.DOM; 
import com.google.gwt.user.client.rpc.AsyncCallback; 
import com.google.gwt.user.client.ui.AbsolutePanel; 
import com.google.gwt.user.client.ui.Image; 
import com.google.gwt.user.client.ui.Widget; 
 
public class MashupPanel extends AbsolutePanel { 
  
 private HashMap<String, WireCanvas> wires  =  
                new HashMap<String, WireCanvas>(); 
 private WireCanvas currentWire  = null; 
 private String currentWireId  = null; 
 private HashMap<String, MashupWidget> widgets  =  
                new HashMap<String, MashupWidget>(); 
  
 private static MashupWidgetDragController mashupDragger  = null;  
 private static AbsolutePositionDropController mashupDropper  = null; 
  
 private static ConnectorDragController dragController  = null; 
  
 /**  
  * Create a remote service proxy.  
  */  
 private final MashupServiceAsync mashupService  = GWT 
   . create (MashupService. class); 
  
 private boolean stored  = false;  
  
 // absolute position of mashup panel  
 private int top  = 0; 
 private int left  = 0; 
  
 public int getPanelTop() { 
  return top ; 
 } 
 
 public int getPanelLeft() { 
  return left ; 
 } 
  
 public MashupPanel( int width, int height) { 
  setPixelSize(width, height); 
 
  if ( dragController  == null) { 
 
    dragController  = new ConnectorDragController( this, false){ 
 



Appendixes 119 
 

 

      protected Widget newDragProxy(DragContext context) { 
        AbsolutePanel container = new AbsolutePanel(); 
        DOM. setStyleAttribute (container.getElement(), 
                                        "overflow" , "visible" ); 
    return container; 
  } 
   }; 
   dragController .setBehaviorDragProxy( true); 
  } 
   
  // drag & drop controllers of MashupWidget  
  mashupDragger  = new MashupWidgetDragController( this, false); 
  mashupDragger .setBehaviorConstrainedToBoundaryPanel( true); 
  mashupDragger .setBehaviorMultipleSelection( false); 
 
        // instantiate our drop controller  
   mashupDropper  = new AbsolutePositionDropController( this); 
        mashupDragger .registerDropController( mashupDropper ); 
   
 } 
  
 public void drawWire(String wireName) { 
  String[] parts = wireName.split( "/" ); 
   
  MashupWidget startWidget = widgets .get(parts[0]); 
  Terminal startTerminal =  
                   startWidget. terminals .get(parts[0]+ "/" +parts[1]); 
   
  MashupWidget endWidget = widgets .get(parts[3]); 
  Terminal endTerminal =  
                   endWidget. terminals .get(parts[2]+ "/" +parts[3]); 
   
  Point start = startTerminal.getAbsolutePosition() ; 
  //start.moveDelta(-1*left, -1*top);  
  WireCanvas wire = new WireCanvas(start. x- left , start. y- top ); 
  add(wire,start. x, start. y); 
  wires .put(wireName, wire); 
   
  Point end = endTerminal.getAbsolutePosition(); 
  end.log( "drawWire" ); 
  wire.saveEndPosition(end. x- left , end. y- top ); 
  moveEndOfWireTo(wireName, end. x, end. y); 
 } 
  
 public void addMashupWidget(MashupWidget widget, int x, int y){ 
        mashupDragger .makeDraggable(widget, widget.getHandle()); 
        widgets .put(widget.getWidgetId(), widget); 
  add(widget,x,y); 
  displayWidget(widget); 
 } 
  
 public void addWire(String startTerminal, int startX, int startY) { 
  currentWire  = new WireCanvas(startX- left , startY- top ); 
  currentWireId  = startTerminal; 
  add( currentWire ,startX- left ,startY- top ); 
 } 
 
 public void removeCurrentWire() { 
  remove( currentWire ); 
  currentWire  = null; 
  currentWireId  = null; 
 } 
  
 public void removeWire(String wireId) { 
  WireCanvas wire = wires .get(wireId); 
  remove(wire); 
  wires .remove(wireId); 



Appendixes 120 
 

 

 } 
  
 /*  
  * Displays mashup and draws relevant components  
  */  
 public void display() { 
  for (String wname : widgets .keySet()) { 
   displayWidget( widgets .get(wname)); 
  } 
 } 
  
 public void displayWidget(MashupWidget widget){ 
  top  = this.getAbsoluteTop(); 
  left  = this.getAbsoluteLeft(); 
  widget.setPanelPosition( left , top ); 
  int width = widget.getOffsetWidth(); 
  int delta = (widget.getOffsetHeight() - 50) /  
                          widget. terminals .size(); 
  int termY = widget.getRelativeTop()+15; 
  int i = 1; 
  for (String tname : widget. terminals .keySet()) { 
   Terminal t = widget.getTerminal(tname); 
   if (t.getType() == Terminal. OUTPUT_PORT) { 
    dragController .makeDraggable(t); 
    t.setPosition(width - 15, 15 + (delta * i)); 
    add(t, widget.getRelativeLeft()+ width -15, 
                               termY + (delta * i)) ; 
   } else { 
    TerminalDropController dropControlle r =  
                             new TerminalDropController(t); 
   
 dragController .registerDropController(dropController); 
  t.setPosition(-15, 15 + (delta * i)); 
  add(t, widget.getRelativeLeft()-15, termY + (delt a * i)); 
  } 
  i++; 
    } 
 } 
  
 /*  
  * fixes the currentWire  
  */  
 public void fixWire(String targetId, int endX, int endY){ 
  String wireId = currentWireId +"/" +targetId; 
  currentWire .saveEndPosition(endX- left , endY- top ); 
  wires .put(wireId, currentWire ); 
  moveEndOfWireTo(wireId, endX, endY); 
 } 
  
 public void redrawCurrentWire( int theLeft, int theTop){ 
  Point pos = currentWire .drawTo(theLeft, theTop); 
  DOM. setStyleAttribute ( currentWire .getElement(), "left" , 
                                   pos. x+"px" ); 
  DOM. setStyleAttribute ( currentWire .getElement(), "top" , 
                                   pos. y+"px" ); 
 } 
  
 public void moveStartOfWireTo(String wireId, int newLeft,  
                                                     int newTop){ 
  WireCanvas wire = wires .get(wireId);  
  wire.setStart(newLeft- this. left , newTop- this. top ); 
   
  Point pos = wire.drawTo(wire.getEndPosX()+5, 
                                     wire.getEndPos Y()+5); 
  DOM. setStyleAttribute (wire.getElement(), "left" , pos. x+"px" ); 
  DOM. setStyleAttribute (wire.getElement(), "top" , pos. y+"px" ); 
 } 



Appendixes 121 
 

 

  
 public void moveEndOfWireTo(String wireId, int newLeft, int newTop){ 
  WireCanvas wire = wires .get(wireId); 
  Point pos = wire.drawTo(newLeft- left +5, newTop- top +5); 
  DOM. setStyleAttribute (wire.getElement(), "left" , pos. x+"px" ); 
  DOM. setStyleAttribute (wire.getElement(), "top" , pos. y+"px" ); 
 } 
  
  
 public ArrayList<String> getOutWires(String widgetId){ 
  ArrayList<String> outWires = new ArrayList<String>(); 
     for (String wireId : wires .keySet()) { 
      if (wireId.startsWith(widgetId)) { 
       outWires.add(wireId); 
      } 
     } 
     return outWires; 
 } 
  
 /* extract all wires that are connected to input po rts of  
  * the given widget  
  */  
 public ArrayList<String> getInWires(String widgetId){ 
  ArrayList<String> inWires = new ArrayList<String>(); 
     for (String wireId : wires .keySet()) { 
      if (wireId.endsWith(widgetId)) { 
       inWires.add(wireId); 
      } 
     } 
     return inWires; 
 } 
  
 public void saveEndPosition(String inWire, int theLeft, int theTop) { 
  WireCanvas wire = wires .get(inWire); 
  wire.saveEndPosition(theLeft- left , theTop- top ); 
 } 
  
 public void loadMashup() { 
         . . . 
 } 
 
 public Set<Box> getBoxes() { 
  Set<Box> boxes = new HashSet<Box>() ; 
  for (String wname : widgets .keySet()) { 
   MashupWidget widget = widgets .get(wname); 
   Box box = new Box(); 
   box.setPosx(widget.getAbsoluteLeft()); 
   box.setPosy(widget.getAbsoluteTop()); 
   //box.setWidgetType(new WidgetType());  
   boxes.add(box); 
  } 
  return boxes; 
 } 
  
 public Set<Path> getPaths() { 
  Set<Path> paths = new HashSet<Path>() ; 
  for (String wname : wires .keySet()) { 
   //WireCanvas wire = wires.get(wname);  
   Path path = new Path(); 
   path.setAddress(wname); 
   paths.add(path); 
  } 
  return paths; 
 } 
} 
 



Appendixes 122 
 

 

Appendix 7: A simple input widget that extends the MashupWidget class 

 
package com.bit.mashup.client; 
 
import com.google.gwt.user.client.ui.TextArea; 
 
public class InputWidget extends MashupWidget { 
  
 private TextArea field  = new TextArea(); 
  
 public InputWidget(String theWidgetId,String theTitle) { 
  super(theWidgetId, theTitle); 
  appendBody( new TextArea()); 
  setVisibleLabels( false); 
 } 
  
 public String run(){ 
  return field .getValue(); 
 } 
 
} 
 



Bibliography 123 
 

 

 

Bibliography 

 

Anjomshoaa (2009), Amin Anjomshoaa, Gerald Bader, and Amin Tjoa, Exploiting 
Mashup Architecture in Business Use Cases, The 12th International Conference 
on Network-Based Information Systems (NBIS 2009), Indianapolis USA 

Anjomshoaa  (2006), Anjomshoaa, A. , Karim, S., Shayeganfar, F. , Tjoa A M. 
(2006), Exploitation of Semantic Web technology in ERP systems, Procs. Of 
Confenis 2006 

Apache Cocoon (2009), The Apache Cocoon Project, http://cocoon.apache.org/, last 
visited November 2009 

Bell, Michael (2008). "Introduction to Service-Oriented Modeling". Service-Oriented 
Modelling: Service Analysis, Design, and Architecture. Wiley & Sons. pp. 3. 
ISBN 978-0-470-14111-3 

Berners-Lee, T. (2001), The Semantic Web, Scientific American, May 2001 

Blackman (2007), Andreas Ekelhart, Stefan Fenz, Gernot Goluch, Markus D. 
Klemen, Edgar R. Weippl , Architectural approach for handling semi-structured 
data in a user-centered working environment, International Journal of Web 
Information Systems, 2007, Volume 3, pp. 198-211, ISSN 1744-0084, DOI 
10.1108/17440080710834247 

BPEL Sub-processes (2009), BPEL for sub-processes, 
http://www-28.ibm.com/developerworks/webservices/library/specification/ws-
bpelsubproc/, last visited November 2009 

BPEL4People (2009), BPEL4People, http://en.wikipedia.org/wiki/BPEL4People, last 
visited November 2009 

Bush, V. (1945). As we may think. The Atlantic Monthly 176(1) (1945) p101–108 

Cherbakov (2007a), Cherbakov, L., Bravery, A., Goodman, B., Pandya, A., Bagget, 
J.: Changing the corporate IT development model: Tapping the power of 
grassrots computing. IBM System Journals 46(4), 2007 



Bibliography 124 
 

 

Cherbakov (2007b), Cherbakov, L., Bravery, A., Pandya, A.: SOA meets Situational 
Applications: Changing Computing in the Enterprise , 2007, 
http://www.ibm.com/developerworks/ 

Cocoon (2009), Apache Cocoon Framework, http://cocoon.apache.org/, last visited 
November 2009 

CRA (2003), CRA Conference on "Grand Research Challenges in Information 
Security & Assurance", Final Report: Four Grand Challenges in Trustworthy 
Computing, p. 23 

Daniel (2007), Daniel, F., Matera, M., Yu, J., Benatallah, B., Saint-Paul, R., Casati, 
F.: Understanding UI Integration. A Survey of Problems, Technologies, and 
Opportunities. IEEE Internet Computing 11(3), 59–66, 2007 

Dapper (2009), Dapper homepage, http://www.dapper.net/ , last visited November 
2009 

Data Integration (2009), http://en.wikipedia.org/wiki/Data_integration , last visited 
November 2009 

Dornan (2007), Andy Dornan, Mashup Basics: Three for the Money, 2007 
http://www.networkcomputing.com/data-networking-management/mashup-
basics-three-for-the-money.php ,  last visited November 2009 

Eclipse Plug-ins (2009), Azad Bolour, Notes on the Eclipse Plug-in Architecture, 
http://www.eclipse.org/articles/Article-Plug-in-
architecture/plugin_architecture.html , last visited November 2009  

EIU (2007), The Economist Intelligence Unit: Serious Business - Web 2.0 goes 
Corporate.  

FAST (2008), FAST: EU Project, INFSO-ICT-216048 (2008), http://fast.morfeo-
project.eu/, last visited November 2009 

Feldman, S. (2005), Susan Feldman, Joshua Duhl, The Hidden Costs of Information 
Work, IDC White paper, March 2005 

Fitzgibbon  (2004), Fitzgibbon, A. and Reiter, E.;  Memories for life: managing 
information over a human lifetime, Grand Challenges in Computing Research, 
pages 13-16. The British Computer So-ciety., 
http://www.ukcrc.org.uk/gcresearch.pdf 

Forms (2009), W3C Forms Working Group, http://www.w3.org/MarkUp/Forms/, 
last visited November 2009 

Gartner (2008), Top 10 Strategic Technologies for 2009, Gartner Symposium/ITxpo, 
http://www.gartner.com/it/page.jsp?id=777212, last visited November 2009 



Bibliography 125 
 

 

Gartner (2009), Gartner Five Business Intelligence Predictions for 2009, Gartner 
Business Intelligence Summit 2009, 
http://www.gartner.com/it/page.jsp?id=856714 , last visited November 2009 

Geocoding (2009), Google Maps API Geocoding Service, 
http://code.google.com/apis/maps/documentation/geocoding/index.html , last 
visited November 2009 

Google Maps (2009), Google Map homepage, http://maps.google.com , last visited 
November 2009 

Google Sidewiki (2009), http://www.google.com/sidewiki/intl/en/index.html , last 
visited November 2009 

Gruber, T. R. (1995), Toward Principles for the Design of Ontologies Used for 
Knowledge Sharing. International Journal Human-Computer Studies, 43(5-
6):907-928, 1995. 

Gnowsis project (2009), http://www.gnowsis.org/, last visited November 2009 

GWT (2009). Google Web Toolkit. http://code.google.com/webtoolkit/, last visited 
November 2009. 

Haystack (2009), Haystack project, http://groups.csail.mit.edu/haystack/, last visited 
November 2009 

Hoyer (2008a), Volker Hoyer and Marco Fischer, Market Overview of Enterprise 
Mashup Tools, ICSOC 2008, Springer-Verlag Berlin Heidelberg, LNCS 5364, 
pp. 708–721, 2008. 

Hoyer (2008b), Hoyer, V., Stanoevska-Slabeva, K., Janner, T., Schroth, C.: 
Enterprise Mashups: Design Principles towards the Long Tail of User Needs. 
In: IEEE International Conference on Services Computing (SCC), vol. 2, pp. 
601–602, 2008 

Hoyer (2009), Volker Hoyer and Katarina Stanoevska-Slabeva , The Changing Role 
of IT Departments in Enterprise Mashup Environments, ICSOC 2008, 
Springer-Verlag Berlin Heidelberg 2009, LNCS 5472, pp. 148–154, 2009. 

HtmlUnit (2009), HtmlUnit, http://htmlunit.sourceforge.net/ , last visited November 
2009 

iGoogle (2009), iGoogle Homepage, http://www.google.com/ig, last visited 
November 2009 

Information Integration (2009), http://en.wikipedia.org/wiki/Information_integration, 
last visited November 2009 



Bibliography 126 
 

 

IRIS Semantic Desktop (2009), http://www.openiris.org/ , last visited November 
2009 

JackBe (200),  Jackbe company website, http://www.jackbe.com, last visited 
November 2009 

Janner  (2007), Janner, T., Canas, V., Hierro, J., Licano, D., Reyers, M., Schroth, C., 
Soriano, J., Hoyer, V.: Enterprise Mashups: Putting a face on next generation 
global SOA. In: Tutorial at the 8th Int. Conf. on Web Information Systems 
Engineering, 2007 

JSON (2009), JavaScript Object Notation, http://json.org, last visited November 
2009 

KAoS (2003), Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., et al. (2003). KAoS 
Policy and Domain Services: Toward a Description-Logic Approach to Policy 
Representation, Deconfliction, and Enforcement. Policy 2003: Workshop on 
Policies for Distributed Systems and Networks. Springer-Verlag. 

Kapow (2009), Kapow technologies company website, http://kapowtech.com, last 
visited November 2009  

Legner  (2007), Legner, C.: Is there a Market for Web Services? - An Analysis of 
Web Services Directories. In: Proceedings of the 1st International Highlight 
Workshop on Web APIs and Services Mashups, 2007 

Lixto (2008), Lixto Solutions, http://www.lixto.com, last visited November 2009 

Mash Maker (2009), Intel Mash Maker, http://mashmaker.intel.com, last visited 
November 2009 

Mashup Basics (2009), Mashup Basics: Three for the Money, Andy Dornan, 
http://www.networkcomputing.com/showitem.jhtml?articleID=201804223, last 
visited November 2009 

Mashup Center (2009), IBM Mashup Center,  
http://www-01.ibm.com/software/info/mashup-center, last visited November 
2009  

Mashup Guide (2008), A Business Guide to Enterprise Mashups, JackBe 
Corporation, April 2008 

Medjahed  (2003), Brahim Medjahed, Boualem Benatallah, Athman Bouguettaya, 
Anne H. H. Ngu, Ahmed K. Elmagarmid, “Business-to-business interactions: 
issues and enabling technologies”,The VLDB Journal (2003) 12: pp 59–85. 

METEOR-S (2009), Semantic Web Services and Processes, 
http://lsdis.cs.uga.edu/projects/meteor-s/, last visited November 2009 



Bibliography 127 
 

 

Microformats (2009), http://www.microformats.org, last visited November 2009 

Music Mashups (2009), http://en.wikipedia.org/wiki/Mashup_(music), last visited 
November 2009 

Gorza (2007), T. Groza, S. Handschuh, K. Moeller, G. Grimnes, L. Sauermann, E. 
Minack, C. Mesnage, M. Jazayeri, G. Reif, and R. Gudjonsdottir: The 
NEPOMUK Project - On the way to the Social Semantic Desktop. Procs. of I-
Semantics’ 07, 2007 

Nepomuk  (2009), Nepomuk Project Synopsis: 
http://nepomuk.semanticdesktop.org/xwiki/bin/download/Main1/Project+Sum
mary/NEPOMUK-Synopsis.pdf, last visited November 2009 

O'Reilly, T. (2005), What Is Web 2.0: Design Patterns and Business Models for the 
Next Generation of Software, September 2005, 
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-
20.html , last visited November 2009 

O'Reilly, T. (2006), Levels of the Game: The Hierarchy of Web 2.0 Applications, 
July 2006, http://radar.oreilly.com/2006/07/levels-of-the-game-the-hierarc.html 
, last visited November 2009  

O'Reilly Media (2007), Programming Collective Intelligence: Searching and 
Ranking, white paper, August 2007, 
http://whitepapers.techrepublic.com.com/abstract.aspx?docid=323363 , last 
visited November 2009 

OWL-S (2009), Semantic Markup for Web Services, 
http://www.w3.org/Submission/OWL-S/, last visited November 2009 

Popfly (2009), Microsoft Popfly, http://www.popfly.com, last visited November 
2009 

Programmable Web (2009), Programmable Web Top APIs, 
http://www.programmableweb.com/apis, last visited May 2009 

QEDWiki (2009), QEDWiki  homepage, 
http://services.alphaworks.ibm.com/graduated/qedwiki.html, last visited 
November 2009 

REI (2003), Kagal, L., Finin, T., and Johshi, A. (2003). A Policy Language for 
Pervasive Computing Environment. Policy 2003: Workshop on Policies for 
Distributed Systems and Networks. Springer-Verlag. 

Reliability (2009), Reliability of Wikipedia, 
http://en.wikipedia.org/wiki/Reliability_of_Wikipedia, last visited November 
2009 



Bibliography 128 
 

 

RDFa (2009), RDFa in XHTML  Syntax and Processing, 
http://www.w3.org/TR/2008/CR-rdfa-syntax-20080620, last visited November 
2009 

REST (2000), Representational State Transfer, Roy Thomas Fielding, Architectural 
Styles and the Design of Network-based Software Architectures, Ph.D. Thesis, 
University of California, Irvine, Irvine, California, 2000. 

RSS (2009), Really Simple Syndication, http://en.wikipedia.org/wiki/RSS, last 
visited November 

Sauermann (2005), Sauermann L., Bernardi A., and Dengel A. (2005), Overview and 
Outlook on the Semantic Desktop, Proceedings of the 1st Workshop on The 
Semantic Desktop at the ISWC 2005 Conference 

Schmelzer (2006), Roland Schmelzer, Rich Internet Applications: Market Trends and 
Approaches, zapThink foundation report, July 2006 

Schmid (1998), Schmid, B., Lindemann, M.: Elements of a Reference Model for 
Electronic Markets. In: Proceedings of the 31st Hawaii Int. Conf. on System 
Sciences (HICSS) (1998) 

Shayeganfar (2009), Ferial Shayeganfar, Application of Semantic Web Material 
Libraries in AEC Context , Ph.D. Thesis, Vienna University of Technology, 
Austria, 2009 

SemanticLIFE (2004), M. Ahmed, H.H. Hoang, M.S. Karim, S. Khusro, M. 
Lanzenberger,K. Latif, E. Michlmayr, K. Mustofa, H.T. Nguyen, A. Rauber, A. 
Schatten, M.N. Tho, A.M. Tjoa: SemanticLIFE - A Framework for Managing 
Information of a Human Lifetime, Procs. Of the 6th International Conference 
on Information Integration and Web-based Applications and Services, 2004 

Shuaib  (2006), Shuaib Karim and A Min Tjoa, 'Towards the Use of Ontologies for 
Improving User Interaction for People with Special Needs', in ICCHP 2006 
(10th Intl. Conference on Computers Helping People with Special Needs) 12-
14th Jul'06, Linz - Austria . Published in LNCS by Springer Berlin / 
Heidelberg, volume 4061 / 2006, pp. 77-84 ,ISBN: 3-540-36020-4, DOI: 
10.1007/11788713_12   

Shuaib  (2007), Shuaib Karim, Khalid Latif and A Min Tjoa 'Providing Universal 
Accessibility using Connecting Ontologies: A Holistic Approach , in HCII 
2007 (12th International Conference on Human-Computer Interaction) 22-27th 
July'07, Beijing - China. Published in LNCS by Springer Berlin / Heidelberg, 
vol. 4556(7) / 2007, pp. 637-646, ISBN: 978-3-540-73282-2 

SWRL (2004), Horrocks. I, P.F. Patel-Schneider, Boley. H, Tabet. S, Grosof. B, and 
Dean. M, “SWRL: A semantic web rule language combining owl and ruleml”, 
2004,http://www.w3.org/submission/SWRL/., last visited November 2009 



Bibliography 129 
 

 

WAI-ARIA (2009), Web Accessibility Initiative-Accessible Rich Internet 
Applications, W3C Working Draft, February 2009,  
http://www.w3.org/TR/wai-aria/, last visited November 2009 

Watt (2007), Stephen Waat, The evolution of the SOA, Part 2: Situational 
applications and the mashup ecosystem, IBM developerWorks, 
http://www.ibm.com/developerworks/webservices/library/ws-soa-mashups2/ , 
last visited November 2009 

Web Services (2009), W3C Web Service Activity http://www.w3.org/2002/ws/, last 
visited November 2009 

WS-BPEL (2009), Business Process Execution Language for Web Services version 
1.1, http://www.ibm.com/developerworks/webservices/library/specification/ws-
bpel/ , last visited November 2009 

WSMF (2002), D. Fensel and C. Bussler: The Web Service Modeling Framework 
WSMF, Electronic Commerce Research and Applications, 1(2), 2002. 

WSMO (2009), Web Service Modeling Ontology, http://www.wsmo.org/index.html, 
last visited November 2009 

XForms (2009), XForms 1.1, W3C Recommendation, October 2009, 
http://www.w3.org/TR/xforms11/, last visited November 2009 

XSWT (2009), SWT is an XML-based GUI-description language for SWT, 
http://sourceforge.net/projects/xswt/, last visirted November 2009 

Yahoo Maps (2009), Yahoo Maps homepage, http://maps.yahoo.com, last visited 
November 2009 

Yahoo Pipes (2009), Yahoo Pipes homepage, http://pipes.yahoo.com, last visited 
November 2009 

Forrester (2008), Young, G., Daley, E., Gualtieri, M., Lo, H., Ashour, M.: The 
Mashup Opportunity.  

Zarnekow (2006), Zarnekow, R., Brenner, W., Pilgram, U.: Integrated Information 
Management. Applying Successful Industrial Concepts in IT. Springer, Berlin, 
2006 



Curriculum Vitae 130 
 

 

Curriculum Vitae 

 
 
 

Personal Information 

 

Name Amin Anjomshoaa  

Address Kammelweg 10/212, A-1210 Vienna, Austria 

E-mail addresses anjomshoaa@ifs.tuwien.ac.at  

 andjomshoaa@gmail.com   

Homepage http://www.amininfo.net  

Date of birth   24.08.1973 

 

Education  

 

2007 – Present  Doctoral study at the Institute of Software Technology 
and Interactive Systems, Information & Software 
Engineering Group, Vienna University of Technology, 
Austria  

2007 – Present  Doctoral study at the Faculty of Architecture, department 
of Building Physics and Building Ecology, Vienna 
University of Technology, Austria  

2006 – 2007 M.Sc. in Information Management, Vienna University of 
Technology, Austria 

2003 – 2005 M.Sc. in Software Engineering & Internet Computing, 
Vienna University of Technology, Austria 

2003 B.Sc. in Data Engineering & Statistics (Nostrifikation), 
Vienna University of Technology, Austria 

1991 – 1997 B.Sc. In Applied Mathematics and Computer Science, 
Kerman University, Iran 



Curriculum Vitae 131 
 

 

Work Experience 

 

2003 – Present  Institute of Software Technology & Interactive Systems, 
Vienna University of Technology; Project Assistant / 
Faculty 

2008 – Present Secure Business Austria, IT Competence Center; Project 
Manager / Programmer 

2002 – 2003 ISOLAB EDV-GMBH, Vienna, Austria; Chief 
Technology Officer 

2000 – 2001 SWP Office, Tehran, Iran; Project Manager (joint 
Austrian-Iranian research project) 

1999 – 2000 Nemood Inc., Kerman, Iran; Network Manager / 
Software Manager 

1994 – 1999 Kerman University, Kerman, Iran; System Administrator 
/ Programmer / Instructor 

 

 

Publications 

 

Amin Anjomshoaa, Vo Sao Khue, A Min Tjoa,Edgar Weippl, Michael Hollauf, 
Context Oriented Analysis of Web 2.0 Social Network Contents MindMeister 
Use-case, Accepted for presentation in The 2nd Asian Conference on 
Intelligent Information and Database Systems, 24-26 March 2010, Hue City, 
Vietnam, Springer LNCS/LNAI  

Amin Anjomshoaa, Andreas Hubmer, A Min Tjoa, Combining and Integrating 
Advanced IT-Concepts with Semantic Web Technology - Mashups 
Architecture Case Study, Invited paper in The 2nd Asian Conference on 
Intelligent Information and Database Systems, 24-26 March 2010, Hue City, 
Vietnam, Springer LNCS/LNAI 

Mansoor Ahmed, Amin Anjomshoaa, Muhammad Asfandeyar, A. Min Tjoa, 
Towards an Ontology-Based Solution for Managing License Agreement Using 
Semantic Desktop, Accepted for presentation in The Fifth International 
Conference on Availability, Reliability and Security (ARES 2010), February, 
15th – 18th 2010, Krakow, Poland 

Amin Anjomshoaa, Gerald Bader, and Amin Tjoa, Exploiting Mashup Architecture 
in Business Use Cases, NBIS 2009, Indianapolis USA 



Curriculum Vitae 132 
 

 

Asfandeyar, M. A.; Anjomshoaa, A.; Weippl, E. R. & Tjoa, A. M. (2009), Blending 
the Sketched Use Case Scenario with License Agreements Using Semantics., in 
Dimitris Karagiannis & Zhi Jin, ed., 'KSEM' , Springer, , pp. 275-284 . 

T. Moser, K. Schimper, R. Mordinyi, A. Anjomshoaa:SAMOA - A Semi-automated 
Ontology Alignment Method for Systems Integration in Safety-critical 
Environments; 2nd IEEE Intl. Wsh. on Ontology, Fukuoka, Japan; 16.03.2009 - 
19.03.2009; in:"2nd IEEE Intl. Wsh. on Ontology", (2009), ISBN: 978-0-7695-
3575-3; S. 724 - 729. 

Shayeganfar, F., Anjomshoaa, A. (2009). Exploitation of Semantic Building Model 
in Indoor Navigation Systems, EGU 2009, to be presented in European 
Geosciences Union General Assembly, April 2009. 

Shayeganfar, F., Mahdavi, A., Suter, G., Anjomshoaa, A.  (2008). Implementation of 
an IFD library using Semantic Web technologies: A case study, ECPPM 2008 
eWork and eBusiness in Architecture, Engineering and Construction, pp. 539 – 
544.  

M. Ahmed,A. Anjomshoaa, A. Tjoa:Context-Based Privacy Management of Personal 
Information Using Semantic Desktop: SemanticLIFE Case Study; iiWAS 2008, 
Linz; 24.11.2008 - 26.11.2008; in:"Proceedings of the 10th International 
Conference on Informationb Integration and Web-based 
Application&Services", Oesterreichische Computer Geselschaft, Band 241 
(2008), ISBN: 978-1-60558-349-5; S. 214 - 221. 

Amin Anjomshoaa, A Min Tjoa: Integration of Semantic XForms and Personal Web 
Services as a Tool to Bridge the Gap between Personal Desktops and Global 
Business Processes, UNISCON 2008 

Amin Anjomshoaa, A Min Tjoa: Improving Web Form Accessibility using Semantic 
XForms for People with Cognitive Impairments, Computers Helping People 
with Special Needs (ICCHP 2008), Springer 

Shayeganfar, F., Anjomshoaa, A., Tjoa, A.  (2008). A Smart Indoor Navigation 
Solution based on Building Information Model and Google Android, 
Computers Helping People with Special Needs (ICCHP 2008), Springer, pp. 
1050 – 1056. 

M. Ahmed, A. Anjomshoaa, M. Nguyen, A. Tjoa: Towards an Ontology-based 
Organizational Risk Assessment in Collaborative Environments using the 
SemanticLIFE, ARES 2007 

H. Hoang, M. Nguyen, A. Tjoa, A. Anjomshoaa:      "A Front-End Approach for 
User Query Generation and Information Retrieval in the SemanticLIFE 
Framework"; iiWAS2006 - The 8th International Conference on Information 
Integration and Web-based Applications and Services, Yogyjakarta, Indonesia; 
04.12.2006 - 06.12.2006; in: "Proceedings of the 8th International Conference 



Curriculum Vitae 133 
 

 

on Information Integration and Web-based Applications and Services", 
Austrian Computer Society, (2006), S. 107 - 116. 

H. Hoang, A. Tjoa, A. Anjomshoaa: Towards a New Approach for Information 
Retrieval in the SemanticLIFE Digital Memory Framework;WI2006 - The 
2006 IEEE/WIC/ACM International Conference on Web Intelligence, Hong 
Kong; 18.12.2006 - 22.12.2006; in: "Proceedings of the 2006 IEEE/WIC/ACM 
International Conference on Web Intelligence", IEEE Computer Society Press, 
(2006). 

H. Hoang, A. Tjoa, A. Anjomshoaa:VQS - An Ontology-based Query System for the 
SemanticLIFE Digital Memory Project; SWWS06 - The 2nd IFIP WG 2.12 & 
12.4 International Workshop on Web Semantics held conjunction wioth 
OTM06, Montpellier, France; 01.11.2006 - 03.11.2006; in: "Proceedings of the 
2nd IFIP WG 2.12 & 12.4 International Workshop on Web Semantics", 
Springer, LNCS 4278 (2006), ISBN-978-3-540-48273-4; S. 1796 - 1805. 

K. Mustofa, A. Tjoa, A. Anjomshoaa: "Semantic Enrichment of Search Result: the 
Coupling of Semantic Store and Google Services"; iiWAS2006 - The 8th 
International Conference on Information Integration and Web-based 
Applications and Services, Yogyakarta, Indonesia; 04.12.2006 - 06.12.2006; in: 
"International Conference on Information Integration and Web Based 
Applications & Services", (2006). 

M. Nguyen, A. Tjoa, A. Anjomshoaa, F. Shayeganfar: Utilising Web Service Based 
Business Processes Automation by Semantic Personal Information 
Management Systems - The SemanticLife Case; 6th International Conference 
Practical Aspects of Knowledge Management (PAKM2006), Vienna, Austria; 
30.11.2006 - 01.12.2006; in: "6th International Conference Practical Aspects of 
Knowledge Management (PAKM2006)", Springer LNCS, (2006), ISBN 3-540-
49998-9; S. 1 - 10. 

A. Tjoa, A. Anjomshoaa, S. Karim: Exploiting SenseCam for Helping the Blind in 
Business Negotiations; ICCHP 2006, Linz; 07/2006; in: "Computers Helping 
People with Special Needs", Springer, LNCS 4061 (2006), ISBN 978-3-540-
36020-9; S. 1147 - 1154. 

A. Tjoa, A. Anjomshoaa, S. Karim, F. Shayeganfar: Exploitation of Semantic Web 
Technology in ERP Systems; Confenis 2006, Wien; 24.04.2006 - 26.04.2006; 
in: "Research and practical issues of enterprise infomation systems", A. Tjoa 
(Hrg.); Springer, (2006), ISBN 0-387-34345-8; S. 417 - 427. 

A. Tjoa, A. Anjomshoaa, M. Nguyen, F. Shayeganfar: Using Semantic Personal 
Information Management Systems - The Semantic Life Case;  6th International 
Conference Practical Aspects of Knowledge Management (PAKM2006), Wien; 
11/2006 - 12/2006; in: "Practical Aspects of Knowledge Management", 
Springer, LNAI 4333 (2006), ISBN 3-540-49998-9; S. 1 - 12. 



Curriculum Vitae 134 
 

 

A. Tjoa, R. Wagner, A. Anjomshoaa, F. Shayeganfar: Semantic Web: Challenges 
and New Requirements; DEXA Workshops, Copenhagen, Denmark; 
22.08.2005 - 26.08.2005, IEEE Computer Society Press, (2005), S. 1160 - 
1163. 

Amin Anjomshoaa, ICT Benchmarking Tool Product Report, United Nations 
Conference on Trade and Development, 2004 

Amin Anjomshoaa, A. Schatten, A. Tjoa, H. Shafazand, The Application of Software 
Agent Technology to Project Management Infrastructure; in: "Proceedings of 
the International Conference on Information Integration and Web-based 
Applications and Services", SCS-Publishing House, 2002, (invited), ISBN 3-
936150-18-4, S. 1 - 4. 

Amin Anjomshoaa Knowledge Representation Using ISODataDreamer; EuroAsia 
ICT 2002,  Shiraz, Iran  

Anjomshoaa, A. Schatten, A. Tjoa, H. Shafazand:     Building an Web-Based Open 
Source Tool to Enhance Project Management, Monitoring and Collaboration in 
Scientific Projects; in: "Proceedings of the International Conference on 
Information Integration and Web-based Applications and Services" ( iiWAS 
2001) Linz , 2001, - 

 


