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Kurzfasung (German Abstract)

Im Laufe der letzten Jahre hat sich die Anzahl der im Internet vorhandenen Schad-
software vervielfacht. Hauptsächlich verantwortlich ist auf der einen Seite schlicht
die gestiegene Popularität des Internets und die damit einhergehende erhöhte An-
zahl an lohnenden Zielen. Ein weiterer Grund dafür ist jedoch auch, dass es
Angreifern immer öfter gelingt, mit Hilfe kompromittierter Computer enorme
Gewinne zu erzielen. Die Aussicht auf diese Profite motiviert immer öfter gut
organisierte, kriminelle Gruppen sich an der Verbreitung von Schadprogrammen
aktiv zu beteiligen. Die bösartige Software, die von diesen, an Profit orientierten,
Gruppen verwendet wird, weißt dabei eine weit größere Professionalität auf als
bisher bekannte Schadprogramme. Im Rahmen dieser Arbeit sollen nun inno-
vative Möglichkeiten aufgezeigt werden, die es erlauben, auch solche neuartige
Schadsoftware effizient mittels automatischer Werkzeuge zu analysieren.

Zuerst wird gezeigt, dass für die Analyse von Software, die bewusst Gegen-
maßnahmen einsetzt um ebendiese Analyse zu verhindern, so genannte dyna-
mische Analyseverfahren zu verwenden sind. Es werden Verfahren vorgestellt,
die mit wenig Aufwand Schadcode so modifizieren, dass herkömmliche stati-
sche Analyseverfahren nicht mehr in der Lage sind, aufschlussreiche Informa-
tionen über die analysierte Software zu generieren. Da dynamische Analyse-
methoden gegen die hier vorgestellten Verfahren immun sind, sollte ihnen der
Vorzug gegenüber statischen Methoden zur Schadcodeanalyse gegeben werden.

Ein Nachteil, den dynamische Analysemethoden im Gegensatz zu statischen
Ansätzen jedoch besitzen, ist die geringere Abdeckung des Programmcodes eines
analysierten Programms. Dadurch können unter Umständen Schadprogramme,
die ihr bösartiges Verhalten nur unter sehr speziellen Bedingungen preisgeben, bei
einer dynamischen Analyse fälschlich als gutartig eingestuft werden. Um diesem

i



ii

Problem entgegenzuwirken, wird in dieser Arbeit ein Ansatz vorgestellt, der dy-
namische Analyseverfahren erweitert. Es werden dabei Programmteile, die nur
unter bestimmten Bedingungen, die während einer Analyse normalerweise nicht
zutreffen, ausgeführt und analysiert.

Um dem Problem der Schadsoftware noch effizienter zu begegnen, als es mit
den hier vorgestellten Analysemethoden möglich ist, wird auch der Prototyp eines
Netzwerkanalysesystems vorgestellt. Dieses System ist in der Lage, Netzwerke
aufzuspüren, die von Angreifern verwendet werden, um Schadsoftware in Um-
lauf zu bringen sowie andere Internet-basierte Angriffe zu starten. Mit Hilfe
dieses Ansatzes ist es möglich, solche Netzwerke frühzeitig zu erkennen und
bloßzustellen, was im besten Fall dazu führen kann, dass bösartige Netzwerke
vom Internet abgeschnitten werden. Dadurch kann die Infrastruktur etwaiger An-
greifer derart gestört werden, dass die Auslieferung von Schadcode an ihre Opfer
fehlschlägt, wodurch die Sicherheit für Internetbenutzer immens gesteigert wird.



Abstract

During the past few years, the damage caused by malware has dramatically in-
creased. One reason is the rising popularity of the Internet and the resulting
increase in the number of available vulnerable machines because of security-
unaware users. Another reason is the elevated sophistication of the malicious
code itself. Organized groups are releasing highly professional malicious soft-
ware that contains sophisticated anti-analysis methods and payload for monetary
gains. This fact brings up new, challenging problems for analysts of malicious
software. In this work, we will present methods that allow to counter this threat.
We will show both how current malicious software can be effectively analyzed
by automated tools and how the underlying infrastructure of networks distributing
malicious code can be exposed.

First, we show that for analyzing malicious code that deliberately tries to pre-
vent analysis, dynamic analysis methods have to be preferred over static methods.
We present a system that can easily transform malicious binaries into semanti-
cally equivalent programs such that static analysis methods can no longer gather
any useful information from the binary. The only way to analyze those resulting
programs is to use dynamic analysis, which is immune to the applied transforma-
tions.

Even though dynamic analysis methods are better suited to analyze malicious
software, they usually have the problem of lower code coverage during the analy-
sis than static methods, which usually analyze the complete binary. This can lead
to the misclassification of a malicious program as benign if it executes its mali-
cious payload only under very specific circumstances. To mitigate this problem,
we present an approach to extend current dynamic analysis tools in a way that
covers also code paths that are executed only if very specific conditions are met.
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Finally, we present a system that is able to identify networks used by miscre-
ants to distribute malicious code and launch other attacks against Internet users.
By exposing those malicious networks, it is possible to generate effective black-
lists that disallow access to servers hosted there or to even disconnect the whole
network from the Internet by other Internet service providers. In both cases, the
distribution of malicious programs to the victims of exploits can be prevented.
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Chapter 1

Introduction

1.1 Motivation

Malicious code (or malware) is defined as software that fulfills the deliberately
harmful intent of an attacker. Nowadays, such software poses a major security
threat to computer users. According to estimates, the financial loss caused by
malware has been as high as 14.2 billion US dollars in the year 2005 [24]. Unfor-
tunately, the problem of malicious code is likely to grow in the future as malware
writing is quickly turning into a profitable business [100]. Malware authors can
sell their creations to miscreants, who use the malicious code to compromise large
numbers of machines that can then be abused as platforms to launch denial-of-
service attacks or as spam relays. Another indication of the significance of the
problem is that even people without any special interest in computers are aware
of worms such as Storm [88] or Conficker [103]. This is because security in-
cidents affect millions of users and regularly make the headlines of mainstream
news sources.

The traditional line of defense against malware is composed of malware de-
tectors such as virus and spyware scanners. Unfortunately, both researchers and
malware authors have demonstrated that these scanners, which use pattern match-
ing to identify malware, can be easily evaded. To address this shortcoming, more
powerful malware detectors have been proposed. Many of these tools rely on se-
mantic signatures and employ static analysis techniques such as model checking
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2 Chapter 1. Introduction

and theorem proving to perform detection. While it has been shown that these
systems are highly effective in identifying current malware, it is less clear how
successful they would be against adversaries that take into account the novel de-
tection mechanisms. In this thesis, we will present program obfuscation methods
that can be applied directly to binaries and can effectively thwart detection of ma-
licious code by conventional virus scanners and also advanced malware detection
tools.

Another class of malware detectors apply dynamic analysis methods to iden-
tify malware binaries. In this approaches, the binary to analyze is executed in
a restricted environment and all of its interactions with the operating system are
recorded. Later, the trace of these interactions can be inspected and evidence of
suspicious activities like unwanted network connections or other malicious behav-
ior can be used to classify a binary as malicious.

While these dynamic analysis systems usually work really well with current
malware binaries, there are some examples where malicious activity that is dor-
mant in an executable is missed by the analysis system. This is due to the fact
that in the simulated environment external events the binary is waiting for (for
example a command sent over an IRC channel by the owner of a bot network) are
simply not present. In this thesis, we will present novel methods that deal with
those trigger-based malware samples and can reliably reveal this hidden, mali-
cious behavior.

Another approach that we want to show in this thesis to counter malware is
to identify the networks that are used by miscreants to distribute their malicious
software. If we can find a way to block access to those networks or, even better,
to disconnect those malicious networks completely from the Internet, many of the
malware infections we see taking place every day could be prevented.

1.2 Thesis Outline

In this thesis we will present new methods to dynamically analyze malicious bi-
naries and also a network monitoring tool that can be used to detect malware
distributing networks. This thesis is based on my previously published work [9,
70, 71, 99].
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In Chapter 2 we will give an overview on techniques that are currently used to
analyze malicious code. We will show the different methods available as well as
their respective strengths and weaknesses.

In Chapter 3 we show, how traditional virus scanners as well as more sophisti-
cated static analysis tools can be fooled by applying certain binary transformations
to malware samples. We show how these transformations will easily thwart de-
tection by all of the traditional malware scanners we tested which gives a strong
motivation to concentrate on dynamic analysis methods as those methods are com-
pletely unaffected by the presented transformations.

To address the problem of trigger-based malware samples that could be mis-
classified by conventional dynamic analysis systems, we present an extension to
those systems in Chapter 4. The presented method can be used to reveal the hid-
den malicious behavior present in the analyzed malware samples as well as the
external events that would lead to those malicious actions.

However, even if we can accurately assess if a binary is malicious or not using
the presented tools, we think it would be much better if we could get to the root of
the problem of malware and hinder the distribution of malicious binaries. Thus, in
Chapter 5 we present a network scanning framework that is able to detect rogue,
malware distributing networks and to generate blacklists for the identified hosts.



4 Chapter 1. Introduction



Chapter 2

Analysis of Malicious Code

Malware analysis is the process of determining the purpose and functionality of
a given sample of malicious code. This process is a necessary step to be able
to develop effective detection techniques for malicious software. Nowadays, the
most important line of defense against malicious code are still virus scanners.
These rather unintelligent search programs typically scan all files they encounter
for predefined binary strings (so called signatures). As soon as the signature of
a known malicious code sample is found, an alarm is raised and the user is in-
formed that his computer is infected by malicious code. The huge drawback of
this approach is that virus scanners rely on a database of signatures that charac-
terize known malware instances. Thus, only known malicious code samples that
are already present in the database can be found by the anti virus software. Every
time a new malware sample is found in the wild, there is a window of vulnera-
bility in which the virus scanner has not updated its signature database and, thus,
is not able to raise an alarm if it encounters this malware sample. Therefore, it is
extremely important to analyze newly found unknown software samples as fast as
possible in order to timely update the signature databases if the binary is found to
be malicious. However, realizing that a given binary sample is malicious is often
not sufficient. Frequently, it is necessary to gain a detailed understanding of the
behavior of the program. For example to be able to cleanly remove a piece of
malware from an infected machine, it is usually not enough to delete the binary
itself. It is also necessary to remove the residues left behind by the malicious

5



6 Chapter 2. Analysis of Malicious Code

code (such as unwanted registry entries, services, or processes) and undo changes
made to legitimate files. Also, in cases of bot clients, it is important to understand
the mechanisms behind the corresponding bot network. This information can lead
to much better defense measures than the protection offered by virus scanners.
For example by revealing a bots communication patterns, the command and con-
trol channels of the whole bot network can be undermined and subsequently the
responsible servers can be shut down.

The traditional approach to analyze the behavior of an unknown program is
to execute the binary in a restricted environment and observe its actions. The re-
stricted environment is often a debugger, used by a human analyst to step through
the code in order to understand its functionality. Unfortunately, anti-virus com-
panies receive up to several hundred new malware samples each day. Clearly,
the analysis of these malware samples cannot be performed completely manually.
Hence, automated solutions are necessary.

The automated methods that are available nowadays to analyze unknown ex-
ecutables can be divided into two broad categories. Static analysis is the process
of analyzing a program’s code without actually executing it. That is, a binary is
disassembled by an automated system and the behavior of the malware sample is
deducted by examining the resulting assembler code. Some static analysis meth-
ods and their drawbacks will be discussed in Section 2.1. The second category
of malware analysis approaches are so called dynamic analysis methods. In those
approaches, the binary sample is executed in a virtual machine or a simulated op-
erating system environment. While the program is running, its interaction with the
operating system (e.g., the native system calls or Windows API calls it invokes)
can be recorded and later presented to an analyst or scanned for suspicious system
calls. An overview of dynamic analysis approaches is given in Section 2.2.

2.1 Static Analysis Techniques

In this section, we discuss existing static code analysis techniques and point out
inherent limitations that make the use of dynamic approaches appealing.

During the process of static analysis, the binary sample under analysis is usu-
ally disassembled first, which denotes the process of transforming the binary code
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into corresponding assembler instructions. Once this step is completed, various
control flow as well as data flow analysis techniques can be employed to draw
conclusions about the functionality of the program. The advantage of static analy-
sis is that it can cover the complete program code. Thus, if there is some malicious
behavior present in the analyzed binary, it can be found by successful static anal-
ysis. However, this problem of determining the actions taken by a given code
sample is undecidable in the general case so often analysis is reverted to a manual
approach where the resulting assembly code is just examined by a virus analyst
who then determines to the best of his knowledge if a given binary is malicious
or not. Recently, a approach has been introduced that relies on so called semantic
signatures[18]. This method tries to find certain behavioral patterns in assembly
code defined by sequences of system calls. While this method is very promising
for identifying malicious code, it only works if the disassembly of the given mal-
ware sample is successful. In Chapter3 we will show in more detail how the static
analysis of malicious binaries can be impeded and how methods like[18] can thus
be evaded by malicious code.

Other static binary analysis techniques [17, 61] have been introduced to detect
and analyze different types of malware. However, the general problem with static
analysis remains. Many interesting questions that one can ask about a program
and its properties are undecidable in the general case. Of course, there exist a rich
body of work on static analysis techniques that demonstrate that many problems
can be approximated well in practice, often because difficult-to-handle situations
occur rarely in real-world software. Unfortunately, the situation is different when
dealing with malware. Because malicious code is written directly by the adver-
sary, it can be crafted deliberately so that it is hard to analyze. In particular, the
attacker can make use of binary obfuscation techniques to thwart both the disas-
sembly and code analysis steps of static analysis approaches.

The term obfuscation refers to techniques that preserve the program’s seman-
tics and functionality while, at the same time, making it more difficult for the
analyst to extract and comprehend the program’s structures. In the context of dis-
assembly, obfuscation refers to transformations of the binary such that the pars-
ing of instructions becomes difficult. In [63], Linn and Debray introduced novel
obfuscation techniques that exploit the fact that the Intel x86 instruction set ar-
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chitecture contains variable length instructions that can start at arbitrary memory
address. By inserting padding bytes at locations that cannot be reached during
run-time, disassemblers can be confused to misinterpret large parts of the binary.
Although their approach is limited to Intel x86 binaries, the obfuscation results
against current state-of-the-art disassemblers are remarkable.

Besides obfuscation techniques to increase the difficulty of the disassembly
process, the code itself can be obfuscated to make it difficult to extract the con-
trol flow of a program or to perform data flow analysis. The basic idea for such
obfuscation techniques is that they can be automatically applied, but not easily
undone, even if the transformation approach is known. This requirement is simi-
lar to the one that inspired the “one-way translation process” introduced in [107],
or cryptography. In both cases, a process is suggested that is easy to perform in
one direction, but difficult to revert.

One possibility to realize such obfuscation is the use of a primitive called
opaque constants. Opaque constants are an extension to the idea of opaque pred-
icates, which are defined in [21] as “boolean valued expressions whose values are
known to the obfuscator but difficult to determine for an automatic deobfuscator.”
The difference between opaque constants and opaque predicates is that opaque
constants are not boolean, but integer values. More precisely, opaque constants
are mechanisms to load a constant into a processor register whose value cannot be
determined statically. In Chapter 3 we will show how, based on opaque constants,
a number of obfuscation transformations can be constructed that can effectively
thwart static analysis of an obfuscated binary.

Finally, the code that is analyzed by a static analyzer may not necessarily be
the code that is actually run. In particular, this is true for self-modifying programs
that use polymorphic [101, 113] and metamorphic [101] techniques and packed
executables that unpack themselves during run-time [76].

The problems of static analysis methods we addressed in this section render
those approaches unsuitable for the analysis of malicious code. In the next section
we will thus give an overview over dynamic binary analysis methods that, due to
the nature of their techniques, are immune to the obfuscation methods presented
in this section.
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2.2 Dynamic Analysis Techniques

In contrast to static techniques, dynamic techniques analyze the code during run-
time. While these techniques are non-exhaustive, they have the significant ad-
vantage that only those instructions are analyzed that the code actually executes.
Thus, dynamic analysis is immune to obfuscation attempts and has no problems
with self-modifying programs. When using dynamic analysis techniques, the
question arises in which environment the sample should be executed. Of course,
running malware directly on the analyst’s computer, which is probably connected
to the Internet, could be disastrous as the malicious code could easily escape and
infect other machines. Furthermore, the use of a dedicated stand-alone machine
that is reinstalled after each dynamic test run is not an efficient solution because
of the overhead that is involved.

Running the executable in a virtual machine (that is, a virtualized computer)
such as one provided by VMware [106] is a popular choice. In this case, the mal-
ware can only affect the virtual PC and not the real one. After performing a dy-
namic analysis run, the infected hard disk image is simply discarded and replaced
by a clean one (i.e., so called snapshots). Virtualization solutions are sufficiently
fast. There is almost no difference to running the executable on the real computer,
and restoring a clean image is much faster than installing the operating system
on a real machine. Unfortunately, a significant drawback is that the executable to
be analyzed may determine that it is running in a virtualized machine and, as a
result, modify its behavior. In fact, a number of different mechanisms have been
published [84, 87] that explain how a program can detect if it is run inside a vir-
tual machine. Of course, these mechanisms are also available for use by malware
authors.

A PC emulator is a piece of software that emulates a personal computer (PC),
including its processor, graphic card, hard disk, and other resources, with the pur-
pose of running an unmodified operating system. It is important to differentiate
emulators from virtual machines such as VMware. Like PC emulators, virtu-
alizers can run an unmodified operating system, but they execute a statistically
dominant subset of the instructions directly on the real CPU. This is in contrast
to PC emulators, which simulate all instructions in software. Because all instruc-
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tions are emulated in software, the system can appear exactly like a real machine
to a program that is executed, yet keep complete control. Thus, it is more dif-
ficult for a program to detect that it is executed inside a PC emulator than in a
virtualized environment. Note that there is one observable difference between an
emulated and a real system, namely speed of execution. This fact could be ex-
ploited by malicious code that relies on timing information to detect an emulated
environment.

In addition to differentiating the type of environment used for dynamic analy-
sis, one can also distinguish and classify different types of information that can be
captured during the analysis process. Many systems focus on the interaction be-
tween an application and the operating system and intercept system calls or hook
Windows API calls. For example, a set of tools provided by Sysinternals [86]
allows the analyst to list all running Windows processes (similar to the Windows
Task Manager), or to log all Windows registry and file system activity. These
tools are implemented as operating system drivers that intercept native Windows
system calls. As a result, they are invisible to the application that is being ana-
lyzed. They cannot, however, intercept and analyze Windows API calls or other
user functions. On the other hand, tools [52] exist that can intercept arbitrary user
functions, including all Windows API calls. This is typically realized by rewrit-
ing target function images. The original function is preserved as a subroutine
and callable through a trampoline. Unfortunately, the fact that code needs to be
modified can be detected by malicious code that implements integrity checking.

Most current dynamic analysis systems have complete control over the sample
program running in a virtual PC environment. They can usually intercept and an-
alyze both native Windows operating system calls as well as Windows API calls
while being invisible to malicious code. The complete control offered by a PC
emulator potentially allows the analysis that is performed to be even more fine-
grained. Similar to the functionality typically provided by a debugger, the code
under analysis can be stopped at any point during its execution and the process
state (i.e., registers and virtual address space) can be examined. Unlike a debug-
ger, however, those systems do not have to resort to breakpoints, which are known
to cause problems when used for malicious code analysis [104]. The reason is
that software breakpoints directly modify the executable and thus, can be detected
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by code integrity checks. Also, malicious code was found in the wild that used
processor debug registers for its computations, thereby breaking hardware break-
points.

A number of dynamic analysis systems exist that use one of the approaches
described above [2, 75, 110]. Those systems allow users to upload malicious
code samples and output detailed reports on the behavior of the code sample.
Unfortunately, only one code path of the binary under analysis can be examined
in one run by conventional dynamic analysis systems. Thus, if for example the
malicious code sample is able to determine that it is being analyzed, it can just
exit prematurely. In that case, the generated reports will not show any malicious
behavior at all. To mitigate those problems we will present a novel method to
increase the code coverage of dynamic analysis in Chapter 4.
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Chapter 3

Limits of Static Analysis for
Malware Detection

Current systems to detect malicious code (most prominently, virus scanners) are
largely based on syntactic signatures. That is, these systems are equipped with
a database of regular expressions that specify byte or instruction sequences that
are considered malicious. A program is declared malware when one of the signa-
tures is identified in the program’s code. However, syntactic signatures have two
drawbacks. First, specifying precise, syntactic signatures makes it necessary to
update the signature database whenever a previously unknown malware sample is
found. Hence, there is always a window of vulnerability between the appearance
of a new malicious code instance and the availability of a signature that can detect
it. Second, malicious code can make use of simple program transformation (or
obfuscation) techniques. Using such techniques, the syntactic layout of the code
is modified, thus, evading detection.

Polymorphism and metamorphism are two obfuscation techniques that are com-
monly employed by malware authors. In the case of polymorphism, the actual
malware body is encrypted and prepended by a short decryption routine. When-
ever the malicious code is executed, the decryption routine first decrypts the ma-
licious code and then executes it. Of course, a different encryption key can be
used for each malware instance, making it impossble to specify a signature for the
encrypted body itself. From the point of view of the malware author, the prob-

13
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lem of evading detection has only shifted though, as virus scanners now target the
decryption routines.

Metamorphic techniques, on the other hand, do not encrypt the code but at-
tempt to directly change its layout so that signatures no longer match. For ex-
ample, the use of one register can be replaced by the use of another one that is
not active in the current code sequence (a technique called register reassignment).
Other techniques achieve changes in the code layout by shuffling independent
instructions (code transposition) or by inserting additional instructions with no
effect on the program’s behavior (dead code insertion). Finally, an instruction
sequence can be substituted by another one with the same semantics (instruction

substitution), a mechanism favored by complex instruction set architectures such
as the Intel x86.

Obviously, both polymorphic and metamorphic techniques can be combined.
It is a common approach that malicious code is first encrypted before metamorphic
techniques are applied to obfuscate the decryption routine.

Recent work [17] has demonstrated that techniques such as polymorphism and
metamorphism are successful in evading commercial virus scanners. The reason is
that syntactic signatures are ignorant of the semantics of instructions. To address
this problem, a novel class of semantics-aware malware detectors was proposed.
These detectors [18, 55, 61] operate with abstract models, or templates, that de-
scribe the behavior of malicious code. Because the syntactic properties of code
are (largely) ignored, these techniques are (mostly) resilient against the evasion
attempts discussed above. The premise of semantics-aware malware detectors is
that semantic properties are more difficult to morph in an automated fashion than
syntactic properties. While this is most likely true, the extent to which this is
more difficult is less obvious. On one hand, semantics-aware detection faces the
challenge that the problem of deciding whether a certain piece of code exhibits a
certain behavior is undecidable in the general case. On the other hand, it is also
not trivial for an attacker to automatically generate semantically equivalent code.

The question that we address in this thesis is the following: How difficult is

it for an attacker to evade semantics-based malware detectors that use powerful

static analysis to identify malicious code? We try to answer this question by intro-
ducing a binary code obfuscation technique that makes it difficult for an advanced,
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semantics-based malware detector to properly determine the effect of a piece of
code. For this obfuscation process, we use a primitive known as opaque constant,
which denotes a code sequence to load a constant into a processor register whose
value cannot be determined statically. Based on opaque constants, we build a
number of obfuscation transformations that are difficult to analyze statically.

Given our obfuscation scheme, the next question that needs to be addressed
is how these transformations should be applied to a program. The easiest way,
and the approach chosen by most previous obfuscation approaches [21, 108], is
to work on the program’s source code. Applying obfuscation at the source code
level is the normal choice when the distributor of a binary controls the source
(e.g., to protect intellectual property). For malware that is spreading in the wild,
source code is typically not available. Also, malware authors are often reluctant
to revealing their source code to make analysis more difficult. Thus, to guard
against objections that our presented threats are unrealistic, we present a solution
that operates directly on binaries.

The core contributions we present in this chapter are as follows:

• We present a binary obfuscation scheme based on the idea of opaque con-
stants. This scheme allows us to demonstrate that static analysis of ad-
vanced malware detectors can be thwarted by scrambling control flow and
hiding data locations and usage.

• We introduce a binary rewriting tool that allows us to obfuscate Windows
and Linux binary programs for which no source code or debug information
is available.

• We present experimental results that demonstrate that semantics-aware mal-
ware detectors can be evaded successfully. In addition, we show that our
binary transformations are robust, allowing us to run real-world obfuscated
binaries under both Linux and Windows.

The code obfuscation scheme introduced in this thesis provides a strong indi-
cation that static analysis alone might not be sufficient to detect malicious code.
In particular, we introduce an obfuscation scheme that is provably hard to analyze
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statically. Because of the many ways in which code can be obfuscated and the fun-
damental limits in what can be decided statically, we firmly believe that dynamic
analysis is a necessary complement to static detection techniques. The reason is
that dynamic techniques can monitor the instructions that are actually executed by
a program and, thus, are immune to many code obfuscating transformations.

3.1 Code Obfuscation

In this section, we present the concepts of the obfuscation transformations that
we apply to make the code of a binary difficult to analyze statically. As with
most obfuscation approaches, the basic idea behind our transformations is that
either some instructions of the original code are replaced by program fragments
that are semantically equivalent but more difficult to analyze, or that additional
instructions are added to the program that do not change its behavior. Many of
our transformations rely on the existence of an obfuscation primitive that we call
opaque constant, which we discuss in the next section. The following sections
then introduce obfuscation techniques that can be built on top of this obfuscation
primitive.

3.1.1 Opaque Constants

Constant values are ubiquitous in binary code, be it as the target of a control flow
instruction, the address of a variable, or an immediate operand of an arithmetic
instruction. In its simplest form, a constant is loaded into a register (expressed
by a move constant, $register instruction). An important obfuscation
technique that we present in this paper is based on the idea of replacing this load
operation with a set of semantically equivalent instructions that are difficult to
analyze statically. That is, we generate a code sequence that always produces the
same result (i.e., a given constant), although this fact would be difficult to detect
from static analysis.of this code.

Simple Opaque Constant Calculation Figure 3.1 shows one approach to cre-
ate a code sequence that makes use of random input and different intermediate
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Figure 3.1: Opaque constant calculation

variable values on different branches. In this code sequence, the value unknown
is a random value loaded during runtime. To prepare the opaque constant calcula-
tion, the bits of the constant that we aim to create have to be randomly partitioned
into two groups. The values of the arrays zero and one are crafted such that
after the for loop, all bits of the first group have the correct, final value, while
those of the second group depend on the random input (and thus, are unknown).
Then, using the appropriate values for set ones and set zeros, all bits of the
second group are forced to their correct values (while those of the first group are
left unchanged). The result is that all bits of constant hold the desired value at
the end of the execution of the code.

An important question is how the arrays zero and one can be prepared such
that all bits of the first group are guaranteed to hold their correct value. This can
be accomplished by ensuring that, for each i, all bits that belong to the first group
have the same value for the two array elements zero[i] and one[i]. Thus,
independent of whether zero[i] or one[i] is used in the xor operation with
constant, the values of all bits in the first group are known after each loop iter-
ation. Of course, the bits that belong to the second group can be randomly chosen
for all elements zero[i] and one[i]. Thus, the value of constant itself is
different after each loop iteration. Because a static analyzer cannot determine the
exact path that will be chosen during execution, the number of possible constant
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values doubles after each loop iteration. In such a case, the static analyzer would
likely have to resort to approximation, in which case the exact knowledge of the
constant is lost.

This problem could be addressed for example by introducing a more complex
encoding for the constant. If we use for instance the relationship between two bits
to represent one bit of actual information, we avoid the problem that single bits
have the same value on every path. In this case, off-the-shelf static analyzers can
no longer track the precise value of any variable.

Of course, given the knowledge of our scheme, the defender has always the
option to adapt the analysis such that the used encoding is taken into account.
Similar to before, it would be possible to keep the exact values for those vari-
ables that encode the same value after each loop iteration. However, this would
require special treatment of the particular encoding scheme in use. Our experi-
mental results demonstrate that the simple opaque constant calculation is already
sufficient to thwart current malware detectors. However, we also explored the
design space of opaque constants to identify primitives for which stronger guar-
antees with regard to robustness against static analysis can be provided. In the
following paragraphs, we discuss a primitive that relies on the NP-hardness of the
3-satisfiability problem.

NP-Hard Opaque Constant Calculation The idea of the following opaque
constant is that we encode the instance of an NP-hard problem into a code se-
quence that calculates our desired constant. That is, we create an opaque constant
such that the generation of an algorithm to precisely determine the result of the
code sequence would be equivalent to finding an algorithm to solve an NP-hard
problem. For our primitive, we have chosen the 3-satisfiability problem (typically
abbreviated as 3SAT) as a problem that is known to be hard to solve. The 3SAT
problem is a decision problem where a formula in Boolean logic is given in the
following form:

∧n
i=1(Vi1 ∨ Vi2 ∨ Vi3)

where Vij ∈ {v1, ..., vm} and v1, ..., vm are Boolean variables whose value can be
either true or false. The task is now to determine if there exists an assignment for
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the variables vk such that the given formula is satisfied (i.e., the formula evaluates
to true). 3SAT has been proven to be NP-complete in [54].

_ _ _ _b o o l e a n v 1 , . . . , v m , v 1 , . . . , v m ;b o o l e a n * V 1 1 , * V 1 2 , * V 1 3 ;. . .b o o l e a n * V n 1 , * V n 2 , * V n 3 ;c o n s t a n t = 1 ;f o r ( i = 0 ; i < n ; + + i )i f ! ( * V i 1 ) & & ! ( * V i 2 ) & & ! ( * V i 3 )c o n s t a n t = 0 ;
Figure 3.2: Opaque constant based on 3SAT

Consider the code sequence in Figure 3.2. In this primitive, we define m
boolean variables v1 . . . vm, which correspond directly to the variables in the given
3SAT formula. By v1 . . . vm, we denote their negations. The pointers V11 to Vn3

refer to the variables used in the various clauses of the formula. In other words, the
pointers V11 to Vn3 encode a 3SAT problem based on the variables v1 . . . vm. The
loop simply evaluates the encoded 3SAT formula on the input. If the assignment
of variables v1 . . . vm does not satisfy the formula, there will always be at least one
clause i that evaluates to false. When the check in the loop is evaluated for that
specific clause, the result will always be true (as the check is performed against
the negate of the clause). Therefore, the opaque constant will be set to 0. On the
other hand, if the assignment satisfies the encoded formula, the check performed
in the loop will never be true. Therefore, the value of the opaque constant is not
overwritten and remains 1.

In the opaque constant presented in Figure 3.2, the 3SAT problem (that is, the
pointers V11 to Vn3) is prepared by the obfuscator. However, the actual assign-
ment of boolean values to the variables v1 . . . vm is randomly performed during
runtime. Therefore, the analyzer cannot immediately evaluate the formula. The
trick of our opaque constant is that the 3SAT problem is prepared such that the
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formula is not satisfiable. Thus, independent of the actual input, the constant will
always evaluate to 0. Of course, when a constant value of 1 should be generated,
we can simply invert the result of the satisfiability test. Note that it is possible to
efficiently generate 3SAT instances that are not satisfiable with a high probabil-
ity [91]. A static analyzer that aims to exactly determine the possible values of
our opaque constant has to solve the instance of the 3SAT problem. Thus, 3SAT
is reducible in polynomial time to the problem of exact static analysis of the value
of the given opaque constant.

Note that the method presented above only generates one bit of opaque infor-
mation but can be easily extended to create arbitrarily long constants.

Basic Block Chaining One practical drawback of the 3SAT primitive presented
above is that its output has to be the same for all executions, regardless of the
actual input. As a result, one can conceive an analysis technique that evaluates the
opaque constant function for a few concrete inputs. When all output values are
equal, one can assume that this output is the opaque value encoded. To counter
this analysis, we introduce a method that we denote basic block chaining.

With basic block chaining, the input for the 3SAT problems is not always se-
lected randomly during runtime. Moreover, we do not always generate unsatisfi-
able 3SAT instances, but occasionally insert also satisfiable instances. In addition,
we ensure that the input that solves a satisfiable formula is provided during run-
time. To this end, the input variables v1 . . . vm to the various 3SAT formulas are
realized as global variables. At the end of every basic block, these global vari-
ables are set in one of the three following ways: (1) to static random values, (2) to
random values generated at runtime, or (3), to values specially crafted such that
they satisfy a solvable formula used to calculate the opaque constant in the next

basic block in the control flow graph.

To analyze a program that is obfuscated with basic block chaining, the an-
alyzer cannot rely on the fact that the encoded formula is always unsatisfiable.
Also, when randomly executing a few sample inputs, it is unlikely that the an-
alyzer chooses values that solve a satisfiable formula. The only way to dissect
an opaque constant would be to first identify the basic block(s) that precede a
certain formula and then determine whether the input values stored in this block
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satisfy the 3SAT problem. However, finding these blocks is not trivial, as the
control flow of the program is obfuscated to make this task difficult (see the fol-
lowing Section 3.1.2 for more details). Thus, the analysis would have to start at
the program entry point and either execute the program dynamically or resort to
an approach similar to whole program simulation in which different branches are
followed from the start, resolving opaque constants as the analysis progresses.
Obviously, our obfuscation techniques fail against such methods, and indeed, this
is consistent with an important point that we intend to make in this chapter: dy-
namic analysis techniques are a promising and powerful approach to deal with
obfuscated binaries.

3.1.2 Obfuscating Transformations

Using opaque constants, we possess a mechanism to load a constant value into
a register without the static analyzer knowing its value. This mechanism can be
expanded to perform a number of transformations that obfuscate the control flow,
data locations, and data usage of a program.

Control Flow Obfuscation

A central prerequisite for the ability to carry out advanced program analysis is the
availability of a control flow graph. A Control Flow Graph (CFG) is defined as a
directed graph G = (V,E) in which the vertices u, v ∈ V represent basic blocks
and an edge e ∈ E : u → v represents a possible flow of control from u to v. A
basic block describes a sequence of instructions without any jumps or jump targets
in the middle. More formally, a basic block is defined as a sequence of instructions
where the instruction in each position dominates, or always executes before, all
those in later positions. Furthermore, no other instruction executes between two
instructions in the same sequence. Directed edges between blocks represent jumps
in the control flow, which are caused by control transfer instructions (CTI) such
as calls, conditional jumps, and unconditional jumps.

The idea to obfuscate the control flow is to replace unconditional jump and
call instructions with a sequence of instructions that do not alter the control flow,
but make it difficult to determine the target of control transfer instructions. In
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other words, we attempt to make it as difficult as possible for an analysis tool to
identify the edges in the control flow graph. Jump and call instructions exist as
direct and indirect variants. In case of a direct control transfer instruction, the
target address is provided as a constant operand. To obfuscate such an instruction,
it is replaced with a code sequence that does not immediately reveal the value of
the jump target to an analyst. To this end, the substituted code first calculates the
desired target address using an opaque constant. Then, this value is saved on the
stack (along with a return address, in case the substituted instruction was a call).
Finally, a x86 ret(urn) operation is performed, which transfers control to the
address stored on top of the stack (i.e., the address that is pointed to by the stack
pointer). Because the target address was previously pushed there, this instruction
is equivalent to the original jump or call operation.

Typically, this measure is enough to effectively avoid the reconstruction of the
CFG. In addition, we can also use obfuscation for the return address. When we
apply this more complex variant to calls, they become practically indistinguish-
able from jumps, which makes the analysis of the resulting binary even harder
because calls are often treated differently during analysis.

Data Location Obfuscation

The location of a data element is often specified by providing a constant, absolute
address or a constant offset relative to a particular register. In both cases, the task
of a static analyzer can be complicated if the actual data element that is accessed
is hidden.

When accessing a global data element, the compiler typically generates an
operation that uses the constant address of this element. To obfuscate this access,
we first generate code that uses an opaque constant to store the element’s address
in a register. In a second step, the original operation is replaced by an equivalent
one that uses the address in the register instead of directly addressing the data
element. Accesses to local variables can be obfuscated in a similar fashion. Local
variable access is typically achieved by using a constant offset that is added to
the value of the base pointer register, or by subtracting a constant offset from the
stack pointer. In both cases, this offset can be loaded into a register by means of
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an opaque constant primitive. Then, the now unknown value (from the point of
view of the static analyzer) is used as offset to the base or stack pointer.

Another opportunity to apply data location obfuscation are indirect function
calls and indirect jumps. Modern operating systems make heavy use of the con-
cept of dynamically linked libraries. With dynamically linked libraries, a program
specifies a set of library functions that are required during execution. At program
start-up, the dynamic linker maps these requested functions into the address space
of the running process. The linker then populates a table (called import table or
procedure linkage table) with the addresses of the loaded functions. All a program
has to do to access a library function during runtime is to jump to the correspond-
ing address stored in the import table. This “jump” is typically realized as an
indirect function call in which the actual target address of the library routine is
taken from a statically known address, which corresponds to the appropriate table
entry for this function.

Because the address of the import table entry is encoded as a constant in the
program code, dynamic library calls yield information on what library functions a
program actively uses. Furthermore, such calls also reveal the important informa-
tion of where these functions are called from. Therefore, we decided to obfuscate
import table entry addresses as well. To this end, the import table entry address
is first loaded into a register using an opaque constant. After this step, a register-
indirect call is performed.

Data Usage Obfuscation

With data location obfuscation, we can obfuscate memory access to local and
global variables. However, once values are loaded into processor registers, they
can be precisely tracked. For example, when a function returns a value, this return
value is typically passed through a register. When the value remains in the register
and is later used as an argument to another function call, the static analyzer can
establish this relationship. The problem from the point of view of the obfuscator
is that a static analysis tool can identify define-use-chains for values in registers.
That is, the analyzer can identify when a value is loaded into a register and when
it is used later.
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To make the identification of define-use chains more difficult, we obfuscate the
presence of values in registers. To this end, we insert code that temporarily spills
register content to an obfuscated memory location and later reloads it. This task
is accomplished by first calculating the address of a temporary storage location
in memory using an opaque constant. We then save the register to that memory
location and delete its content. Some time later, before the content of the register
is needed again, we use another opaque constant primitive to construct the same
address and reload the register. For this process, unused sections of the stack are
chosen as temporary storage locations for spilled register values.

After this obfuscation mechanism is applied, a static analysis can only identify
two unrelated memory accesses. Thus, this approach effectively introduces the
uncertainty of memory access to values held in registers.

3.2 Binary Transformation

To verify the effectiveness and robustness of the presented code obfuscation meth-
ods on real-world binaries, it was necessary to implement a binary rewriting tool
that is capable of changing the code of arbitrary binaries without assuming access
to source code or program information (such as relocation or debug information).

We did consider implementing our obfuscation techniques as part of the com-
piler tool-chain. This task would have been easier than rewriting existing bina-
ries, as the compiler has full knowledge about the code and data components of
a program and could insert obfuscation primitives during code generation. Un-
fortunately, using a compiler-based approach would have meant that it would not
have been possible to apply our code transformations to real-world malware (ex-
cept the few for which source code is available on the net). Also, the ability to
carry out transformations directly on binary programs highlights the threat that
code obfuscation techniques pose to static analyzers. When a modified compiler
is required for obfuscation, a typical argument that is brought forward is that the
threat is hypothetical because it is difficult to bundle a complete compiler with a
malware program. In contrast, shipping a small binary rewriting engine together
with malicious code is more feasible for miscreants.
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When we apply the transformations presented in this thesis to a binary pro-
gram, the structure of the program changes significantly. This is because the code
that is being rewritten requires a larger number of instructions after obfuscation,
as single instructions get substituted by obfuscation primitives. To make room for
the new instructions, the existing code section is expanded and instructions are
shifted. This has important consequences. First, instructions that are targets of
jump or call operations are relocated. As a result, the operands of the correspond-
ing jump and call instructions need to be updated to point to these new addresses.
Note that this also effects relative jumps, which do not specify a complete target
address, but only an offset relative to the current address. Second, when expand-
ing the code section, the adjacent data section has to be moved too. Unfortunately
for the obfuscator, the data section often contains complex data structures that de-
fine pointers that refer to other locations inside the data section. All these pointers
need to be adjusted as well.

Before instructions and their operands can be updated, they need to be iden-
tified. At first glance, this might sound straightforward. However, this is not the
case because the variable length of the x86 instruction set and the fact that code
and data elements are mixed in the code section make perfect disassembly a diffi-
cult challenge.

In our system, we use a recursive traversal disassembler. That is, whenever we
wish to obfuscate a binary, we start by disassembling the program at the program
entry point specified in the program header. We disassemble the code recursively
until every reachable procedure has been processed. After that, we focus on the
remaining unknown sections. For these, we use a number of heuristics to recog-
nize them as possible code. These heuristics include the use of byte signatures to
identify function prologues or jump tables. Whenever a code region is identified,
the recursive disassembler is restarted there. Otherwise, the section is declared as
data.

Our rewriting tool targets both the Linux ELF [102] and the Windows PE [65]
file formats. In general, Linux applications are significantly easier to disassem-
ble than Windows binaries. A reason for this is that almost all ELF binaries are
generated by the GNU compiler collection (GCC). The usage of the same com-
piler back-end for nearly all files results in a consistent file landscape. Also, the
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code produced by GCC is well-structured. PE files, on the other hand, are pro-
duced by various popular commercial compilers (e.g., MS Visual Studio, Borland,
Metrowerks CodeWarrior) that generate code using different conventions and lay-
outs. Furthermore, Windows compilers do not separate code and data regions as
cleanly as GCC. In practice, this means that data is almost always inserted be-
fore the first and after the last valid instruction in the code section of PE files.
Sometimes, compilers also insert user data directly into the code segment.

Using the recursive disassembler approach and our heuristics, our binary rewrit-
ing tool is able to correctly obfuscate many (although not all) real-world binaries.
More detailed results on the robustness of the tool are provided in Section 3.3.

3.3 Evaluation

In this section, we present experimental results and discuss our experiences with
our obfuscation tool. In particular, we assess how effective the proposed obfus-
cation techniques are in evading malware detectors. In addition, we analyze the
robustness of our binary rewriting tool by processing a large number of Linux and
Windows applications.

3.3.1 Evasion Capabilities

To demonstrate that the presented obfuscation methods can be used to effectively
change the structure of a binary so that static analysis tools fail to recognize the
obfuscated code, we conducted tests with real-world malware. We used our tool
to morph three worm programs and then analyzed the obfuscated binaries using
an advanced static analysis tool [55] as well as four popular commercial virus
scanners.

The malware samples that we selected for our experiments were the A and F
variants of the MyDoom worm and the A variant of the Klez worm. We chose
these samples because they were used in the evaluation of the advanced static
analysis tool in [55]. Thus, the tool was equipped with appropriate malware spec-
ifications to detect these worms. In order to obfuscate the malicious executables,
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we deployed the evasion techniques introduced in Section 3.1 using both the sim-
ple opaque constants and the one based on the 3SAT problem.

Commercial Virus Scanners: First, we tested the possibilities to evade detec-
tion by popular virus scanners. To evaluate the effectiveness of our obfuscation
methods, we selected the following four popular anti-virus applications: McAfee
Anti-Virus, Kaspersky Anti-Virus Personal, AntiVir Personal Edition, and Ikarus
Virus Utilities.

Before the experiment, we verified that all scanners correctly identified the
worms. Then, we obfuscated the three malicious code samples, ensured that the
malware was still operating correctly, and ran the virus scanners on them. The
results are shown in Table 3.1. In this table, an “X” indicates that the scanner was
no longer able to detect the malware.

Klez.A MyDoom.A MyDoom.AF

McAfee X
Kaspersky X X X
AntiVir X
Ikarus X X X

Table 3.1: Evasion results for four commercial virus scanners

The results demonstrate that after the obfuscation process, the scanners from
Kaspersky and Ikarus were not able to detect any of the malware instances. Sur-
prisingly for us, however, the scanners from McAfee and AntiVir were still able
to detect two out of three worms. Closer examination revealed that the scanner
from McAfee detects the two obfuscated samples because of a virus signature that
is based on parts of the data section. When we overwrote the bytes in the data sec-
tion that were being used as a signature, the McAfee scanner could neither detect
the original nor the obfuscated version of the malware anymore. In contrast, the
AntiVir scanner uses a combination of both a data and a code signature to detect
the worms. We were able to track down the data signature for both Klez.A and
MyDoom.A to a few bytes in the data section. If any of these bytes in the data
section was modified in the obfuscated binary, the detection by the virus scanner
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was successfully evaded. Indeed, it is relatively easy for malicious code to encrypt
the data section using a different key for each instance. Hence, data signatures are
not too difficult to evade.

Advanced Malware Detection (Model Checking): Because it is widely known
that existing commercial virus scanners typically employ pattern-based signa-
tures, the ability to evade their detection is not too surprising. In order to verify
the efficiency of our obfuscation techniques on a more advanced malware detec-
tor, we obtained the system presented in [55] from its authors. This detector first
creates a disassembly of the binary under analysis by using IDA Pro [35]. Then,
model checking is used to search for the existence of a generic code template that
characterizes malicious behavior. In particular, the tool attempts to identify code
sequences in the program that copy this program’s binary to another location in
the file system. More precisely, a malicious code sequence is defined as a call
to the GetModuleFileNameA Windows API function, followed by an invoca-
tion of the CopyFileA function. The exact specification as presented in [55] is
shown below.

EF(%syscall(GetModuleFileNameA, $*,

$pFile, 0) &

E %noassign($pFile) U

%syscall(CopyFileA, $pFile))

Note that this specification requires that the same variable (pFile) is used as
parameter in both function calls, without being overwritten in between (specified
by the noassign directive). Because the malware detector uses a signature that
characterizes the semantics of a sequence of code, it is resilient to code modifica-
tions that change the layout (e.g., register renaming or code insertion).

We first verified that the malicious code detector was able to correctly identify
the three original worms and then applied our code transformations. After obfus-
cation, the tool was no longer able to identify any of the three malware instances.
We examined in detail how our code transformations contributed to the successful
evasion.
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The first problem for the malware detector is its dependency on IDA Pro. Af-
ter we obfuscated direct call and jump instructions, the recursive disassembler
was no longer able to follow the control flow of the application. In this situation,
IDA Pro reverts to a linear sweep analysis, which results in many disassembly
errors. In fact, the output has such a poor accuracy that the library calls cannot
be identified anymore. When we disable our control flow obfuscation transfor-
mations, IDA Pro produces a correct disassembly. However, the used detection
signature relies on the fact that the dynamically linked Windows API functions
GetModuleFileNameA and CopyFileA can be correctly identified. When
we employ data location obfuscation, the analyzer can no longer determine which
entry of the import table is used for library calls. Thus, the second problem is that
the detection tool can no longer resolve the library function calls that are invoked
by the malicious code. Assuming that library calls could be recognized, the mal-
ware detector would still fail to identify the malicious code. This is because the
signature needs to ensure that the same parameter pFile is used in both calls.
In our worm samples, this parameter was stored as a local variable on the stack.
Again, using data location obfuscation, we can hide the value of the offset that
is used together with the base pointer register to access this local variable. As
a result, the static analysis tool cannot verify that the same parameter is actually
used for both library calls, and detection fails.

Semantics-Aware Malware Detection: Another system that uses code tem-
plates instead of patterns to specify malicious code was presented in [18]. We
did a theoretical examination of the evasion capabilities of the approach presented
here against this system and the first problem we found is clearly its dependency
on a correct disassembly of the binary. The system uses IDA Pro [35] to gen-
erate such disassembly outputs but this disassembler produces incorrect results
when confronted with control flow obfuscation. A second problem is the depen-
dency of some code templates (or semantic signatures) on the fact that certain
constants must be recognized as equivalent. Consider the template that specifies a
decryption loop, which describes the behavior of programs that unpack or decrypt
themselves to memory. According to [18], such a template consists of “(1) a loop
that processes data from a source memory area and writes data to a destination
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memory area, and (2) a jump that targets the destination area.” Clearly, the detec-
tor must be able to establish a relationship between the memory area where the
code is written to and the target of the jump. However, when using data location
obfuscation, the detector cannot statically determine where data is written to, and
by using obfuscated jumps, it also cannot link this memory area with the target of
the control flow instruction. Finally, semantic signatures can make use of define-
use chains to link the location where a variable is set and the location where it is
used. By using data usage obfuscation, however, such define-use chains can be
broken. Thus, we believe that a malware binary obfuscated by the methods pre-
sented in this thesis will not be deemed malicious anymore by the analysis system
presented in [18].

3.3.2 Transformation Robustness

In this section, we discuss the robustness of the applied modifications (i.e., does
a program run without problems after it is obfuscated) as well as their size and
performance impact. When testing whether obfuscation was successful, one faces
the problem of test coverage. That is, it is not trivial to demonstrate that the
obfuscated program behaves exactly like the original one. Because we operate
directly on binaries, our biggest challenge is the correct distinction between code
and data regions. When the disassembly step confuses code and data, addresses
are updated incorrectly and the program crashes. We observed that disassembler
errors quickly propagate through the program. Thus, whenever the binary rewrit-
ing fails, the obfuscated programs typically crash quickly. On the other hand,
once an obfuscated application was running, we observed few problems during
the more extensive tests we conducted. Thus, the mere fact that a program can be
launched provides a good indication for the success of the transformation process.
Of course, this is no guarantee for the correctness of the obfuscation process in
general.

Linux Binaries. In general, rewriting ELF binaries for Linux works very well.
Our first experiment was performed on the GNU coreutils. This software package
consists of 93 applications that can be found on virtually every Linux machine.
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Part of the coreutils package is a test script that performs 210 checks on various
applications. To assess the robustness of our transformations, we rewrote all 93
applications using all obfuscation transformations introduced previously. We then
ran the test script again, and all 210 checks were passed without problems.

As a second experiment, we obfuscated all applications in the /usr/bin/
directory on a machine running Ubuntu Linux 5.10. For this test, we rewrote 774
applications. When manually checking these applications, we recorded eleven
programs that crashed with a segmentation fault. Among these programs were
large, complex applications such as Emacs and Evolution or the linker. Of those
programs that were successfully rewritten, we extensively used and tested appli-
cations such as the instant messenger gaim (806 KB), vim (1,074 KB), xmms
(991 KB) and the Opera web browser (12,059 KB). These applications exhibited
no problems during regular use, which underlines the robustness of the transfor-
mations even for large binaries. Given that we operate directly on binaries with-
out any available program information and considering the fact that code rewriting
was successful for many applications, including GCC and Opera, we can conclude
that our binary transformation process is quite robust.

Windows Binaries. The set of programs that we used for testing Windows ex-
ecutables consisted of twelve executables selected from the %System% direc-
tory, and the Internet Explorer. The selected applications were both GUI and
command-line programs and represent a comprehensive set of applications, rang-
ing from system utilities (ping) to editors (NotePad) and games (MS Hearts). Af-
ter obfuscation and manual testing of their functionality, we could not identify any
problems for eleven of the thirteen applications.

One of those two applications that worked only partially was the Windows
Calculator. When our binary rewriting tool processes the calculator, an exception
handler is not patched correctly. This causes a jump to an incorrect address when-
ever an exception is raised. That is, the obfuscated program calculates correctly.
However, when a division by zero is executed, the application crashes. The second
application that could not be obfuscated properly was the Clipboard. This appli-
cation starts and can be used to copy text between windows. Unfortunately, when
a file is copied to the Clipboard, the application appears to hang in an infinite loop.
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3.3.3 Size and Performance

Typically, the most important goal when obfuscating a binary is to have it resist
analysis, while size and performance considerations are only secondary. Never-
theless, to be usable in practice, the increase in size or loss in performance cannot
be completely neglected.

We measured the increase of the code size when obfuscating the Linux binaries
under /usr/bin. As the obfuscation transformations are applied to Windows
and Linux executables in a similar fashion, the results for PE files are comparable.
For the Linux files, the average increase of the code size was 237%, while the
maximum increase was 471%, when we only used the simple loops for hiding
constant values. When we used code that evaluates 3SAT formulas, the size of
the binaries increased significantly more. For example, when using large 3SAT
instances with more than 200 clauses, the code size sometimes increased by a
factor as large as 30. Of course, when performing obfuscation, one can make a
number of trade-offs to reduce the code size, for example, by sparse usage of the
most space consuming transformations. However, even when applying the full
range of obfuscation methods, a malware author will hardly be deterred by a huge
size increase of his program.

During obfuscation, single instructions are frequently replaced by long code
sequences. Nevertheless, the overall runtime of the obfuscated binaries did not
increase dramatically, and we observed no noticeable difference for applications
such as Opera or Internet Explorer. We then performed a series of micro-benchmarks
with CPU-intense programs (such as grep, md5sum and zip) and found an aver-
age increase in runtime of about 50%. In the worst case, we observed a runtime
that almost doubled, which is acceptable in many cases (especially for malware
that is running on someone else’s computer). With regards to performance, code
that evaluates unsatisfiable 3SAT formulas is not slower than the simple opaque
constants. The reason is that for nearly all random inputs, only very few clauses
have to be considered before it is clear that the given input does not satisfy the
3SAT instance. On average, we observed that less than 7 clauses were evaluated
before the constant can be determined. Again, we want to stress that performance
is not a huge issue for most malicious programs.
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3.3.4 Possible Countermeasures

In this chapter, we describe techniques that make binaries more resistant to static
analysis. Such techniques have not been encountered in the wild yet. However,
it is well-known that malware authors are constantly working on the creation of
more effective obfuscation and evasion schemes. Thus, we believe that it is im-
portant to explore future threats to be able to develop defenses proactively.

One possibility to counter our presented scheme is to flag programs as sus-
picious when they exhibit apparent signs of obfuscation. For example, when our
control flow transformations are applied, the resulting code will contain many re-
turn instructions, but no call statements. Hence, even though the code cannot be
analyzed precisely, it could be recognized as malicious. Unfortunately, when flag-
ging obfuscated binaries as malicious, false positives are possible. The reason is
that obfuscation may also be used for legitimate purposes, for example, to protect
intellectual property.

A more promising approach when analyzing obfuscated binaries is to use dy-
namic techniques. As a matter of fact, most obfuscation transformations become
ineffective once the code is executed. Due to the results in this chapter, we firmly
believe that future malware analysis approaches should be centered around dy-
namic techniques that can effectively analyze the code that is run regardless of
any applied code obfuscations.

3.3.5 Summary

In this chapter, our aim was to explore the odds for a malware detector that em-
ploys powerful static analysis to detect malicious code. To this end, we developed
binary program obfuscation techniques that make the resulting binary difficult to
analyze. In particular, we introduced the concept of opaque constants, which are
primitives that allow us to load a constant into a register so that the analysis tool
cannot determine its value. Based on opaque constants, we presented a number of
obfuscation transformations that obscure program control flow, disguise access to
local and global variables, and block tracking of values held in processor registers.

To be able to assess the effectiveness of such an obfuscation approach, we
developed a binary rewriting tool that allows us to perform the necessary mod-
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ifications. This tool is capable of successfully morphing a significant fraction
of Linux and Windows binaries, even when no additional information (e.g., re-
location data) is present. Using the tool, we obfuscated well-known worms and
demonstrated that neither commercial virus scanners nor a more advanced static
analysis tool based on model checking could identify the transformed programs.

While it is conceivable to improve static analysis to handle more advanced
obfuscation techniques, there is a fundamental limit in what can be decided stat-
ically. In particular, we presented a construct based on the 3SAT problem that is
provably hard to analyze. Thus, even if limits of static analysis are of less con-
cern when attempting to find bugs in benign programs, they are problematic and
worrisome when analyzing malicious, binary code that is deliberately designed to
resist analysis.

In this chapter, we demonstrated that static techniques alone are not sufficient
to identify malicious code. This is the motivation to concentrate this thesis on
systems that apply dynamic analysis methods. In Chapter 4 we will present an
approach to extend dynamic malware analysis systems that are immune to the
obfuscation techniques presented in this chapter. Those systems are better suited
to analyze current malware samples that often already apply polymorphism or
metamorphism than the static analysis methods we briefly discussed.



Chapter 4

Exploring Multiple Execution Paths
for Malware Analysis

Nowadays, a number of systems are in use to dynamically analyze unknown bi-
naries. These systems, such as CWSandbox [110], the Norman SandBox [75],
Cobra [105], or Anubis [2], automatically load the sample to be analyzed into a
virtual machine environment and execute it. While the program is running, its
interaction with the operating system is recorded. Typically, this involves record-
ing which system calls are invoked, together with their parameters. The result
of an automated analysis is a report that shows what operating system resources
(e.g., files or Windows registry entries) a program has created or accessed. Some
tools also allow the system to connect to a local network (or even the Internet)
and monitor the network traffic. Usually, the generated reports provide human an-
alysts with an overview on the behavior of the sample and allow them to quickly
decide whether a closer, manual analysis is required. Hence, these automated sys-
tems free the analysts of the need to waste time on already known malware. Also,
some tools are already deployed on the Internet and act as live analysis back-ends
for honeypot installations such as Nepenthes [6]. Unfortunately, current analysis
systems also suffer from a significant drawback: their analysis is based on a single

execution trace only. That is, their reports only contain the interaction that was
observed when the sample was run in a particular test environment at a certain

35
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point in time. Unfortunately, this approach has the potential to miss a significant
fraction of the behavior that a program might exhibit under varying circumstances.

Malware programs frequently contain checks that determine whether certain
files or directories exist on a machine and only run parts of their code when they
do. Others require that a connection to the Internet is established or that a specific
mutex object does not exist. In case these conditions are not met, the malware
may terminate immediately. This is similar to malicious code that checks for
indications of a virtual machine environment, modifying its behavior if such in-
dications are present in order to make its analysis in a virtual environment more
difficult. Other functionality that is not invoked on every run are malware rou-
tines that are only executed at or until a certain date or time of day. For example,
some variants of the Bagle worm included a check that would deactivate the worm
completely after a certain date. Another example is the Michelangelo virus, which
remains dormant most of the time, delivering its payload only on March 6 (which
is Michelangelo’s birthday). Of course, functionality can also be triggered by
other conditions, such as the name of the user or the IP address of the local net-
work interface. Finally, some malware listens for certain commands that must be
sent over a control channel before an activity is started. For example, bots that au-
tomatically log into IRC servers often monitor the channel for a list of keywords
that trigger certain payload routines.

When the behavior of a program is determined from a single run, it is possi-
ble that many of the previously mentioned actions cannot be observed. This might
lead a human analyst to draw incorrect conclusions about the risk of a certain sam-
ple. Even worse, when the code fails at an early check and immediately exits, the
generated report might not show any malicious activity at all. One possibility to
address this problem is to attempt to increase test coverage. This could be done by
running the executable in different environments, maybe using a variety of operat-
ing system versions, installed applications, and data/time settings. Unfortunately,
even with the help of virtual machines, creating and maintaining such a testing
system can be costly. Also, performing hundreds of tests with each sample is not
very efficient, especially because many environmental changes have no influence
on the program execution. Moreover, in cases where malicious code is expect-
ing certain commands as input or checking for the existence of non-standard files
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(e.g., files that a previous exploit might have created), it is virtually impossible to
trigger certain actions.

In this chapter, we propose a solution that addresses the problem of test cov-
erage and that allows automated malware analysis systems to generate more com-
prehensive reports. The basic idea is that we explore multiple execution paths of a
program under test, but the exploration of different paths is driven by monitoring
how the code uses certain inputs. More precisely, we dynamically track certain
input values that the program reads (such as the current time from the operating
system, the content of a file, or the result of a check for Internet connectivity) and
identify points in the execution where this input is used to make control flow de-
cisions. When such a decision point is identified, we first create a snapshot of the
current state of the program execution. Then, the program is allowed to continue
along one of the execution branches, depending on the actual input value. Later,
we return to the snapshot and rewrite the input value such that the other branch
is taken. This allows us to explore both program branches. In addition, we can
determine under which conditions certain code paths are executed.

For a simple example, consider a program that checks for the presence of a
file. During execution, we track the result of the operating system call that checks
for the existence of that file. When this result is later used in a conditional branch
by the program, we store a snapshot of the current execution state. Suppose, for
example, that the file does not exist, and the program quickly exits. At this point,
we rewind the process to the previously stored state and rewrite the result such
that it does reports the file’s existence. Then, we can explore the actions that the
program performs under the condition that the file is there.

We have developed a system for Microsoft Windows that allows us to dynam-
ically execute programs and track the input that they read. Also, we have imple-
mented a mechanism to take snapshots of executing processes and later revert to
previously stored states. This provides us with the means to explore the execution
space of malware programs and to observe behavior that is not seen by traditional
malware analysis environments. To demonstrate the feasibility of our approach,
we analyzed a large number of real-world malware samples. In our experiments,
we were able to identify time checks that guarded damage routines and different
behavior depending on existence of certain files. Also, we were able to automat-
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ically extract a number of command strings for a bot with their corresponding
actions.

To summarize, the contributions of this chapter are as follows:

• We propose a dynamic analysis technique that allows us to create compre-
hensive reports on the behavior of malicious code. To this end, our system
explores multiple program paths, driven by the input that the program pro-
cesses. Also, our system reports the set of conditions on the input under
which particular actions are triggered.

• We developed a tool that analyzes Microsoft Windows programs by execut-
ing them in a virtual-machine-based environment. Our system keeps track
of user input and can create snapshots of the current process at control flow
decision points. In addition, we can reset a running process to a previously
stored state and consistently modify its memory such that the alternative
execution path is explored.

• We evaluated our system on a large number of real-world malware sam-
ples and demonstrate that we were able to identify behavior that cannot be
observed in single execution traces.

4.1 System Overview

The techniques described in this chapter are an extension to a system for auto-
mated malware analysis [9]. This tool is based on Qemu [10], a fast virtual ma-
chine emulator. Using Qemu’s emulation of an Intel x86 host system, a Windows
2000 guest operating system is installed. The choice of Windows and the Intel x86
architecture was motivated by the fact that the predominant fraction of malware is
developed for this platform.

The existing analysis tool implements some virtual machine introspection ca-
pabilities; in particular, it is able to attribute each instruction that is executed by
the emulated processor to an operating system process (or the kernel) of the guest
system. This allows us to track only those system calls that are invoked by the
code under analysis. Also, the system provides a mechanism to copy the content
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of complex data structures, which can contain pointers to other objects in the pro-
cess’ virtual address space, from the Windows guest system into the host system.
This is convenient in order to be able to copy the system call arguments from
the emulated system into the analysis environment. Unfortunately, the existing
system only collected a single execution trace.

Multiple execution paths. To address the problem that a single execution trace
typically produces only part of the complete program behavior, we extended the
analysis tool with the capability to explore multiple execution paths. The goal is to
obtain a number of different execution paths, and each path possibly reveals some
specific behavior that cannot be observed in the other traces. The selection of
branching points – that is, points in the program execution where both alternative
continuations are of interest – is based on the way the program processes input
data. More precisely, when a control flow decision is based on some input value
that was previously read via a system call, the program takes one branch (which
depends on the outcome of the concrete check). At this point, we ask ourselves
the following question: Which behavior could be observed if the input was such
that the other branch was taken?

To answer this question, we label certain inputs of interest to the program and
dynamically track their propagation during execution. Similar to the propagation
of taint information used by other authors in previous work [28, 73], our system
monitors the way these input values are moved and manipulated by the process.
Whenever we detect a control flow decision based on a labeled value, the current
content of the process address space is stored. Then, execution continues nor-
mally. When the process later wishes to terminate, it is automatically reset to the
previously stored snapshot. This is done by replacing the current content of the
process address space with the previously stored values. In addition, we rewrite
the input value that was used in the control flow decision such that the outcome of
this decision is reversed. Then, the process continues its execution along the other
branch. Of course, it is possible that multiple branchings in a row are encountered.
In this case, the execution space is explored by selecting continuation points in a
depth-first order.
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Figure 4.1: Exploration of multiple execution paths.

For an example on how multiple execution paths of a program can be explored,
consider Figure 4.1. Note that although this example is shown in C code (to make
it easier to follow), our system works directly on x86 binaries. When the program
is executed, it first receives some input and stores it into variable x (on Line 1).
Note that because x is considered interesting, it is labeled. Assume that in this
concrete run, the value stored into x is 2. On Line 2, x is compared to 0. At
this point, our system detects a comparison operation that involves labeled data.
Thus, a snapshot of the current process is created. Then, the process is allowed to
continue. Because the condition is satisfied, the if-branch is taken and we record
the fact that x has to be larger than 0. On Line 3, the next check fails. However,
because the comparison again involves labeled data, another snapshot is created.
This time, the process continues on the else-branch and is about to call exit.
Because there are still unexplored paths (i.e., there exist two states that have not
been visited), the process is reverted to the previous (second) state. Our system
inspects the comparison at Line 3 and attempts to rewrite x such that the check
succeeds. For this, the additional constraint x > 0 has to be observed. This yields
a solution for x that equals 1. The value of x is updated to 1 and the process
is restarted. This time, the print statement on Line 4 is invoked. When the
process is about to exit on Line 5, it is reset to the first snapshot. This time,
the system searches a value for x that fails the check on Line 2. Because there
are no additional constraints for x, an arbitrary, non-positive integer is selected
and the process continues along the else-branch. This time, the call to exit is



4.2. Path Exploration 41

permitted, and the analysis process terminates with a report that indicates that a
call to print was found under the condition that the input x was 1 (but not 0 or
2).

Consistent memory updates. Unfortunately, when rewriting a certain input
value to explore an alternative execution path, it is typically not sufficient to
change the single memory location that is used by the control flow decision. In-
stead, it is necessary to consistently update (or rewrite) all values in the process
address space that are related to the input. The reason is that the original input
value might have been copied to other memory locations, and even used by the
program as part of some previous calculations. When only a single instance of
the input is modified, it is possible that copies of the original value remain in the
program’s data section. This can lead to the execution of invalid operations or the
exploration of impossible paths. Thus, whenever an input value is rewritten, it is
necessary to keep the program state consistent and appropriately update all copies
of the input, as well as results of previous operations that involve this value. Also,
we might not have complete freedom when choosing an alternative value for a
certain input. For example, an input might have been used in previous compari-
son operations and the resulting constraints need to be observed when selecting
a value that can revert the control flow decision at a branching point. It is even
possible that no valid alternative value exists that can lead to the exploration of
the alternative path. Thus, to be able to consistently update and input and its re-
lated values, it is necessary to keep track of which memory locations depend on a
certain input and how they depend on this value.

4.2 Path Exploration

To be able to explore multiple program paths, two main components are required.
First, we need a mechanism to decide when our system should analyze both pro-
gram paths. To this end, we track how the program uses data from certain input
sources. Second, when an interesting branching point is located, we require a
mechanism to save the current program state and reload it later to explore the al-
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ternative path. The following two subsections discuss these two components in
more detail.

4.2.1 Tracking Input

In traditional taint-based systems, it is sufficient to know that a certain memory lo-
cation depends on one or more input values. To obtain this information, such sys-
tems typically rely on three components: a set of taint sources, a shadow memory,
and extensions to the machine instructions that propagate the taint information.

Taint sources are used to initially assign labels to certain memory locations
of interest. For example, Vigilante [27] is a taint-based system that can detect
computer worms that propagate over the network. In this system, the network is
considered a taint source. As a result, each new input byte that is read from the
network card by the operating system receives a new label. The shadow memory
is required to keep track of which labels are assigned to which memory locations
at a certain point in time. Usually, a shadow byte is used for each byte of physical
machine memory. This shadow byte stores the label(s) currently attached to the
physical memory location. Finally, extensions to the machine instructions are
required to propagate taint information when an operation manipulates or moves
labeled data. The most common propagation policy ensures that the result of
an operation receives the union of the labels of the operation’s arguments. For
example, consider an add machine instruction that adds the constant value 10 to
a memory locationM1 and stores the result at locationM2. In this case, the system
would use the shadow memory to look up the label attached to M1 and attach this
label to M2. Thus, after the operation, both locations M1 and M2 share the same
label (although their content is different).

In principle, we rely on a taint-based system as previously described to track
how the program under analysis processes input values. That is, we have a number
of taint sources that assign labels to input that is read by the program, and we use
a shadow memory to keep track of the current label assigned to each memory lo-
cation (including the processor registers). Taint sources in our system are mostly
system calls that return information that we consider relevant for the behavior of
malicious code. This includes system calls that access the file system (e.g., check
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for existence of file, read file content), the Windows registry, and the network.
Also, system calls that return the current time or the status of the network con-
nection are interesting. Whenever a relevant function (or system call) is invoked
by our program, our system automatically assigns a new label to each memory
location that receives this function’s result. Sometimes, this means that a single
integer is labeled. In other cases, for example, when the program reads from a file
or the network, the complete return buffer is labeled, using one unique label per
byte.

Inverse mapping. In addition to the shadow memory, which maps memory lo-
cations to labels, we also require an inverse mapping. The inverse mapping stores,
for each label, the addresses of all memory locations that currently hold this label.
This information is needed when a process is reset to a previously stored state
and a certain input variable must be rewritten. The reason is that when a memory
location with a certain label is modified, it is necessary to simultaneously change
all other locations that have the same label. Otherwise, the state of the process be-
comes inconsistent. For example, consider the case in which the value of labeled
input x is copied several times before it is eventually stored at memory location y.
Furthermore, assume that y is used as argument by a conditional branch. To ex-
plore the alternate execution branch, the content of y must be changed. However,
via a chain of intermediate locations, this value ultimately depends on x. Thus, all
intermediate locations need to be modified appropriately. To this end, a mapping
is required that helps us to quickly identify all locations that currently share the
same label.

To underline the importance of a consistent memory update, consider the ex-
ample in Figure 4.2. Assume that the function read input on Line 1 is a taint
source. Thus, when the program executes this function, variable x is labeled. In
our example, the program initially reads the value 0. When the check routine
is invoked, the value of variable x is copied into the parameter magic. As part of
this assignment, the variable magic receives the label of x. When magic is later
used in the check on Line 7, a snapshot of the current state is taken (because the
outcome of a conditional branch depends on a labeled value). Execution contin-
ues but quickly terminates on Line 8. At this point, the process is reverted to the
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Figure 4.2: Consistent memory updates.

previously stored snapshot and our system determines that the value of magic has
to be rewritten to 0x1508 to take the if-branch. At this point, the new value has
to be propagated to all other locations that share the same label (in our case, the
variable x). Otherwise, the program would incorrectly print the value of 0 instead
of 0x1508 on Line 3.

Linear dependencies. In the previous discussion, the initial input value was
copied to new memory locations before being used as an argument in a control
flow decision. In that case, rewriting this argument implied that all locations that
share the same label had to be updated with the same value. So far, however, we
have not considered the case when the initial input is not simply copied, but used
as operand in calculations. Using the straightforward taint propagation mecha-
nism outlined above, the result of an operation with a labeled argument receives
this argument’s label. This also happens when the result of an operation has a
different value than the argument. Unfortunately, this leads to problems when
rewriting a variable at a snapshot point. In particular, when different memory lo-
cations share the same label but hold different values, one cannot simply overwrite
these memory locations with a single, new value.

We solve this problem by assigning a new label to the result of any operation
(different than copying) that involves labeled arguments. In addition, we have to
record how the value with the new label depends on the value(s) with the old la-
bel(s). This is achieved by creating a new constraint that captures the relationship
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between the old and new labels, depending on the semantics of the operation. The
constraint is then added to a constraint system that is maintained as part of the
execution state of the process. Consider the simple example where a value with
label l0 is used by an add operation that increases this value by the constant 10.
In this case, the result of the operation receives a new label l1. In addition, we
record the fact that the result of the operation with l1 is equal to the value labeled
by l0 plus 10. That is, the constraint l1 = l0 + 10 is inserted into the constraint
system. The approach works similarly when two labeled inputs, one with label l 0

and the other with label l1 are summed up. In this case, the result receives a new
label l 2 and we add the constraint l2 = l0 + l1.

In our current system, we can only model linear relationships between input
variables. That is, our constraint system is a linear constraint system that can store
terms in the form of {cn ∗ ln + cn−1 ∗ ln−1 + . . .+ c1 ∗ l1 + c0} where the ci are
constants. These terms can be connected by equality or inequality operators. To
track linear dependencies between labels, the taint propagation mechanism of the
machine instructions responsible for addition, subtraction, and multiplication had
to be extended.

Using the information provided by the linear constraint system, it is possible
to correctly update all memory locations that depend on an input value x via linear
relationships. Consider the case where a conditional control flow decision uses a
value with label ln. To explore the alternative branch of this decision, we have to
rewrite the labeled value such that the outcome of the condition is reverted. To do
this consistently, we first use the linear constraint system to identify all labels that
are related to ln. This provides us with the information which memory locations
have some connection with ln, and thus, must be updated as well. In a second step,
a linear constraint solver is used to determine concrete values for these memory
locations.

Two labels ls and lt are related either (a) when they appear together in the same
constraint or (b) when there exists a sequence of labels {li0 , . . . , lin} such that
ls = li0 , lt = lin , and li, li+1 ∀n−1

i=0 appear in the same constraint. More formally,
the binary relation related is the transitive closure of the binary relation appears

in the same constraint. Thus, when a value with label ln should be rewritten, we
first determine all labels that are related to ln in the constraint system. Then, we
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extract all constraints that contain at least one of the labels related to ln. This set
of constraints is then solved, using a linear constraint solver (we use the Parma
Polyhedral Library [7]).

When the constraint system has no solution, the labeled value cannot be changed
such that the outcome of the condition is reverted. In this case, our system cannot
explore the alternative path, and it continues with the next snapshot stored. When
a solution is found, on the other hand, this solution can be directly used to consis-
tently update the process’ state. To this end, we can directly use, for each label,
the value that the solver has determined to update the corresponding memory lo-
cations. This works because all (linear) dependencies between values are encoded
by the respective constraints in the constraint system. That is, a solution of the
constraint system respects the relationships that have to hold between memory lo-
cations. All memory locations that share the same label receive the same value.
However, as expected, when memory locations have different labels, they can also
receive different values. These values respect the relationships introduced by the
operation previously executed by the process and captured by the corresponding
constraints in the constraint system.

To illustrate the concept of linear dependencies between values and to show
how their dependencies are captured by the constraint system, consider Figure 4.3.
The example shows the labels and constraints that are introduced when a simple
atoi function is executed. The goal of this function is to convert a string into
the integer value that this string represents. For this example, we assume that
the function is executed on a string str with three characters; the first two are the
ASCII character equivalent of the number 0 (which is 30). The third one has the
value 0 and terminates the string. We assume that interesting input was read into
the string; as a result, the first character str[0] has label l0 and str[1] has label l1.

The figure shows the initial mapping between program variables and labels.
For this initial state, no constraints have been identified yet. After the first loop
iteration, it can be seen that the variables c and sum are also labeled. This results
from the operations on Line 7 and Line 8, respectively. The relationship between
the variables are captured by the two constraints. Because sum was 0 before this
loop iteration, variables sum and c hold the same value. This is expressed by the
constraint l 3 = l2. Note that this example is slightly simplified. The reason is
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Figure 4.3: Constraints generated during program execution.

that the checks performed by the while-statement on Line 5 lead to the creation of
additional constraints that ensure that the values of str[0] and str[1] are between
30 (ASCII value for ’0’) and 39 (ASCII value for character ’9’). Also, because the
checks operate on labeled data, the system creates snapshots for each check and
attempts to explore additional paths later. For these alternative paths, the string
elements are rewritten to be characters that do not represent numbers. In these
cases, the while-loop would terminate immediately.

In the example, the program reaches the check on Line 11 after the second
loop iteration. Given the original input for str, sum is 0 at this point and the else-
branch is taken. However, because this conditional branch involves the value sum

that is labeled with l6, a snapshot of the current program state is created. When
this snapshot is later restored, our system needs to rewrite sum with the value 82

be able to take the if-branch. To determine how the program state can be updated
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consistently, the constraint system is solved for l 6 = 82. A solution to this system
can be found (l0 = 38, l1 = 32, l2 = l3 = 8, l4 = 80, and l5 = 2). Using
the mappings, this solution determines how the related memory locations can be
consistently modified. As expected, str[0] and str[1] are set to the characters ’8’
and ’2’, respectively. The variable c is also set to 2.

Non-linear dependencies. The atoi function discussed previously represents
a more complex example of what can be captured with linear relationships. How-
ever, it is also possible that a program performs operations that cannot be repre-
sented as linear constraints. These operations involve, for example, bitwise oper-
ators such as and, or or a lookup in which the input value is used as an index
into a table. In case of a non-linear relationship, our current system cannot infer
the assignment of appropriate values to labels such that a certain memory location
can be rewritten as desired. Thus, whenever an operation creates a non-linear de-
pendency between labels l i and lj , we no longer can consistently update the state
when any label related to l i or lj should be rewritten. To address this problem, we
maintain a set N that keeps track of all labels that are part of non-linear depen-
dencies. Whenever a label should be rewritten, all related labels are determined.
In case any of these labels is in N , the state cannot be consistently changed and
the alternative path cannot be explored.

4.2.2 Saving and Restoring Program State

The previous section explained our techniques to track the propagation of input
values during program execution. Every memory location that depends on some
interesting input has an attached label, and the constraint system determines how
values with different labels are related to each other. Based on this information,
multiple paths in the execution space can be explored. To this end, our system
monitors the program execution for conditional operations that use one (or two)
labeled arguments. When such a branch instruction is identified, a snapshot of the
current process state is created.

The snapshot of the current execution state contains the content of the com-
plete virtual address space that is in use. In addition, we have to store the current
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mappings and the constraint system. But before the process is allowed to continue,
one additional step is needed. In this step, we have to ensure that the conditional
operation itself is taken into account. The reason is that no matter which branch
is actually taken, this conditional operation enforces a constraint on the possible
value range of the labeled argument. We call this constraint a path constraint.
The path constraint has to be remembered and taken into account in case the la-
beled value is later rewritten (further down the execution path). Otherwise, we
might create inconsistent states or reach impossible paths. When the if-branch of
the conditional is taken (that is, it evaluates to true for the current labeled value),
the condition is directly used as path constraint. Otherwise, when the else-branch
is followed, the condition has to be reversed before it is added to the constraint
system. To this end, we simply take the condition’s negation.

For example, recall the first program that we showed in Figure 4.1. This pro-
gram uses two checks to ensure that x > 0 and x < 2 before the print function
is invoked. When the first if-statement is reached on Line 2, a snapshot of the state
is created. Because x had an initial value of 2, the process continues along the if-
branch. However, we have to record the fact that the if-branch can only be taken
when the labeled value is larger than 0. Assume that the label of x is l0. Hence, the
appropriate path constraint l0 > 0 is added to the constraint system. At the next
check on Line 3, another snapshot is created. This time, the else-branch is taken,
and we add the path constraint l0 >= 2 to the constraint system (which, because
of the else-branch, is the negation of the conditional check x < 2). When the
process is about to terminate on Line 5, it is reset to the previously stored state.
This time, the if-branch on Line 3 must be taken. To this end, we add the path
constraint l 0 < 2 to the constraint system. At this point, the constraint system
contains two entries. One is the constraint just added (i.e., l 0 < 2). The other one
stems from the first check and requires that l0 > 0. When these constraints are
analyzed, our solver determines that l0 = 1. As a result, x is rewritten to 1 and the
program continues with the call to print.

When a program state is restored, the first task of our system is to load the
previously saved content of the program’s address space and overwrite the current
values with the stored ones. Then, the saved constraint system is loaded. Similar
to the case in which the first branch was taken, it is also necessary to add the



50 Chapter 4. Exploring Multiple Execution Paths for Malware Analysis

appropriate path constraint when following the alternative branch. To this end, the
path constraint that was originally used is reversed (that is, we take its negation).
This new path constraint is added to the constraint system and the constraint solver
is launched. When a solution is found, we use the new values for all related
labels to rewrite the corresponding memory locations in a consistent fashion. As
mentioned previously, when no solution is found, the alternative branch cannot be
explored.

Note that at any point during the program’s execution, the solution space of
the constraint system specifies all possible values that the labeled input can have
in order to reach this point in the program execution. This information is impor-
tant to determine the conditions under which certain behavior is exhibited. For
example, consider that our analysis observes an operating system call that should
be included into the report of suspicious behavior. In this case, we can use the so-
lution(s) to the constraint system to determine all values that the labeled input can
take to reach this call. This is helpful to understand the conditions under which
certain malicious behavior is triggered. For example, consider a worm that de-
activates itself after a certain date. Using our analysis, we can find the program
path that exhibits the malicious behavior. We can then check the constraint sys-
tem to determine under which circumstances this path is taken. This yields the
information that the current time has to be before a certain date.

4.3 System Implementation

We implemented the concepts introduced in the previous section to explore the
execution space of Windows binaries. More precisely, we extended our previous
malware analysis tool [9] with the capability to automatically label input sources
of interest and track their propagation using standard taint analysis (as, for exam-
ple, realized in [28, 73]). In addition, we implemented the mechanisms to consis-
tently save and restore program states. This allows us to automatically generate
more complete reports of malicious behavior than our original tool. The reports
also contain the information under which circumstances a particular behavior is
observed. In this section, we describe and share implementation details that we
consider interesting for the reader.
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4.3.1 Creating and Restoring Program Snapshots

Our system (and the original analysis tool) is built on top of the system emulator
Qemu [10]. Thus, the easiest way to save the execution state of a program would
be to save the state of the complete virtual machine (Qemu already supports this
functionality). Unfortunately, when a sample is analyzed, many snapshots have to
be created. Saving the image of the complete virtual machine costs too much time
and resources. Thus, we require a mechanism to take snapshots of the process’
image only. To this end, we developed a Qemu component that can identify the
active memory pages of a process that is executing in the guest operating system
(in our case, Microsoft Windows). This is done by analyzing the page table direc-
tory that belongs to the Windows process. Because Qemu is a PC emulator, we
have full access to the emulated machine’s physical memory. Hence, we can ac-
cess the Windows kernel data structures and perform the same calculations as the
Windows memory management code to determine the physical page that belongs
to a certain virtual address of the process under analysis. Once we have identified
all pages that are memory mapped for our process, we simply copy the content of
those that are flagged valid. In addition, when creating a snapshot of a process,
we have to make a copy of the virtual CPU registers, the shadow memory, and the
constraint system.

The method described above has one limitation. We cannot store (or reset)
memory that is paged out on disk. This limitation stems from the fact that al-
though we can access the complete main memory from outside, we cannot read
the content on the virtual hard disk (without understanding how the Windows file
system and swapping is implemented). Thus, we have to disable swapping and
prevent the guest OS from moving memory pages to the disk where they can no
longer be accessed. In our experiments, we found that this limitation is not a
problem as our malware samples had very modest memory demands and never
exceeded the 256 MB main memory of the guest OS.

To reset a process such that it continues from a previously saved snapshot, we
use a procedure that is similar to the one for storing the execution state. First,
we identify all mapped pages that belong to our process of interest. Then, for
each page that was previously saved, we overwrite the current content with the
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one that was stored. When the pages are restored, we also reset the virtual CPU
to its saved state. Note that it is possible that the process has allocated more
pages than were present at the time when the snapshot was taken. This is the case
when the program has requested additional memory from the operating system.
Of course, these new pages cannot be restored. Fortunately, this is no problem
and does not alter the behavior of the process. The reason is that all references
in the original pages that now point to the new memory areas are reverted back
to the values that they had at the time of the snapshot (when the new pages did
not exist yet). The only problem is that the newly allocated pages are lost for
the process, but still considered in use by the operating system. This “memory
leak” might become an issue when, for example, a memory allocating routine is
executed various times when different execution paths are explored. Although we
never experienced problems in our experiments, one possible solution would be
to inject code into the guest OS that releases the memory.

An important observation is that a process can only be reset to a previously
stored state when it is executing in user mode. When a process is executing kernel
code, reverting it back to a user mode state can leave data structures used by the
Windows kernel in an inconsistent state. The same is true when the operating
system is executing an interrupt handling routine. Typically, resetting the process
when not in user mode leads to a crash or freezes the system.

Our current implementation allows us to reliably reset processes to previous
execution states. However, one has to consider the kernel state when snapshots
are taken or restored. In particular, we have to address the problem that a resource
might be returned to the operating system after a snapshot has been taken. When
we later revert to the previously stored snapshot, the resource is already gone,
and any handles to it are stale. For example, such a situation can occur when a
file is closed after a snapshot is made. To address this problem, we never allow
a process to close or free any resource that it obtains from the operating system.
To this end, whenever an application calls the NtClose function or attempts to
return allocated memory to the OS, we intercept the function and immediately
return to the user program. From the point of view of the operating system, no
handle is ever closed. Thus, when the process is reset to an old state, the old
handles are still valid.
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4.3.2 Identification of Program Termination

The goal of our approach is to obtain a comprehensive log of the activities of a
program on as many different execution paths as possible. Thus, before reverting
to a previously stored state, the process is typically allowed to run until it exits
normally or crashes. Of course, our system cannot allow the process to actually
terminate. Otherwise, the guest operating system removes the process-related en-
tries from its internal data structures (e.g., scheduler queue) and frees its memory.
In this case, we would lose the possibility to revert the image to a snapshot we
have taken earlier.

To prevent the program from exiting normally, we intercept all calls to the
NtTerminateProcess system service function (provided by the ntdll.dll
library). This is done by checking whether the program counter of the emu-
lated CPU is equal to the start address of the NtTerminateProcess function.
Whenever the inspected process calls this function, we assume that it wishes to
terminate. In this case, we can revert the program to a previous snapshot (in case
unexplored paths are left).

Segmentation faults (i.e., illegal memory accesses) are another venue for pro-
gram termination that we intercept. To this end, we hook the page fault handler
and examine the state of the emulated CPU whenever a page fault occurs. If an
invalid memory access is detected, the process is reverted to a stored snapshot.
Interestingly, invalid memory accesses occur relatively frequently. The reason is
that during path exploration, we often encounter checks that ensure that a pointer
is not null. In order to explore the alternative path, the pointer is set to an arbitrary
non-null value. When this value is later dereferenced, it very likely refers to an
unmapped memory area, which results in an illegal access.

Often, we encounter the situation that malicious code does not terminate at all.
For example, spreading routines are typically implemented as endless loops that
do not stop scanning for vulnerable targets. In such cases, we cannot simply end
the analysis, because we would fail to analyze other, potentially interesting paths.
To overcome this problem, we set a timeout for each path that our system explores
(currently, 20 seconds). Whenever a path is still executed when the timeout ex-
pires, our system waits until the process is in a safe state and then reverts it to a
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previous snapshot (until there are no more unexplored paths left). As a result, it
is also not possible for an attacker to thwart our analysis by deliberating inserting
code on unused execution paths that end in an endless loop.

4.3.3 Optimization

One construct that frequently occurs in programs are string comparisons. Usually,
two strings are compared by performing a sequence of pairwise equality checks
between corresponding characters in the two strings. This can lead to problems
when one of the strings (or both) are labeled. Note that each character compar-
ison operates on labeled arguments and thus, is a branching point. As a result,
when a labeled string of n characters is compared with another string, we create
n states. Each of the states si : 0 ≤ i ≤ n represents the case in which the first
i characters of both strings match, while the two characters with the offset i + 1

differ. For practical purposes, we typically do not need this detailed resolution for
string comparisons. The reason is that most of the time, a program only distin-
guishes between the two cases in which both strings are either equal or not equal.
To address this problem, we implemented a heuristics that attempts to recognize
string comparisons. This is implemented by checking for situations in which the
same compare instruction is executed repeatedly, and the arguments of this com-
pare have addresses that increase by one on every iteration. When such a string
comparison is encountered, we do not branch on every check. Instead, we explore
one path where the first characters are immediately different, and a second one
in which the two strings match. This optimization avoids the significant increase
of the overall number of states that would have to be processed otherwise (often
without yielding any additional information).

4.3.4 Limitations

In Section 4.3.1, we discussed our approach of never returning any allocated re-
source to the operating system. The goal was to avoid invalid handles that would
result when a process first closes a handle and is then reset to a previous snapshot
(in which this handle is still valid). Our approach works well in most cases. How-
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ever, one has to consider situations in which a process creates external effects,
e.g., when writing to a file or sending data over a network.

There are few problems when a program writes to a file. The reason is that
the file pointer is stored in user memory, and thus, it is automatically reset to
the previous value when the process is restored. Also, as mentioned previously,
files are never closed. Unfortunately, the situation is not as easy while handling
network traffic. Consider an application that opens a connection to a remote server
and then exchanges some data (e.g., such as a bot connecting to an IRC server).
When reverting to a previous state, the synchronization between the application
and the server is lost. In particular, when the program first sends out some data,
is later reset, and then sends out this data again, the remote server receives the
data twice. Typically, this breaks protocol logic and leads to the termination of
the connection. In our current implementation, we solve this problem as follows:
All network system calls in which the program attempts to establish a connection
or sends out data are intercepted and not relayed to the operating system. That is,
for these calls, our system simply returns a success code without actually opening
a connection or sending packets. Whenever the program attempts to read from the
network, we simply return a string of random characters of the maximum length
requested. The idea is that because the results of network reads are labeled, our
multiple path exploration technique will later determine those strings that trigger
certain actions (e.g., such as command strings sent to a bot).

Another limitation is the lack of support for signals and multi-threaded appli-
cations. Currently, we do not record signals that are delivered to a process. Thus,
when a signal is raised, this only happens once. When the process is later reverted
to a previous state, the signal is not resent. The lack of support for multi-threaded
applications is not a problem per se. Creating a snapshot for the complete process
works independently of the number of threads. However, to ensure deterministic
behavior our system would have to ensure that threads are scheduled determinis-
tically.

It might also be possible for specially-crafted malware programs to conceal
some malicious behavior by preventing our system from exploring a certain path.
To this end, the program has to ensure that a branch operation depends on a value
that is related to other values via non-linear dependencies. For example, mali-
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cious code could deliberately apply non-linear operations such as xor to a certain
value. When this value is later used in a conditional operation, our system would
determine that it cannot be rewritten, as the related memory locations cannot be
updated consistently. Thus, the alternative branch would not be explored. There
are two ways to address this threat. First, we could replace the linear constraint
solver by a system that can handle more complex relationships. For instance, by
using a SAT solver, we could also track dependencies that involve bitwise oper-
ations. Unfortunately, when analyzing a binary that is specifically designed to
withstand our analysis, our prototype will never be able to correctly invert all op-
erations encountered. An example for that are one-way hash functions, for which
our system cannot infer the original data from the hash value alone. Therefore,
a second approach could be to relax the consistent update requirement. That is,
we allow our system to explore paths by rewriting a memory location without
being able to correctly modify all related input values. This approach leads to a
higher coverage of the code analyzed, but we lose the knowledge of the input that
is required to drive the execution down a certain path. In addition, the program
could perform impossible operations (or simply crash) because of its inconsistent
state. However, frequent occurrences of conditional jumps that cannot be resolved
by our system could be interpreted as malicious. In this case, we could raise an
appropriate warning and have a human analyst perform a deeper investigation.

Finally, specially-crafted malware programs could perform a denial-of-service
attack against our analysis tool by performing many conditional branches on tainted
data. This would force our system to create many states, which in turn leads to
an exponential number of paths that have to be explored. One solution to this
problem could be to define a distance metrics that can compare saved snapshots
and merge sufficiently similar paths. Furthermore, we could also treat a sudden,
abnormal explosion of states as a sign of malicious behavior.

4.4 Evaluation

In this section, we discuss the results that we obtained by running our malware
analysis tool on a set of 308 real-world malicious code samples. These samples
were collected in the wild by an anti-virus company and cover a wide range of
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malicious code classes such as viruses, worms, Trojan horses and bots. Note that
we performed our experiments on all the samples we received, without any pre-
selection.

The 308 samples in our test set belong to 92 distinct malware families (in cer-
tain cases, several different versions of a single family were included in the sample
set). We classified these malware families using the free virus encyclopedia avail-
able at viruslist.com. Analyzing the results, we found that 42 malware fam-
ilies belong to the class of email-based worms (e.g., Netsky, Blaster). 30 families
are classified as exploit-based worms (e.g., Blaster, Sasser). 10 malware families
belong to the classic type of file infector viruses (e.g., Elkern, Kriz). The remain-
ing 10 families are classified as Trojan horses and backdoors, typically combined
with bot functionality (e.g., AceBot, AgoBot, or rBot). To understand how wide-
spread our malware instances are, we checked Kaspersky’s top-20 virus list for
July 2006, the month that we received our test data. We found that our samples
cover 18 entries on this list. Thus, we believe that we have assembled a compre-
hensive set of malicious code samples that cover a variety of malware classes that
appear in the wild.

In a first step, our aim was to understand to which extent malware uses in-
teresting input to perform control flow decisions. To this end, we had to define
appropriate input sources. In our current prototype implementation, we consider
the functions listed in Table 4.1 to provide interesting input. These functions were
chosen primarily based on our previous experience with malware analysis (and
also based on discussions with experienced malware analysts working in an anti-
virus company). In the past, we have seen malicious code that uses the output
provided by one of these functions to trigger actions. Also, note that adding addi-
tional input sources, if required, is trivial and is not a limitation of our approach.
During the analysis, we label the return values of functions that check for the ex-
istence of an operating system resource. For functions that read from a resource
(i.e., file, network, or timer), we label the complete buffer that is returned (by
using one label for each byte).

After running our analysis on the complete set of 308 real-world malware
samples, we observed that 229 of these samples used at least one of the tainted
input sources we defined. The breakdown of the usage based on input is shown in
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Interesting input sources
Check for Internet connectivity 20
Check for mutex object 116
Check for existence of files 79
Check for existence of registry entry 74
Read current time 134
Read from file 106
Read from network 134

Table 4.1: Number of samples that access tainted input sources.

Table 4.1. Of course, reading from a tainted source does not automatically imply
that we can explore additional execution paths. For example, many samples copy
their own executable file into a particular directory (e.g., the Windows system
folder). In this case, our analysis observes that a file is read, and appropriately
taints the input. However, the tainted bytes are simply written to another file, but
not used for any conditional control flow decisions. Thus, there are no alternative
program paths to explore.

Out of the 229 samples that access tainted sources, 172 use some of the tainted
bytes for control flow decisions. In this case, our analysis is able to explore ad-
ditional paths and extract behavior that would have remained undetected with a
dynamic analysis only based on a single execution trace. In general, exploring
multiple paths results in a more complete picture of the behavior of that code.
However, it is unreasonable to expect that our analysis can always extract impor-
tant additional knowledge about program behavior. For example, several malware
instances implement a check that uses a mutex object to ensure that only a sin-
gle program instance is running at the same time. That is, when the mutex is
not found on the first execution path, the malware performs its normal malicious
actions. When our system analyzes the alternative path (i.e., we pretend that the
mutex exists), the program immediately exits. In such situations, we are only able
to increase our knowledge by the fact that the presence of a specific mutex leads
to immediate termination. Of course, there are many other cases in which the ad-
ditional behavior is significant, and reveals hidden functionality not present in a
single trace.
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Table 4.2 shows the increase in coverage of the malicious code when we ex-
plore alternative branches. More precisely, this table shows the relative increase
in the number of basic blocks that are analyzed by our system when consider-
ing alternative paths. The baseline for each sample is the number of basic blocks
covered when simply running the sample in our analysis environment. For a small
number of the samples (21 of 172), the newly detected code regions amount to less
than 10% of the baseline. While it is possible that these 10% contain information
that is relevant for an analyst, they are mostly due to the exploration of error paths
that quickly lead to program termination. For the remaining samples (151 of 172),
the increase in code coverage is above 10%, and often significantly larger. For ex-
ample, the largest increase in code coverage that we observed was 3413.58%,
when analyzing the Win32.Plexus.B worm. This was because this sample
only executes its payload if its file name contains the string upu.exe. As this
was not the case for the sample uploaded into our analysis system, the malware
payload was only run in an alternative path. Anecdotal evidence of the usefulness
of our system is provided in the following paragraphs, where we describe inter-
esting behavior that was revealed by alternative paths. However, examining the
quantitative results alone, it is evident that almost one half of the malware sam-
ples in the wild contain significant, hidden functionality that is missed by a simple
analysis.

Relative increase Number of samples
0 % - 10 % 21

10 % - 50 % 71
50 % - 200 % 37

> 200 % 43

Table 4.2: Relative increase of code coverage.

Behavioral analysis results. One interesting class of malicious behavior that
can be detected effectively by our system is code that is only executed on a certain
date (or in a time interval). As an example for this class, consider the Blaster
code shown in Figure 4.4. This code launches a denial-of-service attack, but only
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after the 15th of August. Suppose that Blaster is executed on the 1st of January.
In that case, a single execution trace would yield no indication of an attack. Using
our system, however, a snapshot for the first check of the if-condition is created.
After resetting the process, the day is rewritten to be larger than 15. Later, the
system also passes the month check, updating the month variable to a value of 8

or larger. Hence, the multiple execution path exploration allows us to identify the
fact that Blaster launches a denial-of-service attack, as well as the dates that it
is launched.

  1:  GetDateFormat( LOCALE_409, 0, NULL, 
                                  "d", day, sizeof(day)); 
  2:  GetDateFormat( LOCALE_409, 0, NULL,
                                  "M", month, sizeof(month));
  3:
  4:  if (atoi(day) > 15 && atoi(month) >= 8)
  5:      run_ddos_attack();

Blaster Denial-of-Service Attack

Figure 4.4: Blaster source code snippet.

Another interesting case in which our analysis can provide a more complete
behavioral picture is when malware checks for the existence of a file to determine
whether it was already installed. For example, the Kriz virus first checks for
the existence of the file KRIZED.TT6 in the system folder. When this file is
not present, the virus simply copies itself into the system folder and terminates.
Only when the file is already present, malicious behavior can be observed. In such
cases, an analysis system that performs a single execution run would only be able
to monitor the installation.

Finally, our system is well-suited to identify actions that are triggered by com-
mands that are received over the network or read from a file. An important class
of malware that can be controlled by remote commands are IRC (Internet Relay
Chat) bots. When started, these programs usually connect to an IRC server, join
a channel, and listen to the chat traffic for keywords that trigger certain actions.
Modern IRC bots can typically understand more than 100 commands, making a
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  0:   // receive line from network --> store in array a[]
  1:   // a[0] = command, a[1] = arg1, a[2] = arg2, ...
  2:
  3:   if (strcmp("crash", a[0]) == 0) {
  4:       strcmp(a[5],"crash"); // yes, this will crash.
  5:       return 1;
  6:   }
  7:   else if (strcmp("getcdkeys", a[0]) == 0) {
  8:       getcdkeys(sock,a[2],notice);
  9:       return 1;
10:   }
11:   else if (strcmp("driveinfo", a[0]) == 0) {
12:       DriveInfo(sock, a[2], notice, a[1]);
13:       return 1;
14:   }

rxBot Command Loop

Figure 4.5: rxBot source code snippet.

manual analysis slow and tedious. Using our system, we can automate the pro-
cess and determine, for each command, which behavior is triggered. In contrast,
when running a bot in existing analysis tools, it is likely that no malicious actions
will be seen, simply because the bot never receives any commands. The code in
Figure 4.5 shows a fragment of the command loop of the bot rxBot. This code
implements a series of if-statements that check a line received from the IRC server
for the presence of certain keywords. When this code is analyzed, the result of the
read from the network (that is, the content of array a) is labeled. Therefore, all
calls to the strcmp function are treated as branching points, and we can extract
the actions for one command on each different path.

Performance. The goal of our system is to provide a malware analyst with a
detailed report on the behavior of an unknown sample. Thus, performance is not
a primary requirement. Nevertheless, for some programs, a significant number of
paths needs to be explored. Thus, the time and space requirements for saving and
restoring states cannot be completely neglected.

Whenever our system creates a snapshot, it saves the complete active memory
content of the process. In addition, the state contains information from the shadow
memory and the constraint system. During our experiments, we determined that
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the size of a state was equal to about three times the amount of memory that a
process has allocated. On average, the size of a state was about 3.5 MB, and it
never exceeded 10 MB. The time needed to create or restore a snapshot was 4
milliseconds on average, with a small variance (on an Intel Pentium IV with 3.4
GHz and 2 GB RAM). As mentioned in Section 4.3.2, a timeout of 20 seconds
was set for the exploration of each individual program path. In addition, we set
a timeout of 100 seconds for the complete analysis run of each sample. This
tight, additional time limit was introduced to be able to handle a large number
of samples in case certain malware instances would create many paths. In our
experiments, we observed that 58% of the malware programs finished before the
timeout expired. The remaining 42% of the samples had unexplored paths left
when the analysis process was terminated. As a result, by increasing the total
timeout, we would expect to achieve an even larger increase in code coverage
than that reported in the previous paragraphs. The trade-off is that it would take
longer until results are available.

The size of a state could be significantly reduced if we exploited the fact that
the majority of memory locations and entries in the shadow memory are 0. Also,
we could attempt to create incremental snapshots that only store the difference be-
tween the current and previous states. In theory, the number of concurrently active
states can be as high as the number of branching points encountered. However,
we observed that this is typically not the case, and the number of concurrently
active states during the experiments was lower. More precisely, our system used
on average 31 concurrent states (the maximum was 469). Note that these numbers
also represent the average and maximum depths of the search trees that we ob-
served, as we use a depth-first search strategy. The total number of states were on
average 32, with a maximum of 1,210. Given the number of concurrently active
states, we deemed it not necessary to develop more sophisticated algorithms to
create program snapshots. Moreover, in a synthetic benchmark, we verified that
our system can handle more than thousand active states.
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4.5 Summary

In this chapter, we presented a system to explore multiple execution paths of Win-
dows executables. The goal is to obtain a more comprehensive overview of the
actions that an unknown sample can perform. In addition, the tool automatically
provides the information under which circumstances a malicious action is trig-
gered.

Our system works by tracking how a program processes interesting input (e.g.,
the local time, file checks, reads from the network). In particular, we dynamically
check for conditional branch instructions whose outcome depend on certain input
values. When such an instruction is encountered, a snapshot of the current ex-
ecution state is created. When the program later finishes along the first branch,
we reset it to the previously saved state and modify the argument of the condition
such that the other branch is taken. When performing this rewrite operation, it is
important to consistently update all memory locations that are related to the argu-
ment value. This is necessary to prevent the program from executing invalid or
impossible paths.

Our experiments demonstrate that, for a significant fraction of malware sam-
ples in our evaluation set, the system is indeed exploring multiple paths. In these
cases, our knowledge about a program’s behavior is extended compared to a sys-
tem that observes a single run. We also show for a number of real-world malware
samples that the actions that were discovered by our technique reveal important
and relevant information about the behavior of the malicious code.

Using the methods presented in both this and the previous chapter, it is possi-
ble to generate accurate reports of malicious behavior of malware samples. Even
in cases where those samples apply code obfuscation tricks like the ones presented
in Chapter 3 or only show their real malicious behavior when very specific condi-
tions are met, the methods presented here will still be able to generate a meaning-
ful profile. Sometimes, however, using only those methods to identify malicious
code is not enough to respond to new threads in a timely manner. For example,
if a user encounters some malicious binary that none of the analysis systems has
had a chance to analyzed yet, he will always be defenseless.
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Thus, we want to show in the next chapter how it is possible to identify rogue
networks, which are predominantly responsible for the distribution of malicious
software. By recognizing those networks, it is possible to generate blacklists and
block the download of suspicious binaries from those hosts without going through
the time-consuming analysis process first.



Chapter 5

Finding Rogue Networks

Anecdotal evidence indicates the existence of Internet companies and service
providers that are under the influence of criminal organizations or knowingly tol-
erate their activities. Such companies typically control a number of networks with
public IP addresses that are abused for a wide range of malicious activities. One
such activity is offering bullet-proof hosting, a service that guarantees the avail-
ability of hosted resources even when they are found to be malicious or illegal.
These hosting services are often used for phishing purposes or for serving exploits
and malware. Other malicious activities involve the sending of spam, hosting
scam pages, or providing a repository for pirated software and child pornography.

An example of a rogue network that offered bullet-proof hosting was the Rus-
sian Business Network (RBN), who made headlines in late 2007 [11, 58]. Various
sources alleged that the RBN hosted web sites, exploits, and malware that were
responsible for a significant fraction of online scams and phishing. Once publicly
exposed, the RBN ceased its operations in St. Petersburg, only to relocate and re-
sume activities in different networks [36]. More recently, a report exposed Atrivo
(Intercage), a US-based company that is frequently considered to provide hosting
for malicious content [5, 59]. Often referred to as the RBN of the United States,
this company is considered to be a “dedicated crime hosting firm whose customer
base is composed almost, or perhaps entirely, of criminal gangs” [46]. Shortly
after Atrivo made headlines, two more rogue networks, known as McColo and the
Triple Fiber Network (3FN), were discovered to be major hosting providers for

65
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malicious content with ties to cybercrime [3, 4, 60]. Again, public outcry quickly
lead reputable ISPs to severe their peering relationships with these organizations,
effectively cutting them off the Internet.

Obviously, rogue networks and bullet-proof hosting providers are only one
component of the flourishing underground economy, which is responsible for
many of the security problems that Internet users face. Over the last few years,
criminals have increasingly leveraged botnets to hide their tracks [30]. Also, large-
scale exploitation (such as the recent wave of SQL injection attacks [38] that af-
fected more than half a million web pages) has lead to a situation where malicious
content is unwittingly served by many benign, compromised Internet hosts. These
hosts are often combined into fast-flux networks to increase the availability of ma-
licious sites and executables [48].

Despite the large numbers of bot-infected machines and compromised servers,
rogue networks do play an important role in the underground economy. These net-
works often house back-end machines (called motherships) that serve scam pages
and exploits, while bots and compromised web pages act as proxies or redirec-
tors. In this setup, a criminal can hide his malicious servers behind a layer of
bots, which can be easily replaced when they are taken down or cleaned up [50].
In addition, the content is located at a central location, which eases management.
For example, it is straightforward to check for multiple accesses from the same IP.
Often, subsequent accesses to malware pages are redirected to benign sites (such
as msn.com). This makes life more difficult for human malware analysts, but
also foils client-side honeypots that require multiple accesses to the same site to
determine malicious pages.

In this chapter, we describe FIRE (FInding Rogue nEtworks), a system that
monitors the Internet for malicious networks. We believe that it is important to
expose such networks, for a number of reasons. First, as the examples of the
Russian Business Network, Atrivo, McColo, and 3FN demonstrate, criminals fear
public attention. As a result of the increased media coverage, all four networks
had to cease their immediate activity. In many cases, it is likely that their opera-
tions resumed elsewhere. However, it took some time before the miscreants could
restructure their setup, undoubtedly preventing further fraudulent scams and in-
fections during the downtime. Thus, by quickly bringing to light networks that

msn.com
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act maliciously, it becomes more difficult for cyber-criminals to establish a home
base. The second advantage of identifying rogue networks is the possibility to
generate blacklists that can block all traffic from a netblock, even when certain
IPs within this netblock have not yet acted maliciously. This approach prevents
criminals from cycling through the available IP space, quickly shifting to a new IP
when a current host is blacklisted. Currently, there are manual efforts underway
to establish blacklists based on the observation that certain networks are mali-
cious. For example, Spamhaus [95] maintains the Don’t Route Or Peer (DROP)

list, a collection of networks that they consider to be controlled entirely by pro-
fessional spammers. Spamhaus suggests that traffic from these sources should
simply be dropped, and recommends the use of this list by tier-1 ISPs and back-
bone networks. Another example is the list maintained by EmergingThreats [37],
which identifies netblocks that are thought to belong to the Russian Business Net-
work. While such efforts are beneficial, they are expensive and tedious to main-
tain. Moreover, these lists are often incomplete and limited in scope (for example,
limited to spam operations or the RBN in particular). In contrast, FIRE operates in
an automated fashion, and we aim to capture a broader range of malicious activity,
independent of any a priori knowledge of criminal organizations.

To identify rogue networks, we rely on a number of data sources that report
the malicious actions of individual hosts. Some of the data feeds are publicly
available, such as lists of phishing web pages. The other data originates from our
own analysis efforts, such as a list of hosts that provide botnet command and con-
trol servers and hosts that are found to exploit browser vulnerabilities. Of course,
given the widespread use of botnets and the large number of exploited machines,
the fact that a host performs malicious actions is no immediate indication that the
corresponding ISP or netblock is malicious. Instead, when a host misbehaves,
it is possible that attackers were able to compromise and abuse it for nefarious
purposes. Thus, it is necessary to search the data for indicators that allow us to
distinguish between hosts under the control of rogue (or grossly negligent) ISPs
and infected machines of organizations that make a deliberate effort to keep their
network clean.

Based on post-processed information obtained from different data sources, we
compute a malscore (maliciousness score) for individual ASNs (Autonomous Sys-
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tem Number). This score quantifies the amount of recent, malicious activity in a
network and serves as an indicator for the likelihood that an ASN is linked to
cyber-criminals, or at the least, being very negligent in removing malicious con-
tent. Using the malscores, it is easy to identify the worst offenders on the Inter-
net and take appropriate actions (such as increasing the public pressure, breaking
peering relationships, or putting their IP address space on a blacklist). Moreover,
we can track malicious activity over time.

The main contributions of our work are as follows:

• We analyze a number of data sources to identify IP addresses of hosts that
misbehave in different ways.

• We present techniques to filter these lists for hosts that likely belong to
rogue ISPs. In particular, we combine the information from different data
sources to compute a malscore that quantifies the malicious activities of an
autonomous system.

• We show that our system is successful in identifying a number of rogue ISPs
that are known to cooperate with criminal organizations. Moreover, we pro-
vide an updated real-time system via the website maliciousnetworks.
org, which can help to identify rogue ISPs and to assist legitimate ISPs in
cleaning up their networks.

5.1 System Overview

The goal of our system is to identify rogue networks. Thus, we first need to con-
cretize what we consider to be a rogue network. Unfortunately, this question is not
straightforward to answer. Some service providers are simply lax when it comes
to the content that they offer, others are victims of remote exploits, and a few
are well-known to blatantly host malicious content. Thus, the fact that a network
is the source of unwanted activity does not necessarily qualify it immediately as
being malicious.

We consider a rogue network to be a network that is under the control of cyber-
criminals or that knowingly profits from cooperating with criminals. Of course,

maliciousnetworks.org
maliciousnetworks.org
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it is difficult to assert such criminal ties without thorough investigations by law
enforcement agencies. Thus, we have to redefine our notion of rogue networks
based on the activities that are typically associated with such networks. To this
end, we consider a rogue network to be one in which significant malicious activity
occurs. In addition, this activity lasts for an extended period of time, regardless of
abuse complaints. Our logic behind this is that rogue networks provide hosting for
malicious content that often remains up for many days (sometimes even months
or years). In contrast, malicious activity in other networks tends to be more short-
lived due to abuse reporting and honest attempts to undo the damage.

Of course, there might be cases in which legitimate service providers fail to
handle problems in their networks for reasons other than criminal intent (e.g.,
careless customers, understaffed abuse department). In such cases, these organi-
zations should not immediately be classified as malicious. However, when mali-
cious activity is persistent and ubiquitous in a provider’s network, the negligence
and failure to act appropriately presents a significant threat to the security of the
Internet. As a result, we feel that it is justified to classify such networks as rogue,
even though the companies might not directly be affiliated with criminal activities.

Data sources and processing. Given our notion of rogue networks, the basic
idea to identify such networks is to check for the presence of a large number of
long-lived, misbehaving hosts. To this end, we analyze a number of data sources
for IP addresses that have exhibited malicious behavior for an extended period of
time (the exact extent of this time span depends on the type of data source and is
discussed later).

For our analysis, we utilize three sources of information about malicious activ-
ities. One source provides two feeds of hosts that were found to provide command
and control services for bots. A second source uses three data feeds to identify
servers that were involved in drive-by-download exploits. The third source reports
URLs that were found to host phishing pages. We have selected these sources be-
cause they are typically associated with malicious activity that is carried out by
dedicated machines of rogue networks. Of course, it is easy to incorporate addi-
tional sources into our analysis framework.
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By sifting through our data sources, the goal is to expose rogue IPs. These
rogue IPs belong to hosts that have persistently acted in a malicious fashion, and
thus, are more likely to belong to rogue networks. This allows us to discard many
IP addresses that belong to hosts that were exploited or contaminated by malware,
but quickly quarantined. By discarding the large fraction of IPs that exhibit mali-
cious behavior for only a brief period, we avoid the problem of ranking techniques
that try to assess the maliciousness of an ISP simply by counting the number of
incidents that occur on its network. These approaches often end up with large
ISPs in top positions, simply because those ISPs suffer from more compromises
due to their large user base. This is despite honest efforts of these ISPs to detect
malicious behavior and to contain damage.

Data analysis and malscore computation. Based on the size and the number
of active rogue IPs in a network at a certain point in time, we compute a malscore
that quantifies the extent of malicious activity in this network. Note that comput-
ing malscores is a continuous process. That is, we do not simply obtain a snapshot
of rogue networks at a certain point in time, but instead, recompute malscores
periodically (currently, once a day). Thus, as new hosts start to perform mali-
cious activity and old hosts cease to be active, the malscores of different networks
change. This allows us to monitor and track activity in different networks over
time.

We have computed the malscores of networks on the Internet for more than
a year. For this period, we found that the malicious activities (and the resulting
malscores) are relatively stable for most networks. This indicates, that a num-
ber of rogue networks exist that are constantly involved in significant and long-
lasting malicious activity. Of course, we also witnessed the interesting rise and
decline of certain networks. For example, we could observe the sudden drop of
malicious activity associated with Atrivo/Intercage as the network was cut off the
Internet by its upstream ISPs. On the other hand, we observed new, malicious
networks such as the Novikov Aleksandr Leonidovich autonomous system. This
network has only recently appeared in our data, but is already hosting a large num-
ber of drive-by-download servers affiliated with the “Beladen” exploit campaign.
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The criminals behind these attacks are believed to have close ties to the former
RBN [43].

5.2 Data Collection

In this section, we discuss in more detail the three data sources that we use to
identify hosts that likely belong to rogue networks. To this end, we first describe,
for each data source, how we obtain the IP addresses of hosts that are actively

engaged in malicious activity.

5.2.1 Botnet Command and Control Providers

Despite the emergence of peer-to-peer-based bots, many botnets still rely on cen-
tralized command and control (C&C). For this C&C infrastructure, botmasters
typically set up IRC servers that provide channels for bots to join, or web servers
that can be periodically polled for new commands. The functioning of the com-
plete botnet depends on the availability of these servers. Thus, a botmaster is
interested in hosting his C&C infrastructure on a network where it is safe from
takedown.

To identify and monitor the networks affiliated with botnet C&C servers, we
utilize data collected from Anubis [2]. Anubis executes the uploaded Windows-
based malware binaries in a virtual environment and records file system and reg-
istry modifications, process information, and network communications. We are
particularly interested in the network traffic (if any) generated by the malware.

IRC-based botnets. When Anubis monitors IRC traffic the corresponding nick-
name, server, and channel information is logged. This IRC information is almost
always associated with botnet C&C traffic. To monitor whether IRC C&C chan-
nels are active, we use a custom IRC client that leverages the recorded credentials
to connect to the IRC server and join the channel. Because we are primarily inter-
ested in the longevity of the C&C server, we resolve the C&C server’s host name
to one or more IP addresses, and then connect to each IP at regular intervals. When
the C&C server is not identified by a DNS name but by an IP address, then this
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address is used directly. A host (an IP address) is considered to be active when
our client can join the corresponding C&C channel. Sometimes, transient network
problems prevent us from connecting to a host. In such cases, it would be unde-
sirable and premature to declare a host as inactive. Thus, we require that an active
C&C channel is unreachable for two days before declaring the corresponding IP
address as inactive.

Interestingly, in a number of cases, we observed that a channel (and the cor-
responding server) was reachable, but no malicious activity was noticeable. This
is frequently the case when a bot channel is created on a well-known IRC net-
work (such as undernet or efnet). The reason is that the IRC administrators
of these networks quickly ban the botmaster and remove the channel. However,
subsequent logins from bots or other users reopen the channel, thus making the
channel available and leaving the impression that it is still active. To mitigate this
problem, we modify our approach to determine whether a botnet C&C host is ac-
tive. More precisely, in addition to the requirement that a server is reachable and
the appropriate channel exists, we also require that the channel shows bot-related
activity. To this end, we introduce heuristics that check the messages and channel
topics for well-known IRC bot commands (such as download, update, dos) and
signs of encoded or encrypted commands. A channel is considered up only when
such indicators are present.

HTTP-based botnets. To identify and monitor web-based botnet C&C servers
from samples collected by Anubis, we first require a mechanism to distinguish
between legitimate HTTP traffic and traffic related to botnet commands. This is
necessary because HTTP traffic sent by a malware sample does not immediately
imply a connection to a C&C server (HTTP connections are often used to check
for network connectivity or download updates). To identify HTTP C&C traffic, we
manually define static, malicious characteristics (signatures) of requests used by
well-known botnets. These characteristics include content from the HTTP request
path and parameters, HTTP headers and POST data, and the HTTP response from
the web server. Such static features are useful even for botnets that use encryption
because they frequently send an encryption key, bot identifier, version number,

undernet
efnet
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and other parameters to the web server. Thus, the HTTP C&C server must know
how to parse the request in a specific format.

As an example of a web-based botnet that we have been monitoring, consider
Pushdo/Cutwail, which is believed to be one of the largest, active botnets used
for spam. When a Cutwail bot connects to the C&C server, it will often request
one or more executables. Although the botnet utilizes encryption, the request
path for these binaries contains a predictable semi-static format, such as the prefix
/40E8. The response from the web server contains one or more executables
typically around 100KB. Currently, we are monitoring 24 different types of web-
based botnets including Coreflood, Torpig, and Koobface. The architecture for
monitoring botnet C&C servers is shown in Figure 5.1.
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Figure 5.1: Architecture for C&C botnet monitoring

5.2.2 Drive-by-Download Hosting Providers

Our second data source is a list of servers that host malware executables dis-
tributed through drive-by-download exploits. Drive-by-downloads are a means
of malware distribution where executables are automatically installed on victim
machines without user interaction. Typically, the only requirement is for a user
to visit a web page that contains an exploit for her vulnerable browser. In some
cases, the exploit and the malware executable is hosted on a compromised host,
while in other cases, a compromised web page is only used to redirect the victim
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to a second machine that performs the exploit (often referred to as a mothership).
These mothership servers are frequently located in rogue networks.

There are three data feeds that we use to identify drive-by-download servers.
The first feed is through Wepawet [109], a system that checks user-submitted web
pages (URLs) for malicious Javascript. In particular, we are interested in cases
where malicious script contains shellcode that downloads and executes malware.
When malware is discovered, Wepawet records the locations of these binaries
and exports them to FIRE. The second data feed is through a daily compilation
of URLs found in spam mails that are caught in the spam traps of a computer
security company and an Internet Service Provider. The third feed is a daily-
updated list of “spamvertised” URLs (advertised via spam) provided by Spam-
cop [94]. So far, after eliminating duplicates, we have recorded more than 1.2
million spamvertised links. Of course, not every URL in a spam email points to a
site that launches a drive-by exploit. Instead, these URLs frequently lead to shady
businesses such as online pharmacies, casinos, or adult services. To identify those
sites and pages that actively perform drive-by-exploits, we use the Capture Hon-
eypot Client (HPC) [90]. Capture is able to find web-based exploits by opening
a potentially malicious web site in a browser on a virtual machine. After visiting
a page, the state of the virtual machine is inspected and suspicious changes (i.e.,
the creation of new files or the spawning of new processes) are recorded, as they
indicate that the guest system was compromised by a web-based exploit.

For our analysis, we use a total of eight virtual machines (VMs) dedicated
to scanning web pages. All VM images are running Windows XP Professional
(Service Pack 2), without any patches installed and automatic updates disabled.
To catch recent exploits, we have installed the Flash and Quicktime plug-ins.

When the Capture honey client is compromised by visiting a certain URL, we
inspect the network traces recorded from Capture HPC. We are not interested in
the server that hosts the web site that contains an exploit. We have observed that
those machines are often legitimate web servers that are victims of compromise
and, therefore, do not yield much information about malicious networks. Thus,
if the malicious binary that is part of an exploit is downloaded from the same
server, we ignore that host for our analysis. In the more interesting case, an ex-
ploit has been injected into a web page and the associated binary is hosted on a
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different machine (mothership server that usually serves binaries for many differ-
ent exploits). Due to the importance of this mothership servers for the criminals
behind the exploit, these machines are often located in malicious networks where
the chance that it is being shut down is low. Thus, we only consider the IP ad-
dresses of those mothership servers for our analysis. Once we have discovered
a download server, we revisit it once per day to assess its uptime. When a host
cannot be reached for more than two weeks, it is considered to be inactive and,
thus, removed from the analysis.

5.2.3 Phish Hosting Providers

The third data source to identify rogue networks is derived from information about
servers that host phishing pages. Typically, phishing pages are set up to steal login
credentials, credit card numbers, or other personal information. Often, these pages
are hosted on compromised servers and are taken down quickly. To mitigate this
problem, phishers often resort to hosting their phishing pages directly in networks
where there is little or no control of the offered content.

To locate phishing sites, we use an XML feed provided by PhishTank [77].
Once a day, this feed provides our system with URLs of phishing pages that are
verified by the PhishTank community. Interestingly, all URLs on the PhishTank
list are considered to be online. However, our experiments have shown that phish-
ing pages are often taken offline so quickly that the list is already outdated after
one day.

To compute the status of phishing IPs, we attempt to download the web page
located at a given phishing URL once per day. This is done until either the domain
(of the URL) can no longer be resolved, or the site is offline for more than one
week. A phishing site is considered offline by our system when the web server is
not reachable anymore or when the phishing page has been replaced by another
page that is not a phish (usually a HTTP 404 error page or a phishing warning
page).



76 Chapter 5. Finding Rogue Networks

5.3 Data Analysis

In this section, we discuss our techniques to identify rogue networks and compute
their malscores based on the analysis of the individual data sets that we collect.

5.3.1 Longevity of Malicious IP Addresses

The primary characteristic that distinguishes between rogue and legitimate net-
works is the longevity of the malicious services. Most legitimate networks are
able to clean up illicit content within a matter of days. In contrast, we have ob-
served malicious content that has been online for the entire monitoring period of
more than a year. Figure 5.2a shows the average uptime of malicious IPs per ASN.
It can be seen that the vast majority of networks remove the offending content in
less than 10 days. However, there were 361 ASNs that had hosts with an average
lifespan of more than 10 days in our feeds. Also, we discovered that each type of
malicious activity displays different behaviors and average uptime.

Since May 2008, we have observed botnet C&C servers on 1,269 IP addresses.
Figure 5.2b displays the uptime of the botnet C&C servers from 0-60 days. Note
that we observed C&C servers that were online for more than 60 days, but limited
the x-range of the graph to illustrate the rapid decline in botnet C&C servers that
are taken down after only a few days, mainly by reputable IRC and web hosting
providers.

We have been monitoring 1,161 of drive-by-download servers since August
2008. These servers have a much higher average lifetime than the other sources
depicted in Figure 5.2c. In fact, the number of drive-by-download servers that
have been online for more than 60 days is 92, or more than 15%. Also, there
have been 17 (approximately 3% of all) drive-by-download servers that have been
online since the start of our collection.

From July 2008, we recorded 12,149 IP addresses hosting phishing websites.
Similar to botnet C&C servers, the majority of phishing websites were online
for only a few days. However, we also observed a few phishing sites that were
online for more than a year. Figure 5.2d shows the uptime for the first 60 days for
phishing hosts.
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Figure 5.2: Uptimes for different sources

As mentioned previously, we use the longevity of malicious services as a dis-
tinguishing feature of rogue networks. This insight is supported by the previously-
shown data, which demonstrates that a small number of ISPs is responsible for
most persistent, malicious activity. To discard IPs that have been active for a short
time only, we introduce a threshold δ. IP addresses that are active less than this
threshold are not considered rogue and discarded from the subsequent malscore
computation. This removes most of the phishing pages that are hosted on free web
spaces or hacked machines, and legitimate IRC/web servers that are temporarily
abused for botnet communications. As we will explain later in more detail (in Sec-
tion 5.4.3), we do not use a threshold-based filter for drive-by-download servers.
The reason is that such servers are difficult to set up, and, thus, are typically a
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direct indication for rogue networks. This is also reflected in the uptime graph for
drive-by download servers (Figure 5.2c), which is different than for the other two
data sources.

The output of the filtering step (which removes short-lived botnet C&C and
phishing IPs) is a list of active, rogue IPs that constitute the input to the mali-
cious score computation process, which is discussed in the next section. In Sec-
tion 5.4.3, we will come back to the effects of selecting different values for the
threshold δ on the overall ASN ranks.

5.3.2 Malscore Computation

Once per day, the data collection process produces three lists Li of active, rogue
IPs (each derived from a different data source i). In the next step, the goal is to
combine this information to expose organizations that act maliciously. For this,
we consider an organization to be equivalent with an autonomous system (AS).
An autonomous system is a group of a single entity (RFC 1771). Thus, it is a
natural choice to perform analysis at the AS-level.

To identify those autonomous systems that are most likely malicious, we first
map all IP addresses on the three lists to their corresponding ASN. For this, we
query the whois database, selecting the most specific entry for an IP address in
case multiple autonomous systems announce a particular IP. We are aware that the
whois data might not be completely accurate. However, even in case of small
errors, the database is sufficiently complete and precise to recognize the worst
evildoers.

A straightforward approach to identify those autonomous systems that are
most malicious is to compute, for each AS, the sum of the IPs on the three lists
that belong to this AS. While simple, this technique is not desirable because it
ignores the size of a network. Clearly, when an AS P controls many more live
hosts than AS Q, we can expect that the absolute number of malicious hosts in P
are higher than in Q, even though the relative numbers might show the opposite.
To avoid this pitfall, we compute the maliciousness score (malscore)MA for an
AS P as follows:
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MP = ρP ∗
3∑

i=1

ni(P ) (5.1)

In Equation 5.1, ni(P ) is the number of IP addresses on list Li that belong
to the autonomous system P . Moreover, the malscore for each AS is adjusted by
a factor ρ, which is indirectly proportional to the number of hosts in a network.
That is, ρ decreases for larger networks.

The purpose of ρ is to put into relation the number of incidents with the num-
ber of active hosts in an autonomous system. This requires, for each AS, the
knowledge of the number of live (active) hosts that are operating in the networks
of this AS. Clearly, this knowledge is difficult to obtain precisely, and it also can
change over the course of several months. Previous work attempted to address
this question [81], resorting to the idea of sending ping probes to a well-chosen
subset of the IP addresses of a network. While these techniques can discrimi-
nate well between completely inactive (dark) regions and used networks, it is still
quite difficult to determine the exact number of active hosts. Also, it is possible
that networks are configured so that they do not respond to ping requests at all,
thereby skewing the results. For these reasons, we decided to estimate the size
of a network based on the size of the networks (i.e., the number of IP addresses)
that an AS announces as routeable to the global Internet. To determine the size of
the address space that an AS announces to the Internet, we leverage data provided
by the Cooperative Association for Internet Data Analysis (CAIDA). CAIDA is
a collaborative undertaking among organizations in the commercial, government,
and research sectors that promotes cooperation in the engineering and mainte-
nance of a robust, scalable, global Internet. In this role, CAIDA makes available
a variety of data repositories that provide up-to-date measurements of the Internet
infrastructure. One of these data repositories [51] shows a ranking of autonomous
systems based on the size of their customer cones (address spaces). This informa-
tion is compiled from RouteViews BGP tables.

We define sizep as the number of /20 prefixes that an AS P announces. With
this, we define ρ as shown in Equation 5.2 below. As desired, ρ decreases when
sizep increases.
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ρp = 2−sizep/c, where c = 4 (5.2)

Of course, we are aware of the fact that the announced address space is not a
perfectly reliable indicator for the number of active hosts. For example, there are
network telescopes or educational institutions such as MIT that announce huge
address ranges while having few or no live hosts. However, such networks are in-
frequent and, given the shortage of available IPv4 address space, many networks
densely populate their available space. On the other hand, masquerading (net-
work address translation - NAT) might result in multiple hosts sharing a singe IP
address. Because of the imprecision that is inherent in estimating the number of
active hosts, we limit the impact of size on ρ by a parameter c. Empirically, we
found that a value of c = 4 yields god results. In Section 5.4.3, we motivate this
choice and discuss the influence of different values of c on our results.

5.4 Evaluation

In this section, we analyze the quality of our results and discuss interesting find-
ings. Moreover, we discuss in more detail the choice of important system param-
eters (such as the time threshold δ and size parameter c).

5.4.1 Analysis Results and Malicious Networks

Table 5.1 shows a snapshot of our system on June 1st, 2009, listing the ten entries
with the largest malscores and the originating country (using the ip2location.
com database). For this snapshot, we computed the maliciousness scores for all
417 autonomous systems that control at least one active, rogue IP.

Unfortunately, we do not have ground truth available that would allows us to
evaluate the results of our system in a quantitative fashion. In fact, if such infor-
mation would be available, then there would be no need for our system. Thus, we
can only argue qualitatively that our system produces meaningful and interesting
insights into the behavior of rogue networks. We can also observe how events on

ip2location.com
ip2location.com
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the Internet (such as shutting down a rogue ISP) are reflected in the malscores of
different networks.

# ASN Name Country Score S G Z Blogs
1 23522 GigeNET US 42.4 1 - -
2 44050 Petersburg Internet Network UK 28.0 - - 6 [34]
3 3595 Global Net Access US 18.2 - 23 -
4 41665 National Hosting Provider ES 16.5 - 104 5
5 8206 JUNIKNET LV 14.1 - 30 -
6 48031 Novikov Aleksandr Leonidovich UA 14.0 - - - [43]
7 16265 LEASEWEB NL 13.0 24 14 -
8 27715 LocaWeb Ltda BR 11.6 - 130 -
9 22576 Layered Technologies US 11.5 - 64 - [33]

10 16276 OVH OVH FR 10.6 25 18 -

S = Shadowserver, G = Google Safebrowsing, Z = ZeusTracker

Table 5.1: FIRE Top 10 for June 1st, 2009

Correctness of results. The top ten autonomous systems reported by FIRE on
June 1st host a large number of persistent, malicious servers. In an attempt to
confirm that our results are correct and meaningful, we leveraged a number of
third party efforts that attempt to track down certain types of malicious activity
on the Internet. More precisely, we first obtained a top-25 list that is complied
by the ShadowServer Foundation [92] that shows the most malicious networks
with regards to botnet activity. Then, we looked at Google’s Safe Browsing ini-
tiative [53] and extracted the top 150 ASNs, based on the absolute numbers of
malicious drive-by servers that Google identified. In addition, we used the top-10
entries provided by ZeusTracker [115], a network that monitors and lists com-
mand and control servers for the Zeus botnet. Finally, we searched a number of
blogs written by well-known security researchers for references to malicious and
rogue ISPs and networks.

For each of our top ten entries, we then tried to find evidence in any of the
third party lists that would confirm that a network is known to be rogue, or at
least, strongly linked to certain malicious activities. Table 5.1 shows that we were
successful for all ten entries.
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ASN Name FIRE Large
Rank Network

AS23522 GigeNET 1
AS3265 XS4ALL 118 X
AS25761 Staminus Comm -
AS30058 FDCservers.net -
AS174 Cogent 148 X
AS2108 Croatian Research -
AS31800 DALnet - X
AS13301 Unitedcolo.de 86
AS790 EUnet Finland -
AS35908 SWIFT Ventures 68

Table 5.2: ShadowServer Botnets Top 10 for June 1st, 2009

ASN Name FIRE Large
Rank Network

AS4134 Chinanet Backbone No.31 17 X
AS21844 ThePlanet.com 13
AS4837 China169 Backbone 90 X
AS36351 SoftLayer Technologies 30
AS26496 GoDaddy.com 15 X
AS41075 ATW Internet Kft. 23
AS4812 Chinanet-SH-AP Telecom 89 X
AS10929 Netelligent Hosting 12
AS28753 Netdirect 11
AS8560 1&1 Internet AG - X

Table 5.3: Google Safe Browsing Top 10 for June 1st, 2009

In our list, IPNAP-ES (GigeNET) has consistently ranked among the top ma-
licious network, because it hosts the largest numbers of IRC botnet C&C servers.
This is confirmed by the findings of ShadowServer. Some security forums have
actually reported botnet activity from IPNAP as early as 2006. The Petersburg In-
ternet Network (PIN), currently ranked second in Table 5.1, is known to be hosting
the Zeus malware kit (also known as Zbot and WSNPoem). On the statistics page
of the ZeusTracker [115], PIN’s network is ranked first on the list of Zeus hosts as
of June 1st, 2009. As the table also shows, as many as seven out of the ten ASNs
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ZeusTracker
ASN Name FIRE Rank Large Network
AS21844 ThePlanet.com 13
AS12695 Digital Network JSC 16
AS9800 China Unicom 28 X
AS6849 JSC UkrTelecom -
AS41665 National Hosting Provider 4
AS44050 Petersburg Internet Network 2
AS43689 Dankon Ltd. -
AS35118 SmartLogic Ltd 44
AS9394 China Railway Internet 88 X
AS4645 HKNet Co. Ltd -

Table 5.4: ZeusTracker Top 10 for June 1st, 2009

are ranked highly by Google’s malicious site analysis. Although the ZeusTracker
only covers one specific botnet, there is overlap with four out of the top 15 entries
in FIRE, including PIN, National Hosting Provider, ThePlanet (rank 13 in FIRE)
and Digital Network (rank 15 in FIRE).

It is also interesting to note that the “Novikov Aleksandr Leonidovich” AS
has been linked to the recent Beladen drive-by-download exploit campaign [43],
which is believed to be run by the same criminals that operated the Russian Busi-
ness Network.

From the perspective of these three independent data sources, we cover nearly
all of the most malicious networks. In many cases, larger networks are given an
unfair bias in these lists due to the number of compromised hosts on their network.
As a result, we tagged these large networks with an X in each table to show that
they are false positives.

5.4.2 Interesting (Historic) Malscore Changes

A number of networks ceased to engage in malicious activity over the last months
(during the continuous monitoring period). The most prominent was Intercage
(Atrivo), a network that was considered to be the American RBN equivalent. It
hosted nearly every form of malicious and illegal content, and it was ranked fourth
on our list in September 2008. In August, Intercage attracted considerable atten-
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tion from the Internet community when a white paper was published document-
ing malicious activities originating from their network [5]. Consequently, two
of their transit providers, Pacific Internet Exchange (PIE) and UnitedLayer, de-
peered with them, cutting them off from the rest of the Internet. Figure 5.3a shows
how FIRE recorded those incidents. Until mid-September, Atrivo was given a very
high score. Then, the de-peering of PIE shut off many malicious hosts, resulting
in a considerably lower score. Finally, the second de-peering, about a week later,
removed Atrivo completely from the list.

Another success story in the fight against Internet crime happened recently,
when the U.S. Federal Trade Commission (FTC) shut down the web hosting com-
pany Triple Fiber Network (3FN.net) [60]. The network of 3FN was known to
shelter servers that were engaged in all kinds of malicious activities, especially
hosting command and control servers for the Cutwail botnet. Therefore, on June
1st, 2009, the FTC decided to have 3FN disconnected from the Internet. As ex-
pected, this takedown was immediately noticeable in the FIRE data. 3FN.net part-
nered with several autonomous systems including the Metromedia Fiber Network.
The graph in Figure 5.3b clearly demonstrates the effectiveness of Metromedia
breaking their ties to 3FN after June 1st.

These two incidents clearly highlight the benefits and importance of exposing
disreputable hosting and transit providers, which is the ultimate goal of the FIRE

system.
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5.4.3 Sensitivity of Important Parameters

Now that we have presented our results, we will explain the threshold parameters
to filter reputable networks.

Longevity thresholds. In order to distinguish between rogue and benign net-
works, FIRE uses a threshold based on the longevity of a server. If a malicious
host is online for more than the time given as this threshold, the IP is flagged
as malicious. If the server is taken offline before it reaches the threshold, FIRE

discards the host in the scoring phase. The choice of this threshold is of vital im-
portance for the functioning of the analysis. If the threshold is selected too low,
there will be a lot of compromised servers considered as part of malicious net-
works, which skews the analysis. If it is chosen too high, many malicious servers
will be missed.

To show the influence of short-lived servers on the data collected by FIRE,
we introduce a distance metric on the rankings of malicious networks. In order to
compare two lists A and B of offending ASNs sorted by number of incidents, we
count how many ASNs have a different position in A and B and add to that value
the number of ASNs that have a different incident count in A and B. This metric
gives a quantification of how much two lists of worst offenders differ.

In our approach, we used this metric to obtain suitable threshold values. First,
we calculated top offending network rankings for a small threshold value. Then,
we iteratively increased the threshold by a small value and recalculated the rank-
ing. With the use of the metric above, we were able to determine, how much
the small threshold change influenced the resulting lists of malicious networks.
We applied this procedure to the three data sources phishing servers, botnet C&C
servers and drive-by-download servers. For every day since January 1st, 2009 we
calculated the change in rankings and averaged the results. Figure 5.5 shows the
resulting differences. The Figures 5.5a and 5.5b indicate that for phishing servers
and botnet control servers there is a lot of fluctuation when threshold values are
low. This is a direct result of the fact that these data sources contain many servers
that are taken offline after only one or two days. Thus, we select the thresholds in
a way that these servers are ignored. An ideal threshold value should be chosen
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high enough that the spike at the beginning of those graphs are cut off and the
fluctuations around the threshold are low. Thus, a threshold value that lies to the
right of the initial peak in the curve is the optimal choice. Currently, FIRE uses
the daily thresholds δphish = 3 and δbot = 4.

For drive-by-download servers, we could not observe such behavior. Fig-
ure 5.5c shows a constant fluctuation if we remove servers with low uptime. The
reason that drive-by-download servers are not taken offline quickly is that set-
ting up drive-by downloads is a relatively complex task. These servers are often
set up by professional criminal organizations who do not want to risk that their
exploits fail because the mothership server, which hosts the executable, is taken
offline. Thus, the only data source that we do not take uptime into account is drive-
by-download servers because an overwhelming majority are hosted on malicious
networks.

Size parameter. One feature of FIRE is the elimination of large networks from
the list of true malicious ASNs if those networks have a larger absolute number
of malicious hosts, but relatively few rogue hosts. As described in Section 5.3.2,
our computation uses a parameter c to scale the malscore of larger networks. We
are interested in choosing a value for c that is large enough to reduce the rank of
larger networks, while not excluding them completely.
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Figure 5.4: Sensitivity of Parameter c.
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To show the effects of various choices for the parameter c, we calculated the
lists of top offending networks for varying parameter values. Again, we use the
metric presented above to show how small changes of c influence the ASN rank-
ings. The changes we obtained are shown in Figure 5.4. For c values less than 1,
the overall rank changes are minimal. This is due to the fact that with very small
values for c, the resulting lists are only sorted by ASN size, regardless of the num-
ber of incidents. Similarly for larger values of c greater than 1, the rankings are
primarily sorted by incident count.

For our analysis, it is thus important to choose a value for c that is located on
the right side of the peak shown in the graph, as we want to favor incident count
over network size. Also, it is important that the network size does not have a
significant influence on the rating. Thus, we want to select an area of the graph
where ranking fluctuations low. This lead to the choice of the threshold c = 4 for
the malscore computation.

5.5 Summary

In this chapter, we presented FIRE, a novel system to automatically identify and
expose organizations and ISPs that demonstrate persistent, malicious behavior.
FIRE can help isolate networks that tolerate and aid miscreants in conducting ma-
licious activity on the Internet. It does this by actively monitoring different data
sources such as botnet communication channels, drive-by-download servers, and
feeds from phishing web sites. Because it is important to distinguish between net-
works that are knowingly malicious and networks that are victims of compromise,
we refine the collected data and correlate it to deduce the level of maliciousness
for the identified networks. Our ultimate aim is to automatically generate results
that can be used to pinpoint and track organizations that support Internet miscre-
ants and to help report and prevent criminal activity. Furthermore, the networks
we identify can also be used by ISPs as blacklists in order to simply block traffic
that is originating from them. Hence, an ISP can enhance the security of its users
by not allowing malicious traffic to reach them.

Although much work has been done on studying malicious activity on the In-
ternet (such as phishing, drive-by-download exploits, and malware-based scams),
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not much focus has been put on automatically identifying the networks and in-
frastructures used by the attackers. With the novel work we present in this paper,
we approach the problem from a different angle and hope to help prevent victims
from accessing or receiving traffic from networks that have proven to be malicious
in nature.
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Figure 5.5: Ranking changes for varying thresholds.
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Chapter 6

Related Work

Malicious Code Analysis. Analyzing malicious executables is not a new prob-
lem; consequently, a number of solutions already exist. These solutions can be
divided into two groups: static analysis and dynamic analysis techniques. Static
analysis is the process of analyzing a program’s code without actually executing
it. This approach has the advantage that one can cover the entire code and thus,
possibly capture the complete program behavior, independent of any single path
executed during run-time. In [17], a technique was introduced that uses model
checking to identify parts of a program that implement a previously specified, ma-
licious code template. This technique was later extended in [18], allowing more
general code templates and using advanced static analysis techniques. In [61], a
system was presented that uses static analysis to identify malicious behavior in
kernel modules that indicate a rootkit. Finally, in [57], a behavioral-based ap-
proach was presented that relies heavily on static code analysis to detect Internet
Explorer plug-ins that exhibit spyware-like behavior. The main weakness of static
analysis is that the code analyzed may not necessarily be the code that is actually
run. In particular, this is true for self-modifying programs that use polymorphic
or metamorphic techniques [101] and packed executables that unpack themselves
during run-time [76].

Because of the many ways in which code can be obfuscated and the funda-
mental limits in what can be decided statically, we firmly believe that dynamic
analysis is a necessary complement to static detection techniques. In [12], a

91
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behavior-based approach was presented that aims to dynamically detect evasive
malware by injecting user input into the system and monitoring the resulting ac-
tions. In addition, a number of approaches exist that directly analyze the code
dynamically. Unfortunately, the support for dynamic code analysis is limited; of-
ten, it only consists of debuggers or disassemblers that aid a human analyst. Tools
such as Anubis[2], CWSandbox [110], the Norman SandBox [75], or Cobra [105]
automatically record the actions performed by a code sample, but they only con-
sider a single execution path and thus, might miss relevant behavior. To address
this limitation and to capture a more comprehensive view of a program’s behavior,
we developed our approach to explore multiple execution paths.

A very recent work that addresses the detection of hidden, time-based triggers
in malware is described in [29]. In their work, the authors attempt to automatically
discover time-dependent behavior by setting the system time to different values.
The problem is that time-based triggers can be missed when the system time is not
set to the exact time that the malware expects. In our approach, we do not attempt
to provide an environment such that trigger conditions are met, but explore multi-
ple code paths independent of the environment. Thus, we have a better chance of
finding hidden triggers. In addition, our approach is more comprehensive, as we
can detect arbitrary triggers.

Finally, in [13], the authors present a system that is similar to ours in its goal
to detect trigger-based malware behavior. The main differences are the system
design, which is based on mixed execution of binary code using elements of sym-
bolic execution, and a less comprehensive evaluation (on four malware samples).

Software testing. The goal of our work is to obtain a more complete picture
of the behavior of a malicious code sample, together with the conditions under
which certain actions are performed. This is analogous to software testing where
one attempts to find inputs that trigger bugs.

A number of test input generation systems [14, 44, 45] were presented that
analyze a program and attempt to find input that drives execution to a certain pro-
gram point. The difference to our approach is that the emphasis of these systems is
to reach a certain point, and not to explore the complete program behavior. Other
tools were proposed that explore multiple paths of a program to detect implemen-
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tation errors. For example, model checking tools [26, 47, 49] translate programs
into finite state machines and then reason whether certain properties hold on these
automata. The systems that are closest to our work are DART [42] and EXE [15].
Both systems use symbolic execution [56]. That is, certain inputs are expressed as
symbolic variables, and the system explores in parallel both alternative execution
paths when a conditional operation is found that uses this symbolic input. Similar
to our approach, these systems can explore multiple execution paths that depend
on interesting input. Also, the conditions under which certain paths are selected
can be calculated (and are subsequently used to generate test cases). The main
differences to our technique are the following. First, the goal of these systems is
to explore programs for program bugs while our intent is to create comprehen-
sive behavioral profiles of malicious code. Second, we do not have the possibility
of using source code and operate directly on hostile (obfuscated) binaries. This
leads to a significantly different implementation in which interesting inputs are
dynamically tracked by taint propagation. Also, the problem we are addressing
is complicated by the fact that we are not able to utilize built-in operating system
mechanisms (e.g., fork) to explore alternative program paths. Hence, we require
an infrastructure to save and restore snapshots of the program execution.

Speculative execution. In [74], a system was presented that uses process snap-
shots to implement speculative execution. In distributed files systems, processes
typically have to wait until remote file system operations are completed before
they can resume execution. With speculative execution, processes continue with-
out waiting for remote responses, based on locally available data only. When it
later turns out that the remote operation returns data that is different from the local
one, the process is reset to its previously stored snapshot. When no changes are
present, the process can continue, and the system is successful in masking a slow
I/O operation. The concept of snapshots used in speculative execution is similar
to the one in our work. The difference is that we use snapshots as a means to
explore alternative execution paths, which requires consistent memory updates.

Code obfuscation. The two areas that are most closely related to our work on
the limits of static malware analysis are code obfuscation and binary rewriting.
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Code obfuscation describes techniques to make it difficult for an attacker to extract
high-level semantic information from a program [21, 108]. This is typically used
to protect intellectual property from being stolen by competitors or to robustly em-
bed watermarks into copyrighted software [20]. Similar to our work, researchers
proposed obfuscation transformations that are difficult to analyze statically. One
main difference to our work is that these transformations are applied to source
code. Source code contains rich program information (such as variables, types,
functions, and control flow information) that make it easier to apply obfuscating
operations.

In [22], mechanisms are proposed that operate by stripping comments from
the program, renaming variables, or partitioning the content of a single variable
into two parts that are stored separately. Most of these mechanisms, however,
are relatively straightforward to reverse by static analysis. In [21], opaque predi-
cates were introduced, which are boolean expressions whose truth value is known
during obfuscation time but difficult to determine statically. The idea of opaque
predicates has been extended in this paper to hide constants, the basic primitive
on which our obfuscation transformations rely. The one-way translation process
introduced in [107, 108] is related to our work as it attempts to obscure control
flow information by converting direct jumps and calls into corresponding indirect
variants. The difference is the way control flow obfuscation is realized and the
fact that we also target data location and data usage information. An obfuscation
approach that is orthogonal to the techniques outlined above is presented in [63].
Here, the authors exploit the fact that it is difficult to distinguish between code
and data in x86 binaries and attempt to attack directly the disassembly process.

We are aware of two other pieces of work that deal with program obfuscation
on the binary level. In [17], the authors developed a simple, binary obfuscator
to test their malware detector. This obfuscator can apply transformations such as
code reordering, register renaming, and code insertion. However, based on their
description, a more powerful static analyzer such as the one introduced by the
same authors in [18] can undo these obfuscations. In [111], a system is proposed
that supports opaque predicates in addition to code reordering and code substitu-
tion. However, the control flow information is not obscured, and data usage and
location information can be extracted. Thus, even if the opaque predicate cannot
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be resolved statically, a malware detector can still analyze and detect the branch
that contains the operations of the malicious code.

In [8], the authors discussed the theoretical limits of program obfuscation. In
particular, they prove that it is impossible to hide certain properties of particular
families of functions using program obfuscation. In our work, however, we do
not try to completely conceal all properties of the obfuscated code. Instead, we
obfuscate the control flow between functions and the location of data elements
and make it hard for static analysis to undo the process.

Binary rewriting. Besides program obfuscation, binary rewriting is the second
area that is mostly related to this research. Static binary rewriting tools are systems
that modify executable programs, typically with the goal of performing (post-link-
time) code optimization or code instrumentation. Because these tools need to be
safe (i.e., they must not perform modifications that break the code), they require
relocation information to distinguish between address and non-address constants.
The reason is that address constants need to be updated to reflect the results of
code modifications, while non-address constants need to remain unchanged. To
obtain the required relocation information, some tools only work on statically
linked binaries [89], demand modifications to the compiler tool-chain [80], or
require a program database (PDB) [97, 98]. Unfortunately, relocation information
is not available for malicious code in the wild, thus, our approach sacrifices safety
to be able to handle binaries for which no information is present.

Besides those tools that require relocation information, a few systems have
been proposed that can process binary programs without relying on additional
program information. One such system is EEL [62], which can be used to opti-
mize and instrument binaries without any program information. Another system
is the binary translator UQBT [19], which is capable of translating an executable
from running on one architecture to another one. Both EEL and UQBT employ a
recursive disassembler and a number of heuristics to analyze binary code. How-
ever, these systems operate on RISC binaries, which is a significantly simpler task
than working on the complex x86 instruction set (especially with Windows bina-
ries). This problem is alluded to in [85], where the authors present Etch, a system
that claims to operate directly on Windows x86 binaries. While the paper clearly
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acknowledges the problem of code discovery in x86 executables, no explanation
is offered on how it is solved.

Finally, binary rewriting has already been introduced by malicious code as a
means to evade detection by virus scanners. The infamous Mistfall engine [114]
is capable of relocating instructions of a program that is to be infected. The idea
is to create holes in the victim program so that virus instructions can be interwo-
ven with original instructions. In this fashion, the virus code is blended with the
infected program, making detection much more difficult. Interestingly, the author
of the Mistfall engine states that his binary rewriting algorithm fails to correctly
patch the code for jump tables that are very common in windows binaries. In our
implementation, we use a heuristic that locates such jump tables and patches them
accordingly after the relocation took place which allows our approach to correctly
rewrite many binaries for which the Mistfall algorithm produces incorrect code.

Finding Rogue Networks A large number of studies have examined various,
individual aspects of malicious activity on the Internet. In the following para-
graphs, we attempt to give an overview, selecting a few representative examples
for each area.

Malicious code and the Internet. Since malware represents one of the most
significant threats on the Internet nowadays, it has received significant attention.
Fast-spreading worms were among the the first malware subjects that were studied
(for example, CodeRed [67] or Slammer [66]). Later, the focus shifted to bots and
botnets [30], and a number of papers have analyzed the size of botnets [25, 40],
the propagation of bots based on time zones [32], and their general behavior [82].
Besides bots, a crawler-based study explored the amount of spyware on the In-
ternet [72]. More recently, authors also provided an overview of web-based mal-
ware [79] and the prevalence of malicious requests of search worms [93].

Scam infrastructure. Malicious code is only one facet of the flourishing under-
ground economy, driven by criminals who aim to make quick profits. A popular
way to compromise users’ machines with malware is by luring them on malicious
web sites that perform drive-by exploits, a phenomenon that was quantified in a
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recent paper [78]. In addition to web pages, unsolicited mail is frequently used
to approach victims. The spam problem was studied in [83], while the scam in-
frastructure that lies behind the links in emails was explored in [1]. Moreover,
a number of papers examine the phishing problem (e.g., the lifetime of phishing
pages [69] or the modus operandi of phishers [64]). Finally, a first attempt at
studying the mechanism of the underground economy was presented in [39].

Network security. Internet-wide studies have also looked at security problems
that are not directly related to malicious networks and cyber-criminals. For ex-
ample, Yegneswaran et al. [112] have analyzed the characteristics and prevalence
of intrusion attempts. In [68], the authors inferred the denial of service activity
on a global scale by examining backscatter traffic. Finally, the subversion of the
domain name service (DNS) and the rise of a malicious resolution authority was
the main topic in [31].

Network reputation. The goal of previously-discussed, related work is to quan-
tify and to deepen the understanding of specific security problems on the Internet.
This is different from our work as we aim to identify networks and autonomous
systems that act maliciously, without assuming that these networks have to be in-
volved in any particular (or all possible) activities. Of course, our work is based
on the observation of certain malicious activities (such as botnet command and
control, spam, phishing, and drive-by-download web pages) that have been ex-
plored previously. However, we process and combine this raw data to infer those
networks that are likely under criminal control.

The work closest to ours are efforts that attempt to assign a reputation to net-
works or an individual IP address. In its simplest form, these efforts produce
blacklists of IPs that have been observed to perform malicious actions. Most
often, such blacklists are used to filter spam mails [94, 96], but there are also
blacklists that warn users when they visit potentially harmful web pages [41, 77].
Many of the sites that offer blacklists also compile statistics of the worst offenders,
typically by counting the number of incidents in a network. Unfortunately, this
technique does not distinguish between compromised, bot-infected machines and
hosts in networks that are deliberately malicious. As a result, the worst offenders
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are typically large networks with many customers. The goal of our work, on the
other hand, is to discard the large amounts of compromised machines and identify
those (often smaller) networks likely controlled by determined adversaries.

We are aware of two recent papers [16, 23] that look at temporal and spatial
properties of attack sources. In [16], the authors study the spatial-temporal charac-
teristics of malicious sources on the Internet, using data from the DShield.org
project. The conclusion is that 20% of all IPs are responsible for 80% of the
observed attacks. In [23], the authors attempt to find IPs that are clustered (spa-
tial uncleanliness) and persistent (temporal uncleanliness) in sending spam mails,
launching network scans, and hosting phishing pages. This work is closest to ours
in that the behavior of hosts is used to identify “unclean” (infected) netblocks.
The difference to our approach is twofold: First, we attempt to identify networks
that are operated by criminals, while their work was focusing on finding bot in-
fections. As a result, the selection of the input data sets (we include drive-by
download providers and botnet C&C servers, but do not consider scanning) and
the filtering techniques are different. Moreover, we combine results from multiple
feeds. Such correlation efforts were not part of the previous paper.

DShield.org


Chapter 7

Conclusions

With the increasing number of malicious programs that are found every single
day, the requirements for automatic malware analysis programs are rising steadily.
In this thesis, we present novel methods that improve automatic analysis and,
additionally, we show an approach to expose rogue networks.

As a theoretical result, we have shown that dynamic analysis methods are
better suited for analyzing malicious programs that contain anti-analysis methods.
This result gave the motivation to concentrate on automatic dynamic analysis tools
in the remaining parts of this work.

To enhance current dynamic analysis methods, we have further presented a
novel method that can be used to analyze binaries that try to hide their malicious
behavior. Using this approach, hidden payloads can be revealed in malicious bi-
naries and the conditions that trigger those payloads can be determined.

Finally, we have shown how it is possible to find and expose malicious net-
works that are used to distribute malicious software. We have presented various
data acquisition and filtering methods that can accurately identify malicious net-
works and show those results on our web site maliciousnetworks.org.

99
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