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Kurzfassung

Diese Diplomarbeit behandelt Quantenfeldtheorie in nicht-flachen Hintergrundgeome-
trien, wobei im Speziellen der Unruh- und der Hawking-Effekt untersucht werden. Der
Unruh-Effekt besagt im Wesentlichen, dass ein gleichmäßig beschleunigter Beobachter
im Minkokwski-Raum den Minkowski-Vakuum-Zustand als ein thermisches Bad wahr-
nimmt. Der Hawking-Effekt hingegen prognostiziert ein thermisches Spektrum der Strah-
lung, welche von schwarzen Löchern aufgrund quantenmechanischer Effekte emittiert
wird. Die Behandlung des Letzteren (in der sphärisch reduzierten Schwarzschild Geome-
trie) stellt sich dabei aufgrund der konformen Invarianz der masselosen Klein-Gordon-
Gleichung in 1+1 Dimensionen als besonders einfach dar. In dieser Arbeit wird Unruhs
Resultat mittels analytischer Fortsetzung der Moden über den Horizont hergeleitet. Im
Weiteren wird gezeigt, dass das Minkowski-Vakuum zwei charakteristische Eigenschaften
von thermischen Zuständen besitzt: Zum einen stellt sich die entsprechende Dichtema-
trix (mittels einer partiellen Spurbildung über unbeobachtbare Freiheitsgrade) als ther-
mische Dichtematrix heraus, d.h. ihre Einträge folgen einer Bose-Einstein Verteilung.
Zum anderen zeigt sich, dass die Zweipunktfunktion des skalaren Feldes in Rindler-
(Schwarzschild-) Koordinaten eine Periodizität in der imaginären Zeit erfüllt, wobei die
Periode der inversen Temperatur entspricht.

Besonderes Augenmerk wird in der Folge auf die Zeitorientierung der entsprechenden
Gleichzeitflächen gelegt. Die Verwendung des Killing-Vektors als Zeitrichtung ergibt
bemerkenswerterweise ein Verschwinden der Unruh-Strahlung (wie auch der Hawking-
Strahlung im Schwarzschild Fall). Dies wirft die Frage nach einer Änderung der Zeito-
rientierung der anderen asymptotischen Region der Schwarzschildgeometrie auf, da es
sich bei diesen um (klassisch) vollständig kausal entkoppelte Bereiche handelt.

Abstract

This diploma thesis treats quantum field theory on non-flat background geometries.
Especially the Unruh and Hawking effects are considered. The essence of the Unruh
effect is that a constantly accelerated observer in Minkowski space will perceive the
ordinary Minkowski vacuum state as being a thermal bath. The Hawking effect predicts
a thermal spectrum of the radiation, which is emitted by a black hole due to quantum
mechanical effects. The analysis of the latter turns out to be particularly easy because of
the conformal invariance of the massless Klein-Gordon field equation in 1+1 dimensions.
In this work Unruh’s finding is rederived using his method of analytic continuation of
the Rindler modes across the horizons. In the following we show that the Minkowski
vacuum state satisfies two characteristic features of a thermal state: firstly, we realize
that the corresponding density matrix (via a partial trace over unobservable degrees of
freedom) is, in fact, a thermal density matrix, i.e. its entries follow a Bose-Einstein
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distribution; and secondly, we observe that the two point function of the scalar field,
written in terms of Rindler- (Schwarzschild-) coordinates, satisfies a certain periodicity
in imaginary time, where the period corresponds to the inverse of the temperature.

In addition, special attention is paid to the time orientation of the corresponding equal
time slicings. Usage of the Killing vector as direction of time yields a remarkable result,
namely the cessation of the Unruh radiation (and also of the Hawking radiation in the
Schwarzschild geometry). This brings up the question of a different time orientation in
the other asymptotic region of the Kruskal spacetime, since these are - in a classical
sense - causally completely decoupled.
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1 Introduction

Ever since Maxwell unified the electric and magnetic forces to the fundamental electro-
magnetic interaction, physicists have tried to do the same with the remaining forces of
nature, and that with remarkable success, culminating in the standard model of particle
physics. All these models are based on the fundament of quantum field theory. The
gravitational interaction, however, could not be incorporated in this unification proce-
dure, since, as it turns out, gravity is perturbatively non-renormalizable. For example, in
quantum electrodynamics, one subtracts infinite constants, i.e. renormalizes the particle
masses, charges and wavefunctions, thereby getting rid of the divergences and producing
finite, experimentally checkable predictions. For gravity, on the contrary, this procedure
does not seem to work. Renormalization of G, a possible cosmological constant Λ and
two coupling constants of geometrical tensors does only suffice to render the resulting
theory finite at the one-loop order (see, e.g. [1]). Renormalization of higher-loop terms
would require the renormalization of further physical quantities, which are simply not
present in the theory.

If one is to incorporate quantum and general relativistic effects in a theory, one has to
deal with three constants of nature: c, the speed of light; G, the gravitational constant
and ~, Planck’s constant. Simple dimensional analysis then shows that there is one
combination of these three constants with the dimension of length, namely the Planck
length,

lp =

√
G~
c3 ' 10−33cm.

This Planck length determines the length scale at which quantum corrections to the
classical theory of general relativity are believed to become important. Thus, one can
take the position that classical general relativity is a very good approximation to na-
ture as long as one considers system whose characteristic length scale is much greater
than lp, very much like classical electrodynamics is a good approximation to quantum
electrodynamics as long as one considers high density photon fluxes.

Nevertheless, also without a full theory of quantum gravity, one expects the possibility
of investigating semi-classical effects. As a first step in the investigation of how gravity
affects field theory, one considers quantum fields on non-trivial backgrounds, e.g. the
Schwarzschild or Kruskal spacetimes. Several interesting results have been found in this
way, and one hopes that, if physicists are ever to find a satisfying theory of quantum
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gravity, these results would be reproduced by some sort of semiclassical limit. Thus, the
procedure shortly described is very much like computing the Stark (or Zeeman) effect in
atomic quantum theory, where the electrical (magnetic) field is treated classically, while
the energy levels and transition rates of the electrons are computed using (ordinary)
quantum mechanics.

Investigations in this setting, where quantum fields propagate in a fixed classical space-
time (M, gab), have already been started in the late 1960s by Parker, Zel’dovich and
co-workers, who looked into particle production by gravitational fields, especially in the
context of cosmology. But probably the most important result was Stephen Hawking’s
[5] contribution (published 1975) that black holes are not, in fact, black, but rather emit
a thermal spectrum of particles.

The road which led to the discovery of Hawking radiation could briefly be described as
follows: In the 1970s, Roger Penrose found a process of energy extraction from rotating
black holes (the Penrose process), sometimes also called superradiant scattering. This
process is interpreted as (classical limit of) stimulated emission of particles from a Kerr
black hole. From this point of view, it was only natural to look for a process corre-
sponding to spontaneous emission, which was also found in the following. But, even
more impact had Stephen Hawking’s result (1975) that spontaneous emission does also
occur in the vicinity of a non-rotating Schwarzschild black hole [5], since until then it
was believed that particle creation by static black holes could occur only during the
(dynamical) period of collapse. This process can heuristically be thought of as arising
from virtual pair creation processes, where the particle can escape to infinity, while the
anti-partner crosses the black hole horizon and is lost. However even more astonishing
was the fact that Hawking predicted a perfect thermal spectrum of the emitted radia-
tion, with its maximum corresponding to a temperature of (M� being the solar mass,
M that of the black hole)

T = ~c3

8πkBGM
' 6× 10−8

(
M�
M

)
K.

This prediction led to a flood of other papers, trying to get more insight into this strange
effect. Surely one of the most important of these was Robert Wald’s paper (1975)
[8], who showed that the density matrix of the outgoing state at infinity is exactly a
thermal density matrix corresponding to the Hawking temperature, implying that the
black hole behaves like a perfect blackbody. Another important paper is due to William
Unruh (1976) [7], which discovered a closely related process, nowadays called the Unruh
effect. While Hawking derived his result for the more realistic model of a collapsing
star, Unruh considered the same process for an eternal black hole, that is in the Kruskal
(the maximally extended Schwarzschild) solution. His observation was then that the
underlying causal and topological structure was closely analogous to the one associated
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with a uniformly accelerated (Rindler) observer in ordinary Minkowski spacetime and
that the notion of particle as arising from quantum field theory is highly ambiguous
(and, as seen in the derivation of the Unruh effect, observer dependent).

The Unruh effect states that when considering ordinary quantum field theory in Minkowski
space, the vacuum state of the quantum field (i.e. no particles are present for an inertial
observer) is perceived by a constantly accelerated (non-inertial) observer as a thermal
state corresponding to a temperature

T = ~a
2πckB

' 4× 10−21
(

a

m/s2

)
K,

where a is the (constant) acceleration of this observer. However, this temperature is
surely too small to be measurable directly (T ≈ 4 × 10−20K for an acceleration corre-
sponding to a = 10m/s2).

The above mentioned results furnished the basis for the proposal of Bekenstein, already
made in 1973, to further pursue another remarkable connection, namely the analogies
between the laws of classical thermodynamics and the three laws of black hole mechan-
ics. The following table (see e.g. [7]) lists the four laws of thermodynamics and their
analogues in black hole mechanics (in units in which G = ~ = c = 1).

Law Thermodynamics Black Holes
zeroth T (the temperature) is constant κ (the surface gravity) is constant

throughout a system over the horizon of
in thermal equilibrium a stationary black hole

first δE = TδS − pδV + ... δM = κ
8π δA+ ΩHδJ + ...

second δS ≥ 0 in any process δA ≥ 0 in any process

third T = 0 cannot be achieved κ = 0 cannot be achieved
by a physical process by a physical process

Already from this table, it seems reasonable that one could associate a temperature to
a black hole T ∝ κ, its surface gravity, as well as an entropy S ∝ A, its horizon area.
A simple path integral argument in the framework of euclidean quantum gravity shows
then [6], in accordance with the above stated results, that

T = κ

2π ,
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and
SBH = A

4 ,

where the subscript BH stands for black hole and/or Bekenstein-Hawking, its discoverers.

Notation and conventions

Our notation for quantum field theory follows closely that of Bjorken & Drell (but with
G = ~ = c = kB = 1), or Birrell & Davies [1], but it differs in the normalization
conventions used (we use a Lorentz invariant normalization of the plane wave modes).

The notations used in tensor analysis will be those of Wald [9], our sign convention for
the metric being (−, +, +, +) (or, since we will mainly work in two dimensions, (−, +)).
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2 Unruh Effect in 2D Minkowski Spacetime

In this section we consider quantum field theory in two-dimensional Minkowski spacetime
(the obvious advantage of working in two dimensions is the conformal invariance of the
massless Klein Gordon equation). The solution of the classical field can be carried out in
two different coordinate systems, resulting in an inequivalent quantization and, by the
principle of equivalence, can be seen as preparation for the analysis of the Schwarzschild
case (but all the “hard” work is done in this chapter). This is the essence of the Unruh
effect: the ordinary Minkowski vacuum state is perceived by a (constantly) accelerated
observer as being a thermal state. We derive this result by analytically continuing the
Rindler modes across the horizons (the “Unruh trick”). Along the lines we present
some general results of quantum field theory in curved spacetime in their special form
pertaining to the case considered. Two different conditions (at first clearly the thermal
spectrum of the produced radiation, secondly the periodicity in imaginary time of Greens
functions) implying the thermal nature of the system are shown to be satisfied. In the
very last part of this section, we choose a different time slicing in the left Rindler wedge
and it is shown that in that case, Unruh radiation comes to a stop.

2.1 Minkowski and Rindler coordinates

The metric of two dimensional Minkowski spacetime is given by

ds2 = −dt2 + dx2 (2.1)
= −dudv,

where we used Minkowski light cone coordinates:

u = t− x
v = t+ x.

Consider now an observer with constant acceleration of magnitude α in the positive
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x−direction. Its trajectory will be given by

xa (τ) =
(
t (τ)
x (τ)

)
=
(

1
α sinh (ατ)
1
α cosh (ατ)

)
, (2.2)

as is seen by calculating the acceleration two-vector via

aa =
( ·
x · ∂

)2
xa

= ∂2

∂τ2x
a

= α

(
sinh (ατ)
cosh (ατ)

)

and by determining its magnitude we find that α is the observers proper acceleration√
abab =

√
α2
[
− sinh2 (ατ) + cosh2 (ατ)

]
= α.

The worldline of this observer therefore obeys the equation

x2 (τ) = t2 (τ) + 1
α2 ⇔ uv = − 1

α2 ,

which is a hyperbola in the x− t plane asymptotic to the lines x = ±t (c.p. fig 2.1).

Now we introduce another set of coordinates more adapted to the accelerated observer,
the so-called Rindler coordinates given by{

t = 1
ae
aξ sinh(aη)

x = 1
ae
aξ cosh(aη),

(2.3)

where the new coordinates ξ and η range over the whole R2, i.e. ξ, η ∈ (−∞, ∞).

Note, however, that these coordinates do not cover Minkowski space, but only the portion
R

R =
{

(t, x) ∈ R2 |x > |t|
}

=
{

(u, v) ∈ R2 |u < 0, v > 0
}
,

which will henceforth be denoted as right Rindler wedge (see also Fig.2.1).
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Figure 2.1: Minkowski spacetime and the Rindler wedges:
The diagonals are the lines u = 0 = v (the Killing horizons); the dashed line
in R is the worldline of a constantly accelerated observer (ξ = const.); the
dotted line is one of η = const.

The path of the constantly accelerated observer (2.2) becomes in these coordinates{
η (τ) = α

a τ

ξ (τ) = 1
a ln

(
a
α

)
,

such that proper time is proportional to η (which will soon be seen to be “boost-time”),
while ξ is constant along such a path and parametrizes the strength of the acceleration,
i.e. α, the proper acceleration.

What we are ultimately interested in is doing quantum field theory, and in order to
guarantee well-posedness of the Cauchy problem (see e.g. [9]), we need to cover also the
left Rindler wedge L. Then we can take any line (of constant η) passing through the
origin as Cauchy hypersurface on which the initial conditions have to be given.
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Therefore, we define Rindler coordinates in L{
t = − 1

ae
aξ sinh(aη)

x = − 1
ae
aξ cosh(aη),

where again −∞ < ξ, η <∞, and thus, as desired, they cover the left Rindler wedge

L =
{
x ∈ R2 |x < |t|

}
=
{

(u, v) ∈ R2 |u > 0, v < 0
}
.

For completeness, we note that we could define Rindler coordinates to cover the future
and past regions F and P , too, where

F =
{
x ∈ R2 |t > |x|

}
=
{

(u, v) ∈ R2 |u > 0, v > 0
}
,

P =
{
x ∈ R2 |t < |x|

}
=
{

(u, v) ∈ R2 |u < 0, v < 0
}
,

but they will not be needed in the following so we can do without them.

The metric (2.1) in Rindler coordinates is then given by (valid in both L and R)

ds2 = e2aξ(−dη2 + dξ2),

from which we can readily identify ∂aη as Killing vector

∂aη = ∂t

∂η
∂at + ∂x

∂η
∂ax

= a (x∂at + t∂ax) ,

and is seen to be the Killing vector of a boost in the x-direction, being timelike in the
regions R and L and spacelike in P and F.

By taking the square root of its norm (in R and L), we obtain the (exponential) redshift
factor

V =
√
−∂2

η =
√
a2 (x2 − t2) =

√
a2 e

2aξ

a2 = eaξ.

Taking the derivative of this redshift factor and calculating its norm, one obtains the
surface gravity

∇aV = a2

V
(xdxa − tdta) ,
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κ :=
√

(∇V )2 =

√(
a2

V

)2
(x2 − t2) = a,

and we see that the magnitude of the acceleration takes the role of the surface gravity1,
thereby emphasizing our analogy with the Schwarzschild case.

2.2 Massless Klein Gordon field in Minkowski coordinates

The classical massless Klein Gordon equation in Minkowski light cone coordinates reads:

�Φ = 0 = ∂u∂vΦ, (2.4)

for which we can choose an orthonormal (with respect to a inner product which will be
defined later on, cf. (2.6)) set of positive frequency modes

fk = Nk exp [ik · x] = Nk exp [i (−ωt+ kx)] , (2.5)

where ω = |k|.

The definition of positive frequency in this case is dictated by the (global) time coordinate
t, i.e. when taking the Lie derivative of the modes with respect to the global timelike
future directed Killing vector field ∂at one finds

L∂tfk = −iωfk.

The denotation of “positive frequency” arises since by the correspondence principle, upon
quantization, the differential operator iL∂t plays the role of “energy” which is then given
by the positive ω = |k|.

As inner product, we integrate the conserved current

ja [Φ,Ψ] = −i (Φ∂aΨ∗ −Ψ∗∂aΦ)
1This is in agreement with the definition of surface gravity given by Wald [9], as can easily be seen by
taking the norm of the following expression

∇aV = ∇a
√
−ξ2 = − 1

2
√
−ξ2
∇aξ2

= − 1√
−ξ2

ξb∇aξb = 1√
−ξ2

ξb∇bξa

= 1√
−ξ2

κξa.
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over a Cauchy hypersurface (which in the two-dimensional case clearly reduces to a line),
and by using Gauss‘ theorem one can show that this procedure is independent of the
surface chosen (ωh is the induced volume element on the hypersurface Σ′ defined by its
normal na)

(Φ,Ψ) = −i
ˆ

Σ′
(Φ∂aΨ∗ −Ψ∗∂aΦ)naωh (2.6)

= −i
ˆ

Σ
(Φ∂aΨ∗ −Ψ∗∂aΦ)naωh − i

ˆ
Σ′−Σ

∂a (Φ∂aΨ∗ −Ψ∗∂aΦ)ωh

= −i
ˆ

Σ
(Φ∂aΨ∗ −Ψ∗∂aΦ)naωh,

where the second integral vanishes because of the field equations

ˆ
Σ′−Σ

∂a (Φ∂aΨ∗ −Ψ∗∂aΦ)ωh =
ˆ

Σ′−Σ

∂aΦ∂aΨ∗ − ∂aΨ∗∂aΦ︸ ︷︷ ︸
=0

+Φ�Ψ∗︸ ︷︷ ︸
=0

−Ψ∗ �Φ︸︷︷︸
=0

ωh.
Normalizing these modes (the Minkowski modes) gives, where for convenience we choose
t = 0 as hypersurface,

(fk, fk′) = −i
ˆ
dx {fk∂tf∗k′ − f∗k′∂tfk}t=0

= −NkN
∗
k′
(
ω′ + ω

)ˆ
dx exp

[
i
(
k − k′

)
x
]

= NkN
∗
k′
(
ω′ + ω

)
(2π) δ

(
k − k′

)
= |Nk|2 (2ω) (2π) δ

(
k − k′

)
= 2ω (2π) δ

(
k − k′

)
,

and thus2

Nk = 1.

2This normalization convention assures the Lorentz invariance of the modes (which are then Lorentz
scalars) as can be seen by considering a Lorentz boost on a momentum 4-vector pa, whose components
then transform as

E → E′ = γ (E + vjpj) ,

pi → p′i = (p⊥)i + γ
[(
p‖
)
i

+ viE
]

= pi −
pjvj
v2 vi + γ

[
pjvj
v2 vi + viE

]
,

and one finds
dp′i
dpj

= δij + (γ − 1) vjviv−2 + γE−1vipj ,
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Returning to the solution of (2.4), we note that the negative energy modes have negative
norm

(f∗k , f∗k′) = − (2ω) (2π) δ
(
k − k′

)
,

while the mixed inner products vanish

(fk, f∗k′) = −i
ˆ
dx {fk∂tfk′ − fk′∂tfk}t=0

= Nk′Nk

(
ω − ω′

)ˆ
dx exp

[
i
(
k + k′

)
x
]

= 0.

Now we perform a split in right and left movers

fk = exp [−iω (t− x)] Θ (k) + exp [−iω (t+ x)] Θ (−k)
= exp [−iωu] Θ (k) + exp [−iωv] Θ (−k) ,

and since in section 2.5we will analytically continue the Rindler modes, we allow u and
v to become complex. Therefore, one realizes that the right-movers

exp [−iωu] = exp [ω (−i<u+ =u)]

are analytic and bounded ∀=u ≤ 0, while the left-movers

exp [−iωv] = exp [ω (−i<v + =v)]

whose determinant (the Jacobian of this transformation) is

| dp
′
i

dpj
| = γ

E
(E + vkpk) = E′

E
.

The Lorentz invariant Dirac delta measure is then defined by the property

ˆ
d4k

(2π)4 2πδ (kaka) θ
(
k0) =

ˆ
d3k

2k0 (2π)3

[
δ
(
k0 − ω

)
+ δ
(
k0 + ω

)]
θ
(
k0)

=
ˆ

d3k

2ω (2π)3 .

The invariant Delta function then reads and transforms as

2ω (2π)3 δ(3)
(−→
k
)
→ 2ω′ (2π)3 δ(3)

(−→
k′
)
,

ensuring ˆ
d3k

2ω (2π)3 2ω (2π)3 δ(3)
(−→
k
)

= 1→
ˆ

d3k′

2ω′ (2π)3 2ω′ (2π)3 δ(3)
(−→
k′
)

= 1.
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are analytic and bounded ∀=v ≤ 0.
Note that a superposition of only positive frequency modes (for simplicity, we consider
only the right-movers) can be written as

f (u) =
ˆ ∞

0
dωf̃ (ω) exp [−iωu] ,

and is easily seen to retain the above mentioned analyticity and boundedness conditions.
What we want to show now is the converse, i.e. any function which is bounded and ana-
lytic in the lower half complex u-plane, does contain only positive frequency components.
An analytic function in the lower half plane satisfies the Cauchy-Riemann equations in
this region, i.e. (with u = u1 + iu2)

∂u1 [<f (u)] = ∂u2 [=f (u)]
∂u2 [<f (u)] = −∂u1 [=f (u)] ; ∀u2 < 0,

and being bounded implies
|f (u)| ≤ C ; ∀u2 < 0,

for some real constant C > 0.
An arbitrary, integrable function can be Fourier(-Laplace) transformed in time (a com-
plex u in this case)

f (u) =
ˆ ∞
−∞

dωf̃ (ω) exp [−iωu1 + ωu2] ,

and the analyticity properties

∂u1 [<f (u)] = ∂u1

[ˆ ∞
−∞

dω
(
<f̃ (ω) cosωu1 + If̃ (ω) sinωu1

)
exp [ωu2]

]

=
[ˆ ∞
−∞

dωω
(
−<f̃ (ω) sinωu1 + If̃ (ω) cosωu1

)
exp [ωu2]

]

∂u2 [=f (u)] =
[ˆ ∞
−∞

dωω
(
−<f̃ (ω) sinωu1 + If̃ (ω) cosωu1

)
exp [ωu2]

]
;

∂u2 [<f (u)] =
[ˆ ∞
−∞

dωω
(
<f̃ (ω) cosωu1 + If̃ (ω) sinωu1

)
exp [ωu2]

]

−∂u1 [=f (u)] = −
[ˆ ∞
−∞

dω
(
−<f̃ (ω) sinωu1 − If̃ (ω) cosωu1

)
exp [ωu2]

]
,

are seen to be fulfilled for all imaginary parts of u.
To show that the boundedness criterion restricts the support of f̃ (ω) to ω > 0 we

12



consider
|f (u)| =

∣∣∣∣∣
ˆ ∞
−∞

dωf̃ (ω) exp [−iωu1 + ωu2]
∣∣∣∣∣ ,

which is seen to have an upper bound by using the triangle-inequality

|f (u)| ≤
ˆ ∞
−∞

dω
∣∣∣f̃ (ω)

∣∣∣ exp [ωu2]

=
ˆ ∞

0
dω
∣∣∣f̃ (ω)

∣∣∣ exp [ωu2] +
ˆ ∞

0
dω
∣∣∣f̃ (−ω)

∣∣∣ exp [−ωu2] ,

whose first integral kernel is easily seen to be exponentially damped for all u2 ≤ 0 and
is therefore bounded, while the second one defines a monotonically increasing function
of −u2 and thus cannot fulfill the desired condition.

Hence, we have to impose
f̃ (ω) = f̃0 (ω) Θ (ω) ,

and therefore established the above claimed result that a function, which is analytic and
bounded in the lower half of the complex time plane, cannot contain negative frequency
components. We will later employ this definition of positive frequency in the derivation
of the Unruh modes.

Now we proceed as in ordinary field theory by expanding the field and its canonical
conjugate in these modes

Φ =
ˆ

dk

(2ω) (2π)
[
akfk + a†kf

∗
k

]
, (2.7)

Π = Φ̇

=
ˆ

dk

(2ω) (2π)
[
akḟk + a†kḟ

∗
k

]
= −i

ˆ
dk

(2ω) (2π)ω
[
akfk − a†kf

∗
k

]
,

where

ak′ = (Φ, fk′) = −i
ˆ
dx {Φ∂tf∗k′ − f∗k′Π}t=0 (2.8)

a†k′ = − (Φ, f∗k′) = i

ˆ
dx {Φ∂tfk′ − fk′Π}t=0

are the expansion coefficients. In order to assure that this is possible, we shall show that

13



this set of Minkowski modes (2.5) is complete, i.e.
ˆ
d2k fk (t, x) f∗k

(
t′, x′

)
=
ˆ
dωdk exp [i (−ωt+ kx)] exp

[
−i
(
−ωt′ + kx′

)]
=
ˆ
dωdk exp

[
−iω

(
t− t′

)]
exp

[
ik
(
x− x′

)]
= δ

(
x− x′

)
δ
(
t− t′

)
.

Quantization is then achieved by imposing the canonical equal time commutation rela-
tions [

Φ (x, t) , Π
(
x′, t

)]
= iδ

(
x− x′

)
,

and the expansion coefficients ak
(
a†k

)
(2.8) are then interpreted as annihilation (cre-

ation) operators for quanta in mode k and obey the commutation relation[
ak, a

†
k′

]
= (2ω) (2π) δ

(
k − k′

)
, (2.9)

which is easily verified by inserting the expressions (2.8)

[
ak, a

†
k′

]
= − [(Φ, fk) , (Φ, f∗k′)]

=
[
i

ˆ
dx {Φ (x) ∂tf∗k (x)− f∗k (x) Π (x)}t=0 , i

ˆ
dx′

{
Φ
(
x′
)
∂t′fk′

(
x′
)
− fk′

(
x′
)

Π
(
x′
)}
t=0

]
= −

ˆ
dxdx′

[
{Φ (x) ∂tf∗k (x)− f∗k (x) Π (x)} ,

{
Φ
(
x′
)
∂t′fk′

(
x′
)
− fk′

(
x′
)

Π
(
x′
)}]

t=0

= −
ˆ
dxdx′

(
−fk′

(
x′
)
∂tf
∗
k (x)

[
Φ (x) , Π

(
x′
)]
− f∗k (x) ∂t′fk′

(
x′
) [

Π (x) , Φ
(
x′
)])

t=0

= −
ˆ
dxdx′iδ

(
x− x′

) (
−fk′

(
x′
)
∂tf
∗
k (x) + f∗k (x) ∂t′fk′

(
x′
))
t=0

= −i
ˆ
dx (fk′ (x) ∂tf∗k (x)− f∗k (x) ∂tfk′ (x))t=0

= (fk′ , fk)
= (2ω) (2π) δ

(
k − k′

)
, (2.10)

while all others turn out to be zero

[ak, ak′ ] = 0 =
[
a†k, a

†
k′

]
.
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2.3 Massless Klein Gordon field in Rindler coordinates

Because of the analogy between the Rindler wedges and the extended Schwarzschild
spacetime mentioned in the introduction, we are now going to find a complete set of
modes in the Rindler coordinate system. By the principle of equivalence we expect this
procedure (the quantization in Rindler coordinates of a constantly accelerating observer)
to model the situation of a stationary observer in Schwarzschild spacetime (which has
to accelerate constantly to remain stationary, i.e. not to fall into the black hole).

The wave equation in Rindler coordinates reads

�Φ = e−2aξ
(
−∂2

η + ∂2
ξ

)
Φ = 0

⇒
(
−∂2

η + ∂2
ξ

)
Φ = 0,

where we used conformal invariance of the 2D Klein Gordon equation3.

Since this has the same functional form as equation (2.4), we also have the same form
for the modes, but with the replacements x → ξ ; t → η. At this point, one has to be
careful because the Rindler coordinates are not defined everywhere. Therefore we have
to write down positive frequency modes for the L and R sectors, separately.

The latter are found to be
gk = exp [−iωη + ikξ] ,

where now positive frequency is defined with respect to the future directed timelike
Killing vector ∂aη , and the above modes are easily seen to satisfy

L∂ηgk = −iωgk.

In the left Rindler wedge the modes are chosen as

gk = exp [iωη + ikξ] ,

3A field equation in n-dimensional spacetime is said to be conformally invariant if there is a number
s ∈ R (the conformal weight of the field Ψ), such that if Ψ is a solution to the equation with gab,
then Ψ̃ = ΩsΨ is a solution to the equation with g̃ab = Ω2gab.

One can then show that (see, e.g. [9]) for n = 2 and s = 0

gab∇a∇bΨ = 0

implies

g̃ab∇̃a∇̃bΨ̃ = 0.

and therefore Ψ = Ψ̃. In our case, Ω = exp [aξ]; ∇a = ∂a = (∂t , ∂x) and ∇̃a = (∂η , ∂ξ).
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Figure 2.2: Compactified Minkowski spacetime and time slicings:
The blue lines are lines of constant Minkowski time t, the red ones correspond
to constant Rindler η. Note that in L, the time slicings have been chosen in a
way (i.e., reversed) to agree with the slicings defined by the inertial observer.
For the compactification procedure carried out to obtain this graph, see
section 3.1.

where now the Lie derivative is taken along the reversed Killing vector, i.e.
(
−∂aη

)
,

because, assuming a global time orientation, the vector field ∂aη is past directed in L (see
figs. 2.1 and 2.2)

L−∂ηgk = −iωgk.

Since, strictly speaking, the coordinates η and ξ are not the same in the two Rindler
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wedges, we restrict the support of the modes to their domain of definition by defining

g
(1)
k =

{
exp [−iωη + ikξ] in R
0 in L

,

and

g
(2)
k =

{
exp [iωη + ikξ] in L
0 in R

.

By this construction, the modes g(1)
k and g(2)

k (from now on called the Rindler modes)
form a complete orthonormal set in R and L, respectively

(
g

(i)
k , g

(j)
k′

)
=
{

(2π) (2ω) δ (k − k′) ; i = j

0 ; i 6= j
i, j = 1, 2.

Now one could, as before, expand the field operator in these modes, yielding

Φ =
∑
i=1,2

ˆ
dk

(2π) (2ω)
[
b
(i)
k g

(i)
k + b

(i)†
k g

(i)∗
k

]
,

and completeness of the modes is easily seen to be fulfilled
ˆ
d2kΘ (−u) Θ (v) g(1)

k (η, ξ) g(1)∗
k

(
η′, ξ′

)
+
ˆ
d2kΘ (u) Θ (−v) g(2)

k (η, ξ) g(2)∗
k

(
η′, ξ′

)
=
ˆ
d2kΘ (−u) Θ (v) exp [−iωη + ikξ] exp

[
iωη′ − ikξ′

]
+
ˆ
d2kΘ (−v) Θ (u) exp [iωη + ikξ] exp

[
−iωη′ − ikξ′

]
=
ˆ
d2kΘ (−u) Θ (v) exp

[
−iωη + iωη′

]
exp

[
−ikξ′ + ikξ

]
+
ˆ
d2kΘ (−v) Θ (u) exp

[
−iωη′ + iωη

]
exp

[
−ikξ′ + ikξ

]
= Θ (−u) Θ (v) δ

(
ξ − ξ′

)
δ
(
η − η′

)
+Θ (−v) Θ (u) δ

(
ξ − ξ′

)
δ
(
η − η′

)
= δ

(
ξ − ξ′

)
δ
(
η − η′

)
,

as long as we consider only (ξ, η) and (ξ′, η′) ∈ L ∪R.
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2.4 The Bogolubov transformation and two different vacua

From the sections 2.2 and 2.3 we know that we can expand the field operator Φ in two
different sets of modes

Φ =
ˆ

dk

(2ω) (2π)
[
akfk + a†kf

∗
k

]
=

∑
i=1,2

ˆ
dk

(2π) (2ω)
[
b
(i)
k g

(i)
k + b

(i)†
k g

(i)∗
k

]
.

Since both sets of modes are complete, they can be expanded in terms of each other

fk =
∑
i=1,2

ˆ
dk′

(2π) (2ω′)
[
α

(i)
k,k′g

(i)
k′ + β

(i)
k,k′g

(i)∗
k′

]
, (2.11)

with the expansion coefficients

α
(i)
k,k′ =

(
fk , g

(i)
k′

)
,

β
(i)
k,k′ = −

(
fk , g

(i)∗
k′

)
, (2.12)

and viceversa
g

(i)
k =

ˆ
dk′

(2π) (2ω′)
[
α

(i)∗
k′,kfk′ − β

(i)
k′,kf

∗
k′

]
. (2.13)

The expansion coefficients α(i)
k,k′ and β

(i)
k,k′ are called the Bogolubov coefficients and satisfy

their own normalization conditions, as can be seen by inserting (2.13) in (2.11):

fk =
∑
i=1,2

ˆ
dk′

(2π) (2ω′)
[
α

(i)
k,k′g

(i)
k′ + β

(i)
k,k′g

(i)∗
k′

]

=
∑
i=1,2

ˆ
dk′

(2π) (2ω′)

ˆ
dk′′

(2π) (2ω′′)

 α
(i)
k,k′

(
α

(i)∗
k′′,k′fk′′ − β

(i)
k′′,k′f

∗
k′′

)
+β(i)

k,k′

(
α

(i)
k′′,k′f

∗
k′′ − β

(i)∗
k′′,k′fk′′

) 
=
ˆ

dk′′

(2π) (2ω′′)
∑
i=1,2

ˆ
dk′

(2π) (2ω′)

 (
α

(i)
k,k′α

(i)∗
k′′,k′ − β

(i)
k,k′β

(i)∗
k′′,k′

)
fk′′

+
(
α

(i)
k′′,k′β

(i)
k,k′ − α

(i)
k,k′β

(i)
k′′,k′

)
f∗k′′

 ,
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and therefore∑
i=1,2

ˆ
dk′

(2π) (2ω′)
[
α

(i)
k′′,k′β

(i)
k,k′ − α

(i)
k,k′β

(i)
k′′,k′

]
= 0,

∑
i=1,2

ˆ
dk′

(2π) (2ω′)
[
α

(i)
k,k′α

(i)∗
k′′,k′ − β

(i)
k,k′β

(i)∗
k′′,k′

]
= 2π2ωδ

(
k − k′′

)
.

They also describe the relations between the annihilation and creation operators associ-
ated with the two sets of modes

ak′ = (Φ, fk′)

=
∑
i=1,2

ˆ
dk

(2π) (2ω)
[
b
(i)
k α

(i)∗
k′,k − b

(i)†
k β

(i)
k′,k

]
, (2.14)

and its inverse

b
(j)
k′ =

(
Φ, g(j)

k′

)
=
ˆ

dk

(2ω) (2π)
[
akα

(j)
k,k′ + a†kβ

(j)∗
k,k′

]
. (2.15)

Trough the expansion of the field operator in these two sets of modes, we have implicitly
defined two types of vacuum, namely the Minkowski vacuum, which is annihilated by all
the ak’s

ak |0M 〉 = 0 ∀ k ∈ R,

and the Rindler vacuum, which is annihilated by all the bk

b
(i)
k |0R〉 = 0 ∀ k ∈ R, i = 1, 2.

Since there are two types of annihilation operators, along with them we have two (strictly
speaking there are three) types of number operators, counting quanta in the mode k, i.e.
the ordinary Minkowski number operator

NkM = a†kak,

and the Rindler number operators

N
(i)
kR = b

(i)†
k b

(i)
k ,

which count the number of quanta in the i = R,L sections.
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Clearly we have
〈0M |NkM | 0M 〉 = 0 =

〈
0R
∣∣∣N (i)

kR

∣∣∣ 0R〉 ,
but one can also consider the expectation value of the Rindler number operators in the
Minkowski vacuum4

〈
b
(i)†
k b

(i)
k

〉
M

=
ˆ

dk′

(2ω′) (2π)

ˆ
dk′′

(2ω′′) (2π)
〈[
a†k′′α

(i)∗
k′′,k + ak′′β

(i)
k′′,k

] [
ak′α

(i)
k′,k + a†k′β

(i)∗
k′,k

]〉
M

=
ˆ

dk′

(2ω′) (2π)

ˆ
dk′′

(2ω′′) (2π)β
(i)
k′′,kβ

(i)∗
k′,k

〈[
ak′′ , a

†
k′

]〉
M

=
ˆ

dk′

(2ω′) (2π)

ˆ
dk′′

(2ω′′) (2π)β
(i)
k′′,kβ

(i)∗
k′,k

〈(
2ω′
)

(2π) δ
(
k′ − k′′

)〉
M (2.16)

=
ˆ

dk′

(2ω′) (2π) |β
(i)
k′,k|

2,

and we deduce that, as long as β(i)
k′,k 6= 0, Minkowski vacuum does not appear to be

empty to an accelerated observer.

One could now use the inner product (2.12) of the Minkowski and Rindler modes to
calculate this last expression by brute force, but we are going to do this in the next
section by a more elegant method due to Unruh [7].

4A careful analysis shows that this integral does not converge in this form because of the distributional
nature of the ladder operators. Therefore one would have to regularize this expression by some
point splitting procedure as limq→k

〈
b

(i)†
k b

(i)
q

〉
M

or by introducing smeared creation and annihilation
operators as follows

bf =
ˆ

dk√
2π2ω

f (k) bk,

b†f =
ˆ

dk√
2π2ω

f∗ (k) b†k,

which renders the commutation relations[
bf , b

†
f

]
=
ˆ

dk√
2π2ω

dk′√
2π2ω′

f (k) f∗
(
k′
) [
bk , b

†
k′

]
=
ˆ

dk√
2π2ω

dk′√
2π2ω′

f (k) f∗
(
k′
)

2π2ωδ
(
k − k′

)
=
ˆ
dk
∣∣f (k)2∣∣ = 1

for normalized shape functions f (k) .
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2.5 Unruh’s method of analytic continuation of the Rindler
modes

Unruh’s insight consists essentially in analytically continuing the Rindler modes from
region R to L, thereby finding a globally (at least in the Rindler wedges) valid expression
for the Rindler modes in Minkowski coordinates. This procedure is carried out in a
way that guarantees analyticity and boundedness in the lower half complex u−plane,
resulting in the Unruh modes, which are then (by construction), as shown in paragraph
2.3, superpositions of purely positive frequency Minkowski modes. But this implies that
the Unruh and Minkowski modes define the same vacuum state (though excited states
may differ) and the Bogolubov coefficients may be read off the resulting expression.

We start with writing out the Rindler modes in Minkowski light cone coordinates

g
(1)
k = exp [−iωη + ikξ]

=
[
e−a(η−ξ)

] iω
a Θ (k) +

[
ea(η+ξ)

]− iω
a Θ (−k) (2.17)

= [−au]
iω
a Θ (k) + [av]−

iω
a Θ (−k)

= exp
[
iω

a
ln (−au)

]
Θ (k) + exp

[
− iω
a

ln (av)
]

Θ (−k) ,

where, since in R we have u < 0, v > 0, the logarithm is well defined as a real function
of a positive, nonzero (the origin u = 0 = v is not covered by the hyperbolic Rindler
coordinates) argument. However, if we let u, v ∈ C, we can consider the logarithm
as complex function of a complex variable, thereby extending its domain to the entire
complex plane with the origin removed. Now we recall from complex analysis that the
logarithm function (as well as the power function) on complex domains is a multivalued
function and therefore we have to restrict our calculations to one Riemann sheet and
stay on this sheet troughout the rest of the computations.

Since we want our resulting mode to be analytic in the lower half complex u−plane,
we choose the branch cut along the positive imaginary axis (connecting the two branch
points at zero and infinity), thereby restricting the range of the the function arg z to
(c.p. fig. 2.3)

ln z = ln |z|+ i arg z,

arg z ∈
(
−3π

2 ,
π

2

)
.

The procedure is now as follows: We start with ln (−au) in R, where u < 0 and try
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Figure 2.3: The complex u− (and v−) plane:
Shown is the branch cut connecting the pole (0, 0) with complex infinity
(0, i∞) and the path along which the modes are analytically continued,
avoiding the origin and thereby picking up an imaginary part. Note that
because of the branch cut, φ ∈

(
−3π

2 ,
π
2

)
.

a) shows the continuation of ln (−u) to positive (real) values of u as well as
ln v to negative (real) values of v, used in the extension of g(1)

k from R to L
b) shows the continuation of ln (u) to negative (real) values of u as well as
ln (−v) to positive (real) values of v, used in the extension of g(2)

k from L to
R

to relate it to the function ln au, which is well defined for u > 0. This is achieved by
following the path shown in fig.2.3, avoiding the branch cut connecting the origin with
positive complex infinity +i∞, thereby picking up a phase of −iπ. This results in

ln (−u) |u>0 = ln u+ iπ,

and therefore

[−au]
iω
a |u>0 = exp

[
iω

a
ln (−au)

]
|u>0

= exp
[
iω

a
ln (au)

]
exp

[
−πω
a

]
= (au)

iω
a exp

[
−πω
a

]
.
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The same procedure is carried out for the left- moving part of the Rindler mode

ln (v) |v<0 = ln (−v)− iπ;

[av]−
iω
a |v<0 = exp

[
− iω
a

ln (av)
]
|v<0

= exp
[
− iω
a

ln (−av)
]

exp
[
−πω
a

]
= (−av)−

iω
a exp

[
−πω
a

]
,

and thus we have found the analytic continuation of g(1)
k to L (note, however, that the

support of the modes g(1)
k and g(2)

k remains restricted to R, respectively L)

g
(1)
k |u>0 ; v<0 → exp

[
−πω
a

] {
[au]

iω
a Θ (k) + [−av]−

iω
a Θ (−k)

}
. (2.18)

Now we write the second Rindler mode g(2)
k in Minkowski coordinates

g
(2)
k = exp [iωη + ikξ]

=
[
ea(η+ξ)

] iω
a Θ (k) +

[
e−a(η−ξ)

]− iω
a Θ (−k)

= [−av]
iω
a Θ (k) + [au]−

iω
a Θ (−k) ,

which does not match the above expression for g(1)
k . However, as Unruh found, its

complex conjugate with the wave vector reversed does, i.e.

g
(2)∗
−k = exp [−iωη + ikξ]

=
[
e−a(η−ξ)

] iω
a Θ (k) +

[
ea(η+ξ)

]− iω
a Θ (−k)

= [au]
iω
a Θ (k) + [−av]−

iω
a Θ (−k) ,

does indeed, apart from the exp
[
−πω

a

]
factor, coincide with (2.18). Therefore, we can

write
g

(1)
k |u>0 ; v<0 → exp

[
−πω
a

]
g

(2)∗
−k

and consider exp
[
−πω

a

]
g

(2)∗
−k as analytic extension of g(1)

k to the left Rindler wedge.

As a consistency check, we we try to apply the same procedure in the opposite direction,
that is, whether e−

πω
a g

(2)∗
−k , analytically continued to negative values of u, is proportional
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to g(1)
k and we conclude that the answer is in the affirmative

e−
πω
a g

(2)∗
−k = e−

πω
a

[
[au]

iω
a Θ (k) + [−av]−

iω
a Θ (−k)

]
= e−

πω
a

[
exp

[
iω

a
ln (au)

]
Θ (k) + exp

[
− iω
a

ln (−av)
]

Θ (−k)
]

= e−
πω
a

[
exp

[
iω

a
(ln (−au)− iπ)

]
Θ (k) + exp

[
− iω
a

(ln (av) + iπ)
]

Θ (−k)
]

= exp
[
iω

a
ln (−au)

]
Θ (k) + exp

[
− iω
a

ln (av)
]

Θ (−k)

= (−au)
iω
a Θ (k) + (av)−

iω
a Θ (−k) .

We further note that the same construction can be carried out for the Rindler mode g(2)
k ,

which reads in Minkowski coordinates

g
(2)
k = exp [iωη + ikξ]

=
[
ea(η+ξ)

] iω
a Θ (k) +

[
e−a(η−ξ)

]− iω
a Θ (−k)

= [−av]
iω
a Θ (k) + [au]−

iω
a Θ (−k)

= exp
[
iω

a
ln (−av)

]
Θ (k) + exp

[
− iω
a

ln (au)
]

Θ (−k) ,

where the logarithms are again well defined for arguments in L =
{
u, v ∈ C2|u > 0; v < 0

}
.

Following the same reasoning as above, we find that the analytic continuation of the log-
arithmic functions (and along with them, the continuation of the Rindler modes) to
R :

ln (−v) |v>0 = ln v + iπ,

[−av]
iω
a |v>0 = exp

[
−πω
a

]
exp

[
iω

a
ln (av)

]
,

[au]−
iω
a |u<0 = exp

[
−πω
a

]
exp

[
− iω
a

ln (−au)
]
,

g
(2)
k → exp

[
−πω
a

] {
[av]

iω
a Θ (k) + [−au]−

iω
a Θ (−k)

}
= exp

[
−πω
a

]
g

(1)∗
−k ,

does agree with the complex conjugate of the first Rindler mode with the wave vector
reversed.
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Thus, we have found that the combinations

h
(1)
k = N

(1)
k

[
g

(1)
k + e−

πω
a g

(2)∗
−k

]
,

h
(2)
k = Ñ

(2)
k

[
e−

πω
a g

(1)∗
−k + g

(2)
k

]
= N

(2)
k

[
g

(1)∗
−k + e

πω
a g

(2)
k

]
,

which from now on will be called the Unruh modes, are valid for all values of the coordi-
nates in L and R. The factors N (i)

k are to be determined trough normalization and one
finds (

h
(1)
k , h

(1)
k′

)
= N

(1)
k N

(1)
k′

([
g

(1)
k + e−

πω
a g

(2)∗
−k

]
,

[
g

(1)
k′ + e−

πω′
a g

(2)∗
−k′

])
= N

(1)
k N

(1)
k′ (2ω) (2π) δ

(
k − k′

) [
1− e−π

ω+ω′
a

]
=

(
N

(1)
k

)2
(2ω) (2π) δ

(
k − k′

) [
1− e−2π ω

a

]
N

(1)
k = 1√

1− e−2π ω
a

,

(
h

(2)
k , h

(2)
k′

)
= N

(2)
k N

(2)
k′

([
g

(1)∗
−k + e

πω
a g

(2)
k

]
,

[
g

(1)∗
−k′ + e

πω′
a g

(2)
k′

])
= N

(2)
k N

(2)
k′ (2ω) (2π) δ

(
k − k′

) [
−1 + eπ

ω+ω′
a

]
=

(
N

(2)
k

)2
(2ω) (2π) δ

(
k − k′

) [
−1 + e2π ω

a

]
N

(2)
k = 1√

−1 + e2π ω
a

.

Eventually, we can now write down the expressions for the Normalized Unruh Modes
(cp. fig. 2.5, to be compared with fig. 2.4)

h
(1)
k = 1√

2 sinh πω
a

[
e
πω
2a g

(1)
k + e−

πω
2a g

(2)∗
−k

]

h
(2)
k = 1√

2 sinh πω
a

[
e−

πω
2a g

(1)∗
−k + e

πω
2a g

(2)
k

]
, (2.19)

which are - by construction - analytic in the lower half complex u and v planes.

It remains to show that these modes are also bounded in these half plane, and therefore
are superpositions of only positive frequency Minkowski modes as we have shown in
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section 2.2. For brevity, we check this boundedness criterion only for the right-moving
(the u−dependent) part of h(1)

k , which reads

h
(1)
k Θ (k) = 2Θ (k)√

1− e−2π ω
a

[−au]
iω
a

= 2Θ (k)√
1− e−2π ω

a

exp
[
iω

a
ln (−au)

]
= 2Θ (k)√

1− e−2π ω
a

exp
[
iω

a
{ln (−a) + ln (u)}

]
= 2Θ (k)√

1− e−2π ω
a

exp
[
πω

a
+ iω

a
ln a

]
exp

[
−ω
a

arg u+ iω

a
ln (|u|)

]
,

its absolute value being

∣∣∣h(1)
k Θ (k)

∣∣∣ = 2Θ (k)√
1− e−2π ω

a

exp
[
πω

a

]
exp

−ω
a

arg u︸ ︷︷ ︸
∈(−π,0)



= 2Θ (k)

√√√√ exp
[

2πω
a

]
1− e−2π ω

a

exp
(
−ω
a
φ

)
,

which is clearly bounded from above for all u in the lower half complex plane (where
−π < φ < 0).

For the second Unruh mode we find an exactly analogous result

h
(2)
k Θ (k) = 2√

−1 + e2π ω
a

[av]
iω
a Θ (k)

= 2√
−1 + e2π ω

a

exp
[
iω

a
{ln a+ ln |v|} − ω

a
arg v

]
Θ (k)

∣∣∣h(2)
k Θ (k)

∣∣∣ = 2√
−1 + e2π ω

a

exp

−ω
a

arg v︸ ︷︷ ︸
∈(−π,0)

Θ (k) ,

and hence we can conclude that the above defined Unruh modes do indeed define the
same vacuum as the Minkowski modes.

As with any complete set of modes, we can expand the field operator, yielding

Φ =
∑
i=1,2

ˆ
dk

(2ω) (2π)
[
c

(i)
k h

(i)
k + c

(i)†
k h

(i)∗
k

]
,
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where now the c(i)
k , because of the analyticity and boundedness properties of the Unruh

modes, annihilate the Minkowski vacuum

c
(i)
k |0M 〉 = 0 ∀ k ∈ R, i = 1, 2.

Since the Unruh modes define the same vacuum as the Minkowski modes, the modes
(2.19) replace the fk’s in (2.13), which reads in this case

h
(i)
k =

∑
j=1,2

ˆ
dk′

(2π) (2ω′)
[
α

(i)(j)∗
k′,k g

(j)
k′ − β

(i)(j)
k′,k g

(j)∗
k′

]
,

and by comparing this with (2.19), we find for the Bogolubov coefficients

α
(1)(1)
k′,k = (2π) (2ω) δ

(
k − k′

) e
πω
2a√

2 sinh πω
a

= α
(2)(2)
k′,k

α
(1)(2)
k′,k = 0 = α

(2)(1)
k′,k ,

as well as

β
(1)(1)
k′,k = 0 = β

(2)(2)
k′,k

β
(1)(2)
k′,k = − e−

πω
2a√

2 sinh πω
a

δ
(
k + k′

)
= β

(2)(1)
k′,k .

As mentioned in a footnote in the previous section, since the corresponding modes are
not normalizable, i.e. they are generalized eigenfunctions, we cannot simply insert these
expressions for the Bogolubov coefficients in (2.16) and evaluate that integral. Therefore
we will calculate directly the matrix element

〈
b
(i)†
k b

(i)
k′

〉
M
.

To do so, we need to know the relation between the two sets of annihilation and creation
operators. Luckily, we already have done all the work in section 2.4 (in the relations
(2.14) and (2.15)) and by comparing this with equation (2.19) , we may readily write
down the relations connecting the two sets of annihilation and creation operators

b
(1)
k = 1√

2 sinh
(
πω
a

) [c(1)
k e

πω
2a + c

(2)†
−k e

−πω2a
]

b
(2)
k = 1√

2 sinh
(
πω
a

) [c(2)
k e

πω
2a + c

(1)†
−k e

−πω2a
]
. (2.20)

Now we can complete this section by calculating the expectation value of Rindler number
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operator when the field state is Minkowski vacuum, giving〈
b
(1)†
k b

(1)
k′

〉
M

= 1√
2 sinh

(
πω
a

)√
2 sinh

(
πω′

a

) 〈[c(1)†
k e

πω
2a + c

(2)
−ke
−πω2a

] [
c

(1)
k′ e

πω
2a + c

(2)†
−k′ e

−πω2a
]〉
M

= e−
πω
a√

2 sinh
(
πω
a

)√
2 sinh

(
πω′

a

) 〈0M
∣∣∣ c(2)
−kc

(2)†
−k′

∣∣∣ 0M〉

= δ (k − k′)
e

2πω
a − 1

〈0M | 0M 〉

= δ (k − k′)
e

2πω
a − 1

,

corresponding to a Bose Einstein distribution at temperature

T = a

2π , (2.21)

which is Unruh‘s famous result stating that the Minkowski vacuum behaves like a thermal
state for accelerating observers.

This temperature (2.21) is the temperature that would be measured by an observer with
ξ = 0. To determine the temperature perceived by an arbitrary ξ = const. observer, one
can make use of the so-called Tolman relation (taking into account the conformal factor,
see e.g. [1]), which in this case reads

T (ξ) = (−g00)−1/2 T

= e−aξ
a

2π , (2.22)

and goes to zero as ξ tends to infinity. This result is also what one would expect, since
at ξ =∞ the observer becomes less accelerated with respect to the inertial (Minkowski)
observer, and therefore defines the same vacuum as a Minkowski observer. Note that
this result could also have been obtained by making use of the redshift factor determined
in section 2.1, i.e. radiation emitted at ξ1 with frequency ω1 and observed at ξ2 will be
perceived as having a frequency

ω2 = V1
V2
ω1 = ea(ξ1−ξ2)ω1,

and since an observer at ξ1 = 0 measures the temperature (2.21) we recover the above
result.

Note that this temperature (2.22) diverges as ξ → −∞, which is quite reasonable since
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an observer, coming closer and closer to the horizons, will have to accelerate more and
more to keep his motion stationary.

2.6 Minkowski vacuum as a thermal state

2.6.1 Minkowski vacuum as multi-particle Rindler state

Motivated by the above results, we show in this section that the Minkowski vacuum can
be written as a multi-particle Rindler state. This can be seen as follows, starting with
an Ansatz

|0M 〉 =
∏
k

∞∑
nk,mk=0

Cnk,mk |n
(2)
k 〉 |m

(1)
k 〉 , (2.23)

where

|n(2)
k 〉 |m

(1)
k 〉 =

(
b
(2)†
−k

)nk (
b
(1)†
k

)mk
√
nk!mk!

|0R〉 ,

is a Rindler state containing n(2)
k

(
m

(1)
k

)
quanta in mode k in the left (right) Rindler

wedge.

Next, we show that quanta in the left and right region are always produced in pairs, i.e.[
b
(1)†
k b

(1)
k − b

(2)†
−k b

(2)
−k

]
|0M 〉 = 0.

The proof is straightforward by inserting the expressions (2.20)

b
(1)†
k b

(1)
k |0M 〉 = e−

πω
2a√

2 sinh
(
πω
a

)b(1)†
k c

(2)†
−k |0M 〉

= e−
πω
2a√

2 sinh
(
πω
a

) ([b(1)†
k , c

(2)†
−k

]
+ c

(2)†
−k b

(1)†
k

)
|0M 〉

= e−
πω
2a√

2 sinh
(
πω
a

)
 e−

πω
2a√

2 sinh
(
πω
a

) + e
πω
2a√

2 sinh
(
πω
a

)c(2)†
−k c

(1)†
k

 |0M 〉 ,
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b
(2)†
−k b

(2)
−k |0M 〉 = e−

πω
2a√

2 sinh
(
πω
a

) ([b(2)†
−k , c

(1)†
k

]
+ c

(1)†
k b

(2)†
−k

)
|0M 〉

= e−
πω
2a√

2 sinh
(
πω
a

)
 e−

πω
2a√

2 sinh
(
πω
a

) + e
πω
2a√

2 sinh
(
πω
a

)c(2)†
−k c

(1)†
k

 |0M 〉 ,
and therefore we find[

b
(1)†
k b

(1)
k − b

(2)†
−k b

(2)
−k

]
|0M 〉 =

∏
k

∞∑
nk,mk=0

Cnk,mk [mk − nk] |n
(2)
k 〉 |m

(1)
k 〉 = 0,

mk = nk ∀k.

This implies that the expansion matrix C is diagonal,

Cnk,mk = δnk,mkKnk ,

and thus,

|0M 〉 =
∏
k

∞∑
nk=0

Knk |n
(2)
k 〉 |n

(1)
k 〉 .

By plugging this into the equation defining the Minkowski vacuum one gets

0 = c
(1)
k |0M 〉

∝
[
b
(1)
k − e

−πω
a b

(2)†
−k

]
|0M 〉 ,

0 =
∏
q

∞∑
nq=0

Knq

[
b
(1)
k − e

−πω
a b

(2)†
−k

]
|n(2)
q 〉 |n(1)

q 〉

=
∏
q

∞∑
nq=0

Knq

[√
nqδnq ,nk |n

(2)
q 〉 |n(1)

q − 1〉 − e−
πω
a b

(2)†
−k

√
nq + 1δnq ,nk |n

(2)
q + 1〉 |n(1)

q 〉
]

=
∏
k

∞∑
nk=0

Knk

[√
nk |n

(2)
k 〉 |n

(1)
k − 1〉 − e−

πω
a
√
nk + 1 |n(2)

k + 1〉 |n(1)
k 〉
]
.

Projecting this equation with 〈0(1)
k | yields

0 =
∏
k

∞∑
nk=0

[
Knk+1

√
nk + 1 |n(2)

k + 1〉 |n(1)
k 〉 − e

−πω
a Knk

√
nk + 1 |n(2)

k + 1〉 |n(1)
k 〉
]

=
[
K1 − e−

πω
a K0

]
|1(2)
k 〉 ,
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and with 〈m(1)
k | we find, (where m = 1, 2, 3, . . .)

0 =
∏
k

∞∑
nk=0

[
Knk

√
nk |n

(2)
k 〉 δm,nk−1 − e−

πω
a Knk

√
nk + 1 |n(2)

k + 1〉 δm,nk
]

=
[
Km+1 − e−

πω
a Km

]√
m+ 1 |m(2)〉 .

Hence,

Km+1 = e−
πω
a Km

K1 = e−
πω
a K0

Km = e−
mπω
a K0,

and expression (2.23) becomes

|0M 〉 =
∏
k

∞∑
nk=0

e−nk
πω
a K0k |n

(2)
k 〉 |n

(1)
k 〉 .

The factor K0 is again trough the normalization condition

1 = 〈0M | 0M 〉

=
∏
k,q

∞∑
nk,nq=0

e−nq
π|q|
a e−nk

πω
a K0kK

∗
0q

〈
n(1)
q

∣∣∣n(1)
k

〉〈
n(2)
q

∣∣∣n(2)
k

〉

=
∏
k

|K0k |
2
∞∑

nk=0
e−2nk πωa

=
∏
k

|K0k |
2 1
1− e−2πω

a

,

K0k =
√

1− e−2πω
a .

Eventually, we have found the desired expression for the Minkowski vacuum state in
terms of Rindler states:

|0M 〉 =
∏
k

√
1− e−2πω

a

∞∑
nk=0

e−nk
πω
a |n(2)

k 〉 |n
(1)
k 〉 ,

which will furnish the interpretation of the Minkowski vacuum in terms of a partial trace,
as will be discussed in the following section.
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2.6.2 The Minkowski vacuum density matrix

Since the two Rindler wedges are causally totally disconnected, that is an observer in R
can never gather any information about processes and measurements in L, we are led
to construct a density matrix, reflecting the fact that no complete information can be
obtained by an observer in R.

The Minkowski vacuum is a pure state, therefore its density matrix is given by the dyadic
product

% = |0M 〉 〈0M |

=
∏
k,q

√
1− e−2πω

a

√
1− e−2π|q|

a

∞∑
nk,nq=0

e−nk
πω
a e−nq

π|q|
a |n(2)

k 〉 |n
(1)
k 〉 〈n

(2)
q | 〈n(1)

q | .

If an observer is restricted to region R, no information about |n(2)
k 〉 can be gained, so we

trace out these degrees of freedom

ρR =
∞∑
nl=0
〈n(2)
l |0M 〉 〈0M |n

(2)
l 〉

=
∏
k,q

√
1− e−2πω

a

√
1− e−2π|q|

a

∞∑
nk,nq ,nl=0

e−nk
πω
a e−nq

π|q|
a 〈n(2)

l |n
(2)
k 〉 |n

(1)
k 〉 〈n

(1)
q | 〈n(2)

q |n
(2)
l 〉

=
∏
k,q

√
1− e−2πω

a

√
1− e−2π|q|

a

∞∑
nk,nq ,nl=0

e−nk
πω
a e−nq

π|q|
a δnl,nkδnl,nq |n

(1)
k 〉 〈n

(1)
q |

=
∏
k

(
1− e−2πω

a

) ∞∑
nk=0

e−2nk πωa |n(1)
k 〉 〈n

(1)
k | .

By introducing some terminology

Enk = nkω

β = 2π
a
,
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we can make clearer the thermal nature of this density matrix

ρR =
∏
k

(
1− e−2πω

a

) ∞∑
nk=0

e−2nk πωa |n(1)
k 〉 〈n

(1)
k |

=
∏
k

( ∞∑
m=0

e−Emβ
)−1 ∞∑

nk=0
e−Enkβ |n(1)

k 〉 〈n
(1)
k |

=
∏
k

∞∑
nk=0

e−Enkβ∑∞
m=0 e

−Emβ |n
(1)
k 〉 〈n

(1)
k | .

2.7 Green functions and the KMS condition

2.7.1 The KMS condition

The probability for an arbitrary system in thermal equilibrium at temperature T = β−1,
governed by a Hamiltonian H, to be in a state |ψi〉 with eigenvalue Ei is (we neglect the
chemical potential) exactly the Boltzmann distribution

ρi = Z−1 exp [−βEi] ,
1 =

∑
i

ρi,

and expectation values of operators A are determined via

〈A〉β =
∑
i

ρi 〈ψi |A |ψi〉 .

By introducing the density matrix operator

ρ = Z−1 exp [−βH] ,

where Z = tr exp (−βH) and one sees that

ρi = 〈ψi | ρ |ψi〉 ,

tr (ρ) ≡
∑
i

〈ψi | ρ |ψi〉 = 1,

ensures normalization and the expectation values are calculated via

〈A〉β = tr (ρA) .
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A thermal density operator has two defining properties: first, it is clearly stationary
since

[ρ, H] = 0,

and secondly expectation values in the state ρ possess certain symmetries under time
translations in the complex t−plane, called the KMS condition (named after Kubo,
Martin, Schwinger).

To pursue the second property, we recall the Heisenberg equation of motion

A (t) = e−itHA (0) eitH ,

and consider the following expectation value of two Heisenberg operators A (t) and B (t)

〈A (t)B (t)〉β = 1
Z
tr
[
e−βHA (t)B (t)

]
= 1

Z
tr
[
e−βHA (t) eβHe−βHB (t)

]
= 1

Z
tr
[
A (t− iβ) e−βHB (t)

]
= 1

Z
tr
[
B (t)A (t− iβ) e−βH

]
and therefore

〈A (t)B (t)〉β = 〈B (t)A (t− iβ)〉β (2.24)

where we repeatedly used the invariance of the trace under cyclic permutations of its
arguments. This periodicity with a twist (i.e. the reversed order in which the operators
appear) is exactly the KMS condition. Note that the above derivation may not make
sense if one of the operators A or B are unbounded. Nevertheless, the condition (2.24)
can also be seen as definition of thermal equilibrium at temperature T = β−1 and does
also apply in cases where Z diverges (which is the case for our considerations in spatially
infinite systems [3]).

2.7.2 The (thermal) Green function for the massless scalar field

To compare this general result with our results, we will calculate Green functions (to be
accurate, we will consider Hadamard’s elementary function) for the massless scalar field,
which can be written as expectation values of products of field operators (see e.g. in [1]).
Note that, strictly speaking, the Green function for the massless field in two dimensional
Minkowski spacetime does not exist due to a non-integrable singularity at the origin in
(2.26). However, one may choose a “liberal” point of view toward this problem, adopted
also in [3], where the authors write:
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Liberal: A quantum field theory exists [for the massless Klein Gordon field
in two-dimensional Minkowski spacetime], in a genuine Hilbert space, but
the field operators are not defined on all test functions.

and, regarding the existence of the (Wightman) two-point function:

(1) No two-point function exists for such a theory. (2) As two-point func-
tion one may choose any “regularization”, remembering that its value on
illicit test functions is irrelevant to physics.

We adopt the point of view (2), since we are not interested in extracting any numer-
ical results from the Wightman function, but rather want to show that it satisfies the
periodicity conditions in imaginary time characteristic of thermal states.

Hadamard’s elementary function is given by the vacuum expectation value of the anti-
commutator of two field configurations at different spacetime points:

D
(1)
M

(
x, x′

)
=

〈
0M

∣∣ {Φ (x) , Φ
(
x′
)} ∣∣ 0M〉

=
〈
0M

∣∣Φ (x) Φ
(
x′
) ∣∣ 0M〉+

〈
0M

∣∣Φ (x′)Φ (x)
∣∣ 0M〉 , (2.25)

the first term of which is called the Wightman function and is given by

〈
0M

∣∣Φ (x) Φ
(
x′
) ∣∣ 0M〉 =

ˆ
dk

(2ω) (2π)
dk′

(2ω′) (2π)fk (x) f∗k′
(
x′
) 〈

0M
∣∣∣ aka†k′ ∣∣∣ 0M〉

=
ˆ

dk

(2ω) (2π)
dk′

(2ω′) (2π)fk (x) f∗k′
(
x′
)

(2ω) (2π) δ
(
k − k′

)
=
ˆ

dk

(2ω) (2π)fk (x) f∗k
(
x′
)

= 1
4π

ˆ
dk

ω
exp

[
i
(
−ω

(
t− t′

)
+ k

(
x− x′

))]
. (2.26)

When one naively interprets this expression as an ordinary function, this integral shows
twofold divergence as can be seen by neglecting the exponential in the integrand and
considering ˆ

dk

4πω = 2
ˆ ∞

0

dk

4πω = 1
2π lnω|∞0 ,

which shows an ultraviolet divergence for large values of ω, as well as an infrared diver-
gence for small ones.

This fact is remedied by considering (2.26) as a tempered distribution, i.e. D(1)
M ∈ S ′

(
R2)

and let it act on a rapidly decreasing testfunction ϕ ∈ S
(
R2), which has the advantage

that the Fourier-transformed test function is itself a test function, that is ϕ̃ ∈ S
(
R2).
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Setting x′ = 0 in equation (2.26) yields

(
D

(1)
M (xa, 0) , ϕ (xa)

)
= 1

4π

ˆ
d2xdk

|k|
exp

[
i
(
− |k|x0 + kx1

)]
ϕ
(
x0, x1

)
=
ˆ

dk

2 |k| ϕ̃ (|k| , k) ,

from which it is clear that the UV-divergence is irrelevant because of the rapid decrease of
the test function, while the IR-divergence is avoided if one uses only testfunctions whose
support does not include the origin in k−space (therefore, to remain in the terminology
of the above lines, the illicit testfunctions are those whose support includes k = 0).

To get an explicit expression for equation (2.26), we regularize it by introducing an
infrared cutoff λ as well as the usual −iε prescription to assure damping of the integrand
for large values of ω . Thus the integral becomes (where ∆u = u − u′ = t − x − t′ + x′

and analogously for ∆v)

1
4π

ˆ
dk

ω
exp

[
i
(
−ω

(
t− t′

)
+ k

(
x− x′

))]
= 1

4π

ˆ ∞
λ

dω

ω
exp

[
−iω

(
t− x− t′ + x′ − iε

)]
+ 1

4π

ˆ ∞
λ

dω

ω
exp

[
−iω

(
t+ x− t′ − x′ − iε

)]
= 1

4π

ˆ ∞
λ

dω

ω
exp [−iω (∆u− iε)]

+ 1
4π

ˆ ∞
λ

dω

ω
exp [−iω (∆v − iε)] .

To evaluate this further, we rewrite those integrals as
ˆ ∞
λ

dω

ω
exp [−iω (∆u− iε)] =

ˆ ∞
λ

dω

ω
exp [−ωµu] ,

where µu = i∆u+ ε,

and perform an integration by parts to arrive at
ˆ ∞
λ

dω

ω
exp [−ωµ] = lnω exp [−ωµ]∞λ + µ

ˆ ∞
λ

dω lnω exp [−ωµ]

= − lnλ+ µ

ˆ ∞
λ

dω lnω exp [−ωµ] ,

where the upper limit gives no contribution because of <µ = ε > 0. For the same reason,
the integral appearing on the right hand side above does also converge for λ = 0 and is
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tabulated (see e.g. 4.331.1 in [4])
ˆ ∞

0
dω lnω exp [−ωµ] = − 1

µ
(γ + lnµ) ,=µ > 0,

where γ ≈ 0, 577216 is Euler’s constant. With these results, we find for the Wightman
function

〈
0M

∣∣Φ (x) Φ
(
x′
) ∣∣ 0M〉 = 1

4π

ˆ ∞
λ

dω

ω
{exp [−ωµu] + exp [−ωµv]}

= 1
4π {−2 lnλ− 2γ − lnµu − lnµv}

= 1
4π {−2 lnλ− 2γ − ln [(i∆u+ ε) (i∆v + ε)]}

= 1
4π {−2 lnλ− 2γ − ln [−∆u∆v]}

= 1
4π {−2 lnλ− 2γ − ln [∆u∆v] + iπ} .

From the second Wightman function appearing in (2.25) we get exactly the same con-
tribution

D−M
(
x, x′

)
=

〈
0M

∣∣Φ (x′)Φ (x)
∣∣ 0M〉

= 1
4π {−2 lnλ− 2γ − ln (∆u∆v) + iπ} ,

so that Hadamard’s elementary function becomes

D
(1)
M

(
x, x′

)
= D+

M

(
x, x′

)
+D−M

(
x, x′

)
= − 1

2π ln (∆u∆v) + Cdivergent, (2.27)

where we absorbed all of the constants and the divergent limλ→0 lnλ terms in the con-
stant Cdivergent, to be dropped hereafter.

Now we write the arguments of the logarithms appearing in (2.27) in terms of Rindler
coordinates (2.3) and find

∆u = u− u′

= 1
a

[
ea(ξ′−η′) − ea(ξ−η)

]
∆v = 1

a

[
ea(ξ+η) − ea(ξ′+η′)

]
,

∆u∆v = 2
a2 e

a(ξ+ξ′) [cosh
(
a
[
η − η′

])
− cosh

(
a
[
ξ − ξ′

])]
,
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which renders (2.27)

D
(1)
M

(
x, x′

)
= − 1

2π ln (∆u∆v)

= − 1
2π ln

[
cosh

(
a
[
η − η′

])
− cosh

(
a
[
ξ − ξ′

])]
− 1

2π ln
[ 2
a2 e

a(ξ+ξ′)
]
.

Now this expression is clearly invariant under the replacement

η → η + 2πni
a

; n ∈ N,

such that Hadamard’s elementary function is seen to be periodic in imaginary “boost
time” η with period 2π/a, i.e.

D
(1)
M

(
ξ − ξ′ ; η − η′

)
= D

(1)
M

(
ξ − ξ′ ; η − η′ + 2πni

a

)
, (2.28)

which reflects precisely the periodicity in imaginary time found in (2.24), but without
interchanging the operators in the expectation value5.

5This is because of the symmetry of Hadamard’s function, the Wightman functions still show this twist,
as is easily seen by considering

D+
β

(
x, x′

)
=

〈
Φ (x) Φ

(
x′
)〉
β

D−β
(
x, x′

)
=

〈
Φ
(
x′
)

Φ (x)
〉
β
,

and by using the Heisenberg equations of motion one finds

D+
β

(
t, x ; t′, x′

)
= Z−1 tr

[
Φ (t, x) Φ

(
t′, x′

)
e−βH

]
= Z−1 tr

[
e−βHΦ (t, x) eβHe−βHΦ

(
t′, x′

)]
= Z−1 tr

[
Φ (t+ iβ, x) e−βHΦ

(
t′, x′

)]
= Z−1 tr

[
Φ
(
t′, x′

)
Φ (t+ iβ, x) e−βH

]
= D−β

(
t+ iβ, x ; t′, x′

)
,

and analogously D−β (t, x ; t′, x′) = D+
β (t+ iβ, x ; t′, x′), such that

D
(1)
β

(
t, x ; t′, x′

)
= D+

β

(
t, x ; t′, x′

)
+D−β

(
t, x ; t′, x′

)
= D−β

(
t+ iβ, x ; t′, x′

)
+D+

β

(
t+ iβ, x ; t′, x′

)
= D

(1)
β

(
t+ iβ, x ; t′, x′

)
.
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So yet again we have found that Minkowski vacuum behaves to an accelerated observer
like a thermal state at temperature

T = β−1 = 2π/a.

2.8 Killing-conformal choice of positive frequency

Since Minkowski spacetime is clearly globally time orientable6 (as is Kruskal spacetime),
the flipping of the sign (c.f. paragraph 3) when defining positive frequency in the left
Rindler wedge, is justified by the requirement that the timelike Killing vector field be
future pointing. One could call this procedure a Killing-anti-conformal choice of time
slicing in the left Rindler wedge, i.e. the time direction in L is chosen as to agree with
the time slicing defined by the Minkowski observer.

Now one can ask the question what happens when a choice of time direction coherent
with the Killing vector in L was made? That is, we define positive frequency strictly with
respect to the (boost-) Killing vector, be it future (in R) or past (in L) pointing. Being
in Minkowski spacetime, this procedure seems rather artificial, however, as we perform
the calculations of this section as preparation for the Schwarzschild spacetime, where
the two wedges are causally totally decoupled (the two Rindler wedges are also causally
decoupled, but the bifurcation point of the Killing horizons is completely arbitrary, that
is, it could be relocated to any point (x0, t0) by a shift in the definition the Rindler
coordinates (2.3) via x → x − x0, t → t − t0) and therefore this argumentation is more
adept., since the choice of time-orientation in causally decoupled regions is not fixed a
priori. Therefore we will consider Killing conformal slices in this section.

6A classical example of a non (time-)orientable manifold is given by the Möbius strip, where locally
one can always define a forward lightcone. However, as one parallely transports this cone once
around the Möbius strip, the forward lightcone is reverted, future and past having changed places.

start

end
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Since (boost-) time η “runs backward” in L (compared to Minkowski time), one is led
to define the positive frequency left Rindler modes with respect to ∂η

g
(2)
k =

{
exp [−iωη + ikξ] in L
0 in R

.

Now something unexpected happens: Following exactly the same argumentation as in
paragraph 5, we consider

g
(1)
k = exp [−iωη + ikξ]

=
[
e−a(η−ξ)

] iω
a Θ (k) +

[
ea(η+ξ)

]− iω
a Θ (−k)

= [−au]
iω
a Θ (k) + [av]−

iω
a Θ (−k) ,

and we find that, instead of g(2)∗
−k , the mode

g
(2)
k = exp [−iωη + ikξ]

=
[
ea(−η+ξ)

] iω
a Θ (k) +

[
ea(η+ξ)

]− iω
a Θ (−k)

= [au]
iω
a Θ (k) + [−av]−

iω
a Θ (−k)

= e
πω
a [−au]

iω
a Θ (k) + e−

πω
a [av]−

iω
a Θ (−k)

can be used as analytic extension of g(1)
k into L.

Therefore, the Unruh modes become

h̃
(1)
k = N

(1)
k

[
g

(1)
k + e−

πω
a g

(2)
k

]
h̃

(2)
k = N

(2)
k

[
g

(1)
−k + e

πω
a g

(2)
−k

]
,

where normalization yields

N
(1)
k = 1√

1 + e−2πω
a

N
(2)
k = 1√

1 + e2πω
a

,
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and thus

h̃
(1)
k = 1√

2 cosh
(
πω
a

) [eπω2a g
(1)
k + e−

πω
2a g

(2)
k

]

h̃
(2)
k = 1√

2 cosh
(
πω
a

) [e−πω2a g
(1)
−k + e

πω
2a g

(2)
−k

]
.

Yet another time we can expand the field operator in these modes

Φ =
∑
i=1,2

ˆ
dk
[
c

(i)
k h

(i)
k + c

(i)†
k h

(i)∗
k

]
,

and the relations between the annihilation operators are

b
(1)
k = 1√

2 cosh
(
πω
a

) [c(1)
k e

πω
2a + c

(2)
−ke
−πω2a

]

b
(2)
k = 1√

2 cosh
(
πω
a

) [c(2)
−ke

πω
2a + c

(1)
k e−

πω
2a
]
.

From the latter expressions we see that the b(i)k contain only Rindler annihilation oper-
ators. But this implies that they define the same vacuum, i.e. the b(i)k satisfy

b
(i)
k |0M 〉 = 0.

Hence, we can conclude that when adopting a Killing-conformal orientation of the time
slicings in L, there is no more Unruh radiation and in the next section, we will try
to extend this result to the spherically reduced Schwarzschild geometry to check if the
Hawking radiation comes also to a stop when defining positive frequency with respect
to the past-pointing Killing vector.
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3 Hawking Effect in spherically reduced
(2D) Schwarzschild spacetime

In the first part of this section we are going to perform analogous coordinate (as in section
2.1 for the Minkowski/Rindler coordinates) transformations for the Schwarzschild metric,
thereby extending the Schwarzschild manifold to the Kruskal spacetime and showing the
very similar causal and topological properties. Subsequent to that, we will determine the
analogues of Minkowski and Rindler (Unruh) modes in the static black hole spacetime,
eventually deriving the Hawking temperature.

3.1 Schwarzschild and Kruskal coordinates

The two dimensional Schwarzschild line element reads (we simply suppress the angular
part, or, equivalently, consider θ = const. = φ)

ds2 = −fdt2 + 1
f
dr2, (3.1)

while the inverse metric is given by

gba = − 1
f
∂bt∂

a
t + f∂br∂

a
r ,

where f = 1− 2M/r will be used troughout this section.

Introduction of the so-called tortoise coordinate via dr∗ = f−1dr (or in its integrated
form r∗ = r + 2M ln

[
r

2M − 1
]
; cf. fig. 3.1) puts the above line element in the form

ds2 = f
(
−dt2 + dr2

∗

)
, (3.2)

and by transforming to light cone coordinates u = t− r∗ and v = t+ r∗we find

ds2 = −fdudv. (3.3)

Note that now the coordinate function r appearing in f = f (r) is implicitly determined
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by

r + 2M ln
[
r

2M − 1
]

= v − u
2 ,

and we find for

f =
(

1− 2M
r

)
= 2M

r
exp

[
− r

2M

]
exp

[
v − u
4M

]
.

1.0 1.5 2.0 2.5 3.0
r�2M

-3
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2

3

r
*

�2M

Figure 3.1: The Regge-Wheeler tortoise coordinate r∗ = r + 2M ln
[
r

2M − 1
]
.

By comparing this with the Rindler case, intuition tells us to define

U = −e−
u

4M = −e−κu

V = eκv,

and for later use we write down the inverse transformation

κu = − ln (−U)
κv = lnV,

so that (3.1) becomes

ds2 = −32M3e−r/2M

r
dUdV. (3.4)

To further pursue the analogy with the Rindler case, one is led to introduce another set
of coordinates {

T = U+V
2 = eκr∗ sinh (κt)

X = V−U
2 = eκr∗ cosh (κt) .

(3.5)

Note that this set of coordinates covers only part of the extended Schwarzschild space-
time, namely X > |T | , as the coordinates t and r∗ (for r > 2M) range over the whole R2.
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In order to have coordinates describing also the left wedge of Schwarzschild spacetime,
we proceed as in Rindler spacetime, by simply replacing T → −T, X → −X .

Now we digress a little by performing the calculations needed to compactify the Schwarzschild
and Minkowski spacetimes. Since the Kruskal light cone coordinates U, V range over
the whole of R2, one can never draw a picture of the whole spacetime. But this problem
can be circumvented by mapping them to a compact set, i.e. the corresponding Penrose
diagram, via

Ũ = arctanU
Ṽ = arctanV,

whose range is now given by
−π2 ≤ Ũ , Ṽ ≤

π

2 .

The same compactification procedure can also be carried out in the Minkowski spacetime
by defining

ũ = arctan u
ṽ = arctan v,

and now one is able to draw the so-called Penrose diagrams, representing the whole of
spacetime. In the following figure, we have drawn such sketches, and one immediately
recognizes the substantial similarities between Kruskal and Minkowski spacetime (cf.
fig. 3.2).

For completeness, we now determine the redshift factor and the surface gravity of
Schwarzschild spacetime. The timelike Killing vector in the static black hole geome-
try is given by

ξa = (∂t)a ,

its norm being
ξ2 = −f.

The square root of minus this norm is the redshift factor

V =
√
−∂2

t =
√
f,

and by taking its derivative we find

∇aV = 2M
2
√
f

1
r2dra.
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Its norm is then given by

(∇V )2 = M2

r4 ,

and by evaluating this expression at the horizon r = 2M, we have determined the surface
gravity of the Schwarzschild black hole

κ =
√

(∇V )2 |r=2M = 1
4M .

3.2 The massless Klein Gordon equation in the two coordinate
systems

The massless Klein Gordon equation in Schwarzschild spacetimes in the t−r coordinates
is given by

gab∇a∇bΦ = 1√
−g

∂a
(√
−ggab∂b

)
Φ

= ∂a
(
gab∂b

)
Φ

0 = −f−1∂2
t Φ + ∂r (f∂r) Φ. (3.6)

Although this looks rather different from the flat-space wave equation, one can bypass
this difficulty by using the form (3.2) or (3.3) of the Schwarzschild metric, which yields

�Φ = 1
f

(
−∂2

t + ∂2
r∗

)
Φ,

= − 1
f
∂u∂vΦ = 0.

Alternatively, we can also write down the wave equation in the coordinate systems (3.4)
or (3.5), yielding

�Φ = r

16M3 e
r/2M∂U∂V Φ,

= r

16M3 e
r/2M (−∂2

T + ∂2
X)Φ = 0.

As can be seen from the above two expressions, these are conformally flat (which comes
as to no surprise, since in two dimensions every metric is locally conformally flat [9])
and we can take over the results of part 2.5 with the appropriate replacements.
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Therefore, we find (as analogue of the Minkowski modes) the Kruskal modes

fk = exp [i (−ωT + kX)] , (3.7)
= exp [−iωU ] Θ (k) + exp [−iωV ] Θ (−k) ,

and we have already performed the split in left and right movers. Note that these modes
share the analyticity and boundedness properties of the Minkowski modes of section
(2.3).

The analogues to the Rindler modes are then called the Schwarzschild modes and are
given by

g
(1)
k = exp [−iωt+ ikr∗]

=
[
e−κu

] iω
κ Θ (k) + [eκv]−

iω
κ Θ (−k)

= [−U ]
iω
κ Θ (k) + [V ]−

iω
κ Θ (−k) (3.8)

and (with U , V in III given by UL = e−κu and VL = −eκv)

g
(2)
k = exp [iωt+ ikr∗]

= [eκv]
iω
κ Θ (k) +

[
e−κu

]− iω
κ Θ (−k)

= [−V ]
iω
κ Θ (k) + [U ]−

iω
κ Θ (−k) . (3.9)

Following the same lines of reasoning as in the Rindler case, we consider

g
(1)∗
−k = exp [iωt+ ikr∗]

= [eκv]
iω
κ Θ (k) +

[
e−κu

]− iω
κ Θ (−k)

= [V ]
iω
κ Θ (k) + [−U ]−

iω
κ Θ (−k)

= (−1)
iω
κ [−V ]

iω
κ Θ (k) + (−1)−

iω
κ [U ]−

iω
κ Θ (−k)

and

g
(2)∗
−k = exp [−iωt+ ikr∗]

=
[
e−κu

] iω
κ Θ (k) + [eκv]−

iω
κ Θ (−k)

= [U ]
iω
κ Θ (k) + [−V ]−

iω
κ Θ (−k)

= (−1)
iω
κ [−U ]

iω
κ Θ (k) + (−1)−

iω
κ [V ]−

iω
κ Θ (−k) .

Therefore we find for the Unruh modes (with −1 = exp (−iπ) and thus (−1)±
iω
κ =
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exp
[
±π ωκ

]
)

h
(1)
k = 1√

2 sinh πω
a

[
e
πω
2κ g

(1)
k + e−

πω
2κ g

(2)∗
−k

]

h
(2)
k = 1√

2 sinh πω
a

[
e−

πω
2κ g

(1)∗
−k + e

πω
2κ g

(2)
k

]
. (3.10)

Hence, we can readily take over the results of sections (2.5 and following) by simply
making the replacements

a → κ = 1/4M
(η, ξ) → (t, r∗)
(t, x) → (T, X) ,

and we find that the Kruskal vacuum is perceived by a stationary observer as being a
thermal state of temperature

T = 1
8πM .

Note that, due to the different aymptotics of the redshift factors in the Rindler, respec-
tively the Schwarzschild case, this temperature does not tend to zero as r∗ →∞, which
is easily seen by considering the Tolman relation

T (r∗) = (−g00)−1/2 T

= 1√
1− 2M

r(r∗)

T,

and thus one finds
lim

r∗→−∞
T (r∗) ' T = 1

8πM .

It does, however, show diverging behaviour when the observer approaches the horizon
(limr∗→−∞ r (r∗) = 2M), with the same interpretation as in the Rindler case: the ob-
server will then need an infinite amount of acceleration to keep up his stationary orbit.
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3.3 Summary: Rindler vs. Schwarzschild

Rindler Schwarzschild

original metric ds2 = e2aξ(−dη2 + dξ2) ds2 =
(
1− 2M

r

) [
−dt2 + dr2

∗
]

extended metric ds2 = −dt2 + dx2 ds2 = 32M3e−r/2M

r

(
−dT 2 + dX2)

corresponding to Minkowski spacetime Kruskal extension

redshift factor V =
√
−∂2

η = eaξ V =
√
−∂2

t =
√(

1− 2M
r

)
surface gravity κ = a κ = 1

4M

accelerated observer ξ = const. r = const. ≥ 2M

associated temperature T = a (2π)−1 T = (8πM)−1

Using the above correspondence table, it is easy to convince oneself that choosing the
Killing time orientation in the second asymptotic region results in a trivial Bogol-
ubov transformation, thus telling us that also in the case of the (spherically reduced)
Schwarzschild space-time the Hawking radiation ceases to exist, as might have been
expected from paragraph 2.8.
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4 Conclusion and Outlook

By investigating the massless Klein Gordon field in Minkowski spacetime from the per-
spective of two observers, namely an inertial and a constantly accelerated one, we found
that the vacuum, as defined by the inertial observer, appears to be a thermal state to
the accelerated observer. This is the essence of the Unruh effect. This was done by
solving the wave equation in the Minkowski- and Rindler coordinate system, whereby
we obtained two different sets of modes. Upon quantization, these two schemes turned
out to be inequivalent, though connected via a Bogolubov transformation. We chose
not to calculate the corresponding Bogolubov coefficients directly, instead we followed
Unruh‘s method of analytically continuing the Rindler modes across the horizons and in
doing so we found two new sets of modes, analytic and bounded in the lower half plane.
This, in turn, implied that these Unruh modes define the same vacuum as the Minkowski
observer and therefore the Bogolubov coefficients were very easily determined: we simply
had to read them off the resulting expression. These coefficients could then be used to
determine 〈

0M
∣∣∣ b(1)†
k b

(1)
k′

∣∣∣ 0M〉 = δ (k − k′)
exp (2πω/a)− 1 ,

the expectation value of the Rindler number operator (in R), when the state of the
quantum field is the vacuum, and we found that this matches exactly a Bose-Einstein
distribution for a system in thermal equilibrium at temperature (we restore the natural
constants in the last expression)

T = a

2π = ~a
2πckB

.

Furthermore, by considering the density matrix corresponding to the Minkowski vacuum
in terms of Rindler states and carrying out a trace over the degrees of freedom “living” in
the causally disconnected spacetime region L, we found that the resulting density matrix
was indeed of thermal nature. Yet more evidence for the thermality of the vacuum was
found when we investigated the two-point function of the scalar field. By regularizing
its integral representation and discarding some infinite constants, we found that

D
(1)
M

(
ξ − ξ′ ; η − η′

)
=

〈
0M

∣∣ {Φ (x) Φ
(
x′
)} ∣∣ 0M〉

= D
(1)
M

(
ξ − ξ′ ; η − η′ + 2πni

a

)
,
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i.e. Hadamard‘s elementary function is indeed periodic in imaginary time with period
2π/a. This, however, is characteristic for a KMS state at temperature T = a/2π.

In the last chapter we explored the connections between the Rindler/Minkowski and
Schwarzschild/Kruskal spacetimes, showing the profound causal similarities. This al-
lowed us (due to the conformal invariance of the Klein Gordon field in two dimensions)
to extend all of the results obtained in chapter 2 to this case, confirming that a black hole
does indeed emit a thermal spectrum of scalar particles, as measured by a stationary
observer which orbits at r = const. ≥ 2M , at temperature

T = κ

2π = 1
8πM = ~c3

8πMkBG
.

The investigations at the end of chapter 2 were done to explore the influence of the choice
of time slicings in L, and we found that when we defined positive energy with respect
to ∂η (past-pointing in L), and therefore a Killing-conformal choice of time slicings, the
Unruh radiation ceases to exist. Although from the point of view of Minkowski space this
choice is rather artificial, the corresponding argument does not hold in the Schwarzschild
context where changing the time orientation of the second asymptotic region is realizable
due to the causal disconnection. This would yield a different (“super-selected”) quantum
field theory with vanishing Hawking temperature. A closer look at the calculation reveals
however, that only the relative orientation of the time slicings in L is changed. Even
though this leads to a vanishing temperature, i.e. a trivial Bogolubov transformation,
this fact cannot be accounted for by the change of time orientation, since the Kruskal
slicings retain their orientation in both of the wedges.

From a geometric point of view it may be argued that the “Killing conformal” orientation
is more natural since the corresponding surfaces do not contain a jump in the surface
normal at the bifurcation sphere of Schwarzschild as can be seen from fig. 4.1 or by
considering the split in a spacelike hypersurface σ where η = const. and a timelike
normal vector na

gab = hab − nanb,

where
dσ2 = exp [2aξ] dξ2 = habdx

adxb,

and we find for the unit normal (n2 = −1) in R

n(1)
a = − exp [aξ] dηa,
na(1) = exp [−aξ] ∂aη

and in L, depending on the choice made (the subscript f is used to emphasize that we
used the Killing anti-conformal time slicings to obtain a future pointing vector as well
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Figure 4.1: Killing-conformal choice of time slicings in the left Rindler wedge L:
In this case, the time slicings in L have not been altered by the requirement
as to agree with the slicings defined by the Minkowski observer.

54



as p for the Killing conformal past directed slicings)

na(2),f = − exp [−aξ] ∂aη ,
na(2),p = exp [−aξ] ∂aη .

When evaluating these expressions (for simplicity) on the t = 0 surface, we find (with
∂aη |t=0 = ax∂at and exp [−aξ] |t=0 = (ax)−1)

na(1)|t=0 = ∂at ,

na(2),f |t=0 = −∂at ,
na(2),p|t=0 = ∂at ,

and we realize that with the Killing conformal choice (na(2),p) we have a continuous
normal vector to the t = const. surfaces, whereas in the usual procedure (na(2),f ) we have
a discontinuity in the normal vector field, with a jump when passing from R to L. In
order to substantiate this point the corresponding Green-function calculation should be
extended to cover this orientation, i.e. finding the corresponding boundary conditions.
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