

Diplomarbeit

Analytischer Zulässigkeitsnachweis von Druckgeräten – Kriechdehnnachweis auf der Grundlage von Simulationen

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Diplom-Ingenieurs (Dipl. Ing. oder DI)

eingereicht an der TU Wien, Fakultät für Maschinenwesen und Betriebswissenschaften

von

Alexander Seifert, BSc

Mat.Nr.: 01125866

unter der Leitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Franz Rauscher Institut für Konstruktionswissenschaften und Technische Logistik, E307 Getreidemarkt 9, 1060 Wien, Österreich

Unterschrift

Ich nehme zur Kenntnis, dass ich zur Drucklegung meiner Arbeit unter der Bezeichnung

Diplomarbeit

nur mit Bewilligung der Prüfungskommission berechtigt bin.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass die vorliegende Arbeit nach den anerkannten Grundsätzen für wissenschaftliche Abhandlungen von mir selbstständig erstellt wurde. Alle verwendeten Hilfsmittel, insbesondere die zugrunde gelegte Literatur, sind in dieser Arbeit genannt und aufgelistet. Die aus den Quellen wörtlich entnommenen Stellen, sind als solche kenntlich gemacht.

Das Thema dieser Arbeit wurde von mir bisher weder im In- noch Ausland einer Beurteilerin/einem Beurteiler zur Begutachtung in irgendeiner Form als Prüfungsarbeit vorgelegt. Diese Arbeit stimmt mit der von den Begutachterinnen/Begutachtern beurteilten Arbeit überein.

Wien, Jänner 2020

Unterschrift

Danksagung

An dieser Stelle möchte ich mich bei allen Personen bedanken, die mich während des gesamten Studiums und bei der Erstellung dieser Diplomarbeit unterstützt haben.

Mein besonderer Dank gilt zunächst Herrn Prof. Dr. Franz Rauscher, für die hilfreiche und fachkundige Betreuung dieser Arbeit. Die fachlichen Gespräche und Anmerkungen haben mir auf den Weg zur fertigen Arbeit sehr geholfen.

Besonders möchte ich an dieser Stelle auch meinen Eltern, meinem Bruder Patrick und meiner Freundin Katie für die Unterstützung und den motivierenden Beistand während meines gesamten Studiums danken.

Abschließend bedanke ich mich bei meinem Arbeitgeber ASTEC Engineering GmbH und meinen Arbeitskolleg/innen für die angenehme und lehrreiche Zusammenarbeit neben meinem Studium.

Kurzfassung

Bei Betriebsbeanspruchungen mit hohen Temperaturen, auch Kriech- oder Zeitstandbereich genannt, treten bei Metallen zeitabhängige inelastische Dehnungen (Kriechen) auf. Der Analytische Zulässigkeitsnachweis – Direktes Verfahren im Anhang B der Norm EN13445-3 enthält entsprechende Kriechnachweise für die Auslegung von Druckgeräten, die im Zeitstandbereich betrieben werden.

Ziel und Inhalt dieser Arbeit ist die Ausarbeitung eines zur Norm EN13445-3 alternativen Kriechdehnungsnachweises mit Simulationen. Die Simulationen basieren auf dem Norton'schen Kriechgesetz. Die zur Implementierung des Kriechgesetzes in die Finite-Elemente-Simulationen erforderlichen Parameter wurden aus den in harmonisierten Werkstoffnormen gegebenen 1%-Zeitdehngrenzen berechnet. Die Entwicklung der Nachweismethode beginnt anhand eines Demonstrationsbeispiels mit zeitlich und örtlich konstanten Werkstoffparametern und Temperaturen. Im Anschluss wurde die ausgearbeitete Nachweismethode erweitert und an zwei unterschiedlichen Beispielen unter Berücksichtigung von temperaturabhängigen Werkstoffkennwerten und Wärmespannungen angewendet. Die ermittelten Ergebnisse wurden grafisch dargelegt und diskutiert. Des Weiteren wurden die Einschränkungen des Kriechdehnnachweises mit Simulationen aufgezeigt und bewertet.

Abstract

In the case of operating at high temperatures, known also as creep range, time-dependent inelastic strains (creep) occur in metals. The Direct Route in Design by Analysis, as specified in Annex B of EN13445-3, contains creep design checks for pressure equipment operated within the creep range.

The aim and content of this thesis is to elaborate on an Excessive Creep Strain Design Check with simulations alternative to the standard EN13445-3. The simulations are based on Norton's creep law. The parameters required for the implementation of the creep law in the finite element simulations were calculated from 1%-creep strain limits given in the material standards. The development of the design check method begins with a simple example consisting of temporal and spatial constant material parameters and temperatures. The developed design check method is subsequently extended and applied to two different examples, considering the temperature-dependent material parameters and thermal stresses. The evaluated results are presented graphically and discussed. Furthermore, the limitations of the Excessive Creep Strain Design Check with simulations are presented and evaluated.

Inhaltsverzeichnis

Symbo	lverzeich	nis	IX
Abkürz	zungsverz	zeichnis	XIII
1. Ein	nleitung		1
2. Gr	undlagen	1	2
2.1	Phäno	menologie des Kriechens	2
2.2	Kriecł	ngesetz nach Norton	6
2.3	Refere	enzspannungskonzept	7
2.4	Ausleg	gungsmethoden im Kriechbereich nach EN13445-3	
2.5	Komb	inierte Kriech- und Ermüdungsbeanspruchung	
3. Au	ısarbeitur	ng einer Nachweismethode anhand eines Beispiels	
3.1	Berecl	hnungsmodell – Demonstrationsbeispiel	
3.2	Bestin	nmung der globalen Referenzspannung	
3.3	Berecl	hnung und Variation des Kriechgesetzes	17
3.4	Kriecł	ndehnnachweis mit Simulationen	
3.5	Analy	se für konstante Last und Temperatur	
3.6	Analy	se für Entlastung und konstante Temperatur	
3.7	Analy	se für Teilentlastung und konstante Temperatur	
4. Ar	nwendung	g der Nachweismethode	44
4.1	Kugel	-Stutzen-Verbindung	44
4.1	l.1 Be	erechnungsmodell	
4.1	I.2 Be	estimmung der globalen Referenzspannung	
4.1	l.3 Be	erechnung und Variation der Kriechgesetze	49
4.1	l.4 Ar	nalyse für konstante Last und Temperatur	
4.1	l.5 Ar	nalyse unter Berücksichtigung von Lastvariationen	
4.2	Doppe	elrohr-Wärmetauscher	67
4.2	2.1 Vo	orauslegung mit Berechnungsformeln	67
	4.2.1.1	Lastfälle und Werkstoffkennwerte	67
	4.2.1.2	Rohre unter Innendruck	69
	4.2.1.3	Ringförmiger ebener Boden	70
	4.2.1.4	Abmessungen Doppelrohr-Wärmetauscher	71

4	4.2.2	Berechnungsmodell	71		
4	4.2.3	Tragfähigkeitsnachweis TN	74		
4	4.2.4	Kriechfestigkeitsnachweis KFN	77		
	4.2.4.	.1 Nachweis für den stationären Betriebsfall	79		
	4.2.4.	.2 Nachweis für den Heizlastfall	80		
	4.2.4.	.3 Nachweis für den Grenzbetrieb	81		
4	4.2.5	Bestimmung der globalen Referenzspannung	83		
4	4.2.6	Berechnung und Variation der Kriechgesetze	86		
4	4.2.7	Analyse für konstante Last und Temperatur			
4	4.2.8	Analyse unter Berücksichtigung von Lastvariationen	92		
	4.2.8.	.1 Kurze Unterbrechung des stationären Betriebs – Lastverlauf 1	92		
	4.2.8.	.2 Lange Unterbrechung des stationären Betriebs - Lastverlauf 2	102		
5. Z	Zusamm	nenfassung	114		
Litera	Literaturverzeichnis				
Abbil	Abbildungsverzeichnis				
Tabel	Tabellenverzeichnis				
Anhang A Werkstoffkennwertei					
Anha	ng B	Vernetzung Berechnungsmodelle	vi		
Anha	ing C	Verteilung der Vergleichsspannung (n. v. Mises)	viii		
Anha	ing D	Vergleichsspannungsverläufe und Kriechkurven	xv		
Anha	ing E	Differenz der Vergleichskriechdehnungen	xxiv		
Anha	ng F	Kriechgesetze	xxv		
Anha	ing G	Verteilung der Vergleichskriechdehnung	xxx		
Anha	Anhang H σ/ε-Diagrammexxxiii				
Anha	ng I	Hauptstrukturdehnung	xxxix		

Einheit **Symbol** Beschreibung Sicherheitsbeiwert [-] γ Teilsicherheitsbeiwert der Einwirkung [-] γ_A Teilsicherheitsbeiwert der Druckeinwirkung [-] γ_P Teilsicherheitsbeiwert des Festigkeitswertes [-] γ_R Absolutwert der negativen Toleranz der Nennwanddicke [mm] δ_e Dehnung [mm/mm] ε Anfangsdehnung [mm/mm] \mathcal{E}_0 Bezugsdehnung [mm/mm] \mathcal{E}_B Kriechdehnung [mm/mm] ε_{CR} Kriechdehnung in Längsrichtung [mm/mm] $\mathcal{E}_{CR,L}$ $\Delta \varepsilon_{CR,L}$ Kriechdehnungsschwingbreite in Längsrichtung [mm/mm] Kriechdehnung in Umfangsrichtung [mm/mm] $\mathcal{E}_{CR,U}$ Kriechdehnungsschwingbreite in Umfangsrichtung [mm/mm] $\Delta \varepsilon_{CR,U}$ Vergleichskriechdehnung [mm/mm] $\varepsilon_{CR,V}$ Vergleichskriechdehnung zum Zeitpunkt t [mm/mm] $\mathcal{E}_{CR,V,t}$ Kriechdehnung auf Basis der globalen Referenzspannung [mm/mm] $\mathcal{E}_{CR,RG}$ Differenz von absoluter Vergleichskriechdehnung und [mm/mm] E_{CR,Diff} akkumulierter Vergleichskriechdehnung $\Delta \varepsilon_{EL,L}$ elastische Dehnungsschwingbreite in Längsrichtung [mm/mm] elastische Dehnungsschwingbreite in Umfangsrichtung $\Delta \varepsilon_{ELU}$ [mm/mm] $\Delta \varepsilon_{PLL}$ plastische Dehnungsschwingbreite in Längsrichtung [mm/mm] plastische Dehnungsschwingbreite in Umfangsrichtung $\Delta \varepsilon_{PLII}$ [mm/mm] Kriechrate $\dot{\varepsilon}_{CR}$ [1/s]mittlere Kriechrate für 1%-Dehnung nach der Zeit t [1/s] $\dot{\varepsilon}_{CR,t}$ mittlere Kriechrate für 1%-Dehnung auf Basis der [1/s] $\dot{\mathcal{E}}_{CR,RG}$ Referenzspannung λ Laststeigerungsfaktor [-] [MPa] σ Spannung [MPa] Bezugsspannung σ_{R} elastische Spannungsschwingbreite zwischen zwei Lastfällen in [MPa] $\Delta \sigma_{EL,L}$ Längsrichtung elastische Spannungsschwingbreite zwischen zwei Lastfällen in $\Delta \sigma_{EL,U}$ [MPa] Umfangsrichtung gesamte Spannungsschwingbreite über einen Lastfall in $\Delta \sigma_{GES,L}$ [MPa] Längsrichtung

Symbolverzeichnis

$\Delta \sigma_{GES,U}$	gesamte Spannungsschwingbreite über einen Lastfall in Umfangsrichtung	[MPa]
σ_L	Längsspannung	[MPa]
σ_U	Umfangsspannung	[MPa]
σ_{RG}	globale Referenzspannung	[MPa]
σ_{R0}	Referenzbruchspannung	[MPa]
σ_{ref}	Referenzspannung	[MPa]
σ_V	Vergleichsspannung nach von Mises	[MPa]
$\sigma_{V,el,max}$	maximale elastische Vergleichsspannung nach von Mises	[MPa]
τ	Schubspannung	[MPa]
χ	Spannungskonzentrationsfaktor	[-]
Α	Bruchdehnung	[%]
A_e	elastische Grenzeinwirkung	[MPa]
A_d	Bemessungswert der Einwirkung	[MPa]
A_u	plastische Grenzeinwirkung	[MPa]
<i>a</i> ′	kleineres Breitenmaß rechteckiger, elliptischer oder länglich runder Platten	[mm]
<i>b'</i>	Größeres Breitenmaß rechteckiger, elliptischer oder länglich runder Platten	[mm]
С	Korrosionszuschlag	[mm]
С	werkstoffabhängige Konstante	[s ⁻¹ MPa ⁻ⁿ]
<i>C</i> ₃	Beiwert für die Berechnung ringförmiger Böden	[-]
d_A	Rohraußendurchmesser	[mm]
d_I	Rohrinnendurchmesser	[mm]
D	Gesamtschädigung	[-]
D_c	Kriechschädigungsmaß	[-]
$D_{c,theo}$	theoretisches Kriechschädigungsmaß	[-]
D _{c,sim}	korrigiertes Kriechschädigungsmaß	[-]
D_e	Rohraußendurchmesser (Zylinderschale)	[mm]
D_f	Ermüdungsschädigung	[-]
D_X	Innendurchmesser eines ringförmigen Bodens	[mm]
D_Y	Außendurchmesser eines ringförmigen Bodens	[mm]
е	erforderliche Wanddicke	[mm]
e_a	Berechnungswanddicke	[mm]
e_n	Nennwanddicke	[mm]
f	zulässige Berechnungsspannung	[MPa]
f_c	zulässige Berechnungsnennspannung auf der Grundlage des zeitabhängigen Materialverhaltens	[MPa]

fnc	zulässige Berechnungsnennspannung auf der Grundlage des zeitunabhängigen Materialverhaltens	[MPa]
G Schubmodul		[MPa]
K	temperaturabhängige Materialkonstante	[s ⁻¹ MPa ⁻ⁿ]
n	Kriechexponent	[-]
n_I	Anzahl der Intervalle	[-]
n_j	Zyklenzahl für den Elementarzyklus j	[-]
N_{j}	zulässige Zyklenzahl für den Elementarzyklus j	[-]
p_I	Innendruck Kugelschale und Stutzenrohr	[MPa]
p_S	maximal zulässiger Druck	[MPa]
p_a	Innendruck, Druckraum Außenrohr	[MPa]
p_c	Berechnungsdruck	[MPa]
p_d	Bemessungswert der Druckeinwirkung	[MPa]
$p_{d,a}$	Bemessungswert der Druckeinwirkung, Außenrohr	[MPa]
$p_{d,i}$	Bemessungswert der Druckeinwirkung, Innenrohr	[MPa]
p_i	Innendruck, Druckraum Innenrohr	[MPa]
p_{pl}	idealplastische Tragfähigkeitsgrenze, dickwandige Zylinderschale	[MPa]
Q	Aktivierungsenergie	[Jmol ⁻¹]
r_a	Außenradius, dickwandige Zylinderschale	[mm]
r_i	Innenradius, dickwandige Zylinderschale	[mm]
R	Allgemeine Gaskonstante	[JK ⁻¹ mol ⁻¹]
RM	Fließgrenze eines linearelastisch-idealplastischen Werkstoffgesetzes	[MPa]
RM_d	Bemessungswert für die Fließgrenze RM	[MPa]
$R_{e,T}$	Streckgrenze bei Temperatur T	[MPa]
$R_{m,T}$	Zugfestigkeit bei Temperatur T	[MPa]
$R_{p0,2\%,T}$	Mindest-0,2%-Dehngrenze bei Temperatur T	[MPa]
$R_{m,T,t}$	Zeitstandfestigkeit bei Temperatur T und Zeit t	[MPa]
$R_{p\varepsilon,T,t}$	Zeitdehngrenze für Dehnung ε bei Temperatur T und Zeit t	[MPa]
$R_{p1\%,T,t}$	1%-Zeitdehngrenze bei Temperatur T und Zeit t	[MPa]
SF_C	Sicherheitsbeiwert für den Mittelwert der Zeitstandfestigkeit	[-]
$t, t_1, t_2, t_A, t_B, t_L$	Zeitpunkt, Belastungsdauer, Lebensdauer	[h]
t _{RG}	zulässige Standzeit für 1%-Dehnung auf Basis der Referenzspannung	[h]
Δt	Intervalldauer	[h]
Δt_{all}	zulässige Standzeit	[h]
Т	Temperatur	[°C]

T_a	Temperatur Außenrohr	[°C]
T_{C}	Berechnungstemperatur	[°C]
T_d	Auslegungstemperatur	[°C]
T_i	Temperatur Innenrohr	[°C]
T_m	absolute Schmelztemperatur	[°C]
T_S	maximal zulässige Temperatur	[°C]
T _{Schale}	Temperatur Kugelschale	[°C]
T _{Stutzen}	Temperatur Stutzenrohr	[°C]
Z	Schweißnahtfaktor	[-]
Indizes hochgestellt	Beschreibung	
k	Lastfall	

Abkürzung	Beschreibung	
CEN	European Committee for Standardization	
DBF	Design by Formulae	
DGRL	Druckgeräterichtlinie	
DEM	Ductility Exhaustion Method	
EN	Einspielnachweis	
ESR	Essential Safety Requirements	
FE	Finite-Elemente	
GN	GN Nachweis des statischen Gleichgewichts	
KDN	Kriechdehnungsnachweis	
KEN	Kriechschädigung und Zyklische Ermüdung	
KFN	Kriechfestigkeitsnachweis	
plb	Power Law Breakdown	
SN	Stabilitätsnachweis	
SRP	Strain Range Partitioning	
TN	Tragfähigkeitsnachweis	
ZEN	Ermüdungsnachweis	

Abkürzungsverzeichnis

1. Einleitung

Der steigende Energiebedarf und die negativen Auswirkungen auf die Umwelt sowie die notwendige Schonung fossiler Ressourcen stellen zentrale Herausforderungen für den Betrieb und die Entwicklung von Kraftwerken und Chemieanlagen dar. Ein Ansatz, um dieses Problem zu lösen, ist die Verbesserung des thermischen Wirkungsgrades durch eine Erhöhung der Betriebstemperatur. Dadurch kann Energie eingespart und die Schadstoffemissionen können verringert werden. Somit ergibt sich für den Betrieb und die Entwicklung von zukünftigen Anlagen eine Tendenz hin zu erhöhten Temperatureinwirkungen. Aus wirtschaftlichen Gründen planen zudem viele Betreiber, die Anlagen über deren ursprüngliche Lebensdauer hinaus zu betreiben. Um einen sicheren Betrieb zu gewährleisten, wird es zunehmend wichtig, das Verformungs- und Schadensverhalten von Werkstoffen bei hohen Temperaturen zu verstehen und die Lebensdauer von Druckgeräten vorherzusagen. Gleichzeitig muss der fortschreitende Ausbau von erneuerbaren Energien mit schwankender Verfügbarkeit und unzureichender Energiespeicherung durch konventionelle Kraftwerke kompensiert werden. Dies führt zu zyklischen Temperatur- oder Laständerungen, wodurch zusätzlich eine Ermüdungsschädigung der Anlagenkomponenten berücksichtigt werden muss. [1], [2], [3]

Beim Betrieb von Anlagenkomponenten bei hoher Temperatur können sich durch die fortschreitende Kriechschädigung Hohlräume bilden, die in weiterer Folge zu Mikro- und Makrorissen anwachsen und schließlich zum Bauteilversagen führen. Um das Werkstoffverhalten für die Auslegung von Druckgeräten, die einer Kriechbeanspruchung unterliegen, zu beschreiben, werden meist empirisch entwickelte Zusammenhänge verwendet. Diese geben in Form eines Kriechgesetzes die Berechnung der Kriechrate oder Kriechdehnung vor. In Finite-Elemente(FE)-Programmen sind unterschiedliche Kriechgesetze zur Beschreibung des zeitabhängigen Materialverhaltens implementiert [4]. Die normgerechte Auslegung von Druckgeräten im Zeitstandbereich erfolgt abhängig vom Standort nach unterschiedlichen nationalen Normen oder Regelwerken. Im europäischen Raum ist vor allem die Auslegung nach der harmonisierten Norm EN13445 für unbefeuerte Druckbehälter relevant. Der dritte Teil der Norm EN13445-3 [5] enthält im Anhang B des Analytischen Zulässigkeitsnachweises – Direktes Verfahren relativ einfache Festigkeitsnachweise für Druckgeräte im Kriechbereich. Dabei sind ein Kriechfestigkeitsnachweis und ein Kriechdehnungsnachweis zu berücksichtigen. [2], [6], [7], [8]

Die Aufgabenstellung der vorliegenden Arbeit besteht in der Ausarbeitung eines Kriechdehnnachweises mithilfe von FE-Simulationen, wobei unterschiedliche Beispiele mit Last- und Temperaturvariationen behandelt werden. Das Werkstoffverhalten im Zeitstandbereich basiert auf dem Norton'schen Kriechgesetz. Eine detaillierte Betrachtung einer kombinierten Kriech- und Ermüdungsschädigung wird nicht durchgeführt. Zur Durchführung der Simulationen wurde die FE-Software ANSYS® Student 2019 R2 verwendet. Die aus der Software exportierten Grafiken werden mit freundlicher Genehmigung von ANSYS, Inc. verwendet.

2. Grundlagen

2.1 Phänomenologie des Kriechens

Als Kriechen wird die zeitabhängige, fortschreitende inelastische Deformation eines Werkstoffes unter Last bezeichnet. Für technische Betrachtungen von metallischen Werkstoffen sind Kriechprozesse bei einer homologen Temperatur T/T_m (T...absolute Temperatur, T_m ...absolute Schmelztemperatur) von mindestens 0,3–0,4 relevant. Die sich einstellende Kriechdehnung ε_{CR} hängt neben dem Werkstoff und dem Werkstoffzustand (Gefügekenngrößen) von drei Parametern (Belastungsdauer t, Temperatur T, Spannung σ) ab und kann durch folgende Zustandsfunktion beschrieben werden. [9], [10], [11]

$$\varepsilon_{CR} = f(\sigma, T, t, Werkstoff, Werkstoffzustand)$$
 2

Wird ein Werkstoff bei hohen Temperaturen beansprucht, können die ertragbaren Dehnungen beziehungsweise Spannungen nicht aus den Kennwerten des Zugversuchs bewertet werden. Um das Zeitstand- und Kriechverhalten von Werkstoffen bei erhöhter Temperatur zu untersuchen, werden Kriechversuche unter definierten Randbedingungen durchgeführt. Dabei wird die zeitabhängige Dehnung einer Probe unter konstanter Zugspannung (physikalischer Kriechversuch) oder unter konstanter Zugbelastung (technischer Zeitstandversuch) gemessen. Der Zusammenhang zwischen Kriechdehnung und Zeit wird in Form einer Kriechkurve bei konstanter Spannung und Temperatur dargestellt. Abbildung 2.1 zeigt eine schematische Darstellung einer typischen Kriechkurve bei konstanter gehaltener Zugspannung. Die Gesamtdehnung ε setzt sich aus einer zeitunabhängigen Anfangsdehnung ε_0 (elastische und plastische Dehnung) und der zeitabhängigen, bis zum Bruch stetig zunehmenden Kriechdehnung ε_{CR} zusammen. Zudem ist in Abbildung 2.2 die zugehörige Änderung der Kriechrate $\dot{\varepsilon}_{CR} = d\varepsilon_{CR}/dt$ über der Belastungsdauer *t* aufgetragen. [10], [12], [13]

Die Kurvenverläufe in Abbildung 2.1 und Abbildung 2.2 können in drei aufeinanderfolgende Phasen eingeteilt werden [9]:

- I. Primäres Kriechen oder Übergangskriechen
- II. Sekundäres Kriechen oder stationäres Kriechen
- III. Tertiäres Kriechen

Im primären Kriechbereich (I) nimmt die Kriechrate stetig ab (siehe Abbildung 2.2). Die Ursache sind verfestigende Effekte. An den primären Kriechbereich schließt sich der Bereich des sekundären oder stationären Kriechens (II) an, in dem sich die Verfestigung und thermisch

aktivierte entfestigende Vorgänge kompensieren. Die Kriechrate $\dot{\varepsilon}_{CR}$ ist minimal und näherungsweise konstant. Der sekundäre Bereich ist für technische Anwendungen von Bedeutung, da in diesem Bereich Bauteile im Allgemeinen beansprucht werden. Um die technisch nutzbare Lebensdauer zu erhöhen, muss die minimale Kriechrate möglichst gering sein. Die Kriechdehnung ε_{CR} steigt beim idealisierten Kurvenlauf in Abbildung 2.1 linear mit der Zeit an. Das Verhalten bei Spannungskonstanz gemäß Abbildung 2.1 und Abbildung 2.2 ist bei Bauteilen in praktischen Anwendungen nicht gegeben, weil üblicherweise die Last und nicht die Spannung konstant gehalten wird. Bei einem Kriechversuch unter konstanter Last steigt die wahre Spannung aufgrund der Querschnittsabnahme durch das Kriechen an. Dadurch weist der sekundäre Kriechbereich eine zunehmende Kriechrate $\dot{\varepsilon}_{CR}$ auf. Unter diesen Bedingungen tritt der Bruch eher ein als bei konstant gehaltener Spannung. Im tertiären Kriechbereich (III) dominieren thermische aktivierte Verformungsmechanismen mit Entfestigung. Die Kriechrate und die Kriechdehnungen steigen stark an, bis das Bauteil zu Bruch geht. [10], [12], [13], [14]

Abbildung 2.1: Schematische Darstellung einer Kriechkurve [9]

Abbildung 2.2: Schematische Darstellung der Kriechrate über der Zeit [9]

Beim Kriechversuch dominieren abhängig von der Temperatur und Belastung verschiedene mikroskopische Verformungsmechanismen. Diese sind in Abbildung 2.3 in einem Verformungsmechanismus-Schaubild in Abhängigkeit von der homologen Temperatur T/T_m und der auf das Schubmodul *G* normierten Schubspannung τ dargestellt. In den technisch relevanten Bereichen werden die elastische Verformung, das Versetzungsgleiten sowie das Versetzungs- und Diffusionskriechen unterschieden. In jedem Fall liegt dem Kriechen Diffusion zugrunde. Für eine detaillierte Beschreibung der Mechanismen sei auf die Literatur verwiesen. [9], [10], [13], [15]

Abbildung 2.3: Allgemeines Verformungsmechanismen-Schaubild [9]

Die aus einem Kriechversuch unter konstanter Last gewonnenen Daten können in einer weiteren Darstellungsform, den sogenannten Zeitstandschaubildern, dargestellt werden. Bei diesen wird die Spannung bis zum Erreichen einer bestimmten Dehnung ε oder zum Versagen über der aufgetragen. Bei Belastungsdauer t den Spannungswerten handelt es sich um Anfangsspannungen, da, wie oben bereits erwähnt, die wahre Spannung mit der Dehnung zunimmt. Den Zeitstandschaubilden lassen sich zeitabhängige Festigkeitskennwerte entnehmen. [9], [10], [15]

Im Kriechbereich sind zwei zeitabhängige Festigkeitskennwerte zur Bauteilauslegung von Bedeutung [10], [15]:

- Die Zeitstandfestigkeit $R_{m,T,t}$ beschreibt die konstante Spannung, die innerhalb der Belastungsdauer *t* bei einer gegebenen Temperatur *T* zum Versagen führt.
- Die Zeitdehngrenze $R_{p\varepsilon,T,t}$ beschreibt die konstante Spannung, die bei gegebener Temperatur *T* nach der Belastungsdauer *t* eine bleibende Dehnung ε hervorruft. Üblicherweise werden Werte für die Zeitdehngrenze $R_{p\varepsilon,T,t}$ bei einer Kriechdehnung ε von 1 % verwendet.

Die zeitabhängigen Festigkeitskennwerte werden üblicherweise für Belastungsdauern t von 10.000, 100.000, 200.000 Stunden angegeben. Jedoch können die Festigkeitswerte zu den exakten Zeitangaben nicht direkt aus den Zeitstandschaubildern ermittelt werden. Des Weiteren sind langwierige Zeitstanduntersuchungen unter realitätsnahen Bedingungen notwendig, um sichere Aussagen über die Kriechbeständigkeit der unterschiedlichsten Werkstoffe zu treffen. Dies hat zu zahlreichen Ansätzen für Extrapolationsmethoden geführt. Es wird versucht, von Versuchsdaten bei hoher Temperatur oder Belastung mit kurzen Laufzeiten auf die Zeitstandfestigkeit für längere Betriebszeiten zu schließen, um die Dauer der zeit- und Dies kostenintensiven Kriechversuche zu verkürzen. geschieht häufig mit der Extrapolationsmethode nach Larson und Miller. Sie erlaubt es, aus kürzeren Versuchen bei gleicher Spannung mit erhöhter Temperatur auf das Langzeitverhalten bei betriebsrelevanter Temperatur zu schließen. [9], [10], [11], [14]

Bei erhöhten Temperaturen stellt sich grundsätzlich die Frage, ob für die Bauteilauslegung die zeitunabhängige Streckgrenze $R_{e,T}$, die 0,2 %-Dehngrenze $R_{p0.2\%,T}$ oder die Zugfestigkeit $R_{m,T}$ relevant sind oder ob nach den zeitabhängigen Zeitdehngrenzen und Zeitstandfestigkeiten zu dimensionieren ist. Um bei einem bestimmten Werkstoff zu erkennen. welche Festigkeitskennwerte bei einer Temperatur für die Dimensionierung relevant sind, werden die Zeitstandschaubilder mit den Daten aus Zugversuchen in Abhängigkeit von der Temperatur in einem Festigkeitsschaubild (siehe Abbildung 2.4) zusammengetragen. Oberhalb der Schnittpunkttemperatur, die den Schnittpunkt zwischen der Streckgrenze $R_{e,T}$ (0,2%-Dehngrenze $R_{p0.2\%,T}$) und der Zeitdehngrenze $R_{p\varepsilon,T,t}$ darstellt, erfolgt die Auslegung mit den zeitabhängigen Festigkeitskennwerten. In Abbildung 2.4 werden gleiche Sicherheiten gegenüber $R_{e,T}(R_{p0.2\%,T})$ und $R_{p\varepsilon,T,t}$ zugrunde gelegt. Für den Fall von unterschiedlichen Sicherheitsbeiwerten (EN134445-3) können die zulässigen Spannungen f_{nc} (auf der Grundlage des zeitunabhängigen Materialverhaltens) und f (auf der Grundlage des zeitabhängigen Materialverhaltens) eingetragen werden. [5], [10]

Abbildung 2.4: Schematisches Festigkeitsschaubild [10]

2.2 Kriechgesetz nach Norton

Die Analyse und Vorhersage des Verformungsverhalten von Materialen im Kriechbereich erfordern die Formulierung eines Materialgesetzes. Dazu wurden eine Vielzahl von Materialgesetzen entwickelt, die das Kriechverhalten in den drei unterschiedlichen Kriechbereichen beschreiben können. Ein zur Beschreibung des sekundären Kriechbereichs weitverbreitetes Modell ist das Norton'sche Kriechgesetz nach Gleichung 2.2. [4], [11], [16], [17]

$$\dot{\varepsilon}_{CR} = K \cdot \sigma^n \qquad \qquad 2.2$$

Diese einfache Potenzfunktion gibt einen mathematischen Zusammenhang zwischen der Spannung σ und der stationären Kriechrate $\dot{\varepsilon}_{CR}$ an, mit *K* als temperaturabhängige Materialkonstante und *n* als Kriechexponent (oder Nortonexponent). Abbildung 2.5 zeigt die Spannungsabhängigkeit der stationären Kriechrate in doppeltlogarithmischer Darstellung für eine konstante Temperatur. Das Norton'sche Kriechgesetz verliert im Bereich sehr hoher Spannungen seine Gültigkeit (*power law breakdown* = plb). Diese sind jedoch für kriechbeanspruchte Bauteile nicht relevant und spielen nur im Bereich der Warmformgebung eine Rolle. Für reine Metalle nimmt der Kriechexponent Werte von n = 3 - 5 an. Bei mehrphasigen Legierungen kann er deutlich darüber liegen, bis zu n = 40. [10], [15]

Abbildung 2.5: Spannungsabhängigkeit der stationären Kriechrate [15]

Das Kriechgesetz nach Gleichung 2.2 beschreibt lediglich die Spannungsabhängigkeit der stationären Kriechrate. Für die Temperaturabhängigkeit der stationären Kriechrate gilt die Arrhenius-Beziehung. Folglich kann die Spannungs- und Temperaturabhängigkeit der stationären Kriechrate zu der Gesetzmäßigkeit nach Gleichung 2.3 zusammengefasst werden. Dabei ist C eine werkstoffabhängige Konstante, R die allgemeine Gaskonstante und Q die

Aktivierungsenergie des Kriechens. Letztere entspricht der Aktivierungsenergie der Selbstdiffusion. [9], [10], [15]

$$\dot{\varepsilon}_{CR} = C \cdot \sigma^n \cdot \exp\left(-\frac{Q}{R \cdot T}\right)$$
 2.3

2.3 Referenzspannungskonzept

Das Referenzspannungskonzept findet eine breite Verwendung in Regelwerken zur Abschätzung der Kriechdehnungen, der Lebenszeiten und des Kriechrisswachstums von Komponenten. Es bildet eine wichtige Grundlage für die Auslegung nach dem *British Nuclear Electric Company Code* R5 [18] und wird auch für den Kriechdehnnachweis in EN13445-3-Anhang B [5] verwendet. Die Grundidee bei der Entwicklung des Referenzspannungskonzeptes war es, das Kriechverhalten einer Komponente bei einer gegebenen Belastung mit dem Ergebnis eines einzelnen einachsigen Kriechversuches bei Belastung mit der Referenzspannung zu vergleichen. [11], [19]

Die globale Referenzspannung σ_{RG} errechnet sich nach [11] zu:

$$\sigma_{RG} = \frac{A_d}{A_u} \cdot RM.$$
 2.4

In Gleichung 2.4 ist A_d die wirkende Last eines Lastfalles und A_u die Traglast (plastische Grenzeinwirkung) der Struktur betrachteten mit linearelastischen-idealplastischen Werkstoffverhalten und RM die Fließgrenze, die bei der Ermittlung von A_u verwendet wurde. Die hier eingesetzten Symbole entsprechen den Angaben in EN13445-3. Um Spannungskonzentrationen zu berücksichtigen und somit eine konservative Vorhersage über die Lebensdauer zur treffen, wird im R5-Code [18] aus der Referenzspannung σ_{RG} die Bruchreferenzspannung σ_{R0} nach Gleichung 2.5 berechnet. In dieser Gleichung wird χ zur Der Bewertung der vorhandenen Spannungskonzentration verwendet. Spannungskonzentrationsfaktor das Verhältnis der χ ist maximalen elastischen Vergleichsspannung $\sigma_{V,el,max}$ zu der globalen Referenzspannung σ_{RG} bei gleicher Belastung A_d des betrachteten Bereichs. [5], [11], [19], [20]

$$\sigma_{R0} = \sigma_{RG} \cdot [1 + 0.13 \cdot (\chi - 1)]$$
2.5

Die zuvor erwähnte Referenzspannung nach Gleichung 2.4 beziehungsweise 2.5 kann je nach Anzahl der Werkstoffe der Struktur oder der lokalen Temperatur ortsunabhängig oder ortsabhängig sein. Die Traglast ist proportional zum verwendeten Festigkeitswert $A_u \propto RM$, daher hat die Berücksichtigung eines Sicherheitsbeiwertes γ in RM ($RM = R_e/\gamma$) keinen Einfluss auf die Referenzspannung. [5], [21]

2.4 Auslegungsmethoden im Kriechbereich nach EN13445-3

In diversen Ländern werden je nach Anwendung verschiedene Normen und Standards zur Auslegung von Druckgeräten entwickelt. Innerhalb der Europäischen Union regelt die Druckgeräterichtlinie (DGRL) 2014/68/EU die Auslegung, Fertigung und Konformitätsbewertung von Druckgeräten und Baugruppen mit einem zulässigen Druck über sind 0,5 bar. Mit der Konformitätsbewertung die sogenannten grundlegenden Sicherheitsanforderungen (essential safety requirements, ESR) der DGRL nachzuweisen. Zur Umsetzung der grundlegenden Sicherheitsanforderungen der DGRL wurden harmonisierte Normen ausgearbeitet, wobei auch die Anwendung anderer Regelwerke erlaubt ist. Bei Verwendung anderer Normen oder Regelwerke ist die Erfüllung der grundlegenden Sicherheitsanforderungen gesondert zu führen. Aufgrund von Vereinheitlichungsbestrebungen in Europa wurde die harmonisierte Norm EN13445 für unbefeuerte Druckbehälter durch das Europäische Komitee für Normung (European Committee for Standardization, CEN) entwickelt. [8], [22], [23]

Die harmonisierte Norm EN13445 - Unbefeuerte Druckbehälter besteht im Allgemeinen aus zehn Teilen, in denen die Anforderungen für Werkstoffe, Konstruktion, Herstellung, Inspektion und Prüfung von Druckbehältern festgelegt sind. Im ersten Teil sind allgemeine Angaben über den Anwendungsbereich sowie Begriffsdefinitionen enthalten. Die Teile zwei bis fünf beschränken sich auf Stähle mit ausreichender Duktilität. Hierzu sind im zweiten Teil die Anwendungsregeln für die Werkstoffe, die Werkstoffeinteilung und das Betriebsverhalten bei Tieftemperatur enthalten. Der dritte Teil enthält die Regeln für die Konstruktion und Berechnung von Behältern und Behälterkomponenten, zum Beispiel achssymmetrische Schalen, ebene Böden oder Flansche. Die Teile vier und fünf behandeln die Herstellung von unbefeuerten Druckbehältern sowie die erforderlichen Maßnahmen bei Inspektion und Prüfung. Im siebten Teil ist die Anleitung für die Anwendung des Konformitätsbewertungsverfahren nach der DGRL enthalten. Die Anforderungen für Druckbehälter aus Aluminium und -legierungen, Gusseisen und Nickel und -legierungen werden in den Teilen acht bis zehn festgelegt. [5], [24]

Im dritten Teil der EN 13445 sind unterschiedliche Berechnungsverfahren für die Auslegung von Behältern enthalten. Die Berechnungen werden für verschiedene Arten von Behälterkomponenten durch Formeln (Berechnungsformeln/Design by Formulae - DBF) vorgegeben. Die Formeln beschreiben die Ermittlung der erforderlichen Wanddicke oder die Überprüfung der festgelegten Abmessungen. In Kapitel 19 der Norm EN 13445-3 sind einfache Methoden für die Auslegung im Zeitstandbereich mit Berechnungsformeln angegeben. Diese sind bei einer überwiegend ruhenden Druckbelastung im Zeitstandbereich gültig. Für einen Einfachlastfall wird die erforderliche Mindestwanddicke e_a des Bauteils auf Grundlage einer Berechnungsnennspannung im Zeitstandbereich ermittelt. Die Auslegung für Mehrfachlastfälle erfolgt durch eine Bewertung der Schädigungsakkumulation aller während der Lebensdauer t wirkenden Lastfälle im Zeitstandbereich. [5], [7]

Der Analytische Zulässigkeitsnachweis - Direkte Verfahren im Anhang B von EN13445 dient einerseits als Alternative, andererseits als Ergänzung zur Auslegung nach Berechnungsformeln. Beim direkten Verfahren sind verschiedene zu führende Nachweise vorgegeben. Jeder einzelne Nachweis entspricht einer hinsichtlich des Anwendungsbereichs wesentlichen Versagensart. Die Nachweise sind für unterschiedliche Gruppen von Lastfällen mit den zugehörigen Einwirkungen zu führen. In der Norm sind für jeden Nachweis einfache verbindliche Regeln angegeben. Weiters können für jede verbindliche Regel mehrere Anwendungsregeln angegeben sein, um verschiedene Möglichkeiten zur Erfüllung der verbindlichen Regel aufzuzeigen. Die Durchführung der Nachweise erfolgt mittels Berechnungsmodellen, die üblicherweise die Theorie 1. Ordnung und einen spannungslosen Ausgangszustand verwenden. Für die Wanddicke (Nennwanddicken minus negative Toleranzen und Korrosionszuschlag) sind Berechnungswanddicken zu verwenden. Die restlichen Abmessungen des Berechnungsmodells entsprechen den Nennabmessungen der zu untersuchenden Struktur. [5], [7]

Für die Einwirkungen und Festigkeitswerte des Berechnungsmodells sind für den Nachweis entsprechende Bemessungswerte zu verwenden. Der Bemessungswert der Einwirkung A_d wird durch Multiplikation des Teilsicherheitsbeiwertes der Einwirkung γ_A mit dem charakteristischen Wert der Einwirkung berechnet. Der Bemessungswert des Festigkeitskennwertes RM_d wird durch Division des Teilsicherheitsbeiwertes γ_R mit dem charakteristischen Wert des maßgebenden Festigkeitskennwertes ermittelt. Die Teilsicherheitsbeiwerte und die charakteristischen Werte sind vom Nachweis und von den Bedingungen für die Einwirkungen abhängig. Weiters sind die zu verwendenden Werkstoffgesetze (linearelastisch oder linearelastisch-idealplastisch) entsprechend des Nachweises zu wählen. [5], [7], [8]

Werden Druckgeräte bei Betriebstemperaturen unterhalb des Zeitstandbereichs beansprucht, sind folgende Nachweise zu führen [5]:

- Tragfähigkeitsnachweis (TN)
- Einspielnachweis (EN)
- Stabilitätsnachweis (SN)
- Ermüdungsnachweis (ZEN)
- Nachweis des statischen Gleichgewichts (GN)

Werden Druckgeräte im Zeitstandbereich beansprucht, ist die Lebensdauer für jeden Kriechlastfall durch den Betreiber festzulegen. Diese muss jedoch mindestens 10.000 h für jeden Kriechlastfall betragen. Wenn keine Betriebsdauer festgelegt ist, muss der Hersteller eine Zeit von mindestens 100.000 h annehmen. Sind Kriechnachweise erforderlich, müssen zusätzlich zu den oben genannten Nachweisen folgende Nachweise geführt werden [5]:

- Kriechfestigkeitsnachweis (KFN)
- Kriechdehnungsnachweis (KDN)
- Kriechschädigung und Zyklische Ermüdung (KEN)

Nachfolgend werden kurz die verbindlichen Regeln und die Anwendungsregeln der vorgegeben Kriechnachweise im Anhang B zusammengefasst. Für methodische Details der einzelnen Nachweise außerhalb und im Zeitstandbereich sei auf die Norm EN13445-3 verwiesen. [5]

Kriechfestigkeitsnachweis (KFN)

Nach der verbindlichen Regel muss der Bemessungswert einer Einwirkung kleiner sein als die Tragfähigkeit des Berechnungsmodells, wobei der maximale Absolutwert der Hauptstrukturdehnungen weniger als 5 % betragen darf. [5]

Kriechdehnungsnachweis (KDN)

Die für den Kriechdehnungsnachweis angegebene verbindliche Regel fordert, dass in jedem Punkt des Bauteils, in dem die Berechnungstemperatur im Zeitstandbereich ist, die über alle Lebensdauern akkumulierte äquivalente Kriechstrukturdehnung 5 % nicht übersteigen darf. In der aktuell gültigen Fassung von EN13445-3 darf die verbindliche Regel jedoch nicht verwendet werden. Bis Einigkeit, über die auf Werte der Werkstoffnormen basierende Werkstoffgesetze erzielt ist, müssen in der Norm enthaltene Anwendungsregeln angewandt werden. [5]

Die erste Anwendungsregel gilt für Lastfälle mit ausreichend langen Kriechperioden, sodass der Einfluss von Anfangsbedingungen auf die Standzeit vernachlässigt werden kann. Weiters müssen die Lastfälle zeitunabhängige Temperaturen und Einwirkungen aufweisen. Die Anwendungsregel gilt als erfüllt, wenn die in jedem Punkt des Bauteils über die gesamte Lebensdauer aller Lastfälle im Zeitstandbereich akkumulierte gewichtete Standzeit (Kriechschädigungsmaß D_c) nicht größer als eins ist. Die Gewichtsfunktion ist der Kehrwert der zulässigen Standzeit für eine Referenzspannung σ_{ref} des entsprechenden Lastfalles. Die Referenzspannung wird auf Basis der Gleichung 2.5 ermittelt, mit χ als Verhältnis der plastischen Grenzeinwirkung A_u zur elastischen Grenzeinwirkung A_e . Letztere entspricht dem Beginn der Plastifizierung. [5]

Die zweite Anwendungsregel gilt für Lastfälle wie in der ersten Anwendungsregel, deren Kriechperioden durch Einwirkungszyklen mit vernachlässigbaren Kriechvorgängen und ohne Plastifizierungen unterbrochen sind. [5]

Kriechschädigung und zyklische Ermüdung (KEN)

Die Summe des Kriechschädigungsmaßes aus dem Kriechdehnungsnachweis und der Ermüdungsschädigung für zyklische Einwirkungen darf in keinem Punkt des Bauteils größer als eins sein. [5]

2.5 Kombinierte Kriech- und Ermüdungsbeanspruchung

Unter Ermüdung ist die schädigende Folgeerscheinung einer zyklischen Belastung, die bis zum Versagen des Bauteils unter der statischen Festigkeit liegt, zu verstehen. Meistens geht ein Ermüdungsschaden von einer besonders beanspruchten Stelle durch Ausbildung von Anrissen

aus. In diesem Zusammenhang sind vor allem Kerben relevant, da sie Spannungskonzentrationen hervorrufen. [9], [15], [25]

In der Norm 13445-3 ist ab 500 äquivalenten Druckzyklen ein Ermüdungsnachweis erforderlich. Die Anwendung der Regeln für die Berechnung der Ermüdungslebensdauer ist jedoch auf Behälter mit Betriebstemperaturen unterhalb des Zeitstandbereiches des Werkstoffs beschränkt. [5]

Werden Druckgeräte im Hochtemperaturbereich bei einer zyklischen Belastung betrieben, ist zusätzlich zur konventionellen Ermüdung der Einfluss einer Kriechermüdungs-Wechselwirkung zu beachten. Eine einfache Methode, um den Einfluss einer kombinierten Kriech- und Ermüdungsbeanspruchung in der Lebensdauerberechnung zu berücksichtigen, bietet die lineare Schadensakkumulation nach Gleichung 2.6. Die Teilschädigung durch Ermüdung (Ermüdungsschädigung D_f) wird ausgehend von der applizierten Zyklenzahl n_j und einer zulässigen Zyklenzahl N_j für den Ermüdungszyklus des Typs j ermittelt. Die Teilschädigungen durch Kriechen (Kriechschädigungsmaß D_c) enthält das Zeitintervall Δt^k und die zulässige Standzeit Δt_{all}^k für eine Referenzspannung des Lastfalles k. Die beiden Teilschädigungen werden unabhängig voneinander bestimmt und zu einer Gesamtschädigung D zusammengesetzt. [10], [25], [26]

$$\sum \frac{\Delta t^{\kappa}}{\Delta t^{k}_{all}} + \sum \frac{n_j}{N_j} = D_C + D_f \le D$$
 2.6

Theoretisch tritt der Bruch bei D = 1 ein. Dieser Grenzwert wird für den Nachweis der Kriechschädigung in Kombination mit der zyklischen Ermüdung im Anhang B der Norm EN13445-3 [5] angewendet. In der Praxis können jedoch aufgrund der verschiedenen Phänomene der Kriechschädigung und der Ermüdungsschädigung sowohl Abweichungen zu geringeren als auch zu höheren Werten auftreten. Im Standard ASME BPVC.III.1.NH [27] wird die Wechselwirkung zwischen Kriechen und Ermüdung durch eine Modifikation der linearen Schadensakkumulation berücksichtigt. Die lineare Grenzkurve wird durch eine vom Werkstoff abhängige konkave bilineare Grenzkurve ersetzt, sodass die zulässige Summe der Kriech- und Ermüdungsschädigung unter einem Grenzwert von eins liegt. Im R5-Code [18] ist die *Ductility Exhaustion Method* (DEM) für die Lebensdauerabschätzung bei kombinierter Kriech- und Ermüdungsbeanspruchung integriert. Bei der DEM wird die Kriechschädigung unter Verwendung der Duktilität des Werkstoffes ermittelt. [10], [11], [26], [28]

Eine Verfahrensverbesserung zur Lebensdauerabschätzung wird durch die sogenannte Strain-Range-Partitioning(SRP)-Methode erreicht. Dies erhöht allerdings den experimentellen und rechnerischen Aufwand. Bei der SRP-Methode wird ein geschlossener Beanspruchungszyklus in vier unterschiedliche Teilzyklen unterteilt und deren inelastische Dehnungsschwingbreiten werden ausgewertet. Jedem dieser Teilzyklen wird ein Schädigungsanteil zugeordnet. [10], [11]

3. Ausarbeitung einer Nachweismethode anhand eines Beispiels

Das Ziel im folgenden Abschnitt ist die Ausarbeitung einer Methode für den Kriechdehnnachweis mittels Simulation anhand eines Demonstrationsbeispiels mit zeitlich und örtlich konstanten Werkstoffparametern und Temperaturen. In der harmonisierten Norm EN13445-3 wird beim Analytischen Zulässigkeitsnachweis – Direkte Methode das Konzept der sind Teilsicherheitsbeiwerte verwendet. Bei diesem Konzept für die einzelnen Zulässigkeitsnachweise verschiedene Sicherheitsbeiwerte für die Einwirkungen und die Werkstoffkenngrößen definiert. Der Teilsicherheitsbeiwert für die Einwirkungen γ_A ist abhängig von der Art (Ständig, Veränderlich, Druck, Temperatur) und der Bedingung (zum Beispiel: ständige Einwirkung günstig oder ungünstig auf die Struktur) der Einwirkung. Der Teilsicherheitsbeiwert des Festigkeitskennwertes γ_R wird in Abhängigkeit vom Werkstoff (Ferritischer oder Austenitischer Stahl, Stahlguss) gewählt. Die Teilsicherheitsbeiwerte für den Druck γ_P und für den Festigkeitswert γ_R wurden für die nachfolgende Betrachtung weggelassen und es wird mit Auslegungswerten gearbeitet ($\gamma_R = \gamma_P = 1$). [5], [8]

3.1 Berechnungsmodell – Demonstrationsbeispiel

Für die Ausarbeitung der Nachweismethode wurde eine rotationssymmetrische Kugel-Stutzen Verbindung gewählt, die bereits in [21] und [29] zur Beschreibung des Analytischen Zulässigkeitsnachweises – Direktes Verfahren nach EN13445-3 [5] detailliert untersucht wurde. Abbildung 3.1 zeigt die Konstruktionszeichnung der Kugel-Stutzen-Verbindung mit den Nennabmessungen und den Bezeichnungen der einzelnen Strukturkomponenten. Die Kugelschale ist durch eine Doppel-HV-Naht mit der dickwandigen Verstärkung des Stutzens verbunden. Die Verbindung zwischen der Stutzen-Verstärkung und dem Stutzenrohr erfolgt mit einer V-Naht.

Abbildung 3.1: Zeichnung Kugel-Stutzen-Verbindung [21]

Wie zuvor erwähnt, soll das Demonstrationsbeispiel zeitlich und örtlich konstante Werkstoffparameter aufweisen. Auf dieser Grundlage wurde für alle Strukturkomponenten derselbe Werkstoff und eine über den gesamten Lastverlauf konstante Berechnungstemperatur T von 475 °C gewählt. Als Werkstoff wurde ein warmfester Stahl 10CrMo9-10 definiert. Die verwendeten Festigkeitskennwerte sind in der Werkstoffnorm für Flacherzeugnisse EN10028-2 enthalten. In Tabelle 3.1 sind die wichtigsten temperaturund zeitabhängigen Festigkeitskennwerte und die Werkstoffgruppe nach CEN ISO/CR 15608:2000 [30] für den Werkstoff 10CrMo9-10 zusammengefasst. Sind für die Berechnungstemperatur T in der harmonisierten Werkstoffnorm keine Werkstoffkennwerte gegeben, wurden die Zwischenwerte durch lineare Interpolation berechnet. Weiters werden für die Simulationen temperaturabhängige physikalische Werkstoffkennwerte wie Dichte, Elastizitätsmodul, Wärmeausdehnungskoeffizient und Wärmeleitfähigkeit nach Anhang O der Norm EN13445-3 benötigt. Die Zahlenwerte der physikalischen Eigenschaften sind im Anhang A zu finden. [5], [31]

Werkstoffgruppe	5.2
Werkstoffnorm	EN10028-2
R _{p0,2%,475}	179,0 MPa
$R_{m,475,100.000}$	179,0 MPa
$R_{m,475,200.000}$	160,5 MPa
R _{p1%,475,10.000}	190,0 MPa
$R_{p1\%,475,100.000}$	137,5 MPa

Tabelle 3.1: Werkstoffgruppe und Langzeiteigenschaften von 10CrMo9-10 [31], [32]

Abbildung 3.2 zeigt das Berechnungsmodell der Kugel-Stutzen-Verbindung für die FE-Analysen unter Ausnutzung der Symmetrie. Die Rotationsachse ist die y-Achse des globalen Koordinatensystems. Die komplette Struktur wurde als ein einzelner zusammenhängender Bereich modelliert. Um Spannungsspitzen und -singularitäten zu vermeiden, wurden die Innenkante der Verstärkung und der Schweißnahtübergang der Doppel-HV-Naht und der V-Naht abgerundet [29]. Die modellierten Rundungsradien sind in den Detailansichten in Abbildung 3.2 dargestellt. Bei den Wanddicken handelt es sich um Berechnungswanddicken e_a nach Gleichung 3.1 entsprechend den Vorgaben in der Norm EN13445-3. Dabei werden die negativen Wanddickentoleranzen δ_e und Korrosionszuschläge c von den Nennwanddicken e_n subtrahiert. [5]

$$e_a = e_n - \delta_e - c \qquad \qquad 3.1$$

Die Bestimmung der negativen Wanddickentoleranzen δ_e für die Kugelschale erfolgte unter Anwendung der Norm EN 10029 [33] und für die Verstärkung des Stutzens und des Stutzenrohres nach EN10216-2 [34]. Der Korrosionszuschlag *c* berücksichtigt die Abnahme der Wanddicke als Folge von Oberflächenkorrosion oder -erosion [5]. In der Tabelle 3.2 sind die den Komponenten zugeordneten Wanddicken, Korrosionszuschläge und negativen Wanddickentoleranzen zusammengefasst.

	Kugelschale	Verstärkung	Stutzen
Nennwanddicke <i>e_n</i>	47 mm	46 mm	16 mm
neg. Wanddickentoleranz	0,3 mm	5,75 mm	2 mm
Korrosionszuschlag <i>c</i>	1 mm	1 mm	1 mm
Berechnungswanddicke <i>e</i> _a	45,7 mm	39,25 mm	13 mm

Tabelle 3.2: Berechnungswanddicken Kugel-Stutzen-Verbindung

Abbildung 3.2: Berechnungsmodell, Demonstrationsbeispiel

In Abbildung 3.3 sind die Einwirkungen und Randbedingungen des Berechnungsmodells der Kugel-Stutzen-Verbindung dargestellt. Dem Modell wird ein Innendruck p_I an der Innenkontur der Kugelschale und des Stutzens aufgegeben. Im geschlossenen Sutzenrohr ergibt sich aus der Innendruckbelastung p_I eine Längsspannung σ_L (siehe Gleichung 3.2). Die Längsspannung wird dem Stutzenrohr auf der Querschnittsfläche am Ende aufgegeben. Der Freiheitsgrad am Abschluss der Kugelschale in radialer Richtung wird durch eine Lagerbedingungen auf der Abschlusskontur gewährleistet.

$$\sigma_L = \frac{p_I \cdot d_I^2}{d_A^2 - d_I^2} \tag{3.2}$$

Die Berechnungstemperatur T wird durch eine thermische Bedingung in der FE-Analyse implementiert. In der Tabelle 3.3 sind die Zahlenwerte der in diesem Kapitel analysierten Lastfälle zusammengefasst. Im Zuge der Analyse sollen ein Lastfall für einen stationären Betrieb, einer für eine komplette Entlastung und einer für eine Teilentlastung betrachtet werden. Die drei Lastfälle werden miteinander zu verschiedenen Lastzyklen kombiniert. Auf die konkrete Kombination der Lastfälle wird in den folgenden Kapiteln 3.5, 3.6 und 3.7 eingegangen. Die zulässige Lebensdauer wird mit 100.000 h definiert.

Tabelle 3.3: Lastfälle Demonstrationsbeispiel

Lastfall	k	p ₁	σ_L	Т
stationärer Betrieb	1	11,50 MPa	28,84 MPa	475 °C
Entlastung	2	0,00 MPa	0,00 MPa	475 °C
Teilentlastung	3	9,00 MPa	22,57 MPa	475 °C

Abbildung 3.3: Einwirkungen und Randbedingungen, Demonstrationsbeispiel

In der FE-Analyse wurde die Vernetzung am Berechnungsmodell mit einer Netzfeinheit von 8 mm durchgeführt. In den Regionen mit hohen Spannungskonzentrationen ist das Netz lokal verfeinert. Eine Darstellung der Vernetzung ist im Anhang B zu finden.

3.2 Bestimmung der globalen Referenzspannung

Als Basis für die Nachweismethode wurde das Referenzspannungskonzept nach Gleichung 2.4 verwendet. Die zur Ermittlung der Referenzspannung benötigte plastische Grenzeinwirkung A_u wird mithilfe einer linearelastischen-idealplastischen FE-Analyse des Berechnungsmodells mit Mises'scher Fließbedingung und assoziiertem Fließgesetz bestimmt. Die Grenzeinwirkung A_u entspricht der Tragfähigkeit des Berechnungsmodells mit der Forderung, dass der maximale Absolutwert der Hauptstrukturdehnungen einen bestimmten Grenzwert nicht überschreitet. Für diese Arbeit wurde auf den in der Norm EN13445-3 angeführten Grenzwert von 5 % zurückgegriffen. Für den Bemessungswert der Fließgrenze *RM* wurde die in der Werkstoffnorm EN10028-2 enthaltene 1%-Zeitdehngrenze $R_{p1\%,T,t}$ bei der Berechnungstemperatur $T = 475 \, ^{\circ}C$ und Lebensdauer $t = 10.000 \, h$ verwendet. [5], [31]

Zur Bestimmung der Grenzeinwirkung A_u wurde das Berechnungsmodell mit einem maximalen Innendruck p_I von 16,5 MPa und einer zugehörigen Längsspannung σ_L von 41,37 MPa belastet. Die Berechnungstemperatur beträgt 475 °C. Die Einwirkungen wurden mit Ausnahme der Temperatur innerhalb des Lastschrittes aus dem spannungsfreien Ausgangszustand linear bis zum Maximalwert erhöht. Unter Berücksichtigung des 5%-Kriteriums der maximalen Hauptstrukturdehnung wird die Tragfähigkeit des Berechnungsmodells bei einem Laststeigerungsfaktor von 0,943 erreicht. Der Wert für die Grenzeinwirkung ergibt sich somit zu 15,56 MPa.

Wie in Kapitel 3.1 angeführt sind bei diesem Beispiel drei Lastfälle zu berücksichtigen. Die Temperatur bleibt über alle betrachteten Lastfälle konstant bei 475 °C. Somit ist die plastische Grenzeinwirkung A_u für alle drei Lastfälle ident. Die globale Referenzspannung ist nur von der Höhe der Einwirkung A_d abhängig. In Tabelle 3.4 sind die Berechnungsergebnisse der globalen Referenzspannung σ_{RG}^k für die Lastfälle k angeführt.

Lastfall k	1	2	3
$\sigma^k_{V,el,max}$	287,34 MPa	0 MPa	224,87 MPa
A_u^k		15,56 MPa	
A_d^k	11,50 MPa	0,00 MPa	9,00 MPa
RM ^k		190,00 MPa	
σ^k_{RG}	140,42 MPa	0,00 MPa	109,90 MPa

Tabelle 3.4: Berechnungsergebnisse globale Referenzspannung σ_{RG}^k , Demonstrationsbeispiel

Der Vollständigkeit halber ist in Tabelle 3.4 zusätzlich die maximale elastische Vergleichsspannung (n. v. Mises) $\sigma_{V,el,max}$ für eine Berechnung der Bruchreferenzspannung σ_{R0} entsprechend Gleichung 2.5 unter Berücksichtigung eines maximalen Spannungskonzentrationsfaktors χ der Struktur angegeben. Die Stellen, an denen die Maxima auftreten, können der linearelastischen Spannungsverteilung im Anhang C entnommen werden.

Auf die Auswertung von σ_{R0} wurde verzichtet, da der Kriechdehnnachweis in dieser Arbeit mit der globalen Referenzspannung σ_{RG}^k durchgeführt wurde.

3.3 Berechnung und Variation des Kriechgesetzes

In der vorliegenden Arbeit basieren die Simulationen auf dem Norton'schen Kriechgesetz nach Gleichung 2.2. Die Berechnung des Kriechgesetzes erfolgte durch Bestimmung der Nortonparameter n und K aus in Werkstoffnormen gegebenen zeitabhängigen Werkstoffkennwerten. Als Bezugsgrößen der Kennwerte wurden die 1%-Zeitdehngrenzen $R_{p1\%,T,t}$ verwendet. Abbildung 3.4 zeigt eine allgemeine Darstellung des Norton'schen-Kriechgesetzes gemäß Gleichung 2.2 bei gegebenen Belastungsdauern t und 1%-Zeitdehngrenzen $R_{p1\%,T,t}$ unter Verwendung mittlerer Kriechraten.

Abbildung 3.4: Norton-Kriechgesetz bei gegebenen Belastungsdauern

In einer doppellogarithmischen Darstellung stellt sich das Norton'sche Kriechgesetz als Gerade dar (siehe Abbildung 3.5). Mit der Annahme einer konstanten Kriechrate kann der Nort nzwischen zwei gegebenen Belastungsdauern t nach Gleichung 3.3 ermittelt werden. Die für die Bestimmung des Kriechexponenten n benötigte Kriechrate $\dot{\varepsilon}_{CR,t}$ ist die mittlere Dehnrate für eine Gesamtdehnung von 1 % nach der Belastungsdauer t. Sie wird gemäß Gleichung 3.4 ermittelt. Der Kriechexponent n entspricht der Steigung des Kriechgesetzes in der doppellogarithmischen Darstellung.

$$n = \frac{\Delta \log(\dot{\varepsilon}_{CR})}{\Delta \log(\sigma)}$$
 3.3

$$\dot{\varepsilon}_{CR,t} = \frac{1\%}{t} \tag{3.4}$$

Abbildung 3.5: Doppeltlogarithmische Darstellung Norton-Kriechgesetz

Auf Basis einer Bezugsspannung σ_B gelten die in den Gleichungen 3.5 und 3.6 angeführten Beziehungen.

$$\frac{\dot{\varepsilon}_{CR}}{\dot{\varepsilon}_{B}} = \frac{\sigma^{n}}{\sigma_{B}{}^{n}}$$
3.5

$$\dot{\varepsilon}_{CR} = \dot{\varepsilon}_B \cdot \left(\frac{1}{\sigma_B{}^n}\right) \cdot \sigma^n \tag{3.6}$$

Die temperaturabhängige Konstante K berechnet sich somit wie folgt zu:

$$K = \dot{\varepsilon}_B \cdot \left(\frac{1}{\sigma_B{}^n}\right) = \dot{\varepsilon}_{CR,t} \cdot \left(\frac{1}{\left(R_{p1\%,T,t}\right)^n}\right).$$
3.7

In Tabelle 3.5 sind die für den betrachteten Lastfall (stationärer Betrieb, Lastfall 1, Temperatur 475 °C) berechneten Werte aufgelistet. Die Zahlenwerte der 1%-Zeitdehngrenzen für den Werkstoff 10CrMo9-10 wurden der Norm EN10028-2 entnommen. Da für die Berechnungstemperatur in der Werkstoffnorm keine Festigkeitswerte vorhanden waren, wurden diese durch lineare Interpolation zwischen den gegebenen Werten ermittelt. [31]

R _{p1%,475,10.000}	190 MPa
$R_{p1\%,475,100.000}$	137,5 MPa
Ė _{CR,10.000}	$2,7778 \cdot 10^{-10} 1/s$
Ė _{CR,100.000}	$2,7778 \cdot 10^{-11} 1/s$
$n_{Interpolation}$	7,11993
K	$1,6563 \cdot 10^{-26}$

 Tabelle 3.5: Berechnungsergebnisse Nortonparameter

Um die Ergebnisse der folgenden FE-Simulationen abzusichern, mussten die Nortonparameter variiert werden. Die Parameter wurden so angepasst, dass die berechneten Kriechgesetze einen gemeinsamen Schnittpunkt haben. In Abbildung 3.6 ist die Vorgehensweise der Variation schematisch dargestellt. Die globale Referenzspannung σ_{RG}^k eines relevanten Lastfalles soll den gemeinsamen Schnittpunkt der Kurven repräsentieren. Für die weiteren Berechnungen wurde dazu die globale Referenzspannung σ_{RG}^k für den Lastfall 1 (stationärer Betrieb) als Bezugsspannung σ_B (siehe Gleichung 3.7) definiert.

Abbildung 3.6: Variation Norton-Kriechgesetz

Für die Variation des Kriechgesetzes wurden zwei verschiedene Kriechexponenten definiert, die jeweils unterhalb und oberhalb des interpolierten Kriechexponenten n = 7,1199 liegen. Die gewählten Kriechexponenten sind n = 3 und n = 9. Die zugehörigen Koeffizienten K konnten nach Gleichung 3.7 mit der Kriechrate $\dot{\varepsilon}_{CR,RG}$ und der globalen Referenzspannung σ_{RG} als Bezugsgrößen ($\sigma_B, \dot{\varepsilon}_B$) berechnet werden. Für die Berechnung der Kriechrate $\dot{\varepsilon}_{CR,RG}$ nach Gleichung 3.4 ist es notwendig, die Belastungsdauer t_{RG} für eine Gesamtdehnung von 1 % bei der globalen Referenzspannung σ_{RG} zu bestimmen. Dies erfolgt durch Interpolation zwischen den gegebenen Zeitstandfestigkeitswerten $R_{p1\%,T,t}$ mit einem Teilsicherheitsbeiwert von $\gamma_R = 1$ nach Gleichung 3.8 [5]. Die Kriechrate $\dot{\varepsilon}_{CR,RG}$ beschreibt dabei die mittlere Dehnrate für eine Gesamtdehnung von 1 % nach der Belastungsdauer t_{RG} bei der globalen Referenzspannung. In Tabelle 3.6 finden sich die Ergebnisse der zulässigen Belastungsdauer t_{RG}^k und der zugehörigen Kriechrate $\dot{\varepsilon}_{CR,RG}^k$ auf Basis der Referenzspannungen σ_{RG}^k für die in Kapitel 3.1 definierten Lastfälle *k*. Die Berechnungsergebnisse der angepassten Nortonparameter für den Lastfall 1 sind in Tabelle 3.7 aufgelistet.

$$t_{RG} = t_A \cdot \left(\frac{t_B}{t_A}\right)^{\frac{\log(\sigma_{RG}^k) - \log(R_{p1\%,T,tA}/\gamma_R)}{\log(R_{p1\%,T,tB}/\gamma_R) - \log(R_{p1\%,T,tA}/\gamma_R)}} 3.8$$

Tabelle 3.6: Zulässige Belastungsdauer t_{RG}^k und Kriechrate $\dot{\varepsilon}_{CR,RG}^k$, Lastfall k

Lastfall <i>k</i>	1	2	3
t_{RG}^k	86.103,7 h	0 h	492.951,8 h
$\dot{arepsilon}_{CR,RG}^k$	3,2261 · 10 ⁻¹¹ 1/s	0 1/s	$5,6350 \cdot 10^{-12}1/s$

Tabelle 3.7: Variation Kriechexponent n und Koeffizient K, Lastfall 1

Variation <i>i</i>	1	2
n	3	9
K	$1,1652 \cdot 10^{-17}$	$1,5199 \cdot 10^{-30}$

Abbildung 3.7 zeigt die berechneten Norton-Kriechgesetze mit unterschiedlichen Parametern für den Werkstoff 10CrMo9-10. Diese sind für eine Berechnungstemperatur von 475 °C gültig.

Verifizierung des Kriechgesetzes sowie deren Implementierung in die FE-Software

Zur Verifizierung der berechneten Kriechgesetze wurde das Verformungsverhalten eines Zugbalkens simuliert und bewertet. Für die Simulation wurde neben den Kriechgesetzen ein linear-elastisches Materialverhalten vorgegeben. Als Last- und Randbedingungen wurden eine Temperatur von 475 °C und eine Zugbelastung gleich der globalen Referenzspannung σ_{RG} = 140,42 *MPa* für den ersten Lastfall definiert. Im stationären Betriebslastfall sollte sich nach t_{RG} = 86.104 *h* eine absolute Dehnung von 1 % ergeben. Weiters wurde die Simulation mit einer Zugbelastung gleich der 1%-Zeitdehngrenze für 10.000 h und 100.000 h durchgeführt. In Abbildung 3.8 sind die Ergebnisse aus der Simulation dargestellt. Sie verifizieren das berechnete Kriechgesetz, da eine Vergleichskriechdehnung von 1 % zu den erwarteten Belastungsdauern erreicht wurde.

Abbildung 3.8: Vergleichskriechdehnung Simulation Zugbalken

3.4 Kriechdehnnachweis mit Simulationen

In diesem Kapitel wird ein korrigiertes Kriechschädigungsmaß $D_{c,sim}$ für den Kriechdehnnachweis mit Simulationen definiert. Der Kriechdehnnachweis gilt als erfüllt, wenn das Kriechschädigungsmaß kleiner gleich eins ist. Die folgenden Begriffsbestimmungen und Beziehungen basieren auf den Ausführungen im Anhang B der harmonisierten Norm EN13445-3. [5]

Das korrigierte Kriechschädigungsmaß $D_{c,sim}$ folgt nach Gleichung 3.9 durch Multiplikation des theoretischen Kriechschädigungsmaßes $D_{c,theo}$ mit einem Erhöhungsfaktor *EF*, der eine Überhöhung der Kriechdehnung im Vergleich zum stationären Kriechen auf Basis der globalen Referenzspannung definiert. Die Berechnung des Erhöhungsfaktors *EF* wird im Kapitel 3.5 detailliert beschrieben.

$$D_{c,sim} = D_{c,theo} \cdot EF \tag{3.9}$$

Das **theoretische Kriechschädigungsmaß** $D_{c,theo}$ wird als Summe über alle Intervalldauern Δt^k dividiert durch die zulässigen Standzeiten Δt^k_{all} berechnet (siehe Gleichung 3.10). Dabei wird über alle Lastfälle k mit Berechnungstemperaturen im Kriechbereich summiert, und Δt^k_{all} wird auf der Basis der globalen Referenzspannung ermittelt.

$$D_{c,theo} = \sum_{k} D_{c,theo}^{k} = \sum_{k} \frac{\Delta t^{k}}{\Delta t_{all}^{k}}$$
3.10

Die **zulässigen Standzeiten** Δt_{all}^k für die globalen Referenzspannungen σ_{RG}^k werden auf der Grundlage von zwei gegebenen Festigkeitskennwerten nach Gleichung 3.11 und 3.12 berechnet. Als Festigkeitskennwerte werden die in Werkstoffnormen angeführten Zeitstandfestigkeiten $R_{m,T,t}$ bei Berechnungstemperatur T und Belastungsdauer t mit dem Teilsicherheitsbeiwert γ_R verwendet. Die beiden Zeitstandfestigkeitswerte $R_{m,T,tA}/\gamma_R$ und $R_{m,T,tB}/\gamma_R$ sind die nächstgelegen Werte von σ_{RG}^k mit den entsprechenden Lebensdauern t_A und t_B , sodass die Bedingung $R_{m,T,tA}/\gamma_R \ge \sigma_{RG}^k \ge R_{m,T,tB}/\gamma_R$ erfüllt ist. Ist die Referenzspannung σ_{RG}^k niedriger als die kleinste gegebene Zeitstandfestigkeit $R_{m,T,tB}/\gamma_R$, dann ist t_B die längste und t_A die nächstkürzere Lebensdauer, für die in der Werkstoffnorm eine Zeitstandfestigkeit $R_{m,T,t}$

$$\Delta t_{all}^{k} = t_A \cdot \left(\frac{t_B}{t_A}\right)^{y}$$
3.11

$$y = \frac{\log(\sigma_{RG}^{\kappa}) - \log(R_{m,T,tA}/\gamma_R)}{\log(R_{m,T,tB}/\gamma_R) - \log(R_{m,T,tA}/\gamma_R)}$$
3.12

3.5 Analyse für konstante Last und Temperatur

Im Folgenden wird das Verformungsverhalten der Kugel-Stutzen-Verbindung für den Lastfall 1 im stationären Betrieb bei einer gesamten Belastungsdauer von 100.000 h analysiert. Nach der anfänglichen Lastaufbringung wirkt eine über die gesamte Belastungsdauer konstante Innendruckbelastung p_I von 11,5 MPa und Temperatur von 475 °C. Für den zeitunabhängigen Bereich wird dem Berechnungsmodell ein linear-elastisches Materialverhalten vorgegeben. Das Verhalten im Zeitstandbereich wird in den FE-Analysen durch die in Kapitel 3.3 berechneten Kriechgesetze festgelegt.

Bei Betrachtung des maximalen Vergleichsspannungsverlauf nach von Mises in Abbildung 3.9 wird ersichtlich, dass zu Beginn (Lastaufbringung) bei allen Variationen der Kriechgesetze ein starker Spannungsabfall auftritt, bis sich allmählich stationäres Kriechen einstellt. Die Spannungskurven mit einem größeren Kriechexponenten n zeigen einen rascheren Spannungsabbau und nehmen im stationären Bereich geringere Werte an.

Abbildung 3.9: Verlauf max. Vergleichsspannung (n. v. Mises)

Ein höherer Kriechexponent *n* führt zu höheren Kriechraten $\dot{\varepsilon}_{CR}$, da für jede Variation die maximalen Vergleichsspannungen oberhalb der relevanten Referenzspannung liegen (siehe auch Abbildung 3.7). In Abbildung 3.10 sind die maximalen Vergleichskriechdehnungen über die Belastungsdauer aus der Simulation aufgetragen. Nach einer Belastungsdauer von 100.000 h ergeben sich für die Variation 2 (*n* = 9) des Kriechgesetzes aufgrund der höheren Kriechrate die größten Kriechdehnungen. Die Kriechdehnungen bleiben für die alle drei Variationen unterhalb von 5 %.

Entsprechend Gleichung 3.13 wurden Erhöhungsfaktoren durch den Vergleich der Kriechdehnungen aus den Simulationen mit den Kriechdehnungen auf der Basis der globalen Referenzspannung ermittelt. Die Werte für die Vergleichskriechdehnungen $\varepsilon_{CR,V,t}$ zum Zeitpunkt t_{RG} wurden durch Interpolation aus den Simulationsergebnissen berechnet. Mithilfe der Erhöhungsfaktoren können die Kriechkurven approximiert werden (siehe Gleichung 3.14).

$$EF = \frac{\varepsilon_{CR,V,tRG}}{\dot{\varepsilon}_{CR,RG} \cdot t_{RG}}$$
3.13

$$\varepsilon_{CR} = EF \cdot \dot{\varepsilon}_{CR,RG} \cdot t \qquad 3.14$$

Abbildung 3.10: Kriechkurven stationäres Kriechen aus der Simulation

Die Erhöhungsfaktoren wurden zusätzlich zum globalen Verhalten der Struktur an zwei lokalen Punkten (Punkt A und B, siehe Abbildung 3.11) ausgewertet. Das Maximum der Vergleichsspannung liegt nach der Lastaufbringung im Punkt A und verlagert sich nach einer Belastungsdauer von 100.000 h in den Punkt B. Abbildung 3.12 und Abbildung 3.13 zeigen die Verteilung der Vergleichsspannung zu den beiden Zeitpunkten für den interpolierten Kriechexponenten. Die Kriechkurven und die Verteilung der Vergleichsspannung der Variationen sind im Anhang C zu finden.

Abbildung 3.11: Auswertungspunkte A und B, Kugel-Stutzen-Verbindung

Abbildung 3.12: Vergleichsspannung (n. v. Mises) bei Lastaufbringung, n-Interpolation

Abbildung 3.13: Vergleichsspannung (n. v. Mises), Belastungsdauer 100.000 h, n-Interpolation

In Tabelle 3.8 sind die berechneten Erhöhungsfaktoren *EF* für die Variationen i und Auswertungspunkte A und B zusammengefasst. Das Kriechgesetz mit dem interpolierten Kriechexponenten n wird im Folgenden mit dem Index i = 0 gekennzeichnet.

Variation <i>i</i>	n	<i>EF</i> -global	<i>EF-</i> Punkt A	<i>EF</i> -Punkt B
0	7,1199	3,362	2,737	3,362
1	3	2,378	2,378	2,367
2	9	3,717	2,865	3,717

Tabelle 3.8: Ergebnisse Erhöhungsfaktoren

Mit den oben ermittelten Ergebnissen konnte der in Kapitel 3.4 definierte Kriechdehnnachweis durchgeführt werden. Die globale Referenzspannung σ_{RG}^1 ist niedriger als die kleinste in der Werkstoffnorm EN10028-2 [31] gegebene Zeitstandfestigkeit $R_{m,T,t}$ für den Werkstoff 10CrMo9-10. In Tabelle 3.9 sind die Zeitstandfestigkeiten mit den entsprechenden Lebensdauern zur Ermittlung der zulässigen Standzeit Δt_{all}^1 angeführt. Die berechneten Zahlenwerte der zulässigen Standzeit Δt_{all}^1 (nach Gleichung 3.11 und 3.12) und des theoretischen Kriechschädigungsmaßes $D_{c,theo}$ (nach Gleichung 3.10) sind in Tabelle 3.10 zusammengefasst.

Ϋ́R	1
t _A	100.000 h
$R_{m,475,tA}$	179,00 MPa
t _B	200.000 h
$R_{m,475,tB}$	160,50 MPa

Tabelle 3.10: Ergebnisse zulässige Standzeit und theoretisches Kriechschädigungsmaß D_{c,theo}

σ_{RG}^1	140,42 MPa
∆t	100.000 h
Δt_{all}^1	467.565,8 h
D _{c,theo}	0,214

Aus den Ergebnissen von Tabelle 3.8 und Tabelle 3.10 konnte das korrigierte Kriechschädigungsmaß $D_{c,Sim}$ nach Gleichung 3.9 berechnet werden. Die Ergebnisse der verschiedenen Variationen und Auswertepunkte A und B sind in Tabelle 3.11 aufgelistet. Das korrigierte Kriechschädigungsmaß ist in allen Punkten kleiner als eins. Somit gilt der Kriechdehnnachweis als erfüllt.

Variation <i>i</i>	n	D _{c,Sim} - Punkt A	D _{c,Sim} - Punkt B
0	7,1199	0,585	0,719
1	3	0,509	0,506
2	9	0,613	0,795

Tabelle 3.11: Korrigiertes Kriechschädigungsmaß D_{c.Sim}

3.6 Analyse für Entlastung und konstante Temperatur

Durch die berechneten Kriechgesetze wird eine mittlere Kriechrate vorgegeben und in den Simulationen kein Primärkriechen berücksichtigt. Diese Näherung ist nur bei konstanter Fließrichtung gültig. Bei einer Unterbrechung des stationären Kriechlastfalles ist festzustellen, ob es zu einer Fließrichtungsumkehr kommt. Da bei einer Fließrichtungsumkehr wiederholt Primärkriechen auftritt, wäre die mittlere Kriechrate zu klein. In diesem Kapitel wurde versucht, ein Rückkriechen durch eine komplette Entlastung des stationären Lastfalles bei konstanter Temperatur herbeizuführen. Des Weiteren müssen Laständerungen vorwiegend ohne Plastifizierungen möglich sein.

In Abbildung 3.14 ist der für die FE-Analysen festgelegte Lastverlauf dargestellt. Dieser setzt sich aus dem in Kapitel 3.1 definierten Lastfall 1 für stationären Betrieb und Lastfall 2 für Entlastung zusammen.

Abbildung 3.14: Lastverlauf mit Entlastungszyklen, Demonstrationsbeispiel

Am Beginn des Lastverlaufs mit Entlastungszyklen (siehe Abbildung 3.14) wird die Temperatur T auf 475 °C und der Innendruck p_I auf 11,5 MPa erhöht und konstant gehalten. Dies entspricht

dem Lastfall 1 für stationären Betrieb. Nach 2.000 h folgt der Lastfall 2 für Entlastung. Dabei wird der Innendruck für 500 h auf 0 MPa abgesenkt. Anschließend folgt wieder Lastfall 1 und der Druck wird auf 11,5 MPa erhöht und bis zum nächsten Entlastungszyklus für 2.000 h konstant gehalten. Um den Konfigurationsaufwand und die Rechendauer der Simulation zu begrenzen, endet der Lastverlauf nach 24.500 h. Somit ergibt sich ein Lastverlauf, der zehn stationäre Betriebsfälle und neun Entlastungen enthält. Die Temperatur bleibt über den gesamten Lastverlauf konstant auf 475 °C. Neben den in Kapitel 3.3 berechneten Kriechgesetzen wurde dem Berechnungsmodell ein linear-elastisches Materialverhalten vorgegeben. Die FE-Analysen erfolgten separat für jede Kriechgesetzvariation mit den unterschiedlichen Nortonparametern. Anschließend wurden die Ergebnisse wieder an zwei lokalen Punkten der Struktur ausgewertet (siehe Abbildung 3.11).

Nach der Simulationszeit von 24.500 h liegt die maximale Vergleichsspannung für die Variation 0 und 2 (n-Interpolation und n = 9) auf der Außenseite beim Übergang von der Kugelschale zur Verstärkung in der Rundung im Punkt B (siehe Abbildung 3.15 und Abbildung 3.16). Für die Variation 1 (n = 3) liegt die maximale Vergleichsspannung nach 24.500 h auf der Innenseite in Punkt A (siehe Abbildung 3.17). Die hohen lokalen Spannungen führen aufgrund der Spannungsabhängigkeit des Kriechgesetzes zu einer hohen Kriechrate. Die maximale Kriechdehnung tritt somit an den hochbelasteten Punkten auf. Daher ist die Durchführung des Kriechdehnnachweises an diesen Punkten für die gesamte Struktur ausreichend. Die aus den FE-Analysen ausgewerteten zeitlichen Verläufe der Vergleichsspannung (n. v. Mises) in den Punkten A und B sind im Anhang D zu finden.

Abbildung 3.15: Vergleichsspannung (n. v. Mises), Belastungsdauer 24.500 h, n-Interpolation

Abbildung 3.16: Vergleichsspannung (n. v. Mises), Belastungsdauer 24.500 h, n = 9

Abbildung 3.17: Vergleichsspannung (n. v. Mises), Belastungsdauer 24.500 h, n = 3

In Abbildung 3.18 und Abbildung 3.19 sind die Kriechkurven im Punkt A und B für den Entlastungszyklus und stationären Betrieb dargestellt. Bis zum ersten Entlastungszyklus sind die Kurvenverläufe ident. Ab der ersten Entlastung entfernt sich die Kurve mit jedem weiteren Entlastungszyklus von der stationären Kriechkurve. Im Vergleich zum stationären Kriechen kommt es infolge der wiederholten Entlastung zu geringeren Kriechdehnungen.

Abbildung 3.18: Kriechkurven aus der Simulation, Punkt A, Entlastungszyklus

Abbildung 3.19: Kriechkurven aus der Simulation, Punkt B, Entlastungszyklus

Um den Kriechdehnnachweis mit den Ergebnissen aus der Simulation durchzuführen, werden die Erhöhungsfaktoren *EF* benötigt. Dazu wurden zunächst die Vergleichskriechdehnungen $\varepsilon_{CR,V,100.000}$ nach der geforderten Lebensdauer *t* von 100.000 h aus den Simulationsergebnissen extrapoliert. In Tabelle 3.12 sind die Extrapolationsergebnisse für den Entlastungszyklus aufgelistet. Im Punkt B ergeben sich für den interpolierten Kriechexponenten und die Variation 2

(n = 9) die maximalen Kriechdehnungen. Für die Variation 1 (n = 3) befindet sich das Maximum im Punkt A. Der Grund liegt darin, dass im Gegensatz zu den anderen Variationen die maximale Vergleichsspannung im Punkt A auftritt (siehe Abbildung 3.17).

Variation <i>i</i>	n	Punkt A	Punkt B
0	7,1199	$2,5863 \cdot 10^{-02}$	$3,1737 \cdot 10^{-02}$
1	3	$2,2324 \cdot 10^{-02}$	$2,2247 \cdot 10^{-02}$
2	9	$2,7119 \cdot 10^{-02}$	$3,5139 \cdot 10^{-02}$

Tabelle 3.12: Extrapolationsergebnisse Vergleichskriechdehnung $\varepsilon_{CR,V,100.000}$

Die Erhöhungsfaktoren werden durch den Vergleich der extrapolierten Kriechdehnungen mit den Kriechdehnungen auf Basis der Referenzspannung nach Gleichung 3.15 berechnet. Bei Letzteren werden die unterschiedlichen Lastfälle k durch die entsprechenden Intervalldauern Δt^k und die in Kapitel 3.3 berechneten mittleren Kriechraten $\dot{\varepsilon}_{CR,RG}^k$ auf Basis der Referenzspannungen σ_{RG}^k berücksichtigt. Die gesamte Kriechdehnung $\varepsilon_{CR,RG}$ auf Basis der globalen Referenzspannung ergibt sich durch Aufsummierung der Kriechdehnungen über alle Lastfälle k (siehe Gleichung 3.16). Über die gesamte Lebensdauer von 100.000 h treten die beiden Lastfälle jeweils 40-mal $(n_I^1 = n_I^2 = 40)$ auf. Der Lastfall 1 wirkt für eine Dauer von insgesamt 80.000 h. In den restlichen 20.000 h tritt Lastfall 2 auf. Da die Referenzspannung bei Entlastung null ist, werden in diesem Intervall keine Kriechdehnungen $(\varepsilon_{CR,RG}^2 = 0)$ akkumuliert (siehe Tabelle 3.13). In Abbildung 3.18 und Abbildung 3.19 ist die Kriechkurve für stationäres Kriechen auf Basis der Referenzspannung mithilfe der über die gesamten Kriechdehnungen gemittelten Kriechrate $\overline{\varepsilon}_{CR,RG}$ dargestellt. Die berechneten Erhöhungsfaktoren sind in Tabelle 3.14 aufgelistet. In Punkt B ergeben sich mit Ausnahme der ersten Variation (n = 3) die größten Erhöhungsfaktoren.

Lastfall k	1	2	
Δt^k	2.000 h	500 h	
n_I^k	40	40	
$\dot{oldsymbol{arepsilon}}_{CR,RG}^k$	3,2261 · 10 ⁻¹¹ 1/s	0,00 1/s	
$\varepsilon^k_{CR,RG}$	9,2911 · 10 ⁻³	0,00	
E _{CR,RG}	9,2911 · 10 ⁻³		
$\overline{\dot{\varepsilon}}_{CR,RG}$	$2,5809 \cdot 10^{-11} \ 1/s$		

Tabelle 3.13: Kriechdehnung auf Basis der globalen Referenzspannung, Entlastungszyklus

$$EF = \frac{\varepsilon_{CR,V,t}}{\varepsilon_{CR,RG}}$$
 3.15

$$\varepsilon_{CR,RG} = \sum_{k} \dot{\varepsilon}_{CR,RG}^{k} \cdot \Delta t^{k}$$
3.16

Variation <i>i</i>	п	<i>EF</i> -global	<i>EF</i> -Punkt A	<i>EF-</i> Punkt B
0	7,1199	3,416	2,784	3,416
1	3	2,403	2,403	2,394
2	9	3,782	2,919	3,782

Tabelle 3.14: Ergebnisse Erhöhungsfaktoren, Entlastungszyklus

In den Tabelle 3.16 und Tabelle 3.17 sind die Ergebnisse des Kriechdehnnachweises entsprechend Kapitel 3.4 angeführt. Die für die Ermittlung der zulässigen Standzeit Δt_{all}^k nach Gleichung 3.11 und 3.12 verwendeten Zeitstandfestigkeiten $R_{m,T,t}$ und Lebensdauern t sind in Tabelle 3.15 aufgelistet. Bei der Ermittlung des theoretischen Kriechschädigungsmaßes werden die zwei vorhanden Lastfälle 1 und 2 berücksichtigt. Für diese Analyse wäre die alleinige Betrachtung des stationären Betriebes (Lastfall 1) ausreichend, da das theoretische Kriechschädigungsmaß $D_{c,theo}$ für den Lastfall 2 null ist. Das korrigierte Kriechschädigungsmaß $D_{c,Sim}$ ist in allen Punkten kleiner eins. Der Kriechdehnnachweis gilt somit für die gesamte Struktur als erfüllt.

Tabelle 3.15: Zeitstandfestigkeiten und Lebensdauern, 10CrMo9-10 [31]

γ_R	1
t_A	100.000 h
$R_{m,T,tA}$	179 MPa
t _B	200.000 h
$R_{m,T,tB}$	160,5 MPa

Tabelle 3.16: Ergebnisse zulässige Standzeit und theoretisches Kriechschädigungsmaß D_{c,theo}

Lastfall <i>k</i>	1	2
σ^k_{RG}	140,42 MPa	0 MPa
Δt_{all}^k	467.565,8 h	0 h
Δt^k	2.000 h	500 h
n_I^k	40	40
$D_{c,theo}^k$	0,171	0
D _{c,theo}	0,171	

Betrachtet man den meistbeanspruchten Punkt B der Variation 2 (n = 9) mit einem Kriechschädigungsmaß $D_{c,Sim}$ von 0,647, wäre eine Zyklenzahl des ersten Lastfalles von 61 Zyklen zulässig. Dies entspricht einer gesamten Lebensdauer von 152.500 h.

Variation <i>i</i>	n	Punkt A	Punkt B
0	7,1199	0,476	0,585
1	3	0,411	0,410
2	9	0,499	0,647

Tabelle 3.17: Korrigiertes Kriechschädigungsmaß D_{c,Sim}

Durch das fortschreitende Kriechen im stationären Betrieb und die anschließende Entlastung resultiert ein Eigenspannungszustand. Wird die Temperatur konstant gehalten, können diese Eigenspannungen durch Rückkriechen abgebaut werden. Hier sei erwähnt, dass in der Praxis eine Entlastung in der Regel mit einer Absenkung der Betriebstemperatur unterhalb des für Kriechen relevanten Bereichs einhergeht. Durch die Bildung der Differenz $\varepsilon_{CR,Diff}$ von der absoluten Vergleichskriechdehnung und der akkumulierten Vergleichskriechdehnung aus der Simulation konnten die Bereiche der Struktur identifiziert werden, in denen eine Richtungsumkehr beziehungsweise eine Richtungsünderung vorliegt. Bis jetzt sind keine Erfahrungs- oder Grenzwerte für den Einfluss der Richtungsumkehrungen vorhanden. Ist diese Differenz nur lokal vorhanden, ist davon auszugehen, dass sie keinen Einfluss auf das globale Verhalten der Struktur haben und die berechnete Verformung verwendet werden kann.

Abbildung 3.20 zeigt die Differenz $\varepsilon_{CR,Diff}$ der Vergleichskriechdehnung und der akkumulierten Vergleichskriechdehnung für den Entlastungszyklus mit dem Kriechexponent $n_{Interpolation}$.

Abbildung 3.20: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, Entlastungszyklus, n-Interpolation

Die größte Differenz befindet sich auf der Innenseite der Verstärkung im Bereich der Rundung (siehe Abbildung 3.20) und hat nach einer Belastungsdauer von 24.500 h eine Größenordnung von 5,1 % von der absoluten Vergleichskriechdehnung. Im Anhang E finden sich die ergänzenden Abbildungen der Differenz der Vergleichskriechdehnungen für die Kriechgesetzvariation. In Tabelle 3.18 finden sich die absoluten Werte der Differenz $\varepsilon_{CR,Diff}$ und der Vergleichskriechdehnung $\varepsilon_{CR,V}$ sowie die Größenordnung der Differenz zur Vergleichskriechdehnung $\varepsilon_{CR,Diff}/\varepsilon_{CR,V}$ in Prozent.

Tabelle 3.18: Anteil $\varepsilon_{CR,Diff}$ an $\varepsilon_{CR,V}$ bei Entlastung, n-Interpolation

Punkt	E _{CR,Diff}	ε _{cr,v}	$\varepsilon_{CR,Diff}/\varepsilon_{CR,V}$
Α	$3,6948 \cdot 10^{-4}$	$7,3095 \cdot 10^{-3}$	5,1 %
В	$1,5437 \cdot 10^{-6}$	$8,7595 \cdot 10^{-3}$	0,02 %

Damit eine Unterscheidung zwischen Rückkriechen und einer Änderung der Kriechrichtung getroffen werden kann, wurden an beiden Punkten die geeigneten Komponenten der Vergleichsspannung und Kriechdehnungen ausgewertet und in einem σ/ϵ –Diagramm dargestellt. Im Punkt A sind die Komponenten in Umfangsrichtung relevant, im Punkt B die Längsrichtung. Das σ/ϵ –Diagramm in Abbildung 3.21 zeigt der Verlauf der Umfangsspannung über der Kriechdehnung in Umfangsrichtung für den Punkt A. Bei allen Kurvenverläufen lässt sich beim Entlastungslastfall eine Hysterese beobachten. Dies zeigt die lokale Umkehr der Kriechrichtung. Dadurch ändert sich im Bereich rund um den Punkt A der Spannungszustand während der Entlastung (siehe Abbildung 3.22 und Abbildung 3.23). Bei erneuter Belastung kommt es zu einer Spannungserhöhung, sodass die Phase der Spannungsumlagerung im primären Kriechbereich nach jedem Entlastungszyklus erneut beginnt.

Abbildung 3.21: σ/ε-Diagramm, Punkt A, Umfangsrichtung, Entlastungszyklus

Abbildung 3.22: Vergleichsspannung (n. v. Mises), Entlastungszyklus, 14.500 h, n-Interpolation

Abbildung 3.23: Vergleichsspannung (n. v. Mises), Entlastungszyklus, 15.000 h, n-Interpolation

Kommt es aufgrund von unterschiedlichen Lastfällen zu zyklischen inelastischen Dehnungen, ist für diese Stellen eine zusätzliche Ermüdungsanalyse in Betracht zu ziehen. Für eine Ermüdungsbewertung sind die Schwankungsbreiten der Spannungen und Dehnungen wichtige Beanspruchungskennwerte. Wie eingangs erwähnt, wird im Rahmen dieser Arbeit nicht näher auf eine detaillierte Ermüdungsanalyse eingegangen. Eine Auswertung der Dehnungs- und Spannungsschwingbreiten dient rein informativen Zwecken. [11], [25], [35]

In Tabelle 3.19 sind die Dehnungs- und Spannungsschwingbreiten in Umfangsrichtung im Punkt A des letzten Entlastungslastzyklus für eine noch erforderliche Ermüdungsanalyse angeführt. Für

die Auswertung der Schwingbreiten ist die Betrachtung des letzten Entlastungslastzyklus ausreichend, da zu erwarten ist, dass sich in der Praxis mit fortschreitender Betriebszeit ein stationärer Zustand einstellen wird. Bei den Dehnungsschwingbreiten wird zwischen elastischen Dehnungen und inelastischen Kriechdehnungen unterschieden. Da für das zeitunabhängige Verhalten mit einem linearelastischen Werkstoffmodell gerechnet wurde, treten keine plastischen Dehnungen auf. Für die Spannungen wurden die elastische Spannungsschwingbreite $\Delta \sigma_{EL,U}$ zwischen den beiden betrachteten Lastfällen (stationärer Betrieb und Entlastung) des letzten Entlastungslastzyklus und die gesamte Spannungsschwingbreite $\Delta \sigma_{GES,U}$ über den Entlastungslastfall ausgewertet. Die negativen Vorzeichen gesamten der Kriechdehnungsschwingbreiten in Umfangsrichtung kennzeichnen die Umkehrung der Kriechrichtung.

Tabelle 3.19: Dehnungs- und Spannungsschwingbreiten, letzter Entlastungslastfall, Punkt A

Variation <i>i</i>	n	$\Delta \sigma_{\textit{GES}, \textit{U}}$	$\Delta \boldsymbol{\varepsilon}_{\boldsymbol{CR},\boldsymbol{U}}$	$\Delta \sigma_{EL,U}$	$\Delta \boldsymbol{\varepsilon}_{\boldsymbol{EL},\boldsymbol{U}}$
0	7,1199	280,49 MPa	$-2,160 \cdot 10^{-5}$	276,87 MPa	$1,6010 \cdot 10^{-3}$
1	3	279,95 MPa	$-1,910 \cdot 10^{-5}$	276,87 MPa	1,6010 · 10 ⁻³
2	9	280,54 MPa	$-2,190 \cdot 10^{-5}$	276,87 MPa	1,6010 · 10 ⁻³

Abbildung 3.24: σ/ε-Diagramm, Punkt B, Längsrichtung, Entlastungszyklus

Abbildung 3.24 zeigt den Verlauf der Spannung über der Kriechdehnung in Längsrichtung für den Punkt B. Im Spannungs-Dehnungsverlauf tritt nur für den Kriechexponent n = 3 eine kleine Hysterese mit sehr geringen Dehnungsschwingbreiten bei der Entlastung auf. Dies zeigt eine minimale Richtungsumkehr an, in der die Spannungsumlagerung durch Kriechen zu

vernachlässigen ist. Aufgrund der geringen Dehnungsschwingbreite ist die Hysterese während der Entlastung trotz einer Ausschnittsvergrößerung im Diagrammverlauf nicht ersichtlich. Für die anderen Kriechexponenten (*n*-Interpolation & n = 9) ergeben sich während der Entlastung keine Kriechdehnungen. Für erforderliche Ermüdungsanalysen sind in Tabelle 3.20 die Dehnungs- und Spannungsschwingbreiten in Längsrichtung im Punkt B des letzten Entlastungslastzyklus aus der Simulation angeführt.

Tabelle 3.20: Dehnungs- und Spannungsschwingbreiten, letzter Entlastungslastfall, Punkt B

Variation <i>i</i>	n	$\Delta \sigma_{GES,L}$	$\Delta \boldsymbol{\varepsilon}_{\boldsymbol{CR},\boldsymbol{L}}$	$\Delta \sigma_{EL,U}$	$\Delta \boldsymbol{\varepsilon}_{\boldsymbol{EL},\boldsymbol{L}}$
0	7,1199	241,41 MPa	0,000	241,43 MPa	$1,0417 \cdot 10^{-3}$
1	3	241,44 MPa	$-4,000 \cdot 10^{-7}$	241,43 MPa	$1,0417 \cdot 10^{-3}$
2	9	241,42 MPa	0,000	241,43 MPa	$1,0417 \cdot 10^{-3}$

3.7 Analyse für Teilentlastung und konstante Temperatur

Der in Abbildung 3.25 dargestellte Lastverlauf mit Teilentlastungszyklen stimmt in der Abfolge und den Intervalldauern mit dem zuvor betrachteten Lastverlauf mit Entlastungszyklen in Abbildung 3.14 überein. Der Unterschied liegt beim Lastfall 2. Dieser wird durch den Lastfall 3 für Teilentlastung ersetzt. Im Lastfall 3 wird der Innendruck für 500 h auf 9 MPa abgesenkt. Die Temperatur bleibt über die gesamte Belastungsdauer konstant auf 475 °C. Neben dem Kriechgesetz aus Kapitel 3.3 wurde dem Berechnungsmodell wieder ein linear-elastisches Materialverhalten vorgegeben. Die FE-Analyse erfolgte wie in den vorigen Kapiteln separat für die unterschiedlichen Variationen des Kriechgesetzes und die Analyseergebnisse wurden wieder an den in Abbildung 3.11 definierten Punkten der Struktur ausgewertet.

Abbildung 3.25: Lastverlauf mit Teilentlastungszyklen, Demonstrationsbeispiel

In Tabelle 3.21 sind die Extrapolationsergebnisse der Vergleichskriechdehnung $\varepsilon_{CR,V,100,000}$ nach einer Lebensdauer von 100.000 h für den Teilentlastungszyklus zusammengefasst. Die Werte wurden aus den Simulationsergebnissen für 24.500 h extrapoliert. Die absoluten Werte der Kriechdehnungen verhalten sich ähnlich wie in Kapitel 3.6 für Entlastung und konstante Temperatur. Insgesamt sind die absoluten Kriechdehnungen kleiner als bei rein stationärem Betrieb, sie liegen jedoch über denen des Lastverlaufs mit Entlastungszyklen. Hier traten auch für die Variation 1 (n = 3) in Punkt A die maximalen Kriechdehnungen aufgrund der lokalen maximalen Vergleichsspannung auf. Die zum Entlastungszyklus zugehörigen Vergleichsspannungsverteilungen zum Simulationsendpunkt (24.500 h) befinden sich im Anhang C dieser Arbeit.

T 1 11 2 2 1	D (1)	1	1 • 1 1 • 1 1	1
Tabelle 3 21.	Extrapolationser	gebnisse Verg	oleichskriechde	hning Ecruded and
1 400110 5.21.	Endupolationser			1110115 CCR.V.100.000

Variation <i>i</i>	n	Punkt A	Punkt B
0	7,1199	2,6930 · 10 ⁻⁰²	$3,3050 \cdot 10^{-02}$
1	3	$2,4837 \cdot 10^{-02}$	$2,4755 \cdot 10^{-02}$
2	9	$2,7835 \cdot 10^{-02}$	3,6073 · 10 ⁻⁰²

Abbildung 3.26: Kriechkurven aus der Simulation, Punkt A, Teilentlastungszyklus

Abbildung 3.27: Kriechkurven aus der Simulation, Punkt B, Teilentlastungszyklus

Die beiden Lastfälle treten während der gesamten Lebensdauer von 100.000 h jeweils 40-mal $(n_I^k = 40)$ auf. Die gesamte Kriechdehnung $\varepsilon_{CR,RG}$ auf Basis der Referenzspannung wird durch die Summe der in den beiden Lastfällen *k* resultierenden Kriechdehnungen nach Gleichung 3.16 berechnet (siehe Tabelle 3.22). In Tabelle 3.23 sind die nach Gleichung 3.15 berechneten Erhöhungsfaktoren aufgelistet. Im Vergleich zum Entlastungszyklus ergeben sich für die Variation 1 (n = 3) größere Erhöhungsfaktoren. Für die beiden anderen Variationen liegen die Erhöhungsfaktoren unterhalb der Ergebnisse des Entlastungszyklus aus Kapitel 3.6.

Lastfall k	1	3	
Δt^k	2.000 h	500 h	
n_I^k	40	40	
$\dot{oldsymbol{arepsilon}}_{CR,RG}^k$	3,2261 · 10 ⁻¹¹ 1/s	$5,6350 \cdot 10^{-12} \ 1/s$	
$arepsilon_{CR,RG}^k$	9,2911 · 10 ⁻³	$4,0572 \cdot 10^{-4}$	
E _{CR,RG}	9,6968 · 10 ⁻³		
$\overline{\dot{\varepsilon}}_{CR,RG}$	2,6936 · 2	$10^{-11} 1/s$	

Tabelle 3.22: Kriechdehnung auf Basis der globalen Referenzspannung, Teilentlastungszyklus

Variation <i>i</i>	n	EF-global	EF-Punkt A	EF-Punkt B
0	7,1199	3,408	2,777	3,408
1	3	2,561	2,561	2,553
2	9	3,720	2,870	3,720

Tabelle 3.23: Ergebnisse Erhöhungsfaktoren, Teilentlastungszyklus

In Tabelle 3.24 und Tabelle 3.25 sind die Ergebnisse des Kriechdehnnachweises für den Teilentlastungszyklus angeführt. Beim Nachweis werden die Lastfälle 1 und 3 berücksichtigt. Die Zeitstandfestigkeiten $R_{m,T,t}$ und Lebensdauern t für die Ermittlung der zulässigen Standzeit Δt_{all}^k nach Gleichung 3.11 und 3.12 finden sich in Tabelle 3.15. Das korrigierte Kriechschädigungsmaß ist in allen Punkten kleiner eins. Der Kriechdehnnachweis gilt somit für die gesamte Struktur als erfüllt. Betrachtet man den meistbeanspruchten Punkt B der Variation 2 mit einem Kriechschädigungsmaß $D_{c,Sim}$ von 0,670, wären 59 Zyklen zulässig. Dies entspricht einer gesamten Lebensdauer von 147.500 h.

Tabelle 3.24: Ergebnisse zulässige Standzeit und theoretisches Kriechschädigungsmaß D_{c.theo}

Lastfall k	1	3	
σ^k_{RG}	140,42 MPa	109,90 MPa	
Δt_{all}^k	467.565,8 h	2.218.631,1 h	
Δt^k	2.000 h	500 h	
n_I^k	40	40	
$D_{c,theo}^k$	0,171	0,009	
D _{c,theo}	0,1	80	

Tabelle 3.25: Korrigiertes Kriechschädigungsmaß D_{c,Sim}

Variation <i>i</i>	n	Punkt A	Punkt B
0	7,1199	0,475	0,614
1	3	0,438	0,460
2	9	0,491	0,670

In diesem Kapitel wird auf die Auswertung und Darstellung der Differenz $\varepsilon_{CR,Diff}$ der Vergleichskriechdehnung und der akkumulierten Vergleichskriechdehnung verzichtet, da die Vorgehensweise zur Identifikation von Änderungen der Kriechrichtung bereits in Kapitel 3.6 gezeigt wurde.

Zur Bewertung, ob in den Auswertepunkten (siehe Abbildung 3.11) eine Fließrichtungsumkehr eintritt, werden wieder die geeigneten Komponenten der Vergleichsspannung und der Kriechdehnung ausgewertet und in einem σ/ϵ -Diagramm dargestellt (siehe Abbildung 3.28 und Abbildung 3.29). Wie zuvor erwähnt, sind für den Punkt A die Komponenten in Umfangsrichtung relevant und im Punkt B die Komponenten in Längsrichtung. Betrachtet man die beiden Kurvenverläufe in Abbildung 3.28 und Abbildung 3.29, treten während des Lastwechsels keine Hysteresen auf. Dies wird für alle drei Kriechgesetzvariationen beobachtet. Jedoch kriecht die Struktur in den Auswertepunkten A und B mit einer geringeren Kriechrate aufgrund der verringerten Innendruckbelastung von 9 MPa weiter. In den Kurvenverläufen ist das fortschreitende Kriechen durch einen Versatz der Kurve während der Teilentlastung gekennzeichnet. Dabei ist anzumerken, dass die Kriechrate bei der Teilentlastung für die erste Variation (n = 3) größer ist als die der zweiten Variation (n = 9). Das lässt sich damit erklären, dass die Vergleichsspannung (n. v. Mises) unterhalb der globalen Referenzspannung im stationären Betriebslastfall (Lastfall 1) liegt (siehe auch Abbildung 3.7 in Kapitel 3.3). Im stationären Betrieb ergibt sich für die zweite Variation (n = 9) die größere Kriechrate, was sich durch die größten absoluten Kriechdehnungen nach der Simulationszeit von 24,500 h bestätigt. Nach jedem Teilentlastungszyklus treten bei erneuter Lastaufbringung im stationären Betrieb geringe Spannungserhöhungen auf. Diese entstehen durch eine Spannungsumlagerung während der Teilentlastung (siehe Abbildung 3.30 und Abbildung 3.31). Der Spannungszustand nach dem Teilentlastungszyklus entspricht somit nicht dem Spannungszustand vor der Teilentlastung. Tabelle 3.26 und Tabelle 3.27 enthalten die Dehnungs- und Spannungsschwingbreiten des Teilentlastungslastzyklus in den Auswertepunkten für eine erforderliche letzten Ermüdungsbewertung.

Variation <i>i</i>	n	$\Delta \sigma_{GES,U}$	$\Delta \boldsymbol{\varepsilon}_{\boldsymbol{CR},\boldsymbol{U}}$	$\Delta \sigma_{EL,U}$	$\Delta \boldsymbol{\varepsilon}_{\boldsymbol{EL},\boldsymbol{U}}$
0	7,1199	63,20 MPa	$5,5000 \cdot 10^{-6}$	63,19 MPa	$3,4805 \cdot 10^{-4}$
1	3	63,38 MPa	$4,2800 \cdot 10^{-5}$	63,19 MPa	$3,4805 \cdot 10^{-4}$
2	9	62,37 MPa	2,0000 · 10 ⁻⁶	63,19 MPa	3,4805 · 10 ⁻⁴

Tabelle 3.26: Dehnungs- und Spannungsschwingbreiten, letzter Teilentlastungslastfall, Punkt A

Tabelle 3.27: Dehnungs- und Spannungsschwingbreiten, letzter Teilentlastungslastfall, Punkt B

Variation <i>i</i>	n	$\Delta \sigma_{GES,L}$	$\Delta \boldsymbol{\varepsilon}_{\boldsymbol{CR},\boldsymbol{L}}$	$\Delta \sigma_{EL,L}$	$\Delta \boldsymbol{\varepsilon}_{\boldsymbol{EL},\boldsymbol{L}}$
0	7,1199	53,66 MPa	$1,3200 \cdot 10^{-5}$	52,49 MPa	2,2646 · 10 ⁻⁴
1	3	53,16 MPa	$3,7200 \cdot 10^{-5}$	52,49 MPa	2,2646 · 10 ⁻⁴
2	9	53,49 MPa	$7,3000 \cdot 10^{-6}$	52,49 MPa	2,2646 · 10 ⁻⁴

Abbildung 3.28: o/e-Diagramm, Punkt A, Umfangsrichtung, Teilentlastungszyklus

Abbildung 3.29: o/e-Diagramm, Punkt B, Längsrichtung, Teilentlastungszyklus

Abbildung 3.30: Vergleichsspannung (n. v. Mises), Teilentlastungszyklus, 14.500 h, n-Interpolation

4. Anwendung der Nachweismethode

In diesem Kapitel wird die in den vorigen Abschnitten beschriebene Nachweismethode anhand ausgewählter Beispiele angewendet. Dazu wurde zunächst das bereits bekannte Beispiel, die Kugel-Stutzen-Verbindung, erweitert und anschließend der Kriechdehnnachweis durchgeführt. Als zweites Beispiel wurde ein Doppelrohr-Wärmetauscher behandelt.

Im Folgenden wird für den Kriechdehnnachweis mit Simulationen ein Teilsicherheitsbeiwert von $\gamma_R = 1,25$ für die zeitabhängigen Werkstoffkennwerte verwendet, da es sich bei den in harmonisierten Werkstoffnormen angegebenen Werten für die Zeitstandfestigkeit und die 1%-Zeitdehngrenzen um Mittelwerte mit einem angenommenen Streubereich von ± 20 % handelt [5]. Der Teilsicherheitsbeiwert der Druckeinwirkungen wird mit $\gamma_P = 1$ festgelegt.

4.1 Kugel-Stutzen-Verbindung

Die Konstruktionszeichnung der Kugel-Stutzen-Verbindung mit Nennabmessungen ist in Abbildung 3.1 dargestellt. Zur Erweiterung des Demonstrationsbeispiels werden den einzelnen Komponenten verschiedene warmfeste Stähle entsprechend den Ausführungen in [21] zugewiesen. Für die Kugelschale wurde der Werkstoff 10CrMo9-10 gewählt. Der Stutzen besteht aus 16Mo3 und die Verstärkung aus 11CrMo9-10+QT. In Tabelle 4.1 sind die Werkstoffgruppe nach CEN ISO/CR 15608:2000 [30] und die Werkstoffnorm der einzelnen Werkstoffe zusammengefasst. [21], [29], [32]

	Kugelschale	Verstärkung	Stutzen
Werkstoff	10CrMo9-10	11CrMo9-10+QT	16Mo3
Werkstoffgruppe	5.2	5.2	1.2
Werkstoffnorm	EN10028-2	EN10216-2	EN10216-2

Tabelle 4.1: Werkstoffgruppe, Werkstoffnorm und Langzeiteigenschaften [31], [32], [34]

In der Norm EN10216-2 Nahtlose Stahlrohre für Druckbeanspruchungen sind keine Werte für die 1%-Zeitdehngrenzen angegeben. Daher wurden die entsprechenden Werte aus der Norm EN 10222-2 Schmiedestücke aus Stahl für Druckbehälter verwendet. [34], [36]

Für die Doppel-HV-Naht wurden in Anlehnung an die Norm EN13445-3 um 20 % reduzierte Festigkeitswerte des angrenzenden schwächeren Grundwerkstoffs verwendet. Die Schweißnahtverbindung wurde als eigener abgegrenzter Bereich modelliert, damit dem Berechnungsmodell die unterschiedlichen Werkstoffkennwerte zugeordnet werden können. Die V-Naht zwischen Verstärkung und Stutzen wird dem schwächeren angrenzenden Werkstoff zugezählt. [5]

4.1.1 Berechnungsmodell

Abbildung 4.1 zeigt das für die FE-Analysen verwendete Berechnungsmodell mit den Berechnungswanddicken von Tabelle 3.2 in Kapitel 3.1. Die einzelnen Komponenten und die

Rundungsradien Schweißnaht sind als eigener Bereich modelliert. Die der Schweißnahtübergänge und der abgerundeten Innenkante entsprechen dem Berechnungsmodell (siehe Abbildung 3.2) des Demonstrationsbeispiels. Als zeitunabhängiges Werkstoffgesetz wurde dem Berechnungsmodell ein linearelastisches-idealplastisches Werkstoffgesetz Fließgrenze Mindest-0,2-%-Dehngrenzen vorgegeben. Als werden die $R_{p0,2\%,T}$ (Teilsicherheitsbeiwert $\gamma_R = 1$) verwendet. Zudem werden dem Modell die physikalischen Elastizitätsmodul, Wärmeausdehnungskoeffizient Werkstoffkennwerte (Dichte, und Wärmeleitfähigkeit) nach EN13445-3 Anhang O vorgegeben [5]. Die Zahlenwerte aus den harmonisierten Werkstoffnormen zu den Mindest-0,2%-Dehngrenzen und zu den physikalischen Werkstoffkennwerten finden sich im Anhang A. Das Berechnungsmodell und die Lastfälle wurden auf Grundlage der Ausführungen in [21] und [29] gewählt.

Abbildung 4.1: Berechnungsmodell Kugel-Stutzen-Verbindung

Die definierten Lastfälle sind in Tabelle 4.2 ersichtlich. Die drei Lastfälle werden zu einem Betriebszyklus mit einer Betriebszeit von 2.000 h kombiniert (siehe Abbildung 4.2).

Lastfall	k	p_I	σ_L	T _{Schale}	T _{Stutzen}
stat. Betrieb	1	8,00 MPa	20,06 MPa	475 °C	475 °C
Einspritzung	2	8,00 MPa	20,06 MPa	475 °C	415 °C
Grenzbetrieb	3	8,50 MPa	21,31 MPa	480 °C	480 °C

Tabelle 4.2: Lastfälle Kugel-Stutzen-Verbindung

Der stationäre Betrieb mit einer Innendruckbelastung von 8 MPa und gleichmäßiger Temperaturverteilung von 475 °C wird durch eine kalte Einspritzung in den Stutzen bei konstanter Innendruckbelastung mit einer Temperaturverteilung entsprechend Abbildung 4.4 unterbrochen. Die Einspritzung erfolgt drei Mal während eines Betriebszyklus für eine Intervalldauer von 24 h in regelmäßigen Abständen. Im Betriebszyklus wird auch ein Grenzbetrieb mit maximal zulässigem Innendruck von 8,5 MPa und einer maximal zulässigen Temperatur von 480 °C berücksichtigt. Der Grenzbetrieb soll nur sporadisch und maximal einmal pro Betriebszyklus für eine maximal zulässige Dauer von 12 h auftreten. Die Intervalldauer für das An- und Abfahren wird jeweils auf 1 h festgelegt. Der Lastverlauf soll insgesamt 50-mal durchfahren werden. Dies entspricht einer geforderten Lebensdauer von 100.000 h.

Abbildung 4.2: Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung

Abbildung 4.3 zeigt die Einwirkungen und Randbedingungen des Berechnungsmodells der Kugel-Stutzen-Verbindung. Die Lagerbedingung an der Kugelschale und die Aufbringung des Innendrucks p_I und die daraus resultierende Längsspannung σ_L im Stutzenrohr sind in Abbildung 4.3 links dargestellt. Dies entspricht der Vorgehensweise in Kapitel 3.1. Die Temperaturbedingungen T_{Stutzen} und T_{Schale} werden direkt auf die Innenkontur der Kugelschale beziehungsweise des aufgegeben (siehe Abbildung 4.3 Stutzens rechts). Ein Temperaturunterschied infolge des Wärmeübergangs zwischen der Grenzfläche und dem Apparateinhalt wird dadurch nicht berücksichtigt. Abbildung 4.4 zeigt die stationäre Temperaturverteilung während der Einspritzung. Die Temperaturverteilung wurde mit einer stationären thermischen FE-Analyse berechnet. Die Vernetzung des Berechnungsmodell wurde mit einer Netzfeinheit von 8 mm durchgeführt. Eine Netzverfeinerung erfolgte in Bereichen mit hohen Spannungskonzentrationen. Im Anhang B ist eine Darstellung der Vernetzung zu finden. Die Auswertung erfolgt an den in Abbildung 3.11 definierten Punkten A und B.

Abbildung 4.3: Belastung und Temperatureinwirkung Kugel-Stutzen-Verbindung

Abbildung 4.4: Stationäre Temperaturverteilung während der Einspritzung

4.1.2 Bestimmung der globalen Referenzspannung

Die Ermittlung der plastischen Grenzeinwirkung A_u für das Berechnungsmodell der Kugel-Stutzen-Verbindung erfolgte entsprechend der Vorgehensweise in Kapitel 3.2 mit einer linearelastischen-idealplastischen FE-Analyse. Als Bemessungswert der Fließgrenze *RM* wurden die in den Werkstoffnormen EN10028-2 und EN10222-2 enthaltenen 1%-Zeitdehngrenzen $R_{p1\%,T,t}$ bei der Berechnungstemperatur T und Lebensdauer t = 10.000 h mit dem Teilsicherheitsbeiwert $\gamma_R = 1,25$ verwendet ($RM = R_{p1\%,T,t}/\gamma_R$). Im Kriechdehnnachweis mit Simulationen werden später nur die kriechrelevanten Lastfälle für den stationären Betrieb und die Einspritzung berücksichtigt (siehe Kapitel 4.1.5). Daher wurde in diesem Kapitel keine Referenzspannung für den Grenzbetriebsfall ermittelt. [31], [36]

In der FE-Analyse zur Bestimmung der plastischen Grenzeinwirkung für den ersten Lastfall wurde das Berechnungsmodell mit einem maximalen Innendruck p_I von 16,5 MPa und einer Längsspannung σ_L von 41,37 MPa belastet und die Einwirkung aus dem spannungsfreien Ausgangszustand linear erhöht. Die Berechnungstemperatur während des stationären Betriebs beträgt 475 °C. Die Tragfähigkeit des Berechnungsmodells wurde bei einem Laststeigerungsfaktor λ von 0,745 unter Berücksichtigung der maximalen Hauptstrukturdehnung von 5 % erreicht. Die plastische Grenzeinwirkung für den ersten Lastfall beträgt 12,30 MPa.

Für den zweiten Lastfall wurde das Berechnungsmodell mit einem maximalen Innendruck p_I von 18,0 MPa und einer Längsspannung σ_L von 45,13 MPa belastet. Im Einspritzlastfall wirkt die stationäre Temperaturverteilung aus Abbildung 4.4. Die Temperaturverteilung wird aus der thermischen Analyse importiert und dem Berechnungsmodell in der strukturmechanischen Analyse als Randbedingung aufgegeben. Während des zweiten Lastfalles wird die maximale Hauptstrukturdehnung (5%) bei einem Laststeigerungsfaktor von 0,702 erreicht. Die Grenzeinwirkung im zweiten Lastfall ist 12,60 MPa. Aufgrund der Temperaturabhängigkeit der Festigkeitskennwerte wurden die Referenzspannungen für den zweiten Lastfall nur in den Auswertepunkten (Punkt A - 11CrMo9-10+QT, Punkt B - Schweißnaht) berechnet. Die lokalen Temperaturen *T* konnten der thermischen Analyse entnommen werden. Im Einspritzlastfall beträgt die Temperatur im Punkt A 415 °C und im Punkt B 452,5 °C.

In Tabelle 4.3, Tabelle 4.4 und Tabelle 4.5 sind die Berechnungsergebnisse für die Ermittlung der globalen Referenzspannung zusammengefasst. Zusätzlich sind die verwendeten Bemessungswerte für die Festigkeit und die Einwirkung angeführt.

Lastfall k	1	2
A_u^k	12,3 MPa	12,6 MPa
A_d^k	8,0 MPa	8,0 MPa
$\sigma^k_{V.el.max}$	199,98 MPa	348,57 MPa

Tabelle 4.3: Bemessungswerte der Einwirkung und Grenzeinwirkung

In Tabelle 4.3 sind als zusätzliche Information die Werte der maximalen elastischen Vergleichsspannung (n. v. Mises) $\sigma_{V,el,max}$ für die beiden Lastfälle k zur Ermittlung der Bruchreferenzspannung σ_{R0} entsprechend Gleichung 2.5 unter Berücksichtigung des maximalen Spannungskonzentrationsfaktors χ angegeben. Im Anhang C können die Stellen mit den Maxima der linearelastischen Spannungsverteilung entnommen werden. Da die Bruchreferenzspannung

 σ_{R0} nicht für die weitere Durchführung des Kriechdehnnachweises verwendet wurde, wurde sie nicht explizit ausgewertet.

Werkstoff	$R_{p1\%,475,10.000}$	RM^1	σ_{RG}^1
10CrMo9-10	190,0 MPa	152,0 MPa	98,86 MPa
11CrMo9-10+QT	190,0 MPa	152,0 MPa	98,86 MPa
16Mo3	174,0 MPa	139,2 MPa	90,54 MPa
Schweißnaht	152,0 MPa	121,6 MPa	79,09 MPa

Tabelle 4.4: 1%-Zeitdehngrenzen und Referenzspannungen, Lastfall 1 [31], [36]

Werkstoff	R _{p1%,T,10.000}	Т	RM ²	σ_{RG}^2
11CrMo9-10+QT	313,5 MPa	415 °C	250,8 MPa	159,24 MPa
Schweißnaht	188,0 MPa	452,4 °C	150,4 MPa	95,49 MPa

4.1.3 Berechnung und Variation der Kriechgesetze

Zunächst wurden der Kriechexponent n und die temperaturabhängige Konstante K für die verschiedenen Komponentenwerkstoffe bei der Berechnungstemperatur ($T = 475 \,^{\circ}C$) im stationären Betrieb nach den Gleichungen 3.3 bis 3.7 berechnet. Abbildung 4.5 zeigt den Einfluss des Sicherheitsbeiwertes auf das Kriechgesetz für den Werkstoff 10CrMo9-10. Die Berücksichtigung des Sicherheitsbeiwertes führt zu höheren Kriechraten bei geringeren Spannungen.

Abbildung 4.5: Kriechgesetz mit und ohne Sicherheitsbeiwert

Die globale Referenzspannung σ_{RG}^1 für den stationären Betriebslastfall (Lastfall 1) ist bei allen Werkstoffen kleiner als die kleinste in der Werkstoffnorm gegebene 1%-Zeitdehngrenze unter Berücksichtigung des Teilsicherheitsbeiwertes $\gamma_R = 1,25$ ($R_{p1\%,475,100,000}/\gamma_R$). Daher erfolgt die Variation des Kriechgesetzes im stationären Betriebslastfall entsprechend Abbildung 4.6. Die Variationen sollen bei der relevanten Referenzspannung σ_{RG}^1 einen gemeinsamen Schnittpunkt aufweisen. Der Kriechexponent *n* wurde entsprechend der Vorgehensweise in Kapitel 3.3 vorgegeben (n = 3 und n = 9) und der zugehörige Koeffizient *K* berechnet. Für die Ermittlung von *K* entsprechend Gleichung 3.7 sind als Bezugsgrößen ($\sigma_B, \dot{\varepsilon}_B$) die Kriechrate $\dot{\varepsilon}_{CR,RG}$ und die globale Referenzspannung σ_{RG} des betrachteten Lastfalles zu verwenden. In Tabelle 4.6 sind die zulässige Belastungsdauer t_{RG}^1 für 1%-Dehnung bei der globalen Referenzspannung σ_{RG} (siehe Gleichung 3.8) und die zugehörigen Kriechraten $\dot{\varepsilon}_{CR,RG}^1$ (siehe Gleichung 3.4) für die verschiedenen Werkstoffe im stationären Betrieb (Lastfall 1) angeführt. Die berechneten Nortonparameter der Variationen *i* sind in Tabelle 4.7 zusammengefasst. Abbildung 4.7 zeigt das Kriechgesetz für den Werkstoff 11CrMo9-10+QT bei einer Temperatur von 475 °C. Die berechneten Kriechgesetze der anderen Werkstoffe sind im Anhang F zu finden.

Abbildung 4.6: Variation Kriechgesetz, stationärer Betrieb (Lastfall 1)

Tabelle 4.6: Zeitdehngrenze $R_{p1\%,475,t}$,	Belastungsdauer	t_{RG}^{κ} und	Kriechrate $\dot{\varepsilon}_{CR,RG}^{R}$,	, stationärer
	Betrieb			

	10CrMo9-10	11CrMo9-10+QT	16Mo3	Schweißnaht
$R_{p1\%,475,10.000}/\gamma_R$	152,0 MPa	152,0 MPa	139,2 MPa	121,6 MPa
$R_{p1\%,475,100.000}/\gamma_R$	110,0 MPa	110,0 MPa	93,2 MPa	88,0 MPa
t_{RG}^1	213.877,8 h	213.877,8 h	118.081,0 h	213.839,3 h
$\dot{arepsilon}_{CR,RG}^{1}$	1,2988 · 10 ⁻¹¹ 1/s	1,2988 · 10 ⁻¹¹ 1/s	2,3524 · 10 ⁻¹¹ 1/s	1,2990 · 10 ⁻¹¹ 1/s

i		10CrMo9-10	11CrMo9-10+QT	16Mo3	Schweißnaht
0	n	7,1199	7,1199	5,7398	7,1199
-	K	8,1121 · 10 ⁻²⁶	8,1121 · 10 ⁻²⁶	$1,37951 \cdot 10^{-22}$	$3,9731 \cdot 10^{-25}$
1	n	3	3	3	3
	K	$1,3442 \cdot 10^{-17}$	$1,3442 \cdot 10^{-17}$	$3,1695 \cdot 10^{-17}$	$2,6257 \cdot 10^{-17}$
2	n	9	9	9	9
_	K	1,4399 · 10 ⁻²⁹	1,4399 · 10 ⁻²⁹	$5,7538 \cdot 10^{-29}$	1,0728 · 10 ⁻²⁸

Tabelle 4.7: Nortonparameter, stationärer Betrieb

Abbildung 4.7: Kriechgesetz 11CrMo9-10+QT, stationärer Betrieb

Da Kriechen eine zeit- und temperaturabhängige inelastische Verformung ist, gelten die zuvor berechneten Kriechgesetze für eine Temperatur von 475 °C. Im Einspritzfall ergeben sich abhängig vom Werkstoff und der Temperaturverteilung unterschiedliche ortsabhängige Kriechgesetze. Für die Berücksichtigung der Temperaturabhängigkeit des Kriechgesetzes erweist sich die Variation des Kriechexponenten für ein Standardberechnungsverfahren als ungeeignet. Daher wurden die Kriechgesetze ausgehend von den Ergebnissen des relevanten Lastfalles (Lastfall 1, stationärer Betrieb) variiert. Für jeden Werkstoff wird aus den 1%-Zeitdehngrenzen ein Kriechexponent *n* für die Berechnungstemperatur *T* des relevanten Lastfalles berechnet. Dieser wird dann für den Werkstoff im gesamten Temperaturbereich verwendet. Die Koeffizienten *K* wurden nach Gleichung 3.7 aus den gegebenen 1%-Zeitdehngrenzen $R_{p1\%,T,t}$ berechnet. sodass aus dem Kriechgesetz mindestens die den 1%-Zeitdehngrenzen entsprechenden Kriechraten $\dot{\varepsilon}_{CR,10.000}$ resultieren. Dieser beziehungsweise $\dot{\varepsilon}_{CR,100,000}$ konservative Ansatz wird in Abbildung 4.8 anhand einer doppeltlogarithmischen Darstellung des Kriechgesetzes veranschaulicht. Die Steigung der Geraden in Abbildung 4.8 ist aufgrund des gleichen Kriechexponenten n ident. Durch die Variation des Koeffizienten K werden die Kriechkurven entsprechend der relevanten zeit- und temperaturabhängen 1%-Zeitdehngrenze parallel verschoben. Berechnung der Nortonparameter Für die wurde ein Teilsicherheitsbeiwertes $\gamma_R = 1,25$ berücksichtigt $(R_{p1\%,T,t}/\gamma_R)$. Im Anhang A sind die verwendeten Zahlenwerte von $R_{p1\%,T,t}$ angeführt. In Tabelle 4.8 finden sich die ermittelten Zahlenwerte der Kriechgesetze in Abhängigkeit der Temperatur für die verschiedenen Werkstoffe. Die Berechnung erfolgte für die Temperaturen 415 °C, 450 °C, 475 °C und 480 °C aus dem für den Betriebszyklus relevanten Temperaturbereich. Unterhalb von 415 °C werden der FE-Simulation keine Kriechgesetze vorgegeben, da im definierten Betriebszyklus (siehe Abbildung 4.2) eine Absenkung der Temperatur mit einer Entlastung des Innendrucks auf 0 MPa einhergeht und die Kriechvorgänge nicht mehr relevant sind.

Abbildung 4.8: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung

	415°C	450°C	475°C	480°C
		10CrN	109-10	
n	7,1199	7,1199	7,1199	7,1199
K	$4,8053 \cdot 10^{-27}$	$2,1217 \cdot 10^{-26}$	8,1121 · 10 ⁻²⁶	$1,2094 \cdot 10^{-25}$
		11CrMo	9-10+QT	
n	7,1199	7,1199	7,1199	7,1199
K	$4,8053 \cdot 10^{-27}$	$2,1217 \cdot 10^{-26}$	8,1121 · 10 ⁻²⁶	$1,2094 \cdot 10^{-25}$
	16Mo3			
n	5,7398	5,7398	5,7398	5,7398
K	9,8679 · 10 ⁻²⁴	$3,9878 \cdot 10^{-23}$	1,3795 · 10 ⁻²²	$2,2478 \cdot 10^{-22}$
	Schweißnaht			
n	7,1199	7,1199	7,1199	7,1199
K	$2,3535 \cdot 10^{-26}$	$1,0391 \cdot 10^{-25}$	$3,9731 \cdot 10^{-25}$	$5,9233 \cdot 10^{-25}$

 Tabelle 4.8: Variation Nortonparameter bei unterschiedlichen Temperaturen

Abbildung 4.9 zeigt die Kriechgesetze für den Werkstoff 11CrMo9-10+QT bei unterschiedlichen Temperaturen in einer doppeltlogarithmischen Darstellung. Die temperaturabhängigen Kriechgesetze für die anderen Komponentenwerkstoffe befinden sich im Anhang F.

Abbildung 4.9: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, 11CrMo9-10+QT

4.1.4 Analyse für konstante Last und Temperatur

In diesem Kapitel erfolgt die Simulation mit den Einwirkungen beim Lastfall 1 im stationären Betrieb. Die Belastung bleibt nach der Lastaufbringung (Zeitschritt: 1 s) über die gesamte Simulationsdauer konstant. Das zeitabhängige Materialverhalten ist durch die Kriechgesetze (Variation von n) nach Tabelle 4.7 vorgegeben. Die Simulation wurde für die gesamte geforderte Lebensdauer von 100.000 h durchgeführt. Abbildung 4.10 zeigt die Vergleichskriechdehnung nach 100.000 h im stationären Betrieb für den interpolierten Kriechexponenten. Die maximale Vergleichskriechdehnung befindet sich im Punkt B, sie bleibt jedoch unter einem Wert von 2,5 % Dehnung. Die Vergleichskriechdehnung der beiden Variationen mit einem Kriechexponenten von n = 3 und n = 9 sind im Anhang G beigefügt. Bei den Variationen liegt das Maximum der Vergleichskriechdehnung ebenfalls im Punkt B. Die Absolutwerte sind bei n = 9 am höchsten und bei n = 3 am geringsten. Dieses Verhalten stimmt mit den Ergebnissen aus Kapitel 3.5 bei der Analyse mit konstanten Werkstoffparametern überein.

Abbildung 4.10: Vergleichskriechdehnung nach 100.000 h, stationärer Betrieb, n-Interpolation, Kugel-Stutzen-Verbindung

Die Lastaufbringung (Zeitschritt: 1 s) im stationären Betrieb führt zu einer lokalen plastischen Verformung an der Außenkontur in der Rundung am Übergang von der Kugelschale zur Verstärkung (siehe Abbildung 4.11). Der maximale Absolutwert der plastischen Vergleichsdehnung beträgt 0,0085 %. Die plastische Verformung wird als nicht kritisch beurteilt, da sie nur lokal im Schweißnahtbereich auftritt und sehr geringe Absolutwerte annimmt. Der Grund dafür könnten die im Schweißnahtbereich gegenüber der Kugelschale um 20 % reduzierten Festigkeitswerte sein.

Abbildung 4.11: Plastische Vergleichsdehnung nach 100.000 h, stationärer Betrieb, n-Interpolation, Kugel-Stutzen-Verbindung

Die Erhöhungsfaktoren werden zum Zeitpunkt der geforderten Lebensdauer von 100.000 h nach Gleichung 3.15 durch den Vergleich der Vergleichskriechdehnung aus der Simulation mit der Kriechdehnungen auf Basis der globalen Referenzspannung im ersten Lastfall ausgewertet. Dazu zeigen Abbildung 4.12 und Abbildung 4.13 eine Gegenüberstellung der Kriechkurven aus den Simulationen für die verschiedenen Kriechexponenten und die Kriechkurve auf Basis der Referenzspannung. Die Auswertung erfolgte an zwei definierten Auswertepunkten (Punkt A und Punkt B, siehe Abbildung 3.11). Die Vergleichsspannungsverläufe in den Auswertepunkten A und B sind im Anhang D beigefügt.

Die Berechnungsergebnisse der Erhöhungsfaktoren sind in nachfolgender Tabelle 4.9 aufgelistet. Der größte Erhöhungsfaktor wurde im Punkt B für die zweite Variation ermittelt. Der Punkt B ist während der Kriechbeanspruchung im stationären Betrieb der höchstbelastete Punkt.

Variation <i>i</i>	EF-Punkt A	EF-Punkt B
0	3,05	5,07
1	2,55	3,12
2	3,22	5,78

Tabelle 4.9: Ergebnisse Erhöhungsfaktoren

In beiden Auswertungspunkten ist die globale Referenzspannung σ_{RG}^1 für den ersten Lastfall niedriger als die kleinste in den harmonisierten Werkstoffnormen (siehe Tabelle 4.10 und Tabelle 4.11) gegebenen Zeitstandfestigkeiten $R_{m,T,t}/\gamma_R$ unter Berücksichtigung des Teilsicherheitsbeiwertes γ_R . Die nach den Gleichungen 3.11 und 3.12 ermittelte zulässigen Standzeiten Δt_{all}^1 und das nach Gleichung 3.10 theoretische Kriechschädigungsmaß $D_{c,theo}$ sind in Tabelle 4.11 zusammengefasst.

Abbildung 4.13: Kriechkurven aus der Simulation, Punkt B, stationärer Betrieb, Kugel-Stutzen-Verbindung
Werkstoff	11CrMo9-10+QT	Schweißnaht
Werkstoffnorm	EN10216-2	80% 10Cr Mo9-10/
		EN10028-2
γ_R	1,25	1,25
t_A	10.000 h	100.000 h
$R_{m,475,tA}$	233,50 MPa	143,20 MPa
$R_{m,475,tA}/\gamma_R$	186,80 MPa	114,60 MPa
t _B	100.000 h	200.000 h
$R_{m,475,tB}$	178,50 MPa	128,40 MPa
$R_{m,475,tB}/\gamma_R$	142,80 MPa	102,70 MPa

Tabelle 4.10: Zeitstandfestigkeiten 11CrMo9-10+QT und Schweißnaht [31], [34]

Tabelle 4.11: Ergebnisse zulässige Standzeit und theoretisches Kriechschädigungsmaß

Punkt	Α	В
σ_{RG}^1	98,86 MPa	79,09 MPa
Δt	100.000 h	100.000 h
Δt_{all}^1	2.339.557,6 h	1.052.926,4 h
D _{c,theo}	0,0427	0,0950

Das korrigierte Kriechschädigungsmaß nach Gleichung 3.9 ist in allen Auswertepunkten und Variationen kleiner als eins (siehe Tabelle 4.12). Somit gilt der Kriechdehnnachweis für den stationären Betrieb als erfüllt.

Tabelle 4.12: Korrigiertes Kriechschädigungsmaß D_{c,Sim}

Variation <i>i</i>	D _{c,Sim} -Punkt A	D _{c,Sim} -Punkt B
0	0,130	0,482
1	0,109	0,296
2	0,138	0,549

4.1.5 Analyse unter Berücksichtigung von Lastvariationen

Eine praxisnahe Betrachtung des Kriechdehnnachweises mit Simulationen erfolgte durch die Analyse des Betriebszyklus aus Abbildung 4.2. Um die Konfigurations- und die Rechenzeit zu begrenzen, wurden in einer Simulationszeit von 10.000 h insgesamt fünf komplette Lastverläufe durchfahren.

Während der Einspritzung ergibt sich eine stationäre Temperaturverteilung (siehe Abbildung 4.4) durch die unterschiedliche Temperatureinwirkung an der Innenseite vom Stutzen und der

Kugelschale. Diese Temperaturunterschiede werden aus einer thermischen FE-Analyse in die strukturmechanische FE-Simulation importiert und während der Einspritzung als Randbedingung aufgegeben. Die Temperaturabhängigkeit des Kriechgesetzes wird durch die Implementierung der Nortonparameter entsprechend Tabelle 4.8 berücksichtigt.

Abbildung 4.14 und Abbildung 4.15 zeigen den Verlauf der Vergleichsspannung nach von Mises in den Auswertepunkten über der Simulationsdauer. Während der Einspritzung kommt es aufgrund der Wärmespannung zu Spannungsspitzen in den Vergleichsspannungsverläufen. Nach jeder Einspritzung ergeben sich in beiden Punkten (A und B) geringere Werte im Vergleich zum rein stationären Betrieb. Die Ursache liegt in der starken Nichtlinearität der Kriechgesetze. Im Einspritzlastfall folgen aus der Temperaturverteilung große Wärmespannungen. Im Anhang C ist Wärmespannungen inklusive Innendruckbelastung eine Auswertung der aus einer linearelastischen Analyse dargestellt. Die im Einspritzlastfall zusätzlich zur Innendruckbelastung wirkenden Wärmespannungen führen zu einer hohen lokalen Kriechrate. Dies bewirkt einen erhöhten Spannungsabbau und einen veränderten Spannungszustand (Spannungsumlagerung) während der Einspritzung. Bei Berücksichtigung der Einspritzung ergeben sich im Bereich um den Punkt A die größten Differenzen des Spannungsverlaufs im Vergleich zum stationären Kriechen.

Abbildung 4.14: Verlauf der Vergleichsspannung (n. v. Mises), Punkt A, Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung

Abbildung 4.15: Verlauf der Vergleichsspannung (n. v. Mises), Punkt B, Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung

Abbildung 4.16 zeigt die Kriechkurve im Punkt A für den Lastverlauf mit Einspritzungen und im stationären Betrieb. Die erhöhten Kriechraten während der Einspritzung führen zu einer erhöhten im Kriechdehnung, wobei die Differenz Vergleich zu den Absolutwerten der Vergleichskriechdehnung sehr gering ist. Die Differenz der Kriechdehnungen nach der Simulationszeit von 10.000 h beträgt 2,59 · 10⁻⁰⁵. Der Verlauf der Kriechkurven im Punkt B (siehe Abbildung 4.17) zeigt ein ähnliches Verhalten wie in Punkt A. Jedoch sind die Kriechdehnungserhöhungen während der Einspritzungen nicht so stark ausgeprägt.

Für die Berechnung der Erhöhungsfaktoren nach Gleichung 3.15 werden die absoluten Kriechdehnungen $\varepsilon_{CR,V,t}$ nach der geforderten Lebensdauer von t = 100.000 h benötigt. Diese wurden durch lineare Extrapolation aus den Simulationsergebnissen berechnet. In Tabelle 4.13 sind die Extrapolationsergebnisse für den Lastverlauf mit Einspritzungen aufgelistet.

Tabelle 4.13: Extrapolationsergebnisse Vergleichskriechdehnung $\varepsilon_{CR,V,100.000}$,	Lastverlauf mit
Einspritzungen, Kugel-Stutzen-Verbindung	

Punkt	<i>E_{CR,V,100.000}</i>
Α	$1,5290 \cdot 10^{-02}$
В	$2,5398 \cdot 10^{-02}$

Abbildung 4.16: Kriechkurven aus der Simulation, Punkt A, Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung

Abbildung 4.17: Kriechkurven aus der Simulation, Punkt B, Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung

Für die Berechnung der gesamten Kriechdehnung $\varepsilon_{CR,RG}$ auf Basis der Referenzspannung nach Gleichung 3.16 werden nur die Lastfälle 1 und 2 berücksichtigt (siehe Tabelle 4.14). Der dritte Lastfall geht aufgrund seines sporadischen Auftretens nicht in die summierten Dehnungen ein. Zudem sind wegen der kurzen Intervalldauer keine nennenswerten Kriechdehnungen zu erwarten. Weiters werden die Lastfälle beim An- und Abfahren nicht berücksichtigt. Auf Basis

der eben erwähnten Überlegungen wurden die Intervalldauern der einzelnen Lastfälle wie folgt festgelegt. Der erste Lastfall wirkt für eine Dauer von $\Delta t^1 = 482$ h und tritt während der gesamten Lebensdauer von 100.000 h insgesamt 200-mal auf. Der zweite Lastfall wirkt insgesamt 150-mal für eine Intervalldauer von $\Delta t^2 = 24$ h. Im Vergleich zu $\dot{\epsilon}_{CR,RG}^1$ ist die Kriechrate $\dot{\epsilon}_{CR,RG}^2$ für den Lastfall 2 trotz der niedrigeren lokalen Temperaturen in den Auswertungspunkten größer. Daher erhöht sich die gesamte Kriechdehnung auf Basis der Referenzspannung im Vergleich zum rein stationären Betrieb.

In Tabelle 4.15 sind die nach Gleichung 3.15 berechneten Erhöhungsfaktoren in den Auswertepunkten A und B aufgelistet. Im Vergleich zur Simulation im rein stationären Betrieb ergeben sich durch die Berücksichtigung der Einspritzung größere Erhöhungsfaktoren. (siehe Tabelle 4.9, Variation 0). Es sei erwähnt, dass sich durch die Extrapolation konservative Werte der Vergleichskriechdehnungen ergeben.

Tabelle 4.14: Kriechdehnung auf Basis der globalen Referenzspannung, Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung

Punkt	Α		В	
Lastfall k	1	2	1	2
Δt^k	482 h	24 h	482 h	24 h
n_I^k	200	150	200	150
$\dot{arepsilon}^k_{CR,RG}$	$1,2988 \cdot 10^{-11} 1/s$	$2,4014 \cdot 10^{-11} 1/s$	$1,2990 \cdot 10^{-11} 1/s$	$1,5352 \cdot 10^{-11} \ 1/s$
$\varepsilon^k_{CR,RG}$	$4,5075 \cdot 10^{-3}$	$3,1123 \cdot 10^{-4}$	$4,5080 \cdot 10^{-3}$	1,9896 · 10 ⁻⁴
E _{CR,RG}	4,8186 · 10 ⁻³		$4,7070 \cdot 10^{-3}$	
$\overline{\dot{\varepsilon}}_{CR,RG}$	1,3385 · 10 ⁻¹¹ 1/s		1,3075 · 1	$10^{-11} 1/s$

Tabelle 4.15: Ergebnisse Erhöhungsfaktoren, Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung

Punkt	EF
Α	3,173
В	5,396

Die für den Kriechdehnnachweis mit Simulationen benötigten Zeitstandfestigkeiten $R_{m,T,t}$ sind in Tabelle 4.16 entsprechend der relevanten Lastfälle und unter Berücksichtigung des Teilsicherheitsbeiwertes von $\gamma_R = 1,25$ zusammengefasst. Bei der Ermittlung des Kriechschädigungsmaßes werden wie schon zuvor die beiden Lastfälle 1 und 2 berücksichtigt. In beiden Auswertungspunkten ist die globale Referenzspannung σ_{RG}^k für jeden Lastfall k niedriger als die kleinste gegebene Zeitstandfestigkeiten $R_{m,T,t}/\gamma_R$ unter Berücksichtigung des Teilsicherheitsbeiwertes γ_R (siehe Tabelle 4.16 und Tabelle 4.17). In der Tabelle 4.17 sind die Ergebnisse des Kriechdehnnachweises mit Simulationen nach Kapitel 3.4 aufgelistet. Das korrigierte Kriechschädigungsmaß ist in beiden Auswertepunkten kleiner eins. Im Punkt B ergeben sich in den Simulationen die maximalen Kriechdehnungen (siehe Abbildung G.3, Anhang G). Da es sich bei Punkt B um den meistbeanspruchten Punkt handelt, ist der Nachweis für die gesamte Struktur erfüllt.

Werkstoff	11CrMo9-10+QT	Schweißnaht	
Werkstoffnorm	EN10216-2	80% 10Cr Mo9-10/	
		EN10028-2	Lastiali K
t_A	10.000 h	100.000 h	
$R_{m,475,tA}$	233,50 MPa	143,20 MPa	1
$R_{m,475,tA}/\gamma_R$	186,80 MPa	114,60 MPa	1
$R_{m,452,4,tA}$	-	173,80 MPa	
$R_{m,452,4,tA}/\gamma_R$	-	139,04 MPa	2
$R_{m,415,tA}$	344,00 MPa	-	Z
$R_{m,415,tA}/\gamma_R$	275,20 MPa	-	
t_B	100.000 h	200.000 h	
$R_{m,475,tB}$	178,50 MPa	128,40 MPa	1
$R_{m,475,tB}/\gamma_R$	142,80 MPa	102,70 MPa	1
$R_{m,452,4,tB}$	-	157,90 MPa	
$R_{m,452,4,tB}/\gamma_R$	-	126,32 MPa	2
$R_{m,415,tB}$	280,50 MPa	-	2
$R_{m,415,tB}/\gamma_R$	224,40 MPa	-	

	-110 - 110 - 10 - 07	· · · · · · · · · · · · · · · · · · ·	F211	F2 /	т.
I anelle 4 Th' Zelfstandtestlok	(eiten 110 rN/09-10+01	lind Nenweibnaht	1 1 1 1	1 14	Т
Lubene 1.10. Denstandrestigi			1211,	1.2.1	

Tabelle 4.17: Berechnungsergebnisse Kriechdehnnachweis mit Simulationen, Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung

Punkt	Α		1	3
Lastfall <i>k</i>	1	2	1	2
σ^k_{RG}	98,86 MPa	159,24 MPa	79,09 MPa	95,49 MPa
Δt_{all}^k	2.339.557 h	4.796.224 h	1.052.926 h	1.509.787 h
Δt^k	482 h	24 h	482 h	24 h
n_I^k	200	150	200	150
$D_{c,theo}^k$	0,04120	7,5059E-04	0,09155	0,00238
D _{c,theo}	0,04195		0,0939	
D _{c,Sim}	0,133		0,5	507

Die Lastaufbringung am Beginn des ersten Lastverlaufes führt zu einer lokalen plastischen Verformung in der Rundung am Übergang von der Kugelschale zur Verstärkung (siehe Abbildung 4.18). Diese plastische Verformung stimmt in etwa mit den Ergebnissen aus dem vorigen Kapitel 4.1.4 überein (siehe Abbildung 4.11). Der geringe Unterschied der plastischen Vergleichsdehnung aus Abbildung 4.11 und Abbildung 4.18 resultiert aus der längeren

Intervalldauer von insgesamt 1 h für die Lastaufbringung (Anfahrvorgang) und der Berücksichtigung der Temperaturabhängigkeit des Kriechgesetzes. Die erste Unterbrechung des stationären Betriebs durch die Einspritzungen nach einer Simulationsdauer von 500 h führt zu einer weiteren Plastifizierung (siehe Abbildung 4.19) an der Innenseite der Verstärkung des Stutzens. Die darauffolgenden Einspritzungen und Abfahrvorgänge laufen ohne weitere Plastifizierungen ab. Da die plastischen Verformungen nur lokal und am Beginn der Simulation auftreten, wird davon ausgegangen, dass sie das globale Verhalten der Struktur nicht beeinflussen.

Abbildung 4.18: Plastische Vergleichsdehnung nach Lastaufbringung (1 h), Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung

Abbildung 4.19: Plastische Vergleichsdehnung bei der ersten Einspritzung (500 h), Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung

Abbildung 4.20 zeigt die zur Identifikation der Bereiche, die eine Änderung der Kriechrichtung aufweisen, benötigte Differenz $\varepsilon_{CR,Diff}$ der Vergleichskriechdehnung und der akkumulierten Vergleichskriechdehnung für den Lastverlauf mit Einspritzungen. Die größte Differenz befindet sich auf der Außenseite der Schweißnaht und hat eine Größenordnung von 0,9 % von der absoluten Vergleichskriechdehnung. Dieser Punkt wird im Folgenden mit B1 gekennzeichnet.

In Tabelle 4.18 sind die Simulationsergebnisse für die Auswertepunkte zusammengefasst. Als Hauptgrund der erhöhten Differenz $\varepsilon_{CR,Diff}$ in Punkt B und B1 wurde eine geringe Kriechrichtungsumkehr in Umfangsrichtung, hier die Orientierung mit den kleineren Beanspruchungen (Spannungen), während der Einspritzzyklen in beiden Punkten identifiziert. Die zugehörigen σ/ϵ -Diagramme in Umfangsrichtung im Punkt B und B1 sind im Anhang H zu finden.

Tabelle 4.18: Anteil $\varepsilon_{CR,Diff}$ an $\varepsilon_{CR,V}$, Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung

Punkt	ε _{CR,Diff}	ε _{cr,v}	$\varepsilon_{CR,Diff}/\varepsilon_{CR,V}$
Α	0	$2,2215 \cdot 10^{-3}$	0 %
В	9,2719 · 10 ⁻⁶	$3,3977 \cdot 10^{-3}$	0,3 %
B1	$1,7375 \cdot 10^{-5}$	$1,9661 \cdot 10^{-3}$	0,9 %

Abbildung 4.20: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung

Im Folgenden sind die für weitere Ermüdungsanalysen erforderlichen Auswertungsergebnisse angeführt. Die σ/ϵ -Diagramme der relevanten Spannungs- und Dehnungskomponenten sind in Abbildung 4.21 und Abbildung 4.22 dargestellt. Bei Betrachtung der beiden Kurvenverläufe zeigt sich, dass während der Einspritzungen und des Grenzbetriebs keine Kriechrichtungsumkehrungen in den betrachteten Komponentenrichtungen stattfinden. Die beiden Zustände sind durch vorschreitendes Kriechen gekennzeichnet. In Tabelle 4.19 sind die Dehnungs- und Spannungsschwingbreiten für den Punkt A in Umfangsrichtung und den Punkt B in Längsrichtung des letzten Einspritzlastzyklus angegeben.

Tabelle 4.19: Dehnungs- und Spannungsschwingbreiten, letzter Einspritzlastfall, Kugel-Stutzen-Verbindung

Punkt A	$\Delta \sigma_{GES,U}$	$\Delta \boldsymbol{\varepsilon}_{\boldsymbol{CR},\boldsymbol{U}}$	$\Delta \sigma_{EL,U}$	$\Delta \boldsymbol{\varepsilon}_{\boldsymbol{EL},\boldsymbol{U}}$
	151,75 MPa	4,4400 · 10 ⁻⁵	145,04 MPa	$7,7466 \cdot 10^{-4}$
Punkt B	$\Delta \sigma_{GES,L}$	$\Delta \boldsymbol{\varepsilon}_{CR,L}$	$\Delta \sigma_{EL,L}$	$\Delta \boldsymbol{\varepsilon}_{\boldsymbol{EL},\boldsymbol{L}}$
	39,18 MPa	$1,0900 \cdot 10^{-5}$	38,53 MPa	2,2488 · 10 ⁻⁴

Abbildung 4.21: o/e-Diagramm, Punkt A, Umfangsrichtung, Lastverlauf mit Einspritzung

Tabelle 4.20 enthält die plastischen Dehnungsschwingbreiten im Punkt A in Umfangsrichtung und im Punkt B in Längsrichtung für eine weiterführende Ermüdungsanalyse. Die plastischen Dehnungen resultieren aus den Laständerungen am Beginn der Simulation, wie oben beschrieben.

Tabelle 4.20: Plastische Dehnungsschwingbreiten, Kugel-Stutzen-Verbindung

Punkt A	$\Delta \boldsymbol{\varepsilon}_{\boldsymbol{PL},\boldsymbol{U}}$
	$5,1008 \cdot 10^{-5}$
Punkt B	$\Delta \boldsymbol{\varepsilon}_{\boldsymbol{PL},\boldsymbol{L}}$

Abbildung 4.22: o/e-Diagramm, Punkt B, Längsrichtung, Lastverlauf mit Einspritzung

4.2 Doppelrohr-Wärmetauscher

4.2.1 Vorauslegung mit Berechnungsformeln

Im Folgenden wird eine Vordimensionierung des Doppelrohr-Wärmetauschers durchgeführt. Als Grundlage wurden die Berechnungsformeln aus der Norm EN13445-3 herangezogen [5].

4.2.1.1 Lastfälle und Werkstoffkennwerte

Der Doppelrohr-Wärmetauscher besteht aus zwei koaxial ineinander liegenden Rohren. Das äußere Rohr wird an beiden Seiten mit einem ringförmigen ebenen Boden abgeschlossen. Als Erzeugnisform wurden nahtlose nichtrostende Stahlrohre nach EN10216-5 und Flacherzeugnisse aus Druckbehälterstahl nach EN10028-7, bestehend aus austenitischen warmfesten Stählen, gewählt. Das Außenrohr und der Boden sollen mit dem Werkstoff X6CrNi18-10 ausgeführt werden. Beim Innenrohr fiel die Wahl auf den Werkstoff X8CrNiNb16-13. Beide Werkstoffe sind der Werkstoffgruppe 8.1 nach CEN ISO/CR 15608:2000 [30] zugeordnet. [32], [37], [38]

Beim Doppelrohr-Wärmetauscher wird zwischen dem Druckraum im Innenrohr und dem abgegrenzten Druckraum zwischen Innenrohr und Außenrohr unterschieden. In Tabelle 4.21 sind die festgelegten Lastfälle aufgelistet. Dabei sind die Einwirkungen für den Druckraum im Innenrohr mit dem Index *i* und die Einwirkungen im Außenrohr mit dem Index *a* gekennzeichnet. Im stationären Betrieb wirkt im Innenrohr ein Innendruck p_i von 70 bar und im Außenrohr ein Druckräumen 610 °C. Im Heizlastfall bleiben die Innendrücke konstant und es stellt sich ein Temperaturunterschied von 30 °C zwischen den Druckräumen im Innenrohr und Außenrohr ein. Der Grenzbetrieb stellt einen Lastfall mit einer geringen Eintrittswahrscheinlichkeit dar. Im Grenzbetrieb liegen die Drücke 5 bar und die Temperaturen 20 °C über den Werten des stationären Betriebs. Für die Vorauslegung ist der Grenzbetrieb relevant, da in diesem die maximal zulässigen Berechnungsdrücke und -temperaturen wirken. Dadurch sind die Einwirkungen der anderen Lastfälle abgedeckt.

Lastfall	k	p_a	p_i	T _a	T _i
stat. Betrieb	1	1,00 MPa	7,00 MPa	610 °C	610 °C
Heizlastfall	2	1,00 MPa	7,00 MPa	620 °C	590 °C
Grenzbetrieb	3	1,50 MPa	7,50 MPa	630 °C	630 °C

Tabelle 4.21: Lastfälle für Vorauslegung, Doppelrohr-Wärmetauscher

Bei der Auslegung mit Berechnungsformeln wird das Konzept der Berechnungsspannungen angewendet. Diese werden aus den in Werkstoffnormen enthaltenen Werkstoffkennwerten und Sicherheitsbeiwerten berechnet. Da die Berechnungstemperatur T im Zeitstandbereich liegt, erfolgt die Ermittlung der Berechnungsspannung f nach Abschnitt 19 von EN 13445-3. Dieser

Abschnitt beinhaltet die Auslegung von Behältern und Behälterteilen im Zeitstandbereich. Für eine Auslegung ohne Lebensdauerüberwachung folgt die maximale zulässige Berechnungsspannung aus Gleichung 4.1. [5]

$$f = \min\left\{f_{nc}; \frac{R_{m/T/t}}{SF_c}; R_{p1\%/T/t}\right\}$$
 4.1

Der Sicherheitsbeiwert SF_c für den Mittelwert der Zeitstandfestigkeit $R_{m/T/t}$ ist in der Norm mit $SF_c = 1,5$ festgelegt. Die Berechnungsnennspannung f_{nc} wird nach Abschnitt 6 von EN 13445-3 auf Basis des zeitunabhängigen Werkstoffverhaltens bestimmt. Überschreitet die Berechnungstemperatur T die höchste Temperatur, für die in der Werkstoffnorm Werkstoffeigenschaften angegeben sind, um nicht mehr als 200 °C, können für f_{nc} extrapolierte Werkstoffkennwerte $(R_{p1\%/T}, R_{m/T})$ entsprechend EN13445-3 Anhang S verwendet werden. In der harmonisierten Werkstoffnorm EN10216-5 sind für die beiden Werkstoffe keine Kennwerte der 1%-Zeitdehngrenzen $R_{p1\%/T/t}$ und Zugfestigkeiten $R_{m/T}$ angegeben. Zudem enthält die Norm EN10216-5 keine Zeitstandfestigkeitswerte $R_{m/T/t}$ des Außenrohrwerkstoffs X6CrNi18-10. Als Kompromisslösung wurden die benötigten Werkstoffkennwerte der Norm EN10028-7 entnommen. Bei austenitischen Stählen wird f_{nc} abhängig von der Bruchdehnung A des verwendeten Werkstoffes nach Gleichung 4.2 bzw. 4.3 berechnet. Die Werte für die Bruchdehnung A können aus der jeweiligen harmonisierten Werkstoffnorm entnommen werden. Für die beiden Rohrwerkstoffe wurden die Werte aus der Norm EN10216-5 verwendet. Beim Bruchdehnung (X6CrNi18-10) A = 40%Innenrohrwerkstoff ist die und beim Außenrohrwerkstoff (X8CrNiNb16-13) A = 35%. [5], [37], [38]

Für die Ermittlung der Berechnungsspannung bei nichtaustenitischen Stählen und Stahlguss sei auf [5] verwiesen.

• Austenitische Stähle, $30\% \le A < 35\%$:

$$f_{nc} = \left(\frac{R_{p1\%/T}}{1.5}\right) \tag{4.2}$$

• Austenitische Stähle, $A \ge 35$ %:

$$f_{nc} = max\left[\left(\frac{R_{p1\%/T}}{1,5}\right); min\left(\frac{R_{p1\%/T}}{1,2}; \frac{R_{m/T}}{3}\right)\right]$$
4.3

In Tabelle 4.22 sind die für die weitere Berechnung relevanten Werkstoffkennwerte und Berechnungsspannungen angeführt. Die Berechnungstemperatur T für die Auslegungsrechnung beträgt 630 °C.

Werkstoffkennwert	X6CrNi18-10	X8CrNiNb16-13	Werkstoffnorm
R _{p1%/630}	89,18 MPa	140,00 MPa	EN10216-5/ EN13445-3 Anhang S
<i>R_{m/630}</i>	282,0 MPa	308,0 MPa	EN10028-7/ EN13445-3 Anhang S
f_{nc}	74,3 MPa	102,7 MPa	-
$R_{m/630/100.000}$	65,0 MPa	80,0 MPa	EN10028-7/EN10216-5
$R_{p1\%/630/100.000}$	56,0 MPa	61,0 MPa	EN10028-7
f	43,3 MPa	53,3 MPa	-

Tabelle 4.22: Werkstoffkennwerte zur Ermittlung der maximal zulässigen
Berechnungsspannungen f [5], [37], [38]

4.2.1.2 Rohre unter Innendruck

Die Auslegungsformeln für Schalen unter Innendruckbelastung sind in Kapitel 7 von EN 13445-3 angeführt. Diese Formeln gelten für Schalen mit $e/D_e \leq 0,16$. Die erforderliche Wanddicke e der Zylinderschale unter Innendruckbelastung wird nach Gleichung 4.4 berechnet. Bei nahtlosen der Schweißnahtfaktor z = 1.Stahlrohren beträgt In Tabelle 4.23 sind die Berechnungsergebnisse der Auslegungsrechnung für Außen- und Innenrohr zusammengefasst. Die Außendurchmesser D_e und die Nennwanddicken e_n entsprechen den Vorzugswerten der Norm EN ISO 1127. Aus den gewählten Nennwanddicken wurde die Berechnungswanddicke e_a nach Gleichung 3.1 berechnet. Die negative Wanddickentoleranzen wurden entsprechend den Festlegungen in EN 10216-5 für kalt gefertigte Rohre mit der Toleranzklasse T_3 ermittelt. Es wurde kein Korrosionszuschlag berücksichtigt (c = 0 mm). Die Berechnungswanddicken e_a müssen größer sein als die erforderlichen Wanddicken e. Diese Bedingung $e_a \ge e$ ist für beide Rohre erfüllt. [5], [37], [39]

$$e = \frac{p_C \cdot D_e}{2 \cdot f \cdot z + p_C} \tag{4.4}$$

	p _C	f	D_e	е	e_n	δ_{e}	С	ea
	[MPa]	[MPa]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Innenrohr	7,5	53,3	114,3	7,51	8,8	0,88	0	7,92
Außenrohr	1,5	43,3	219,1	3,73	6,3	0,63	0	5,67

Tabelle 4.23: Berechnungsergebnisse Auslegungsrechnung, Außen- und Innenrohr

4.2.1.3 Ringförmiger ebener Boden

Die Auslegung des ringförmigen Bodens erfolgte entsprechend EN13445-3 - Kapitel 10.7. Die Vorgaben in diesem Kapitel gelten für verschweißte oder verschraubte, nicht runde und ringförmige ebene Böden, die an ihrem Rand gleichmäßig aufgelagert sind. Die ringförmigen ebenen Böden sind wie rechteckige Böden mit den Breitenmaßen a' und b' entsprechend Gleichung 4.5 und 4.6 zu betrachten. Dabei ist D_X der Innendurchmesser und D_Y der Außendurchmesser des ringförmigen Bodens. Abbildung 4.23 zeigt die Skizze mit den für die Auslegung verwendeten Abmessungen. [5]

$$a' = \frac{D_Y - D_X}{2} \tag{4.5}$$

Abbildung 4.23: Auslegungsskizze ringförmiger ebener Boden

Die erforderliche Mindestwanddicke *e* der ringförmigen Böden folgt aus Gleichung 4.7. Der Beiwert C_3 wird mit dem Verhältnis a'/b' aus dem Bild 10.7-1 in EN 13445-3 ermittelt [5]. In Tabelle 4.24 sind die Ergebnisse der Auslegungsrechnung für den ringförmigen ebenen Boden zusammengefasst.

$$e = C_3 \cdot a' \cdot \sqrt{\frac{p_c}{f}}$$

$$4.7$$

p _C	f	D_X	D_Y	<i>a</i> ′	b'	a'/b'	<i>C</i> ₃	е
[MPa]	[MPa]	[mm]	[mm]	[mm]	[mm]	[mm]	[-]	[mm]
1,5	43,3	114,3	207,76	46,73	505,9	0,1	0,707	6,15

Tabelle 4.24: Berechnungsergebnisse Auslegungsrechnung, ringförmiger ebener Boden

4.2.1.4 Abmessungen Doppelrohr-Wärmetauscher

Abbildung 4.24 zeigt eine Konstruktionszeichnung des Doppelrohr-Wärmetauschers mit den in der Vordimensionierung berechneten Nennabmessungen. Der ebene Boden wird in einem Stück Außenrohr und gleicher Nennwanddicke gefertigt. mit dem Dadurch ist die Berechnungswanddicke e_a des ebenen Bodens kleiner als die in der Vorauslegung berechnete erforderliche Wanddicke e. Das verwendete Berechnungsverfahren in Kapitel 4.2.1.3 führt jedoch zu sehr konservativen Ergebnissen, da es sich um ein empirisches Verfahren handelt [5]. Daher wird angenommen, dass die Berechnungswanddicke des ringförmigen Bodens ausreichend ist. Diese Annahme wird in den folgenden Kapiteln durch ergänzende Nachweise überprüft. Das Außenrohr wird durch eine HV-Naht an beiden Enden mit dem Innenrohr verschweißt. Um das Beispiel möglichst einfach zu gestalten, wurden keine Anschlussflansche am Innenrohr und keine Zu- und Ablaufstutzen am Außenrohr für das Heizmedium berücksichtigt.

Abbildung 4.24 Konstruktionszeichnung Doppelrohr-Wärmetauscher

4.2.2 Berechnungsmodell

In Abbildung 4.25 ist das für die folgenden FE-Analysen verwendete Berechnungsmodell unter Ausnutzung der Symmetrie dargestellt. Als Rotationsachse wurde die globale y-Achse gewählt. Die Abmessungen entsprechen, mit Ausnahme der Dicke, den Nennabmessungen aus Abbildung 4.24. Für die Wanddicken wurden die Berechnungswanddicken aus Tabelle 4.23 verwendet. Bezüglich Wärmespannungen ist es auch möglich, dass eine Wanddickenvergrößerung eine Verschlechterung ergibt. Dies wurde hier nicht überprüft. Das Modell wurde entsprechend der unterschiedlichen Werkstoffe für die Schweißnaht und die beiden Rohre aufgeteilt. Die Schweißnahtübergänge wurden mit einem Rundungsradius auf der Innen- und Außenseite modelliert (siehe Detail Z in Abbildung 4.25). Die modellierte Geometrie der Schweißnahtinnenseite wird aufgrund der Zugänglichkeit in der Praxis schwierig zu bewerkstelligen sein. An der Außenseite kann die Schweißnaht durch Abschleifen abgerundet werden. Als zeitunabhängiges Werkstoffgesetz wurde ein linearelastisches-idealplastisches Werkstoffgesetz gewählt. Die Fließgrenzen sind entsprechend des zu führenden Nachweises zu wählen. Die temperaturabhängigen physikalischen Werkstoffkennwerte wie Dichte, Elastizitätsmodul, Wärmeausdehnungskoeffizient und Wärmeleitfähigkeit wurden nach EN13445-3 Anhang O bestimmt und dem Berechnungsmodell zugewiesen. Die Zahlenwerte der benötigten Größen sind im Anhang A dieser Arbeit zu finden. [5]

Abbildung 4.25: Berechnungsmodell Doppelrohr-Wärmetauscher

In Abbildung 4.26 sind die Einwirkungen und Randbedingungen des Berechnungsmodells dargestellt. Im Innenrohr wirkt der Innendruck p_i und eine im geschlossenen Rohr aus der Innendruckbelastung resultierende Längsspannung σ_L (nach Gleichung 3.2). Im Druckraum zwischen Innen- und Außenrohr wirkt der Innendruck p_a . Die unterschiedlichen Temperaturbedingungen T_a und T_i der beiden Druckräume werden direkt auf die Innenkontur aufgegeben. Dadurch wird der Wärmeübergangswiderstand an den Grenzflächen nicht berücksichtigt. Die Vernetzung des Berechnungsmodells wurde mit einer Netzfeinheit von 2 mm durchgeführt (siehe Anhang B). In Tabelle 4.25 sind die Lastfälle für die folgenden Nachweise und Analysen definiert. Die Lastfälle entsprechen den Überlegungen aus der Vorauslegung und werden in den nachfolgenden Kapiteln zu verschiedenen Betriebszyklen mit unterschiedlichen Intervalldauern kombiniert. Während des Heizlastfalles stellt sich die in Abbildung 4.27 dargestellte stationäre Temperaturverteilung ein.

Tabelle 4.25: Lastfälle, Doppelrohr-Wärmetauscher

Lastfall	k	p_a	p_i	σ_L	T_a	T _i
stat. Betrieb	1	1,00 MPa	7,00 MPa	20,14 MPa	610 °C	610 °C
Heizlastfall	2	1,00 MPa	7,00 MPa	20,14 MPa	620 °C	590 °C
Grenzbetrieb	3	1,50 MPa	7,50 MPa	21,57 MPa	630 °C	630 °C

Abbildung 4.27: Stationäre Temperaturverteilung während des Heizlastfalles

4.2.3 Tragfähigkeitsnachweis TN

Der Tragfähigkeitsnachweis erfolgte nach der Vorgehensweise in EN13445-3-Anhang B. Mit dem Tragfähigkeitsnachweis wird der Nachweis gegen global plastisches Versagen durchgeführt. Die verbindliche Regel beim Tragfähigkeitsnachweis fordert, dass der Bemessungswert einer Einwirkung (bzw. einer Kombination von Einwirkungen) für jeden Lastfall kleiner ist als die Tragfähigkeit des Berechnungsmodells mit linearelastischidealplastischen Werkstoffgesetz und Tresca'scher Fließbedingung mit assoziiertem Fließgesetz. Bei Normalbetriebslastfällen darf der maximale Absolutwert der Hauptstrukturdehnungen den Wert 5 % nicht überschreiten. Die Zunahme der Einwirkungen erfolgt proportional von einem spannungsfreien Ausgangszustand. [5]

In Normalbetriebslastfällen ist für austenitische Stähle mit einer Bruchdehnung $A \ge 35$ % der Bemessungswert der Werkstofffestigkeit RM_d und der Teilsicherheitsbeiwert γ_R nach den Gleichungen 4.8 bis 4.13 festzulegen. Wird anstelle der Tresca'schen die von Mises'sche Fließbedingung verwendet, ist der Bemessungswert der Fließgrenze mit dem Faktor $\sqrt{3}/2$ zu multiplizieren. [5]

• Bemessungswert der Werkstofffestigkeit *RM_d*:

$$RM_d = \frac{RM}{\gamma_R} \tag{4.8}$$

• Bemessungswert der Werkstofffestigkeit RM_d (Mises'scher Fließbedingung):

$$RM_d = \frac{\sqrt{3}}{2} \cdot \frac{RM}{\gamma_R}$$
 4.9

• Werkstofffestigkeitskennwert RM:

$$RM = R_{p1\%/T} \tag{4.10}$$

• Teilsicherheitsbeiwert γ_R :

$$\gamma_R = 1.0 \; f \ddot{u} r \; \frac{R_{p1\%/T}}{R_{m/T}} < 0.4$$
 4.11

$$\gamma_R = \frac{2.5 \cdot R_{p1\%/T}}{R_{m/T}} f \ddot{u}r \ 0.4 \ < \frac{R_{p1\%/T}}{R_{m/T}} \le 0.5$$

$$4.12$$

$$\gamma_R = 1,25 \; f \ddot{u} r \; \frac{R_{p1\%/T}}{R_{m/T}} > 0,5$$
 4.13

In Tabelle 4.26 sind die für den Tragfähigkeitsnachweis relevanten Lastfallkombinationen definiert. Für den Nachweis ist der Grenzbetrieb maßgebend, da in diesem Betriebszustand die maximalen Temperaturen und somit die kleinsten Festigkeitswerte auftreten. Durch Erfüllung

des Tragfähigkeitsnachweises für den Grenzbetrieb sind die anderen Lastfälle automatisch abgedeckt. Zusätzlich zum Grenzbetrieb wurden die Lastkombinationen mit einem abwechselnd im Innen- oder Außenrohr wirkenden minimalen Druck überprüft. Der minimale zulässige Druck wurde mit einem Unterdruck von 1 bar spezifiziert.

Lastkombination	p_a	p_i	T _a	T _i
Grenzbetrieb	1,50 MPa	7,50 MPa	630 °C	630 °C
min. Druck Außenrohr	-0,1 MPa	7,50 MPa	630 °C	630 °C
min. Druck Innenrohr	1,50 MPa	-0,1 MPa	630 °C	630 °C

Tabelle 4.26: Lastkombinationen, Tragfähigkeitsnachweis, Doppelrohr-Wärmetauscher

Die Bemessungswerte der Druckeinwirkung p_d wurden entsprechend der Gleichung 4.14 nach den Vorgaben in EN13445 ermittelt. Für Normalbetriebslastfälle ist der Teilsicherheitsbeiwert für den Druck γ_p bei Einwirkungen ohne auf einem Naturgesetz beruhenden Grenzwert mit dem Wert $\gamma_p = 1,2$ definiert. Der Teilsicherheitsbeiwert $\gamma_p = 1,2$ wurde in konservativer Weise auch für Einwirkungen, die auf einem Naturgesetz beruhen, verwendet. In Tabelle 4.27 sind die ermittelten Bemessungswerte der Druckeinwirkung und die resultierende Längsspannung im Innenrohr angeführt. [5]

$$p_d = \gamma_p \cdot p_s \tag{4.14}$$

Tabelle 4.27: Bemessungswerte der Druckeinwirkung p_d , Tragfähigkeitsnachweis, Doppelrohr-Wärmetauscher

Lastkombination	$p_{d,a}$	p _{d,i}	σ_L
Grenzbetrieb	1,80 MPa	9,00 MPa	25,89 MPa
min. Druck Außenrohr	-0,12 MPa	9,00 MPa	25,89 MPa
min. Druck Innenrohr	1,80 MPa	-0,12 MPa	-0,345 MPa

Die berechneten Bemessungswerte der Werkstofffestigkeiten sind in Tabelle 4.28 angeführt. Da für die Berechnungstemperatur *T* keine Festigkeitswerte für die 1%-Dehngrenze und Zugfestigkeit angeführt sind, wurden die benötigten Werte nach den Vorgaben in EN13445 Anhang S aus den in den Normen EN10216-5 (1%-Dehngrenze $R_{p1\%/T}$) und EN10028-7 (Zugfestigkeit $R_{m/T}$) vorhandenen Werkstoffkennwerten extrapoliert. Der Schweißnaht wurden die Festigkeitswerte des schwächeren angrenzenden Werkstoffes zugeordnet. [5], [37], [38]

Tabelle 4.28: Bemessungswerte der Werkstofffestigkeit *RM_d* [37], [38]

Werkstoff	$R_{p1\%/630}$	$R_{m/630}$	ΥR	RM _d (Mises)
X6CrNi18-10	89,18 MPa	282,00 MPa	1	77,23 MPa
X8CrNiNb16-13	140,00 MPa	308,00 MPa	1,136	106,69 MPa

Doppelrohr-Wärmetauscher

Beim Tragfähigkeitsnachweis konnte bei allen vorgegebenen Einwirkungen eine konvergente Lösung berechnet werden. Die maximalen Vergleichsspannungen nach von Mises überschreiten in keinem Punkt der Struktur die Bemessungswerte der Werkstofffestigkeit. Damit ist die Traglast größer als die definierten Einwirkungen. Die maximalen Hauptstrukturdehnungen liegen bei allen Lastkombinationen unterhalb der maximal zulässigen Hauptstrukturdehnung von 5 %. Abbildung 4.28 und Abbildung 4.29 zeigen die Auswertung der maximalen und minimalen Hauptstrukturdehnungen für den Grenzbetrieb. Die Ergebnisse der anderen Lastkombinationen sind im Anhang I zu finden.

Abbildung 4.28: Hauptstrukturdehnung 1, Tragfähigkeitsnachweis, Grenzbetrieb

Abbildung 4.29: Hauptstrukturdehnung 3, Tragfähigkeitsnachweis, Grenzbetrieb

4.2.4 Kriechfestigkeitsnachweis KFN

Die verbindliche Regel beim Kriechfestigkeitsnachweis nach der Norm EN13445-3-Anhang B verlangt, dass der Bemessungswert einer Einwirkung (bzw. einer Kombination von Einwirkungen) für jeden Kriechlastfall kleiner als die Tragfähigkeit des Berechnungsmodells ist. Für das Berechnungsmodell wird ein linearelastisch-idealplastisches Werkstoffgesetz mit von Mises'scher Fließbedingung und assoziiertem Fließgesetz verwendet. Die Zunahme der Einwirkungen erfolgt proportional von einem spannungsfreien Ausgangszustand. Der maximale Absolutwert der Hauptstrukturdehnungen darf den Wert 5 % nicht überschreiten. [5]

Für Stähle sind der Bemessungswert der Werkstofffestigkeit RM_d und der Teilsicherheitsbeiwert γ_R nach den Gleichungen 4.15 bis 4.18 festzulegen. Diese Gleichungen sind für einen Betrieb ohne Lebensdauerüberwachung gültig. Leider sind für den Werkstoff X6CrNi18-10 in der Werkstoffnorm EN10216-5 keine Kennwerte für die Zeitdehngrenzen $R_{p1\%/T/t}$ und Zeitstandfestigkeiten $R_{m/T/t}$ enthalten. In der Norm sind jedoch für den Werkstoff X8CrNiNb16-13 die Werte der Zeitstandfestigkeiten $R_{m/T/t}$ angeführt. Als Kompromisslösung wurden die benötigten zeitabhängigen Festigkeitskennwerte der Norm EN10028-7 entnommen. Für den Schweißnahtbereich wurden auf 80 % reduzierte Festigkeitswerte des angrenzenden schwächeren Grundwerkstoffes verwendet. [5], [37], [38]

• Bemessungswert der Werkstofffestigkeit *RM_d*:

$$RM_d = \frac{RM}{\gamma_R}$$
 4.15

• Werkstofffestigkeitskennwert *RM*:

$$RM = R_{m/T/t} 4.16$$

• Teilsicherheitsbeiwert γ_R :

$$\gamma_R = 1,25 \ wenn \ \frac{R_{m/T/t}}{R_{p1\%/T/t}} < 1,5$$
 4.17

sonst:
$$\gamma_R = \frac{1}{1,2} \frac{R_{m/T/t}}{R_{p1\%/T/t}}$$
 4.18

Der Kriechfestigkeitsnachweis musste für alle drei festgelegten Lastfälle aus Tabelle 4.25 durchgeführt werden, da in den Lastfällen unterschiedliche Drücke und Temperaturen für unterschiedlich spezifizierte Lebensdauern wirken. Für den stationären Betrieb und den Heizlastfall wurde eine Lebensdauer von 100.000 h spezifiziert. Im Grenzbetrieb wird mit einer Betriebszeit von 10.000 h gerechnet. Die spezifizierte Betriebszeit darf für jeden Lastfall im Zeitstandbereich nicht weniger als 10.000 h betragen. Wird vom Betreiber keine Betriebszeit

festgelegt, muss der Hersteller eine vernünftige Zeit annehmen. Diese muss jedoch mindestens 100.000 h betragen. In Tabelle 4.29 sind die Lastfälle und die spezifizierten Betriebszeiten für den Kriechfestigkeitsnachweis zusammengefasst. [5]

WärmetauscherLastfallk p_a p_i T_a T_i ttat. Betrieb11.00 MPa7.00 MPa610 °C610 °C100 000 h

Tabelle 4.29: Lastfälle und Betriebszeiten, Kriechfestigkeitsnachweis Doppelrohr-

stat. Betrieb	1	1,00 MPa	7,00 MPa	610 °C	610 °C	100.000 h
Heizlastfall	2	1,00 MPa	7,00 MPa	620 °C	590 °C	100.000 h
Grenzbetrieb	3	1,50 MPa	7,50 MPa	630 °C	630 °C	10.000 h
		-		•		

Wie schon beim Tragfähigkeitsnachweis mussten auch im Kriechfestigkeitsnachweis die Kombinationen mit einem abwechselnd im Innen- oder Außenrohr wirkenden minimalen Druck überprüft werden. Die überprüften Lastkombinationen und Bemessungswerte der Druckeinwirkungen sind in den nachfolgenden Tabellen (Tabelle 4.30 und Tabelle 4.31) angeführt. Die Bemessungswerte wurden nach der Gleichung 4.14 berechnet. Für den Kriechfestigkeitsnachweis ist der Teilsicherheitsbeiwert der Druckeinwirkung γ_p mit einem Wert von $\gamma_p = 1,2$ festgelegt. Hier ist anders als beim Tragfähigkeitsnachweis $\gamma_p = 1,2$ auch bei durch Naturgesetz begrenzter Druckeinwirkung vorgeschrieben. [5]

Tabelle 4.30: Bemessungswerte der Druckeinwirkung p_d , Kriechfestigkeitsnachweis, stat. Betrieb (Lastfall 1) und Heizlastfall (Lastfall 2)

Lastkombination	$p_{d,a}$	p _{d,i}	σ_L
stat. Betrieb/Heizlastfall	1,20 MPa	8,40 MPa	24,16 MPa
min. Druck Außenrohr	-0,12 MPa	8,40 MPa	24,16 MPa
min. Druck Innenrohr	1,20 MPa	-0,12 MPa	-0,345 MPa

Tabelle 4.31: Bemessungswerte der Druckeinwirkung p_d , Kriechfestigkeitsnachweis, Grenzbetrieb (Lastfall 3)

Lastkombination	$p_{d,a}$	$p_{d,i}$	σ_L
Grenzbetrieb	1,80 MPa	9,00 MPa	25,89 MPa
min. Druck Außenrohr	-0,12 MPa	9,00 MPa	25,89 MPa
min. Druck Innenrohr	1,80 MPa	-0,12 MPa	-0,345 MPa

Bei der Durchführung des Kriechfestigkeitsnachweis konnten für die Lastfälle aus Tabelle 4.29 mit den Lastkombinationen der Druckeinwirkungen aus Tabelle 4.30 und Tabelle 4.31 konvergente Lösungen berechnet werden. Die Vergleichsspannungen nach von Mises sind geringer als die Bemessungswerte der Werkstofffestigkeiten RM_d . Somit liegen die

Einwirkungen unterhalb der Tragfähigkeit des Berechnungsmodells. Die Kontrolle der maximal zulässigen Hauptstrukturdehnungen ergab, dass die Absolutwerte der Dehnungen bei allen Nachweisen unterhalb des maximalen Wertes von 5 % liegen. Die Wahl der Bezugstemperatur T und die Berechnungsergebnisse der Bemessungswerte der Werkstofffestigkeit RM_d sowie die Auswertungsergebnisse der Hauptstrukturdehnungen sind in den folgenden Kapiteln 4.2.4.1, 4.2.4.2 und 4.2.4.3 angeführt. Die Auswertungsergebnisse der Lastkombinationen mit abwechselnd minimalem Druck im Außenrohr und Innenrohr sind im Anhang I dargestellt.

4.2.4.1 Nachweis für den stationären Betriebsfall

In Tabelle 4.32 sind die nach den Vorgaben in EN13445 Anhang B ermittelten Bemessungswerte der Werkstofffestigkeiten für den Kriechfestigkeitsnachweis im stationären Betriebsfall zu finden. Die Bezugstemperatur Т entspricht der maximalen Berechnungstemperatur ($T_a = T_i = 610 \,^{\circ}C$) im stationären Betrieb. In Abbildung 4.30 ist die maximale Hauptstrukturdehnung für den stationären Betriebsfall dargestellt. Der maximale 0.035 %. minimale Absolutwert der Dehnung beträgt Der Absolutwert der Hauptstrukturdehnung beträgt -0,023 % (siehe Abbildung 4.31).

Tabelle 4.32: Bemessungswerte der Werkstofffestigkeit RM_d, stat. Betrieb (Lastfall 1) [37], [38]

Werkstoff	$R_{p1\%/610/100.000}$	$R_{m/610/100.000}$	Ϋ́R	RM _d
X6CrNi18-10	69,00 MPa	81,00 MPa	1,25	64,80 MPa
X8CrNiNb16-13	73,00 MPa	98,00 MPa	1,25	78,40 MPa
Schweißnaht	55,20 MPa	64,80 MPa	1,25	51,84 MPa

Abbildung 4.30: Hauptstrukturdehnung 1, KFN, stationärer Betrieb (Lastfall 1)

Abbildung 4.31: Hauptstrukturdehnung 3, KFN, stationärer Betrieb (Lastfall 1)

4.2.4.2 Nachweis für den Heizlastfall

Im Heizlastfall wurde als Bezugstemperatur *T* die maximal wirkende Berechnungstemperatur von 620 °C verwendet, da dies die ungünstigste Temperatureinwirkung ist. Die Berechnungsergebnisse der Bemessungswerte für den Heizlastfall sind in Tabelle 4.33 zusammengefasst. In Abbildung 4.32 und Abbildung 4.33 sind die maximale und die minimale Hauptstrukturdehnung für den Heizlastfall dargestellt. Der maximale Absolutwert der Hauptstrukturdehnung beträgt 0,035 % und der minimale Wert -0,023 %.

Tabelle 4.33: Bemessungswerte der Werkstofffestigkeit RM_d, Heizlastfall (Lastfall 2) [37], [38]

Werkstoff	$R_{p1\%/620/100.000}$	$R_{m/620/100.000}$	ΥR	RM _d
X6CrNi18-10	63,00 MPa	73,00 MPa	1,25	58,40 MPa
X8CrNiNb16-13	67,00 MPa	89,00 MPa	1,25	71,20 MPa
Schweißnaht	50,40 MPa	58,40 MPa	1,25	46,72 MPa

Abbildung 4.32: Hauptstrukturdehnung 1, KFN, Heizlastfall (Lastfall 2)

Abbildung 4.33: Hauptstrukturdehnung 3, KFN, Heizlastfall (Lastfall 2)

4.2.4.3 Nachweis für den Grenzbetrieb

Im Grenzbetrieb wirken die maximalen Temperaturen im Innen- und Außenrohr. Die Bezugstemperatur *T* beträgt 630 °C. Die Bemessungswerte der Festigkeitswerte für den Kriechfestigkeitsnachweis im Grenzbetrieb sind in Tabelle 4.34 aufgelistet. Für den Grenzbetrieb beträgt der maximale Absolutwert der Hauptstrukturdehnung 0,038 % (siehe Abbildung 4.34). Der minimale Absolutwert der Hauptstrukturdehnung beträgt -0,024 % (siehe Abbildung 4.35).

[2,0]					
Werkstoff	$R_{p1\%/630/10.000}$	$R_{m/630/10.000}$	Υ _R	RM _d	
X6CrNi18-10	75,00 MPa	104,00 MPa	1,25	83,20 MPa	
X8CrNiNb16-13	92,00 MPa	124,00 MPa	1,25	99,20 MPa	
Schweißnaht	60,00 MPa	83,20 MPa	1,25	66,56 MPa	

Tabelle 4.34: Bemessungswerte der Werkstofffestigkeit RM_d , Grenzbetrieb (Lastfall 3) [37],[38]

Abbildung 4.35: Hauptstrukturdehnung 3, KFN, Grenzbetrieb (Lastfall 3)

4.2.5 Bestimmung der globalen Referenzspannung

Die zur Ermittlung der Referenzspannungen nach Gleichung 2.4 benötigten plastischen Grenzeinwirkungen A_u wurden anhand einer linearelastisch-idealplastischen FE-Analyse des Berechnungsmodells mit der 1%-Zeitdehngrenze $R_{p1\%,T,10.000}$ und dem Teilsicherheitsbeiwert $\gamma_R = 1,25$ als Fließgrenze *RM* bestimmt ($RM = R_{p1\%,T,t}/\gamma_R$). Die zu den Werkstoffen zugehörigen Zahlenwerte der 1%-Zeitdehngrenzen wurden der Norm EN10028-7 entnommen, da sie in der Norm EN10216-5 nicht angegeben sind. Für den Schweißnahtbereich wurden um 20 % reduzierte Festigkeitswerte des angrenzenden schwächeren Grundwerkstoffs (Außenrohr, X6CrNi18-10) verwendet. Die Bestimmung der globalen Referenzspannung erfolgte für den stationären Betriebslastfall und den Heizlastfall, weil der Grenzbetriebsfall aufgrund seines sporadischen Auftretens im Kriechdehnnachweis mit Simulationen nicht berücksichtigt wird. [37], [38]

Bei den FE-Analysen sind die Einwirkungen mit Ausnahme der Temperatur linear aus einem spannungsfreien Ausgangszustand zu steigern. Als maximale Druckeinwirkungen wurde dem Berechnungsmodell ein Innendruck im Innenrohr von 35 MPa (Längsspannung σ_L = 100,68 MPa) und im Außenrohr von 5 MPa aufgegeben. Im stationären Betrieb (Lastfall 1) beträgt die Berechnungstemperatur $T = 610 \,^{\circ}C$. Während des Heizlastfalles (Lastfall 2) wirkt die stationäre Temperaturverteilung (siehe Abbildung 4.27), die in einer separaten thermischen Analyse berechnet und anschließend dem Berechnungsmodell in der strukturmechanischen Analyse als Randbedingung aufgegeben wurde. Abbildung 4.36 zeigt den Verlauf der Druckeinwirkungen im Innen- und Außenrohr über dem Laststeigerungsfaktor λ . Bei Erreichen der Grenzeinwirkung versagt in beiden Lastfällen das Innenrohr am Rohrende, bevor der Grenzwert der maximalen Hauptstrukturdehnung von 5 % erreicht wird. In konservativer Weise wurde der letzte konvergente Lastschritt aus der Simulation verwendet, bei dem das Berechnungsmodell seine Tragfähigkeit gerade noch nicht erreicht hat und das 5 %-Kriterium noch erfüllt ist. Die Grenzeinwirkungen sind in Tabelle 4.35 zu finden. Im ersten Lastfall liegt die plastische Grenzeinwirkung bei einem Laststeigerungsfaktor von 0,416. Im Heizlastfall wird die Grenzeinwirkung bei einem Laststeigerungsfaktor von 0,472 erreicht. In Tabelle 4.36 sind die ermittelten Referenzspannungen und die zugrunde gelegten Festigkeitskennwerte für den Lastfall 1 aufgelistet.

Tabelle 4.35: Bemessungswerte der Einwirkung und plastische Grenzeinwirkung für den Lastfall k, Doppelrohr-Wärmetauscher

	Innenrohr		Außenrohr	
Lastfall <i>k</i>	1	2	1	2
A_u^k	14,55 MPa	16,53 MPa	2,08 MPa	2,36 MPa
A_d^k	7,0 MPa	7,0 MPa	1,0 MPa	1,0 MPa

Werkstoff	R _{p1%,610,10.000}	RM^1	σ_{RG}^1
X6CrNi18-10	88,00 MPa	70,40 MPa	33,87 MPa
X8CrNiNb16-13	106,00 MPa	84,80 MPa	40,80 MPa
Schweißnaht	70,40 MPa	56,30 MPa	27,10 MPa
			1
p_a , $p_i \left[MPa ight]$			
35			33
33 -		p_i	
31			
29			
27			1
25 -			
23 -			
21	16,53 _		
19 -	14 55 -		
17 -	14,55	/ Lastfall 2	1
13		,	1
11	7		1
9		p_a \setminus	
7			5 -
5 -		2,36	
3	2,08		×
1	-		
-1 0 0	D,1 0,2 0,3 0,4	0,5 0,6 0,7 0,8	$\lambda_{j,9}$ 1 $\lambda_{[-]}$

Tabelle 4.36: 1%-Zeitdehngrenzen und Referenzspannungen, stationärer Betrieb (Lastfall 1), Doppelrohr-Wärmetauscher

Abbildung 4.36: Einwirkung und plastische Grenzeinwirkung, Doppelrohr-Wärmetauscher

Aufgrund der Temperaturabhängigkeit der Festigkeitskennwerte wurden für den zweiten Lastfall die lokalen Temperaturen aus der thermischen Analyse an den in Abbildung 4.37 definierten Punkten (Punkt A, B, C- X8CrNiNb16-13, Punkt D-Schweißnaht) ausgewertet. Im Punkt A und B stellt sich eine lokale Temperatur von 590 °C ein. Im Heizlastfall beträgt die lokale Temperatur in Punkt C und D 620 °C. In Tabelle 4.37 sind die Festigkeitskennwerte und die berechneten globalen Referenzspannungen für den Lastfall 2 in den Auswertungspunkten aufgelistet.

Abbildung 4.37: Auswertungspunkte, Doppelrohr-Wärmetauscher

Werkstoff	Punkt	$R_{p1\%,T,10.000}$	Τ	RM ²	σ_{RG}^2
X8CrNiNb16-13	A, B	120,00 MPa	590 °C	96,00 MPa	40,65 MPa
X8CrNiNb16-13	С	99,00 MPa	620 °C	79,20 MPa	33,54 MPa
Schweißnaht	D	65,60 MPa	620 °C	52,50 MPa	22,23 MPa

Tabelle 4.37: 1%-Zeitdehngrenzen und Referenzspannungen, Heizlastfall (Lastfall 2), Doppelrohr-Wärmetauscher

Weiteren wird die globale Referenzspannung nach Gleichung Im 2.4 für den Kriechdehnnachweis mit Simulationen herangezogen. Zusätzlich ist jedoch in Tabelle 4.38 die zur Ermittlung der Bruchreferenzspannung σ_{R0} (siehe Gleichung 2.5) unter Berücksichtigung des Spannungskonzentrationsfaktors maximalen χ benötigte maximale elastische Vergleichsspannung (n. v. Mises) $\sigma_{V,el,max}$ für die beiden Lastfälle k aufgelistet. Die Stellen mit den Maxima können der linearelastischen Spannungsverteilung im Anhang C entnommen werden.

Tabelle 4.38: Maximale elastische Vergleichsspannung (n. v. Mises) $\sigma_{V,el,max}$, Doppelrohr-Wärmetauscher

Lastfall k	1	2
$\sigma^k_{V,el,max}$	47,25 MPa	116,44 MPa

Abschließend konnte die Plausibilität der ermittelten Grenzeinwirkungen A_u für das Innenrohr durch den Vergleich mit der idealplastischen Tragfähigkeitsgrenze p_{pl} von dickwandigen Schalen unter Innendruckbelastung bestätigt werden. Im Fall der Mises'schen Fließbedingung ist die idealplastische Tragfähigkeitsgrenze durch Gleichung 4.19 gegeben. In Tabelle 4.39 sind die Berechnungsergebnisse der idealplastischen Tragfähigkeitsgrenze zusammengefasst. [40]

$$p_{pl} = \frac{2}{\sqrt{3}} \cdot RM \cdot \ln\left(\frac{r_a}{r_i}\right)$$
4.19

Tabelle 4.39: Berechnungsergebnisse idealplastische Tragfähigkeitsgrenze, Innenrohr

k	$RM = R_{p1\%,T,10.000}/\gamma_R$	Т	r_a	r_i	p_{pl}
1	84,80 MPa	610°C	57,15 mm	49,23 mm	14,61 MPa
2	96,00 MPa	590°C	57,15 mm	49,23 mm	16,54 MPa

4.2.6 Berechnung und Variation der Kriechgesetze

In diesem Beispiel erfolgten die Berechnung und die Variation der Kriechgesetze entsprechend der Vorgehensweise in Kapitel 4.1.3 unter Verwendung der Gleichungen 3.3 bis 3.8.

Als Erstes wurden wieder der Kriechexponent n und die temperaturabhängige Konstante K im stationären Betriebsfall bei einer Berechnungstemperatur $T = 610 \,^{\circ}C$ berechnet. Die globale Referenzspannung σ_{RG}^1 für den stationären Betrieb (Lastfall 1) liegt bei allen verwendeten Werkstoffen unterhalb der kleinsten in der Werkstoffnorm (EN10028-7) gegebenen 1%-Zeitdehngrenze unter Berücksichtigung des Teilsicherheitsbeiwertes $\gamma_R = 1,25$ (siehe Tabelle 4.40, $R_{p1\%,610,100,000}/\gamma_R$). Für den Schweißnahtbereich wurden um 20% reduzierte 1%-Zeitdehngrenzen des angrenzenden schwächeren Grundwerkstoffes (Außenrohr, X6CrNi18-10) verwendet. In Tabelle 4.40 sind die zulässige Belastungsdauer t_{RG}^1 für 1%-Dehnung bei der globalen Referenzspannung σ_{RG} (siehe Gleichung 3.8) und die zugehörigen Kriechraten $\dot{\varepsilon}_{CR,RG}^1$ (siehe Gleichung 3.4) für die verschiedenen Werkstoffe im stationären Betrieb (Lastfall 1) angeführt. Die interpolierten Kriechexponenten liegen im Bereich von n = 6,0 - 9,5 (siehe Tabelle 4.41 Variation i = 0). Daher wurden für die Variation des Kriechgesetzes nach der Vorgehensweise in Abbildung 4.6 die Kriechexponenten mit n = 5 und n = 10 gewählt. Die berechneten Ergebnisse des Kriechgesetzes und der Variationen sind Tabelle 4.41 angeführt. Abbildung 4.38 zeigt das Kriechgesetz für den Werkstoff X8CrNiNb16-13 des Innenrohrs bei einer Temperatur von 610 °C. Die Kriechgesetze für den Werkstoff X6CrNi18-10 des Außenrohres und der Schweißnaht befinden sich im Anhang F. [38]

Werkstoff	X6CrNi18-10	X8CrNiNb16-13	Schweißnaht
$R_{p1\%,610,10.000}/\gamma_R$	70,4 MPa	84,8 MPa	56,3 MPa
$R_{p1\%,610,100.000}/\gamma_R$	55,2 MPa	58,4 MPa	44,2 MPa
t_{RG}^1	10.188.500,8 h	915.244,6 h	10.174.273,3 h
$\dot{arepsilon}_{CR,RG}^{1}$	$2,7264 \cdot 10^{-13} 1/s$	3,0350 · 10 ⁻¹² 1/s	$2,7302 \cdot 10^{-13} 1/s$

Tabelle 4.40: 1%-Zeitdehngrenze $R_{p1\%,610,t}$, Belastungsdauer t_{RG}^k und Kriechrate $\dot{\varepsilon}_{CR,RG}^k$, stationärer Betrieb (Lastfall 1), Doppelrohr-Wärmetauscher [38]

Tabelle 4.41: Nortonparameter	, stationärer Betrieb	(Lastfall 1)	, Doppelrohr-Wärmet	auscher
-------------------------------	-----------------------	--------------	---------------------	---------

i		X6CrNi18-10	X8CrNiNb16-13	Schweißnaht
0	n	9,4667	6,1735	9,4667
_	K	$8,9806 \cdot 10^{-28}$	$3,4576 \cdot 10^{-22}$	$7,4255 \cdot 10^{-27}$
1	n	5	5	5
	K	$6,1166 \cdot 10^{-21}$	$2,6845 \cdot 10^{-20}$	$1,8679 \cdot 10^{-20}$
2	n	10	10	10
_	K	$1,3723 \cdot 10^{-28}$	$2,3744 \cdot 10^{-28}$	$1,2779 \cdot 10^{-27}$

Abbildung 4.38: Kriechgesetz X8CrNiNb16-13, stationärer Betrieb (Lastfall 1) bei 610 °C, Doppelrohr-Wärmetauscher

Die temperaturabhängige Variation der Kriechgesetze erfolgte entsprechend dem konservativen Ansatz in Abbildung 4.8. Im relevanten Lastfall (stationärer Betrieb, Lastfall 1) beträgt die Berechnungstemperatur $T = 610 \,^{\circ}C$. Die temperaturabhängigen Kriechgesetze wurden für den Temperaturbereich von $T = 580 \,^{\circ}C - 620 \,^{\circ}C$ aufgeteilt in 10-°C-Schritten berechnet. Die Berechnungsergebnisse der Nortonparamater befinden sich in Tabelle 4.42. Abbildung 4.39 zeigt die Variation des Kriechgesetzes für den Werkstoff X8CrNiNb16-13 bei unterschiedlichen Temperaturen in einer doppeltlogarithmischen Darstellung. Die Kriechgesetze für die anderen Werkstoffe sind im Anhang F zu finden.

Tabelle 4.42: Variation Nortonparameter bei unterschiedlichen Temperaturen, Doppelrohr-Wärmetauscher

Т	580 °C	590 °C	600 °C	610 °C	620 °C			
		X6CrNi18-10						
n	9,4667	9,4667	9,4667	9,4667	9,4667			
K	$1,5423 \cdot 10^{-28}$	2,6776 · 10 ⁻²⁸	$4,8098 \cdot 10^{-28}$	8,9806 · 10 ⁻²⁸	$2,1248 \cdot 10^{-27}$			
	X8CrNiNb16-13							
n	6,1735	6,1735	6,1735	6,1735	6,1735			
K	$1,1328 \cdot 10^{-22}$	$1,6076 \cdot 10^{-22}$	2,3298 · 10 ⁻²²	3,4576 · 10 ⁻²²	5,8711 · 10 ⁻²²			
	Schweißnaht							
n	9,4667	9,4667	9,4667	9,4667	9,4667			
K	$1,2753 \cdot 10^{-27}$	$2,2139 \cdot 10^{-27}$	$3,9769 \cdot 10^{-27}$	$7,4255 \cdot 10^{-27}$	$1,7569 \cdot 10^{-26}$			

Abbildung 4.39: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, X8CrNiNb16-13, Doppelrohr-Wärmetauscher

4.2.7 Analyse für konstante Last und Temperatur

Die Analyse mit konstanter Last und Temperatur wurde mit den Einwirkungen beim Lastfall 1 im stationären Betrieb (siehe Tabelle 4.25) durchgeführt. Die Druck- und Temperatureinwirkungen blieben nach der anfänglichen Lastaufbringung über die gesamte Simulationsdauer konstant. Die Simulation wurde für die gesamte geforderte Lebensdauer von 100.000 h durchgeführt.

Für das zeitunabhängige Materialverhalten (linearelastisch-idealplastische Werkstoffgesetz) wurden als Fließgrenzen die Mindest-0,2-%-Dehngrenzen $R_{p0,2\%,T}$ mit einem Teilsicherheitsbeiwert von $\gamma_R = 1$ verwendet ($R_{p0,2\%,T}/\gamma_R$). In der harmonisierten Norm EN10216-5 sind die Kurzeit-Festigkeitskennwerte nur bis zu einer Temperatur von $T = 550 \,^{\circ}C$ enthalten. Die entsprechenden Zahlenwerte für die Berechnungstemperatur $T = 610 \,^{\circ}C$ konnten nach den Vorgaben in EN13445-3-Anhang S ermittelt und dem Berechnungsmodell zugewiesen werden (siehe auch Kapitel 4.2.1.1). Die in der Simulation implementierten Kriechgesetze entsprechend Tabelle 4.41 beschreiben das zeitabhängige Materialverhalten. [5], [37]

Abbildung 4.40 zeigt die Ergebnisse der Vergleichskriechdehnung nach einer Simulationsdauer von 100.000 h im stationären Betrieb für die Kriechgesetze mit interpoliertem Kriechexponenten. Die maximalen Kriechdehnungen sind mit 0,14 % sehr gering und treten am rechten Ende des Innenrohrs auf. Die Ergebnisse der Vergleichskriechdehnung der beiden

Variationen mit einem Kriechexponenten von n = 5 und n = 10 sind im Anhang C beigefügt. Die sich ergebenden Kriechdehnungen für die Variationen sind ebenfalls sehr gering und liegen unterhalb eines Wertes von 0,15 %.

Abbildung 4.40: Vergleichskriechdehnung nach 100.000 h, stationärer Betrieb, n-Interpolation, Doppelrohr-Wärmetauscher

Die Auswertung der Erhöhungsfaktoren (siehe Gleichung 3.15) erfolgte an den zuvor definierten Punkten (siehe Abbildung 4.37) zum Zeitpunkt der geforderten Lebensdauer. Abbildung 4.41 und Abbildung 4.42 zeigen den zeitlichen Verlauf der Kriechkurven aus den Simulationen für die drei Variationen und auf Basis der Referenzspannung in Punkt A und D. Die Kriechkurven für den Punkt B und C befinden sich im Anhang D. Betrachtet man die Kurvenverläufe in Punkt D (siehe Abbildung 4.42), so zeigen die Variationen am Beginn eine progressive Zunahme der Vergleichskriechdehnung. Danach stellt sich eine stationär ansteigende Vergleichskriechdehnung über der Simulationszeit ein. Dieser Kurvenverlauf ist auf eine Zunahme der Vergleichsspannung (n. v. Mises) am Beginn der Simulation zurückzuführen. Ein ähnliches Verhalten weisen auch die Kriechkurven im Punkt C auf. Der Verlauf der Vergleichsspannungen (n. v. Mises) in den Punkten A bis D ist im Anhang D beigefügt.

Abbildung 4.41: Kriechkurven aus der Simulation, Punkt A, stationärer Betrieb, Doppelrohr-Wärmetauscher

Abbildung 4.42: Kriechkurven aus der Simulation, Punkt D, stationärer Betrieb, Doppelrohr Wärmetauscher

Die Ergebnisse der Erhöhungsfaktoren in den Auswertungspunkten sind in nachfolgender Tabelle 4.43 angeführt. Zusätzlich wurde der Erhöhungsfaktor für die höchstbeanspruchte Stelle mit der maximalen Vergleichskriechdehnung am rechten Ende des Innenrohrs (nachfolgend mit *Max.* gekennzeichnet) ausgewertet. In den Punkten B und C sind die Erhöhungsfaktoren kleiner als eins. Somit sind diese Punkte im Kriechdehnnachweis nicht kritisch und sie wurden für die weitere Analyse mit konstanter Last und Temperatur nicht weiter berücksichtigt. Die größten Erhöhungsfaktoren ergeben sich in der Schweißnaht im Punkt D.

i	<i>EF</i> -Punkt A	<i>EF</i> -Punkt B	<i>EF-</i> Punkt C	<i>EF</i> -Punkt D	EF-Max
0	1,148	0,389	0,283	1,522	1,300
1	1,160	0,465	0,355	1,721	1,282
2	1,101	0,230	0,136	0,828	1,340

Tabelle 4.43: Ergebnisse Erhöhungsfaktoren

Die globale Referenzspannung σ_{RG}^1 (siehe Tabelle 4.45) für den ersten Lastfall liegt in den betrachteten Bereichen unterhalb der kleinsten in den Werkstoffnormen EN10216-5 [37] und EN10028-7 [38] gegebenen Zeitstandfestigkeiten $R_{m,T,t}$ mit dem Teilsicherheitsbeiwert $\gamma_R =$ 1,25 (siehe Tabelle 4.44, $R_{m,T,t}/\gamma_R$). Für die Zeitstandfestigkeitswerte der Schweißnaht wurden um 20 % reduzierte Festigkeitswerte des schwächeren angrenzenden Grundwerkstoffes (Außenrohr X6CrNi18-10) verwendet. Die Bestimmung der zulässigen Standzeit Δt_{all}^1 und des theoretischen Kriechschädigungsmaßes $D_{c,theo}$ erfolgte dabei nach den Gleichungen 3.10 und 3.11 aus Kapitel 3.4. Die Berechnungsergebnisse sind in Tabelle 4.45 zusammengefasst.

Werkstoff X8CrNiNb16-13 Schweißnaht 80% X6CrNi18-10/ Werkstoffnorm EN10216-5 EN10028-7 t_A 100.000 h 100.000 h $R_{m.610,tA}$ 98.00 MPa 64,80 MPa $R_{m,610,tA}/\gamma_R$ 78,40 MPa 51,84 MPa t_B 200.000 h 200.000 h $R_{m.610,tB}$ 85,00 MPa 56,00 MPa $R_{m,610,tB}/\gamma_R$ 68,00 MPa 44,80 MPa

Tabelle 4.44: Zeitstandfestigkeiten X8CrNiNb16-13 und Schweißnaht [37], [38]

Tabelle 4.45: Ergebnisse zulässige Standzeit und theoretisches Kriechschädigungsmaß

Punkt	A und Max.	D
σ_{RG}^1	40,80 MPa	27,10 MPa
Δt	100.000 h	100.000 h
Δt_{all}^1	2.407.343,9 h	2.176.687,8 h
D _{c,theo}	0,0415	0,0459

In Tabelle 4.46 ist das korrigierte Kriechschädigungsmaß $D_{c,Sim}$ nach Gleichung 3.9 für die betrachteten Punkt angeführt. Es ist in allen Auswertepunkten kleiner als eins. Der Kriechdehnnachweis für den rein stationären Betrieb gilt somit als erfüllt.

Variation <i>i</i>	D _{c,Sim} -Punkt A	D _{c,Sim} -Punkt D	D _{c,Sim} -Max.
0	0,0477	0,0699	0,0540
1	0,0482	0,0791	0,0532
2	0,0457	0,0380	0,0557

Tabelle 4.46: Korrigiertes Kriechschädigungsmaß D_{c,Sim}

4.2.8 Analyse unter Berücksichtigung von Lastvariationen

In diesem Kapitel werden auf Grundlage der in Tabelle 4.25 spezifizierten Lastfälle zwei unterschiedliche Lastverläufe mit jeweils einer Gesamtdauer von 2.500 h definiert. Der Grenzbetrieb wird in den folgenden Lastverläufen nicht berücksichtigt. Der An- und der Abfahrvorgang dauert jeweils eine Stunde.

Aus dem Temperaturgradienten (siehe stationäre Temperaturverteilung in Abbildung 4.27) zwischen Außen- und Innenrohr im Heizlastfall folgen Wärmespannungen. Im Anhang C sind eine linearelastische Spannungsverteilung während des stationären Betriebs und des Heizbetriebs dargestellt. Die Auswertung der Kriechdehnnachweise erfolgte an den in Abbildung 4.37 festgelegten Punkten.

Wie im vorigen Kapitel wurden die nach EN13445-3-Anhang S extrapolierten Werte der Mindest-0,2%-Dehngrenzen $R_{p0,2\%,T}$ aus der Norm EN10216-5 mit einem Teilsicherheitsbeiwert von $\gamma_R = 1$ als Fließgrenzen $(R_{p0,2\%,T}/\gamma_R)$ für das zeitunabhängige Materialverhalten (linearelastisch-idealplastisches Werkstoffgesetz) verwendet. Die Zahlenwerte der Festigkeitskennwerte sind im Anhang A zu finden. Für die Beschreibung des zeitabhängigen Materialverhaltens wurden die Nortonparameter der Kriechgesetze bei unterschiedlichen Temperaturen nach Tabelle 4.42 in die FE-Analyse implementiert. [5], [37]

4.2.8.1 Kurze Unterbrechung des stationären Betriebs – Lastverlauf 1

Im ersten betrachteten Lastverlauf wird der stationäre Betrieb (Lastfall 1) durch einen Heizbetrieb (Lastfall 2) mit einer kurzen Intervalldauer von 24h in regelmäßigen Abständen unterbrochen (siehe Abbildung 4.43). Die Innendruckeinwirkungen auf das Berechnungsmodell im Innen- und Außenrohr bleiben über den gesamten Betriebszyklus konstant. Die Konfigurations- und Rechenzeit konnte durch die Simulation von vier kompletten Lastverläufen für eine gesamte Betriebszeit von 10.000 h begrenzt werden.

Abbildung 4.43: Temperatureinwirkung, Lastverlauf 1, Doppelrohr-Wärmetauscher

Nach der Simulationszeit von 10.000 h liegt das Maximum der Vergleichskriechdehnung im Bereich des Punktes B auf der Innenseite des Innenrohres (siehe Abbildung 4.44). Am Außenrohr ergeben sich nur sehr geringe Kriechdehnungen (zum Beispiel: $3,4766 \cdot 10^{-10}$ in Abbildung 4.44).

Abbildung 4.44: Vergleichskriechdehnung nach 10.000 h, Lastverlauf 1, Doppelrohr-Wärmetauscher

Die Abbildung 4.45 bis Abbildung 4.47 zeigen den Verlauf der Vergleichsspannung (n. v. Mises) in den Punkten A,B und D. Die Unterbrechung des stationären Betriebs durch den Heizbetriebsfall ist im Punkt A durch eine kleine Verringerung der Vergleichsspannung gekennzeichnet (siehe Abbildung 4.45). Dies führt dazu, dass sich geringere Vergleichskriechdehnungen im Vergleich zum stationären Betrieb ergeben (siehe Abbildung 4.48). Im Gegensatz dazu treten in Punkt B Spannungsspitzen aufgrund der zusätzlich zum Innendruck wirkenden Wärmespannungen im zeitlichen Verlauf der Vergleichsspannung auf.

Diese Spannungsspitzen führen zu einer erhöhten Kriechrate während des Heizlastfalles, wodurch die absolute Kriechdehnung im Vergleich zum stationären Betrieb erheblich zunimmt (siehe Abbildung 4.49). Gleichzeitig verringert sich die Vergleichsspannung bei erneutem stationärem Betrieb aufgrund eines stärkeren Spannungsabbaus während des Heizbetriebs bei einer erhöhten Kriechrate. Der Auswertungspunkt C wird für die folgende Analyse nicht weiter angeführt, da sich ein Erhöhungsfaktor kleiner als eins ergibt. Die Auswertungsergebnisse für den Punkt C sind im Anhang D dargestellt.

Abbildung 4.45: Verlauf der Vergleichsspannung, Punkt A, Lastverlauf 1, Doppelrohr-Wärmetauscher

Abbildung 4.46: Verlauf der Vergleichsspannung, Punkt B, Lastverlauf 1, Doppelrohr-Wärmetauscher

Abbildung 4.47: Verlauf der Vergleichsspannung, Punkt D, Lastverlauf 1, Doppelrohr-Wärmetauscher

Abbildung 4.48: Kriechkurven aus der Simulation, Punkt A, Lastverlauf 1, Doppelrohr-Wärmetauscher

Abbildung 4.49: Kriechkurven aus der Simulation, Punkt B, Lastverlauf 1, Doppelrohr-Wärmetauscher

Abbildung 4.50: Kriechkurven aus der Simulation, Punkt D, Lastverlauf 1, Doppelrohr-Wärmetauscher

Abbildung 4.50 zeigt die Kriechkurve im Punkt D für den ersten Lastverlauf aus der FE-Analyse. Am Beginn der Kriechkurve nimmt die absolute Kriechdehnung nur während des Heizbetriebs zu. Diese Zunahme der Kriechdehnungen resultiert aus einer erhöhten Kriechrate, die sich wiederum aus der Spannungserhöhung während des Heizlastfalles ergibt (siehe Abbildung 4.47). Die Vergleichsspannung im stationären Betrieb erhöht sich nach jeder Unterbrechung durch den Heizbetrieb, wodurch nach etwa 2.500 h der stationäre Betriebsfall für die Zunahme der absoluten Kriechdehnungen relevant ist. Während des Heizlastfalles treten nach einer Simulationsdauer von etwa 3.000 h nur sehr geringe Kriechdehnungen auf, da sich die Spannungserhöhungen während des Heizlastfalles mit fortschreitender Simulationsdauer verringern (siehe Abbildung 4.47).

Die Vergleichskriechdehnungen $\varepsilon_{CR,V,100.000}$ nach der geforderten Lebensdauer von 100.000 h wurden wie zuvor aus den Simulationsergebnissen extrapoliert. Die Extrapolationsergebnisse für den ersten Lastverlauf sind in Tabelle 4.47 angeführt.

Tabelle 4.47: Extrapolationsergebnisse Vergleichskriechdehnung $\varepsilon_{CR,V,100.000}$, Lastverlauf 1,
Doppelrohr-Wärmetauscher

Punkt	<i>E_{CR,V,100.000}</i>
Α	$1,3650 \cdot 10^{-03}$
В	2,0119 · 10 ⁻⁰³
D	$3,2590 \cdot 10^{-04}$

In Tabelle 4.48 sind die Berechnungsergebnisse der gesamten Kriechdehnung $\varepsilon_{CR,RG}$ auf Basis der globalen Referenzspannung nach Gleichung 3.16 zu finden. Wie in den Simulationen wurden nur der stationäre Betrieb (Lastfall 1) und der Heizbetrieb (Lastfall 2) berücksichtigt. Der Anund Abfahrvorgang wurde nicht einbezogen. Die Intervalldauer für den stationären Betrieb beträgt $\Delta t^1 = 480,8$ h. Der stationäre Betriebslastfall tritt während der gesamten Lebensdauer 200-mal ein. Der Heizbetriebslastfall tritt 160-mal für eine Intervalldauer von $\Delta t^2 = 24$ h ein.

Tabelle 4.48: Kriechdehnung auf Basis der globalen Referenzspannung, Lastverlauf 1, Doppelrohr-Wärmetauscher

Punkt	А, В		I)
Lastfall k	1	2	1	2
Δt^k	480,8 h	24 h	480,8 h	24 h
n_I^k	200	160	200	160
$\dot{arepsilon}^k_{CR,RG}$	$3,0350 \cdot 10^{-12} 1/s$	1,0823 · 10 ⁻¹² 1/s	$2,7302 \cdot 10^{-13} 1/s$	$1,5305 \cdot 10^{-13} 1/s$
$\varepsilon^k_{CR,RG}$	$1,0506 \cdot 10^{-3}$	$1,4962 \cdot 10^{-5}$	$9,4513 \cdot 10^{-5}$	$2,1157 \cdot 10^{-6}$
$\varepsilon_{CR,RG}$	1,0656 • 10 ⁻³		9,6629	10^{-5}
$\overline{\dot{\varepsilon}}_{CR,RG}$	2,9600 · 10 ⁻¹² 1/s		2,6841 • 1	$10^{-13} 1/s$

Die berechneten Erhöhungsfaktoren nach Gleichung 3.15 ergeben sich wie folgt.

Tabelle 4.49: Ergebnisse Erhöhungsfaktoren, Lastverlauf 1, Doppelrohr-Wärmetauscher

Punkt	EF
Α	1,281
В	1,888
D	3,373

Tabelle 4.50: Zeitstandfestigkeiten X8CrNiNb16-13 und Schweißnaht, Doppelrohr
Wärmetauscher [37], [38]

Werkstoff	X8CrNiNb16-13	Schweißnaht	
Werkstoffnorm	EN10216-5	80% X6CrNi18-10/	T 46- 11 l-
		EN10028-7	Lastiali k
t_A	100.000 h	100.000 h	
$R_{m,610,tA}$	98,00 MPa	64,80 MPa	1
$R_{m,610,tA}/\gamma_R$	78,40 MPa	51,84 MPa	1
$R_{m,590,tA}$	119,00 MPa	-	
$R_{m,590,tA}/\gamma_R$	95,20 MPa	-	2
$R_{m,620,tA}$	89,00 MPa	58,40 MPa	2
$R_{m,620,tA}/\gamma_R$	71,20 MPa	46,72 MPa	
t_B	200.000 h	200.000 h	
$R_{m,610,tB}$	85,00 MPa	56,00 MPa	1
$R_{m,610,tB}/\gamma_R$	68,00 MPa	44,80 MPa	1
$R_{m,590,tB}$	105,00 MPa	-	
$R_{m,590,tB}/\gamma_R$	84,00 MPa	-	2
$R_{m,620,tB}$	77,00 MPa	49,60 MPa	Z
$R_{m,620,tB}/\gamma_R$	61,60 MPa	39,68 MPa	

In Tabelle 4.51 sind die Ergebnisse des Kriechdehnnachweises mit Simulationen nach Kapitel 3.4 für den Doppelrohr-Wärmetauscher aufgelistet. Die verwendeten Festigkeitskennwerte sind in Tabelle 4.50 angegeben. Für den Schweißnahtbereich wurden die eingesetzten Festigkeitswerte auf 80 % des angrenzenden schwächeren Grundwerkstoffes (Außenrohr X6CrNi18-10) reduziert. Im Punkt A und B wurde im Heizlastfall (Lastfall 2) mit den Festigkeitswerten bei einer Berechnungstemperatur $T = 590 \,^{\circ}C$ gerechnet. Im Punkt D beträgt die Berechnungstemperatur T während des Heizlastfalles 620 °C. Der Kriechdehnnachweis gilt für die gesamte Struktur als erfüllt, da das korrigierte Kriechschädigungsmaß in den analysierten Punkten kleiner als eins ist. Das Kriechschädigungsmaß ist im Punkt D aufgrund der reduzierten Festigkeitskennwerte am größten und stellt somit die kritische Stelle der Struktur dar. Dies hat sich schon bei der Analyse für konstante Last und Temperatur gezeigt (siehe Tabelle 4.43).

Werkstoff	X8CrNiNb16-13		Schwe	ißnaht
Lastfall k	1	2	1	2
σ^k_{RG}	40,80 MPa	40,65 MPa	27,10 MPa	22,23 MPa
Δt_{all}^k	2.407.344 h	11.135.135 h	2.176.688 h	2.338.570 h
Δt^k	480,8 h	24 h	480,8 h	24 h
n_I^k	200	160	200	160
$D_{c,theo}^k$	0,03994	0,00034	0,04418	0,00164
D _{c,theo}	0,04	1029	0,04582	
Punkt	Α	В	D	
D _{c.Sim}	0,0516	0,0761	0,1	545

Tabelle 4.51: Berechnungsergebnisse Kriechdehnnachweis mit Simulationen, Las	tverlauf 1,
Doppelrohr-Wärmetauscher	

Die Last- und Temperaturänderungen im ersten Lastverlauf laufen ohne Plastifizierungen ab. Die Kontrolle, ob Änderungen der Kriechrichtungen auftreten, erfolgte wie in den vorigen Kapiteln durch die Auswertung der Differenz $\varepsilon_{CR,Diff}$ der Vergleichskriechdehnung und der akkumulierten Vergleichskriechdehnung (siehe Abbildung 4.51).

Abbildung 4.52: Auswertungspunkt E, Doppelrohr-Wärmetauscher

Das Maximum der Differenz $\varepsilon_{CR,Diff}$ liegt auf der Innenseite der Schweißnaht in Punkt D. Ein weiteres lokales Maximum tritt auf der Innenseite des Innenrohres auf. Dieser Punkt wird in den folgenden Ausführungen mit E gekennzeichnet (siehe Abbildung 4.52). Im Allgemeinen treten die Differenzen nur lokal auf. Im Punkt D beträgt die Differenz 46 % von der absoluten Vergleichskriechdehnung (siehe Tabelle 4.52). Im Punkt E ist sie mit 3,3 % von der absoluten Vergleichskriechdehnung wesentlich geringer als im Punkt D. Eine Bewertung dieser Differenzen ist jedoch aufgrund fehlender Erfahrungswerte schwierig. Da die Differenzen nur lokal auftreten, wird erwartet, dass sie sich nicht auf das globale Verhalten der Struktur im Zeitstandbereich auswirken.

Tabelle 4.52: Anteil $\varepsilon_{CR,Diff}$ an $\varepsilon_{CR,V}$, Lastverlauf 1, Doppelrohr-Wärmetauscher

Punkt	ε _{cr,Diff}	ε _{cr,v}	$\varepsilon_{CR,Diff}/\varepsilon_{CR,V}$
D	9,2672 · 10 ⁻⁶	$2,0045 \cdot 10^{-5}$	46 %
Ε	$5,6015 \cdot 10^{-6}$	$1,7157 \cdot 10^{-4}$	3,3 %

In Abbildung 4.53 bis Abbildung 4.55 sind die σ/ϵ -Diagramme der Spannungs- und Dehnungskomponenten in den relevanten Punkten A, B und D dargestellt. In den Punkten A und B treten in Umfangsrichtung keine Richtungsumkehrungen der Kriechdehnungen auf. Im Punkt D führt die Unterbrechung des stationären Betriebs durch den Heizlastfall zu Rückkriecherscheinungen in Umfangs- und Längsrichtung. Betrachtet man den Kurvenverlauf in Abbildung 4.55, lässt sich festhalten, dass die größten Rückkriecherscheinungen während des Heizbetriebs am Beginn der Simulation auftreten. Als Grund für das lokale Maximum der Differenz $\varepsilon_{CR,Diff}$ in Punkt E konnte eine Richtungsumkehr der Längsdehnung identifiziert werden. Die ergänzenden σ/ϵ -Diagramme im Punkt D und E befinden sich im Anhang H. Dadurch bestätigen sich die Ergebnisse der maximalen Differenz aus Abbildung 4.51 und Tabelle 4.52.

Abbildung 4.53: σ/ε-Diagramm, Punkt A, Umfangsrichtung, Lastverlauf 1, Doppelrohr-Wärmetauscher

Abbildung 4.54: σ/ε-Diagramm, Punkt B, Umfangsrichtung, Lastverlauf 1, Doppelrohr-Wärmetauscher

Abbildung 4.55: σ/ε-Diagramm, Punkt D, Umfangsrichtung, Lastverlauf 1, Doppelrohr-Wärmetauscher

Für noch erforderliche Ermüdungsanalysen sind in Tabelle 4.53 die Dehnungs- und Spannungsschwingbreiten in Umfangsrichtung des letzten Heizbetriebslastzyklus aufgelistet. Die Unterbrechung des stationären Betriebs durch den Heizbetrieb läuft ohne Plastifizierungen ab. Die Richtungsänderung der Kriechdehnung während des Heizbetriebsfalles ist durch das negative Vorzeichen der Kriechdehnungsschwingbreite $\Delta \varepsilon_{CR,U}$ definiert.

Tabelle 4.53: Dehnungs- und Spannungsschwingbreiten, letzter Heizbetriebsfall, Lastverlauf 1, Doppelrohr-Wärmetauscher

Punkt	$\Delta \sigma_{GES,U}$	$\Delta \boldsymbol{\varepsilon}_{\boldsymbol{CR},\boldsymbol{U}}$	$\Delta \sigma_{EL,U}$	$\Delta \boldsymbol{\varepsilon}_{\boldsymbol{EL},\boldsymbol{U}}$
Α	1,89 MPa	$1,0000 \cdot 10^{-7}$	1,89 MPa	$1,4150 \cdot 10^{-5}$
В	72,81 MPa	$6,8700 \cdot 10^{-6}$	71,82 MPa	$3,3877 \cdot 10^{-4}$
D	16,80 MPa	$-3,053 \cdot 10^{-6}$	16,76 MPa	$2,1105 \cdot 10^{-4}$

4.2.8.2 Lange Unterbrechung des stationären Betriebs - Lastverlauf 2

In diesem Kapitel erfolgt die FE-Analyse unter Anwendung des in Abbildung 4.56 dargestellten Lastverlauf mit einer Dauer von 2.500 h. Die Innendruckeinwirkungen bleiben wie beim ersten Lastverlauf über den gesamten Betriebszyklus konstant. Der stationäre Betrieb (Lastfall 1) wird durch einen Heizbetrieb (Lastfall 2) mit einer Intervalldauer von 500 h in regelmäßigen Abständen unterbrochen. Um die Konfigurationszeit zu begrenzen, erfolgte die Simulation nur für vier komplette Lastverläufe. Dies entspricht einer gesamten Betriebszeit von 10.000 h.

Abbildung 4.56: Temperatureinwirkung, Lastverlauf 2, Doppelrohr-Wärmetauscher

Abbildung 4.57 zeigt die Vergleichskriechdehnung für den zweiten Lastverlauf nach 10.000 h. Das Maximum liegt in der Nähe des Auswertungspunktes B und ist doppelt so groß wie bei der Simulation mit dem ersten Lastverlauf. Der Grund hierfür sind die wesentlich längeren Heizbetriebszyklen, die eine erhebliche Dehnungszunahme verursachen.

Abbildung 4.57: Vergleichskriechdehnung nach 10.000 h, Lastverlauf 2, Doppelrohr-Wärmetauscher

In Abbildung 4.58 bis Abbildung 4.65 sind die Vergleichsspannungsverläufe und Kriechkurven aus den Simulationsergebnissen dargestellt. Die lange Unterbrechung des stationären Betriebs durch den Heizlastfall hat einen erheblichen Einfluss auf die absoluten Kriechdehnungen. Der Punkt A wird während des Heizbetriebes entlastet, wodurch sich geringere Kriechdehnungen im Vergleich zum rein stationären Betrieb ergeben (siehe Abbildung 4.58 und Abbildung 4.62). Im Punkt B führt die zusätzlich zum Innendruck wirkende Wärmespannung zu Spannungsspitzen am Beginn der Heizbetriebszyklen (siehe Abbildung 4.59). Dadurch ergibt sich aufgrund der Charakteristik des Norton'schen Kriechgesetzes eine hohe Kriechrate und die Kriechdehnungen nehmen zu. Im Punkt B sind die Kriechdehnungen beim Heizbetrieb maßgebend (siehe Abbildung 4.63). Im Gegensatz dazu ist in den beiden Punkten C und D die Kriechdehnungserhöhung während des stationären Betriebs maßgebend (siehe Abbildung 4.64 und Abbildung 4.65). Der Grund liegt in den zunehmenden Spannungen während des stationären Betriebslastfalles im zeitlichen Verlauf der Vergleichsspannung. Hingegen nimmt die Vergleichsspannung während des Heizlastfalles mit fortschreitender Simulationsdauer ab (siehe Abbildung 4.60 und Abbildung 4.61).

Abbildung 4.58: Verlauf der Vergleichsspannung, Punkt A, Lastverlauf 2, Doppelrohr-Wärmetauscher

Abbildung 4.60: Verlauf der Vergleichsspannung, Punkt C, Lastverlauf 2, Doppelrohr-Wärmetauscher

Abbildung 4.61: Verlauf der Vergleichsspannung, Punkt D, Lastverlauf 2, Doppelrohr-Wärmetauscher

Abbildung 4.62: Kriechkurven aus der Simulation, Punkt A, Lastverlauf 2, Doppelrohr-Wärmetauscher

Abbildung 4.63: Kriechkurven aus der Simulation, Punkt B, Lastverlauf 2, Doppelrohr-Wärmetauscher

Abbildung 4.64: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 2, Doppelrohr-Wärmetauscher

Abbildung 4.65: Kriechkurven aus der Simulation, Punkt D, Lastverlauf 2, Doppelrohr-Wärmetauscher

In Tabelle 4.54 sind die Extrapolationsergebnisse der Vergleichskriechdehnungen $\varepsilon_{CR,V,100.000}$ nach der geforderten Lebensdauer von 100.000 h für den zweiten Lastverlauf zusammengefasst.

Punkt	$\varepsilon_{CR,V,100.000}$
Α	$1,1230 \cdot 10^{-03}$
В	3,0241 · 10 ⁻⁰³
С	$1,3926 \cdot 10^{-03}$
D	$1,3809 \cdot 10^{-03}$

Tabelle 4.54: Extrapolationsergebnisse Vergleichskriechdehnung $\varepsilon_{CR,V,100.000}$, Lastverlauf 2,
Doppelrohr-Wärmetauscher

In Tabelle 4.55 und Tabelle 4.56 sind die Berechnungsergebnisse der gesamten Kriechdehnung $\varepsilon_{CR,RG}$ auf Basis der Referenzspannung nach Gleichung 3.16 aufgelistet. Für die Berechnung wurden der stationäre Betrieb (Lastfall 1) und der Heizbetrieb (Lastfall 2) berücksichtigt. Die Intervalldauer der beiden Lastfälle beträgt jeweils 500h ($\Delta t^1 = \Delta t^2 = 500$ h). Der stationäre Betrieb tritt insgesamt 120-mal während der gesamten Lebensdauer auf und wird 80-mal durch den Heizbetrieb unterbrochen. Der An- und Abfahrvorgang wurde für die Berechnung der Kriechdehnung $\varepsilon_{CR,RG}$ auf Basis der Referenzspannung nicht berücksichtigt.

Tabelle 4.55: Kriechdehnung auf Basis der globalen Referenzspannung, Punkt A und B, Lastverlauf 2, Doppelrohr-Wärmetauscher

Punkt	А, В		
Lastfall k	1	2	
Δt^k	500 h	500 h	
n_{I}^{k}	120	80	
$\dot{\varepsilon}^k_{CR,RG}$	3,0350 · 10 ⁻¹² 1/s	1,0823 · 10 ⁻¹² 1/s	
$\varepsilon^k_{CR,RG}$	$6,5556 \cdot 10^{-4}$	$1,5586 \cdot 10^{-4}$	
$\mathcal{E}_{CR,RG}$	$8,1142 \cdot 10^{-4}$		
$\overline{\dot{\varepsilon}}_{CR,RG}$	$2,2539 \cdot 10^{-12} 1/s$		

Tabelle 4.56: Kriechdehnung auf Basis der globalen Referenzspannung, Punkt C und D, Lastverlauf 2, Doppelrohr-Wärmetauscher

Punkt	С		D	
Lastfall k	1	2	1	2
Δt^k	500 h	500 h	500 h	500 h
n_I^k	120	80	120	80
$\dot{\varepsilon}^k_{CR,RG}$	3,0350 · 10 ⁻¹² 1/s	$1,7496 \cdot 10^{-12} \ 1/s$	$2,7302 \cdot 10^{-13} \ 1/s$	$1,5305 \cdot 10^{-13} \ 1/s$
$\varepsilon^k_{CR,RG}$	$6,5556 \cdot 10^{-4}$	$2,5194 \cdot 10^{-4}$	$5,8972 \cdot 10^{-5}$	$2,2039 \cdot 10^{-5}$
E _{CR,RG}	9,0750 · 10 ⁻⁴		8,1011	· 10 ⁻⁵
$\overline{\dot{\epsilon}}_{CR,RG}$	$2,5208 \cdot 10^{-12} 1/s$		2,2503 · 1	$10^{-13} 1/s$

In nachfolgender Tabelle 4.57 sind die in Auswertepunkten berechneten Erhöhungsfaktoren nach Gleichung 3.15 zusammengefasst.

Punkt	EF
Α	1,384
В	3,727
С	1,535
D	17,046

Tabelle 4.57: Ergebnisse Erhöhungsfaktoren, Lastverlauf 2, Doppelrohr-Wärmetauscher

Die für den Kriechdehnnachweis mit Simulationen nach Kapitel 3.4 verwendeten Festigkeitskennwerte können Tabelle 4.50 entnommen werden. Das korrigierte Kriechschädigungsmaß ist in allen betrachteten Punkten kleiner als eins (siehe Tabelle 4.58). Der Punkt D stellt mit einem Kriechschädigungsmaß von 0,762 die kritische Stelle bezüglich der Kriechschädigung dar.

Tabelle 4.58: Berechnungsergebnisse Kriechdehnnachweis mit Simulationen, Lastverlauf 2, Doppelrohr-Wärmetauscher

Werkst.	X8CrNi	X8CrNiNb16-13		X8CrNiNb16-13		ißnaht
k	1	2	1	2	1	2
σ_{RG}^k	40,80 MPa	40,65 MPa	40,80 MPa	33,54 MPa	27,10 MPa	22,23 MPa
Δt_{all}^k	2.407.344 h	11.135.135 h	2.407.344 h	3.669.386 h	2.176.688 h	2.338.570 h
Δt^k	500 h	500 h	500 h	500 h	500 h	500 h
n_I^k	120	80	120	80	120	80
$D_{c,theo}^k$	0,02492	0,00359	0,02492	0,01090	0,02756	0,01710
$D_{c,theo}$	0,02	2852	0,03	582	0,04	467
Punkt	Α	В	(Ι)
D _{c.sim}	0,0395	0,1063	0,0	550	0,7	615

Wie im vorigen Kapitel laufen die Last- und Temperaturänderungen im zweiten Lastverlauf ohne Plastifizierungen ab. Abbildung 4.66 zeigt die Auswertung der Differenz $\varepsilon_{CR,Diff}$ der Vergleichskriechdehnung und der akkumulierten Vergleichskriechdehnung zur Identifikation der Bereiche mit Kriechrichtungsänderungen. Das Maximum der Differenz liegt auf der Innenseite der Schweißnaht, ähnlich wie bei der Analyse mit dem ersten Lastverlauf. Weiters treten lokale Maxima an der Innen- und Außenseite des Innenrohrs auf. Wie bereits erwähnt sind für die Beurteilung dieser Richtungsänderungen keine Erfahrungswerte vorhanden. Da die Differenzen nur lokal auftreten, wird erwartet, dass sie das globale Verhalten nicht beeinflussen.

Abbildung 4.66: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, Lastverlauf 2, Doppelrohr-Wärmetauscher

In Tabelle 4.59 sind die Auswertungsergebnisse der Größenordnung der Differenz $\varepsilon_{CR,Diff}$ von der absoluten Vergleichskriechdehnung $\varepsilon_{CR,V}$ in Prozent angeführt. Die Auswertung erfolgte für den in Abbildung 4.37 definierten Punkt D. Zudem wurde der Punkt E (siehe Abbildung 4.52) auf der Innenseite des Innenrohres und jener Punkt, bei dem die Differenz $\varepsilon_{CR,Diff}$ ihr Maximum (siehe Abbildung 4.66) aufweist, ausgewertet. Der letztgenannte Punkt wird mit D1 gekennzeichnet.

Tabelle 4.59: Anteil $\varepsilon_{CR,Diff}$ an $\varepsilon_{CR,V}$, Lastverlauf 2, Doppelrohr-Wärmetauscher

Punkt	E _{CR,Diff}	ε _{cr,v}	$\varepsilon_{CR,Diff}/\varepsilon_{CR,V}$
D	$1,6346 \cdot 10^{-5}$	$1,0219 \cdot 10^{-4}$	16 %
D1	$1,7253 \cdot 10^{-5}$	$4,4481 \cdot 10^{-5}$	38 %
Ε	$4,0941 \cdot 10^{-6}$	$4,0663 \cdot 10^{-4}$	1,1 %

Abbildung 4.67 bis Abbildung 4.70 zeigen die σ/ϵ -Diagramme in Umfangsrichtung in den Auswertepunkten entsprechend Abbildung 4.37. Im Punkt D tritt Rückkriechen während des Heizbetriebs in Umfangs- und Längsrichtung auf (siehe Abbildung 4.70). In den restlichen Auswertepunkten ist der Heizlastfall durch fortschreitendes Kriechen in Umfangsrichtung während des Heizlastfalles gekennzeichnet (siehe Abbildung 4.67 bis Abbildung 4.69). Im Punkt B treten während des stationären Betriebslastfalles in den ersten 500 h geringe Kriechdehnungen in Umfangsrichtung auf. Im weiteren Verlauf nimmt die Kriechdehnung während des stationären Betriebes nicht weiter zu. In einem einzelnen Intervall von 500 h tritt eine vernachlässigbare Richtungsumkehrung der Kriechdehnung ($\Delta \varepsilon_{CR,U} = -1 \cdot 10^{-8}$) in Umfangsrichtung auf. Weiters wurde während des Heizbetriebes eine Umkehrung der Kriechrichtung im Punkt C in Längsrichtung beobachtet. Im Anhang H sind zusätzliche σ/ϵ -Diagramme für den Punkt C und D in Längsrichtung dargestellt. In Tabelle 4.60 sind die Dehnungs- und Spannungsschwingbreiten in Umfangsrichtung des letzten Heizbetriebslastzyklus aus der Simulation für hier nicht weiter betrachtete Analysen zur zyklischen Ermüdung angegeben.

Punkt	$\Delta \sigma_{GES,U}$	$\Delta \boldsymbol{\varepsilon}_{CR,U}$	$\Delta \sigma_{EL,U}$	$\Delta \boldsymbol{\varepsilon}_{\boldsymbol{EL},\boldsymbol{U}}$
Α	1,88 MPa	$2,3000 \cdot 10^{-6}$	1,89 MPa	$1,4160 \cdot 10^{-5}$
В	73,58 MPa	$1,9800 \cdot 10^{-5}$	71,65 MPa	$2,3770 \cdot 10^{-4}$
С	53,29 MPa	2,2000 · 10 ⁻⁸	51,89 MPa	$2,3035 \cdot 10^{-4}$
D	16,99 MPa	$-4,100 \cdot 10^{-8}$	16,71 MPa	$2,1080 \cdot 10^{-4}$

Tabelle 4.60: Dehnungs- und Spannungsschwingbreiten, Lastverlauf 2, Doppelrohr-Wärmetauscher

Das Maximum der Differenz $\varepsilon_{CR,Diff}$ in Punkt D1 resultiert aus einer Umkehrung der Kriechdehnung in Umfangsrichtung während des Heizbetriebs und in Längsrichtung während des stationären Betriebslastfalles. Im Punkt E tritt Rückkriechen während des Heizbetriebs in Längsrichtung am Beginn der Simulation und in Umfangsrichtung während des stationären Betriebslastfalles auf. Dadurch bestätigen sich die Auswertungsergebnisse der Differenz $\varepsilon_{CR,Diff}$ für den Punkt E aus Tabelle 4.59. Die betrachteten σ/ϵ -Diagramme für den Punkt D1 und E befinden sich im Anhang H.

Abbildung 4.68: σ/ε-Diagramm, Punkt B, Umfangsrichtung, Lastverlauf 2, Doppelrohr-Wärmetauscher

Abbildung 4.69: σ/ε-Diagramm, Punkt C, Umfangsrichtung, Lastverlauf 2, Doppelrohr-Wärmetauscher

Abbildung 4.70: σ/ε-Diagramm, Punkt D, Umfangsrichtung, Lastverlauf 2, Doppelrohr-Wärmetauscher

5. Zusammenfassung

Kriechen ist ein wichtiger Schädigungsmechanismus beim Betrieb von Druckgeräten bei erhöhten Temperaturen. Liegt die Temperatur oberhalb einer homologen Temperatur T/T_m von 0,3–0,4, treten in Metallen zeitabhängige inelastische Kriechdehnungen auf. Für die normgerechte Auslegung von unbefeuerten Druckgeräten, die bei Temperaturen im Kriechbereich betrieben werden, sind im Anhang B der harmonisierten Norm EN13445-3 ein Kriechfestigkeits- und ein Kriechdehnnachweis festgelegt.

In der vorliegenden Arbeit wurde ein Kriechdehnnachweis mit Simulationen anhand eines Demonstrationsbeispiels ausgearbeitet. Bei den durchgeführten FE-Simulationen wurde das Norton'sche Kriechgesetz zur Beschreibung des zeitabhängigen Materialverhaltens verwendet, das den sekundären Kriechbereich beschreibt. Für die Berechnung der Nortonparameter wurden die in harmonisierten Werkstoffnormen enthaltenen zeitabhängigen Festigkeitskennwerte (1%-Zeitdehngrenze $R_{p1\%,T,t}$) herangezogen. Die Variation des Kriechgesetzes bei zeitlich und örtlich konstanter Temperatureinwirkung erfolgte durch die Variation des Kriechexponenten. Treten über den Beanspruchungszeitraum veränderliche Temperatureinwirkungen auf, was bei den Beispielen in Kapitel 4 der Fall ist, erfolgt die Festlegung des Kriechgesetzes ausgehend von dem Kriechexponenten für die Berechnungstemperatur im relevanten Lastfall. Dieser Kriechexponent bleibt dann für den gesamten zu berücksichtigenden Temperaturbereich unverändert und der temperaturabhängige Koeffizient wird aus den gegebenen 1%-Zeitdehngrenzen berechnet.

Die Grundlage der Nachweismethode bildet das Referenzspannungskonzept. Die aus den Simulationen resultierenden Kriechdehnungen werden mit den Kriechdehnungen für stationäres Kriechen auf Basis einer für die Struktur berechneten Referenzspannung verglichen. Das Ergebnis dieses Vergleiches sind Erhöhungsfaktoren der Kriechdehnungen nach der geforderten Lebensdauer. Weiters wird mithilfe der Referenzspannung und den in Werkstoffnormen enthaltenen Zeitstandfestigkeiten ein theoretisches Kriechschädigungsmaß berechnet. Die ausgewerteten Erhöhungsfaktoren und das theoretische Kriechschädigungsmaß werden für die Ermittlung des in Kapitel 3.4 definierten korrigierten Kriechschädigungsmaßes herangezogen. Der Kriechdehnnachweis gilt als erfüllt, wenn das korrigierte Kriechschädigungsmaß kleiner als oder gleich eins ist. Mit dem ausgearbeiteten Kriechdehnnachweis steht nun eine einfache Auslegungsmethode mithilfe von FE-Simulationen für Druckgeräte, die im Zeitstandbereich betrieben werden, zur Verfügung. Der ausgearbeitete Kriechdehnnachweis wurde an zwei unterschiedlichen Beispielen unter Berücksichtigung von Temperaturvariationen angewendet. Der Kriechdehnnachweis auf der Grundlage von Simulationen wurde für die in dieser Arbeit in Kapitel 4 behandelten Beispiele erfüllt. Für die Durchführung des Kriechdehnnachweises sind nur wenig zeitabhängige Werkstoffkennwerte erforderlich. Es ist jedoch anzumerken, dass in den gültigen harmonisierten Werkstoffnormen der entsprechenden Erzeugnisformen teilweise die für die Berechnung der Kriechparameter benötigten zeitabhängigen 1%-Zeitdehngrenzen fehlen. Als Kompromisslösung wurden daher die Kennwerte für den betrachteten Werkstoff aus der harmonisierten Norm einer anderen Erzeugnisform verwendet.

Da durch die in den Simulationen implementierten Kriechgesetze kein Primärkriechen berücksichtigt wird, gilt grundsätzlich die Einschränkung, dass aufgrund vom Temperatur- oder Laständerungen keine Umkehrungen von inelastischen Dehnungen auftreten dürfen. Zur Beurteilung, ob Rückkriechen auftritt, eignet sich die Auftragung einer geeigneten Spannungskomponente über der Kriechdehnung in der gleichen Komponentenrichtung (σ / ϵ -Diagramm). Tritt Rückkriechen während der Laständerungen auf, ergeben sich einzelne oder wiederholende Hystereseschleifen im Kurvenverlauf des σ / ϵ -Diagramms. In dieser Arbeit wird erwartet, dass auf einen lokalen Bereich beschränkte Richtungsänderungen keinen Einfluss auf das globale Verhalten der Struktur im Zeitstandbereich haben. Hierzu sind jedoch bis jetzt keine Grenz- und Erfahrungswerte vorhanden. Diese wären in zukünftigen wissenschaftlichen Untersuchungen mittels Simulationen, gestützt durch experimentelle Untersuchungen, zu definieren.

Treten während der Laständerungen des Belastungsverlaufes zyklische inelastische Dehnungen auf, ist eine kombinierte Betrachtung von Kriech- und Ermüdungsschädigung während der Bauteilauslegung zu berücksichtigen. Dies wurde in dieser Arbeit nicht explizit durchgeführt. In den behandelten Beispielen sind die für eine zusätzliche Ermüdungsberechnung relevanten Spannungs- und Dehnungsschwingbreiten in den definierten Auswertepunkten der Struktur angeführt. In weiterführenden Arbeiten wären die Methodik und Auswahl geeigneter Auslegungsregeln für die kombinierte Kriech- und Ermüdungsschädigung zu untersuchen.

Literaturverzeichnis

- L. Xu, J. Rong, L. Zhao, H. Jing, Y. Han, Creep-fatigue crack growth behavior of G115 steel at 650 °C, Elsevier B.V., 2018. doi:10.1016/j.msea.2018.04.083.
- [2] J. Jelwan, M. Chowdhury, G. Pearce, Design for creep: A critical examination of some methods, Elsevier Ltd, 2013. doi:10.1016/j.engfailanal.2012.08.022.
- [3] U. Führer, J. Aktaa, Modeling the cyclic softening and lifetime of ferritic-martensitic steels under creep-fatigue loading, 2018. doi:10.1016/j.ijmecsci.2017.12.042.
- [4] Ansys Help website: https://ansyshelp.ansys.com, [online] unter: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v192/ans_m at/rate.html%23aQy8sq33aldm, (2019) Zugriff am: 23.12.2019.
- [5] EN 13445-3:2018-12, Unbefeuerte Druckbehälter Teil 3: Konstruktion, 2018.
- [6] I.W. Goodall, R.D.H. Cockroft, On Bounding the Life of Structures Subjected to Steady Load and Operating within the Creep Range, 1973.
- [7] R.A. McFarlane, Creep Design Rules Proposed for EN 13445, 2003.
- [8] J.L. Zeman, F. Rauscher, S. Schindler, Pressure Vessel Design: The Direct Route, Elsevier Ltd, 2006.
- [9] J. Rösler, H. Harders, M. Bäker, Mechanisches Verhalten der Werkstoffe, Springer Vieweg, 2016.
- [10] H.J. Mair, T. Niendorf, R. Bürgel, Handbuch Hochtemperatur-Werkstofftechnik, Springer Vieweg, 2018.
- [11] R.K. Penny, D.L. Marriott, Design for Creep, Chapman & Hall, 1995.
- [12] H.-J. Bargel, G. Schulze, Werkstoffkunde, 2008.
- [13] E. Hornbogen, Metalle Struktur und Eigenschaften der Metalle und Legierungen, Springer Vieweg, 2018.
- [14] E. Roos, K. Maile, Werkstoffkunde für Ingenieure, Springer-Verlag Berlin Heidelberg, 2008.
- [15] R. Bürgel, H.A. Richard, A. Riemer, Werkstoffmechanik Bauteile sicher beurteilen und Werkstoffe richtig einsetzen, Springer Vieweg, 2014.
- [16] K. Naummenko, H. Altenbach, Modeling of Creep for Structural Analysis, 2007.
- [17] J. Betten, Creep Mechanics, Springer-Verlag, 2018.
- [18] R5, Assessment Procedure for the high Temperature Response of Structures, EDF Energy Nuclear Generation Ltd, 2014.
- [19] I.W. Goodall, F.A. Leckie, A.R.S. Ponter, C.H.A. Townley, The Development of High Temperature Design Methods Based on Reference Stresses and Bounding Theorems, 1979. doi:10.1115/1.3443701.
- [20] R.D. Patel, Creep life assessment of welded trunnion and branch components using the R5 procedure, 2003. doi:10.1016/j.ijpvp.2003.08.006.
- [21] F. Rauscher, F. Neugebauer, Creep design according to EN13445-3 Annex B, Elsevier, 2019. doi:10.1016/j.ijpvp.2019.03.017.
- [22] Druckgeräterichtline 2014/68/EU, 2014.
- [23] W. Walter, Festigkeitsberechnungen im Apparate- und Rohrleitungsbau, Vogel Communications Group GmbH & Co. KG, 2018.

- [24] EN 13445-1:2018-12, Unbefeuerte Druckbehälter Teil 1: Allgemeines, 2018.
- [25] D. Radaj, M. Vormwald, Ermüdungsfestigkeit Grundlagen für Ingenieure, Springer Verlag, 2007.
- [26] J. Aktaa, M. Walter, G. Angella, E. Perelli Cippo, Creep-fatigue design rules for cyclic softening steels, 2019. doi:10.1016/j.ijfatigue.2018.08.008.
- [27] ASME VIII, Boiler and Pressure Vessel Code, Section VIII, Division 1, The American Society of Mechanical Engineers, 2017.
- [28] Y. Takahashi, T. Ogata, K. Take, Study on creep-fatigue failure prediction methods for type 304 stainless steel, 1995. doi:http://dx.doi.org/10.1016/0029-5493(95)90015-2.
- [29] F. Neugebauer, Analytischer Zulässigkeitsnachweis für kriechbeanspruchte Behälter -Simulation des Verformungsverhaltens, Diplomarbeit, TU Wien, 2018.
- [30] CEN ISO/TR 15608:2013-08, Schweißen Richtlinien für eine Gruppeneinteilung von metallischen Werkstoffen, 2013.
- [31] EN 10028-2:2017-10, Flacherzeugnisse aus Druckbehälterstählen Teil 2: Unlegierte und legierte Stähle mit festgelegtenEigenschaften bei erhöhten Temperaturen, 2017.
- [32] EN 13445-2:2018-12, Unbefeuerte Druckbehälter Teil 2: Werkstoffe, 2018.
- [33] EN 10029:2011-02, Warmgewalztes Stahlblech von 3 mm Dicke an Grenzabmaße und Formtoleranzen, 2011.
- [34] EN 10216-2:2014-03, Nahtlose Stahlrohre für Druckbeanspruchungen Teil 2: Rohre aus unlegierten und legierten Stählen mit festgelegten Eigenschaften bei erhöhten Temperaturen, 2014.
- [35] R. Hormozi, F. Biglari, K. Nikbin, Experimental and numerical creep-fatigue study of Type 316 stainless steel failure under high temperature LCF loading condition with different hold time, Elsevier Ltd, 2015. doi:10.1016/j.engfracmech.2015.05.007.
- [36] EN 10222-2:2017-06, Schmiedestücke aus Stahl für Druckbehälter Teil 2: Ferritische und martensitische Stähle mit festgelegten Eigenschaften bei erhöhten Temperaturen, 2017.
- [37] EN 10216-5:2014-03, Nahtlose Stahlrohre für Druckbeanspruchungen Teil 5: Rohre aus nichtrostenden Stählen, 2014.
- [38] EN 10028-7:2016-10, Flacherzeugnisse aus Druckbehälterstählen Teil 7: Nichtrostende Stähle, 2016.
- [39] EN ISO 1127:1996, Nichtrostende Stahlrohre Maße, Grenzabmaße und längenbezogene Masse, 1996.
- [40] J.L. Zeman, Repetitorium Apparatebau-Grundlagen der Festigkeitsberechnung, R. Oldenbourg Verlag Wien, 1992.

Abbildungsverzeichnis

Abbildung 2.1: Schematische Darstellung einer Kriechkurve [9]	3
Abbildung 2.2: Schematische Darstellung der Kriechrate über der Zeit [9]	3
Abbildung 2.3: Allgemeines Verformungsmechanismen-Schaubild [9]	4
Abbildung 2.4: Schematisches Festigkeitsschaubild [10]	5
Abbildung 2.5: Spannungsabhängigkeit der stationären Kriechrate [15]	6
Abbildung 3.1: Zeichnung Kugel-Stutzen-Verbindung [21]	12
Abbildung 3.2: Berechnungsmodell, Demonstrationsbeispiel	14
Abbildung 3.3: Einwirkungen und Randbedingungen, Demonstrationsbeispiel	15
Abbildung 3.4: Norton-Kriechgesetz bei gegebenen Belastungsdauern	17
Abbildung 3.5: Doppeltlogarithmische Darstellung Norton-Kriechgesetz	18
Abbildung 3.6: Variation Norton-Kriechgesetz	19
Abbildung 3.7: Norton-Kriechgesetze, Werkstoff 10CrMo9-10, Lastfall 1	20
Abbildung 3.8: Vergleichskriechdehnung Simulation Zugbalken	21
Abbildung 3.9: Verlauf max. Vergleichsspannung (n. v. Mises)	23
Abbildung 3.10: Kriechkurven stationäres Kriechen aus der Simulation	24
Abbildung 3.11: Auswertungspunkte A und B, Kugel-Stutzen-Verbindung	25
Abbildung 3.12: Vergleichsspannung (n. v. Mises) bei Lastaufbringung, n-Interpolation	25
Abbildung 3.13: Vergleichsspannung (n. v. Mises), Belastungsdauer 100.000 h, n-Interpol	ation
	25
Abbildung 3.14: Lastverlauf mit Entlastungszyklen, Demonstrationsbeispiel	27
Abbildung 3.15: Vergleichsspannung (n. v. Mises), Belastungsdauer 24.500 h, n-Interpolatio	on 28
Abbildung 3.16: Vergleichsspannung (n. v. Mises), Belastungsdauer 24.500 h, n = 9	29
Abbildung 3.17: Vergleichsspannung (n. v. Mises), Belastungsdauer 24.500 h, n = 3	29
Abbildung 3.18: Kriechkurven aus der Simulation, Punkt A, Entlastungszyklus	30
Abbildung 3.19: Kriechkurven aus der Simulation, Punkt B, Entlastungszyklus	30
Abbildung 3.20: Differenz von Vergleichskriechdehnung und akkumuli	ierter
Vergleichskriechdehnung, Entlastungszyklus, n-Interpolation	33
Abbildung 3.21: σ/ε-Diagramm, Punkt A, Umfangsrichtung, Entlastungszyklus	34
Abbildung 3.22: Vergleichsspannung (n. v. Mises), Entlastungszyklus, 14.500 h, n-Interpol	ation
	35
Abbildung 3.23: Vergleichsspannung (n. v. Mises), Entlastungszyklus, 15.000 h, n-Interpol	ation
	35
Abbildung 3.24: σ/ε-Diagramm, Punkt B, Längsrichtung, Entlastungszyklus	36
Abbildung 3.25: Lastverlauf mit Teilentlastungszyklen, Demonstrationsbeispiel	37
Abbildung 3.26: Kriechkurven aus der Simulation, Punkt A, Teilentlastungszyklus	38
Abbildung 3.27: Kriechkurven aus der Simulation, Punkt B, Teilentlastungszyklus	39
Abbildung 3.28: σ/ε-Diagramm, Punkt A, Umfangsrichtung, Teilentlastungszyklus	42
Abbildung 3.29: σ/ε-Diagramm, Punkt B, Längsrichtung, Teilentlastungszyklus	42

Abbildung 3.30: Vergleichsspannung (n. v. Mises), Teilentlastungszyklus, 14.500 h, n-
Interpolation
Abbildung 3.31: Vergleichsspannung (n. v. Mises), Teilentlastungszyklus, 15.000 h, n-
Interpolation
Abbildung 4.1: Berechnungsmodell Kugel-Stutzen-Verbindung45
Abbildung 4.2: Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung46
Abbildung 4.3: Belastung und Temperatureinwirkung Kugel-Stutzen-Verbindung47
Abbildung 4.4: Stationäre Temperaturverteilung während der Einspritzung
Abbildung 4.5: Kriechgesetz mit und ohne Sicherheitsbeiwert
Abbildung 4.6: Variation Kriechgesetz, stationärer Betrieb (Lastfall 1)50
Abbildung 4.7: Kriechgesetz 11CrMo9-10+QT, stationärer Betrieb
Abbildung 4.8: Variation Kriechgesetz bei unterschiedlichen Temperaturen,
doppeltlogarithmische Darstellung
Abbildung 4.9: Variation Kriechgesetz bei unterschiedlichen Temperaturen,
doppeltlogarithmische Darstellung, 11CrMo9-10+QT53
Abbildung 4.10: Vergleichskriechdehnung nach 100.000 h, stationärer Betrieb, n-Interpolation,
Kugel-Stutzen-Verbindung
Abbildung 4.11: Plastische Vergleichsdehnung nach 100.000 h, stationärer Betrieb, n-
Interpolation, Kugel-Stutzen-Verbindung55
Abbildung 4.12: Kriechkurven aus der Simulation, Punkt A, stationärer Betrieb, Kugel-Stutzen-
Verbindung55
Abbildung 4.13: Kriechkurven aus der Simulation, Punkt B, stationärer Betrieb, Kugel-Stutzen-
Verbindung
Abbildung 4.14: Verlauf der Vergleichsspannung (n. v. Mises), Punkt A, Lastverlauf mit
Einspritzungen, Kugel-Stutzen-Verbindung
Abbildung 4.15: Verlauf der Vergleichsspannung (n. v. Mises), Punkt B, Lastverlauf mit
Einspritzungen, Kugel-Stutzen-Verbindung
Abbildung 4.16: Kriechkurven aus der Simulation, Punkt A, Lastverlauf mit Einspritzungen,
Kugel-Stutzen-Verbindung
Abbildung 4.17: Kriechkurven aus der Simulation, Punkt B, Lastverlauf mit Einspritzungen,
Kugel-Stutzen-Verbindung
Abbildung 4.18: Plastische Vergleichsdehnung nach Lastaufbringung (1 h), Lastverlauf mit
Einspritzungen, Kugel-Stutzen-Verbindung
Abbildung 4.19: Plastische Vergleichsdehnung bei der ersten Einspritzung (500 h), Lastverlauf
mit Einspritzungen, Kugel-Stutzen-Verbindung63
Abbildung 4.20: Differenz von Vergleichskriechdehnung und akkumulierter
Vergleichskriechdehnung, Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung64
Abbildung 4.21: σ/ε-Diagramm, Punkt A, Umfangsrichtung, Lastverlauf mit Einspritzung65
Abbildung 4.22: σ/ε-Diagramm, Punkt B, Längsrichtung, Lastverlauf mit Einspritzung66
Abbildung 4.23: Auslegungsskizze ringförmiger ebener Boden

Abbildung 4.24 Konstruktionszeichnung Doppelrohr-Wärmetauscher
Abbildung 4.25: Berechnungsmodell Doppelrohr-Wärmetauscher
Abbildung 4.26: Belastung und Temperatureinwirkung, Berechnungsmodell, Doppelrohr-
Wärmetauscher
Abbildung 4.27: Stationäre Temperaturverteilung während des Heizlastfalles
Abbildung 4.28: Hauptstrukturdehnung 1, Tragfähigkeitsnachweis, Grenzbetrieb
Abbildung 4.29: Hauptstrukturdehnung 3, Tragfähigkeitsnachweis, Grenzbetrieb
Abbildung 4.30: Hauptstrukturdehnung 1, KFN, stationärer Betrieb (Lastfall 1)
Abbildung 4.31: Hauptstrukturdehnung 3, KFN, stationärer Betrieb (Lastfall 1)
Abbildung 4.32: Hauptstrukturdehnung 1, KFN, Heizlastfall (Lastfall 2)
Abbildung 4.33: Hauptstrukturdehnung 3, KFN, Heizlastfall (Lastfall 2)
Abbildung 4.34: Hauptstrukturdehnung 1, KFN, Grenzbetrieb (Lastfall 3)
Abbildung 4.35: Hauptstrukturdehnung 3, KFN, Grenzbetrieb (Lastfall 3)
Abbildung 4.36: Einwirkung und plastische Grenzeinwirkung, Doppelrohr-Wärmetauscher 84
Abbildung 4.37: Auswertungspunkte, Doppelrohr-Wärmetauscher
Abbildung 4.38: Kriechgesetz X8CrNiNb16-13, stationärer Betrieb (Lastfall 1) bei 610 °C,
Doppelrohr-Wärmetauscher
Abbildung 4.39: Variation Kriechgesetz bei unterschiedlichen Temperaturen,
doppeltlogarithmische Darstellung, X8CrNiNb16-13, Doppelrohr-Wärmetauscher
Abbildung 4.40: Vergleichskriechdehnung nach 100.000 h, stationärer Betrieb, n-Interpolation,
Doppelrohr-Wärmetauscher
Abbildung 4.41: Kriechkurven aus der Simulation, Punkt A, stationärer Betrieb, Doppelrohr-
Wärmetauscher
Abbildung 4.42: Kriechkurven aus der Simulation, Punkt D, stationärer Betrieb, Doppelrohr
Wärmetauscher
Abbildung 4.43: Temperatureinwirkung, Lastverlauf 1, Doppelrohr-Wärmetauscher
Abbildung 4.44: Vergleichskriechdehnung nach 10.000 h, Lastverlauf 1, Doppelrohr-
Wärmetauscher
Abbildung 4.45: Verlauf der Vergleichsspannung, Punkt A, Lastverlauf 1, Doppelrohr-
Wärmetauscher
Abbildung 4.46: Verlauf der Vergleichsspannung, Punkt B, Lastverlauf 1, Doppelrohr-
Wärmetauscher
Abbildung 4.47: Verlauf der Vergleichsspannung, Punkt D, Lastverlauf 1, Doppelrohr-
Wärmetauscher
Abbildung 4.48: Kriechkurven aus der Simulation, Punkt A, Lastverlauf 1, Doppelrohr-
Wärmetauscher
Abbildung 4.49: Kriechkurven aus der Simulation, Punkt B, Lastverlauf 1, Doppelrohr-
Wärmetauscher
Abbildung 4.50: Kriechkurven aus der Simulation, Punkt D, Lastverlauf 1, Doppelrohr-

Abbildung 4.51: Differenz von Vergleichskriechdehnung und akkumulierter
Vergleichskriechdehnung, Lastverlauf 1, Doppelrohr-Wärmetauscher
Abbildung 4.52: Auswertungspunkt E, Doppelrohr-Wärmetauscher
Abbildung 4.53: σ/ϵ -Diagramm, Punkt A, Umfangsrichtung, Lastverlauf 1, Doppelrohr-
Wärmetauscher
Abbildung 4.54: o/e-Diagramm, Punkt B, Umfangsrichtung, Lastverlauf 1, Doppelrohr-
Wärmetauscher
Abbildung 4.55: σ/ϵ -Diagramm, Punkt D, Umfangsrichtung, Lastverlauf 1, Doppelrohr-
Wärmetauscher
Abbildung 4.56: Temperatureinwirkung, Lastverlauf 2, Doppelrohr-Wärmetauscher
Abbildung 4.57: Vergleichskriechdehnung nach 10.000 h, Lastverlauf 2, Doppelrohr-
Wärmetauscher
Abbildung 4.58: Verlauf der Vergleichsspannung, Punkt A, Lastverlauf 2, Doppelrohr-
Wärmetauscher
Abbildung 4.59: Verlauf der Vergleichsspannung, Punkt B, Lastverlauf 2, Doppelrohr-
Wärmetauscher
Abbildung 4.60: Verlauf der Vergleichsspannung, Punkt C, Lastverlauf 2, Doppelrohr-
Wärmetauscher
Abbildung 4.61: Verlauf der Vergleichsspannung, Punkt D, Lastverlauf 2, Doppelrohr-
Wärmetauscher
Abbildung 4.62: Kriechkurven aus der Simulation, Punkt A, Lastverlauf 2, Doppelrohr-
Wärmetauscher
Abbildung 4.63: Kriechkurven aus der Simulation, Punkt B, Lastverlauf 2, Doppelrohr-
Wärmetauscher
Abbildung 4.64: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 2, Doppelrohr-
Wärmetauscher
Abbildung 4.65: Kriechkurven aus der Simulation, Punkt D, Lastverlauf 2, Doppelrohr-
Wärmetauscher
Abbildung 4.66: Differenz von Vergleichskriechdehnung und akkumulierter
Vergleichskriechdehnung, Lastverlauf 2, Doppelrohr-Wärmetauscher
Abbildung 4.67: σ/ϵ -Diagramm, Punkt A, Umfangsrichtung, Lastverlauf 2, Doppelrohr-
Wärmetauscher
Abbildung 4.68: o/e-Diagramm, Punkt B, Umfangsrichtung, Lastverlauf 2, Doppelrohr-
Wärmetauscher
Abbildung 4.69: o/e-Diagramm, Punkt C, Umfangsrichtung, Lastverlauf 2, Doppelrohr-
Wärmetauscher
Abbildung 4.70: σ/ϵ -Diagramm, Punkt D, Umfangsrichtung, Lastverlauf 2, Doppelrohr-
Wärmetauscher

Abbildung B.1: Vernetzung Berechnungsmodell, Kugel-Stutzen-Verbindung, Kapitel 3.1 vi

Abbildung B.2: Vernetzung Berechnungsmodell, Kugel-Stutzen-Verbindung, Kapitel 4.1.1vi
Abbildung B.3: Vernetzung Berechnungsmodell, Doppelrohr-Wärmetauscher, Kapitel 4.2.2 vii
Abbildung C.1: Vergleichsspannung (n. v. Mises) bei Lastaufbringung, n=3,
Demonstrationsbeispielviii
Abbildung C.2: Vergleichsspannung (n. v. Mises), Belastungsdauer 100.000 h, n=3,
Demonstrationsbeispielviii
Abbildung C.3: Vergleichsspannung (n. v. Mises) bei Lastaufbringung, n=9,
Demonstrationsbeispielix
Abbildung C.4: Vergleichsspannung (n. v. Mises), Belastungsdauer 100.000 h, n=9,
Demonstrationsbeispielix
Abbildung C.5: Linearelastische Spannungsverteilung, Lastfall 1 (Innendruck 11,5 MPa und
475 °C), Vergleichsspannung (n. v. Mises), Demonstrationsbeispielx
Abbildung C.6: Linearelastische Spannungsverteilung, Lastfall 3 (Innendruck 9,0 MPa und
475 °C Vergleichsspannung (n. v. Mises), Demonstrationsbeispiel x
Abbildung C.7: Vergleichsspannung (n. v. Mises), Belastungsdauer 24.500 h, n-Interpolation,
Teilentlastungszyklus, Demonstrationsbeispielxi
Abbildung C.8: Vergleichsspannung (n. v. Mises), Belastungsdauer 24.500 h, n = 9,
Teilentlastungszyklus, Demonstrationsbeispielxi
Abbildung C.9: Vergleichsspannung (n. v. Mises), Belastungsdauer 24.500 h, n = 3,
Teilentlastungszyklus, Demonstrationsbeispielxii
Abbildung C.10: Linearelastische Spannungsverteilung, Lastfall 1 (Innendruck 8 MPa und
475 °C), Vergleichsspannung (n. v. Mises), Kugel-Stutzen-Verbindungxii
Abbildung C.11: Linearelastische Spannungsverteilung, Lastfall 2 (Innendruck 8 MPa und
Einspritzung), Vergleichsspannung (n. v. Mises), Kugel-Stutzen-Verbindungxiii
Abbildung C.12: Linearelastische Spannungsverteilung, Lastfall 1 (Innendruck und 610 °C),
Vergleichsspannung (n. v. Mises), Doppelrohr-Wärmetauscherxiii
Abbildung C.13: Linearelastische Spannungsverteilung, Lastfall 2 (Innendruck und Heizbetrieb),
Vergleichsspannung (n. v. Mises), Doppelrohr-Wärmetauscher xiv
Abbildung D.1: Verlauf der Vergleichsspannung (n. v. Mises), Punkt A, konstante Last und
Temperatur, Demonstrationsbeispielxv
Abbildung D.2: Kriechkurven, Punkt A, konstante Last und Temperatur, Demonstrationsbeispiel
Abbildung D.3: Verlauf der Vergleichsspannung (n. v. Mises), Punkt B, konstante Last und
Temperatur, Demonstrationsbeispielxvi
Abbildung D.4: Kriechkurven, Punkt B, konstante Last und Temperatur, Demonstrationsbeispiel
xvi
Abbildung D.5: Verlauf der Vergleichsspannung (n. v. Mises), Punkt A, konstante Last und
Temperatur, Kugel-Stutzen-Verbindungxvii
Abbildung D.6: Verlauf der Vergleichsspannung (n. v. Mises),), Punkt B, konstante Last und
Temperatur Kugel-Stutzen-Verbindung vvii

Abbildung D./: Verlauf der Vergleichsspannung (n. v. Mises), Punkt A, Entlastungszyklus,
Demonstrationsbeispiel xviii
Abbildung D.8: Verlauf der Vergleichsspannung (n. v. Mises), Punkt B, Entlastungszyklus,
Demonstrationsbeispiel xviii
Abbildung D.9: Verlauf der Vergleichsspannung (n. v. Mises), Punkt A, Teilentlastungszyklus,
Demonstrationsbeispielxix
Abbildung D.10: Verlauf der Vergleichsspannung (n. v. Mises), Punkt B, Teilentlastungszyklus,
Demonstrationsbeispielxix
Abbildung D.11: Verlauf der Vergleichsspannung (n. v. Mises), Punkt A, konstante Last und
Temperatur, Doppelrohr-Wärmetauscherxx
Abbildung D.12: Verlauf der Vergleichsspannung (n. v. Mises), Punkt B, konstante Last und
Temperatur, Doppelrohr-Wärmetauscherxx
Abbildung D.13: Verlauf der Vergleichsspannung (n. v. Mises), Punkt C, konstante Last und
Temperatur, Doppelrohr-Wärmetauscherxxi
Abbildung D.14: Verlauf der Vergleichsspannung (n. v. Mises), Punkt D, konstante Last und
Temperatur, Doppelrohr-Wärmetauscherxxi
Abbildung D.15: Kriechkurven aus der Simulation, Punkt B, stationärer Betrieb, Doppelrohr-
Wärmetauscher
Abbildung D.16: Kriechkurven aus der Simulation, Punkt C, stationärer Betrieb, Doppelrohr-
Wärmetauscher
Abbildung D.17: Verlauf der Vergleichsspannung (n. v. Mises), Punkt C, Lastverlauf 1,
Doppelrohr-Wärmetauscher
11
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr-
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr- Wärmetauscher
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr- Wärmetauscher
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr- WärmetauscherxxiiiAbbildung E.1: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=3, Demonstrationsbeispielxxiv
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr- WärmetauscherxxiiiAbbildung E.1: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=3, DemonstrationsbeispielxxivAbbildung E.2: Differenz von Vergleichskriechdehnung und akkumulierterxxiv
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr- WärmetauscherWärmetauscherAbbildung E.1: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=3, DemonstrationsbeispielAbbildung E.2: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=9, Demonstrationsbeispiel
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr- WärmetauscherWärmetauscherxxiiiAbbildung E.1: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=3, DemonstrationsbeispielxxivAbbildung E.2: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=9, DemonstrationsbeispielxxivAbbildung F.1: Kriechgesetz 10CrMo9-10, stationärer Betrieb, Kugel-Stutzen-Verbindungxxv
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr- WärmetauscherWärmetauscherxxiiiAbbildung E.1: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=3, DemonstrationsbeispielxxivAbbildung E.2: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=9, DemonstrationsbeispielxxivAbbildung F.1: Kriechgesetz 10CrMo9-10, stationärer Betrieb, Kugel-Stutzen-VerbindungxxvAbbildung F.2: Kriechgesetz 16Mo3, stationärer Betrieb, Kugel-Stutzen-Verbindungxxv
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr- Wärmetauscher
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr- WärmetauscherWärmetauscherxxiiiAbbildung E.1: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=3, DemonstrationsbeispielxxivAbbildung E.2: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=9, DemonstrationsbeispielxxivAbbildung F.1: Kriechgesetz 10CrMo9-10, stationärer Betrieb, Kugel-Stutzen-VerbindungxxvAbbildung F.2: Kriechgesetz Schweißnaht, stationärer Betrieb, Kugel-Stutzen-VerbindungxxvAbbildung F.3: Kriechgesetz Schweißnaht, stationärer Betrieb, Kugel-Stutzen-VerbindungxxvAbbildung F.4: Variation Kriechgesetz bei unterschiedlichen Temperaturen,Kiechgesetz
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr- WärmetauscherWärmetauscherxxiiiAbbildung E.1: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=3, DemonstrationsbeispielxxivAbbildung E.2: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=9, DemonstrationsbeispielxxivAbbildung F.1: Kriechgesetz 10CrMo9-10, stationärer Betrieb, Kugel-Stutzen-VerbindungxxvAbbildung F.2: Kriechgesetz 16Mo3, stationärer Betrieb, Kugel-Stutzen-VerbindungxxvAbbildung F.3: Kriechgesetz Schweißnaht, stationärer Betrieb, Kugel-Stutzen-VerbindungxxviAbbildung F.4: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, 10CrMo9-10, Kugel-Stutzen-Verbindungxxvi
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr- Wärmetauscher
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr- WärmetauscherWärmetauscherxxiiiAbbildung E.1: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=3, DemonstrationsbeispielxxivAbbildung E.2: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=9, DemonstrationsbeispielxxivAbbildung F.1: Kriechgesetz 10CrMo9-10, stationärer Betrieb, Kugel-Stutzen-VerbindungxxvAbbildung F.2: Kriechgesetz 16Mo3, stationärer Betrieb, Kugel-Stutzen-VerbindungxxvAbbildung F.3: Kriechgesetz Schweißnaht, stationärer Betrieb, Kugel-Stutzen-VerbindungxxviAbbildung F.3: Kriechgesetz Schweißnaht, stationärer Betrieb, Kugel-Stutzen-VerbindungxxviAbbildung F.3: Kriechgesetz Schweißnaht, stationärer Betrieb, Kugel-Stutzen-VerbindungxxviAbbildung F.4: Variation Kriechgesetz bei unterschiedlichen Temperaturen,
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr- WärmetauscherWärmetauscherxxiiiAbbildung E.1: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=3, DemonstrationsbeispielxxivAbbildung E.2: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=9, DemonstrationsbeispielxxivAbbildung F.1: Kriechgesetz 10CrMo9-10, stationärer Betrieb, Kugel-Stutzen-VerbindungxxvAbbildung F.2: Kriechgesetz 16Mo3, stationärer Betrieb, Kugel-Stutzen-VerbindungxxvAbbildung F.3: Kriechgesetz Schweißnaht, stationärer Betrieb, Kugel-Stutzen-VerbindungxxviAbbildung F.4: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, 10CrMo9-10, Kugel-Stutzen-VerbindungxxviAbbildung F.5: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, 16Mo3, Kugel-Stutzen-VerbindungxxviAbbildung F.6: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, 16Mo3, Kugel-Stutzen-Verbindungxxvi
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr- WärmetauscherWärmetauscherxxiiiAbbildung E.1: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=3, Demonstrationsbeispiel.xxivAbbildung E.2: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=9, Demonstrationsbeispiel.xxivAbbildung F.1: Kriechgesetz 10CrMo9-10, stationärer Betrieb, Kugel-Stutzen-Verbindung.xxvAbbildung F.2: Kriechgesetz 16Mo3, stationärer Betrieb, Kugel-Stutzen-Verbindung.xxviAbbildung F.3: Kriechgesetz Schweißnaht, stationärer Betrieb, Kugel-Stutzen-Verbindung.xxviAbbildung F.4: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, 16Mo3, Kugel-Stutzen-VerbindungxxviXxviAbbildung F.5: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, 16Mo3, Kugel-Stutzen-VerbindungxxviXxviiAbbildung F.6: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, 16Mo3, Kugel-Stutzen-VerbindungxxviiXxvii
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr- WärmetauscherWärmetauscherxxiiiAbbildung E.1: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=3, DemonstrationsbeispielxxivAbbildung E.2: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=9, DemonstrationsbeispielxxivAbbildung F.1: Kriechgesetz 10CrMo9-10, stationärer Betrieb, Kugel-Stutzen-VerbindungxxvAbbildung F.2: Kriechgesetz 16Mo3, stationärer Betrieb, Kugel-Stutzen-VerbindungxxvAbbildung F.3: Kriechgesetz Schweißnaht, stationärer Betrieb, Kugel-Stutzen-VerbindungxxviAbbildung F.4: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, 16Mo3, Kugel-Stutzen-VerbindungxxviAbbildung F.5: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, 16Mo3, Kugel-Stutzen-VerbindungxxviAbbildung F.6: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, 16Mo3, Kugel-Stutzen-VerbindungxxviAbbildung F.6: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, 16Mo3, Kugel-Stutzen-VerbindungxxviiAbbildung F.6: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, 16Mo3, Kugel-Stutzen-VerbindungxxviiAbbildung F.7: Kriechgesetz X6CrNi18-10, stationärer Betrieb, Doppelrohr-WärmetauscherXxvii
Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr- Wärmetauscher

Abbildung F.8: Kriechgesetz Schweißnaht, stationärer Betrieb, Doppelrohr-Wärmetauscherxxviii

Abbildung F.9: Variation Kriechgesetz bei unterschiedlichen Temperaturen,
doppeltlogarithmische Darstellung, X6CrNi18-10, Doppelrohr-Wärmetauscher xxix
Abbildung F.10: Variation Kriechgesetz bei unterschiedlichen Temperaturen,
doppeltlogarithmische Darstellung, Schweißnaht, Doppelrohr-Wärmetauscherxxix
Abbildung G.1: Vergleichskriechdehnung nach 100.000 h, stationärer Betrieb, n=3, Kugel-
Stutzen-Verbindungxxx
Abbildung G.2: Vergleichskriechdehnung nach 100.000 h, stationärer Betrieb, n=9, Kugel-
Stutzen-Verbindungxxx
Abbildung G.3: Vergleichskriechdehnung nach 10.000 h, Lastverlauf mit Einspritzungen xxxi
Abbildung G.4: Vergleichskriechdehnung nach 100.000 h, stationärer Betrieb, n=5, Doppelrohr-
Wärmetauscherxxxi
Abbildung G.5: Vergleichskriechdehnung nach 100.000 h, stationärer Betrieb, n=10,
Doppelrohr-Wärmetauscherxxxii
Abbildung H.1: o/e-Diagramm, Punkt B, Umfangsrichtung, Lastverlauf mit Einspritzungen,
Kugel-Stutzen-Verbindungxxxiii
Abbildung H.2: σ/ε-Diagramm, Punkt B1, Längsrichtung, Lastverlauf mit Einspritzungen,
Kugel-Stutzen-Verbindungxxxiii
Abbildung H.3: σ/ε-Diagramm, Punkt B1, Umfangsrichtung, Lastverlauf mit Einspritzungen,
Kugel-Stutzen-Verbindungxxxiv
Abbildung H.4: o/e-Diagramm, Punkt D, Längsrichtung, Lastverlauf 1, Doppelrohr-
Wärmetauscherxxxiv
Abbildung H.5: o/e-Diagramm, Punkt E, Umfangsrichtung, Lastverlauf 1, Doppelrohr-
Wärmetauscherxxxv
Abbildung H.6: o/e-Diagramm, Punkt E, Längsrichtung, Lastverlauf 1, Doppelrohr-
Wärmetauscherxxxv
Abbildung H.7: o/e-Diagramm, Punkt C, Längsrichtung, Lastverlauf 2, Doppelrohr-
Wärmetauscherxxxvi
Abbildung H.8: o/e-Diagramm, Punkt D, Längsrichtung, Lastverlauf 2, Doppelrohr-
Wärmetauscherxxxvi
Abbildung H.9: o/e-Diagramm, Punkt D1, Umfangsrichtung, Lastverlauf 2, Doppelrohr-
Wärmetauscherxxxvii
Abbildung H.10: o/e-Diagramm, Punkt D1, Längsrichtung, Lastverlauf 2, Doppelrohr-
Wärmetauscherxxxvii
Abbildung H.11: o/e-Diagramm, Punkt E, Umfangsrichtung, Lastverlauf 2, Doppelrohr-
Wärmetauscherxxxviii
Abbildung H.12: o/e-Diagramm, Punkt E, Längsrichtung, Lastverlauf 2, Doppelrohr-
Wärmetauscherxxxviii
Abbildung I.1: Hauptstrukturdehnung 1, Tragfähigkeitsnachweis, min. Druck Außenrohr,
Doppelrohr-Wärmetauscherxxxix

Abbildung I.2: Hauptstrukturdehnung 3, Tragfähigkeitsnachweis, min. Druck Außenrohr,
Doppelrohr-Wärmetauscherxxxix
Abbildung I.3: Hauptstrukturdehnung 1, Tragfähigkeitsnachweis, min. Druck Innenrohr,
Doppelrohr-Wärmetauscher xl
Abbildung I.4: Hauptstrukturdehnung 3, Tragfähigkeitsnachweis, min. Druck Innenrohr,
Doppelrohr-Wärmetauscher xl
Abbildung I.5: Hauptstrukturdehnung 1, KFN, stationärer Betrieb, min. Druck Außenrohr,
Doppelrohr-Wärmetauscher xli
Abbildung I.6: Hauptstrukturdehnung 3, KFN, stationärer Betrieb, min. Druck Außenrohr,
Doppelrohr-Wärmetauscher xli
Abbildung I.7: Hauptstrukturdehnung 1, KFN, stationärer Betrieb, min. Druck Innenrohr,
Doppelrohr-Wärmetauscher xlii
Abbildung I.8: Hauptstrukturdehnung 3, KFN, stationärer Betrieb, min. Druck Innenrohr,
Doppelrohr-Wärmetauscher xlii
Abbildung I.9: Hauptstrukturdehnung 1, KFN, Heizlastfall, min. Druck Außenrohr, Doppelrohr
Wärmetauscher xliii
Abbildung I.10: Hauptstrukturdehnung 3, KFN, Heizlastfall, min. Druck Innenrohr, Doppelrohr-
Wärmetauscher xliii
Abbildung I.11: Hauptstrukturdehnung 1, KFN, Heizlastfall, min. Druck Innenrohr, Doppelrohr
Wärmetauscher xliv
Abbildung I.12: Hauptstrukturdehnung 3, KFN, Heizlast, min. Druck Innenrohr, Doppelrohr-
Wärmetauscher xliv
Wärmetauscher
Wärmetauscher
WärmetauscherxlivAbbildung I.13: Hauptstrukturdehnung 1, KFN, Grenzbetrieb, min. Druck Außenrohr, Doppelrohr-WärmetauscherDruck Außenrohr, xlvAbbildung I.14: Hauptstrukturdehnung 3, KFN, Grenzbetrieb, min. Druck Außenrohr,
WärmetauscherxlivAbbildung I.13: Hauptstrukturdehnung 1, KFN, Grenzbetrieb, min. Druck Außenrohr,Doppelrohr-WärmetauscherxlvAbbildung I.14: Hauptstrukturdehnung 3, KFN, Grenzbetrieb, min. Druck Außenrohr,Doppelrohr-Wärmetauscherxlv
WärmetauscherxlivAbbildung I.13: Hauptstrukturdehnung 1, KFN, Grenzbetrieb, min. Druck Außenrohr, Doppelrohr-WärmetauscherDruck Außenrohr, NuvAbbildung I.14: Hauptstrukturdehnung 3, KFN, Grenzbetrieb, min. Druck Außenrohr, Doppelrohr-WärmetauscherNuvAbbildung I.15: Hauptstrukturdehnung 1, KFN, Grenzbetrieb, min. Druck Innenrohr,
WärmetauscherxlivAbbildung I.13: Hauptstrukturdehnung 1, KFN, Grenzbetrieb, min. Druck Außenrohr, Doppelrohr-WärmetauscherDruck Außenrohr, Müßenrohr, Noppelrohr-WärmetauscherAbbildung I.14: Hauptstrukturdehnung 3, KFN, Grenzbetrieb, min. Druck Außenrohr, Doppelrohr-WärmetauscherNußenrohr, Nußenro

Tabellenverzeichnis

Tabelle 3.1: Werkstoffgruppe und Langzeiteigenschaften von 10CrMo9-10 [31], [32]1	3
Tabelle 3.2: Berechnungswanddicken Kugel-Stutzen-Verbindung 1	4
Tabelle 3.3: Lastfälle Demonstrationsbeispiel 1	5
Tabelle 3.4: Berechnungsergebnisse globale Referenzspannung σRGk , Demonstrationsbeispi	el
	6
Tabelle 3.5: Berechnungsergebnisse Nortonparameter 1	9
Tabelle 3.6: Zulässige Belastungsdauer <i>tRGk</i> und Kriechrate <i>εCR</i> , <i>RGk</i> , Lastfall k	20
Tabelle 3.7: Variation Kriechexponent n und Koeffizient K, Lastfall 1 2	20
Tabelle 3.8: Ergebnisse Erhöhungsfaktoren 2	26
Tabelle 3.9: Zeitstandfestigkeiten 10CrMo9-10, EN10028-2 [31] 2	26
Tabelle 3.10: Ergebnisse zulässige Standzeit und theoretisches Kriechschädigungsmaß Dc, the	20
	26
Tabelle 3.11: Korrigiertes Kriechschädigungsmaß Dc, Sim 2	27
Tabelle 3.12: Extrapolationsergebnisse Vergleichskriechdehnung $\varepsilon CR, V, 100.000$	31
Tabelle 3.13: Kriechdehnung auf Basis der globalen Referenzspannung, Entlastungszyklus 3	51
Tabelle 3.14: Ergebnisse Erhöhungsfaktoren, Entlastungszyklus 3	\$2
Tabelle 3.15: Zeitstandfestigkeiten und Lebensdauern, 10CrMo9-10 [31]	\$2
Tabelle 3.16: Ergebnisse zulässige Standzeit und theoretisches Kriechschädigungsmaß Dc, the	?0
	\$2
Tabelle 3.17: Korrigiertes Kriechschädigungsmaß Dc, Sim 3	33
Tabelle 3.18: Anteil εCR , <i>Diff</i> an εCR , <i>V</i> bei Entlastung, n-Interpolation	\$4
Tabelle 3.19: Dehnungs- und Spannungsschwingbreiten, letzter Entlastungslastfall, Punkt A 3	6
Tabelle 3.20: Dehnungs- und Spannungsschwingbreiten, letzter Entlastungslastfall, Punkt B 3	\$7
Tabelle 3.21: Extrapolationsergebnisse Vergleichskriechdehnung $\varepsilon CR, V, 100.000$	38
Tabelle 3.22: Kriechdehnung auf Basis der globalen Referenzspannung, Teilentlastungszyklus 3	;9
Tabelle 3.23: Ergebnisse Erhöhungsfaktoren, Teilentlastungszyklus 4	10
Tabelle 3.24: Ergebnisse zulässige Standzeit und theoretisches Kriechschädigungsmaß Dc, the	20
	10
Tabelle 3.25: Korrigiertes Kriechschädigungsmaß Dc, Sim	10
Tabelle 3.26: Dehnungs- und Spannungsschwingbreiten, letzter Teilentlastungslastfall, Punkt	A
	1
Tabelle 3.27: Dehnungs- und Spannungsschwingbreiten, letzter Teilentlastungslastfall, Punkt	В
	1
Tabelle 4.1: Werkstoffgruppe, Werkstoffnorm und Langzeiteigenschaften [31], [32], [34]4	4
Tabelle 4.2: Lastfälle Kugel-Stutzen-Verbindung 4	15
Tabelle 4.3: Bemessungswerte der Einwirkung und Grenzeinwirkung	8
Tabelle 4.4: 1%-Zeitdehngrenzen und Referenzspannungen, Lastfall 1 [31], [36] 4	19
Tabelle 4.5: 1%-Zeitdehngrenzen und Referenzspannungen, Lastfall 2 [31], [36]	19

Tabelle 4.6: Zeitdehngrenze $Rp1\%$, 475, t , Belastungsdauer $tRGk$ und Kriechrate εCR , RGk ,
stationärer Betrieb
Tabelle 4.7: Nortonparameter, stationärer Betrieb 51
Tabelle 4.8: Variation Nortonparameter bei unterschiedlichen Temperaturen 53
Tabelle 4.9: Ergebnisse Erhöhungsfaktoren
Tabelle 4.10: Zeitstandfestigkeiten 11CrMo9-10+QT und Schweißnaht [31], [34]57
Tabelle 4.11: Ergebnisse zulässige Standzeit und theoretisches Kriechschädigungsmaß
Tabelle 4.12: Korrigiertes Kriechschädigungsmaß Dc, Sim 57
Tabelle 4.13: Extrapolationsergebnisse Vergleichskriechdehnung <i>ECR</i> , V, 100.000, Lastverlauf
mit Einspritzungen, Kugel-Stutzen-Verbindung
Tabelle 4.14: Kriechdehnung auf Basis der globalen Referenzspannung, Lastverlauf mit
Einspritzungen, Kugel-Stutzen-Verbindung
Tabelle 4.15: Ergebnisse Erhöhungsfaktoren, Lastverlauf mit Einspritzungen, Kugel-Stutzen-
Verbindung61
Tabelle 4.16: Zeitstandfestigkeiten 11CrMo9-10+QT und Schweißnaht [31], [34]62
Tabelle 4.17: Berechnungsergebnisse Kriechdehnnachweis mit Simulationen, Lastverlauf mit
Einspritzungen, Kugel-Stutzen-Verbindung
Tabelle 4.18: Anteil <i>ECR, Diff</i> an <i>ECR, V</i> , Lastverlauf mit Einspritzungen, Kugel-Stutzen-
Verbindung
Tabelle 4.19: Dehnungs- und Spannungsschwingbreiten, letzter Einspritzlastfall, Kugel-Stutzen-
Verbindung65
Tabelle 4.20: Plastische Dehnungsschwingbreiten, Kugel-Stutzen-Verbindung
Tabelle 4.21: Lastfälle für Vorauslegung, Doppelrohr-Wärmetauscher
Tabelle 4.22: Werkstoffkennwerte zur Ermittlung der maximal zulässigen
Berechnungsspannungen f [5], [37], [38]69
Tabelle 4.23: Berechnungsergebnisse Auslegungsrechnung, Außen- und Innenrohr
Tabelle 4.24: Berechnungsergebnisse Auslegungsrechnung, ringförmiger ebener Boden70
Tabelle 4.25: Lastfälle, Doppelrohr-Wärmetauscher
Tabelle 4.26: Lastkombinationen, Tragfähigkeitsnachweis, Doppelrohr-Wärmetauscher75
Tabelle 4.27: Bemessungswerte der Druckeinwirkung pd, Tragfähigkeitsnachweis, Doppelrohr-
Wärmetauscher
Tabelle 4.28: Bemessungswerte der Werkstofffestigkeit RMd [37], [38]
Tabelle 4.29: Lastfälle und Betriebszeiten, Kriechfestigkeitsnachweis Doppelrohr-
Wärmetauscher
Tabelle 4.30: Bemessungswerte der Druckeinwirkung pd, Kriechfestigkeitsnachweis, stat.
Betrieb (Lastfall 1) und Heizlastfall (Lastfall 2)
Tabelle 4.31: Bemessungswerte der Druckeinwirkung pd, Kriechfestigkeitsnachweis,
Grenzbetrieb (Lastfall 3)
Tabelle 4.32: Bemessungswerte der Werkstofffestigkeit RMd, stat. Betrieb (Lastfall 1) [37], [38]
Tabelle 4.33: Bemessungswerte der Werkstofffestigkeit RMd, Heizlastfall (Lastfall 2) [37], [38]
--
Tabelle 4.34: Bemessungswerte der Werkstofffestigkeit RMd, Grenzbetrieb (Lastfall 3) [37],
[38]
Tabelle 4.35: Bemessungswerte der Einwirkung und plastische Grenzeinwirkung für den Lastfall
k, Doppelrohr-Wärmetauscher
Tabelle 4.36: 1%-Zeitdehngrenzen und Referenzspannungen, stationärer Betrieb (Lastfall 1),
Doppelrohr-Wärmetauscher
Tabelle 4.37: 1%-Zeitdehngrenzen und Referenzspannungen, Heizlastfall (Lastfall 2),
Doppelrohr-Wärmetauscher
Tabelle 4.38: Maximale elastische Vergleichsspannung (n. v. Mises) σV , el, max, Doppelrohr-
Wärmetauscher
Tabelle 4.39: Berechnungsergebnisse idealplastische Tragfähigkeitsgrenze, Innenrohr
Tabelle 4.40: 1%-Zeitdehngrenze Rp1%, 610, t, Belastungsdauer tRGk und Kriechrate
εCR, RGk, stationärer Betrieb (Lastfall 1), Doppelrohr-Wärmetauscher [38]
Tabelle 4.41: Nortonparameter, stationärer Betrieb (Lastfall 1), Doppelrohr-Wärmetauscher 86
Tabelle 4.42: Variation Nortonparameter bei unterschiedlichen Temperaturen, Doppelrohr-
Wärmetauscher
Tabelle 4.43: Ergebnisse Erhöhungsfaktoren
Tabelle 4.44: Zeitstandfestigkeiten X8CrNiNb16-13 und Schweißnaht [37], [38]
Tabelle 4.45: Ergebnisse zulässige Standzeit und theoretisches Kriechschädigungsmaß91
Tabelle 4.46: Korrigiertes Kriechschädigungsmaß Dc, Sim 92
Tabelle 4.47: Extrapolationsergebnisse Vergleichskriechdehnung ECR, V, 100.000, Lastverlauf
1, Doppelrohr-Wärmetauscher
Tabelle 4.48: Kriechdehnung auf Basis der globalen Referenzspannung, Lastverlauf 1,
Doppelrohr-Wärmetauscher
Tabelle 4.49: Ergebnisse Erhöhungsfaktoren, Lastverlauf 1, Doppelrohr-Wärmetauscher
Tabelle 4.50: Zeitstandfestigkeiten X8CrNiNb16-13 und Schweißnaht, Doppelrohr-
Wärmetauscher [37], [38]
Tabelle 4.51: Berechnungsergebnisse Kriechdehnnachweis mit Simulationen, Lastverlauf 1,
Doppelrohr-Wärmetauscher
Tabelle 4.52: Anteil <i>ECR</i> , <i>Diff</i> an <i>ECR</i> , <i>V</i> , Lastverlauf 1, Doppelrohr-Wärmetauscher 100
Tabelle 4.53: Dehnungs- und Spannungsschwingbreiten, letzter Heizbetriebsfall, Lastverlauf 1,
Doppelrohr-Wärmetauscher
Tabelle 4.54: Extrapolationsergebnisse Vergleichskriechdehnung <i>ECR</i> , V, 100.000, Lastverlauf
2, Doppelrohr-Wärmetauscher
Tabelle 4.55: Kriechdehnung auf Basis der globalen Referenzspannung, Punkt A und B,
Lastverlauf 2, Doppelrohr-Wärmetauscher
Tabelle 4.56: Kriechdehnung auf Basis der globalen Referenzspannung, Punkt C und D,
Lastverlauf 2, Doppelrohr-Wärmetauscher

Tabelle 4.57: Ergebnisse Erhöhungsfaktoren, Lastverlauf 2, Doppelrohr-Wärmetausch	her109
Tabelle 4.58: Berechnungsergebnisse Kriechdehnnachweis mit Simulationen, Las	stverlauf 2,
Doppelrohr-Wärmetauscher	109
Tabelle 4.59: Anteil εCR , $Diff$ an εCR , V , Lastverlauf 2, Doppelrohr-Wärmetauscher	·110
Tabelle 4.60: Dehnungs- und Spannungsschwingbreiten, Lastverlauf 2, I	Doppelrohr-
Wärmetauscher	111

Tabelle A 1 [·] Elastizitätsmodul in Abhängigkeit der Temperatur nach EN13445-3 Anhang O
Werkstoffgruppe 1.2 und 5.2 [5]
Tabelle A.2: Elastizitätsmodul in Abhängigkeit der Temperatur nach EN13445-3 Anhang O.
Werkstoffgruppe 8.1 [5]
Tabelle A.3: Wärmeausdehnungskoeffizient in Abhängigkeit der Temperatur nach EN13445-3
Anhang O. Werkstoffgruppe 1.2 und 5.2 [5]
Tabelle A.4: Wärmeausdehnungskoeffizient in Abhängigkeit der Temperatur nach EN13445-3
Anhang O. Werkstoffgruppe 8.1 [5]
Tabelle A.5: Wärmeleitfähigkeit in Abhängigkeit der Temperatur nach EN13445-3 Anhang O.
Werkstoffgruppe 1.2 und 5.2 [5]ii
Tabelle A.6: Wärmeleitfähigkeit in Abhängigkeit der Temperatur nach EN13445-3 Anhang O.
Werkstoffgruppe 8.1 [5]ii
Tabelle A.7: Dichte in Abhängigkeit der Temperatur nach EN13445-3 Anhang O,
Werkstoffgruppe 1.2 und 5.2 [5]iii
Tabelle A.8: Dichte in Abhängigkeit der Temperatur nach EN13445-3 Anhang O,
Werkstoffgruppe 8.1 [5]iii
Tabelle A.9: Mindest-0,2%-Dehngrenzen <i>Rp</i> 0,2%, <i>T</i> , Kugel-Stutzen-Verbindung [31], [34] iii
Tabelle A.10: Zeitdehngrenzen für 1%-Dehnung <i>Rp</i> 1%, <i>T</i> , <i>t</i> , Kugel-Stutzen-Verbindung [31],
[36]
Tabelle A.11: Zeitstandfestigkeiten <i>Rm</i> , <i>T</i> , <i>t</i> , Kugel-Stutzen-Verbindung [31], [34]iv
Tabelle A.12: Mindest-0,2%-Dehngrenzen <i>Rp</i> 0,2%, <i>T</i> , Doppelrohr-Wärmetauscher [5], [37] iv
Tabelle A.13: Zeitdehngrenzen für 1% Dehnung <i>Rp</i> 1%, <i>T</i> , <i>t</i> , Doppelrohr-Wärmetauscher [38] iv
Tabelle A.14: Zeitstandfestigkeiten <i>Rm</i> , <i>T</i> , <i>t</i> , Doppelrohr-Wärmetauscher [37], [38]v

Anhang A Werkstoffkennwerte

Temperatur	Elastizitätsmodul
20 °C	211.770 MPa
200 °C	198.610 MPa
250 °C	194.745 MPa
300 °C	190.788 MPa
350 °C	186.740 MPa
400 °C	182.601 MPa
450 °C	178.371 MPa
500 °C	174.050 MPa

Tabelle A.1: Elastizitätsmodul in Abhängigkeit der Temperatur nach EN13445-3 Anhang O, Werkstoffgruppe 1.2 und 5.2 [5]

Tabelle A.2: Elastizitätsmodul in Abhängigkeit der Temperatur nach EN13445-3 Anhang C),
Werkstoffgruppe 8.1 [5]	

Temperatur	Elastizitätsmodul
20 °C	199.964 MPa
350 °C	171.980 MPa
400 °C	167.740 MPa
450 °C	163.500 MPa
500 °C	159.260 MPa
550 °C	155.020 MPa
600 °C	150.780 MPa
620 °C	149.084 MPa

Tabelle A.3: Wärmeausdehnungskoeffizient in Abhängigkeit der Temperatur nach E	EN13445-3
Anhang O, Werkstoffgruppe 1.2 und 5.2 [5]	

Temperatur	Wärmeausdehnungskoeffizient
20 °C	1,130 · 10 ⁻⁵ 1/K
200 °C	1,257 · 10 ⁻⁵ 1/K
250 °C	1,288 · 10 ⁻⁵ 1/K
300 °C	1,316 · 10 ⁻⁵ 1/K
350 °C	1,342 · 10 ⁻⁵ 1/K
400 °C	1,367 · 10 ⁻⁵ 1/K
450 °C	1,388 · 10 ⁻⁵ 1/K
500 °C	1,408 · 10 ⁻⁵ 1/K

Temperatur	Wärmeausdehnungskoeffizient
20 °C	1,5287 · 10 ^{−5} 1/K
350 °C	1,7498 · 10 ^{−5} 1/K
400 °C	1,7769 · 10 ⁻⁵ 1/K
450 °C	1,8024 · 10 ⁻⁵ 1/K
500 °C	1,8263 · 10 ⁻⁵ 1/K
550 °C	1,8484 · 10 ⁻⁵ 1/K
600 °C	1,8689 · 10 ⁻⁵ 1/K
620 °C	1,8767 · 10 ⁻⁵ 1/K

Tabelle A.4: Wärmeausdehnungskoeffizient in Abhängigkeit der Temperatur nach EN13445-3
Anhang O, Werkstoffgruppe 8.1 [5]

Tabelle A.5: Wärmeleitfähigkeit in Abhängigkeit der Temperatur nach EN13445-3 Anhang O, Werkstoffgruppe 1.2 und 5.2 [5]

	Werkstoffgr. 1.2	Werkstoffgr. 5.2
Temperatur	Wärmeleitfähigkeit	Wärmeleitfähigkeit
20 °C	49,502 W/mK	37,087 W/mK
200 °C	46,055 W/mK	37,150 W/mK
250 °C	44,940 W/mK	36,852 W/mK
300 °C	43,756 W/mK	36,416 W/mK
350 °C	42,504 W/mK	35,842 W/mK
400 °C	41,183 W/mK	35,132 W/mK
450 °C	39,793 W/mK	34,283 W/mK
500 °C	38,335 W/mK	33,298 W/mK

Tabelle A.6: Wärmeleitfähigkeit in Abhängigkeit der Temperatur nach EN13445-3 Anhang O, Werkstoffgruppe 8.1 [5]

Temperatur	Wärmeleitfähigkeit
20 °C	14,280 W/mK
350 °C	19,237 W/mK
400 °C	19,988 W/mK
450 °C	20,739 W/mK
500 °C	21,490 W/mK
550 °C	22,241 W/mK
600 °C	22,992 W/mK
620 °C	23,292 W/mK

Temperatur	Dichte
20 °C	7.850,0 kg/m ³
380 °C	7.736,1 kg/m ³
415 °C	7.723,6 kg/m ³
475 °C	7.702,0 kg/m ³
480 °C	7.700,2 kg/m ³

Tabelle A.7: Dichte in Abhängigkeit der Temperatur nach EN13445-3 Anhang O, Werkstoffgruppe 1.2 und 5.2 [5]

Tabelle A.8: Dichte in Abhängigkeit der Temperatur nach EN13445-3 Anhang O	,
Werkstoffgruppe 8.1 [5]	

Temperatur	Dichte
20 °C	7.930,0 kg/m ³
350 °C	7.794,2 kg/m ³
400 °C	7.771,5 kg/m ³
450 °C	7.748,4 kg/m ³
500 °C	7.725,1 kg/m ³
550 °C	7.701,4 kg/m ³
600 °C	7.677,6 kg/m ³
620 °C	7.668,1 kg/m ³

Tabelle A.9: Mindest-0,2%-Dehngrenzen R_{p0,2%,T}, Kugel-Stutzen-Verbindung [31], [34]

Werkstoff	10CrMo9-10	11CrMo9-10+QT	16Mo3	Schweißnaht
Werkstoffnorm	EN10028-2	EN10216-2	EN10216-2	80% 10CrMo9-10
R _{p0,2%,20}	290,00 MPa	355,00 MPa	280,00 MPa	232,00 MPa
<i>R</i> _{p0,2%,415}	194,10 MPa	269,60 MPa	154,20 MPa	155,28 MPa
R _{p0,2%,420}	192,80 MPa	267,80 MPa	153,60 MPa	154,24 MPa
R _{p0,2%,440}	187,60 MPa	260,60 MPa	151,20 MPa	150,08 MPa
R _{p0,2%,475}	179,00 MPa	248,00 MPa	148,00 MPa	143,20 MPa
R _{p0,2%,480}	177,80 MPa	246,20 MPa	147,60 MPa	142,24 MPa

Tabelle A.10: Zeitdehngrenzen für 1%-Dehnung $R_{p1\%,T,t}$, Kugel-Stutzen-Verbindung [31], [36]

Werkstoff	10CrMo9-10	11CrMo9-10+QT	16Mo3	Schweißnaht
Werkstoffnorm	EN10028-2	EN10222-2	EN10222-2	80% 10CrMo9-10
$R_{p1\%,415,10.000}$	313,50 MPa	313,50 MPa	275,50 MPa	250,80 MPa
$R_{p1\%,450,10.000}$	240,00 MPa	240,00 MPa	216,00 MPa	192,00 MPa
$R_{p1\%,475,10.000}$	190,00 MPa	190,00 MPa	174,00 MPa	152,00 MPa
<i>R</i> _{<i>p</i>1%,480,10.000}	180,00 MPa	180,00 MPa	166,00 MPa	144,00 MPa
$R_{p1\%,415,100.000}$	204,50 MPa	204,50 MPa	240,50 MPa	163,60 MPa
$R_{p1\%,450,100.000}$	166,00 MPa	166,00 MPa	167,00 MPa	132,80 MPa
$R_{p1\%,475,100.000}$	137,50 MPa	137,50 MPa	116,50 MPa	110,00 MPa
R _{p1%,480,100.000}	130,00 MPa	130,00 MPa	107,00 MPa	104,00 MPa

Werkstoff	10CrMo9-10	11CrMo9-10+QT	Schweißnaht
Werkstoffnorm	EN10028-2	EN10216-2	80% 10CrMo9-10
R _{<i>m</i>,415,10.000}	-	344,00 MPa	-
R _{<i>m</i>,475,10.000}	-	233,50 MPa	-
R _{<i>m</i>,415,100.000}	-	280,50 MPa	-
R _{<i>m</i>,452,4,100.000}	217,20 MPa	-	173,80 MPa
R _{<i>m</i>,475,100.000}	179,00 MPa	178,50 MPa	143,20 MPa
R _{<i>m</i>,452,4,200.000}	197,40 MPa	-	157,90 MPa
R _{<i>m</i>,475,200.000}	160,50 MPa	-	128,40 MPa

Faballa A 11. Zaitstandfastigkaitan D	Kugal Stutzon Varhindung	1211	12/1
T_{a}		1.211.1	1.241
		12 1	

Tabelle A.12: Mindest-0,2%-Dehngrenzen $R_{p0,2\%,T}$, Doppelrohr-Wärmetauscher [5], [37]

Werkstoff	X6CrNi18-10	X8CrNiNb16-13	Schweißnaht
Werkstoffnorm	EN10216-5	EN10216-5	80% X6CrNi18-10
<i>R</i> _{p0,2%,20}	185,00 MPa	205,00 MPa	148,00 MPa
R _{p0,2%,550}	83,00 MPa	118,00 MPa	66,40 MPa
R _{p0,2%,580}	77,54 MPa	115,51 MPa	62,03 MPa
R _{p0,2%,610}	70,94 MPa	112,97 MPa	56,75 MPa
R _{p0,2%,620}	68,34 MPa	112,10 MPa	54,67 MPa
R _{p0,2%,630}	65,51 MPa	111,24 MPa	52,41 MPa

Tabelle A.13: Zeitdehngrenzen für 1% Dehnung $R_{p1\%,T,t}$, Doppelrohr-Wärmetauscher [38]

Werkstoff	X6CrNi18-10	X8CrNiNb16-13	Schweißnaht
Werkstoffnorm	EN10028-7	EN10028-7	80% X6CrNi18-10
R _{p1%,590,10.000}	100,00 MPa	120,00 MPa	80,00 MPa
$R_{p1\%,600,10.000}$	94,00 MPa	113,00 MPa	75,20 MPa
R _{p1%,610,10.000}	88,00 MPa	106,00 MPa	70,40 MPa
R _{p1%,620,10.000}	82,00 MPa	99,00 MPa	65,60 MPa
R _{p1%,590,100.000}	79,00 MPa	84,00 MPa	63,20 MPa
R _{p1%,600,100.000}	74,00 MPa	78,00 MPa	59,20 MPa
R _{p1%,610,100.000}	69,00 MPa	73,00 MPa	55,20 MPa
R _{p1%,620,100.000}	63,00 MPa	67,00 MPa	50,40 MPa

Werkstoff	X6CrNi18-10	X8CrNiNb16-13	Schweißnaht
Werkstoffnorm	EN10028-7	EN10216-5	80% X6CrNi18-10
R _{<i>m</i>,630,10.000}	104,00 MPa	124,00 MPa	83,20 MPa
R _{<i>m</i>,590,100.000}	-	119,00 MPa	-
R _{<i>m</i>,610,100.000}	81,00 MPa	98,00 MPa	64,80 MPa
R _{<i>m</i>,620,100.000}	73,00 MPa	89,00 MPa	58,40 MPa
R _{<i>m</i>,630,100.000}	65,00 MPa	80,00 MPa	52,00 MPa
R _{<i>m</i>,590,200.000}	-	105,00 MPa	-
R _{<i>m</i>,610,200.000}	70,00 MPa	85,00 MPa	56,00 MPa
R _{<i>m</i>,620,200.000}	62,00 MPa	77,00 MPa	49,60 MPa

Tabelle A.14: Zeitstandfestigkeiten $R_{m,T,t}$, Doppelrohr-Wärmetauscher [37],	[38]
---	----------------------------------	------

Abbildung B.1: Vernetzung Berechnungsmodell, Kugel-Stutzen-Verbindung, Kapitel 3.1

Abbildung B.2: Vernetzung Berechnungsmodell, Kugel-Stutzen-Verbindung, Kapitel 4.1.1

Abbildung B.3: Vernetzung Berechnungsmodell, Doppelrohr-Wärmetauscher, Kapitel 4.2.2

ANSYS 2019 R2 ACADEMIC

Anhang C Verteilung der Vergleichsspannung (n. v. Mises)

Abbildung C.1: Vergleichsspannung (n. v. Mises) bei Lastaufbringung, n=3, Demonstrationsbeispiel

Abbildung C.2: Vergleichsspannung (n. v. Mises), Belastungsdauer 100.000 h, n=3, Demonstrationsbeispiel

Abbildung C.4: Vergleichsspannung (n. v. Mises), Belastungsdauer 100.000 h, n=9, Demonstrationsbeispiel

Abbildung C.5: Linearelastische Spannungsverteilung, Lastfall 1 (Innendruck 11,5 MPa und 475 °C), Vergleichsspannung (n. v. Mises), Demonstrationsbeispiel

Abbildung C.6: Linearelastische Spannungsverteilung, Lastfall 3 (Innendruck 9,0 MPa und 475 °C Vergleichsspannung (n. v. Mises), Demonstrationsbeispiel

Abbildung C.7: Vergleichsspannung (n. v. Mises), Belastungsdauer 24.500 h, n-Interpolation, Teilentlastungszyklus, Demonstrationsbeispiel

Abbildung C.8: Vergleichsspannung (n. v. Mises), Belastungsdauer 24.500 h, n = 9, Teilentlastungszyklus, Demonstrationsbeispiel

Abbildung C.10: Linearelastische Spannungsverteilung, Lastfall 1 (Innendruck 8 MPa und 475 °C), Vergleichsspannung (n. v. Mises), Kugel-Stutzen-Verbindung

Abbildung C.11: Linearelastische Spannungsverteilung, Lastfall 2 (Innendruck 8 MPa und Einspritzung), Vergleichsspannung (n. v. Mises), Kugel-Stutzen-Verbindung

Abbildung C.12: Linearelastische Spannungsverteilung, Lastfall 1 (Innendruck und 610 °C), Vergleichsspannung (n. v. Mises), Doppelrohr-Wärmetauscher

Abbildung C.13: Linearelastische Spannungsverteilung, Lastfall 2 (Innendruck und Heizbetrieb), Vergleichsspannung (n. v. Mises), Doppelrohr-Wärmetauscher

ANSYS 2019 R2 ACADEMIC

Anhang D Vergleichsspannungsverläufe und Kriechkurven

Abbildung D.1: Verlauf der Vergleichsspannung (n. v. Mises), Punkt A, konstante Last und Temperatur, Demonstrationsbeispiel

Abbildung D.3: Verlauf der Vergleichsspannung (n. v. Mises), Punkt B, konstante Last und Temperatur, Demonstrationsbeispiel

Abbildung D.4: Kriechkurven, Punkt B, konstante Last und Temperatur, Demonstrationsbeispiel

Abbildung D.5: Verlauf der Vergleichsspannung (n. v. Mises), Punkt A, konstante Last und Temperatur, Kugel-Stutzen-Verbindung

Abbildung D.6: Verlauf der Vergleichsspannung (n. v. Mises),), Punkt B, konstante Last und Temperatur, Kugel-Stutzen-Verbindung

Abbildung D.7: Verlauf der Vergleichsspannung (n. v. Mises), Punkt A, Entlastungszyklus, Demonstrationsbeispiel

Abbildung D.8: Verlauf der Vergleichsspannung (n. v. Mises), Punkt B, Entlastungszyklus, Demonstrationsbeispiel

Abbildung D.9: Verlauf der Vergleichsspannung (n. v. Mises), Punkt A, Teilentlastungszyklus, Demonstrationsbeispiel

Abbildung D.10: Verlauf der Vergleichsspannung (n. v. Mises), Punkt B, Teilentlastungszyklus, Demonstrationsbeispiel

Abbildung D.11: Verlauf der Vergleichsspannung (n. v. Mises), Punkt A, konstante Last und Temperatur, Doppelrohr-Wärmetauscher

Abbildung D.12: Verlauf der Vergleichsspannung (n. v. Mises), Punkt B, konstante Last und Temperatur, Doppelrohr-Wärmetauscher

Abbildung D.13: Verlauf der Vergleichsspannung (n. v. Mises), Punkt C, konstante Last und Temperatur, Doppelrohr-Wärmetauscher

Abbildung D.14: Verlauf der Vergleichsspannung (n. v. Mises), Punkt D, konstante Last und Temperatur, Doppelrohr-Wärmetauscher

Abbildung D.15: Kriechkurven aus der Simulation, Punkt B, stationärer Betrieb, Doppelrohr-Wärmetauscher

Abbildung D.16: Kriechkurven aus der Simulation, Punkt C, stationärer Betrieb, Doppelrohr-Wärmetauscher

Abbildung D.17: Verlauf der Vergleichsspannung (n. v. Mises), Punkt C, Lastverlauf 1, Doppelrohr-Wärmetauscher

Abbildung D.18: Kriechkurven aus der Simulation, Punkt C, Lastverlauf 1, Doppelrohr-Wärmetauscher

Anhang E Differenz der Vergleichskriechdehnungen

Abbildung E.1: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=3, Demonstrationsbeispiel

Abbildung E.2: Differenz von Vergleichskriechdehnung und akkumulierter Vergleichskriechdehnung, n=9, Demonstrationsbeispiel

Anhang F Kriechgesetze

Abbildung F.3: Kriechgesetz Schweißnaht, stationärer Betrieb, Kugel-Stutzen-Verbindung

Abbildung F.4: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, 10CrMo9-10, Kugel-Stutzen-Verbindung

Abbildung F.5: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, 16Mo3, Kugel-Stutzen-Verbindung

Abbildung F.6: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, Schweißnaht, Kugel-Stutzen-Verbindung

Abbildung F.7: Kriechgesetz X6CrNi18-10, stationärer Betrieb, Doppelrohr-Wärmetauscher

Abbildung F.10: Variation Kriechgesetz bei unterschiedlichen Temperaturen, doppeltlogarithmische Darstellung, Schweißnaht, Doppelrohr-Wärmetauscher

Anhang G Verteilung der Vergleichskriechdehnung

Abbildung G.5: Vergleichskriechdehnung nach 100.000 h, stationärer Betrieb, n=10, Doppelrohr-Wärmetauscher

ANSYS 2019 R2

Anhang H σ/ε-Diagramme

Abbildung H.1: σ/ε-Diagramm, Punkt B, Umfangsrichtung, Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung

Abbildung H.2: σ/ε-Diagramm, Punkt B1, Längsrichtung, Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung

Abbildung H.3: σ/ε-Diagramm, Punkt B1, Umfangsrichtung, Lastverlauf mit Einspritzungen, Kugel-Stutzen-Verbindung

Abbildung H.4: σ/ε-Diagramm, Punkt D, Längsrichtung, Lastverlauf 1, Doppelrohr-Wärmetauscher

Abbildung H.5: σ/ε-Diagramm, Punkt E, Umfangsrichtung, Lastverlauf 1, Doppelrohr-Wärmetauscher

Abbildung H.6: σ/ε-Diagramm, Punkt E, Längsrichtung, Lastverlauf 1, Doppelrohr-Wärmetauscher

Abbildung H.7: σ/ε-Diagramm, Punkt C, Längsrichtung, Lastverlauf 2, Doppelrohr-Wärmetauscher

Abbildung H.8: σ/ε-Diagramm, Punkt D, Längsrichtung, Lastverlauf 2, Doppelrohr-Wärmetauscher

Abbildung H.9: σ/ε-Diagramm, Punkt D1, Umfangsrichtung, Lastverlauf 2, Doppelrohr-Wärmetauscher

Abbildung H.10: σ/ε-Diagramm, Punkt D1, Längsrichtung, Lastverlauf 2, Doppelrohr-Wärmetauscher

Abbildung H.11: σ/ϵ -Diagramm, Punkt E, Umfangsrichtung, Lastverlauf 2, Doppelrohr-Wärmetauscher

Abbildung H.12: σ/ε-Diagramm, Punkt E, Längsrichtung, Lastverlauf 2, Doppelrohr-Wärmetauscher

Anhang I Hauptstrukturdehnung

Abbildung I.6: Hauptstrukturdehnung 3, KFN, stationärer Betrieb, min. Druck Außenrohr, Doppelrohr-Wärmetauscher

Abbildung I.8: Hauptstrukturdehnung 3, KFN, stationärer Betrieb, min. Druck Innenrohr, Doppelrohr-Wärmetauscher

Abbildung I.10: Hauptstrukturdehnung 3, KFN, Heizlastfall, min. Druck Innenrohr, Doppelrohr-Wärmetauscher

ANSYS 2019 R2

ANSYS 2019 R2

Abbildung I.16: Hauptstrukturdehnung 3, KFN, Grenzbetrieb, min. Druck Innenrohr