Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

TECHNISCHE

|| UNIVERSITAT
I WIEN

VIENNA

VIENNA UNIVERSITY OF

TECHNOLOGY

Design and Conception of an Environment for
Rapid GUI Prototyping of Smart Devices

MASTER THESIS

Submitted to

Vienna University of Technology
in partial fulfilment of the requirements for the degree
Diplomingenieur (Dipl.-Ing.)

Written at the
Institute of Design & Assessment of Technology
Research Group Human Computer Interaction

and
Siemens AG Austria
Program System Engineering KBB Department

Supervised by
Prof. Dipl-Ing. Dr.techn. Peter Purgathofer

and

Dipl-Ing. Zsolt Nagy
by

Taoufik Naceur Gharbi
MatNr: 9426868

Vienna,at e

i

Abstract 1il

Abstract

In recent years, electronic devices have become ubiquitous in daily life, quite sophisticated
and smart enough to respond appropriately to human hankering. In addition, devices have
become mobile and act like conventional computers in the sense of hardware and software.

Indeed, devices, e.g., cell phones, PDA's, smart phones, can now perform essential services,
like those achieved with computers, due to the embedded software in them. This software has
become complex and large enough insomuch that software engineering methodologies are
needed to be practiced during design and development phases.

Further, time to market has become a crucial factor for the success of any new industrial
product. Reducing this factor represents not only an aim but also a challenge for
manufacturers and developers, who are acting in a competitive market, where products are
incessantly changing to satisfy customer needs and demands.

As traditional software development methodologies can not really produce applications as
faster as needed to keep up with customer demands, new methodologies and tools, therefore,
should be used to speed up the time-critical design phase and the construction of prototypes
of those applications to capture and validate the requirements early without errors and to
reduce the development overall cost.

Rapid prototyping approaches have been identified to be a response to the question of the
need of new development methodologies. Rapid prototyping is a software methodology that
can be applied early in the system development cycle and that allows designers and
developers to iteratively design and evaluate software applications with the intended users
through creating prototypes.

In this thesis, a development environment, the GUI Rapid Prototyping Environment
(GRAPE), for rapid prototyping of smart devices will be presented. Its conception, design
and how it can be used to create virtual prototypes of smart devices will be then described.

This development environment consists of an integrated set of appropriate tools and
techniques, i.e. behavioral modeling using formal specification languages. This set provides
opportunities for validation of the requirements early in the life cycle.

iv Zusammenfassung

Zusammenfassung

In den letzten Jahren sind elektronische Gerite unverzichtbar fiir unser tigliches Leben
geworden. Sie sind weit genug entwickelt, um fiir Menschen ohne viel Spezialwissen einfach
bedienbar zu sein. Viele dieser Gerite sind mobile Gerite, die im Sinne von Hardware und
Software wie Computer funktionieren.

Tatsédchlich stellen Gerite wie Handys, PDA oder Smart Phones dank der inkludierten
Software Funktionalititen zur Verfiigung, die wir von Computern kennen.

Diese Software ist mittlerweile so komplex, dass fiir die Design-, Entwicklungs- und
Deployment-Phase eigene Software Engineering Methoden erforderlich sind.

Dariiber hinaus ist die Produkteinfiihrungszeit ein kritischer Erfolgsfaktor geworden. Die
Hersteller agieren am freien Markt, der bedingt durch sich rasch @ndernde
Kundenanforderungen hoch dynamisch ist und laufend nach neuen oder geidnderten
Produkten verlangt. Das Verringern der Produkteinfiihrungszeit ist dadurch sowohl Ziel als
auch Herausforderung fiir Hersteller und Entwickler geworden.

Mit traditionellen Software-Entwicklungs-Methoden konnen Anwendungen nicht
ausreichend rasch produziert werden, um den dynamischen Kundenanforderungen zu
geniigen. Es sind neue Methoden und Tools erforderlich, um die zeitkritische Design- und
Prototypphase der Applikationen zu beschleunigen. Dadurch werden die Kunden-
Anforderungen frithzeitig validiert, Fehler frithzeitig erkannt und damit auch
Entwicklungskosten gesenkt.

,-Rapid Prototyping” — Ansitze haben sich als addquate Losung dafiir erwiesen. ,,Rapid
Prototyping” ist eine Software-Entwicklungsmethode, die sehr frith im Entwicklungszyklus
eingesetzt werden kann. Sie erlaubt den Designern und Entwicklern ein iteratives Vorgehen.
Diese wiederum ermdglicht es, dass die Software schon wéhrend der Erstellung durch
Prototypen, die User ausprobieren konnen, laufend iiberpriift und adaptiert werden kann.

In der vorliegenden Arbeit wird eine Entwicklungsumgebung, ndmlich GUI Rapid
Prototyping Environment (GRAPE), fiir das ,,rapid prototyping* von smart phones
vorgestellt. Sowohl Konzept und Design, als auch die Verwendung von GRAPE werden
anhand der Erstellung eines virtuellen Prototyps beschrieben.

Die Entwicklungsumgebung selbst besteht aus mehreren integrierten Tools und Techniken,
wie etwa die Beschreibung des Systemverhaltens mittels einer formalen Sprache. Diese Tools
und Techniken bieten Moglichkeiten, die Anforderungen sehr frith im Entstehungsprozess zu
validieren.

Acknowledgements

Acknowledgements
I’d like to thank

Prof. Dipl-Ing. Dr.techn. Peter Purgathofer

Dipl-Ing. Zsolt Nagy

and all the people that I have met in my life for the simple reason that they enriched my
knowledge through learning something, whatever small or big, from them.

6 Contents
Contents
1 Introduction 10
2 Rapid Prototyping in Software Development 12
2.1 WHhat iS ProtOtyping? ...c..cooieeieiiieieeieeteee ettt st 15
2% 8 B B) 11113 10 o FO PSSP 16
2.2 Prototyping in the SOftware ProCess.........ccceviiiriiriiiiieiiiieniie ettt 17
2.2.1 Evolutionary Prototypingcccoeeeveenienieeneenienieeieeneenieeeenee e 18
2.2.2 Throw-away Prototyping.......cccccoeeereenienieiieentenieeie ettt 20
2.3 Rapid Prototyping TeChNiqUeS...........ccceevviiiriiiiiniieeiie ettt 22
2.3.1 Dynamic High-Level Language Development............cccccevvueeveeneenniceneennne. 22
2.3.2 Database Programmingc..ccoceereenienieeneenienieeieeneenieeie e 23
2.3.3 Component and Application ASSEMDIY.........cccceerviieiiieniieiieiecie e 24
2.4 Analysis and Prototyping of GUIccoceiiiiiiiiniiiiiiiiccecececeeee e 26
2.5 SUITIMIATY c. ettt ettt ettt e et e ettt e e b e e st ee s ebbeeebeeeabeessbbeeemeeesabeeenaee 28
3 Modeling Techniques of Device Behavior 29
3.1 What is @ State Chart?..........ooiiiiiieiieieee ettt sttt et 32
3.2 UML State ChAITScoitiiiiiiiiiieeiiie ettt ettt et ettt et e e st eesbe e eaee 33
BL2 1 SHALES. ettt et ettt ettt e s be e s e e 33
TN b ¢ 1115 15 10 RSP PS 35
3.2.3 Actions and ACHVIIES ...eeercveeeriieeiiieeiieeriieerteeeiteesteesteessteeesseeesaneesnseeas 37
3.2.4 SUMIMATY....eoitiiiiieiiieieenite ettt te sttt et e sbee et e bt e s bt e et e e bt esbe e e b eeteesaeeeaseeseens 38
3.3 SDL State Chartsccocueiiiiiiiiiieeiiee ettt et ettt et e e s e 39
3.3.1 States, Start and StOp SYMDOISceeviiiiriieiiiieiie et 40
TG I | v 11 1) 1 o) 1 TSP 41
3.3.3 Actions and ACHVIIESeeeecveeeriieriieeiteesciieeteeeiteesieesteessreeesseeeseseesnseees 43
3.314 SUMIMATY ..coiitiiiiieeiieeeite ettt et e e sttee st e e sbbeesabeesaeeesseeesnseeesaseessseees 44
3.4 Example of Modeling a Simple Device Behavior with State Charts........................ 45
3.4.1 With UML State Charts........ccovveeeiiieniieeriiieeeeeeiieesieeseeessieeeseeeeseveessneees 49
342 With SDL State CRATITScccveiiviieeiieeiieeriie ettt esiee et e iee e eeeesebeessaee s 50
I 110110 F: 1 oy ORI 53
4 Design and Conception of GRAPE 54
i I\ (014 1o) s FO TSNP URRRRTUTPN 55
4.2 WhatiS GRAPE? ...ttt et 58
4.2.1 GRAPE Featuresccceeeiiieiiiiiieieeeeee et 58
4.2.2 Benefits using GRAPEcoooiiiiiieeee e 58
4.2.3 GRAPE REfEIENCEScecouiiiiiiiiiiieeeiieeciieeette ettt et 59
4.3 GRAPE COMPONENLSeeutiiiieeieeiie ettt ettt etee et e satesate et esetesateeeeesseeeneean 60

431 SICAT ... e s 60

Contents 7
4.3.1.1 PD EItOT ettt 61

4.3.1.2 MSC EIOr ...coviiiiiieiiinieeieneeec ettt 61

4.3.1.3 Code GENETALOTSceeueeeeieieeeieeieeeeste et et e st e ebe e e s e eae e e enaeas 62

4.3.2 Macromedia Flashccccccooiiiiiniiiiiiiie e 63

A4 SUIMIMATY ..eeeuieeieetie ettt et e et et teeateeteesteeeaeeemte et teeseeemseessteeseeenseeseesneesnseenseenneean 65

5 Implementation of a Smart Device Using GRAPE 66
5.1 UCM ATCRItECIUTIEeeutieeiieiieetie ettt ette et et e ette ettt e ettt e et esetesate et e esseeseeesseenneean 68

5.2 Principles of Code GeNneration..........ccceecueeerieeeiieeeriieeenieeerireesieeereessseeesseeessseesnnns 71
5.2.1 ActionScript SDL Base Classesccecueeuieriierieniieniieeieeitesieeeieeeeeesiee e 74

5.2.2 Mapping of SDL Processes onto ActionScript Constructs.............ccceeuennee.. 74

5.2.3 How to Generate Code from SICATcccooiiiiiriiiniee et 79

5.3 Construction of the Device Graphic Elementscccccoocueeiiiniiiniiiniiinieeieceenn 82
5.3.1 Flash Symbols and Library ASSELSccccceerierieriienienieerieenieeseeeeeesieenaeens 88

5.3.1.1 How to Create a Flash Symbol...........ccccccoiiiiiiiiiiiieeee, 89

5.3.1.2 Device Prototype SymbolS........cccecererieriniiriniieeieeeie et 97

5.3.1.3 The Skin Movie Clip of the Device Prototype......c...cceceeevueruennee. 103

5.3.1.4 The Display Movie Clip of the Device Prototype.........cccoceu.ee... 106

5.4 Implementation of the UCM Layers........ccccccoverviiniinniinneiniiiieeneeeeeeee e 109
5.4.1 Implementation of the User Interface Layerc...cccevieriiinciniennennennne. 109

5.4.2 Implementation of the Control Object Layerccccccoveeneiniiinnenneinneennne. 111

5.4.3 Implementation of the Model Layer.........ccocceeveeniinniinninniiniiiniceneceeeee 115

5.5 Putting It All TOZEhET ...cc.coiiiiiiiiiiiiieiet ettt 117
5.5.1 How to Run the Device Prototype........cccccecuerveeniiniiinninniiniieiceneceeee 123

T TN 111010021 o SRR 125

6 Summary and Future Work 126
Bibliography 127
Appendix A: Guide to notation of UML State charts 133
Appendix B: Guide to notation of SDL 92 State charts Supported by SICAT.............. 137
Appendix C: The Companion CD-ROM 142

8 List of Figures

List of Figures

Figure 2.1: Causes Of EITOTSooouiiiiiiie ettt ettt 12
Figure 2.2: Significance of Early Requirements Validation............cccocceeiiiiiiniinieeiceneee. 13
Figure 2.3: Types of Requirements EITors...........cooceeiiiiiiiiniiiiiiiiiieeecceeeeeee e 14
Figure 2.4: Rapid prototyping is a process that generates prototypes quicklyc.ccccueeneee. 16
Figure 2.5: Prototyping APPrOachesc.ceevueiriieiieiieiiiiniceie ettt s 18
Figure 2.6: Evolutionary ProtOtypingcccceeiieieerieeie ettt 20
Figure 2.7: Throw-away ProtOtyPing........ccoeceeeieeieeeieeie ettt eite et eeeeseee e as 21
Figure 2.8: Database Programimingcccccceeieeiierieeie ettt 24
Figure 2.9: Reusable Component COMPOSIIONc..eeeueeieiriirnieeneenieeieeieeniie et eie e 25
Figure 3.1: Development cycle for interactive SyStemS.cocueevueerieerieeneenieenieeneenieeieennees 29
Figure 3.2: A State chart diagrami.........ccceoeeiieeiiiiiieiieee et e 32
Figure 3.3: STMPIE STAteS ...c.eeiiiiiiiiiiieiietee ettt e ettt e 33
Figure 3.4: Hierarchical States...........coeuieiiierieiie ettt ettt et 34
Figure 3.5: CONCUITENE STALESeevieiieeieeieeiie et ettt eie e et teeate et esteesaee et e e teesseeeeeeseeeeneeas 34
Figure 3.6: SIMpPle TTanSitioncceeeiiiiiieiieeie ettt ettt etee et e saee et e seeeseeeas 35
Figure 3.7: Multi-Level Transitionccoceeiieeiienieiieeeeiceieceese ettt 36
Figure 3.8: The History MeChaniSmccccerueriiiiniiiieiieeniceiecece et 36
Figure 3.9: Transition to Self..........cocooiiiiiiiiiii e 37
Figure 3.10: Actions and ACHIVILIESccc.eerterieiiiierieiie ettt s 37
Figure 3.11: Start SYMDOIScoeiiiieiieee ettt ettt ettt esaee e s 40
Figure 3.12: State SYMDOIScc.eiiiiiiieeie ettt ettt ettt ettt et e e saeeeaee s 41
Figure 3.13: Stop SYMDOIS....cooiiiieie ettt ettt 41
Figure 3.14: Example of a Transition Order............ccocueeveiniiiiieneinieieeieenieeeeec e 42
Figure 3.15: Message Input Right (Left) Symbolsccccoooiiiiiiiiiniiiiiieeceeecceeeee, 43
Figure 3.16: ACtions SYMDOIScc.coiiiiiiiiiiiiieiiete ettt 43
Figure 3.17: Message Output Right (Left) Symbols.........ccooeeiiiiiiniiiiiiieeiicceeeee, 44
Figure 3.18: Transition from Off t0 On Statecccceeiiiiiiiiiiee e 45
Figure 3.19: Transition from Logo to Navigation Statecceeeeeeiierienieesieenieeie e 46
Figure 3.20: Transition from Menu State to itSelfccoooiiiiiiiiiiiieee e 46
Figure 3.21: Transition from Active to Inactive State (Case 1).....c.ccceeveveevieirniieencienrieeeen. 47
Figure 3.22: Transition from Active to Inactive State (Case 2).......ccccevvvverreerenieercereenieennnen. 47
Figure 3.23: Device Behavior Model with UML State Chart.........c...cccceevieneenienicnneeneennen. 49
Figure 3.24: Device Behavior Model with SDL state charts (Part 1).........ccccceveieeiiiicnneenen. 50
Figure 3.25: Device Behavior Model with SDL state charts (Part 2)..........ccccoeoevieeicnneenen. 51
Figure 3.26: Device Behavior Model with SDL state charts (Part 3)........cccccoeceeiiicnneenen. 51
Figure 3.27: Device Behavior Model with SDL state charts (Part 4)..........ccccoeceeeeiceneeneen. 52
Figure 4.1: GRAPE First Version OVEIVIEWccccceevueeriiniiiniienieinieeieeite e et e 56
Figure 4.2: SICAT Development Environment (Control Program main Panel) 60
Figure 4.3: Process-Diagram Editorccooeiiiiiiiiiiiiiiiiieccceceeeeeeec e 61
Figure 4.4: Message-Sequence-Charts Editor.........coooieiiiiiiiiiiie e 62
Figure 4.5: Macromedia Flash Professional 8 Environmentcccccoeveeiienienieenceneenen. 64
Figure 4.6: GRAPE supports the entire product lifecycleccoecieriieniiiiiinienieeceeee. 65
Figure 5.1: UCM Architecture LAYETSccccieeiieieeeiieeie ettt 68
Figure 5.2: Integration of Code Generators into SICAT T0OISetcccceeveerveeneeneenieeieennen. 71
Figure 5.3: Control and Data Flow of the Flash Code Generator...........ccccccvcveeveeneenieenneennen. 73
Figure 5.4: The Three Text Levels of an SDL Symbol (i.e. Task Symbol).........cccccecueenennee. 75
Figure 5.5: Procedure Diagram (SayHello)c.cooeerieeiiiiiiieee et 77

Figure 5.6: Transformation of a SDL Model Example into ActionScript Class 78

List of Figures 9
Figure 5.7: Properties Settings of SICAT Object from Control Program...........cccccecceeuennee. 79
Figure 5.8: Selecting the Flash Code GEeneratorc.ceeeueerierieeiiienieeie e 80
Figure 5.9: Code Generating from SICAT Control Programccccceeieeiieniienieeiceneenen. 81
Figure 5.10: Flash Drawing TOOISccccooiiiiiiiiiiniiiieeeetceeceee et 83
Figure 5.11: The Stage of Macromedia Flash 8............ccccoiiiiiiiiiiniiiccceeee, 84
Figure 5.12: The Properties Panel of Macromedia Flash 8ccocccoiiiiiininiiininiiee. 84
Figure 5.13: The Timeline of Macromedia Flash 8............cccocciiiiiiiiiiinieeeceeee 85
Figure 5.14: The Library Panel of Macromedia Flash 8...........ccccooooiiiiiiiiii e 86
Figure 5.15: The ActionScript Editor of Macromedia Flash 8.............ccooccooiiiiiiiiiniiiiee. 87
Figure 5.16: Components Panel......... ..ottt 90
Figure 5.17: New Document Dialog BOXcooeeiiiiiiiiiiniiiiiiiieeeceeeeeeee e 91
Figure 5.18: Documents Properties Dialog..........ccoceeiieiiiiniiiiiiiiiiiiiiececeeccceceeceeee 92
Figure 5.19: Create Symbol Dialog Box (Basic Mode).........cccceeveeniiiieiniinieenecnecnieceeee. 93
Figure 5.20: Create Symbol Dialog Box (Advanced Mode)c.cccevierieniiienienieeceeeen 94
Figure 5.21: Battery Icon Movie Clip Symbolccooiiiiiiiiiieee e 95
Figure 5.22: Battery Icon Movie Clip (Z0OMed)........cceeueeieerienieeiiesieeie et 95
Figure 5.23: Properties Inspector of Movie Clips InStances..........ccocceveeveenieeneeneennieenieennee. 96
Figure 5.24: Arrow Movie CLip (Z0OMEd)ccceeriirieiiiiniieieeeenie ettt 97
Figure 5.25: Connection Power Movie Clip (Zoomed).........ccccceveenieeieeneenieeneeneenieeieenee. 98
Figure 5.26: Connectivity Icon Movie Clip (Zoomed).........ccoceeveenieeieeneeniieeieeneeeieeieene. 98
Figure 5.27: Tween Display MoOVIe CIPccccoiiieiiiiieeie ettt 99
Figure 5.28: Property Inspector of Dynamic TeXt.......cccceevieriiririiiienienie e 100
Figure 5.29: The LoZ0 MOVIE ClIP .. .ciiiiiiiiiiieie ettt ettt e 101
Figure 5.30: Instance of @ Video ClpP.....ccceeviiiiiiiiiiieiiciicetetccetesee e 102
Figure 5.31: Overview of all Symbols in a Flash Document.........c...ccccccecuerveinienicnnennennne. 103
Figure 5.32: The Skin Movie Clip of the Device Prototype..........ccoceeveeveenniennecnecnicennene. 104
Figure 5.33: Button Component Parameters INSpector.............ceoveriiinienieinenncenieniceieene 105
Figure 5.34: The Use of a Generated Button Event in SDL State Charts...........ccccceeceeeneen.e. 105
Figure 5.35: First DiSplay STatec.ceeiieiieiieeie ettt ettt e 106
Figure 5.36: Second Display State.........cceoceeeieeieeieeeieeie ettt 107
Figure 5.37: Third Display State.........cccceiieriiiiiiniiiieiieceeeieeeee et 108
Figure 5.38: User Interface Movie CliP......cccceiiiiiiinieniiiieenitenie et 110
Figure 5.39: SDL Model of The Control Object Layer (Part 1)c..ccccceeveeninneineencnnene. 112
Figure 5.40: SDL Model of The Control Object Layer (Part 2)ccccceveerieeniecnecniceneene. 113
Figure 5.41: SDL Model of The Control Object Layer (Part 3)ccccceveeiienienieeiieenee 114
Figure 5.42: SDL Model of The Model Layer...........cccoooieiiniinieeieieee e 116
Figure 5.43: Device Prototype System on SICAT Side........cccoviieiiiiiineiieiece e 118
Figure 5.44: SDL Model of The Behavior of Press Button...........cocceveenieniienniencnncnnennne. 120
Figure 5.45: Device Prototype on Macromedia Flash 8 Sideccccccooeeiiiniiniiiniinncnncne. 122
Figure 5.46: The Device PrototyPe.........cooveiiiiiiiiiiiieiieciceece et 124

10 Introduction

1 Introduction

Today, time to market has become a crucial factor for the success of any new industrial
product. Reducing this factor represents not only an aim but also a challenge for
manufacturers and developers, who are acting in a competitive market, where products are
incessantly changing to satisfy customer needs and demands [25].

In recent years, electronic devices had conquered almost every field of daily life. They are
present everywhere and they are not to be thought away in human everyday behavior, policy
and use. As customer needs and demands will never cease, devices have become smarter than
before and quite sophisticated to respond appropriately to human hankering.

To be smarter in the way, devices have the ability to make decision and to communicate with
its environment. To be sophisticated in the way, devices provide substantial services to make
life easier and cushier to its user. In other words, devices act like conventional computers in
the sense of hardware and software.

Indeed, devices, e.g., cell phones, PDA's, smart phones, can now perform some services, like
those done with computers, due to the embedded software [28] in them. This software has
become complex and large enough [27] insomuch that software engineering methodologies
are needed to be practiced during design and development phases.

In spite of the fact that software engineering methodologies and tools have proven substantial
improvements during the last two decades, requirements engineering still remains a key issue
in software development [26].

“The hardest part of the software task is the setting of the exact requirements” [29]

The deficiency of early requirements validation constitutes one of the primary sources of
intricacy in the software development process. Requirements are mostly misunderstood and
change frequently while development. Therefore validation of requirements is still a difficult,
cumbersome and costly task [26].

Evidently speeding up this task, it means rapid capturing and validation of requirements early
in the life cycle, can be a response to the question of shortening the time-to-market factor,
accelerating the development process and reducing costs, if and only if the applied
methodologies are appropriate enough [25].

Therefore, new methodologies and tools should be developed to speed up the time-critical
design phase and the construction of a prototype of any new device to capture and validate
the requirements as early as possible without errors. This can cause the reduction of the
development overall cost.

Within the scope of this thesis, an important approach to early requirements validation named
“Rapid Prototyping” will be introduced. A software prototype can be developed from a
specification outline. End users will then have the possibility to experiment with the
prototype to determine functionalities and behavior of the final system, and to make
improvements and refinements.

Introduction 11

Based on prototyping, a development environment, the GUI Rapid Prototyping Environment
(GRAPE), for rapid prototyping of smart devices has been designed. Its conception and
design constitute the main objective of the thesis that has been achieved within the scope of
this work.

This development environment consists of an integrated set of appropriate tools and
techniques. This set provides opportunities for capturing and validation of the requirements
early in the life cycle.

The main components of GRAPE are Macromedia Flash and SICAT toolset. Macromedia
Flash provides full design control and strong visual metaphors for developing graphic objects
and animations. SICAT toolset supports system behaviour modelling using a formal
specification language, i.e. the Specification Description Language (SDL), and provides code
und documentation generation from the models automatically.

Using GRAPE virtual prototypes of smart devices can be created. Through these prototypes
the end user can be involved during development phases by expressing their opinion and
wishes about the behavior of the system and how it should look like. This user feedback
occurs while experimenting with the prototype and it helps designers and developers
enormously to modify already available requirements as well as developing new ones
accordingly.

As mentioned previously, GRAPE is a software development environment intended for rapid
prototyping of smart devices. With “Smart Devices” is meant, roughly speaking, every device
that has at least user interfaces, like buttons and displays, i.e. screen, that enables interaction
with the environment, i.e. human.

Finally, a “Smart Device” can be defined as follows:

A “Smart Device” is a physical object with embedded processor, memory and optionally a
network connection. Smart devices have user interfaces and information’s displays in order to
enable interaction with their physical environment.

12 Rapid Prototyping in Software Development

2 Rapid Prototyping in Software Development

The misunderstanding of system requirements and the lack of adequate validation of the
correctness of requirements have been identified to be a main cause of system failure and
customer dissatisfaction [26].

Validation of requirements early in the life cycle constitutes one of the key issues in software
development because while requirements validation failure can occur and result in frequent
and expensive changes in later life cycle phases [26].

In conformity with a study realized by the University of West Virginia in Cooperation with
the US Air Force [30] the origin of the most failures have been found in the early phases of
the software design and development process (see Figure 2.1) [25].

As shown in the figure below the faulty translation of requirements represents the quote of
36% of the entire errors. Only 5% of errors are caused by incomplete requirements, whereas,
28% of the whole errors are traced back to logical design failures [25].

Source of Errors (in %)
40+
35+
30- O Requirements Translation
B Logical Design
25+ O Documentation
OIncomplete Requirements
20+ B Human
O Environment
15+ | Interface
O Data
10+ B Other
5_
0-‘

Figure 2.1: Causes of Errors

Rapid Prototyping in Software Development 13

Time Spent in Each Phase Source of Errors
3 Maintenance 2
B Testing
O Design @ Requirements

m Other

O Implementation

B Requirements
Engineering

Relative Cost of Error Correction

Stage Relative Cost
of Repair

Requiraments 1

Design 5

Implemantation 10
Unit Test i
Acceptanca Tast 30
Maintenanca 200

Figure 2.2: Significance of Early Requirements Validation

The significance of early validation was testified and illustrated in Figure 2.2. According to
“Boehm”, 54% of all errors detected in a certain software projects were detected after the
implementation and testing phase. 83% of these errors could be traced back to requirements
and design phase [26] [31]. Also “DeMarco” related that about 56% of all detected defects
could be traced also to requirements [26] [32].

Further several errors in requirement phase are transmitted undetected to later phases of the
life cycle. The patch of these errors, while or after coding phase, has been identified as one of
the most costly task [26][33].

“... early defect fixes are typically two orders of magnitude cheaper than late defect fixes and
the early requirements and design defects typically leave more serious operational
consequences.” [26] [34]

The type of requirement errors has been found to be technical ones (see Figure 2.3).
77% of these errors were non-clerical errors, 49% were incorrect facts and 31% were
omissions [26] [35]. Inconsistency and ambiguity were about 18% of all non-clerical errors.

14 Rapid Prototyping in Software Development

45
3
13
5
l—] 2
o A = 3 . £ : al : '.. ..'
Incorrect Fact Omission Inconsistency Ambiguity Misplaced

Requirement

Figure 2.3: Types of Requirements Errors

By waterfall life cycle model a complete requirement specification is required before
development. A complete requirements specification means, in this case, a contribution to the
problematic mentioned above, concerning early validation of requirements, because of the
frequent changes of the specification, and seems to be unsolvable without errors for complex
and large system[26] [36].

Therefore, new methodologies based on prototyping have been used. In order to speed up the
time-critical design phase and the construction of a prototype and to capture and validate the
requirements, such methodologies have been applied.

Within the scope of this chapter, an important approach to early requirements validation
named “Rapid Prototyping” will be introduced. A software prototype can be developed from
a specification outline. End users will have the possibility to experiment with the prototype to
determine functionalities and behavior of the final system, and to make improvements and
refinements. This chapter will discuss the prototyping concept in the software process, its
advantages and its benefits. A classification of these approaches will be provided. Some
prototype techniques will be briefly described and listed. Then the user interface design based
on prototyping will be presented as an effective method to design and analysis the graphical
user interface early in the development lifecycle.

Rapid Prototyping in Software Development 15

2.1 What is Prototyping?

By classical waterfall model and all its variations, software development phases must be
clearly defined and detailed before execution. To come through the waterfall model lack,
several new approaches and methodologies in the software development, such as incremental
development, rapid prototyping and evolutionary prototyping, have been proposed [37].

Software development approaches based on prototyping have gained importance and
significance. They had proven to have the ability to respond dynamically to frequent
requirements changes, to reduce the amount of revision, and to assist the controlling of
incomplete requirement and its risk. In addition prototyping is cost effective, improves
communication between all persons involved while development process, helps determining
technical feasibility, and is an appropriate method for risk management. End-user
involvement and participation, while development based on prototyping, has been found as
essential [37].

“Prototyping is the process of building a model of a system. In terms of an information
system, prototypes are employed to help system designers build an information system. That
is intuitive and easy to manipulate for end users. Prototyping is an iterative process that is
part of the analysis phase of the systems development life cycle” [38]

In the analysis phase and while capturing and determination the requirements of a system, the
analysts collect information about the business processes. Furthermore, they study the current
system, lead interviews with users and pick up documentation. This information, together
combined, could support the analysts to develop an initial set of the required system. This
process could be increased by prototyping, which converts intangible specification to
tangible, indeed with limited functionality but working, model of the required system [38].

After developing a physical prototype of the system, the end users can touch, perceive and
experiment with the prototype. As a consequence users could change his wishes and express
their opinion about how the system should be like and so on. This user feedback helps the
analysts enormously to modify already available requirements as well as developing new
ones accordingly [38].

The use of prototypes can be found in many disciplines. In the manufacturing and
manufacturing engineering, for example, prototypes of products were created to explore and
control uncertainly during product design, or to investigate difficulties in the production
process before the real mass production started [37].

“The software industry has adopted this industrial technique to construct prototypes as
models, simulations, or as partial implementations of systems and to use them for a
variety of different purposes, e.g., to test the feasibility of certain technical aspects

of a system, or as specification tools to determine user requirements.” [37]

Further by breaking up a complex system into smaller and simpler parts, the prototyping
process could elate the development phase to be efficient. A prototyping development
approach can, in the other hand, help build and refine a product to satisfy customer needs and
market expectations. [37]

16 Rapid Prototyping in Software Development

2.1.1 Definition
Rapid prototyping has become a typical term, which is used to describe many prototyping

processes (see Figure 2.4) [8].

Rapid Prototyping
- - = TR T
- -
s Y
- -
2" Additive Vs
| A"
.-’lr k
Y
i !
/
i £ — "1
: |
:]
; 1
1] .

, | Formative | Subtractive | J
\ | 7
\ !

N, P
! P-"
b .

&~
e a = i’ H s
T 11 -

Figure 2.4: Rapid prototyping is a process that generates prototypes quickly

“Today, everything is about speed, efficiency, and productivity, so the words are commonly
applied to any process that generates prototypes rapidly” [8].

In the literature there are a numerous terms and definitions for prototype and rapid
prototyping [6][7][8][26][37].

Within the scope of this thesis and with respect to what this thesis is about, the following
definition of “prototype” respectively “rapid prototyping” has been chosen:

“A prototype is an enactable mock-up or model of a software system that enables evaluation
of features or functions through user and developer interaction with operational scenarios.
Prototyping exposes functional and behavioral aspects of the system as well as
implementation considerations, thereby increasing the accuracy of requirements and helping
to control their volatility during development.” [26]

Rapid Prototyping in Software Development 17

2.2 Prototyping in the Software Process

Software development and validation approaches are multitudinously described in the
literature. These approaches referred in general to prototyping. A little agreement seems
nevertheless to exist concerning the exact process of creating and using the prototypes [26].

About eighteen prototyping approaches described by six authors have been identified by Sage
and Palmer’s “Software Systems Engineering”, who have showed the high degree of
commonality among classes of approaches by mapping the different approaches into three
classes [39].

The planed use and the intended users of the prototype can be a convenient way to classify
prototyping approaches. In this sense, prototyping approaches can be grouped into two
distinct categories. The first one contains prototyping approaches, which enfold the creation
of a series of fielded prototypes. These approaches are referred to the so called “Evolutionary
Prototyping”. The second category comprise those approaches that intent on exploring ideas
without resorting to field deployment. These approaches are named as “Throw-away
Prototyping” [26].

The evolutionary prototyping starts with a relative simple system, which considers the most
important user requirements. This system will be then extended and changed depending on
requirements, until the final needed system comes out. There is none detailed system
specification and in some cases there is not even a formal document for requirements [24].

In contrast to evolutionary prototyping approach, the throw-away one tends to clarify and to
refine system specification. Therefore the prototype will be developed, evaluated and
modified. The prototype evaluation represents a feedback and provides information for the
development of the detailed specification. This latter is an essential part of the written fixed
system requirements. As soon as the detailed specification is composed, the prototype has
achieved its aim and will not be needed anymore [24]. Figure 2.5 below illustrates the both
approaches of prototyping.

Between the objective of evolutionary prototyping and throw-away prototyping, an important
difference could be noticed, which is as follows [24]:

1. Developing a functional system for end user represents an aim for development based
on evolutionary prototyping approach. This means the developer should start with the
best understood requirements. Requirements, which are not well defined, will be then
implemented, when they are requisitioned from users

2. Determining and valuation of system requirements constitute, in this case, the aim of
throw-away prototyping development approach. Developer should begin with the
requirements, which are not yet definitely clarified, because they must find out them
before. Simple and clarified requirements may not need to be tested through a
prototype

Another important difference between the both prototyping approaches is for the quality
management significant. Prototypes created while development based on throw-away
approach, have a short life cycle. It is possible to change these prototypes during

18 Rapid Prototyping in Software Development

development rapidly. A long-term maintenance is not required. As far as the prototype has
fulfilled its main functionality, a little efficiency and reliability could be accepted [24].

In contrast to that, prototypes are further developed with the same standard quality of the
whole remaining software. The prototypes, which are here meant, are those created during
development based on evolutionary prototyping and which constitute the basis of the final
system. These prototypes must have a stable structure to sustain for many years. They must
also be reliable and efficient, and correspond to the organization standards [24].

E'ufﬂllutlnﬂar]l' \ Delivered
Pmtutypmg System

Qutline
Requirements
-

\/ﬂwnw-away 5 Executable Prototype 11

'I\\R Prototyping . System Specification _

Figure 2.5: Prototyping Approaches

2.2.1 Evolutionary Prototyping

Evolutionary Prototyping is an approach to develop systems, whereat an initial prototype is
produced. This prototype will be presented for comments to customer, and then the prototype
will be iteratively refined until an adequate system will be reached (see Figure 2.6
below).The development process starts from an outlined not detailed specification, which
contains the most understood requirements [24].

This development approach should be used for systems, e.g. Al systems, which are difficult
to be specified, or where the specification could not be developed previously. This approach
could be used also for systems, where development is based on techniques that allow system
iterations rapidly. Because of the absence of the specification, verification seems to be
impossible, but validation, in this case, means the demonstration of the system suitableness
[24].

Rapid Prototyping in Software Development 19

There are two main advantages for the use of the evolutionary prototyping approach in the
software development process [24]:

1. Accelerated delivery of the system: In some cases, rapid delivery and deployment are
important than functionality or long-term software maintainability

2. User engagement with the system: The system is not only probable to meet user
requirements, but the users are more probable to commit at the use of the system

Beside its advantages, the evolutionary approach has also problems. There are three main
problems, which are particularly important, in the case of development of large or for a long
life span system [24]:

1. Management problems: To evaluate the progress, existing management processes
assume a waterfall model of development. As prototypes could be created quickly,
high documentation effort seems to be not effective with respect to costs. Further
development based on rapid prototyping requires sometimes the use of unusual
technologies, which cause the need of specialist skills. This latter could not be
available in all development teams, which means, on the other hand, costs increasing

2. Maintenance problems: Continual change could effectuate system structure
corruption. This implies that the system will be difficult to understand for external
development teams. Moreover the special technologies, which were used during rapid
prototyping development, could be deprecated quickly. In this sense, long-term
maintenance could be expensive.

3. Contractual problems: Normally a contract between customer and software developer
is based on system specification. As this latter does not exist, so it is easy to imagine
how difficult it can be, to work out such a contract

20 Rapid Prototyping in Software Development

-~ Sy

Develop Abstract ‘ Build Prot Use Prototype
L Specification 2 ME:IWPE System
- ey

Mo

Deliver
System

Figure 2.6: Evolutionary Prototyping

2.2.2 Throw-away Prototyping

The throw-away prototyping approach aims with extending the requirements analysis phase
to reduce costs for the whole life cycle. Requirements determination and providing additional
information, to help the management estimating risks, constitute the substantial function of
the prototype. This latter will be not needed anymore after valuation and not used as basis for
further system development [24].

On the other hand a prototype, created during development based on throw-away prototyping
approach, will be used to fix the system requirements but not to validate a design. The
prototype should be developed as fast as possible, to give to users chance to experiment with
the prototype and then share their experiences with the developers. The user feedback helps
then developers to clarify the system specification. In other words, a prototype, which is
commonly a practical implementation of the system, is produced to help discover
requirements problems and then discarding them. The system is then developed using some
other development process [24].

As shown in Figure 2.7, the prototype is developed from an initial specification and delivered
for experiment. This prototype will be modified until the user will be satisfied with its
functionality. Then from the prototype the system specification will be derived. Reusable
components could be used while system production process to reduce in some way costs. In
some cases, there is no need to derive system specification from the prototype, because the
prototype itself is the specification [24].

Rapid Prototyping in Software Development 21

Like the evolutionary prototyping approach, the throw-away one has also its problems, which
are as follows [24]:

1. Some system characteristics may have been left out to facilitate a rapid
implementation. Some important parts of the system, e.g. security functions, could
be not simulated with a prototype

2. For customer and developer, an implementation is not legally binding

3. Non-functional requirements concerning reliability, stability and security could be
not tested with prototypes adequately

r

Cutline Develop Evaluate Specify
Requirements Prototype Prototype System
i — =4

A b - b
Reusable
Lam FIDHEI'ITE
Develop - Deliverad
Software | Validate Software
5 g System System

Figure 2.7: Throw-away Prototyping

Another general problem by this prototyping approach is that the prototype should not be
considered as a final system. The tester of the prototype will be interested in the system as it
is but not to be a typical system user. The time to know the prototype during evaluation could
be insufficient. Further if the prototype is slow, the functioning will be corresponding attuned
while evaluation and some system functions with long execution time could be avoided [24].

For utility purposes of requirements development, the prototype must not be executable.

In some cases, on paper and mostly scenario-based models of the system user interface have
been identified as an effective way to support user to refine the user interface of the system.
Such a prototype could be developed in few days and with a little cost. An extension of this
technique could be for example a simple prototype, on which the user interface was
developed merely [24].

22 Rapid Prototyping in Software Development

2.3 Rapid Prototyping Techniques

During rapid prototyping development, diverse techniques could be used.
There are three techniques, which have been found to be practicable in industrial prototype
development [24]:

1. Dynamic high-level language development
2. Database programming
3. Component and application assembly

In practice these techniques are often used together. For example a database programming
language could be used to process data, while reusable components will be executed for
detailed processing. Further the system user interface could be defined through visual
programming [24].

Today the most systems of creating prototype support the visual programming rudiment, by
which parts or the whole of the prototype can be developed interactively. Instead of writing a
sequential program, the prototype developer works with graphical symbols or objects, which
represent the functions, data or components of the user interface. Further, the developer
assigns these symbols to the workflow. Then from the visual model of the system an
executable system can be generated. This method simplifies the program development and
decreases the prototype costs [24].

2.3.1 Dynamic High-Level Language Development

Dynamic High-Level languages are programming languages, which include powerful data
management at runtime. These languages facilitate program development, because a lot of
problems like those with memory management could be reduced. Examples for High-Level
languages are Lisp, Prolog, Smalltalk and Java. This latter united the advantages of High-
Level languages and has many reusable components. Java has been identified as very suitable
language for evolutionary prototyping [24].

The choice of prototyping language can be facilitated by answering the following questions
[24]:

1. What is the application domain of the problem? Certain languages are suitable for
certain application domain. For example Smalltalk or Java is more convenient for
interactive systems than other languages. Lisp or Prolog is suitable for symbolic
processing like the natural language processing.

2. What user interaction is required? Usability is differently supported from languages
to languages. For example, Java or Smalltalk are suitable for Web-applications,
because they provide user interface development facilities, while others, like Prolog is
more convenient for text-based user interface than the others.

3. What support environment comes with the language ? Matured support environment
with many tools and easy access to reusable components facilitate the software
development process.

Rapid Prototyping in Software Development 23

In some cases different parts of the system can be programmed in different languages. For
that a communication framework between languages must be established. The advantage of
this approach with different languages is that, for every logical application part the most
suitable language should be chosen. However, problems with language communications may
occur because of the difference between data objects of the languages. Thus a translation of
an object from a language to another must be done. This means long code sections will be
needed to be implemented [24].

2.3.2 Database Programming

In the meantime, the most of commercial applications occupied with data processing from a
database, produces then results, which contain data organization and formatting. To support
the development of such applications, domain specific languages based around a database
management system are used, which provide embedded knowledge about the database and
functions for data manipulation [24].

The term “Fourth Generations Language” (4GL) is used for both the database language and
its environment. 4GLs are used to create interactive applications, which extract information
from database and provide them to end user on their monitors, and then to update the
database with the information from the user interface [24].

4GL environment may be integrated with a CASE toolset, as illustrated in Figure 2.8, which
are [24]:

1. Database query language: the user can query the database with a query language
(today Structured Query Language SQL) directly or through the completion of a form,
and then the query will be automatically generated

2. Screen generator: to create forms for data input and output

3. Report generator: to define and create reports from the database

4. Spreadsheet: to analyze and process numeric information

24 Rapid Prototyping in Software Development

Interface
Generator

Spreadsheet }—

e e e

o

DB Programming Report
Language Generator

- . e

DE Management
System

Fourth Generation Language (4GL)

Figure 2.8: Database Programming

Development based on 4GLs may be applied for evolutionary prototyping, whereat system
models are used to create prototypes, whose maintenance has been found to be better than
those systems, which are created manually. Even though 4GLs languages are suitable for
rapid prototyping development, they evince also disadvantages. Programs written with 4GLs
are slower than others written in conventional languages and need much more memory. In
addition costs for the whole life cycle of large systems can not be clarified previously.
Programs written with 4GL tend to be difficult to maintain. Moreover 4GLs are not
standardized. This means user programs should be rewritten, because the language may
become deprecated in the meantime [24].

2.3.3 Component and Application Assembly

Reusing system parts can shorten development time. Hence prototypes can be created quickly
from a set of reusable components and thereto some mechanisms to integrate these
components together are provided. As shown in Figure 2.9 below, the composition
mechanism must include control facilities and a mechanism for communication between
components [24].

The system specification must take into account the availability and functionality of existing
components. This means that some compromises while requirements capturing are needed to
be taken. It may be possible, that the functionality of the already existing components does
not cover the user requirements, which are in the most cases quite flexible, in the way that
this procedure has been identified to be suitable for prototyping development approaches
[24].

Rapid Prototyping in Software Development

25

Component
Compaosition
Framework

q—j#ﬂ‘

Executable
Prototype

Control and
Integration code

Figure 2.9: Reusable Component Composition

Prototyping development based on component reuse may be used on two levels [24]:

1. On the application level, where the entire application systems are integrated with the

prototype so that their functionality can be shared. For example, when a text
processing is needed, a standard text processor can be used

2. On the component level, where individual components are integrated within a
standard framework to implement the system. This standard framework can be a
scripting language, like Visual Basic, Python or Perl. It can be alternatively an
integration framework such as DCOM, CORBA or JavaBeans

The main advantage of prototyping with component reuse is that the major part of prototype

and its functionality can be implemented rapidly and with little cost. But problems with the

prototype performance may occur while switching between the application functions. Further

it is not always possible to reuse entire application. Development with reuse is based on

subtle structured reusable components. This latter may be functions or objects, which execute

certain operations, e.g. sorting, searching or displaying something [24].

Visual programming can support this approach based on components reuse, where the system

can be built interactively. The prototype, for example, can be developed by creating a user

interface from standard items, like text fields, buttons or menus, and then by associating
components with these items [24].

26 Rapid Prototyping in Software Development

2.4 Analysis and Prototyping of GUI

In recent years, user interface has gained importance and received more attention in the
software development process. User interface (UI) design has become a field, which has
evinced a need of new techniques to ameliorate development methodology [40].

Further the Ul is not only important, because from the point of view of the user, the interface
is the system, but also it constitutes one of the main criteria of acceptance of the software
from user. For many applications, the UI development represents an expensive task, which
could be particularly seen in the development of embedded systems, where the cost of display
development is typically between 10 and 40 percent of the overall cost [40].

Several reasons have been found to denote Ul design as a critical aspect of the software
development. Firstly, the Ul depicts the visible, and at the same time the most important,
factor for end users, who are interested in high-level objectives but not in the underlying
implementation. Contrary to developers, who understand the implementation but not high-
level objectives, the Ul for them is less important. Secondly, the UI can be difficult to
change, since changes can affect documentation, training, and other activities [41].

Rapid prototyping approach has been identified as a response to the question of the need of
new techniques for development methodology improvement for UI design.

“User interface prototyping is the process of developing and refining the user interface
of a product, in order to learn more about the interface before full development begins.
Prototyping can be done for software (e.g. web sites), hardware
(e.g. cell phones and VCRs), and even services” [41]

User satisfaction can be significantly improved by an effective UI prototyping. This latter can
additionally clarify user requirements and product scope, reduce time, resources, and rework
needed for product development [41].

An evaluation of Ul design early in the design cycle can be accomplished by creating a
prototype for the real system. This can give the possibility to the user to experiment with the
prototype with the objective to make completion and respectively refinements to the system
in terms of feedback to the developers [42].

Moreover, rapid prototyping facilitates the iterative design and evaluation of the effectiveness
of the UI with the intended users. This iterative approach to evaluation and modification of
the UI can be performed without costly software modifications, and represents an approach
for testing the usability of the UI [43].

Rapid-Prototyping of a UI provides a way to the developers of a certain application to test the
UI with the intended users of the system. The users experiment and interact directly with the

prototype. This latter helps the following crucial purposes to be achieved [43]:

e Testing and modification of the UI by the developers to optimize the interaction
between the user and the system

e Comparison between alternative interfaces can be facilitated

Rapid Prototyping in Software Development 27

e Evaluation of the interface by the system users, who can suggest changes early in the
system design cycle

e Determination of the correct specification of the original system concept early in the
development cycle

Applying analysis and prototyping methodology with respect to the graphical user interface
early in the development life cycle aims to produce the most convenient interface to the end
user. Another critical result of early analysis and prototyping is the information that early
analysis provides. This information helps the analyst, for example, to improve the usability
concerning the user interface [44].

The benefits of early analysis and prototyping of graphical user interface can be summarized
as follows [44]:

¢ Distinguishing between critical features and those features that can be deleted or
added incrementally after product release

¢ Discussion interface behavior with users can avoid misunderstanding and
misinterpretation

¢ C(Clarifying the user interface specification before implementation

e Testing respectively improving usability by user involvement while experiencing
interactively with the prototype and providing feedback to the developers

28 Rapid Prototyping in Software Development

2.5 Summary

Misunderstanding of system requirements and the deficiency of an adequate requirements
validation has been identified as a major cause of system failure and customer dissatisfaction.
To patch these errors while or after coding phase has been found as one of most costly task
overall development costs [26].

Due to the fact that requirements evolve over time, software lifecycle models that exploit the
evolutionary nature of requirements could be a solution to the requirements problems. As
prototyping paradigms possess the ability to bypass the evolutionary property of
requirements, they have been identified as important approaches to early requirements
validation [26].

There are two major prototyping approaches, which are: evolutionary prototyping and throw-
away prototyping.

By throw-away prototyping, the prototype is developed from an initial specification and
delivered for experiment to the end user. This prototype will be modified and refined until the
user will be satisfied with its functionality. Then from the prototype the system specification
will be derived or the prototype, in some cases, can be the specification itself.

The evolutionary Prototyping is an approach to develop systems, whereat an initial prototype
is produced. This prototype will be presented for comments to user, and then the prototype
will be iteratively refined until an adequate system will be reached.

The principal reason for using prototyping approaches is to help customers and developers
understand the requirements for the system. On the one hand, users can experiment with the
prototype to know the system. In this way the requirement elicitation can be accomplished.
On the other hand the prototype can reveal errors and omissions in the requirements. This
means the requirement validation can be easily performed [24].

The benefits of prototyping can be summarized as fallows:

e Development time and overall effort can be reduced

Development costs can be reduced

e User involvement while system development
e Quantifiable user feedback to help developers
¢ System implementation facilities

¢ Improvement of system usability and design quality

Modeling Techniques of Device Behavior 29

3 Modeling Techniques of Device Behavior

Applying software development techniques rigorously constitute one of the main factors to
detect software requirements and design lack in early stage during development process.

As mentioned in the previous chapter, this early detection and respectively correction of these
defects means considerable time and cost reducing.

“A number of rigorous techniques that target specific development phases exist.
Industrial use of these techniques requires the development of appropriate integration
strategies that result in cohesive sets of techniques that effectively cover the software

development process” [45]

Human and machine interaction is omnipresent in everyday life. For certain tasks or users,
some interaction techniques and methods have been found to be more efficient or effective
than the others [46].

By waterfall life cycle model a complete requirements specification is required before
development. This means, for complex and large system, a complete requirements
specification seems to be unsolvable without errors because of the frequent changes of user
conceptions and specification.

As a consequence an iterative software development model, such as the prototyping
approaches, by which a prototype can be created in early development phases, is needed to
overcome the waterfall model lack. Such a user and task oriented development cycle is
described by ISO 13407 [54] and illustrated in Figure 3.1 below [46].

Bystem Analysis Tesk Analysis

Functional Analysis

-
3 - product id - product specification - usibility
Project start PR e i ;
- feasibility - application requiremants
_ - markat chanca ervironment - soanarios
“ﬁﬁ' = " 3

Cuality Inspection
- specifications

fullfilled?
- psibility Taqtjramanfa’-

fullfilad?

Prototype

Development

Y

Product fulfill
requirements

Figure 3.1: Development cycle for interactive systems

30 Modeling Techniques of Device Behavior

As shown in Figure 3.1, the requirements and their functionality, as well as the environment
of the application should be determined and analyzed firstly. Then the usability requirements
can be derived, thereby a prototype of the system can be developed. This prototype will be
refined and improved until all requirements will be fulfilled [46].

Nowadays software systems become large and sophisticated. Its complexity does not cease to
increase. That’s why it seems to be very cumbersome and in some cases even impossible to
capture the entirely requirements in a written form. Even if a document, describing such large
and complex systems, has been somehow achieved, it must be certainly voluminous and huge
in the way that human could not understand the entire document content. In addition
reviewing such documents constitutes a durable and costly task. Thereto verifying seems to
be unfeasible and sometimes impossible to accomplish if the requirements have been
completely and consistently documented [46].

“Because of the increasing complexity of real-time embedded systems and their constant need
of correctness, it seems obvious to call for well-structured and formal methods dealing with
software quality in order to efficiently develop such applications.” [47]

In software engineering discipline modeling has become an activity, which can be used in
every software system during the development process. Localizing relevant issues about the
system at every level of abstraction needed, from all points of view, constitutes the purpose
of this activity [53].

This modeling concept provides the possibility to create models of tasks, users and devices
by the developers. Then connecting these models together facilitates the visualization of the
relations between the various models [46].

“A model is a representation of structural or behavioral aspects of a system
in a language that has a well-defined syntax, semantics, and possibly
rules for analysis, inference, or proof” [49]

Models can be used in various manners during development process. On the one hand, a
model can be used to enjoin properties of a system or system part to be built. This kind of
models is named “prescriptive” models. On the other hand, there is another kind of models
called “descriptive” models, by which a model is used to describe an existing system or
system part [49].

In the case of prescriptive models, designers produce models of a system. These models
introduce information, which specify the intended characteristics of the system. The
information required for modeling can be obtained along the development trajectory, and will
be documented in several manners [49].

Mastering with a large amount of interrelated aspects may let the complex system to be
understandable. But capturing all the design aspects in a single model has a consequence that
this model will be too complicated and in some cases useless [55].
“Therefore, models should be derived using specific sets of abstraction criteria, which allow
one to focus on particular aspects of the system at a time” [49].

Modeling Techniques of Device Behavior 31

In addition, models provide the possibility to design with taking into consideration the
structure and behavior of the system. Different points of view can have as a result different
models, which capture different aspects of the system [53].

Further, due to modeling concept, an analytical evaluation of the system can be performed
based on the resulting models. Moreover, in contrast to waterfall model, using this concept,
systems can be developed faster without neglecting the quality and user satisfaction. [46].

Device behavior can be described with models, which contains details about the inner
functionality of the device. These device models can be then specified with the corresponding
specifications languages [46].

In software development, specification languages have become an integral part. They provide
the possibility to specify or model the structure and semantics of software systems on various
abstraction levels. Further they can be used in several ways, for example to analyze
requirements in a descriptive way or to verify certain properties of complex systems. In
addition, if appropriate tools to analyze specifications produced by these languages are
available, performance estimation, automatic code and test cases generation can be performed
easily [48].

Specification languages can be classified into formal and informal languages. Formal
specifications not only define the semantics of a program, for example using a procedural
language but also include enough information for testing and simulating the specification on
a certain level. Informal specifications, on the other hand, may contain information, which
supports the code generation of object oriented classes with taking into consideration the
structure and properties of the specified objects. In contrast to formal specification, the
execution and simulation of informal specification cannot be performed [48].

Execution can be also a criterion to classify specification languages. A specification can
describe system behavior, but without defining the implementation of the behavior.
Executable specifications, on the other hand, can provide mechanisms for defining states and
rules to define at the end the semantics of the system, e.g. program logic. Nevertheless, they
still represent abstract behavior and not the actual implementation of the system [48].

“There are many specification languages that have differing semantics
and power of description at various levels of abstraction,
for example: UML, LOTOS, SDL, and Promela.” [48]

Device model can be specified with state charts [56]. State charts extend the finite state
machine and enable hierarchical and concurrent structure organization [57]. The model of a
device represents a set of states and state transitions. This model should be created by the
systems designer. In some cases it represents an early form of the user manual document of
the device [46].

In this chapter state charts will be introduced. It will be explained through examples how to
use state charts to describe device behavior while interaction with the user. For this purpose,
UML and SDL state charts have been chosen and will be presented.

32 Modeling Techniques of Device Behavior

3.1 What is a State chart?

A state chart is a diagram (see Figure 3.2) representing an extended state machine, which is a
graph that consists of states and state transitions. A state can contain a list of internal
transitions. Internal transitions, themselves, consist of internal actions or activities, which
should be performed by the state machine while the machine is located in that corresponding
state. An event is some “occurrence”’, which can trigger a state transition. Events can be
either the change of some boolean value, the expiration of a timeout, an operation call or a
signal. Transitions are triggered by events. A transition is a relation between two states (let’s
say state A and state B). This transition defines that, whenever the state machine is in “State
A” and the event “Event 1” that triggers the transition is processed, the state machine moves
to “State B”, as shown in Figure 3.2. Just one event is evaluated at a time. This event is either
discarded in the case that, it does not trigger any transition, or it triggers only one transition
[49].

Event 1

State A State B

Event 3 State C Event 2

Figure 3.2: A State chart diagram

State charts can be used to describe the behavior of a device while user interaction. It is a
graphical characterization of the device behavior. Each state represents a different context for
device behaviors, such as an OFF and ON state (see Figure 3.6). For example, in case of a
CD-Player, pushing the button “STOP”, when the device is switched on, has another effect
than when the device is switched off.

State charts are suitable to manage the design complexity of devices and to specify the
behavior of complex reactive system by decomposing the whole system into smaller
subsystems. Each subsystem can be then modeled with a single state chart. To retrieve the
specification of the whole system, the models of the subsystems can be combined and
integrated together. For example, an airplane can be seen as a set of integrated subsystems.
One state chart can be used to specify the pneumatics system, whereas another state chart can
describe the hydraulics system. In addition, state charts provide an excellent documentation
tool for the device and can also serve as powerful communication tools between the members
of the developer team to discuss the relationship between the subsystems [61].

Modeling Techniques of Device Behavior 33

3.2 UML State charts

The Unified Modeling Language (UML) state chart diagram constitutes an important part of
the standard UML language, which is highly expressive hierarchical modeling language with
well defined syntax [60].

Originally, state chart diagrams were developed by David Harel [57] in the 1980’s. Recently,
the notation of state charts has been adopted from Harel’s original version into the UML with
the addition of the object oriented features [60].

UML state charts, which extend the finite state machine with terms of hierarchy and
concurrency in the structure organization, are a highly expressive visual language and are
typically used to model and specify the dynamic behavior of complex systems [58] [59].

The UML state chart is a diagram, which consists of discrete states and transitions between
them. Transitions may contain internal actions or activities, which should be performed by
the state machines. In the following subsections some symbols of UML state chart will be
described briefly.

3.2.1 States

States represent various contexts in which system behavior happens, in our case those of a
device. .

On a state chart diagram, states are denoted by a rounded square symbol.

States have status. This means that they can be either in an active or inactive state. For
example, when a state is active, the system or device is said to be in that state.

UML states can be simple, final or composite. Simple states, as shown in Figure 3.3, are the
basic constructs. The meaning of “final” is that the state does not contain other state
constructs within it. In contrast to final states, composite states contain a set of states inside,
as illustrated in Figure 3.4. Further the notation is extended by the use of the so called
pseudo-states, such as initial state denoted by a black dot symbol, and history states denoted
by “H” and “H*” inside a circle. An initial state represents the source of a transition, which
points to the default sub-state of the composite state containing the initial state, while a
history state records the most recent active state information of its containing state.

OFF OH

Figure 3.3: Simple States

34 Modeling Techniques of Device Behavior

One of the powerful and useful features of state charts is that they allow designers to group
related contexts in hierarchical state. Graphically, the hierarchy of a UML state chart is
depicted by the embankment relationship between states. For example, as shown in Figure
3.4, the “Active” state represents at a time a hierarchical state and a composite state, which
contains the sub-states called “Stop”, “Play”.

Inactive [Stop] [Play ‘

|

Figure 3.4: Hierarchical States

Hierarchical states can be simple or concurrent. A simple (exclusive) hierarchical state means
that the state chart consists of sub-state contexts that are mutually exclusive or sequential.
This means that the system can be in only one of these sub-states at a time.

Alternatively, a hierarchical state can be also concurrent (orthogonal). This means that the
state contains at least two sub-machines, each of which has a set of mutually exclusive states
and is separated from others by a dashed line. This type of states allows designers to model
independent parts of a system. For instance, to describe the font characteristic buttons, such
as boldface and italics, while modeling a word processor interface, the state charts, as shown
in Figure 3.5, can be used. These buttons, independent from each other, can be in the “ON” or
“OFF” position (state).

BOLD ; ITALIC
) |
ON | ON
B — —
|
.) |
|
OFF ! OFF
|
__ e ' L le

Figure 3.5: Concurrent States

Modeling Techniques of Device Behavior 35

The composite state that contains other states is named as “parent” of the contained sub-
states, which called “children” states.

Every state chart begins with a root state that encloses the entire state machine. Some large or
complex systems may require the designer to model subsystems separately. After the
subsystems have been modeled, their models can be joined by creating an outermost root
state around the state chart of the subsystem. In addition each sub-machine must designate a
start state, which represents the first context that should be activated when the state is
activated.

3.2.2 Transitions

On the state chart, transitions are denoted by directed edges between states. They can be fired
when they are trigged by events. Transitions can be guarded by conditions and can specify
actions or activities to be executed or events to be sent when the transition is fired.

Simple transition, as shown in Figure 3.6, is a transition between a state and a sibling state.

“Sibling” means that both source state and target state are located at the same hierarchy level
of the state machine.

Power ON

OFF oM

Figure 3.6: Simple Transition

In certain design scenarios, there can be a need to transition from a source state to a target
state, which is not located at the same hierarchy level as the source state. For instance, as
illustrated in Figure 3.7, the transition labeled with “T” from the state “Stop” to the state
“Inactive” is a multilevel transition, because the source state “Stop” is deeper than the target
state “Inactive” in the hierarchy of the state chart. The “Inactive” state and “Active” state are
sibling states and they exist at the same level of the hierarchy.

36 Modeling Techniques of Device Behavior

Active
| R
Inactive T Stop] [Play ‘

|

Figure 3.7: Multi-Level Transition

The UML state chart notation provides a mechanism that memorizes the sub-state last visited
in the composite state. This mechanism is named the history mechanism and denoted by H or
H* within a circle.

The history mechanism is useful when the device has left a composite state, done something
else for a while and then needs to get back to the composite state and context. For example,
as shown in Figure 3.8, a state machine represents a part of the behavior of a dishwasher. If a
power cut happens while in state “Running”, it triggers the transition to the history state. This
means that the execution will resume from the state, from which it has been left. For instance,
if the power cut occurred while in state “Rinsing” then the state will return to “Rinsing” state.

I

Running

T r—

PowerOFF

Figure 3.8: The History Mechanism

The history state in the figure above is called “Shallow history” pseudo-state. If the sub-state
“Washing”, for example, is a composite state that itself contains sub-states, which should be
remembered; in this case the so called “Deep history” pseudo-state must be used and is
denoted by H* within a circle.

Modeling Techniques of Device Behavior 37

A transition to self, as shown in Figure 3.9 below, is a transition that leaves a state and return
to the same state. This transition denoted by a looping transition arrow from the source state
to itself.

Figure 3.9: Transition to Self

Transition to self can be used, for example, to trigger actions to occur without leaving the
current active state of the state machine.

3.2.3 Actions and Activities

Actions are behaviors that can be executed at certain points in a state machine. The execution
of actions has been assumed to take a very short time and there is no way to interrupt them.

The syntax of the action expressions has no exact definition from the UML standard. That’s
why there has been found many notations of actions on the state chart in the literature.
Structured English text, predicates in the way of programming languages, or metaphors can
be used to denote actions.

There are three places for actions on the state chart. They can be placed on a state entry, on a
transition or on a state exit. The notation of actions is separated from the event name, guard
and the key words (entry, exit and do) with a slash “/”.

As shown in Figure 3.10 below, the text “init()” and “print()” placed on the “IDLE” state, and
“sendmsg()” placed on the transition represent the so called actions. For example, the action
“init()” means any initialization mechanisms of the system when entering in the “IDLE”
state.

The keyword “entry” indicates the entry action list, whereas the keyword “exit” indicates the
exit action list. These actions will be then executed when entering and respectively exiting
the corresponding state.

IDLE ACTIVE

entry [init{}
exit | print() event! / sandmsg() , |entry / show()
do / refrashi) lexit { shutdown()

e ——————————

Figure 3.10: Actions and Activities

38 Modeling Techniques of Device Behavior

Generally, actions are always executed in the following order:
1. Exit actions of the source state
2. Transition actions
3. Entry actions of the target state

For example, as illustrated in Figure 3.10 above, if the event named “event]” occurs while
the system resides in the “IDLE” state, the exit action “print()” will be first executed, the
transition action “sendmsg()” will be then performed and, finally, the entry action of the
target state “ACTIVE” called “show()” will be achieved.

As mentioned before, actions are non-durable and non-interruptible behaviors. In contrast to
them, activities are durable and interruptible behaviors that can be performed as long as a
system or object resides in a certain state. They can be, for example, long calculation or
continuous control mechanisms or whatever that needs time to be executed and can be
interruptible.

Activities are denoted like actions but after the “do” keyword followed by a slash within the
states using the do keyword, such as in “IDLE” state on Figure 3.10. Activities begin once a
state becomes active, it means when all entry actions have completed first, and terminate
once a state becomes inactive but prior to the execution of the exit actions.

3.24 Summary

Behavioral modeling aims to describe the behavior of a system or a device with state
machines. For this purpose, UML state charts have been identified to be applicative enough
to describe such a behavior through graphical models. These models can be then used as
documentation for the system, or, if a graph-interpreter tool is already available, to generate
code automatically.

UML state chart, which extends the finite state machine, is a graph consisting of states and
transitions. Its notation has been adopted from Harel’s original version into UML and has
been extended by object oriented features. UML state chart notation provides, beside the
basic constructs introduced in this chapter, other powerful symbols. Describing the entire
syntax and semantic of UML state chart will surely go beyond the scope of this thesis, that’s
why the references concerning UML in bibliography subsection will be highly recommended
to interested reader.

UML has now reached the version 2.0 ([63], [5]). State chart syntax and semantic are
copiously extended with many constructs and symbols, some of them come from SDL state
chart. This latter is the subject of the next subsection and will be then introduced.

Modeling Techniques of Device Behavior 39

3.3 SDL State charts

Specification and Description Language (SDL) is a graphical object oriented, formal
language defined by the International Telecommunications Union-Telecommunications
Standardization Sector (ITU-T) [66] as recommendation Z.100 [62] [64]. This language is
intended for the specification of complex event-driven and interactive applications that have
many activities, which communicate concurrently using asynchronous discrete signals [48]
[64] [65].

The start of the development of SDL was in 1972. At that time, a study group, representing
many countries and notable large companies (i.e. Bellcore, Ericsson, and Motorola), began
within the “Comité Consultatif International Telegraphique et Telephonique” (CCITT), to
research on a standard specification language for the telecommunications industry. As a
consequence the first version of the language was born in 1976. Then many other versions
had followed in 1980, 1984, 1988, 1992, and 1996. The latest versions improved and
expanded the language considerably [64].

“Today SDL is a complete language in all senses.” [64]

The language has been identified to be able to describe not only the structure and data but
also the behavior of real-time and distributed communicating systems. It has an intuitive
graphic syntax that makes it easy to understand specifications and designs written with SDL.
SDL is intuitive in the way, that not involved people during design or development can obtain
an overview of a system's structure and behavior quickly and easily, even to those people
who have little knowledge of the language [64][65].

SDL provides a practical way to specify systems with a set of extended finite state machines
(EFSM) which communicate with each other and run concurrently [64][65].

An SDL system consists of the following components [64]:

e System-, block-, process- and procedure structure hierarchy

¢ Communication channels, called also signal routes, and communication signal with
optional parameters

e Behavior described in processes

e Data (Abstract data types ADT)

¢ Inheritance (OO concepts)

System, blocks, processes and procedures represent the main hierarchical levels of SDL.
Static descriptions of the system structure can be done in the system and block hierarchy.
The dynamic behavior of the SDL system can be described and specified in the processes
hierarchy [64].

The SDL specification of a system is a set of diagrams. Each diagram has one or more
presentation “pages”. Each page must have a name and number as identifier, and should
contain a frame and a diagram. This diagram should have a header, which is placed in the top
left corner and indicates the kind and identity of the item that has been described by the
diagram itself [65].

40 Modeling Techniques of Device Behavior

The process diagram represents the graphical description of the system behavior. This
diagram consists of discrete states and states transitions. Transitions may contain actions or
activities, which should be executed by the process. The basic constructs and symbols of this
diagram will be introduced in the next following subsections.

3.3.1 States, Start and Stop Symbols

As mentioned before, states represent various contexts in which system behaviors occur.

In a process diagram, states are denoted by a rounded square symbol.

States have status. They can be either in an active or inactive status and when a state is active,
the system is said to be in that state. States can be simple or composite. In both cases, states
must be denoted by a state symbols. The composite state represents a state machine that
should be drawn in a separate diagram. In this way, it means drawing state machines in
separate diagrams, a hierarchy can be warranted. For example, as illustrated in Figure 3.23
and Figure 3.24, “ACTIVE_STATE” state is a composite one.

State symbol must be labeled with a unique name “<STATE NAME>", as shown in Figure
3.12 (a). When a state is labeled with “-”, as illustrated in Figure 3.12 (b), this means that the
source state of a transition and its target state are the same. The notation “-” is only an
abbreviation that has a simplifying purpose for designers while drawing the diagram.

The label “_*”, as shown in Figure 3.12 (c), denotes the so called ‘“history” state.
The history mechanism in SDL is the same as in UML, and means that the last visited sub-
state in a composite state will be memorized. The asterisk label “*” means all states.

Every process diagram must begin with start symbol (see Figure 3.11 (a)). This symbol
represents the first execution point of a process. The transition between the start symbol and
the next first state is the first thing, which must be done after starting the process.

The symbol shown in Figure 3.11 (b) is a start symbol that is specific to a procedure diagram
and indicates, in a manner, the entry point of a procedure.

() (b}

Figure 3.11: Start Symbols

Modeling Techniques of Device Behavior 41

(b) (c)

Figure 3.12: State Symbols

As processes start, they must stop sometime. That’s why in a process diagram a stop symbol
can be drawn. This symbol is shown in Figure 3.13 (a) and means that the process has
terminated. Analogously when a procedure starts, its execution must terminate and may
return a value. This is denoted by the symbol shown in Figure 3.13 (b) below, which is called
“Procedure return”. This symbol is normally specific to a procedure diagram and indicates
that the procedure has terminated.

// \
(

a) (b)

Figure 3.13: Stop Symbols

3.3.2 Transitions

As mentioned before, an SDL system is a set of communicating EFSM by signals. A process
diagram represents such an EFSM that consists of states and transitions.

Unlike UML state charts, transitions in a process diagram are not denoted by a single symbol.
Transitions are structures containing a set of consecutively symbols that are placed vertical.
In other words, transitions must be read from top to down and not from left to right.

Only one transition must be executed completely at a time before another transition can start.

A transition in a process or procedure diagram begins always with a state symbol,
immediately followed by an input symbols and some other syntactically predetermined
symbolsl. Except these symbols, no other symbol is allowed to be placed after a state symbol.
The symbols, after the allowed symbols, are called transition body. The end of a transition is
denoted by either a next state, or a stop symbol or a return symbol in case of procedure
diagram. Some other also predetermined symbols2 can denote the end of a transition.

" These predetermined symbols are: a spontaneous transition, priority input, continuous signal and save [4]
? For example: a join symbol.

42 Modeling Techniques of Device Behavior

- ~,
{ H ChegSeie
! i b ! b
{ orestare i i ousmate
_ Ny . _
”"/’
oN / NCB;\TTER'/”\‘rV’ OFF / BUSY /\ BATTLEVEL
R - N
1 SET TIMER /:»-u'r:::.-.- 3 RESET TIMER ALIVE \> CheckBattery
—A —— —— —
[G'i_S;ATE] ‘\/Xf/ [OFF_STATE J l . J l . J
Y j ~_ d i [!

Figure 3.14: Example of a Transition Order

The Figure 3.14 above illustrates how a transition order occurs. First, the transition between
the start symbol and the next first state named “OFF_STATE” will be executed after the
process starts. The process is now in “OFF_STATE” and waits for incoming inputs or
signals. Only the message inputs called “ON” and “NOBATTERY” can affect the process to
transition. Let’s suppose the input named “ON” is coming before than “NOBATTERY” as
the process is in “OFF_STATE” state. Then the transition will occur (along arrow 1) as
follows:

e The action denoted by a task symbol will be executed. The task symbol, in this case,
represents a timer that has been set
e The process switched the state to “ON_STATE”

As the process is in state “ON_STATE”, the diagram should be read now from the
“ON_STATE” symbol as arrow 2% indicates. When the input “OFF” comes first, the
transition indicated by arrow 3 will occur. First the action “RESET TIMER” will be executed
then the process switched to the state “OFF_STATE”. The diagram should be read now from
“OFF_STATE” symbol anew.

In case that the process in state “ON_STATE” and the input “BATTLEVEL” comes first then
the procedure named “CheckBattery” will be called and the process remains in the same state
(The label of the state symbol is “-”). But if the “BUSY” input comes first while the process
is in state “ON_STATE”, a signal will be sent and the process remains also in the same state.
In the diagram, sending signal is denoted by the message output symbol.

* Arrow 2 in Figure 3.14 is not a transition. It indicates only the position from where the diagram should be read.
The arrows are not part of SDL syntax. They serve only to show for SDL newbie how to read the process
diagram.

Modeling Techniques of Device Behavior 43

In case that the process in “OFF_STATE” and the “NOBATTERY” input comes first the
process will be terminated.

Message input symbols are illustrated in Figure 3.15 below. They have unique name that
represents the label of the symbol. They can be right (a) or left (b). There is no semantic
difference between left or right but it can indicate from where the message input is coming.
The asterisk label “*”, as shown in Figure 3.15 (c) and (d), denotes all inputs.

m
i
i
1

)
m
3

m
m
i
o
L
m
&
in
¥
*

(a) (b) (c) (d)

Figure 3.15: Message Input Right (Left) Symbols

3.3.3 Actions and Activities

Actions are behaviors that can be executed while a transition occurs or a state becomes active
or inactive. Actions are denoted by many symbols. These symbols are placed in the body of a
transition. The task symbol, shown in Figure 3.16 (b), is an action symbol and can denote
many action types. For example the task symbol can denote a set or reset of a timer. It can
contain also simply instructions of a certain programming language (i.e. C statements), which
will be taken into consideration during code generation.

The procedure call symbol, as shown in Figure 3.16 (a), represents an action and can be used
to call an SDL procedure, which must be first declared with the procedure declaration symbol
(see Figure 3.16 (c)). This declaration must be placed in the process diagram and not in the
transition body, and must be labeled with same label as by the procedure call symbol. In other
words, when a procedure call symbol labeled with “Pro1” exists in a body of a transition, a
procedure declaration symbol with the same label “Pro1” must exist in the process diagram.

<HROCEUDRE NAMIE> <00 SOMETHING=> <HROCEDURE NAME=

(a) (b) ()

Figure 3.16: Actions Symbols

44 Modeling Techniques of Device Behavior

Message output symbols, right (b) or left (a) as shown on the figure below, represent also an
action. They are used to exchange information between processes.

Figure 3.17: Message Output Right (Left) Symbols

All symbols placed in a transition body represent more or less actions. Some constructs are
really powerful for designing purposes. For instance, process creation, decision and
exceptions handling can be mentioned.

3.3.4 Summary

Specification and description language (SDL) is a graphical object oriented and formal
language. SDL specifications have been identified to be unambiguous, and can be used either
for documentation or for automatic test cases and code generation.

The ability to specify not only the structure and data of a system, but also its behavior
constitutes the strength of SDL. In addition, the OO concepts of SDL give the user powerful
tools for structuring and reuse.

The SDL specification of a system is a set of diagrams. Process diagrams have undertaken the
description of the system behavior. This diagram, which represents a communicating EFSM
by signals, consists of states and transitions. Process diagram notation provides, beside the
basic constructs introduced in this chapter, other powerful symbols. Describing the entire
syntax and semantic of SDL, as by UML, will surely go beyond the scope of this thesis, that’s
why the references concerning SDL in bibliography subsection will be also highly
recommended to interested reader.

The language has been evolving since 1980 until now. SDL has now reached the version
SDL-2000 ([4], [65]), which enhances the object modeling and code generation. SDL
Diagram syntax and semantic have widely been extended with many constructs and symbols,
for instance exception handling.

Modeling Techniques of Device Behavior 45

3.4 Example of Modeling a Simple Device Behavior with State Charts

Let’s suppose that, while designing a mobile phone device, a small part of the menu
navigation should be specified. The customer had expressed his wishes in a written form
specification, which implies roughly the following:

Specification:

“... When the device is switched off and the user had pressed the button “ON”, the device
will become switched on. Then the entry display will appear. If she (user) pressed the “OK”
button, she will attain the menu items. Then she can navigate up or down between them and
with pressing the “OK” button the submenu, if any, of the selected item will be displayed, but
when pressing the “ESC” button the device should turn back and show the entry display.
Finally if the user does not operate the device for longer than 10 seconds the recent shown
display should be darkened.”

This small piece of a fictive specification corresponds to a typical human machine
interaction. The user stimulates the device by pressing buttons, in other words, she sends
signals, and the device reacts correspondingly. This specification is nothing else than a
behavior description.

As mentioned before that behavior can be described with state charts, I will try now to
translate the above written specification into state charts as follows:

o “ ... When the device is switched off and the user had pressed the button “ON”, the
device will become switched on. Then the entry display will appear. ...”:

This behavior is illustrated in Figure 3.18 below. In this context two states called “Off” and
“On” are necessary to describe the wished behavior. To transition between them two events
or signals named “ON” and “OFF” are needed.

Spin the Globe

Options Menu §

Figure 3.18: Transition from Off to On State

46 Modeling Techniques of Device Behavior

o “Ifshe (user) pressed the “OK” button, she will attain the menu items. ...” and

“... but when pressing the “ESC” button the device should turn back and show the
entry display. ... ”

Figure 3.19 below illustrates the above behavior. To realize these contexts, two states called
“Logo” and “Navigation”, and two events named “OK” and “ESC”, have been chosen.

4 Entertainment
Spin the Globe ~ Telephon book

Optians Mernu fi °

Figure 3.19: Transition from Logo to Navigation State

e “Then she can navigate up or down between them and with pressing the “OK” button

the submenu, if any, of the selected item will be displayed ...”

This behavior is illustrated in Figure 3.20. In this case two states called “Menu” and

“Submenu”, and two additional events named “UP” and “DOWN?” for the navigation
purposes, are needed to describe the behavior.

A = - |
Settings
N surf Fun

Entertainment

Figure 3.20: Transition from Menu State to itself

Modeling Techniques of Device Behavior 47

e “Finally if the user does not operate the device for longer than 10 seconds the recent
shown display should be darkened.”

This behavior has been explained in Figure 3.21 and Figure 3.22. The behavior is a typical
case for history mechanism. When a device shows any lightened display, e.g. “Logo” or
“Menu” display, and the user does not operate for longer than 10 seconds, then the recent
display will be darkened. The word “recent” gives us a hint that the actually shown display
must be memorized. To realize the whole behavior two states named “Active” and “Inactive”
are needed. The behavior, which indicates that the user does not operate as mentioned in the
specification, can be coded with a transition triggered by an event called “NOEVENT?”,
which can be generated by a timer. Finally, when the device is inactive and shows a darkened
display, every event can transition to active state. In other words, when the recent shown
display is darkened and the user presses any button, the display will become lightened.

48 Spin the Globe
.. Options

Figure 3.22: Transition from Active to Inactive State (Case 2)

48 Modeling Techniques of Device Behavior

Let’s summarize the states and events that are necessary to describe the desired device
behavior. By now the following states respectively events have been enumerated:

e States: “Off”, “On", "Logo”, “Navigation”, “Menu”, “Submenu”, “Active” and
“Inactive”

e Events: "ON", "OFF", “OK”, “ESC”, “UP”, “DOWN” and "NOEVENT"

How to wrap all these states and events in a state chart or diagram? This question can be
answered as follows:

The first idea that can be got is that the “On” state should be a composite one, for the simple
reason that the “logo” or “menu” or any other display can not be seen from user if the device
is not switched on.

As a result of this idea, the simple state named “Off ” and the composite state named “On”
can be drawn. The transitions between them can be triggered by “ON” und “OFF” events,
which execute the “SetTimer()” respectively “StopTimer()” actions. The “StopTimer()”
action stops a started timer. While the “SetTimer()” action starts a timer for 10 seconds.

When the timer elapses, the event “NOEVENT” will be generated and sent to the device. In
this way we could cover the specification requirement that said:

“Finally if the user does not operate the device for longer than 10 seconds
the recent shown display should be darkened.”

As the “On” state is a composite state, it must contain a set of states and one of them must be
a default start state. Therefore within it two states can be drawn, namely “Active” and
“Inactive” states. These states should describe the contexts of lightened respectively darkened
displays. The transition from “Active” to “Inactive” state is triggered by the event
“NOEVENT” generated by the timer. Inversely, it means from “Inactive” to “Active”, the
transition is triggered by any event and execute “SetTimer()” action anew. It means when the
user presses any button while the device shows a darkened display, the display will be
lightened.

The “Active” state describes the context of lightened displays. For the reason that the device
can have many lightened displays, one of them can be shown where appropriate, a history
mechanism is in such situation necessary to guarantee the transition between “Inactive” and
“Active” state. That’s why the “Active” state must be a composite one and contains, besides
to the history state, the “Logo” and “Navigation” state.

The “Logo” state describes the context of showing the first entry display after the device has
been switched on. While the “Navigation” describes the context when the user had attained
the main menu display and navigates between the menu items. The “Navigation” state should
be a composite state containing the “Menu” and “Submenu” state.

The transitions between “Logo” and “Navigation” states can be triggered by “OK” and
“ESC” events and execute the “ResetTimer()” action. This action stops the already started
timer and starts it anew.

Modeling Techniques of Device Behavior 49

The transitions from “Menu” states to self, which can be triggered by “UP” and “DOWN”
events, describes the context of navigation between the main menu items and executes the
action “ResetTimer()”. While the transitions between “Menu” and “Submenu” state, which
can be triggered by “OK” and “ESC” events, can describe the context when the user has
selected a menu item and pressed the “OK” button.

I have to mention that the small piece of the specification has not clarified what should be
displayed when a menu item has been selected. It means, what is under the menu item can be
several things like another menu rows, or SMS editor or an address book or whatever.
Therefore, for simplicity purposes, the state submenu remains a simple state which can be
extended with the desired behavior by being composite state, which may contain a state
machine drawing in a separate diagram.

3.4.1 With UML State Charts

The result of the thoughts and preliminary considerations trying to translate the written
specification into state charts can be seen in Figure 3.23 below. This figure represents an
UML state chart of the small part of the menu navigation specification in page 47.

I have to mention that this suggestion to draw the state chart is not the only one.
Of course, the state chart can be drawn in other way, but for our purposes this state chart
seems to cover the specification requirements.

ON_STATE
OM | SeiTimen v
? SesTimer] IHACTIVE_STATE
OFF_STATE .
ACTIVE_STATE

P

)
OFF | StopTime) NOEVENT

LOGO_STATE

ESC/

K. Resr:Tiner) Rk ThraiiFl |
HAVIGATION_STATE

. UIF;DOWN/

Resa! Tirae])

[MAIHMEHU_STAIE ,: —

ESCr OK |
Reti Tvae} Bt T |

Figure 3.23: Device Behavior Model with UML State Chart

50 Modeling Techniques of Device Behavior

3.4.2 With SDL State Charts

Analogously to UML, the result of the same thoughts mentioned previously that try to
translate the written specification into state charts can be seen in Figure 3.24, Figure 3.25,
Figure 3.26 and Figure 3.27 below.

These figures represent a set of SDL state charts of the small part of the menu navigation
specification in page 47.

As mentioned before, this suggestion to draw the state charts is not the only one.
Of course, the state charts can be drawn in other way, but for our purposes this state chart
seems to cover the specification requirements.

OFF_STATE ON_STATE

ACTIVE_STATE (INACTIVE_STATE '

oM NOEVENT < OFF < - <

SET TIMER RESET TIMER SET TIMER
[NOEVENT) (NCEVENT) NOEVENT)

| I !
() (e) ()

Figure 3.24: Device Behavior Model with SDL state charts (Part 1)

Modeling Techniques of Device Behavior

ACTIVE_STATE

LOGO_STATE

oK < NOEVENT < OFF <

RESET TIMER RESET TIMER
(NCEVENT) [NOEVENT)

NAVIGATION_STATE @ @

Figure 3.25: Device Behavior Model with SDL state charts (Part 2)

NAVIGATION_STATE (Part 1)

MAINMENU_STATE

RESET TIMER RESET TIMER RESET TIMER RESET TIMER RESET TIMER
(NOEVENT) (NOEVENT) (NOEVENT) (NOEVENT)

| | | |

Figure 3.26: Device Behavior Model with SDL state charts (Part 3)

Modeling Techniques of Device Behavior

NAVIGATION_STATE (Part 2)

‘ SUBMENU_STATE)

RESET TIMER RESET TIMEFR RESET TIMER
(HOEVENT) (NOEVENT) [NOEVENT)

(SUBMENU_STATE) (\mwsu u_snas) ® ®

Figure 3.27: Device Behavior Model with SDL state charts (Part 4)

Modeling Techniques of Device Behavior 53

3.5 Summary

Behavioral modeling aims to describe the behavior of a device. This behavior can be
described with models, which contain details about the inner functionality of the device, and
can be specified with the corresponding specifications languages.

UML or SDL state chart can be used to realize these models and describe the behavior of a
device while user interaction. It extends the finite state machine and represents a graphical
characterization of the device behavior. Each state represents a different context for device
behaviors.

These models can then be used as documentation for the device, or, if a graph-interpreter tool
is already available, to generate code or test cases automatically.

There is no doubt that the key to a successful system development is the production of a
complete exact system specification and design. This task requires absolutely a suitable
specification language that is unambiguous, precise and provides a mechanism for analyzing
the specification and provides not only a basis to verify the specification consistency and
conformity to the implementation but also a methodology for supporting application
generation.

“SDL has been defined to meet these demands.” [64]

54 Design and Conception of GRAPE

4 Design and Conception of GRAPE

As mentioned previously, rapid prototyping of smart devices aims to create device prototypes
to capture customer requirements in order to achieve the design phase and before starting the
mass production phase in the industry field.

These virtual prototypes should be fully interactive to enable users to operate with, should
act, as far as possible, like the real devices and should have a realistic look. In this sense,
prototypes are in terms of an animation or a simulation running as a stand alone application
or web application on the desktop (PC).

It is not an obligation that the entire features of the intended device must be simulated or
animated. Some approaches have been found to be able to limit prototype functionality. They
can be depicted by cutting down the number of features, so that the resultant system becomes
narrower and includes a thorough functionality for a few selected features, or by reducing the
level of functionality, in the way that the result can be a surface layer that contains the entire
user interface to a full-featured system but without underlying functionality.

Smart devices are usually composed of displays and interfaces, like buttons or touch screens,
which enable interaction with the user. As mentioned previously, interaction is nothing else
than a device behavior controlled by the user and caused by events. Some of the resultant
actions are visual effects shown on the display or in the device periphery, such a LED" or an
indicator lamp.

In this sense, device prototyping can be divided into two distinct parts. The first part must
take care for the behaviour description and the second one should take care for the visual
appearance of the device. To achieve each part, an adequate or appropriate software
technique or tool should be found and chosen. For instance to describe behaviour, state charts
can be used, or to design the graphical part of the device a flexible tool to create, edit, and
modifying graphic objects in an easy manner should be chosen. While choosing these
software tools and techniques, the main purpose of prototyping, which is reducing time and
costs, must be taken into consideration and complied.

Indeed a set of techniques or tools that target specific development phases exists. Industrial
use of these techniques requires the development of appropriate integration strategies that
result in cohesive sets of techniques that effectively cover the prototype development process.

This set of integrated tools should support the visual construction, analyses, and
transformation of device models, and the linking of these models with graphic objects across
the development phases.

In this chapter, a development environment for rapid prototyping of smart devices will be
introduced. This environment is the result of the use of a set of adequate software techniques
and integrated tools and components, which will be then presented.

* LED stands for Light-Emitting Diode

Design and Conception of GRAPE 55

4.1 Motivation

The trigger idea of designing “GRAPE” is modelling user interface behaviour with state
charts.

Due to the fact that commercial rapid prototyping tools are not only expensive, because of
licensing agreement and other copy right procedures, but also inflexible, the following
question arises:

Is there a way to provide rapid prototyping with in-house’ tools and minimum costs, which
should be adaptable to already available in-house development process?

SICAT tools were already available as an in-house product. These tools provide not only
describing system behaviours with SDL state charts, but also the possibility to generate code
in many programming languages such as Assembler, CHILL, C, C++, Java and others from
the SDL model. In this way we have a guarantee to model device behaviours and generate
code without great effort and high costs.

But the question, which was not answered at that point of time, is how to create and design
the graphical parts or objects of a device. It means which development environment should
realise the graphical design part, because no tool from SICAT toolset could perform this task.

In summer 2003 the first version of GRAPE was born. This version was based on Windows
Metafiles (WMF) templates [74], which are stored in a database. The Microsoft Visual Studio
.NET C++ environment [75] had been integrated as an external tool. It had been chosen to
achieve the graphical design part and to manage and maintain the whole device prototype
project.

The bridge, connecting SICAT components with Visual Studio .NET, was a self-
implemented wizard [77]. This later one creates automatically a device’s project with basic
functionalities and links all the needed sources and resources of the device prototype together
in a transparent way for the developer. It means with mouse clicks the developer could reach
the other components from the Microsoft Visual Studio .NET solutions panel.

The developer should travel between the endpoints of the bridge to complete the
implementation of the desired device as a windows standalone executable and as an ActiveX
Control for web deployment purposes [76].

With travelling is meant, a developer models the device behaviours with SICAT and
generates C++ source code. Then using the templates stored in a certain database, he designs
the graphical parts of the device, makes refinements and implements the selected
functionalities of the device with Microsoft Visual Studio .NET (see Figure 4.1).

Indeed with these integrated components mentioned above a prototype device has been
created with success in a short period of time with minimum costs.

The following figure shows an overview of the first version of GRAPE and its components.

> With in-house is meant “Siemens Austria Company PSE KBB” department.

56 Design and Conception of GRAPE

GIGASET-Project-
Wizid SICAT-Toolset
1: Automatic Generation 2: New Model Creation
.NET-Project SICAT-Project
GUI Design Behaviour Modelling

[38 SICAT Control Program - c:\GigaseVGalicia\sdl_Ga... [= |[B)[&]
Erojoct Object Action M ser Commands [Master Project Yew Opiions

elp
EEREEEEEREEE
@ L Userinterface

(5 T2 Menukierarchy inherits Userlnterface
@ T soL_calicta inherits MenuHierarchy +

o]
Show file dates.genes Select.. 50% 01.08.2003 08:59

User
Interface

Database

3: Sources Code

4: Compile and Link

Figure 4.1: GRAPE First Version Overview

Design and Conception of GRAPE 57

The first version of “GRAPE” has beside its advantages also its disadvantages. The major
disadvantage of GRAPE, at that time, is that GRAPE was tailored and specified for Siemens
GIGASET phone devices [78]. In addition, graphical objects, which are based on WMF
template files, were not easy to manage, to handle and to edit. They could not be reused for
another prototype device family. Further ActiveX control was also impractical because of the
need of a digital signature and certificate from a trusted third party to deploy it through the
web.

In other words, the first version of GRAPE was not a general solution for all devices, because
the resources created to produce a prototype device from a given family could not be reused
for another prototype device family.

To overcome this lack and to warrant generality, it means the possibility to prototype all
kinds of devices should be available, another graphical development environment should be
found and should replace the WMF methodology.

For this purpose Macromedia Flash Professional environment has been chosen.

Flash provides strong visual metaphors for developing graphic objects and animations, and
can import work from a variety of media development tools. These graphic objects are easy
to manage, to edit and to modify.

The most fundamental element in Flash is the movie clip. Movie clips [79] are reusable
pieces of animations. In the object oriented sense, they are objects that have a physical
presence on the stage [80] and can be accessed programmatically through their methods and
properties.

In addition, Flash provides full design control to maximize creativity and interactivity. Due to
its player, Flash can run on the Web browser and on a variety of platforms like Windows,
Macintosh, Unix, PDAs, and even cell phones.

ActionScript [72] is the scripting language used by Macromedia Flash. This language not
only makes Flash content interactive but also provides an efficient mechanism to do things in
Flash, from creating simple animations through designing complex, data-rich, interactive
application interfaces.

ActionScript 2.0 [73] is formal and an object oriented programming language that supports
full class inheritance and all the features that developers demand from a mature language. It
offers a more flexible programming environment and superior debugging abilities that reduce
coding and maintenance time.

But the question now is: How to integrate SICAT toolset and Macromedia Flash together to
achieve rapid prototyping? The answer is simple, which is to provide a code generator that
can transform the SDL models into ActionScript classes.

Indeed, that’s what happened and the result was a new environment of integrated tools named
“GRAPE”.

58 Design and Conception of GRAPE

4.2 What is GRAPE?

GRAPE, (GUI Rapid Prototyping Environment) is a software development environment
intended for rapid GUI prototyping of smart devices. With GRAPE many device prototypes
can be created in easy and quick manner for many kinds of devices like:

Cell, cordless or smart phones and PDA’s

Devices for entertainment electronics

Medical equipments

Devices and consoles for automotive electronics

Instruments and control panels in automation and drives domain

In other words, GRAPE can be practically used to prototype any smart device having user
interfaces consisting of displays, buttons, indicators etc. Rapid prototyping means in this case
exploring ideas before investing in them.

The device prototype created by GRAPE is a photo-realistic graphical model, which looks
like the final product and acts like it. The prototype is available at an early stage of the
product lifecycle. A first simple-featured basic version can be enhanced and refined
gradually.

4.2.1 GRAPE Features

The main features and concepts of the new version of GRAPE are:

e Photo-realistic graphics of the planned device for the skin design

® Model driven development approach for device behaviour. It means the logic is
modelled with SDL state charts. Also a domain specific widget library and automatic
code generation is provided

¢ Prototypes are generated as Flash movie clip. This later one could run as standalone
application with Flash player or embedded in the web browser.

¢ Documentation generation of the prototype model. As mentioned the SDL model of
the prototype, which is an extended state charts, can be converted into WinWord
format

e Support of distributed projects and development

® Animated state chart test monitoring

¢ Inter-device communication can be modelled

4.2.2 Benefits using GRAPE

The most significant benefit, which GRAPE can provide for rapid prototyping, is saving time,
costs and resources.

Design and Conception of GRAPE

GRAPE holds many others important and tangible benefits, which will be listed as follows:

Quick time to market

Lower device development costs

High quality stakeholder feedback at an early stage (requirement review)
Enabling usability and design review (look and feel)

Automatically generated documentation

Prototype deployment via Internet (Flash movie clip)

Fully customizable features (in-house tooling)

4.2.3 GRAPE References
GRAPE was successfully used for prototyping the following devices:

GIGASET handset from Siemens (optiPoint WL2 professional)
Chinese version of the control panel SINAMICS-AOP for SIMEA
Digital SAT-receiver Thortsen2

smart@phone from Siemens

GIGASET handset (function modelling for France Telecom)

60 Design and Conception of GRAPE

4.3 GRAPE Components

GRAPE is based on two major components. The first one called “SICAT”, which is
responsible for describing the behaviour of the device, for generating code and supports the
documentation of the device. The second one is “Macromedia Flash Professional 8 [13],
which achieves the graphical design and creates the virtual interactive device prototype.

4.3.1 SICAT

SICAT (SDL Integrated Computer Aided Toolset) is a development environment for SDL 92
[10]. Using SICAT, the architecture of event oriented systems and the behaviour of these
systems while intercommunication can be specified and described easily.

SICAT (see Figure 4.2) is a Siemens in-house tool and was used in several IT-Technology
fields like telecommunication, real-time systems and distributed systems.

I SICAT Control Program - ¢ \SWS\GigasetFinahsdl_models
Project Cbgect Action M User Commands Maber Project Yew Opbons Heb

= IR EREEE A
| Generated Files | MSCXREE |
m : Bass H prototyp inherits MenuHierarchy

B MenuHierarchy inherits Base

) 2 protonp inherit Menutierarch]

- -
Ll L} A4 ¥
SICAT is ready select Select... 50% 21172004 1534

Figure 4.2: SICAT Development Environment (Control Program main Panel)

SICAT is a toolset. It comprises many tools. The most important ones are Process-Diagram-
Editor (PD Editor), Message-Sequence-Charts-Editor (MSC Editor) and Code-Generators.

Design and Conception of GRAPE

61

4.3.1.1 PD Editor

The PD editor (see Figure 4.3) can be used to describe the process behaviour in terms of SDL

process diagrams in SDL/GR syntax [10] in accordance with ITU Recommendation Z.100

[12].

™ PD Editor - [Base : Userinterface : scroll_menu_kmt]

Sy B Edt Zearch Yew Lbray Tramopt Opbons Window Hep - & x
cngmqﬂﬂ:ﬁ:ﬂ:ﬂb , FEIEIEAE --.—E
X]« FIEEEEIEEIEEEREE RS

EAVIEY_DO

LoDl 2
ke
1
el « | | a0
Page: 1 Fiow: 5 / 5 Columnc 1/1 $45144315 Menu _Oben 76% Ingent Compress Ad

Figure 4.3: Process-Diagram Editor

4.3.1.2 MSC Editor

The MSC editor (see Figure 4.4) can be used to describe graphically and process scenarios in

terms of message sequence charts according to Z.120 [12]. For example, test cases can be

specified and simulated with the MSC editor.

62 Design and Conception of GRAPE

B Edt Corsntency Lbrary Yew (pdors Hep -
FEEEEEY] EHEEEE

— i — — —— — =y — i — —

| prnas ey B | pmrtee ",

A i _‘\ ot pom_aaacunT b

, et

A T vl
e

b= MU Feliad
] P e J
N
ot ot
] |
4 vl
Ready Mo THE 2012004 1540

Figure 4.4: Message-Sequence-Charts Editor

4.3.1.3 Code Generators

SICAT code generator transforms an SDL process consisting of one or several process
diagrams into source code.

In order to obtain a complete source module, the user must refine an SDL process diagram
created during the design phase with the PD editor and add the corresponding code
statements.

Data and instructions must be written in the syntax of the appropriate implementation
language. The code portions are stored in the background, i.e., they are not visible in the
diagram.

The basis for the code generation is the attributed tree generated by the Analyzer. The
program structure is derived from the structure of the SDL diagram according to the
transformation rules and completed with the code portions written by the user.

SICAT normally supports CHILL, C, C++, ASS386, JavaScript and lately ActionScript 2.0
languages. The rules for the transformation of the SDL design into the respective
implementation language are described in the code generator templates. By modifying these
templates, code generators for other languages can be derived easily.

Design and Conception of GRAPE 63

4.3.2 Macromedia Flash

Macromedia Flash Professional 8 (see Figure 4.5) is the industry's most advanced authoring
environment for creating interactive websites, digital experiences and mobile content [13].

With Flash Professional 8, creative professionals design and author interactive content rich
with video, graphics, and animation for truly unique, engaging websites, presentations or
mobile content [13].

Flash provides full design control and strong visual metaphors for developing graphic objects
and animations, like movie clips, which are reusable pieces of animations and they represents
objects that have a physical presence on the stage and can be accessed programmatically
through their methods and properties.

Due to its player, Flash can run on the Web browser and on a variety of platforms like
Windows, Macintosh, Unix, PDAs, and even cell phones.

ActionScript 2.0 is the scripting language used by Macromedia Flash. It is fully object
oriented programming (OOP) language that provides several benefits to programmers,
especially when creating large-scale Flash applications or presentations. OOP encourages
reusability by class inheritance.

The modular nature of OOP lets the developer replace or swap components of an application
without changing the application structure and the fundamental metaphors of OOP design
closely mirror the natural world (objects that have internal states and can do certain things),
which speeds and facilitates the application design process.

64 Design and Conception of GRAPE

Fie Gdt Vew Jwet Modfy Tet Commardh Conbol Window b

i

“@NOeo\[~
QINO>VR -

=t (EENEL

I-u-
<

Figure 4.5: Macromedia Flash Professional 8 Environment

Design and Conception of GRAPE 65

4.4 Summary

The use of software techniques requires the development of appropriate integration strategies
that result in cohesive sets of techniques that effectively cover the development of the
prototype and should be adaptable to already available in-house development process.

This set of integrated tools called GRAPE supports the visual construction, analyses, and
transformation of device models, and the linking of these models with graphic objects across
the development phases.

This development environment is the result of the use of a set of an adequate software
techniques and integrated tools and components like SICAT toolset and Macromedia Flash
Professional 8.

GRAPE not only provides rapid prototyping of any smart devices, but also supports the entire
product lifecycle from product specification until computer based training (CBT), as shown
in Figure 4.6 below.

usage for training Creation of
purposes - test logs

sBo|)se) -

uoijesausb
ased }sal

GUI test

Figure 4.6: GRAPE supports the entire product lifecycle

66 Implementation of a Smart Device Using GRAPE

S5 Implementation of a Smart Device Using GRAPE

As mentioned in the previous chapter, prototypes of smart devices can be developed with
GRAPE environment. On the one hand, the device behaviour can be specified with SICAT
toolset using SDL State charts. ActionScript classes corresponding to SDL Models can be
then generated automatically. In addition, these SDL models serve not only for code
generation but also for documentation purposes of the device itself.

On the other hand, the visual appearance of the device and its graphical components can be
designed with Macromedia Flash 8. This latter has been identified to be a powerful graphic
design environment. It provides a flexible methodology to design graphic elements or objects,
which are in terms of symbols in Flash terminology. The most important symbols are the so
called “movie clips”’. Movie clips are reusable pieces of animations. With respect to object
oriented principles, they are objects that have a physical presence on the stage and can be
accessed programmatically through their methods and properties.

ActionScript 2.0 [81] is the scripting language used by Macromedia Flash 8. It is a formal
and an object oriented programming language that supports full class inheritance and all the
features that developers demand from a mature language. ActionScript has a predefined large
set of classes for data types, for movie clips and other elements. With sub-classing the
predefined classes, the ActionScript language can be abundantly extended. Especially by sub-
classing movie clips they can contain not only written code but also graphics and animation.

In this way, the concept of component has been introduced by Macromedia Flash. A
components is a custom class, which can be defined by the developer and which inherits the
“MovieClip” class, whereat a movie clip with the desired items can be created and turned into
a custom class. This custom sub-class itself can be inherited from other classes. In this
manner the reusability can be enhanced widely.

In addition, Macromedia Flash environment provides a set of user interface components, like
buttons, checkboxes, radio buttons, and so on. These base components were designed to be
extended, and they provide a magnificent basis for rapid creating complex specific interface
elements.

ActionScript language and the mechanism of component customization [82] make Flash
content interactive, customizable and reusable. They provide an efficient way to do things in
Flash rapidly from creating simple animations till designing complex, data-rich, interactive
application interfaces. In addition, Flash provides full design control to maximize creativity,
interactivity and components integration.

Further, developing a device prototype without a complete well thought out design is like
constructing buildings on waggling fundament. This means an appropriate methodology must
be applied to organize the process development of the device prototype with taking into
account the main purpose of rapid prototyping and making the development tasks
comfortable to implement and to be easily understandable. The applied methodology should
also manage the complexity of the device development in an effective and easy way.

For this purpose a methodology for managing the complexity of device prototype
development, based on SDL state charts and the UCM architecture has been chosen.

Implementation of a Smart Device Using GRAPE 67

This methodology is valuable for the raison that development will become more efficient and
the way of design, implementation, and documentation of the device prototype can be
standardized.

At the beginning, this chapter will present a scaleable architecture, named the “UCM”
architecture, for designing the device prototype and managing its complexity.

Then the transfer of SDL models into code will be explained. In other words, code generation
from SDL models into ActionScript classes will be illustrated. Further, the construction of the
graphic elements of the device prototype with Macromedia Flash 8 will be shown.

Finally, the implementation of the architecture will be demonstrated and the combination of
all components of the prototype together will be then presented.

68 Implementation of a Smart Device Using GRAPE

5.1 UCM Architecture

The UCM architecture is a “top down” approach, explained by Horrocks [2], which supports
a centralized control access of the system information and facilitates the implementation and
inspection of how the interface is coordinated in each context [3].

UCM stands for “User Interface - Control Object - Model”, which describes a three-tiered
system to conceptualize the way a software program or device can be decomposed. UCM is
similar to the design pattern Model-View-Controller MVC) [83].

The UCM architecture is a scaleable architecture based on an engineering practice. It
separates the device elements into three layers [2][3], as shown in Figure 5.1 below:

e User Interface: A layer for user interface elements like buttons, display, etc

e Control Object: A layer containing the control object (in some applications there are
more than one object). The control object is a mechanism that coordinates the
interface elements and mediates the interface and the device internal functionality

® Model Layer: This layer containing processes and computations, which involve the
internal functionality of a device. The model layer is not concerned with how the
device behaviour is presented to the user, because that is the role of the interface

Within the device organization, the UCM architecture requires a separation between the
device interface and the underlying behaviour layers [3].

- —
User Interface - ™
Indevidual behaviors | \r J
or composite panal(s) =
Spr e Gies
\ Tigewes B

Control Object

Coomdinates user interface
alemants and communicalss

with model layer SDL State charts

Model Layer

Implemants undarlying device
functionality and communicales
with control object layer

SDL State charts

Figure 5.1: UCM Architecture Layers

Implementation of a Smart Device Using GRAPE

A characteristic of the top down approach is that a central control object receives and handles
events from a group of related interface elements. The control object in turn communicates
with the underlying system model object on the model layer.

In the following the difference between the “bottom up” and the “top down” approaches will
be briefly explained through an example. Let’s suppose the used approach is the “bottom up”
one and the impact of a button on a mobile phone should be programmed. When the user
presses the button, the button event handler must determine in which mode the phone display
is, such as “displaying the entry display” or “displaying the main menu rows”, and then
invoke the appropriate actions. Each button event handler (there are at least 9 buttons) must
go through the same process, so that to understand the extent of what happens, for example,
in the “displaying the main menu rows” a look through all button event handlers must be
taken to determine what each does, if anything in this mode should be accomplished.

In the top down approach, each button event handler, which is placed in the user interface
layer, simply reports the button event to the control object. The control object has to
determine the context or mode of the mobile phone and then to invoke the appropriate actions

[3].

The subtle difference is that in the top down approach all code for a particular context, and
hence all events that can be handled, is located in a single place, whereas in the bottom up
approach the code is distributed across all button event handlers [3].

In other words, by centralizing the code, the top down approach makes the coordination of
the interface in each context more apparent. Further, making changes or additions to event

handlers in one context do not affect the interface behaviour while the device is in different
context.

By centralizing the event handling makes the design and implementation easier because the
developer can immediately see all, and only those, events processed for each context.

To design each layer efficiently, SDL state charts have been chosen. In this way, the control
object can keep track of the context of the device and the communication between the UCM
layers can take place with sending messages and method invocation. This means that the
control object can, for example, send messages on the one hand to interface elements such as
setting a certain value. The interface elements are only responsible for performing their
immediate function, such as button press, display darkening and so on, and inform the control
object about what they did, not to take on any of the device processing by themselve.

On the other hand, the control object can send messages to the model layer objects. But only
the control object layer, as shown in Figure 5.1, is allowed to communicate with the model
layer. This centralizes access to model layer information and functionality, making it
perfectly clear what information the interface needs, when that information is sought, an how
the internal functions can communicate with the interface.

69

70 Implementation of a Smart Device Using GRAPE

In other words, the control object layer and model layer are communicating extended state
machines modelled with SDL state charts. From these models, ActionScript classes can be
generated directly.

Principles of code generation will be now explained in the next following subsection.

Implementation of a Smart Device Using GRAPE

5.2 Principles of Code Generation

The device behaviour can be specified and modelled with SDL state charts using the PD
Editor of SICAT Toolset. From these models target code can be then generated.

As the transformation rules of SDL models into the respective implementation language were
described in the code generator templates, code generators for other languages can be derived
easily by modifying these templates accordingly. That’s why an ActionScript code generator
named with “Flash Code Generator” has been implemented and integrated in SICAT
environment without a great outlay (see Figure 5.2 below).

MSC BD
EDITOR | | EDITOR

s0D PD
Editor Editor

& [[

Control Program

[
ActionScript 2.0
Code Generator

o JAVA
" | Code Generator

» C++
Code Generator

C
Code Generator

L

CHILL
Code Generator

ASS386
Code Generator

¥

SDL-PR
—™| Code Generatar

SICAT

Figure 5.2: Integration of Code Generators into SICAT Toolset

71

72 Implementation of a Smart Device Using GRAPE

After successful analysis the new Flash code generator of SICAT generates code in
programming language ActionScript 2.0 from SDL process diagrams, which had been
already created with the PD editor of SICAT.

Code generation can be started for an entire SDL process or for an individual process (-type)
module. For each SDL process, which is mapped onto a class, an ActionScript file with “.as”
extension will be then generated

The contents of the generated ActionScript file are determined by the structure of the process
diagram, contents of the textual description levels (see Figure 5.4) of the individual graphic
symbols and by setting the profile parameters of the code generator. Currently, the Flash code
generator supports the SDL’92 features.

Figure 5.3 illustrates the control and data flow of the Flash Code Generator from the syntax
and semantic analysis of the SDL process diagrams until the generation of the corresponding
ActionScript classes.

Implementation of a Smart Device Using GRAPE

O

control program,
PD editor

code generator

analyzer

L ol

0

5

a G
O PKB
= DKB
< INI
o

w
__/

O

ERR

A 4

syntax analysis

J -

shorthand expansion

J L

F 3

LER

semantic analysis

[]
~ -

F 3

Action-
Script

table generation

J

generated SICAT objects

<file>.as

Classes |

code generation

______/

Figure 5.3: Control and Data Flow of the Flash Code Generator

target tools

g (compiler, debugger)

73

74 Implementation of a Smart Device Using GRAPE

5.2.1 ActionScript SDL Base Classes

As ActionScript 2.0 is fully object oriented programming (OOP) language and the OOP
encourages reusability by class inheritance, a set of ActionScript base classes have been
implemented.

For instance, the “SDLProcess” class describes, with taking into consideration a certain
degree of abstraction, an SDL process and provides essential methods to implement the
structure of an SDL process diagram, for example, sending signals. Then the generated class
of a concrete SDL process of a certain device behavior will inherit this base class.

As the “SDLProcess” base class inherits the predefined “MovieClip” class of ActionScript
2.0, the generated class can be then easily integrated into Macromedia Flash 8, and will
possess all the abilities of the “MovieClip” class automatically.

5.2.2 Mapping of SDL Processes onto ActionScript Constructs

The contents of the generated ActionScript file are determined by the structure of the process
diagram, by the contents of the textual description levels (see Figure 5.4) of the individual
graphic symbols and by setting the profile parameters for code generation.

The individual graphic symbols of a process diagram support three textual description levels:

e The inscript level for labeling the symbol in the process diagram

e The code level can be used to add ActionScript statements, which will be then
incorporated into generated code

¢ The informal text level which is used to incorporate additional textual information or
keywords to control code generation

For instance, as shown in Figure 5.4, the task symbol represents a timer because its “informal
text level” contains the keyword “@TIMER” and at its “inscript text level” the expression
“SET(5000, TIMER_EVENT)” can be seen. This expression means that the timer will be
timed out after five seconds and then the event named “TIMER_EVENT” will be triggered.
The task symbol, at its simplest role, can contain ActionScript statements at its “code text
level”. These statements will be then included into target source.

There are a set of keywords, which can be used not only to assign many roles to SDL symbol
semantically, but also to control code generation layout concerning comment headers, code
formatting and so on. While analyzing the diagram structure, the code generator will take into
consideration the keywords and will generate code accordingly.

Implementation of a Smart Device Using GRAPE

£ PO Editor

Irsenpl Level

Code Level

Task Symbol

Informel Level

I

. 28l 26

Figure 5.4: The Three Text Levels of an SDL Symbol (i.e. Task Symbol)

SDL process diagrams are mapped onto ActionScript construct as follows:

e FEach SDL process is mapped to an ActionScript class with the name <process name>.
All process classes inherit the SDL Process base class

e Start transition is mapped to the constructor of the process class and other method for
initialisation purposes and defining the state machine event handler and the starting
transition

e SDL procedure diagrams are mapped onto member methods of the process class

Let’s observe the process diagram shown in Figure 5.6 to illustrate how an SDL process
diagram can be transformed into ActionScript class. The SDL process is named in this case
with “p1”. On the diagram two text symbols can be seen. The first one, which can be placed
everywhere on the diagram, serves to insert general information about the author or the
version of the diagram and some additional information by adding “4#AUTHOR”,
“#VERSION” and “#INFORMATION” keywords at the “informal text level” of the text
symbol.

The generated code, corresponding to this text symbol, as shown in Figure 5.6 (rectangle 1),
is the following:

76 Implementation of a Smart Device Using GRAPE

i
/Il @brief ActionScript module generated by GRAPE

n ActionScript Code Generator for Rapid Prototyping, CG-Version:
1

" project : <Path>

n process : P

n module : Pl

" diagram :d

1

/l// @author That author

/Il @version This version

/Il @file pl.as

/Il @date Date : 12/11/2006, Time : 10:39:17 AM

/Il @info Some information
oo

The second text symbol, which must be placed exactly above the process start symbol on the
diagram, serves to declare class attributes (global variables), if needed, by using the keyword
“4DECLARATIONS” placed at the “code text level” of the text symbol. The corresponding

generated code, as shown in Figure 5.6 (rectangle 2), is:

public var m_aVariable = 0;

The generated code corresponding to the start transition on the diagram, as shown in Figure
5.6 (rectangle 3), is as follows:

/I Constructor
function p1(timeL)

{

this.timeLine = timeL;

this.currentState = "";

}...

function Start()

{
currentState = "IDLE";

}

public function handleEvent(event)

{

EventHandler(event.type, event.val);

}

function EventHandler(event, param):String

{

switch (currentState)

{
case "ACTIVE_STATE":

return State_ ACTIVE_STATE(event, param);
case "IDLE":

return State_IDLE(event, param);

1

}

This code represents a constructor of the class and some methods, which achieve some
initialisations and define the state machine event handler and the starting transition.

Implementation of a Smart Device Using GRAPE

The generated code of the transition between the “IDLE” and “ACTIVE_STATE” states, as
shown in Figure 5.6 (rectangle 4), is the following:

/I STATE: IDLE
function State_IDLE(event, param):String

{

switch(event)

{

case "INPUT_S1":
m_aVariable = 1;
trace("Variable has been changed!!!");
/[====> OUTPUT_SI1 to P2
SendEvent("OUTPUT_S1", _root.P2);
/I====> ACTIVE_STATE
currentState = "ACTIVE_STATE";

",

return ',

}

return event;

}

The generated code means that to each transition on an SDL process diagram, a class method
will be generated. A similar code will be generated from the transition between
“ACTIVE_STATE” state and other states, as shown in Figure 5.6 (rectangle 6), but in this
case the “switch-case” structure will be accordingly enlarged depending on the number of
events that affect the transition.

Finally, a procedure declaration symbol named with “SayHello” can be seen on the process
diagram. This symbol represents a separate procedure diagram, which is not shown in Figure
5.6, but for the sake of completeness, this diagram is illustrated in the following figure:

]

S0

Figure 5.5: Procedure Diagram (SayHello)

77

78 Implementation of a Smart Device Using GRAPE

The “code text level” of the task symbol on the procedure diagram, shown in Figure 5.5,
contains the following ActionScript statement “trace("Hello");”. This statement does nothing
else than printing the word “Hello” on the screen.

The generated final code corresponding to the procedure declaration symbol, as shown in
Figure 5.6 (rectangle 5), is about as follows:

// PROCEDURE: SayHello
function SayHello()
{

trace("Hello");

}

This means that to each procedure declaration symbol on a process diagram a class method
will be generated. The content of the method body depends on the structure of the procedure
diagram.

The final result, after starting the code generator on the corresponding process object from
SICAT Control Program, is an automatically generated ActionScript file named “p1l.as”.

public var m_aVariable = 0; 2 o @eutor That suher =i 5
/i gversion The version
M oghe plas Hep - & X
= P [
o I I =
-
If Constructor 2 —
- = \\
]

function Start()
{
currentState = "IDLE";

1 STATE: ACTIVE_STATE
function State_ACTIVE_STATE(event, param):String @

3
E 1 1 H
3 - : H : ;
/ :I: e
public function handieEvent{event)
! H H / 3
1

" EventHandler(event type, event val); NPUT_S1 o
} SayHello();
=> SET(5000, TIMER_EVENT)

function EventHandler(event, param):String /

TIMER_EVENT Set(5000);

swilch (currentState)
i

====> This event is generated by the Timer
[case “TIMER_EVENT*:

case "ACTIVE_STATE™:
return State_ACTIVE_STATE(event, param);

H====> IDLE
case "IDLE": J— - currentState = “IDLE";
return State_IDLE(avent, param) QUTRUT_S1 10 P2 Safelo return ™
) }
¥ | Feturn event;
}
SET(s000. TER
1 STATE: IDLE 4
function State_IDLE(event, param:String) (e ‘)
switch{event) =
{
case "INPUT_S1" T A
m_aVariable = 1; Emply Fow: 14 / 4 Column: 8/ 8

trace("Variable has been rmngm“")
H====> QUTPUT_S1 to P2
SendEvent("OUTPUT_S1", _root.P2);
li====> ACTIVE_STATE
currentState = "ACTIVE_STATE";
return ™

relurn evenl;

}

Figure 5.6: Transformation of a SDL. Model Example into ActionScript Class

Implementation of a Smart Device Using GRAPE

5.2.3 How to Generate Code from SICAT

The Flash code generator can be started from the SICAT control program. In order to achieve
code generation with the desired code generator, the intended code generator must be
installed within SICAT toolset and some settings steps have to be done first and only once.

For this purpose, the process module or the process symbol for which code shall be generated
must be selected. As shown in Figure 5.7 below, after selecting the object and by clicking on
it with the right mouse button, a pop up menu will arise. Then by clicking on the menu item
named with “Properties” the corresponding properties dialog of the SICAT object will
appear, as shown in Figure 5.8.

1 SICAT Comtrol Program - d:\Slemens\SX1Prototype\F lash_S0LDemo

Progect OBiect AcBon OM User Commandh Master Project Wiew Optiors Help

CEREEE R

Edit the properties of & SICAT Object

Figure 5.7: Properties Settings of SICAT Object from Control Program

79

80

Implementation of a Smart Device Using GRAPE

s
W

i Comment:

Opiions
Language f{ Code generaior:

Se'eciing the desred |

r
—Iflagh

LT P e, .

AR LaerieTglod

Figure 5.8: Selecting the Flash Code Generator

Then, the associated SICAT object must be assigned to "Flash" as the target language for
code generation by selecting the item “flash” from the options combo box.

Finally, after setting the corresponding properties, code generation can be achieved from
SICAT Control Program. For this purpose, the process module or the process symbol must be
selected and the menu item named “Generate Code” from the menu “Action” of the menu bar

has to be selected, as shown in Figure 5.9.

Implementation of a Smart Device Using GRAPE

-— Itern menu

- B, [A - -
Ceerwer e PO Scaffoids Zenerale Code

FO Compare
Generate 300
Cornvert to CIF

Seleclad
Process Symba.

Figure 5.9: Code Generating from SICAT Control Program

82 Implementation of a Smart Device Using GRAPE

5.3 Construction of the Device Graphic Elements

As mentioned previously, the visual appearance of the device and its graphical components
can be designed with Macromedia Flash 8. This latter has been identified to be a powerful
graphic design environment. It provides a flexible methodology to design graphic elements or
objects, which are in terms of symbols in Flash terminology.

The most important symbols are the so called “movie clips”. Movie clips are reusable pieces
of animations. With respect to object oriented principles, they are objects that have a physical
presence on the stage and can be accessed programmatically through their methods and
properties. The device graphic elements are nothing else than movie clips symbols. They
have been kept simple to show how easy it can be to design graphic elements with the
mentioned environment.

Flash is an authoring tool that designers and developers use to create presentations and
interactive applications. Flash projects can include simple animations, sound effects, video
content and complex applications, which enable comfortable interaction with the end user.

Each piece of content made with Flash is called applications, even though they might only be
a basic animation. Flash applications can be made by including pictures, sound, video, and
special effects.

Flash is extremely well suited for creating content for deployment over the internet because
its files are very small. Flash achieves this through its extensive use of vector graphics.
Vector graphics require significantly less memory and storage space than bitmap graphics
because they are represented by mathematical formulas instead of large data sets.

Bitmap graphics are larger because each individual pixel in the image requires a separate
piece of data to represent it [84].

In order to build a Flash application, graphics can be created with the Flash drawing tools, as
shown Figure 5.10. The application can be then ameliorated by importing additional media
elements into the Flash document.

Implementation of a Smart Device Using GRAPE

Took

R &

% PN O0O= N\
Ve > 0.

View

o G2
10

2 N\
b |

]

L
=
@

Options

+5 =

Figure 5.10: Flash Drawing Tools

Authoring Flash content is nothing else than working in a Flash document file. Flash
documents have the file extension “.fla” (FLA) [84].

A Flash document has four main parts [84]:

The first part is called “stage”. The stage is the place, where graphics, videos, buttons, and so

on appear during playback. The stage, as shown in Figure 5.11, is the quadratic white surface.

Its dimensions and colour can be changed using the properties panel (see Figure 5.12)
adequately.

83

Implementation of a Smart Device Using GRAPE

w Actions
(& User Interface La
| P Control Object Layer
e 1 |120fps | 00s £ 3
Figure 5.11: The Stage of Macromedia Flash 8
¥ Properties Fiters | Parameters =
| / Document Size: Background: | _ Framerate: | 12 | fos
sx1.fla Publish: | Settings... Player: 8 ActionScript: 2 Profile: Default
‘ Devee =
F-Y

Figure 5.12: The Properties Panel of Macromedia Flash 8

Implementation of a Smart Device Using GRAPE

The second part is named with “timeline”. The timeline responds the question of when the
graphics or other elements of an application should appear. The timeline, as shown in Figure

5.13, is the vertical red line.

Further, the timeline is used to specify the layering order of graphics on the stage. It means

graphics placed in higher layers appear above of graphics placed in lower layers.

[
| Timeline | 5 Scene 1
i ®E80:[]s w© 15 » 2 2 =
& Actions « o @ 3
L&/ User Interface Layer . -DE
W Control ObjectLayer / + + 2
[Model Layer « + @2
W& @t a5 WG 3 [0k 0s ¢

Figure 5.13: The Timeline of Macromedia Flash 8

86 Implementation of a Smart Device Using GRAPE

The third part is called “library panel”. This panel, as shown in Figure 5.14, displays a list
and provides an overview of the media and graphics elements inserted in a Flash document.

Figure 5.14: The Library Panel of Macromedia Flash 8

Implementation of a Smart Device Using GRAPE

The fourth part is the ActionScript editor. This editor, as shown in Figure 5.15 below, enables
designers and developers to add ActionScript code, which allows them to control media and
graphics elements inserted in a Flash document. In this way the interactivity can be
guaranteed.

ActionScript can be also used to embed logic in applications. Logic enables applications to
behave in different ways depending on the user actions or other conditions.

Flash includes many versions of ActionScript. Only ActionScript 2.0 will be exclusively used
to develop the device prototype.

i v Actions - Frame =

| ActionScript 1.0 & 2.0 v POV E @Y {, SciptAssist @
=

1 trace("Control laver-.-.....")2
= E[Current Selection ~ 2 co = new Display:en:rc:l(:hlsj;l
EI Centrel Object Layer : Fram
B é Scene 1
EI Actions : Frame 2 H
"

[!I Actions : Frame 3
EI User Interface Layer : Fram
EI Control Object Layer : Fram
EI Model Layer : Frame 1
5) Symbol Defintion(s)]EI Control Object Layer : 1 |-
%) ospay ¥ | |Line 2 0f 2, Col 31

Figure 5.15: The ActionScript Editor of Macromedia Flash 8

87

88 Implementation of a Smart Device Using GRAPE

Flash includes many features that make it powerful and easy to use, such as pre-built drag-
and-drop user interface components, built-in behaviours that add easily ActionScript to the
Flash document and special effects that can be associated to media objects.

After finishing authoring a Flash document, it can be then published by selecting the menu
item named “Publish” from the menu “File” of the menu bar of Macromedia Flash
development environment.

This command action creates a compressed version of the Flash document with the extension
.swf (SWF), which can be then interpreted and executed by the Flash Player in a web browser
or as a stand-alone application.

To construct the visual appearance of the device prototype many movie clips symbols have
been created. These symbols are based on primitive shapes and on the user interface
components provided by Flash environment and which will be explained in the next
following subsections.

5.3.1 Flash Symbols and Library Assets

A symbol is a graphic, button, or movie clip that can be created using Macromedia Flash 8.
Symbols have to be created only once and can then be used rather in the recent Flash
document or other documents.

A symbol can include artwork that has been imported from other applications. Further, any
symbol, that has been already created, becomes automatically part of the library for the
current document.

If a symbol is of the type “movie clip” or “button”, it can be instantiated as an object.
Thereby it can be accessed and controlled programmatically through their methods and
properties

An instance is a copy of a symbol located on the stage or nested inside another symbol.
The properties of each instance can be changed individually and independent of other
instances of the same symbol.

Further, using symbols in Flash documents can reduces significantly the size of the swf file,
because saving several instances of a symbol requires less storage space than saving multiple
copies of the symbol contents.

Symbols can be also shared between documents as shared library assets during authoring or
at runtime. For runtime shared assets, assets can be linked in a source document to any
number of the destination document without importing the assets into the destination
document.

For assets shared during authoring, symbols can be updated or replaced with any other
symbol available on the local network.

Implementation of a Smart Device Using GRAPE

5.3.1.1 How to Create a Flash Symbol

A symbol is a reusable object, and an instance is an occurrence of a symbol on the stage.
Using instances several times does not increase the file size, that’s why the document file size
remains, in many cases, small.

Symbols have many benefits. For example, symbols simplify editing a document because
when a symbol had been edited, all instances of the symbol update to reflect the changes.
Further symbols allow creating sophisticated interactivity in an easy way.

There are three types of symbol: graphic, button and movie clip. Each symbol has its unique
timeline, stage and optionally layers. While creating a symbol, its type can be chosen,
depending on the use purpose of the symbol in a document.

For instance, graphic symbols can be used for static images and to create reusable pieces of
animation that are tied to the main timeline. Graphic symbols operate synchronously with the
main timeline of a document.

Button symbols, on the other hand, can be used to create interactive buttons that capture
mouse events and handle them appropriately.

Movie clip symbols are the most important symbols and they can be used to create reusable
pieces of animation. Movie clips have their own multi-frame timeline that is independent
from the main timeline of a document.

Movie clip instances can be placed inside a document or can be nested in other symbols.
For example, a movie clip symbol can be placed in the timeline of a button symbol to create
animated buttons.

Flash provides built-in components, as shown in Figure 5.16. They are nothing else than
parameterized movie clips that can be used to add user interface elements, such as buttons,
check boxes, or scroll bars, to a Flash documents. These components can be also non-visible
component like the “XMLConnector”, which facilitate the access to application data. For
example, GUI-Components can be selected and added to the stage of a document to construct
the graphical user interface of an application.

90 Implementation of a Smart Device Using GRAPE

@ Data
@ FLv Playback - Player 8
@ FLv Playback Custom LI
@ Media -Player6-7
= @ User Interface
= Accordion
Alert
[Bution
CheckBox
EP combosox
DataGrid
DateChooser
3 DateField
&l ust
Loader
&f

Figure 5.16: Components Panel

In order to create a symbol, a Flash document must be first created. This document represents
the working space for designing and developing Flash application.

A Flash document can be created newly, or a document, that has been previously saved, can
be opened, elaborated and ameliorated. Under Windows platform, a new Flash document can
be created by selecting the sub-menu item “New” from the menu “File” of the menu bar of
Macromedia Flash 8. Then the new document dialog box, as shown in Figure 5.17, will
appear.

Implementation of a Smart Device Using GRAPE

structure for Fiash movies and appiications.

| ActionScript Communication File
Fiash JavaScripi Fie

Eloch Donda-t

[o«][conca |

Figure 5.17: New Document Dialog Box

From this dialog a Flash document option can be selected and opened. In addition standard
templates that come with Macromedia Flash or templates that have been already created or
saved, can be then selected and opened.

After opening a Flash document or a template, its properties can be changed and respectively
adjusted adequately. To set the size, frame rate, background colour, and other properties of a
new or existing document, the document properties dialog box, as shown in Figure 5.18, can
be used for this purpose.

91

92 Implementation of a Smart Device Using GRAPE

Document Properties

Title:
Description:

Dimensions: | S00T | (width) x 400px | (height)
Match: () Printer (%) Dafault
Background color: -
Frame rate: | 12 _ﬁ:vs

Ruler units: | Pixels W

I 0K,][Cancel I

Figure 5.18: Documents Properties Dialog

The property inspector, as shown in Figure 5.12, can be also used to set properties for an
existing document. The property inspector makes it easy to access and change the most
commonly used attributes of a document.

After successfully creating or opening a Flash document, a symbol can be now created. There
are two common ways to create symbols. The first one is to select already placed objects on
the stage and then converting them to a symbol or, the second way, an empty symbol can be
created firstly and the content can be then imported or placed on the stage. In both cases the
symbol must be in editing mode.

To convert selected, already placed, elements on the stage to a symbol, the submenu
“Convert to Symbol” of the menu “Modify” must be selected. Then the “Convert to Symbol”
dialog box will appear. In this dialog the name of the symbol can be given, its type can be
selected and other properties can be determined.

Flash adds the symbol to the library automatically. This symbol can be then selected and
added on the stage and becomes an instance of the symbol.

Implementation of a Smart Device Using GRAPE

Analogously, a new empty symbol can be created by selecting the submenu item called
“New Symbol” from the menu “Insert” of the menu bar. Then the “Create New Symbol”
dialog box, as shown in Figure 5.19, will appear in a basic mode. In this dialog the name of
the symbol can be given, its type can be selected and other properties can be determined.

Create New Symbol @

MName: K

Type: (%) Movie dip Cancel
D Button

Graphi
oL

Figure 5.19: Create Symbol Dialog Box (Basic Mode)

Macromedia Flash adds the created symbol to the library and switches to symbol-editing
mode. In this mode, the symbol can be authored, as a normal document, by adding and
respectively importing content to the stage.

By clicking on the button named with “Advanced” of the “Create New Symbol” dialog
shown in the figure above, the same dialog will appear in advanced mode, as shown in Figure
5.20. This dialog allow developers not only to assign ActionScript classes to the symbol,
which will be linked at runtime but also to determine some other powerful properties to
symbol, like guides for 9-slice scaling.

93

94

Implementation of a Smart Device Using GRAPE

Create New Symbol

I!ame:|

Type: (®)Movie dip
() Button
() Graphic

Linkage
Identifier: |

.

AS 2,0 dass: |

Linkage: [+]Export for ActionScript
[[] Export for runtime sharing
[C]Export in first frame

Source

[growse... | Fie:

Symbol name: Symbol 1

[]Enable guides for 9-slice scaling

Figure 5.20: Create Symbol Dialog Box (Advanced Mode)

Implementation of a Smart Device Using GRAPE 95

A movie clip symbol is a powerful symbol and is analogous in many ways to a document
within a document. This symbol type has its own timeline independent of the main timeline
of a document. Movie clips can be added within other movie clips and buttons to create
nested movie clips.

For instance, one of the movie clips of the device prototype is the so called “Batterylcon”, as
shown in figure below and encircled with a red ellipsis.

Spinthe Globe
ioptions: | Menu!

..........................

Figure 5.21: Battery Icon Movie Clip Symbol

Figure 5.22: Battery Icon Movie Clip (Zoomed)

Within the “Batterylcon” movie clip many other movie clips, in this case 5 instances of the so
called “BattCapacity” movie clips framed in a tube liked shape, are nested (see Figure 5.22).
The “BattCapacity” movie clips are nothing else than a primitive shape in terms of black
rectangles.

96 Implementation of a Smart Device Using GRAPE

Farameiers
L (,I?;_suncg of: Battervicon B] Calar: | Nons v
e -
S#EPs
—_— w21 = - , =
71 P 1 FHEL IS oeenia o 1R b
E &= &~ — =.. as. 2 oo i

H: 8.0 ¥l 740 L_jiise runame bitmap cadiing

Figure 5.23: Properties Inspector of Movie Clips Instances

After creating a symbol, it can be instantiated in a document or nested in other symbols.
When a symbol has been modified, Flash updates all instances of that symbol, but when
modifying an instance, the updates will affect only that changed instance.

While creation, Flash gives movie clip and button instances default instance names.

From the property inspector custom names can be assigned to instances.

For example, as shown in Figure 5.23, an instance of the “Batterylcon” (encircled with a red
ellipsis) is named with “Battlcon”.

Programmatically speaking, the instance name can be then used to refer to an instance of an
object of type movie clip in ActionScript. That’s why the name of an instance must be unique
in order to control it at runtime.

In order to create a new instance of a symbol, a layer of the main timeline of the current
document must be selected firstly. After selecting the desired symbol from the library panel,
it can be placed on the stage of the current document by simply dragging and dropping it.

To assign a custom name to an instance, the corresponding symbol placed on the stage must
be selected. Then the name can be entered in the instance name text field on the left side of
the property inspector, as shown in Figure 5.23.

Further the property inspector can be used to specify color effects, assign actions, set the
graphic display mode, or change the behavior of the instance.

The behavior of the instance is the same as the symbol behavior, unless the behavior may be
specified otherwise depending on requirements and necessity. As mentioned previously, any
changes performed on the instance affect only the instance itself, and not the symbol.

Implementation of a Smart Device Using GRAPE

5.3.1.2 Device Prototype Symbols

To design the visual appearance of the device prototype, many Flash symbols have been
created. The most of them are of type movie clip. The design complexity of these symbols
vary from very simple, in terms of primitive geometric shapes, till sophisticated, in terms of
animation and visual effects.

In order to improve reusability, these symbols of the type movie clips can be transformed to
components easily. Macromedia Flash components are movie clips with parameters that
allow developers and designers to modify their appearance and behaviour.

A component can be a simple user interface control, such as a radio button or a check box.
It can also be non-visual, like the “XMLConnector” that allows access data application saved
in XML files.

In other words, the essential purpose of components is to define parameterized movie clips
that can be programmatically used in a natural, object oriented way. A component starts with
a movie clip that can be linked to an ActionScript class definition, which provides properties
and methods to control the movie clip itself. When the component is placed in a movie clip,
the class constructor is invoked.

Reference [85] demonstrates how to create a custom component and how to install it with the
extensions manager of Macromedia Flash 8. This reference is also highly recommended to
interested reader, to get information about this powerful feature provided by Flash.

As mentioned already, many movie clips have been created in order to achieve designing the
visual part of the device prototype.

The simplest symbol of the device prototype is the so called “Arrow”, as shown in Figure
5.24. This movie clip is nothing else than a black triangle shape, which has the purpose of
pointing to the direction of the menu navigation either to down or to up.

Figure 5.24: Arrow Movie Clip (Zoomed)

97

98 Implementation of a Smart Device Using GRAPE

Another simple movie clip is the so called “ConnecPower”, as shown in Figure 5.25 below.

Figure 5.25: Connection Power Movie Clip (Zoomed)

Many instances of the “ConnecPower” movie clip are used to construct the movie clip named
with “Connectivitylcon” shown in Figure 5.26 below. The instances are named with a unique
name, in order to control them and to simulate the connectivity power by showing and hiding
the visual appearance of the appropriate instance. For example, to hide respectively show the
visual appearance of the one of the instances, the property “_visible” can be set to “false”
respectively to “true”, hence the instances are movie clips objects.

L &>

Figure 5.26: Connectivity Icon Movie Clip (Zoomed)

One of the movie clips of the device prototype is an animated sequence that has been
converted to movie clip symbol. Macromedia Flash 8 offers several ways to include
animation and special effects in a document. Timeline effects, such as blur, expand, and
explode, make it easy to animate an object.

Further, with timeline effects a previously time-consuming task that required more advanced
knowledge of animation can be achieved easily in a few steps.

The subject of this movie clip is a so called tweened animation, as shown in Figure 5.27.
To create tweened animation, a starting and ending frames must be created. Flash will then
create the animation for the frames in between. Flash varies the object's size, rotation, color,
or other attributes between the starting and ending frames to create the appearance of the
motion.

Implementation of a Smart Device Using GRAPE 99

Animation can be also created by changing the contents of successive frames in the timeline.
An object can move across the stage, increase or decrease its size, rotate, change color, fade
in or out, or change shape. Changes can occur independently of or in concert with other

changes.

For example, the starting frame of the so called “TweenDisplay” is a solid dark rectangle and
the ending frame is the same rectangle but transparent. The animation illustrated the
disappearance of the rectangle slowly, but in a desired speed, which is in this case one second
because the frame rate of the timeline is set to 12 frames per seconds and 12 frames are used
in between.

The “TweenDisplay” movie clip is used to simulate the effect of the opening of the device
display, when the used the on button pressed for a while.

-0

Macromedia Flash Professional 8 - [sx1.fla*]

File Edit View Insert Modify Text Commands Control Window Help
....... = e | o
k& | Timeline | TweenDispIay %v @T b
i R I A R R EE B I——m———————.,
e =120 5 10 15 0 pL =
il Flayer1 / +» » o R B ~
& A
v |l | 2
S ¥ wae @ [t D % 0] 1 [20fs | o0s €3
o & _J}
2 I
View
Colors e
s IR
& .
w18
w
Opti Bt
= Ia 5
ol M | S

Figure 5.27: Tween Display Movie Clip

100 Implementation of a Smart Device Using GRAPE

In order to label the device display, such as the menu items and displaying time and date, the
label component provided by Flash or the text tool has been used.

There are three types of text. It can be static, dynamic or input text. The type of a text can be
selected from the property inspector, as shown in Figure 5.28.

Dynamic text fields can display text dynamically. Its content can change and can be
programmatically controlled at runtime. Input text fields are similar to those dynamic ones,
they allow users to enter text. They can be used while designing forms, surveys etc.

But only static text can not be changed.

Like movie clip instances, text fields, of type dynamic or input, can be instantiated. Their
instances are ActionScript objects that can be controlled through their properties and
methods.

Macromedia Flash provides various ways to display, format and manipulate text in an easy
manner. This can be done by setting the text attributes which are font, point size, style, color,
tracking, kerning, alignment and many other attributes. Further, timeline effects allow
developers and designers to apply pre-built animation effects to text, such as bouncing,
fading in or out, and exploding or what ever.

While working with Flash FLA files, Flash substitutes fonts in the FLA file with other fonts
installed in the local system. When the specified fonts are not in the system, options can be
selected to control the fonts which should be substituted. Furthermore, Flash allows designers
to create a symbol from a font so that it can be exported as a part of a shared library and can
be then used in other Flash documents.

Formatting input and dynamic text and creating scrolling text fields can be easily done using
ActionScript statements. In addition, dynamic and input text fields can handle events, which
can be captured to achieve some tasks, for example to trigger scripts.

¥ properties Filters | Parameters

A Dynamic Text v | A |adal v ujlv IR B 7 EE=EET
tfDate ﬁ:,\" 0 (v a! Normal + | |Bitmap text (no anti-alias) v Embed...
w:| 76.0 X:| -38.0 [4] |single line v A ¢ B Var: [auto kern
]
H:| 20.8 ¥:| 9.0 kel Target:

Figure 5.28: Property Inspector of Dynamic Text

Implementation of a Smart Device Using GRAPE

While authoring a document with Flash, assets can be imported into either the stage or to the
library of the current document. Assets can be, in this case, sound, video, bitmap images and

other graphic formats, such as PNG, JPEG, Al, and PSD.

Imported graphics are stored in the document's library. The library stores both the imported

assets into the document and symbols that have been created by Flash.

For example, the graphics that have been imported to the device prototype Flash document
are bitmaps file that represent the globe, as shown in Figure 5.29 below. By selecting them
from the stage, they can be converted, as mentioned previously, to a movie clip symbol. This
movie clip is named with “logo” and can be then instantiated and controlled at runtime.

Macromedia Flash Professional 8 - [sx1.fla*]
File Edit View Insert Modify Text Commands Contral Window

g
o Ol Dl 0o 0o Dl 0l

W W L] 1

Qe O>» 0K~

2

G NJINOe \ [~

Jo

i Actions

£ ™ properties Filters | Parameters

g Bitmap Instance of: logoGold.gif
eon |IE

® i

w: 96.0 |00 |

H:‘ 65.0 |~,—:| 0.0 |

Figure 5.29: The Logo Movie Clip

101

102 Implementation of a Smart Device Using GRAPE

Macromedia Flash 8 is a powerful tool for incorporating video footage into web-based
presentations. Flash Video offers technological and creative benefits that create immersive,
rich experiences that fuse video together with data, graphics, sound, and interactive control.
Flash Video enable putting video on a web page in a format that almost anyone can view
easily.

Video clips can be imported into Flash as embedded files. Like any imported asset, an
embedded video file becomes part of the Flash document. Video clips can be also converted
to a movie clip symbol and can be then instantiated and treated as an object in the sense of
object oriented way. Its properties can be then modified, as usual, using the property
inspector.

The video can be used to simulate, for example, the multimedia message system (MMS) for
mobile phones. For example, an instance of a video clip, as shown below in Figure 5.30
encircled within a red ellipsis, has been used for the device prototype to simulate playing
video clip on the device.

Macromedia Flash Professional 8 - [sx1.fla*]
File Edit View Insert Modify Text Commands Control Window Help

sx1.fla®

| Timeline || {3 %

[

TR

W

Colors i » Actions

="
i

Z W ||° Y Properties Filters | Parameters

& m EE? Embedded Video

EZH ‘ <Instance Name:= |

Opfions W:‘ 352.0 |K:| 175.0 | Source: baby.mpg {émbedded}
@ |E| & H:‘ 2200 |Y:| 1 | 352 % 240 pixels, 11,25 se

Figure 5.30: Instance of a Video Clip

Implementation of a Smart Device Using GRAPE

To achieve designing the visual appearance of the device prototype, many other Flash
symbols have been created. To get an overview about all the symbols which have been used
in the device prototype’s Flash document, the icon symbol, as shown in Figure 5.31 encircled
within a red circle, must be clicked with the mouse button. The pop up menu, as shown in
Figure 5.31 encircled within a red ellipsis, will appear and the selected symbol can be then
edited.

sx1.fla =

[

&)

.LE
<

| Timeline | % Scene 1

i & 10 15 20 25 30 35 40 45
I, | kins »
i -~
[P Actions 2Jo) DisplayBackground
@ User Interface Layer O g Alert
[ﬂ u 3 Arrow
\ _
[Model Layer « o« O3 II BattCapacity \ -
2 4aE] || 4] BB W] 3 [zofs | 02 & | | Batterylcon l', >

L dip3 I

‘I“ |

ConnecPower |
ConnectivityIcon
DateDisplay |
Display

| DisplayCover |
FMXISButton

| GlassCover |

|| Header [
logo |
Skin |
TimeDisplay /
TweenDisplay
Userlnterface

ideoClip

Figure 5.31: Overview of all Symbols in a Flash Document

5.3.1.3 The Skin Movie Clip of the Device Prototype

The skin movie clip represents the real visual appearance of the device prototype. It is
composed of a photo-realistic of the device itself and the device periphery.

With periphery is meant, for example, keyboard, touch screen, buttons or whatever, which
enable the end user to interact with the device using events sending. Within the scope of
device simulation or animation the events are nothing else than mouse or keyboard events
hence the virtual device is an application. These events should be captured and appropriately
handled. For this purpose and as known that Macromedia Flash provides a way to create
button symbol, the periphery can be designed easily.

In order to achieve designing the visual appearance, a photo-realistic image of the device
prototype, in this case Siemens mobile phone “SX1” [87], has been imported to the stage and
placed on the first layer named with “Phonelmage” of the timeline, as shown in Figure 5.32.

Further, to design the periphery of the virtual device prototype, the button component called
“FMXISButton” [86] has been used. This component has been instantiated several times and
placed, in a transparent way, over the phone image in a separate upper layer called “Buttons”
of the timeline, as shown in Figure 5.32.

103

104 Implementation of a Smart Device Using GRAPE

Macromedia Flash Professional 8 - [sx1.fla®]
File Edit View Insert Modify Text Commands Control Window Help

5 10 15 20 P H

[GlassCover
7 Phonelmage

e A 1 [120fes | oo

A

Thisisa
V= : trangparent
@ Q - . button
Colors !

Figure 5.32: The Skin Movie Clip of the Device Prototype

The button component has a very useful parameter called “onPress method name”, as shown
in Figure 5.33 encircled within a red ellipsis. The value of this parameter is an event name,
which can be generated when user presses the button. To each button component an event
name can be set and generated individually. In this way we can name the event that should be
generated depending on the needs and necessity.

Freely naming the events is very important to activate the SDL state charts and to link their
generated ActionScript classes from SDL models with the Flash graphic elements. For
instance, to switch to device prototype the end user has to press the button “ON” for two
seconds duration. As a Flash object, this button is an “FMXISButton” component, which can
generate the event “ON”, as shown in Figure 5.33 encircled within a red ellipsis.

Implementation of a Smart Device Using GRAPE 105

' * Properties | Fiters Parameters

| I,'. Component

w: 37.3 X:| 22.4

Listener instance name _root.btn
cnUragut method name | onUragliut
Press method name ON
onRelease method name | RELEASE
onReleaseOutside method...

onRolOut method name

| lanRalvar mathod nanes

H: 311 y| 1339

Figure 5.33: Button Component Parameters Inspector

This generated “ON” event is used in the SDL model, as illustrated in Figure 5.34 encircled
within a red ellipsis below. This event has the purpose to enable the transition between “Idle”
state and the so called “InterpretEvent” state.

As events are essential parts of state charts and, on the other hand, events can be freely
named and generated with the button component, the linkage between SDL models and Flash
elements can be done easily, which is naming the intended events the same in the SDL

models side and in Macromedia Flash side.
InterpretEvent

Y

SET(2000. Long) Long

L~

RELEASE <

- | | l

LONG_ON TO oo

R T 3
DisplayControl ESET(Long)

e

SHTO co

DisplayControl

L h

=) oD

Figure 5.34: The Use of a Generated Button Event in SDL State Charts

106

Implementation of a Smart Device Using GRAPE

5.3.1.4 The Display Movie Clip of the Device Prototype

The display is the most important and interesting part of the visual appearance of the device
prototype. Its design needs preliminary considerations before being done.

In other words, the interaction between the end user and the device can be noticed through
the changes of the display looks. It means, when the user pressed a certain button the logo
display, for example, will be shown or when pressing another button the main menu display
will appear and so on. Keeping in mind the states in a state charts and taking into
consideration the changing of the display looks an idea had arisen, which is to map the
diverse display looks to a diverse states. In this way the different looks of display can be
coordinated to state transitions. It means, when a state has been activated or entered in a state
charts the corresponding display look must be shown.

That’s why the timeline of the display movie clip has many key frames. The stage of each
key frame contains the graphic elements of the corresponding display look. To transition
between the frames, it means to change between the display looks, the timeline control
methods “gotoAndPlay()” or “gotoAndStop()” of ActionScript provided by Macromedia

Flash can be used.

For example, in the first frame of the timeline, the first display look (state) has been placed

on the stage, as shown in Figure 5.35 below.

Toois = Eﬁﬁp‘é?;ﬂa' - B X =
UL [—— o | e =2 A [.|
g Timemne L= = LETCASERE | e |
<t +«= B — I
- = [] = Y £ mn e = |
_ - el = B 1| | M|
S =2 N — w~r _ el T |
" r 0 El Mask v * = 0O |
" . | - . S — I
6 A B ws DispiayCover A7 B 0]
. | [~ P . 2 I
—~ — 1 W AeTL A7 Ui [I
= B? Displaystates « « |
y e B HeaderFooter « O
o & #¥' Background * ®m
2 =
Wiews
Colors

...........

Figure 5.35: First Display State

Implementation of a Smart Device Using GRAPE

Analogously to the first one, the second respectively the third display look (state) has been
placed on the stage of the second respectively the third key frame of the time line, as shown
in Figure 5.36 respectively in Figure 5.37. Then the corresponding display look can be drawn

and the needed assets can be imported.

Q@ .

E

LAY
an

L]
S8
s

L

=)

===] :
L & N o |
"N B Temelne | I]
S m T Sl | o
T — _ NN =
PR = L. -
P [PN w . mmil] - I
== Mask pos = e i
A oa BB reontarna w . EilIA I
& A = Dismaylave F5 =s =
T " Rilh i
s 2 == - -1 i o jo |
e 4 - | o T P g gy ™ . M i1 a
- - s SO =] L Y - = m -
- o T e 1] | |3]
2 & ﬂ__!@ﬁ ~
— B | — —1
2 2 e et mr LG I " L R |
o F " |
- -1
L1 N
~
—a

g

%

oot

*

|o‘l
k
I\

Figure 5.36: Second Display State

107

108

Implementation of a Smart Device Using GRAPE

Macromedia Flash fessianal 5 - Hhsnlaw fla®1 | I -
- - -+ = s & N _J__}]
£ . Trosrt MoAS. Tewt Commands Contol Wiadee Hels []
F w Modfe Text Commands Conbo! Whdew Heb H

|

b B = = —_— !
- =Wl Srepa 1 [Mecplay UM T - JRR100SG] bl |
L — R |
I..!. 'q_ —— 0 0 0 0 5 N !
e - (= 5 10 15 = .
s ™ — Lot jo]
P N | > A
[5 === I
A A B 2 I
- ™ ! == e o e e ._'_..... !
- — 1 [t > I
- ~ B DicnlavStates L jo |
A 2 B — o = I |
& o B [. I
. n _
[-=N. N . 1
Tt ™ _‘_-_
= = Bl r0 3 lea6 B
s e
£ = g
P ==l
View
Nl ey

S -

+

M
b

\

Figure 5.37: Third Display State

In the case that another display look is needed, it’s easy to extend the state charts with
another state. The new display look can be drawn easily in the next following key frame of

the timeline of the display movie clip symbol.

Implementation of a Smart Device Using GRAPE

5.4 Implementation of the UCM Layers

The UCM architecture, that has been presented previously, forms the basis of a scaleable
architecture for developing device prototypes. The architecture defines a separation between
the device interfaces and the underlying device behaviour layers. Applied to the creation of
device interfaces, the architecture promotes good design practice because it centralizes the
coordination of the user interface, making the interface behaviour easier not only to
understand and design but also to validate. Further, the architecture dictates controlled access
to system information.

In the following subsections, the implementation of each layer of the UCM architecture will
be presented and illustrated.

5.4.1 Implementation of the User Interface Layer

The user interface corresponds to the virtual visual appearance of the device prototype.
Accomplishing the implementation of this layer is nothing else than designing and
constructing the interface elements using Macromedia Flash environment.

The starting point is to place these elements on the stage, label them, initialize their properties
and prepare them for coordinated use. For this purpose, the display and the skin movie clip,
as explained in the previous subsections, have been used to construct the whole user
interface.

In order to achieve the design of the user interface, a new Flash document has been opened at
the beginning. By selecting the sub-menu item “New Symbol” from the menu item “Insert” a
new symbol of type movie clip named with “UserInterface” has been created, as shown in
Figure 5.38. The first layer of the timeline of the movie clip has been renamed to “Display”
in order to give designers and developers information about the kind of the content of this
layer. At the first frame of the “Display” layer an instance of the display movie clip has been
placed on the stage and has been named with “theDisplay”. In this manner the display
instance can be controlled programmatically, as explained previously, within the so called
“UserInterface” movie clip.

Analogously, another layer has been inserted above the “Display” layer, and has been
renamed to “Skin”. At the first frame of the “Skin” layer an instance of the skin movie clip
has been placed on the stage and has been named with “theSkin”, in order to control it at
runtime.

In other words, as simple as it sounds, the whole user interface of the device prototype is
nothing else than a Flash movie clip symbol that can be instantiated everywhere, every time
and in every way.

Further, for reusability purposes, the user interface can be converted easily to a component,
as explained in [82], assigned to an appropriate ActionScript class and installed in the
components panel of the Macromedia Flash environment.

109

110 Implementation of a Smart Device Using GRAPE

Macromedia Flash Professional 8 - [sx1.fla®]
File Edit Yiew Insert Modify Text Commands Control Window Help

A NN o P
LN O> VK~

4]] w1 [2oks om0

g

&
Jo

i

s A

%

Figure 5.38: User Interface Movie Clip

Implementation of a Smart Device Using GRAPE

5.4.2 Implementation of the Control Object Layer

The control object layer consists of the framework necessary to coordinate the user interface.
It means, it has the responsibility, on the one hand, to coordinate the interface elements, and
on the other hand to mediate the interface and the device internal functionality, which is the
model layer.

To design this layer efficiently, SDL state charts have been chosen to describe the behaviour
of the device while interaction with the end user.

In order to achieve designing the SDL models of the control object layer, the second most
important part of GRAPE, namely the SICAT tool set, particularly the Process Diagram (PD)
Editor, has been used.

As the control object layer is an extended state machine, preliminary considerations about its
states should be well thought out. Certainly, the states of the display movie clip, as explained
previously, must be taken into consideration while modelling the control object layer. It
means the states of the SDL model of the control object should be attuned to the states of the
display. Because, while interaction, the behaviour of a device can be noticed mostly on the
display changes.

As the device can be switched on or off, two states to represent this context of “switched on”
and “switched off” are needed. These states are named with “OFF” and “ACTIVE”. Two
additional states, namely “Navigation”, “Entertain” are necessary to describe the different
display states. Obviously, other states can be needed, while designing, for encapsulation or
coherence purposes.

The entire SDL model of the control object layer is illustrated in the following figures: Figure
5.39, Figure 5.40 and Figure 5.41.

Moreover, more detailed models can be seen on the companion CD-ROM (please refer to
Appendix C).

111

112 Implementation of a Smart Device Using GRAPE

‘| —] =1
1 3

=
-d —J=
t 1
D
glal<] | 1
Page: 2 Rowe 6 /6 Coburnec 3/9 $4433450 DFFiSMIn 5% Compress | AutoFeed

Figure 5.39: SDL. Model of The Control Object Layer (Part 1)

Implementation of a Smart Device Using GRAPE 113

.&wwmwwnrmwww

&:n E:ﬂ;‘:lﬂ:ﬂ!ﬁ!?
€ EIEEEE

0]0
0f0

= R

ole
0

= & C
=)

|
%
ﬂ

"H,‘"._,.""

:

‘ =)
=)D
>

i
i
HTH «

| |
Pagr2 | Row1/1 | Cokme2/8 X Companss _ Autofeed ‘51

Figure 5.40: SDL Model of The Control Object Layer (Part 2)

114 Implementation of a Smart Device Using GRAPE

E2 PD Editor - [Device1 : DisplayControl : DisplayControl]

i Fle Edt Search View (brary Transoipt Opons Window Heb - & X
=ENEIEENEEEIE | ||| @ [ns =
Xt | |=] |2 =EEIEE e iEEOEEREEIR
S ﬂ__.w(e W_..r< -
I l [[[
el sroee s > caces
I [. ' ' !
—J=— COCOC
D=
l [
|)
I !
=D
« 4 o
Page: 2 Row 1/1 Columex 2/ 8 5% Compress | AuboFeed

Figure 5.41: SDL Model of the Control Object Layer (Part 3)

To summarize: the control object layer is a set of an extended state machines modelled with
SDL state charts. From these models, ActionScript classes can be generated automatically.
These classes can be then bound to Flash document of the device prototype.

In this way, the control object can keep track of the context of the device and the
communication between the UCM layers can take place with sending messages and method
invocation. This means that the control object can, for example, send messages, on the one
hand, to interface elements such as setting a certain value. The interface elements are only
responsible for performing their immediate function, such as button press, display darkening
and so on, and inform the control object about what they did, not to take on any of the device

processing by themselve.

Implementation of a Smart Device Using GRAPE

5.4.3 Implementation of the Model Layer

The model layer is essentially responsible for the internal functionality of the device and
provides methods that can be invoked by the control object layer.

The model layer is the code necessary to support some internal system functionalities such as
battery level, menu items that are managed in XML file, device initialisation and so on. This
code can be in terms of ActionScript methods.

To design this layer efficiently, SDL state charts have been chosen to describe the internal
system behaviour and functionality of the device.

Like the control object layer, the SDL models of the model layer can be designed using the
Process Diagram (PD) Editor of SICAT Tool set.

The model layer is also an extended state machine that reacts to the device being switched on
and off. The states of the SDL model of the model layer should be attuned to the states of the
control object layer, because the model layer process is slightly expanded from that of the
control object.

As the device can be switched on or off, two states to represent this context of “switched on”
and “switched off” are needed. Other states can be needed, while designing, depending on
needs and necessity.

The entire SDL model of the model layer is illustrated in the following Figure 5.42.
Moreover, more detailed models can be seen on the companion CD-ROM (please refer to
Appendix C).

115

116 Implementation of a Smart Device Using GRAPE

PD Editor - [Device1 : Model : Model] M=
% File Edit Search View Library Transcript Options Window Help - | & X
FREIEEEEEE EeelEEEE =
x|t | [&=] [SEEEEIE I EEREE
=
seflp DEC_BATTLEV peTTess
SETE0000, DEC_ SETS0000, DEC_ eRsETREms
'
BATT_CAPACITY Decrement baz [
EATT_CARAD rV> EATT_CARAD rV>
E mphy Row: 12/ 2 Column: 9/ 9 ALL Eompressl

Figure 5.42: SDL Model of the Model Layer

Finally, the model layer is an extended state machine modelled with SDL state charts. From
these models, ActionScript classes can be generated automatically. These classes provide
methods that describe the internal system functionality and other system initialisation
mechanism and can be then bound to Flash document of the device prototype.

Implementation of a Smart Device Using GRAPE

5.5 Putting It All Together

As mentioned previously, GRAPE is based on two major components. The first one is called
“SICAT”, which is responsible for describing the behaviour of the device, for generating
code and supports the documentation of the device. The second one is “Macromedia Flash
Professional 8”, which achieves the graphical design, manages the graphic elements and
creates the virtual interactive device prototype.

The starting point is to design the visual appearance of the device prototype and to place the
graphic elements on the stage, label them, initialize their properties and prepare them for
coordinated use. Then the device behaviour can be modelled using SDL state charts.

The behaviour of the device has been modelled using SICAT Toolset. This latter manages the
SDL diagrams created by the Process Editor diagram and provides a tree overview of the
structure of the description of the so called device prototype system6 using the Control
Program of SICAT, as shown in Figure 5.43.

In order to achieve modelling the whole device prototype behaviour, four different process
diagrams have been created and which will be described as follows.

The first diagram is the so called “DisplayControl” of the Block Object named with
“ControlObjectLayer” on the Control Program of SICAT, as shown Figure 5.43.

This diagram represents the SDL model of the control object layer of the UCM architecture
and which has been explained in the subsection 5.4.2. The diagram can be opened by double
clicking on the Process Object Type from the Control Program of SICAT. From the SDL
model an ActionScript class can be generated. This class is called “DisplayControl” which
can be instantiated to represent the control object layer. Its code is saved in
“DisplayControl.as” file (please refer to Appendix C).

The second diagram is called “Model” of the Block Object named with “ModelLayer” on the
Control Program of SICAT, as shown Figure 5.43.

This diagram represents the SDL model of the model layer of the UCM architecture.

The diagram can be opened by double clicking on the Process Object Type from the Control

Program of SICAT. From the SDL model an ActionScript class can be generated. This class

is called “Model” which can be instantiated to represent the model layer. Its code is saved in

“Model.as” file (please refer to Appendix C).

6 System is a term of SDL terminology

117

118 Implementation of a Smart Device Using GRAPE

51 SICAT Control Program - d:\Siemens\SX1Prototype\Flash_... [= |[B][X]
Project Object Action CM User Commands Master Project View Options Help

g 2] EMEREE r[_rl_l_l_ll_-rl.!

EIChT is ready select | Select.. 40% 12/11j2006 | 1:16 PM

Figure 5.43: Device Prototype System on SICAT Side

Implementation of a Smart Device Using GRAPE

The third diagram is called “PressButton” of the Block Object named with
“UserlnterfaceLayer” on the Control Program of SICAT, as shown Figure 5.43.

This diagram, as shown in Figure 5.44, represents an SDL model of a press button and
describes the behaviour when the user pressed the button for longer than a certain amount of
time (i.e. 2 Seconds). In this way the opening behaviour of the device can be simulated.

The press button generates the events “ON” respectively “RELEASE” when it is pressed
respectively released. As shown in Figure 5.44, when the user presses the button the
transition between “Idle” and “InterpretEvent” states is triggered, and a timer is started to see
if the user holds down the button sufficiently long. If that timer elapses after 2 seconds a
timer event called “Long” will be generated. If the state machine is in state “InterpretEvent ”
and the event “Long” arrives, the event named with “LONG_ON” will be forwarded to the
control object instance called “co”.

This diagram is related to the button component that has been explained in subsection 5.3.1.3,
and is part of the user interface layer of the UCM architecture. The diagram can be opened by
double clicking on the Process Object Type from the Control Program of SICAT. From the
SDL model an ActionScript class can be generated. This class is called “PressButton” which
can be instantiated. Its code is saved in “PressButton.as” file (please refer to Appendix C).

119

120 Implementation of a Smart Device Using GRAPE

-~ Y :
I A
i]
! !
hY £
e
¥
s Ry s
i ! !
¢ .] !
i dis i i
! ! !
M r M
___,-I-'__"--..___
L~ o
A1 P
! —a £
1 = ¢ -
, N
b __/I_‘
[_
. e
e Ly L LAY
SET[Z000, Lanal Long i HELEASE Fd]
WA A J
N A
| Y _ e
| I
| 1
LONG_ONTD o \
e ¥ RESET{Leng)
e B8 Y i T ,(
Ji
%
A
ONTOwm \
‘DispiayControi”
I
S
4 3 3
I Y I A A
{] { il |
[InteroretEvent 1 [Idle 11 Idle 1
] { i {1 {
! | ! i !
. y N PN v

Figure 5.44: SDL Model of The Behavior of Press Button

Implementation of a Smart Device Using GRAPE

The fourth diagram is called “Display” of the Block Object named with “UserInterfaceLayer”
on the Control Program of SICAT, as shown Figure 5.43.

This diagram represents an SDL. model of the display and describes the different states of the
display movie clip. The states of this state machine are attuned to the states of the SDL
models of the control object layer. In this way, the communication between the control object
layer and the display can take place by sending signals between each other.

This diagram is related to the display movie clip that has been explained in subsection
5.3.1.4, and is part of the user interface layer of the UCM architecture. The diagram can be
opened by double clicking on the Process Object Type from the Control Program of SICAT.
From the SDL model an ActionScript class can be generated. This class is called “Display”
which can be instantiated. Its code is saved in “Display.as” file (please refer to Appendix C).

Let’ summarize in between: In order to achieve modelling the whole device prototype
behaviour four different process diagrams have been created. From these SDL models
ActionScript classes have been generated. The use of theses classes will then demonstrated as
follows.

Let’s turn back to the starting point which is designing the visual appearance of the device
prototype and to placing the graphic elements on the stage, labelling them, initializing their
properties and preparing them for coordinated use.

To achieve the task of interface panel arrangement, Macromedia Flash 8 environment has
been used. At the beginning, a new Flash document has been opened and saved under the
name “sx1.fla” (Please refer to Appendix D to see it).

The first layer, at the bottom, as shown in Figure 5.45, of the main timeline of the document,
and named with “Model Layer” represents the model layer of the UCM architecture. At its
first key frame an instance of the “Model” generated class has been declared. This frame
contains only ActionScript code, which is “model = new Model(this);”. In this way the state
machine of the model layer can be controlled programmatically through the instance called
“model”.

Analogously, the second layer called “Control Object Layer” represents the control object
layer. At its first key frame an instance of the “DisplayControl” generated class has been
declared. This frame contains only ActionScript code, which is

“co = new DisplayControl(this);”. In this way the state machine of the control object layer
can be controlled programmatically through the instance called “co”.

The third layer named with “User Interface Layer” represents the user interface layer of the
UCM architecture. At its first key frame instances of “PressButton” and “Display”’generated
classes have been declared. This frame contains only ActionScript code, which is

“btn = new PressButton(this); disp = new Display(this),”. In this way the state machine of
the press button respectively the display can be controlled programmatically through the
instances called “btn” respectively “disp”.

121

122 Implementation of a Smart Device Using GRAPE

In this manner all the state machines concerning the behaviour description have been bound
timely. These state machines have to be activated now. This has been done in the fourth layer
called “Actions” at its second key frame by called the method “Start()” to the corresponding
instance object. For example, with ActionScript statement “co.Start();” the state machine of
the control object layer can be activated.

F Macromedia Flash Professional 8 - [sx1.fla"] E”EWE',
File Edit View Insert Modify Text Commands Control Window Help

R , — = fj:_§=|
R & | Timeline | 5 Scene 1 B & |En v
bl [2a0:[l: » = » =
d"'f P . Bm & @ . rs
b A [User Interface Layer + « []|i3

O B ™D vodel Layer N 3
7 ¢ oaa @ || ¢ ®a W e 3 (206 [0z
© & 5
»? g

Views

O Q

Colors 4

e

cm

BABL

optons

f |
e

v
4 >

Figure 5.45: Device Prototype on Macromedia Flash 8 Side

Implementation of a Smart Device Using GRAPE

After finishing binding and activating the state machines concerning the behavior description
of the device, something must be done now with the visual appearance of the device
prototype. That’s what has happened by simply placing an instance of the user interface
movie clip symbol that has been explained in subsection 5.4.1 and named with “theUI”, on
the stage in the second key frame of the so called “User Interface Layer” layer.

With this last task the design of the functional device prototype has been finished and it needs
now to be started to enable interaction with it. Running the device prototype is the topic of
the following subsection.

5.5.1 How to Run the Device Prototype

In order to run the Device Prototype, the Flash document named with “sx1.fla” has to be
opened with Macromedia Flash 8 firstly. From the menu item called “Test Movie” of the
menu “Control” or typing the shortcuts “Ctrl+Enter”, the prototype movie clip can be started.

Then the prototype will appear, as shown in Figure 5.46. By pressing the right mouse button
on the “ON” button of the device for at least 2 seconds, the device prototype will be switched
on. Furthermore, the end user can interact with the device prototype by pressing the
corresponding button on the device. For example, to navigate between the menu rows of the
display up respectively down, the button “up” respectively “down” can be pressed. The
device prototype can be switched off by pressing again the right mouse button on the “ON”
button of the device for at least 2 seconds.

Further, Macromedia Flash provides a way to publish a Flash movie automatically by
embedding it in an HTML site. This can be done by simply selecting the menu item called
“Publish” from the menu “File”.

The generated HTML site, containing the device prototype as an embedded Flash movie, can
be then ameliorated depending on needs and can be transformed to a presentation or whatever
of the device. The HTML site can be, at the end, placed on a server, which enables the end
user to access it by typing the corresponding URL on its local browser and starting
experimenting and interacting with the virtual device prototype.

Finally, the Flash document of the device prototype and its relevant files can be seen on the
companion CD-ROM (please refer to Appendix C).

123

124 Implementation of a Smart Device Using GRAPE

SOFTKEY_LEFT =

CANCEL

Figure 5.46: The Device Prototype

Implementation of a Smart Device Using GRAPE 125

5.6 Summary

Prototypes of smart devices can be developed with GRAPE environment. On the one hand,
the device behaviour can be specified with SICAT toolset using SDL State charts.
ActionScript classes corresponding to SDL models can be then generated automatically.

On the other hand, the visual appearance of the device and its graphical components can be
designed with Macromedia Flash 8. This latter has been identified to be a powerful graphic
design environment. It provides a flexible methodology to design graphic elements or objects,
which are in terms of symbols in Flash terminology.

In order to design virtual device prototypes, a methodology for managing the complexity of
device prototype development, based on SDL state charts and the UCM architecture, has
been chosen.

The UCM architecture is a “top down” approach, explained by Horrocks [2], which supports
a centralized control access of the system information and facilitates the implementation and
inspection of how the interface is coordinated in each context.

UCM stands for “User Interface - Control Object - Model”, which describes a three-tiered
system to conceptualize the way a software program or device can be decomposed.

The UCM architecture is a scaleable architecture based on an engineering practice. It
separates the device elements into three layers.

The principles of code generation, the construction of the device graphic elements and the
implementation of each UCM layer were the topic of this chapter. Binding and managing all
these tasks together, to create a virtual device prototype has been explained. Its result in terms
of files and code can be seen on the companion CD-ROM (please refer to Appendix C).

126 Summary and Future Work

6 Summary and Future Work

GRAPE, (GUI Rapid Prototyping Environment) is a software development environment
intended for rapid GUI prototyping of smart devices. Its conception and design has been
achieved within the scope of this Thesis.

The most significant benefit, which GRAPE can provide for rapid prototyping, is saving time,
costs and resources. GRAPE holds many others important and tangible benefits, which can be
summarised as follows:

Quick time to market

Lower device prototype development costs

High quality stakeholder feedback at an early stage (requirement review)
Enabling usability and design review (look and feel)

Automatically generated code and documentation

Prototype deployment via Internet (Flash movie clip)

Fully customizable features (in-house tooling)

During the design and conception of GRAPE some areas for future work have been
identified. Some of these ideas can be implemented and adapted to GRAPE in order to
achieve the most important milestone of GRAPE, which is using Macromedia Flash as an
embedded device UI. It means the models and graphic elements created by GRAPE can be
reused in the real target device.

Macromedia provides a Flash player which has been ported, for example to x86, ARM,
MIPS, and many other processors, and to Windows XP Embedded, Windows CE, Linux,
QNX, and BeOS embedded operating systems. Since the Flash player runs at application
level and does not talk directly to hardware, the porting can be feasible. Further, Macromedia
also offers an SDK with source code, a test suite, and documentation for large volume device
manufacturers.

Bibliography 127

Bibliography

[1] Miro Samek. Practical Statecharts in C/C++. CMPBooks, CMP Media LLC San
Francisco, CA USA, 2002.

[2] Ian Horrocks. Constructing the User Interface with Statecharts. Addison-Wesley,
Harlow, England, 1999.

[3] Jonathan Kaye, David Castillo. Flash MX for Interactive Simulation. Delmar
Learning, Clifton Park, NY USA, 2003.

[4] Laurent Doldi. SDL Illustrated: Visually design executable models. TMSO, Toulouse,
FRANCE, 2001.

[5S] Laurent Doldi. UML 2 Illustrated: Developing Real-Time and Communications
Systems. TMSO, Toulouse, FRANCE, 2001.

[6] B.Budde, K. Kautz, K. Kuhlenkamp, H. Ziillighoven. Prototyping, An Approach to
Evolutionary System Development. Springer-Verlag, Berlin Heidelberg, Germany, 1992

[7]1 John Connel, Linda Shaffer. Object-Oriented RAPID PROTOTYPING. Prentice-Hall,
Englewood Cliffs, New Jersey USA, 1995

[8] Todd Grimm.User’s Guide to Rapid Prototyping. Society of Manufacturing Engineers
(SME), Michigan USA, 2004

[9] Sheshire Henbury. Rapid Prototyping.
URL: http://www.cheshirehenbury.com/rapid/what.html

[10] SDL Forum Society. Specification Description Language.
URL: http://www.sdl-forum.org/SDL/index.htm

[11] SDL Forum Society. Message Sequence Charts.
URL: http://www.sdl-forum.org/MSC/index.htm

[12] International Telecommunication Union. ITU Recommendation.
URL:http://www.itu.int/home/index.html

[13] Adobe.com. Macromedia Flash Professional 8.
URL:http://www.adobe.com/products/flash/flashpro/

[14] Walt Scacchi. Process Models in software engineering. In J.J. Marciniak (ed.),
Encyclopedia of Software Engineering, 2nd Edition, John Wiley and Sons, Inc, New
York, December 2001

[15] MacCormack A., Product-Development Practices that Work: How Internet
Companies Build Software. Sloan Management Review, 75-84, Winter 2001

[16] Balzer, R., T. Cheatham, and C. Green. Software Technology in the 1990’s: Using a
New Paradigm. Computer,16,11, 39-46, 1983

128 Bibliography

[17] Budde, R., K. Kuhlenkamp, L. Mathiassen, and H. Zullighoven. Approaches to
Prototyping. Springer-Verlag, New York, 1984

[18] Hekmatpour, S., Experience with Evolutionary Prototyping in a Large Software
Project. ACM Software Engineering Notes, 12,1, 38-41 1987

[19] John Crinnion. Evolutionary Systems Development, a practical guide to the use of
prototyping within a structured systems methodology. Plenum Press, New York, 1991.
Page 17

[20] S. P. Overmyer. Revolutionary vs. Evolutionary Rapid Prototyping: Balancing
Software Productivity and HCI Design Concerns. Center of Excellence in Command,
Control, Communications and Intelligence (C31), George Mason University, 4400
University Drive, Fairfax, Virginia

[21] Alan M. Davis. Operational Prototyping: A new Development Approach. IEEE
Software, September 1992. Page 71

[22] Software Productivity Consortium. Evolutionary Rapid Development. SPC document
SPC-97057-CMC, version 01.00.04, June 1997. Herndon, Va. Page 6

[23] E. Bersoff and A. Davis. Impacts of Life Cycle Models of Software Configuration
Management. Comm. ACM, Aug. 1991, pp. 104-118

[24] Ian Sommerville. Software engineering, Chapter 8, 6.Auf .. Addison-Wesley, Munich
Germany, 2001

[25] Nikolai N. Mansurov, Dmitri Vasura. Scenario-Based Approach to Rapid
Prototyping of Human-Machine Systems. Russian Academy of sciences, Moscow, 2001

[26] David P. Wood, Kyo C. Kang. A Classification and Bibliography of Software
Prototyping. Technical Report CMU/SEI-92-TR-013, ESD-92-TR-013, October 1992,
NTIS, U.S., Department of Commerce, Springfield, VA 22161

[27] Vasian Cepa.Product Line Development for Mobile Device Applications with Attribute
Supported containers. TU Darmstadt, Germany, 2005

[28] Edward A Lee. Embedded Software. Advances in Computers (M. Zelkowitz, editor),
Vol. 56, Academic Press, London, 2002

[29] Report of the Defense Science Board Task Force on Military Software. Office of the
Under Secretary of Defense for Acquisition, US DoD, September 1987.

[30] Monkevich, O. SDL-based Specification and Testing Strategy for Communication
Network Protocols. In: Proc. 9 th SDL Forum, Montreal,Canada, June 21-26, 1999

[31] Boehm, B. W., et al. Some Experience with Automated Aids to the Design of Large-
Scale Reliable Software. IEEE Transactions on Software Engineering, vol 1, no 1,
March 1975.

[32] Tavolato, P., K. Vincena. A Prototyping Method and Its Tool. In Approaches to
Prototyping, R. Budde et al., eds., Berlin: Springer-Verlag, 1984. pp. 434-446

Bibliography 129

[33] Bugs in the Program: Problems in Federal Government Computer Software
Development and Regulation. Staff Study by the Subcommittee on Investigations and
Oversight, One Hundred First Congress, April 1990

[34] Software Technology Plan: Vol. II Plan of Action. Draft 5, August 15, 1991

[35] Basili, V., and Weiss, D.. Evaluation of a Software Requirements Documents by
Analysis of Change Data. Proceedings of the 5th ICSE, 1981

[36] W. Royce. Managing the Development of Large Software Systems. IEEE WESCON,
August 1970, pp 1-9.

[37] Mahil Carr, June Verner. Prototyping and Software Development Approaches. City
University of Hong Kong 83 Tat Chee Avenue Hong Kong, College of Information and
Technology Drexel University 4131 Chestnut St Philadelphia PA 19104, 97/04

[38] Vicki L. Sauter. Prototyping. URL:
http://www.umsl.edu/~sauter/analysis/prototyping/proto.html. University of Missouri,
St. Louis, College of Business Administration, 8001 Natural Bridge Road, St. Louis ,
MO 63121-4499, USA, May 1999

[39] Sage, A.P., J.D. Palmer. Software Systems Engineering. John Wiley and Sons 1990.

[40] DeSoi J. F., Lively W. M., Sheppard S.V..Graphical Specification of User Interfaces
With Behavior Abstraction. Department of Computer Science, Texas A&M University,
CHI 89 Proceedings May 1989

[41] Clif Kussmaul, Roger Jack. User Interface Prototyping: Tips Amd Techniques.
Consortium for Computing Sciences in Colleges (JCSC 21, 6), June 2006

[42] Arthur W. Mansky. Improving the Design of User Interfaces Through Rapid
Prototyping. Vitro Corporation Silver Spring, MD 20906

[43] J. Reese, R. Twiddy, L. Buchanan, M. Tarka, and K. C. Leung. GUIDES: A Tool
Jor Rapid Prototyping of User-Computer Interfaces. Proceedings of ACM Computer
science Conference March 1985

[44] Vicki L. Sauter. The Analysis and Prototyping of Effective Graphical User Interfaces.
URL: http://www.umsl.edu/~sauter/analysis/prototyping/intro.html . University of
Missouri, St. Louis, College of Business Administration, 8001 Natural Bridge Road, St.
Louis , MO 63121-4499, USA, August 2000

[45] Maha Boughdadi, Robert Busser. An Industrial Application of an Integrated UML
and SDL Modeling Technique. Compsac, p. 54, Twenty-Third Annual International
Computer Software and Applications Conference, 1999

[46] J. Marrenbach. Rapid Development and Evaluation of Interactive Systems.
Proceedings of the 5th ERCIM Workshop User Interfaces for All, Volume Report 74,
pp- 81-86, Dagstuhl 1999

130 Bibliography

[47] J-P. Babau and A. Alkhodre. A development method for PROtotyping embedded
SystEms by using UML and SDL (PROSEUS). In workshop SIVOEES 2001 - ECOQOP,
Budapest, 2001.

[48] Sasu Tarkoma. Specification Languages and Their Use (Case: AsmL). Seminar on
Generative Programming University of Helsinki, Department of Computer Science,
Spring 2003

[49] L. F. Pires, M. van Sinderen, C. R. G. de Farias, J. P. A. Almeida. Use of Models
and Modelling Techniques for Service Development. Proceedings of the 3rd IFIP
International Conference on e-Commerce, e-Business and e-Government (I3E 2003) 22-
25 September 2003, Guaruj4, Brazil.

[50] J. Floch, R. Brk. Using SDL for modeling behavior composition. In: Proc. of the 11th
Int. SDL Forum, Stuttgart, Germany, LNCS 2708, Springer (2003)

[51] Oystein Haugen, Birger Mgller-Pedersen, Thomas Weigert. Structural Modeling
With UML2.0. Classes, Interactions and State Machines. Ericsson, Motorola, Inc.

[52] Nikolai N. Mansurov, Robert L. Probert. Improving time-to-market using SDL tools
and techniques. Computer Networks: The International Journal of Computer and
Telecommunications Networking, Volume 35 , Issue 6 (May 2001)

[53] Ananda Amatya. Modelling Software Development Using UML. Department of
Computer Science. University of Warwick. Coventry, CV4 7AL, UK.

[54] ISO 13407 - Draft: User centred design process for interactive systems. International
Organisation for Standardisation, Genf, 1998.

[55] G. Guizzardi, L. Ferreira Pires, M. van Sinderen. On the role of Domain Ontologies
in the Design of Domain-Specific Visual Languages. In: 2nd Workshop on Domain-
Specific Visual Languages, ACM OOPSLA, 2002.

[56] J. Marrenbach. Modelling Complex Systems using Statecharts applied to the User
Interface of an Advanced Flight Management System. In: Proc. of the IEEE
International Conference on Intelligent Engineering Systems INES 98, Vienna, Austria,
pp- 43-48.

[57]1 D. Harel. Statecharts: A Visual Formalism for Complex Systems. In: Science of
Computer Programming, North Holland, Elsevier Science Publishers, Vol. 8 pp. 231—
274.

[58] Yan Jin, Robert Esser, Jorn W. Janneck. Describing the syntax and semantics of
UML Statecharts in a heterogeneous modelling environment. Proceedings
DIAGRAMS 2002, 2002.

[59] Iftikhar Azim Niaz, Jiro Tanaka. Mapping UML Statecharts to JAVA Code. Institute
of Information Sciences and Electronics University of Tsukuba. Tennoudai 1-1-1,
Tsukuba, Ibaraki 305-8573 Japan

[60] The Object Management Group. OMG Unified Modeling Language Specification.
URL: http://www.uml.org/

Bibliography 131

[61] Jonathan Kaye, David Castillo. Flash MX for Interactive Simulation (Chapter 7).
Delmar Learning, Clifton Park, NY USA, 2003.

[62] The International Telecommunications Union-Telecommunications (ITU-T)
(formerly CCITT) Recommendation Z.100. Specification and Description Language
(SDL). Geneva, March 1992.

[63] The O.M.G. Group. Unified Modeling Language Specification, UML version 2.0.
URL: http://www.omg.org/technology/documents/formal/uml.htm

[64] International Engineering Consortium (IEC). Specification Description Language.
URL: http://www.iec.org/online/tutorials/sdl/index.html

[65] Rick Reed. SDL-2000 for New Millennium Systems. Telektronikk 4.2000, p 20-35.
URL: http://www.telenor.com/telektronikk/

[66] ITU-T Standardization Sector.
URL:http://www.itu.int/publications/sector.aspx?sector=2

[67] Jun Gong, Peter Tarasewich. Guidelines For Handheld Mobile Device Interface
Design. College of Computer and Information Science, Northeastern University 360
Huntington Ave, 161CN, Boston, MA 02115 USA.

[68] N Kohtake, K Matsumiya, K Takashio, H Tokuda. Smart Device Collaboration for
Ubiquitous Computing Environment. Workshop of Multi-Device Interface for
Ubiquitous Peripheral, Keio University Japan 2003.

[69] Celine Pering. Interaction design prototyping of communicator devices: towards
meeting the hardware-software challenge. Interactions, v.9 n.6, p.36-46
(portal.acm.org), November & December 2002.

[70] Loren Terveen, Elena Papavero, Mark Tuomenoksa. DynaDesigner: A Tool for
Rapid Design and Deployment of Device-Independent Interactive Services. AT&T Bell
Laboratories, CHI 95 Mosaic of Creativity. May 7-11 1995.

[71] Flash Developer Center. URL: http://www.adobe.com/devnet/flash/

[72] ActionScript and Object-Oriented Programming,
URL: http://www.adobe.com/devnet/flash/actionscript.html

[73] Flash ActionScript 2.0 .
URL: http://www.adobe.com/devnet/flash/articles/actionscript_guide 07.html

[74] Microsoft Windows Metafiles (WMF).
URL: http://msdn2.microsoft.com/en-us/library/ms536391.aspx

[75] Microsoft Visual Studio .NET.
URL: http://msdn2.microsoft.com/en-us/library/fx6bk1f4(vs.71).aspx

[76] ActiveX Controls.
URL:http://msdn.microsoft.com/library/default.asp?url=/workshop/components/activex/i

ntro.asp

132 Bibliography

[77] How to: Creating a Wizard With Visual Studio.
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsintro7/html/vxconcreatingwizard.asp

[78] Siemens Gigaset Phones.
URL.: http://gigaset.siemens.com/shc/1,1935.,hg en 0 11729 rArNrNrNrN,00.html

[79] Working with Movie Clips.

URL:http://livedocs.macromedia.com/flash/8/main/wwhelp/wwhimpl/common/html/ww
help.htm?context=LiveDocs_Parts&file=00001399.html

[80] Using the Stage.
URL:http://livedocs.macromedia.com/flash/8/main/wwhelp/wwhimpl/common/html/ww
help.htm?context=LiveDocs_Parts&file=00000033.html

[81] ActionScript 2.0 Language Reference. URL:

http://livedocs.macromedia.com/flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.
htm?context=LiveDocs Parts&file=Part4 ASLR2.html

[82] Creating a Component Movie Clip. URL:
http://livedocs.macromedia.com/flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.
htm?context=LiveDocs Parts&file=00003024.html

[83] Designs Patterns: Model-View-Controller (MVC). URL:
http://java.sun.com/blueprints/patterns/MVC.html

[84] Flash 8, Online Documentation. URL:
http://livedocs.macromedia.com/flash/8/main/wwhelp/wwhimpl/js/html/wwhelp.htm?hre
f=00001386.html

[85] Creating Flash Components. URL:
http://www.adobe.com/support/flash/applications/creating _comps/

[86] Jonathan Kaye, David Castillo. The Flash Simualtion Website. URL:
http://www.flashsim.com/

[87] BenQ-Siemens Mobile Phones Portal. Siemens SX1 Device Model. URL.:
http://www.beng-
siemens.com/cds/frontdoor/0,2241,hg_en_0_130289 0 _xcs%253A130989 xcp%253A1
32668.00.html

Appendix A: Guide to notation of UML State charts

Appendix A: Guide to notation of UML State charts

Transition

—_

A simple transition is a relationship between two states indicating that an object in the first
state will enter the second state and perform certain specified actions when a specified event
occurs, if specified conditions are satisfied. On such a change of state the transition is said to
“fired”. The trigger for a transition is the occurrence of the event labeling the transition. The
event may have parameters, which are available within actions specified on the transition or
within actions initiated in the sub-sequent state. Events are processed one at a time. If an
event does not trigger any transition, it is simply ignored. If it triggers more than one
transition within the same sequential region (i.e., not in different concurrent regions), only
one will fire; the choice may be nondeterministic if a firing priority is not specified.

Initial Pseudo State

The initial element is used by State Machine diagrams. The initial element is a pseudo-state
used to denote the default state of a composite state; there can be one initial vertex in each
region of the composite state.

Entry Point

O

Entry points are used to define the beginning of a state machine. An entry point exists for
each region, directing the initial concurrent state configuration.

State

A state represents a situation where some invariant condition holds; this condition can be
static, i.e. waiting for an event, or dynamic, i.e. performing a set of activities. State modeling
is usually related to classes, and describes the allowable states a class or element may be in
and the transitions that allow the element to move there. There are three types of states:
simple states, composite states and submachine states.

133

134 Appendix A: Guide to notation of UML State charts

Furthermore, there are pseudo-states, resembling some aspect of a state, but with a pre-
defined implication. Pseudo-states are used to model complex transitional paths, and classify
common state machine behavior.

Choice

<

A state diagram expresses a decision when guard conditions are used to indicate different
possible transitions that depend on Boolean conditions of the owning object. UML provides
shorthand for showing decisions.

The choice pseudo-state is used to compose complex transitional paths, where the outgoing
transition path is decided by dynamic, run-time conditions. The run-time conditions are
determined by the actions performed by the state machine on the path leading to the choice.

Exit Point

Exit points are used in submachine states and state machines to denote the point where the
machine will be exited and the transition sourcing this exit point, for sub-machines, will be
triggered. Exit points are a type of pseudo-state used in the state machine diagram.

Note

Appendix A: Guide to notation of UML State charts 135

Substate

SubmachineState

You can add a sub-machine element to a State Machine diagram. A sub-machine element is a
pointer to a child State Machine diagram.

Final State

®

There are two nodes used to define a final state in an activity, both defined in UML 2.0 as of
type "final node". The final element, shown above, indicates the completion of an activity -
upon reaching the final, all execution in the activity diagram is aborted. The other type of
final node, flow final, depicts an exit from the system but has no effect on other executing
flows in the activity.

Terminate

X

The terminate pseudostate indicates that upon entry of its pseudostate, the state machine's
execution will end.

History

®

There are two types of history pseudo-states defined in UML, shallow and deep history.

A shallow history sub-state is used to represent the most recently active sub-state of a
composite state; this pseudo-state does not recurse into this sub-state's active configuration,
should one exist.

136 Appendix A: Guide to notation of UML State charts

Deep History

®

A deep history sub-state, in contrast, reflects the most recent active configuration of the
composite state. This includes active sub-states of all regions, and recurses into those sub-
states' active sub-states, should they exist. At most one deep history and one shallow history
can dwell within a composite state.

Appendix B: Guide to notation of SDL 92 State charts Supported by SICAT 137

Appendix B: Guide to notation of SDL 92 State charts Supported
by SICAT

Comment Symbol

The Comment symbol can be used to insert a comment into the diagram. One or more
comment symbols can be placed at to the right of any SDL symbol.

Text-Symbol

Process Start Symbol

The Process Start symbol defines the starting point of a process whereby each process is
assigned exactly one start symbol.

Process Stop Symbol

State Symbol

The State symbol is used to specify a state.

138 Appendix B: Guide to notation of SDL 92 State charts Suppor

Next State Symbol

The Next State symbol is used to specify the end of a transition and the transition into another
state.

State Continue Symbol

T TR

The State Continue symbol is a combination of the Next State symbol and a State symbol.

Procedure Call Symbol

The Procedure Call symbol specifies a procedure call.

Macro Call Symbol

The Macro Call symbol specifies a macro call.

Appendix B: Guide to notation of SDL 92 State charts Supported by SICAT 139

Input Right and Input Left Symbol

The two Input symbols are used for specifying the start of a transition: the transition is
executed if the event identified in the Input symbol occurs.

Save Symbol

The Save symbol is used for buffering events in a Save queue.

Procedure Start Symbol

The Procedure Start symbol specifies the start of a procedure definition.

Macro Inlet Symbol

A Macro can be handled as a standard macro or a procedure macro. A standard macro can be
switched to a procedure macro with the keyword "@PROCEDURE" in the informal text level
of the Macro Inlet symbol.

140 Appendix B: Guide to notation of SDL 92 State charts Suppor

Procedure Return Symbol

The Procedure Return symbol specifies the end of a procedure definition.
If the procedure has to supply a function value, the Procedure Return symbol has to contain
the statement "return <function value>;" as last statement in the code text level.

Macro Outlet Symbol

The Macro Outlet symbol specifies the end of a macro definition.
If the Macro is of Type "Procedure Macro" (keyword in Macro Inlet symbol) the Macro
Outlet symbol is handled like a Procedure Return symbol.

Output Right and Output Left Symbol

The Output symbol is used to specify the sending of a message to a process.

Task Symbol

The Task symbol is used to specify actions. These actions must be specified as ActionScript
statements in the code text level.

Appendix B: Guide to notation of SDL 92 State charts Supported by SICAT 141

Process Create Symbol

The Process Create symbol is used for starting a new process.

Decision Right and Decision Below Symbol

The decision symbol is used for specifying branches when some conditions are satisfied.

Selection Symbol

A case expression consists of a Selection symbol and several Branch symbols.

Example: Selection Structure:

selector selector

142 Appendix C: The Companion CD-ROM

Appendix C: The Companion CD-ROM

The CD-ROM accompanying this thesis includes the entire project of the device prototype.
This project comprises as well all generated ActionScript classes and Flash movies and
documents as the SDL models of the device prototype.

As far as prerequisite tools are affected, the reader must have a copy of Macromedia Flash
Professional 8 to explore the content of the flash resources, generated classes and to run the
device prototype, which is nothing else than a flash movie .

For this purpose, A free 30-day trial version of Macromedia Studio 8 can be downloaded
from http://www.adobe.com/products/studio.

