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Abstract

In my master's thesis I elaborate on strip-shredded text document

reconstruction. Contrary to conventional document reconstruction � which

uses color or shape information of images � text document reconstruction

has not been researched very well. Nowadays it is common to destroy

paper documents by shredding them, i.e. producing paper strips. This work

tries to �nd ways to undo the process. First and foremost I describe the

problem formally. Next I de�ne a way to evaluate problem instances. A set

of improvement strategies are introduced which help the evaluation process.

De�ned construction heuristics yield good results in reasonable amount of

time. Then optimization algorithms try to �nd a good arrangement of the

strips, ideally the correct one. A demo application simulates the shredding

process of a sample page. Then this page is reconstructed using the above

mentioned evaluation techniques and several optimization techniques like

multistart variable neighborhood search, simulated annealing and iterated

local search. Extensive tests were run with a 60 instance test set. The

implemented application reconstructed more than half of the problem

instances correctly and is also able to reconstruct several pages at once.



Zusammenfassung

In meiner Masterarbeit arbeite ich die Wiederherstellung von durch

Shredder zerstörter Textdokumente aus. Im Gegensatz zu herkömmlicher

Dokumentenwiederherstellung � die auf Farb- oder Umrissinformationen

beruht � ist die Wiederherstellung von Textdokumenten noch nicht

eingehend untersucht worden. Normalerweise werden Papierdokumente

mittels Shredder zerstört, d.h. in längliche Papierstreifen zerlegt. In dieser

Arbeit wird versucht, diesen Prozess rückgängig zu machen. Zuallererst

beschreibe ich die Problemstellung formal. Als nächstes werde ich eine

Möglichkeit aufzeigen wie Lösungen zu diesem Problem eingeschätzt werden

können. Weiters werden eine Reihe von Verbesserungsstrategien vorgestellt,

die bei der Evaluierung helfen. De�nierte Konstruktionsheuristiken ermitteln

gute Lösungen innerhalb kurzer Zeit. Mittels Optimierungsalgorithmen wird

nun versucht eine möglichst gute Anordnung der Schnipsel zu �nden, im

Idealfall die ursprüngliche. Eine Testapplikation simuliert den Prozess des

Shreddens einer Seite. Diese Seite wird dann mittels der oben beschriebenen

Evaluierungstechniken und Optimierungsmethoden wie Multistart Variable

Neighborhood Search, Simulated Annealing und Iterated Local Search wieder

zusammengesetzt. Es wurden ausführliche Tests mit einem 60 Instanzen

Testset durchgeführt. Die implementierte Applikation konnte mehr als die

Hälfte aller Testinstanzen wieder korrekt zusammensetzen und kann auch

mehrere Seiten auf einmal wiederherstellen.



Danksagung

Ich möchte mich vor allem bei meinen Eltern Helmut und Paula Morandell

bedanken, die mir in erster Linie das Studium, und damit auch diese Arbeit,

ermöglicht haben.

Weiters danke ich besonders meinem Betreuer Matthias Prandtstetter, dem

ich viele interessante Gespräche und viele wichtige Ideen und Verbesserungen

verdanke.

Mein weiterer Dank gilt Robert Morandell und Mirja Biedermann für ihre

Unterstützung und all meinen Studienkollegen, die mich durch mein Studium

begleitet haben.



Contents

1 Introduction and motivation 1

1.1 Paper shredders . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Related Problems . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Problem de�nition 5

2.1 Illustration as a graph . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Problem complexity . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Problem boundary . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Related work 10

4 Problem evaluation 14

4.1 Pixel distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Pixel distance evaluation . . . . . . . . . . . . . . . . . . . . . 15

4.3 Strip distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Objective function . . . . . . . . . . . . . . . . . . . . . . . . 17

4.5 Additions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.5.1 Blank strip elimination . . . . . . . . . . . . . . . . . . 18

4.5.2 Empty border penalization . . . . . . . . . . . . . . . . 19

4.5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . 19

4.6 Measuring the solution quality . . . . . . . . . . . . . . . . . . 20

4.7 Survey of the evaluation . . . . . . . . . . . . . . . . . . . . . 21



5 Solving the problem 22

5.1 Local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Variable neighborhood search . . . . . . . . . . . . . . . . . . 24

5.3 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 Tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.5 Evolutionary computation . . . . . . . . . . . . . . . . . . . . 26

5.6 Ant colony optimization . . . . . . . . . . . . . . . . . . . . . 26

6 Construction heuristics 27

6.1 Forward page construction . . . . . . . . . . . . . . . . . . . . 27

6.2 Duplex page construction . . . . . . . . . . . . . . . . . . . . 27

6.3 Randomized duplex page construction . . . . . . . . . . . . . 28

7 Implementation 30

7.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.2.1 Solution representation . . . . . . . . . . . . . . . . . . 33

7.2.2 Insertion moves . . . . . . . . . . . . . . . . . . . . . . 34

7.2.3 Swap moves . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2.4 Insertion block moves . . . . . . . . . . . . . . . . . . . 37

7.2.5 Multistart VND . . . . . . . . . . . . . . . . . . . . . . 38

7.2.6 Iterated local search optimization . . . . . . . . . . . . 41

7.2.7 Simulated annealing optimization . . . . . . . . . . . . 41

7.2.8 Exhaustive search . . . . . . . . . . . . . . . . . . . . . 42

7.3 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



8 Tests 44

8.1 Evaluation of the construction heuristics . . . . . . . . . . . . 46

8.2 Evaluation of the optimization . . . . . . . . . . . . . . . . . . 48

8.3 Investigation of ε . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.4 Investigation of di�erent penalizations . . . . . . . . . . . . . 53

8.5 Comparison of other optimization methods . . . . . . . . . . . 55

8.6 Reconstruction of multiple pages . . . . . . . . . . . . . . . . 55

8.7 Resolution and number of strips . . . . . . . . . . . . . . . . . 58

9 Conclusion and future work 59

A Test instances 61

B Construction heuristic data 63

C Test results 69

D Test images 72



List of Figures

1 Test page with shredding marks . . . . . . . . . . . . . . . . . 7

2 Problem instance with 4 strips . . . . . . . . . . . . . . . . . . 9

3 Close up of a cut between to strips . . . . . . . . . . . . . . . 14

4 Exemplary instances with quality 2, 3, 4 and 5 . . . . . . . . . 21

5 Pseudocode of forward page construction . . . . . . . . . . . . 28

6 Pseudocode of duplex page construction . . . . . . . . . . . . 29

7 Pseudocode of randomized duplex page construction . . . . . . 31

8 Work�ow of the demo application . . . . . . . . . . . . . . . . 32

9 Pseudocode for �tness updates . . . . . . . . . . . . . . . . . . 35

10 Pseudocode for an insertion move . . . . . . . . . . . . . . . . 36

11 Pseudocode for a swap move . . . . . . . . . . . . . . . . . . . 37

12 Pseudocode for an insertion block move . . . . . . . . . . . . . 39

13 Pseudocode of the multistart VND . . . . . . . . . . . . . . . 40

14 Pseudocode of iterated local search . . . . . . . . . . . . . . . 41

15 Pseudocode of simulated annealing . . . . . . . . . . . . . . . 42

16 Pseudocode for exhaustive search . . . . . . . . . . . . . . . . 43

17 Sample solution for the P2 test instance . . . . . . . . . . . . 45

18 Construction heuristic results for P1 with 150 dpi . . . . . . . 47

19 Construction heuristic results for P5 with 600 dpi . . . . . . . 47

20 Average results for the construction heuristics . . . . . . . . . 48

21 Average results for the construction heuristics for each page . . 49

22 Typical mismatches . . . . . . . . . . . . . . . . . . . . . . . . 50

23 Optimization results for all instances with 150 dpi . . . . . . . 50



24 Optimization results for all instances with 600 dpi . . . . . . . 51

25 Average optimization results regarding strip width . . . . . . . 52

26 Average optimization results for all test pages . . . . . . . . . 52

27 Results with di�erent ε values for P4 . . . . . . . . . . . . . . 53

28 Average results with di�erent ε values . . . . . . . . . . . . . . 54

29 Results with di�erent pixel penalization . . . . . . . . . . . . . 54

30 Results for ILS, SA and VND for 300dpi and 20 SW . . . . . . 56

31 Average optimization results for ILS, SA and VND . . . . . . 56

32 Result for a multiple page instance . . . . . . . . . . . . . . . 57

33 Comparing resolution with strip widths . . . . . . . . . . . . . 58

34 Test page P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

35 Test page P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

36 Test page P3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

37 Test page P4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

38 Test page P5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

39 Test page Q1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



1 INTRODUCTION AND MOTIVATION 1

1 Introduction and motivation

The reconstruction of destroyed information on paper is of emerging interest

in di�erent areas, including the private, business and the military sector.

Disposing information written down on paper is a standard process and

often not done carefully enough. Skoudis [21] describes a technique known

as dumpster diving that tries to utilize this behavior to gain access to

sensitive information. People often just throw away account details or other

information. It is easy to search trash and gather relevant information.

There are several ways to protect oneself from these threats. A simple

form of protection is to at least tear the papers before disposing them.

Skoudis writes that �a well-used paper shredder� presents the best defense

against dumpster diving. But there are even other applications where

reconstruction may become necessary. Forensic institutions may have an

interest in reconstructing paper destroyed by a presumable delinquent or

even government agencies may want to recover lost information. Another

great �eld of application is in archeology. Excavations often yield ancient

artifacts that are broken or scattered [18]. These need to be reconstructed.

As one may guess there are a lot of ways to get rid of information on paper.

Big institutions use so called burn bags, which are containers that eliminate

paper physically e.g. with �re. But in this work the main focus is on using

paper shredders which produce strip output.

Having access to shredded source material is only the �rst step in regaining

the information. The main problem is to sort or order the bits and pieces

optimally or at least semi-optimally. Doing this by hand can be tremendously

time consuming or even infeasible. Computer assistance can de�nitely be an

advantage in taking over the tedious task of trying out countless variations

of piece placement.

Though there are some proprietary approaches to this problem from

commercial companies this topic has not been thoroughly and lengthly

examined in the academic environment.
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1.1 Paper shredders

As we are dealing mostly with output from paper shredders I want to take

a quick excursion into the world of mechanic shredders. Paper shredders

come in many di�erent �avors. Besides noise level and shredding speed the

most important attribute is the output quality. Shredded material should be

impossible to reconstruct. DIN1 32757 describes 5 di�erent security levels

for shredder output. The main di�erence between these security levels are

their constraints put on the output. Level one just requires that processed

output has a width of at most 12 mm. Normally shredders produces strips

by vertically cutting pages. On the contrary level �ve requires the shredder

to produce output that cannot be reconstructed with current state of the

art. The output must have at most 0.8 mm width and 15 mm length. This is

typically achieved with some sort of cross cutting. The intermediate security

levels o�er gradient measure of immunity from reconstruction.

Basically there are several methods for a shredder to process paper [4]:

• Strip-cut

Most shredders fall into this category. This type most commonly has

several rotating blades which cuts the paper vertically into rectangles.

• Cross-cut

This type of shredder has two rotating drums which stamp small

rectangles or diamond shaped pieces out of the input paper.

• Other methods

There is a whole array of shredders which use other methods of

destroying paper e.g. hammermills which press the input material

through a �ne screen. We will not look into these any deeper.

1German Institute for Standardization
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1.2 Related Problems

There are several problems that are related to reconstructing shredded

documents. In [14] Justino et al. describes a procedure to reconstruct

documents that have been shredded by hand. Manually shredded pieces have

quite di�erent characteristics than those coming from mechanically shredded

documents. First of all the cuts are apparently not parallel and at the same

interval. More important two pieces torn apart by hand need not have the

same edge. Paper has the awkward attribute that the edge of a torn piece

may have an inner and an outer boundary. Justino proposes a polygonal

approximation method to simplify the complexity of a piece. Then several

features are extracted from each piece, such as angle between edges and

distance between vertices. The next step is to calculate the similarity between

pieces. A global search is done next. This algorithm gives good results for

small instances but drops for large numbers of fragments.

Another related problem is the automated assembly of a jigsaw puzzle. Here

all the pieces have almost the same surface area � almost a square � but the

edges are di�erent. For border pieces the edge is straight, all other edges have

some sort of curve. So the matching algorithm has to �nd only a partial match

between pieces. Wolfson [29] describes such curve matching techniques.

1.3 Outline

In this work I am going to examine the problem of simulating strip cut

shredders and trying to reconstruct the resulting pieces automatically. The

simulation process is relatively simple. The input consists of a picture �le and

is transformed into a XML �le, which holds all necessary information about

the snippets. This transformation tries to extract certain features from the

source material. There are many di�erent approaches to this. Ukovich [26] for

example utilizes speci�c MPEG-7 descriptors, among others, color structure

histograms or contour shapes. In our approach we examine the edges of shreds
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a little bit more in detail and try to �nd corresponding edges on other pieces.

Especially with written (as opposed to pure image) documents cuts through

a character leave points of color at the edges which correspond in pattern.

As already noted the input data is not scanned in shredded paper but

simulated data. Therefore we neglect any image recognition problems which

might arise from scanning in strips e.g. the strip is not scanned in as a

straight strip but bended or added noise from the scanning process. Section

2 elaborates thoroughly on the underlying problem de�nition.

In section 3 I will present some related and previous work which is connected

to document reconstruction. It is always an advantage to have a good

understanding of similar problems and to know which approach performs

good or not so good under certain circumstances.

An important step is the evaluation process. Comparing a shred with another

yields a speci�c objective value. By optimizing the sequence of these pieces

we seek out optimal results. Section 4 details the problem evaluation � how

it can be done and what improvements can be added.

Optimizing the overall �tness of the document to be reconstructed is probably

the most di�cult aspect. Since there is a whole legion of optimization

methods for such applications we will look into these a little bit further

and select a promising one. This is done in section 5.

In section 6 I will present some construction heuristics which give good initial

solutions in a reasonable amount of time. These may then be improved by

other optimization methods.

Section 7 describes the implemented demo application. The implementation

is split into three parts. First the problem is created (simulation of shredding),

then this problem is solved. The result is saved in a XML �le and may then be

visualized on screen. The visualization of the result is important, because that

is when a human viewer can determine if the result can be deciphered. For

example swapping two identical or almost identical strips does not in�uence

the result for a human viewer negatively.
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2 Problem de�nition

It is essential to exactly de�ne the problem we are dealing with. We assume

that a piece of paper of rectangular shape is cut into several almost shape

identical shreds. The characteristics of shredded paper strips have been

researched in [4] but in this work we will focus on the following attributes:

1. there may not be an optimal unique solution

2. all shreds are produced by clear cuts

3. the orientation of each strip is known

4. the length of each strip is the same but not necessarily the width

5. strips can come from multiple pages

6. no strips are missing

The �nal goal is to order these strips in such a way that the

original arrangement is reconstructed. First o� we de�ne the problem

as Reconstruction of Strip-Shredded Text Documents (RSSTD). By

strip-shredded we denote the shape of single strips (as opposed to e.g.

manually torn paper). The term text documents di�erentiates between image

documents which imply other characteristics than text documents, e.g. text

documents only deal with binary data (background and foreground color).

It is very interesting that (even if we know the correct solution) there need not

be an optimal unique solution (attribute 1). This is the case when there are

identical strips (e.g. blank strips). These can be swapped without worsening

or improving the solution.

Attribute 2 is necessary for the synthetic simulation of shredding. In real

world examples even clear cut pages are torn at least a little bit. As soon

as the shredder is older or unmaintained the blades that cut the paper get
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blunt and produce more fuzzy cuts. For the purpose of this work we assume

that shreds �t perfectly together.

Attribute 3 mainly limits the problem. By knowing the orientation of each

strip we narrow the combinations of possible solutions. That way we only

look for the correct placement of each strip but not the speci�c orientation.

With real world data it is very unlikely that you only want to reconstruct

one single page. One probably has access to a whole pile of shreds coming

from multiple pages (attribute 5). Since it would be very hard to �nd an

assignment for each strip to a page and then reconstruct it on its own, I will

follow the approach to reconstruct all strips at once. It is then very easy to

partition the result into multiple segments (e.g. two adjacent strips that have

no pixels on their borders de�ne a segment boundary). This can be done at

the end.

Attribute 6 is quite interesting. What happens if certain strips or groups of

strips are missing? In a �rst approach we will neglect this problem and deal

with only perfect sets of input shreds.

Figure 1 shows one exemplary test page we are going to use. This is a normal

A4 page with typewritten text on in. Most document pages are going to look

similar. The page has been split into strips of 100 pixel each. As the page is

1600 pixel wide there are 16 strips.

Our main focus lies on reconstructing material with some sort of text

on it, which means either handwritten or typewritten documents. These

can be easily converted to binary data through thresholding [11]. There is

quite a di�erence to pure image documents. Image documents consist of

colored pixels. Most methods compare points at the edge of snippets with

corresponding points on other snippets. The distance between these points

is measured by their distance of their color values. This is for example done

in [20].

In contrast to image documents written documents only consist of

background and foreground, which in general can be separated by some



2 PROBLEM DEFINITION 7

Figure 1: Test page with shredding marks
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preprocessing using e.g. thresholding. We do not measure the color distance

but the nearest distance between points on two adjacent edges. I will

elaborate more on this in chapter 4.

2.1 Illustration as a graph

The problem can be formally presented as a complete asymmetric

graph G(V,E) consisting of vertices V and edges E. The set of

vertices V = {x1, . . . , xn} depict the single strips. The set of edges

E = {(x, y)|x, y ∈ V, x 6= y} are the connections between all strips. The value

of these edges (de�ned by the function d) is made up by some kind of distance

that still has do be de�ned. Since the creation of these distances is a crucial

part of this work I will denote a whole chapter to it (see chapter 4).

Figure 2 shows a concrete problem instance with four strips (V = {1, 2, 3, 4},
the set E of edges is made up as shown in the Figure). Sought is a hamiltonian

path through the graph which yields the minimum overall distance which

is subject to a certain target function (in this case this is simply the sum∑n−1
i=1 d(si, si+1) s ∈ V ). The tour through the graph can be modeled as a

permutation of V . For example the order s1 = {3, 4, 2, 1} yields a value of

43. In this case the best possible solution is s∗ = {1, 2, 3, 4} which yields 10.

Modeling problems with graphs is very common. A permutation of the set

of vertices is a very natural concept to describe a tour through the graph.

Optimizing this tour is often done in computer science. I will engage this

subject more in chapter 5.

2.2 Problem complexity

When a piece of paper is shredded into n pieces the solution space has n!

elements (since there are that many tours through the graph or permutations

of n). Depending on the problem at hand this may even grow. Shredder

remnants may be upside down if their orientation is not known which doubles
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Figure 2: Problem instance with 4 strips

the solution space to 2(n!). If the front side is not known it is even 4(n!). If

we generalize the problem further that each piece is a square, then it expands

to 8(n!). Even for small problems the solution space very quickly becomes

huge.

It is interesting to note that this problem de�nition is very similar as for

the asymmetric traveling salesman problem (ATSP) e.g. in [7]. There a tour

through an asymmetric graph is sought that minimizes the objective function∑N−1
i=1 d(cπ(i), cπ(i+1))+d(cπ(N), cπ(1)). This is in fact identically to the objective

function that I am going to de�ne for the RSSTD (see chapter 4).

2.3 Problem boundary

During this work I will not deal with the larger parts of pattern recognition.

Snippets come from the synthetic simulator which produces perfect shreds

(pieces �t perfectly together). In real world scenarios this would not be the

case. There is noise from the scanning process as well as noise from the shreds.

If the document is cut into very slim pieces, these strips have characteristics

like hair � they tend to curl. This constitutes a problem because points at

the edge may not match to their corresponding point on another piece.
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It is important to note that pattern recognition in general may help the

reconstruction process at several places and increase quality of the result a

lot. Text pages normally have a strict layout and can be processed by OCR2

techniques very well. Through this more information about features of the

problem data can be extracted. Though I will exclude this �eld of expertise

for now.

I will also neglect page segmentation problems. Normally in real world

applications a pile of strips coming from multiple pages would be available.

The reconstruction process returns a sequence of these strips. Partitioning

this sequence back into pages is an interesting task but not part of this work.

Another problem arises from the mechanical process of shredding. Old

shredders tend to tear paper instead of cutting it, since the blades inside

become blunt. That means �rst and foremost that information get lost, since

tearing produces more powder remnant than cutting. Second the cut is not

straight but jagged which will complicate the evaluation process.

3 Related work

Very often it is bene�cial to take a look at related problems. By comparing

approaches and solutions that have been established for similar problems we

can reuse or adapt these methods. Since there has already been some work

done with respect to the reconstruction of documents or images in general it

is worth looking into them.

In [20] Skeoch does an in-depth-investigation into automated document

reconstruction. Mainly the reconstruction of pure image documents is

examined. This is in some terms similar to text document reconstruction.

The strips are compared depending on the information on the borders.

The di�erence here is that the strips of image documents contain much

more information whereas strips of text documents mainly consist of binary

2optical character recognition
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data (e.g. white is background, black is foreground) � the majority being

background.

The main strategy is that pixels on the borders are compared to adjacent

pixels on other strips' borders at the same position regarding their color

values. Normally colors change smoothly in images. This behavior is used to

�nd strips that match together very well. For this strategy several distance

functions were proposed, ranging from euclidean to cosine distance. Besides

this also other possible methods were mentioned like using color histograms

and edge detection.

Skeoch also deals with a big part of pattern recognition. It is important to

mention that this � although not the main focus of my work � has a big impact

on the solution. In her work she examines the whole reconstruction process,

beginning from scanned in shredded pieces. These have to be extracted. For

this she explains methods for extracting rectangular and curved strips. She

mentions that though both methods have their weaknesses they perform

su�ciently.

Skeoch used evolutionary algorithms as optimization method to solve the

problem. Single and multiple page reconstruction was tried as well as

double-sided pages. Skeoch mentions that her approach worked well for

synthetic data but did not scale for real life data. She also clearly notes

that this approach does not perform very well for text-based images.

Ukovich et al. [26] follows an interesting approach to reconstruct documents.

The reconstruction of strip shredded documents can be seen as a specialized

form of a jigsaw puzzle. Established methods try to solve this problem by

matching the curves at the edges. Ukovich now also tries to add information

on the basis of the content on the pieces. The necessity for this is clear

when the pieces' shapes are almost identical. To retrieve information about

the content of pieces Ukovich uses content-based image retrieval (CBIR)

techniques. CBIR is an emerging �eld of expertise [22]. There are e.g.

standardized MPEG-7 descriptors [19] that have also been used in Ukovich's
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approach.

First of all similar strips are grouped together (e.g. a subset for all color strips,

a subset for strips containing handwritten text, . . . ). This mainly cuts down

complexity. The grouping of the shreds is done using three general features

(color, texture and shape). In detail Ukovich uses three color descriptors,

two texture descriptors and two shape descriptors. Ukovich also considers

domain speci�c features like OCR and language-dependent attributes. After

the grouping phase the �nal reconstruction is done using a complete search.

The feature selection is very important and dependent upon the type of

document. Certain features work well for certain documents, others do not.

Ukovich found the results to be encouraging for color images. For text

documents only speci�c features worked limited (like using spatial color

information on documents where certain lines have the same text color).

In [25] Ukovich elaborates on �nding additional features apart from the

already mentioned MPEG-7 descriptors. In this work notebook paper is

used as source material which has slightly di�erent characteristics than o�ce

documents e.g. di�erent size, paper color and width. Color features can now

describe the kind of paper and color ink used to segregate them.

This work also explicitly deals with handwritten text documents. Ukovich

suggests the use of writer identi�cation and handwriting classi�cation as

features but since the remnants are so small that not even one word �ts on

it, it is abandoned. Instead edge descriptors, like the MPEG-7 edge histogram

are used.

Another very important feature which is present in all strip shredded

problems is squared paper detection. When dealing with real life data, strips

are usually scanned all together. They must then be separated and digitized.

Finding strip patterns is not a trivial task. Ukovich uses the Hough transform

[12] to recognize patterns. The Hough transform is a general purpose tool to

extract features. The main advantage in using the Hough transform is that

it detects any feature given in parametric form e.g. lines, curves, ellipses.
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Experiments on the squared paper feature detection have been done and

Ukovich reports that all remnants were detected correctly.

In another approach Ukovich [27] tries to cluster the remnants. Just in

analogy with a human solving a jigsaw puzzle remnants with similar content

are put together and a more intensive search can then be performed on

the smaller subproblems. It is also noted that this method not only works

for strip shredded problems but also jigsaw puzzle assembly and fragment

reconstruction. The clustering has a twofold e�ect: for one it reduces the

complexity of the subproblems signi�cantly and second it improves the

quality of the solution because strips are only sought in their speci�c clusters.

This of course assumes that the classi�cation was done correctly.

One of the integral parts of the clustering problem is to �nd out how many

clusters there are or should be since one cannot know in advance how many

pages existed. In an ideal case where all remnants are present and come from

the same shredder this might be the case. But there are many possibilities

that nullify this assumption. Because of that Ukovich decided to de�ne

natural clusters. Experiments showed that the clustering obtains good and

robust results.

When comparing previous works about document reconstruction it certainly

can be seen that text documents have other requirements than normal image

documents regarding the reconstruction process. Methods that work well

for images do not necessarily perform equally for text documents. There is

de�nitely room for improvement here. This is exactly where I am going to

hook in and try to o�er some satisfying procedures to expand the �eld of

automated reconstruction to text documents.
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Figure 3: Close up of a cut between to strips

4 Problem evaluation

To generate good solutions some kind of measurement is needed, what is a

good solution and what is not. If you compare a strip with two other strips,

some kind of quality needs to be de�ned, that indicates which one suits

better.

I will mainly concentrate on text documents in this work. The edges of strips

are of major interest for this approach. Figure 3 shows a close up image of

an edge between two characters. A character cut in half has adjacent pixels

on either side of the edge. As one can see the upper character a is cut at

three di�erent positions. The adjacent pixels at the uppermost cut are at

the same vertical level. The same applies for the pixels at the middle cut.

More interesting is the bottom cut. Though the strips are correctly adjoin

there is an o�set between the vertical level of these pixels. If you measure

the distances of these pixels on the vertical level, the sum of these distances

should be as small as possible to match the strips correctly.
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4.1 Pixel distance

Let us de�ne the ε-environment U(x, ε) of a pixel x ∈ Si, where as Si denotes
the relevant strip edge of strip i (Si ∈ S, S is the set of all strips). We assume

that ε is a non-negative value and U(x, ε) contains all pixels on the relevant

strip edge of strip j (i 6= j), such that the following equation holds true (the

function vert(x) yields the vertical position of a given pixel):

|vert(x)− vert(y)| ≤ ε (1)

Further we assume that d(x, y) denotes a function which computes a distance

value of pixel x and y (for a detailed de�nition see section 4.2).

Using this assumption it is possible to introduce a function ϕ(x, Si) which

computes the pixel y ∈ Si which is the closest pixel to x on strip i.

ϕ(x, Si) = arg min
y∈Si

(d(x, y)) Si ∈ S (2)

Next we de�ne a function δ which returns the distance between a pixel x and

the closest adjacent pixel on strip i.

δ(x, Si) = min
y∈Si

(d(x, y)) Si ∈ S (3)

4.2 Pixel distance evaluation

One crucial part of this thesis is the de�nition of a distance function d(x, y),

which can be used to compute good alignment estimations.

One straightforward way would be to return the vertical distances between

two points. If two pixels are further apart than ε the distance is de�ned to

be ε.

d(x, y) =

 |vert(x)− vert(y)| if y ∈ U(x, ε)

ε if y /∈ U(x, ε)
(4)
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It may be bene�cial to use an even graver distance measure so that pixels

further apart get penalized even more. To do this, another possible method

for measuring the distance, is to penalize larger distances quadratically, or

to be more general to the power of h. Since this and the next variation of

the distance function penalize pixels further apart more than the original

function, I will call these modi�cations heavy distance penalization.

d′(x, y) =

 |vert(x)− vert(y)|
h if y ∈ U(x, ε)

εh if y /∈ U(x, ε)
(5)

Another way to penalize distant pixels would be to punish pixels where there

is no adjacent pixel in the ε neighborhood with a speci�c value φ.

d′′(x, y) =

 |vert(x)− vert(y)| if y ∈ U(x, ε)

ε+ φ if y /∈ U(x, ε)
(6)

Another method to tweak the distance function is to privilege good matches.

When you evaluate pixels at the strip's border and an exact match is found

(i.e. there is a pixel at the exact same place of the adjacent border) this pixel

is promoted by some value π (π < 0). By doing this we favor exact matches

of pixels. I will call this exact match favoritism.

d(x, y) = π if vert(x) = vert(y) (7)

Of course it is absolutely legal to mix these approaches.

4.3 Strip distance

Next we need to de�ne the �tness Fs of two strips X and Y � where x ∈ X
are all points on the right side of strip X and y ∈ Y are all points on the left

side of strip Y .
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Fs(X, Y ) =
∑
x∈X

δ(x, Y ) +
∑
y∈Y

δ(y,X) (8)

s.t. y /∈ Y ∗ where Y ∗ = {y|∃x ∈ X : y = ϕ(x, Y )} (9)

The constraint y /∈ Y ∗ is necessary because otherwise we would double count

some distances and thus tampering the result.

With the de�nition given above we �rst start adding up distances from left

to right and then adding distances from right to left of pixels which have

not already been chosen. Of course other methods of calculating the strips'

�tnesses are possible. An obvious variation is to swap directions � start by

adding distances from right to left and then the other way.

F ′s(X, Y ) =
∑
y∈Y

δ(y,X) +
∑
x∈X

δ(x, Y ) (10)

s.t. x /∈ X∗ where X∗ = {x|∃y ∈ Y : x = ϕ(y,X)} (11)

These approaches allow a pixel to have more than one connection to an

adjacent pixel. Another possible variation would be to prohibit these cases

i.e. one pixel can only have at most one connection to another adjacent pixel.

4.4 Objective function

Having this, the �tness Fp of a page P is de�ned as the sum of the strips'

�tnesses.

Fp(P ) =
n−1∑
i=1

Fs(Si, Si+1) n = |S| (12)

The overall goal is to �nd a permutation of strips which has minimal �tness.
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4.5 Additions

It is important to mention that with the evaluation so far it can happen that

evaluated solutions have better objective values than the correct solution.

This for example happens when the cut is made on the side of a vertical line

(so the pixels get penalized a lot). To minimize this behavior and improve

the evaluation quality in general I will introduce additions to the original

evaluation strategy.

4.5.1 Blank strip elimination

One method to reduce the problem space is to eliminate blank strips. On

the test page in Figure 1 on page 7 there are four identical strips, the two

on the left side and the two on the right side. These strips are completely

blank, having no pixels on them at all. That also means they have no usable

features for our evaluation (i.e. pixels at the border).

These blank strips are either on the border of the page or connecting two

other strips. Either way they can be omitted. One has to consider that the

page width will shrink when omitting blank snippets. This is particularly

important when several pages are to be reconstructed � especially if the page

width is used as indicator whether enough strips have been assigned to a

page..

In our test application we �nd blank strips by looking at the strip's borders

� if there are no pixels on them the strip is marked as blank and omitted. It

is important to notice that there is a chance that a legitimate strip is falsely

recognized as blank. This is the case when the cut at the strip's border does

not intersect any letters.

Notice that these false positives happen even when each blank strip is double

checked, for example by looking at all pixels of a strip. If the border of a strip

is blank but not the interior we know that this is a false positive but though

this does not add information to the evaluation, since we still only look at



4 PROBLEM EVALUATION 19

the borders. As long as the strip width is small enough the result should not

be damaged too heavily.

One nice side e�ect of blank strip elimination is that the complexity of the

problem normally gets a little easier since the number of strips decreases.

4.5.2 Empty border penalization

After blank strip elimination there are only two kinds of strips left: strips

which have pixels on both sides and strips which have pixels on only one side

(i.e. one border has no pixels). Of interest in this situation is the latter kind �

I will call them border strips for brevity. A typical text document (see Figure

1) has two border strips, the outermost to the left (A) and to the right (B).

Now, if you put B beside A (B �rst, then A) the distance function yields

0 for this combination, meaning this is a perfect match. Since there are no

pixels on either side of the borders, no meaningful distance can be de�ned.

When reconstructing one page, matching these border strips may not be

what we want. To hamper this behavior some kind of penalization is needed

otherwise these border strips would always stick together on their empty side.

A simple manner of penalizing empty borders is to assign them a speci�c

value. Normally all distance values are known in advance. The mean value

of all distances can be assigned to them to penalize empty borders.

It is important to note that a document may contain more than two legitimate

border strips. If there is some kind of gap between text, which spans over the

whole page (e.g. two column text), a document may have four or even much

more border strips. If text starts or ends directly at the outermost part of

the page there may even be only one or no border strip at all.

4.5.3 Limitations

Though these additions to the evaluation may improve results it may still

happen that incorrect solutions are found with a better �tness. This is most
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often the case when cuts are at exceptional places such as near long vertical

lines where the line is at one side of the cut. These incidents get penalized

erroneously and worsen the result. To correct this, more features to the �tness

evaluation need to be found.

4.6 Measuring the solution quality

Besides the evaluation function presented earlier in this section it would be

nice to have another metric which shows how good a speci�c solution is.

By knowing the correct solution it is easy to present such a metric. When

examining solutions it becomes apparent that often there are passages of

correctly ordered strips (e.g. D-F-A-B-C-E-G, A-B-C being the correctly

ordered passage). The longer these correctly ordered passages are the easier

it is for a human reader to decipher the whole page. So it makes sense to use

this attribute to de�ne some kind of value which represents the quality of a

solution.

Let Q be a function which yields the number of correct sequences within a

given solution. For Q the following equation holds true (s being a possible

solution, n being the dimension of the solution space):

1 ≤ Q(s) ≤ n (13)

A value of 1 for Q(s) identi�es the correct solution since there is only one

sequence containing all strips in correct order. On the other hand if Q(s)

yields the maximum value it means that no two adjacent strips are ordered

correctly, meaning that a worst possible solution is found. Generally speaking

the lower the value the better the solution.

With this additional metric, which I will call sequence length quality, it is

easy to estimate the grade of a solution. A human readable solution should

probably have a solution quality of at most 5.



4 PROBLEM EVALUATION 21

Figure 4: Exemplary instances with quality 2, 3, 4 and 5

To compare solution qualities from di�erent problems one can de�ne relative

sequence length quality Qr which also accounts for the problem size.

Qr(s) =
Q(s)

|s|
(14)

This bounds Qr to the interval 0 < Qr ≤ 1. Getting a Qr of 1 means a total

disordered solution is found. The lower the value the better the solution (the

best solution would have a relative quality of 1
|s|).

Figure 4 shows parts of exemplary test instances with quality 2, 3, 4 and 5.

It can clearly be seen that with increasing quality the texts become harder

to read.

4.7 Survey of the evaluation

Preliminary tests showed that with the given evaluation method plus the

described additions pretty good results may be obtained. An overall score is

acquired for a given solution. As the described concept tries to �nd adjacent

pixels of side by side strips, special care must be taken to choose a reasonable
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value for ε. This variable is one of the main screws of the �tness evaluation.

If the value is too high or too low the results are not very good because

incorrect strips get penalized either too much or too little.

Various improvements described earlier help to simplify the problem and

organize the problem space. Despite all these additional evaluation updates

it cannot be guaranteed that the optimal solution has the best �tness value.

This turns out to be a problem because the solution space is not ordered

linearly.

5 Solving the problem

I formulated the reconstruction of strip shredded text documents (RSSTD)

as a combinatorial optimization problem like the traveling salesman problem

(TSP) [1], the quadratic assignment problem (QAP) [5] or scheduling [28]. As

demonstrated by Blum in [3] a combinatorial optimization problem (COP)

can be de�ned by an integer set X = {x1, . . . , xn} and an objective function

f . The set S of all possible feasible assignments is called the solution space.

Now one has to �nd the solution s∗ ∈ S where the objective value function

f is minimized (f(s∗) ≤ f(s), ∀s ∈ S).

In our case X represents the set of strips. A solution to the RSSTD is a

permutation of the elements in X. Therefore there are |X|! elements in S.

Several di�erent ways exist to �nd solutions for the RSSTD. One can make

an exhaustive search by so called brute-force techniques (this basically means

searching through the whole problem space). Considering the magnitude of

the solution space this kind of approach is most probably impractical and

ine�cient in general.

Generally there are exact and heuristic algorithms [3]. The former guarantee

to �nd the optimal solution to every problem instance including a proof of

optimality. Since these kind of algorithms are often not applicable for real

world instances, one uses heuristics which normally return good results in
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reasonable time with the lack of optimality proofs.

There is a whole bunch of heuristics, starting from simple ones like local

search ranging to more sophisticated methods like evolutionary algorithms or

ant colony optimization. Within the next few sections I will give an overview

over some of the more established (meta-)heuristics..

5.1 Local search

Local search (LS) [28] is a standard optimization technique. The main idea

is to jump from one solution s to another by inspecting its neighborhood

N(s). This neighborhood function should de�ne a small set of solutions in

the proximity. By consistently moving from one solution to the best solution

of its neighborhood (which is also called hill climbing) the initial solution

might be signi�cantly improved.

As the name suggests, LS only uses local information about a speci�c solution

to organize optimization. This is also its biggest drawback: when LS reaches

a certain solution, which does not have a better solution in its neighborhood

(a so called local optimum), it is trapped there and cannot improve further.

It is important to note, that this local optimum need not be the globally

best solution to the problem (which would be called global optimum). To

counteract this behavior several additions to ordinary LS have been proposed

e.g. iterated LS (ILS) [23]. Here as soon as a local optimum is reached the

solution is disturbed in some sense. By doing this ILS tries to escape the

local optimum.

Another interesting topic in LS is the choice of the initial solution, which is

the starting point of the optimization. One can use a construction algorithm

to generate a good initial solution. But to cover a broad area of the solution

space it may also be bene�cial to start from random solutions. LS can also

perfectly be combined with other optimization methods. Incumbents found

by them can then be locally improved.
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5.2 Variable neighborhood search

Neighborhood searches (NS) in general rely on the fact that given a valid

solution x to the problem one can de�ne a neighborhood N(x) which consists

of all valid solutions reached by applying one or several prede�ned moves.

Such a move de�nes, how new solutions can be derived from x by simple

operations like swapping two features of a solution.

Sometimes it is easy to de�ne more than one move and therefore several

neighborhood structures N1, N2, . . . , Nk are implied by those k moves. It

is obvious to use a search method that bene�ts from all these di�erent

neighborhood structures. Variable neighborhood descent (VND) is exactly

such a local search method, which tries to �nd a local optimum in respect to

all de�ned neighborhood structures N1, N2, . . . , Nk.

This can be done by examining one neighborhood structure as long as

some improvements can be achieved. If a local optimum is reached, the

optimization process continues to examine the next neighborhood. As soon

as no improvement can be achieved in the second neighborhood the search

continues with the next neighborhood. This procedure is repeated until there

is no further improvement possible in any neighborhood.

Unfortunately, even this procedure can get stuck in local optima which

might happen, if not all theoretical possible neighborhoods are de�ned (and

searched). To esacpe these local optima variable neighborhood search (VNS)

implements a perturbation procedure in VNS such that each time a local

optimum is reached within VND, further random solutions are produced

to broaden the search. Depending on the integration of VND-like searches

in VNS, there are several di�erent variations of VNS like reduced VNS

(RVNS), skewed VNS (SVNS) and variable neighborhood decomposition

search (VNDS). A very good reference on VNS in general and the most

common variations is [17] and [13].
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5.3 Simulated annealing

Simulated annealing (SA) [15] is a variation of LS invented in 1983. To avoid

getting stuck in local optima SA also allows jumps to worse solutions instead

of only moving to better ones. This is a stochastic process. The chance that

worse solutions are allowed is high at the beginning and is decreased during

the optimization process.

The probability when worse solutions are accepted is controlled by

the so called cooling function. This function governs diversi�cation and

intensi�cation of the optimization. If the cooling happens too fast SA gets

trapped too early in some local optimum. On the other hand if the schedule

is too slow SA keeps accepting worse solutions and not settling down.

SA resembles the annealing of metal, which descends into a low energy

con�guration. By doing this correctly the metal does not exhibit any cracks

or bubbles. SA is one of the �rst metaheuristics ever invented.

5.4 Tabu search

Tabu search (TS) [10] is a very popular heuristic for solving combinatorial

problems. The main idea is to maintain a memory of already visited solutions

and add them to the tabu list. That way the algorithm avoids getting stuck

in local optima and implements an explorative strategy. The size of the tabu

list (tabu tenure) controls the optimization process � small values explore

the near neighborhood of a given solution, big values explore larger regions

of the solution space.

During time several improvements were introduced to the originally proposed

approach. For instance Taillard [24] presented a method where the tabu

tenure is periodically changed randomly within a prede�ned interval. A more

dynamic handling of the tabu tenure was presented by Battiti [2]. The tabu

tenure is increased if higher diversi�cation is needed (e.g. if repetitions are

recognized) and decreased if intensi�cation is needed (e.g. if no improvements
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are found for some time). Another proposal does not hold whole solutions

in the tabu list [3]. Maintaining complete sets of solutions in memory is

highly ine�cient. Therefore only so called attributes to solutions are saved

and compared. Attributes are features of solutions e.g. di�erences between

two solutions. Of course some information get lost because attributes cannot

represent whole solutions.

5.5 Evolutionary computation

Evolutionary computation (EC) tries to incorporate nature's principle of the

survival of the �ttest. The concept is to maintain a population of solutions

(called individuals). On this population the operations recombination,

mutation and selection are performed. The main idea is to mimic nature's

capability to adjust itself to changing environmental properties.

The �eld of evolutionary computation is huge as there exist several

modi�cations like evolutionary programming, evolutionary strategies and

genetic algorithms. The readers is directed to [16] for a deeper insight.

5.6 Ant colony optimization

Ant colony optimization (ACO) [9] is another nature inspired algorithm. Real

ants �nd shortest paths between food and their nest by placing pheromones

while they walk. These pheromones are then recovered by other ants. This

resembles a parametrized probabilistic model.

Arti�cial ants start walking randomly in a completely connected graph, where

its vertices are the solutions. When an arti�cial ant �nds pheromones on

edges the probability the ant follows an edge is calculated by the amount of

pheromones found.
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6 Construction heuristics

Some optimization algorithms need an initial solution to start from (or it

may be at least bene�cial). Simple iterated local search for example starts

each time it reaches a local optimum from a new � mostly randomly chosen

� solution. In our case a randomly generated solution would be produced

by merging strips by chance. But under some circumstances this may not

be a very promising way (e.g. if the problem space is very big). Because

construction heuristics have proven to be successful in other areas (e.g. see

the Christo�des heuristic for the TSP in [6]) it makes sense to also de�ne

construction heuristics for the RSSTD. The goal is to generate good solutions

very fast. In the following I will present some possible construction heuristics

for the RSSTD.

6.1 Forward page construction

The main idea of this construction heuristic is to greedily reconstruct the

page from left to right by �rst randomly choosing one strip (possibly with

one empty side on the left) and subsequently adding strips to the right by

choosing the best �tting one. If two or more strips yield the same result if

added the �rst such found strip is chosen. Pseudocode for it is given in Figure

5.

One strip is chosen and each of the remaining n − 1 strips is appended at

every iteration once (there are n−1 such iterations). Considering that �tness

calculations in this case can be done in constant time (this is described in

more detail in chapter 7.2) the whole algorithm has O(n2) time complexity.

6.2 Duplex page construction

This is a slight modi�cation to forward page construction. Again at the

beginning a random strip is chosen. Then the best matching strip is sought
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0: init x as empty solution

1: list = create list of all strips

2: remove random strip from list and add to x

3: while there are strips in list

4: init tfitness

5: for all s in list

6: add s to x

7: if fitness(x) < tfitness

8: s' = s

9: tfitness = fitness(x)

10: remove s from x

11: remove s' from list and add to x

12: return x

Figure 5: Pseudocode of forward page construction

and appended by matching it on both ends to the left and to the right. Also

here in case of a tie between strips simply the �rst best matching strip is

chosen. In case of a tie between sides (on the left or the right side of the

sequence) the right side is chosen. The aim of trying to match the strip on

both ends is to improve the result further. Figure 6 shows a pseudocode

implementation.

Compared to the before mentioned forward page construction here the single

strips are appended twice, to �nd out at which position they �t best. So this

adds a constant factor to the complexity but does not change the overall

complexity - duplex page construction also has O(n2) complexity.

6.3 Randomized duplex page construction

Some heuristics need to start from several completely di�erent points in the

solution space. A valid random solution can be chosen as starting point, but

this is like looking for the needle in the haystack. It is better to start from
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0: init x as empty solution

1: list = create list of all strips

2: remove random strip from list and add to x

3: while there are strips in list

4: init tfitness, addposition

5: for all s in list

6: add s to x on the right side

7: rfitness = fitness(x)

8: remove s from x

9: add s to x on the left side

10: lfitness = fitness(x)

11: remove s from x

12: if min(lfitness, rfitness) < tfitness

13: if lfitness < rfitness

14: addposition = left

15: else

16: addposition = right

17: s' = s

18: tfitness = min(lfitness, rfitness)

19: remove s' from list

20: if addposition == left

21: add s' to x on the left side

22: if addposition == right

23: add s' to x on the right side

24: return x

Figure 6: Pseudocode of duplex page construction
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relatively good solutions. Forward and duplex page construction start with a

random strip and append best matching strips accordingly. When there are

n strips there are at most n di�erent solutions these heuristics can deliver.

Randomized duplex page construction starts with a single snippet by chance.

From the remaining strips a random one is added either to the left or to the

right � wherever it matches best. In case of a tie on both ends the strip is

appended on the right side. Solutions created in such a way are normally

worse then from forward and duplex page construction but the space of

producible solutions is much broader. The pseudocode for it is given in Figure

7. Contrary to forward and duplex page construction in randomized duplex

page construction each strip is instantly added to the �nal solution. So the

complexity is linearly dependent of the number of strips, i.e. it has O(n)

complexity.

7 Implementation

The described evaluation and solution methods have also been implemented

in a demo application. For the sake of compatibility and portability several

XML formats have been de�ned. So each step can be handled by di�erent

applications (e.g. on di�erent systems). During the whole reconstruction

process there are multiple steps that have to be done, each consisting of

several subtasks.

1. Preparation

• read in image, threshold, and segment into strips

• write formalized problem data into XML �le

2. Solution

• read in problem data from XML �le

• precalculate the �tness matrix
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0: init x as empty solution

1: list = create list of all strips

2: remove random strip from list and add to x

3: while there are strips in list

4: s = random strip of list

5 remove s from list

6 add s to x on the left side

7 lfitness = fitness(x)

8 remove s from x

9 add s to x on the right side

10 rfitness = fitness(x)

11 remove s from x

12 if lfitness < rfitness

13 add s to x on the left side

14 else

15 add s to x on the right side

16: return x

Figure 7: Pseudocode of randomized duplex page construction
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Figure 8: Work�ow of the demo application

• solve the problem

• write solution into XML �le

3. Visualization

• read solution from XML �le

• visualize solution

Each of the main tasks can be done independently. Figure 8 shows the overall

work�ow. Since it is often the case that special solution methods are only

available for certain operating systems or programming languages, the XML

interface makes it easy to communicate between di�erent systems. In the

following I will go into more detail for each of these steps.

The demo application has been implemented in Java having around 3000 lines

of code. The framework uses the object oriented paradigm, meaning that for

example each optimization algorithm is realized as class. More algorithms

can easily be added by subclassing the superclass. XML handling (reading

and writing XML �les) is done by Java's SAX facilities. Care has also been
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taken to use newer Java features like generics and enumerated types. To be

useful in a scripted environment a CLI (command line interface) client has

been written (instead of a graphical user interface). A GUI client can easily

be created later on if needed.

7.1 Preparation

The preparation stage performs all tasks necessary to create a valid problem

instance. Since using random data (i.e. a page with random pixels on it) is

not very signi�cant, it is better to use real life data. You feed an image (best

is a monochrome text image) to the application. Besides that also the strip

width is important. Let wi be the image width and ws be the strip width in

pixels, then the input image is transformed into dwi

ws
e strips, each having a left

and right border. For each border the coordinates of the pixels is recorded

and saved into an XML �le together with additional data like strip width

and image width.

7.2 Solution

Solving the problem is probably the most interesting phase. Several

algorithms have been implemented, including iterated local search, simulated

annealing and a multistart VND. The test results are described in more

detail in chapter 8. In the following I will present information about the used

solution representation, moves used for de�ning neighborhood structures and

implemented meta-heuristics.

7.2.1 Solution representation

A solution S is represented formally as a sequence of n input variables

S =< s1, s2, . . . , sn−1, sn > that are stored in an array. Any such sequence

of S will be denoted by σi in the following if this improves readability (σi
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can also denote an empty sequence). Each entry in the array represents a

certain strip, respectively contains an unique strip identi�cation number. So

to speak an element in the array implicitly shows its distinct position in the

solution vector.

For the data structure which holds solutions Java's ArrayList data type is

used. As mentioned in Java's documentation add-operations take amortized

constant time. That means adding n elements takes O(n) time. Removing an

object can be done in linear time, whereas retrieving an item is performed in

constant time.

For increased e�ciency, an incremental objective function update is

implemented for all operations on solutions. Therefore the �tness of a solution

is stored instantly as it is calculated. For that we have to sum up the �tness

values for each pair of strips placed next to each other. This clearly can

be done in linear time. As soon as a new solution is derived no complete

recalculation is needed. Pseudocode for the incremental �tness update is

given in Figure 9. By only evaluating the �tness values adjacent to the block

of strips that is being moved (if the block has length one only a single strip

is moved) and updating the known total �tness of the solution, the �tness of

the derived solution can be decided by at most six calculations, which means

this can be done in constant time.

7.2.2 Insertion moves

Insertion moves are de�ned by picking a speci�c strip and inserting it at

another location. Because of the chosen solution representation a certain

number of additional strips have to be moved to make place for the inserted

strip. Due to these additional moves this operation can only be done in linear

time. The worst case scenario would be to move a strip from one side of the

solution to the opposite. In this case all other strips also have to be moved.

Formally insertion moves can be de�ned as a function

fI(< σ1, σi, σ2, σj, σ3 >) =< σ1, σj, σi, σ2, σ3 >
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0: move_strip(solution, source, length, dest) {

1: fit = fitness(solution)

2: if has_left_neighbor(source)

3: fit = fit - fitness(source-1, source)

4: if has_right_neighbor(source+length-1)

5: fit = fit - fitness(source+length-1, source+length)

6: if has_left_neighbor(source)

7 and has_right_neighbor(source+length-1)

8: fit = fit + fitness(source-1, source+length)

9: x = solution[source] to solution[source+length-1]

10: remove x from solution

11 insert x at position dest

12: if has_left_neighbor(dest)

13: fit = fit + fitness(dest-1, dest)

14: if has_right_neighbor(dest+length-1)

15: fit = fit + fitness(dest+length-1, dest+length)

16: if has_left_neighbor(dest)

17 and has_right_neighbor(dest+length-1)

18: fit = fit - fitness(dest-1, dest+length)

19: return fit

20: }

Figure 9: Pseudocode for �tness updates
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0: insertion_move(solution, source, dest) {

1: if dest < source

1: offset = 1

1: else

1: offset = -1

1: tmp = solution[source]

1: for i = source-offset to dest

1: solution[i+offset] = solution[i]

1: solution[dest] = tmp

8: return solution

9: }

Figure 10: Pseudocode for an insertion move

which inserts the strip from position j at position i (i 6= j, |σj| = 1). Figure

10 shows pseudocode and a graphical representation for this move.

Due to the fact that each strip can be moved to all other possible positions a

neighborhood de�ned by insertion moves consists of n2−n di�erent solutions.

Based on the chosen solution representation evaluating such a neighborhood

is in the time complexity of O(n3).

7.2.3 Swap moves

A swap move denotes the simplest move that can be performed based on

our solution representation. Two strips are selected and swapped with each

other. All other strips remain at their original position. Using an incremental
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0: swap_move(solution, source, dest) {

1: tmp = solution[source]

2: solution[source] = solution[dest]

3: solution[dest] = tmp

7: return solution

8: }

Figure 11: Pseudocode for a swap move

�tness update function this move can be performed in constant time since

the swapping itself is also a constant time operation.

Based on our solution representation swap moves can formally be de�ned as

a function

fS(< σ1, σi, σ2, σj, σ3 >) =< σ1, σj, σ2, σi, σ3 >

which swaps two strips i and j (i 6= j, |σi| = 1, |σj| = 1). Figure 11 shows a

graphical representation of this move together with pseudocode.

Since every strip can be swapped with all other strips, a neighborhood based

upon swap moves can easily be de�ned. Just like with insertion moves it

consists of n2 − n di�erent solutions. However since a swap can be done in

constant time contrary to insertion this neighborhood can be evaluated in

O(n2) time complexity.

7.2.4 Insertion block moves

Insertion block moves are an extension to regular insertion moves. Here not a

single strip but at block of random length is selected and inserted at another
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location. This block can be as short as two strips and as long as n−2 strips (n

being the total number of strips). A block of length one or n−1 would reduce

this move to regular insertion and length n would render this move useless

since that block cannot be moved. Analogue to regular insertion, inserting a

block at another location moves additional strips to make place.

Formally insertion block moves can be de�ned as function

fIB(< σ1, σi, σ2, σj, σ3 >) =< σ1, σj, σi, σ2, σ3 >

which inserts k strips from position j at position i (i 6= j, |σj| = k, k > 1).

A neighborhood de�ned on insertion block moves tries to insert a block

at all possible locations. Because additional strips have to be moved this

operation takes linear time. The implementation does not examine the whole

neighborhood with varying block length but chooses a certain random block

length while dwelling in that neighborhood. Due to this the neighborhood

has O(n2) di�erent solutions. Similar to regular insertion this move has O(n3)

time complexity. Pseudocode for this move is given in Figure 12.

7.2.5 Multistart VND

In this thesis a slight modi�cation of the standard VND is used, a so called

multistart VND. Just like standard VND, the multistart VND is based on

di�erent neighborhood structures, which are systematically searched. But

contrary to standard VND the search procedure is restarted as soon as no

further improvements can be found. The neighborhood structures used are

based on the previously de�ned moves: insertion, swap and block insertion.

The multistart VND uses a total of three neighborhoods. The �rst

neighborhood is de�ned by insertion moves. This means strips are

systematically inserted at other locations in random order so long as an

improvement can be achieved. The second neighborhood is based upon swap

moves. Two random strips are swapped, using the same characteristic as the

�rst move. The next and last neighborhood is de�ned by block insertion
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0: insertion_blockmove(solution, source, dest, length) {

1: if dest < source

1: offset = 1

1: else

1: offset = 0

1: dest = dest+length-1

1: for i=0 to length-1

1: insertion(solution, source+(i*offset), dest+(i*offset))

8: return solution

9: }

Figure 12: Pseudocode for an insertion block move
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0: init best_solution

1: do

2: x = initial solution

3: k = 1

4: while k <= 3

5: x' = first(Nk(x))

6: if fitness(x') < fitness(x)

7: x = x'

8: k = 1

9: else

10: k = k+1

11: if fitness(x) < fitness(best_solution)

12: best_solution = x

13: until termination condition == true

14: return best_solution

Figure 13: Pseudocode of the multistart VND

moves. A random sequence of strips is selected and inserted at every possible

location. All neighborhoods are examined using a �rst improvement step

function. As soon as no improvements in one neighborhood can be found

any more, the next neighborhood is evaluated. But if a solution could be

improved the process restarts from the �rst neighborhood. At the end the

so found solution is optimal regarding to all neighborhoods. When the last

neighborhood is in an optimum a new solution is generated and the algorithm

restarts.

This behavior is also described with pseudocode in Figure 13. The variable

best_solution always contains the best solution found so far. At the end this

value is returned. The neighborhoods N1, N2 and N3 are de�ned on insertion,

swap and block insertion moves. Furthermore the function first retrieves

the �rst improvement of a solution in the neighborhood Nk.
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0: init best_solution

1: x = initial solution

2: x' = N(x)

3: if x' < x then

4: x = x'

5: goto (2)

6: best_solution = x

7: if termination condition == false

8: goto (1)

9: return best_solution

Figure 14: Pseudocode of iterated local search

7.2.6 Iterated local search optimization

Additionally a simple iterated local search strategy has also been

implemented. A single neighborhood is chosen and searched as long as

improvements are found. If no improvement can be achieved anymore the

algorithm either restarts or terminates depending on a certain termination

condition (e.g. time constrain). The overall best solution found is always

saved and returned in the end. As possible neighborhood structures the

same as for the above mentioned VND are used. The general outline of the

algorithm is shown in Figure 14.

7.2.7 Simulated annealing optimization

Also a simulated annealing algorithm has been implemented. The pseudocode

for it is displayed in Figure 15. A single neighborhood is chosen at the

beginning and then searched. The possible neighborhoods are the same as

with the VND. The implementation in this thesis uses geometric cooling of

the synthetic temperature. For this the temperature parameter T needs to

be initialized to fmax−fmin. Since both values are unknown, upper and lower
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0: T = fmax − fmin
1: x = initial solution

2: repeat

3: x' = N(x)

4: if x' < x then

5: x = x'

6: else

7: Z = random(0, 1)

8: if Z < e(−|f(x′)−f(x)|/T ) then

9: x = x'

10: T = T · α
11: until termination condition == true

Figure 15: Pseudocode of simulated annealing

bounds are used. Because we can compute all strip distances beforehand we

can de�ne such bounds knowing the maximum and minimum strip distance.

Further a cooling factor α must be chosen. This factor determines how fast

the temperature cools down and such how long worse solutions are accepted

probabilistically. In this thesis a high cooling factor of 0.999 is used by default

(and such a slow cooling process). Preliminary tests suggested that this value

works reasonable. At the beginning T is high and many worse solutions are

accepted meaning that a large part of the solution space is accessible. During

time T drops and worse solutions are accepted more improbable.

7.2.8 Exhaustive search

As already mentioned it can be the case that the optimal solution may not

have the best �tness value. To �nd the best �tness for a speci�c problem a

complete search can be done (this of course is only practicable for relatively

small instances). Therefore an exhaustive search has been implemented,

which means a complete enumeration of all possible solutions is done. This is
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0: next() {

1: i = N - 1

2: while (value[i-1] >= value[i]) do

3: i = i - 1

4: j = N

5: while (value[j-1] <= value[i-1]) do

6: j = j - 1

7: swap(value[i-1], value[j-1])

8: i = i + 1

9: j = N

10: while (i < j) do

11: swap(value[i-1], value[j-1])

12: i = i + 1

13: j = j - 1

14: }

Figure 16: Pseudocode for exhaustive search

achieved by evaluating all permutations of the problem vector. The algorithm

to create the necessary permutations is given in Figure 16 and described in

more detail by Dijkstra in [8]. The solution is at �rst stored in ascending

order in array value and N depicts the size of the array. Each call to next()

gives the next permutation of the vector.

7.3 Visualization

The last part is to visualize the found solution. This is very important to

evaluate the reconstructed page from a human point of view. Only so the

real quality of a solution can be perceived. Since blank strip elimination has

been performed on the input data, the visualized resulting page is probably

going to be slimmer.

The visualization is mostly done by Java's imageIO package. Figure 17 shows
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a sample solution for the P2 test instance (in fact this solution has a quality of

3, meaning there are three correctly aligned consecutive sequences of strips).

8 Tests

For testing purpose several problem instances were created from a typical

typewritten A4 page document (see appendix D, which displays all used test

images). These instances o�er a general overview of the e�ectiveness of the

evaluation and solution methods. The complexity increases steeply for the

test instances by increasing the resolution and decreasing the strip width.

The exact data of the test instances can be found in appendix A.

The test pages were scanned with several resolutions (72, 150, 300 and 600

dpi) and stripped at di�erent strip-widths (20, 50 and 100 pixel strip width).

The resolution is important to the reconstruction process since having a

higher resolution makes it more improbable that cuts are at unfavorable

positions and there is more data that can correlate. This in turn enables the

evaluation to produce good results.

For ε the value 10 was taken. The parameter ε describes the distance within

pixels on another strip are looked for. Empty border penalization, which

penalizes borders without any pixels at all, was set to the average of all

evaluated objective values. Heavy distance penalization, which also increases

penalization, was set to quadratic. Exact match favoritism, which favors

sets of pixels which match in their vertical level perfectly, was set to −50.

For measuring strip distances the normal left-right type was chosen. As

construction heuristic duplex page construction was selected. Preliminary

tests revealed that this is a set of parameters which works reasonable well.

Several test instances have been run twice using both strip distance

calculation methods (see chapter 4.3). These samples have been compared

using the statistical unpaired two-tailed t-test. The tests were made using

the same setup as mentioned in the previous paragraph. It was found out
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Figure 17: Sample solution for the P2 test instance
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that the di�erence of the resulting quality of the solutions can be considered

to be not statistically signi�cant. To be consistent in all other tests the �rst

mentioned calculation method (left-right) was used.

A comparison of the test results made in this thesis to other reconstruction

methods is only limited possible. For once the application to text documents

is not as frequent as image data. For example Skeoch explicitly mentions that

her approach does not work as well for text data as for image data but no

speci�c results are mentioned. She also for the most part uses real life data

from scanned source material. This changes the problem (respectively the

produced result) signi�cantly because with simulated data a perfect solution

is at least possible whereas with real life data one normally works with

approximations. On the other hand Ukovich mainly tries to cluster shredded

remnants which is a di�erent topic.

8.1 Evaluation of the construction heuristics

The construction heuristics were tested independently. The results are

recorded in appendix B. Both forward page construction (FPC) and duplex

page construction (DPC) perform mostly good � in most instances DPC

being better. Construction heuristics play a big part in the reconstruction

process. For the most part they o�er very good approximations which can

then be improved further.

Figure 18 and 19 show two typical test results for the construction heuristics.

In the Figures quality means average quality over all runs and SW means

strip width. The �rst Figure shows results for the test instance P1 (with 150

dpi), the second for test instance P5 (with 600 dpi).

As can be seen from the Figures DPC yields for the most part better results

then FPC. RDPC scales worst from all construction heuristics. DPC and

FPC perform much better for bigger instances. Over all runs DPC could

outperform FPC 15 to 8 times, meaning DPC found a better result quality.



8 TESTS 47

Figure 18: Construction heuristic results for P1 with 150 dpi

Figure 19: Construction heuristic results for P5 with 600 dpi
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Figure 20: Average results for the construction heuristics

Looking upon average solution quality DPC yielded 55 to 5 times better

results.

To back up this individual data I want to present two more results showing

the average of the construction heuristic data. Figure 20 shows the average

results for each construction heuristic. The shown results resemble very much

the individual data which means we really can assume that on average DPC

should yield the best results. Whereas Figure 21 shows the average results

per page. As we will see in the next chapter the average page results also

resemble the best found solutions after optimization (e.g. test page P2 is the

hardest page to solve, which is also visible from the Figure). The averages in

this latter Figure are only based on FPC and DPC.

8.2 Evaluation of the optimization

As already mentioned, several optimization methods were implemented. As

main optimization method the multistart VND was chosen but also the other

methods are discussed. The detailed test results for the VND are presented
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Figure 21: Average results for the construction heuristics for each page

in appendix C.

As can been seen the instances with higher resolutions tend to be easier

to solve. Five 72 dpi instances (all strip widths included) have been solved

optimally where as ten 600 dpi instances with the same strip widths have

been solved with perfect quality. In detail 33 out of the 60 test instances have

been solved optimally, 23 have been solved with a quality between two and

�ve, that leaves four instances above a quality of �ve.

The easiest page to solve is page P3 (all instances solved optimally), then

page P1 (11 of 12 solved optimally), then page P5 (7 of 12), then page P4

(2 of 12) and the hardest is P2 (1 of 12). The pages P1 and P3 are quite

similar, there is much text on it and some headlines. These patterns tend to

be easily reconstructible. P4 and P5 are also quite similar, P5 having a table

in it. The reconstruction method seems to handle graphic objects quite good.

That is probably why P5 is easier to solve than P4. P2 is the hardest page

to solve because there are many patterns that repeat themselves. Since the

reconstruction strategy tries to match borders it cannot handle many equal

looking strips very good. Two typical examples how mismatching may look
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Figure 22: Typical mismatches

Figure 23: Optimization results for all instances with 150 dpi

like are shown in Figure 22.

The Figures 23 and 24 show the summarized results of all the test instances

with 150 and 600 dpi. Quality means average quality over 30 runs and SW

means strip width. Is can be seen P1 and P3 are always solved correctly. P2

becomes with decreasing strip width much harder to solve in the 150 and

the 600 dpi case. It also can be seen that P4 and P5 pro�t from the higher

resolution and yield better results. P5 can even be solved optimally with 600

dpi and 20 pixel strip width.

In general problems become harder to solve with decreasing strip width.
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Figure 24: Optimization results for all instances with 600 dpi

Primarily of course because the solution space grows. This is shown

graphically in Figure 25 which shows the average results of each strip width.

Finally average results for all test pages are displayed in Figure 26 which

summarize the before mentioned result order P3, P1, P5, P4 and P2 (from

best to worst).

8.3 Investigation of ε

As already mentioned the parameter ε (which de�nes the area where adjacent

pixel are sought) plays a central part in the evaluation. Having small ε gives

little penalization for pixels which have no adjacent partner. To view the

consequences of changing ε several tests have been run with all test instances

using several di�erent ε values (2, 5, 10, 20, 40 and 100). As parameter setup

the con�guration at the beginning of this chapter is mentioned.

Figure 27 and 28 show the results. The vertical axis gives the result quality

averaged over 30 runs, the horizontal axis shows the used ε value. The former

graph shows the results for test instance P4 with 600 dpi and 20 pixel strip



8 TESTS 52

Figure 25: Average optimization results regarding strip width

Figure 26: Average optimization results for all test pages
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Figure 27: Results with di�erent ε values for P4

width. As can been seen from both graphs the quality decreases but then

at some point is increases - in case of the P4 instance even steeply. Even

though the quality with an ε value of 20 yields better quality results for the

P4 instance, to be sure not to con�ict with the incline, a lower ε value of

10 was chosen for the main evaluation process. Even the result qualities for

values lower than 10 are still better than result qualities for values above 40.

8.4 Investigation of di�erent penalizations

Several methods were introduced to vary pixel penalization. For example with

heavy distance penalization (HDP) one can square the distance to penalize

pixels further apart more. Or exact match favoritism (EMF) rewards pixel

which have a direct adjacent partner. Both methods were used in the main

optimization process. To show the behavior without these modi�cations tests

were made with all test instances. Figure 29 shows the normal test results

that were made compared to runs made without HDP and EMF. It can be

seen that enabling EBP and HDP for the most part improves the results.
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Figure 28: Average results with di�erent ε values

Figure 29: Results with di�erent pixel penalization
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8.5 Comparison of other optimization methods

It has already been mentioned that the VND optimization has been used

mainly. To show o� the results of the other implemented methods (iterated

local search and simulated annealing) all test instances have been solved

using all available optimization techniques. Figure 30 and 31 show graphs

of the results. The vertical axis depict the quality of the solution. On the

horizontal axis are triples of the solution methods.

Figure 30 shows speci�c results for test pages with 300 dpi and 20 pixel strip

width. P1 and P3 could be solved by every method to optimality. It can be

seen that VND here o�ers the best results, only in one instance P4 ILS gives

better results.

Comparing this speci�c result with the average results of all test instances

(Figure 31) shows that this claim can be supported. The instances P1 and P3

could be solved by VND better, with P2 VND leads only marginally. Also the

average results show that for P4 ILS yields the best results, but only slightly.

This should justify the motivation to further use VND as main optimization

method.

8.6 Reconstruction of multiple pages

So far only the reconstruction of a single page has been looked upon. But

of course also the recovering of multiple pages is of interest. First it is

important to note that this is not a special case for either the evaluation

or the reconstruction process. If shreds come from multiple pages the

output can be interpreted as one wide page. Of course the natural order in

which they were shredded cannot be restored. If for example three pages

(A, B, C) were shredded every permutation of these pages would be an

optimal solution. Optionally for reconstructing multiple pages empty border

penalization (EBP) can be turned o�, since it is imminent that empty borders

must match somewhere.
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Figure 30: Results for ILS, SA and VND for 300dpi and 20 SW

Figure 31: Average optimization results for ILS, SA and VND
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Figure 32: Result for a multiple page instance

To test this, all 600 dpi instances with 100 pixel strip width were put together

and reconstructed. At �rst as test setup the same parameters as in the

beginning of chapter 8 was chosen. Thereafter EBP was disabled. With these

con�gurations solutions of the same quality could be found. A sample solution

is presented in Figure 32. This problem has 168 strips and a solution quality

of two was reached. Also other multiple page test instances were tried with

and without EBP but from the results no clear decision can be made if

deactivating EBP yields any signi�cant improvements.

As can be seen from the shown solution larger parts of it were reconstructed

just �ne. The pages with much text on it are presented optimally. Also the

test instance with the index table (which can be seen in Figure 17 more

closely) was reconstructed correctly. The test instance with the table in it

was cut in half and put on the left and right end of the solution. The cut

through this page must somehow yield improvements at other places. It is

also important to note that this found solution already has a better �tness

value than the optimal solution.
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Figure 33: Comparing resolution with strip widths

8.7 Resolution and number of strips

Finally I want to discuss the topic of comparing results from di�erent

resolution instances. One cannot directly compare test instances having the

same resolution or the same strip width since these problems may not be

equally big. The 600 dpi test instance with 20 pixel strip width contains

a lot more strips than the 72 dpi 20 pixel strip width instance. But it is

perfectly legal to compare e.g. the two P1 instances having for one 150 dpi

50 pixel strip width and 300 dpi 100 pixel strip width. As can also be seen

from the data in appendix A these two instances have the same number of

strips. That makes a comparison reasonable. To accommodate this Figure 33

shows the summarized results of all comparable test instances. The horizontal

axis displays groups of comparable instances. All 50 and 100 pixel strip

width instances have been averaged and placed next to each other, since

the instances in each group have the same number of strips. It can be seen

that the higher resolution instances have been solved better then their lower

resolution counterparts. This also supports the claim that higher resolution

problems tend to be easier to solve.
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9 Conclusion and future work

As can be seen from the concrete implementation the evaluation method

presented o�ers a good approach to the reconstruction of strip shredded

text documents (RSSTD). This method can theoretically be applied to other

applications, not only to strip-shredded papers. If you can de�ne a natural

order between the elements you can even apply this to e.g. manually torn

paper. This method may even be applied to normal images. Test instance Q1,

which is a normal photograph, has been split into 16 strips and was solved

correctly. So although I have not examined this type of application, there is

at least potential here.

An important parameter for the algorithm is the variable ε. This variable

controls the coverage of the strip-neighborhood. For badly torn paper a high

value is bene�cial, for precisely cut paper a small value should be su�cient.

Also the kind of writing on the paper may change the usage of ε.

It has been observed that there are often long passages of correctly sequenced

strips. If these could be bound together (merge into one big strip) the

complexity of the problem could be broken down severely. This process can

be done several times (merge already merged chumps). Of course it is not

trivial to do that. One method to do this is to let a human operator control

the merging process through a procedure called human in the loop. Another

way would be to pass speci�c strips through OCR. This would allow the

automatic veri�cation if text on certain strips make out valid text (of course

this would not work for images).

Since for small instances the method shows good results (i.e. no test instance

with 100 pixel strip width has a quality above 5) it would be conceivable to

implement a system that squeezes the problem size. Besides OCR or human

operators, special heuristics could try to �nd groups or clusters of strips. By

merging, new solutions could be found and evaluated. If no satisfying results

are achieved with this clustering, this aggregation may be canceled and other

clusters can be tried.
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The biggest problem for the evaluation are unfavorable cuts at the edge of

characters � e.g. on the far left of a capital D. The horizontal pixels at the

border get drastically penalized. This makes it very hard to �nd the correct

adjacent strip.

The reconstruction is by no mean a straightforward process. Often enough

it happens that two strips that don't belong together have very good �tness.

Tweaking is de�nitely necessary.
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A Test instances

Five representative pages (see appendix D) were extracted from a PDF

document in di�erent resolutions (72, 150, 300 and 600 pixels per inch).

Each instance was strip-shredded with di�erent strip sizes (100, 50 and 20

pixel strip width). The exact data about these instances are detailed in the

following table.

Instance resolution3 strip width4 nr. of strips5 optimal obj. value6 Nr.

P1 72 100 6 (6) -1149 1

P1 72 50 10 (12) -5351 2

P1 72 20 22 (30) -13590 3

P1 150 100 10 (13) -9472 4

P1 150 50 19 (25) -19744 5

P1 150 20 44 (62) -44538 6

P1 300 100 19 (25) -55683 7

P1 300 50 36 (50) -79679 8

P1 300 20 88 (124) -281686 9

P1 600 100 36 (50) -417669 10

P1 600 50 71 (100) -829171 11

P1 600 20 174 (248) -2088595 12

P2 72 100 6 (6) 12615 13

P2 72 50 10 (12) 16352 14

P2 72 20 20 (30) 27485 15

P2 150 100 9 (13) -13213 16

P2 150 50 18 (25) -1573 17

P2 150 20 40 (62) -2540 18

P2 300 100 18 (25) -44936 19

3in pixels per inch (ppi)
4in pixels
5in brackets is the number of strips without blank strip elimination, see chapter 4.5.1
6this is the objective value, if all strips have been ordered correctly
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P2 300 50 32 (50) -94374 20

P2 300 20 81 (124) -185139 21

P2 600 100 32 (50) -255615 22

P2 600 50 64 (100) -487486 23

P2 600 20 156 (248) -1233012 24

P3 72 100 6 (6) -3847 25

P3 72 50 10 (12) -5425 26

P3 72 20 22 (30) -12169 27

P3 150 100 10 (13) -4281 28

P3 150 50 19 (25) -18416 29

P3 150 20 44 (62) -44290 30

P3 300 100 19 (25) -67129 31

P3 300 50 36 (50) -106179 32

P3 300 20 88 (124) -303138 33

P3 600 100 36 (50) -418178 34

P3 600 50 71 (100) -860327 35

P3 600 20 174 (248) -2163140 36

P4 72 100 5 (6) 13290 37

P4 72 50 8 (12) 14866 38

P4 72 20 18 (30) 16202 39

P4 150 100 8 (13) -1347 40

P4 150 50 15 (25) -3570 41

P4 150 20 36 (62) -22950 42

P4 300 100 15 (25) -42138 43

P4 300 50 28 (50) -78542 44

P4 300 20 71 (124) -211966 45

P4 600 100 28 (50) -246686 46

P4 600 50 55 (100) -531599 47

P4 600 20 141 (248) -1397631 48

P5 72 100 6 (6) 4642 49
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P5 72 50 10 (12) 1975 50

P5 72 20 22 (30) -843 51

P5 150 100 10 (13) -7731 52

P5 150 50 19 (25) -15488 53

P5 150 20 44 (62) -16207 54

P5 300 100 19 (25) -53601 55

P5 300 50 36 (50) -117523 56

P5 300 20 88 (124) -181757 57

P5 600 100 36 (50) -296860 58

P5 600 50 71 (100) -565107 59

P5 600 20 175 (248) -1392428 60

B Construction heuristic data

The construction heuristics forward page construction FPC, duplex page

construction DPC and randomized duplex page construction RDPC were

tested. FPC and DPC were called for all possible situations (i.e. each strip

was one time selected being �rst). RDPC was called 100 times the number

of strips that existed for the speci�c instance.

The values in the α row mean the average �tness, the β row represents average

quality, the γ row means minimum �tness and the δ row shows minimum

quality. The values in brackets show the standard deviation.

Inst. FPC DPC RDPC

1 1892.5(1463.28) -1149(0) 9651.36(4620.46) α
1.83(0.37) 1(0) 2.9(0.71) β

-1149 -1149 -1149 γ
1 1 1 δ
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2 -2355.3(1164.06) -1428.5(3922.5) 14487.44(5218.45) α
1.9(0.3) 1.5(0.5) 4.68(0.96) β
-5351 -5351 -782 γ

1 1 2 δ

3 -5563.23(2085.24) -4779.18(4537.54) 21892.28(6763.7) α
5.82(1.47) 5.59(2.06) 10.8(1.42) β

-8653 -12288 3282 γ
3 2 6 δ

4 -2744.1(2473.13) -3663.6(7113.81) 38803.71(10376.92) α
1.9(0.3) 1.4(0.49) 4.75(0.99) β
-9472 -9472 6170 γ

1 1 2 δ

5 -13056.63(1841.88) -13629.89(7169.42) 85946.04(13299.74) α
1.95(0.22) 1.42(0.49) 9.21(1.32) β

-19744 -19744 27125 γ
1 1 5 δ

6 -25049.93(7820.02) -8018.34(4081.63) 212017.7(19051.72) α
4.36(1.75) 7.05(1.24) 21.73(1.99) β

-37198 -22036 143163 γ
2 4 15 δ

7 -22962.32(30654.58) -55683(0) 251179.88(31623.23) α
2.84(1.72) 1(0) 9.27(1.34) β

-55683 -55683 109388 γ
1 1 5 δ

8 -18016.17(41496.99) -79679(0) 518857.21(33298.26) α
4.67(2.26) 1(0) 17.85(1.83) β

-79679 -79679 377769 γ
1 1 11 δ

9 -220293.03(34313.25) -281686(0) 1367927.24(43519.49) α
4.69(2.05) 1(0) 43.89(2.84) β
-281686 -281686 1182863 γ

1 1 32 δ

10 -304481.42(34478.04) -417669(0) 1333517.57(96054.81) α
3.64(0.71) 1(0) 17.57(1.84) β
-417669 -417669 892171 γ

1 1 11 δ

11 -679950.66(78753.39) -829171(0) 2852535.05(111077.63) α
4.48(1.85) 1(0) 35.31(2.56) β
-829171 -829171 2386133 γ

1 1 27 δ

12 -1864185.23(108532.16) -2088595(0) 7472977.43(150414.97) α
6.27(2.39) 1(0) 86.57(3.91) β
-2088595 -2088595 6839763 γ

1 1 71 δ
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13 18372.17(5105.84) 2567(2795.24) 12530.68(6792.45) α
2.5(0.76) 2.33(0.75) 3.12(0.79) β

12144 628 628 γ
1 2 2 δ

14 18851(7641.68) 9287.7(4249.18) 25062.25(8008.91) α
3.3(0.9) 3.5(1.02) 5.3(0.97) β

4386 4365 5166 γ
1 2 2 δ

15 19397.35(3969.84) 15430.85(4368.88) 44901.66(8612.98) α
7.4(1.07) 8.35(1.39) 9.89(1.39) β

14848 10001 18552 γ
6 5 5 δ

16 -862.56(12309.16) -13213(0) 33555.95(20303.36) α
2.67(0.67) 1(0) 4.06(0.92) β

-13213 -13213 -12074 γ
1 1 2 δ

17 17810.61(20584.27) -17435.78(709.14) 108042.16(22396.74) α
4.22(1.65) 3.78(0.42) 8.94(1.39) β

-11771 -18570 27757 γ
1 3 5 δ

18 28176.45(9695.2) 12062.85(6323.05) 240676.95(30005.23) α
12.25(1.26) 10.35(1.84) 19.75(1.96) β

12556 2685 143093 γ
10 7 13 δ

19 -30945.78(28223.21) -48672.33(6824.04) 218387.68(52721.08) α
3.06(0.7) 2.11(0.31) 8.81(1.38) β
-62272 -64693 43109 γ

1 2 4 δ

20 -80694.5(25841.05) -97938.28(5992.5) 456289.98(60559.13) α
3.06(0.56) 1.62(1.08) 15.87(1.82) β
-112369 -113464 242984 γ

1 1 10 δ

21 -154090.2(38288.46) -225070.04(6173.75) 1218772.25(93482.02) α
13.17(3.71) 9.21(1.45) 40.55(2.78) β

-222510 -230814 909971 γ
8 8 29 δ

22 -232557.16(48518) -278677.44(17927.44) 1091843.22(148349.86) α
3.09(0.58) 2.88(1.45) 15.67(1.75) β
-295777 -298229 510583 γ

1 1 10 δ

23 -536288.14(62928.87) -591336.2(17412.35) 2220875.55(168988.04) α
6.86(0.88) 6.81(1.38) 31.78(2.37) β
-611550 -609883 1501967 γ

5 4 23 δ
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24 -1394874.83(62199.99) -1399266.35(58136.51) 5845497.9(253658.41) α
16.45(1.43) 14.65(1.41) 77.9(3.72) β
-1484189 -1489251 4754484 γ

13 12 62 δ

25 3453.5(3064.34) 3763(5381.08) 8634.84(5631.6) α
2.67(0.75) 2.33(0.94) 2.82(0.77) β

384 -3847 -3847 γ
2 1 1 δ

26 1639.8(3237.44) 2096.2(4407.8) 13385.45(5337.54) α
3.2(0.98) 2.9(0.7) 4.86(0.96) β

-2869 -5425 -5425 γ
2 1 1 δ

27 -617(3041.16) -3973.91(1887.26) 31338.95(7593.7) α
7.32(1.39) 4.55(1.53) 10.7(1.46) β

-8725 -8704 5663 γ
5 3 6 δ

28 3044.7(3053.98) -4281(0) 48979.36(12714.44) α
1.9(0.3) 1(0) 4.76(1.01) β
-4281 -4281 -4281 γ

1 1 1 δ

29 -10857.79(2358.37) -18416(0) 99542.56(15214.51) α
1.95(0.22) 1(0) 9.3(1.36) β

-18416 -18416 47856 γ
1 1 5 δ

30 -4237.32(13582.67) -28523.93(20019.49) 257826.59(22519.84) α
6.34(1.76) 3.09(2.91) 21.69(2.05) β

-28849 -44290 186132 γ
2 1 15 δ

31 -37474.47(17270.04) -67129(0) 263333.17(32633.51) α
2.58(1.14) 1(0) 9.31(1.38) β

-67129 -67129 120184 γ
1 1 5 δ

32 -44828.31(30553.97) -106179(0) 538114.94(36462.74) α
4.81(2.04) 1(0) 17.82(1.84) β
-106179 -106179 370782 γ

1 1 11 δ

33 -195443.84(34680.42) -303138(0) 1482133.29(58688.51) α
6.92(2.21) 1(0) 44.11(2.88) β
-303138 -303138 1265515 γ

1 1 33 δ

34 -280368.58(59231.82) -418178(0) 1361053.78(94483.14) α
4.03(1.3) 1(0) 17.98(1.85) β
-418178 -418178 958216 γ

1 1 10 δ
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35 -750732.07(29650.51) -860327(0) 2950970.58(112015.25) α
3.59(0.6) 1(0) 35.31(2.58) β
-860327 -860327 2468814 γ

1 1 25 δ

36 -1912991.99(114422.31) -2163140(0) 7715833.66(198223.27) α
6.71(2.63) 1(0) 86.91(3.96) β
-2163140 -2163140 6958067 γ

1 1 69 δ

37 4993.6(3066.2) 3821.4(1269.2) 9432.94(4744.98) α
2.6(0.49) 2.2(0.4) 2.89(0.62) β

1283 1283 1283 γ
2 2 2 δ

38 11934.25(5649.53) 3015.62(852.89) 18427.07(6762.91) α
3.12(0.6) 2.62(0.48) 4.06(0.81) β

2958 2336 2336 γ
2 2 2 δ

39 17313.11(4574.44) 5944.33(2012.17) 45130.6(7461.71) α
4.89(0.94) 4.56(1.46) 8.97(1.31) β

5995 3110 22881 γ
3 3 5 δ

40 6398.62(3256.77) -1347(0) 32947.09(10871.91) α
2.12(0.6) 1(0) 3.65(0.93) β

-1347 -1347 -1347 γ
1 1 1 δ

41 1374.67(9734.03) -4211.93(909.53) 74184.34(13291.15) α
3.33(1.01) 2.6(0.71) 7.31(1.26) β

-4711 -4711 24546 γ
3 1 4 δ

42 -28942.22(1559.85) -22340.36(7883.42) 173476.67(20843.52) α
3.19(0.62) 3.58(0.76) 18.2(1.9) β

-31037 -31206 110048 γ
2 3 12 δ

43 -37729.13(4328.45) -40155.47(3966.73) 151898.41(40100.47) α
2.93(0.25) 2.73(0.68) 7.21(1.25) β

-42139 -42139 -22060 γ
2 1 4 δ

44 -73918.96(4021.09) -76755.61(3790.74) 355541.7(44328.19) α
3.11(0.56) 2.89(0.31) 13.93(1.68) β

-78543 -78543 199087 γ
2 2 8 δ

45 -181632.38(20663.78) -169178.65(12360.71) 969219.59(62901.58) α
6.76(0.68) 6.14(0.48) 35.34(2.6) β
-209769 -205930 734928 γ

5 5 26 δ
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46 -196336.96(35608.59) -245475.71(2964.58) 858640.14(123390.83) α
2.96(0.63) 1.14(0.35) 13.68(1.67) β
-246686 -246686 427957 γ

1 1 8 δ

47 -519902.09(9943.81) -533995(0) 1938669.7(164974.97) α
2.24(0.69) 2(0) 27.24(2.29) β
-533995 -533995 1274533 γ

1 2 17 δ

48 -1352938.64(55315.33) -1385955.35(15809.89) 5314013.04(255548.87) α
6.87(0.99) 6.32(0.9) 70.55(3.58) β
-1434013 -1415043 4388679 γ

4 6 57 δ

49 9371.83(2955.28) 3956.5(2387) 12534.24(3980.87) α
2.67(0.75) 2(0) 3.07(0.79) β

2889 2889 2889 γ
2 2 2 δ

50 14921.5(9690.65) 2755.2(3423.32) 22331.46(5912.38) α
3.9(1.97) 2.1(0.3) 4.69(0.99) β

-142 -142 3258 γ
2 2 2 δ

51 13527.68(5123.01) 301.45(2677.38) 45138.25(6949.45) α
7.45(1.8) 3.41(1.23) 10.79(1.55) β

915 -1546 21665 γ
5 2 6 δ

52 4187(6060.29) -7187.5(1630.5) 44619.14(13854.75) α
2.6(1.11) 1.1(0.3) 4.67(1.04) β

-7731 -7731 -3408 γ
1 1 2 δ

53 -4329.11(8252.17) -15027.05(1343.88) 86722.27(17019.27) α
3.05(1.57) 1.21(0.61) 9.5(1.42) β

-15488 -15488 34719 γ
1 1 5 δ

54 14886.52(10666.68) -2399.5(19149.21) 234825.66(27348.22) α
13.73(3.08) 10.05(1.52) 21.93(2.04) β

-35342 -35342 144447 γ
8 8 14 δ

55 -23553.84(21232.38) -36021.84(14991.56) 151014.59(30041.34) α
3.89(1.77) 4.47(2.96) 9.21(1.41) β

-53601 -53601 48914 γ
1 1 5 δ

56 -86256.97(10258.61) -108967.83(7230.44) 372520.31(45136.09) α
7.44(2.22) 3.33(1.97) 17.81(1.92) β
-102791 -117523 217052 γ

3 1 12 δ
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57 -38849.83(45485.76) -126086.51(58371.04) 1145547.3(83437.21) α
10.34(2.18) 10.33(3.6) 43.86(2.78) β

-145316 -194305 835358 γ
7 5 33 δ

58 -229664.69(31066.72) -296860(0) 877493.15(103749.97) α
3.94(1.76) 1(0) 17.76(1.92) β
-296860 -296860 522550 γ

1 1 11 δ

59 -500863.63(24998.26) -565107(0) 1936177.87(131244.41) α
3.96(1.67) 1(0) 35.33(2.57) β
-565107 -565107 1431536 γ

1 1 26 δ

60 -1214061.28(85111.9) -1355338.98(12291.21) 5161064.45(181366.38) α
13.42(3.71) 8.25(2.56) 87.28(3.97) β
-1362036 -1390284 4391758 γ

4 2 72 δ

C Test results

The tests have been made using multistart variable neighborhood descent.

The sample for the average consisted of 30 consecutive runs. The instances

with strip width of 100 were given 15 seconds, the ones with strip width of

50 were given 30 seconds and the ones with strip width of 20 were given 90

seconds to �nd a solution. Tests were made on an AMD Dual-Core Opteron

2214, 2,2 GHz, 4 GByte RAM and Java 1.5. Values in brackets show the

standard deviation.

Instance avg. �tness avg. quality min. �tness min. quality

1 -1149 (0) 1 (0) -1149 1

2 -5351 (0) 1 (0) -5351 1

3 -13765 (0) 2 (0) -13765 2

4 -9472 (0) 1 (0) -9472 1

5 -19744 (0) 1 (0) -19744 1
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6 -44538 (0) 1 (0) -44538 1

7 -55683 (0) 1 (0) -55683 1

8 -79679 (0) 1 (0) -79679 1

9 -281686 (0) 1 (0) -281686 1

10 -417669 (0) 1 (0) -417669 1

11 -829171 (0) 1 (0) -829171 1

12 -2088595 (0) 1 (0) -2088595 1

13 628 (0) 2 (0) 628 2

14 3735 (0) 4 (0) 3735 4

15 3096 (0) 6 (0) 3096 6

16 -13213 (0) 1 (0) -13213 1

17 -18570 (0) 3 (0) -18570 3

18 -31708.2 (9.6) 6.8 (0.4) -31713 6

19 -64693 (0) 2 (0) -64693 2

20 -114705.4 (364.8) 4 (0) -114827 4

21 -254911.9 (534.11) 9.7 (0.78) -255608 9

22 -298229 (0) 4 (0) -298229 4

23 -614289.2 (357.61) 5.9 (0.3) -614707 5

24 -1536855.2 (1824.06) 14.5 (0.92) -1539632 13

25 -3847 (0) 1 (0) -3847 1

26 -5425 (0) 1 (0) -5425 1

27 -12169 (0) 1 (0) -12169 1

28 -4281 (0) 1 (0) -4281 1

29 -18416 (0) 1 (0) -18416 1

30 -44290 (0) 1 (0) -44290 1

31 -67129 (0) 1 (0) -67129 1

32 -106179 (0) 1 (0) -106179 1

33 -303138 (0) 1 (0) -303138 1

34 -418178 (0) 1 (0) -418178 1

35 -860327 (0) 1 (0) -860327 1
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36 -2163140 (0) 1 (0) -2163140 1

37 1283 (0) 3 (0) 1283 3

38 2336 (0) 2 (0) 2336 2

39 1238 (0) 4 (0) 1238 4

40 -1347 (0) 1 (0) -1347 1

41 -4711 (0) 3 (0) -4711 3

42 -31748 (0) 4 (0) -31748 4

43 -42139 (0) 3 (0) -42139 3

44 -78543 (0) 3 (0) -78543 3

45 -217648.1 (820.91) 5 (1.41) -218027 3

46 -246686 (0) 1 (0) -246686 1

47 -533995 (0) 2 (0) -533995 2

48 -1446094.7 (916.63) 5.5 (0.81) -1447652 4

49 2889 (0) 2 (0) 2889 2

50 -142 (0) 2 (0) -142 2

51 -3369 (0) 2 (0) -3369 2

52 -7731 (0) 1 (0) -7731 1

53 -15488 (0) 1 (0) -15488 1

54 -40427 (0) 4 (0) -40427 4

55 -53601 (0) 1 (0) -53601 1

56 -117523 (0) 1 (0) -117523 1

57 -236757.9 (3967.66) 4.4 (1.11) -243629 3

58 -296860 (0) 1 (0) -296860 1

59 -565107 (0) 1 (0) -565107 1

60 -1392428 (0) 1 (0) -1392428 1
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D Test images

The following test pages were used to evaluate the reconstruction

implementation. These pages re�ect di�erent types of page styles. Page P1

re�ects a typical test page with a headline, P2 is a table of contents page, P3

is a text page with several headlines, P4 displays a listing and P5 displays a

page with a table. Test instance Q1 is a photograph.
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Figure 34: Test page P1
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Figure 35: Test page P2
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Figure 36: Test page P3
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Figure 37: Test page P4
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Figure 38: Test page P5
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Figure 39: Test page Q1
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