B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

A Framework for Execution-based
Model Profiling

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieurin
im Rahmen des Studiums
Business Informatics
eingereicht von

Polina Patsuk-Bosch, BSc.
Matrikelnummer 01029574

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Univ.-Prof. Mag. Dr. Manuel Wimmer
Mitwirkung: Dipl.-Ing. Mag. Dr.techn. Alexandra Mazak-Huemer, Bakk.techn.

Wien, 10. Janner 2020

Polina Patsuk-Bdsch Manuel Wimmer

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

A Framework for Execution-based
Model Profiling

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieurin
in
Business Informatics
by

Polina Patsuk-Bosch, BSc.
Registration Number 01029574

to the Faculty of Informatics
at the TU Wien

Advisor: Univ.-Prof. Mag. Dr. Manuel Wimmer
Assistance: Dipl.-Ing. Mag. Dr.techn. Alexandra Mazak-Huemer, Bakk.techn.

Vienna, 10" January, 2020

Polina Patsuk-Bdsch Manuel Wimmer

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der
Arbeit

Polina Patsuk-Bosch, BSc.

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. Janner 2020

Polina Patsuk-Bosch

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Acknowledgements

I would like to thank my advisors Dr. Manuel Wimmer and Dr. Alexandra Mazak-
Huemer for your guidance, inspiration, insights, and patience. I would also like to thank
my husband Christoph, it would not be possible without your relentless support and
encouragement.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Kurzfassung

Model-Driven-Engineering (MDE) fokusiert sich auf Modelle, die tiber den gesamten
Software-Entwicklungsprozess auf praskriptive Art eingesetzt werden. Obwohl diese pré-
skriptiven Modelle wihrend der Systemimplementierung von Bedeutung sind, liefern
deskriptive, aus Laufzeitdaten abgeleitete Modelle wertvolle Informationen in spéteren
Phasen des Systemlebenszyklus. Bisher wurden solche deskriptiven Modelle im Gebiet des
MDE kaum erforscht. Aktuelle MDE-Ansétze vernachlissigen meist die Moglichkeit ein
existierendes und laufendes System anhand des Informationsflusses von Betrieb zu Design
zu beschreiben. Um eine Verbindung zwischen praskriptiven und deskriptiven Modellen
herzustellen, schlagen wir ein vereinheitlichendes Framework vor, in dem MDE-Ansétze
und Techniken aus Process-Mining (PM) lose gekoppelt zum Einsatz kommen. Dieses
Framework nutzt ausfithrungsbasiertes Model-Profiling als kontinuierlichen Prozess zur
Verbesserung préskriptiver Modelle zur Design-Zeit durch die Nutzung von Laufzeit-
information. Weiter legen wir eine Evaluierungsfallstudie vor, um die Umsetzbarkeit
und die Vorteile des vorgeschlagenen Ansatzes zu demonstrieren. In dieser Fallstudie
implementieren wir einen Prototypen unseres Frameworks um Logs eines laufenden
Systems aufzuzeichnen. Der implementierte Prototyp transformiert die aufgezeichneten
Logs in das XES-Format um eine Verarbeitung und Analyse durch PM-Algorithmen zu
ermoglichen. Wir zeigen, dass die resultierenden Modelprofile fiir eine Laufzeitverifikation
ausreichend sind. Dariiber hinaus demonstrieren wir die Moéglichkeit durch das verein-
heitlichende Framework solche Modelprofile fiir verschiedene Perspektiven einzusetzen,
darunter Funktionalitét, Performanz und Wechselwirkungen zwischen Komponenten.

Schlagworte: Process Mining, Model-Driven Engineering, Model Profiling

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Abstract

In Model-Driven Engineering (MDE) models are put in the center and used throughout
the software development process in prescriptive ways. Although these prescriptive models
are important during system implementation, descriptive models derived from runtime
data offer valuable information in later phases of the system life cycle. Unfortunately,
such descriptive models are only marginally explored in the field of MDE. Current MDE
approaches mostly neglect the possibility to describe an existing and operating system
using the information upstream from operations to design. To create a link between
prescriptive and descriptive models, we propose a unifying framework for a combined but
loosely-coupled usage of MDE approaches and process mining (PM) techniques. This
framework embodies the execution-based model profiling as a continuous process to
improve prescriptive models at design-time through runtime information. We provide
an evaluation case study in order to demonstrate the feasibility and benefits of the
introduced approach. In this case study we implement a prototype of our framework
to register logs from a running system. The implemented prototype transforms the
registered logs into XES-format for further processing and analysis via PM algorithms.
We prove that the resulting model profiles are sufficient enough for runtime verification.
Furthermore, we demonstrate the possibility to maintain model profiles for multiple
concerns, such as functionality, performance and components interrelations, through the
unifying framework.

Keywords: process mining, model-driven engineering, model profiling

Xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

Kurzfassung ix
Abstract xi
Contents xiii
1 Overview 1
1.1 Introduction and Motivation 1
1.2 Problem Definition and Relevance 2
1.3 Aim of the Work 4
1.4 Methodology)
1.5 Structure of the Thesis 5
2 State Of The Art 7
2.1 Model-Driven Engineering 7
2.2 Process Mining Lo 12
2.3 ModelsQrun.time e 24
3 Execution-based Model Profiling 29
3.1 Overview 29
3.2 Approach 30
3.3 Unifying Framework L. 31
4 Technical Realization 35
4.1 OVerview oo e, 35
4.2 Modeling Tool and Code Generator 36
4.3 Logging Instrumentation Lo 37
4.4 Execution Platform 38
4.5 MicroService e 39
4.6 Transformations 40
4.7 Process Mining Toolo 46
5 Evaluation: Case Study 49
5.1 Overviewo 49

Xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

49

5.2 Design L e

57
72

5.3 Results.

5.4 Interpretation of Results

75

5.5 Threats to Validity and Limitations

(4

6 Related Work

79

7 Summary and Future Work

81

List of Figures

85

Acronyms

87
95

Bibliography
Appendices

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Overview

1.1 Introduction and Motivation

Short cycles of innovation, fast changes in customer needs, continuous adjustments
in legislation are just a few reasons for ever increasing importance of flexibility in
the industrial automation domain [LSVH14]. The recent emergence of the term Cyber-
Physical System (CPS) emphasizes that both hardware and software are equally important
to realize modern production systems [LBK14, VHLL15]. Apart from that several
new challenges arise for production companies with the transition to the new industry
paradigm, Industry 4.0. In this paradigm automated engineering solutions are produced
by other automated solutions [Baul7].

In particular, two main demands can be specified. The first one is early validation of
design decisions via simulation runs. The second one is the back-propagation of data
from operations to design in order to enhance and adapt the initial design of a production
system. A way to solve those issues is to combine various methods and techniques into an
interoperable toolchain from engineering and design, over simulation, to operations and
monitoring of different versions of productive systems in order to gather massive sets of
runtime data for further analysis. These toolchains and data sets should finally lead to a
systematic creation of digital twins - one of the enabler concepts of Industry 4.0 [Baul7].

Since industrial engineering is confronted with these emerging requirements, the software
engineering domain is inevitably challenged with them as well. Model-Driven Engineering
(MDE) is a promising approach to deal with the increasing complexity of modern
software systems in the industrial automation domain [BGS™14, BCW12, KMRO00]. In
this paradigm software is created on a higher abstraction level. Thus, MDE facilitates
industrial engineers to work with software models of embedded automation systems,
modify them using modeling tools and single-handedly generate and deploy code for
early design validation. However, code centric development still takes the leading role in

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

OVERVIEW

software engineering and the advantages of modeling are mostly utilized only for code
generation [Vyal3|. Nevertheless, MDE offers additional benefits, such as dynamical
extraction of runtime models and cooperative simulation. In this thesis we focus on the
first point, i.e., exploring runtime phenomena observed from MDE-based systems during
their execution.

Modern complex automated and embedded systems produce significant amount of data
as they run. This includes registration and logging of components communication
within the system, as well as handling of external contexts and environmental inputs.
As example of internal component communication to emphasize its possible volume
we can point out, e.g., modern cars with one hundred electronic control units which
regulate the car’s braking systems, the vehicle speed, the speed of each wheel, the drive
mode, etc. [DGJT16]. Additionally, in the near future, the interconnection level of
stand-alone systems is expected to increase rapidly multiplying the runtime data they
produce. For instance, these already complex cars will dynamically connect to each
other to implement functionalities like automated cross roads assistants [AGJT14]. In
the agricultural domain autonomously driving tractors are already today able to perform
organised tasks and connect to each other [Fenll]. Furthermore, such interconnected
systems have to deal with and react to various environmental inputs at runtime. In
consequence, taking into account the level of complexity, both the structure and the
behavior of the embedded automation systems have to be observed at runtime, since
they can not be entirely predicted at design time. The runtime communication data that
such systems produce, if being properly logged, offers plenty of unexplored but valuable
information and experiences.

This thesis was written based on the research conducted in Christian Doppler Laboratory?,
modul "Reactive Model Repositories', in collaboration with the company LieberLieber?
MWPBI1S].

1.2 Problem Definition and Relevance

In the current state-of-practice in MDE [BCW12], models are used as an abstraction
and generalization of a system to be developed. By definition a model never describes
reality in its entirety, rather it describes a scope of reality for a certain purpose in
a given context, i.e., a model is never complete and only created as a blueprint of a
system. Therefore, models at design time are early system snapshots, which are used in a
prescriptive manner in order to automatically generate model-driven engineered software
systems [BCW12, HPET16].

While prescriptive or design models are indeed a very important ingredient to realize
a system, for later phases in the system’s life cycle additional model types are needed.

!Christian Doppler Labor for Model-Integrated Smart Production (CDL-MINT): https://cdl-
mint.big.tuwien.ac.at/
*LieberLieber: https://www.lieberlieber.com/en/home-en/

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.2. Problem Definition and Relevance

In industrial automation engineers typically have the desirable behavior in mind when
creating a system, but they are not aware in these early phases of the many deviations
that may take place at runtime [vdA16]. Therefore, descriptive models may be employed
to better understand how the system is actually realized and how it is operating in a
certain environment. Compared to prescriptive models, these descriptive models are
only marginally explored in the field of MDE, and if used at all, they are built manually.
Unfortunately, MDE approaches have mostly neglected the possibility to describe an
existing and operating system which may act as feedback for design models. Thus, both
type of models should be included into the full system life cycle, since having only an
a-priori description of a system is not enough. For fulfilling this requirement, models
should not be considered as isolated static system prescriptions, but as evolutionary
descriptions. This can be realized in a modeling approach combining model-driven design
and runtime phenomena. Therefore, as theoretically outlined in [MW16], model profiling
can be considered as a continuous process (i) to improve the quality of design models
through runtime information by incorporating knowledge in form of profiled metadata
from the system’s operation, (ii) to document the evolution of these models, and (iii) to
better anticipate the unforeseen.

There exist already promising techniques to focus on runtime phenomena, especially in
the area of Process Mining (PM) [vdA16]. PM combines techniques from data mining
and Business Process Management (BPM). In PM, business processes are analyzed on
the basis of event logs. Events are defined as process steps and event logs as sequential
ordered events recorded by an information system [DvdAtHO5a]. This means that PM
works on the basis of event data instead of designed models and the main challenge here
is to capture behavioral aspects of a running systems. Thereby, specialized algorithms
can convert runtime data into a Petri net, which forms a process model. To put it in
a nutshell, there is a concrete, running system which is producing logs and there are
algorithms used to compute derived information from those logs. However, PM alone
doesn’t take the design models into consideration and doesn’t have any semantic links to
them.

In this thesis we focus on creating a link between downstream information derived from
prescriptive models and upstream information in terms of descriptive models. The
research objective of the thesis is to develop a unifying framework realizing a model
profiling approach for a combined but loosely-coupled usage of MDE and PM techniques.
In order to reach the research objective the following research questions should be
answered:

1. What concepts, techniques, and tools can be used to to realize a model profiling
approach?

2. Can the operational data be automatically stored as descriptive models derived
from the operational semantics of the design language?

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

1.

OVERVIEW

3. Are the resulting model profiles sufficient enough to verify system’s behavior at
runtime?

4. Is it possible to maintain model profiles for multiple concerns, such as functionality,
performance, and components interrelations, through unifying framework?

1.3 Aim of the Work

The expected outcome of this thesis is a unifying framework for a combined but loosely-
coupled usage of MDE approaches and PM techniques. The framework will be developed
in the context of a case study with prototype implementation within an experimental
frame. This case study is based on a traffic light system, engineered via a model-driven
approach. The model for this example has been developed by using the modeling tool
Enterprise Architect (EA)3. The extension VanillaSource for EA provided by the company
LieberLieber? is used to automatically produce Python code from the design model.
The code can be executed on a single-board computer, e.g., Raspberry Pi®. During the
execution, the traffic light system produces logging output, which is used for further
analysis by PM techniques.

The expected outcome is to be reached in several steps, as follows:

In the first step, the initial model-driven engineered traffic light system is analyzed to
determine potential drawbacks and inconsistencies. The result of this step is a new
model-driven engineered system improved according to the outcome of the analysis.

In the next step, both the initial and the improved systems are generated from their
design models and then deployed on hardware to simulate real systems and collect event
logs. The results of this step are data sets of the recorded logs ready to be processed by
PM tools.

In the third step, PM techniques are applied to the data set of the recorded logs. The
result of this step is a re-created design model in form of a Petri net which might differ
from the initial design model. Therefore the recreated model is compared to the initial
design model in order to find discrepancies and to locate their sources.

In the last step, the results of the previous steps are interpreted and evaluated according
to the case study design. The architecture of the whole system including the MDE-part
and the PM-part is described. The results of these steps are prototype artifacts and a
documented unifying framework.

http://www.sparxsystems.com/

‘Embedded Engineer and Python with Enterprise Architect:
https://blog.lieberlieber.com/2015/06 /02 /embedded-engineer-and-python/

"Raspberry Pi Foundation: https://www.raspberrypi.org/

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.4. Methodology

1.4 Methodology

The general approach to the research is an explanatory case study based on the guide-
lines for conducting empirical explanatory case studies proposed by [RH09]. Such an
observational study provides deeper understanding of the phenomena under study and
their interrelations. This approach allows to evaluate the feasibility of combining MDE
and PM techniques.

Applied methodologies:

¢ Requirements Elicitation

— Literature review. State of the art should be summarized to outline the
background of the related topics: MDE including the important concepts of
modeling languages, metamodeling and model transformations, PM including
an overview of existing algorithms, models@run.time (M@QRT), etc.

¢ Realization

— Case Study Design. Definition of objectives, requirements and setup: mod-
eling language, tools used, interaction between the tools, data-formats, etc.

— Developing a prototype. MDE-based realization of the prototype within
an experimental frame including creation of an automated workflow from a
running MDE-system to the PM-analyzed logs of this system. This method
also includes refactoring of the initial model for a variety of experiments.

o Evaluation: Case-Study-based

— Qualitative data collection. Deploying and execution of the prototype on
the hardware and collection of the event logs for further analysis.

— Analysis of collected data. Analysis of the recorded event logs using PM
techniques: discovery of the underlying processes using existing algorithms.

— Interpretation of the results and hypothesis confirmation. Summa-
rizing the research results and answering the research questions.

1.5 Structure of the Thesis

Chapter 1 gives an introduction of the thesis, including problem definition, aim of the work
and methodology. In Chapter 2 two central concepts are introduced, i.e., MDE and PM.
Theoretical fundamentals and principles of both topics relevant for this thesis are given
in the Sections 2.1 and 2.2. Section 2.3 addresses the emerging research work focusing on
runtime phenomena, namely MQRT. Chapter 3 presents our approach combining models
at design time and runtime. This approach integrates MDE and PM techniques in a
unifying framework for execution-based model profiling at runtime. Chapter 4 describes

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.

OVERVIEW

the technical realization of the approach within an experimental frame. The evaluation
of the approach with a case study and the results of the conducted experiments are
presented in Chapter 5. Chapter 6 gives an overview of the related work similar to our
approach. Finally, Chapter 7 summarizes the results of the thesis, discusses limitations,
future work and possible next steps.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

State Of The Art

2.1 Model-Driven Engineering

2.1.1 Overview

In Model-Driven Engineering (MDE), models are put in the center and used throughout
the software development process, finally leading to an automated generation of executable
software systems [dLGC15]. The primary goal of MDE is to get running systems out of
models.

The main aspects considered in MDE are shown in Figure 2.1. MDE is presented in
two dimensions: implementation (rows) and conceptualization (columns). The dimension
of implementation shows the way from model definition to a running system through
mapping. There are three levels in this dimension, which are as follows [BCW12]:

e The modeling level considers definitions of models and corresponding modeling
languages.

o The realization level considers implementation artifacts and platforms where those
artifacts are used (e.g. executable code in case of software).

e The automation level allows mapping from the modeling level to the realization

level.

The conceptualization dimension describes the process of defining conceptual models on
different levels of abstraction. This dimension has three levels:

e The application level considers certain systems. Models for these systems are
defined on this level. Code is generated by executing concrete transformations.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

STATE OF THE ART

Application Application domain Meta-Level
AL <, A ~ o A ~
r [2 [
g | Meta
g < m=----" bcxteling T =" modeling
3 Model language
=]] language
- 'y f
c I 1
S | L |
g J Transformation/ || ,| Transformation || _ | Transformation
S | Code generation |~ definition language
3
T A 5
. -

:: ' [[N AL [
g = =» defined using
g < Artifacts Platform || = - » defined by
S (e.g. code) I — uses
x i -

Figure 2.1: Overview of the MDE methodology (top-down process)[BCW12].

e The application domain level defines modeling languages and transformations and
specifies implementation platforms.

e The meta-level provides the abstract syntax for modeling languages and defines
the transformation language (see Section 2.1.3).

The core flow of MDE is shown in Figure 2.1 as a wide grey arrow from the models down
to the code artifacts. This core flow represents the system construction as a top-down
process. A model on top of this process is an abstraction and generalization of the future
system. This model limits the scope of the system and defines its static and dynamic
structure [BCW12].

A typical MDE-based software development process is shown in more detail in Figure 2.2.
It includes requirement elicitation, analysis, design, and implementation. These activities
underlie any software development process independent of its methodology, be it the
traditional waterfall model or any of modern iterative methodologies. According to the
mentioned activities there are several types of models in the development process, which
are: requirement models, analysis models, and design models. An executable software
system can be produced by means of one or more transformations of these models. The
first two transitions between the models are executed by applying model-to-model (M2M)
transformations. The implementation of the system (executable code) is produced by
applying a model-to-text (M2T) transformation to the design model [BCW12]. For
details on transformation types see Section 2.1.4.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.1. Model-Driven Engineering

M2M

Requirements

Figure 2.2: A typical MDE-based software development process [BCW12].

M2M M2T

Implementation I

The possibility of model transformations is based on the concept of metamodel. The
metamodel of a modeling language provides the abstract syntax of that language. This
syntax ensures that models follow a defined structure. It serves as a basis for applying
operations on models (e.g., storing, querying, transforming, checking, etc.) [BCW12].
More information about modeling languages and metamodeling can be found in the
following Sections.

2.1.2 Modeling Languages

Modeling languages are an integral part of MDE. Modeling languages are conceptual
tools that allow for formalization and conceptualization of the reality in an explicit
textual or graphical form [BCW12]. Generally, a modeling language is defined by three
core ingredients and is not complete if any of them is missing or deficient. These core
ingredients are [BCW12]:

o Abstract syntax: description of the primitive modeling elements, their structure
and relationships independent of any particular representation.

e Concrete syntazx: description of specific graphical or textual representations of the
modeling elements. The concrete syntax is used by an engineer during actual design
process.

e Semantics: description of the meaning of the elements and their combinations. The
semantics directly defines the meaning of the abstract syntax and indirectly of the
concrete syntax.

According to [Kle09] semantics of a modeling language can be further divided into three
types.

e Denotational semantics defines a mapping from the modeling language to a formal
language by formulating the meaning of all the concepts, properties, relationships,
and constraints by means of mathematical expressions.

e Operational semantics defines the meaning of the language implementing an inter-
preter that directly defines the model behavior.

o Translational semantics maps the language concepts to another language with
clearly defined semantics.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

10

Running systems can only be generated from executable models. A model is executable if
its operational semantics is fully specified [BCW12]. To put it in a nutshell, operational
semantics defines everything that is changing in a system at runtime, e.g., attribute
values, or the current state of the system or its components.

As it follows from the previous paragraph, software systems have not only a static
structure but also a behavior. They are dynamically changing during execution and
as a result of interaction with users or other systems. Therefore, modeling languages
and their models, i.e. concrete MDE-systems, also have two aspects: the static (or
structural) aspect and the dynamic (or behavioral) aspect [BCW12]. The static aspect
focuses on the structural shape and architecture of a system. In terms of the Unified
Modeling Language (UML) this aspect can be described with structural diagrams like
class diagrams, component diagrams, package diagram, etc. The dynamic aspect shows
the sequence of actions and algorithms, the communication between system components
and the changes of their current internal states. The behavior diagrams in UML are
activity diagrams, sequence diagrams, and state machine diagrams. This separation of
aspects allows different views on the same system. Nevertheless, these two views should
be interconnected to maintain a sound overall picture.

Modeling languages can be classified into two groups: General-Purpose languages (GPLs),
which model any domain, and Domain-Specific languages (DSLs), which are designed
specifically for a certain domain [BCW12]. The typical examples of GPLs are UML and
Petri nets (see Section 2.2.2). The goal of DSLs is to simplify modeling or programming
tasks for domain experts. Well-known examples of DSLs are HTML? for creating web
pages, MATLAB 2 for natural sciences and economics, Simulink for engineering and
automatic control 4, Structured Query Language (SQL) for managing data held in
a relational database management system. A DSL can not only be developed for a
domain, but also for a specific project, e.g., the language Solidity®> was developed for the
blockchain-based platform Ethereum®. A third group of customized GPLs for specific
purposes can be defined as an overlap of the two big groups. An example for such an
intermediate solution are UML-profiles, e.g., the Systems Modeling Language (SysML)”
and Modeling and Analysis of Real Time and Embedded systems (MARTE)®.

2.1.3 Metamodeling

Every model is an abstraction and generalization of a real world phenomenon. In order
to build a model, an engineer needs a set of rules referring this type of models. Therefore
another level of abstraction defining properties of the model itself is needed. This level

YUML specifications: http://www.omg.org/spec/UML/2.5/

*HyperText Markup Language (HTML) specifications: https://www.w3.org/html/

SMATLAB as the product of MathWorks: https://www.mathworks.com/products/matlab.htm]
“Simulink as the product of MathWorks: https://www.mathworks.com/products/simulink.html
®The Solidity Contract-Oriented Programming Language: http://solidity.readthedocs.io/en/v0.4.21/
Shttps://www.ethereum.org/

"SysML specifications: http://www.omg.org/spec/SysML/1.4/

SMARTE specifications: http://www.omg.org/spec/ MARTE/1.1/

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.1. Model-Driven Engineering

is called a metamodel. Typically a metamodel represents the definition of a modeling
language. A metamodel defines all valid models of that modeling language [K06].

In metamodeling practice, a model conforms to its metamodel in a way that a computer
program conforms to the grammar of the programming language. If a model conforms to
its metamodel, all the elements of the model can be instantiated from the corresponding
classes of the metamodel. Figure 2.3 presents the notation of these two relationships.

Metamodel

class

N

«instanceOf» «conformsTo»

Model

object

Figure 2.3: Relationships between metamodel and model [BCW12].

Metamodels can be used constructively as a set of rules for building models and ana-
lytically as a set of constraints a model must adhere to conform to its metamodel. The
transformation aspects discussed in the next Section are also based on metamodels of
modeling languages [BCW12].

2.1.4 Transformations

Model transformations are another integral part of MDE in addition to models and model
languages. Transformations are defined on the level of metamodels (cf. Figure 2.4). To
enable a transformation, it should be specified which elements of the source metamodel
are to be transformed into which elements of the target metamodel. This specification is
called mapping. It allows to automate transformations with an execution engine. The
transformation itself is performed between two models which conform to the source and
target metamodels [CH06, BCW12].

As mentioned in the Section 2.1.1, there are two types of model transformation: M2M
transformations and M2T transformations. These two transformations are used in the
context of this thesis and explained in detail in the Section 3.3. Concrete implementations
are demonstrated in the Section 4.6.

M2M transformations take one or more models as input and generate one or more models
as output. If transformation is performed between two models, defined in two different
languages, it is referred to as exogenous. Such transformations are mostly out-place
transformations, since the target model is created from scratch in the target modeling
language. Transformations within the same language are called endogenous. These
transformations are mostly happening in-place which means they are rewriting a source

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

STATE OF THE ART

12

«uses» Model Transformation «uses»
Metamodel | — — r = —p Metamodel
Source I Language Target

«conformsTo»

1
1
«conformsTo» I «conformsTo»
|
|

Model ! _ | ModelTransformation | _ _ Model

Source Definition Target
T

L
| «reads» I «executes» «writesy |

Figure 2.4: Definition of a transformation between models [BCW12].

model by creating, deleting, and updating elements. An example for an endogenous
in-place transformation is model refactoring [BCW12].

M2T transformations are mostly used in code-generators to execute the transition from
the modeling level to the code level. On the code level it is not only the functional
code that can be generated, but also test code, logging code, deployment scripts, etc.
A code-generator typically generates code in a certain programming language. Model
elements are transformed into the corresponding code statements, e.g., if-statements
and cycles, or language structures, e.g. classes. Thus, transforming the same model in
different code generators means to get running code in different programming languages
[BCW12].

2.2 Process Mining

2.2.1 Overview

In Process Mining (PM) the object of discovery are business processes or processes in
general, whereas data mining aims to discover unsuspected data structures in big data
sets [HSMO1]. The goal in both cases is to make this new derived information useful for
the data owner. PM-techniques analyze processes that are running in an information
system on the basis of event logs and discover non-trivial and useful information from
those logs. Such process-centric systems are called Process-Aware Information System
(PAIS) [DvdAtHO5b]. The process notion is an integral part of these information systems
which distinguishes them from, e.g., databases or text editors. For example, Enterprise
Resource Planning (ERP) systems, Business Process Management (BPM) systems and
Customer Relationship Management (CRM) systems are aware of the processes they
support.

Each event in PAIS is a well-defined and globally unique process step that refers to

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.2. Process Mining

an activity and a case. Fwvent logs are sequentially ordered events registered by a
PAIS [DvdAtHO5a]. These event logs can grow into significant sets of data and can be
recognized as Big Data especially in terms of their volume and the velocity they are
produced with. The main challenge of PM is to capture behavioral aspects of PAIS on
the basis of event data [vdA16].

PM can be considered as an interdisciplinary bridge between data science and process
science. Further components of this bridge are shown in Figure 2.5. Data science
approaches are too data-centric to provide a complete understanding of end-to-end
processes. Process science approaches tend to concentrate on process models without
considering that event data can be used to improve processes. PM is a relatively young
research discipline that fills the gap between traditional model-based process analysis
and data-centric analysis such as machine learning and data mining [vdA16].

. statistics ‘privacy,
| algorithms™/ security,

data “behavioral
mining __\— = fsocial
/ - A science,

business
) models &
science marketing

machine I data
learning /

optimi- .
zation | ~ visualization
process \ & visual

mining

\ distributed
systems \
|

process \// g J

science

stochastics

7 business
process
management

formal methods

& concurrency

theory process
/" automation

&
workflow
manage-
mey

Figure 2.5: Process mining as the bridge between data science and process science
[vdA16].

Three main types of PM in terms of input and output [VDA12]:

e Discovery. This technique doesn’t use any a-priori information about the system.

Event logs are the only input that discovery techniques take for explaining system
behavior. For example, the a-algorithm (see Section 2.2.3) constructs a process
model in form of a Petri net using exclusively an event log without any additional
information.

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

2.

STATE OF THE ART

14

event log » discovery » —

event log »
conformance * diagnostics
model * checking

event log »
enhancement » new model
model »

Figure 2.6: The three basic types of process mining in terms of input and output [VDA12].

e Conformance checking. This technique is used to check whether the real behavior

of the system as registered in the logs corresponds to the process model and vice
versa. Thereby, the recorded event logs are compared with the model obtained from
event logs. Thus, conformance checking is applied to detect, locate, and explain
discrepancies.

Enhancement. The goal of this technique is to improve existing process models
by means of new information derived from event logs. There are two types of
enhancements: repair and extension. The first one aims to modify the system so
that it better reflects the real phenomena. The latter one is used to add a new
perspective to the process model, e.g., by enriching the model with performance
data.

Orthogonal to the dimension of these three PM-types, there is a dimension of different
PM-perspectives [vdA16]. These perspectives give a complete picture of the aspects that
PM intends to analyze.

e The control-flow perspective reflects the ordering of activities being performed. The

result of mining this perspective is a convenient generalization of all possible paths
in form of, e.g., a Petri net or UML activity diagram.

The organizational perspective focuses on resources which executes activities of
the process (e.g., people, systems, roles, and departments). The result of mining
this perspective is an organizational structure or a social network that shows
organizational units and their interrelations.

The case perspective is concerned with properties of the cases. A case or a single
process instance is an end-to-end execution of the process. It can be characterized by
its path, resources, or individuals working on it and the values of the corresponding
attributes at different points in time.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2. Process Mining

o The time perspective focuses on timing and frequency of events. Every event has
a timestamp, which allows to analyze and predict bottlenecks, actual execution
times, utilization of resources, remaining processing time of running cases, etc.

2.2.2 Petri Nets as Process Models

A Petri net is a directed bipartite graph that consists of two types of nodes: places
represented by circles and transitions represented by rectangles [RR98]. These nodes
are connected by directed arcs. An example of a Petri net is shown in the lower part
of Figure 2.7. The structure of a Petri net is static, however tokens can flow through
the network according to the firing rules defined in transitions in order to demonstrate
dynamic behavior. A transition is called enabled when there are enough tokens on all the
input places of this transition, so that it is ready to fire [RR98].

According to van der Aalst [vdA16], Petri nets are the oldest and best investigated GPL
for process modeling allowing to express concurrency. In a process two events are called
concurrent, when they are executed during overlapping time periods and are not causally
affecting each other [Lam78]. The firing of a Petri net is nondeterministic, meaning that
several transitions may be enabled at the same time and several tokens may reside in
different places. This non-determinism gives the possibility of concurrency modeling.

As mentioned in the previous Section, Petri net can be a mining outcome of the PM
in control-flow perspective. Generally, a Petri net shows the control-flow backbone for
an end-to-end process. Mining outcome can also be represented in notations different
from Petri nets. Additionally to Petri nets van der Aalst [vdA16] discusses such kinds of
notations as Business Process Model and Notation (BPMN), Business Process Execution
Language (BPEL), Event-driven Process Chain (EPC), and Yet Another Workflow
Language (YAWL). Throughout this thesis Petri nets are considered to be the basis PM
outcome since it is a GPL and can be used for mining different kinds of processes running
in software systems. Other mentioned notations are DSL specifically created to represent
business processes and workflows.

The connection between an initial process model and the mining outcome in form of a
Petri net is shown by an example. In the upper part of Figure 2.7 there is a business
process depicted in BPMN. This process is part of a system which is deployed on a

workflow engine. The system runs and produces an event log consisting of log entries.

This event log is mined with a PM algorithm like the a-algorithm or inductive miner (the
explanation of these algorithms is given in the Section 2.2.3). The resulting Petri net, i.e.,
mining outcome, is presented in the lower part of Figure 2.7. The alignment between the
initial BPMN model and the Petri net shows the correct number of detected activities,
as well as the correctly captured sequence and interconnections between them. Every
path possible in the initial model is also possible in the Petri net. Figure 2.7 illustrates
this alignment by several selected disjunctions and conjunctions.

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.

STATE OF THE ART

16

EXBITI ine
----LogEntry----

----LogEntry----

----LogEntry----

register
request

Process in BPMN

---LogEntry---

reject

| request -—-LogEntry--—-

| reinitiate
| request

—_— o — ey
— e e e

-—--LogEntry----

| \
XOR-split Alignment | AND-join
XOR-join

Event log

AND-split

o .(examine
start register casually

request

reject
request

check ticket
reinitiate

Petri net request

Figure 2.7: Process mining. An example. Based on [vdA16]

2.2.3 Process Mining Algorithms
Family of Alpha Algorithms

The basic a-algorithm was introduced in 2004 by van der Aalst [vdA16] as one of the first
process discovery algorithms that could deal with concurrent threads. The a-algorithm
is simple and provides a good introduction to the PM. However, this algorithm can not
deal with complex routing constructs, noise, and infrequent or incomplete event logs.
Nevertheless, the algorithm forms an essential baseline for discussing more advanced
algorithms and process discovery challenges.

The following formalization is needed to further explain the a-algorithm [Denl3]. Let A
be a set of activities. A bag of strings over A forms an input for the a-algorithm. This
bag is called an event log L € Bag(A*), whereas each string o € L is called a trace. Four
ordering relations can be defined for pairs of activities a,b € A:

b directly follows a: a>pb if and only if there is a trace o = (t1, ta,t3,...,t,) and
i€ {1, .., n1} suchthat o0 € Land t; =a and t;+; = b

e Sometimes b directly follows a, but a never follows b: a— b if and only a>7b and

btra
o a and b are parallel activities: al|zb if and only if a>7b and b>pa

e a and b are unrelated activities: a#pb if and only if a}1b and b(ra

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

2.2. Process Mining

Precisely one of these relations holds for any pair of activities of any log L [vdAWMO04].
Therefore, a distinct relation matrix of the log L, i.e. the so-called footprint, can be
created. These log-based ordering relations are further used to discover patterns and
generate a Petri net. Figure 2.8 presents examples of captured relations and corresponding
discovered patterns.

(a) sequence pattern: a—b
Da® @

(b) XOR-split pattern: (c) XOR-join pattern:
a—b, a—c, and b#c a—c, b—c, and a#b

(d) AND-split pattern: (e) AND-join pattern:
a—b, a—c, and b||c a—c, b—c, and a||b

Figure 2.8: Typical process patterns and the footprints they leave in the event log
[vdA16].

To put it in a nutshell, the a-algorithm consists of two basic steps [vdAWMO04] (cf. Figure
2.9):

1. Reconstruction of four possible ordering relations from a log as a footprint

2. Generation of a Petri net from this footprint

Log :)Isa?ciizl:s Footprint Petri Net
a b c
abc.. X>y a # > >
achb.. X2y b « # |
achb.. XH#Hy c « || #
xIly

Figure 2.9: Two basic steps of the a-algorithm

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

STATE OF THE ART

18

These two basic steps are divided and formally described by Van der Aalst as the following
eight rules [vdAWMO4]:

1. L is an event log over the set of activities T. The first step checks, which activities

appear in the log and creates their set 17,.

o Ty ={teT|J,er t €0}

. The second step creates the set of all the start activities, i.e., input activities T7.

These activities appears first in some trace.

o Tr={teT|3ser t = first(o)}

. The third step creates the set of all the end activities, i.e., output activities Tp.

These activities appears last in some trace.

o To={teT|3per t = last(o)}

. A is the set of input transitions and B is the set of output transitions. All elements

of A should have causal dependencies with all elements of B. Additionally, the
elements of A should never follow each other. The same requirement holds for B.
The fourth step creates the set X, containing all pairs that meet these requirements.

e X ={(AB)|ACTLANA#OANBCT,AB#0A
VacaVbepa =1 b AV, apcaa1#ra2 AV, poepbi#1bo}

. In the fifth step the set Y7, is derived from the set X . Y7, contains only the largest

elements, i.e. maximal pairs, of X. These pairs will form the places of the resulting
Petri net.

e Vi ={(AB)eX,|Vapex, ACAANBC B = (A,B)=(4,B)}

. The sixth step combines all the discovered places Py, including the single input

place 77, and the single output place oy.

e PL={pup | (A B)eY,} Ui, oL}

. In the seventh step the arcs Ff, of the Petri net are generated. All places (p(A,B)

have A as input nodes and B as output nodes. All start transitions in 77 get iy, as
an input place, all end transitions Tp get oy, as output place.

o 'L ={(a,pap)) | (A, B) €Y, Nae A} U{(pa,p),b) | (A, B) €Y, Nbe B}
U (i, t) [t € Tr} U {(t,oL) |t € To}

. The behavior observed in log L is described in the resulting Petri net with its places

Py, transitions 17, and arcs FT,.

« (L) = (Pr, T, F1)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.2. Process Mining

One of the major limitations of the a-algorithm is inability to discover short loops of one
or two events. In the examples presented in Figure 2.10 both C transitions would stay
disconnected from the rest of the mined Petri nets [vdA16]. Medeiros et.al. [dMvdAWO03]
present the a-algorithm that tackles this limitation. The aT-algorithm uses a pre-
processing phase to deal with loops of length two and post-processing phase to insert
loops of length one.

(b) Short loop of length two

Figure 2.10: Petri Nets with short loops of length one and two.

Additionally to this limitation the a-algorithm has problems correctly discovering implicit
dependencies [vdA16]. These dependencies originate from a particular use of so called
non-free choice constructs in Petri nets. In free choice Petri nets transitions that consume
tokens from the same place should have identical input sets [DE95]. However, many
real-life processes do not have this property and show non-free choice constructs. These
limitation cause redundant implicit dependencies in the Petri net, which do not actually
appear in the log. The a™T-algorithm introduced by Wen et.al. [WvdAWS07] is a
further extension of the a-algorithm that allows to cut down such redundant implicit
dependencies.

Another limitation of the a-algorithm is its low robustness against noise and incomplete-
ness [vdA16]. In a-algorithm an event log is considered to be a representative behavior
description, i.e., to be complete. However, in real life event logs tend to contain noise
and demonstrate incompleteness. In the context of PM under noise we understand rare

and infrequent behavior that is not representative for the typical behavior of the process.

In case of incompleteness some events are missing in the log, which makes it difficult to
discover some of the underlying control-flow structures, i.e., ordering of activities.

The a-algorithm does not take frequencies of log activities into account, i.e. rare and
frequent patterns have equal effect on mining results. This issue is resolved in the
improved mining algorithms, such as heuristic miner and inductive miner.

Heuristic miner

In recent years process discovery algorithms were significantly improved. An example for
this development are the heuristic mining algorithms that were first described in [WA03]

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

STATE OF THE ART

20

and [WR11]. These algorithms use causal nets as representation of the mining result. In
a casual net each activity has input and output bindings (cf. Figure 2.11).

pay

"’ examine
register casually

request

reject
request

reinitiate
request

XOR-split AND-split OR-split

XOR-join AND-join OR-join

Figure 2.11: An example of a casual net [vdA16].

The basic idea of the heuristic algorithm is to exclude infrequent paths from the model.
For this purpose the heuristic algorithm builds two matrices [WAO03|:

o A matrix of directly-follows relations used in a-algorithm, for instance, a>pb. This
matrix shows for each pair of activities, how often one activity is directly followed
by another activity i.e., the value of dependency relation.

e A matrix of calculated dependency measures with values between -1 and 1. For
instance, a dependency measure close to 1 indicates a strong positive dependency
between two activities (activity a is often the cause of b).

Using the information from these matrices and input parameters called thresholds we can
produce the dependency graph that reveals the backbone of the process model [vdA16].
In a preprocessing step thresholds, such as dependency threshold and relative to best
threshold, are set for both matrices. Dependency threshold sets the minimum value of
dependency measure between events. It means, we want to accept dependency relations
between activities which dependency measure is above the value of the Dependency
threshold. Relative to best threshold sets the minimum value of the difference between
event dependency value with the maximum dependency value. It means, we want to
accept dependency relations between activities with dependency measure for which the
difference with the best dependency measure is lower than the value of Relative to best
threshold. For example, in Figure 2.12 only pairs of activities with dependency relations

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.2. Process Mining

higher than 10 and dependency measures higher than 0.9 are taken into the resulting
dependency graph. Heuristic miner can produce different dependency graphs for the
same log by adjusting the thresholds. Users can decide whether they would like to focus
on mainstream behavior or also include noisy behavior into the final result. Moreover,
this refinement possibility allows to better deal with loops of length two and long distance
dependencies [WA03, WAMO06, WR11].

11(0.92) 11(0.92)

Figure 2.12: An example of a dependency graph [vdA16).

In the final step, the heuristic algorithm learns the splits and joints (cf. Figure 2.11)
by replaying the event log on the dependency graph in order to complete the resulting
casual net.

Inductive Miner

The family of Inductive Miner (IM) techniques represents another significant improvement
of the basic a-algorithm [JJLFA13]. IM algorithms can handle huge incomplete event
logs with infrequent behavior, but still ensure formal correctness criteria such as the
ability to rediscover the original model [vdA16].

The a-algorithm creates a Petri net, whereas the basic IM algorithm produce an equivalent
process tree (cf. Figure 2.13). Any process tree can be automatically converted into a
Petri net with further reduction of excessive silent transitions. Moreover, the basic IM
can discover a wide class of processes and detect correct process models in situations
where the a-algorithm fails.

The basic IM algorithm uses so called directly-follows graphs corresponding to the directly-
follows relation of the a-algorithm, i.e. a>pb. The IM algorithm recursively cuts the
initial event log into smaller sublogs. A directly-follows graph is created for every sublog.
The iterations are repeated until a base case (sublog with only one activity) is reached.
IM uses four types of cuts [JJLFA13]:

o FExclusive-choice cut corresponding to the operator x.

o Sequence cut corresponding to the operator —.

o Parallel cut corresponding to the operator A.

e Loop cut corresponding to the operator O.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

STATE OF THE ART

22

sequential
compostion

exclusive
choice

parallel

register
composition

request

redo
loop

reinitiate pay reject
request compensation request

normal
activity

silent
activity

OO ® W

check
ticket

examine examine
thoroughly casually

Figure 2.13: An example of a process tree [vdA16].

The IM algorithm always guarantees soundness of the produced process model, i.e. such
models are able to replay the whole initial log. Activities in the resulting model are not
duplicated, which makes models rather simple and general. Hence, IM algorithm may
create underfitting models. This may happen when the observed behavior requires a
process tree with duplicate or silent activities [vdA16].

In the basic IM algorithm the problem of handling noise and incompleteness still persists,
as it does in the a-algorithm. However, two important extensions for the IM algorithm
were developed. The first extension IM-infrequent algorithm was introduced in [JJLFA14)].
This algorithm applies different types of filtering to the event log, such as filtering
of infrequent arcs or activities, with the goal to capture the mainstream behavior.
Additionally to directly-follows graph the IM-infrequent algorithm also uses the eventually-
follows graph. Here IM-infrequent algorithm shows some similarities with the heuristic
miner. Moreover, similar to heuristic miner, IM-infrequent algorithm uses relative
threshold. An activity is only discovered by this algorithm, if the average number of its
occurrences per trace of in the log is close enough the relative threshold [JJLFA14].

The IM-incompleteness algorithm is the next extension to the basic IM algorithm and the
IM-infrequent algorithm [LFvdA1l4a]. The assumption of event logs being directly-follows
complete is unrealistic for some relatively small real life logs. They can often be poorly
structured and have missing activities, i.e., they are incomplete. The IM-incompleteness
algorithm builds so called probabilistic activity relations based on both the directly-follows
graph and the eventually-follows graph [LFvdAl4a]. During the recursive cutting this
algorithm uses the "most likely cut" and completes the probably missing parts of the
resulting process model.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.2. Process Mining

2.2.4 Timing and Performance Analysis in Process Mining

Time perspective and performance perspective are both important perspectives of PM
as mentioned in Section 2.2.1. Timing analysis helps to make predictions regarding
flow times of processes with an increasing number of threads [vdASS11]. Timing of the
system is one of the core components to create simulation models along with runtime
information about decision points and organizational structure [RMSvdA09]. Simulation
models are especially important if the system is hard to test under real conditions, like
medical systems.

To gain insight about the time perspective, first a discovery algorithm such as a-algorithm
or inductive miner should be applied to automatically generate a basic control-flow of
the system’s real behaviour, i.e., a process model. Mostly this control-flow is represented
in form of a Petri net. In the next step performance analysis is carried out to detect
information about execution times and waiting times for activities, and probabilities for
taking alternative paths. This approach is called Replay of event logs on the process
model (cf. Figure 2.14).

extended model
showing times,
frequencies, etc.

\\C)‘/ X) diagnostics
predictions

recommendations

o]
<
]
3
=3
o
«Q

process model

Figure 2.14: Replay of event logs on a discovered process model [vdA16].

In Figure 2.15 an extended process model is shown with additional performance infor-
mation identified after event logs were replayed on the discovered Petri net. For each
detected activity the execution time (E) and waiting time (W) are defined as a normal
distribution N with arithmetic mean and standard deviation. Extracting such information
from event logs is easy, since every event has a timestamp. The minimum and maximum
execution times for single activities, as well as whole cases can also be extracted. In
disjunction points the probabilistic values for selecting one or another path are calculated
based on how often each path was selected during the Replay. The case arrival rate is
provided at the starting node.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.

STATE OF THE ART

24

E: N(45.2, 5.1) E: N(20.0, 1.6) E: N(30.0, 5.1) E: N(30.1,5.2) E: N(45.1, 1.7)
W: N(0.0, 0.0) W: N(30.1, 5.1) W: N(0.008, 0.2) W: N(2894.5, 957.1) W: N(4320.4, 486.1)

Lab ECG cT
test

First Second Third
visit G visit

visit)'O, B 0.72 D
0.28 0.
@ A F I bO
\\ — \AO‘ 0.72 o
/ ‘ C 0.28 E H
///\\.J
b % ECG not
ray
0.0167 new cases needed

per minute

MRI

E:N(20.1, 1.8) E: N(0.0, 0.0) E: N(80.4, 6.2) E: N(29.9, 5.1)
W: N(29.8, 4.9) W: N(0.0, 0.0) W: N(7233.9, 468.0) W: N(1450.8, 471.6)

Figure 2.15: Example model enhanced with the performance perspective [RMSvdA09]

2.3 ModelsQrun.time

There is an emerging research work focusing on real-time systems, runtime phenomena,
runtime monitoring, and discussing the back propagation of runtime information to
engineering [DGJ 16, SZ16]. An important concept connected with these research fields
is models@run.time (M@RT) [BBF09, BFT*14, AGJ*14].

A terminological framework for MQRT is suggested in [BFT*14] and shown in Figure
2.16. The running software system represented in the center consists of an application and
a runtime platform, where the application is deployed and executed. The environment
represents the outside world that the running system interacts with in order to provide
its functionality. During this interaction the system can be influenced by one or more
contexts and must adapt itself to changes in the environment.

Environment

Al /'Co
Running System
(Application + Runtime

/ Context C

Figure 2.16: A Terminological Framework for MQRT [BFT*14].

As stated in [BBF09], MQRT are adaptation mechanisms to leverage software models
according to the changing execution environment. Each M@RT is a causally connected
self-representation of the running system that highlights its structure, behavior, or goals
from a problem space perspective. Research on MQRT aims to increase the relevance of
models produced in MDE approaches to the runtime environment. Thereby, the concept

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.3. ModelsQrun.time

of MQRT brings together models in MDE context and runtime information and combines
them into a new class of reflective systems which are tractable and able to predict certain
aspects of their own behavior for the future [AGJ*14].

M3:
meta
meta

model

Models for interoperation,
integration and management
[}

1 defined by e i
M2: —= : - ! Running System
meta ‘ Definition of models, relations i
model and corlstralnl‘s Application
\definedby ~._defined by
Mi: derived from : interacts! | Goro
g H " constraint: . i ol
models s S Environment 1)
at Models on models observesi i ot
causal runtime & relations P
b K
connection \use/own i interacts observes _
Mo: Y | b e |
observe . ! }
Running Environment Huonhg A)
System & nteract |__System Runtime Platform
Environment i i

Figure 2.17: A Conceptual Reference Model for MQRT with a close-up of MO level.
Based on [BFT*14].

Bennaceur et. al. [BFT'14] propose a conceptual reference model for MQRT systems.
The four levels of the model from MO to M3 are illustrated on the left side of Figure 2.17.
A close-up of the level MO is represented on the right side of Figure 2.17. According to
the terminological framework mentioned above, the MO level contains the running system
and the environment. As the application core and the runtime platform interact with
the environment, the supervision component observes them and triggers the adaptation
component to reason and plan an adaptation. The adaptation component performs the
adaptive changes based on the observations in the runtime platform and the application
core.

The higher M1 level contains the runtime models, relations between them, and their
constraints. These models are causally connected with the events registered by the
supervision component and actions performed by the adaptation component. Event
processing can lead to adaptation of the M1 models and further propagation of these
adaptive changes to the running system. Conceptually, this relation between M0 and
M1 represents a feedback control loop with MO being the feedback source. The goal of
the feedback analysis is to achieve a desired level of fidelity between the M1 model and
the M0 system running in its environment. Similar to the approach described in the
Section 2.1.1 (Figure 2.1) the M2 level provides the metamodel of the modeling language
to create the M1 models. Finally, the top M3 level includes the meta-metamodel that is
used to define the M2 metamodels.

M@RT systems complement classic reflection with strong modeling foundations. In
fact, modeling is a central component of the MQRT concept. MQRT directly benefits
from MDE tools and approaches, such as metamodels, editors, simulators, compilers,
etc [AGJT14]. However, these tools are usually thought for usage at design time, and
it is difficult to adopt them at runtime. Thus, the current MDE techniques should be

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

26

extended and adjusted to be directly applied to M@QRT [AGJT14].

One of the key aspects of M@QRT systems is their ability to project some characteristics of
reality, such as contexts, to the modeling space for further analysis. A MQRT system is
able to perform manageable reflection and predict particular paths of its own behavior in
the future with accumulated knowledge. This ability of reasoning about system’s future
states, i.e., predictable reflection, distinguishes MQRT systems from reflective systems,
that are only able to reason on the current system configuration [AGJ*14].

A predictable reflection is especially beneficial for such interrelated application domains
as safety-critical embedded systems or CPS. In CPS, physical and software components
are intensely interconnected, performing multiple and distinct behaviors, differently
interacting with each other depending on the context, and tightly integrated with the
Internet [CPS]. Examples of CPS include process control systems, robotics systems, smart
grid, autonomous automobile systems, automatic pilot avionics, and medical monitoring.
Many CPS are safety-critical. Failure or malfunction of a safety-critical system may lead
to serious injuries, severe property damage or environmental harm [SCS].

For safety-critical systems the majority of constructive decisions are made at design time
in order to make configurations predictable. Nevertheless, there is an increasing need
for more flexible adaptive systems, which are able to deal with the unforeseen, but still
ensuring safety. Nowadays safety-critical systems are expected to stay up and running
while reacting and adapting to changes in both internal and environmental contexts
[BBF09]. This contradiction between adaptivity and safety is hard to solve. According
to [AGJT14], MQRT is the ultimate solution to enable unanticipated adaptations while
ensuring required security standards. However, MQRT concept faces significant open
challenges associated with the engineering of adaptive systems [BFTT14]:

1. Developing and updating runtime models. The supervision component observes the
running system in order to develop runtime models. It is important to consider,
how these runtime models are consistently updated at the levels M1, M2 and M3 (cf.
Figure 2.17). Additionally, it is essential to establish a seamless connection between
MDE processes and the processes of runtime models creation and evolution. The
major challenge here is to maintain this connection so that the runtime models and
the running system with its environment stay stable and sound.

2. Reasoning and planning for adaptation. Runtime models are the result of the
reasoning and adaptation process. If the reasoning identifies some violations of
functional or non-functional properties and the need to adapt them, runtime models
are manipulated for further propagation of changes to the running system. The
challenge here is to automate reasoning and adaptation mechanisms in order to
perform the changes on-line on a running system.

3. Maintaining different runtime models. Complex software systems, such as CPS, have
multiple concerns, e.g., reliability, performance, or functional properties. Typically,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

2.3. ModelsQrun.time

separate models need to be maintained for each concern in order to provide separate
reasoning. Dealing simultaneously with several concerns requires mechanisms to
manage dependencies between runtime models and to keep them consistent.

4. FEstablishing fidelity and consistency among models and the running system. Propa-
gation of changes from runtime models to the system requires mechanisms to map
these changes between the levels M1 and M0. Moreover, these mechanisms should
guarantee safe adaptations of the running system. This includes ensuring fidelity
of runtime models with the running system to avoid drifting and instability.

In this thesis, we concentrate on the first challenge of capturing runtime models and keep-
ing them sound through all modeling levels, as well as the third challenge of maintaining
different types of runtime models for multiple concerns, such as functional properties,
performance, and component interrelations. We present an approach to tackle these
challenges in the next Chapter 3.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Execution-based Model Profiling

3.1 Overview

The development of software systems traditionally has a clear distinction between design
activities and runtime execution [Mao09]. However, shorter innovation cycles and rapidly
changing customer needs urge for fast changes in already running systems [LSVH14].
As mentioned in Section 2.3, the source of information for such adaptations is often
the running system itself and the data gathered about its actual behavior. In order
to integrate this new information into a running system it is necessary to smooth the
clear distinction between design and execution phases. This need is especially urgent
for safety-critical software systems, which are expected to integrate changes in their
execution environment without any downtime. Therefore, these systems are required, if
possible, to readjust their behavior at runtime without human intervention [BBF09].

Prescriptive and descriptive models in software engineering are the key concepts to
consider on the way of creating a link between design and execution. Models in software
engineering are typically created as prescriptive models to prescribe something or as
descriptive models to describe something [HPET16]. In the prescriptive context the
subject of modeling is not yet developed. A prescriptive model itself prescribes the
subject, its scope and detalization level. Prescriptive models are defined based on the
information available at design time according to the model intent. Descriptive models
portray an existing subject. The observed behavior of the subject to be described is used
as an input to create descriptive models [HPET16, Lud02]. The main difference between
prescriptive and descriptive models is, that the first ones are created before the subject
of modeling and the second ones are created after the subject of modeling [Lud02].

These both types of models are the cornerstone of the approach we present to create a link
between design and execution phases of software life cycle. Our approach, Ezecution-based
Model Profiling (EbMP), is a combined but loosely-coupled usage of MDE approaches

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

3.

EXECUTION-BASED MODEL PROFILING

30

and PM techniques (cf. Section 3.3). Traditionally, PM algorithms are used to analyze
business processes, which are executed by people using information systems (first of all,
PAIS). In EbMP, we use PM algorithms to analyse processes running in autonomous
software generated by MDE tools. The alignment of these two different research fields
may help us, e.g., to verify the alignment of models at design time and runtime, and pave
the way for further automated back-propagation of the collected feedback to a running
system.

3.2 Approach

Prescriptive and descriptive models in the context of MDE and PM are shown in Figure
3.1. In MDE, models are defined by people as prescriptive models and used in the
top-down process of software development to generate executable software. This is a view
on the system at design time, but systems can also be observed at runtime. The generated
software system runs, registers important actions and produces event logs as described
in the Section 2.2.1). Event logs can be used in the bottom-up process to produce
descriptive models of the observed system. These descriptive models can be processed by
applying process mining algorithms. Descriptive models show how the system is actually
realized, how it is operating in a certain environment, and what underlying processes
are running in the system. Execution-based feedback from descriptive models forms
the basis for further analysis of the real behavior of the system. Information derived
from this analysis can be incorporated into prescriptive models in order to continuously
improve them. In the current practice, these potential benefits of descriptive modeling
and back-propagation of data from operation to design are mostly overlooked. In this
thesis the term prescriptive models is used referring to the design models in the MDE
context. The term descriptive models is used in relation to models produced at runtime.

@design.time

(A [B) . .
o P DH Prescriptive r— DI] @ m]

(e]

@run.time

execution-based
feedback

Figure 3.1: Prescriptive models vs. descriptive models.

In order to build the bridge from operation to design, it is important to consider the
evolutionary aspect of engineering artifacts, i.e., the fact that they change over time. The
feedback from the operation after the release can be reflected in prescriptive models to

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.3. Unifying Framework

cover the complete life-cycle of a system. The question remains: what form and semantics
should this feedback have in order to provide meaningful connection between prescriptive
and descriptive models.

The core idea of our approach, EbMP, is to equip MDE-based systems in such a way,
so that their operational data can be stored in a structured form and transformed into
abstracted model representations. In a nutshell, we take a running MDE-based system,
which has some prescriptive models as a basis, register all the operational system changes
with reference to the prescriptive models, and store them as structured descriptive models,
i.e., observation models (see Figure 3.2). After that we analyze the observation models
and create so-called model profiles out of them. The process of model profiling is a process
of producing snapshots of system behavior during a certain time period. For example,
we observe a system for an hour and then form a model containing information about its
behavior, possible outliers, registered failures, etc. This aggregated meta-information is
then a model profile of this system or its part for a certain time period. Since operational
system changes are registered with reference to prescriptive models, the generated model
profiles inherit the semantic relation to these models. Therefore, we are able to align these
model profiles with prescriptive models for detecting inconsistencies between designed
behavior and runtime behavior. Additionally to that, we consider our approach beneficial
for maintaining runtime models for multiple concerns. The observation models produced
in our approach contain structured data to evaluate not only the functional properties,
but also performance. Furthermore, to mention one of the future applications, the
resulting model profiles can be used for automated back-propagation of runtime data
and the adaptation of prescriptive models.

3.3 Unifying Framework

For the purposes mentioned in the previous section, we define a framework providing
a generic approach that allows to create a link between downstream information from
the MDE-based systems and upstream information gathered at runtime. The unifying
framework (see Figure 3.2) has two perspectives: the prescriptive perspective and the

descriptive perspective. The prescriptive perspective is presented on the left-hand side.

In this perspective the models are created before a system is built, i.e., the models are
used to create the system. The descriptive perspective is presented on the right-hand
side. Here the models are created after the system is built, i.e., they are extracted from
the running system. In the following, we describe Figure 3.2 from left to right.

The prescriptive perspective is based on the MDE approaches described in Section 2.1.1

and shown in Figure 2.1. At the metamodeling level the design language is specified.
This specification defines the syntax as well as the semantics of the design language.

Under design language we mean any modeling language, such as UML, SysML or a
DSL for particular domain of interest. An example of a DSL for the following case
study is described in Section 5.3 and presented in Figure 5.1. In our approach, the
design language has two different aspects: a static and a dynamic one. The static aspect

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.

EXECUTION-BASED MODEL PROFILING

32

|
!
Prescriptive Perspective ! Descriptive Perspective B Descriptive Perspective
_____________ [| Prescriptive Perspective
«refersTon 1

i
= Observation Language
Metamodeling Design Language (Logging Metamodel)

Level conformsTon Idcﬂz\fﬂrms‘l’e»

i
! —
o B
Modeling : Observation Models f — d Model Profil I
Design Model Process Mining Tools oasliiroslies
Level {Logs) | } §
Y |

T4
|
1
i

deling Tool

Automation
Level

Realization : Bisde
Level L

Execution Platform

Figure 3.2: Framework for execution-based model profiling.

allows to model the main elements of the modeled entity and their relationships. The
dynamic aspect allows to model the behavior of these elements in terms of events and
interactions that may occur between the elements. For instance, in UML the static aspect
is modeled through class diagrams or component diagrams and dynamic aspect through
state diagrams, activity diagrams, or sequence diagrams.

The design model at the modeling level describes a certain system and conforms to the
design language, i.e., design model is modeled in the design language and every element
of the model can be instantiated from the corresponding classes of the design language.
Examples of design models used for the case study are described in Section 5.2.3 and
presented in Figures 5.2 (class diagram) and 5.3 (state diagram). At the automation
level we use a code generator that takes a design model as input and produces source
code for the system via M2T transformation (see Section 2.1.4). Such transformation
converts model elements to corresponding code statements. Finally, at the realization
level this generated source code relies on a specific platform for its execution. In order
to be able to access logs from the code running at an execution platform, we need a
language for specifying runtime models, i.e., descriptive models. For that purpose we
present in the descriptive perspective on the right-hand side of Figure 3.2 a logging
metamodel — the so-called observation language. This observation language defines the
syntax and semantics of the (event) logs we want to register from the running system. In
particular, we derive the observation language from the operational semantics of the used
design language. Figure 3.2 indicates this dependence at the metamodeling level with a
<KrefersTo> stereotype. An example of the observation language and its derivation
from the design language are described in Section 5.3 and presented in Figure 5.1.

The operational semantics give us an understanding, which elements of the system
modeled in this design language change at runtime. For example, names of attributes
are defined at design time and typically do not change at runtime, whereas their values

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.3. Unifying Framework

do. Another example would be the current state of the running system. At design time
we define the states of a system, e.g., in form of a state diagram, however, at runtime the
system or its components can be in only one current state. Changes of attribute values
and current state of the system belong to operational semantics of the system modeling
language. For any design language equipped with operational semantics we can derive
an observation language. For this purpose we introduce the <observe>> stereotype
to annotate specific model elements related to operational semantics. This means that
a code generator creates logging lines of code for all model elements annotated by this
stereotype at any place the elements are changing during system operation. Therefore, the
observation language influences the code generator by specifying which runtime changes
should be logged in the future system. Thus, a running system produces logs in form of
observation models which conform to the observation language. In fact, such observation
models are not just streaming amorphous logs, but structured models, whose structure
is specified already at design time. Generally, observation models provide abstractions
of runtime phenomena in a descriptive way and can serve as a starting point to detect
design errors and to implement new design solutions into a running system, which links
them with the concept of MQRT (see Section 2.3).

The approach allows to avoid time-consuming preprocessing of massive data sets in order
to extract valuable runtime information. The structured observation models with specific
runtime semantics can be further used, e.g., in PM-tools. For this purpose we need to
perform an M2M transformation between observation language and PM input format -
eXtensible Event Stream (XES). It is important to keep observation language and XES
apart, so that their semantics stays separated. In comparison with unstructured log
output, observation models allow to filter and observe components, classes, or variables
separately in order to create specific model profiles. An additional significant advantage
of observation models is their re-usability for different kinds of tools after corresponding
M2M transformations, e.g., runtime verification tools, simulation tools, monitoring and
visualization or animation tools, etc (see Figure 3.2).

In this thesis, we especially highlight PM-tools as an instrument to create model profiles.
These tools can take our prepared observation models as input and analyze them with
established algorithms (see Section 2.2.3) producing a control flow model, e.g., in the form
of a Petri net (see Section 2.2.2). During these analysis PM-tools go through runtime
data consisting of several system runs, which have to be marked as process instances,
or cases. Considering the diversity of cases PM-tools build in the end a big picture
of the process with all the possible traces depending on the defined detalization level.
The output of this analysis, i.e., a Petri net, forms a model profile for the particular
prescriptive model or its part observed at runtime for a certain time period. Model
profiles created for the following case study are presented in Section 5.3.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Technical Realization

4.1 Overview

The technical realization of the approach was implemented within an experimental frame
for further evaluation (cf. Chapter 5). Figure 4.1 presents a component diagram of this
realization. Generally, component diagrams show the structural relationships between the
components of a system. In our specific case, we can even observe a certain workflow in
this component diagram, since it reflects the workflow of the EbMP-framework itself (cf.
Figure 3.2). The first component Enterprise Architect in the right upper corner
of Figure 4.1 is a modeling tool used to create prescriptive UML models for the future
system (cf. Section 4.2). The next component Vanilla Source is an add-on for the
Enterprise Architect. Vanilla Source generates Python code from the UML
models. We extended this component with logging instrumentation, which allows us to
generate logging code along with the system code (cf. Section 4.3).

For the case study, we chose a simple example of a Trafficlight system consisting of
two traffic lights, one for cars and one for pedestrians (see Section 5.2.3). The code for
this system, including the logging code, is completely generated from the prescriptive
models. After generation the Trafficlight is deployed on the execution platform
RaspberryPi (cf. Section 4.4). A logging component LogClient captures the logs
produced by Trafficlight during execution, packs them in JavaScript Object Notation
(JSON) and send it via POST requests to the Microservice Observer (cf. Section
4.5). The Observer runs on an Application Server, which should be available
anytime the Trafficlight is running, otherwise the logs can not be recorded.

The same Application Server hosts the Transformation OL2XES implemented
in Eclipse Modeling Framework (EMF)! and both source and target metamodels in Ecore

dialect of UML (for details see Section 4.6). The source metamodel ObservationLanguage.ecore

'Eclipse Modeling Framework: https://www.eclipse.org/modeling/emf/

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

4.

TECHNICAL REALIZATION

36

Generation

‘ <<component>>
RaspberryPi

‘ POSTIlransmonFlrmg

POS attributeValueChange
XES.xmi

<<component>>
Application server

Figure 4.1: Component diagram of the technical realization of the EBMP-framework.

is also used to generate Java classes for the Microservice Observer. The microser-
vice imports these classes and uses them for mapping between incoming JSON data
and XML Metadata Interchange (XMI) models (cf. Figure 4.4). During the execution
of Microservice Observer the captured logs are automatically transformed from
ObservationLanguage to XES-Format. In this technical realization we chose the XES
standard as target metamodel (cf. Section 4.6.3). It is important to store logs in a
standardized way, so that the XES data can be exchanged between different commercial
and open-source PM tools (for details see Section 4.7). In this thesis we use the open
source software ProM, an extendable environment that supports a wide variety of PM
techniques in the form of plug-ins. This tool generates descriptive models from the logs
using the PM algorithms described in Section 2.2.3.

4.2 Modeling Tool and Code Generator

EA is used as a modeling tool in the context of this thesis. This advanced visual modeling
tool supports a range of open industry standards for designing and modeling software and

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.3. Logging Instrumentation

business systems, including UML, Systems Modeling Language (SysML), BPMN?, The
Open Group Architecture Framework (TOGAF)? and many others [EAD]. EA has been
developed by Sparx Systems since 2000. It grew into a powerful tool that covers a wide
functional spectrum from system modeling and model simulation to the whole application
development life cycle with its requirement engineering, project management, testing
support, documentation and change management. Additionally to that, EA supports
MDE and enables code generation of multiple platform-specific target solutions, e.g., C,
java, or XSD, from platform independent models [EAD].

Code generation is an essential part of the technical realization of our approach. In
the context of this thesis the code generator VanillaSource provided by our partner
LieberLieber was used. VanillaSource is an EA extension that allows to generate Python
code from UML models, constructed in EA. In our unifying framework EA takes the place

of the modeling tool in prescriptive perspective, where the design model is created (cf.

Figure 3.2). The code generator Vanilla Source resides under the EA on the automation
level.

4.3 Logging Instrumentation

The C# source code of the VanillaSource code generator was extended, so that the logging

code for the operational changes is produced automatically along with the system code.

Such an insertion of additional code for monitoring purposes is called instrumentation
[Ins|. For the first experiments with the prototype of our unifying framework the logging
instrumentation of the system was limited to attribute value changes, current state
changes, and transition firing. Detailed explanation of this selection is provided in the
Section 5.3. The extension of the code generator to log attribute value changes provides
logging lines at every place in code where a certain attribute changes its value. Similar
to this procedure, logging is triggered as the system changes its state or fires a transition
according to the state machine, which defines system’s behavior at design time.

As mentioned in 1.1, the research and implementation for this thesis was conducted in the
context of a scientific project at Christian Doppler Laboratory for Model-Integrated Smart
Production (CDL-MINT). In particular, the logging instrumentation of the VanillaSource
code generator lies outside the scope of this thesis. This instrumentation implemented as
a part of the research project.

Simultaneously with the extension of the VanillaSource code generator the logging
component named LogClient was implemented in the scope of this thesis. LogClient
registers changes at runtime according to observational models. LogClient packs every
runtime change, i.e., logging line, in JSON format and sends it via POST requests to the
running MicroService Observer (cf. Section 4.5). In fact, logging instrumentation of the
system code should be consistent with the classes and methods used by LogClient in

20MG BPMN: http://www.bpmn.org/
3The TOGAF Standard: http://www.opengroup.org/subjectareas/enterprise/togaf

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

TECHNICAL REALIZATION

38

order to transfer runtime changes. Furthermore, the logging lines in JSON should be
parsed as log entries of the observation language to be accepted by the MicroService (see
Section 5.3).

4.4 Execution Platform

For implementing the unifying framework an execution platform is needed on the real-
ization level, so that the generated code can be deployed and executed (cf. Figure 3.2).
A single-board computer Raspberry Pi is used as such an execution platform for the
generated Python code from VanillaSource. These computers are produced by the charity
Raspberry Pi Foundation*. The aim of the Foundation is to promote the teaching of
basic computer science at schools [Rasa]. Therefore, Raspberry Pi has all the essential
components of a working computer and can be manufactured at a cost of only $15.
Being the third best-selling general purpose computer since 2017, Raspberry Pi found
its application beyond education [Rase]. Raspberry Pi can be used as a basic home
automation system, weather station, web, or cloud server. Several Raspberry Pi’s can be
even combined into a computing cluster.

Figure 4.2 shows the board of a Raspberry Pi 2 Model B V1.1 and its components [Rasb].
This particular Raspberry Pi model was used for case study experiments in the context of
this thesis (see Chapter 5). The Raspberry Pi 2 Model B uses a 32-bit 900MHz quad-core
ARM Cortex-A7 CPU with 1 GB RAM and integrated graphics processing unit (GPU)
VideoCore IV 3D [Rasc|. The board is powered via common Micro-USB port. Four
USB 2.0 ports are available to connect diverse USB-devices, such as keyboards, mouses,
flashcards, or WI-Fi adapters. A microSD card slot provides the possibility for on-board
storage. The Linux-based operational system Raspbian, as well as user files, reside in the
microSD card in this slot. A monitor for access to the operating system can be attached
via a full HDMI port.

An attractive feature of a Raspberry Pi is the general-purpose input/output (GPIO)
module. The Raspberry Pi 2 Model B has 40 GPIO pins, which have numbers to address
them. These pins can be designated and controlled from software as input or output pins
and used for various purposes [Rasd]. A GPIO pin designated as an output pin can be
set to high (3V3) or low (0V). For example, a light-emitting diode (LED) connected to a
pin can be turned on and off by sending corresponding signals from running software. A
GPIO pin designated as an input pin can be read as high (3V3) or low (0V). For example,
a button connected to a pin can send switching signals to running software.

Since this technical implementation is made for Python code generation and execution, a
special GPIO Python library RP1i.GPIO should be included into the running software to
handle Raspberry Pi’s GPIO pins. The design model and generated code used in context
of this thesis can be adapted to be deployed on other single-board computers with GPIO

“Raspberry Pi Foundation: https://www.raspberrypi.org/

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

4.5. MicroService

40 GPIO pins

2x UsB 2.0

Raspberry Pi Model B V1.1
s @ B (CRaspherry pi 2014

2x USB 2.0

MicroSD slot
Display DSI

Ethernet RJ45

@
14}
o
(7}
=
51
O

Micro
| uss

Power in

Figure 4.2: Raspberry Pi Components [Rasb]

module, such as Asus Tinker Board® or Banana Pi BPI-M2°. The critical configuration
aspect that has to be considered is the addressed numbers of the input/output pins.

4.5 MicroService

A microservice is a light-weight, discrete, network-connected component [Mic]. The
most important task of a microservice is "to do one thing and do it well" [Kral5]. The
microservice named Observer implements a Representational state transfer (REST)-API
with publicly exposed endpoints that accept log-messages from a running system. The
only Observer’s task is to persist logs.

ATL o
ATL launch Transformation | XES file
OL-XMI to XES

Mapping

POJO to OLXMI OLXMI file

4

POST-requpsts

13 Mapping
mq{ JSON to POIO

Figure 4.3: Microservice Observer.

Figure 4.3 shows the basic control and data flow inside Observer. While running Observer
opens API-endpoints for POST-requests from a running system. As mentioned in Section
4.3, both requests and API-endpoints conform to the observation language (cf. Section
5.3), meaning every POST-request delivers an inserted JSON that is expected by the

®Tinker Board: https://www.asus.com/uk/Single-board-Computer/ TINKER-BOARD/
®Banana Pi: http://www.banana-pi.org/

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

TECHNICAL REALIZATION

40

endpoint. The microservice maps this JSON to a Plain Old Java Object (POJO) (cf.
upper left part of the Figure 4.4). After this the microservice maps the POJO to the XMI
format (cf. lower right part of the Figure 4.4). This can be easily implemented, since the
Observer reuses the generated code from the Ecore model of the observation language
(cf. Section 4.6). The produced XMI file is used as input for an ATLAS Transformation
Language (ATL) transformation, which is called from Observer by the component named
ATLLauncher. This ATL-transformation is not a part of of the Observer and is therefore
explained in details in Section 4.6. The transformation produces an XES file that conforms
to the XES standard, and, thus, can be used as input for PM tool ProM (cf. Section 4.7).
For every single POST-request this control and data flow is repeated and both XMI file
and XES file are updated.

JSON

{id": 8,

'timeStamp': '2018-05-07 17:54:18.118+02:00",
‘currentState': 'Car has green’,

'sender": 'Trafficlight’

}
POJO

logEntry6: LogEntry

id: 6
\ timeStamp: “2018-05-07 17:54:18.118+02:00°
sender: “Trafficlight”
currentState: “Car has green”
XMI
\ <logentry
xsi:type="ObservationLanguage:CurrentStateChange"

id="6" timeStamp="2018-05-07 17:54:18.118+02:00"
sender="Trafficlight" currentState="Car has green"/>

Figure 4.4: Mapping JSON to POJO and POJO to XMI. Example from the case study.

4.6 Transformations

4.6.1 Overview

Logs persisted by Observer in XMI format can not be directly used as ProM input, since
they don’t conform to the XES standard, which is expected by ProM. Therefore, a trans-
formation from the XMI format to a XES conform file is needed. Such a transformation
was implemented in EMF, a modeling framework and code generation facility, which
allows to build tools and other applications based on a structured data model [EMF].
Ecore is the core EMF metamodel for creating other models and metamodels. Ecore,
being a UML dialect, is even defined in terms of itself, which makes it its own metamodel.
In a basic EMF workflow a user models a class diagram as an Ecore model and generates
java code of a complete entity model for an application. In this technical realization
the entity model for Observer was created in such a way from the observation language
metamodel shown in Figure 4.6.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.6. Transformations

Ecore models are also used as metamodels for ATL transformations: a domain-specific
language for specifying M2M transformations [JABKOS] (cf. Section 2.1.4). In a nutshell,
ATL provides ways to produce a set of target models from a set of source models. Both
ATL language and toolkit are developed on top of the Eclipse platform by Obeo” and
INRIAS®. ATL was inspired by the OMG QVT? requirements and builds upon the OCL!®
formalism [JABKOS]|, providing both declarative and imperative constructs [JABKOS].

The transformation from observation language to XES is an exogenous out-place transfor-
mation that transforms models in two different languages and creates the target model
from scratch (for transformation classification see Section 2.1.4). Figure 4.5 shows this
concrete transformation based on the abstract transformation pattern, presented in
the Section 2.1.4, Figure 2.4. In this pattern the source model Log.zmi conforming to
the metamodel ObservationLanguage.ecore is transformed into a set of target models
conforming to the metamodel XES.ecore according to a set of transformation definitions
written in the ATL language. The transformations are enabled by the EMF Virtual
Machine. The transformation definition is a model conforming to the ATL metamodel.
All metamodels conform to the Meta-Object Facility (MOF) L.

«conformsTog e MOF """»n,,%V«conformsTo»
[«conformsTo»
l Language.ecore l
«conformsTo» I «conformsTo» «conformsTo»
‘ OL2StateChanges.atl XESStates.xmi

m OL2AttributeValueChanges.atl XESAttributes.xmi
N OL2TransitionFirings.atl

«reads» ~_

«executes»

~_fifmmr " «writes»
Machine ||

Figure 4.5: Transformation "Observation Language To XES".

4.6.2 Source metamodel Observation language

The metamodel of the observation language as Ecore class diagram is presented in
Figure 4.6. This metamodel describes, how the transformation source model, i.e., log, is
structured. Basically, the log consists of process instances, which, in their turn, consist

"Obeo: https://www.obeo.fr/

8French Institute for Research in Computer Science and Automation: https://www.inria.fr/

9Query/View/Transformation, OMG standard for performing model transformations:
https://www.omg.org/spec/QVT/About-QVT/

1°0bject Constraint Language: www.omg.org/spec/OCL/

"' MetaObject Facility Specification: http://www.omg.org/mof/

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

TECHNICAL REALIZATION

42

of log entries. The log entry entity is an abstract class with three possible instantiations,
which are current state change, attribute value change and transition firing. As stated
in Section 4.1, this technical realization is done within an experimental frame. Thus,
this observation language is bound to the design language used in the use case and is
limited to the operational semantics of this design language. The detailed explanation of
observation language and its structure is provided in Section 5.3.

o Processinstance H LogEntey

. 7 id: EString
T timeStamp : EString
sender : ESring

i Elog [0.7] processinstance
' observationStart : EString ¢ id : EString

 observationEnd : EString i ’::n“"" :ss:: ng
7 endTime : EString

[0."] logentry

| £ ArributeValueChange ‘ ‘ 5] Currentsmechangti | H TransitionFiring |

currentState : currentTransition :
" EString ° EString

© varName : EString
+ eurrentValue : EString

Figure 4.6: Source metamodel Observation Language. Ecore class diagram.

4.6.3 Target metamodel XES

The XES metamodel originates from the IEEE Standard for eXtensible Event Stream
(XES) for Achieving Interoperability in Event Logs and Event Streams [XES16]. The
purpose of this standard is to specify a generally acknowledged Extensible Markup
Language (XML) format for the interchange of event data between information systems
producing this data and analysis tools. To enable the transfer of event-driven data in a
unified manner, the standard includes a XML Schema!? describing the structure of a
XES instance. This XML Schema was imported in EMF resulting in an Ecore model
shown in Figure 4.7.

Additionally to the syntax defined through the XML Schema, the standard fixes the
semantics of the event data [XES16]. The 4 major semantic components building the
event stream concept are coloured dark yellow in Figure 4.7. Log component represents
information related to a specific process and contains a collection of traces. Trace com-
ponent represents a single execution (or enactment) of this specific process and contains
a list of events related to this single execution. Event component represents an atomic
part of the observed process. All these three components are of AttributableType
meaning they are described through Attributes with keys and values. E.g., a login
event has an attribute with the key name and value login. There are six core types:
String, Date, Int, Float, ID, and Boolean.

In XES it is possible to declare particular attributes on trace and event levels as mandatory.
For this purpose the log has two collections of Globals, i.e., global attributes: one for
the traces and one for the events [vdA16]. Apart from global attributes the standard
introduces a concept of so-called Extensions, which attach semantics for such attributes
and provide points of reference for their interpretation. For example, the declared

12XSD (XML Schema Definition): http://www.xes-standard.org/xes-ieee-1849-2016.xsd

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.6. Transformations

5 AttributeType
' key : Nama
[1.1] values
|5 AnributelistTypel | H AtributeBooleanType | | 5 AnributeFloartype | |B AnributeintTypel | AtributelDType] H AtributeDateType] |5 AtributeStringType]
‘ J | 7 value : Boolean = false | | 7 value : Double = 0.0| | 7 value :Long ‘ 7 walue : String 7 value : String ‘ 7 walue : String ‘
0 int [0.7] Ad [0."] /date
0% ffioa 7 VT T T TR [0.%] /string
10.%] /li | ean e — I :| i AttributableType - -
— £ group : EFeaturelMapEntry —_—
& ComponentTy, = GlobalsType

B Classifisr Type

7 keys : Token E ExtensionType
7 name : NCName

i scope : NCName

7 name : NCName
7 prefix : NCName

(0.7 event | H TraceType | [0.%] trace © uri : AnyURI

H LogType
[0.*] event ——————— = xesFeatures : Token
£ lon ; EString [0.7] global

[0.7] extension

10."] classifier
0.-2] flog
I g

[& DocumentRoot |

5 mined : EFeatureMapEntry
&2 xMLNSPrefixMap | EStringToStringhMapEntry
£ ¥SlSchemalocation : EStringToStringMapEntry

Figure 4.7: Target metamodel XES. Ecore class diagram.

extension Time with the prefix time indicates, that all the attributes, whose key starts
with this prefix, should be interpreted as time-related attributes. Such attributes inform
the analysis tools about the moment, when the event took place.

Another important XES concept is Classifier. The classifier’s task is to assign an
identity to each event. That makes an event comparable to others via their assigned
identity [XES16]. For example, the classifier Activity classifies events based on the
concept:name attribute. Thus, an analyzing tool identifies events with key concept:name
and the value green blink pedestrian as different events referring to the same activity. In
this way classifiers allow to recognize, e.g., repeating activities.

4.6.4 ATL transformations

The logs in observation language contain all types of log entries, i.e., attribute value
changes, current state changes and transition firings. For model profiling we need to
observe these aspects separately. Therefore, these different log entries types should

be isolated from each other during the ObservationLanguage2XES transformation.

Hence, three separate ATL transformations were implemented (see also Figure 4.5):

e OL2StateChanges.atl transforms

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

TECHNICAL REALIZATION

44

— OL! Log13 to XES!1log,
— OL!ProcessInstance to XES!trace,

— and OL!CurrentStateChange to XES!event.
e OL2AttributeValueChanges.atl transforms

— OL!Log to XES!log,
— OL.ProcessInstance to XES!trace,

— and OL!AttributeValueChange to XES!event.

e OL2TransitionFirings.atl transforms

— OL!Log to XES!log,
— OL!ProcessInstance to XES!trace,

— and OL!TransitionFiring to XES!event.

In all three transformations OL! Log is transformed to XES ! 1og, which are, as follows
from the name, the same semantic units. The same logic applies to OL!ProcessInstance
and XES!trace, which are also very similar semantic units, since both represent one
end-to-end execution of the process. The three transformations differentiate though in the
way they transform OL!LogEntry to XES ! event. Every transformation transforms one
of the instantiations of the abstract class OL!LogEntry to XES!event (cf. Figure 4.6).
From the semantic point of view both log entry and event are defined and globally unique
process steps (cf. Section ??7). A log entry can be considered as a way of registering an
event. Therefore, the semantics of events is applicable to log entries as well.

A transformation definition written in ATL language is composed of a header section,
an import section, a set of transformation rules, and a set of functions called helpers.
The header section starts with the name of the module and declaration of the source and
target models as variables typed by their metamodels. The keyword create indicates the
target model, whereas the keyword from indicated the source model. The import section
specifies the paths of the metamodels.

Matched transformation rules are the basic constructs in ATL to express transformation
logic. A matched rule consists of a source pattern and a target pattern, i.e., it defines,
in which way elements of the source model should be transformed into elements of the
target model. Algorithm 4.1 shows the complete code of the rule StateChange2Event as
an example. The rule implements the logic for transforming a current state change log
entry (OL!CurrentStateChange) to an event (XES!EventType) and applies to all
log entries of type CurrentStateChange in the source model (Log.xmi).

13Here and in the following text the prefix OL! indicates that an element belongs to the observation
language, whereas the prefix XES! shows a reference to the XES metamodel.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.6. Transformations

Algorithm 4.1: CurrentStateChange to Event Transformation

=

rule CurrentStateChange2Event

from currentStateChange : OL!CurrentStateChange

3 to event : XES!EventType (string <- id, string <- resource, string <- eventName,
date <- timestamp, string <-activity),

M

4 resource : XES!AttributeStringType (key <- ’org:resource’, value <-
currentStateChange.sender),

5 eventName : XES!AttributeStringType (key <- ’concept:name’, value <-
currentStateChange.currentState),

6 id : XES!AttributeStringType (key <- ’identity:id’, value <-
currentStateChange.id),

7 timestamp : XES!AttributeDateType (key <- ’time:timestamp’, value <-
currentStateChange.timeStamp.replaceAll(’ 7, "T?)),

8 activity : XES!AttributeStringType (key <- ’Activity’, value <-

currentStateChange.currentState)

In Algorithm 4.1 the first line defines the rule’s name. The second line declares the variable
currentStateChange for the source element OL!CurrentStateChange, whereas
the third line declares the variable event for the target element XES!Event Type. The
lines 4-8 specify bindings from the attributes of the currentStateChange to the
attributes of the event. The symbol "<-" is used to initialize the target attributes on
the left from the source attributes on the right.

The first attribute resource in the line 4 corresponds to the sender of the log entry
currentStateChange. This allows to align the event to the specific resource, i.e.,
sender, during PM. The second attribute eventName in the line 5 corresponds to the
currentState, which the system reached by this state change. The attribute id takes
the value of the log entry id to keep it unique, whereas the attribute t imestamp allows
to keep the order of the events. The timestamp is an important concept in PM, since
it signifies the order, in which the events have been observed, allowing to reconstruct
the process. The attribute activity is a classifier that assigns an identity to the event
making it comparable to othe events (cf. Section 4.6.3). After this mapping the single
attributes are bound to the event in line 3 as attributes of types string or date.

The last section of the ATL transformation is helpers. A helper can be specified on a
source metamodel type or on an Object Constraint Language (OCL) type. The concept of
helper comes from the OCL specification [OCL]. Helper hasThisSender defined in the

LogEntry context in OL2CurrentStateChanges.atl and OL2TransitionFirings.atl

transformations allows to filter events belonging to a certain component that sent them.
Similarly the helper isThisAttribute limits the event stream to a certain attribute
in OL2AttributeValueChanges.atl to observe its behaviour and values at runtime.
This data flow is presented in Figure 4.8.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

4. TECHNICAL REALIZATION
r ™
hasThisSender (Senderll,,,v
o
A >
~_ |
et
hasThisSender (Sender2)
! A S
Log.xmi
5
isThisAttribute (Attributel) |
e J
OL2AttributeValueChanges.atl \,’.,,'_',1_7_7 ~
isThisAttribute (Attribute2) |
@
Figure 4.8: Transformations with helpers.
4.7 Process Mining Tool
A PM tool is used in the descriptive perspective of the unifying framework. This tool
takes event logs as an input, analyzes them, and produces execution-based model profiles.
This technical realization considers ProM'* being the most suitable tool. ProM is
open-source software developed by the Process Mining Group!® at Eindhoven Technical
University'. Hence, significant part of the academic research in PM field is made using
and extending ProM. Apart from that, commercial PM tools, like Celonis!?, Disco!®, or
recent Minit!® and myInventio?®, are based on algorithms first implemented and evolved
in ProM [vdA16].
ProM framework consists of a core program and a set of plug-ins[Pro]. The core serves
as a common basis for the plug-ins and provides the infrastructural functions, such as
import, plug-in search and enabling, and visualization of results. Figure 4.9 shows the
core user interface. On the left side a user can choose an input among imported files, in
the central part there is a list of installed plug-ins, on the right side the program shows,
what output generates a certain plug-in. As described in the Section 4.6, ProM can load
XES, MXML, and CSV files. As a result of analysis ProM produces formal high-level
process models, i.e., end-to-end models allowing for choices, concurrency, loops, etc. This
includes amongt others BPMN models, EPC models, UML activity diagrams, Petri nets,
1ProM Tools: http://www.promtools.org/doku.php
5Process Mining Group: http://www.processmining.org/
YEindhoven Technical University: https://www.tue.nl/
17Celonis: https://www.celonis.com/
8 Disco: https://fluxicon.com/disco/
19Minit: https://www.minit.io/
2OmyTInventio: https://www.my-invenio.com/
46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

4.7. Process Mining Tool

and process trees. Figure 4.10 presents ProM user interface showing a mining outcome
of the Integer Linear Programming (ILP) Miner plug-in in form of a Petri net [vdA16].

s TN L I i e G i o MR e
Prolt 6 » B)

expected
results

plug-ins
that can be used

Figure 4.9: ProM 6 user interface [vdA16].

Plug-ins provide the whole variety of ProM functionality. PM techniques and algorithms
can be installed as plug-ins additionally to the core. The first functional version of the
ProM (ProM 1.1) was released in 2004 and contained 29 plug-ins. ProM 6 released in 2010
was the first version based on the new architecture and could import XES additionally to
MXML. The current ProM version 6.72! is released in 2017 and is XES-certified, which
means ProM 6.7 correctly imports and exports any XES file. In the recent years ProM
grew to over 1500 plug-ins supported by different versions. Dozens of process discovery
algorithms are implemented as ProM plug-ins. Next to the ILP miner shown in Figure
4.10 and the a-algorithm, also heuristic mining, fuzzy mining, and various forms of
inductive mining are supported [vdA16] (cf. Section 2.2.3).

Figure 4.11 shows another example of an advanced plug-in called Visual Inductive Miner.

This plug-in produces a sound process model and is able to process large event logs with
a lot of noise. Nevertheless, the miner can provide, if needed, perfects fitness. Mining
results can be converted to Petri nets, EPCs, statecharts and BPMN models. Additionally,
the Visual Inductive Miner supports bottleneck analysis and outlier detection and is able
to show replay of the mined process [vdA16].

The ProM core is distributed under GNU Public License (GPL)?? open source license,
which means that the installation is free, but any software that integrates the core
must be distributed under GPL license. Plug-ins are distributed under Lesser GNU
Public License (L-GPL)?3, meaning that it is allowed to distribute software that uses
these plug-ins (unchanged) using one’s own license [Pro]. The ProM java source code is

21ProM 6.7: http://www.promtools.org/doku.php?id=prom67
22GNU General Public License: https://www.gnu.org/licenses,/gpl-3.0.en.html
23GNU Lesser General Public License: https://www.gnu.org/licenses/lgpl-3.0.en.html

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

4.

TECHNICAL REALIZATION

48

discovered
Petri net

multiple
visualizers

seamless

abstraction i
1. frequencies
1213 \ 2191 20
® =

o, R -5 G B
308

o 2500

oo o
can also show bottlenecks,| ™
deviations, queues, etc. Hetdeg ot b

Figure 4.11: Visual inductive miner [vdA16].

publicly available and can be used and integrated in any project that doesn’t violate the
corresponding licenses.

In this technical realization ProM is used as a stand-alone not embedded application
that requires manual input and user interaction. Since ProM is a open source project, in
the following future work it can be built inside an automated workflow, where collected
logs will be transformed in XES and directly fed into ProM for instant analysis.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Evaluation: Case Study

5.1 Overview

This chapter presents a case study for the evaluation of our approach, the Ezxecution-based
Model Profiling (EbMP). The case study is both explanatory and exploratory as per
guidelines of Runeson and Host [RH09]. The explanatory part provides answers to the
research questions formulated in Section 1.2. The research interest here is to equip the
MDE-based system under study in such a way, so that its operational data can be derived
from the operational semantics of the system’s design language. The exploratory part
detects further possible research directions and formulates research questions for future
work.

5.2 Design

This Section defines requirements for the case and provides description of the case,
including definition of the modeling language, description of the models and setup of the
experiments.

5.2.1 Requirements

As an appropriate input to this case study, we require a PAIS (cf. Section 2.2.1) to be
able to capture its behavioral aspects on the basis of event data. Additionally to that the
system should be operational within the implemented technical realization of unifying
framework. Based on these two general requirements the following specific requirements
were formulated:

o Requirement 1. The system should be modeled in an executable modeling language
with clear syntax and operational semantics, which allows to observe system

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvaLuATION: CASE STUDY

50

behavior.

e Requirement 2. It should be possible to generate the system code from the model
with the available code generator (cf. Section 4.2).

e Requirement 3. The system should be deployable on the chosen execution platform
for conducting experiments (cf. Section 4.4)

The upcoming Section 5.3 gives a definition of a modeling language, which fulfills the
first requirement. The second and the third requirements are covered by the Sections
5.2.3 and 5.2.4, where the system and its two models are described.

5.2.2 Modeling Language

For the first experiments with the unifying framework it was necessary to consider, which
part of operational semantics will be registered for further analysis. Generally, a PAIS
has two different aspects: the static aspect which describes the main ingredients of the
system to be modeled, i.e., its entities and their relationships, and the dynamic aspect
which describes the behavior of these ingredients in terms of events and interactions that
may occur among them, as well as changes of the overall state of the system. Therefore,
we defined the language Class/State Charts (CSC), that covers these two aspects of the
system to be modeled.

CSC is a small subset of UML, consisting of simpler versions of UML class diagrams
representing the static aspect and UML state diagrams representing the dynamic one.
Operational semantics of CSC class diagrams includes attribute value changes, whereas
operational semantics of CSC state diagrams includes current state changes and transition
firing. Therefore, as mentioned in 4.2, the observable operational changes of the system
modeled in CSC are narrowed to attribute value changes, current state changes and
transition firing. In the future work this set can be extended by operation/method calls.

Figure 5.1 presents the two main parts of CSC, which are design language and observation
language. The design language defines, how structure and behaviour of the running
system should be modeled, whereas the observation language defines, in what form the
observations of the system, i.e., logs, should be registered.

The CSC design language. The upper section of the Figure 5.1 shows the CSC
design language. Similar to UML, the design language allows to model the static aspect
via Classes and their Attributes, which have names and values. The dynamic
aspect can be modeled as a StateMachine consisting of States and Transitions.
Incoming transitions distinguish a predecessor state, whereas outgoing ones point out a
successor. A transition can be triggered by an Event. Both states and transitions can
call Operations.

The CSC observation language. The observation language, derived from the design
language , is shown in the lower section of Figure 5.1. In a nutshell, the observation

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2. Design

3 relatedTo
CSC Design Language 11
associatedTo «observen|currentTransition . wobserve» currentState
Class o.1|_StateMachine |5 ;
name : Strin name : String
triggeredBy 0.* 0..% calls
1* S incoming predecesso 0..% .
Attribute Event |< Transition |5+ 7| State [~>| Operation
R type : String name : String outgoing successor_|name : String type : String
name : String) value : String guard : String 0..* 1.1 |start: Boolean [S] |expression : String
“observe» value : String waiting time: Int end : Boolean -
| calls 0...
[
CSC Observation Language
G 0%
Log ‘®—> Processinstance @ LogEntry
observationStart: String id: Str:ing) id: String
observationEnd: String startTime: String timeStamp: String changedCurrentState
endTime: String ~ 1.1
\ l
changedAttribute a
T AttributeValueChange CurrentStateChange
currentValue: String o s =] firedTransition
TransitionFiring | 1

Figure 5.1: Design language and observation language.

language shows the structure of the collected event logs. The class Log represents a
logging session of a certain running software system, modeled in design language, with
a registered observationStart and an observationEnd. The class Log consists
of ProcessInstances related to the StateMachine. It means that one run of a

state machine from the start state to the end state is logged as one process instance.

Every ProcessInstance has a unique id, startTime, and endTime attributes and
consists of log entries with the attributes id and timeStamp for ordering purpose
(i.e., indicating when the entry was recorded). The specific types of the generalized
LogEntry depend on the operational semantics of the design language and include
AttributeValueChange, a CurrentStateChange, or a TransitionFiring.

In the Figure 5.1 all the operational semantics-related elements, i.e., everything that is
changing in a system at runtime, are coloured blue. According to the unifying framework
(cf. Section 3.3), these elements are marked with the <observe>> stereotype. In the
class diagram the only parameter changing at runtime is the attribute’s value. This
change has an association with AttributeValueChange type of LogEntry. In the
behavioural aspect the changes of the currentState and the currentTransition
of the StateMachine happen also at runtime. These changes are associated with
the LogEntry types CurrentStateChange and TransitionFiring. This set of
changes, when registered and persisted as a log, gives an essential outline of the system’s
behaviour. Therefore, the Requirement 1 (cf. Section 5.2.1) is fulfilled: the described
design language is an executable modeling language with clear syntax and operational

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

5. EvVALUATION: CASE STUDY
semantics, which is captured by the observation language.
The next possible extension of the observation language would be to observe and register
operation calls, including operation entry and operation exit. This elements of operational
semantics lie outside of scope of this thesis and can be considered as future research.
5.2.3 TrafficLight System
The PAIS chosen for the case study is called TrafficLight. This IoT-system implements an
operation process of two traffic lights. The first traffic light controls the cars traffic, and
the second one controls pedestrians traffic. The system is modeled in EA and it’s python
code can be generated by Vanilla Source code generator (cf. Section 4.2). Thus, the
complete code for the system can be generated via one click and is ready to be deployed
on the execution platform, i.e., RaspberryPi (cf. Section 4.4).
Trafficlight
- blinkcounter: int = 0
- CarGreenPin.int =6
- CarGreenPinValue: PinValue = LOW
- CarRedPin: int=19 FSM
- CarRedPinValue: PinValue = LOW
- CarYellowPin: int = 13 «static»
- CarYellowPinValue: PinValue = LOW “"--i___. FSM::FSM
- PedestrianGreenPin: int = 21 At
- PedestrianGreenPinValue: PnValue = LOW «extern»
- PedestnanRedPin: int= 20 SystemTime: volatile uint64_t
- PedestrianRedPinValue: PinValue = LOW
- + checkTimeEvent(FSM STATE*, uintB4 t time units): bool
;’ s “UEE” + gefTime() uint64_t
«use» gpio T~ 7 .
“, xuses\e \\\\ .’I \
I,-I External ‘QJ ‘\$ «use»
«enumeration» «struct»
External::_wingpio FSM::time_units FSM:FSM_STATE
+ sleep(fioat): int + HIGH. int {readOnly} TIME_TICKS - activeSubState: int
+ IN: int {readOnly} TIME_NANOSECONDS - stariTime: uint84_t
+ LOW: int {readOnly} TIME_MICROSECONDS
+ OUT: int {readOnly} TIME_MILLISECONDS
+ PUP_OFF: int {readOnly} TIME_SECONDS
+ cleanup(). int TIME_MINUTES
+ output(int, int): int TME_HOURS
+ setup(int, int, int, int): int
Figure 5.2: TrafficLight Class Diagram.
TrafficLight is modeled in CSC, so its structure is defined by a class diagram and its
behaviour is specified as a state diagram. These two diagrams are prescriptive models of
the TrafficLight system (cf. Section 3.1). The Figure 5.2 shows the class diagram, as it is
modeled in EA. The TrafficLight system related class is painted red, the auxiliary classes,
which are needed for the state machine and GPIO support, are grey and an enumeration
of attribute’s values is green.
In fact, the TrafficLight system has the only class Trafficlight, which defines
its whole structure. TrafficLight has three light for cars, namely green, red and
52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

5.2.

Design

wait1sec [self.blinkcounter <= 5]
Jtime_sleep(1)

[self blinkcounter > 5] £
/self blinkcounter = 0|

Figure 5.3: TrafficLight. State Diagram.

yellow, and two lights for pedestrians, namely green and red. The lights are con-
nected to a RaspberryPi via GPIO pins (cf. Section 4.4). The attrubutes for pins,
e.g., Trafficlight.CarGreenPin: int = 6, specify, to which output pin Traf-
ficLight must send a signal to turn the light on or off. The attrubutes for pin values,
e.g., Trafficlight.CarGreenPinValue: PinValue = LOW, register, which sig-
nal came as last. There are only two possible signals specified in the enumeration
PinValue, which are HIGH and LOW. The initial pin values are LOW. The purpose of the
attribute Trafficlight.blinkcounter is explained together with the TrafficLight
state diagram.

The package finite-state machine (FSM) contains classes which define the structure of an
abstract state machine having an active state and the start time when the active state was
triggered. The package External is responsible for communication with RaspberryPi’s
GPIO. These grey auxiliary classes provide an infrastructure for TrafficLight and make
it a functional state machine-based system, which is deployable on RaspberryPi. Any
other system, whose behaviour can be defined as a state machine, can be associated with
these auxiliary classes instead of Trafficlight, so that complete system’s code can
be generated.

Figure 5.3 presents the state diagram, as it is modeled in EA. Operations, which send
signals to the pins, are specified for every state, including their calling time point (entry,
exit, or do). Every transition has a guard, e.g. wait3sec, which prescribes, how long
the system should stay in the current state. In the first initialization state all the lights
are turned on. After that system switches to safety state when only red lights are

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

5. EVALUATION: CASE STUDY

on for both cars and pedestrians. With the next transition car traffic light turns green
while pedestrian light stays red and the real working cycle of the system begins. In the
next state cars have yellow for a while, then both traffic lights turns red simultaneously.
In the next step green light turns on for pedestrians while cars are having red. After
green blinking for pedestrians system switches to the state with all lights red and the
cycle starts all over again. The attribute Trafficlight.blinkcounter is used here

to limit the blinking cycle to 5 iterations.

This rather basic TrafficLight system is used to achieve first results and to check the
implemented technological chain from prescriptive models to descriptive models, i.e.,
mined Petri Nets. For further experiments this basic system was refactored into an
object oriented system (cf. next Section 5.2.4) with identical behaviour, so that direct

comparison of mined outcomes is possible.

5.2.4 Object oriented TrafficLight

This Section presents the refactored object oriented TrafficLight system called Traffi-
cLightOO. In Figure 5.4 the class Trafficlight of the initial system is split into three
separate classes, which are ControlTrafficLight, PedestrianTrafficlight,

and CarTrafficlight.

ControlTrafficlight

\ R

\ s ~
PedestrianTrafficlight's \‘\
. ~

~
*USER Ny i
" ~ s
N
\‘J < wusen ~
.

| PedestrianTrafficlight =

«lSE» ,? *

|
I
I
I
I
i
I
I
|
I
1
I
I
} - pedestrianGreenPinValue: PinValues = LOW “
I
I
i
I
I
I
|
I
I
|
I
I
I

RN FSM::time_units

FSM

«static»
FSM::FSM

wextern»
- SysiemTime: volatile uinté4_t

+ checkTimeEvent(FSM STATE® uini64 i time unis) bool

aetTime() uinte4 1
3
«struct»
FSM:FSM_STATE
- acliveSubState: int
- startTime: uinte4_t

«enumerations

TIME_TICKS
TIME_NANOSECONDS
TIME_MICROSECONDS
TIME_MILLISECONDS
TIME_SECONDS
TIME_MINUTES
TIME_HOURS

CarTrafficlight

- pedesirianGreenPin: int = 21 e
(8
- pedestrianRedPin: int= 20 N
- pedestrianRedPinValue: PinValues = LOW Ny
~
’ 1 ~
5 \ o
wusen auses ” apio CarTrafficlight™
G . «use» N
L ause» R
i External f"{
’
7 External:: wingpio
+ HIGH: int {readOnly}
External:time + IN int {readOnly}
o
+ LOW: int freadOniy} P
+ seeplioatae + OUT: int {readOnly) ause»
_____ —_|+ PUD_OFF: int freadoniy} -
ause» == —
+ cleanup():inf T T ===— Ed___|&
+ output{int, int): int -
+ setup(int, int, int, int) int -

carGreenPin: int=6
carGreenPinValue: PinValues = LOW
carRedPin: int = 19

carRedPinValue: Pinvalues = LOW
caryellowPin: inf = 13
caryellowPinValue: PinValues = LOW

Figure 5.4: Object oriented TrafficLight. Class Diagram.

As follows from the name, the class ControlTrafficLight takes control over car and

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

5.2. Design

pedestrian traffic lights. These three classes are highlighted red and represent the whole
system’s structure. The object oriented approach increases system modularity and allows
to easily arrange different combinations with several traffic lights of different types. The
attributes stayed the same and were distributed to corresponding classes. The packages
FSM and External stay unchanged and provide the same infrastructure, as described
in Section 5.2.3.

In TrafficLightOO there is three state diagrams prescribing behaviour of the three classes.

The state diagram for ControlTrafficLight (cf. Figure 5.5) shows behaviour of the
whole system. The states and their arrangement are identical to the initial TrafficLight
system (cf. Figure 5.3). States of this state diagram don’t send signals to the pins, the
way the initial system does, but to the state machines controlling pedestrian and car
traffic lights.

Figure 5.5: Object oriented TrafficLight. State Diagram. Control.

Figure 5.6 shows, which states the pedestrian and car traffic lights can have. These
states are modeled independent from the control state machine and can themselves call
operations, which send signals to the GPIO pins.

Such model-driven systems are easily accessible for engineers without software engineering
background, since modularity allows to combine and reuse components and a code
generator provides deployable code. Engineers can change the model, e.g., for a new
intersection with a new, different traffic lights configuration, and get a ready system
without writing code.

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

5.

EvaLuATION: CASE STUDY

56

(b) Car traffic light.

(a) Pedestrian traffic light.

Figure 5.6: Object oriented TrafficLight. State Diagrams.

5.2.5 Setup and Experiments

This section defines the setup and groups of experiments for data collection and the further
empiric evaluation and assessment of this data. Data sources for the data collection are
the subjects under study, namely the initial Trafficlight (cf. Section 5.2.3) and the object
oriented TrafficLightOO (cf. Section 5.2.4) systems.

For the experiments both initial and object oriented systems were generated from their
prescriptive models and deployed on the Raspberry Pi execution platform to simulate
real systems and produce event logs. These event logs were captured by the Observer
microservice and stored as qualitative data ready to be processed by the ProM tool. In
this tool the event logs were analyzed by various plug-ins. The result of every experiment
is a descriptive model of the system under study created for a certain period of its
operation, i.e., a model profile.

Preliminary we defined four groups of experiments, but not the particular experiments.
Since the outcome is not predictable, the exact setting and order of experiments should
be specified and adjusted as we get the first results.formulate positive, outcome of
expermients are usualle not predictable These four groups are specified as follows:

1. Experiments with the initial Trafficlight system.

2. Experiments with the initial Trafficlight system producing noisy logs.

3. Experiments with the object oriented TrafficlightOO system.

4. Experiments with both systems from performance perspective.

As stated in Section 1.2, the research objective of this thesis is to develop a unifying
framework realizing a model profiling approach for a combined but loosely-coupled usage

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.3. Results

of MDE and PM techniques. In order to reach the research objective the specified
research questions should be answered. The first and the second groups of experiments
collect enough data for answering research questions 1 and 2. This data will serve as a
basic prove of concept for the unifying framework and its implementation showing the
actual possibility to generate a descriptive model from a specially equipped MDE-based
system. The third group of experiments collect additional qualitative data from the
second more complex TrafficlightOO system. Altogether, model profiles resulting from
these three groups of experiments give a basis to verify the systems’ behavior at runtime
for answering research question 3. The third and the fourth groups of experiments collect
data for answering research question 4, whether it is possible to maintain model profiles
for multiple concerns, such as functionality, performance, and component interrelations,
through unifying framework.

5.3 Results

This section presents the results of the experiments, i.e. the model profiles of the systems
under study created within the unifying framework. Table 1 in Appendices presents

the complete list of twenty two conducted experiments in the scope of this case study.

In the column System under study it is defined, which system produced the event logs
for the experiment. The next column Observed aspect contains the observed aspect of
the operational semantics, e.g., state changes or attribute value changes during system
operation. The column Algorithm (Plug-in) specifies the algorithm applied to the collected
event logs. The last column Special conditions points out, whether the event logs contain
noise or a certain threshold was set for the experiment. In the following text we refer to
the experiments listed in this table.

Group 1. Ezperiments with the initial Trafficlight system (1 to 7).

For the first group of experiments we produced an observation model consisting of ten
full runs of the initial Trafficlight system without any special conditions, i.e., without
interruptions or noise (see observation model number 1 in Appendices, Table 2). These
ten runs correspond to ten process instances according to the CSC observation language
(see Section 5.3). PM uses the term case for the same concept. Since in this section we
describe model profiles created by the PM-tool ProM, we use the term case as well.

In the first five experiments we observed state changes of the Trafficlight system. We
applied the OL2StateChanges.atl transformation to the observation model in order
to isolate log entries of type CurrentStateChange. Erperiment 1 was conducted using
the Alpha Miner plug-in and the a-algorithm producing a Petri net. The resulting model
profile is shown in Figure 5.7a. If we compare this model profile with the prescriptive
model (see Section 5.2.3, Figure 5.3), we can assert, that the set of the states was
discovered correctly, as well as their major order. Nevertheless, we also find several
inconsistencies.

o7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

EvaLuATION: CASE STUDY

5.

pad woy pa1 e

u21F By URLISAPA]

Tor Tl

01

(d) Ed.

Figure 5.7: Model Profiles for Experiments 1, 2, 3, and 4.

o~
uo [je / azieniu] M
—
U221 SEY URLISOPA] IED WOy pal [[e /%\
—
5
~—
ueinsapad yuijq uaaid
0
O
Moylolqig usipy N1 1e HC_‘_Q ul @|gejlene si sisayl Siyl JO UOISIDA _.mc_m_‘_o Um>OLQQm 9yl any a3pajmous InoA

“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg AV—@F—H.O__G__M

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.3. Results

Firstly, the state green blink pedestrian is detached from the rest of the model profile.

Secondly, the returning path from all red from ped to car has green is missing, i.e., the
loop is not closed. In Section 2.2.3 we mentioned, that the a-algorithm is unable to
discover short loops of one or two events. The detached state green blink pedestrian is
the only one in the loop, so the algorithm could not handle it. This could also lead to

the second issue of not closing the loop, since one state inside the loop was dislocated.

Nonetheless, the algorithm discovered the end point of the cycle, which is all red from
ped. Thus, being aware of this weak point of the a-algorithm, we can conclude, that the
real reason of these inconsistencies lies in the algorithm itself and not in the behavior of
the generated Trafficlight at runtime.

Therefore, the Fxperiment 2 was conducted using the Alpha Miner plug-in, but with
the improved version of the a-algorithm, i.e., the a™-algorithm. In contrast to the first
model profile, the second one shows the correct set of states, as well as their correct order
(see Figure 5.7b). This is the first confirmation that the implementation of the unifying
framework allows us to verify runtime behavior for the Trafficlight system by comparing
a prescriptive (design) model and a corresponding model profile. In order to obtain more
evidence we conducted more experiments with the algorithms described in Section 2.2.3,
namely inductive miner and heuristic miner.

The model profile produced in Ezperiment 3 by the Inductive Miner plug-in [JJLFA13]
is shown in Figure 5.7c. This model profile shows the correct behavior corresponding to
the design model in terms of state space and state ordering. The only difference to the
second model profile is the black transitions in the Petri net. In PM such transitions
are called silent transitions meaning they are artificial and not observed in the event
log [vdA16]. The initial mining result of the inductive miner is a process tree which
is further mapped into and shown as a Petri net. This mapping often produces silent
transitions to redo the loops or end a Petri net, as we can see in Figure 5.7c.

We conducted Ezperiment 4 with the Visual inductive Miner plug-in [LFvdA14b]. This
plug-in uses Inductive miner as process discovery algorithm and adds new visualization
and animation. The resulting model profile is show in Figure 5.7d. Since the discovery
algorithm stays the same as in the previous experiment, the state space and state ordering
are correctly discovered. Additionally to this, the model profile is enriched with frequency
of path execution. The most frequent paths and elements have more intense color. For
example, we see that initialize and safety state were performed once as the system was
started. Then the big loop was entered and performed ten times, although the returning
path was performed nine times. This means, the tenth successful cycle ended after all
red from ped. Moreover, the Visual inductive Miner plug-in computes process replay
for animation purposes. The yellow dot in Figure 5.7d symbolizes a current state of
the system. In the animation the dot is actually moving according to the registered
timestamps of the events.

During Ezperiment 5 we used Heuristic Miner [?] producing a heuristic net, i.e., a
casual net based on the dependency graph (see Section 2.2.3, Figure 2.12). The resulting
model profile is shown in Figure 5.8. The heuristic net shows the correct state space and

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.

EvaLuATION: CASE STUDY

60

space ordering according to the design model. Moreover, the formalism and visualization
of such a heuristic net corresponds to the formalism of state diagrams, which makes
the direct comparison more convenient. Additionally, Heuristic Miner computes and
visualizes the frequency of path execution, as well as the frequency of entering a state.
For example, in the lower part of 5.8 the properties of the state green blink pedestrian,
which is highlighted in red color, are shown. This state was entered 60 times via two
different inputs, i.e., from two previous states. 10 times (or 16.67%) the previous state
was pedestrian has green, and 50 times (or 83.33%) the state green blink pedestrian was
reentering itself, which corresponds to the design intention.

: N ;
yellow 10 all red from 10 Pedestrian 10 green blink

1 car has green pedestrian #
Initialize | all Car has greer—""7] 10 10 10 60 T alired from
on

¢ ped
1 1 10 \/—v/ 10

Safety state

Inputs of green blink pedestrian Outputs of green blink pedestrian
. Patterns A S Patterns X

Figure 5.8: Model Profile for Experiment 5.

In Ezperiments 6 and 7 we observed value changes of the attribute blinkcounter
(see Section 5.2.3, Figure 5.2). Since the pin related attributes stay constant and the
pin values attributes are bound to an enumeration with two possible values (LOW and
HIGH), the most interesting attribute to observe is the blinkcounter. According
to the state diagram, the values of blinkcounter should lie within the range [0..6]
(see Section 5.2.3, Figure 5.3). In the similar way as we did for the first experiments,
we applied the OL2AttributeValueChanges.atl transformation to the observation
model in order to isolate log entries of type AttributeValueChange. The Experiment
6 was conducted using Alpha Miner plug-in and the at'-algorithm. Figure 5.9 shows
the resulting Petri net for Experiment 6, i.e., a model profile of value changes of the
attribute blinkcounter. The model profile shows the correct values of the attribute,
i.e., the range [0..6], as well as their correct sequence starting with "1". After the initial
value "0", the first registered value change is "1", which is also the first transition in the
resulting Petri net. In Ezperiment 7 we used Heuristic Miner to verify additionally, how
many times the blinkcounter took different values. Since we analyzed a log with ten
cases, every value has ten occurrences at runtime as designed (see Figure 5.10).

In the first group of experiments we observed the Trafficlight system at runtime and

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

9.3.

Results

Figure 5.10: Model Profile for Experiment 7.

registered its behavior in form of observation models. Unlike unstructured log output,
observation models and corresponding transformations allowed us to observe separately
different aspects of the operational semantics of the CSC language (see Section 5.3), such
as current state changes (see Figure 5.8) or attribute value changes (see Figure 5.10), and
to create specific model profiles. This serves as a basic prove of concept for the unifying
framework showing the actual possibility to generate a model profile from an especially
equipped MDE-based system.

For the observation model containing clean runs of the Trafficlight system without noise all
applied algorithms, except for the a-algorithm, showed comparable results and captured
the runtime behaviour correctly, including correct state space and state ordering. Visual
inductive Miner and Heuristic Miner both show additional information in model profiles,
such as path and state frequency (see Figures 5.7d, 5.8, and 5.10).

Group 2. Ezperiments with the initial Trafficlight system producing noisy logs (8 to 12).

The second group of experiments is to be conducted with the previously applied algorithms

using noisy event logs. Since in the first group of experiments Alpha Miner with at+-

algorithm, Visual inductive Miner, and Heuristic Miner showed comparable model profiles
for a clean event log, in the second group of experiments we use these three algorithms and
compare the model profiles they produce from noisy logs. Considering the fact, that both
our systems under study produce sound logs without any noise by design, we artificially
inserted a component that simulates system failure according to the bathtub reliability
curve [LB17]. This means, every electronic component, in this case a light-emitting diode,
is exposed to a failure risk. In the beginning of operation the failure rate is decreasing
(early failures), then the constant failure rate phase follows (random failures). As the
electronic component tires, the failure rate is increasing (wear-out failures). This change
of the failure rate over time forms a so called bathtub reliability curve. Using this failure
simulation we can produce noisy logs, that are not reflecting the system behaviour as
prescribed by initial models, and observe how different algorithms deal with noisy logs.

For the comparison of model profiles resulting from different algorithms PM offers four

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvaLuATION: CASE STUDY

62

competing quality criteria [vdA16]:

. Fitness

. Precision

. Generalization
. Simplicity

W N

A discovered model profile with good fitness allows the major behavior registered in the
event log. A model profile with perfect fitness represents all possible paths of the log.
The log can be fully replayed on such a model profile. However, a discovered model
profile can allow "too much" behavior if it lacks precision. Thus, such a model profile
is called not precise, or "underfitting", since it allows behavior completely unrelated to
the one shown in the event log. Generalization is related to the concept of "overfitting".
An overfitting model profile is too specific for the purpose, i.e., it does not generalize
enough. The Simplicity criterion refers to Occam’s Razor: "don’t multiply entities beyond
necessity." [Occ]. According to this principle, we should aim for the simplest possible
model that can explain the behavior shown in the event log, but not simpler than that.
The complexity of the model profile could be determined, e.g., by the number of its nodes
and arcs. The more complex a model profile is, the harder it is to read.

It is quite a challenge to keep these four quality criteria in balance. Depending on the
purpose of model profile creation, we might need a more generalized one, or a more
precise one. Since quantified evaluation of algorithms is not the research objective of this
thesis, we aim to explore, which algorithm produce the optimal model profile out of noisy
logs in order to allow runtime verification. The results of this comparison are presented
in the Table 5.2, where every criterion is evaluated as high or low. Nevertheless, the
four quality criteria can be quantified as described in [vdA16] and used for the precise
evaluation of systems with more sophisticated behavior and more complex, noisy event
logs.

For the second group of experiments we produced an observation model consisting of
twenty one runs, i.e., cases, of the initial Trafficlight system (see observation model
number 2 in Appendices, Table 2). Five out of twenty one cases resulted in a system
failure. Table 5.1 presents the states at which the Trafficlight system failed. Since green
blink pedestrian is the most frequently used state due to the blinking cycle, it produced the
most failures. In this group of experiments we observed state changes of the Trafficlight
system, since further observation of attribute value changes will not bring new insights.
We applied the OL2StateChanges.atl transformation to the observation model in
order to isolate log entries of type CurrentStateChange.

In Experiment 8 we produced a model profile using the Alpha Miner plug-in with the
atT-algorithm (see Figure 5.11). Since the model profile with noise is more complicated
than the clean one, we introduced colored highlighting over the discovered model profile
for better comprehension. The blue colored paths shows the normal behavior of the
Trafficlight system without noise. This behavior corresponds to the design model in

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.3. Results

Failed state Number of failures
car has green 1
green blink pedestrian 3
all red from car 1

Table 5.1: List of system failures

terms of state space and state ordering. One additional blue arrow from the beginning
of the Petri net to the safety state indicates, that the initialize state was not included
in several cases and the cycle was started from the safety state. This pattern happens
when the system enters the system down state and starts a new case beginning with the
safety state. The system down state was artificially inserted into the observation model
by the failure simulator component. The red arrows leading to this state show that the
system failed from the states car has green, green blink pedestrian, and all red from car.
Therefore, the model profile has high fitness, since it allows the normal behavior of the
system (see Figure 5.3) and all three of its failures (see Table 5.1). On the other hand,
the model profile also contains yellow paths, which are not allowed in the event log., e.g.,
the paths from pedestrian has green to system down / yellow. Thus, the model profile
created by Alpha Miner lacks precision. Additionally, we can conclude, that the model
profile has low generalization, since it does not consider the frequency of failures and
shows all possible failure paths. Moreover, the simplicity of this model profile is also
low, considering the duplicated paths from pedestrian has green to system down | yellow
and the overall complexity of the Petri net. Here and in the following discussion we
evaluate all four criteria in relation and comparison to other model profiles in this group
of experiments.

Figure 5.11: Model Profile for Experiment 8

In Ezxperiments 9 and 10 we discovered model profiles using the Visual inductive Miner
plug-in (see Figure 5.12). In the Experiment 9 we set the relative threshold to "0.8",

which is also the default value in the Visual inductive Miner plug-in (see Section 2.2.3).

This gave us a rather generalized model profile (see Figure 5.12a). As mentioned in
the description of Experiment 4, Visual inductive Miner enriches the model profile

with the information about path frequency, which is an advantage over Alpha Miner.

The discovered profile captures normal behavior, indicates the system down state, and
provides information about its frequency. Apart from that, the Petri net is simple and not

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvaLuATION: CASE STUDY

64

overloaded. However, we can not explicitly read, at which states the five failures occurred.
We can assume, that three failures happened at the state green blink pedestrian, since
the frequency of the path drops from 19 to 16 after this state, and the other two failures
happened somewhere between car has green and pedestrian has green, since the frequency
of this path is 19 instead of the expected 21. Therefore, we conclude, that the model
profile at this threshold does not provide neither high fitness, nor high precision. On the
other hand, the optimal application of this model profile depends on the goal, which an
observer would like to achieve. If the precise location of the failures is irrelevant for the
observer, this model profile gives the desirable information about the failure frequency.

In Ezperiment 10 we aimed to find out exactly, at which states the failures had happened.
Thus, we set the relative threshold to "1.0", which allows us to achieve the highest possible
fitness. Here we made this decision in favor of fitness at the cost of low generalization and
low simplicity. However, this model profile gives us more information about the source of
the failures (see Figure 5.12b). Here we see, that the normal behavior of the Trafficlight
system was interrupted after the states car has green, green blink pedestrian, and all
red from car. This is shown both by additional paths and by the reducing frequency in
the normal trace from car has green to pedestrian has green. Nevertheless, the model
profile lacks precision, i.e., it allows behavior not observed in the event log. For example,
although we know, that three failures happened at green blink pedestrian and there is
a path showing the all red from ped was skipped, the model profile itself allows the
misleading path from all red from ped to system down. This profile is only readable, if
we keep the failures in mind and know what we are looking for, which is in practice not
usually the case.

In FEzperiments 11 and 12 we produced model profiles using the Heuristic Miner plug-in
(see Figures 5.13 and 5.14). In Experiment 11 we set the dependency threshold to "90"
and the relative to best threshold to "5", which are the default values in the Heuristic
Miner plug-in (see Section 2.2.3). With these settings the resulting model profile provides
a generalized and simple view at the runtime behavior. As mentioned in the description of
Experiment 5, Heuristic Miner computes and visualizes the frequency of path execution,
as well as the frequency of entering a state, similar to the Visual inductive Miner. The
normal behavior of the Trafficlight system and the presence of the system down state
were correctly discovered. In comparison to the generalized model profile produced in
Experiment 9 by the Visual inductive Miner, this model profile not only shows the system
down state, but also locates its most frequent source, which failed three times, namely
the green blink pedestrian state. Therefore, it demonstrates better fitness. Additionally,
it presents, that the system down state was entered five times, leaving us with a question,
what the other two failed states are. Similar to the approach we used in the description
of Experiment 10, we can conclude based on reducing frequency, that the two missing
failed states are car has green and all red from car. Since these two states are not exactly
located, i.e. there are no paths from them to the system down state, the overall fitness of
the model profile is still low. On the other hand, the model profile does not show any
paths not presented in the event log, which can be characterized as high precision.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

5.3. Results

- oo EEEE o @D o @
e . — o
= ol ol ol 6l Bl ol 6 6l '..

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq

0
Ne
S
—
=
—
@& =
" " S~—
o1 vy @
§
=
€3]
—
ey @ 8

qny a8pajmoud| INoA

Saylolqie

Figure 5.12: Model Profiles for Experiments 9 and 10.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

EvaLuATION: CASE STUDY

66

In order to locate the exact failed states, in the Ezperiment 12 we set the dependency
threshold to "0" and the relative to best threshold to "100", which are the maximum values
in the Heuristic Miner plug-in for the highest possible fitness. As expected, with these
settings the model profile provides a less generalized view at the runtime behavior and
shows the paths from the car has green and all red from car states to the system down
state (see Figure 5.14). This model profile shows deterministic behavior in comparison to
the model profile of Experiment 10, i.e., it does not leave any space for misinterpretation
(see Figure 5.12b). Here we can say exactly, which states failed and how often it happened.
Since the model profile only shows the behavior actually seen in the log, its precision is
high. Furthermore, the model profile in form of a heuristic net provides high simplicity
as its number of nodes and arcs is lower in comparison, e.g., to the model profile in form
of a Petri net produced in Experiment 10.

“‘> System down

yellow m all red from i Pedestrian green blink 5
Initialize | all safety state > car has green pedestrian

1 s ;
on | 20 20 19 EE Y

1 6 —— 1 all red from
21 — R

— — — ped

16

Car has green

\

£l —
?’3 = all red from
ped

Pedestrian i greenblink -~ 16

p
o
Initialize | all Safety state Car has green = hesgrper e
i X i N yellow » all red from 1ng i 99
1 [2 20 5 \&*
55 E System down
- —
7
. e 5

Figure 5.14: Model Profile for Experiment 12.

In the second group of experiments we observed the Trafficlight system at runtime and
registered its behavior, including simulated failures, in form of observation models. We
evaluated model profiles discovered by different PM algorithms from noisy operational
data. The overview of the qualitative evaluation of the four criteria for the second group
of experiments is presented in the Table 5.2.

Quality crite- | E8: Al-| E9: In-| E10: In-| E11: E12:

ria pha++ ductive ductive Heuristic | Heuristic
0.8 1.0 90/5 0/100
Fitness high low high low high
Precision low low low high high

Generalization | low high low high low
Simplicity low high low high high

Table 5.2: Comparison of model profiles

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.3. Results

Based on this evaluation we came to conclusion that the model profiles produced by
the Heuristic Miner plug-in give the most valuable insights about runtime behaviour
of the MDE-based Trafficlight system (see Figures 5.13 and 5.14). These model profiles
demonstrate high fitness and precision while keeping high simplicity. They provide
visualization and formalism that allow their straightforward comparison with state
diagrams used in the MDE-context. Thresholds used in the Heuristic Miner plug-in
are advantageous to balance the trade-off between an “overfitting” model profile and an
“underfitting” one. Thus, observers can decide based on their observation goal, whether
a model profile should show an exact behavior or focus on more frequent patterns.

Group 3. Ezperiments with the object oriented TrafficlightOO system (13 to 19).

For the third group of experiments we produced two observation models of the running
object oriented TrafficlightOO system. The first observation model consists of ten cases,
without any special conditions, i.e., without interruptions or noise (see observation
model number 3 in Appendices, Table 2). The second one consists of 29 cases, and 4
of them resulted in a system failure (see observation model number 3 in Appendices,
Table 2). In the second group of experiments we evaluated the Heuristic Miner plug-in
as an optimal choice for the MDE-based Trafficlight system. Therefore, for the third
group of experiments with the object oriented TrafficlightOO system we use this plug-in
with thresholds values set for the maximum fitness in order to detect all failures. In
this group of experiments we observed state changes of the different components of
the TrafficlightOO system. We applied the OL2StateChanges.at1 transformation to

the observation model in order to isolate log entries of type CurrentStateChange.

Particularly, we applied helpers (see Section 4.6.4, Figure 4.8) in order to separate events
sent from different components, i.e., controlTrafficlight, carTrafficlight and
pedestrianTrafficlight, so that we can observe their distinct runtime behavior.

In Ezxperiment 18 we discovered a model profile for controlTrafficlight, which is
identical to the one discovered in Ezperiment 5 (see Figure 5.8). This proves that the
control component of the TrafficlightOO system shows at runtime the same behavior as
the initial Trafficlight system (see Figures 5.2 and 5.4). In Experiment 14 we produced a
model profile controlTrafficlight using noisy event logs with four failures: two at

the state green blink pedestrian, one at pedestrian has green, and one at all red from car.

The normal behavior of the TrafficlightOO system, as well as frequency and location of
failures were correctly discovered (see Figure 5.15).

a ﬁN
Al red from
oy o ped
- = Green blink |— 7| 25
Initialize \ Safety state 5 Car has green Padestrian | 21— Pedestrian
> o 162
3 o has green £
1 5 28 Cariias 5 | Anreatrom 5] :]
yellow > i 28 \ System down
29 — >
29 RS >
“H“&‘__ ! __),_)¢/ 4

Figure 5.15: Model Profile for Experiment 14.

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

EvaLuATION: CASE STUDY

68

In Experiments 15 and 16 we observed the components carTrafficlight and
pedestrianTrafficlight as they perform without failures (see Figures 5.16a and
5.16b). In these experiments we analyzed operational data from distinct components
that have underlying state machines different from the initial Trafficlight system. In both
experiments the discovered model profiles correspond to the designed state diagrams in
terms of state space and state ordering (see Figures 5.6b and 5.6a). Therefore, these
experiments provide additional confirmation that the unifying framework enables us to
verify runtime behavior based on operational data captured with reference to design
models in the MDE context.

60

AllOnCar

1| Red —7 10 | T Yellow AllonPed |7

0
1 1 — 1 1] Red

i

(b) E16.

Figure 5.16: Model Profiles for Experiments 15 and 16.

In Ezperiment 17 and 18 we observed the same two components running with the failure
simulator. Both discovered model profiles indicate the system down state (see Figures
5.17 and 5.18). Moreover, based on these model profiles we can locate the failures more
precisely. With this separation of control state machine and dependent component state
machines we can dig deeper into dependent component model profiles and see at which
states of these components the system failed exactly. For example, in the model profile
for carTrafficlight in Figure 5.17 we see that this component failed at the red state.
If we take a look at the model profile of the initial Trafficlight system (see Figure 5.14),
we will only see at which overall state the system failed, but not which component it was.

Green

AllOnCar 1 Red 4 System down
1 30 1
25,

Figure 5.17: Model Profile for Experiment 17.

Yellow

29

In the previous eighteen experiments we explored the so-called control-flow perspective
of the PM. This perspective allows to discover state space and state ordering of the
underlying processes happening during system operation. The result of mining this
perspective is a generalized (or precised) model profile showing system behavior at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

9.3.

Results

AllOnPed Y Red ___1;__)_ Green |y off
- = < :
1 26 188 \152 [T system down
mh___'_/ 3

Figure 5.18: Model Profile for Experiment 18.

runtime. In Experiment 19 we explored the organisational perspective of the PM. This
perspective focuses on resources, i.e., actors, which actually perform the process. In
the business context this could be, e.g., people, roles, and departments, whereas in the
software engineering context the interaction happens, e.g., between systems, components,
and classes. The result of mining this perspective is an organizational structure or a
social network that shows actors and their interrelations.

In particular, we used the Subcontracting social network Miner plug-in to create a
model profile showing the subcontracting relations between the three components of the
Trafficlight OO system (see Figure 5.19). The main idea of subcontracting is to count how

often one actor executed an activity in-between two activities executed by another actor.

This may serve as an indication that the second actor subcontracts work to the first actor
[vdARSO5]. For this experiment we filtered all state changes from the observation model 3
(see Appendices, Table 2), so that the event log contains the state changes from all senders,
i.e., components. In TrafficlightOO the components pedestrianTrafficlight and
carTrafficlight are clear subcontractors of controlTrafficlight by design,
since controlTrafficlight explicitly triggered their state machines. The model
profile in Figure 5.19 confirms that these relations are held at runtime. The component
controlTrafficlight has mutual relations with both its subcontractors, but the
subcontractors themselves have no such relations to each other.

Cark light

Pe-:estl'i@iéﬁ'::’l'i;ht
Figure 5.19: Model Profile for Experiment 19.

In the third group of experiments we observed the object oriented TrafficlightOO system
at runtime and registered its behavior including simulated failures in form of observation
models. We were able to verify runtime behavior of several dependent components and
locate particular failures in these components. Additionally, we explored component
interrelations from the organisational perspective. The experiments in the third group
showed us, that with the unifying framework we can scale the creation of observation

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

EvaLuATION: CASE STUDY

70

models to several components and discover their behaviour with PM separately, as we
did for the state machines, or as a whole system, as we did for the subcontracting social
network.

Group 4. Ezperiments with both systems from performance perspective (20 to 21).

In the fourth group of experiments we explored the performance perspective of the PM
(see Section 2.2.4). We used the observation model 1 without noise for the Trafficlight
system and the observation model 2 without noise for the TrafficlightOO system (see
Appendices, table 2). In the CSC design language the timing characteristics are explicitly
assigned to Transition, namely the waitingTime property (see Section , Figure 5.1).
In the behavioral design model, i.e., the state diagram, this property is set on a transition
as, e.g., wait2Sec (see Figure 5.3). Since we would like to make timing observations, we
applied the OL2TransitionFirings.atl transformation to the observation model
in order to isolate log entries of type TransitionFiring.

For performance analysis ProM offers a plug-in called Replay for Performance Analysis.
This plug-in replays a log on a Petri net that was discovered from this log. Therefore,
in order to create this second input we used the Inductive Miner plug-in to produce
Petri nets for both systems under study. In FExperiment 20 we used the event log and
the discovered Petri net for the original Trafficlight system. The resulting model profile
with a close-up is shown in Figure 5.20. In this figure every box symbolizes a transition.
As expected, all transitions and their ordering were recognised correctly by Inductive
Miner. Through replay the Performance Analysis plug-in enriches the model profile
with timing information. This information is available through a click on a transition
and includes minimum time, maximum time, average time, frequency, and a standard
deviation of all time observations. We summarized the timing values for all transitions
in Table 5.3. Coloring on the Petri net indicates the relative length of the waiting times,
yellow transitions are the shorter ones and red transitions are the longer ones. As we can
conclude from the results in Table 5.3, average transition times are exceeded at runtime
in comparison with designed values (20 to 140 milliseconds average delay per repeating
transition). Although for the Trafficlight system delays in the range of milliseconds are
not crucial, for time critical systems this information is urgently important. Knowing
the average delays engineers can adapt the waiting times directly in the design models to
compensate for the timing discrepancies.

o o =

Car has green to

Yellow to all red
Yellow from car
(5.02 seconds) @ » (2.02 seconds)

Figure 5.20: Model Profile for Experiment 20.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.3. Results

Design

Min.

Max.

Avg.

Std.

Transition time time time time Dev. Freq
initialize to safety state | 3.00 sec | 3.22 sec | 3.22 sec | 3.22 sec | - 1
safety state to car has 3.00 sec | 3.04 sec | 3.04 sec | 3.04 sec | - 1
green
car has green to yellow | 5.00 sec | 5.01 sec | 5.03 sec | 5.02 sec | 5.15 ms 10
yellow to all red from car | 2.00 sec | 2.01 sec | 2.03 sec | 2.02 sec | 3.90 ms 10
all red from car €0 pedes-|) o (o0 | 1,01 sec | 1.03 sec | 1.02 sec | 433 ms | 10
trian has green
pedestrian has green 0 | 5 oo (oo | 501 sec | 5.03 sec | 5.02 sec | 3.63ms | 10
green blink pedestrian
green blink pedestrian to

. . 1.00 sec | 1.12 sec | 1.15 sec | 1.13 sec | 7.79 ms 50
green blink pedestrian
green blink pedestrian £0 | 4 o (o | 113 sec | 117 sec | 1.14 sec | 13.19 ms | 10
all red from ped
all red from ped 0 car |) 05 o0 | 1,01 sec | 1.02 sec | 1.02 sec | 646 ms | 9
has green

Table 5.3: Performance evaluation for the Trafficlight system
. Design | Min. Max. Avg. Std.
Transition time time time time Dev. Freq
initialize to safety state | 3.00 sec | 3.42 sec | 3.42 sec | 3.42 sec | - 1
safety state to car has | 305 o0 | 3.02 sec | 3.02 sec | 3.02 sec | - 1
green
car has green to yellow | 5.00 sec | 5.03 sec | 5.04 sec | 5.03 sec | 3.48 ms 10
yellow to all red from car | 2.00 sec | 2.01 sec | 2.05 sec | 2.02 sec | 11.23 ms | 10
all red from car €0 pedes-| 1 0 o0 | 1,01 sec | 1.03 sec | 1.02 sec | 6.70 ms | 10
trian has green
pedestrian has green £0 | o o o | 501 see | 5.02 sec | 5.02 sec | 3.50 ms | 10
green blink pedestrian
green blink pedestrian €0 |y (o | 1 13 ec | 1.15 sec | 1.14 sec | 8.06 ms | 50
green blink pedestrian
green blink pedestrian to
1.00 sec | 1.13 sec | 1.15 sec | 1.13 sec | 5.64 ms 10

all red from ped
all red from ped €0 car |) 05 o | 1.01 sec | 1.02 sec | 1.02 sec | 3.08 ms | 9

has green

Table 5.4: Performance evaluation for the TrafficlightOO system

In the FEzperiment 21 we performed the same operations as in the previous experiment
and found the timing discrepancies for the ControlTrafficlight component of the

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvaLuATION: CASE STUDY

72

object oriented TrafficlightOO system. The resulting model profile looks identical to
the one produced for the original Trafficlight system (see Figure 5.20). We summarized
the timing values for all transitions of TrafficlightOO system in Table 5.3. In the model
profile for Trafficlight OO calculated average transition times slightly differ from those in
the previous experiment, although the difference lies in the range of milliseconds (20 to
140 milliseconds average delay per repeating transition) and can be neglected for such
systems.

The primary purpose of the experiments in this group was not to compare the two
systems under study, but rather prove that we can use the unifying framework for creating
observation models that can be reusable for multiple concerns, such as functionality
verification and performance evaluation. Based on the results of the experiments we
conclude, that observation models used for control-flow discovery in the groups of
experiments 1 and 3 can be also used in a performance perspective in order to analyze
actual execution times and potential discrepancies between prescriptive models and
performance at runtime.

5.4 Interpretation of Results

Answering research question 1.

In this thesis we realized the EbMP approach by definition of the unifying framework and
its implementation within an experimental frame. The framework creates a link between
design and execution phases of the software life cycle and smooths the clear distinction
between them. On the design side, i.e., the prescriptive perspective of the framework,
we used the MDE approach with its different levels. On the metamodeling level we
introduced the so-called observation language defining the syntax and semantics of the
execution-based data, i.e., observation models, that are to be created on the modeling
level. We used these observation models on the execution side, i.e., the descriptive
perspective of the framework, in order to produce model profiles of the initial design
models via conclusively proven PM algorithms. Although we created a link between MDE
and PM in our framework, they both stay combined in a loosely-coupled way, meaning
the way they are originally established is not changed. We provide interfaces from MDE
to PM to enable the transfer of the execution-based data in order to create model profiles.
These interfaces are implemented as ATL transformations from the language-specific
observation metamodels to the general XES format of existing PM tools.

To implement the framework we employed commercial tools, such as EA and its extension
Vanilla Source for modelling and generating the systems under study. We also employed
open source tools, such as EMF for implementing transformations to XES format and
ProM for creating model profiles out of observation models. Additionally, we implemented
LogClient and Microservice Observer to transfer and persist the execution-based data.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.4. Interpretation of Results

Answering research question 2.

In the implemented unifying framework for the EbMP the operational semantics can
be transferred from the design language to the observational viewpoint via observation
language. The observation language captures the operational semantics of the design
language in the prescriptive perspective and transfers it through an especially equipped
code generator and logging into the descriptive perspective. An important concept
enabling this transfer is the <observe> stereotype which is used to mark specific
design language elements related to operational semantics in order to register them at
runtime as logging statements and include them into observation models. Therefore,
observation models, created as a result of this flow, contain semantically structured
information about the system behavior at runtime.

In particular, we report on our results concerning two MDE-based traffic light systems
which are enhanced with execution-based model profiling capabilities. The first results
were shown as a basic prove of concept in the first group of experiments, where we
automatically persisted operational data as observation models. In the following, we were
able to use these observation models to automatically produce model profiles by applying
PM algorithms to them. These model profiles are semantically aligned to the initial design
models. Furthermore, the results were confirmed in the second and the third groups of
experiments. Thus, we conclude that the operational data can be automatically stored
as descriptive models derived from the operational semantics of the design language.

There are three points of human intervention at the current stage of the implementation
of the unifying framework. Firstly, the creation of the design models is performed
manually. After that the executable code is generated automatically, execution-based
data is automatically captured and stored. The second point of manual assistance is
starting the PM tool to create model profiles. The third human-powered activity is the
comparison of design models with discovered model profiles. Both latter activities can be
automated in the future development of the unifying framework. So the only manual
work left would be the design model creation.

Answering research question 3.

Since operational system changes are registered with reference to design models, the
discovered model profiles inherit a semantic relation to these models. In particular, we
are able to recognise state space and state ordering in these model profiles and to align
them with design models for runtime verification and detecting inconsistencies between
designed behavior and runtime behavior.

In the first group of experiments we observed the Trafficlight system performing as
designed, without interruptions or noise. We applied different PM algorithms to discover
model profiles and received satisfying results. Particularly, Alpha Miner with the o -
algorithm, Inductive Miner, and Heuristic Miner demonstrated especially satisfactory
results. Model profiles discovered by these algorithms show correct control-flow in terms
of state space and state ordering. Moreover, we applied transformations to isolate different
aspects of the operational semantics of the CSC language, such as state changes and

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvaLuATION: CASE STUDY

74

attribute value changes. Therefore, we were able to observe them separately and verify
these aspects against the design models.

In the second group of experiments we introduced a failure simulator for the Trafficlight
system in order to evaluate how different algorithms deal with irregular behavior and
noisy event logs. Heuristic Miner provided the most valuable insights into the runtime
behaviour of the Trafficlight system. The model profiles discovered by Heuristic Miner
demonstrate high fitness and precision while keeping high simplicity. They provide
visualization and formalism for their straightforward comparison with state diagrams
used in the MDE-context, and, therefore, system’s runtime verification. Thresholds used
in the Heuristic Miner are advantageous to balance the trade-off between an “overfitting”
model profile and an “underfitting” one. Thus, observers can decide based on their
observation goal, whether a model profile should show an exact behavior or focus on
more frequent patterns.

Finally, in the third group of experiments we observed runtime behavior of the object
oriented TrafficlightOO system. Model profiles discovered for separate components of
the system show their runtime behaviour as designed. Additionally, simulated failures
were discovered not only in model profile showing the general behavior of the system, but
also precisely in a particular model profile of a component. The experiments in the third
group showed that with the unifying framework we can scale the creation of observation
models to several components and discover and verify their behaviour separately.

Overall, the model profiles produced by the implemented unifying framework provided
valuable insights into the runtime behavior of the systems under study and their compo-
nents, including irregular noisy behavior. Therefore, we conclude that resulting model
profiles for this case study are sufficient enough to verify a system’s behavior at runtime.

Answering research question 4.

In the conducted experiments we explored three different perspective of PM, namely
control-flow, organisational and performance perspective. These perspectives cover
multiple concerns that arise when we verify a system’s runtime behavior. The control-flow
perspective reflects the backbone of the runtime behavior, i.e., the functional properties
of a system. In the first and the second groups of experiments we were able to successfully
verify the system’s state changes and attribute values changes at runtime against the
design models. In the third group of experiments we explored component interrelations
of the object oriented system through the organisational perspective and were able to
confirm the subcontracting pattern. This could be especially beneficial for a system with
many components, where their mutual communication patterns are critical.

In the fourth group of experiments we analyzed time inconsistencies between the real
life performance and the design models through the performance perspective. These
inconsistencies lie within the range of milliseconds (20 to 140 milliseconds average delay
per repeating transition) and are not significant for systems such as the Trafficlight
system. Nevertheless, for time critical and safety critical systems this information is
crucial. Knowing the average delays, engineers can adapt the waiting times directly in

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.5. Threats to Validity and Limitations

the design models to compensate for the timing discrepancies and mitigate potential
consequences of delays. However, it is important to observe a system for a sufficiently
long period of time to have enough runtime information for reliable statistical values.

It is important to mention that for all three perspectives we used the same observation
models produced within the implemented unifying framework. We didn’t need any
major prepossessing steps, the transformation and filtering of the models were conducted
automatically according to the settings in the Microservice. The observation models
contain all necessary operational data for creating model profiles in three different
perspectives. Therefore, we conclude that the unifying framework allows us to maintain
model profiles for multiple concerns, such as functionality, performance, and component
interrelations.

5.5 Threats to Validity and Limitations

To critically reflect on our results, we discuss several threats to validity of our study. In
the current implementation of the unifying framework we do not consider the logging
instrumentation overhead which may increase the execution time of the instrumented
application. This may be a crucial point for time critical systems and has to be validated
further in the future. Furthermore, in the current implementation we assume to have an
execution platform with network access to send the registered logs to the Microservice.
This requirement may be critical in restricted environments, and measurements of network
traffic have to be done. Another assumption is that the code generator undergoes large-
scale testing and delivers reliable results, so that the potential runtime errors do not
stem from it. Nevertheless, such errors can not be completely excluded in practice. In
fact, the unifying framework can also be beneficial for code generator validation.

Regarding the systems under study, we would like to mention, that both of them do
not deal with concurrency, since they are running single threaded. Extensions for
supporting concurrency may result in transforming the strict sequences in partially
ordered ones. The next limitation of our case study is the manual comparison of design
models and model profiles based on human judgment. In this case the size of the systems
under study is comprehensible enough to allow for such a comparison. For bigger and
more complex systems we recommend to implement automatic comparison, e.g., via
model transformation. Results of this automatic comparison can further be used in the
back propagation of the new information to the design models and their adaptation.
Nevertheless, it is important to mention, that such automatic comparison as well as
automatic adaptation demand versatile and extensive testing with big data sets. Finally,
we have to emphasize that we currently only investigated one modeling language and
two similar systems modeled in this language. Therefore, more experiments are needed
to verify if the results can be reproduced for a variety of modeling languages and more
complex systems.

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Related Work

We consider model profiling as a very promising field in MDE and as the natural
continuation and unification of different already existing or emerging techniques, e.g.,
data profiling [AGN15], Process Mining (PM) [vdA16], complex event processing [Luc01],
specification mining [DKM110], Finite-state Automata (FSA) learning [GMC*92], as
well as knowledge discovery and data mining [FPSS96]. All these techniques aim at better
understanding of concrete data and events used in or by a system and by focusing on
particular aspects of it. For instance, data profiling and mining consider the information
stored in databases, while process mining, FSA learning and specification mining focus
on chronologically ordered events. Not to forget M@QRT, where runtime information is
propagated back to software engineering. In comparison to M@QRT, which also refers
to runtime adaptation mechanisms and provides infrastructure to instantiate models,
our approach additionally focusing on the history of changes, since it captures model
profiles over different periods of time saving historical data. Observing model profiles
helps to grasp the changes happening in a running system and takes the evolutionary
aspect of engineering into concern. Furthermore, there are several approaches for runtime
monitoring. Blair et al. [BBF09] show the importance of supporting runtime adaptations
to extend the use of MDE. The authors propose models that provide abstractions
of systems during runtime. Hartmann et al. [HMF*15] go one step further. The
authors combine the ideas of runtime models with reactive programming and peer-to-peer
distribution. They define runtime models as a stream of model chunks, like it is common
in reactive programming.

Currently, there is emerging research work focusing on runtime phenomena, runtime
monitoring as well as discussing the differences between descriptive and prescriptive
models. For instance, Das et al. [DGJT16] combine the use of MDE, run-time monitoring,
and animation for the development and analysis of components in real-time embedded
systems. The authors envision a unified infrastructure to address specific challenges of
real-time embedded systems’ design and development. Thereby, they focus on integrated

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.

RELATED WORK

78

debugging, monitoring, verification, and continuous development activities. Their ap-
proach is highly customizable through a context configuration model for supporting these
different tasks. Szvetits and Zdun [SZ16] discuss the question if information provided by
models can also improve the analysis capabilities of human users. Earlier these authors
presented a collection of runtime event types that supports the assessment of current
system states [SZ15]. Heldal et al. [HPE'16] report lessons learned from collaborations
with three large companies. The authors conclude that it is important to distinguish
between descriptive models (used for documentation) and prescriptive models (used for
development) to better understand the adoption of modeling in the industry. Kuhne
[K16] highlights the differences between explanatory and constructive modeling, which
give rise to two almost disjoint modeling universes, each one based on different, mutually
incompatible assumptions, concepts, techniques, and tools.

Among the most recent research on the matter of runtime monitoring and verification we
can mention Zdun et al. [SZ17], who present a language to specify recurring monitoring
patterns. These patterns can be automatically expanded into monitoring code for given
models of the analyzed system. In their further work the authors [SZ18| designed a
taxonomy that captures essential architectural decisions when implementing a system and
supports the analysis of its runtime behaviour using models. Bencomo and Garcia Paucar
in [BG19a] tackle a challenge of updating runtime models during system execution. They
present an approach that allows to update runtime models collected by the monitoring
infrastructure using Bayesian inference. Furthermore, they demonstrate how to propagate
the changes from a runtime model back to the monitored system, i.e., to produce the
corresponding self-adaptations. To continue the topic of updating runtime models, Brand
and Giese [BG19b] introduce the fundamental idea of a generic modeling language for
adaptable architectural runtime model instances.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Summary and Future Work

In this thesis, we pointed out the gap between design time and runtime in current MDE
approaches. We stressed that there are already well-established techniques considering
runtime aspects in the area of PM and that it is beneficial to create a link between these
two approaches. Therefore, we presented EbMP, whose core idea is to equip MDE-based
systems in such a way, so that their operational data can be stored in a structured form
and transformed into abstracted model representations.

In order to realize the EbMP approach we defined a generic unifying framework for
EbMP that allows to align downstream information from the MDE-based systems with
upstream information gathered at runtime. On the design side, i.e., the prescriptive
perspective of the framework, we used the MDE approach with its different modeling
levels. On the execution side, i.e., the descriptive perspective of the framework, we
introduced observation models in order to produce model profiles via conclusively proved
PM algorithms. To keep both approaches combined in a loosely-coupled way we provide
interfaces, i.e., ATL transformations, from the language-specific observation metamodels
to the general XES format of existing PM tools. The EbMP approach allows to avoid
time-consuming preprocessing of massive data sets in order to extract valuable runtime
information. An observation model can be investigated and explored using different tools,
such as simulation tools, monitoring and visualization or animation tools, etc. It may
be subject to various transformations, it may have textual and visual representations.
With model profiles an engineer can gain insights into runtime behavior by monitoring
design models during the system’s execution, and detect actual or predicted violations of
functional or non-functional properties.

We implemented the unifying framework within an experimental frame and conducted a
case study with two MDE-based systems for traffic lights. In this case study we proved
that operational data can be automatically stored as observation models derived from
the operational semantics of the design language. Moreover, the unifying framework
allows to store and analyze operational data separately for different aspects of operational

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

7. SUMMARY AND FUTURE WORK

80

semantics, such as state changes or attribute value changes. Furthermore, we were
able to verify a system’s runtime behavior based on model profiles discovered by PM
algorithms from observation models. Heuristic Miner provided the most valuable insights
into the runtime behaviour of the systems under study and their components, including
irregular noisy behavior. The model profiles discovered by Heuristic Miner demonstrate
high fitness and precision while keeping high simplicity. Finally, we proved that the
unifying framework allows us to maintain model profiles for multiple concerns, such
as functionality, performance, and components interrelations. The observation models
contain all necessary operational data for creating model profiles in different perspectives
of PM.

While the first results seem promising, there are still several open challenges. The most
important next step would be to automate the comparison of design models and discovered
model profiles, e.g., via definition of their metamodels and further transformation. Results
of this automatic comparison can further be used in the back propagation of the new
information to the design models and their adaptation. Nevertheless, it is important
to mention, that such automatic comparison as well as automatic adaptation demand
versatile and extensive testing with big data sets. Thereafter, the whole workflow starting
from design models till the PM visualization can be automated. The open source PM
tool ProM that we used allows complete integration and can be automatically started for
continuous analysis with visualization. So the only manual work left would be the design
model creation.

Currently we only investigated one modeling language and two similar systems modeled
in this language. Therefore, more experiments are needed to verify if the results can be
reproduced for a variety of modeling languages and more complex distributed systems.
The same applies to the exploration of different PM perspectives. In the organisational
perspective it would be beneficial to observe more complex systems with multiple com-
ponents and more sophisticated interrelations. In the performance perspective it would
be important to observe a system for a sufficiently long period of time to have enough
runtime information for reliable statistical values.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

List of Figures

Overview of the MDE methodology (top-down process)[BCW12].
A typical MDE-based software development process [BCW12].
Relationships between metamodel and model [BCW12].
Definition of a transformation between models [BCW12].
Process mining as the bridge between data science and process science [vdA16].
The three basic types of process mining in terms of input and output [VDA12].
Process mining. An example. Based on [vdA16].

Typical process patterns and the footprints they leave in the event log [vdA16].

Two basic steps of the a-algorithm
Petri Nets with short loops of length one and two.
An example of a casual net [vdA16].
An example of a dependency graph [vdA16]..
An example of a process tree [vdA16]. L.
Replay of event logs on a discovered process model [vdA16].
Example model enhanced with the performance perspective [RMSvdA09]

A Terminological Framework for MQRT [BFT*14]..
A Conceptual Reference Model for MQRT with a close-up of MO level. Based
on [BETTI4]. o

Prescriptive models vs. descriptive models.
Framework for execution-based model profiling.

Component diagram of the technical realization of the EBMP-framework.
Raspberry Pi Components [Rasb] 0 0.
Microservice Observer. Lo
Mapping JSON to POJO and POJO to XMI. Example from the case study.
Transformation "Observation Language To XES".
Source metamodel Observation Language. Ecore class diagram.
Target metamodel XES. Ecore class diagram.
Transformations with helpers.
ProM 6 user interface [vdA16]. oL
Discovered Petri net [vdA16]. o
Visual inductive miner [vdA16]. L o

25

30
32

36
39
39
40
41
42
43
46
47
48
48

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.1
5.2
5.3
5.4
9.5
5.6
2.7
5.8
5.9
5.10
5.11
5.12
5.13
0.14
5.15
5.16
5.17
5.18
5.19
5.20

82

Design language and observation language.

TrafficLight Class Diagram. . .
TrafficLight. State Diagram. .

Object oriented TrafficLight. Class Diagram.
Object oriented TrafficLight. State Diagram. Control.
Object oriented TrafficLight. State Diagrams.
Model Profiles for Experiments 1, 2, 3, and 4.

Model Profile for Experiment 5.

Model Profile for Experiment 6.
Model Profile for Experiment 7. Lo

Model Profile for Experiment 8

Model Profiles for Experiments 9 and 10.

Model Profile for Experiment 11
Model Profile for Experiment 12
Model Profile for Experiment 14

Model Profiles for Experiments 15 and 16.

Model Profile for Experiment 17
Model Profile for Experiment 18
Model Profile for Experiment 19
Model Profile for Experiment 20

o1
52
93
54
95
56
58
60
61
61
63
65
66
66
67
68
68
69
69
70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

83

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Acronyms

ATL ATLAS Transformation Language. 38, 39, 41-43

BPEL Business Process Execution Language. 15
BPM Business Process Management. 3

BPMN Business Process Model and Notation. 15, 35, 44, 45

CPS Cyber-Physical System. 1, 25, 26

CSC Class/State Charts. 48, 50, 55, 59, 68, 71
DSL Domain-Specific language. 10, 15, 29

EA Enterprise Architect. 4, 34, 35, 50, 51, 70
EbMP Execution-based Model Profiling. 27-29, 33, 47, 70, 71, 77
EMF Eclipse Modeling Framework. 33, 38-40, 70

EPC Event-driven Process Chain. 15
FSA Finite-state Automata. 75

GPIO general-purpose input/output. 36, 50, 51, 53

GPL General-Purpose language. 10, 15
IM Inductive Miner. 21, 22
JSON JavaScript Object Notation. 33-38

M2M model-to-model. 8, 11, 31, 39

M2T model-to-text. 8, 11, 12, 30

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

M@RT models@run.time. 5, 23-26, 31, 75
MARTE Modeling and Analysis of Real Time and Embedded systems. 10

MDE Model-Driven Engineering. 1-5, 7-11, 24-29, 35, 47, 55, 59, 65, 66, 70-72, 75, 77
OCL Object Constraint Language. 43

PAIS Process-Aware Information System. 12, 13, 28, 47, 48, 50

PM Process Mining. 3-5, 12-16, 19, 22, 28, 31, 34, 38, 43-45, 55, 57, 59, 64, 66-68,
70-72, 75, 77, 78

POJO Plain Old Java Object. 38
REST Representational state transfer. 37
UML Unified Modeling Language. 10, 14, 29, 30, 33, 35, 38, 44, 48

XES eXtensible Event Stream. 31, 34, 38-42, 44-46, 70, 77
XMI XML Metadata Interchange. 34, 38

XML Extensible Markup Language. 40

YAWL Yet Another Workflow Language. 15

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[AGTT14]

[AGN15]

[Baul7]

[BBF09]

[BOW12]

[BFT+14]

[BG19a]

[BG19D)]

[BGS™14]

Bibliography

Uwe Afimann, Sebastian Go6tz, Jean-Marc Jézéquel, Brice Morin, and
Mario Trapp. A Reference Architecture and Roadmap for Models@run.time
Systems, pages 1-18. Springer International Publishing, Cham, 2014.

Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. Profiling relational
data: A survey. The VLDB Journal, 24(4):557-581, August 2015.

Bauernhansl. Industrie 4.0 - Whitepaper FuE-Themen, 2015 (accessed
June 3, 2017)".

Gordon Blair, Nelly Bencomo, and Robert B. France. Models@ run.time.
Computer, 42(10):22-27, October 2009.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven
Software Engineering in Practice. Morgan & Claypool, 2012.

Amel Bennaceur, Robert France, Giordano Tamburrelli, Thomas Vogel,
Pieter J. Mosterman, Walter Cazzola, Fabio M. Costa, Alfonso Pierantonio,
Matthias Tichy, Mehmet Aksit, Pir Emmanuelson, Huang Gang, Nikolaos
Georgantas, and David Redlich. Mechanisms for Leveraging Models at
Runtime in Self-adaptive Software, pages 19-46. Springer International
Publishing, Cham, 2014.

N. Bencomo and L. H. Garcia Paucar. Ram: Causally-connected and
requirements-aware runtime models using bayesian learning. In 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems (MODELS), pages 216-226, Sep. 2019.

T. Brand and H. Giese. Modeling approach and evaluation criteria for
adaptable architectural runtime model instances. In 2019 ACM/IEEE
22nd International Conference on Model Driven Engineering Languages
and Systems (MODELS), pages 227-232, Sep. 2019.

Amine Benelallam, Abel Gémez, Gerson Sunyé, Massimo Tisi, and David
Launay. Neo4emf, a scalable persistence layer for emf models. 8569, 04
2014.

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[CHO6]

[CPS]

[DEY5]

[Den13]

[DGJ*16]

[DKM10]

[ALGC15]

[dMvdAW03)

[DvdAtHO5a]

[DvdAtHO5b)

[EAD]

88

K. Czarnecki and S. Helsen. Feature-based survey of model transformation
approaches. IBM Syst. J., 45(3):621-645, July 2006.

Cyber-physical systems (CPS), howpublished = https://www.nsf.
gov/publications/pub_summ. jsp?ods_key=nsfl13502&org=
nsf, note = Accessed: 2019-02-17.

Jorg Desel and Javier Esparza. Free Choice Petri Nets. Cambridge
University Press, New York, NY, USA, 1995.

Nicolas Denz. Process-oriented analysis and validation of multi-agent-based
simulations. PhD thesis, Uni Hamburg, 2013.

Nondini Das, Suchita Ganesan, Leo Jweda, Mojtaba Bagherzadeh, Nicolas
Hili, and Juergen Dingel. Supporting the model-driven development of
real-time embedded systems with run-time monitoring and animation via
highly customizable code generation. In Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages
and Systems, MODELS ’16, pages 36-43, New York, NY, USA, 2016.
ACM.

Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack,
and Andreas Zeller. Generating test cases for specification mining. In

Proceedings of the 19th International Symposium on Software Testing and
Analysis, ISSTA 10, pages 85-96, New York, NY, USA, 2010. ACM.

Juan de Lara, Esther Guerra, and Jests Sanchez Cuadrado. Model-driven
engineering with domain-specific metamodelling languages, volume 14.
SoSyM, 2015.

A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters. Work-
flow mining: Current status and future directions. In On The Mowe to
Meaningful Internet Systems 2003: CooplS, DOA, and ODBASE, volume
2888 of Lecture Notes in Computer Science, pages 389—406. Springer-Verlag,
2003.

Marlon Dumas, Wil M. van der Aalst, and Arthur H. ter Hofstede. Process-
aware Information Systems: Bridging People and Software Through Process
Technology. John Wiley & Sons, Inc., New York, NY, USA, 2005.

Marlon Dumas, Wil M. van der Aalst, and Arthur H. ter Hofstede. Process-
aware Information Systems: Bridging People and Software Through Process
Technology. John Wiley & Sons, Inc., New York, NY, USA, 2005.

Enterprise architect. product details. http://www.sparxsystems.
com/products/ea/index.html. Accessed: 2018-05-04.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

[EMF]

[FPSSY6]

[GMC+92]

[HMF+15]

[HPE*16]

[HSMO1]

[Ins]

[JABKOS]

[JJLFA13]

[JJLFA14]

[K06]

Eclipse modeling framework (emf), howpublished = https://www.
eclipse.org/modeling/emf/, note = Accessed: 2018-05-15.

Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. Ad-
vances in knowledge discovery and data mining. chapter From Data Mining

to Knowledge Discovery: An Overview, pages 1-34. American Association
for Artificial Intelligence, Menlo Park, CA, USA, 1996.

C. Lee Giles, Clifford B. Miller, Dong Chen, Hsing-Hen Chen, Guo-Zheng
Sun, and Yee-Chun Lee. Learning and extracting finite state automata with
second-order recurrent neural networks. Neural Computation, 4(3):393-405,
1992.

T. Hartmann, A. Moawad, F. Fouquet, G. Nain, J. Klein, and Y. Le Traon.
Stream my models: Reactive peer-to-peer distributed models@run.time.
In Proceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, pages 80-89, Sept 2015.

Rogardt Heldal, Patrizio Pelliccione, Ulf Eliasson, Jonn Lantz, Jesper
Derehag, and Jon Whittle. Descriptive vs prescriptive models in industry.
In Proceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, MODELS ’16, pages 216-226,
New York, NY, USA, 2016. ACM.

David J. Hand, Padhraic Smyth, and Heikki Mannila. Principles of Data
Mining. MIT Press, Cambridge, MA, USA, 2001.

Introduction to instrumentation and tracing, howpublished =
https://msdn.microsoft.com/en-us/library/x5952wlc (v=
vs.85) .aspx, note = Accessed: 2018-05-22.

Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl: A
model transformation tool. Science of Computer Programming, 72(1):31

-39, 2008. Special Issue on Second issue of experimental software and
toolkits (EST).

Sander J. J. Leemans, Dirk Fahland, and Wil M. P. Aalst. Discovering
block-structured process models from event logs - a constructive approach.
pages 311-329, 01 2013.

Sander J. J. Leemans, Dirk Fahland, and Wil M. P. Aalst. Discovering
block-structured process models from event logs containing infrequent
behaviour. volume 171, pages 6678, 05 2014.

Thomas Kiihne. Matters of (meta-) modeling. Software and Systems
Modeling (SoSyM), 5(4):369-385, December 2006.

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[K16)

[K1e09]

[KMRO0]

[Kral5|

[Lam78]

[LB17]

[LBK14]

[LFvdAl4a)

[LEvdA14b)]

[LSVH14]

[Luc01]

[Lud02]

90

Thomas Kiihne. Unifying explanatory and constructive modeling: To-
wards removing the gulf between ontologies and conceptual models. In
Proceedings of the ACM/IEEFE 19th International Conference on Model
Driven Engineering Languages and Systems, MODELS ’16, pages 95-102,
New York, NY, USA, 2016. ACM.

Anneke Kleppe. Software Language Engineering: Creating Domain-specific
Languages Using Metamodels. Addison-Wesley, Upper Saddle River, NJ,
2009.

Dean Karnopp, Donald MARGOLIS, and Ronald Rosenberg. System
dynamics: “modeling and simulation of mechatronic” systems. 01 2000.

L. Krause. Microservices: Patterns and Applications: Designing Fine-
Grained Services by Applying Patterns. Lucas Krause, 2015.

Leslie Lamport. Time, clocks and the ordering of events in a distributed
system. pages 558-565, July 1978.

Jens Lienig and Hans Bruemmer. Fundamentals of Electronic Systems
Design. Springer Publishing Company, Incorporated, 1st edition, 2017.

Jay Lee, Behrad Bagheri, and Hung-An Kao. A cyber-physical systems
architecture for industry 4.0-based manufacturing systems. SME Manu-
facturing Letters, 3, 12 2014.

S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Discovering
block-structured process models from incomplete event logs. In Business
Process Management Workshops: BPM 2013 International Workshops,
Revised Papers [Lecture Notes in Business Information Processing, Volume
171], Lecture Notes in Computer Science, pages 91-110. Springer, 2014.

Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Process
and deviation exploration with inductive visual miner. In BPM, 2014.

Christoph Legat, Daniel Schiitz, and Birgit Vogel-Heuser. Automatic
generation of field control strategies for supporting (re-)engineering of
manufacturing systems. Journal of Intelligent Manufacturing, 25(5):1101—
1111, Oct 2014.

David C. Luckham. The Power of Fvents: An Introduction to Com-
plex Fvent Processing in Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

Jochen Ludewig. Modelle im software engineering - eine einfithrung und kri-
tik. In Martin Glinz and Gunther Miiller-Luschnat, editors, Modellierung,
volume 12 of LNI, pages 7-22. GI, 2002.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[Mao09]

[Mic]

[MW16]

[MWPB18]

[Occ]

[OCL]

[Pro]

[Rasa]

[Rasb]

[Rasc]

[Rasd]

[Rase]

Shahar Maoz. Using model-based traces as runtime models. Computer,
42(10):28-36, October 2009.

Improve time to market with microservices, howpublished = https://
www.1ibm.com/cloud/garage/architectures/microservices,
note = Accessed: 2018-05-15.

Alexandra Mazak and Manuel Wimmer. Towards liquid models: An evo-
lutionary modeling approach. In Proceedings of the 18th IEEE Conference
on Business Informatics (CBI 2016), pages 1-9, 2016. IEEE Conference on
Business Informatics (CBI 2016), Paris, France; 2016-08-29 — 2016-09-01.

Alexandra Mazak, Manuel Wimmer, and Polina Patsuk-Bésch. Execution-
Based Model Profiling, pages 37-52. 01 2018.

William of ockham, howpublished = https://plato.stanford.edu/
entries/ockham/#4.1, note = Accessed: 2019-11-17.

About the object constraint language specification version 2.4, howpub-
lished = https://www.omg.org/spec/ocl/about—-ocl/, note =
Accessed: 2018-05-22.

Prom tools, howpublished = http://www.promtools.org/doku.
php, note = Accessed: 2018-05-09.

A 15 pound computer to inspire young programmers. http:
//www.bbc.co.uk/blogs/thereporters/rorycellanjones/
2011/05/a_15_computer_to_inspire_young.html. Accessed:
2018-05-06.

Meet the raspberry pi. https://projects.raspberrypi.org/en/
projects/raspberry-pi-getting-started/3. Accessed: 2018-
05-06.

Raspberry pi 2 model b, howpublished = https://www.raspberrypi.

org/products/raspberry-pi-2-model-b/, note = Accessed:
2018-05-08.
Raspberry pi gpio. https://www.raspberrypi.org/

documentation/usage/gpio/. Accessed: 2018-05-08.

Raspberry pi sold over 12.5 million boards in five
years, howpublished = https://www.theverge.
com/circuitbreaker/2017/3/17/14962170/

raspberry-pi-sales—-12-5-million-five-years—-beats—commodore—-64,

note = Accessed: 2018-05-08.

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

[RHO9]

[RMSvdA09]

[RR9S]

[SCS]

[SZ15]

[SZ16]

[SZ17]

[SZ18]

[VDA12]

[vdA16]

[vdARSO5]

[vdASS11]

92

Per Runeson and Martin Host. Guidelines for conducting and reporting
case study research in software engineering. FEmpirical Softw. Engg.,
14(2):131-164, April 20009.

A. Rozinat, R. S. Mans, M. Song, and W. M. P. van der Aalst. Discovering
simulation models. Inf. Syst., 34(3):305-327, May 2009.

Wolfgang Reisig and Grzegorz Rozenberg, editors. Lectures on Petri Nets
I: Basic Models, Advances in Petri Nets, the Volumes Are Based on the
Advanced Course on Petri Nets, London, UK, UK, 1998. Springer-Verlag.

Critical systems, howpublished = http://iansommerville.com/
software-engineering-book/web/critical-systems/, note =
Accessed: 2019-02-17.

M. Szvetits and U. Zdun. Reusable event types for models at runtime
to support the examination of runtime phenomena. In 2015 ACM/IEEE
18th International Conference on Model Driven Engineering Languages
and Systems (MODELS), pages 4-13, Sep. 2015.

Michael Szvetits and Uwe Zdun. Controlled experiment on the compre-
hension of runtime phenomena using models created at design time. In
Proceedings of the ACM/IEEFE 19th International Conference on Model
Driven Engineering Languages and Systems, MODELS ’16, pages 151-161,
New York, NY, USA, 2016. ACM.

M. Szvetits and U. Zdun. Automatic generation of monitoring code for
model based analysis of runtime behaviour. In 2017 24th Asia-Pacific
Software Engineering Conference (APSEC), pages 660—665, Dec 2017.

M. Szvetits and U. Zdun. Architectural design decisions for systems
supporting model-based analysis of runtime events: A qualitative multi-
method study. In 2018 IEEFE International Conference on Software Archi-
tecture (ICSA), pages 115-11509, April 2018.

Wil Van Der Aalst. Process mining. Commun. ACM, 55(8):76-83, August
2012.

Wil M. P. van der Aalst. Process Mining: Data Science in Action. Springer,
Heidelberg, 2 edition, 2016.

Wil M. P. van der Aalst, Hajo A. Reijers, and Minseok Song. Discovering
social networks from event logs. Computer Supported Cooperative Work
(CSCW), 14(6):549-593, Dec 2005.

W. M. P. van der Aalst, M. H. Schonenberg, and M. Song. Time prediction
based on process mining. Inf. Syst., 36(2):450-475, April 2011.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[VAAWMOA4]

[VHLL15]

[Vyal3]

[WAO3]

[WAMOG6]

[WR11]

[WvdAWS07]

[XES16]

Wil van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining:
Discovering process models from event logs. IEEE Trans. on Knowl. and
Data Eng., 16(9):1128-1142, September 2004.

Birgit Vogel-Heuser, Jay Lee, and Paulo Leitao. Agents enabling cyber-
physical production systems. Automatisierungstechnik, 63:777-789, 2015.

Valeriy Vyatkin. Software engineering in industrial automation: State-of-
the-art review. Industrial Informatics, IEEE Transactions on, 9:1234-1249,
08 2013.

A.J.M.M. Weijters and W.M.P. Aalst, van der. Rediscovering workflow
models from event-based data using little thumb. Integrated Computer-
Aided Engineering, 10(2):151-162, 2003.

A. Weijters, Wil M. P. Aalst, and Alves Medeiros. Process Mining with
the Heuristics Miner-algorithm, volume 166. 01 2006.

A. J. M. M. Weijters and J. T. S. Ribeiro. Flexible heuristics miner (FHM).
In CIDM, pages 310-317. IEEE, 2011.

L. Wen, Wil M. P. van der Aalst, J. Wang, and J. Sun. Mining Process
Models with Non-Free-Choice Constructs. Data mining and knowledge
discovery, 15(2):145-180, 2007.

Ieee standard for extensible event stream (XES) for achieving interoper-
ability in event logs and event streams. IEEFE Std 1849-2016, pages 1-50,
Nov 2016.

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Appendices

Ne | System under | Observed as-| Algorithm Special condi-
study pect (Plug-in) tions
Group 1
1 TrafficLight State changes Alpha Miner -
2 TrafficLight State changes Alpha++ Miner | -
3 TrafficLight State changes Heuristic Miner | -
4 | TrafficLight State changes Inductive Miner | -
) TrafficLight State changes Visual Induc- | -
tive Miner
6 TrafficLight Attribute value | Alpha++ Miner | -
changes
7 | TrafficLight Attribute value | Heuristic Miner | -
changes
Group 2
8 TrafficLight State changes Alpha++ Miner | With noise
9 TrafficLight State changes Visual Induc- | With noise,
tive Miner noise threshold
0.8
10 | TrafficLight State changes Visual Induc- | With noise,
tive Miner noise threshold
1.0
11 | TrafficLight State changes Heuristic Miner | With noise,
dependency
threshold 90,
relative to best
threshold 5
12 | TrafficLight State changes Heuristic Miner | With noise,
dependency
threshold 0,
relative to best
threshold 100

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

96

Gro

up 3

13 | TrafficLightOO | State changes, | Heuristic Miner | -
Control
14 | TrafficLightOO | State changes, | Heuristic Miner | With noise
Control
15 | TrafficLightOO | State changes, | Heuristic Miner | -
Car
16 | TrafficLightOO | State changes, | Heuristic Miner | -
Pedestrian
17 | TrafficLightOO | State changes, | Heuristic Miner | With noise
Car
18 | TrafficLightOO | State changes, | Heuristic Miner | With noise
Pedestrian
19 | TrafficLightOO | State changes Social network | -
Miner
Group 4
20 | TrafficLight Transition firing | Inductive Timing observa-
Miner, Perfor- | tions
mance Analysis
21 | TrafficLightOO | Transition firing, | Inductive Timing observa-
Control Miner, Perfor- | tions
mance Analysis
Table 1: List of experiments
Ne | System under | Number of | Number of | Experiments
study cases failures
1 TrafficLight 10 0 1,2,3,4,5,6, 7,20
2 | TrafficLight 21 5 8,9,19, 11, 12
3 | TrafficLightOO | 10 0 13, 15, 16, 19, 21
4 TrafficLight OO | 29 4 14, 17, 18

Table 2: List of observation models

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Overview
	Introduction and Motivation
	Problem Definition and Relevance
	Aim of the Work
	Methodology
	Structure of the Thesis

	State Of The Art
	Model-Driven Engineering
	Process Mining
	Models@run.time

	Execution-based Model Profiling
	Overview
	Approach
	Unifying Framework

	Technical Realization
	Overview
	Modeling Tool and Code Generator
	Logging Instrumentation
	Execution Platform
	MicroService
	Transformations
	Process Mining Tool

	Evaluation: Case Study
	Overview
	Design
	Results
	Interpretation of Results
	Threats to Validity and Limitations

	Related Work
	Summary and Future Work
	List of Figures
	Acronyms
	Bibliography
	Appendices
	Kurzfassung
	Abstract
	Contents
	Introduction
	Additional Chapter
	Introduction to LaTeX
	Installation
	Editors
	Compilation
	Basic Functionality
	Bibliography
	Table of Contents
	Acronyms / Glossary / Index
	Tips
	Resources

	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Acronyms
	Bibliography
	Kurzfassung
	Abstract
	Contents
	Introduction
	Additional Chapter
	Introduction to LaTeX
	Installation
	Editors
	Compilation
	Basic Functionality
	Bibliography
	Table of Contents
	Acronyms / Glossary / Index
	Tips
	Resources

	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Acronyms
	Bibliography
	Kurzfassung
	Abstract
	Contents
	Introduction
	Additional Chapter
	Introduction to LaTeX
	Installation
	Editors
	Compilation
	Basic Functionality
	Bibliography
	Table of Contents
	Acronyms / Glossary / Index
	Tips
	Resources

	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Acronyms
	Bibliography

