

MASTER THESIS

An Application of Heuristic Route
Search Techniques for a Scalable

Flight Search System

written at

Institute for Information Systems
Vienna University of Technology

under supervision of

Univ.Prof. Mag.rer.nat. Dr.techn. Reinhard Pichler

by

Yansen Darmaputra
Database and Artificial Intelligence (DBAI) Group

Institute for Information Systems
Faculty of Informatics

Favoritenstrasse 9‐11, 1040 Wien

 20.06.2008

 Date Yansen Darmaputra

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

Most of the flight search engines that are currently available in the Internet can be

considered as meta-search engine. They forward the route query to other websites such

as online travel agents, major airlines, and low-cost carriers. The result from each source

is collected and aggregated before presented to user. There are several weaknesses for

this approach.

First, not all available routes can be found. Take low-cost airlines (which emphasize

on direct flights) as example. If the airline doesn’t have a direct flight from X to Y,

then trying to search for route from X to Y, would give no result, although it has route

from X to Z and Z to Y. Second, they can not mix flights between airlines in different

alliances. An airline would never promote flights from other airline, except if the other

airline is in the same alliance or if there exists some codeshare agreements.

In this thesis we propose a mashup solution for this problem. A mashup application

does not own the data. It uses data from other resources (called content provider) to

create a new application with new feature and functionality that is not offered by any of

the content provider. The web data extraction technology from Lixto Visual Developer

is used to wrap data.

The flight search problem is treated as graph search problem with airports as the nodes

and the pair of airports where exists direct flight between them as the edges. We con-

sider the scalability of the current flight search engines by introducing hub identification

heuristic. Instead of analyzing and evaluating all possible routes to reach the destina-

tion, this heuristic gives hint on which hub airports that are possibly containing the best

routes (in terms of shortest flight duration). Hence, the system can limit the search by

only considering a fraction from all possible routes. Performing the search this way also

ensures system scalability and increases the system’s responsiveness by shortening the

query procesing time.

The term interesting route is defined as a list of routes which match with the user’s

preference. An interesting route for one may not be interesting for the other. Therefore,

three sorting criteria are used for evaluating and ranking the search results. The search

is also very customizable, for example user can choose airline preferences (e.g. only

searching from low-cost airlines), transit time preference (e.g. transits between 1-3

hours), which airports/routes to be chosen for transits/stops (e.g. avoid non-Schengen

airports), and searching for flights from close airports (e.g. include other airports within

particular distance from the original departure airport).

Acknowledgements

I would like to thank every one in general who has helped and given continuous support

for me in writing this Thesis, either directly or indirectly, in forms of physical and moral

support, encouragement, suggestion, and prayers.

Thank you to Prof. Reinhard Pichler as the supervisor of this Thesis. This work could

not be done without contributions from members of Database and Artificial Intelligence

(DBAI) group, especially from Robert Baumgartner, Bernhard Krüpl, and Wolfgang

Holzinger who have shared and given many ideas, thoughts, and insightful discussions

during the development of this Thesis.

Special thanks to Lixto Software GmbH who has provided the academic trial license for

Lixto Visual Developer software that is used in this Thesis for creating wrappers. Thank

you to Gerald Ledermüller from Lixto that provide short introduction on Lixto Visual

Developer and prepare the tutorials and documentations.

I would like also to say my gratitude to all lecturers and professors in Free University

of Bozen-Bolzano, the university where I spent the first year of this European Master

in Computational Logic (EMCL) program, for giving me the basic foundations so that

I am able to write this thesis.

I am very grateful for the financial support provided through Erasmus Mundus schol-

arship. Thank you to Prof. Steffen Hölldobler (TUD), Prof. Enrico Franconi (FUB),

Prof. Sergio Tessaris (FUB), Prof. Alexander Leitsch (TUW), Prof. Susana Munoz

Hernandez (UPM), and Prof. Luis Monis Perreira (UNL) as the coordinators of the

EMCL program, who have given me the chance to pursue this education in Europe.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Motivation . 3
1.2 Contribution . 5
1.3 Organization of Thesis . 7

2 Preliminaries and Backgrounds 9
2.1 Types of Airlines . 9
2.2 Several Types of Flight Search Engine . 12
2.3 Advantages of Mixing Airlines . 16
2.4 Geocoding . 17
2.5 PostGIS . 19
2.6 Maps API . 19

3 Extracting Data from the Web 21
3.1 The Problems with the Web . 21
3.2 Semantic Web . 23

3.2.1 Resource Description Framework (RDF) 24
3.2.2 RDF Schema (RDFS) . 26
3.2.3 Web Ontology Language (OWL) 26
3.2.4 Challenges of Semantic Web . 27

3.3 Techniques for Web Data Extraction . 27
3.4 Lixto Visual Developer . 28

3.4.1 Editor and Navigation . 29
3.4.2 Data Model . 30
3.4.3 Patterns and Filters . 31

4 System Design and Data Preparation 32
4.1 System Architecture . 32
4.2 Data Requirement . 33

iii

Contents iv

4.3 Business Logic . 35
4.3.1 Web and Wrapper Layer . 35
4.3.2 Database Layer . 36
4.3.3 User Interface Layer . 38

4.4 Adding Geometry Column in Table Airports 39
4.5 Wrapping Airports Data . 40
4.6 Data Cleaning of Airports Time Zone Value 41
4.7 Wrapping Airlines Website . 42

4.7.1 Choosing the Airlines to be Wrapped 42
4.7.2 Filtering Search Results . 43

5 Scalable Algorithm 46
5.1 Complexity for Flight Search . 46

5.1.1 Complexity for Direct Routes . 46
5.1.2 Complexity for Transit Routes . 47

5.2 Route Determination . 48
5.2.1 No Transit vs. One Transit vs. Two Transit 49
5.2.2 Transit Time Analysis . 49

5.3 Hub Identification Heuristics . 51
5.3.1 Approaches for Hub Identification 52
5.3.2 Optimality of the Heuristic . 54

5.4 Searching from Close Airports . 57
5.5 Evaluation Function . 57
5.6 Scalability . 58

5.6.1 Limit The Search to Two Transit 58
5.6.2 Table Design . 58
5.6.3 Limiting the Number of Possible Routes 58
5.6.4 Limiting the Number of Flight Combinations 59

6 Experimental Results 61
6.1 Random Schedule Generator . 61
6.2 Search Parameter . 63

6.2.1 Common Search Parameter . 63
6.2.2 Advanced Search Parameter . 64

6.3 Performing the Search . 65

7 Conclusions 67
7.1 Summary . 67
7.2 Future Works . 69

7.2.1 Validate the Interesting Route Output 69
7.2.2 Extend the Close Airport Feature 69
7.2.3 Cost to Switch Between Airports 70
7.2.4 Extend the Travel Domain . 71

A Wrapping Airports Data 72
A.1 Navigation Sequence . 72

Contents v

A.2 General XPath Expression . 74
A.3 Configuring XPath for Iterators . 75

Bibliography 76

List of Figures

2.1 Order screen of a low-cost carrier, showing the total fare components . . . 10
2.2 Lounge and seat assignment service offered by a low-cost carrier 10
2.3 Screenshot of AirNinja . 12
2.4 Screenshot of Low Cost Airline Guide . 12
2.5 Star Alliance search page . 13
2.6 Star Alliance search results . 13
2.7 Working diagram of flight meta-search engine 14
2.8 Screenshot of Momondo . 14
2.9 Skyscanner results for flight from Vienna to multiple destinations in Spain

during July 2008 . 15
2.10 Skyscanner results for flights from Vienna to Barcelona during July 2008 . 15
2.11 Map of European airports . 17
2.12 Great-circle distance . 18
2.13 PostGIS extension in PostgreSQL relational database 19
2.14 Google Map example for possible routes from Barcelona to Berlin 20

3.1 Google search results for Jurassic Park book price 21
3.2 Amazon search results for books about ”Web” 22
3.3 Difficulties of aggregating search results 23
3.4 RDF example for airline’s schedule . 25
3.5 Lixto VD services overview . 29
3.6 Main screen of Lixto VD . 30
3.7 Example of data model . 30
3.8 Using patterns and filters in Lixto VD . 31

4.1 System architecture . 32
4.2 Flight statistics for Emirates’ flight number EK344 34
4.3 Flight statistics for Easy Jet . 34
4.4 Flight statistic for Vienna-Amsterdam route 34
4.5 Business logic of the system . 35
4.6 Database schema of the system . 37
4.7 Lixto data model for airports . 40
4.8 World Airport Codes screenshot . 40
4.9 Choosing only airlines with select box and JavaScript 43
4.10 Air Berlin’s direct flight and flight with transits 44
4.11 Lixto data model for connections . 44
4.12 Wrapping Ryan Air . 45
4.13 Wrapping Air Berlin . 45

vi

List of Figures vii

5.1 Graph representation of the flight database 47
5.2 Search complexity for one-transit and two-transit routes 48
5.3 Possible transits from London Stansted to Nuremberg 50
5.4 Transavia route map, with hub at Amsterdam 51
5.5 Route search techniques by using hub . 52
5.6 Identifying hub by number of available connections 53
5.7 Identifying hub by using geographical coordinate 54
5.8 Identifying hub by total journey distance 55
5.9 Start page of the system . 56
5.10 Flowchart for searching from close airports 57
5.11 Limiting the airlines included in the search by putting bounds on price

and reliability index . 59
5.12 Limiting the airlines included in the search by putting bounds on transit

time . 59

6.1 Least squares function for distance less than 12,000 km 62
6.2 Least squares function for distance greater than 12,000 km 62
6.3 Common search parameters . 63
6.4 Advanced search parameters . 64
6.5 List of possible routes from London Stansted to Lisbon 66
6.6 Search results for flights from London Stansted to Lisbon 66

7.1 Summary diagram of the thesis . 67
7.2 Future work for the system . 69
7.3 Extending the close airport feature . 70
7.4 Measuring the journey time by using car with Google Map 71

A.1 Navigation sequence in Lixto VD . 72
A.2 Calling pageclass start2 from ”iatalist” . 73
A.3 Calling pageclass start3 from ”airportslist” 73
A.4 Getting XPath expression of an element 74
A.5 XPath for elements of ”iatalist” . 74
A.6 XPath for elements of ”airportslist” . 75
A.7 Putting general XPath expression for ”iatalist” 75

List of Tables

2.1 Number of reachable airports of by adding one-stop 16

4.1 Schema of Table Airports . 37
4.2 Schema of Table Airlines . 37
4.3 Schema of Table Connections . 38
4.4 Schema of Table Schedules . 38
4.5 Schema of Table Distances . 38

5.1 Transit time comparisons . 50

viii

Chapter 1

Introduction

Travel industry is clearly one where Internet has a strong impact on customer behavior

and business models. In Europe, online travel sales accounted for about 10% of the total

market in 2005. Internet transactions are showing a strong growth rate and are expected

to reach 20% of overall market in 2010. In air travel sector, the online transaction is

even higher, accounting for over 50% of the European online market.

According to recent research by the European Commission [19], more and more European

tour operators are taking reservations online. About 36% of tour operators, 62% of

hotels, and 40% of package deal operators have internet booking capabilities. Of those,

28% receive a quarter of their bookings via this channel.

There are clear advantages of doing reservations through the Internet. People can book

a reservation 24 hours a day, 7 days a week. Online booking saves a lot of time. One

can now reserve and pay for a flight to Paris (comparing schedules and prices), book an

ongoing rail ticket to Toulouse, select a hotel on the basis of exterior and interior views

and customer reviews, negotiate over the room price and bed size, and order flowers and

chocolates to be delivered upon arrival, all without leaving one’s desk. Different offers

can also be compared with complete transparency.

Online travel agencies are taking over from traditional travel agencies. They have the

advantage of being able to access multiple real-time reservation systems, to group prod-

uct offerings, and to provide preferential pricing through strategic alliances with various

online reservation system firms. It is obvious that online services provide less consulta-

tion, but clients don’t have to go into a travel agency. Both sides win, while clients can

review the various offers at their leisure, the companies can cut distribution costs.

Online services are also feeding a new trend called dynamic packaging in which people

switch from the traditional all-inclusive packages that have been offered for decades by

1

Chapter 1. Introduction 2

travel companies. Rather, they can create their own packages as their wish, choosing

the flight, hotel and local services themselves - a process made easier on the Internet.

The convenience and availability of information makes the traditional travel agents (still

struggling with text-based direct reservation systems, directories of hotels, and the prob-

lems of making multiple telephone calls, maybe to countries with several hours of time

difference) redundant. The only way in which travel agencies can compete is by focusing

on the ever-decreasing proportion of consumers who are not computer-literate or who

would rather pay someone to make reservations for them.

Low-cost airlines, modeled on the phenomenally successful Southwest Airlines in the

United States, are characterized by high utilization of aircraft, one-way pricing and

extra charges, such as for food and drinks. The Internet has helped fuel the boom in

low-cost airlines such as Easy Jet, Ryan Air, and Air Berlin, which rely almost entirely on

online reservations. For these airlines, online booking means extra revenue, eliminating

giving away commissions to the travel agents.

Europe’s low-cost airlines have grown at a tremendous rate in recent years as attractive

ticket prices incited more people to fly. According to a recent article at International

Herald Tribune [26], low-cost carriers are growing at 9 percent a year. The arrival of

low-cost airlines across Europe has created an explosion of new resorts in places like

Murcia (Spain), catering to budget tourists. It is extraordinarily easy and cheap to get

to Murcia from nearly anywhere in Britain - and from many small cities in Germany,

the Netherlands and Norway, for that matter.

Passenger statistics at Murcia’s San Javier Airport over the past decade illustrate the

magnitude of the problem. Arrivals increased from 88,608 in 1995, to 848,037 in 2004,

to a staggering 1,905,182 last year - more than a 20-fold increase in a little more than a

decade. Norwegian, Scandinavia’s largest low-cost airline, flies to Murcia from Bergen,

Oslo, Stavanger, and Trondheim, with prices starting at about e100. Demand for low-

cost flights is galloping so fast that private investors are building a new international

airport in Corvera, 20 minutes from Murcia.

It is not only low-cost carriers who are expanding their business, major airlines do that

as well. People are becoming more mobile each day, so that the need for traveling is also

increasing. Just few months ago in October 2007, Singapore Airlines launched the first

commercial flight with Airbus A380, the new double-decker jumbo jet, from Singapore

to Sydney and return. This A380 can carry up to 525 people in three-class configuration

(economy, business, and first class) or 853 people in all-economy configuration. All of

these facts constitutes the fact that online airline business will be one of the dominating

Internet business in the future.

Chapter 1. Introduction 3

1.1 Motivation

There are a lot of flight search engines currently available in the Internet. If one tries

to search in Google using keywords such as ”cheap flights” or ”flight booking”, he/she

would get numerous number of online travel agents from where the flight query can

be posed. Most of these search engines share the same characteristic, that is they

behave as meta-search engine that simply forward the query to several other websites

and aggregate the result from each website. In flights domain, meta-search engine has

some inherent weaknesses.

The first weakness is that current flight search engine has not yet offered all available

routes. We take an example from one of the low-cost airlines, that is Easy Jet. In Easy

Jet’s website, there are two select boxes, one for choosing departure airport, and the

other one is for choosing destination airport. The website uses JavaScript so that the

list of destinations changes dynamically based on the choice of departure airport. By

choosing Barcelona as departure airport, we get the list of destinations that reachable

from Barcelona. Since Rome is not in the list of destinations, then it seems that we

can not fly with Easy Jet from Barcelona to Rome. This statement is true if we only

consider direct flights. However, if we consider also transit routes, then it is actually

possible to go from Barcelona to Rome with Easy Jet.

By browsing through the destinations reachable from Barcelona, we find that Easy Jet

has flight from Barcelona to Paris and from Paris to Rome. Hence, it is logical to infer

that one can fly from Barcelona to Rome by using only Easy Jet’s flight. The problem

is that not everyone has the patience to look for such kind of route. Aside from frequent

flyer or loyal customer of Easy Jet who may know about the existence of this route,

common people would consider another airline that advertise this route, possibly taking

direct flight from a major airline for which the ticket price is higher than combining two

Easy Jet’s flight.

There is no entity to be blamed for this result. Low-cost airlines are known for empha-

sizing only direct flights. They never advertise transit destinations (destinations that

can be reached by transiting at other airport), even if it is possible to make connecting

flight. They leave it to the travelers to find the existing transit connection by themselves.

In the other side, the customer doesn’t have time and patience to search for all possible

combinations. By giving the departure and destination airport, they want the system

to figure out itself all the possible alternatives and present them with the good ones.

We do the same search for Barcelona-Rome route at several online travel agents. The

result is that this Easy Jet route is never found. To be noted, we ensure that Easy Jet

has flights on the date, for which the transit time is 2 hours and 5 minutes (this transit

Chapter 1. Introduction 4

time is short so that the route should not be eliminated by the travel agents). This

example shows that there is a need for a search engine that can find the transit routes

from low-cost airlines.

The second weakness is the concept of mixing airlines (for transit routes). Having transit

means that the whole journey can be broken into several flight legs which are independent

one another. Independent means that each leg can be served by any airline (from any

alliance). However, rarely we found the flight search engine that uses this concept. There

are some search engines that show transit routes composed from different airlines, but

it is limited to airlines in the same alliance. This mixing airlines concept is important

since it may result in more flexible schedules, more flight alternatives, and possibility of

getting cheaper fare.

The third weakness with current flight search engine is on the evaluation and ranking of

search results. Most of them simply categorize the best flights are the ones with cheap

price and short journey time. This evaluation may fit with most people, however not all

travelers are satisfied with this setting.

It needs to be noted that there are different types of travelers. A flight plan that is good

for one, may not be good for others. The backpackers, who are tight on budget, may

consider that low-cost flights are the best. They don’t mind to have very short transit

(which may make them rush to catch the connecting flight) or very long transit (which

may make them spend overnight at airport), as long as they can get the bargain price

and travel with minimum budget. Business travelers may have different preferences.

Price is the last constraint of their decision. They prefer to fly with reliable airlines

(who have excellent on-time performance), having no or minimum number of transit,

and short journey time. There are others, in the middle of these two extremes, who

satisfy enough to fly with not-so-comfortable airline and to pay not-so-cheap price, as

long as they can arrive at their destination.

It would be nice if we have a search engine that can be customized such that we can

search, for example, only from low-cost or reliable airlines. It is also nice if one can

mention that his/her tolerance of transit time, for example to find connecting flights

with departure time at most 3 hours from the previous leg arrival time. By having this

customizable evaluation setting, the engine only looks for transit routes which satisfy

this constraint. Hence, each traveler can find best flights of his/her version.

The final motivation of this thesis concerns about the scalability of current flight search

engines. As the number of airlines growing in the future, then the number of resources

that needs to be considered by the search engine would also grow in direct proportion.

Chapter 1. Introduction 5

By observing on how current engines perform their search, it raises a question whether

these engines are scalable to follow the growing trend of airline industry.

1.2 Contribution

In this thesis, we propose a mashup model for a flight search system. Mashup are

application that combines data from multiple resources (called content provider) to

create a new application which provides new and distinct functionality that is not offered

by any of the content provider.

The flight search problem is transformed to graph search problem with airports as the

nodes and the pair of airports where exists direct flight between them as the edges.

The list of nodes and edges is extracted from the Web by using a wrapper generation

technology from Lixto Visual Developer. For the edges, we only consider direct routes

from the airlines that we want to consider in our search. The wrapped data is put

in local repository (database) so that the data retrieval and query processing can be

performed faster since all the needed resources reside locally. The query processing part

is handled by creating a rule system that governs how the search is performed.

We are only interested in direct routes so that we can freely mix and match which flight

and airline to choose for each flight leg. By this way, we have a solution to the mixing

airline problem. By having direct routes, the system can also infer that if Easy Jet

flies from Barcelona to Paris and from Paris to Rome, then it is possible to go from

Barcelona to Rome, by Easy Jet, by connecting through Paris. Hence, we can find the

transit routes offered by low-cost airlines.

Several leading-edge technologies that are used in this system:

• Lixto Visual Developer to extract data from the Web.

• PostgreSQL for the database and PostGIS as its spatial extension (later in

Chapter 2, it will be explained why we need this spatial extension).

• PLpgSQL, the proprietary language of PostgreSQL (which is similar to Oracle’s

PL/SQL) to build the rule system.

By performing the search process locally (not real-time), several issues need to be further

explained.

First issue is about the data validity. How can the system assures that the data is up-

to-date and that it suggests correct routes (meaning that the flight schedule is exist and

Chapter 1. Introduction 6

correct if the query is done directly in the respected airline website). We observe that

airline schedules are weekly-based, and do not change very often. The schedule has some

validity period, for example in Europe, there are different summer (where routes to new

summer destinations such as beach are opened) and winter schedule (where routes to the

winter destinations such as ski places are opened). Therefore, to provide an up-to-date

data, the wrapping has to be performed in a timely basis to preserve the data in the

local repository to be always actual.

Second issue is about the ticket price. Ticket price are determined based on many factors

such as seat availability, route traffic (fat or thin route), and discount/promotion. Ticket

price can change at any time, and it can’t be predicted when the change happens.

Therefore, ticket price query should be done in real-time. Wrapping ticket price in

advance would not be useful since the price when the wrapping is performed with the

price when the query is posted may be different. Moreover, to wrap the price data for

all possible connections for all possible routes is tedious, if not impossible task.

We define price index approach to differentiate between low-cost and major airlines.

Price index gives information, not on the real price, but on the likeliness of price, based

on the airline. This approach is used based on obeservation that in real world, the

price hierarchy between airlines exists. It is more vivid in major airlines. A general

observation on Economy-class flights from Europe to Asia, the middle-east airlines such

as Emirates, Qatar, and Etihad Airways have cheaper price compared to Lufthansa

and KLM. But, Lufthansa and KLM have cheaper price than British Airways and Air

France. The price index has range value from 1 to 10 where 1 indicates the cheapest and

10 indicates the most expensive price. One possible implementation is to assign low-cost

carriers with price index value from 1 to 5, while for major airlines it is from 6 to 10.

In this system, we also embed the concept of searching from close airports. This con-

cept aims to give alternative routes originating from other airports in particular radius

from departure airport. To know the distance of an airport to other airports we need

geocoding technology. This technology is embedded in PostGIS spatial extension of Post-

greSQL. Lixto Visual Developer is used to wrap the geographical coordinate (latitude

and longitude) of each airport so that the distance can be computed.

In existence of many possibilities to reach a destination, not all routes would give good

results. For example, considering possible one-transit routes to fly from Vienna to

Frankfurt, then Dubai is a possible transit since from Vienna we can fly to Dubai, and

from Dubai we can fly to Frankfurt. However, no one will choose the Vienna-Dubai-

Frankfurt route since there exists other transit airports inside Europe that give better

time performance and cheaper price.

Chapter 1. Introduction 7

We define the hub identification heuristic for dynamic hub identification. Instead of

analyzing and evaluating all possible routes to reach the destination, this heuristic gives

hint on which hub airports that are possibly containing the best routes (in terms of

shortest flight duration). Hence, the system can limit the search by only considering a

fraction from all possible routes. Performing the search this way also ensures system

scalability and increases the system’s responsiveness by shortening the query procesing

time. In Chapter 5, this heuristic will be discussed in detail where the optimality of the

heuristic will be shown.

We also define the term interesting route for our search results. Interesting route is

defined as a list of routes which match with the user’s preference. It can be sorted based

on three criteria: time, reliability, and price to give users full flexibility on defining which

routes are most interesting for them.

1.3 Organization of Thesis

The thesis is organized as follows.

Chapter 1. Introduction. This chapter gives a general overview of the problem do-

main, describes the motivation, and defines the contribution of this thesis.

Chapter 2. Preliminaries and Background. We begin the chapter by providing an

overview of major and low-cost airlines, and their differences. We also evaluate

the functionality offered by some flight search engines and discuss the advantages

of mixing airlines. The last part of the chapter discuss the geocoding technology,

PostGIS, and Maps API.

Chapter 3. Extracting Data from the Web. This chapter exposes some state of

the art technologies to extract data from the Web. We begin by showing some

problems to pull data from the current Web. Next, Semantic Web vision and

some techniques to perform web data extraction is discussed. The last part of the

chapter describe the wrapper generation technology from Lixto.

Chapter 4. System Design and Data Preparation. This chapter comprises two

parts. The system design part focuses on the system architecture and business

logic while the data preparation part focuses on the wrapping and data cleaning

effort to populate the database. Some wrapping examples using Lixto VD are

shown in this chapter.

Chapter 1. Introduction 8

Chapter 5. Scalable Algorithm. This chapter begins with discussion on the com-

plexity for flight search. The next part discuss the route determination, hub iden-

tification heuristics and the approaches that we use to ensure the scalability of our

system.

Chapter 6. Experimental Results. This chapter presents step by step tutorial on

how to perform the search. It also shows various search features embedded in the

system.

Chapter 7. Conclusions. This chapter contains the summary and future works in

this area.

Chapter 2

Preliminaries and Backgrounds

2.1 Types of Airlines

There are several types of airline in the airline world today. Major airlines or full-

service airlines are the ones which offer many convenience to their passenger such as

single check-in, smooth transit, and advanced baggage handling so that the baggage

appears at final destination as if by magic. In the other hand, low-cost airlines, also

known as no-frills or discount carriers, are the ones which offer generally low fares

in exchange for eliminating many traditional passenger services. A recent article at

International Herald Tribune [7] introduces another type, hybrid carriers which blend

low-cost traits with those of traditional or full-service carriers in the pursuit of business

travelers.

The high level of service offered by major airlines are complicated and costly. It requires

interline and code share agreements, integrated processes, systems for bookings of con-

nected tickets, and distribution of revenues. Checking passengers and baggage through

to final destination calls for baggage handling services at each stop. All of these add up

to higher ticket prices. There is nothing low-cost about the full-service connection.

Low-cost airlines tend to focus on short haul routes (of generally less than 1,500 km).

To achieve the low operating costs, this type of carrier needs to have as many seats on

its aircraft as possible, to fill them as much as possible, and to fly the aircraft as often

as possible. They usually use uncongested secondary airports and not offering anything

other than point-to-point services. Significant cost savings can be made by selling di-

rectly to customers via the Internet and call centres and by using electronic ticketing.

By not selling via travel agents, low cost airlines avoid travel agency commissions and

also avoid computer reservation system fees.

9

Chapter 2. Preliminaries and Backgrounds 10

Low-cost airlines generate their revenue from selling various services to passengers such

as travel insurance (for those without personal travel insurance), express/priority board-

ing (for those who want hassle-free boarding before the other passengers, to avoid the

boarding crowds and choose the seat of their preference in case of non-seated flight where

passengers may occupy any seat). They also charge for the foods and drinks offered on

board. Some discounts may be given if the meal is ordered prior to the flight, for example

when booking the flight.

Figure 2.1 displays the screenshot of an order page from a low-cost airline, showing

multiple fee components that constitute the total fare. Sometimes, the sum of the other

fees may be higher than the ticket price itself. Figure 2.2 displays the screenshot from

another low-cost airline which offers lounge and seat assignment service.

Figure 2.1: Order screen of a low-cost carrier, showing the total fare components

Figure 2.2: Lounge and seat assignment service offered by a low-cost carrier

Chapter 2. Preliminaries and Backgrounds 11

Some comparisons between major airlines and low-cost airlines are shown below.

Price. The ticket price of major airlines is usually multiple times of low-cost airlines

for the same route.

Network Topology. Major airlines use hub-and-spoke while low-cost airlines use point-

to-point (direct flights). Therefore, when delay happens and the passenger misses

the connecting flight, usually there is no compensation from low-cost airlines since

they sold the flights separately, not as a package of several point-to-point connec-

tions.

Baggage Handling. Major airlines offers check-in through, for which the baggage is

only checked-in once at departure. The baggage is handled by the airline so that it

is routed to the final destination without passenger needs to collect it at each stops.

Low-cost airlines emphasize the use of direct flights. Baggage is not automatically

transferred from one flight to another, even if both flights are from the same airline

company.

Passenger Class. Major airlines have different passenger class, such as Economy, Busi-

ness, and First class. Low-cost airlines only have single passenger class, but passen-

gers may have different services (depends on the extra services that the passengers

purchase).

Seat Assignments. Major airlines have seat assignments and passenger may choose

their seat on check-in for free. Low-cost airlines usually do not have seat assign-

ments, but passengers who want to sit in a particular seat can purchase for reserved

seat, by paying some extra amount.

Booking process. Major airlines sell their tickets through various channels, such as

travel agents, city counter, and airline’s website. Low-cost airlines emphasize direct

booking, either through Internet or call center.

Airports and Flight Time. Major airlines use major airports and operates in various

time of the day. Low-cost airlines usually only use secondary or less-congested

airports and fly in early morning or late night to avoid air traffic delays at day

time due to congestion. Secondary airports tend to charge airlines less for using

their services. Since they are less busy, delays due to congestion are less.

Aircraft type. Major airlines use various types of aircraft, possibly from several man-

ufacturers. Low-cost airlines use single aircraft type for some reasons. First, pilots

and cabin crew can operate on any aircraft in the fleet, reducing training cost of

the crew. Second, they can do bulk purchase of aircraft components at lower price,

reducing the maintenance cost of the aircraft.

Chapter 2. Preliminaries and Backgrounds 12

2.2 Several Types of Flight Search Engine

Based on its business purpose, there are two types of flight search engine: indepen-

dent and commercial. Independent flight search engines do not sell tickets. They

merely perform the search, then redirect potential clients to the respected airline web-

site to continue with booking process. Some examples of independent search engine are

Skyscanner1, Momondo2, and Dohop3. Commercial engines are usually owned by

travel agents which have agreements with the airlines to allow clients to book directly

in their website. Some examples of commercial search engine are Opodo4, Expedia5,

Travelocity6, and Orbitz7.

Figure 2.3: Screenshot of AirNinja

Figure 2.4: Screenshot of Low Cost Airline Guide

There are numerous number of low-cost airlines nowadays. The names such as CoastAir8,

Corendon9, and Sterling10 may never be heard by most people. Even if they know that

those names correlates with airline, then which routes served by the airline may not be

a common knowledge.
1http://www.skyscanner.net
2http://www.momondo.com
3http://www.dohop.com
4http://www.opodo.com
5http://www.expedia.com
6http://www.travelocity.com
7http://www.orbitz.com
8http://www.coastair.no
9http://www.corendon.com

10http://www.sterling.dk

Chapter 2. Preliminaries and Backgrounds 13

There exists search engines which are built to help people to find which low-cost airlines

serves the route of their journey. Its input is simply the departure and destination

airport. It does not provide any information on flight’s availability, schedule, or price.

Figure 2.3 and 2.4 shows the screen from AirNinja11 and Low-Cost-Airline-Guide12 for

routes from Vienna to Lisbon.

Figure 2.5: Star Alliance search page

Figure 2.6: Star Alliance search results, showing offered flights from the alliance
airlines: Lufthansa, Adria Airways, and SAS Scandinavian

Every airlines and airline alliances website usually have search engine that only searches

for flights that are served by themselves and codeshare flights that are served together

with, or solely by their partner/alliance. The search process is fast and the prices are

correct because all data are retrieved directly from their back-end system. Figure 2.5

and 2.6 shows the search page and search results from Star Alliance, an alliance formed

by Lufthansa, Austrian Airlines, Singapore Airlines, United Airlines, and several other

airlines.
11http://www.airninja.com
12http://www.low-cost-airline-guide.com

Chapter 2. Preliminaries and Backgrounds 14

A flight meta-search engine is a flight search engine that sends user query to several

other low-cost carriers, major airlines, and online travel agents. The results are aggre-

gated into a single list and displayed according to their source. Meta-search engine can

generate more comprehensive search results from several sources and save user’s time

from having to search in multiple engines separately. Most flight search engines that are

currently available in the Internet can be categorized into this type. Figure 2.7 shows

how flight meta-search engine works.

Web
Crawler

Search
Aggregator

Input

Output

Figure 2.7: Working diagram of flight meta-search engine

Figure 2.8: Screenshot of Momondo showing the websites from where the price is
obtained

Chapter 2. Preliminaries and Backgrounds 15

Figure 2.8 shows a search result from Momondo, a travel search engine that claims to

search 492 travel sites (as of 10 June 2008) at once and find the best fares. Momondo

does their search by using web-crawlers which need to fill in information (departure,

destination, departure dates) in order to access information (timetables and prices).

From all the search engines that we discuss above, they have one thing in common, that

is the departure date has to be fixed. For travelers with flexible date, they may want

to check the price for different departure dates so that they can go on the date when

lowest price is offered. Skyscanner is built for this purpose. Not only the dates are

flexible (during whole month or whole year), but the destination are also flexible. User

can check the prices for many destinations in a country. Figure 2.9 and 2.10 illustrates

this idea.

Figure 2.9: Skyscanner results for flight from Vienna to multiple destinations in Spain
during July 2008

Figure 2.10: Skyscanner results for flights from Vienna to Barcelona during July 2008

Chapter 2. Preliminaries and Backgrounds 16

2.3 Advantages of Mixing Airlines

Low-cost carriers only focus their business in certain regions. They do not cover a large

area of operations as major airlines. A research that was carried out by Dohop Analytic,

reveals that adding one transit to low-cost routes brings a notable increase to the number

of additional reachable airports.

Table 2.1 shows the increase for four low-cost airlines, by connecting with another airline

with less than 4 hours in transit, respecting minimum connection times for each airport.

The travel period for this research is first week of September 2007.

Table 2.1: Number of reachable airports of by adding one-stop (table is reproduced
from [8], with the addition of last column)

Airline Direct Airports Addition (one stop) Scale factor

Ryan Air 170 311 1.83
Easy Jet 70 550 7.86

Iceland Express 9 145 16.11
German Wings 65 549 8.45

Interline travel is simply vital to the global traveler. Connections allow a much wider

choice and flexibility in terms of airlines and schedules. Departing from London Luton

airport, travelers can choose from 66 airports using non-stop flights but 587 additional

ones via one connecting flight [8]. If all European low-cost airlines would connect with

other airlines, it would improve the total efficiency air travel significantly. It could reduce

the average duration of journeys due to less waiting in airports and shorter flights.

Another possible advantages of mixing airlines is to get cheaper fare. To illustrate this

idea, we search for flights from Vienna to Jakarta through Frankfurt on a particular date.

For Vienna-Frankfurt route, there are several flights from major and low-cost airlines

such as by Austrian Airlines, Lufthansa, Adria Airways, and Niki. For Frankfurt-Jakarta

route, the only direct flight is by Lufthansa.

Based on the route findings, then it is clear that the price is determined by the first leg

flight since there is only one choice for the second leg (which is Lufthansa with price

e2400). We check the price of each airline serving the first leg route and get the result

as follows. Lufthansa and Austrian Airlines offer price around e600. Adria Airways

offers e150. But, Niki, only offers e50. Therefore by combining Niki-Lufthansa, the

traveler can earn e550 savings (compared to completely using Lufthansa for the whole

journey), a deal that doesn’t need to be thought twice by budget travelers.

Chapter 2. Preliminaries and Backgrounds 17

2.4 Geocoding

Each airport has a coordinate, expressed as latitude and longitude, in earth geographical

system. The coordinate can be mapped to see the location of each airport to the world

map as in Figure 2.11.

We can calculate distance between two points in the earth, given their coordinates.

Earth surface distance is defined as the shortest distance between any two points on the

surface of a sphere measured along a path on the surface of the sphere (as opposed to

going through the sphere’s interior). Figure 2.12 shows the great-circle distance between

point p and q with red line. A method to calculate earth surface distance is by using

great-circle distance method [31].

Figure 2.11: Map of European airports

Spherical geometry is different from ordinary Euclidean geometry. The distance between

two points in Euclidean space is the length of a straight line from one point to the other.

On earth sphere, there are no straight lines. In non-Euclidean geometry, straight lines

are replaced with geodesics. Geodesics on the sphere are the great circles (circles on the

sphere whose centers are coincident with the center of the sphere).

Between any two points on a sphere which are not directly opposite each other, there is

a unique great circle. The two points separate the great circle into two arcs. The length

of the shorter arc is the great-circle distance between the points. Between two points

which are directly opposite each other, called antipodal points, there are infinitely many

great circles, but all great circle arcs between antipodal points have the same length,

that is half the circumference of the circle, or πr, where r is the radius of the sphere.

Chapter 2. Preliminaries and Backgrounds 18

Figure 2.12: Great-circle distance

One use of geocoding in this thesis is to calculate distance between airports. This

distance is useful to know which other airports located in particular radius from an

airport. Therefore, we can implement the search from close airports feature, which is

useful for the following purposes:

• Flight availability.

In high/peak season, it is very useful to consider flights from nearby airports if all

flights from the preferred departure airport is fully-booked.

• Lower fare.

A less-congested airport may have alternative flights with lower fare. This is due

to the fact that most of low-cost airlines use secondary airport. A comment from

a reader in an online article [27] reveals this fact. The reader searched for flights

from Orlando, Florida to Copenhagen, and it costs $ 1100 with three stops. But,

if he flew from Stanford, Florida (located 20 miles from Orlando airport) to the

same destination, there exist a flight plan with only two stops with price under $

700.

• Existence of better routes.

Currently, there is no direct flight serving route from London Stansted to Lisbon.

By includeing other airports in radius of 100 km from Stansted, the system can

find London Gatwick (96 km), London Heathrow (73 km), and London Luton (46

km), from where there exists direct flight to Lisbon.

Chapter 2. Preliminaries and Backgrounds 19

2.5 PostGIS

PostGIS is an open source spatial extension to PostgreSQL relational database. PostGIS

adds support for geographic objects to the PostgreSQL object-relational database. It

is developed by Refractions Research, a company from British Columbia, Canada as

a project in open source spatial database technology. The architecture of PostGIS is

shown in Figure 2.13.

PostgreSQL database server postmaster

Web Server

Map Server

ApplicationsUser 2
(database

client)

User 1
(database

client)

Data

Figure 2.13: PostGIS extension in PostgreSQL relational database

In effect, PostGIS spatially enables the PostgreSQL server, allowing it to be used as

a backend spatial database for geographic information systems (GIS) like Oracle Spa-

tial extension. For managing large volumes of read/write spatial data, using a spatial

database can improve access speed, ease management overhead and guarantee data in-

tegrity.

PostGIS has been certified as ”Simple Features for SQL” compliant by the Open Geospa-

tial Consortium. PostGIS was first released in 2001, and is now used around the world

as a high-performance server for spatial objects. It features a spatially-enabled query

planner, highly concurrent R-Tree spatial index, and hundreds of spatial analysis and

processing functions that allow for GIS-style data analysis right inside the database.

2.6 Maps API

As part of our customizable system approach, we let user to choose the routes from

which they want to perform the search. This feature may be useful if user wants to avoid

some airports possibly due to transit visa regulations, airport comfortability, or merely

personal preferences. However if the user doesn’t have ample geographical knowledge,

the user may get lost and choose transit airports that is far away from the destination.

Chapter 2. Preliminaries and Backgrounds 20

By displaying the route map, the user can get hints on the journey’s path before making

their decision.

Currently, there are two free mapping API providers that can be utilized, Google Maps

API and Yahoo! Map. There are some differences between them which are listed below.

Geocoding support. Yahoo provides geocoding support while Google accept only lat-

itude and longitude. The Geocoding Web Service from Yahoo allows user to find

the specific latitude and longitude for an address.

Map generation. Google Map can be embedded in any website, while for Yahoo, the

map is only generated in Yahoo site.

Technology. Google Map is based on JavaScript and support Ajax. Yahoo Map use

XML (based on geoRSS 2.0) API and does not support Ajax.

Purpose and usage. Google Map can be used for commercial purposes, but should be

freely available to end user. Usage is not restricted up to an upper bound. Yahoo

Map can be used for commercial purposes, but should obtain written permission,

no usage restriction.

We choose to use Google Map API so that the map can be embedded in the local web

server. Since Google does not provide geocoding, then it needs to be supplied with

latitude and longitude of the airports, which is obtained through web data extraction.

Figure 2.14 shows the example of possible routes from Barcelona to Berlin using Google

Map API.

Figure 2.14: Google Map example for possible routes from Barcelona to Berlin

Chapter 3

Extracting Data from the Web

3.1 The Problems with the Web

Web is the biggest database in the world. Billions of diverse documents are put online.

However, it is unstructured and lacks of query techniques to pull data from it. Below,

we present several problems that are faced by the current Web.

The first problem is on retrieving documents. For example, we are interested to know

the price of Jurassic Park book by Michael Crichton. Posing this query in Google, we

get the results as in Figure 3.1. The results doesn’t show exactly which link provides

the price information.

Figure 3.1: Google search results for Jurassic Park book price

21

Chapter 3. Extracting Data From The Web 22

The second problem is on extracting information. Figure 3.2 illustrates this problem

by searching for books about ”Web” in Amazon1. We take the top four search results

and analyze them. There are several prices for each book, so it is not clear which price

is exactly the right one. The first three books have the right context, but the fourth

book is not about Web. The computer can’t be blamed for displaying the fourth book.

It does not know what is the semantic of ”Web” about.

Which one is the price?

This book is not about “Web”

Figure 3.2: Amazon search results for books about ”Web”

The third problem is on combining/aggregating information. Figure 3.3 shows two

search results for ”Semantic Web Primer” book from Amazon and Barnes&Noble2 (BN).

Human eyes can quickly capture the picture of the book cover and infer that the two

books are the same. However, for computers, pictures is just a sequence of bytes without

semantics. The book title is different. BN includes ISBN number of the book, while

Amazon does not. Hence, it is difficult for computer to decide whether this two books

corresponds to same book.

How if the user wants to know which store has the cheapest price, which price should be

used for comparison? There exist different price schemas. The computer does not have

basis to determine the price for this user since there is no information on which kind

of user performs this search (member or non member) and what preference does he/she

has (new or used books). A more difficult question is, which store has the cheapest total

price, including shipping charge? This question can’t be answered without employing

deep web navigation technique to retrieve the shipping charge.
1http://www.amazon.com
2http://www.barnesandnoble.com/

Chapter 3. Extracting Data From The Web 23

Amazon:

Barnes & Noble:

Figure 3.3: Difficulties of aggregating search results

3.2 Semantic Web

The Semantic Web vision was conceived by Tim Berners-Lee, the inventor of the World

Wide Web. It can be simply defined as the Web with a meaning. The idea of representing

information in structured form so that computers can understand it and then solve

complex problems was one of the keystones of the Semantic Web vision.

- SkyEurope has a flight with number NE3612.

- Flight NE3612 flies from Vienna to Amsterdam.

- Flight NE3612 departs at 6:30 and arrives at 8:25.

Statements such as above are easy to be understood by people. But how can they be

understood by computers? This is what Semantic Web is all about. Describing things

in a way that computers applications can understand. Semantic Web describes the

relationships between things (like A is a part of B and Y is a member of Z) and the

properties of things (like size, weight, age, and price)

The Semantic Web is an evolving extension of the World Wide Web in which the se-

mantics of information and services on the web is defined, making it possible for the

Web to understand and satisfy the requests of people and machines to use the Web

content. Information is stored in a machine-readable format so that computers able to

handle information in more useful ways by processing the meanings within documents

instead of simply the documents themselves. Provided with the data semantics, then

computers can find, extract, share, re-use information, and potentially even reason with

Chapter 3. Extracting Data From The Web 24

it. In the future, it will realize the Web as a universal medium for data, information,

and knowledge exchange.

With Semantic Web, the information is structured, but it does not mean that the com-

puter can necessarily solve complex problems. These are two completely different things.

Just because you have a map, does not mean that you know the best way to get from

point A to point B. Having a map is necessary, but it is not sufficient, you need the

algorithm to find the best path. There is a big difference between asking what is the

capital of France and what is the cheapest airfare today to fly from New York to Paris.

The goal of Semantic Web is to collect data in a useful way, like a large database.

Semantic Web will allow businesses to manipulate external, heterogeneous Web data in

much the same way they do internally. Its most immediate use may be as a tool to

solve data integration problems. It relies on structured sets of information and inference

rules that allow it to understand the relationship between different data resources. The

computer doesnt really understand information the way a human can, but it has enough

information to make logical connections and decisions.

The Semantic Web would allow manipulation across multiple, heterogeneous databases.

This capability could, for instance, allow an electronic airline reservation service to

automatically interact with a personal calendar program to arrange a flight that fits a

user’s schedule, even if there was no pre-established interface between the two pieces of

software.

Some elements of the Semantic Web include Resource Description Framework (RDF),

a variety of data interchange formats (e.g. RDF/XML, N3, Turtle, N-Triples), and

notations such as RDF Schema (RDFS) and the Web Ontology Language (OWL), all of

which are intended to provide a formal description of concepts, terms, and relationships

within a given knowledge domain. The Semantic Web is a simple, but potentially poweful

idea. Just as the Web was implemented using URLs, HTTP and HTML, the Semantic

Web is built with URIs, HTTP and RDF.

3.2.1 Resource Description Framework (RDF)

An official W3C recommendation, RDF is an XML-based standard for describing re-

sources that exist on the Web, intranets, and extranets. RDF builds on existing XML

and Uniform Resource Identifier (URI) technologies. URI is an identifier for resources,

and not location on the Web. It is not necessarily to be started with ”http”. For a book,

the suitable URI perhaps is in the form of ISBN number.

Chapter 3. Extracting Data From The Web 25

RDF documents are complicated and hard to be read by human without the help from

RDF parser software. To tackle this issue, triple data model is constructed as <subject,

predicate, object> to represent the same data in RDF in simple notations which is

more human-readable. A subject can be formed by a resource (identified by a URI) or

blank node. Predicate corresponds to property. Object can be a resource, blank node,

or literal value.

Figure 3.4 shows an example of RDF for airline’s schedule which expresses the following

facts:

- SkyEurope’s flight number NE3612 flying from Vienna to Amsterdam, departs on

6:30 and arrives at 8:25.

- SkyEurope’s flight number NE3613 flying from Amsterdam to Vienna, departs on

8:55 and arrives at 10:55.

- KLM’s flight number KL 1849 flying from Amsterdam to Vienna, departs on 20:30

and arrives at 22:20.

ex: skyeurope

ex: NE3612

ex: NE3613

ex: AmsterdamAirport

ex: ViennaAirport

AMS

VIE

10:55

8:55

6:30

8:25

ex: hasFlight

ex: departFrom

ex: destination ex: iataCode

ex: arrival

ex: departure

ex: klm

ex: KL1849

22:20

20:30

Figure 3.4: RDF example for airline’s schedule

By creating triples with subjects, predicates, and objects, RDF allows machines to make

logical assertions based on the associations between subjects and objects. And since RDF

uses URIs to identify resources, each resource is tied to a unique definition available on

the Web. However, while RDF provides a model and syntax (the rules that specify the

elements of a sentence) for describing resources, it does not specify the semantics (the

meaning) of the resources. To truly define semantics, we need RDFS and OWL.

Chapter 3. Extracting Data From The Web 26

3.2.2 RDF Schema (RDFS)

RDFS is used to create vocabularies that describe groups of related RDF resources and

the relationships between those resources. From previous example, using RDFS, we can

say that ”Sky Europe” has type of ”Airline” and ”NE3612” has type of ”FlightNumber”.

Further, we can restrict that ”hasFlight” property has domain of class ”Airlines” and

range of class ”FlightNumber”.

Using the same triples paradigm defined by RDF, RDFS triples consist of classes, class

properties, and values that define the classes and relationships between the resources

within a particular domain. In an RDFS vocabulary, resources are defined as instances

of classes. A class is a resource, and any class can be a subclass of another. This

hierarchical semantic information is what allows machines to determine the meanings of

resources based on their properties and classes.

Overall, RDFS is a simple vocabulary language for expressing the relationships between

resources. Building upon RFDS is OWL, which is a much richer, more expressive vo-

cabulary for defining Semantic Web ontologies.

3.2.3 Web Ontology Language (OWL)

OWL is the third W3C specification for creating Semantic Web applications. Building

upon RDF and RDFS, OWL defines the types of relationships that can be expressed

in RDF using an XML vocabulary to indicate the hierarchies and relationships between

different resources. In fact, this is the very definition of ontology in the context of the

Semantic Web: a schema that formally defines the hierarchies and relationships between

different resources. Semantic Web ontologies consist of a taxonomy and a set of inference

rules from which machines can make logical conclusions.

Since taxonomies (systems of classification) express the hierarchical relationships that

exist between resources, we can use OWL to assign properties to classes of resources

and allow their subclasses to inherit the same properties. OWL also utilizes the XML

Schema datatypes and supports class axioms such as subClassOf, disjointWith, etc., and

class descriptions such as unionOf, intersectionOf, etc. Many other advanced concepts

are included in OWL, making it the richest standard ontology description language

available today.

All the detailed relationship information defined in an OWL ontology allows applications

to make logical deductions. Its important to note that OWL has three sub languages,

each with increasing complexity: OWL Lite, OWL DL, and OWL Full. OWL DL

Chapter 3. Extracting Data From The Web 27

includes OWL Lite, and OWL Full includes OWL DL and OWL Lite. Developers

choose which OWL dialect to use based on the level of complexity and level of detail

required by their semantic model.

When RDF resource descriptions are associated with an ontology defined somewhere

on the Web, intranet, or extranet, its possible for machines to retrieve the semantic

information associated with each resource. Its in this way that URIs, XML, RDF,

RDFS, and OWL combine to make the Semantic Web a reality.

3.2.4 Challenges of Semantic Web

Semantic Web is not a very fast growing technology. Since the beginning, it has been

associated with artificial intelligence. It was developed by people with academic back-

ground in logic and artificial intelligence. For traditional developers it is not very easy

to understand. The problem for representing billions of existing web documents as RDF

is a rather daunting, if not impossible task.

A more difficult aspect of building Semantic Web is the creation of ontologies. This

process requires efforts by diverse communities, such as the medical, insurance and

finance industries, to develop common vocabularies that systems will use to recognize

what’s in a Web document. Fortunately, creating ontologies doesn’t require a global

coordinated effort. If words are used differently, such as ”title” in insurance vs. the

”title” of a book, services will be able to map those differences to allow interoperability.

3.3 Techniques for Web Data Extraction

The Semantic Web that we just discussed, in practical, can still be considered as merely

a vision. There are some progress into realizing it, but in general we have not been able

to pull data, such as airline schedules by using Semantic Web. Therefore, in this section

we discuss about some other techniques for web data extraction.

We need to differentiate between data discovery (retrieving documents) and data

extraction (extracting information). Data discovery deals with navigating a web site

to arrive at the pages containing the data you want, and data extraction deals with

actually pulling that data off.

A simple data discovery might be as simple as requesting a single URL. For example,

going to the homepage of a news site and extract out the latest news headlines. However,

in real-life scenarios, most of the time the case is not that simple. Password-protected

Chapter 3. Extracting Data From The Web 28

sites, cookies, JavaScript, Session IDs, Web forms iterations, traversing series of pages,

following all the detail links, and dynamic changes on websites are the obstacles.

In the data extraction phase, we already arrived at the page containing the data, so

that the only thing left is to pull it out of the HTML. The simple extraction can involve

creating a series of regular expressions that match the pieces of the page we want (e.g.,

URLs and link titles). However, regular expressions can be a bit complex to deal with.

Screen scraper can simplify the process by hiding most details behind the scenes.

Regular expressions is an easy approach when the number of page to be scraped is small

and all the data is contained in one page. Regular expressions are supported in most

programming languages, even in VBScript. Various implementations of it don’t vary

too much in their syntax. For someone that has been familiar with a programming

language, then regular expressions can be a quick solution to wrap a Web page. An

example which shows regular expression extraction method using PHP is the Yellowpages

Scraper Tutorial3.

Screen scraping is a technique in which a computer program extracts data from the

display output of another program. The program doing the scraping is called a screen

scraper. The output being scraped is intended for final display to a human user, rather

than as input to another program, and is therefore usually neither documented nor

structured for convenient parsing. Screen scraping is generally considered an ad-hoc, in-

elegant technique, often used only as a last-resort when no other mechanism is available.

Aside from the higher programming and processing overhead, output displays intended

for human consumption often change structure frequently. Humans can cope with this

easily, but computer programs will often crash or produce incorrect results.

Compared to regular expression, screen scraping abstracts the most complicated stuff

away. User can do some pretty sophisticated things in most screen scraping applications

without knowing anything about regular expressions, HTTP, or cookies. Once the user

master a particular a screen scraping applications, the amount of time required to scrap

a site is dramatically reduced.

3.4 Lixto Visual Developer

Lixto Visual Developer (VD) is a wrapping software tool which is developed by Lixto

GmbH4. Lixto VD allows its user to define wrappers, which visually access data in a

structured way, as well as configuring the necessary web connectors.
3http://www.scrapingpages.com/
4http://www.lixto.com

Chapter 3. Extracting Data From The Web 29

A wrapper is understood as a program that allows for automatic and flexible extraction

of information from regular documents such as Web pages. The process of creating

a data extraction program, e.g. generating XML based on relevant data taken from

HTML is usually referred to as wrapper generation [4]. Lixto VD is a methodology and

tool for visual and interactive wrapper generation. It allows wrapper designers to create

so-called XML companions to HTML pages in a supervised way.

Lixto VD is a developer tool for daily working business concerns. It provides businesses

with effective, user-friendly, and time critically viable wrapping, integration, and delivery

of information all in the same product. Such a combination of information processing is

called a service in the VD and corresponds conceptually to a particular solution.

The Lixto VD allows a Service Designer to create services that wrap his desired infor-

mation from multiple sources into a defined data model. With Lixto VD, web data

extraction programs can be developed interactively. The user only needs to markup

relevant parts of a web page and the program will automatically generate generalized

extraction rules that identify and extract the relevant content from the web page. This

method is very intuitive and increase productivity.

Figure 3.5: Lixto VD services overview [20]

3.4.1 Editor and Navigation

VD uses the Eclipse IDE as a framework and the Mozilla browser. Both of them are both

well recognized as standard and guarantee a sound basis for the further development

of the Lixto VD. A navigation is a consumer oriented human-computer interaction, for

which a sequence of human input commands such as mouse clicks, keyboard entry is

Chapter 3. Extracting Data From The Web 30

recorded by the VD and can be replayed at any given time to reproduce the desired

information. Recording a navigation is especially useful since some data on the Web

does not have an adress (URL), but requires a series of actions to access it. Figure 3.6

shows parts of Lixto VD main editor.

List of
project files

Navigation
sequence

Editors for wrappers
and external files

View properties and
selections in the
active area of VD

Figure 3.6: Main screen of Lixto VD

3.4.2 Data Model

Before doing wrapping, the wrapper designer should already know what kind of data he

wants and in what structure. In Lixto VD, the data model corresponds to the structure

of XML output. Figure 3.7 shows an example of data model for wrapping airports data

and its corresponding XML output. For merging data from different sources, using data

model is a good approach for integrating data.

Figure 3.7: Example of data model

Chapter 3. Extracting Data From The Web 31

3.4.3 Patterns and Filters

To extract data, the position of the data or group of data needs to be located. Patterns

can be regarded as the names for data and filters are the procedures to get the data. In

figure 3.8, the patterns are news, title, and links. The filter are the XPath expression

shown in the bottom of the figure. The filter characterize the location for news. Lixto

VD provides four kinds of filtering method: XPath, Text, Script, and Tokenization.

Figure 3.8: Using patterns and filters in Lixto VD

Chapter 4

System Design and Data

Preparation

4.1 System Architecture

The following client-server architecture (Figure 4.1) is used for the flight search system.

Clients access the application through Apache Web Server which is connected to the

back-end PostgreSQL database. The route map in the application is embedded using

JavaScript so that clients are also connected to Google Map server and retrieve the map

directly from there.

Map provider
(Google Map)

PostgreSQL
with PostGIS

Apache Web Server
with PHP applications

Figure 4.1: System architecture

32

Chapter 4. System Design and Data Preparation 33

4.2 Data Requirement

In this section, we analyze the data that we need and from where to obtain them.

• Coordinate of each airport in form of latitude and longitude. The coordinate

is needed to locate the position of the airport in the map and to calculate the

distance between one airport to another using the geocoding functions. This data

can be obtained from World Airport Codes1 (shown in Figure 4.8).

• Time zone information of each airport. We need this data to calculate the

flight duration since the time displayed in the flight schedule is the local time at

each airport. This data can also be obtained from World Airport Codes.

• Price. The best approach to get price data is by querying it at real time. But

by doing real-time price query, there are two aspects that need to be considered.

First, the system’s responsiveness would degrade since the search process (which is

fast since it is done locally) needs to wait until the price query is finished. Second,

the system needs to incorporate an algorithm on how to rank the search results

when there is failure of retrieving the price data (perhaps because of modification

in the web page structure or temporary server unavailability).

Therefore, to model the price, we use price index, with value from 1 to 10. Smaller

price index means that the airline offers flights at lower fare. One possible imple-

mentation is to assign low-cost carriers with price index value from 1 to 5, while

for major airlines it is from 6 to 10.

• Reliability. This factor correlates to the performance of the airline. There are

many different meanings that can be incorporated into reliability term, for ex-

ample on-time performance, less cancelled flights, or less incidents. The idea of

using reliability factor in the search originates from FlightStats2 which provides

flight statistics based on flight number (Figure 4.2), airline (Figure 4.3), and route

(Figure 4.4).

To model reliability, we use the same approach as price. We create reliability index

with value from 1 to 10. Higher reliability index implies that the airline is more

reliable (can be considered as having great on-time performance).

• Routes and schedules. This data is composed from departure and destination

airport (represented in three letters IATA code), departure time, and arrival time.

This information can be obtained from each airline website.

1http://www.world-airport-codes.com/
2http://www.flightstats.com

Chapter 4. System Design and Data Preparation 34

Figure 4.2: Flight statistic from Emirates’ flight number EK344

Figure 4.3: Flight statistic for Easy Jet

Figure 4.4: Flight statistic for Vienna-Amsterdam route

Chapter 4. System Design and Data Preparation 35

4.3 Business Logic

The business logic of the system is shown in Figure 4.5. Each part is shown with the

technology that is used to develop that particular part.

Web

Connections SchedulesAirports Distances Airlines

Rule System (PLpgSQL)

Easy Jet

Sky EuropeRyan Air

Other airline website
world-airport-codes

Data cleaning Data cleaning
Random
Schedule
Generator

User Interface

Figure 4.5: Business logic of the system

The system can be divided into four layers: web, wrapper, database , and user interface

layer. Each layer is detailed below.

4.3.1 Web and Wrapper Layer

In the previous section we have analyzed the Web resources from which we can obtain

our data. A Lixto wrapper is created for each of the resources, that is one wrapper for

the airport data, and one wrapper for each airline website.

It is often that the wrapped data still contains some unnecessary annotations, such as

punctuation marks, field names, and extra spaces. Therefore, we employ data cleaning

process to ensure that the data only contains the exact information that we want. Besides

data cleaning, some preprocessing steps may also be needed to ensure that the data

complies with the database schema. For example, later when we wrap the airport’s

geographical coordinate, the latitude and longitude is expressed in degrees, minutes,

and seconds. We need to convert this form into a single decimal degree to fit with the

table schema.

Chapter 4. System Design and Data Preparation 36

Lixto wrapper generates output in XML format. We use Java’s Simple API for XML

(SAX) technology to read the XML output and do the data cleaning process. Standard

Java technology is used to preprocess the data to be in the correct format. After having

the clean data in correct format, there are two options to populate the database, either

using Java Database Connectivity (JDBC) technology or exporting the data into comma-

separated values (CSV) text file, which can be imported by PostgreSQL.

In Figure 4.5, we also see that the wrapped data from the airline websites is inputted

to the Random Schedule Generator. In short, this generator is used to create arbitrary

schedules for the airlines. It will be described in more detail in Chapter 6.

4.3.2 Database Layer

We need a database that supports geocoding feature. Currently, there are several pos-

sible database options. The evaluation of some leading database providers is provided

below.

Oracle provides geocoding through Oracle Locator and Oracle Spatial, however it is only

available in non-free Oracle Editions (Standard and Enterprise). MySQL has already

announced their support for spatial extensions since MySQL version 5.0.16 (November

2005), but until now, the extension has not been mature enough and still under devel-

opment. SQL Server has not provided any spatial data support. They plan to support

it in the future release of SQL Server 2008.

With the above facts, PostgreSQL with PostGIS spatial extension is the most suitable

choice. It is one of the leading relational database management system currently avail-

able. It is free, open source software which allows anyone to use the software on any

number of servers without restrictions on number of users, connections, CPUs, or size of

data set. It can be optimized for many situations, ranging from read-only information

websites to multi-user e-commerce systems with high transactional load. Whether the

site needs a single shared database server with a few tables, or multiple database servers

storing millions of records, PostgreSQL is able to scale with the demands.

Figure 4.6 shows the database schema of the system. Table 4.1 to 4.7 show the detailed

schema for each table.

Chapter 4. System Design and Data Preparation 37

AIRPORTS

PK iata

name
city
country
countryid
latitude
longitude
gmt
coordinate

CONNECTIONS

PK connid

FK1 origin
FK2 destination

DISTANCES

origin
destination
distance

AIRLINES

PK airlineid

name
priceindex
reliabilityindex

SCHEDULES

FK2,I1 origin
FK3,I1 destination
FK1 airlineid

departuretime
arrivaltime
departureday
arrivalday
duration

Figure 4.6: Database schema of the system

Table 4.1: Schema of Table Airports

Field name Data type Notes
iata char(3) Primary key
name varchar(80) Airport name
city varchar(40) City of airport
country varchar(40) Country of airport
countryid char(2) Country in 2-letters code
latitude numeric In degrees
longitude numeric In degrees
gmt numeric GMT offset of the airport
coordinate point Point is PostGIS data type

Table 4.2: Schema of Table Airlines

Field name Data type Notes
airlineid serial Primary key
name varchar(40) Airline name
priceindex integer Range value is 1 to 10
reliabilityindex integer Range value is 1 to 10

Chapter 4. System Design and Data Preparation 38

Table 4.3: Schema of Table Connections

Field name Data type Notes
connid serial Primary key
origin char(3) Foreign key reference to Airports.iata
destination char(3) Foreign key reference to Airports.iata

Table 4.4: Schema of Table Schedules

Field name Data type Notes
origin char(3) Foreign key reference to Airports.iata
destination char(3) Foreign key reference to Airports.iata
airlineid integer Foreign key reference to Airlines.airlineid
departuretime time Local time at departure airport
arrivaltime time Local time at arrival airport
departureday integer 1=Monday, 2=Tuesday, . . ., 7=Sunday
arrivalday integer 1=Monday, 2=Tuesday, . . ., 7=Sunday
duration integer In minutes

Table 4.5: Schema of Table Distances

Field name Data type Notes
origin char(3) Foreign key reference to Airports.iata
destination char(3) Foreign key reference to Airports.iata
distance numeric In kilometers

4.3.3 User Interface Layer

For the user interface, we choose to use PHP which provide server-side processing so that

the page can be generated dynamically on-the-fly. PHP is an open source technology

that can be used to create applications that run for free on any Apache web server.

PHP has many built in functions, libraries and classes. In this way PHP programming

language allows a quicker development of web applications. PHP applications can be

connected to various databases. PHP is a flexible and portable language. Applications

programmed in PHP are easy to be implemented or ported on many operating systems,

such as Windows, Linux, MacOS and Solaris. In addition to being cross-platform, it has

built-in functions for connecting to various popular database, including general ODBC

connections.

Chapter 4. System Design and Data Preparation 39

4.4 Adding Geometry Column in Table Airports

To create table Airports with structure as in Table 4.1, two steps are needed because

the coordinate column is a geometry column. At first, we create the first eight fields

using SQL CREATE TABLE statement. Afterwards, the coordinate column is gener-

ated using the following PostGIS statement:

SELECT AddGeometryColumn(’public’, ’airports’, ’coordinate’, 32661,

’POINT’, 2);

where:

• public is the schema where AIRPORTS is located.

• airports is the table to be added with this new column.

• coordinate is the column name.

• 32661 is the SRID3 which refers to the WGS 844 system , used by DoD for all its

mapping, charting, surveying, and navigation needs.

• POINT is the geometry data type that we need to hold geometric data representing

pair of [longitude, latitude].

• 2 is the dimension of POINT.

The coordinate column is populated by executing the following statement:

UPDATE airports SET coordinate = transform(PointFromText(’POINT(’ ||

longitude || ’ ’ || latitude || ’)’,4269),32661);

where:

• transform is the PostGIS built-in function to convert data from one SRID to an-

other, where in the example above, it is converted from SRID 4269 (longitude/lat-

itude measurement) to SRID 32661 (WGS 84 system).

• PointFromText is another PostGIS built-in function which recognize a text in the

format of Well Known Text (WKT) and converts it to POINT data type.

• || is the concatenation operator in PostgreSQL.
3Spatial Reference Identity
4World Geodetic System of 1984

Chapter 4. System Design and Data Preparation 40

4.5 Wrapping Airports Data

Figure 4.8 shows the screenshot of WAC. In the top bar, we have alphabets from A to

Z. Each alphabet contains the link to the detail page, containing all airports with IATA

started with the letter. The figure shows airports with IATA starting with A.

These alphabets are the first iterator. Below the first iterator is the list of airports which

are the second iterator. For each airport, by clicking on the airport name, WAC opens

the detail page containing airports data that we need. Appendix A contains full details

on the wrapping of airports data. Figure 4.7 shows the data model that is used in the

wrapper.

Figure 4.7: Lixto data model for airports

First iteration

Second iteration

Detailed data of
each airport

Figure 4.8: World Airport Codes screenshot

Chapter 4. System Design and Data Preparation 41

The sample XML output from the wrapper is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<document>

...

<airports>

<iata>: VIE</iata>

<name>: Schwechat International (?)</name>

<city>: Vienna (?)</city>

<country>: Austria (?)</country>

<countrycode>: AT (?)</countrycode>

<longitude>: 16 34 11 E (?)</longitude>

<latitude>: 48 6 37 N (?)</latitude>

<gmt>: +1.0 (?)</gmt>

</airports>

...

</document>

4.6 Data Cleaning of Airports Time Zone Value

In the data that we get from WAC, we found the existence of some invalid time zone data.

Some airports have simply its minus and plus sign reversed, however some others are

completely located in wrong time zone. Therefore, aside from the simple data cleaning

effort, such as cleaning the unnecessary annotations, in here we need a more complex

data cleaning effort.

The following heuristics are used for the data cleaning:

• Most of the records have its countryid field in ISO 3166-1 alpha-2 format (e.g.

AT for Austria, DE for Germany).

• Most countries are located in single time zone.

The major steps of the data cleaning process are as follows:

1. Create another table Airports2 as the clone of table Airports (schema and

records).

2. Delete all records in Airports.

Chapter 4. System Design and Data Preparation 42

3. Wrap time zone data from Wikipedia , from here we can get pairs of [countryid,

TZname], for example [AD, Europe/Andorra].

4. Put data from step 3 into a new table CountryTZ.

5. Wrap time zone data from Tiscali website , from here we can get pairs of [TZname,

GMT], for example [Europe/Andorra, +1].

6. Put data from step 5 into a new table TZGMT.

7. Join table CountryTZ and TZGMT by matching TZname column.

8. Update gmt in Airports2 with gmt from the join table for all countries with single

time zone.

9. Move (insert into Airports and delete from Airports2) all airports in single time

zone countries (which is now already in valid gmt) from Airports2 to Airports.

10. Now, table Airports2 only contains airports located in multi-time zone countries.

11. Check each airport in Airports2, if it has same absolute gmt value with one of

the gmt value in the join table in its country.

• If yes, then update its gmt with gmt from the join table and move it to table

Airports.

• If no, then we can’t assign time zone to this airport because we don’t know

in which time zone exactly the airport is located.

This step may be inaccurate because it only relies from the heuristic assuming

that most of the records have its minus and plus sign reversed.

12. In the end, we have table Airports containing records with valid gmt content field

and table Airports2 containing airports with unknown time zone.

4.7 Wrapping Airlines Website

4.7.1 Choosing the Airlines to be Wrapped

Some airline websites use text box to input the city/airport name, some others use select

box where user simply picks the city/airport name from a list. For those which use text

box, to find the routes offered by that airline we need to try to enter all possible pairs

of IATA codes that we have obtained from wrapping airports data.

Chapter 4. System Design and Data Preparation 43

Even with 100 airports, then there are 9900 possible pairs that has to be tested, where

most of the pairs are not served by the airline. The fact is that there are more than

9000 airports all over the world (so there are more than 80 million pairs that need to

be tried), where some of them are used only for national, chartered, or private flights.

Hence, trying all possible pairs is not practical since the number of possible pairs is too

large.

Therefore, we choose to wrap only the airlines that use select box. Doing this is much

simpler since the options are limited. The airlines only give possibility to choose from

the airports which they served. Limiting our scope on website with select box, some use

JavaScript, some do not. With JavaScript, each change in departure airport selection

will change the list of possible destination airports. This is also desired since we do not

waste time on searching for two airports where no flights between them are served by

the airline. Figure 4.9 shows an example from an airline website that use select box with

JavaScript.

Figure 4.9: Choosing only airlines with select box and JavaScript

As in wrapping airports data, by using select box and JavaScript, we can maintain

a list of departure airport as first iterator, then browse through the list of possible

destinations as second iterator. The detail page is shown after the form is submitted

(deep web navigaton). All of these actions, such as mouse click and submitting form are

supported by Lixto VD.

4.7.2 Filtering Search Results

We are only interested in direct routes. By only having direct routes, we can freely mix

and match the routes and airlines. Some airlines show both direct routes and transit

Chapter 4. System Design and Data Preparation 44

routes in their search results. For example, between Vienna and Berlin, the search

results from Air Berlin shows both direct flights and flights with transit at Dusseldorf

(Figure 4.10).

There are two options for eliminating this example of non-direct routes. We can use

complex XPath expression to choose only flights where the via column is empty. Another

option is eliminating it in the data cleaning and preprocessing step when we process the

XML output.

The data integrations may also pose a problem because an airport may have different

name on each airline. For Milan Bergamo (BGY) airport, Ryan Air name it as Milan

(Bergamo), Myair name it as Milano Orio al Serio, and Sky Europe name it as Milan

- Bergamo (BGY). Fortunately, almost all airlines embed the IATA code of the airport

in the value attribute of the select box element. Hence, we know exactly which airport

is mentioned by the airline although there are variations in airport names.

In Figure 4.11, the common data model for connections is shown. Figure 4.12 and 4.13

show the wrapping steps for Ryan Air and Air Berlin with their corresponding fragment

of XML output. The wrapping details is not described here.

Figure 4.10: Air Berlin’s direct flight and flight with transits

Figure 4.11: Lixto data model for connections

Chapter 4. System Design and Data Preparation 45

Figure 4.12: Wrapping Ryan Air

Figure 4.13: Wrapping Air Berlin

Chapter 5

Scalable Algorithm

5.1 Complexity for Flight Search

A graph G = (V,E) is a finite set V of nodes and a set E of edges, which are pairs

of nodes. Our flight database can be viewed as a directed graph, with airport as the

nodes and the pair of airports where exist direct flights between them as the edges.

Two airports can be connected by several flights (either from a single airline or several

airlines). Therefore, we may have several edges between two nodes in the graph. In this

case, our graph is called multigraph.

In our database design, we differentiate between table Connections which contains the

unique origin-destination airport pairs, and table Schedules which contains the schedule

details of each flight, such as departure and arrival time, departure and arrival day, day

of operations, and flight duration.

Figure 5.1 shows the relationship between the information inside the tables (viewed in

simplified version by omitting the field name) and the corresponding graph representa-

tion. In table Schedules, the rightmost column indicates the number of available flights

on a particular day for a particular route (to be noted, the numbers of available flights

on each day may be different).

5.1.1 Complexity for Direct Routes

For direct routes (no transit), the system simply browse the list of records in table

Connections. If it finds a matching record, then there exists direct flight from the origin

to destination. The search complexity is linear to the size (number of records) of table

Connections.

46

Chapter 5. Scalable Algorithm 47

CONNECTIONS
A – B
A – C
A – D
B – C
D – C
C – E

SCHEDULES
A – B
A – C
A – D
B – C
D – C
C – E

10
10
5
7
9
15

A

B

C

D

10

10

7

5 9

AIRPORTS
A
B
C
D
E
F

ACTIVE
AIRPORTS

A
B
C
D
E

E
15

Figure 5.1: Graph representation of the flight database (table is represented in simple
format, not displaying the fields name)

5.1.2 Complexity for Transit Routes

For transit routes, assume that we have graph G = (V,E) where V = {A1, A2, . . . , Ak}
and the graph is in full-mesh topology, so that ∀x ∈ V, y ∈ V , where x 6= y we have

(x, y) ∈ E. We want to know how many route possibilities we have for going from Ai to

Aj .

For one-transit case, from Ai we have (k − 1) edges to other nodes. However, we can’t

go directly to Aj , since we would arrive at the destination without transiting (our goal

is to find one-transit routes). We can go to (k − 2) nodes, where from each we can go

to Aj . Therefore, there are (k − 2) possible routes for one-transit case. For two-transit

case, with the same reasoning, there are (k − 2). (k − 3) possible routes from Ai to Aj .

The number of possible routes is different from the search complexity to find them.

In our database, we do not retain the list of nodes. What we retain in table Connections

is the ordered pairs of airports where there exists direct connection between them. The

transit routes can be found by using table joins. For finding one-transit routes, we join

two table Connections. Assuming the table size is r, then the join table would be of

size r2. For finding two-transit routes, we join three table Connections, so that the size

of the join table is r3. From the join table, we filter so that we retrieve only the records

with desired departure and destination airport.

We can conclude that for general graph, the search complexity for determining possible

routes is O(rs+1) where r is the size of table Connections and s is the number of transits.

In other words, it is O(r2) for one-transit route and O(r3) for two-transit route.

Chapter 5. Scalable Algorithm 48

The number of possible routes is a factor in the total complexity for flight search. The

other factor is the number of edges between two nodes. Figure 5.2 shows illustra-

tion for this problem. The p in the graph represents the number of edges between two

nodes.

A

B

C

D

p

≤ p

A

B

C

D

E
p

≤ p

≤ p ≤ p ≤ p

≤ p≤ p

Figure 5.2: Search complexity for one-transit and two-transit routes

For one-transit case in the left part of the figure, it is shown that there are p edges

between A and B, where p is the biggest number compared to other edges in the same

graph. Hence, there are at most p2 combinations for route from A to C, through B. For

route from A to C, through D, the number of combinations may be smaller that p2, but

we can say that it is upper-bounded by p2. For two-transit case in the right part of the

figure, with the same reasoning, there are at most p3 combinations from A to E for each

possible route (either A-B-C-E or A-D-C-E).

Therefore, we conclude that in general case, the search complexity for searching posssible

flight combinations for each possible route is O(pq) where p is the maximum number of

edges in any particular leg among all possible routes, and q is the number of transits. It

is O(p2) for one-transit route and O(p3) for two-transit route.

Summarizing from the explanations above, the total flight search complexity is

O(n2) for one-transit and O(n3) for two-transit where n = p. r.

5.2 Route Determination

In flight search system of any scale, direct route is the simplest one to search, there is no

variation on finding their existence. Route determination is interesting to be discussed

for transit routes.

From the complexity side, the algorithm of finding transit routes is polynomial, hence

it is already tractable. However, what is desired mostly from a search engine is its

responsiveness. The system has to be able to give search results in a reasonable time

for human users. Performing exhaustive search by finding and evaluating all possible

Chapter 5. Scalable Algorithm 49

combinations is the best way to find the best routes, but the user may not be willing to

wait for the long search time.

We observe that not every possible routes give good search results. For example, a

possible one-transit route from Vienna to Frankfurt is through Singapore, a route which

would never be taken by anyone. So, we need an algorithm that can eliminate this kind

of route. The system doesn’t need to find all possible flight plan, but it has to be able

to return a part of the best routes (if not the best route itself) in the search results.

Below we discuss on some considerations in finding the heuristic for optimal search.

5.2.1 No Transit vs. One Transit vs. Two Transit

In this section we analyze whether we can optimize the search based on the number of

transits of the route. In the system, there are three criteria to sort the search results:

Time, Price, and Reliability. Users can also determined how many search results that

they desire.

If Time is the first criterion, then direct routes must be in the top ranks of the search

results. Undoubtedly, direct routes have shorter journey time compared to transit routes.

To illustrate, for short-time flights where flight duration is less than 3 hours, then having

transit already adds at least one hour to the total journey time. An optimization action

that can be performed is to stop the search when the number of available direct flights

already exceeds the number of search results desired by user. To search further for

transit routes is useless since the transit routes would never appear in the search results.

If the first criterion is Price or Reliability, then the number of transits doesn’t give hint

on how to perform optimization. With Price as the first criterion, there is a chance

where total price of transit routes is cheaper from the price of direct routes. For example,

two flights from low-cost airlines can have cheaper price than one direct flight by major

airlines. If Reliability is the first criterion, then several flights from reliable airlines

must have higher reliability index value compared to a direct flight with unreliable

airlines.

5.2.2 Transit Time Analysis

In this section, we take a look on the transit time factor in route determination. For

this purpose, we search for routes from London Stansted (STN) to Nuremberg (NUE)

on a particular date. There are several possible transits shown in Figure 5.3. Simply

observing the route map, Düsseldorf and Amsterdam, unlike Berlin and Munich, seems

to be good transits since it is located in the middle, between the origin and destination.

Chapter 5. Scalable Algorithm 50

Dusseldorf (2h 10m) Amsterdam (2h 25m)

Berlin (2h 35m) Munich (2h 35m)

Figure 5.3: Possible transits from London Stansted to Nuremberg, the number in the
brackets are the journey time without transit (only the total flight duration)

The question is, from the four possible transit airports shown in the figure, which one

is the best? There are some possible answers, depending on the criteria that we use to

evaluate each route. Table 5.1 shows the time details for each route.

Table 5.1: Transit time comparisons from London Stansted to Nuremberg, through
Düsseldorf (DUS), Amsterdam (AMS), Berlin (TXL), and Munich (MUC)

DUS AMS TXL MUC
STN - x 1h 15m 1h 10m 1h 40m 1h 50m
Transit time 2h 25m 3h 30m 2h 35m 4h 10m
x - NUE 0h 55m 1h 15m 0h 55m 0h 45m
Total journey time 4h 35m 5h 55m 5h 10m 6h 45m
Flight duration (without transit) 2h 10m 2h 25m 2h 35m 2h 35m

If we solely consider the flight duration time, then the order is Düsseldorf, Amsterdam,

Berlin, and Munich. But if we consider total journey time (flight duration + transit

time), then the decision really depends on the transit time in each airport. In another

case where the transit time in Berlin is 1 hour, but the transit time in Düsseldorf is 3

hours, then routes through Berlin are better options than Düsseldorf.

The above example try to show that transit time can not be estimated (unlike the

flight duration which can be estimated by creating a function of distance vs. time -

this function is used in the random schedule generator). We don’t know which transit

airport has the shortest transit time, except if we review all possible transit airports

(exhaustive search), but once again, this is infeasible in terms of processing time. The

best effort is by choosing some hubs, then check for total journey time for route through

those hubs. There is a chance that the real best route is missed due to misjudgement

Chapter 5. Scalable Algorithm 51

of hub airports. However, this is the trade-off that can not be avoided in exchange for

a scalable and responsive system.

5.3 Hub Identification Heuristics

An airport may be regarded as hub if it is used as a transfer point to get passengers

to their intended destination. Many hubs of the airlines are situated at airports in the

cities of the respective head offices. Some airlines use only a single hub, while some

others use multiple hubs. Figure 5.4 shows Transavia route map where Amsterdam is

the hub.

Figure 5.4: Transavia route map, with hub at Amsterdam

Since we support the idea of mixing airlines, then when we mention ”hub”, the hub

can be the traditional airline hubs (such as Frankfurt, Dubai, and Amsterdam) or other

airports which have high-traffic (for a particular route) or served by many airlines.

In real-world, this new hub concept exists. A recent article from Travel Daily News

[29] discuss about the investment by Düsseldorf International Airport to build up its

infrastructure in anticipation of additional hub functions.

The hub identification heuristic idea is depicted in Figure 5.5. By using the heuristic, the

system no longer browse through each possible routes and search all possible combina-

tions from them. Instead, it chooses some good hubs then try to find flight combinations

from routes going through these good hubs.

Chapter 5. Scalable Algorithm 52

From: Berlin
To: Frankfurt

One
Transit

Nuremberg
Vienna
Naples
Ibiza

Alicante
Luxor

Heraklion
…

Nuremberg
Vienna

London Heathrow
Naples

Hub
Identification

Input from user

Search for
routes through
these transits

List of all possible
one-transit airports

Applying the
hub identification
heuristics to filter
the transit airports

List of airports that
are considered as
good hub for this route

Search for possible
routes in database

Figure 5.5: Route search techniques by using hub

There are two possible outcomes for using this heuristic. First, if the heuristic misjudges

a hub which is actually a good hub, then we may miss the optimal search results. Second,

not every search results that we get can be claimed as the best route (such as the shortest-

journey-time route or the lowest-fare route) since we only search from a fraction of all

possible routes.

Therefore, it is interesting to find an approach for this hub identification heuristic. The

approach needs to behave dynamically and can adapt for various cases on various graph

model. The process of finding the good hubs needs to have short processing time since

this processing time also contributes to total processing time of the search process.

5.3.1 Approaches for Hub Identification

In this section we discuss about several approaches for identifying hub. To be noted, a

hub that is good for one route, may not be good for other routes.

First approach is to list the hubs based on current knowledge, for example by using the

traditional airline hubs. This approach has several weaknesses. It is not fully dynamic

because it needs some human maintenance for updating the list when there are changes

(perhaps airline bankruptcy or airport renovation). If the list is not regularly updated,

then it is possible that one time it is outdated and not relevant anymore. This approach

can be enhanced, for example by adding the information for each routes, which hub is

relevant for them. However listing all possible hub for all possible pairs of airport is a

very tedious and not efficient task.

Chapter 5. Scalable Algorithm 53

Second approach is to identify the hub dynamically, by counting the number of air-

ports reachable from that airport. The larger the number of reachable airports, then the

hub quality is better. However, this approach suffer from irrelevant hub problem. By

this approach, the hub ranking for any route is the same. For example, Dubai is a hub

airport of Emirates. It is reachable from many airports and can reach many airports.

Therefore, it is always on the top ranks of hub. But, for routes between two airports in

Europe, Dubai is not a good hub.

Third approach is also dynamic, that is by considering the number of available connec-

tions from the origin airport to transit airport and from the transit airport to destination

airport. The problem with this approach is that what method (addition or multiplica-

tion) do we use for saying transit A is better than transit B (Figure 5.6). Second problem

is which connections to be considered in this approach? Is it only the connections that

meet with user criteria (for example, departure between 8:00 and 10:00, transit time be-

tween 1-3 hours)? If we use this technique, then it it means that we need to evaluate all

possible routes, only to make the hub ranking. Hence, we don’t need the hub anymore

because the best route should already be able to be identified from the process of hub

identification.

A B

3 + 2 = 53 + 2 = 5
3 x 2 = 63 x 2 = 6

5 + 1 = 65 + 1 = 6
5 x 1 = 55 x 1 = 5

Figure 5.6: Identifying hub by number of available connections

Fourth approach is by ranking the hub based on the minimum journey time (flight

duration + transit time). But this means that all possible hubs need to be evaluated

first before the ranking is performed. Then the best routes should already be found

before the hub is found.

Fifth approach is by dynamically consider the geographical position of the possible

hubs with respect to the origin and destination airport. From the latitude and longitude

of origin and destination airport, we can calculate the location of the middle point, then

create virtual circle with origin and destination airport as the diameter. The radius of

Chapter 5. Scalable Algorithm 54

the virtual circle is the distance between the middle point and the origin/destination

airport.

Airports that are located inside the virtual circle between origin and destination has

better ranks than the one outside. We can know whether an airport is located inside

the virtual circle or not by computing the distance from the middle point to the airport.

If the distance is less than the radius, then it is inside the circle. One problem for

this approach is that there exist some pairs of airport where no direct connection are

available, and all possible transit airports are located outside the virtual circle. This

idea is illustrated in Figure 5.7.

Figure 5.7: Identifying hub by using geographical coordinate, the left picture has
many transit airports in between, while the right has no transit airports in between

This approach is also prone for intercontinental routes. For this kind of routes, we will

have a virtual circle with a very large value of radius, and we need to consider enormous

number of airports which are located inside this virtual circle, as the hub.

Sixth approach is similar with fifth approach and it even covers the fifth approach by

solving the case where there are no possible transit airports in between. This approach

calculates the total distance from the origin to transit and transit to destination. From

simple physics law, we know that distance is directly proportional to time. Hence,

minimizing the total distance means also minimizing the flight duration (to be noted,

flight duration is the time which is spent for flying and doesn’t consist of transit time).

Therefore, this approach is optimal, in terms of minimizing flight duration.

5.3.2 Optimality of the Heuristic

Using the sixth approach (total distance approach), the distance between pairs of airport

can be pre-computed beforehand. The geographical coordinate of an airport will be

likely not changing (if never). Hence, we create another table, Distances that contains

Chapter 5. Scalable Algorithm 55

distance between each pair of airport. By putting index on the table, the retrieval of

the records in table Distances is faster.

Suppose that we are looking for routes from Berlin (TXL) to Frankfurt (FRA). Figure

5.8 shows the possible one-transit routes, sorted by their total journey distance. The

shortest route uses Nuremberg (NUE) as hub. The question is, how many possible routes

that the system need to consider to be included in the search? We can put a hard limit

such as only include 10 shortest-distance routes in the search. The problem is, if the

best route is actually through hub that is on position 11 of the list, then we would miss

the best route.

In the following discussion we discuss the approach that we use, based on the transit

time input parameter from user. In our system, user can configure the minimum and

maximum transit time (Figure 5.9). We also show the optimality of our hub identification

heuristic.

From: Berlin
To: Frankfurt

Input from user

Note:
- Distance is pre-computed (not computed at run time)
- Put index on column origin and destination to enhance

performance

Figure 5.8: Identifying hub by total journey distance

To use this approach, first we need to determine the constant value of travelled distance

per hour (how many kilometers can be travelled in an hour). Assume that we take the

value of 1000, which means that in 1 hour the aeroplane can travel up to 1000 km.

Assume also that the user wants the transit time between 1 and 3 hours.

Referring back to Figure 5.8, the route through Nuremberg takes 634 km. If the transit

time in Nuremberg is 1 hour, then for sure this is the best route (having the minimum

total journey time) since we have shown that our heuristic approach guarantees minimum

flight duration. Let’s now consider if the transit time in Nuremberg is 3 hours (the

maximum transit time allowed by the user). In this case, for the same total journey time

Chapter 5. Scalable Algorithm 56

Figure 5.9: Start page of the system

as the one offered by Nuremberg, the aeroplane can travel for another 2 hours (equal to

2000 km, based on our constant value of 1000) through another hub X, provided that

the transit time in X is 1 hour. If the transit time in X is more than 1 hour, then route

from Nuremberg must have better total journey time performance.

How about the possible hubs with total distance larger than 2634 km? In this case,

these hubs would not give the best route in terms of total journey time since even when

the transit time at these hubs is 1 hour (minimum), the total journey time is already

exceeding the route offered through Nuremberg with 3 hours (maximum) transit time.

This approach answers the question on how many possible routes needs to be evaluated.

In this example, it means that we only need to consider routes with distance at most

2634 km, which means only the top three routes from Figure 5.8.

This approach may pose a problem if the maximum transit time parameter is configured

to have a big value (for example, 7 hours which equals 7000 km) or there are many

possible routes with close distance one to another. In these cases, the system becomes

not scalable due to many routes that needs to be checked. Therefore, we also put an

upper hard limit on number of possible routes to be checked. Eventhough we may miss

the real best route due to this upper limit, but the heuristic would find routes that are

close to the real best route.

Chapter 5. Scalable Algorithm 57

5.4 Searching from Close Airports

Figure 5.10 shows the flowchart of searching from close airports feature. If user choose

this feature then the system adds the list of close airports to the list of possible departure

point. The possible routes from all departure point are then presented to user (Figure

6.5). User can modify which routes to consider by selecting/unselecting the check box

which is provided to the left of each route.

No

Yes

START

Search from
close

airports?

Search for list of
close airports an add

them as possible
departure points

Present the list of possible routes to user,
with recommendation on which route to search

from hub identification heuristic

Present search results

END

Search #1 Search #2 Search #n

Aggregation, evaluation, and ranking of search results

Figure 5.10: Flowchart for searching from close airports

The search process for each route is performed independently. The search results from

each route is then aggregated before presented based on the selection criteria that have

been choosed by user.

Chapter 5. Scalable Algorithm 58

5.5 Evaluation Function

In this section, we describe the evaluation function for each sorting criteria that is provide

in the system.

• Time means the total journey time which is the sum of flight duration with transit

time (if any).

• Reliability is the average reliability of the airlines involved in the route.

• Price is the sum of product between distance with price index (computed for each

flight leg).

The detail page as in Figure 6.6 shows the details time, price, and reliability for each

flight leg.

5.6 Scalability

In this section we present the approaches that are implemented in the system to ensure

its scalability.

5.6.1 Limit The Search to Two Transit

We need to limit the search to two transit for two reasons. First, SQL is not a deductive

database system. It means that it can only search for routes from limited-specified

predetermined number of transits. Second, by limiting to two transit, we limit the

complexity to O(n3). We observe that in real world, two transit can already cover a

large part of all possible pair of airports.

5.6.2 Table Design

We split our tables that contain the routes information into two tables, Connections

and Schedules. Table Connections is simply used for knowing the existence of direct

routes and to find one-transit and two-transit routes. Table Schedules contains the

exact schedule of each flight, including airline ID, departure and arrival time, and day

of operations. By separating the tables, we avoid the extra processing time to process

DISTINCT query from table Schedules to retrieve possible connections.

Chapter 5. Scalable Algorithm 59

5.6.3 Limiting the Number of Possible Routes

This is done by using the hub identification heuristic which only considers several routes

through hubs that are expected to contain the best or close-to-the-best route.

5.6.4 Limiting the Number of Flight Combinations

Reliability
index

Price
index

Upper bound

Lower bound

Airline 1

Airline 5

Airline 100

Airline 57

Airline 33

Upper
bound

Lower
bound

Figure 5.11: Limiting the airlines included in the search by putting bounds on price
and reliability index

Airline ID

Departure
time

Airline ID

Departure
time

Latest
departure

Earliest
departure

Min
transit Max

transit

Arrival
time

Earliest
next

departure

Latest
next

departure

Departure
time

Figure 5.12: Limiting the airlines included in the search by putting bounds on transit
time

Chapter 5. Scalable Algorithm 60

In our complexity discussion previously, the second factor that affects total complexity

is the number of edges between two airports. The more number of edges, then the more

combinations that need to be checked. There are two techniques that we use to limit

the number of combinations.

First, we limit the number of airlines considered in a route (Figure 5.11) by putting

lower and upper bound of price and reliability index. We can ignore flights from airlines

that do not match the price and reliability criteria posed by the user. For example, user

that wants to only search from low-cost carriers can configure to only search for airlines

with price index less than 5. Only airlines meeting the constraint are included in the

route search. In this way, the number of combinations can be reduced.

Second, we put bounds on minimum and maximum transit time for connecting flights.

We provide configuration option both for one-transit case and two-transit case. Figure

5.12 shows the idea. The system does not consider all flights during that day, but only

flights within the transit time range. Hence, the number of combinations is also reduced.

Chapter 6

Experimental Results

6.1 Random Schedule Generator

In chapter 4 we have discussed about wrapping airlines where we collect the information

on departure airport, destination airport, departure time, and arrival time. We wrap

ten airline websites to get the data for the knowledge base of the generator.

From this data, we can calculate the distance between the two airports (by using geocod-

ing functions) and the flight duration (by using the GMT time zone offset value at each

airport). Hence, if we plot the distance and flight duration in 2-dimensional plane, we

can obtain the function of time versus distance as shown in Figure 6.1 and 6.2.

We use least squares method to measure the equation function. By observing the points

in the plane, the most appropriate least squares method to be implemented is the linear

method. By having the time as function of distance, then we can measure the flight

duration, given the departure and destination airport.

We use this information to create a random schedule generator which functions to gen-

erate arbitrary schedule for our virtual airlines so that we can test the system with

a lot of airlines. The generator is build by using Java technology, with the following

configurations:

• Maximum flights per day is limited to 5.

• The earliest departure time for the first flight is 6 AM.

• The latest departure time for the first flight is 10 PM.

• In case where there are more than 1 flight per day, per airline, the departure time

is distributed evenly, for example 2 hours between each flight.

61

Chapter 6. Experimental Results 62

• Since we are using mathematical function, then the result is exact. For the same

pair of departure-destination airport, the flight duration is always the same. In

real-world, for same route, different airlines may have different flight duration.

Therefore, we add some random time interval offset to the function so that there

exisst variation of flight durations between different airlines.

• Each day has 75% chance that the flight operates on that day. In a week, the flight

has to operate on at least one day.

y = 0.0569x + 48.909

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

0.00 2,000.00 4,000.00 6,000.00 8,000.00 10,000.00 12,000.00 14,000.00
Distance (km)

Ti
m

e
(m

in
ut

es
)

Figure 6.1: Least squares function for distance less than 12,000 km

y = 0.0439x - 90.603

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

0.00 5,000.00 10,000.00 15,000.00 20,000.00 25,000.00 30,000.00 35,000.00

Distance (km)

Ti
m

e
(m

in
ut

es
)

Figure 6.2: Least squares function for distance greater than 12,000 km

Once we have created this generator, then we can create various graph model (e.g. hub

and spoke, full mesh, partial mesh, etc) for testing the system. We can also, for example,

wrap the direct routes from other airlines (without wrapping their departure and arrival

time) then use this data as input to the generator to generate random schedule.

Chapter 6. Experimental Results 63

6.2 Search Parameter

6.2.1 Common Search Parameter

Common search parameter contains the fields that needs to be inputted by user as the

basic requirements to start the search. These parameters are:

• Departure airport.

• Destination airport.

• Departure day.

Figure 6.3: Common search parameters

There are also some additional parameters, which is optional whether to be configured

or not by the user. If it is not configured, then default values are used. Figure 6.3 shows

the user interface for common search parameters.

• Range of departure time.

To consider only flights departing between the specified hours. Default value is

from 8:00 to 14:00.

• Number of maximum results to be returned.

Default value is 50 results.

• Type of routes to be searched (0 or 1 or 2 transit).

Default value is 0 and 1 transit.

• Criteria for sorting the results.

Default value is Time, Price, and Reliability.

Chapter 6. Experimental Results 64

Figure 6.4: Advanced search parameters

6.2.2 Advanced Search Parameter

Advanced search parameters are the parameters that can be configured for fine-tuning

the search. Figure 6.4 shows them. There are several parameters:

• Single transit time configuration.

This transit time configuration are used only for routes with transit. By using

single transit time configuration, the same transit time constraint is used for transit

between first and second leg and for transit between second and third leg.

• Separate transit time configuration.

By using separate transit time configuration, then transit time constraint between

first and second leg and between second and third leg is different. For example, if

the user arrives at first transit at night (for example, 11 PM), and wants that the

next flight to be in the morning, then he can configure the minimum transit time

between first and second leg to be 7 hours (so that the next departure is at least 6

AM on the next day). Between second and third leg, he can configure the transit

time to be between 1 and 2 hours.

• Airline choices.

By configuring this parameter, user can choose, for example to only consider flights

from low-cost airlines (by limiting the price index value, for example between 1

and 5). They can also try to search from low-cost and reliable airlines (by limiting

both price and reliability index).

Chapter 6. Experimental Results 65

6.3 Performing the Search

In this section, we show the steps for doing the search for routes from London Stansted to

Lisbon. The start page of the search is already shown at Figure 6.3 and 6.4. Summarizing

the parameters:

• Departure day: Monday.

• Departure time: between 8:00 and 14:00.

• Search for 0, 1, and 2 transit routes.

• The results are sorted based on Reliability, Price, and Time.

• Search also for routes from other airports which is within 100 kilometers distance

from London Stansted.

We post the search, and get the list of possible routes as shown in Figure 6.5. In the

leftmost of each route, there is a checkbox where user can choose whether to include the

route in the search or not.

This checkbox is also useful if user wants to avoid certain transit airports or has some

preference on the routes. Since we mention to search also from close airports, then

the figure also shows routes from London Heathrow, Gatwick, City, and Luton in the

options. The link to display the route map is also shown. By clicking on the link, user

can view the route map.

The last page shown in Figure 6.6, contains the search results, sorted by user criteria.

Since our first criterion is Reliability, then in the results, flights from reliable airlines

dominate the top rank. If the first criterion is Time, then direct flights would be in top

ranks. If the first criterion is Price, then direct flights from low-cost airlines would be

in top ranks.

Chapter 6. Experimental Results 66

Figure 6.5: List of possible routes from London Stansted to Lisbon

Figure 6.6: Search results for flights from London Stansted to Lisbon, sorted by
Reliability, Price, and Time

Chapter 7

Conclusions

7.1 Summary

Figure 7.1 shows the relation of the topics discussed in this thesis. The goal of the thesis

is to present the mashup model of a scalable flight search system that addresses the

weaknesses of the flight meta-search engine.

Problems with flight meta-search engine

Can not find transit
routes from low-cost airlines

Does not support
mixing airlines

Single evaluation setting
(low cost, short time)

Time Price ReliabilityComplexity:
O(n) for direct routes
O(n2) for one-transit
O(n3) for two-transit

Number of
possible routes

Number of flights
on particular leg

Solution:
Hub identification heuristic

Optimal in terms of
short flight duration

Scalable
system

Geocoding

Search from
close airports

Transit time
configuration

Solution: wrapping direct routes Solution: multiple evaluation criteria

Solution:
Limit the number of
connecting flight

Solution:
Limit the number of airlines
considered in the search

Data cleaning

Web data
extraction

Google
Maps API

Figure 7.1: Summary diagram of the thesis

67

Chapter 7. Conclusions 68

We start from the problems of flight meta-search engine. The first two weaknesses:

incapability of finding transit routes from low-cost airlines and incapability of finding

routes by mixing airlines, can be solved by wrapping direct routes from the airline

websites by using web data extraction technology from Lixto. In the explanation, we

have shown some examples of wrapping by using Lixto Visual Developer. We also show

the data cleaning effort to ensure that the data which are populated to database are in

correct format and do not contain unnecessary annotations. The third weakness: single

evaluation setting, is solved by employing three evaluation criteria for evaluating and

ranking the search results. Hence, each user can customize the search to fit with his/her

criteria and finding the best routes of their own version.

By having direct routes, the flight search problem can be regarded as graph search

problem with airports as the nodes and direct flight connection between two airports as

the edges. Since we know all the direct routes, then given the departure and destination

airport, we can find all route possibilities: direct, one-transit, and two-transit. For

transit routes, we independently search the flights for each leg so that the first two

weaknesses are addressed. The respected complexity for finding each route is shown

in the diagram. The variable n in the diagram is composed by two other factor: the

number of possible routes and the number of flights on particular leg.

To reduce the number of possible routes, we introduce hub identification heuristic which

able to give indication on which routes should be traversed to check the flight combina-

tion for that route. This heuristic works dynamically so that it may give different hub

recommendations for each pair of departure and destination airport. It is also able to

set its own limit on how many routes to search by analyzing the possibility of whether

the route has possibility of containing the best routes.

By using this heuristic, we avoid exhaustive search for all possible flight combination

from all possible routes. Hence, this heuristic realizes our goal of system scalability. The

heuristic is created by using geocoding approach (total journey distance approach). In

the explanation, we have shown that the heuristic is optimal in terms of flight duration,

so that it always finds the routes with the shortest flight duration. For the total journey

time, in case of high availability of possible routes and number of flights to reach a

destination, this heuristic may miss the route with shortest total journey time (flight

duration added with transit time). However it would still find routes that are close to

the route with shortest total journey time.

To reduce the number of flights on particular leg, we limit the number of airlines con-

sidered in the search by providing user the advanced input parameter, for example to

choose only for flights from low-cost and reliable airlines. Airlines that don’t meet the

criteria for price index and reliability index are not considered in the search. The transit

Chapter 7. Conclusions 69

time configuration where user can input the range of minimum and maximum transit

time also limits the number of possible connecting flights. Hence, by providing cus-

tomized search to user, the system can narrow the search by putting user constraint in

the search process. If user doesn’t put any constraint on the price and reliability, the

system is still scalable since hub identification heuristic is always used in any case.

7.2 Future Works

This section will give idea on several possible future works that can be done for continuing

the contribution that has been achieved from this thesis.

7.2.1 Validate the Interesting Route Output

Figure 7.2, shows another system, Data Retriever that functions to validate the interest-

ing route output from our Flight Search System. Hence, what user gets as search results

is valid schedules, complete with availability, and real-time price.

Flight Search
System

Data Retriever

Airlines schedule

Interesting routes

Verified price, schedule,
and availability

Airports data

User input parameter

Interesting routes

User

Figure 7.2: Future work for the system

7.2.2 Extend the Close Airport Feature

In this thesis, we only provide the feature of searching from close airport from the initial

point of departure (left part of Figure 7.3). The right part of Figure 7.3 shows the

possible extension. If A and B are the good hubs from the output of hub identification

heuristic, then we also search for routes through other airport that are close to A and

B. The destination itself can be several airports. Simply observing, the complexity may

blow up by applying this feature. However, in real-world implementation this feature

may be desired.

Chapter 7. Conclusions 70

Possible
departure
airports

B

A

Possible
departure
airports

Possible
transit

airports

Possible
destination

airports

Figure 7.3: Extending the close airport feature, (the left picture is the one used in
this thesis, the right picture is the possible extension)

We give the real-world example as follows. Currently there is no direct flight from

Lisbon to Rome Ciampino. However, there are many direct flights from Lisbon to Rome

Fiumicino. In our current system, the system will find all the possible routes from Lisbon

to Rome Ciampino, but will never suggest the route from Lisbon to Rome Fiumicino.

By applying this new feature, then the route to Rome Fiumicino would be suggested

and user can decide whether the alternative routes pay-off the switching of destination

airport.

Another example that involves transit route is as follows. Suppose someone wants to

fly from Vienna to Singapore. This person is a budget traveler, and was having good

experience with Easy Jet so that he decides to use Easy Jet again. Easy Jet has only

one destination for flights departing from Vienna, that is London-Luton. Speaking

for intercontinental flights, London Heathrow has more options compared to London

Luton. Therefore, considering connecting flights from London Heathrow would be a

useful feature.

7.2.3 Cost to Switch Between Airports

In relation with the close airport feature, until now we always omit the effort that is

needed to switch between airports. There are several possible resource from where to

get the cost. First, geocoding functions can be used to obtain the distance between the

airports, then employing a function of cost versus distance. Second, to get the cost from

Google Maps (Figure 7.4) from which we can put the start and end address, and get the

journey time (by using car).

Chapter 7. Conclusions 71

Figure 7.4: Measuring the journey time by using car with Google Map

7.2.4 Extend the Travel Domain

Travel domain is composed from many sub domains, flight is one example of sub domain.

Hence, there is possiblity to extend our flight search system with other applications in

hotel/hostel sub domain or train sub domain so that the dynamic packaging concept

can be realized.

For these sub domains, the challenge will be on aggregating the results and identifying

the same records. In flights domain, each airport has an unique 3-letter IATA code

so that we always know exactly which airport we are dealing with. However, in train

stations/stops and hotel/hostel, there are no such identifier. Therefore, the concept of

record linkage may need to be implemented here.

Appendix A

Wrapping Airports Data

This Appendix contain details on wrapping airports data from World Airport Codes

website.

A.1 Navigation Sequence

Figure A.1: Navigation sequence in Lixto VD

In the wrapper, we build three page class. Each page class corresponds to a page

structure in the website. Below, we describe what is done by each action sequence in

Figure A.1:

• Pageclass start

72

Appendix A. Wrapping Airports Data 73

1 URL action, instructing the browser to go to website of WAC.

2 Data extractor, containing a pattern named ”iatalist”. For each element in

”iatalist”, the wrapper continues to pageclass start2 (Figure A.2).

Figure A.2: Calling pageclass start2 from ”iatalist”

Figure A.3: Calling pageclass start3 from ”airportslist”

• Pageclass start2

1 Data extractor, containing a pattern named ”airportslist”. For each element

in ”airportslist”, the wrapper continues to pageclass start3 (Figure A.3).

Appendix A. Wrapping Airports Data 74

• Pageclass start3

1 Data extractor, containing a pattern named ”airports” (using Lixto data

model). Inside this pattern, there exist the other sub-patterns.

A.2 General XPath Expression

The XPath expression of any element in the HTML page can be obtained by creating a

pattern, then choose the element using the filter. Figure A.4 shows how it is done.

Figure A.4: Getting XPath expression of an element

In the ”iatalist” and ”airportslist” patterns, we use XPath filtering to recognize the

elements. Figure A.5 and A.6 illustrates how to build the general XPath expression.

By observing the figure, we get the general XPath expression for ”iatalist” is:

/html[1]/body[1]/div[1]/div[2]/div[7]/a.

For ”airportslist”, the general XPath expression is:

. . ./tbody[1]/tr/td[3]/a[1].

/html[1]/body[1]/div[1]/div[2]/div[7]/a[1]

/html[1]/body[1]/div[1]/div[2]/div[7]/a[2]

/html[1]/body[1]/div[1]/div[2]/div[7]/a[26]

Figure A.5: XPath for elements of ”iatalist”

Appendix A. Wrapping Airports Data 75

.../tbody[1]/tr[2]/td[3]/a[1]

.../tbody[1]/tr[3]/td[3]/a[1]

Figure A.6: XPath for elements of ”airportslist”

A.3 Configuring XPath for Iterators

Finally, the general XPath can be put in the ”Content” tab of the ”iatalist” filter as

shown in Figure A.7.

Figure A.7: Putting general XPath expression for ”iatalist”

Bibliography

[1] A. Ankolekar, M. Krötzsch, T. Tran, and D. Vrandečić. The two cultures: Mashing

up web 2.0 and the semantic web. Web Semant., 6(1):70–75, 2008. ISSN 1570-8268.

doi: http://dx.doi.org/10.1016/j.websem.2007.11.005.

[2] R. Baumgartner, M. Ceresna, G. Gottlob, M. Herzog, and V. Zigo. Web information

acquisition with lixto suite: A demonstration. icde, 00:747, 2003. ISSN 1063-6382.

doi: http://doi.ieeecomputersociety.org/10.1109/ICDE.2003.1260855.

[3] R. Baumgartner, M. Herzog, and G. Gottlob. Visual programming of

web data aggregation applications, 2003. URL citeseer.ist.psu.edu/

baumgartner03visual.html.

[4] R. Baumgartner, M. Ceresna, and G. Ledermuller. Deepweb navigation in web

data extraction. In CIMCA ’05: Proceedings of the International Conference on

Computational Intelligence for Modelling, Control and Automation and Interna-

tional Conference on Intelligent Agents, Web Technologies and Internet Commerce

Vol-2 (CIMCA-IAWTIC’06), pages 698–703, Washington, DC, USA, 2005. IEEE

Computer Society. ISBN 0-7695-2504-0-02.

[5] C. Bernardoni, G. Fiumara, M. Marchi, and A. Provetti. Declarative web data

extraction and annotation. In WLP, pages 137–144, 2006.

[6] M. Ceresna. Interactive generation of html wrappers using attribute classification.

In Proceedings of the First International Workshop on Representation and Analysis

of Web Space, page 137142, Prague-Tocna, Czech Republic, 2005.

[7] R. Collis. No frills? full service? meet the hybrid carrier. Online, May 2008.

URL http://www.iht.com/articles/2008/05/30/travel/trfreq30.php. Inter-

national Herald Tribune, THE FREQUENT TRAVELER, last accessed on 5 June

2008.

[8] Dohop. Connecting low-cost airlines. Online, August 2007. URL http://blog.

dohop.com/?p=44. Last accessed on 1 June 2008.

76

citeseer.ist.psu.edu/baumgartner03visual.html
citeseer.ist.psu.edu/baumgartner03visual.html
http://www.iht.com/articles/2008/05/30/travel/trfreq30.php
http://blog.dohop.com/?p=44
http://blog.dohop.com/?p=44

Bibliography 77

[9] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection:

A survey. IEEE Trans. on Knowl. and Data Eng., 19(1):1–16, 2007. ISSN 1041-

4347. doi: http://dx.doi.org/10.1109/TKDE.2007.9.

[10] S. Flesca, G. Manco, E. Masciari, E. Rende, and A. Tagarelli. Web wrapper induc-

tion: a brief survey. AI Commun., 17(2):57–61, 2004. ISSN 0921-7126.

[11] G. Gottlob. Web data extraction for business intelligence: The lixto approach. In

BTW, pages 30–47, 2005.

[12] G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, and S. Flesca. The lixto data

extraction project: back and forth between theory and practice. In PODS ’04:

Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems, pages 1–12, New York, NY, USA, 2004. ACM. ISBN

158113858X. doi: http://doi.acm.org/10.1145/1055558.1055560.

[13] B. He, M. Patel, Z. Zhang, and K. C.-C. Chang. Accessing the deep web. Com-

mun. ACM, 50(5):94–101, 2007. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/

1230819.1241670.

[14] M. A. Hernandez and S. J. Stolfo. Real-world data is dirty: Data cleansing and

the merge/purge problem. Data Mining and Knowledge Discovery, 2(1):9–37, 1998.

URL citeseer.ist.psu.edu/article/hernandez98realworld.html.

[15] W. Holzinger, B. Kruepl, and R. Baumgartner. Exploiting semantic web technolo-

gies to model web form interactions. In WWW ’08: Proceeding of the 17th interna-

tional conference on World Wide Web, pages 1145–1146, New York, NY, USA, 2008.

ACM. ISBN 978-1-60558-085-2. doi: http://doi.acm.org/10.1145/1367497.1367698.

[16] T. Hornung, K. Simon, and G. Lausen. Mashing up the deep web - research in

progress. In 4th International Conference on Web Information Systems and Tech-

nologies (WEBIST) 2008, pages 58–66, Funchal, Madeira - Portugal, May 4-7, MAY

2008.

[17] M. Kayed and K. F. Shaalan. A survey of web information extraction systems.

IEEE Trans. on Knowl. and Data Eng., 18(10):1411–1428, 2006. ISSN 1041-

4347. doi: http://dx.doi.org/10.1109/TKDE.2006.152. Member-Chia-Hui Chang

and Member-Moheb Ramzy Girgis.

[18] S. Kuhlins and R. Tredwell. Toolkits for generating wrappers – a survey of software

toolkits for automated data extraction from web sites. In M. Aksit, M. Mezini,

citeseer.ist.psu.edu/article/hernandez98realworld.html

Bibliography 78

and R. Unland, editors, Objects, Components, Architectures, Services, and Appli-

cations for a Networked World, volume 2591 of Lecture Notes in Computer Sci-

ence (LNCS), pages 184–198, Berlin, Oct. 2003. International Conference NetO-

bjectDays, NODe 2002, Erfurt, Germany, October 7–10, 2002, Springer. URL

citeseer.ist.psu.edu/kuhlins02toolkits.html.

[19] H. Leggatt. European travel industry doing more business online. Online, March

2007. URL http://www.bizreport.com/2007/03/european_travel_industry_

doing_more_business_online.html. Last accessed on 1 June 2008.

[20] Lixto. Lixto Visual Developer Tutorial 5.0, chapter 1, page 8. Lixto GmbH, 2008.

[21] D. Merrill. Mashups: The new breed of web app. Online, October 2006. URL http:

//www.ibm.com/developerworks/xml/library/x-mashups.html. Last accessed

on 10 June 2008.

[22] J. Myllymaki. Effective web data extraction with standard XML technolo-

gies. In World Wide Web, pages 689–696, 2001. URL citeseer.ist.psu.edu/

myllymaki01effective.html.

[23] C. M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Mas-

sachusetts, 1994. ISBN 0201530821.

[24] S. Raghavan and H. Garcia-Molina. Crawling the hidden web. In VLDB ’01:

Proceedings of the 27th International Conference on Very Large Data Bases, pages

129–138, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN

1-55860-804-4.

[25] E. Rahm and H. Do. Data cleaning: Problems and current approaches. Data

Engineering Bulletin, 23:3–13, 2000.

[26] E. Rosenthal. Low-cost airfares, big-time carbon footprint. Online, May 2008.

URL http://www.iht.com/articles/2008/05/30/news/spain.php?page=1. In-

ternational Herald Tribune, last accessed on 5 June 2008.

[27] G. Trapani. Where to search for low airfares online. Online,

November 2007. URL http://lifehacker.com/software/travel/

where-to-search-for-low-airfares-online-319404.php. Last accessed

on 1 June 2008.

[28] M. Tvarozek and M. Bieliková. Personalized view-based search and visualization

as a means for deep/semantic web data access. In WWW, pages 1023–1024, 2008.

citeseer.ist.psu.edu/kuhlins02toolkits.html
http://www.bizreport.com/2007/03/european_travel_industry_doing_more_business_online.html
http://www.bizreport.com/2007/03/european_travel_industry_doing_more_business_online.html
http://www.ibm.com/developerworks/xml/library/x-mashups.html
http://www.ibm.com/developerworks/xml/library/x-mashups.html
citeseer.ist.psu.edu/myllymaki01effective.html
citeseer.ist.psu.edu/myllymaki01effective.html
http://www.iht.com/articles/2008/05/30/news/spain.php?page=1
http://lifehacker.com/software/travel/where-to-search-for-low-airfares-online-319404.php
http://lifehacker.com/software/travel/where-to-search-for-low-airfares-online-319404.php

Bibliography 79

[29] M. Verikios. Dusseldorf international to invest some 300 million euros in the future.

Online, March 2008. URL http://www.traveldailynews.com/pages/show_page/

24747. Travel Daily News, last accessed on 1 June 2008.

[30] L. Wei, X. Meng, and W. Meng. Vision-based web data records extraction. In

WebDB, 2006.

[31] Wikipedia. Great-circle distance. Online, 2007. URL http://en.wikipedia.org/

wiki/Great_circle_distance. Last accessed on 5 June 2008.

[32] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu. Fully automatic wrapper

generation for search engines. In WWW ’05: Proceedings of the 14th international

conference on World Wide Web, pages 66–75, New York, NY, USA, 2005. ACM.

ISBN 1-59593-046-9. doi: http://doi.acm.org/10.1145/1060745.1060760.

[33] H. Zhao, W. Meng, and C. Yu. Mining templates from search result records of

search engines. In KDD ’07: Proceedings of the 13th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 884–893, New York,

NY, USA, 2007. ACM. ISBN 978-1-59593-609-7. doi: http://doi.acm.org/10.1145/

1281192.1281286.

http://www.traveldailynews.com/pages/show_page/24747
http://www.traveldailynews.com/pages/show_page/24747
http://en.wikipedia.org/wiki/Great_circle_distance
http://en.wikipedia.org/wiki/Great_circle_distance

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Organization of Thesis

	2 Preliminaries and Backgrounds
	2.1 Types of Airlines
	2.2 Several Types of Flight Search Engine
	2.3 Advantages of Mixing Airlines
	2.4 Geocoding
	2.5 PostGIS
	2.6 Maps API

	3 Extracting Data from the Web
	3.1 The Problems with the Web
	3.2 Semantic Web
	3.2.1 Resource Description Framework (RDF)
	3.2.2 RDF Schema (RDFS)
	3.2.3 Web Ontology Language (OWL)
	3.2.4 Challenges of Semantic Web

	3.3 Techniques for Web Data Extraction
	3.4 Lixto Visual Developer
	3.4.1 Editor and Navigation
	3.4.2 Data Model
	3.4.3 Patterns and Filters

	4 System Design and Data Preparation
	4.1 System Architecture
	4.2 Data Requirement
	4.3 Business Logic
	4.3.1 Web and Wrapper Layer
	4.3.2 Database Layer
	4.3.3 User Interface Layer

	4.4 Adding Geometry Column in Table Airports
	4.5 Wrapping Airports Data
	4.6 Data Cleaning of Airports Time Zone Value
	4.7 Wrapping Airlines Website
	4.7.1 Choosing the Airlines to be Wrapped
	4.7.2 Filtering Search Results

	5 Scalable Algorithm
	5.1 Complexity for Flight Search
	5.1.1 Complexity for Direct Routes
	5.1.2 Complexity for Transit Routes

	5.2 Route Determination
	5.2.1 No Transit vs. One Transit vs. Two Transit
	5.2.2 Transit Time Analysis

	5.3 Hub Identification Heuristics
	5.3.1 Approaches for Hub Identification
	5.3.2 Optimality of the Heuristic

	5.4 Searching from Close Airports
	5.5 Evaluation Function
	5.6 Scalability
	5.6.1 Limit The Search to Two Transit
	5.6.2 Table Design
	5.6.3 Limiting the Number of Possible Routes
	5.6.4 Limiting the Number of Flight Combinations

	6 Experimental Results
	6.1 Random Schedule Generator
	6.2 Search Parameter
	6.2.1 Common Search Parameter
	6.2.2 Advanced Search Parameter

	6.3 Performing the Search

	7 Conclusions
	7.1 Summary
	7.2 Future Works
	7.2.1 Validate the Interesting Route Output
	7.2.2 Extend the Close Airport Feature
	7.2.3 Cost to Switch Between Airports
	7.2.4 Extend the Travel Domain

	A Wrapping Airports Data
	A.1 Navigation Sequence
	A.2 General XPath Expression
	A.3 Configuring XPath for Iterators

	Bibliography

