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Kurzfassung 
 

 

Die elektrochemische Sauerstoff‐Austauschreaktion an Platinelektroden auf 

Yttrium‐stabilisiertem Zirconiumdioxid (YSZ) ist sowohl eine hochinteressante Mo‐

dellreaktion für grundlegende Untersuchungen der Elektrodenkinetik an Festkörperi‐

onenleitern, als auch von großem technologischen Interesse, da sie in einer Vielzahl an 

elektrochemischen System eine entscheidende Rolle spielt (z.B in Lambda‐Sonden, 

Hochtemperatur‐Brennstoffzellen, Hochtemperatur‐Elektrolysezellen oder bei der 

elektrochemischen Modifikation der katalytischen Aktivität von Katalysator Oberflä‐

chen). In der vorliegenden Arbeit wurde die Kinetik der Sauerstoff‐Austauschreaktion 

mit Hilfe von geometrisch wohldefinierten, dichten Pt (111) Mikroelektroden auf YSZ 

(100) Einkristallen untersucht. Die Elektroden wurden durch Abscheidung dünner Pt 

Filme mittels Kathodenzerstäubung („sputtern“) auf dem YSZ Elektrolyt und nachfol‐

gender Mikrostrukturierung mittels Fotolithographie hergestellt. Die elektrochemische 

Charakterisierung erfolgte mittels Impedanzspektroskopie, Strom‐Spannungs Messun‐

gen und spannungsunterstütztem 18O‐Tracer‐Einbau in Kombination mit Flugzeit‐

Sekundärionen‐Massenspektrometrie (time of flight secondary ion mass spectrometry, 

ToF‐SIMS). 

Anhand von Impedanzmessungen bei hohen Temperaturen (550 – 900 °C) an 

Mikroelektroden unterschiedlicher Größe konnte auf einen Reaktionsmechanismus 

über einen Pt Oberflächenpfad mit einem ratenbestimmenden Schritt an der Dreipha‐

sengrenze geschlossen werden. Bei niedrigeren Temperaturen (< 400 °C) hingegen 

konnte ein Volumenpfad durch die Pt Elektrode hindurch identifiziert werden, wel‐

cher parallel zum Oberflächenpfad abläuft. Der reziproke Polarisationswiderstand bei 

niedrigen Temperaturen skalierte infolgedessen mit der Elektrodenfläche. Als ratenbe‐

stimmender Schritt des Volumenpfads wurde Diffusion einer Sauerstoffspezies entlang 

der Pt Korngrenzen diskutiert. 

Mit Hilfe von 18O‐Einbau in Kombination mit ToF‐SIMS war es möglich die elekt‐

rochemisch aktive Zone (d.h. der Bereich, in dem Sauerstoff in YSZ eingebaut wird) 

abzubilden. Bei ~320 °C war die Einbauzone rahmenförmig und ihre Position und late‐

rale Ausbreitung war von der Polarisation der Elektrode abhängig. Bei moderaten 
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Überspannungen wurde Sauerstoff ausschließlich unter der Pt Elektrode eingebaut, bei 

hoher Polarisation hingegen breitete sich die Einbauzone auch auf die freie YSZ Ober‐

fläche aus. Darüber hinaus ließen diese Experimente einen flächenbezogenen Pfad pa‐

rallel zum Oberflächenpfad vermuten. Dieser flächenbezogene Pfad wird als jener 

Volumenpfad angesehen, der auch in elektrochemischen Impedanzmessungen identi‐

fiziert wurde. 

Mittels Gleichstrommessungen bei Temperaturen zwischen 600 und 720 °C wur‐

de das Strom‐Spannungs‐Verhalten der Pt Modellelektroden im Oberflächenpfad‐

Regime untersucht und der dreiphasenbezogene Polarisationswiderstand bei Gleich‐

gewichtsbedingungen konnte als Diffusionsprozess identifiziert werden. Ein möglicher 

Elementarprozess, der dieses Verhalten erklären könnte, wäre Diffusion von Sauerstoff 

durch eine Verunreinigungsphase an der Dreiphasengrenze. Bei sehr hohen kathodi‐

schen Überspannungen wurde ein weiterer Reaktionspfad parallel zum diffusionslimi‐

tierten Dreiphasenpfad beobachtet. Dessen Reaktionsrate war exponentiell von der 

Überspannung abhängig und als wahrscheinlichste Interpretation dieses Verhaltens 

wurde Stöchiometrie‐Polarisation des Elektrolyten diskutiert. In diesem Falle läuft die 

Sauerstoffreduktion auf der YSZ‐Oberfläche ab, wobei die Elektronenversorgung über 

den Elektrolyten ratenbestimmend ist. Darüber hinaus handelt es sich beim dreipha‐

senbezogenen Prozess, der in den Tracer‐Experimenten abgebildet wurde, höchst‐

wahrscheinlich ebenfalls um diesen Reaktionspfad. 

Insgesamt kann somit gesagt werden, dass diese Arbeit einen substantiellen und 

neuen Beitrag zum tieferen Verständnis von Reaktionspfaden und Reaktionsmecha‐

nismen des Sauerstoffaustausches an Pt|YSZ leistet. 
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Abstract 
 

 

The electrochemical oxygen exchange on yttria‐stabilized zirconia (YSZ) is both a 

highly interesting model reaction for fundamental investigations in solid state ionics 

and of high technological interest due to its crucial importance in many electrochemical 

devices (such as lambda‐sensors, solid oxide fuel cells, solid oxide electrolysis cells, 

electrochemically promoted surface catalysis). In the present thesis the kinetics of the 

oxygen exchange reaction on the system Pt|YSZ was investigated by means of geomet‐

rically well‐defined, dense Pt (111) microelectrodes on YSZ (100) single crystals. The 

electrodes were prepared by sputter‐deposition of Pt thin films onto the YSZ electrolyte 

and subsequent micro‐patterning of the film. The electrochemical characterization of 

these model electrodes was performed by impedance spectroscopy, current‐

overpotential measurements, and voltage assisted 18O tracer incorporation experiments 

combined with time of flight secondary ion mass spectrometry (ToF‐SIMS) analysis. 

Impedance measurements on differently sized microelectrodes at high tempera‐

tures (550 – 900 °C) revealed a reaction mechanism via a Pt surface path with a rate 

determining step at the three phase boundary (TPB). At lower temperatures (< 400 °C), 

however, a bulk path through the Pt electrode could be identified, which is connected 

in parallel to the surface path. Consequently, the polarization resistance at low temper‐

atures was related to the area of the electrodes. The rate limiting step of the bulk path 

was discussed to be diffusion of an oxygen species along Pt grain boundaries. 

By means of a 18O tracer study in combination with ToF‐SIMS analysis it was 

possible to visualize the electrochemically active region (i.e. where oxygen is incorpo‐

rated into YSZ). At ~320 °C the incorporation zone at the TPB was shown to be frame‐

shaped and its position and lateral extension depended on the polarization of the elec‐

trodes. At moderate polarization the oxygen incorporation solely took place under‐

neath the electrode whereas at high polarization the active zone also extended along 

the free YSZ surface. Moreover, these experiments also gave evidence for an area‐

related path in parallel to the surface path. It is believed that this path is identical to the 

bulk path which was found in low temperature impedance measurements. 
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In dc measurements at temperatures between 600 and 720 °C the current‐

overpotential characteristics of the Pt model electrodes in the surface path regime were 

investigated and the TPB related polarization resistance under equilibrium conditions 

(and moderate polarization) was shown to be caused by a diffusion process. A reason‐

able elementary process responsible for this behavior would be diffusion of an oxygen 

species through an impurity phase at the TPB. At very high cathodic polarization val‐

ues a further reaction path in parallel to the diffusion limited one was identified. Its 

reaction rate was found to depend exponentially on the overpotential and hence the 

corresponding process was discussed to most likely be related to stoichiometry polari‐

zation of YSZ. In this case the oxygen reduction occurs on the YSZ surface and with a 

rate limiting electron supply via the YSZ electrolyte. Moreover, the TPB related process 

visualized in tracer experiments is believed to be attributed to this elementary process. 

In summary this work significantly improved the knowledge on reaction path‐

ways and the understanding of reaction mechanisms of oxygen exchange on Pt|YSZ. 
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1 IntroducƟon and Status of Research 

The mechanism of the oxygen exchange reaction O2 + 4 e‐ ⇌ 2 O2‐ on the system 

platinum|solid oxide electrolyte is a highly important topic in solid state electro‐

chemistry since it plays a fundamental role in several electrochemical devices and re‐

search areas: i) In voltammetric oxygen sensors (often called lambda probes) this reac‐

tion is essential for the electrochemical equilibration of the gas phases and the oxide 

ion conducting electrolyte. Therefore oxygen exchange between surrounding gas and 

electrolyte is inevitable for the generation of the Nernst potential [1‐3]. ii) In solid oxide 

fuel cells (SOFCs) the relatively slow kinetics of O2 reduction can cause a substantial 

cathodic overpotential, which to a significant part contributes to the total polarization 

of a SOFC and thus limits its efficiency [4‐6]. The same is true for the reverse situation 

of O2‐ oxidation in solid oxide electrolysis cells (SOECs). Even though Pt is not used as 

a typical cathode material in such devices, a potential future application are thin film 

micro‐SOFCs containing Pt electrodes [7, 8]. Moreover, Pt|YSZ offers an excellent 

model system for fundamental investigations in SOFC/SOEC research. iii) Anodic ox‐

ide ion oxidation at (noble) metal electrodes often leads to spill‐over of adsorbed oxy‐

gen species across the metal surface thus causing a change of the work function of the 

metal. This phenomenon – usually referred to as non‐faradaic electrochemical modifi‐

cation of catalytic activity (NEMCA) – can strongly change the catalytic properties of 

the metal and is a highly interesting effect in the field of surface catalysis [9‐12]. (Please 

note: Since in equilibrium both O2 reduction and O2‐ oxidation occur with equal reac‐

tion rates these terms as well as the term oxygen exchange are used synonymic 

throughout the text. The same is true for adsorption and desorption as well as for oxy‐

gen incorporation and release.) 

Accordingly, similar to aqueous electrochemistry an in‐depth understanding of 

the reaction mechanism of oxygen reduction on Pt is a major goal of fundamental re‐

search in solid state ionics. In aqueous systems a large knowledge base has been estab‐

lished and many though definitely not all details of the reaction mechanism could be 

clarified [13‐17]. On solid electrolytes, on the other hand, reaction mechanisms are still 

under intensive discussion. 
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1.1 Oxygen exchange kineƟcs and electrochemical  

reacƟon pathways 

A significant difference between electrode reactions of (gas) molecules in aque‐

ous and solid state electrochemistry lies within the different electrochemically active 

phase boundaries. In case of liquid electrolytes the relevant reaction steps (e.g. adsorp‐

tion, charge transfer) are restricted to the two phase boundary between electrode and 

electrolyte. This is also true for gas electrodes with available three phase boundaries 

(TPBs) since the gas dissolves in the liquid electrolyte to become electrochemically 

available at the electrode surface. In solid state electrochemistry, however, the picture 

is somewhat more complex since not only the electrode|electrolyte interface is electro‐

chemically relevant but also the electrode|gas two phase boundary and the TPB where 

O2, electrode, and electrolyte meet. Consequently at least three different reaction path‐

ways for oxygen exchange between gas phase and YSZ are possible – a sketch is given 

in Fig. 1. 

The first possible reaction path is commonly referred to as electrode surface path, 

since most of the electrochemically relevant elementary steps are restricted to the sur‐

face of the electrode – cf. Fig 1a. In this case the electrochemically active zone of oxygen 

incorporation into YSZ is generally assumed to be the TPB and its close vicinity [4, 18, 

19]. Reasons for a “broadening of the TPB width” are discussed in Sec. 1.3. Owing to 

the very low oxygen solubility in bulk platinum of a few ppm [20] Pt|YSZ is generally 

assumed to be a surface path system [4, 18, 19, 21‐23]. Recently reported high surface 

diffusion coefficients for oxygen on Pt surfaces [19] suggest that not only regions close 

to the TPB, but also larger parts of the Pt surface might be involved in the oxygen ex‐

change reaction. However, this is not in contradiction to a final incorporation step close 

to the TPB. The rate limiting reaction step of surface path kinetics can either be an ele‐

mentary step at the surface of the electrode or a process close to the TPB. Consequently 

the geometry dependence of the polarization resistances of such electrodes can be area 

related or TPB length related. Hence, a variation of the electrode geometry can give 

valuable information on the mechanism and the location of the rate limiting elemen‐

tary step [18, 22, 24]. 

A modified version of the surface path – namely the electrolyte surface path (cf. 

Fig. 1b) – only includes processes on the electrolyte (adsorption, dissociation, ioniza‐
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electrodes is given. In the special case of MIEC electrodes the oxygen reduction reac‐

tion (i.e. the charge transfer) – after adsorption of oxygen on the electrode surface – 

proceeds on the electrode surface. The resulting oxide ions diffuse through the elec‐

trode bulk and are incorporated into the electrolyte at the entire two phase boundary 

between electrode and electrolyte [18, 27, 28]. Typical electrode materials exhibiting 

such a mechanism are lanthanum strontium cobaltite (LSC), lanthanum strontium fer‐

rite (LSF), or barium strontium cobaltite ferrite (BSCF) [29‐32]. However, the oxygen 

reduction in case of a bulk path is not necessarily restricted to the electrode surface. 

Silver electrodes, owing to the high solubility of atomic oxygen in the bulk of this ma‐

terial, also exhibit a bulk path. In contrast to MIEC electrodes the oxygen species 

diffusing through the silver bulk is an atomic instead of an ionic one and ionization can 

be assumed to take place at the electrode|electrolyte interface [23]. 

Also for Pt thin film electrodes some evidence for an additional bulk path in par‐

allel to the commonly accepted surface path was reported in literature. An Auger elec‐

tron spectroscopy study on sputter‐deposited Pt thin films (10 – 100 nm thick) 

indicated that thin polycrystalline Pt films were not as impermeable for oxygen as gen‐

erally assumed [33, 34]. Moreover, ab‐initio calculations revealed that oxygen preferen‐

tially diffuses along Pt grain boundaries [35] and in a very recent study the possibility 

of a Pt bulk path and its consequences on the electrochemical behavior of Pt electrodes 

were discussed [36]. However, these studies do not contain conclusive results on the 

electrochemical relevance of this suggested Pt bulk path. In case of a dominating bulk 

path the electrochemical exchange rate should be proportional to the electrode surface 

rather than to the TPB length, at least for thin film electrodes. Conclusive data on the 

geometry dependency of the polarization resistance of a possible Pt bulk path are also 

lacking. 

In principle simultaneous oxygen reduction via surface and bulk path is also 

possible and it is already known that on some electrode materials the oxygen exchange 

is not only restricted to either bulk or surface path; rather both electrochemical path‐

ways significantly contribute to the total oxygen exchange current. Such a situation can 

be found for lanthanum strontium manganite (LSM) electrodes [4, 24, 37, 38]. A possi‐

ble Pt bulk path would further increase the relevance of Pt electrodes as a model sys‐

tem in fundamental research. 
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1.2 PlaƟnum electrodes – research history and present 

relevance 

Because of their outstanding importance in fundamental research and technolog‐

ical applications the kinetics of oxygen exchange on solid oxide ion conductors was 

investigated from the beginnings of solid state electrochemistry [39]. However, despite 

this long history of research the reaction mechanism of oxygen reduction on the system 

platinum|yttria stabilized zirconia (YSZ) is still not as well understood as in aqueous 

systems. Hence, Pt(O2)|YSZ is still a highly interesting system for fundamental electro‐

chemical research [4, 7, 19, 21, 22, 26, 40‐69]. The lack of quantitative understanding of 

the oxygen exchange reaction is partly due to the fact that in the past very often porous 

Pt electrodes were investigated [4, 26, 44, 46, 48, 53, 54, 58, 60, 63, 67, 70]. Even though 

porous electrodes prepared by deposition of Pt paste exhibit the advantage of being 

realistic from a technological point of view (e.g. in oxygen sensors), they suffer from an 

ill‐defined geometry and the unknown chemical composition of commercial Pt pastes. 

A systematic and defined variation of three phase boundary length and surface area is 

thus hardly possible. As a consequence the results obtained in these studies are often 

not fully conclusive. For example, in Refs. [53, 67, 71] an adsorption step of oxygen on 

Pt is suggested to be rate limiting whereas in Refs. [47, 58, 70, 72] a rate limiting surface 

diffusion of adsorbed oxygen is discussed. On the basis of these results, also co‐limited 

kinetics of adsorption and surface diffusion were suggested [4] which means that nei‐

ther adsorption nor surface diffusion alone, but both together are responsible for the 

limitation of the electrochemical reaction rate. Moreover, in some studies a charge 

transfer reaction was discussed to significantly contribute to the polarization resistance 

of Pt electrodes on YSZ [67, 68, 71, 73]. 

In an attempt to eliminate the problems with porous paste electrodes Pt point 

contacts were pressed onto the electrolyte surface [40‐42, 64, 68, 69]. In Ref. [41] it was 

demonstrated that this method allows a meaningful comparison of the electrochemical 

activity of different electrode materials – one among them being Pt. In Refs. [42] and 

[69] this type of model electrodes was employed to investigate the electrochemical 

effect of an assumed PtOx “phase”. The separation of effects supposedly related to PtOx 

from other electrochemical phenomena was shown to be much easier than in case of 

porous paste electrodes and thus these experiences further supported the importance 
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of model electrodes for a fundamental understanding of oxygen exchange kinetics on 

Pt|YSZ. Moreover, interesting observations regarding chemical and morphological 

changes of the Pt|YSZ interface as well as the TPB region during electrochemical 

measurements were reported in studies on point contact electrodes [40, 69]. However, a 

defined variation of the electrode geometry was again difficult to realize with this type 

of model electrodes. As a consequence previous data obtained on porous and on point 

electrodes are still not completely conclusive regarding the question where the rate 

determining step is located. For example the normalized polarization resistance caused 

by the kinetically slowest step strongly varied from one study to the other. At 600 °C a 

TPB length related polarization resistance of 106 Ωcm was obtained in Ref. [40] whereas 

2·104 Ωcm were reported for the same temperature in Ref. [42]. Thus oxygen reduction 

kinetics of Pt electrodes seems to be strongly affected by unknown parameters which 

are not understood yet. 

A possibility to overcome many shortcomings of porous electrodes is the use of 

dense and geometrically well‐defined microelectrodes or micro‐patterned electrodes 

prepared by thin film deposition and photolithographic micro‐structuring. An im‐

portant advantage of such electrodes, provided that the thin film is gas‐tight, is their 

well‐defined shape and thus a defined TPB length and surface area. Furthermore a 

large number of electrodes with varying shape and size can be prepared in a single 

run, which is attractive from a practical point of view. Especially in the case of surface 

path kinetics with a rate limiting step close to the three phase boundary the use of geo‐

metrically well‐defined microelectrodes is beneficial compared to macroscopic thin 

films when using impedance spectroscopy as electrochemical characterization method. 

Two reasons for this should briefly be mentioned in the following. 

i) In case of a rate limiting elementary step close to the TPB the electrochemical 

exchange rate and thus the inverse polarization resistance 1/Rode of the electrode reac‐

tion depends on the TPB length. In case of circular electrodes with diameter dME it thus 

holds 

 

1
ME

ode

d
R

 . (1) 
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The interfacial capacitance Cint of a predominantly electronically conducting electrode 

on a solid oxide ion conductor can be assumed to be established along the entire two 

phase boundary and consequently 

 
2

int ME
C d  (2) 

 

can be assumed. To achieve impedance measurements within an acceptable time, the 

characteristic angular frequency ω* of the electrodes’ impedance feature should be 

above ~10 mHz. For a parallel connection of the dominating resistive and capacitive 

process (which is a reasonable simplification for most electrodes) the angular frequen‐

cy is given by 

 

int

1
*

ode
R C

 


. (3) 

 

Inserting Eqs. 1 and 2 into 3 yields 

 

1
*

ME
d

  . (4) 

 

Consequently on microelectrodes at equal temperature the same information can be 

gained within a smaller time or even more information about the electrode impedance 

can be gained within the same frequency range than in case of dense macroscopic elec‐

trodes. 

ii) A second substantial advantage of microelectrodes compared to macroscopic 

electrodes is the possibility to avoid reference electrodes [74, 75]. Owing to the tremen‐

dous difference in size between extended counter‐ and microelectrode the electrochem‐

ical response is almost exclusively attributed to the microelectrode [31] (see also 

Sec. 4.1). 

In previous work of several authors lithographically micro‐structured thin film 

electrodes were successfully applied as a powerful tool for the investigation of bulk as 

well as electrode properties [19, 21, 22, 24, 30, 31, 45, 49‐51, 62, 65, 74, 76‐80].  

However, preparation of micro‐patterned Pt electrodes on YSZ staying dense also at 

high temperatures turned out to be difficult [21, 22]. Only recently Pt thin film elec‐
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trodes were prepared by pulsed laser deposition (PLD) in such a way that they re‐

mained dense and geometrically (TPB) stable even during high temperature treatment 

[21, 54]. Experiments on such dense Pt model electrodes revealed numerous new in‐

sights into the reaction mechanism of oxygen exchange kinetics: In Refs. [19] and [66] 

electrode processes on Pt|YSZ were investigated by means of photoelectron microsco‐

py. In these studies it was possible for the first time to in situ observe the spill‐over of 

electrochemically released oxygen from the TPB across the entire Pt surface. In another 

study on micro‐patterned sputter‐deposited electrodes the geometry dependence of the 

polarization resistance was investigated [22]. However, these electrodes suffered from 

pores, which evolved during the electrochemical characterization at elevated tempera‐

tures. The results – suggesting a TPB‐related polarization resistance at temperatures 

between 650 and 800 °C – were thus not completely conclusive. Consequently a study 

which unambiguously proofs the geometry dependence of the electrochemical oxygen 

exchange reaction on Pt|YSZ is still missing. 

1.3 Analysis of the TPB width 

In case of a dominating Pt surface path, another question on the oxygen ex‐

change kinetics of Pt|YSZ systems, which is still not answered satisfactorily, deals with 

the width and exact location of the electrochemically active zone. This oxygen incorpo‐

ration zone is hardly a one‐dimensional line along the TPB. Oxygen surface diffusion, 

ionic conductivity along interfaces, and electron conduction in the electrolyte are only 

three examples resulting in a certain spatial extension of the electrochemically active 

zone. This broadening of the three phase boundary (“TPB width”) is also an important 

parameter in numerical modeling of electrode behavior in SOFCs and its knowledge 

would help improving the reliability of simulation results. Because of the lack of exper‐

imental data its value was often simply estimated in the past [43, 62, 81]. Three situa‐

tions of lateral extension of the electrochemically active zone have to be considered [38, 

49, 82]: First, an extension along the free YSZ surface, which means that the incorpora‐

tion of oxide ions takes place on the free surface of the electrolyte (cf. Fig. 2a). This sit‐

uation can be expected for a spill‐over of an oxygen species from the Pt‐surface to YSZ 

or for a finite electronic conductivity with oxygen adsorption and ionization on the  
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86]. This technique was the first time successfully applied in the study in Ref. [44] 

where 18O was electrochemically incorporated at porous Pt paste electrodes and the 

spatial distribution of the tracer in YSZ was subsequently analyzed by secondary ion 

mass spectrometry (SIMS). This technique allowed to distinguish between oxygen, 

which was incorporated during the electrochemical experiment (18O) and native lattice 

oxygen in YSZ (almost entirely 16O) and can thus visualize electrochemically active 

zones. Moreover, these measurements suggested an oxygen incorporation beneath the 

Pt particles at the Pt|YSZ interface rather than on the free YSZ surface. In an attempt to 

determine the width of the electrochemically active zone the authors also employed 

micro‐patterned Pt and Au electrodes with geometrically well‐defined triple phase 

boundaries [45, 86]. On both electrode materials a significant increase in tracer concen‐

tration at the TPB could be observed in these studies.  

Moreover, this technique was also applied to image the oxygen reduction sites at 

LSM electrodes [37, 85]. In these studies 18O isotope was electrochemically incorporated 

into the electrolyte at photolithographically patterned LSM thin film electrodes. From 

these measurements conclusions regarding the diffusion of the tracer in the electrode, 

oxide ion transfer at the LSM|YSZ interface, and tracer diffusion in YSZ were obtained. 

Similarly to Pt and Au electrodes an increased tracer concentration at the TPB of the 

electrodes was observed. However, owing to the relatively high experimental tempera‐

tures of 500 ‐700 °C the TPB‐width could not be quantified neither in the LSM nor in 

the Pt and Au studies. The reason for that is discussed in the following. 

A major challenge of this experimental approach is related to the fact that the lat‐

eral extension of the resulting tracer profile in the electrolyte not only reflects electro‐

catalytic effects at the surfaces or TPBs, but is also caused by mass transport of 18O2‐ in 

the electrolyte. This additional mass transport could either be tracer concentration 

driven or field driven and may strongly distort the mapping of the electrochemical 

activity close to the TPB. In Refs. [87, 88] it was discussed, to which extent tracer mo‐

tion in electrolytes under voltage is field driven or concentration driven. As a main 

result it was found that the contribution of field driven 18O2‐ migration in the bulk is 

small compared to diffusional contributions as long as 18O concentrations in YSZ are 

kept below approximately 10%. Hence, in the lower concentration range only tracer 

diffusion in the electrolyte has to be controlled or minimized in order to avoid an unin‐

tentional broadening of the incorporation zone. 



 Introduction and Status of Research 
  

 

 
  11 

A promising strategy for limiting the systematic error caused by this bulk tracer 

diffusion is keeping the temperature – and thus the thermally activated tracer diffusion 

coefficient D* – as low as possible. In case of one dimensional semi‐infinite diffusion 

the tracer diffusion length Ldiff within a given time t can be calculated by 

 

*
diff
L D t   (5) 

 

and some numerical values are given in Tab. 1 to point out the tremendous effect of 

temperature T on the diffusion length and thus on a diffusive profile broadening. The 

substantial diffusion length of 5 µm already within ten seconds at 700 °C already ex‐

plains why quantification of the TPB width was not possible in the experiments men‐

tioned above: The tracer profile of an incorporation experiment of 10 seconds already 

broadens solely by bulk diffusion to about 10 µm (2 × Ldiff) even for an ideally line 

shaped incorporation zone. In Tab. 1 the tracer diffusion coefficient of 18O2‐ in YSZ was 

calculated from conductivity data measured on YSZ single crystals containing 9.5mol% 

Y2O3 and the relationship 

 

2

0

*

4
ion

C

B ion

D
f

k T n e


 

 
 (6) 

 

between tracer diffusion coefficient and ionic conductivity σion [89]. In Eq. 6 nion denotes 

the number of oxygen ions in YSZ per unit volume (5.7 · 1022 cm‐3 in case of 9.5 mol% 

YSZ), e0 the elementary charge, kB Boltzmann’s constant and fC the correlation factor 

which is approximately 0.65 for a simple cubic anion sub‐lattice [90]. A comparison of 

 

 

Table 1: Influence of temperature and time on the diffusion length of 18O tracer in YSZ. 

T [°C]  σion [Ω‐1cm‐1]  D* [cm2s‐1]  t [s]  Ldiff [µm] 

300 2.5 · 10‐6 2.2 · 10‐12 

 

10 0.05 

300 0.25 

600 0.36 

700 1.7 · 10‐2 2.5 · 10‐8  10 5.0 
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the results in Tab. 1 for 300 and 700 °C further emphasizes the importance of a rather 

low temperature during such oxygen incorporation experiments. However, low tem‐

peratures strongly increase polarization resistances and thus relatively high voltages 

might be necessary to pump sufficient tracer ions into the electrolyte. Such measure‐

ments were not available so far. 

1.4 Goals of this thesis 

The aim of the present thesis was the investigation of the electrochemical oxygen 

exchange mechanism and the reaction pathways on the system Pt|YSZ in a broad 

range of temperatures and overpotentials by using novel approaches and combining 

several techniques. In the first part the resistances and capacitances caused by electro‐

chemical oxygen exchange and its elementary processes at Pt electrodes on YSZ was 

investigated. Experiments were carried out on dense and geometrically well‐defined 

Pt (111) thin film microelectrodes on YSZ (100) single crystals. The electrodes were in‐

vestigated by electrochemical impedance spectroscopy between 300 and 900 °C. By 

variation of the microelectrode size the location of resistive and capacitive processes 

could be analyzed. Also information on the existence or non‐existence of a reaction 

pathway of oxygen exchange through the Pt thin film (in parallel to the Pt surface path) 

was gained from the geometry dependence of the resistance related to the rate deter‐

mining step. 

The goal of the second part – a 18O tracer study – was the visualization and quan‐

tification of the electrochemically active zone of platinum electrodes on YSZ using 

voltage driven 18O tracer incorporation. Experiments were again conducted on Pt thin 

film microelectrodes on YSZ single crystals. To minimize the critical diffusive broaden‐

ing of the tracer profiles, temperatures as low as 300 – 330 °C were chosen. Investiga‐

tion of the spatial 18O distribution was performed by time‐of‐flight secondary ion mass 

spectrometry (ToF‐SIMS). The effects of polarization on the shape and the lateral exten‐

sion of the electrochemically active zone were studied and mechanistic conclusions 

were drawn. 

In the third part the steady‐state current‐voltage characteristics of Pt electrodes 

on YSZ in a temperature range between 600 and 750 °C were explored. The tempera‐

ture was chosen such, that the oxygen exchange mechanism close to equilibrium can 
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safely be assumed to predominantly proceed via the surface path with a rate limiting 

step close to the TPB. From the measured current‐overpotential curves additional in‐

formation on the nature of the rate limiting step around equilibrium condition and low 

cathodic polarization was obtained.  

Altogether these studies based on different methods lead to many new insights 

into oxygen exchange on Pt|YSZ and to a significant progress in understanding the 

reaction mechanisms and electrochemical pathways of this important model reaction 

on a solid electrolyte. 
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2 Experimental 

2.1 Sample preparaƟon 

2.1.1 High temperature deposiƟon of Pt 

The high temperature deposition of platinum thin films was done by a procedure 

similar to that presented in Ref. [21] where high substrate temperatures where shown 

to lead to an improved temperature stability of pulsed laser deposited (PLD) Pt films: 

Platinum (99.95 % pure, ÖGUSSA, Austria) was sputter‐deposited (MED 020 Coating 

System, BAL‐TEC, Germany) onto polished (100)‐oriented YSZ single crystals 

(9.5 mol% Y2O3, Crystec, Germany) which were held at a temperature of ~700 °C; the 

argon pressure in the sputter chamber was 5 · 10‐2 mbar. The film thickness of about 

500 nm was determined by ex‐situ calibration using a quartz micro‐balance. The plati‐

num films were micro‐structured by standard photolithography (ma‐N 1420 negative 

photoresist and ma‐D 533 S developer for photoresist, both: micro resist technology, 

Germany) using a photomask (Rose, Germany) which allowed preparation of numer‐

ous circular‐shaped microelectrodes with different diameters on each sample. The re‐

quired etching process was performed in hot aqua regia. The samples were 

subsequently annealed at 700 – 750 °C for 48 h in air.  

Further sample characterization was performed by scanning electron microscopy 

(SEM) on a FEI Quanta 200 (FEI Company, The Netherlands) and by X‐ray diffraction 

(XRD) on an X’Pert PRO Diffractometer (PANalytical, Almelo/NL), PW 3050/60 goni‐

ometer with para‐focussing Bragg‐Brentano arrangement, copper anode (long fine fo‐

cus, Cu‐Kα1 and Cu‐Kα2 wavelength), divergence slit 0.5°, Soller collimator with an axial 

divergence of 2.3° on primary and secondary side, secondary sided Ni–Kβ filter and 

XʹCelerator detector. For results see Secs. 3.1.1 (REM) and 3.2.1 (XRD). 

For electrochemical measurements a counter electrode was attached to the back 

side of the samples by depositing porous paste electrodes. In the first experiments sil‐

ver paste (Heraeus, Germany) was used for this purpose. Despite no indication of Ag 
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controlled during the sputter process by means of a quartz micro‐balance. Micro‐

structuring of the Pt films was performed by lift‐off photolithography. As a counter 

electrode Pt paste was applied onto the back side of the YSZ single crystals. The sam‐

ples were subsequently annealed at 750 °C for two hours. An optical micrograph after 

the annealing step is shown in Fig. 3a. The film thickness of the microelectrodes was 

also measured by means of a confocal microscope (AXIO CSM 700, Zeiss, Germany) – a 

3D image of a 100 µm electrode is shown in Fig. 3b. A height profile along the cross 

section plane (indicated as transparent red plane in Fig. 3b) is given in Fig. 3c. From 

this height profile an electrode diameter of 100.2 µm and a thickness of the Pt film of 

about 300 nm were determined. Also the diameters of other microelectrode sizes were 

always very close to the nominal values and height measurements yielded values be‐

tween 300 and 380 nm. These results are in acceptable agreement with the nominal 

thickness of 350 nm obtained by means of the quartz micro‐balance during the sputter 

process. 

High resolution SEM investigations of the low temperature deposited Pt thin 

films were performed on a Quanta 200 FEG with Schottky emitter (FEI Europe, The 

Netherlands). Results of these SEM measurements are shown in Sec. 3.1.2. Additionally 

XRD‐patterns were measured directly after deposition of the Pt and after the 2h anneal‐

ing step at 750 °C – for results see Sec. 3.1.2. 

2.2 Electrochemical measurements 

2.2.1 Two‐point impedance measurements 

A schematic drawing of the setup used for two‐point impedance measurements 

is shown in Fig. 4a. The sample was placed onto a heating stage (Linkam, UK) which 

allowed measurements at set temperatures up to 1000 °C. To prevent the porous coun‐

ter electrode from sticking on the heating stage a 0.33mm thin sapphire disc (Crystec, 

Germany) was introduced between them. Electrical contact was established under a 

microscope (Mitutoyo, Japan) using Pt/Ir tips (Süss MicroTec, Germany) in case of high 

temperatures or gold‐coated steel tips (acupuncture needles, Pierenkemper, Germany) 

in case of temperatures below ~600 °C. The tips could be accurately positioned by mi‐
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The effect of the blocking capacitor on the impedance measurements is demon‐

strated in Fig. 7, where spectra recorded with and without Cno_dc are shown. In Fig. 7a 

the low frequency features of the impedance spectra are compared. In case of meas‐

urements without the blocking capacitor the electrode polarization resistance is about 

20% larger than with Cno_dc = 10 µF. A temperature effect can definitely be excluded 

since all of the measurements exhibited the same spreading resistance of the YSZ elec‐

trolyte as can be seen from the coincident high frequency axis intercepts in Fig. 7b. The 

behavior, however, can be explained by the polarization of the electrode due to the 

short circuiting of a thermovoltage as already mentioned above. Reasons why a polar‐

ized electrode (measurement without blocking capacitor Cno_dc) exhibits a higher differ‐

ential resistance than an electrode in equilibrium (measurement with Cno_dc) should be 

explained briefly in the following: In Fig. 8 a steady‐state dc measurement on the same 

Pt electrode is shown (see also Sec. 2.2.3). The I‐η curve is shifted to more positive 

overpotentials due to the mentioned thermovoltage, which was 10 mV in the present 

case. Impedance spectroscopy without the blocking capacitor provides the differential 

resistance (i.e. the inverse slope of the I‐η curve) in the point indicated by the black 

arrow, whereas impedance measurements with Cno_dc yield the differential resistance of 

the point indicated by the red arrow. Since the slope of the I‐η curve is higher at equi‐

librium conditions (red arrow, I = 0) the polarization resistance measured with Cno_dc is 

lower (~20 % in that case). A detailed discussion of the I‐η characteristics as well as rea‐

sons for not exhibiting Butler‐Volmer‐like kinetics will be given in Sec. 6. 

In addition the spectra recorded without a blocking capacitor exhibit indication 

for a degradation process: the electrode arc is obviously increasing from measurement 

to measurement. Introduction of Cno_dc into the setup also stopped this growing of the 

electrode semicircle. One possible explanation for this degradation process might be 

polarization induced changes of the electrodes – e.g. accumulation of impurities at the 

TPB [56, 93, 94]. Another reason might be related to polarization induced changes of 

possibly existing PtOx at the surface of the electrodes or at the Pt|YSZ interface [42, 95]. 

(Both kinds of changes may either be irreversible or reversible on a much larger time‐

scale than the charging of the electrodes interfacial capacitor.) 
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from the set temperature by about 120 °C. The effective electrode temperature was cal‐

culated from the spreading resistance of ion conduction in YSZ (which was obtained by 

impedance measurements) by Eq. 9 (Sec. 4.1.1). For measurements of the I‐η curves the 

set voltage was held constant for 200 s and the corresponding current was recorded 

every second. Between +0.1 and ‐1.5 V 22 voltage values were applied and the corre‐

sponding current was recorded. The voltage steps were between 25 and 200 mV with 

smaller step widths close to equilibrium. An exemplary curve showing the measured 

current as a function of measurement time is given in Fig. 10a. The I‐t curves at each 

voltage set point show the typical relaxation characteristics of R‐C elements. In order to 

exclude this charging current of the interfacial electrode capacitor, only the last 25 

points (which almost exclusively reflect the faradaic current at the respective voltage) 

were averaged and taken into account for further analysis – cf. Fig. 10b. The voltage 

range was not only passed through once, but voltage cycling was performed to check 

for any irreversible changes of the system upon polarization. 

2.3 18O tracer incorporaƟon experiments 

2.3.1 Experimental setup for 18O incorporaƟon 

The setup for the 18O incorporation experiments and the way of establishing elec‐

trical contact was essentially the same as for the two‐point impedance measurement. 

As a tracer gaseous 18O2 (97% isotopic enrichment, Cambridge Isotope Laboratories, 

UK) was locally supplied to the contacted microelectrode by means of a quartz capil‐

lary which could be accurately positioned by a micromanipulator; a sketch of the setup 

for these dc‐experiments is depicted in Fig. 11. The set temperature was 350 °C leading 

to effective electrode temperatures of about 300 ‐ 330 °C. For incorporation of the tracer 

into YSZ cathodic dc voltages of ‐2.00 V, ‐2.10 V, ‐2.20 V, ‐2.25 V, and ‐2.50 V were ap‐

plied to the microelectrode. Such rather high voltages were required to achieve suffi‐

ciently high dc currents in the tracer experiments (see Sec. 5.1.3). Voltage supply and 

current measurement were performed with a source‐ measure unit (Keithley 2611, 

USA). The first 100 ‐ 200 seconds of the polarization experiments were carried out in 
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Performance Frequency Analyzer with ZG2 test interface. The frequency range of the 

impedance measurements was between 1 MHz and 50 mHz with 5 frequency points 

per decade resolution; the ac voltage was 0.01 V (rms). 

2.4 ToF‐SIMS measurements 

The ToF‐SIMS measurements were done on a TOF.SIMS5 instrument (ION‐TOF, 

Germany). 2D element distribution images were recorded with a measuring mode 

commonly called “burst alignment mode” (Bi1+ primary ions, 25 keV beam energy, 

200 nm beam diameter) with 120 nsec pulse width. The measurement raster was 

512 × 512 pixels per area‐scan in case of 200 µm × 200 µm images and 256 × 256 pixels 

per area‐scan in case of 30 µm × 30 µm images. Depth profiles were acquired by se‐

quential sputtering with 2 keV Cs+ ions (500 × 500 µm2 area, ~170 nA sputter beam cur‐

rent). For charge compensation a low energy electron shower (20 V) was employed. 

The determination of the oxygen isotope ratios was done by integration of the 18O‐/16O‐ 

signal intensities within an increment of 20 nsec and the single peak correction proce‐

dure suggested in Ref. [96] was applied to minimize the error due to dead time effects 

of the detection system. 

On each electrode used in a tracer incorporation experiment two subsequent 

ToF‐SIMS measurements were carried out. A first one was performed with the Pt mi‐

croelectrode still remaining on the YSZ and a second measurement followed after re‐

moving the Pt thin film electrode by wet chemical etching in hot nitrohydrochloric 

acid. In addition, measurements with focus on positive secondary ions were performed 

to obtain information on the distribution of typical contaminants such as Si and alkali 

earth elements on the surface of YSZ. 
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3 Results of Sample CharacterizaƟon 

3.1 Scanning electron microscopy 

3.1.1 High temperature deposited Pt films 

Fig. 12 shows scanning electron microscopy (SEM) images of the Pt micro‐

electrodes on a YSZ single crystal. The somewhat wavy edge of the 100 µm electrode 

observable in Fig. 12b is caused by the harsh chemical etching process during electrode 

preparation; the central hole is a result of the contact procedure. The tightness of the 

electrodes was checked by optical microscopy as well as SEM and Fig. 12c demon‐

strates that only grain boundaries but no pores are visible. Only during measurements 

at 950 °C the formation of several pinholes was observed (cf. Fig. 12b). Hence, the tem‐

perature range for electrochemical investigations was limited to temperatures below 

900 °C. 

In Fig. 13a a SEM image of the rectangular shaped Pt microelectrodes, which 

were used in 18O tracer experiments, is shown. To obtain the highest possible infor‐

mation content in lateral tracer profiles, only the electrodes with the straightest edges 

were used for 18O incorporation experiments. Ion beam etching would lead to sharper 

edges but easily damages the surface‐near region of YSZ and could thus potentially 

distort the electrochemical incorporation of oxygen at the TPB and on the free YSZ sur‐

face. Apart from very few pinholes (with diameters in the range of micrometers) the Pt 

thin films were dense which was tested by means of higher magnified SEM images – 

see Fig. 13b. 

The thin film electrodes were also characterized by X‐ray diffraction (XRD) – cf. 

Sec. 3.2.1. The diffraction patterns in Fig. 15 show that almost solely reflexes corre‐

sponding to Pt (111) orientation could be detected and thus highly textured films were 

obtained. However, the platinum thin film electrodes were not single crystalline since 
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tions (software: Topas 4.2) for a virgin sample is shown. On this Pt thin film without 

any thermal treatment primarily reflexes corresponding to YSZ (100) and Pt (111) ori‐

entation could be observed. In addition a very weak signal according to Pt (100) was 

found. In Fig. 16b the diffraction pattern of the Pt film on YSZ after an annealing step 

(2 hours at 750 °C) together with its Rietveld refinement is shown. On these films the Pt 

(100) reflex could not be detected, the Pt thin films were exclusively (111) textured. Ob‐

viously the (100) oriented Pt was transformed into (111) oriented Pt during the anneal‐

ing step. The peak heights as well as the peak integrals obtained on the virgin films 

were significantly lower than in case of annealed films. This might possibly be attribut‐

ed to a slight inclination of the Pt columns in the film right after sputter‐deposition 

[98]. In Fig. 17b simulated diffraction patterns of ideal (111) textured Pt (upper orange 

curve) and slightly inclined Pt (111) (lower light blue curve) are compared. The lattice 

parameters and the crystallite sizes in this simulation were the same as in case of the 

real samples. Obviously the simulation obtained a comparable intensity ratio of the 

two Pt species as the measurements (compare Fig. 19a and b). In addition to the 

(111)‐textured Pt, traces of an unknown impurity phase were found on the annealed Pt 

film (with an intensity being orders of magnitude smaller than the strongest Pt reflex‐

es). In the Rietveld analysis the impurity phase refined with strongly distorted textured 

copper, which might be an impurity of the sputter target. However, due to the very 

small amount of this impurity its nature could not be identified unambiguously. The 

crystallite sizes (Lorentzian) as well as the lattice parameters of the platinum films ob‐

tained by the refinement are summarized in Tab. 2. The crystallite sizes were in good 

agreement with the results from SEM investigations (cf. Fig. 14). The somewhat larger 

lattice parameter of the virgin Pt thin film might be attributed to internal strain caused 

by the small crystallites. Rietveld calculations indeed yielded a significantly higher 

strain for the Pt films without a thermal treatment. 

 

 

Table 2: Crystallite sizes and Pt lattice parameters of low temperature  

sputtered and annealed platinum films. 

thermal treatment  crystallite size [nm]  lattice parameter [Å] 

none 40 3.936 

2 h at 750 °C 160 3.922 
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4 Results and Discussion of Impedance 

Measurements 

4.1 Measurements on high temperature deposited  

electrodes 

The electrochemical impedance measurements on high temperature prepared 

electrodes were done in the two‐wire setup described in Sec. 2.2.1. In order to keep 

irreversible changes of the microelectrodes (e.g. morphological changes or accumula‐

tion of impurities which may be caused by a thermovoltage – cf. Fig. 6) as small as pos‐

sible, only one impedance spectrum was recorded on each microelectrode. Rather, 

spectra on at least five different electrodes of the same size were measured at one set 

temperature for testing reproducibility and obtaining a reasonable statistics. The nomi‐

nal temperature of the heating stage was varied between 700 and 900 °C and true tem‐

peratures were determined from the measured YSZ bulk resistance (RYSZ) by the 

algorithm described in Sec. 4.1.1. The temperature range was not only investigated 

once, but thermal cycling was performed to test the electrochemical stability of the elec‐

trodes. The polarization resistance did not show significant changes even after meas‐

urements at 900 °C indicating acceptable geometrical stability of the electrodes (cf. 

Sec. 4.1.2). 

Impedance spectra measured on microelectrodes with a diameter of 100 µm are 

shown in Fig. 18a for five different temperatures. Each spectrum consists of at least 

three characteristic parts: a high frequency axis intercept, a high frequency shoulder 

(both visible in the zoom insert below), and a huge semicircle in the lower frequency 

range. The elementary process responsible for the resistance of this low frequency arc 

is the rate determining step of the electrochemical oxygen exchange reaction. Parame‐

terization of the impedance spectra was carried out by the complex nonlinear least 

square (CNLS) fit program Z‐View (Scribner, USA). The equivalent circuit used to fit  
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the experimental data is shown in Fig. 19 (CPE denotes a constant phase element) and 

will be discussed in Sec. 4.1.3. It allowed a good CNLS‐fit to the measured data as can 

be seen in Fig. 18b. The physical meaning of the elements and the reason for not using 

two serial R‐CPE elements will also be discussed in Sec. 4.1.3. Based on further experi‐

ments, particularly dc current‐voltage measurements and the related mechanistic con‐

clusions, a slightly refined circuit will be suggested and tested in Sec. 6. This circuit can 

even avoid the minor deviations between measurement and fit data visible in Fig. 18b 

at medium and higher frequencies. However, it does not affect the analysis and conclu‐

sions drawn in this section. 

4.1.1 The bulk resistance of YSZ 

In earlier studies with oxide microelectrodes on YSZ [24, 31] it was shown, that 

the high frequency intercept (denoted RYSZ in the equivalent circuit) is the spreading 

resistance of ion conduction in YSZ (provided that the electronic conductivity in the 

electrode is sufficiently high) [74]. This bulk resistance between a circular microelec‐

trode and an extended counter electrode is related to the ionic conductivity σion by 

 

1

2ion

ME YSZ
d R

   (7) 

 

where dME denotes the microelectrodes diameter [99‐101]. Since the ionic conductivity 

of the YSZ single crystals was also determined in a conventional setup with symmet‐

rical extended Pt electrodes (cf. Fig. 20), RYSZ and Eq. 7 can be used to determine the 

true temperature of each microelectrode. The deviation of the true microelectrode tem‐

perature from the set temperature of the heating stage had two reasons. First, the heat‐

ing of the sample was performed in an asymmetric way as can be seen in Fig. 4a. As a 

consequence a temperature gradient from the bottom to the top of the sample can be 

expected. Second, the contacted microelectrode is cooled by the tip which is clamped at 

much lower temperature. Owing to its “large” volume, compared to the microelec‐

trodes (cf. Fig 3b), the contact needle acts as a heat sink and leads to a decrease of the 

effective electrode temperature. According to the conventional impedance measure‐ 
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 0
ln 2

a

B ME YSZ

E
T

k d R


 
. (9) 

 

In the following analysis of the experimental data the true temperature of each meas‐

ured microelectrode was calculated from Eq. 9. Typical differences between these cor‐

rected temperatures and the set temperature were between almost 0 °C (200 µm) and 

about 60 °C (50 µm). However, despite microelectrode measurements only depend on 

a small volume of YSZ, their “field of vision” still contains a slight temperature gradi‐

ent. Hence, the values of σion and the effective electrode temperature are averaged val‐

ues over the YSZ volume probed by the microelectrode. Therefore, this temperature 

correction (Eq. 9) is still more an estimation than an exact calculation. As already men‐

tioned, owing to the temperature gradient in the sample a thermovoltage is generated 

between counter‐ and microelectrode (cf. Fig. 6). Effects of this thermovoltage on the 

impedance measurements will be discussed in Sec. 4.1.3.1. 

4.1.2 ParameterizaƟon of the electrode impedance 

Since the YSZ electrolyte was single crystalline, grain boundaries can be excluded 

as a source of any impedance feature and the high frequency shoulder as well as the 

predominant semicircle have to be related to electrode processes. Owing to the very 

large difference between the size of a microelectrode and that of the counter electrode, 

the entire electrode impedance was attributed to the Pt microelectrode [75] and the 

data presented in the following also support this interpretation. The main focus of the 

present work is the analysis of the geometry dependence of all fit elements of this elec‐

trode impedance. In principle this only requires direct comparison of fit parameters 

obtained on different electrode sizes at a given temperature. However, the cooling 

effect discussed above and thus the deviation of the true electrode temperature from 

the set temperature depends on the microelectrode size. Hence, a simple comparison of 

data obtained for one set temperature was not reasonable. To cope with this problem 

the comparison of electrode fit parameters was carried out over a wider temperature 

range. The fit data were plotted in Arrhenius diagrams and data points of each elec‐

trode size were correlated by linear regression. The resulting regression lines were then 
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used for analyzing the geometry dependence of each fit element. In Figs. 21, 22, 23, and 

24 the fit results (i.e. R1, R2, C1, and C2) are plotted as raw data (a), normalized to the 

TPB length (b) and normalized to the surface area (c), respectively. Since specific (ge‐

ometry‐independent) values should result for each parameter, such diagrams directly 

show which parameter is related to the TPB length and which one is related to the area 

of the microelectrodes: In the appropriate plot all regression lines fall together and thus 

reflect the true geometry dependence. 

Please note: The actual diameters (dmeas) of the electrodes were determined from 

optical micrographs by means of length measuring software (Olympus, Germany) and 

turned out to be slightly smaller than the nominal values defined by the photolitho‐

graphic mask (200, 100, 80, and 50 µm). Moreover, the wavy edge of the electrodes 

(due to the etching process cf. Sec. 3.1.1) lead to an increase of the true TPB length by a 

factor of about 1.2 which was determined from SEM‐images by attaching a thread 

along the electrode edge and measuring its length. The exact results of electrode area 

AME and TPB length LTPB are listed in Tab. 3. For the sake of simplicity nominal sizes are 

used throughout the text. 

 

 

Table 3: Geometrical properties of the circular microelectrodes used. 

dME,set [µm]  dME,meas [µm]  Circumference [µm]  LTPB [cm]  AME [cm2] 

200 192 ± 2 603 7.24 · 10‐2  2.90 · 10‐4 

100 91 ± 3 286 3.43 · 10‐2  6.5 · 10‐5 

80 70 ± 2 220 2.64 · 10‐2  3.9 · 10‐5 

50 41 ± 2 129 1.55 · 10‐2  1.3 · 10‐5 

 

4.1.2.1 ResisƟve electrode processes 

Data analysis of the polarization resistance caused by the rate determining step 

of oxygen exchange (i.e. resistance R1) is shown in Fig. 21 where the inverse of R1 (i.e. 

the conductance) is logarithmically plotted versus 1000/T. Each point in the diagram 

represents the arithmetic mean value of at least five individual measurements on  
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different electrodes at one set temperature. As expected, larger electrodes exhibit a 

higher conductance than smaller ones (cf. Fig. 21a). The plots resulting after normaliza‐

tion to the TPB length and the electrode area are given in Figs. 21b and c, respectively. 

From these diagrams a clear conclusion can be drawn regarding the geometrical de‐

pendence of R1: Only regression lines of TPB length related conductances fall together. 

At 700 °C the rate determining step causes a TPB‐specific conductance (electrochemical 

“conductivity”) of 6.6 ± 0.9 · 10‐7 Ω‐1cm‐1. The activation energy of this process was cal‐

culated from the linear slopes in Arrhenius plots and amounts to 1.36 ± 0.11 eV. The 

same analysis procedure was applied to resistance R2 which represents the high fre‐

quency shoulder in the impedance spectra. In contrast to R1 this parameter shows an 

area‐dependent behavior (see Figs. 22a, b, and c). An activation energy of 0.79 ± 0.09 eV 

was determined for the underlying process. The results of both resistive processes are 

summarized in Tab. 4. Reasons why processes at the counter electrode could be ex‐

cluded as origin of the shoulder‐like feature should be given in the following: Not only 

the strong relation between microelectrode area and R2 or C2, but also the very small 

absolute value of C2 strongly supports the assumption that the shoulder in the spec‐

trum indeed reflects microelectrode rather than counter electrode properties. Further 

the characteristic frequency f* of the shoulder‐like structure was determined to be in 

the order of 10 kHz. In contrast to that f* values obtained on a sample in a conventional 

setup with symmetrical extended Ag paste electrodes were in the range of 50 Hz at 

similar temperatures. 

In order to further illustrate the geometry dependence of the rate determining 

step, the inverse of R1 was also plotted versus the TPB length (Fig. 23). In case of a TPB‐

related process this kind of plot should display a linear relation for each temperature 

with regression lines intersecting the origin. The data points in this plot were calculat‐

ed from the Arrhenius‐fit lines in Fig. 21a (isothermal cuts through the diagram) in 

order to avoid errors caused by temperature differences of differently sized electrodes 

(see Sec. 4.1.1). For temperatures from 700 to 800 °C the extrapolations of the linear 

regression lines in Fig. 23 indeed almost exactly meet the origin. A slight deviation is 

found for 850 °C (particularly due to the data point of the 50 µm‐electrode) and signifi‐

cant deviation (again because of the 50 µm‐electrode point) results for 900 °C. This is 

possibly caused by a thermovoltage due to a temperature gradient – this was already 

mentioned in Secs. 2.2.2 and 4.1.1. In Ref. [22] a similar geometry dependence was  

 



 
 

 

 
 

Figur

The d

repor

suffe

chall

of th

4.1.2

diffe

capa

The c

wher

 

re 23: Inverse 

ata points wer

 

 

rted for str

ered from a

lenging: in a

e linear reg

2.2 Capacit

The capa

rent circuit

citor one, a 

complex im

 

CPE
Z

i 




 

re i denotes

values of R1 

re calculated f

ripe‐shaped

a large num

a plot of the

gression line

tances 

citive contr

t elements (

constant ph

mpedance of


1
n

CPE
Q

 

s the imagin

Res

(representing

from the linea

d sputter‐de

mber of po

e inverse re

es resulted i

ributions to

(cf. Fig. 19).

hase elemen

f the constan

nary unit, ω

sults and D

g the rate dete

ar equations of

eposited Pt 

res or pinh

esistance ve

in this study

o the impe

. To accoun

nt (CPE) ins

nt phase ele

ω the angula

iscussion of

ermining step

f the regressio

electrodes. 

holes which

rsus the TP

y. 

edance dat

nt for non‐i

stead of an 

ement ZCPE 

ar frequency

f Impedanc

p) plotted vers

n lines in Fig

However, 

h made dat

PB length an

a are repre

dealities in

ideal capac

is given by 

y of the ac s

ce Measurem

 
sus the TPB  l

g. 21a. 

these elect

ta interpret

n x‐axis inte

esented by

n the behavi

citance was 

signal, and n

ments 
 

44 

length. 

rodes 

tation 

ercept 

y two 

ior of 

used. 

(10) 

n and 



 
 

 

 
 

Figur

relate

re 24: Arrhen

d values. 

nius plots of th

Res

he capacitanc

sults and D

ce C1. (a) Raw

iscussion of

w data, (b) TP

f Impedanc

B  length rela

ce Measurem

 
ated values, (c

ments 
 

45 

c) area-



 
 

 

 
 

Figur

values

re 25: Arrhen

s. 

ius plots of pa

Res

arameter C2. (

sults and D

(a) Raw data, 

iscussion of

(b) TPB leng

f Impedanc

gth related val

ce Measurem

 
lues, (c) area-r

ments 
 

46 

related 



 Results and Discussion of Impedance Measurements 
  

 

 
  47 

QCPE are fitting parameters. If n is exactly one the constant phase element represents an 

ideal capacitor with QCPE being equal to C. For n<1 a capacitance value can be estimated 

from QCPE using the equation [103] 

 

 
1

1 n n
CPE

C R Q  . (11) 

 

Therein R denotes the resistance parallel to the constant phase element (in this case R1; 

effects of R2 and C2 were neglected). Most n‐values obtained from the fits in this study 

were between 0.7 and 1 which is a reasonable result for a non‐ideal capacitor. 

The geometry dependencies of C1 and C2 were investigated in the same manner 

as described for the two resistances. Both parameters showed area‐related behavior as 

can be seen when comparing Figs. 24a‐c and Figs. 25a‐c. At 700 °C values of about 

67 ± 3 µF/cm2 and 27 ± 5 µF/cm2 were obtained for C1 and C2, respectively. Both capaci‐

tors only weakly depend on temperature and nominal activation energies obtained 

from Arrhenius‐fits are given in Tab. 4. 

 

 

Table 4: Summary of the results deduced from the impedance measurements 

Parameter  Scales with…  Average value at 700 °C  Ea [eV] 

1/R1 TPB length 6.6 ± 0.9 · 10‐7 Ω‐1cm‐1 1.36 ± 0.11 

1/R2 surface area 3 ± 1 Ω‐1cm‐2 0.79 ± 0.09 

C1 surface area 67 ± 3 µFcm‐2 0.12 ± 0.06 

C2 surface area 27 ± 5 µFcm‐2 0.16 ± 0.04 

 

4.1.3 Electrochemical interpretaƟon of the fit parameters 

4.1.3.1 The polarizaƟon resistance of the rate determining step – R1 

From the fact that the rate of the oxygen exchange reaction scales with the TPB 

length two mechanistic conclusions can be drawn. It evidences that O2, when being 

reduced on Pt|YSZ, indeed takes the surface path on its way from the gas phase into 
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the electrolyte; a dominating contribution via the bulk path through platinum would 

lead to a proportionality of reaction rate and area which is not observed in this temper‐

ature range. Moreover, the results show that the rate determining step is located close 

to the TPB. Oxygen adsorption as well as oxygen dissociation on the entire Pt surface 

(followed by fast diffusion to the TPB) can thus be excluded as rate limiting steps since 

both would lead to area‐related R1 values. However, a co‐limitation of adsorption or 

dissociation and surface diffusion with a short decay length of the corresponding im‐

pedance transmission line (of a few µm or less) would still be in accordance with the 

experimental facts. Moreover, any elementary electron or ion transfer step close to the 

TPB, including a diffusion through a possibly existing impurity phase at the TPB, can 

lead to the measured geometry dependence. 

The conductance per TPB length of 6.6 ± 0.9 · 10‐7 Ω‐1cm‐1 obtained at 700 °C is in 

acceptable agreement with some of the values found in literature for electrodes with a 

thermal history comparable to the used preparation procedure [40, 41, 51]. In other 

studies with different electrode preparation processes, however, TPB‐normalized 

properties differed by orders of magnitude [22, 42, 50]. This suggests that the route of 

sample preparation tremendously influences electrode kinetics at Pt electrodes. A simi‐

lar data scattering was also reported in Ref. [104] for (La,Sr)MnO3 electrodes. As a pos‐

sible explanation the segregation of impurities to the TPB was discussed by several 

authors [7, 50, 54, 56, 104‐106]. Despite poor accordance in the absolute value of the 

conductance per TPB length, the activation energy (1.36 ± 0.11 eV) is in acceptable 

agreement with many Ea‐values found in literature (Ref. [22]: 1.37 eV, Ref. [41]: 1.66 eV, 

Ref. [46]: 1.32 – 1.54 eV, Ref. [50]: 1.5 eV). 

4.1.3.2 The interfacial capacitor – C1 

Owing to its absolute value of 67 ± 3 µF/cm2 at 700 °C, its weak temperature de‐

pendence (Ea = 0.12 ± 0.06 eV), and its position in the equivalent circuit parallel to the 

electrochemical reaction resistance (cf. Fig. 19), the constant phase element and hence 

the capacitor C1 is attributed to the electrode|electrolyte interface. It can thus be re‐

garded as a kind of double layer capacitance without excluding non‐electrostatic con‐

tributions of the interface to this capacitor. Similar values of 100 µF/cm were measured 

in Ref. [41] on YSZ containing 10 mol% Y2O3 and interfacial capacitances between 120 

and 330 µF/cm were found for YSZ with 8 mol% yttria [107, 108]. For doped ceria elec‐
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trolytes values of ~100 µF/cm2 were reported in Ref. [48]. A detailed mechanistic un‐

derstanding of such solid state “double layer” capacitors is still missing. 

4.1.3.3 The capaciƟvely blocked path – R2+C2 

A shoulder‐like feature at medium frequencies was also reported in Ref. [62]. 

There it was interpreted as a kind of current constriction at the TPB: Owing to its minor 

lateral extension the TPB in this study was assumed to act as a bottleneck for ionic cur‐

rent in the bulk, which may be short‐circuited by the double layer capacitor. This 

bottleneck can lead to an additional arc with a resistor reflecting the additional current 

constriction in YSZ and scaling with the inverse TPB length [84]. However, the area 

dependence of R2 found in the present measurements is not in accordance with this 

interpretation, even though the activation energy of R2 would fit to the bulk activation 

energy of YSZ. 

Therefore the following interpretation of the shoulder in the impedance spectra 

is suggested: Not only an additional serial kinetic process, but also a capacitively 

blocked parallel path (cf. Fig. 19) can cause an additional arc in an impedance spectrum 

[109]. The availability of a finite oxygen source between Pt and YSZ could give rise to 

such a capacitively blocked path. If this oxygen reservoir can be filled and emptied by 

the oxide ion flux in YSZ a serial connection of a capacitor and a resistor can be used to 

describe such a situation. Oxygen‐filled, closed pores along the Pt|YSZ interface are 

one possibility leading to such a circuit. The oxygen in the pores can electrochemically 

exchange at the “internal” TPB of the pore and this leads to a resistance R2. Since the 

volume of the closed pores and thus the amount of oxygen stored in them is limited, 

any dc current is blocked by a (chemical) capacitor. 

The chemical capacitance C2 of the closed pores along the Pt|YSZ interface can be 

calculated from the charge Q required to modify the Galvani potential difference  

across the Pt|YSZ interface via a partial pressure change, i.e. by  

 

2

dQ
C

d
 . (12) 

 

The increase or decrease of the number of oxygen molecules in the pores (dNO2) upon a 

voltage change d is connected to the amount of charge by Faradays law according to 
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20 O
dQ ze dN   (13) 

 

where z denotes the number of electrons transferred when reducing one O2 molecule. 

The relation between the voltage variation d and changes of the partial pressure of 

oxygen pO2 is described by Nernst’s equation 

 

2 2

20

ln
O OB

O

p dpk T
d

ze p


 
  
 
 

. (14) 

 

Linearization by first‐order Taylor series approximation – i.e. 2 2 2

2 2

ln
O O O

O O

p dp dp

p p

 
  
 
 

 – 

leads to  

 

2

20

OB

O

dpk T
d

ze p
   . (15) 

 

The partial pressure is connected to the number of oxygen molecules NO2 via the gas 

law  

 

2 2O pore O B
p V N k T    (16) 

 

where Vpore denotes the volume of the closed pores filled with oxygen. Therefore it fol‐

lows 

 

2 2

0
O O

B

ze
dN N d

k T
   . (17) 

 

Inserting Eq. 17 in 13 yields 

 

 
2

2

0 O

B

d
dQ ze N

k T

 
   

 
. (18) 

 

The chemical capacitance of capacitor C2 (Eq. 12) therefore reads 
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 
2 2

2 2

0 0
2 O O pore

B B

ze ze
C N p V

k T k T

 
     

 
. (19) 

 

In Ref. [49] small buried cavities between Pt and YSZ single crystal were as‐

sumed to act as nucleation sites for bubble formation in dense Pt thin films. Indeed in a 

SEM image of an electrode cross section cavities at the Pt|YSZ interface can be ob‐

served (cf. Fig. 12d). From this image a pore density of 4 µm‐2 and an average pore size 

of 60 nm was estimated. Assuming a hemispherical shape of the pores this corresponds 

to a total volume of 1.5 µm3 in case of an electrode with 100 µm diameter. For the 

measured average capacitance of 27 ± 5 µF/cm2 and the assumption of an oxygen par‐

tial pressure inside the pores of pO2 = 1bar, a total pore volume of V = 7.6 µm3 results 

from Eq. 19 for a 100 µm electrode. This value is in reasonable agreement with the vol‐

ume of 1.5 µm3 estimated from Fig. 12d. Moreover, the high ideality of C2 (a fit using a 

constant phase element leads to exponents very close to one) is typical for such chemi‐

cal capacitances [31]. However, the absolute values of R2 are up to 104 times smaller 

than those of R1 (in case of a 100 µm electrode). This would correspond to an “internal” 

TPB length of the Pt|YSZ interface in the range of 3 m, provided both internal and ex‐

ternal TPB exhibit the same TPB‐specific conductance. This is hardly conceivable when 

looking at the SEM results (cf. Sec. 3.1.1). A possible explanation for this inconsistency 

is the assumption of different impurity levels at the outer and the inner TPB. This then 

leads to different normalized reaction rates and could also explain the different activa‐

tion energies found for R1 and R2. Impurities such as silica are frequently discussed in 

literature in terms of their detrimental influence on electrode kinetics [7, 50, 54, 56, 104‐

106]. 

Oxygen being “chemisorbed” to platinum at the electrode/electrolyte interface 

could be another finite oxygen source between Pt and YSZ. In that case the value of 

C2 = 27 ± 5 µF/cm2 is formally in accordance with 3.5 · 1012 O atoms being “chemi‐

sorbed” per cm2 (assuming two electrons being transferred per oxygen atom). Then R2 

would reflect formation and dissolution of the chemisorbed oxygen species. For exam‐

ple the “chemisorption” of oxygen might be regarded as the formation or stoichiome‐

try change of an additional interfacial oxide phase of Pt or impurities with a significant 

stoichiometry range. The existence of impurity oxides at the Pt|YSZ interface is also 
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discussed in Ref. [95]. The data available so far do not allow a final conclusion whether 

one of these two or any other mechanism leads to the parallel path (R2+C2) and thus to 

the small shoulder in the impedance plots. 

4.2 Measurements on low temperature deposited 

electrodes 

4.2.1 Results of Impedance Measurements 

The electrochemical experiments on low temperature deposited electrodes were 

conducted in the pseudo 4‐wire setup explained in Sec. 2.2.2. The impedance between 

the Pt microelectrode and the Pt paste counter electrode was measured at set tempera‐

tures between 300 and 750 °C in a frequency range of 1 MHz – 10 mHz with a resolu‐

tion of 10 points per decade. For a given set temperature microelectrodes of two 

different sizes (200 µm and 50 µm) were electrochemically characterized (3 to 5 of each 

size) and on each microelectrode 2 to 3 impedance spectra were recorded. After sweep‐

ing through the temperature range (starting with the highest set temperature of 750 °C 

and ending at 300 °C) again a measurement at 750 °C (set temperature) was carried out. 

Since the results were within the experimental error of the very first measurements, the 

samples were assumed to be sufficiently electrochemically stable. Significant effects of 

irreversible changes of the samples during the impedance measurements were there‐

fore excluded. 

The measured impedance spectra depicted in Figs. 26a‐c consist of a large low 

frequency arc in the complex impedance plane, a small shoulder at medium frequen‐

cies, and a high frequency intercept (at high measurement temperatures) or onset of a 

high frequency arc (at lower measurement temperatures). In accordance with Sec. 4.1.2 

and many other studies on microelectrodes [24, 31, 56, 62, 75] the large arc can be as‐

signed to the electrochemical oxygen exchange reaction at the microelectrode. Any in‐

fluences of the porous counter electrode on the measured impedance spectra can be 

excluded since its polarization resistance is negligible compared to that of the microe‐

lectrode (due to its orders of magnitude larger size). At the highest temperatures the 

large arc is mostly visible within the frequency range under investigation (Fig. 26a). 
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For lower temperatures, however, only a fraction of it was detected (Fig. 26c). Details 

on the analysis of the raw data and mechanistic interpretation will be given in the fol‐

lowing. 

4.2.2 Kramers Kronig test 

The impedance spectra were tested in terms of the Kramers Kronig (KK) relation 

to further exclude time dependent influences on the impedance data. For Kramers 

Kronig testing, the program “K‐K test version 1.01” by B.A. Boukamp was used [110, 

111]. For an easy monitoring of KK‐compliance the relative differences – Δre,i and Δim,i – 

between the data and its KK‐compliant fit were calculated. The residuals are defined by 

[110] 

 

, ,

,

re i re KK

re i

KK

Z Z

Z


    and  , ,

,

im i im KK

im i

KK

Z Z

Z


   (20) 

 

where Zre,i and Zim,i denote the real and imaginary part of the measured impedance 

data and Zre,KK and Zim,KK denote the real and imaginary part of the KK‐transform, re‐

spectively. |ZKK| is the magnitude of the KK‐transform. 

In Fig. 26 three representative impedance spectra (open circles) measured on 

200 µm electrodes and the corresponding KK‐transforms (closed green diamonds) as 

well as their residuals are shown. Absolute impedance data and the corresponding KK‐

transform are given in Figs. 26a‐c, while the respective residuals are plotted as a func‐

tion of frequency in Figs. 26d‐f. KK‐compliant impedance data (that means good match 

between data and KK‐model) should only yield a scattering of the residuals around the 

log(f) axis [111]. In Fig. 26d (corresponding to 615 °C) indication for some trace was 

found. A possible explanation is a fluctuation in the thermovoltage which could also be 

observed when measuring this thermovoltage by a voltmeter (Keithley 2000, USA). 

However, the magnitude of data corruption is below 0.5 % which is much lower than 

the scatter of the experimental data when comparing measurements on different elec‐

trodes. At medium temperatures (510 °C, Fig. 26e) the traces become less pronounced 

but the scattering especially in the low frequency range was increased, 
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small resistor RB as well as the constant phase element CPEB were only included to ob‐

tain sufficient fit quality but will here not be interpreted in a physical manner. The 

spreading resistance [74, 101] of ion conduction in YSZ (RYSZ) and the known conduc‐

tivity of YSZ were used to calculate the effective temperature of each individual elec‐

trode. The corresponding procedure was described in detail in Sec. 4.1.1 (Eq. 9). How‐

However, at lower temperatures (below 550 °C) values of 1.136 ± 0.002 eV and 

21092 ± 1823 Ω‐1cm‐1 were used for Ea and σ0, respectively. The corresponding Arrheni‐

us plot of the YSZ conductivity measured by means of two extended electrodes in a 

standard sample holder is shown in Fig. 20. 

In Fig. 28 measured impedance data are compared to the results of the CNLS fit 

using the equivalent circuit in Fig. 27. Since at lower temperatures only the onset of a 

huge electrode arc was visible in the low frequency range – see Figs. 28d and 26c – it 

has to be proven that such a fragmentary semicircle can yield reliable fit results. There‐

fore the high temperature spectrum in Fig. 28a was fitted in a reduced frequency range 

(omitting the lowest frequency points) – in Figs. 28b and c the frequency points used 

for this reduced range fit are indicated by the filled red circles. An extrapolation of the 

corresponding results is given in Fig. 28b by the blue dotted line and showed only 

about 10 – 15 % deviation in the resistance compared to the fit using the full (meas‐

ured) frequency range (compare the extrapolations in Figs. 28a and b). This is still with‐

in the statistical scatter of measurements on different electrodes. An explanation for the 

rather low deviation is the “well‐behaved” nature of the capacitor in parallel to Rrds. It 

can be quantified pretty well by a constant phase element with n‐values of 0.88 ± 0.03 

which stays almost constant over the entire temperature range. Accordingly, the de‐

pression of the corresponding arc in the complex impedance plane is almost the same 

for all examined temperatures and a small fraction of the arc is sufficient to get the 

whole information contained in the relaxation (i.e. the parameters Rrds, QA, and nA). The 

capacitance of the arc can be calculated from the constant phase element CPEA and the 

resistance Rrds by Eq. 10. An Arrhenius plot of the resulting capacitance is shown in 

Fig. 29. Even though capacitance CA shows about 50 % relative standard deviation, it 

did not strongly change with decreasing temperature despite the fact that smaller and 

smaller parts of the arc were used in the fit. Hence, CNLS‐fits of spectra measured at 

lower temperatures (fragmentary semicircles) can still be regarded as being quite  
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4.2.4 The geometry dependence of the electrode polarizaƟon resistance 

The inverse values of Rrds are plotted in an Arrhenius diagram (see Fig. 30a). The 

data points already suggest two temperature regimes with different slopes in the Ar‐

rhenius plot and thus two processes with different activation energies. Since the slope 

(i.e. the activation energy) in the higher temperature range was obviously higher than 

for lower temperatures a parallel connection of two processes is an appropriate de‐

scription of such a situation. This can be understood from the model calculations in 

Fig. 31 where the temperature dependent inverse resistances of two different electrode 

processes are sketched. Since they exhibit very different activation energies, their paral‐

lel or serial combination are both characterized by a changing slope in the Arrhenius 

diagram. However, only the parallel connection (red dotted curve) can lead to a situa‐

tion with higher activation energy at higher temperature [53]. A serial connection (blue 

dotted curve) is unavoidably reflected by a lower activation energy at higher tempera‐

ture and thus contradicts the results in Fig. 30a. Consequently, the Arrhenius diagram 

does not only give information on the activation energies of the processes (the slopes of 

the two parts of the resulting curve), but also on the type of connection of the involved 

resistive processes: parallel connections result in a concave shape and serial connec‐

tions lead to a convex shape. The results were therefore analyzed in terms of two paral‐

lel oxygen exchange reaction paths with different activation energy. 

To avoid an arbitrary definition of the transition range between the two activa‐

tion energies the entire data set instead of two parts of the curve was fitted. For a paral‐

lel connection of two Arrhenius activated processes the fit equation for 1/Rrds = Yrds 

reads 
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Therein the pre‐exponential factors Y10 and Y20 as well as the activation energies Ea1 and 

Ea2 were fitting parameters. For an appropriate fit a weighting function w (different 

from one as in case of a linear fit equation) had to be defined and 
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was used which leads to a minimization of the relative deviation of the measured val‐

ues from the fit results according to: 

 

 
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fitmeas
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Y Y
Y Y w Min
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 
 (23) 

 

The fit results for 200 µm and 50 µm electrodes are given in Fig. 30a by the solid black 

line and the dashed blue line, respectively. The resulting activation energies (c.f. Eq. 21) 

are summarized in Tab. 5; on average 1.6 eV and 0.2 eV are found for the high and low 

temperature regime, respectively. 

For the investigation of the geometry dependence of 1/Rrds both fit curves were 

related to the length of the TPB (calculated from the electrode diameter dME by π·dME) 

as well as to the area of the electrodes (π·dME2/4). In Fig. 30b the fit curves related to the 

TPB length are shown. In this diagram the branches with the higher activation ener‐

gy(at higher temperatures) fall together indicating a rate determining process at or 

close to the TPB in this temperature regime. In the plot of the area‐related fit results – 

Fig. 30c – the shallow branches (at lower temperatures) coincide. In this temperature 

range the rate determining step is obviously related to the area of the electrodes. This 

different geometry dependence of the two parts of the fit curves clearly indicates a 

change of the geometry dependence of the polarization resistance and thus of the rate 

determining step. Moreover, the shape of the curve (higher Ea at higher temperatures 

and lower Ea at lower temperatures) indicates a parallel connection of these two pro‐

cesses (cf. Fig. 31). Altogether, the observed behavior suggests two different reaction 

pathways connected in parallel. 

For the sake of completeness another interpretation of the temperature depend‐

ence should also be excluded: It was frequently discussed in literature that a 

co‐limitation of two processes rather than only one single elementary step could be 

responsible for the polarization resistance of Pt electrodes on YSZ [4, 47, 52, 53]. Situa‐

tions potentially leading to co‐limited kinetics typically include a diffusion process (e.g. 

surface diffusion of adsorbed oxygen) and a reaction perpendicular to the diffusion 

direction (e.g. adsorption/desorption on the surface). Such a situation is sketched in 

Fig. 32a – the corresponding equivalent circuit (transmission line; capacitances neglect‐

ed) is shown in Fig. 32b. However, also such a situation cannot explain the observed  
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4.2.5 MechanisƟc discussion of oxygen exchange 

It remains to be discussed which detailed reaction paths and rate determining 

steps are in accordance with the experimental results. It thus has to be searched for 

kinetic situations where two parallel paths are possible for oxygen exchange, one path 

having a rate determining step located close to the TPB while the other one exhibits an 

area‐related rate determining step. The activation energies of the rate limiting elemen‐

tary steps are 1.6 eV and 0.2 eV for the TPB‐ and area‐related paths, respectively. In 

order to limit the possible kinetic scenarios, the following assumptions are made before 

discussing possible rate limiting processes. 

i) Fast surface diffusion of oxygen adsorbed on platinum: In Ref. [66] in‐situ im‐

aging of the spill‐over process of oxygen on single crystalline Pt (111) electrodes (on 

YSZ) was successfully demonstrated by scanning photoelectron microscopy. There, the 

authors showed that an anodic oxygen release (Uset = +0.2 V; 400 °C) led to a front of 

adsorbed oxygen moving from the TPB along the entire Pt surface. From these meas‐

urements a surface diffusion coefficient of 9.2 ± 1.8 · 10‐4 cm2s‐1 was obtained. Moreover, 

it could be concluded that the surface diffusion process was much faster than the de‐

sorption process, otherwise motion of the surface diffusion front over several hundred 

micrometres would not have been observed. On the length scale of the microelectrodes 

surface diffusion is thus assumed to be not included in the rate determining step.  

ii) Close to equilibrium conditions oxygen reduction and incorporation into YSZ 

was assumed to only take place underneath the Pt electrode. This is concluded from 

the ToF‐SIMS results presented in Sec. 5 where it will be shown, that only at very high 

electrode polarization (‐2.18V) oxygen tends to be incorporated also along the free YSZ 

surface. Hence, also ionization by electrons from YSZ is not considered. 

Regarding these assumptions three pathways of oxygen exchange are taken into 

account in the following discussion: a bulk path through the electrode (I), a surface 

path along the Pt electrode (II) and an alternative surface path along the free YSZ sur‐

face (III). In Fig. 33a a sketch of this situation is shown. In the following sections it is 

discussed which combinations of these paths and which rate determining steps are 

compatible with the experimental observations. 
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, , ,
0

eff a eq a eq a eq a eq
r r r r k        (27) 

 

holds, where reff denotes the effective (net) reaction rate of the rate limiting dissociation 

step, k‐a the rate constant of reaction from the atomically adsorbed state into the molec‐

ularly adsorbed state, and Θeq the equilibrium coverage of atomically adsorbed oxygen. 

If the equilibrium is disturbed (e.g. by the ac signal of an electrochemical impedance 

experiment) the coverage of the atomically adsorbed species is changed by ΔΘ and 

therefore the effective reaction rate changes to 

 

 , , , ,eff a eq a a eq a eq a eq a eq a
r r k r k r r k                 (28a) 

eff a
r k    (28b) 

 

Since atomically adsorbed oxygen is the electrochemically active species [19, 65, 66], 

the trapping of oxygen from the gas phase into the precursor state is virtually not 

affected. Consequently, also the rate of dissociative adsorption ra,eq is not affected by 

electrochemical manipulation. The resulting current Ieff is given by 

 

0 0eff eff a
I ze r ze k       (29) 

 

where z is the number of transferred electrons. The change in coverage is coupled to 

the electrode overpotential η by Nernst’s equation 

 

0 0 0

ln ln ln 1
eqB B B

eq eq eq

k T k T k T

ze ze ze


        
           
            

 (30) 

 

The change of the coverage thus depends on the voltage via 

 

0

1B

ze

k T

eq
e

 
    
 
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 (31) 

and the current – given in Eq. 29 – reads 
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0

0
1B

ze

k T

eff a eq
I ze k e





 
     
 
 

. (32) 

 

The inverse polarization resistance of adsorption kinetics at equilibrium conditions 

1/Rac,eq is given by the slope of the current‐voltage‐curve at η = 0 V 

 

0

0

, 0

1 eff

a eq

ad eq B

dI ze
ze k

R d k T


 



     . (33) 

 

After inserting Eqs. 26 and 27 as well as z = 2 for O(ad) in Eq. 33 

 

, 2 2

0 0

1 1

4 8

B B

ad eq

a tot

k T k T
R

r S Pe e
   


. (34) 

 

results for the polarization resistance. The total impinging rate 

 

2
B

tot

k TN
P

V M
  (35) 

 

can be obtained by kinetic gas theory [116]; N denotes the number of oxygen molecules 

within the volume V and M the mass of an O2 molecule. The sticking coefficient shows 

Arrhenius type behavior at temperatures above 200 K [113]. Depending on the kinetic 

energy of the impinging oxygen molecule activation energies Es of the sticking coeffi‐

cient between 0.04 and 0.13 eV were reported [112, 113, 115]. Consequently, the tem‐

perature dependence of the inverse polarisation resistance is dominated by the 

temperature dependence of the sticking coefficient. Since, the activation energy of the 

measured area‐related exchange rate (0.2 eV) is quite similar to the values of Es the ar‐

ea‐related polarization resistance could be attributed to an adsorption/desorption pro‐

cess. 

However, despite the promising accordance in activation energy, adsorption ki‐

netics is not believed to be rate limiting due to the following estimation: The resulting 

polarization resistance of the adsorption process can be calculated by Eq. 34. For im‐

pact energies of oxygen molecules corresponding to 650 K gas temperature sticking 
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coefficients are reported to be between 0.05 and 0.2 [112, 113, 115]. At this temperature, 

Ptot for oxygen in ambient air (200 mbar partial pressure) can be calculated from Eq. 35 

to be 1.1 · 1027 m‐2s‐1. Assuming the worst case scenario with S = 0.05 Eq. 34 yields an 

electrochemical adsorption resistance of 7.9 · 10‐10 Ωm2. For a 200 µm microelectrode a 

polarization resistance of 2.5 · 10‐2 Ω is thus predicted for adsorption under equilibrium 

conditions. This is far below the values measured on 200 µm electrodes at 650 K in this 

study (~109 Ω) and hence it can be concluded that the area‐related polarization re‐

sistance is not caused by adsorption limited kinetics. 

4.2.5.2 Oxygen diffusion through Pt in parallel to a path with charge transfer close 

to the TPB 

Another rate limiting step with a reaction rate proportional to the electrode area 

would be diffusion through the Pt thin film – most likely proceeding along Pt grain 

boundaries [33, 35]. Rate limiting gas diffusion through any pores in the Pt films is ex‐

cluded even though it would indeed lead to a small temperature dependence: First, 

such pores are not found in the SEM studies and second, even if there were some re‐

sidual pores this would simply slightly enhance the TPB length and should virtually 

not modify the temperature dependence. Moreover, gas diffusion through pores would 

be connected in series with the TPB process which also contradicts the experimental 

results. In Ref. [35] the activation energy of 0.68 eV for grain boundary diffusion of ox‐

ygen in Pt was calculated by ab‐initio methods. The inverse polarization resistance 

1/Rdiff of a diffusion limited electrode reaction close to equilibrium (assuming one di‐

mensional diffusion through the Pt thin film) reads 

 

 2 ( )01 O gb

diff B

D cze

R k T h


   (36) 

 

with h being the film thickness, D the diffusion coefficient and cO(gb) the equilibrium 

concentration of the diffusing oxygen species in the Pt grain boundary next to the sur‐

face [1]. The temperature dependence of D is given by Arrhenius’ equation  

 

ʹ

diff

B

E

k TD D e


   (37) 
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with D’ denoting the pre‐exponential factor and Ediff the activation energy of the diffu‐

sion process. For rate limiting diffusion the gas phase and the oxygen in the grain 

boundary are assumed to be in thermodynamic equilibrium – i.e. the reaction 

 

2 gb

1
 O   O

2
  (38) 

 

is fast. For low concentrations cO(gb) is given by mass action law: 

 

2

( )
ʹ e ʹ e ʹʹ e

r r r r

B B B

g h T s h

O gb k T k T k T

O

c
K K K K

p

    
  

        (39a) 

2( )
ʹʹ e

r

B

h

k T

O gb O
c p K




    (39b) 

 

In Eqs. 39a and b pO2 denotes the partial pressure of oxygen in the gas phase, K is the 

equilibrium constant, K’ the pre‐exponential factor, and K’’ the modified pre‐

exponential factor (K’’ = K’
Sr

kBe


 ); Δrg, Δrh, and Δrs are Gibb’s free reaction enthalpy, 

reaction enthalpy, and reaction entropy for the reaction in Eq. 38, respectively. The 

reaction enthalpy of this reaction can be estimated from the binding energy of the O2 

molecule which is 4.91 eV per O atom and the binding energy of the oxygen species in 

the Pt grain boundary which is in the range of 3.97 ‐ 4.60 eV [35]. Consequently a value 

between ‐0.31 and ‐0.94 eV results for Δrh. Inserting Eqs. 37 and 39b in 36 yields 

 

 
2

2

01 ʹ
e ʹʹ e

diff r

B B

E h

k T k T

O

diff B

ze D
p K

R k T h


 

       (40) 

 

The effective activation energy Ea of the inverse polarization resistance can therefore be 

estimated by 

 

a diff r
E E h    (41) 

 

to be in the range of 0.37 and ‐0.26 eV. This value is in reasonable agreement with the 

activation energy (0.2 eV) of the area‐related reaction rate obtained from electrochemi‐
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identified at TPBs of strongly polarized Pt electrodes – cf. Fig. 35. However, it was not 

possible so far to unambiguously proof the existence of sufficient amounts of these 

impurities to affect electrode behavior also at equilibrium conditions. An effect of im‐

purities on the TPB‐process is also mentioned in Sec. 6 where the results of dc meas‐

urements are discussed. 

4.2.5.3 Comparison with electrode “conducƟviƟes” in literature 

A comparison of the TPB length related inverse polarization resistances (elec‐

trode “conductivities”) of the present study with values found in literature is shown in 

Fig. 36. Most activation energies and also several absolute values from other studies are 

in good agreement with the TPB length related data of the obtained results [40, 41, 51]. 

Moreover, it becomes obvious that the high temperature prepared electrodes (Sec. 4.1) 

exhibited a lower “conductivity” than the low temperature deposited ones. The devia‐

tions could possibly be attributed to impurities at the TPB: The high temperature depo‐

sition procedure of the Pt thin films as well as the longer annealing (cf. Secs. 2.1.1 and 

2.1.2) might influence the amount of impurities accumulated at the TPB and therefore 

the polarization resistance of oxygen exchange [93, 104, 105]. The oxygen exchange 

mechanism at the TPB is thus assumed to be identical on both kinds of Pt electrodes 

(high and low temperature prepared). 

Pt electrodes exhibiting higher “conductivity” values were found in Refs. [22, 42, 

50]. In Ref. [50] silicon containing contaminations were demonstrated to tremendously 

affect the oxygen exchange kinetics of Pt electrodes. The Pt electrodes with the highest 

“conductivity” ( in Fig. 36) were shown to be free of these contaminations. In the 

study on porous Pt electrodes in Ref. [117], however, SiO2 impurities only deteriorated 

the electrode performance when being located at the Pt|YSZ interface. Traces of SiO2 

on the surface of Pt even decreased the electrode polarization resistance. This effect 

was discussed in terms of a change in adsorption kinetics of oxygen on platinum. A 

change in oxygen surface concentration would also affect a polarisation resistance 

caused by an elementary step subsequent to adsorption (such as charge transfer or ox‐

ygen diffusion through an impurity phase at the TPB). Taking the strong effect of SiO2 

impurities into account the scenario in Fig. 33d seems to be the most realistic one. 
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5 Results and Discussion of Tracer 

IncorporaƟon Experiments 

For further analyzing reaction paths and mechanisms of oxygen reduction on 

Pt|YSZ voltage‐driven 18O tracer incorporation experiments with subsequent ToF‐SIMS 

analysis of the tracer distribution were performed These results are presented in 

Sec. 5.2. These experiments were complemented by the electrochemical characteriza‐

tion of the corresponding rectangular shaped Pt microelectrodes. Results of these elec‐

trochemical measurements are given in Sec. 5.1. 

5.1 Electrochemical experiments 

5.1.1 Impedance results without dc bias 

The impedance spectra measured at the rectangular, high temperature deposited 

Pt electrodes at zero bias and 350 °C set temperature show a high frequency semicircle 

originating from the YSZ bulk [31, 74] and the onset of a huge low frequency arc. In 

Figs. 37a and 37b an exemplary spectrum without dc bias is shown (open symbols). 

The fitting results – also shown in Fig. 37 in solid lines – were obtained using two serial 

R‐CPE elements as an equivalent circuit. Since YSZ single crystals were used, grain 

boundaries can be ruled out as an origin of any impedance feature and the low fre‐

quency arc has again to be attributed to electrochemical electrode processes. This is in 

accordance with the low temperature measurements in Sec. 4.2 and further supported 

by the nonlinear current‐voltage behavior of the low frequency semicircle (see 

Sec. 5.1.2). Owing to geometrical reasons again only a very small resistive contribution 

of this arc is caused by the extended porous counter electrode and the onset of the low 

frequency impedance arc is thus almost exclusively attributed to the Pt microelectrode 

[31]. Obviously its relaxation frequency is much too low to make spectra completely 

visible in the frequency range used (cf. Sec. 4.2). The high frequency arc on the other 
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hand can be attributed to the bulk resistance due to ion transport in YSZ and an una‐

voidable stray capacitance between the contact needles of the order of a few 10 fF [118]. 

The bulk resistance of YSZ (RYSZ, diameter of the high frequency semicircle) was again 

used for the calculation of the effective electrode temperature, which deviates from the 

set temperature as already mentioned in Sec 4.1.1. The effective electrode temperature 

T was again estimated from Eq. 9 and Ea = 1.136 ± 0.002 eV as well as 

σ0 = 21092 ± 1823 Ω‐1cm‐1 (cf. Fig. 20). Even though Eq. 9 was derived for circular 

shaped electrodes acceptable estimates of electrode temperatures are also expected for 

the rectangular 50 × 100 µm2 electrodes used in this study when approximating their 

spreading resistance by that of circular electrodes with a diameter of 80 µm (i.e. with 

the same electrode area). Results for different samples are listed in Tab. 6. 

 

 

Table 6: Sample temperatures calculated from the averaged YSZ spreading resistance (
Y SZ

R ). 

Sample  YSZR  [107 Ω]  σion [10‐6 Ω‐1cm‐1]  T [°C] 

A 2.16 ± 0.08 2.9 ± 0.2 308 ± 4 

B 1.09 ± 0.04 5.7 ± 0.2 326 ± 5 

C 2.60 ± 0.29 2.4 ± 0.3 303 ± 6 

 

5.1.2 Impedance measurements under cathodic dc bias 

A strong effect of a dc voltage on the electrode polarization resistance is a well‐

known phenomenon in electrochemistry and is related to the nonlinearity of the I‐η 

characteristics of the electrochemical reactions at the electrodes [1]. In the impedance 

plot this is often reflected by a strong (nonlinear) decrease of the electrode semicircle 

with increasing overpotential. In Fig. 37 impedance spectra measured under different 

cathodic bias voltages (ranging from ‐2.00 to ‐2.50 V) are compared to spectra without 

additional dc voltage. The rather large scatter of the data points was caused by the ex‐

treme ratio of dc voltage (> 2 V) and ac amplitude (10 mV). As expected the electrode 

resistance was strongly affected by the cathodic polarization voltage. A change of  
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equilibrium state without dc bias (see Fig. 37c). However, the high frequency semicir‐

cle, which represents the bulk resistance of YSZ, was hardly affected by dc bias values 

of ‐2.25V (cf. Figs. 37b and 37c). This proofs that YSZ was still almost entirely ion con‐

ducting, despite the relatively high polarization. Only in case of the highest dc bias 

(‐2.50 V) some decrease of RYSZ,bias was observed which can be interpreted as the conse‐

quence of an electrochemical reduction of YSZ. The resulting increase in electron con‐

centration leads to a parallel electronic conduction path and could thus increase the 

conductivity [119]. As the resistance change was only about 20 %, YSZ was still in a 

predominantly ion conducting regime. Alternatively the decreased bulk resistance can 

be attributed to an effective electrode increase due to partial reduction of YSZ, see also 

Sec. 5.1.3. A significant electrode arc was no longer visible at such high dc bias. 

It has to be kept in mind that a fraction of the dc bias Uset drops in the YSZ bulk 

and thus Uset only partly affects the electrode reaction. For a calculation of the latter 

contribution, i.e. the electrode overpotential η, knowledge of the YSZ spreading re‐

sistance under a bias voltage of each individual polarized electrode RYSZ,bias is essential. 

The potential difference in YSZ is given by the total dc current Idc times the bulk re‐

sistance of the polarized electrode RYSZ,bias. The electrode overpotential therefore reads 

 

,set dc YSZ bias
U I R     (42) 

 

and was calculated for each individual electrode used for tracer incorporation; RYSZ,bias 

was obtained by the impedance measurements under a bias voltage which were men‐

tioned above. 

5.1.3 Electrochemical tracer incorporaƟon experiments 

Plots of the current Idc versus time t for the different dc voltages applied in this 

study are given in Fig. 38. In case of set voltages from ‐2.00 to ‐2.25 V the Idc‐t curves 

show the typical relaxation characteristics of R‐C‐elements (charging of the interfacial 

capacitance; see Fig. 38a). For the electrode under the highest polarization (Uset = 

‐2.50 V; Fig. 38b) an additional change, i.e. an increase after a sharp current decrease, 

was observed. This may be caused by the partial reduction of YSZ which is much 
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area and assuming further the validity of the spreading resistance equation [100] 

(RYSZ,bias = 1/(4·rME·σ) with rME being the active electrode radius) the 20% change in YSZ 

spreading resistance would be associated to an increase of the radius by about 8 µm. 

This corresponds well to the 18O results obtained under the same conditions – see 

Secs. 5.2.3 and 5.2.4. 

The starting time of 18O supply via the capillary and thus of 18O tracer incorpora‐

tion is indicated by arrows in Fig. 38. The dc current during tracer incorporation was 

averaged over the duration of the incorporation experiment. The values obtained for Idc 

were used to calculate the electrode overpotential by means of Eq. 42 – the results are 

summarized in Tab. 7. The fact that in case of ‐2.20 V set voltage the current was higher 

than for ‐2.25 V was most probably caused by the slightly higher sample temperature 

(see Fig. 38b and Tabs. 6 and 7). Fig. 38 also very clearly shows the reasons for being 

“constrained” to use quite high polarization values: even at these harsh cathodic condi‐

tions the resulting current was rather low at the electrode temperatures of about 300 ‐ 

330 °C used in the experiments. However, low temperatures were essential for success‐

fully monitoring the three phase boundary width since only then tracer diffusion in 

YSZ could be kept at a sufficiently low level – cf. Secs. 1 and 5.2.2 as well as Ref. [88]. 

As a consequence it cannot be excluded, that the results of this study reflect an oxygen 

reduction mechanism that differs from that close to equilibrium (cf. Sec. 6). 

 

 

Table 7: Calculation of the cathodic overpotentials η from the applied voltage Uset by subtract‐

ing the voltage drop in the electrolyte (Eq. 42). The nominally identical η for set voltages of ‐2.25 

and ‐2.50 V may be due to some measurement or fitting inaccuracies. 

Electrode  Sample  Uset [V]  RYSZ,bias [107.Ω]  Idc [10‐9.A]  η [V] 

1 A ‐2.00 2.27 ± 0.32 ‐0.4 ± 0.1 ‐1.99 ± 0.01 

2 A ‐2.10 2.23 ± 0.26 ‐0.6 ± 0.1 ‐2.09 ± 0.01 

3a B ‐2.20 1.09 ± 0.04 ‐1.8 ± 0.1 ‐2.18 ± 0.01 

3b B ‐2.20 1.09 ± 0.04 ‐2.4 ± 0.1 ‐2.17 ± 0.01 

4 C ‐2.25 2.30 ± 0.32 ‐1.4 ± 0.1 ‐2.22 ± 0.01 

5 C ‐2.50 2.07 ± 0.18 ‐13.7 ± 0.3 ‐2.22 ± 0.03 
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5.2 ToF‐SIMS results 

5.2.1 Lateral 18O distribuƟon and the locaƟon of the electrochemically 

acƟve zone 

The 18O distribution images (intensity plots) obtained by ToF‐SIMS on differently 

polarized electrodes are shown in Fig. 39. The 18O intensity is color‐coded with low and 

high intensities being dark and white, respectively (see the vertical bar on the left hand 

side of Fig. 39). Images, which were recorded with the corresponding Pt electrode still 

remaining on top of YSZ, are given in the first line (Figs. 39a‐e). The distribution plots 

after removal of Pt by an etching step are shown in the second line (Figs. 39f‐j). A com‐

parison of the two 18O distribution images in case of lowest polarization (electrode 1) 

suggests that the tracer incorporation zone was beneath the platinum electrode: only 

after removing the electrode an 18O frame was visible (compare Figs 37a and f). By a 

further increase of the polarization some 18O also became visible in SIMS measure‐

ments with the electrode still remaining on the electrolyte. However, an additional sig‐

nal could always be observed when removing the Pt thin film. 

In each experiment a significant increase of 18O intensity in YSZ was found only 

for polarized electrodes. Neighboring electrodes, which were exposed to the same 

thermal but no voltage treatment, did not show any evidence of 18O incorporation even 

though they were also exposed to a substantial amount of 18O2 during the dc experi‐

ment (in Fig. 39 electrodes below and/or above the electrode where tracer was incorpo‐

rated). Effects due to purely concentration driven oxygen exchange as well as artifacts 

during SIMS measurements – e.g. a matrix effect [120] – can therefore be excluded as 

sources for the increase in 18O intensity at the TPBs of polarized electrodes. 

In principle, the observed difference in 18O signal before and after removing the 

Pt electrode could be caused by two different effects: Either by transport of an 18O spe‐

cies along the Pt|YSZ interface or by a shadowing effect caused by the geometry of the 

Pt thin film electrode, which could be unfavorable with respect to the incident angle of 

the SIMS measuring beam. In order to exclude the second interpretation, a cross‐

section of one of the electrodes was prepared by means of a focused ion beam. A SEM 

image of such a cross section at the TPB region is shown in Fig. 12d. It can be seen that  

 



 
 

 

 
 

Results andd Discussioon of Tracer Incorporattion Experim

 F
ig

u
re

 3
9:

 1
8 O
 d
is
tr
ib
u
ti
on
 i
m
ag
es
 (
in
te
n
si
ty
 p
lo
ts
) 
of
 d
iff
er
en
tl
y 
po
la
ri
ze
d 
el
ec
tr
od
es
. 
T
he
 1
8 O
 i
n
te
n
si
ty
 i
s 
co
lo
r-
co
de
d 
(s
ee
 t
he
 v
er
ti
ca
l 
ba
r 
on
 t
he
 l
ef
t 
– 
bl
ac
k:
 l
ow
 

in
te
n
si
ty
, w
hi
te
: h
ig
h 
in
te
n
si
ty
);
 t
he
 s
iz
e 
of
 e
ac
h 
im
ag
e 
is
 2
00
 ×
 2
00
 µ
m
2 .
 I
m
ag
es
 i
n
 t
he
 fi
rs
t 
li
n
e 
w
er
e 
re
co
rd
ed
 w
it
h 
th
e 
el
ec
tr
od
e 
st
il
l 
re
m
ai
n
in
g 
on
 t
he
 Y
S
Z
 (
a-
e)
, 

th
i
th

d
li

d
ft

i
th
P
t
th
i
fi
l

l
t
d
(f
j)

ments 
 

81 

th
os
e 
in
 t
he
 s
ec
on
d 
li
n
e 
w
er
e 
m
ea
su
re
d 
af
te
r 
re
m
ov
in
g 
th
e 
P
t 
th
in
 fi
lm
 e
le
ct
ro
de
 (
f-
j)
. 



 Results and Discussion of Tracer Incorporation Experiments 
  

 

 
  82 

the electrode|YSZ contact is established up to the edge of the Pt electrode. Indication of 

de‐wetting of Pt close to the TPB was not found. Thus a gap along the Pt|YSZ interface, 

allowing gas diffusion beneath the Pt electrode, is ruled out as an explanation of the 

observed 18O incorporation behavior. A large influence of the 45° angle of the SIMS 

measuring beam can be excluded as well: As the film thickness is only of about half a 

micrometer the resulting shadow would not be able to completely cover the profiles 

found after removing the electrodes. Moreover, this kind of shadowing would only 

occur on one side of the electrode, which is in contrast to the obtained results (The 

somewhat asymmetric shape of the incorporation zones in Figs. 39b and c might be 

attributed to this kind of shadowing effect.) Hence, it can be concluded that in case of 

the lowest polarization used in the study (η = ‐1.99 V) the electrochemically active zone 

is indeed located along the Pt|YSZ interface close to the TPB and oxygen was almost 

exclusively incorporated into YSZ beneath the platinum electrode. Such an extension of 

the active zone along the Pt|electrolyte two phase boundary was already suggested in 

Ref. [44], however, the temperatures in that study were higher (500 °C) and porous Pt 

electrodes instead of dense ones were used. 

Increasing the polarization led to a spatial extension of the electrochemically ac‐

tive zone along the free YSZ surface. In ToF‐SIMS investigations of electrodes 2, 3a, and 

4 some tracer was already detectable with the electrodes still remaining on the YSZ (see 

Figs. 39b‐d). However, a substantial amount of 18O was again found in the TPB‐near 

zone beneath the Pt thin film. Only in case of highest polarization (electrode 5) very 

little (if any) extension of oxygen incorporation beneath the Pt is visible. Moreover, the 

highest polarization was accompanied by a significant change of the shape of the elec‐

trochemically active region. Instead of a more or less sharp frame‐like appearance of 

the incorporation zone a corona‐like image resulted. This modification of the shape of 

the electrochemically active zone also suggests a change of the oxygen incorporation 

mechanism for very high polarization. An obvious explanation for this behavior is the 

strong change of the electron concentration in YSZ with increasing cathodic overpoten‐

tial, which is also indicated by the impedance data and dc current measurements on 

electrode 5. In case of electrode 1 the electron concentration in YSZ seems to be suffi‐

ciently low to not affect the usual role of electrode and electrolyte in terms of electron 

supply and oxide ion uptake. The strong increase of electron concentration in YSZ for 

very high polarization, on the other hand, allows O2 to also be reduced on the free elec‐

trolyte surface. However, owing to the moderate electron conductivity of polarized 
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YSZ this zone is still restricted to a “corona” around the TPB. A similar electron supply 

via the electrolyte even without bias was also suggested for Bi‐based solid electrolytes 

[25] and to a minor degree for ceria electrolytes [26]. Moreover, a role of electrons in 

YSZ will also be concluded in Sec. 6 for similar electrodes from current‐voltage curves 

at higher cathodic overpotentials but higher temperatures. 

5.2.2 Diffusion of the tracer in YSZ 

In order to determine in how far tracer diffusion in the YSZ bulk contributes to 

the apparent width of the oxygen incorporation zone a depth profile of 18O in YSZ was 

measured for ‐2.20 V set voltage. Distribution images obtained on electrode 3b in 

x‐y‐plane (lateral distribution) and x‐z‐plane (depth distribution) are shown in 

Figs. 40a and b, respectively. Please note the strong difference in lateral and depth axis 

scale of Fig. 40b – a seemingly pipe‐like diffusion is not present. Rather, isotropic diffu‐

sion in cubic YSZ is found. For quantification the relative tracer concentration c(18O) 

could be calculated from the intensities int of the oxygen isotopes [121, 122] 

 

   
   

18

18

18 16

int O
c O =

int O + int O
. (43) 

 

A plot of the laterally integrated tracer concentration versus the depth is shown in 

Fig. 40c (green line). Even though integration parallel to the surface does not exactly 

match the integration along equi‐concentration lines, a reasonable estimate of the diffu‐

sion length can be obtained from the full width at half maximum (FWHM) of this 

diffusion profile and a value of 0.5 µm results. Since the diffusion time was known to 

be 600 s (duration of the incorporation experiment), a tracer diffusion coefficient 

D* = 4.2 · 10‐12 cm2s‐1 can be estimated from Eq. 5. Using Eq. 6 this value can be convert‐

ed into an ionic conductivity of 4.7 · 10‐6 Ω‐1cm‐1 at a temperature of 320 °C. This agrees 

very well with the conductivity value obtained in impedance measurements (cf. Tab. 6, 

sample B and Fig. 20). Hence, the following initial assumptions were verified: i) In the 

present concentration range (c(18O) < 10%) only concentration driven diffusion leads to 

an unintended broadening of the incorporation zone; field driven tracer migration is 
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summed up along the vertical (y) direction and related to the total oxygen intensity (cf. 

Eq. 43). These normalized values plotted versus the horizontal (x) axis are shown in 

Fig. 41b for electrode 1. The same procedure was applied to calculate the lateral pro‐

files for the other polarized electrodes (see Figs. 42, 43, and 44). For three electrodes (3a, 

4, 5) lateral profiles were determined from distribution images before and after remov‐

ing the Pt electrode (part c of Figs. 42‐44). In profiles calculated from the distribution 

images with remaining Pt electrodes the part of the profile corresponding to the elec‐

trode surface is characterized by a strong scattering. This is caused by a very low signal 

to noise ratio on the Pt surface. Hence, the corresponding part of the profile is not reli‐

able and therefore only given by a thinner dashed line. 

In order to compare concentration plots before and after electrode removal a lat‐

eral shift of the distribution images (caused by removal of the samples from the SIMS 

measurement chamber for etching) had to be compensated. Overlap of the outer part of 

the profiles was assumed to indicate the correct positions. These plots further quantify 

the trends already visible in the 18O images: For “smaller” overpotentials the 18O incor‐

poration almost exclusively (electrode 1) or predominantly (electrode 3) occurs beneath 

the Pt electrode. Figure 42 clearly shows that the maximum of the 18O profile became 

only visible after removing the Pt electrode. However, the electrochemically active 

zone extends along the free YSZ surface with increasing polarization (see Figs. 43 and 

44). Moreover, a shift of the zone with highest oxygen incorporation rate (i.e. the max‐

imum in the concentration profile) towards the free surface with increasing polariza‐

tion becomes obvious. 

5.2.4 The width of the electrochemically acƟve zone (“TPB width”) 

In order to quantify the width of the electrochemically active zone at the TPB the 

FWHM‐values of the lateral profiles were determined from the concentration plots in 

Figs. 41 – 44. As already discussed in Sec. 5.2.2 tracer diffusion in YSZ caused some 

broadening of the lateral incorporation profile. This broadening (green profile in 

Fig. 40c) is much smaller than the FWHM btot of the measured lateral incorporation 

profiles (~ 3 µm). Hence, a subtraction of twice the diffusion length of 0.5 µm from lat‐

eral profiles measured after removal of the Pt electrode is expected to yield the true 

width beff of the electrochemically active zone. In Tab. 8 the results of this analysis are 
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summarized. The highly polarized electrode 5 exhibited a significantly different incor‐

poration profile than the other electrodes: A relatively sharp decay is followed by a 

long tail along the free YSZ surface with only slowly decreasing incorporation activity 

(cf. Fig. 44c). The nominal FWHM obtained from electrode 5 is thus not sufficient for 

describing this strongly asymmetrical profile. However, the significant broadening of 

the active zone fits quite well to the decrease in the spreading resistance corresponding 

to the increase of the effective electrode “radius” by 8 µm discussed in Sec. 5.1.3. 

For a final interpretation of the resulting “TPB widths”, also the geometrical 

shortcomings of the electrodes have to be considered, namely their slightly wavy edge. 

It was already tried to minimize this effect by selecting the least wavy sections as inte‐

gration areas for profile calculation. A precise quantification of the apparent broaden‐

ing due to non‐straight electrode edges is difficult but its contribution is in the worst 

case around half a micrometer. As a consequence, even for this extreme case of a ge‐

ometry‐caused apparent broadening of 0.5 µm, it can be concluded from all measure‐

ments that the true width of the incorporation zone (bTPB = beff – 0.5 µm) is between 1.0 

and 1.3 µm. This is much more than most TPB widths estimated so far [43, 62, 81]. In 

how far the high polarization values strongly broaden the electrochemically active‐

zone (even without incipient electron conduction) cannot be concluded from these ex‐

periments. Neither can be decided whether the same rate limiting step as close to equi‐

librium determined the kinetics of these experiments. In Sec. 6 results will be discussed 

which suggest different rate limitations for high and low polarization. 

 

Table  8: The width b of the electrochemically active zone of differently polarized electrodes: 

FWHM values bfree YSZ and btot were determined from Figs. 41 – 44 with the electrode still re‐

maining and after removal of the Pt electrode, respectively. The corrected values  

(beff = btot – 2·Ldiff) were obtained after subtraction of the contribution caused by diffusion. In  

case of electrode 5 the TPB width determined from the FWHM is not comparable to the others, 

since the shape of the lateral profile is more complex. 

Electrode  bfree YSZ [µm]  btot [µm]  beff [µm]  bTPB [µm] 

1 — 2.6 1.6 1.1 

3a 1.8 2.5 1.5 1.0 

4 2.1 2.8 1.8 1.3 

(5) (1.9) (2.0) (1.0) — 
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5.2.5 Bulk path versus surface path 

The increase of 18O concentration at the free YSZ surface (cf. 0.2 % natural abun‐

dance of 18O) can be explained by conventional tracer exchange at oxide surfaces [123]. 

However, the enhanced 18O concentration in the entire region initially covered by the 

Pt electrode (0.25 ‐ 0.45 %) is not that self‐explanatory. This 18O increase is not a simple 

SIMS artifact but followed by a diffusion profile in YSZ bulk: In Fig. 45a the 18O distri‐

bution image of electrode 3b (η = ‐2.17 V, T = 326 °C) after removing the Pt electrode is 

shown. The relative tracer concentration c(18O) was calculated from the intensities of 

the oxygen isotopes in the distribution plot by Eq. 43. A plot of the laterally integrated 

tracer concentrations versus the sputter depth is depicted in Fig. 45b and acceptable 

diffusion profiles were obtained for the TPB zone (green dashed line, corresponding to 

the difference between white and orange integration area in Fig. 45a) and for the elec‐

trode area (orange solid line, corresponding to the orange integration area). The surface 

concentration in the electrode area (which was completely covered by a gas‐tight Pt 

film during the incorporation experiment) was increased from 0.2 % (natural abun‐

dance of 18O) to 0.3 – 0.4 % – see orange depth profile in Fig. 45b and lateral profile in 

Fig. 46b. Hence, since the increased surface concentration along the entire electrode 

area was also followed by a diffusion profile in YSZ, a SIMS artifact could be excluded 

as the source for the increase in 18O concentration beneath the electrode. 

Even though this phenomenon is not in the main focus of this section, a brief dis‐

cussion should be given. A possible mechanism leading to an 18O enriched YSZ|Pt in‐

terface is oxygen diffusion through the Pt thin film. Despite bulk platinum is 

commonly accepted to not dissolve significant amounts of oxygen [4, 19‐21], there ex‐

ists some evidence that very thin platinum films indeed are permeable for oxygen [33, 

34]. The quite high polarization values in the experiments may also contribute to a sig‐

nificant transport of oxygen through the thin film. However, this explanation would 

implicate that the total oxygen reduction current includes contributions from the sur‐

face path (via the TPB) and the bulk path (through the electrode). In terms of an equiv‐

alent circuit, two electrochemical resistors in parallel would be suitable in the simplest 

case (cf. Fig 46c). Hence, a straightforward separation of both paths by means of im‐

pedance spectroscopy is not possible. Tracer incorporation experiments, however, are 

feasible for separation and even for quantification of the two different reaction  
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tion along the Pt|YSZ interface is indeed due to a bulk path, this means that at lower 

polarization values the Pt‐bulk path carries approximately three to four times more 

current than the surface path via the TPB. Only for the two highest polarization values 

a distinct change in favor of the surface path (via the TPB) was found. This pronounced 

role of the bulk‐path is partly related to the extreme aspect ratios of the electrodes 

(100 × 50 µm2 area and only about 500nm thick). Extrapolating this to equilibrium con‐

ditions an area‐related behavior of the electrode polarization resistance would not be 

surprising for the low temperature range used in the present impedance study. 

This interpretation does not conflict with the quantitative analysis of the TPB 

width: Both paths are in parallel and all information given on the surface path is still 

valid. However, this interpretation would suggest that in case of electrodes 1 – 3 an 

elementary step being part of the Pt‐bulk path (through the Pt electrode) is rate deter‐

mining and a polarization resistance proportional to the inverse electrode area would 

be expected. In impedance measurements on low temperature prepared electrodes 

indeed an area‐related polarization resistance in parallel to a TPB process was observed 

at comparable temperatures (cf. Sec. 4.2). The rate limiting step of this process was dis‐

cussed in Sec. 4.2.5 to be oxygen diffusion along Pt grain boundaries. 

 

 

Table 9: Comparison of amounts of tracer incorporated via the surface (TPB)  

or the bulk path (Pt|YSZ interface) of the Pt thin film electrodes. 

  electrode 1   electrode 3a electrode 4  electrode 5 

  TPB 
Pt|YSZ 

interface 
  TPB 

Pt|YSZ 

interface
TPB 

Pt|YSZ 

interface
 TPB 

Pt|YSZ 

interface

c(18O)  0.0041 0.0033   0.0079 0.0045 0.0070 0.0023  0.0652 0.0037 

Δc(18O)  0.0021 0.0013   0.0059 0.0025 0.0050 0.0003  0.0632 0.0017 

Δc(18O).A [µm2]  1.64 6.50   4.43 12.50 4.20 1.50  37.92 8.50 

dc,TPB

dc,Pt|YSZ

I

I
    0.25      0.35  2.80    4.46 
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6 Results and Discussion of 

dc Measurements 

6.1 ParameterizaƟon of dc data 

The dc measurements were performed by the method described in Sec. 2.2.3 on 

high temperature deposited Pt electrodes (circular shape; dME = 100 µm). In order to 

obtain the overpotential η of the Pt electrode the contribution of the ohmic overpoten‐

tial caused by YSZ has to be subtracted (cf. Eq. 42). However, since the voltage drop in 

the electrolyte was 0.1 mV or lower in all dc measurements in the investigated temper‐

ature range Uset ≈ η can safely be assumed. The overpotential at the counter electrode is 

negligible due to its orders of magnitude larger size compared to the microelectrode 

(0.0079 mm2 dense vs. ~10 mm2 porous paste) [74, 75]. 

In Figs. 47a and 48a current‐overpotential curves obtained at different tempera‐

tures are depicted. Each curve shows one voltage cycle with the following sequence: 

0.0 V  ‐1.5 V  +0.1 V  0.0 V. The reason for not increasing anodic overpotentials 

beyond +0.1 V was avoidance of irreversible morphology changes of the Pt electrodes 

such as bubble formation [49]. In the anodic region under investigation an exponential 

increase of the current was found. In the cathodic part of the curve, after a first increase 

the current seems to be almost constant despite increasing polarization and only for 

very high polarizations (voltages below ‐1 V) an exponential relationship between 

overpotential and current can be observed. Figs. 47b and 48b show the 

I‐η characteristics at lower polarization (between +0.1 and ‐1.0 V) and the curves exhibit 

the characteristic shape of mass transport limited kinetics with a limiting current [1]. 

Quite similar current‐voltage behavior was already reported in literature [40, 42, 44, 53] 

for different Pt electrodes (porous paste or point electrodes from Pt wire) on YSZ at 

lower cathodic polarization values manifested by a decreasing slope in I‐η plots when  
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the cathodic polarization is increased. An additional exponential current‐overpotential 

relationship at high polarization, however, was not mentioned in these studies. In the 

present experiments identical I‐η curves could be obtained repeatedly at temperatures 

up to ca. 700 °C (corrected temperature; cf. the algorithm in Sec. 4.1.1). At higher tem‐

peratures, however, some irreversible changes of the electrodes during the measure‐

ments became obvious – see Fig. 48b, 721 °C curve. Hence, the analysis of dc data was 

limited to measurements without such irreversible effects (usually below ~700 °C). The 

irreversible behavior at higher temperatures might for example be attributed to chang‐

es (e.g. migration) of impurities at the TPB of the Pt electrodes during polarization [56, 

93] or to decomposition of a PtOx “phase” [42, 67]. However, it was not further investi‐

gated in the present study. 

The observed electrode characteristics with a limiting current at lower polariza‐

tion and an exponential current‐voltage relationship at high polarization constitutes a 

quite unusual situation. Much more common would be the reverse case with Butler‐

Volmer‐type kinetics at low polarization followed by a mass transport limitation when 

the polarization is increased. The latter situation could be described by a serial connec‐

tion of the two processes. In the present case, however, a parallel connection of two 

reaction paths is more appropriate to explain the observed shape of the I‐η curves: A 

rate limiting concentration polarization step leading to a limiting current in one path 

and an exponential process determining the current of the second path. In Sec. 4.2.5.1 a 

pretty low adsorption resistance of oxygen on Pt was estimated from adsorption kinet‐

ics data (7.9 · 10‐10 Ωm2) and hence a diffusion process being responsible for the mass 

transport limited kinetics of the path dominating at lower polarization is assumed in 

the following. The current‐overpotential relation for simple diffusion limited kinetics 

and an exponential current‐voltage relation in the cathodic region are given by Eqs. 46 

and 47, respectively [1]: 

 

0

1 e

diff

B

z e

k T

diff lim
I I

 
   
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In Eq. 46 Idiff denotes the resulting diffusion current at an overpotential η, Ilim is the lim‐

iting current, and zdiff the number of charges transferred by the diffusing particle. In 

Eq. 47 Iexp denotes the current exponentially depending on the overpotential and I0 and 

b are fitting parameters. The total current Idc resulting from a parallel connection of 

both processes is given by 

 

dc diff exp
I I I  . (48) 

 

To account for voltage shifts caused by the thermovoltage Utherm mentioned in Sec. 2.2.2 

Eqs. 46 and 47 were further modified and insertion in Eq. 48 yields 

 

   0 0

0
1 e e

diff
therm therm

B B

z e b e
U U

k T k T

dc lim
I I I

 


     
       

     
. (49) 

 

In the fitting procedure I and η were used as dependent and independent variable, re‐

spectively and the fitting parameters were Ilim, I0, zdiff, and b. The value for the thermo‐

voltage was measured before each dc measurement and used as a constant in the fit. 

Parameter T was the corrected electrode temperature (see Sec. 4.1.1). The resulting fit 

curves are compared with two different measurements in Figs. 49 (661 °C) and 50 

(701 °C) and reflect a satisfying description of the experimental data. 

6.2 Diffusion limited kineƟcs 

The fitting results of parameter Ilim are shown in the Arrhenius plot in Fig. 51a 

with different symbols for measurements on different electrodes. The values obtained 

on each electrode show acceptable Arrhenius type behavior. They exhibit similar acti‐

vation energies (i.e. similar slopes in the plot) with an average value of 1.57 ± 0.17 eV. 

This value is also in reasonable agreement with the activation energies of the polariza‐

tion resistances measured at comparable temperatures by impedance spectroscopy (cf. 

Secs. 4.1.3.1 and 4.2.4 as well as Tabs. 4 and 5). However, the absolute Ilim values ob‐

tained on different electrodes show significant scattering. This might be related to the 
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nature of the diffusion limitation. In Sec. 4.2.5.2 the TPB‐related polarization resistance 

of Pt electrodes was discussed to be possibly caused by impurities at the TPB [93]. As‐

suming such a TPB‐blocking impurity phase as the origin for the diffusion limitation 

on the Pt electrodes, the limiting current would not only depend on the geometry of 

the electrode but also on the geometry and the composition of the impurity “rim” at 

the TPB. Changes in the thickness of such an impurity “rim” would thus affect the lim‐

iting current. 

In Refs. [50, 117] Si containing impurities were shown to strongly affect oxygen 

exchange kinetics of Pt electrodes on YSZ. Moreover, in Ref. [50] it was demonstrated 

that electrodes, which were free of Si, exhibited tremendously lower polarization re‐

sistances than Si containing ones. In that study the polarization resistances of the Si‐

contaminated electrodes also exhibited notable variation, whereas the polarization re‐

sistances of Si free electrodes provided significantly less scattering. Also in the imped‐

ance measurements on similarly prepared Pt electrodes in Sec. 4.1 a remarkable 

scattering of the polarization resistances could be observed (cf. Fig. 21). Since the elec‐

trode polarization resistance (which is usually obtained by impedance measurements) 

is proportional to the inverse slope of the current voltage curves it reflects the same 

electrochemical process. Impurities at the TPB, which potentially hinder the oxygen 

exchange reaction at the TPB, would thus show the same effect on impedance meas‐

urements around equilibrium as on the limiting current in the present study. Different 

thicknesses, morphologies, porosities, or compositions of an impurity phase at the TPB 

of different electrodes would consequently lead to varying results. 

Since the exchange current of the exponential‐type reaction (Eq. 47) is orders of 

magnitude lower than the diffusion current, the polarization resistance around equilib‐

rium Rac,eq can simply be obtained by differentiation of the diffusion related part of 

Eq. 49 
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

 




 

      . (50) 

 

The resulting inverse polarization resistances close to equilibrium were normalized to 

the TPB length of the electrodes and compared in Fig. 52 with the Arrhenius‐fit of the 
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value of roughly one rather than two are not clear. A factor of two would be expected 

for a simple diffusion of an atomic/ionic oxygen species through an impurity phase. 

More detailed information on the exact path (through the phase, along an interface 

between phase and electrode, etc.) and the diffusing species can thus not be given.  

6.3 ExponenƟal current‐voltage relaƟonship 

Both fitting parameters (I0 and b) related to the exponential part of the fit function 

are depicted in Fig. 53. The fitting results of I0 are shown in an Arrhenius plot in 

Fig. 53a (two measurements were not considered due to problems with the fitting pro‐

cedure). A noteworthy fact is that I0 exhibits an activation energy of 3.65 ± 0.35 eV, 

which is uncommonly high for electrode processes on YSZ. The average value of fitting 

parameter b was obtained to be 1.05 ± 0.07. 

As mentioned above the shape of the current‐voltage curves suggests a parallel 

connection of two reaction pathways, each with a rate limiting elementary process (cf. 

Sec. 6.1). Since the process dominating at low polarization was assigned to a diffusion 

process at the TPB, the process at high cathodic polarizations could still either be an 

elementary step of a bulk path through the Pt electrode or of a YSZ surface path. Since 

a possibly existing bulk path, which was discussed to be limited by diffusion of oxygen 

along Pt grain boundaries (cf. Sec. 4.2.5.2 and Ref. [35]), is only relevant at tempera‐

tures below 450 °C, the observed exponential I‐η relationship is most likely attributed 

to a process on the free YSZ surface. In such a surface path via YSZ, electron conduc‐

tion in YSZ from Pt to oxygen reduction sites on the free YSZ surface is required. 

Therefore the exponential relationship between current and voltage at high polariza‐

tion could be interpreted in at least two different ways: i) Changes in electronic con‐

ductivity in YSZ with stoichiometry changes due to cathodic reduction of YSZ 

(stoichiometry polarization) could exhibit an exponential current‐voltage relationship 

[124]. ii) Charge transfer limited electrode kinetics (commonly denoted Butler‐Volmer 

kinetics) would be another possible model for the observed exponential current‐

voltage behavior [1] and its high activation energy. A discussion of these possible in‐

terpretations will be given in the following sections. 
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6.3.1 Stoichiometry polarizaƟon 

The conductivity of electrons in YSZ is proportional to their concentration (as‐

suming that their mobility is concentration independent) [97, 119]. The stoichiometry 

of YSZ and thus the concentration of “free” electrons in the material can be changed by 

electrochemical polarization. The electronic current Ieon through YSZ with a cathode 

ideally blocking the ionic current and a reversible counter electrode (classical Wagner‐

Hebb polarization) is given by [124] 

 
0

,

0

e B

e

k TB
eon eon eq

k T
I

e B






    . (51) 

 

In Eq. 51 B denotes the length of the sample in the one dimensional case of macroscopic 

electrodes and σeon,eq is the electronic conductivity of YSZ at equilibrium conditions (i.e. 

at the reversible electrode). 

A very similar situation is found here: The Pt microelectrode is highly blocking 

(though not entirely blocking for oxygen exchange along the TPB) while the counter 

electrode is almost reversible due to its large size. Accordingly, a significant stoichiom‐

etry polarization beneath the Pt electrode, which is also decaying along the free electro‐

lyte surface, can be expected. As a consequence the related increase of the local electron 

concentration in YSZ can open a second pathway for oxygen reduction at the free YSZ 

surface. If electron conduction from Pt to the reaction sites on YSZ is rate limiting, an 

I‐η relation similar to Wagner‐Hebb‐polarization would be expected, with B in Eq. 51 

now reflecting the lateral path of electron transport from Pt to the reaction site rather 

than to the counter electrode. Hence, despite our electrode setup is not symmetric and 

the Pt microelectrode is not ideally blocking Eq. 51 still allows a meaningful approxi‐

mation of the I‐η behavior in case of stoichiometry polarization with electron transport 

in YSZ as the rate limiting step of oxygen reduction on the free YSZ surface. Neglecting 

any polarization resistance of processes in series to electron migration in YSZ it there‐

fore follows Iexp ≈ Ieon. In this interpretation the fitting parameter b has to be equal to 

one and the parameter I0 reads (compare Eqs. 47 and 51) 
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exclude this classical Wagner‐Hebb‐like electronic current as the source of the exponen‐

tial current‐voltage behavior, an impedance spectrum measured under ‐1.5 V bias is 

compared to an impedance spectrum without an additional dc voltage in Fig. 54. The 

high frequency axis intercepts of both spectra – corresponding to the spreading re‐

sistance of YSZ – are virtually equal and consequently an electronic current path from 

the microelectrode to the counter electrode significantly affecting the total conductivity 

can be excluded. The current in YSZ is still almost exclusively ionic. The small electron‐

ic current from Pt via YSZ to the reaction site on the YSZ surface is caused by stoichi‐

ometry polarization close to the microelectrode but then transferred into an ionic 

current due to the electrochemical oxygen reduction on the YSZ surface. Hence the 

increased total dc current has to be attributed to an increased electrochemical reaction 

rate rather than an additional electronic current in parallel to the ionic current in YSZ. 

6.3.2 PolarizaƟon due to charge transfer and low electron concentraƟon 

in YSZ 

Another case potentially leading to an exponential I‐η curve is a charge transfer 

reaction on the free YSZ surface (Oy denotes an arbitrary oxygen species with 

charge y). 

 
cathodicy y‐1‐

anodic
O + e  O  (53) 

 

The exchange current Ieq of such a reaction is given by 

 

0

y

eq cath eq
I e k O e           (54) 

 

with kcath denoting the rate constant of the cathodic reaction, [Oy] the concentration of 

the oxygen species and [e‐]eq the equilibrium concentration of electrons in YSZ. Since 

the kinetics of charge transfer reactions on the surfaces of mixed conductors are highly 

complex [126] a straightforward discussion of Ieq‐η relationships can hardly be given at 

this point. In the classical Butler‐Volmer kinetics the concentrations are assumed to be 

independent of η. In the present case, however, this assumption would not hold for the 

concentration of electrons. Moreover, the concentration of an oxygen species on the 
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YSZ surface would depend on the surface potential difference which is coupled to η by 

non‐trivial relationships [126]. An estimation of the corresponding activation energy of 

such a scenario is difficult even though also very high values can be expected simply 

due to the highly temperature dependent electron concentration. Hence, also a charge 

transfer reaction at the YSZ surface as rate limiting step of the exponential part in the 

I‐η curves cannot be excluded. Anyway, both scenarios (6.3.1 and 6.3.2) reflect an addi‐

tional reaction path of oxygen reduction via the free YSZ surface. 

6.4 Consequences of dc results for the CNLS‐fiƫng of 

impedance spectra 

It was already mentioned above that the I‐η curve close to equilibrium should 

correspond to the situation observed in impedance measurements without bias volt‐

age. As shown in Fig. 55 in agreement with all impedance measurements of this study 

(Secs. 4.1 and 4.2) again a large arc results in the complex impedance plane was ob‐

served and this should mainly be caused by the diffusion limited process discussed in 

Sec. 6.2. At high frequencies again a kind of shoulder was found and this cannot be 

explained by the reaction paths discussed so far for dc measurements. Its resistor is 

proportional to the inverse electrode area (cf. Sec. 4.1) and thus neither caused by an 

additional step in the diffusion limited TPB path nor due to the YSZ surface related 

exponential kinetics which is not only TPB‐related but also negligible close to equilib‐

rium. Hence, in the investigated temperature region between 600 and 700 °C the com‐

plete picture of electrochemical reaction paths on Pt thin film electrodes has to consider 

three contributions and is sketched in Fig. 56: The diffusion limited TPB path, presum‐

ably across an impurity phase (a), the YSZ surface path measurable only at high over‐

potentials (b) and a capacitively blocked path at the electrode|electrolyte interface 

visible as high frequency shoulder in the impedance spectra (c). 

In the analysis of the impedance data close to equilibrium in Sec. 4.1 an equiva‐

lent circuit consisting of a R‐CPE element in parallel to an additional capacitively 

blocked reaction path was used (cf. Fig. 19). The resistive path was interpreted as an 

electrochemical reaction at the TPB (charge transfer) or in terms of co‐limited kinetics 

with a short decay length close to the TPB. One interpretation of the capacitively 



 
 

 

 
 

block

inter

or an

in Fi

(filled

zatio

 

Figur

ture).

iting a

ked path w

rface, which

n interfacial

ig. 55 (open

d red diam

on resistanc

 

re 55: Impedan

 (a) Low frequ

a real axis int

was an electr

h might be a

l oxide phas

n circles) is 

onds). The 

ce of the ra

nce spectrum 

uency part of 

tercept and a s

rochemical 

attributed to

se of Pt. In F

compared 

low frequen

ate determi

(Nyquist plo

the spectrum 

shoulder-like f

Resul

reaction of

o an interfa

Fig. 57a the

to the CNL

ncy region 

ining step) 

ot) of a 100 µm

showing the d

feature. 

lts and Disc

f “chemisorb

acial nonsto

e Bode plot 

LS‐fit empl

of the spec

is characte

m electrode m

dominating ar

cussion of d

bed” oxyge

oichiometric

of the impe

loying the c

trum (exhib

erized suffic

measured at 63

rc. (b) High fr

dc Measurem

en at the Pt

c impurity p

edance spec

circuit in F

biting the p

ciently, wh

 
39 °C (real tem

requency part 

ments 
 

109 

t|YSZ 

phase 

ctrum 

Fig. 19 

polari‐

hereas  

mpera-

exhib-



 
 

 

 
 

Figur

surfac

(b) El

lyte. (

 

 

some

high 

lent 

diffu

short

 

wher

tGFW 

is the

 

re 56: Sketch o

ce  path  with 

lectrochemical

(c) Capacitivel

e deviation 

frequency 

circuit does

usion proces

t circuited t

 

G

GFW

R
Z 

re i and ω 

and p are fi

e dc diffusio

2

GFW

L
t

D
  

of the discusse

diffusion  of 

l oxygen reduc

ly blocked pat

 between fi

range. This

s not consid

ss namely 

terminus th




tanh
GFW

GFW

i

i t





 

 

are the ima

fitting param

on resistanc

ed parallel ele

oxygen  thro

ction process 

h via an interf

fit and mea

s deviation 

der the circ

a generaliz

e impedanc




GFW

p

W

t 

aginary uni

meters. In t

ce and tGFW i

Resul

ectrochemical 

ough  an  impu

on the free YS

rfacial “phase”

asured data 

is not surp

cuit elemen

zed finite W

ce ZGFW of th

it and the 

the diffusion

is a charact

lts and Disc

pathways (ca

urity  phase  a

SZ surface wi

”. 

can be obs

rising since

nts usually r

Warburg (G

he GFW ele

angular fre

n interpreta

eristic time 

cussion of d

pacitances are

at  the  TPB  b

th electron su

served in th

e the corresp

representing

FW) eleme

ment is defi

equency, res

ation (i.e. w

given by 

dc Measurem

e not shown):

being  rate  lim

upply via the e

the medium

ponding eq

g a rate lim

ent [127]. W

fined by 

spectively. 

with p = 0.5)

ments 
 

110 

 
: (a) Pt 

miting. 

electro-

m and 

quiva‐

miting 

With a 

(55) 

RGFW, 

) RGFW 

(56) 



 Results and Discussion of dc Measurements 
  

 

 
  111 

with L denoting the diffusion length and D the diffusion coefficient. The accuracy of a 

fit using a GFW element instead of R1, however, only slightly increased. When also 

replacing the second resistor R2 by a GFW element, the fit quality became considerably 

higher. The results of the CNLS‐fit – employing the equivalent circuit from Fig. 19 and 

the circuit with GFW elements instead of resistors – are summarized in Tab. 10. Fur‐

ther, the fit result using GFW elements instead of resistors (closed green squares) is 

compared with the measured data in Fig. 57b – the circuit is shown as insert. When 

comparing Figs. 57a and b it becomes obvious that especially the high frequency part 

of the spectrum is much better described by the circuit with GFW elements instead of 

resistors. Since the p values of both Warburg elements are not far from 0.5 (0.65 for 

GFW1 and 0.44 for GFW2) both can be interpreted as non‐ideal diffusion processes. The 

dc resistances of GFW1 and GFW2 in case of a 100 µm electrode at 639 °C were obtained 

to be 31.1 · 106 Ω and 57.5 · 103 Ω, respectively. Despite the only moderate errors for all 

fit parameters in Tab. 10 it remains an open question whether this modification of the 

equivalent circuit is an over‐parameterization or physically meaningful. Nevertheless, 

a few thoughts regarding the mechanistic relevance of the two Warburg elements are 

given in the following. 

The meaningfulness of the element GFW1 was already discussed above and is in 

accordance with the dc results. A rate‐limiting diffusion process on the system Pt|YSZ 

was also discussed in literature [4, 47]. In Ref. [47] the authors successfully applied an 

equivalent circuit commonly called Randles‐circuit to fit the impedance spectra of po‐

rous electrodes. This circuit consists of a diffusion impedance in series to a resistor (in‐

terpreted as charge transfer resistance) and an interfacial capacitor in parallel to both 

processes. The semicircle‐like appearance of the electrode impedance rather than a 45° 

line in the high frequency part of the Nyquist plot despite assuming a rate limiting 

diffusion was attributed by the authors to the relatively high value of the interfacial 

capacitor. Indeed a subtraction of these capacitive contributions (as well as the charge 

transfer resistance) from the measured data obtained the 45° high frequency feature, 

which is characteristic for diffusion processes. As a consequence of this result the rate 

determining step of oxygen reduction at Pt electrodes on YSZ was often interpreted in 

terms of a rate limiting surface diffusion of an adsorbed oxygen species on Pt or a 

co‐limitation of surface diffusion and adsorption [47, 58, 70]. However, this can hardly 

be the case for the Pt model electrodes used in the present thesis when looking at the  
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ed, that from the data available so far the existence of PtOx at the interface cannot be 

proven unambiguously. Moreover, it should be mentioned that the capacitively 

blocked GFW element could also only exhibit an appropriate simplification of a much 

more complex circuit [128]. Hence, the physical meaning of the respective fit parame‐

ters is still open for discussion. Also the geometry dependence of the individual CNLS‐

fit parameters for differently sized Pt electrodes has not been analyzed yet (cf. Sec. 4). 

6.5 Consequences of dc results on the interpretaƟon of 
18O tracer experiments 

In Sec. 5.2 it was shown by means of 18O tracer experiments that the electrochem‐

ically active region of oxygen incorporation into YSZ at relatively high cathodic over‐

potentials (~ ‐2 V) and low temperatures (~300 °C) consists of two contributions: a 

frame shaped zone close to the TPB and a homogeneous zone along the entire Pt|YSZ 

interface (cf. Secs. 5.2.1 and 5.2.5). Owing to the high cathodic polarization values 

(which were necessary for a sufficiently high incorporation current) it could not be 

concluded from these tracer experiments, if the TPB‐near process (leading to the frame 

shaped incorporation zone) was of the same nature as that close to equilibrium condi‐

tions. In the present dc experiments two different surface paths were identified. An 

extrapolation of the currents expected from Eqs. 46 and 47 to low temperatures could 

thus possibly show which path was responsible for the frame shaped incorporation 

zone in the 18O distribution images. In Fig. 58a an Arrhenius plot of both polarization 

resistances identified in dc measurements (i.e. the inverse derivative of Eqs. 46 and 47 

at η = 0 V) is shown, considering a temperature range of 275 – 900 °C. This graph clear‐

ly indicates that close to equilibrium conditions the path with a rate limiting diffusion 

process close to the TPB is the dominating surface path in the entire plotted tempera‐

ture range. In Figs. 58b‐f Arrhenius plots of the dc currents calculated by Eqs. 46 and 47 

are shown for different polarizations. Up to cathodic polarizations of ‐1.0 V the diffu‐

sion limited Pt surface path is still dominating (cf. Figs. 58b‐d). At higher cathodic po‐

larization (ca. ‐1.5 V; Fig. 58e), however, the YSZ surface path starts to exceed the Pt 

surface path. A further increase in polarization to ‐2.0 V leads to a situation where the 
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YSZ surface path is carrying an orders of magnitude higher current over the entire 

temperature range (Fig. 58f). 

From these results it can be concluded that the TPB process visualized in the 18O 

tracer experiments in Sec. 5.2.1 was almost exclusively related to the YSZ surface path. 

Owing to the additional Pt bulk path, which is connected in parallel to both surface 

paths (cf. Sec. 4.2.5), also a significant homogeneous tracer incorporation in YSZ un‐

derneath the entire dense Pt electrode was found in Sec. 5.2.5. The currents via the TPB 

and via the Pt bulk path were calculated by Eq. 45 and a ratio of Idc,TPB : Idc,Pt|YSZ = 1 : 4 

resulted for the electrode with ‐1.99 V polarization (cf. Tab. 9). In Fig. 58f the current 

contribution of the bulk path (corrected for circular 100 µm electrodes) is shown by the 

blue cross at 308 °C and a ratio Idc,TPB : Idc,Pt|YSZ ≈ 1 : 1 is yielded from Fig. 58f. This in 

acceptable agreement with the current ratio obtained in Sec. 5.2.5 and further supports 

the result that the electrochemically active zone visualized in the 18O experiments was 

related to the YSZ surface path. (It should be noted that only a slight change in the ac‐

tivation energy of the process on the YSZ surface – 3.72 eV instead of 3.65 eV – yields 

almost exactly the current ratio of 1 : 4 obtained from Eq. 45 for electrode 1 in Sec. 5.2.5. 

This somewhat higher activation energy value, however, is still within the statistical 

scatter of the value obtained for I0 in Fig. 53: 3.65 ± 0.36 eV) 

This result seems to contradict the result in Sec. 5.2 that the oxygen incorporation 

zone close to the TPB is located underneath the Pt electrode. However, a PtOx “phase” 

could lead to a situation with a diffusion limited path in parallel to a path with electron 

supply via YSZ and oxygen incorporation beneath Pt. Further data are needed to final‐

ly clarify this point. 
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7 Complete Picture of ReacƟon Paths 

Altogether from the results of this thesis it is possible to identify and separate 

five different electrochemical pathways of the system Pt|YSZ, three faradaic ones and 

two being capacitively blocked. A sketch is given in Fig. 59. 

 

i) Path (a) is usually referred to as Pt surface path. This path was extensively stud‐

ied in the past and a number of different rate determining steps have been sug‐

gested. In the present thesis oxygen diffusion through an impurity phase at the 

TPB was concluded to be the kinetically slowest step of the Pt surface path. At 

moderate polarization (of few hundred millivolts) and at temperatures above 

600°C it was found to be the electrochemically fastest among the faradaic path‐

ways. 

ii) The path (b) represents a faradaic bulk path through platinum. The rate limiting 

elementary step of this pathway is most probably diffusion of oxygen along Pt 

grain boundaries. Around equilibrium conditions and below 400 °C this path was 

found to exhibit the lowest resistance among the faradaic paths and an area‐

related polarization resistance resulted. The emergence of this bulk path might be 

attributed to the extreme aspect ratio of the thin film electrodes used in this study 

(300 ‐ 500 nm thickness, 50 ‐ 200 µm diameter) and the small grain size of low 

temperature deposited Pt films. 

iii) A third faradaic path – the YSZ surface path sketched in (c) – was shown to be‐

come relevant at very high cathodic polarization (e.g. 300 °C: ‐1.5 V; 900 °C: ‐1 V). 

At these conditions path (c) carries the highest dc current and the rate limiting 

step was shown to lead to an exponential current‐overpotential relationship and 

a very high activation energy. Most likely this is due to a stoichiometry polariza‐

tion with oxygen reduction on the free YSZ surface and electron supply via the 

electrolyte being rate limiting. 

iv) A capacitively blocked reaction pathway (d) in parallel to the double layer capac‐

itor was interpreted in terms of the electrochemical reaction of an oxygen con‐

taining “phase” at the Pt|YSZ interface. This “phase” was assumed to be related 
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8 Summary of ScienƟfic Achievements 

8.1 Sample preparaƟon and measurement techniques 

Dense Pt microelectrodes were successfully prepared by means of two different 

preparation procedures: The first method was sputter‐deposition of a platinum thin 

film onto a heated (~700 °C) YSZ substrate followed by standard photolithography, 

etching in aqua regia, and a subsequent annealing step (48 h at 700 – 750 °C) to obtain 

sufficiently stable thin film model electrodes [21]. The second method was low temper‐

ature Pt sputter‐deposition (without additional heating of the sample) followed by 

lift‐off photolithography for micro‐patterning and short time annealing (2 h) at 750 °C. 

By using these methods it was possible to prepare electrodes which exhibited a suffi‐

ciently stable geometry (i.e. shape and TPB length) up to temperatures of 900 °C (high 

temperature prepared) or 750 °C (low temperature prepared). 

Owing to the special geometry of microelectrode samples (electrodes on top, 

heating from the bottom) and due to the contact by the tip, a temperature gradient 

across the YSZ electrolyte is generated. This temperature gradient had two distinct 

effects in electrochemical measurements on microelectrodes and on the analysis of the 

recorded data. Firstly, the temperature of the measured electrode differed from the set 

temperature and the effective electrode temperatures were different for differently 

sized microelectrodes. To account for these thermal deviations a procedure was devel‐

oped to calculate the true temperature from the spreading resistance of ion conduction 

in YSZ and the known relation of YSZ ionic conductivity and temperature. The second 

effect of the temperature gradient was the generation of a thermovoltage, which can 

lead to a polarization of the electrode resulting in a non‐equilibrium situation even 

without an external dc bias. To overcome this effect a quasi four‐wire method with an 

additional blocking capacitor was suggested and implemented into impedance meas‐

urements. 

Moreover, in the framework of this thesis the experimental technique of 18O trac‐

er incorporation as a tool for the visualization of the electrochemically active zone of 
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oxygen exchange was adapted to Pt microelectrodes. In contrast to previous experi‐

ments (where the entire sample was surrounded by the tracer gas), the technique em‐

ployed in the present thesis is based on a local supply of the 18O2 gas only to the few 

microelectrodes of interest. This modification offers several advantages: First, it allows 

investigating both a polarized microelectrode and a reference microelectrode (without 

an electrochemical treatment) in one and the same ToF‐SIMS measurement. Hence, 

SIMS‐artifacts resulting from changes between two different measurements can be ex‐

cluded. Second, it is possible to conduct several experiments on one sample, which 

minimizes deviations between different tracer experiments on different electrodes due 

to slightly different preparation conditions. Finally, this technique is also attractive 

from an economic point of view since the amount of consumed tracer gas is much low‐

er than in case of the macroscopic technique. The drawback of this method is, that the 

tracer concentration in the atmosphere is unknown and a quantification of oxygen ex‐

change rates from the surface concentrations of the tracer is thus not possible. 

8.2 Electrochemical impedance measurements 

In impedance measurements at temperatures between 700 and 900 °C on high 

temperature deposited electrodes four fundamental electrode processes – two resistive 

and two capacitive ones – were identified. The resistance of the rate determining step 

was found to be TPB length dependent with an electrode “conductivity” value of 

6.6 ± 0.9 · 10‐7 Ω‐1cm‐1 at 700 °C and an activation energy of 1.36 ± 0.11 eV. Compared to 

earlier studies in literature the relation between TPB length and polarization resistance 

was less ambiguous. This result further supports the already well accepted model that 

– at least in the investigated temperature range – the oxygen exchange reaction at Pt 

electrodes on YSZ proceeds via the surface path with a rate determining step close to 

the TPB. Hence, oxygen adsorption/dissociation on the entire Pt microelectrode surface 

can be excluded as the rate limiting step of the O2 reduction reaction between 700 and 

900 °C. One capacitive process was identified as the interfacial “double layer” capaci‐

tance with a value of 50 –70 µF/cm2 at 700 °C. In parallel to this capacitance and to the 

TPB‐related faradaic path an additional current path with resistive and capacitive con‐

tributions leads to a high frequency shoulder in the impedance spectrum. Both, re‐

sistance and capacitance scale with the electrode area. This feature is suggested to be 
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caused by a finite oxygen reservoir between platinum and YSZ. Provided that such a 

reservoir can be modified via an electrochemical process it represents a chemical capac‐

itor and the related interfacial oxygen could either be stored in oxygen filled cavities or 

as “chemisorbed” oxygen at the Pt|YSZ interface (e.g. PtOx). 

The oxygen exchange kinetics of low temperature sputter‐deposited platinum 

electrodes on YSZ could be successfully investigated by means of impedance spectros‐

copy at temperatures between 300 and 700 °C. By varying the size of geometrically 

well‐defined electrodes again the geometry dependence of the polarization resistance 

was analyzed. In the higher temperature range (550 – 700 °C) a TPB length dependent 

rate limiting step with an activation energy of about 1.6 eV was successfully observed. 

This is in good agreement with the results obtained on the high temperature deposited 

electrodes mentioned above as well as with previous results from literature [22, 41, 42, 

46, 50, 51]. The electrode “conductivity” in this TPB‐related regime was about one or‐

der of magnitude higher than in case of the high temperature deposited electrodes. 

This was discussed to be probably related to the different thermal history of the elec‐

trodes. Surprisingly at lower temperatures (300 – 400 °C), another reaction regime was 

found exhibiting an area‐related rate limiting step with very low activation energy of 

about 0.2 eV. From the shape of the entire Arrhenius curve it could be concluded that 

close to equilibrium conditions two parallel reaction paths have to be involved on these 

electrodes. A more detailed discussion of kinetic situations yielded two possible com‐

binations of TPB‐ and area‐related elementary steps explaining the experimentally ob‐

tained Arrhenius plot and geometry dependence: i) Oxygen diffusion through the Pt 

thin film – most likely via Pt grain boundaries – as area‐related process in parallel to 

oxygen diffusion through an impurity phase at the TPB. ii) Oxygen diffusion through 

the Pt thin film in parallel to co‐limitation of oxygen diffusion and charge transfer 

along the Pt|YSZ interface with a short decay length being responsible for the TPB‐

related polarization resistance. 

8.3 Tracer incorporaƟon experiments 

By means of 18O tracer incorporation experiments on high temperature deposited 

Pt thin film microelectrodes followed by ToF‐SIMS analysis it was possible to not only 

visualize but for the first time also quantify the zone where oxygen incorporation into 
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YSZ is taking place. The position and shape of this electrochemically active region 

strongly depended on the polarization of the respective electrode. In case of the “low‐

est” polarization used in this study oxygen incorporation exclusively took place be‐

neath the platinum electrode in a narrow zone close to the TPB. With increasing 

polarization, the active zone extended along the free YSZ surface as well. For very high 

polarization a distinct change in the shape of the oxygen incorporation zone was ob‐

served, which could be explained by high electron concentration in the electrolyte lead‐

ing to a change of YSZ properties from a pure electrolyte to a mixed‐conductor [25, 26, 

97] thus acting itself as a “cathode”. 

The width of the incorporation zone was determined from lateral 18O concentra‐

tion profiles. Neglecting the highest polarization, the estimated TPB widths were all 

between 1.0 and 1.3 µm. These values do not contain any contributions of 18O mass 

transport in YSZ since it was possible to subtract broadening effects caused by 18O bulk 

diffusion with a diffusion length of about 0.5 µm. Such small diffusion lengths, howev‐

er, required rather low temperatures (300 – 330 °C) and thus quite high polarization 

voltages had to be applied to incorporate measurable amounts of 18O. Moreover, an 

anomalous high concentration of the tracer along the entire Pt|YSZ interface was dis‐

cussed in terms of an electrochemical path of oxygen through the Pt bulk competing 

with the surface path via the TPB. This is in agreement with results of the impedance 

measurements at comparable temperature. Hence, oxygen transport via a bulk path 

through platinum grain boundaries was clearly proven to substantially contribute to 

the oxygen reduction current of polycrystalline Pt thin film electrodes at certain tem‐

peratures and voltages. 

8.4 Current‐overpotenƟal characterisƟcs 

In a dc study on Pt model electrodes it was finally demonstrated that at low ca‐

thodic polarization a slow mass transport is the rate limiting elementary step. At suffi‐

ciently high cathodic polarization a process in parallel to the first one was observed, 

which showed an exponential dependence of the current on the overpotential. Such a 

situation is quite uncommon and has not been reported so far for the system Pt|YSZ. 

The limiting mass transport at lower cathodic polarization was discussed to be 

caused by oxygen diffusion probably through or along an additional (impurity) phase 
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at the TPB of the Pt electrodes. Both, the resulting differential resistance around equi‐

librium and the activation energy (1.57 ± 0.17 eV) of the diffusion limiting current were 

in reasonable agreement with results of previous studies on Pt|YSZ [22, 41, 42, 46, 50, 

51]. As a consequence an equivalent circuit for the CNLS‐fit of impedance data, taking 

diffusion limited kinetics at the TPB into account, was suggested. 

The exponential part of the I‐η curve could be related to an oxygen reduction 

process on the free YSZ surface and was interpreted in terms of stoichiometry polariza‐

tion of YSZ. This conclusion is also in accordance with the similar activation energies of 

the electrochemical process (3.65 ± 0.36 eV) and the electronic conductivity in YSZ. 

Moreover, from the extrapolation of dc results to lower temperatures it was possible to 

relate the TPB process observed in 18O incorporation experiments to the YSZ surface 

path with oxygen reduction on the free electrolyte surface. This completed the picture 

of three different faradaic reaction paths on the Pt(O2)|YSZ system assumed in this 

thesis: Depending on temperature, electrode preparation or sample history, and over‐

potential these paths may or may not contribute to the data measured in impedance 

and dc studies. Accordingly, oxygen exchange kinetics on Pt|YSZ is definitely more 

complex than often assumed in literature. 
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9 List of Symbols 

 

A area of electrochemically active 

YSZ surface 

AME surface area of a microelectrode 

B sample length (Wagner‐Hebb 

polarization) 

b fitting parameter of Iexp 

beff diffusion corrected total FWHM 

bfreeYSZ FWHM of lateral 18O profiles on 

the free YSZ surface 

btot total FWHM of lateral 18O profiles 

bTPB TPB width 

C capacitance 

Cno_dc variable capacitor in pseudo 

4‐point impedance measurements 

Cint interfacial capacitance 

c(18O) tracer concentration 

cO(gb) equilibrium concentration of the 

diffusing oxygen species in the Pt 

grain boundary next to the sur‐

face 

D diffusion coefficient 

D’ pre‐exponential factor of D 

D* tracer diffusion coefficient 

dME diameter of circular microelec‐

trodes 

dME,meas true (measured) diameter of circu‐

lar microelectrodes 

dME,set nominal diameter of circular mi‐

croelectrodes  

Ea activation energy 

Ediff activation energy of a diffusion 

process 

Es activation energy of the sticking 

coefficient 

e0 elementary charge 

f frequency 

f* characteristic frequency 

fC correlation factor 

H width of an electrode stripe 

(co‐limited kinetics) 

h Pt film thickness 

I0 fitting parameter of Iexp 

Idc total dc current 

Idiff diffusion current 

Ieff resulting current in case of rate 

limiting adsorption 

Ieq exchange current of a charge 

transfer reaction 

Iexp dc current exponentially depend‐

ing on η 

Ilim limiting current of diffusion lim‐

ited kinetics 

i imaginary unit 
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idc electric current density 

int intensity of the signal measured 

by SIMS 

K equilibrium constant (mass action 

constant) 

K’ pre‐exponential factor of K 

K’’ modified pre‐exponential factor of 

K ( '' ' e
Sr

kBK K


  ) 

k‐a rate constant of reaction from the 

atomically adsorbed state into the 

molecularly adsorbed state 

kB Boltzmann constant 

kcath rate constant of cathodic reaction 

L diffusion length (GFW) 

Ldiff tracer diffusion length 

LTPB TPB length 

M mass of an oxygen molecule 

N number of oxygen molecules 

within the volume V 

NO2 number of oxygen molecules in 

pores at the Pt|YSZ interface 

n fitting parameter of a CPE ele‐

ment (exponent) 

nion number of oxygen ions in YSZ per 

unit of volume (5.7 · 1022 cm‐3 in 

case of 9.5 mol% YSZ) 

Ptot impinging rate per unit area at 

which the adsorptive (O2) strikes 

the surface 

pO2 partial pressure of oxygen 

QCPE fitting parameter of a CPE ele‐

ment 

Q charge 

R resistance / polarization resistance 
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