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Abstract 

 

Airborne laser scanning (ALS) data is increasingly used for classification purposes, 
and preferred over traditional aerial photogrammetric techniques in particular in 
vegetated areas. This thesis deals with the potential of full-waveform airborne laser 
scanning data for classification of urban areas. Information derived from full-
waveform ALS data, such as amplitude and echo-width, can be used to calculate 
additional attributes such as backscatter cross-section. These physical attributes 
together with derived geometrical attributes like the normalized digital surface 
model, standard deviation of elevation, surface slope and the echo-based feature 
number of echoes are used for the classification of urban areas. The study area is 
located in Vienna city where four classes are to be distinguished. They are buildings, 
trees, roads and grass area. Three classification methods are used, which are 
Maximum-Likelihood, Minimum-Distance and Decision Tree. A comparison of the 
results of these three methods proves the potential of features extracted from full-
waveform airborne laser scanning data for classification purposes in urban 
environment. It turns out that the achieved accuracy of the Decision Tree 
classification is better than that of Maximum-Likelihood and Minimum-Distance. For 
Maximum-Likelihood and Minimum-Distance classification, minimum amplitude of 
last echoes is of less importance, although it may be responsible for a slight 
improvement for roads and trees. Minimum echo width of last echoes is of less 
importance. But it has been seen that the minimum amplitude of the last echoes and 
backscatter cross-section are very useful for roads and grass areas classification 
using Decision Tree method. 
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Zusammenfassung 

 

Airborne Laserscanning Daten werden zunehmend zum Zwecke der Klassifizierung 
verwendet, und wobei sie, vor allem im Bereich mit Pflanzenbewuchs, im Vergleich 
zu herkömmlichen photogrammetrischen Techniken, bevorzugt zum Einsatz 
kommen. Diese Masterarbeit beschäftigt sich mit dem Potenzial der Full-Waveform 
Laserscanning Daten für die Klassifizierung des städtischen Raums. Weitere 
Information ist aus Full-Waveform ALS Daten ableitbar, wie Amplitude und Breite 
der Echos, die dann zum Berechnen der Backscatter Cross-section (Streu-
Querschnitt) verwendet werden können. Diese physikalischen Eigenschaften 
zusammen mit abgeleiteten geometrischen Eigenschaften wie normalisiertes 
Oberflächenmodell, Standardabweichung der Höhe, Geländeneigung und das echo-
basierte Merkmale Anzahl der Echos werden für die Klassifizierung eines 
Stadtgebiets verwendet. Das Untersuchungsgebiet liegt in der Stadt Wien und vier 
Klassen sollen unterschieden werden. Diese Klassen sind Gebäude, Bäume, Straßen 
und Grassflächen. Drei Klassifizierungsverfahren werden eingesetzt: Maximum-
Likelihood, Minimum-Distance und Decision Tree. Ein Vergleich der Ergebnisse dieser 
drei Methoden weist auf das Potenzial der von Full-Waveform Airborne 
Laserscanning Daten extrahierten Merkmale für die Klassifizierung von städtischem 
Gebiet hin. Es wird auch gezeigt, dass die Genauigkeit der Ergebnisse der Decision 
Tree Klassifizierng höher ist als jene der Maximum-Likelihood und der Minimum-
Distance. Für die Maximum-Likelihood und Minimum-Distance Klassifizierung war 
die minimum Amplitude der letzten Echos von geringerer Bedeutung, obwohl es 
vielleicht für leichte Verbesserung für Straßen und Bäume verantwortlich zeichnet. 
Die minimale Echo-Breite der letzten Echos hat geringere Bedeutung. Aber es zeigte 
sich, dass die minimum Amplitude der letzten Echos und der Backscatter-Querschnitt 
sehr nützlich für Straßen- und Grassflächenklassifizierung mit der Decision Tree 
Methode sind. 
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1. Introduction 
 

1.1 Urban planning 
 

Urban and regional planners require nearly continuous acquisition of data to 
formulate governmental policies and programs. These programs might range from 
the social, economic and cultural domain to the context of environmental and 
natural resource planning. There is an increased need for planning agencies to have 
timely, accurate and cost-effective sources of data of various forms [32].  

Knowledge of land use and land cover is important for many planning and 
management activities. The term land-cover relates to the type of features present 
on the surface of the Earth (e.g. corn fields, lakes, trees, etc). The term land-use 
relates to the human activity or economic function associated with a specific piece of 
land (e.g. single-family houses, parking sites, etc). For a long time and still the aerial 
photos and satellite images are used for classification purposes and land-cover/use 
mapping. Urban land-cover classification is an important research topic in urban 
studies, especially with expanding urban populations around the world [12], above  
that the analysis of urban areas or cities has become one of the most important 
research topic in remote sensing community because of the complexity of various 
man-made or natural objects, in additional of the large range of applications in the 
field of urban planning and infrastructure and environment, change detection, 
housing, transport, telecommunications, disaster management, tourism, navigation 
and archiving architectural heritage etc.  

The spatial resolution has increased with the progress of technology for obtaining 
high resolution aerial and satellite images and thus the potential to detect finer 
structures. Therefore urban structures such as man-made constructions, roads, or 
vegetated areas can be characterized more precisely, and used as input for 
Geographical Information Systems or for automatic mapping purposes. Airborne 
laser scanning  (ALS) became one of the important acquisition techniques, which 
deliver  invaluable data that can be used for object classification and parameter 
estimation for several fields such as in forestry and in urban applications [46]. Figure 
1 shows simply an urban mapping process from airborne or space-borne images to 
cadastral mapping.  
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Figure 1. Urban mapping, Vienna city. From [62]  

 

 

1.2 Classification of urban areas 
 

Urban landscapes are composed of diverse materials (concrete, asphalt, metal, 
plastic, glass, water, grass, shrubs, trees, and soil) arranged by humans in complex 
ways to build housing, transportation systems, utilities commercial building etc. The 
goal of this construction is usually to improve the quality of life. To analysis urban 
areas and to characterize urban phenomena it is necessary to obtain data, which has 
appropriate temporal, spectral and spatial resolution characteristics. For decades, 
large-scale aerial photos and satellite images have been employed to obtain such 
information by applying the principles of photo interpretation [20]. For land 
cover/use classification purposes in urban areas many techniques have been 
developed and tested on remotely sensed imagery. Interpretation using texture, 
context, and spatial configurations of urban land cover features and multispectral 
classification methods have been used. Aerial photography, mainly as orthophoto, 
and very high spatial resolution satellites images (Ikonos and Quickbird) provide the 
opportunity to obtain information at large scales for urban areas. urban mapping is 
challenging because of the complexity and quantity of data needed to represent 
large urban areas and the complex morphology of cities and the varied materials 
used in structures [16]. However, image noise, lighting conditions (presence of 
shadows is often unavoidable), occlusions and scene complexity complicate the 
identification of urban objects. 

Some authors used multi-temporal and multi sensors data sets with different 
acquisition geometries to provide useful approach to improve the classification 
results in shadows area in urban areas [15] but it may introduce errors in the 
classification because of different time of points. In addition to that, satellites which 
provide high spatial resolution, have limited spectral and temporal resolution. 
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Another data acquisition source for urban mapping are SAR (Synthetic Aperture 
Radar) images, small-baseline, long time scale coherence images (months to years) 
can be used to discriminate between urban and non-urban areas, and allowing basic 
information on urban extent to be retrieved a sequence of such observations can be 
used to automatically detect urban change. Digital elevation models derived by 
interferometry have been used to retrieve buildings height [18]. [53]used a few-
meters-resolution synthetic aperture radar (SAR) images to extract the road network 
in dense urban areas. 

SAR image processing is commonly recognized as a hard task because of high 
dynamics and multiplicative noise, which prevent the use of classical image 
processing tools. There are understandable reasons for the limited use of SAR data 
for land-cover classification, such as the special SAR geometry (which results in the 
undesired presence of shadow, layover, and fore shorting phenomena in the 
images), the complicated scattering process, and the presence of speckle noise. 
Above that it is generally difficult to obtain high classification accuracies if only one 
single-channel single-polarization SAR image is considered [6].  

Airborne laser scanning (ALS) is an active remote sensing technique providing direct 
range measurements between the laser scanner and the Earth's topography. The 
high degree of automation in both, capturing and processing the data, and high 
accuracy and point density, and low cost have caused LiDAR (Light detecting and 
Ranging) to be preferred over traditional aerial photogrammetric techniques. The 
backscattered echoes from objects are detected leading to a 3D cloud of points, 
which stem from a mixture of terrain, vegetation, building roofs, vehicles and other 
natural and man-made objects, therefore, ALS became also very useful for 
classification of urban areas. 

Since 2004, new ALS commercial systems called full-waveform lidar have appeared 
with the ability to record the complete waveform of the backscattered signal echo 
[35]. This development of full-waveform (FWF) ALS-data provide in addition to range 
measurements other attributes namely echo amplitude, echo width and information 
on multiple echoes from one shot [35] [46]. Airborne laser scanning is commonly 
used for high resolution digital terrain model (DTM) derivation [7], and related 
applications like detection of urban changes or monitoring environmental 
phenomena. For urban mapping, the development of full-waveform LiDAR offers the 
opportunity to obtain more details and properties about the illuminated surface, 
which leads to more reliable and accurate classification results. 
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2 Airborne Laser Scanning 
 

2.1 Principles of airborne laser scanning: 
 
Airborne laser scanning (ALS) is an active remote sensing technique providing direct 
range measurements between the laser scanner and the Earth' topography 
(Figure 2). 

 
Figure 2. Airborne Laser Scanning. From [66] 

 
Different principles can be used to measure the distance between sensor system 
(Laser scanner) and target. This measurement of distance or range, which always 
based on the precise measurement of time, can be carried out using one of the two 
main methods [49] [41]: 

• Pulse round trip time: 

The laser ranging instrument measures the precise time interval that has elapsed 
between the pulse being emitted by the laser ranger located on airplane or satellite 
and its return after reflection from a ground object (Figure 3, Eq. 1). 

� � � � ���      (1) 

Where: 
R  is the slant distance or range � is the average group velocity of light 
t is the measured time interval  
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Figure 3.  Principle of a pulse laser ranger, adapted from [41].  

 

• Phase shift measurement: 

In the second (alternative) method the laser transmits a continuous beam of laser 
radiation instead of a pulse. In this case, the range value is derived by comparing the 
transmitted and received versions of sinusoidal wave pattern of this emitted beam 
and measuring the phase difference between them (Figure 4, Eq. 2). 

R=(Mλ + ∆λ)/2        (2) 

Where:   
M    is the integer number of wavelengths 
λ  is the known value of the wavelength. 
Δλ   is the fractional part of the wavelength = (φ/2π). λ, where φ the phase 

angle. 
 

 
Figure 4. (a) Phase comparison is carried out between the transmitted and reflected signals from a 
CW laser and (b) phase comparison between the two signals takes place at the laser rangefinder 

located at A [49]. 
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The largest ranges can be probed using the pulse round trip time measurement 
principle obtaining cm-accuracy. Shorter distances, e.g. up to 100m, can be 
measured faster and more accurate with the phase-based measurement technique 
[41].  

One of the ALS-system's components is an optical scanning mechanism, it uses an 
optical element such as a rotating plane or polygon mirror or a fiber optic linear 
array to send a stream of pulses of laser radiation at known angels and at high speed 
along a line crossing the terrain in the lateral or cross-track direction relative to the 
airborne platform's flight path (Figure 5) [49]. 

  

 
 

Figure 5. Scanning techniques of different ALS systems. From [8]. 

 

2.2 Georeferencing : 
 

A laser scanner records polar coordinates, range R and scan angle α, of ground 
points in its own local coordinate system [29]. The combination of the GNSS (Global 
Navigation Satellite System) receiver and an inertial measurement unit (IMU) is the 
most common equipment for direct georeferencing. GPS antenna is mounted on top 
of the aircraft and the IMU is rigidly mounted to the sensor platform [41]. In airborne 
laser scanning data are acquired stripwise. For transforming laser scanner strips in 
the national ground survey coordinate system DGPS and IMU are used, for which 
only one ground reference station with ground-survey coordinates is needed [29]. 

The mathematical model expressed by the position of the antenna phase center (�	, 
	, �	) and the sensor attitude angles ω, φ, and κ to the ground point(�, 
,��) is 
(Eq.3): 
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�
�� � �	
	�	� � ���� �� � �� �� � �� ��� � ��� �� � ���� ��� ��
������ 

Where: �   GPS antenna offset  ��  IMU misalignment ����    Rotation matrix accounting for the rotation of the body frame to 
global   frame. 

 
The component GPS, IMU, and laser scanner have to be synchronized. After t
direct georeferencing process the laser scanning, high precision can be achieved 
applying the so-called method of strip adjustment [41] [29]. Georeferencing proce
provides dense and irregular distributed points (points cloud) in an identifi
coordinate system (e.g. WGS84). Depending on the geometry of illuminat
surfaces, several backscattered echoes may be recorded for a single emitted puls
Such systems are called multiple pulses or multi-echo LiDAR sensors [39]. 

2.3 Airborne full-waveform laser scanning data: 
 
The new technology of full-waveform (FWF) LiDAR has the ability to record t
complete waveform of the backscattered signal echo. Thus, in addition to the bas
geometric representation of the Earth topography, it provides physical properties 
the observed targets. "Waveform", refers to the shape of the return signal, who
analysis allows one to set up advanced processing methods which increase pul
detection reliability, accuracy and resolution [35].  

Decomposing the waveform into a sum of components or echoes maximizes t
detection rate of relevant peaks, thus characterizing the different targets along t
path of laser beam, and generating a dense 3D point cloud (Figure 6) [55] [35]. 

 

 
Figure 6. Multiple echoes recorded by FWF-ALS data analysis. From [67]. 
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Sensor (LVIS) or the Geoscience Laser Altimeter System (GLAS) flown on board the 
ICESat satellite [57] [35]. 

 

 
Figure 8. (a) a small-footprint LiDAR and (b) a large-footprint LiDAR. From [35]. 

  

2.3.1 Analysis of the full-waveform information: 
 
Wagner, et al [55] have used radar equation adapted to ALS to describe the shape of 
echo waveform which depends on the emitted laser pulse and the backscattering 
properties of the target (Figure 9). 

 

 
Figure 9. Geometry and parameters involved in the radar equation. nlike a real hardware setup, 

transmitter and receiver are drawn separately. From [55]. 

 
By combining all target parameters into one parameter, the backscatter cross-
section σ can be obtained:                      

σ= 
 !" ρ As           (4) 
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Where:  
ρ  the reflectivity  
As the receiving area of scatterer # cone of solid angle.  
 
The backscattering characteristics of a target depend on its size, its reflectivity and 
the directionality of scattering. 

2.3.1.1 Gaussian decomposition: 
 
For spatially distributed targets the return signal is the superposition of echoes from 
scatterers at different ranges or time. Scatterers produce distinct echoes if separated 
by distances larger than the range resolution of ALS system [55]. The recorded signal 
Pr (t) by the receiver of a small-footprint waveform ALS system is the result of a 
convolution of the transmitted pulse and differential cross-section multiplied by the 
term 1/R4 , the recorded waveform can be described by a formulation of radar 
equation adapted for ALS:  

  

$%�&�' � �( )*+ !,-.�/0+ 1232145�6789 :&�' ; <7&�' 
 

Where:   $%�  received signal power [W] :  system waveform [DN] =%  diameter of receiver aperture [m] �  Range from sensor to target [m] �>  laser beam divergence [rad] 1232  system transmission factor [-] 145�  atmospheric transmission factor [-] <  backscatter cross section [m2 ] 
 
the system waveform S(t) of the laser scanner defined as the convolution of the 
transmitted pulse Pt (t)  and the receiver response function Γ(t): 

S(t)= Pt (t) * Γ(t)        (6) 

In practice, Pt (t) and Γ(t) cannot be easily determined independently [55]. This 
system waveform and the scattering properties of a cluster of scatterers can be 
described by Gaussian function: 

S(t)= Ŝ ?@0++AA+                   (7) 

Where: 
Ŝ  amplitude 
ss  the standard deviation. 

 (5) 



In order to come to an analytical waveform solution, it will be assumed that the 
scattering properties of a cluster of scatterers can be described by a Gaussian 
function: 

<7B � <C7�?@&0@0-'++A-+             (8) 

Where: <C  amplitude 
si  standard deviation of the cluster (echo) i 
ti  position of cluster i 
 

then the final result is to decompose the received signal into several Gaussian 
curves: 

Pr (t)= ( $D7?@&0@0-'++AEF-+6789            (9) 

Where: 
ti  round trip-time 
sP,I  standard deviation (echo width) of the echo pulse i $D7   Amplitude of echo i 
 

 

 

2.3.1.2 Radiome
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tric calibration: 

rvables (amplitude, echo width) are influenced by many different 
, angle of incidence, surface characteristics, atmosphere, etc…) 
tributes can hardly be used without radiometric calibration [33]. 
formulation of the radar equation (Eq. 5), the parameters which 
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are unknown but can be assumed to be constant during one ALS campaign can be 
combined to one constant, the so-called calibration constant Ccal . 

 

σ= 
GHIJ� !,.KD-2EF-LI0M       with Ccal=

/0+K0)*+LANA        (10) 

In order to estimate the Ccal only the backscatter cross-section of a reference surface 
is necessary. From (Eq. 4) and with the assumption of a Lambertian scatterer, that 
means Ω=π sterdians  and the knowledge of the reflectivity ρ of the reference we 
can easily derive the calibration constant Ccal. Once the calibration constant is 
derived, the calibrated backscatter cross sections of the individual echoes for the 
whole data set can be determined. Due to different flight heights or beam 
divergence, the illuminated area Ai (figure 11), and therefore, also the backscatter 
cross section σ can vary a lot. Therefore, Wagner et al [56] introduce area-
normalized values, so-called backscattering coefficients (Eq. 11 and 12).  

 
 

 

 

Figure 11. Laser footprint area at the scattering object OPQ , i.e. the circular area perpendicular to the 

laser beam at distance R (green area); area illuminated by the laser beam O7at distance R and R7  
angle of incidence (red area). From [33]. 

 

• Cross-section per unit-illuminated area σ0 [m2 m-2 ]:   σ0=�ST-                  (11) 

• Bi-static  scattering coefficient γ  [m2 m-2 ]:   γ=� STJU �� � SVWXYZ-                   (12)      

where:  Alf  laser-footprint area at the scattering object. 

 
The backscatter cross-section σ as well as the backscattering coefficients σ0 and γ are 
not free from influences of the angle of incidence, therefore in case of ideal 
Lambertian scatterers further radiometric corrections are needed which are not 
used in this work. Further used are the backscatter cross-section σ and the bi-static 
backscatter coefficient γ. As one can see in equation (12), γ is just σ normalized to 
the laser footprint area Alf. Due to the small elevations differences in our area the 
footprint does not vary much, thus the ratio between γ and σ will be almost constant 
over the entire area under investigation. Therefore, these two coefficients are highly 
correlated, as we shall see later. 

For more details about Gaussian decomposition and calibration of FWF-ALS data 
please read [33] [55] [56] [58] [59]. 

 

[\ []^ _\ 

R 
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3 ALS vs. Photogrammetry 
 

Optical sensors record passive solar or artificial radiation backscattered by objects in 
the camera's field of view in different wavelength bands, while laser scanner records 
the backscattered radiation for one wavelength only (commonly near infra-red). 
Therefore the task of classification of land-cover/use in urban areas using only ALS-
data is facing some difficulties. Some authors have used additional information from 
aerial images as in 3] 9] 12] 40] 51] 60]. From LS sensors, which record the entire 
wave, not only geometric properties of the targets can be delivered but also further 
physical properties, like amplitude , echo-width and cross-section, which may 
improve classification from ALS-data. 

The most important advantages of ALS are  [5] [23]: 

• Mapping of surfaces with very little/no texture or poor definition. 

• Not influenced by heavy cast shadows or severe brightness contrasts. 

• Not influenced by light conditions, it can work after sunset and before sunrise. 

• Penetration of vegetation to a certain extent . 

• Dense and accurate measurements provide more accurate DSM generation of 
urban regions. 

• Range measurements can be quickly converted to 3D coordinates which can be 
important in some cases, specially for monitoring natural disaster.  

The integration of laser scanning and photogrammetry has been discussed in 
[23][31][44]. [44] wrote that the integration of laser point clouds and images can 
have different levels depending on the desired end-product, the main levels of 
integration are: 

1. Object-level integration  
2. Photogrammetry aided by laser scanning  
3. Laser scanning aided by photogrammetry 
4. Tightly integrated laser scanning and optical images. 

In our work we don't meet any of these levels, we will use only FWF-laser scanning 
data (FWF) for the  classification of urban areas. 
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4 Related work  
 
Since the beginning of the use of airborne laser scanning, attempts existed to classify 
the 3D points cloud for mapping and modeling applications. 

The work can be categorized in two directions: 
1. Classification of aerial LiDAR data into terrain and non-terrain points. 
2. Classification of aerial LiDAR data into classes of surface objects such as 

Buildings, trees, etc [9].  

In the first category there has been a dramatic increase in the development of 
filtering algorithms over the past 15 years which strongly rely on the spatial 
relationship between points with the objective of generating digital terrain models. 
Kraus and Pfeifer and others [28][42] have used the algorithm for filtering the laser 
scanner data originally designed for applications in wooded areas. Their algorithm is 
an iterative robust interpolation, which uses a stochastic model (weight function) 
and functional model (Interpolation). Vosselman [54] has used slope based filter to 
distinguish between the laser pulses reflected on the ground surface from those 
reflected from buildings and vegetation. Lin et al [30] have used the pulse width as 
additional information from full-waveform data for a filtering algorithm in order to 
improve digital terrain model (DTM) creation.  

We now briefly give some previous work for the 2nd category, i.e.  for the 
classification of LiDAR data into classes. With the increasing point density of airborne 
laser scanning, a detailed description of the Earth's surface, especially in urban areas 
can be achieved, leading to more interest using LiDAR data to extract natural and 
man-made objects (buildings, vegetation, roads, etc) thus providing valuable 
information for city planning and modeling, change detection, road graph update, 
land-cover/use mapping. 

In the following previous work on this topic will shortly be described and grouped 
into 3 categories depending on the data used in classification:  

• Utilizing  LiDAR data only (multi-pulse system) 

• Utilizing both LiDAR data and multi-spectral aerial or satellite images. 

• Utilizing only Full-waveform laser scanning data. 
 

4.1 Utilizing LiDAR only (Multi-Pulse systems): 
 
Most work in this category investigates the geometric properties and topological 
features extracted from 3D points cloud and/or the laser intensity to identify objects 
such as buildings, trees, and roads in urban area. Tarsha-Kurdi, et al [52] have used 
segmentation method of LiDAR point clouds focusing exclusively on the first echo 
only to discriminate buildings and terrain. Clode, et al [10] and Samadzadegan, et al 
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[50] have described different methods for the detection of roads from LiDAR data 
using both height and intensity information. Rutzinger et al [43] have presented a 
segmentation approach which follows the principle of object-based point cloud 
analysis for the detection of high vegetation in urban areas. Point features used are 
e.g. roughness, the ratio between 3D and 2D point density, or statistics on first and 
last echo occurrence within the segments. 

Sithole, G. et al [47] have presented an algorithm for detecting bridges in points 
cloud. Carlberg, M. et al [13] have introduced a multi-category classification system 
for identifying water, ground, roof and trees in airborne LiDAR data using 3D shape 
analysis (Figure 12). Bernnan. R, et al [4] have used height and intensity data to 
classify land cover using an object-oriented approach. 

 
Figure 12. Classified LiDAR points cloud using 3D shape analysis. From [13]. 

 
  

4.2 Utilizing LiDAR data and multi spectral aerial or satellite images:   
 
As mentioned in chapter 3, LiDAR data may be integrated in combination with 
imagery. The focus here is on the analysis of ALS point cloud, though image data 
provide additional information [44]. 

Airborne laser altimetry and high resolution remotely sensed imagery data offer 
exciting possibilities for feature extraction and spatial modeling in urban areas 60]. 
Properly integrating laser scanning with image data allow us to compensate 
individual weaknesses of each method alone (imagery: e.g. shadows, occlusion, ALS-
data: e.g. spatial resolution, edge definition).  
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Mancini, A. et al [40] have presented an automatic approach to object extraction in 
urban area (buildings, grass, land and tree then at the end roads) based on different 
stages by using both LiDAR (the height difference between the last pulse DSM and 
the DTM and the height difference between the first pulse and the last pulse DSM) 
and multi-spectral high resolution data (R, G, B, NIR and NDVI) using AdaBoost 
classification algorithm (Figure 13). Charaniya, A. et al 9] have used five features (ALS 
data: Normalized height, height variation, multiple returns and intensity and the fifth 
feature is luminance from aerial imagery) to classify data sets into trees, grass, roads 
and roofs (Figure 14). Zhan, Q. et al. 60] have used combination of high spatial 
resolution airborne LiDAR data and Ikonos imagery data in urban land use 
classification by applying hierarchical image objects and structural image analysis 
techniques. Bartels, M. and Wei, H. [3] have used a supervised classification 
algorithm based on maximum likelihood, using first, last echo DSM and LiDAR 
intensity data and aerial photo in visible and near infrared (NIR) spectrum. 

Chen, Y et al. [12] have used Quickbird imagery and LiDAR data to extract nine kinds 
of urban land cover objects. Tooke, Th. et al [51] have classified urban vegetation 
using an approach based on spectral unmixing and statistically developed decision 
trees from high spatial resolution Quickbird  imagery and LiDAR data. 

 

 
 

Figure 13. Left: Training Data sets, right: Result of classification using LiDAR features and spectral 
features: red stands for building, yellow for tree, blue for land and green for grass. From [40]. 
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Figure 14. Classification results using LiDAR features and luminance from aerial image, left: only LiDAR 

features, P(correct)=0.74, right: All features, P(correct)=0.85 . From [9]. 
 

4.3 Utilizing only full-waveform LiDAR data: 
 
In addition to multi-echo laser scanners, full-waveform systems are able to record 
the complete waveform of each backscattered pulse. These systems provide more 
information about the structure and the physical characteristics of the targets. Few 
studies have focused on the use of this data only, without assistance data such as 
aerial images or multi-spectral images. 

Some of them have focused on urban vegetation detection using full-waveform 
airborne LiDAR data. B. Höfle, et al [22] have presented a new GIS workflow for fully 
automated urban vegetation and tree parameter extraction from FWF-LiDAR data by 
combination of raster and point cloud-based methods. Alexander, C. et al [2] have 
used FWF-ALS data to evaluate the classification and extraction of vegetation 
characteristics for topographic mapping. The classification was undertaken on the 
point cloud based on the local statistical variation of attributes of TIN triangles as 
well as attributes of the individual points. Rutzinger, M. et al [46] have used an 
object-based point cloud analysis approach, combining segmentation and 
classification of the 3D FWF-ALS points designed to detect tall vegetation (trees and 
shrubs) in urban environments. They have used this approach to maintain the full 
resolution and information in ALS data and to avoid any rasterization and conversion 
to a 2.5D model. Ducic, V. et al [14] have used the additional features derived from 
the full-waveform data (amplitude, pulse width, and number of echoes) to 
discriminate between vegetation and non-vegetation points, using a Decision Tree 
technique, without using geometry information.  
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Both Alexander, C. et al [1] and Mallet, C. et al [37] have used only FWF-ALS data for 
supervised classification of urban areas (Decision Tree and SVM respectively). They 
used in addition to geometric features, physical attributes of each points extracted 
from FWF-ALS data. Mallet et al [37] used the generalized Gaussian (GG) model 
which improves the signal fitting for symmetric and distorted waveform shapes by 
introducing a feature parameter which modifies the shape of the peak of the 
Gaussian function. Figure 15 gives example of classified point over dense built-up 
area using SVM method. Alexander, C. et al [1] have used range and echo width for 
radiometric calibration and derived backscatter cross section per unit area σ0 and 
the backscatter coefficient γ which are useful for separating roads and grass. Figure 
16 shows the result of classification with two areas indicated where the classification 
failed. We can see that the bridge has been incorrectly classified as building (A), 
some of the points has been incorrectly classified as shrubs within roads due to their 
estimated elevations from the ground (A). The water body at (B) has been incorrectly 
classified as road. Zaletnyik, P. et al [61] have used an unsupervised classification 
method, using statistical parameters, such as standard deviation, skewness, kurtosis 
and amplitude, these four statistical parameters were used as input to the SOM 
(Kohonen's Self-Organizing Map) classification to separate vegetation (trees and 
grass) and non-vegetation surfaces. And the range calculated from the center of 
mass of the waveform was used to separate the non-vegetation surface into 
pavement and roof categories.  

From previous works, we find that most of them have been using geometric features 
extracted from ALS-data (multi-pulses systems) or additional data derived from 
aerial photographs. Most works that used only FWF-ALS features have focused only 
on urban vegetation detection for topographic mapping purposes. But few works 
have used these features to classify urban areas into different classes. 

This work will be a contribution to confirm the importance of using only features 
extracted from full-waveform ALS data for classification of urban areas, but by using 
classical supervised classification methods, like Maximum-Likelihood, Minimum-
Distance and Decision Tree. This work is to investigate whether these approaches 
can be successfully applied for the classification of urban areas. It should also find 
out the best suited features for discriminating between Buildings (flat and tilted 
roofs), Trees (with height more than 1m), Roads (all paths for vehicles and 
pedestrians) and grass areas. 
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Figure 15. Classification results in a dense urban area, left: Orthophoto, right: classified point cloud. 

From [37]. 
 

Figure 16. Left: Aerial image of study area, right: Points class
backscatter coefficient γ as an attrib
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5 Study area and data 
 
The following sections provide a description of the dataset used for this thesis, 
starting with an overview of the study area covered by the ALS data (section 5.1), 
then giving detailed information about the used data and acquisition (section 5.2). 

 

5.1 Study area 
 
The study area is located in the center of the city of Vienna. An area of 1km X 1.36 
km was chosen, defined by South-West corner in Gauss-Krüger Austrian coordinate 
system (1690.00 m, 340450.00 m) to the North-East corner (2700.00 m, 
341810.00m), in WGS84  from (longitude 16°21' 17.81" E to 16°22' 6.52" E) to 
(latitude 48°12'8.77" N to 48°12' 52.82" N ). This area includes a range of land use 
and land cover types, blocks of dense compact buildings, historical buildings (e.g. 
Rathaus), some gardens (e.g. Volksgarten), trees along the road, some park areas 
and grasslands (Figure 17).  
 

F

 

Vienna city 
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igure 17. Study area (red bounding box). Image from Bing maps (© 2011 Microsoft Corporation). 
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5.2 Data Acquisition 
 
The available FWF ALS data are provided by the city of Vienna (MA41-
Stadtvermessung) [65]. The laser scanning flight was carried out in Spring 2007 by 
the company Diamond Airborne Sensing GmbH using a RIEGL LMS-Q560 full-
waveform scanner [63]. The ALS data cover the whole city of Vienna and some small 
sections across the border to Lower Austria. The LMS-Q560 full-waveform scanner 
uses short laser pulses with a wavelength of 1.5 μm and a pulse width of 4 ns. The 
laser beam divergence is 0.5 mrad and the scan angle varies between ±22.5 ْ . The 
flight strips have a crosswise overlap of approx. 50%. The average flight altitude was 
about 450 to 500 m above ground, which resulted in a theoretical laser footprint 
diameter of 25 cm on ground. The point density of the ALS data is an average of 15 
to 20 points per square meter. 

5.3 Test area: 
 
For exploratory full-waveform ALS data classification a test site as a part of the 
whole study area was used. It is defined by South-West corner in Gauss-Krüger 
Austrian coordinate system (1700.00 m, 340900.00m) to the North-East corner 
(2200.00m, 341790.00m). This test area includes regular distributed buildings, some 
parks (e.g. Rathaus Park), some grasslands and roads (Figure 18).  



 
Figure 18

 

 . Aerial image of the test area, from Bing maps (© 2011 Microsoft Corporation).  
- 29 - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6 Workflow and strategy 
 
In addition to the classification of urban areas, the aim of this work is 
relevance of full-waveform features by using classical supervised classification 
methods, like Maximum-Likelihood,

For that purpose spatial information and full
two kinds of features are merged into a single feature vector, input of the 
classification task. In order to choose the most appropriate
the relevance of full-waveform features in comparison to geometric attributes, a 
feature selection is considered.
is evaluated (accuracy assessment). Consequently, conclusions can be provided for 
each classification method. Figure 19 illustrates 
for our objective. At the first 
classification method will be applied to the selected feature vector to discriminate 
between buildings, trees, roads and grass areas. 

 
 

6.1 Classification methods: 
 
Supervised classification algorithms are used to assign an unknown pixel to one of a 
number of classes. The choice of a particular classifier or decision rule depends on 
the nature of the input data and the desired output. 

Classification (Maximum

Buildings
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Workflow and strategy  

In addition to the classification of urban areas, the aim of this work is 
waveform features by using classical supervised classification 

Likelihood, Minimum-Distance and Decision T

For that purpose spatial information and full-waveform features are extracted. These 
s are merged into a single feature vector, input of the 

classification task. In order to choose the most appropriate feature set, and evaluate 
waveform features in comparison to geometric attributes, a 

feature selection is considered. Performing the classification using selected features 
accuracy assessment). Consequently, conclusions can be provided for 

each classification method. Figure 19 illustrates the workflow, which will be followed 
for our objective. At the first features are extracted from FWF-ALS data. Each 
classification method will be applied to the selected feature vector to discriminate 
between buildings, trees, roads and grass areas.   

 

Figure 19. Workflow of the classification. 

ethods:  

classification algorithms are used to assign an unknown pixel to one of a 
number of classes. The choice of a particular classifier or decision rule depends on 
the nature of the input data and the desired output.  
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In addition to the classification of urban areas, the aim of this work is to assess the 
waveform features by using classical supervised classification 

Distance and Decision Tree. 

waveform features are extracted. These 
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waveform features in comparison to geometric attributes, a 
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accuracy assessment). Consequently, conclusions can be provided for 

the workflow, which will be followed 
ALS data. Each 

classification method will be applied to the selected feature vector to discriminate 

 

classification algorithms are used to assign an unknown pixel to one of a 
number of classes. The choice of a particular classifier or decision rule depends on 

Distance, Decision tree)
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Applying spectral-based image classification requires rasterization of ALS data. 
Therefore, all extracted features are converted to raster-images with resolution of 
0.5m. As mentioned in previous section, classical supervised classification methods 
will be used. 

 

• Maximum-Likelihood classifier:  

The Maximum-Likelihood classifier quantitatively evaluates both the variance and 
covariance of the features of the respective categories when classifying an unknown 
pixel. For that, there is an assumption that the distribution of the cloud of points 
formed by the feature vectors of training data of a category is Gaussian (normally 
distributed). Under this assumption, the distribution can be completely described by 
the mean vector and the covariance matrix. Given these parameters, the statistical 
probability of a given pixel is computed [32]. The probability density functions (see 
figure 20) are used to classify an unidentified pixel. The greatest probability density 
for the pixel vector decides the category to which it is assigned. After evaluating the 
probability in each category the pixel would be either assigned to the most likely 
class or if it exceeds a given probability threshold set by the analyst, will be labeled " 
unknown ". 

Figure 20. Probability density functions defined by a
 

• Minimum-Distance classifier: 

It is one of the simpler classification strategies. 
representative of a category (or class), the mea
determined, yielding the mean vectors for each
identity may be classified by computing the distanc

Probability 
function val
density  
ue 
 
 maximum likelihood classifier. From[32] 

For each training set, which is a 
n value of the feature vector is 
 category. A pixel of unknown 
e of its feature vector to all other 
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mean vectors of the categories. The unknown pixel is assigned to class of the 
"closest" mean vector. Pixel 1 in figure 21 would be assigned to class C. 

 
Figure 21. Minimum-Distance classifier, 1 and 2 are pixels to be classified. From [32]. 

 

• Decision Tree: 

It is the most commonly used because of its ease of implementation and easier to 
understand compared to other classification algorithms. A Decision Tree is used to 
assign land cover classes. It is a non-parametric, hierarchical classifier which predicts 
class memberships by recursively partitioning a data set into more homogeneous 
subsets. It consists of a root (rule, consisting of conditions, apply to the initial data 
set), branches (progress directions after decisions), nodes (rules applied to 
intermediate results) and leaves (final decisions, i.e. class assignments) (Figure 22). 

 

 
Figure 22. Decision Tree design. 
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6.2 Hardware and software:  
 

The full-wave airborne laser scanning data provided for this work was processed 
using the hardware and software provided at the Institute of Photogrammetry and 
Remote Sensing (I.P.F.) at the Vienna University of Technology. 

• To extract features from FWF-ALS data OPALS software is used.  

OPALS ( Orientation and Processing of Airborne Laser Scanning data) is a scientific 
software project developed at the Institute of Photogrammetry and Remote 
Sensing (I.P.F.), TU Vienna. 

The aim of OPALS is to provide a complete workflow for processing airborne laser 
scanning data (waveform decomposition, georeferencing, quality control, 
structure line extraction, point cloud classification, DTM generation and several 
fields of application like forestry, hydrology/hydraulic engineering, city modeling 
and power lines) [64]. 

OPALS is a modular program system consisting of small components (modules), 
each covering a well defined task. To handle ALS data in the order of > 109 points, 
a central data management component (OPALS Data Manager, ODM) was 
developed. It provides efficient spatial data access and an administration concept 
for storing arbitrary point attributes (e.g. echo width, amplitude, normal vector, 
etc.). In our work, the modules opalsCell, opalsGrid, opalsAlgebra and opalsDiff 
are used. 

Since ALS is a highly automated data capturing technique yielding an irregular 
point cloud, raster based data analysis is an important issue. Analyzing the data in 
a regular raster structure is an established and convenient way to retrieve 
summary information about the data on a per cell basis. Thus, the aim of 
opalsCell is to derive raster models by accumulating selected features (minimum, 
maximum, mean, etc.) of a selected input data attribute (Z, amplitude, echo 
width, etc.). 

The aim of opalsGrid is to derive digital surface models (DSM/DTM) in regular grid 
structure using simple interpolation techniques like nearest neighbor or moving 
planes. In addition, additional feature models (e.g. sigma-z, slope, excentricity, 
etc.) can be derived simultaneously as some of them are side products of the grid 
interpolation and, thus, can be provided without loss of performance. 

The aim of opalsAlgebra is to derive a new grid dataset by combining multiple 
input datasets. The new grid values are calculated by applying an algabric formula 
using the grid values of the respective inputs grids. 

The aim of opalsDiff is to derive difference grid models based on either two input 
grids or a single input grid and a horizontal reference plane. 
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• GVE software  v. 3.5.15 is used for view and edit laser scanning data (INPHO 
GmbH, Stuttgart).  

• For DTM calculation  SCOP++ software  v.5.4 is used. SCOP++ is designed for 
interpolation, management application and visualization of digital terrain data, 
with special emphasis on accuracy. SCOP++ has been developed and improved in 
cooperation of INPHO GmbH, Stuttgart and of Institute of Photogrammetry and 
Remote Sensing (I.P.F. ) Vienna [69].  

• For classification and image processing ENVI software is used. ENVI provides 
advanced, user-friendly tools to read, explore, prepare, analyze and share 
information extracted from all types of imagery. Classification methods are 
implemented in it. all ENVI solutions are built on IDL a powerful programming 
language.  

 

6.3 Features extraction: 
 
All used features are extracted only from full-waveform airborne laser scanning data.  

Geometrical (spatial) features are computed just by using the 3D coordinates. They 
are nDSM, slope, sigma-z. By the full-waveform processing additional attributes can 
be retrieved thus improving the quality of these features. 

Echo-based features, The echo number or the type of echo (single, first of many, 
intermediate, or last) may help to discriminate, especially in vegetated areas. In our 
work only the number of echoes will be extracted. 

Physical features (full-waveform features) are obtained from the processing of the 
waveforms described in section 2.3.1 .  
Table 1 provides an overview of the features which have been extracted and further 
investigated. 
 
 
Geometrical features Echo-based features Physical features 
Normalized digital surface 
model,  nDSM 

Number of echoes, Ne Amplitude, A 

Slope,  S  Echo-width, ew 
Sigma-z,  σz  Gamma, γ 
 Cross-section, σ 

Table 1. Used features in classification. 

 
 
 

http://www.ittvis.com/ProductsServices/IDL.aspx
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6.3.1 Geometrical features: 
 

6.3.1.1 Normalized digital surface model (nDSM): 
 
nDSM is calculated by subtracting the DTM from the DSM. In urban areas the DTM 
describes the terrain without buildings, vegetation (trees and shrubs), in other words 
the bare ground and other off-terrain, often mobile objects like cars, vehicles, etc. 
The DSM describes the roofs and the elevation of the top most vegetation (trees and 
shrubs). The DSM and the DTM in urban areas are equivalent in open areas like 
streets, grass areas with "short" vegetation and parks areas. Therefore, the nDSM 
contains object heights such as building and tree heights and provides, therefore, 
invaluable information for classification. 

 

• DTM generation: 

For DTM calculation from measured points clouds, which have to be classified into 
terrain and off-terrain echoes (filtering), robust filtering algorithm is used 28]. The 
standard DTM generation procedure implemented in SCOP++, called "LiDAR DTM 
default" was applied to all last echoes in order to generate a DTM grid of 0.5m x 
0.5m. A void filling step with a sampling interval of 3 m was applied on the resulting 
ground points of the first filtering, which is done to fill the holes where buildings and 
other high objects were eliminated. The "filled" dataset was then again interpolated 
using moving planes to obtain a final continuous terrain model with a resolution of 
0.5 m. The result can be seen in figure 23. There are some holes and no continuous 
representing of the ground in some areas, which could be removed only by extensive 
manual editing.     
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Figure 23. Shaded DTM of the test area. 

 

• DSM generation: 

For DSM generation we used a method as presented in [21] which is a combined 
approach of DSMmax, which is determined by the highest point within a defined 
raster cell, and DSMmls, which is determined by heights derived through moving least 
squares interpolation e.g. moving planes. The DSMmls is used for smooth surfaces 
(e.g. street and roof) and the DSMmax for rough surfaces (e.g. the high vegetation 
areas).  The final surface model is defined as a function f(x,y) of the layers (i.e. 
different data properties) and the two before mentioned surface models. F(x,y) has 
to be within the minimum-maximum range of different models. The surface 
roughness σz  proved to be a good property because it discriminate between street, 
house roofs and open areas on one hand, and strongly vegetated and rocky surfaces 
on the other hand [20]. To derive the land-cover dependent DSM (Figure 24), the 
modules opalsCell, opalsGrid and opalsAlgebra are used. For our work we used a cell 
size of 0.5 m to derive the DSM raster containing the maximum elevation of first 
echo points within the cell, thus obtaining DSMmax. We used moving planes with grid 
size of 0.5 m and nearest neighbors of 10 first echo points to derive DSMmls. 
OpalsAgebra is employed to derive a grid or raster model by combining multiple 
input grid and/or raster data sets. We used it to combine the DSMmax and DSMmls 
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depending on the σz layer (which is calculated as feature using opalsGrid). The 
heights of final DSM are calculated by this formula:   

If  (Z[σz] < 0.2)  or  (Z[DSMmax] = No Data) 

Then   Z[DSMmls] 

Else     Z[DSMmax] 

 

 
Figure 24. Shaded DSM of the test area. 

 

• nDSM generation: 

For derivation of nDSM opalsDiff module is used to derive difference grid models 
based on either two input grids or a single input grid and a horizontal reference 
plane. The generated DTM is subtracted from land-cover dependent DSM to obtain 
the nDSM (Figure 25).  

 
 
 
 
 
 



Figure 25. Left: nDSM,

6.3.1.2 Slope (S): 
 
As mentioned above the primary aim 
models.  

Using moving planes interpolation for
nearest neighbors the slope's model is
to the inclination of an interpolated p
the grid cell and its neighbors. Slope f
each cell. As we see in Figure (27, left) 
vegetation regions (trees) and the build
to discriminate between vegetation and

 

6.3.1.3 Sigma-Z (σz): 
 
The Sigma-z model is generated as s
describes the standard deviation of Z
(Figure 26). As mentioned in section
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 right: shaded image of nDSM 
 

of opalsGrid is the derivation of surface grid 

 each cell with grid size of 0.5 m and of 10 
 derived. Slope for each grid cell corresponds 
lane which is determined from the height of 
eature describes the steepest slope in % for 
the highest values of the slope feature are in 
ing edges. That means that slope can be used 
 other objects.  

lope model,. Sigma-z is a parameter which 
-value of grid post interpolation adjustment 
 6.3.1.1. sigma-z (σz) describes the surface 
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roughness. In Figure (27, right) it can be seen that the high values are in vegetation 
areas (trees and shrubs) while it is lower in flat areas like roads and roofs.  
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Figure 26.  Sigma-z parameter 



6.3.2 Echo-based features  

6.3.2.1 Number of echoes (Ne):  
 
"Number of echoes" is one of the additional information obtained from FWF-ALS 
data and of many attributes, that are included in the ODM file (section 6.2). It is the 
total number of echoes within the waveform. It can be extracted using the opalsGrid  
module or opalsCell module with additional features like( min, max, mean, etc).  

In our work we used opalsGrid module to derive feature's model of this attribute 
using grid size 0.5 m for all echo-points. From the histogram it is noticed that there 
are some values less than 1 due to the interpolation of the grid data and this value 
(one or less) is more for the open ground areas and roofs. We can see in Figure 28 
the high values of this attribute are in vegetation areas (trees) and along the building 
edges. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 28. Number of echoes 
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6.3.3 Physical features: 

6.3.3.1 Amplitude (A): 
 

The maximum amplitude is a measure of the strength of the echo [1], and it is one of 
the additional information which can be extracted from full-waveform ALS data 
using Gaussian decomposition (section 2.3.1). Using opalsGrid or opalsCell module 
we can obtain the amplitude feature model and other additional features which 
describe different values of amplitude in each cell for all, first or last echoes. In our 
work we used opalsCell to derive a raster model of minimum and maximum attribute 
values of last echo points using cell size of 0.5 m (Figure 29). 
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Figure 29. Left: Min. Amplitude of last ech
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6.3.3.2 Echo-Width (ew): 
 
As discussed in section 2.3.1, another attribute which can be derived by Gaussian 
decomposition is echo-width. The echo-width could refer to the Full Width at Half 
the Maximum (FWHM) amplitude or the standard deviation of the echo in the 
Gaussian decomposition [1]. As shown in [25] and [13] the increased pulse width 
indicates large roughness of vegetation, slanted or small stepped surface. Vegetation 
spreads LiDAR pulses, therefore we found the highest width values in trees. Ground 
and building surfaces coincide with low width values. We used opalsCell to derive a 
raster model of maximum and minimum attribute values of last echo points using 
cell size of 0.5 m. In figure 30 the brightness of minimum values suggests great 
values for the echo width. Due to the low contrast the image has been heavily 
brightness and contrast enhanced for visualization. The actual values are, of course, 
smaller than those of the maximum echo width, what can be clearly seen in the 
histograms. 

 

 
 
 
 

 

Figure 30. Left: Min. echo-width last echoes, right: Max. echo-width last echoes. 
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6.3.3.3 Backscatter coefficients γ and σ: 
 
As mentioned in section 2.3.1, the additional information provided by the 
decomposition of full-waveform ALS data is suitable for calibration, whereby 
amplitude and echo-width are converted to values proportional to the surface 
reflectance of the target. In our work the FWF-ALS data is already calibrated using 
asphalt as reference surface and the backscattering coefficients γ and σ are 
estimated.  

We used opalsGrid to derive these attributes, which the Cross-section σ [m2] and Bi-
static scattering coefficient γ  [m2 m-2 ] are quantities for describing the scattering 
properties of the targets (Figure 31). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                             
Figure 31. Left: Gamma (γ), right: Cross-section (σ). 
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7 Feature selection and classification accuracy 
 
The objective of feature selection is to identify small sets of LiDAR features that can 
still achieve a good predictive performance. Thus correlated features should not be 
selected. 

To select the most relevant features, we choose the following simple processing: 

• Determining training areas and their analysis 

• Applying classification ( Maximum-Likelihood only) on test area iteratively, and at 
each iteration one or more of the features is excluded. 

 

7.1 Determining training areas and their analysis: 
 
Before the classification can be carried out, training areas must be determined for 
each class. Appropriate training areas are the base for good discrimination between 
classes. With help of an orthophoto of the study area the training areas are selected, 
where the data are homogeneous for each class (buildings, trees, roads, and grass 
areas) and in each LiDAR attributes. 

The aim of this analysis is to determine appropriate characteristics for a clear 
discrimination between classes.  
The analysis of the training data is based on frequency histograms, which display the 
distribution of the attributes (features). 
As Figure (32-a) shows, that nDSM feature is a valuable one to discriminate between 
high objects in urban area, like buildings and trees, and low objects and/or ground 
areas. 
As we see in Figure (32-b) the highest values of slope feature are in trees areas. That 
means, that slope can be appropriate to distinguish trees class from other classes. 
Sigma-z describes the roughness of illuminated surface. We see in Figure (32-c), that 
sigma-z varies in the tree class from 0 to 6 m as maximum, while the maximum value 
for other classes is 1. That leads to the possibility of differentiating between trees 
and other classes using sigma-z, but one may find some high values of sigma-z for 
building class due to building edges.  
As expected, Figure (32-d) shows that the highest value of number of echoes is in 
trees areas. As mentioned in section 6.3.2, some high values caused by building 
edges, in the histogram is showed too. That means, that this feature is useful to 
discriminate between trees class and other classes.     
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               Figure 33. Above: Minimum amplitude, below: Maximum amplitude. 
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                 Figure 35. Above: Minimum echo-width, below: Maximum echo-width. 
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                       Figure 36. Above: Cross-section (σ), below: Gamma (

 

• Correlation between features (bands): 

Correlation matrix (Table 2) shows that there is, as expected, a
between gamma and cross-section features (>0.9), and betwee
maximum echo-width of last echoes features (0.76). But 
correlation between other features, varying between 0 and 0.6. 

 
Features S σz Ne nDSM Min. ew Max. ew γ 

S 1.000000 0.654671 0.394003 0.245918 0.016294 0.227172 -0.042782 -0.0
σz 0.654671 1.000000 0.429781 0.225547 -0.054608 0.095582 -0.049800 -0.0
Ne 0.394003 0.429781 1.000000 0.078579 0.086537 0.193593 -0.103408 -0.1

nDSM 0.245918 0.225547 0.078579 1.000000 -0.013384 0.077115 0.043210 -0.0
Min. ew 0.016294 -0.054608 0.086537 -0.013384 1.000000 0.763648 0.050516 0.0
Max. ew 0.227172 0.095582 0.193593 0.077115 0.763648 1.000000 0.025921 0.0

γ -0.042782 -0.049800 -0.103408 0.043210 0.050516 0.025921 1.000000 0.9
σ -0.040894 -0.047711 -0.101115 -0.010406 0.050179 0.024984 0.988409 1.0

Min. A -0.162977 -0.146985 -0.149350 0.008240 0.290674 0.062973 0.404378 0.3
Max. A 0.091806 0.033361 -0.003409 0.082380 0.226630 0.241771 0.382090 0.3

 

Table 2. Correlation between all extracted features. 

Buildings 
Trees 
Roads 
Grass 

 

[m2] 

[m2 m-2 ] 
 
γ).  

 hig
n m
the
 

σ 
4089
4771
0111
1040
5017
2498
8840
0000
9639
7622
h correlation 
inimum and 

re is a low 

Min. A Max. A 
4 -0.162977 0.091806 
1 -0.146985 0.033361 
5 -0.149350 -0.003409 
6 0.008240 0.082380 
9 0.290674 0.226630 
4 0.062973 0.241771 
9 0.404378 0.382090 
0 0.396399 0.376220 
9 1.000000 0.344548 

0 0.344548 1.000000 
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7.2 Classification and accuracy assessment: 
 

One of the most common means of expressing classification accuracy is the 
preparation of a classification error matrix (or confusion matrix). Error matrices 
compare the relationship between known reference data (ground truth) and the 
corresponding results of an automated classification. The columns normally 
represent the reference data, while the rows indicate the classification generated 
from the remotely sensed data (in our case LiDAR data). 
Overall accuracy is computed by dividing the total correct (sum of the major 
diagonal ) by the total number of pixels in the error matrix.  

 

`�?�abb�accd�ace� � �( cf��?c�be�cbagghih?j�khl?bg( abb�khl?bg  

 
Producer's accuracy is computed by dividing the total number of correct pixels in a 
class by the total number of pixels of that class as derived from the reference data ( 
i.e. the column total ). This statistic indicates the probability of a reference pixel 
being correctly classified and is measure of omission error. 
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User's accuracy is computed by dividing the number of correctly classified pixels in 
each class by the total number of pixels that were classified in that class ( i.e. the row 
total). The result is a measure of commission error. This statistic indicates the 
probability that a pixel classified on the map actually represents that class on the 
ground. 

 

og?�Bgaccd�ace� � �( cf��?c�be�cbagghih?j�khl?bg�hn�a�cbagg( khl?bg�hn�a�cbagghih?j�cbagg  

 
Kappa coefficient p is a measure of the difference between the actual agreement 
between reference data and an automated classifier and the chance agreement 
between the reference data and a random classifier.  
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This statistic serves as an indicator of the extent to which percentage correct values 
of an error matrix are due to "true" agreement versus "chance" agreement [32]. p is 
calculated with the help of the following formula: 

 

p� � �u ( l77�v�( &l7w� � �lw7'%789%789ux�v�( &l7w� � �lw7'%789  

Where: � =  number of rows in the error matrix l77� = number of observations in row h and column h (on the major diagonal) l7w�= total of observations in row  h  lw7 = total of observations in column h� u = total of observations included in matrix.  
 
 

• Maximum-Likelihood classification: 

Applying Maximum-Likelihood classification algorithm iteratively, using the same 
training areas for each iteration, helps to determine the most appropriate feature. In 
each iteration one or more features will be excluded. The highest overall accuracy 
will determine the most relevant selected feature sets.  
Because we don't have a large number of features (only 10 features), the iterative 
exclusion of LiDAR features will be done manually. The total number of sampled 
pixels, which are used as a ground truth, for each class are in Table 3. 

 
Buildings 10883 pixels 
Trees 6767 pixels 
Roads 9673 pixels 
Grass 3591 pixels 
Total 30914 pixels 
Image 1782781 pixels 
Percent 1.73 % 

Table 3. Sampled pixels as ground truth for accuracy assessment in test area. 

 
To reduce the number of selected features, the high correlated features will be 
excluded. Therefore, gamma (which is highly correlated with σ)and maximum echo 
width of last echoes (which is highly correlated with the minimum echo width) will 
not be used. The minimum value of amplitude is more useful than the maximum 
amplitude to discriminate between road and grass classes, therefore we will use only 
minimum amplitude. As for cross-section, as seen from Figure 36 it seems to be 
slightly more useful than γ to distinguish between road and grass classes. 
Theoretically also γ should deliver good results. Because of the normalization to the 
Laser footprint, γ might be more appropriate in areas of great elevation differences. 
Further investigations should be carried out in those areas. 
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Therefore the features were reduced to the seven most relevant (Table 4). 
 

Features 
Normalized digital surface model nDSM 

Slope S 
Sigma-z σz 

Min. amplitude of last echoes Min. A 
Min. echo-width of last echoes Min. ew 

Number of echoes Ne 
Cross-section σ 

Table 4. Used features in classification. 

 

• Observations: 

Figure 37 illustrates the overall accuracy of iterative classification applied to 
different combinations of selected features. Figure 38 illustrates the producer's 
accuracy for each class. 
We observe that some combinations seem to be better than the others with 
respect to overall and producer’s accuracy. 
  

1. Using just the geometric features, i.e. nDSM, slope, and sigma-z, yields the lowest 
overall accuracy (67.30 %). But we find that it is quite effective for detecting 
buildings, trees and grass classes (producer's accuracy > 80 %). For road class the 
classification is the worst (producer's accuracy < 20 %). This may be explained by 
the lack of the use of FWF-ALS features (min. A, min. ew, σ, Ne), because, as 
mentioned before, these features describe the physical properties of different 
materials in the observed scene. Figure (39-b) shows the classification result using 
this combination.  

2. Excluding only nDSM feature doesn't increase the overall accuracy ( 67.40 %). As 
for producer’s accuracy results for buildings is very poor( <40 %), while for roads 
significantly better results could be achieved. This effect is understandable 
because the height (nDSM) did not play a role and therefore many parts of 
buildings are counted as roads thus apparently improving the quality of the 
classification of roads. This emphasizes the important role of the nDSM in urban 
classification. The classification of trees and grass has slightly improved, but this 
might be a side effect of not including nDSM if the entire series of classifications 
in compared in Figure 38. 

3. Excluding physical features, i.e. cross-section, min. amplitude and min. echo-
width, slightly improved the overall accuracy (69.74 %), while the accuracy for 
roads decreased (20.23 %). That means these features are valuable features for 
roads discrimination. 

4. Comparing with (3) there is almost no change, overall and producer’s accuracy 
remain the same, if minimum amplidute and minimum echo width are included. 
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5. By including the cross-section can be seen that the classification significantly 
improved (84.92 %), although minimum amplitude of last echoes feature has not 
been taken into account. This significant improvement for the road classification 
can be observed in all other classifications where the cross-section was included. 

6. No significant change in classification results by using all features compared to (5), 
maybe there is a slight improvement for the road class caused by minimum 
amplitude. A similar effect can be observed from (3) to (4), and later from (8) to 
(9). 

7. Excluding number of echoes doesn't change the overall accuracy of the 
classification, but it can be seen that it negatively influences the result for the tree 
class. The number of echoes is a characteristic feature for vegetation and 
therefore this result is understandable. The slight improvement for road class 
might again be a side effect. Some trees along roads are not detected as trees 
anymore and are added to the road class. 

8. No significant change in the classification results by excluding both min. 
amplitude and min. echo-width or  

9. By excluding min. echo-width only. 
10. . Excluding only sigma-z (σz) doesn't change the overall accuracy. Compared to (8) 

this combination slightly improves the road class and in a similar way decreases 
the accuracy of the buildings. Again this opposite behavior could be a side effect, 
when building edges with their high sigma-z values are partly counted as roads. 

11. Compared to (10) excluding the slope by keeping all other features seems to 
improve the classification of buildings. By comparing the accuracy of building the 
previous classification (except (2)) no improvement can be observed. The 
importance of slope for the classification, as it is investigated in this work, is, 
therefore, questionable. 

12. Compared to all other combinations, excluding both slope (S) and sigma-z (σz) 
improves the overall accuracy and yields the highest value (89.34 %). Again it can 
be observed that an improvement for the road class is accompanied by a 
deterioration of the building class. Figure (39-c) shows the classification result of 
this combination. 
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Figure 38. Producer's accuracy of each class of the iterative classifications using Maximum-
likelihood. 
Figure 37. Overall accuracy of the iterative classifications using Maximum-
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We can briefly summarize few important observations for classification results by 
using FWF-ALS features and Maximum-Likelihood classifier in urban area: 

• Height feature (nDSM) is the most important classifier for buildings (compare 
(6) and (2)). 

• Number of echoes feature (Ne) plays an important role in classification of 
trees areas (compare (6) and (7)). 

• Cross-section (σ)  is useful for roads discrimination (compare (4) and (6)). 

• Minimum amplitude (min. A) of last echoes is of less importance, although it 
may be responsible for a slight improvement for roads and trees (compare 
transitions from (5) to (6) and from (8) to (9)). 

• Minimum echo width (min. ew) of last echoes is of less importance (compare 
(9) and (6)). 

• Adding sigma-z improves the classification of buildings (compare (6) and (10)) 

 
 

 

 

a 
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gure 39. a) aerial image of test area, b) classification result using only slope, sigma-z and nDSM 
features, c) classification result excluding slope and sigma-z features. It is noted the 

improvement in the roads classification results using full-waveform ALS data. 
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• Decision tree classification: 

Five simple decision trees generated using the training data analysis were used to 
classify the points. In the first decision tree all selected features are used, in the 
second one five features are used (without slope and sigma-z), for third tree 
minimum echo-width is not used, minimum amplitude feature is excluded in the 
fourth tree and in the fifth one cross-section (σ) is excluded. Table 5 shows the 
features excluded in each decision tree. The classification results using the five 
decision trees are compared and discussed. 
  

Decision tree Excluded feature 

Tree 1 No exclusions   (6) 

Tree 2 S, σz  (12) 
Tree 3 min. ew  (9) 
Tree 4 min. A  (5) 
Tree 5 σ  (4) 

Table 5 . Generated decision trees 
 

The basic structure of the decision trees remained the same. Just be removing 
individual feature (according to Table 5) some nodes may have been removed and 
therefore the five decision trees eventually have different numbers of nodes. The 
same sampled pixels, used as ground truth in Maximum-Likelihood classification 
(Table 3), were used in the classification accuracy assessment using these five 
decision trees. The threshold in for the rules (decision made in a node) have been 
visually derived from the histograms (compare Figures 32, 33, 35 and 36) 

• The first decision tree (all features) has 13 nodes, five attributes (nDSM, Ne, S, σz , 
min.ew) were required to discriminate between buildings and high trees. Two 
attributes (nDSM, min.ew)  were used to discriminate the small trees from roads 
and grass classes. Four attributes (nDSM, min.ew, min. A, σ)  are required to 
classify roads and grass area. Figure 40 illustrates the first decision tree. 

• The second tree has 11 nodes, slope and sigma-z attributes were excluded. Three 
attributes (nDSM, Ne, min.ew) were used to classify trees and buildings, and four 
attributes (nDSM, min.ew, min. A, σ) were used to discriminate between roads 
and grass see Figure 41.  

• The third tree has 9 nodes, and minimum echo-width feature were excluded. Four 
attributes (nDSM, Ne, S, σz) were used for buildings and trees classification and 
three attributes (nDSM, min. A, σ) for roads and grass classification (Figure 42). 

• The fourth tree based on minimum echo-width and cross-section attributes in the 
classification. It has 13 nodes, five attributes (nDSM, Ne, S, σz , min.ew) were 
required to discriminate between buildings and high trees. Two attributes (nDSM, 
min.ew)  were used to discriminate the small trees from roads and grass classes. 



Three attributes (nDSM, min.ew, σ)  are required to classify roads and grass area 
(Figure 43). 

• In the fifth tree the classification based on minimum amplitude and minimum 
echo-width as FWF attributes. It has 13 nodes, five attributes (nDSM, Ne, S, σz , 
min.ew) were required to discriminate between buildings and high trees. Tow 
attributes (nDSM, min.ew) were used to discriminate the small trees from roads 
and grass classes. Three attributes (nDSM, min.ew, min. A)  are required to 
classify roads and grass area (Figure 44).  
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Figure 40. First decision tree used for the classification of test area. 
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Figure 42. Third decision tree used for the classification of test area. 
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Figure 41. Second decision tree used for the classification of test area. 
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Figure 44. Fifth  decision tree used for the classification of test area. 
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• Results and classification accuracy: 

The average overall accuracies for all five decision trees classification is high (>80 %). 
It can be seen from Table 6, that the classification excluding slope (S) and sigma-z 
(σz) gave the lowest number of correctly classified building pixels (tree 2). In contrary 
this classification gave the  highest producer's accuracy of trees (88.77 %). Excluding 
minimum amplitude gave the lowest number of correctly classified roads pixels (tree 
4), while the average producer's accuracy of grass classification is 82 % for all 
decision trees. The classification excluding minimum echo-width feature (tree 3) 
gave the highest overall accuracy of 87.81 %.  

The values representing the incorrectly classified pixels, which are more than 10 % of 
the total number, are red underlined in the Table 6. There are 2469 pixels that are 
classified as trees excluding slope (S) and sigma-z (σz) and 1869 (2469-600) correctly 
classified as buildings for other decision trees. 998 pixels are classified as buildings 
for decision trees 1, 3,4, and 5 , while 949 (998-49)correctly as trees in the 
classification excluding slope (S) and sigma-z (σz). By excluding minimum amplitude 
1046 pixels are classified as grass. There are 507 pixels are classified as buildings for 
all decision trees. 

Figure 45 shows the classification results of decision trees 2 and 4. It is clearly noted 
that excluding slope (S) and sigma-z (σz) is better for roads and trees classification, 
and the majority of buildings edges are classified as trees due to the number of 
echoes (Ne>1). 

Comparing with classification excluding min. amplitude, roads and grass require min. 
amplitude for their classification.  

By excluding minimum amplitude the zebra strips are clearly appeared and classified 
as grass, and buildings are more clearly classified but there are some trees classified 
as buildings due to the overlap between slopes and sigma-z of buildings and trees in 
some areas. Nevertheless, some pixels classified as grass in all decision trees 
classification are classified incorrectly due their reflectance. Water has low 
reflectance in the infrared wavelength, leading to the inland water body being 
classified as road. Some of vehicles were classified as buildings due to their elevation 
from the ground ( >2m). 
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Decision 
trees 

Class buildings trees roads grass Total 
Producer's 
accuracy % 

User's 
accuracy 

% 

Overall 
accuracy 

% 

Tree 1 

 

87.79 

buildings 10229 998 450 507 12184 93.99 83.95 
trees 600 5058 70 5 5733 74.75 88.23 
roads 53 528 8895 121 9597 91.96 92.69 
grass 1 183 258 2958 3400 82.37 87.00 
Total 10883 6767 9673 3591 30914  

  

Tree 2 

 

84.81 

buildings 8360 49 376 506 9291 76.82 89.98 
trees 2469 6007 144 6 8626 88.77 69.64 
roads 53 528 8895 121 9597 91.96 92.69 
grass 1 183 258 2958 3400 82.37 87.00 
Total 10883 6767 9673 3591 30914  

   

Tree 3 

 

87.81 

buildings 10230 998 450 507 12185 94.00 83.96 
trees 599 5058 70 5 5732 74.75 88.24 
roads 53 524 8873 93 9543 91.73 92.98 
grass 1 187 280 2986 3454 83.15 86.45 
Total 10883 6767 9673 3591 30914  

   

Tree 4 

 

85.63 

buildings 10229 998 450 507 12184 93.99 83.95 
trees 600 5058 70 5 5733 74.75 88.23 
roads 50 215 8107 0 8372 83.81 96.83 
grass 4 496 1046 3079 4625 85.74 66.57 
Total 10883 6767 9673 3591 30914  

   

Tree 5 

 

87.27 

buildings 10229 998 450 507 12184 93.99 83.95 
trees 600 5058 70 5 5733 74.75 88.23 
roads 53 508 8734 121 9416 90.29 92.76 
grass 1 203 419 2958 3581 82.37 82.60 
Total 10883 6767 9673 3591 30914  

Table 6 . Error matrix for each decision tree, overall accuracy and producer's and user's 
accuracies for the classification of 5 trees are shown. 
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for the classification on one hand, on other hand Decision Tree depends on 
thresholds which can be determined exactly to discriminate between classes. Thus 
using Maximum-Likelihood, using these features, could not be an appropriate 
method for classification of urban areas. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8 Classification of the entire area 
 

8.1 Maximum-Likelihood and Minimum-Distance classification: 
 
After examining the test area, we will apply the classification on the entire study 
area using the same selected features extracted from FWF-laser scanning data (Table 
4) except slope feature. Maximum-Likelihood and Minimum-Distance classifiers will 
be applied using the same training areas used for test area. 
All features for the entire study area are extracted as mentioned in section 6.3. Two 
combinations of selected features are used for classification of all study area 
applying Maximum-Likelihood and Minimum-Distance. The first combination 
includes 6 features (nDSM, σz , min. A, min. ew, Ne, σ) corresponds to case (11) in 
section 7.2, the second one includes 5 features (nDSM, min. A, min. ew, Ne, σ) and 
corresponds to case (12). 
Figures 47, 48, 49 and 50 show all the extracted features of entire study area with 
raster resolution of 0.5 m, independent of their use for classification.. 
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Figure 47. Slope (S) 
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Figure 48. Left: nDSM, right: Sigma-z (σz). 
- 64 - 

 

           

Fr
eq

ue
nc

y 

Fr
eq

ue
nc

y 
 

 
Figure 49. Left: Number of echoes (Ne), right: Min. amplitude (A). 
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Figure 50. Left: Min. Echo-width (ew), right: Cross-section (σ). 
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coefficient of 0.69, and for Minimum-Distance classification an overall accuracy of 
69.08 % and a kappa coefficient of 0.59. It is noted that accuracy of the building 
classification decreased for Maximum-Likelihood due to the missing sigma-z. The 
producer's accuracy for the tree classification was very high for Maximum-Likelihood 
and Minimum-Distance classifications.  
Road classification improved more than 10 % compared in the first combination for 
Maximum-Likelihood classification, but there is no change in the accuracy between 
first and second combinations for Minimum-Distance classification. Grass 
classification is slightly better in Minimum-Distance classification. Figure 51 shows 
the classification results using Maximum-Likelihood and Minimum-Distance 
methods.  

It can be seen that the second combination gives better results for both classification 
methods. 47 % of buildings pixels are classified as trees using Minimum-Distance 
classification for the first combination, while 42 % classified as trees using Minimum-
Distance for the second combination. 

It is clearly noted that the Maximum-Likelihood gives more correctly classified pixels 
for both combinations. Because of the overlap between buildings and trees classes in 
most features there is difficulty in Minimum-Distance algorithm to separate correctly 
between these two classes. On the other hand there is more separability between 
road and grass classes and between grass and trees classes in most features, 
therefore they are more correctly classified using Minimum-Distance.  
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Combinations Class buildings trees roads grass Total 

Producer's 
accuracy % 

User's 
accuracy % 

Overall 
accuracy % 

M
ax

im
um

-L
ik

el
ih

oo
d 

First 

Unclassified 551 50 107 0 708   

77.10 

buildings 16452 14 418 1040 17924 80.77 91.79 
trees 3348 7164 1289 56 11857   98.83 60.42 
roads 12 20 11912 190 12134 58.17 98.17 
grass 5 1 6751 11111 17868 89.63 62.18 
Total 20368 7249 20477 12397 60491  

  

Second 

Unclassified 67 5 42 0 114   

76.63 

buildings 14059 28 433 1007 15527 69.02 90.55 
trees 6225 7184 1103 49 14561 99.10 49.34 
roads 11 32 14291 519 14853 69.79 96.22 
grass 6 0 4608 10822 15436 87.30 70.11 
Total 20368 7249 20477 12397 60491  

    

M
in

im
um

-D
is

ta
nc

e First 

Unclassified 0 0 0 0 0   

65.91 

buildings 5760 31 3 0 5794 28.28 99.41 
trees 9651 6063 92 0 15806 83.64 38.36 
roads 592 885 16658 1005 19140 81.35 87.03 
grass 4365 270 3724 11392 19751 91.89 57.68 
Total 20368 7249 20477 12397 60491  

   

Second 

Unclassified 0 0 0 0 0   

69.08 

buildings 7493 5 2 0 7500 36.79 99.91 
trees 8587 6249 103 0 14939 86.20 41.83 
roads 912 800 16655 1007 19374 81.34 85.97 
grass 3376 195 3717 11390 18678 91.88 60.98 
Total 20368 7249 20477 12397 60491  

 
Table 7 . Error matrix of both Maximum-Likelihood and Minimum-Distance classification for two 

combinations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figure 51 . Classification results of the study area, above) first combination, below) second combination. Left: Maximum-

Likelihood classification, right: Minimum-Distance classification. 
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8.3 Decision tree classification: 
 

To classify the entire study area using Decision Tree, all selected features used for 
test area are used. Also the same hierarchical created Decision Tree for test area is 
applied with the same thresholds of attributes used for classification ( Decision tree 
1) (Figure 52). This decision tree is based on 7 extracted features (nDSM, S, σz , Ne, 
min. A, min. ew, σ). Building and tree classes were classified based on five attributes 
nDSM, number of echoes (Ne), slope (S), sigma-z (σz) and minimum echo-width (min. 
ew). Roads and grass classes and trees (small trees and shrubs <2m)  were classified 
based on four attributes nDSM, minimum echo-width, minimum amplitude (min. A) 
and cross-section (σ).  

This decision tree classification gave overall accuracy of 83.16 % and kappa 
coefficient of 0.76 .    
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Class buildings trees roads grass Total 
Producer's 
accuracy % 

User's 
accuracy % 

Overall 
accuracy % 

        

83.16 

buildings 18082 418 1930 800 21230 88.78        85.17         
trees 2234 6461 248 0          8943 89.13        72.25           
roads 47 338        16562 2397   19344 80.88        85.62         
grass 5 32         1737   9200 10974   74.21        83.83          
Total 20368 7249 20477        12397    60491   

Table 8. classification accuracy for the study area using Decision Tree. 

 
As comparison between the results of test area and the entire study area we note a 
decline in the accuracy by using Maximum-Likelihood and Decision Tree methods. 
The reason could be in the training data sets and also in the features used to classify 
the entire area. Further investigations are recommended, which involve new training 
data sets and other features. 



Figure 53 . Classification result of the s
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9 Conclusion and further works 
 
This work confirms that full-waveform airborne laser scanning data could be useful 
for classification of urban areas. We used three classification methods, Maximum-
Likelihood, Minimum-Distance and Decision Tree. The classes are buildings, trees, 
roads, and grass areas, which are the basic classes that could be classified in urban 
areas. Actually more classes can be classified (tilted roofs buildings, flat roofs, 
shrubs, and other classes), but our work is a first step to investigate the FWF LiDAR 
data classification for urban areas. Further work should focus on the discrimination 
of more classes. In this work we used a certain number of features extracted from 
FWF LiDAR data, which are normalized digital surface model, slope, sigma-z, number 
of echoes, minimum amplitude of the last echoes, minimum echo width of the last 
echoes and backscatter cross section.  

Using the same extracted features, Decision Tree method gave better overall 
accuracy than Maximum-Likelihood and Minimum-Distance classification. Maximum-
Likelihood classifications results are better than Minimum-Distance specially for 
buildings, trees and grass classes. 

Some of used features did not contribute very much for the classification in our 
study area. For Maximum-Likelihood and Minimum-Distance classification, minimum 
amplitude (min. A) of last echoes is of less importance, although it may be 
responsible for a slight improvement for roads and trees. Minimum echo width (min. 
ew) of last echoes shows almost no influence. 

But it has been seen that the minimum amplitude of the last echoes and backscatter 
cross-section σ are very useful for roads and grass areas classification using Decision 
Tree method. Also it has been seen that using backscatter cross-section σ is more 
useful than amplitude and echo-width in Maximum-Likelihood classifier, especially 
for roads classification. Thus radiometric calibration might be necessary to make any 
classification method effective. In our study using only Maximum-Likelihood or 
Minimum-Distance is not optimal for urban areas classification using only 
information extracted from full-waveform laser scanning data. 

Further work should be carried out on different locations and should concentrate on 
the extraction of more useful features from FWF LiDAR data and more classes to be 
classified. Using aerial orthophotos combined with full-waveform airborne laser 
scanning data, it might be more useful for accurate classification. 

Our study clearly showed that the quality of the normalized digital surface model 
nDSM is highly dependent on the accuracy of the digital terrain model DTM 
especially in urban areas. The complicated off-terrain elements are a great challenge 
for filter algorithms and practice proved that it is advisable to throroughly check and 
if necessary correct the DTM before calculating the nDSM. A more accurate nDSM 
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might produce a better classification. Although the Decision Tree classifier is easy to 
understand and implement, the thresholds for the class discrimination are 
dependent on the chosen training data. Therefore, more studies are required in 
different locations of urban areas. 
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