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Abstract

Over the past years Model-Driven Development (MDD) gained significant popularity. With the
usage of this paradigm the software engineering process becomes more model-centric and less
code-centric. This means that models become the main artifact in the software development pro-
cess and therewith the whole software development process relies on these models and their
correctness. For this reason the need for executable models that can be tested and validated aro-
se. The de facto standard for modeling software systems is OMG’s Unified Modeling Language
(UML). The problem is that UML models are not executable because UML has no precise and
completely specified semantics. Its semantics is defined informally in English prose and this
definition is scattered throughout the standard with about 1000 pages. Because of this situation,
ambiguities arise and models can be interpreted and executed in different ways. This also led to
the development of execution tools that are not interoperable because they implement different
execution semantics.

OMG has recognized the need for executable models in an unambiguous way, and has deve-
loped a new standard called Semantics of a Foundational Subset of Executable UML Models or
foundational UML (fUML) that was released in February 2011. This standard defines the precise
execution semantics of a subset of UML 2, the so-called foundational UML subset.

The research question of this thesis is as follows. Is the semantics definition of the fUML stan-
dard sound and applicable for building tools that enable the execution of UML activity diagrams?
To answer this question, a prototype of a model interpreter has been developed in this thesis that
is able to execute and debug UML models according to the execution semantics defined in the
fUML standard. This model interpreter prototype focuses on executing activity diagrams that
model the manipulation of objects and links in a system. Furthermore, the prototype provides
reasonable debugging functionality similar to the functionality offered for debugging code like
the step-wise execution and the displaying of the debugging progress. The experiences gained
during the implementation of the model interpreter prototype led to the following conclusion.
The fUML standard is applicable for implementing tools that support the execution of UML
activity diagrams, however, high efforts are necessary to develop a user-friendly and efficient-
ly usable tool supporting features like the debugging of models or the execution of incomplete
models.
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Kurzfassung

Im Laufe der letzten Jahre gewann die modellgetriebene Softwareentwicklung, auch bekannt
als Model-Driven Development (MDD), enorm an Bedeutung. Dabei wird die Implementierung
eines Systems, d.h. der Code, automatisch oder halbautomatisch aus den Modellen generiert.
Die Korrektheit dieser Modelle ist demnach von großer Bedeutung. Damit ergibt sich die Not-
wendigkeit ausführbarer Modelle, die durch ihre Ausführung getestet und validiert werden kön-
nen. Der objektorientiert Modellierungsstandard UML hat den Nachteil, dass er keine präzise
und vollständig spezifizierte Ausführungssemantik besitzt. Die Ausführungssemantik von UML
wird nur informell in englischer Prosa definiert und unstrukturiert über den 1000 Seiten umfas-
senden Standard hinweg verteilt behandelt. Dadurch ergeben sich Mehrdeutigkeiten bezüglich
der Interpretation von Modellen, was sich auch in der Inkompatibilität der UML Werkzeuge wi-
derspiegelt.

Die OMG erkannte das Bedürfnis nach ausführbaren Modellen sowie die Probleme der Se-
mantikdefinition von UML und entwickelte einen neuen Standard mit dem Titel Semantics of a
Foundational Subset of Executable UML Models oder foundational UML (fUML), der im Febru-
ar 2011 in Erstversion veröffentlicht wurde. Dieser Standard definiert die präzise und vollstän-
dige Semantik einer Untermenge von UML 2, die als foundational UML subset bezeichnet wird.

Die Forschungsfrage dieser Arbeit lautet daher: Ist die Semantikdefinition des fUML Stan-
dards geeignet, um Programme zu implementieren, die das Ausführen von UML Aktivitätsdia-
grammen ermöglichen? Um diese Frage zu beantworten, wurde ein Prototyp für einen Modell-
Interpreter entwickelt, der UML Modelle entsprechend der im fUML Standard definierten Aus-
führungssemantik ausführen und debuggen kann. Dieser Modell-Interpreter konzentriert sich
dabei auf die Ausführung von UML Aktivitätsdiagramme, die sich mit der Manipulation von Ob-
jekten und Links in einem System beschäftigen. Weiters stellt der Prototyp sinnvolle Debugging-
Funktionen zur Verfügung, ähnlich jener Funktionalitäten, die vom Debuggen von Code be-
kannt sind, wie beispielsweise die schrittweise Ausführung oder das Anzeigen des Debugging-
Fortschritts. Die Erfahrungen, die im Zuge der Implementierung dieses Prototyps gewonnen
werden konnten zeigen, dass der fUML Standard verwendet werden kann, um Programme zu
entwickeln, die das Ausführen von UML Aktivitätsdiagrammen ermöglichen. Gleichzeitig ist
aber ein hoher Implementierungsaufwand nötig, um benutzerfreundliche und effizient nutzba-
re Werkzeuge zu entwickeln, die Funktionalitäten wie das Debuggen von Modellen oder das
Ausführen unvollständiger Modelle unterstützen.
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CHAPTER 1
Introduction

1.1 Motivation

The Unified Modeling Language1 (UML) is the widely accepted standard for modeling soft-
ware systems. It is a graphical modeling language that is used to specify, construct, visualize
and document a software system [25] and it was developed and standardized by the Object
Management Group2 (OMG). Structural as well as behavioral aspects of a software system are
specified throughout the development process in UML models which are refined in the various
consecutive steps of the development lifecycle from requirements analysis to maintenance. As
correcting an error in a system becomes more expensive the later the error is detected, it is very
important to discover and correct errors in a very early stage of the software development pro-
cess. And because models are often used as specification for the implementation of a system, it
is essential to detect errors in these models before they are reflected in the source code. But at the
moment these models can only be read and manually reviewed. There is no way to test models
until the executable code is available, because models are scarcely executable in modeling tools.

Another reason why it is desirable to have executable models is that with the development
paradigm Model-Driven Development (MDD) the software development process becomes more
model-centric and less code-centric. This shift implicates that models are no longer only used
to document design decisions and to support a thorough understanding of the system, but mod-
els are the primary artifact of the software development process and the code is automatically
generated from them. This means that the development of a software system is model-driven
instead of only model-based. OMG’s MDD approach which is known as Model Driven Archi-
tecture3 (MDA) suggests the usage of UML to define a platform-independent model (PIM) of
the system under development. This model considers the entire system but omits the details of

1http://www.omg.org/spec/UML
2http://www.omg.org
3http://www.omg.org/mda
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the implementation platform. The second step is to transform the platform-independent model
into a platform-specific model (PSM) that adds the details of a certain implementation platform.
The last step is then to generate source code automatically or semi-automatically out of these
models. Because of this shift to a model-centric software development process, the need for
executable models that can be debugged and executed becomes more evident.

1.2 Problem Statement

It is desirable to have models that can be executed and debugged. The main reason for this
is that models can be tested thoroughly and so errors can be detected more easily with a tool
that enables the execution and debugging of models. Also the understanding of the models, and
therewith the understanding of systems, could be improved if models can be debugged. MDA is
an ongoing trend in software engineering that makes the models of a system to the main artifact
of the software development process. This trend makes the need for executable models even
more obvious.

The problem with the usage of UML to model a system, like it is suggested by MDA, is that
UML has no precise and complete specified execution semantics. But to define executable mod-
els, a defined semantics is essential. UML’s execution semantics is only informally defined in
English prose and it is scattered throughout the standard. This leads to lots of problems. Be-
cause the semantics definition is much dispersed in the standard, it is very difficult to get a global
understanding of UML’s semantics and another consequence is that there are logical inconsis-
tencies and omissions in the semantics definition. Because the semantics definition of UML is
neither precise nor complete, ambiguities arise and models can be misinterpreted. But to execute
UML models their execution semantics has to be clear. Here the question arises what benefits
a standard has when models are interpreted and executed differently by different people. This
problem also led to the development of tools for executing UML models that implement differ-
ent execution semantics.

Lots of publications exist that are concerned with the missing formal semantics specification
of UML. The precise UML Group [7] and the UML Semantics Project [2] have to be named in
this context. But currently no semantics definition for the whole UML standard exists.

1.3 Aim of the Work

The aim of this master thesis is to build a prototype of a model interpreter for UML models. This
model interpreter prototype shall focus on executing activity diagrams because one fundamental
principle of UML’s semantics is that every behavior in a system is eventually caused by actions
and therewith every kind of behavior in UML is expressible as a sequence of actions. To be
precise the prototype shall enable the user to execute and debug activity diagrams that model the
manipulation of objects and links. The interpreter shall execute activity diagrams that define,
based on a class diagram, how objects are created and destroyed, how links between objects are
created and destroyed, how attribute values of objects are set and removed etc. So only selected
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modeling concepts of UML activity diagrams shall be supported by the model interpreter.

As mentioned before the execution of models requires a precise definition of the execution se-
mantics of these models. The “Semantics of a Foundational Subset for Executable UML Mod-
els”, or short foundational UML4 (fUML), is a new standard of the OMG that precisely defines
the execution semantics for a subset of UML 2.3, whereat the version 1.0 only supports activ-
ity diagrams. Because fUML is an OMG standard defining the execution semantics of OMG’s
UML, this standard is most promising to be highly accepted in the UML community. Out of this
consideration the semantics definition of activity diagrams defined in fUML was chosen to build
the prototypical model interpreter.

The model interpreter prototype is implemented using the Eclipse Modeling Framework5 (EMF)
because this framework ideally supports all functionality needed to build it: It supports the defi-
nition of metamodels, the code generation from these metamodels and the automatic generation
of editors that can be used to instantiate models from the metamodels. The model interpreter
prototype is implemented as Eclipse plug-in to ease its provision.

1.4 Methodological Approach

The methodological approach for this master thesis consists of three parts:

1. Literature survey. As the aim of the work is to build a prototypical model interpreter for
activity diagrams, the first step consists of a literature survey for a semantics definition of
UML activity diagrams. This survey lead to the new fUML standard of OMG that was
available as Beta 3 specification at the start of this thesis.

2. Implementation. Based on the execution semantics of UML activity diagrams which is
defined in the fUML standard, the implementation of an Eclipse plug-in based on EMF
for executing and debugging selected concepts of activity diagrams build-up the second
step.

3. Evaluation. As the last step, the implementation of the model interpreter prototype for
UML activity diagrams is evaluated and possible enhancements are identified. Also expe-
riences with the fUML standard are reflected and limitations are presented.

4http://www.omg.org/spec/FUML
5http://www.eclipse.org/emf
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1.5 Structure of the Work

This thesis consists of further six chapters.

Chapter 2 and Chapter 3 are concerned with the theoretical background of this thesis, i.e., with
UML and fUML.

Chapter 2 gives an introduction into UML and presents an overview of the thirteen diagram
types of UML. Because this thesis deals with the execution of activity diagrams, this diagram
type is described in more detail. The UML metamodel, i.e., the syntax of UML, is presented as
well as the UML semantics architecture.

The new fUML Standard of OMG is outlined in Chapter 3. Its objectives and structure are
presented. This chapter compares the modeling concepts supported by fUML with the modeling
concepts offered by UML. fUML defines the execution semantics of a foundational subset of
UML and an execution engine for executing models based on this foundational subset. Chap-
ter 3 also deals with this execution engine.

Chapter 4 is concerned with the implemented Eclipse plug-in for executing and debugging ac-
tivity diagrams. Here the supported modeling concepts for activity diagrams are presented in
more detail and the functionality of this prototypical model interpreter is treated.

Chapter 5 discusses the experiences concerning fUML that were gained during the implementa-
tion of the Eclipse plug-in.

Related work is introduced in Chapter 6 and the similarities and differences compared to the
work on hand are pointed out.

Chapter 7 provides a summary that sums up the main points of this thesis.

4



CHAPTER 2
Unified Modeling Language (UML)

2.1 Introduction to UML

The Unified Modeling Language (UML) is an object-oriented graphical modeling language
which was developed and standardized by the Object Management Group (OMG). This stan-
dard, which is currently in version 2.31, intends to incorporate experience about modeling tech-
niques as well as best practices in software development. UML is used to specify, construct,
visualize and document the artifacts of a software system and it is a widely accepted standard
for modeling software systems [25].

The following characteristics are the reason why the UML is named Unified Modeling Lan-
guage [25]:

• Historical methods and notations. As stated before UML incorporates experiences
about modeling techniques and best practices in software development.

• Application domain. UML is a general-purpose modeling language. It can be used for
a wide range of application domains. For instance distributed systems can be modeled as
well as real-time system.

• Development lifecycle. UML can be used throughout the software engineering process
from requirements analysis to maintenance. This is important because models of a soft-
ware system are naturally not created all at once. They are created and refined successively
during the development process.

• Development process. UML can be used as modeling language independent from the
used development process. Particularly it supports iterative and incremental processes.

1http://www.omg.org/spec/UML/2.3
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• Tools, languages, and platforms. UML can be used independent from the used develop-
ment tools, implementation platform, and programming language.

• Internal concepts. The modeling concepts of UML are defined in a metamodel. This
metamodel was constructed under to consideration of enabling a broad applicability of
UML.

UML 2 consists of four parts, namely of the infrastructure, the superstructure, the object con-
straint language (OCL) and the diagram interchange [10].

• Infrastructure. The infrastructure forms the basis for the language definition of UML 2
and therewith of the superstructure.

• Superstructure. The superstructure is the actual definition of the UML 2 modeling lan-
guage.

• Object constraint language. OCL is a constraint language that can be used to define
constraints on the models as well as to formulate queries on models.

• Diagram interchange. The diagram interchange is concerned with the exchange of layout
information of a UML diagram to facilitate the diagram interchange between UML tools.

2.2 Overview of UML Diagram Types

The UML consists of thirteen diagram types. Each type describes another view on the modeled
software system. The diagram types can be categorized into diagrams for modeling the struc-
ture of a system and diagrams for modeling the behavior of a system. This categorization is
displayed in Figure 2.1.

Class diagram, object diagram, package diagram, component diagram, composite structure di-
agram and deployment diagram are the six diagram types used for molding structure whereas
use case diagram, activity diagram, state machine, sequence diagram, communication diagram,
timing diagram and interaction overview diagram are the seven diagram types for modeling the
behavior of a system. The last four of these diagram types (sequence, communication, timing
and interaction overview diagram) can be grouped into the category of interaction diagrams be-
cause they are all concerned with the interactions between objects of a system.

These thirteen diagram types of UML are briefly described in the following sections (cf. [10]).

6
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Figure 2.1: Categorization of the UML diagram types

Modeling of Structure

Class diagram. The class diagram is used to describe the classes of a software system, their
attributes, operations and relationships among each other.

Object diagram. To describe an exemplary system configuration in terms of existing objects,
their attribute values and relationships to other objects, the object diagram is used.

Package diagram. The package diagram is used to group elements of a system into packages
which can have relationships among each other. Thereby it is a means to structure the elements
of a system.

Component diagram. The component diagram allows modeling the components of a system
and their dependencies. A component is a modular part of the system and provides defined in-
terfaces.

Composite structure diagram. To hierarchically decompose elements of the modeled sys-
tem like classes, one can make use of the composite structure diagram.

Deployment diagram. To model the runtime systems as well as the communication between its
elements, the deployment diagram is used. It also enables the specification of the deployment of

7



run-time artifacts like files, on the resources of a runtime system like a server.

Modeling of Behavior

Use case diagram. The use case diagram is used to describe the functionality which the mod-
eled software system provides the user. The functionality is modeled in terms of use cases. The
interaction of the users or actors with the system’s functionality or use cases is modeled as well
as the relationships between the actors and the relationships between the use cases.

Activity diagram. To model how actions in the system are executed, the activity diagram can
be used. It describes the control as well as the data flow between the actions of a system.

State machine. A state machine describes the lifecycle of an object in terms of the states of
an object, the possible state transitions and the actions which can be executed in each state.

Sequence diagram. The sequence diagram is used to model the interactions between objects
which are necessary to accomplish a given task. The main focus of this diagram is to specify the
chronology of the interactions.

Communication diagram. Like the sequence diagram also the communication diagram is used
to model the interactions between objects. But here the focus lies on the structural relationships
between the interaction partners.

Timing diagram. The timing diagram is also concerned with the interactions between objects.
It allows to explicitly specify the state changes of the interacting objects during the interaction.

Interaction overview diagram. The interaction overview diagram is used to visualize in which
order interactions can take place. It therewith describes the coordination of the different interac-
tions.

2.3 Modeling Behavior using Activity Diagrams

Because this thesis is concerned with the execution of activity diagrams, this UML diagram type
is introduced in more detail.

As stated before, activity diagrams are used to describe the behavior of a system. It is concerned
with the description of the steps necessary to accomplish a given task. The activity diagram
can be used to describe workflows at a very highly level of abstraction as well as to describe
the instructions necessary in an operation of a class at a very low level of abstraction. Because
this thesis deals with executing activity diagrams, it is necessary to describe activities in a very
detailed way, i.e., executable activities have to be described at a very low level of abstraction.

Figure 2.2 shows an excerpt of the metamodel that contains the basic concepts for modeling

8



activities. The UML metamodel is described in more detail in Chapter 2.4. The notations of the
modeling concepts for activities and further details are presented in Table 2.1.

Activity

ActivityNode ActivityEdge
+ target
1

+ incoming
*

+ source
1

+ outgoing
*

+ activity + activity

+ node + edge

0..1 0..1

**

ObjectNode Action ControlNode ControlFlow ObjectFlow

Pin ActivityParameterNode InitialNode DecisionNode ForkNode

InputPin OutputPin
FinalNode

ActivityFinalNode

MergeNode JoinNode

0 1 0 1

**+ /input + /output

Parameter

*

1+ parameter

Action

0..1 0..1

Figure 2.2: Excerpt of the UML metamodel that contains the basic concepts of activity diagrams
[19]

Activities consist of activity nodes and activity edges. Actions are activity nodes that define the
single steps of an activity. Actions can also process data and therefore have inputs and outputs
which are modeled using so-called input pins and output pins. Also an activity can have inputs
and outputs which are specified by activity parameter nodes. Pins and activity parameter nodes
are object nodes. To define the start of an activity, the end of an activity, alternative branches or
concurrent branches, control nodes are used. The initial node defines the starting points of an
activity, whereas the activity final node determines the end of an activity. Alternative branches
are modeled using a decision node that defines under what condition which of the branches is
executed. Alternative branches are merged using the merge node. With the fork node concurrent
actions can be defined which can again be synchronized using the join node. Activity nodes
are connected by activity edges. Control flow edges are used to define the control flow among
activity nodes whereas data flow edges are used to model the data flow.
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Modeling concept Notation Description

Activity

Action C

Activity

Action Action

Action Action

Action

Action

Activities describe the behavior
of a system.

Action

Action C

Activity

Action Action

Action Action

Action

Action

Actions represent the individual
steps necessary to accomplish an
activity.

Control flow

Action C

Activity

Action Action

Action Action

Action

Action

A control flow edges describe
the control flow through the ac-
tions.

Action with input
and output pins

Action C

Activity

Action Action

Action Action

Action

Action

Actions can have inputs which
are modeled using input pins and
outputs which are modeled using
output pins.

Object flow

Action C

Activity

Action Action

Action Action

Action

Action

An object flow edge describes
the data flow between actions.

Initial node

Action C

Activity

Action Action

Action Action

Action

Action

The initial node is used to spec-
ify the starting points of an ac-
tivity.

Activity final node

Action C

Activity

Action Action

Action Action

Action

Action

The final node specifies the end
of an activity and therewith the
end of every control or data flow.

Decision node

Action C

Activity

Action Action

Action Action

Action

Action

Decision nodes are used to de-
fine alternative branches and
the guard conditions that spec-
ify under what conditions which
branch has to be chosen.

Merge node

Action C

Activity

Action Action

Action Action

Action

Action

Merge nodes merge alternative
branches.

Fork node

Action C

Activity

Action Action

Action Action

Action

Action

Fork nodes are used to model
concurrent branches.

Join node

Action C

Activity

Action Action

Action Action

Action

Action Join nodes join concurrent
branches.

Table 2.1: Modeling concepts of UML activity diagrams
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Another important concept for understanding activity diagrams is the token concept that origi-
nates from Petri Nets. Tokens are no additional modeling concept, so there exists no notation for
them and they are also not included in the metamodel of UML. Tokens are used as a coordina-
tion mechanism to describe possible execution flows of an activity. So tokens represent control
and they can also carry data. Tokens which carry data are called data tokens or object tokens,
tokens that do not carry information are called control tokens. The tokens flow along activity
edges from one activity node to another. An activity node can be executed if there are tokens
present at all incoming edges. After the execution tokens are provided on all outgoing edges and
therewith the execution of subsequent activity nodes may be triggered. There can be more than
one token present in an activity diagram during execution, e.g., when fork nodes start concurrent
execution flows or if more than one initial node are present.

UML provides predefined primitive actions for modeling the manipulation of objects and links,
computation and communication among objects. [25] groups these actions into ten categories.
This categorization is presented in Table 2.2. These actions are particularly important for the
execution of activity diagrams because they are primitive enough to be interpreted and executed
by a computer.

Category Action Purpose

classification readIsClassifiedObject test classification
reclassifyObject change classification
testIdentity test object identity

communication broadcastSignal broadcast
callOperation normal call
reply reply after explicit accept
(implicit) return implicit action on activity end
sendObject send signal as object
sendSignal send signal as argument list

computation acceptCall inline wait for call
acceptEvent inline wait for event
addVariableValue add additional value to set
applyFunction mathematical computation
callBehavior invoke behavior
clearVariable reset value in procedure
readSelf obtain owning object identity
readVariable obtain value in procedure
removeVariableValue remove value from set
writeVariable set value in procedure

control startOwnedBehavior explicit control
creation createLinkObject create object from association

createObject create normal object
destruction destroyObject destroy object
exception raiseException raise exception in procedure
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Category Action Purpose

read readExtent get all objects
readLink get link value
readLinkObjectEnd get value from association class
readLinkObjectEndQualifier get qualifier value
readStructuralFeature get attribute value

time durationObservation measure time interval
timeObservation get current time

write addStructuralFeatureValue set attribute value
clearAssociation clear links
clearStructuralFeature clear attribute value
createLink add a link
destroyLink remove a link
removeStructuralFeatureValue remove value from set

Table 2.2: Primitive actions of UML [25]

2.4 Syntax of UML - The UML Metamodel

The UML modeling language is defined in the UML superstructure. The abstract syntax of the
UML modeling concepts is specified by means of a metamodel. Also the concrete syntax of
the concepts, i.e., their notation, is defined by the UML superstructure but is not part of the
metamodel.

OMG Four-Layer Metamodel Hierarchy

A metamodel is the specification of a language which is used to construct models. It describes
which modeling concepts exists, which attributes they have, which relationships between them
can exist etc. This is the abstract syntax of a modeling language. A model is an instance of a
metamodel, i.e., each element of the model is an instance of an element of the metamodel. This
structure can be recursively applied so that a model can also be again a metamodel and therefore
a language specification. This recursive application leads to a metamodel hierarchy. Modeling
language specifications of the OMG are developed within the framework of a four-layer meta-
model hierarchy which is depicted in Figure 2.3 [18].

Meta-metamodel. The meta-metamodel layer, also called M3, constitutes the basis of the meta-
model hierarchy. It is responsible for specifying the language used to define a metamodel. In the
four-layer metamodel hierarchy the Meta Object Facility2 (MOF) serves as meta-metamodel.

2http://www.omg.org/mof
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M3 MOF Class
<<instanceOf>> <<instanceOf>>

M2 UML ClassifierProperty InstanceSpecification
classifier

<<instanceOf>><<instanceOf>>

M2 UML ClassifierProperty InstanceSpecification
1 *

Classclass

ownedAttribute*
0..1

<<instanceOf>> <<instanceOf>><<instanceOf>>

M1 model Student : Student

<<instanceOf>>

name: String name = „Tanja“<<snapshot>>

<<instanceOf>>

M0 runtime instances
aStudent

Figure 2.3: Four-layer metamodel hierarchy [18]

Metamodel. The metamodel layer is also referred to as M2. A metamodel is an instance of a
meta-metamodel and it is used to specify the language which is used to construct models. In
the case of UML the UML metamodel is placed on layer M2, it is an instance of MOF which
is its meta-metamodel. Figure 2.3 presents parts of the abstract syntax of the class diagram and
of the object diagram: A class is a classifier that owns an arbitrary number of properties and an
instance specification (this modeling concept represents the objects in a system) has exactly one
classifier. Another excerpt of the UML metamodel that deals with the abstract syntax of activity
diagrams was already presented, namely in Figure 2.2 of Chapter 2.3.

Model. The so-called M1 layer is concerned with the models which are instances of the meta-
model. A UML model is an instance of the UML metamodel. Figure 2.3 shows elements of
a model that conform to the abstract syntax defined on layer M2: The model contains a class
called “Student” that has a property called “name” and an object of that class with the value
“Tanja” for the property. This example makes clear that an instantiation relationship does not
only exist between the UML metamodel on layer M2 and the model on layer M1 but also within
the model layer M1. The former case is called a linguistic instantiation relationship and the
latter is called an ontological instantiation relationship [10]. So Figure 2.3 shows a linguistic
instantiation relationship between the object of the class “Student” on layer M1 and the meta-
class instance specification on M2 (“instance of”) and an ontological relationship between the
object of the class “Student” and the class “Student” (“snapshot”) which are both situated on
layer M1.

Runtime instances. The lowest layer M0 contains the runtime instances of the model elements
of the model layer M1. Figure 2.3 shows the runtime instance “aStudent” which is an instance
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of the class “Student”.

Structure of the UML Metamodel

The UML superstructure, i.e., the UML metamodel, is structured modularly. This is because
UML can be used in a wide range of application domains and not all application domains need
every modeling concept provided by UML. To enable that users only select the needed parts of
the UML, it is structured into so-called language units. The structuring was carried out under
the consideration of the interchangeability of UML models to support the interoperability of
UML tools. For this reason also compliance levels and syntax compliance were introduced. I.e.,
the UML metamodel was structured using the three criteria language unit, compliance level and
syntax compliance [19].

Language units. Language units encapsulate associated modeling concepts. Such language
units are the state machine language unit and the activities language unit.

Compliance levels. Further the UML metamodel is structured into four compliance levels.
Starting with level L0 (foundation level) each level adds further modeling concepts and there-
with enlarges the modeling capabilities. The further levels are L1 (basic level), L2 (intermediate
level) and L3 (complete level).

Syntax compliance. The last criteria for structuring UML is the syntax compliance. It is dis-
tinguished between abstract syntax compliance and concrete syntax compliance. The abstract
syntax is as already mentioned defined in the metamodel itself whereas the concrete syntax is
defined separately.

Figure 2.4 depicts the language units of UML. The green colored language units are used to
model the structure of a system and the red colored are used for modeling the behavior of a
system. For convenience the dependencies between these language units are not displayed. Fig-
ure 2.4 also displays the sub-packages of the actions language unit contained on the compliance
levels L1-L3.

2.5 Semantics of UML

The abstract syntax of UML is precisely and completely specified in the UML metamodel. Also
the concrete syntax of most of the modeling concepts is clearly defined in the standard. But
the execution semantics of UML is neither precisely nor completely specified. The execution
semantics is only informally defined in English prose and it is scattered throughout the standard.

UML Semantics Architecture

The UML standard only provides a very high-level view of the run-time semantics of UML in
the beginning of the standard document. The detailed semantics descriptions are then covered
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Figure 2.4: Compliance levels of UML

in the descriptions of the individual modeling concepts. Because of this much dispersed seman-
tics specification it is very difficult to get a global understanding of UML’s semantics. Another
consequence is that there are logical inconsistencies and omissions in the definition of the UML
semantics.

The UML standard premises two fundamental principles to describe the nature of UML’s se-
mantics [19]:

1. Every behavior in a system is eventually caused by actions which are executed by an active
object.

2. The UML behavioral semantics only deals with discrete, i.e., event-driven behaviors.

Figure 2.5 depicts the semantic areas of the UML standard. The semantic areas are organized in
three layers where each layer depends on the underlying layers.
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Figure 2.5: Semantic areas of UML [19]

Structural foundations. The structural foundations form the basis of this hierarchy. This layer
is concerned with structural entities like objects, links, messages etc. Therewith it copes with the
first premise of UML’s semantics that every behavior in a system is caused by an active object,
i.e., a structural element.

Behavioral base. The next layer is the so-called behavioral base and it is concerned with the
semantics of the behavior of a system. This layer is subdivided into two layers. The bottom
layer consists of the inter-object behavior base and the intra-object behavior base which are
concerned with the inter- and the intra-object behavior, i.e., the communication between and the
behavior within structural entities. On top of this two layers the actions layer is placed. It deals
with the semantics of individual actions which are the fundamental units of behavior.

Higher-level behavioral formalisms. The layer on the top specifies the semantics of the higher-
level formalisms of UML that deals with the behavior of a system, namely activities, state ma-
chines and interactions.

One publication that is concerned with the UML semantics architecture is [26]. It provides a
high-level view of the run-time semantics underlying UML 2.0 and describes the two lower se-
mantic layers structural foundations and behavioral base in more detail, but it does not cover
activities.

Problems of the Missing Formal Semantics Specification

Because UML is only informally specified in English prose and this specification is neither pre-
cise nor complete, ambiguities arise. This can lead to serious problems [7].
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Without a clear semantics definition it is more difficult to learn and use a language, because
a language’s semantics is essential for understanding its usage. Since the UML standard leaves
much room for interpretation regarding its semantics, users of UML can develop different vari-
ants of a precise semantics for UML on their own, which may be inconsistent. Such more precise
semantics interpretations of UML are based upon the experiences of the individual users and if
they are not explicitly documented this again leads to misinterpretations and communication
problems.

Because the semantics definition of UML lets room for interpretation, UML models can be
misinterpreted, leading to situations where the model of a system and the implementation of
the system are inconsistent, because the software architect and the software engineer may have
interpreted the models in different ways. In such a case the interpretations of a model have to be
communicated explicitly, what can lead to additional time and effort that has to be spent in the
development process.

The ambiguous and imprecise semantics definition also leads to complications in developing
tools with UML support and the interoperability of UML tools is affected because every tool
vendor may implement another variant of a precise semantics. Interoperability-problems can
also arise of the fact that the semantics definitions of the modeling concepts also include so-
called semantic variation points which leave space to refine the general UML semantics for a
special domain. Also these semantic variation points are scattered throughout the standard and
no official list of them exists which makes it more difficult to cope with them.

Without precise semantics definition it is also hard to validate or verify UML models formally.
Mostly they are validated and verified informally for instance in manual reviews or inspections.

Also for executing UML models a complete and precise semantics is essential.

Example for Ambiguity in Semantics Definition

Action A

Action B

Action C

Action B

Figure 2.6: Example for ambiguities in UML semantics
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The model in Figure 2.6 is used to present an example for ambiguities in the UML semantics
definition. The activity has three actions called action A, action B and action C. After starting the
activity, action A and action B are executed concurrently. They both have two outgoing edges
each. One outgoing edge leads to action C and the other to a join node which itself again leads
to action C. The question is how often action C will be executed. Is it executed never, once or
twice? To answer this question statements of the UML standard version 2.3 are presented.

“Except where noted, an action can only begin execution when it has been offered
control tokens on all incoming control flows and all its input pins have been offered
object tokens sufficient for their multiplicity.” [19, p. 320]

This is an excerpt of the semantics definition of actions. It defines that an action can only be
executed if the necessary control and object tokens are present on every incoming edge.

“When completed, an action execution offers any object tokens that have been
placed on its output pins and control tokens on all its outgoing control flows (im-
plicit fork), and it terminates. (...) The offered tokens may now satisfy the control
or object flow prerequisites for other action executions.” [19, p. 320]

Also this excerpts stems from the semantics definition of actions. Because of this definition we
conclude that an action places tokens on all outgoing edges after finishing execution. Based on
this interpretation the control flow in the activity presented in Figure 2.6 would look like follows:
After action A finishes execution it places one control token on each of the two outgoing edges.
Also action B places tokens on each outgoing edge after execution. Because now only two of
the three incoming edges of action C have tokens, action C can’t be executed. But both of the
incoming edges of the merge node have tokens so this control node is executed.

According to the semantics definition of the join node in the standard, the control flow is contin-
ued as follows:

“If there is a token offered on all incoming edges (of a join node), then tokens are
offered on the outgoing edge according to the following join rules: 1. If all the
tokens offered on the incoming edges are control tokens, then one control token is
offered on the outgoing edge. (...)” [19, p. 394]

So now there are control tokens on each incoming edge of action C and action C is executed.

But the following excerpt of the semantics definition of an activity leads to an ambiguity:

“Since multiple edges can leave the same node, the same token can be offered to
multiple targets. However, a token can only be accepted at one target. This means
flow semantics is highly distributed and subject to timing issues and race conditions,
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as is any distributed system. (...) It is the responsibility of the modeler to ensure
that timing issues do not affect system goals, or that they are eliminated from the
model.” [19, p. 327]

This excerpt leads to the conclusion that after action A (or action B respectively) is executed
either the join node or action C can accept the offered token but not both. In this interpretation,
action C is never executed because only the following four possible scenarios exist:

1. After action A is executed it offers one token to the two targets action C and the join node.
The token is accepted by action C. Action C can’t be executed because only one of the
three incoming edges provides a token. After action B is executed it offers one token to the
two targets action C and the join node. The token is accepted by action C. Action C can’t
be executed because only two of the three incoming edges provide a token. No further
action can be executed.

2. After action A is executed it offers one token to the two targets action C and the join node.
The token is accepted by action C. Action C can’t be executed because only one of the
three incoming edges provides a token. After action B is executed it offers one token to
the two targets action C and the join node. The token is accepted by the join node. Also
the join node can’t be executed because only one of the two incoming edges provides a
token.

3. After action A is executed it offers one token to the two targets action C and the join node.
The token is accepted by the join node. The join node can’t be executed because only one
of the two incoming edges provides a token. After action B is executed it offers one token
to the two targets action C and the join node. The token is accepted by action C. Also
action C can’t be executed because only one of the three incoming edges provides a token.

4. After action A is executed it offers one token to the two targets action C and the join node.
The token is accepted by the join node. The join node can’t be executed because only one
of the two incoming edges provides a token. After action B is executed it offers one token
to the two targets action C and the join node. The token is accepted by the join node. Now
the join node can be executed and it offers one token to action C but action C can’t be
executed because only one of the three incoming edges provides a token.

If UML would have a precise semantics definition, ambiguities like this would not arise.

The missing formal specification causes problems for executing UML models because a pre-
cise and complete execution semantics is missing.
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CHAPTER 3
Semantics of a Foundational Subset for

Executable UML Models (fUML)

3.1 Introduction to fUML

The “Semantics of a Foundational Subset for Executable UML Models” is a new standard of the
OMG that defines a precise execution semantics for a defined subset of UML 2.3, the so-called
foundational UML (fUML). This thesis is based on the Beta 3 specification which is the final-
ized specification for fUML. The version 1.0 was released in the end of February 2011. OMG
provides the formal specification as well as the metamodel of fUML1.

The fUML standard deals with the two lower layers of the semantic areas of the UML 2 standard
which is depicted in Figure 2.5 of Chapter 2.5. These two layers are the structural foundations
and the behavioral base. The behavioral base itself consists of the inter-object behavior base,
the intra-object behavior base and actions. Currently only activity diagrams are supported by
fUML [20].

Foundational UML Subset

The selected subset of the UML 2 metamodel, that comprises the foundational UML, constitutes
the foundation for eventually defining the execution semantics of the higher-level UML model-
ing concepts. This is visualized in Figure 3.1. The so-called surface UML subset is the subset of
UML which is used to model a system. This surface UML subset typically contains more mod-
eling concepts than the foundational UML subset. Because of this a translation from the surface
UML subset to the foundational UML subset has to be carried out. Then the model, now being
defined by means of fUML modeling concepts, can be further translated into the computational

1http://www.omg.org/spec/FUML/1.0
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platform language used to execute the model. Thus fUML can be seen as an intermediary be-
tween the surface UML subset for modeling a system and the computational platform language
used for executing this model of a system. fUML is a computationally complete language for
executable models. This means that this subset of UML is expressive enough to enable the cre-
ation of models that can be automatically executed [20].

Surface 
UML b tUML subset

Foundational
UML subset

Surface‐to‐fUML
translator

UML subset

Platform
language

fUML‐to‐platform
translator

g g

Figure 3.1: fUML as intermediary between a surface UML subset and a computational platform
language [20]

The foundational subset was chosen under consideration of three criteria: compactness, ease of
translation and action functionality. Compactness in this context means that the foundational
UML subset must be small enough to precisely define its semantics. With ease of translation
is meant that the surface-to-fUML as well as the fUML-to-platform translation should be easy.
Action functionality means that the semantics description of fUML only defines how UML ac-
tions are executed using primitive functionality.

Of course these criteria affect each other and by specifying the foundational UML subset a
trade-off between them had to be taken into consideration. For instance there is a conflict be-
tween compactness and ease of translation: If the translation could be simplified because a
modeling concept in the surface UML subset has a one-to-one mapping into the computational
platform language the inclusion of this modeling concept into fUML would cause an impairment
of compactness.

fUML Execution Semantics

The fUML standard provides a precise definition of the execution semantics of the individual
modeling concepts in the foundational UML subset using Java code and it defines a basic virtual
machine for executing UML models.
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Conformance in fUML not only means syntactic conformance like in UML but also semantic
conformance. Syntactic conformance means that conforming models comply with the meta-
model, i.e., the abstract syntax of fUML. Semantic conformance denotes that models have to be
executed in the way it is defined in the semantics specification of fUML. fUML is like UML
also structured into the compliance Levels L1, L2 and L3. So syntactic conformance and se-
mantic conformance have to be seen relative to these compliance levels, i.e., the conformance to
a specific fUML compliance level induces syntactic as well as semantic conformance.

3.2 Syntax of fUML - The Modeling Concepts of fUML

As stated before the fUML standard defines a subset of the UML modeling concepts and defines
a precise execution semantics for the selected elements. Because fUML is just a subset of UML,
i.e., the metamodel of fUML is a subset of the metamodel of UML, it is structured in the same
way as UML. This means that the metamodel is grouped into language units and compliance
levels and that the package structure of the fUML metamodel is the same as the package struc-
ture of UML. Packages that are not included in fUML are entirely excluded. Packages that are
included may be restricted compared to the corresponding package in UML, i.e., some elements
of the package may be excluded and additional constraints may be defined. Also the four-layer
metamodel hierarchy is applicable for fUML just as for UML.

Table 3.1 depicts which of the packages of the UML metamodel are included in fUML, whereat
we distinguish between packages for structural modeling and packages for behavioral modeling.

UML package Included in fUML?

Modeling of structure
Classes yes
Components no
Composite Structures no
Deployments no
Modeling of behavior
Actions yes
Activities yes
Common Behaviors yes
Interactions no
State Machines no
Use Cases no

Table 3.1: UML packages included in the foundational UML subset

As can be seen in Table 3.1, fUML supports the class diagram and the activity diagram. We
want to go into more detail of the activities and actions package.
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Activities

Table 3.2 shows the sub-packages included in the activities packages of UML and fUML and
Figure 3.2 compares the dependencies between these sub-packages.

The basic compliance level L1 of fUML does not include any modeling concepts for activities.
The Intermediate Activities sub-package is included on the intermediate layer L2. This package
already merges the Basic Activities package as well as the Fundamental Activities package. On
the complete level L3 the Extra Structured Activities package and the Complete Structured Ac-
tivities package are included and therewith the Structured Activities package is merged into L3.
The Complete Activities package is not separately supported in fUML.

Table 3.3 depicts which modeling concepts for activities are included in the foundational UML
subset. We can see that only four concepts were excluded: Sequence Node, Flow Final Node,
Central Buffer Node and Data Store Node.

Sub-package
Compliance Level

Comment
UML fUML

Basic Activities L1 (L2) Required modeling concepts are
merged into fUML package Intermedi-
ate Activities

Fundamental Activities L1 (L2) Required modeling concepts are
merged into fUML package Intermedi-
ate Activities

Intermediate Activities L2 L2
Structured Activities L2 (L3) Required modeling concepts are

merged into fUML packages Com-
plete Structured Activities and Extra
Structured Activities

Complete Activities L3 - Not separately supported in fUML
Extra Structured Activities L3 L3
Complete Structured Activities L3 L3

Table 3.2: Sub-packages of the activities language unit of UML and fUML included in the
compliance levels L1 (basic), L2 (intermediate) and L3 (complete)
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Figure 3.2: Comparison of the dependencies between the activities sub-packages of UML (left
hand side) and fUML (right hand side) [19, 26]
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UML Included in fUML?

Activity yes

Executable Nodes
Structured Activity Node yes
Conditional Node yes
Loop Node yes
Sequence Node no
Expansion Region yes

Control Nodes
Initial Node yes
Activity Final Node yes
Decision Node yes
Merge Node yes
Fork Node yes
Join Node yes
Flow Final Node no

Object Nodes
Activity Parameter Node yes
Expansion Node yes
Central Buffer Node no
Data Store Node no

Activity Edges
Control Flow yes
Object Flow yes

Table 3.3: Comparison of the modeling concepts of the activities language unit of UML and
fUML
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Actions

Table 3.4 shows the sub-packages included in the actions packages of UML and fUML. Fig-
ure 3.3 compares the dependencies between these sub-packages.

Like with the activities language unit, the basic compliance level L1 does not include any mod-
eling concepts for actions. The intermediate level L2 includes the Basic Actions package as well
as the Intermediate Actions package. The Structured Actions package is excluded from fUML
due to the compactness criteria applied to the selection of the foundational UML subset. The
complete level L3 includes the Complete Actions package.

In Table 3.5 the primitive actions supported by fUML are depicted. For this table the cate-
gorization into object-related, link-related, variable- and structural feature-related as well as
communication-related actions of [10] was chosen. Particularly striking is the fact that the
variable-related actions are all excluded. fUML therewith does not directly support variables.

Sub-package
Compliance Level

Comment
UML fUML

Basic Actions L1 L2
Intermediate Actions L2 L2
Structured Actions L2 - Excluded from fUML
Complete Actions L3 L3

Table 3.4: Sub-packages of the actions language unit of UML and fUML included in the com-
pliance levels L1 (basic), L2 (intermediate) and L3 (complete)

fUML ‐ Actions

UML ‐ Actions

Basic ActionsStructured Activities Intermediate Activities

Intermediate ActionsStructured Actions

<<import>>
<<import>>

<<import>>

Basic Actions

<<import>>

<<merge>>

Intermediate ActionsStructured Actions

<<merge>>

Basic Actions

<<import>> <<import>>

Complete Actions Complete ActionsIntermediate Actions

Figure 3.3: Comparison of the dependencies between the actions sub-packages of UML (left
hand side) and fUML (right hand side) [19, 26]
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UML Included in fUML?

Object-related actions
Create Object Action yes
Destroy Object Action yes
Read Self Action yes
Test Identity Action yes
Reclassify Object Action yes
Read Is Classified Object Action yes
Read Extent Action yes
Start Classifier Behavior Action yes
Start Object Behavior Action yes

Link-related actions
Create Link Action yes
Create Link Object Action no
Read Link Action yes
Read Link Object End Action no
Read Link Object End Qualifier Action no
Clear Association Action yes
Destroy Link Action yes

Variable- and structural feature-related actions
Add Variable Value Action no
Read Variable Action no
Clear Variable Action no
Remove Variable Value Action no
Add Structural Feature Value Action yes
Read Structural Feature Action yes
Clear Structural Feature Action yes
Remove Structural Feature Value Action yes
Value Specification Action yes

Communication-related actions
Accept Call Action no
Accept Event Action yes
Call Behavior Action yes
Call Operation Action yes
Broadcast Signal Action no
Send Signal Action yes
Send Object Action no
Reply Action no
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UML Included in fUML?

Other actions
Opaque Action no
Raise Exception Action no
Reduce Action yes
Unmarshall Action no

Table 3.5: Comparison of the modeling concepts of the actions
language unit of UML and fUML

3.3 Semantics of fUML - The Execution Model of fUML

The execution model is a formal, operational specification of the execution semantics of the
foundational UML subset, defined in Java. It defines the execution semantics of all fUML mod-
eling concepts as well as the fUML execution engine and environment. The execution model is
itself an executable fUML model, namely a model of a fUML execution engine, and therewith
it could be defined using fUML activity diagrams. But because this form of specification would
lead to huge and hard-to-read diagrams, Java code is used to define the execution model instead
of fUML activity diagrams. But the Java code can be seen as just another textual representation
of the corresponding fUML activity diagram [20].

The structure of the execution model is the same as the structure of the abstract syntax, i.e.,
it includes the same packages and sub-packages and defines the semantics of the modeling con-
cepts in the corresponding sub-package of the abstract syntax. Additionally the execution model
includes a package called Loci which defines the fUML execution engine and environment. Thus
the execution model incorporates the following packages.

• Loci. This package specifies the execution engine and the execution environment.

• Classes. The classes package defines the structural semantics of fUML.

• Common Behaviors, Activities, Actions. These packages define the behavioral seman-
tics of fUML.

Execution Engine and Execution Environment

As stated before, the package Loci defines the execution engine and the execution environ-
ment for executing fUML models. It contains the classes Locus, Executor and Execu-
tionFactory. The Loci package is structured according to the three compliance levels L1
(basic), L2 (intermediate) and L3 (complete). The sub-packages are named LociL1, LociL2 and
LociL3. Figure 3.4 depicts the dependencies of the sub-packages of the Loci package to the
other fUML packages.
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LociL1 contains the biggest part of the Loci package and LociL2 and LociL3 only contain spe-
cialized classes of ExecutionFactory. The content of LociL1 is depicted in Figure 3.5.

The class Executor constitutes the execution engine. It offers three operations.

• Execute. This operation can be used to execute a behavior synchronously, whereat input
can be provided and output is returned.

• Evaluate. With this operation value specifications can be evaluated and the corresponding
value is returned.

• Start. This function executes a behavior asynchronously and returns a reference to the
instance of the execution behavior.

An executor is located at maximal one Locus that represents a computer (real or virtual) that
executes a fUML model. At the locus an arbitrary number of extensional values (instances of
the class ExtensionalValue) may exist. Extensional values are objects and links which are
created during the execution of a fUML model. They are persisted at the locus where the exe-
cution takes place, i.e., at the locus that houses the executor. An extensional value can only be
located at one locus and still exists after the execution of a behavior is finished, i.e., extensional
values can exist at the start of the behavior execution.

At a locus also an ExecutionFactory exists. It is used to instantiate so-called visitor classes.
The fUML execution models makes use of the visitor design pattern. Therewith it adds the be-
havior to the fUML modeling concepts without adapting the metamodel that defines them. For
every modeling concept of fUML, i.e., every metaclass of the abstract syntax of fUML, that
should have a behavior, a so-called visitor class exists that specifies that behavior. In fUML we
have to distinguish between three types of visitor classes, whereat every visitor class is derived
from the class SemanticVisitor.

• Execution. This type of visitor class is used to add behavior to subclasses of the syntac-
tic class Behavior. For instance the execution visitor class ActivityExecution
defines how an activity (instance of class Activity) is executed.

• Activation. An activation visitor class specifies the semantics of an activity node. An ex-
ample is the activation visitor class CreateObjectActionActivation that defines
how a create object action (instance of class CreateObjectAction) behaves.

• Evaluation. Evaluation visitor classes are used to specify how value specifications are
evaluated. For example the evaluation visitor class LiteralBooleanEvaluation is
used to define how a boolean value (instance of class LiteralBoolean) is evaluated.
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Figure 3.4: Dependencies of the Loci packages to other fUML packages [20]
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Figure 3.5: Content of the LociL1 package [20]
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Figure 3.6: Content of the packages LociL2 and LociL3 [20]

As stated before each Loci sub-package has its own specialized execution factory to instantiate
the visitor classes for the modeling concepts supported by the corresponding compliance level.
The LociL2 and LociL3 packages only consist of these specialized execution factory classes (see
Figure 3.6).

The execution factory maintains a set of primitive types (i.e., instances of the class Primi-
tiveType) as built in types for evaluating literal value specifications like LiteralBoolean.

For dealing with semantic variation points the fUML execution model uses the strategy design
pattern. All strategy classes in fUML are sub-classes of SemanticStrategy. To find out
with which variation point a semantic strategy is concerned the method getName is provided.
A strategy class has to be registered at the execution factory using the operation setStrategy.
The version 1.0 of fUML only considers two semantic variation points namely the dispatching
of events and the dispatching of operations. Strategies that are concerned with the dispatching
of events have to be subclasses of GetNextEventStrategy (contained in the package Se-
mantics::CommonBehaviors::Communications) and strategies concerned with the dispatching
of operations have to be subclasses of DispatchStrategy (located in the package Seman-
tics::Classes::Kernel).

To specify nondeterministic behavior the strategy pattern is again used. An example for a
nondeterministic behavior is a conditional node where more than one clause evaluates to true
because only one clause body can be executed. To decide which of the possible execution
paths in case of a nondeterministic behavior should be carried out one instance of a subclass
of ChoiceStrategy can be registered at the execution factory that makes the decision each
time nondeterministic behavior is identified. The LociL1 package provides a default strategy
FirstChoiceStrategy.
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To execute a fUML model the classes of the Loci package have to be instantiated, initialized
and linked. The following components build-up the execution environment for executing fUML
models [20]:

1. One Locus instance

2. One Executor instance that is linked to the locus using the method setExecutor of
the locus

3. One ExecutionFactory instance on the appropriate conformance level that is linked
to the locus using the method setFactory of the locus

4. For each primitive type Boolean, Integer, String and Unlimited Natural one instance of the
class PrimitiveType has to be created and registered at the execution factory using
the method addBuiltInType

5. One instance per strategy, i.e., instances of ChoiceStrategy, DispatchStrategy
and GetNextEventStrategy, has to be created and register at the execution factory
using the method setStrategy

Execution of an Activity

The execution engine carries out the following procedure to execute a fUML model.

1. Provision of input on activity input parameter nodes. Before the execution of an ac-
tivity is started, the activity input values are provided to the activity execution.

2. Identification of the enabled nodes. In the first step the enabled nodes are identified by
the execution engine. Enabled nodes are initial nodes, activity input parameter nodes and
actions that have no incoming edges.

3. Sending of control tokens to enabled nodes. When the enabled nodes are identified,
control tokens are sent to them.

4. Execution of activity nodes.

a) Check if activity node is ready to be executed. When an activity node receives a
token it is determined if this activity node is ready to be executed. This means that it
is checked if all prerequisites for executing its behavior are fulfilled. More precisely
it is checked if control tokens are available on all incoming control flow edges of
that activity node and if the minimal necessary data tokens are available on the input
pins.

b) Consumption of the tokens. If an activity node is ready to be executed, i.e., the
necessary control and data tokens are available, it consumes these offered tokens.
This means that all tokens are removed from the incoming activity edges and are
added to the activity node.
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c) Execution of the behavior of the activity node. After the consumption of the
tokens, the behavior of the activity node is executed. In case of an action this step
may include that the output of that action is placed on its output pins in form of a
data tokens.

d) Sending of token to subsequent activity nodes. When the behavior of an activity
node has been executed, one control token per outgoing control flow edge is sent
to the target of that control flow edge and in case of an action that has an output,
the data tokens for that output are sent through the outgoing data flow edges of the
corresponding output pins.

e) Check if activity node should fire again. After the execution of an activity node’s
behavior and the sending of tokens it is checked if the executed activity node can be
executed again. To do so the steps a to d are repeated.

f) Execution of subsequent activity nodes. Because after executing an activity node,
tokens are sent to subsequent activity nodes, these subsequent activity nodes may be
ready to be executed too. So the steps a to e are performed for the activity nodes that
received tokens.

5. Provision of output on activity output parameter nodes. When no activity node can be
executed anymore, the execution of the activity is finished and the values on the activity
output parameter nodes are provided.

An important point is that the execution semantics of fUML allows that activity nodes are ex-
ecuted concurrently. This means that tokens can be sent concurrently through outgoing control
flow and data flow edges and that further the check if an activity node is ready to be executed, the
consumption of provided tokens and the execution of its behavior can be seen as one thread. But
the fUML execution model does not specify how to implement parallelism and any sequentially
ordered, partial parallel or totally parallel execution is valid. This thesis considers the execution
as being sequential and does not incorporate a threading model.

The presented procedure used by the execution engine of fUML to execute an activity is vi-
sualized in Figure 3.7 by means of an example. This exemplary activity diagram was already
used in Chapter 2.5 as an example for ambiguities in the UML semantics (see Figure 2.6), so
this is the solution to the question how often action C is executed. What should be noted is
that like stated before it is assumed that the execution engine executes activities sequential, i.e.,
tokens are sent sequentially, actions are carried out sequentially etc. Thus the exemplary activity
diagram is executed in the following steps:

1. The activity diagram consists of three actions called A, B and C and one join node. There
are five control flow edges leading from action A to action C, from action B to action C,
from action A to the join node, from action B to the join node and from the join node to
action C.

2. First of all the enabled activity nodes are indentified. In this example action A and action B
are enabled because they do not have any incoming edges. Because it is considered that
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activity nodes are executed in a sequential order, a control token is sent to the first enabled
action. So assuming that action A is the first enabled action, a control token is sent to
action A.

3. After the reception of the control node, it is checked if action A can be executed. Because a
control node is present and no more prerequisites have to be fulfilled in this case, action A
is executed.

4. After the execution, action A sends control tokens to the outgoing control flow edges. We
assume that first an token is sent to the control flow edge leading to action C. Action C
receives the token and it is checked if the preconditions for executing action C are fulfilled.
Because only one of the three incoming control flow edges provides control tokens, the
preconditions are not fulfilled and action C can’t be executed.

5. Now action A sends a control token to the join node and it is determined if it can be
executed. This is not the case because only one incoming edge provides a token.

6. Action A is done with sending tokens and it can’t be executed again. Because of this a
control token is sent to the second enabled activity node action B.

7. After the reception of the control node, it is tested if all pre-conditions for executing action
B are satisfied. This is the case and so action B is executed.

8. After execution, action B sends control tokens through the outgoing control flow edges.
We assume that first a control token is sent to action C. Action C still can’t be executed
because one control flow edge still doesn’t provide a control token.

9. Now action B sends a control flow token through the second outgoing control flow edge
to the join node.

10. The join node can now be executed because both incoming edges provide control tokens.
It consumes the two tokens and joins them.

11. The join node sends the joined control token to action C.

12. Because the pre-condition for executing action C is now fulfilled, i.e., all incoming control
flow edges provide a control token, action C is executed. Because action C has no outgoing
control or data flow edges, and action C, the join node and action B can’t be executed
again, the activity execution is finished.
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Figure 3.7: Example for the execution of a fUML model
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The execution semantics of fUML is very similar to the Petri Net semantics [25]. UML activity
diagrams can even be translated into petri nets and many transformation algorithms already exist.
For example [11] specifies rules for mapping UML activity diagrams into colored petri nets. A
detailed description of this transformation algorithm is out of scope of this thesis but three rules
are picked out to illustrate that the execution semantics for activity diagrams specified by the
fUML standard conforms to the petri net semantics:

1. Actions are mapped into transitions.

2. Input and output pins are mapped into places.

3. Control flow edges and data flow edges are mapped into arcs.

a) If now two transitions are directly connected by an arc because in the activity dia-
gram the corresponding two actions are directly connected, this arc is replaced by
one place with one incoming and one outgoing arc.

b) If now two places are directly connected by an arc because in the activity diagram
the corresponding output pin and input pin are directly connected, this arc is replaced
by a transition with one incoming and one outgoing arc.

Figure 3.8 depicts two examples for transforming activity diagrams into colored petri nets ac-
cording to the presented rules.

Action A Action B

Action A Action B

Action A Action B
outputA inputB

Action A Action BoutputA inputB

Figure 3.8: Examples for the transformation of activity diagrams into colored petri nets
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CHAPTER 4
Eclipse Plug-In for Executing and

Debugging fUML Models

4.1 Executing fUML Models

Having the possibility to execute the model of a system has significant advantages. By execut-
ing a model its behavior can be explored and therewith the understanding of the system can be
improved. The execution of a model also serves as a means for testing. To test a model by
executing it, the actual output of the execution can be compared with the expected output of the
execution. If it is taken into consideration that in virtually every software project the system that
should be implemented is modeled in the design phase and that these models are then used as
basis for the implementation of the system, it can be concluded that finding and correcting errors
in these models is essential to avoid their incorporation into the software product. The later an
error in a system is detected, the more expensive is its correction. So errors should be corrected
in an early stage and testing a model can be used to achieve this. Therewith the execution of
models is a powerful tool. If we think a step ahead that MDD makes the software development
process more model-centric and that code is generated from models and is used in the final soft-
ware product, it is even more important to have a tool to test models.

Because the Unified Modeling Language is the de facto standard for modeling software sys-
tems, the execution of UML models leads to a “unified” tool for testing models of a software
system. This thesis deals with the execution of UML activity diagrams because one fundamental
principle of UML’s semantics is that every behavior in a system is eventually caused by actions,
i.e., every kind of behavior in UML is expressible as a sequence of actions. The execution se-
mantics defined in the fUML standard was used to implement a prototypical model interpreter
for UML activity diagrams or more precisely for fUML activity diagrams. This prototype of a
model interpreter was implemented as Eclipse plug-in based on the Eclipse Modeling Frame-
work. The architecture of this plug-in as well as the extensions and restrictions of the fUML
metamodel and execution model are described in Chapter 4.3. The model interpreter deals with
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the execution of fUML activity diagrams that model the manipulation of objects and links, i.e.,
the creation and destruction of objects and links between these objects, the assignment of at-
tribute values etc. The supported modeling concepts are also defined and described in detail in
Chapter 4.3.

Procedure to Execute fUML Models

The procedure supported by the implemented model interpreter prototype to execute fUML
activity diagrams consists of six steps whereat step 3, step 5 and step 6 are optional. This
procedure is also depicted in Figure 4.1 in simplified form.

1. Definition of the class diagram. The first step consists of the definition of the class
diagram. As mentioned before the model interpreter supports the execution of activity
diagrams that model the manipulation of objects and links. This means that the executed
activity diagram describes how objects of classes that are defined in a class diagram are
created, destroyed, how links between objects are created and destroyed, how attribute
values of objects are set and unset etc. So at first the class diagram has to be defined.

2. Definition of the activity diagram. Based on the defined class diagram the activity di-
agram is defined in the second step. This activity diagram describes the manipulation of
objects and links using the supported primitive fUML actions like create object action,
destroy object action, create link action, etc.

3. Definition of the expected output. In the third step the expected output of the execution
of the activity diagram is defined. This expected output can later be compared with the
actual output if desired. This step is optional. The model created in this step describes
which objects exist, what values are assigned to their attributes and which links exist be-
tween the objects. But the diagram defined in this step is not an object diagram as defined
by UML. It is a semantic model consisting of concepts that are used by the execution
engine to define the runtime instances.

4. Execution of the activity diagram. The execution of the activity constitutes step 4. In
this step the execution engine executes the behavior defined in the activity diagram.

5. Storage of the activity output. If the activity produces any output this output can be
saved in step 5. Because not every activity produces an output also this step is optional.

6. Comparison of the actual and expected output. As the last step the possibly saved
output of the executed activity can be optionally compared with the expected output that
was defined in step 3 or it can be manually reviewed. If the actual output does not conform
to the expected output, i.e., a deviation is discovered, the source of this deviation has to
be determined. Three sources are thinkable. The first source is the class diagram, where
for instance an association could be missing. The executed activity diagram is the second
possible source. As an example control flow edges for regulating the control flow could be
missing. Finally the expected output is the third thinkable source of a deviation because
the behavior modeled in the activity diagram could be not completely thought through or
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understood. Of course also a combination of these three sources is possible. If the source
of the deviation between actual and expected output is identified it has to be corrected.
This can include the correction of each of the three possible sources, i.e., the correction
of the class diagram, the activity diagram and the diagram of the expected output, and the
procedure starts anew.

Class1
attribute1 : String
attribute2 : String

1 *

1

*

Class3
attribute1 : String

Class2
attribute1 : String
attribute2 : String

1. Class Diagram

Action2

Action3

Action1

...

...

Activity

2. Activity Diagram

4. Activity Execution

5. Actual Output

3. Expected Output 6. Comparison of Output

.objectdiagramsemantics

.objectdiagramsemantics

.classdiagram .activity

Figure 4.1: Procedure for executing activity diagrams implemented by the model interpreter
prototype
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Implementation of the Procedure as Eclipse Plug-In

The introduced procedure to execute fUML activity diagrams was implemented as an Eclipse
plug-in that is based on EMF. Every step of the procedure is revisited to present the functionality
and user interface of this plug-in. An example is used for a more detailed illustration.

1. Definition of the class diagram. For defining the class diagram the plug-in provides an
editor. Class diagrams have the extension .classdiagram. First a wizard can be used to
create a new instance of a class diagram. The model object, i.e., the root element of the
model, is always a package. Then a tree-based editor can be used to define primitive types,
classes and their properties as well as associations. These are the only model concepts for
class diagrams that are supported by the interpreter. Figure 4.2 shows an example of a
class diagram. The exemplary class diagram consists of a primitive type called String
and two classes called Student and Lecture. An association StudentLecture
exists between these two classes. The class Student has a property called Name of
the type String and the class Lecture owns an attribute called Title of the type
String. This class diagram is also depicted in Figure 4.3 in concrete syntax.

Figure 4.2: Editor for defining class diagrams
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Student

Name : String

Lecture

Title : String

Figure 4.3: Concrete syntax of exemplary class diagram for illustrationg the editor for class
diagrams

2. Definition of the activity diagram. To create an instance of an activity diagram again
a wizard is provided that enables the instantiation of an activity diagram. The model
object is an activity. A tree-based editor can then be used to add actions, control nodes,
object nodes and edges to the activity. Not all kinds of actions and control nodes are
supported by the plug-in. A detailed description of the supported modeling concepts is
provided in Chapter 4.3. Activity diagrams have the extension .activity. Figure 4.4 shows
an exemplary activity diagram. This activity starts with an initial node, then the control
flow leads to a create object action where an instance of the class Student is created.
This created instance is then provided as an output parameter. The concrete syntax of this
activity diagram is depicted in Figure 4.5.

Figure 4.4: Editor for defining activity diagrams
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<<Activity>>
CreateStudentActivity

<<Create Object Action>> <<Activity Parameter Node>>

<<Parameter>>
OutputParameter

<<Create Object Action>>
CreateStudent

ct ty a a ete ode
ActivityOutput : Student

Created
Student

Figure 4.5: Concrete syntax of exemplary activity diagram for illustrating the editor for activity
diagrams

3. Definition of the expected output. To define the expected output of an activity again a
wizard is provided that can be used to instantiate a semantic object diagram. The model
object is a semantic package and this package can include objects and links that can have
feature values. The content of the semantic package can again be specified using a tree-
based editor. Semantic object diagrams have the extension .objectdiagramsemantics. Fig-
ure 4.6 illustrates the expected output of the activity diagram depicted in Figure 4.4. Ex-
pected is an object of the type Student. Because this is a semantic diagram, it is not
included in the UML standard but only in the fUML standard which does not define any
concrete syntax, so there is no concrete syntax for a semantic object diagram.

Figure 4.6: Editor for defining semantic object diagrams
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4. Execution of the activity diagram. For activity diagrams, i.e., files with the extension
.activity, an action bar is available that provides the functionalities of executing and de-
bugging activities. This action bar is visible if an activity diagram is opened. An example
is displayed in Figure 4.7. The Run action can be used to execute an activity, whereas the
Debug action can be used to debug an activity.

Figure 4.7: Run action and debug action available for activity diagrams

5. Storage of the activity output. After executing the activity the user is asked if the created
output - if any - should be saved and where. The saved activity output of the activity shown
in Figure 4.4 is depicted in Figure 4.8. As expected an object of the class Student was
created.
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Figure 4.8: Saved activity output

6. Comparison of the actual and expected output. If now the expected output depicted in
Figure 4.6 of step 3 and the actual output depicted in Figure 4.8 of step 5 are compared, it
can be seen that they are identical. Therewith the test of the activity diagram depicted in
Figure 4.4 of step 2 was positive, i.e., the activity diagram is correct. The comparison can
also be done automated using EMF Compare (see Figure 4.9).

Figure 4.9: Comparison of expected and actual output of activity execution using EMF Compare
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4.2 Debugging fUML Models

Chapter 4.1 pointed out that executing models is a means for better understanding models and
their underlying systems and that the execution can serve as a tool for testing models by compar-
ing the expected and the actual output of the execution. Debugging models can lead to an even
better understanding and a more thorough testing of models. By debugging a model step-by-step
the execution can be observed in detail.

Because of these advantages the implemented model interpreter prototype also provides the
functionality of debugging fUML activity diagrams. This functionality was already mentioned
in Chapter 4.1. The action bar attached to the editor for activity diagrams provides the debug
action which starts the debugging of the opened activity diagram (see Figure 4.7). For the de-
bugging an extra perspective called activity debug perspective is provided. Much like the debug
perspective provided by Eclipse for the debugging of Java programs, also the activity debug
perspective opens up automatically when the debug action for an activity diagram is executed.
The activity debug perspective also provides similar functionality as the debug perspective for
programs. It consists of four views:

1. Activity Debug View. The activity debug view is the main view of the activity debug
perspective. It displays the activity diagram which is currently debugged and shows the
current status of the debugging process by highlighting the next activity node to be ex-
ecuted. I.e., after the debugging is started the execution of the activity is initialized and
paused before the first activity node is executed. This activity node is then highlighted.
This view provides four actions which can then be used to control the further debugging
process. The functionality of these control mechanisms also resembles those of the de-
bugging functionality for programs:

a) Forward Action. The execution of this action causes that the next activity node, i.e.,
the activity node that is highlighted in the activity debug view, is executed. After the
execution of this activity node the execution of the activity is again paused and the
next activity node which is to be executed next is highlighted in the activity debug
view. Thus this action can be used to execute the activity diagram stepwise, i.e.,
activity node by activity node.

b) Resume Action. The resume action causes that the activity is carried out until either
the end of the activity is reached or an activity node is reached for which a breakpoint
was set.

c) Breakpoints. As indicated, the plug-in provides the possibility to set and unset
breakpoints for activity nodes. Together with the resume action, breakpoints sim-
plify the debugging of an activity. If the resume action is triggered - and breakpoints
are set - the execution of the activity is resumed until an activity node is reached for
which a breakpoint was set. This means that the execution pauses just before the
execution of this activity node with the set breakpoint.

d) Stop Action. This action stops the debugging of the activity, i.e., it cancels the
execution of the activity.
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2. Runtime Objects View. This view shows which objects are present during the debugging
of the activity, i.e., it displays the runtime objects, the value set for their attributes and
the existing links between these objects. This view is refreshed after each execution of an
activity node so that the direct effect of every single activity node is instantly presented to
the user. The runtime objects are displayed in the same way as they would be displayed
by the editor for semantic object diagrams.

3. Trace View. The trace view shows which activity nodes were already executed and the
chronology of their execution. Therewith each activity node appears as often in the trace
view as it has been executed until then. The trace view is also refreshed after each exe-
cution of an activity node, i.e., each executed activity node is instantly added to the trace.
The activity nodes are displayed in the trace view in the same way as they are in the
activity editor.

4. Activity Editor. The activity debug perspective also includes the activity editor that dis-
plays the activity diagram that is debugged.

If the debugging of the activity finished, i.e., the activity was completely executed and not can-
celled using the stop action, and an output was generated, this output can be saved.

To visualize the debugging functionality of the plug-in and its user interface in more detail,
the exemplary activity diagram depicted in Figure 4.10 is used. Here an instance of the class
Student is created and the String value Tanja is assigned to the attribute Name. Further
two instances of the class Lecture are created. For one the String value Object-Oriented
Modeling (OOM) is assigned to the Title attribute, for the other the String value Model
Engineering (ME) is assigned to the Title attribute. Also two links are created, namely
between the object of the type Student and the two objects of the type Lecture.

Figure 4.11 shows the activity debug perspective for the debugging of this activity diagram.
In the upper area of this perspective the activity editor is located and in the lower region the
three views are situated whereat the activity debug view is positioned on the left-hand side and
the runtime objects view and the trace view are positioned beneath each other on the right-hand
side. These four views are now presented in more detail with the help of the introduced example.

Activity Editor. The activity editor displays the debugged activity.

Activity Debug View. The activity debug view shows that the execution of the activity is paused
at the create link action that creates the link between the object of the type Student and the
object of the type Lecture which has the String value Object-Oriented Modeling
assigned to its Title attribute. This is indicated by the green background of this action. This
means that this create link action was not executed yet but will be executed next after the exe-
cution of the activity is resumed using the resume action or the forward action. This create link
action is also an example for an activity node for which a breakpoint is set. That a breakpoint
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is set is denoted by a read point (“breakpoint”) situated on the upper left side of the icon of the
activity node.

Trace View. The trace view visualizes that seven activity nodes have been already executed
in the displayed chronology:

1. Instantiation of an object of the type Student (create object action “CreateStudent”)

2. Specification of the String value Tanja (value specification action “SpecifyName”)

3. Assignment of the specified String value Tanja to the attribute Name of the Student
object (add structural feature value action “AddStudentName”)

4. Provision of the Student object for the two create link actions (fork node “ForkN-
odeStudent”)

5. Instantiation of an object of the type Lecture (create object action “CreateLecture-
OOM”)

6. Specification of the String value Object-Oriented Modeling (value specifica-
tion action “SpecifyTitleOOM”)

7. Assignment of the specified String value Object-Oriented Modeling to the
attribute Title of the Lecture object (add structural feature value action “AddLec-
tureTitleOOM”)

Runtime Objects View. Because of the already executed actions the runtime instances are
the Student object with the String value Tanja assigned to the attribute Name and the
Lecture object with the String value Object-Oriented Modeling assigned to the
attribute Title. These runtime instances are displayed in the runtime objects view.
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Figure 4.10: Exemplary activity diagram to illustrate the debugging functionality of the model
interpreter prototype

Figure 4.11: Debug perspective of the model interpreter prototype
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4.3 Architecture of the Plug-In

The functionality and the user interface of the implemented prototypical model interpreter were
presented in Chapter 4.1 and Chapter 4.2. This chapter is concerned with the architecture of this
plug-in and with the restrictions as well as extensions of the fUML metamodel and the fUML
execution model.

Architecture

The plug-in was built using the Eclipse Java framework and code generation facility EMF. The
implementation encompassed the following three steps:

1. Ecore model. OMG provides the fUML metamodel as CMOF (Complete Meta Object
Facility) model, i.e., the fUML metamodel is defined using the CMOF meta-metamodel.
With Eclipse this CMOF model was converted into an Ecore model.

2. Model code. The Ecore model of fUML was then used to generate the model code which
contains the program logic of the model interpreter. The methods of the semantics classes
were implemented like defined in the formal specification of fUML.

3. Edit code and editor code. The next step was then to generate the edit and editor code
of the Ecore model of fUML in order to build the editors for creating fUML models, i.e.,
the editors for class diagrams, activity diagrams and semantic object diagrams. The edit
code and the editor code were then adapted to restrict the supported modeling concepts
and to adjust the user interface (for example icons were defined for the different modeling
concepts).

The architecture of the plug-in is also depicted in Figure 4.12. The component fUML.editor con-
stitutes the editors as well as the wizards provided to define fUML models. It uses the fUML.edit
component that contains the item provider classes. This component uses the component called
fUML which contains the model code.

<<component>>

fUML

<<component>>

fUML.edit

<<component>>

fUML.editor
<<use>> <<use>>

Figure 4.12: Architecture of the plug-in
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Conformance Statement

The fUML standard suggests that the conformance of an execution tool to the fUML specifica-
tion is summarized in a so-called conformance statement. The items that should be concluded
in such a conformance statement are also specified by the standard.

This is the conformance statement of the implemented model interpreter prototype:

Conformance Level. All the modeling concepts supported by the model interpreter prototype
are situated on the compliance level L1 or on the compliance level L2. Because of this an ex-
ecution factory of the level L2, i.e., an instance of ExecutionFactoryL2, is used. But not
all elements of these compliance levels are supported. The supported modeling concepts are
described below. If a model that includes elements that are not supported is provided as input to
the execution engine a runtime error occurs.

Model Library. The fUML standard contains a model library that defines primitive behav-
iors like functions for Integer values that can be used in a fUML model. The implementation of
this model library is not mandatory. No elements of the fUML model library are supported by
the implemented prototype.

Abstract Syntax Mapping. The models created by using the provided editors are saved in
the XMI format which is the input format supported by the model interpreter prototype. The
provided input model is loaded into an in-memory representation consisting of instances of the
Java classes generated from the metamodel of fUML.

Semantic Value Mapping. The model interpreter prototype does not allow the provision of
input values during the execution of an activity. All necessary values have to be provided within
the model. Values are internally represented by instances of the corresponding Java classes gen-
erated from the metamodel of fUML.

Execution Environment Mapping. The locus concept is directly implemented as Java class
generated from the metamodel of fUML:

• The execution of an activity takes place at a single locus, so the execution environment
includes only one instance of the class Locus.

• The execution environment and therewith its locus is instantiated for each activity execu-
tion. Because of this created extensional values are not persisted.

• No objects are pre-instantiated at the locus.

Semantic Conformance. The Executor class is strictly implemented according to the fUML
formal specification. However, the plug-in only supports the synchronous execution of an activ-
ity by using the execute method of the executor.
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Semantic Constraints. The fUML standard does not restrict the semantics of time, the se-
mantics of concurrency and the semantics of inter-object communication mechanisms. These
semantic areas are constrained by the model interpreter prototype as follows:

• Semantics of time. The model interpreter prototype does not incorporate an explicit time
model.

• Semantics of concurrency. The prototype does not incorporate a threading model. The
actions of an activity are executed sequentially.

• Semantics of inter-object communication mechanisms. Ordinary Java operation calls
within a single Java Virtual Machine are used by the model interpreter prototype as inter-
object communications mechanism.

Semantic Variation. As described in Chapter 3.3, the fUML execution engine uses semantic
strategy classes in order to deal with semantic variation points as well as with nondeterministic
behavior. The implemented interpreter uses the default semantic strategy classes defined in the
fUML standard.

Supported Modeling Concepts

Not all modeling concepts that are provided by fUML are also supported by the built model in-
terpreter prototype. The interpreter was intended to execute and debug fUML activity diagrams
that model the manipulation of objects and links, i.e., the creation and destruction of objects
and links between these objects, the assignment of attribute values etc. Because of this only
modeling concepts that are relevant for this kind of models are supported by the plug-in. The
editor code was adjusted according to these restrictions so that the user can only add the selected
modeling concepts to a diagram. But also extensions had to be made in order to implement
the prototypical model interpreter. Following the supported modeling concepts of the different
diagram types are presented.

Class Diagram

The Figures 4.13, 4.14 and 4.15 depict excerpts of the fUML metamodel concerning class dia-
grams that include the supported modeling concepts and their most important attributes.

The model element, i.e., the root element of a class diagram, is always an instance of the meta-
class Package. As depicted in Figure 4.13 the following three modeling concepts can be added
to that package: Class, Association, PrimitiveType. These “packageable” elements
are subclasses of NamedElement and Element and therewith have an attribute called name
and can possess any number of instances of the metaclass Comment that has an attribute called
body to define a comment for elements.
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Figure 4.14 shows the relationship between the modeling concepts Class, Property and
Association. A class can have an arbitrary number of properties, i.e., instances of the meta-
class Property. The metaclass Property is a subclass of the metaclasses NamedElement
and TypedElement. Because of this a property owns an attribute called name and it can ref-
erence an instance of the metaclass Type that denotes the type of the property. Because also the
metaclass MultiplicityElement is a superclass of Property, Integer literals or Unlim-
ited Natural literals can be used to define the lower and upper bound of the multiplicity interval
of a property as depicted in Figure 4.15.

Instances of the metaclass Association can be used to model associations between classes.
This association object must own one property for each class participating in the association
and references these so-called member ends as well as the classifiers that are used as types of
these ends. In case of a binary association where both association ends are navigable, the two
properties that represent the association ends reference each other.

Element Comment

+ body : String

+ owningElement
0..1

+ ownedComment

*
+ annotatedElement
*

+ comment
*

+ owningPackage + packagedElement

NamedElement

+ name : String [0..1]

Package PackageableElement
+ owningPackage

0..1

+ packagedElement

*

Type

Classifier

BehavioredClassifier Association DataType

Class PrimitiveType

Figure 4.13: Class diagram elements supported by the plug-in - Packageable elements [20]
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Figure 4.14: Class diagram elements supported by the plug-in - Classes, properties and associ-
ations [20]
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Figure 4.15: Class diagram elements supported by the plug-in - Multiplicity elements [20]
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Semantic Object Diagram

The abstract syntax of the modeling concepts for semantic object diagrams supported by the
implemented plug-in is depicted in the Figures 4.16, 4.17 and 4.18 in form of excerpts of the
fUML metamodel.

What should be considered is that this object diagram is not the object diagram known from
UML, but a semantic model whose concepts are used by the execution engine to describe the run-
time instances during executing an activity. This is also the reason why there is no container ele-
ment included in the metamodel that could be used as model element for a diagram. Because of
this the metamodel was extended by the metaclasses Package and PackageableElement
whereat the existing metaclasses Object and Link are subclasses of the abstract metaclass
PackageableElement. This extension is depicted in Figure 4.16.

Figure 4.17 shows the metamodel excerpt that deals with the metaclasses Object and Link.
Objects are instances of classes and because of this they maintain references to these classes.
Similarly links are the instances of associations and therewith reference these associations. The
classes and associations are defined in the class diagram which was described above. Refer-
ences to objects, i.e., references to instances of the metaclass Object, can be modeled using
the modeling concept Reference. Instances of the metaclass FeatureValue represent in-
stances of the structural features, i.e., the properties of classes, defined in the class diagram.
Depending on the defined multiplicity of a property, a corresponding feature value has a cer-
tain number of values. Figure 4.18 shows the subclasses of the abstract metaclass Value,
namely the metaclasses StructuredValue whose subclasses were already described and
PrimitiveValue. An instance of the metaclass PrimitiveValue is the instance of a
primitive type defined in the class diagram and therefore references this primitive type. Con-
crete subclasses of the metaclass PrimitiveValue are BooleanValue, IntegerValue,
StringValue and UnlimitedNaturalValue.

f t V l l
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*
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*
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Figure 4.16: Semantic object diagram elements supported by the plug-in - Packageable elements
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Figure 4.17: Semantic object diagram elements supported by the plug-in - Objects and links [20]
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Figure 4.18: Semantic object diagram elements supported by the plug-in - Values [20]
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Activity Diagram

An excerpt of the metamodel of the activity diagram is depicted in Figure 2.2 and was already
explained in Chapter 2.3. Two restrictions were introduced in fUML regarding the presented
elements:

• The metaclass Pin is abstract in fUML

• The relationship between the metaclasses ActivityParameterNode and Parameter
is a 1:1 relationship in fUML instead of a 1:n relationship.

All modeling concepts depicted in Figure 2.2 are supported by the model interpreter prototype
except of the control node DecisionNode. Worth mentioning is also the fact that each of
these modeling concepts is a direct or indirect subclass of the metaclass NamedElement and
therewith has an attribute name. In addition, ObjectNode is a subclass of TypedElement
and instances therewith maintain references to their type.

The implemented model interpreter prototype further supports actions that are concerned with
the manipulation of objects, their structural features, i.e., attributes, and links. These supported
actions are now presented in more detail by presenting the relevant parts of the fUML meta-
model and by summarizing the preconditions and postconditions of the actions as described in
the fUML formal specification [20] and supported by the model interpreter prototype.

The metamodel excerpt of fUML concerned with the supported object actions is depicted in
Figure 4.19. Supported are the actions CreateObjectAction, DestroyObjectAction
and ValueSpecificationAction.

Create Object Action

Precondition The classifier which should be instantiated must be specified. This classifier has
to be a class.

Postcondition An object with the given classifier as its type has been created and a reference to
the object has been placed on the output pin of the action.

Destroy Object Action

Precondition A reference to the object which should be destroyed has to be provided at the
input pin of the action.

Postcondition The referent object has been destroyed.
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Value Specification Action

Precondition The value specification which should be evaluated must be provided.

Postcondition The value specification has been evaluated and the result has been placed on the
output pin of the action.

The abstract syntax of the structural feature actions supported by the model interpreter proto-
type is depicted in Figure 4.20. The actions ReadStructuralFeatureAction, Clear-
StructuralFeatureAction, AddStructuralFeatureValueAction and Remove-
StructuralFeatureValueAction are supported.

Read Structural Feature Action

Precondition The structural feature which should be read has to be specified. Furthermore the
object whose structural feature should be read has to be provided at the input pin of the
action.

Postcondition The values of the specified structural feature of the given object have been re-
trieved and placed on the result output pin of the action.

Clear Structural Feature Action

Precondition The structural feature which should be cleared has to be specified and the object
whose structural feature should be cleared must be provided at the input pin of the action.

Postcondition All values of the specified structural feature of the provided object have been
cleared and the so modified object has been placed on the result output pin of the action.

Add Structural Feature Value Action

Precondition The structural feature for that a new value should be added has to be specified and
the value which should be added has to be provided at the value input pin of the action.
Furthermore the object for whose structural feature a value should be added has to be
provided at the object input pin of the action.

Postcondition The provided new value has been added to the specified structural feature of the
given object and the so modified object is provided at the result output pin of the action.
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Remove Structural Feature Value Action

Precondition The structural feature for that a value should be removed has to be specified and
the value which should be removed has to be provided at the value input pin of the action.
In addition the object for whose structural feature a value should be removed has to be
provided at the object input pin of the action.

Postcondition The provided value of the specified structural feature of the given object has
been removed and the so modified object is provided at the result output pin of the action.

Figure 4.21 depicts the fUML metamodel excerpts that deal with the supported link actions
namely ReadLinkAction, CreateLinkAction, DestroyLinkAction and Clear-
AssociationAction.

Read Link Action

Precondition The data necessary to identify the link which should be read has to be provided:

• Data that identifies the link ends

• All end objects of the link except of the participating object that should be read

Postcondition The objects which are participating in the association and are not provided at the
inputValue input pin have been placed on the result output pin of the action.

Create Link Action

Precondition The data necessary to specify the link which should be created has to be provided:

• Data that identifies the link

• All end objects of the link

Postcondition The specified link has been created.

Destroy Link Action

Precondition The data necessary to specify the link which should be destroyed has to be pro-
vided:

• Data that identifies the link ends

• All end objects of the link

Postcondition The specified link has been destroyed.
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Clear Association Action

Precondition The object for which links should be destroyed has to be provided at the object
input pin of the action. Also the association whose link should be destroyed if the provided
object participates must be specified.

Postcondition All links of the specified association in which the provided object participates
have been destroyed.

One additional action is supported by the prototypical interpreter called OCLAction. The made
extensions of the fUML metamodel concerning the abstract syntax are depicted in Figure 4.22.
The intension of the introduction of this action was to support the formulation of OCL queries
that can be used to select objects with special properties. Also the semantic execution model
had to be extended by a semantic activation visitor class called OCLActionActivation that
implements the semantics of this new action.

OCL Action

Precondition The OCL query which should be evaluated has to be specified and the objects on
which this query should be evaluated have to be provided at the input pin of the action.

Postcondition The query has been evaluated and the objects which conform to the query have
been provided at the result output pin of the action.
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Figure 4.19: Activity diagram elements supported by the plug-in - Object actions [20]
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Figure 4.20: Activity diagram elements supported by the plug-in - Structural feature actions [20]
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Figure 4.21: Activity diagram elements supported by the plug-in - Link actions [20]
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Figure 4.22: Activity diagram elements supported by the plug-in - OCL action

4.4 Possible Extensions of the Plug-In

The implemented model interpreter has to be considered as prototype because lots of additional
functionalities would be necessary to provide a tool that supports an efficient and easy-to-use
way to execute fUML models. This chapter presents ideas how the prototype could be extended
to achieve this.

Extension of the supported modeling concepts

The implemented prototype only supports the execution of activity diagrams that model the
manipulation of objects, their attribute values and links between these objects. So it supports
only very few modeling concepts. The expansion of these modeling concepts is the most obvi-
ous possible extension of the model interpreter.

The modeling concepts could in fact be extended to support all UML modeling concepts of
activity diagrams because as described in Chapter 3.1 and depicted in Figure 3.1, fUML is a
computationally complete language for executing models and higher-level UML concepts can
be translated into fUML.

Incorporation of a thread model

As described in Chapter 3.3, the prototype does not incorporate a threading model. The models
are executed sequentially. This way of execution may not be the intended when modeling paral-
lel execution paths using for instance fork nodes. Because of this the incorporation of a thread
model would be a reasonable extension of the model interpreter.
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Graphical editors

The implemented prototype only provides tree-based editors to define class diagrams, activ-
ity diagrams and semantic object diagrams. Graphical editors would provide a more convenient
way to specify these models.

The Eclipse Graphical Modeling Project1 (GMP) which is based on the Eclipse Modeling Frame-
work could be used to implement graphical editors that enable the definition of models consisting
of the supported UML or fUML modeling concepts in a graphical way.

Another way would be to use existing UML graphical editors of Eclipse like UML2 Tools which
is part of the Eclipse Model Development Tools MDT Project2. The problem arising from the
use of such an existing editor is that the available modeling concepts can’t be restricted. I.e.,
the models would have to be tested for contained elements that are not supported by the model
interpreter before the model can be executed.

Also existing modeling platforms like the Enterprise Architect3 could serve as sources for exe-
cutable UML models. But again the restriction of the supported modeling concepts for execution
is an issue.

Debug visualization

Like the editor for creating activity diagrams provided by the prototype, also the view that
depicts the progress of the debugging process displays activities using a tree view. The visu-
alization of the debug progress could be much improved by displaying the activity diagram in
concrete syntax, i.e., in graphical form.

Besides highlighting the currently executed activity node, also the visualization of the token
flow would provide important information to the user, like which action could be executed in the
next step, which action is waiting for a token to arrive etc.

Support of supplementary diagram types

The built model interpreter prototype enables the execution of activity diagrams according to
the execution semantics defined in the fUML standard. Thereby the activity diagrams are based
on class diagrams. But other UML diagram types could also be used as supplements. State
machines and sequence diagrams constitute particular useful supplements.

1http://www.eclipse.org/modeling/gmp
2http://www.eclipse.org/modeling/mdt
3http://www.sparxsystems.com/products/ea/index.html
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State machines could be used to define the lifecycle of objects of the classes which are defined
in the class diagram. Therewith the states of objects and the possible state transitions could be
defined and more important the feasible actions in each state could be specified. I.e., the state
machine could be used to restrict the executable actions in each state of an object. During the
execution of an activity diagram the state machine of the concerned object then has to be taken
into consideration to determine if an action can be executed or not.

Sequence diagrams would also be a useful supplement for defining executable models. A se-
quence diagram could be used to describe the desired course of action, i.e., the execution flow,
and it could therefore be used to define test cases. Therewith the expected execution flow could
be defined beforehand the execution of the activity diagram and the actual execution flow could
then be compared with the defined expected execution flow. Tests to ensure that certain execu-
tion flows do not appear could be accomplished in the same way.

The debugging functionality of the implemented model interpreter prototype provides a so-
called trace view that presents the already executed actions in the chronology of their execu-
tion. The executed actions are simply displayed using a tree view. This trace could also be
visualized more conveniently in a sequence diagram. The provision of a trace in the form of a
sequence diagram would also be useful for the execution of activity diagrams and not only for
the debugging.

Fault-tolerant execution of models

The implemented prototype does not explicitly cope with errors in models. The check for vi-
olations of OCL constraints defined in the fUML metamodel, i.e., syntactical errors, has to be
manually triggered by invoking the “validate” functionality provided by the Eclipse EMF Vali-
dation Framework. Other restrictions defined by UML or fUML which can’t be expressed using
OCL constraints are not addresses at all. The same is true for semantical errors. For instance the
create object action has to have a result output pin where a reference to the instantiated object is
placed. The validation framework would recognize the absence of such an output pin. But if this
output pin has no outgoing object flow edge this probably constitutes a semantic error that can
lead to an execution flow that was not intended and that is not handled by the model interpreter,
although this error could have been detected very easily.

The following three extensions could lead to a more fault-tolerant model interpreter:

• Automatic model validation. The validation of the model to detect violations of OCL
constraint defined in the metamodel could be triggered automatically before the execution
of a model starts. Therewith execution errors caused by constraint violations could be
eliminated.

• Detection of potential errors. Potential errors in the models like the described error of
missing edges could be detected and warnings could be presented to the user before the
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execution of this model. Therewith potential semantic errors could be prevented.

• Handling of incomplete models. A fault-tolerant model interpreter should also be able
to execute incomplete models by enabling the user to provide the necessary but missing
information like a missing guard condition during the model execution.

Backwards debugging

The debugging functionality of the model interpreter could be significant improved by providing
the functionality of backwards debugging. This simply means that if the execution of an activity
is paused at some point the user can not only move one step forward in the execution but also
backwards. This simplifies the debugging process especially for large and complex models. De-
bugging is usually done by setting breakpoints at points where errors are suspected. But these
points can only be guessed and therewith this process is time-consuming and error-prone. With
backwards debugging it is possible to execute the model until an unintended behavior is detected
and then to go backwards in order to determine where the error originated.

Analysis functionality

The incorporation of analysis functionality into the model interpreter prototype would also con-
stitute a valuable extension. The detection of deadlocks or the identification of unreachable
activity nodes are examples of reasonable checks that could be carried out for activity diagrams.
The analysis support for Petri Nets could serve as a role model for this functionality. [1] is the
first paper that is concerned with the analysis of fUML models. This approach suggests the
formalization of fUML models into the process algebraic specification language CSP in order to
detect deadlocks in these models.

Code generation

The provision of code generation functionality would complete the tool chain. With this exten-
sion platform-specific code could be generated out of the defined models that have been tested by
executing or debugging them. To achieve the generation of platform-specific code, the platform-
independent fUML models have to be enriched with platform-specific information and therefore
have to be transformed into platform-specific models first. Out of these platform-specific models
the code could then be generated.
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CHAPTER 5
Discussion of the fUML Standard

The reason for the development of the fUML standard was the need for more precise models
that could be executed to test and validate them. UML itself is not capable of meeting these
demands because its action semantics is only informally described in English prose and is there-
with neither precise nor complete. But with the emergence of the MDA approach in 2003 the
need for precise models that could be run in order to validate them before they are deployed to
the implementation platform gained in importance. In 2005 this need lead to the OMG’s request
for proposal for the Semantics of a Foundational Subset for Executable UML Models. In 2008
the resulting specification of the foundational UML (fUML) was adopted and in February 2011
the version 1.0 was released. Therewith a subset of UML got a precise standardized execution
semantics. Of course, tools to execute models exist for years but each tool defines its own execu-
tion semantics and often uses its own action languages. Therewith the tools are not interoperable
and models cannot be interchanged. By standardizing the execution semantics of UML models,
this problem of interoperability of tools might become obsolete [27, 28].

By implementing a prototype for a model interpreter based on the fUML standard, that can be
used to execute and debug UML activity diagrams, insight into the fUML standard was gained.
This chapter is concerned with the experiences regarding fUML gained during working with
this standard. Three main points of critique solidified throughout the development of the model
interpreter prototype:

1. Executable models have to be too detailed and therewith rapidly exceed a reasonable size
and are difficult to handle because a graphical syntax does not scale.

2. The form of provision of the fUML execution model is not optimal.

3. Model checking of the fUML execution engine is insufficient.
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Executable models have to be too detailed

The problem with executable models in that they have to be described at a very low level of
abstraction, i.e., the models have to be very detailed. In the context of fUML this means that
the executable activity diagrams have to be defined at the lowest level of detail by using the
supported primitive actions. This rapidly leads to very huge models that are by no means easy
to handle. The creation of models on that low level is very time-consuming and error-prone
and therewith not very efficient. Defining models on this detailed level resembles the action of
programming and raises the question if it constitutes just another way of programming, namely
“graphical programming” [27].

This problem can be exemplified using the example of an activity diagram depicted in Fig-
ure 4.10. Of course this is not a huge or unmanageable model but if it is considered that this
activity diagram only creates three objects and links between them, it can be seen that it is fairly
large and that more sophisticated functionality easily leads too very complex models. By oppos-
ing this exemplary activity diagram with the analogous Java code like in Figure 5.1, it can also
be seen that the code is pretty easy to interpret whereas one needs a second glance at the model
to understand the described behavior. This becomes even more apparent if it is considered that
information necessary to understand the model is not displayed in the graphical model itself but
in the properties of the model elements that have to be extra looked-up. Such a property is for
instance the class that should be instantiated by a create object action or the property for that a
value should be added by an add structural feature value action. This information was added in
the graphical notation of the exemplary activity diagram to enable an easier understanding but it
is usually not displayed by modeling tools but hidden in extra dialogs of the user interface.

This problem of the necessity for too detailed models in order to execute them was recognized
by OMG and lead to the request for proposal for Concrete Syntax for a UML Action Language in
2008. The resulting specification of the Action Language for fUML1 (Alf) was adopted in 2010
and is currently in the finalization phase. Alf is a Java-like textual notation for fUML models.
Its execution semantics is specified by mapping the concrete syntax of Alf to the abstract syntax
of fUML. Therewith fUML can be seen as the specification of a virtual machine for executing
behavior that is defined using the Alf action language. The intention of Alf is to enable the spec-
ification of executable behavior of elements that are defined in a UML model that is represented
graphically. An example would be the definition of the behavior executed in an operation of a
classifier by using Alf. But Alf also includes a notation to represent structural modeling, and in
this way a UML model can be entirely represented using Alf [17, 27].

This thesis does not deal with Alf in any way because the Beta 1 version of the specification
was releases at a point of time at which the functionality of the model interpreter prototype was
already determined.

1http://www.omg.org/spec/ALF
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Student student = new Student();
student.setName("Tanja");
Lecture lecture1 = new Lecture();Lecture lecture1 = new Lecture();
lecture1.setTitle("Object-Oriented Modeling");
Lecture lecture2 = new Lecture();
lecture2.setTitle("Model Engineering");

student.getLectures().add(lecture1);
student.getLectures().add(lecture2);

Figure 5.1: Comparison of activity diagram and analogous Java code

The form of provision of the fUML execution model is not optimal

The execution model of fUML specifies the execution semantics of the foundational UML sub-
set in a formal and operational way using Java code. This means that the execution semantics of
all modeling concepts included in the foundational UML subset as well as the fUML execution
engine and environment are specified using Java code.

The execution model of fUML is contained in the formal specification document of the fUML
standard and is organized according to the package structure of fUML. Within a package the
contained classes are alphabetically arranged and the code of each class is provided. What
such a class description looks like is illustrated in Figure 5.2 with the help of the specification of
the semantic class CreateObjectActionActivation which is the activation visitor class
that defines how a create object action has to be executed. What this example should illustrate
is that it is difficult to get an overall picture of how the execution of an activity diagram actual
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works. For a reference guide the organization of the execution model in the formal specification
of fUML is suitable, but to get an understanding of the model execution it is inappropriate.

Another problem that is posed by the form of provision of the execution semantics is that lots
of adoptions of the provided Java code are necessary in order to build a working execution en-
gine for fUML activity diagrams. As described earlier, the fUML execution model for the built
model interpreter prototype was implemented by generating the classes with their methods from
the fUML metamodel provided by OMG and adding the Java code denoted in the formal speci-
fication. But by copying the code the work was not done because the code had to be adopted in
order to even become compiled. For instance one annoying adoption was necessary because in
the specification of the execution model it was assumed that the instance variables of the classes
are declared as public and that therewith an external access to them is possible. This can be
seen in the excerpt of the execution model specification provided in Figure 5.2. But according
to the principle of encapsulation the instance variables of the syntactical classes were declared
as private. Because of this, code that included direct access to instance variables was replaced
by according invocations of getter or setter methods. Another cumbersome problem with the
provided Java code was that during testing the execution engine lots of null pointer exceptions
occurred due to missing variable initialization.

Despite the fact that the completion of the classes of the fUML execution model by copying
the specified Java code of the fUML formal specification seems to be a pretty easy task, a high
effort was necessary to really get a runnable fUML execution engine.

Therewith the form of provision of the execution model of fUML can be seen as suboptimal.
An additional provision of the execution model in form of a runnable Java project would be very
useful and would save efforts.

An open source reference implementation of fUML was built by Model Driven Solutions2 and
could have been used as starting basis for the model interpreter prototype built as part of this the-
sis. But it was decided to implement the prototype based on the standard documents provided by
OMG to experience the whole process of building a conformant tool starting with the provided
metamodel and formal specification of fUML.

2http://fuml.modeldriven.org
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8.6.3.2.5 CreateObjectActionActivation

A create object action activation is an action activation for a create object action.j j

Generalizations
• ActionActivation

Attributes
NoneNone

Associations
None

Operations

[1] doAction ( )

// Create an object with the given classifier (which must be a class) as its type, at the
same locus as the action activation.
// Place a reference to the object on the result pin of the action.

CreateObjectAction action = (CreateObjectAction)(this.node);

Reference reference = new Reference();
reference.referent = this.getExecutionLocus().instantiate((Class_)(action.classifier));

this.putToken(action.result, reference);

Figure 5.2: Exemplary class description of a semantic activation class of the fUML execution
model specification [20, p. 237]

Model checking of the fUML execution engine is insufficient

During testing the model interpreter prototype by executing test models it was discovered that
the executed models are not sufficiently checked by the execution engine. The following list
enumerates detected examples of insufficient model checking:

1. Instantiation of abstract classes. It is possible to instantiate abstract classes by using
the create object action. The constraint that abstract classes can’t be instantiated is neither
defined as OCL constraint in the metamodel, i.e., such a violation in an activity diagram
can’t be discovered by validating the model, nor is it checked by the activation visitor
class CreateObjectActionActivation responsible for the execution of a create
object action or by the class Locus that actually instantiates a class.

2. Adding of feature values to objects for properties that do not belong to the class of
the object. The execution engine allows to add values to an object for a property that does
not belong to the class of the object by using the add structural feature value action. An
example using the class diagram depicted in Figure 4.3 would be to add a value for the
property Name to an object of the type Lecture although this property belongs to the
class Student and not to the class Lecture. Again this violation is neither detected by
validating the model nor by the execution engine.
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3. Addition of an amount of feature values that exceeds the defined multiplicity inter-
val of the property. For every property of a class a multiplicity interval can be defined
to constrain the amount of values for that property that can be added to an object. Unfor-
tunately this multiplicity interval is not checked by the activation visitor class of the add
structural feature value action and so more values can be added than permitted.

This list could be continued by looking at the constraints defined in the UML standard as well as
in the fUML standard and analyzing if they are addresses by the fUML metamodel or execution
model. But generally it can be said that no constraint that is defined in the standard documents
and is not coped by OCL constraints in the metamodel, is checked in any other way. This leads
to situations like described above where the execution engine executes behavior that is not al-
lowed according to the standard or it leads to exceptions during the execution like null pointer
exceptions or class cast exceptions.

This problem constitutes a severe weakness of fUML. To overcome it tool vendors have to
extend the fUML metamodel and/or the fUML execution engine to check for constraint viola-
tions.
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CHAPTER 6
Related Work

The fUML standard is the attempt of OMG to fulfill the need for a complete and precise ex-
ecution semantics of UML. This need became compelling at the latest since the emergence of
the MDA approach. It manifested in numerous proposals of semantic definitions for UML and
approaches for executing models. Industrial as well as academic institutions have put efforts
into the topic of model execution.

Examples for industrial tools supporting the execution of UML models are IBM’s Rational Soft-
ware Architect and the software Enterprise Architect of Sparx Systems. The Rational Software
Architect Simulation Toolkit supports the execution of UML activity models, interaction models
and state machines as well as the model-level debugging [22]. The Enterprise Architect plug-in
called Amuse enables the execution and simulation of state machines [21].

At the moment there are no mature or established tools that allow users to define and execute
UML models as specified in the fUML standard. The reason for this is that the fUML stan-
dard was only recently released in February 2011 and tool vendors will need some time to build
conforming tools. What exists is a reference implementation of fUML implemented by Model
Driven Solutions and also some research was done concerning fUML. The fUML reference im-
plementation as well as the paper [14] are presented in more detail in Chapter 6.1. [14] is highly
related to this thesis at hand because it describes a tool chain for fUML that supports similar
functionality as the model interpreter prototype built in course of this thesis and these two ap-
proaches are directly compared with each other for this reason.

Only few papers exist that deal with the execution of UML 2 activity diagrams. Two of them
are briefly presented in Chapter 6.2 because they provided interesting ideas for this thesis. More
approaches exist that deal with the execution of UML state machines. One prominent example
is Executable UML (xUML). xUML is a subset of UML for which the execution semantics is
precisely specified. Executable models are defined using modeling concepts of class diagrams
as well as of state machines. The behavior of the operations of the defined classes as well as the
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actions of the states in a state machine are specified using a UML Action Language that depends
on the chosen xUML tool [24].

At this point it has to be mentioned that the action semantics of UML and an UML action
language were already an issue in 1998 when a request for proposal concerning this subject was
issued by OMG and lead to an expanded action metamodel in UML 1.5. This action metamodel
had a strong influence on the abstract syntax for actions in UML 2.0 but the action semantics
was neither in UML 1.5 nor in UML 2.0 formally specified and also no action language was
developed until the specification of Alf [28].

Chapter 6.3 presents the Fujaba project and the Kermeta project which are also related to this
thesis. The Fujaba Tool Suite enables the generation of code from UML class diagrams and a
combination of UML activity diagrams and a graph-transformation language. Fujaba also pro-
vides a test environment where a modeled system can be simulated. Kermeta is a metamodeling
language that does not only support the specification of the structure of metamodels but also the
definition of its semantics.

6.1 Work concerning the Execution of fUML Models

fUML Reference Implementation

Model Driven Solutions developed an open source fUML reference implementation in 2008.
This reference implementation is currently in version 0.4.1 which was released in February 2011
and it is conformant to the fUML standard version 1.0 [15].

An UML model in XMI format has to be provided as input to the fUML reference implemen-
tation in order to execute it. The provided model is then executed and after the execution is
finished the execution trace is provided as output [15].

The objective of building this reference implementation was to encourage tool vendors to build
conformant tools by providing them a reference of how to build such a tool. By this means it also
serves as aid for evaluating implementations of tool vendors in respect of conformance with the
fUML standard. Declared objective is also the enhancement of the reference implementation by
proving additional functionality like a debugging functionality and the support of the evaluation
and evolution of the fUML standard itself [15].

Tool Chain for fUML

A research group at the Department of Computer Science of the Babeş-Bolyai University in Ro-
mania developed a tool chain for constructing and testing executable UML models according to
the fUML standard, as well as for generating code from these models [14].
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The tool chain was developed based on the Eclipse Modeling Framework. Especially interesting
is the fact that this research group introduced its own action language for fUML in [13] because
they noticed how hard it is to create executable UML activity diagram due to the necessary low
abstraction level and OMG had only issued an request for proposal for a concrete syntax for an
action language based on fUML at the time at which the tool chain was developed.

The tool chain supports the following three steps of constructing and testing models by pro-
viding appropriate tools [14]:

1. Model creation. In the first step the executable fUML model is created consisting of the
following two components:

a) Class diagram. First a class diagram has to be constructed that defines the structural
aspects of the model. The tool chain designates the usage of the Eclipse UML Class
Diagram Editor that is part of the Eclipse UML2 Tools1.

b) Activity diagram. After the creation of the class diagram the behavior of the oper-
ations of the defined classes has to be specified. As mentioned before, this behavior
is defined using the action language that was developed by the research group. The
syntax of this action language was chosen to resemble the syntax of modern pro-
gramming languages like Java in order to enable an easy usage of this language and
to reduce the effort for learning it. A textual editor for this action language was built
using the Xtext project of Eclipse2. This editor is integrated with the class diagram
editor so that if an operation of a class is selected, this editor can be opened and
used to specify the behavior of this operation. After the specified behavior is saved,
the textual representation of this behavior is automatically converted into an activity
diagram conformal to fUML.

2. Model execution. The second step comprises the execution of the created model, i.e.,
the execution of the behavior specified using the action language. To support this step the
above presented reference implementation of fUML built by Model Driven Solutions was
integrated in the tool chain.

3. Code generation. After testing the created executable model by executing it, code can be
generated. For this step an implementation of the OMG MOF Model to Text Language
MOFM2T3 called Acceleo4 was used. The templates necessary to generate code from the
activity diagrams were implemented by the research group.

1http://www.eclipse.org/modeling/mdt#uml2tools
2http://www.eclipse.org/Xtext
3http://www.omg.org/spec/MOFM2T/Current
4http://www.eclipse.org/modeling/m2t#acceleo
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The presented tool chain and the model interpreter prototype built in the course of this thesis
both have the same objective: To provide a tool that can be used to create and execute UML
models as specified in the new fUML standard. Another similarity is that they are both built on
top of the Eclipse Modeling Framework. But on closer examination of the functionality provided
by the tools it can be seen that they work in different ways. The following list enumerates the
major differences:

• Class diagram editor. The presented tool chain of the Romanian research group suggests
the usage of the graphical Eclipse class diagram editor which is part of the UML2 Tools.
The usage of this editor leads to the problem that the users have to keep in mind which
modeling concepts are supported by fUML and which are not and it is up to them to
use only supported elements. Another downside is that additional constraints included
in the fUML metamodel also can’t be addressed. The model interpreter prototype built
for this thesis overcomes these problems by providing an editor that supports only fUML
modeling concepts. But because this editor is only a tree-based editor and not a graphical
one it is also suboptimal and the provision of an equivalent graphical editor would of
course lead to an increase of usability.

• Activity diagram editor. The extra developed action language for fUML and the corre-
sponding textual editor of the tool chain implemented by Lazăr et al. constitute a main
difference. The built model interpreter prototype does not support any action language but
provides a tree-based editor for defining fUML compliant activity diagrams.

• Execution engine. Lazăr et al. integrated the fUML reference implementation provided
by Model Driven Solutions whereat the execution engine of the built prototype was im-
plemented from scratch based on the fUML metamodel and formal specification.

• Debugging of models. The tool chain described in [14] does not provide a debugging
functionality.

• Code generation. A main component of the tool chain introduced in [14] is built up by
the provided code generation functionality which is not included in the functions of the
built model interpreter prototype.

Table 6.1 summarizes the similarities and differences of the tool chain provided by Lazăr et al.
and the model interpreter prototype built in course of this thesis.
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Criteria Tool Chain by Lazăr et al. Model Interpreter Prototype

Platform Eclipse Modeling Framework Eclipse Modeling Framework
Modeling language fUML fUML
Execution semantics fUML fUML
Execution engine fUML reference implementation

by Model Driven Solutions
implemented based on fUML
metamodel and formal specifica-
tion

Functionality
Creation of models supported supported
Execution of models supported supported
Debugging of models not supported supported
Code generation supported not supported
Editors
Class diagram graphical Eclipse class diagram

editor of UML2 Tools
tree-based editor

Activity diagram textual editor integrated with
class diagram editor

tree-based editor

Action language own action language, automatic
transformation into fUML com-
pliant activity diagram

no action language

Object diagram not supported tree-based editor for specifying
expected output of model execu-
tion, actual output of the execu-
tion is saved in the same format

Table 6.1: Comparison of the tool chain provided by Lazăr et al. and the model interpreter
prototype built in course of this thesis
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6.2 Work concerning the Execution of UML Activity Diagrams

Approaches for the execution of UML activity diagram already existed prior to the development
of fUML. Two approaches which were developed in the UML 2 Semantics Project provided
important inputs to this thesis and are for this reason briefly presented.

UML 2 Semantics Project

The UML 2 Semantics Project started in 2005 and was an international collaboration with the
main objective of developing a mathematically formalized semantics definition for the UML 2
standard. The semantics foundation of this semantics definition developed in this project is
called the System Model. Participants of this project included IBM, Queen’s University, Tech-
nical University of Munich and Technical University of Braunschweig. At the time the project
expired some of the documents constituting the semantics definition were only available as draft
versions and remained unfinished. The working documents can still be found at [29].

The UML 2 Semantics Project also aimed at defining a UML virtual machine for executing
UML models and two different sub-groups dealt with this goal leading to two different solu-
tions. The group at IBM implemented a generic model execution engine for simulating any kind
of models (even non-UML models) and they built a UML simulator for activity diagrams on top
of it. At the same time researchers at the Queen’s University developed an execution and analy-
sis engine for UML activity diagrams based on the System Model. This engine was designed to
be extensible in order to develop a comprehensive UML virtual machine [2].

UML Simulator Based on a Generic Model Execution Engine

The sub-group of the UML 2 Semantics Project at the research lab of IBM Haifa developed
an architecture for implementing a generic model execution engine that can be used to simulate
models. The most interesting aspect of this execution engine is that it is designed to be generic in
order to support the simulation of any kind of behavioral models regardless of the used modeling
language. Like fUML also this approach designates that the behavior of the modeling concepts,
i.e., the execution semantics of the modeling language, is defined using Java code. To achieve
the extensibility to support any modeling language this execution engine provides a standard set
of execution mechanisms that can be re-used for the semantics specification of numerous mod-
eling languages [12].

Observability and controllability are also two important aspects of the generic model execu-
tion engine built by the research lab of IBM Haifa. The execution of an activity is observable by
providing well-defined interfaces for behavioral exploration tools like debuggers. Controllabil-
ity means that the execution of a model is controllable [12].

On top of this architecture of a generic model execution engine a UML simulator was imple-
mented by the research lab in form of an extension to the IBM Rational Software Architect
which is based on the Eclipse software framework. The architecture of this UML simulator is
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depicted in Figure 6.1. The UML simulator supports the execution and debugging of activities
that were defined using the Rational Software Architect and Java is supported as action lan-
guage. For debugging UML activities this UML simulator provides very similar functionality as
the model interpreter prototype built in the course of this thesis: It enables the user to execute
the activity step-by-step and it is also possible to define breakpoints for activity nodes so that the
execution can be carried out until a breakpoint is reached. Also the current state of the execution
is visualized even in the graphical activity diagram. This visualization includes the information
which activity nodes are ready to be executed, which activity edges are passing tokens and which
activity nodes are providing tokens. The user also has the possibility to observe the attribute val-
ues of the existing objects. An interesting functionality of this UML model simulator is that
it enables the user to invoke operations of objects and to create and destroy objects during the
execution of an activity [12].

UML Model Simulator
E t i

Generic model 
execution engine

Extensions:

…
UML State Machines

UML Activities

Rational Software Architect

Eclipse platform

Figure 6.1: Architecture of the UML model simulator built by the research lab at IBM Haifa [12]

Interpreter for UML Activity Diagrams Based on the System Model

Based on the System Model developed in the UML 2 Semantics project an interpreter for UML
actions and activities called ACTi was implemented by a sub-group of the project members. The
architecture of this interpreter was designed to enable its extension in order to allow the execu-
tion of other behavioral formalisms like state machines aiming at developing a comprehensive
UML virtual machine [3].

ACTi is a Java program that executes UML activities and provides analysis capabilities. The
activity that should be executed has to be provided in a textual form called Activity Diagram
Linear Form (ADLF). Besides containing primitive actions the activity can also consist of self-
defined actions whose behavior has to be specified using Java code. Additionally a simplified
form of a class diagram has to be provided as input also in a defined textual representation. Op-
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tional is the provision of a kind of object diagram that describes in a textual way which objects
exist at the beginning of the activity execution [3].

Very interesting is the tracing and analyzing functionality of ACTi. After executing the provided
activity the interpreter provides the trace of the execution that not only includes the chronol-
ogy of the executed activity nodes but also more detailed information like for instance how
tokens were offered and passed. The trace information can also be exported and provided to a
third-party tool for visualization purpose. Furthermore ACTi also carries out analysis during the
execution of an activity and afterwards. Three kinds of analysis are provided by ACTi [3]:

• Path analysis. For this type of analysis the user has to specify information about which
execution paths are desired and which are not. An example is the check for desired nodes
where the user defines which activity nodes should be executed and ACTi checks if all of
these nodes actually were executed.

• Analysis of unused tokens or offers. This analysis enables the detection of deadlocks
by checking if after the execution of an activity is finished tokens remained unused or
unoffered in the activity.

• Sanity checks. During execution so-called sanity checks are carried out that aim at de-
tecting errors in the model. For instance activity edges that lead to an initial node are
detected by the interpreter during the execution of the activity and a warning is presented
to the user.

6.3 Other Related Work

Fujaba Tool Suite

The Fujaba Tool Suite is an open source tool for model-based software engineering and re-
engineering that was developed at the University of Paderborn in 1997. By now the Fujaba Tool
Suite is further developed by research groups at universities all over Germany and other coun-
tries. Besides supporting model-based software engineering and re-engineering, extensions of
the Fujaba Tool Suite exist that provide additional functionality and support features for a variety
of application domains. For example extensions exist for reverse engineering and for validation
and verification of embedded real-time systems [8].

In the Fujaba Tool Suite UML class diagrams, UML activity diagrams and a graph-transformation
language called Story Patterns are used to specify the structural and behavioral aspects of a soft-
ware system. From these specifications the Fujaba Tool Suite generates executable Java code [8].

UML class diagrams are used to describe the structural aspects of a software system. To de-
scribe the behavioral aspects so-called Story Diagrams are used in order to specify the behavior
of the operations of the defined classes. A Story Diagram is a combination of a UML activity
diagram and Story Patterns. A Story Pattern is a graph transformation rule that describes the
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modification of objects in a system. Modeling concepts of UML activity diagrams are used in
a Story Diagram to express the control flow among these graph transformation rules. A Story
Pattern is depicted in a graphical notation that resembles UML object diagrams. The defined
object structure of such a Story pattern constitutes the left-hand side of the graph transformation
rule and the creation and destruction of objects and links in this object structure denotes the
right-hand side [5].

From the class diagram and the Story Diagrams an executable program is generated. The Fujaba
Tool Suite provides a test environment called Dynamic Object Browsing System that can be used
to simulate the execution of this generated program. During the simulation the dynamic behavior
of that program is depicted by means of an object diagram that visualizes the manipulation of the
existing objects in the system. In course of this simulation the user can invoke the operations of
the defined classes whose behavior is defined in a Story Diagram. The user can also instantiate
and destroy objects [9].

The Fujaba Tool Suite provides very similar functionality as the model interpreter prototype
built in course of this thesis. Both can be used to test models that specify how objects are manip-
ulated in a system although the Fujaba Tool Suite only supports a combination of UML activity
diagrams and a graph transformation language instead of pure UML activity diagram to specify
the behavior of the system under development.

Kermeta

Kermeta is like MOF a metamodeling language. Unlike MOF Kermeta does not only enable
the specification of the structure of metamodels but also allows the definition of the dynamic
semantics of a metamodel [16, 23].

Kermeta is compliant with the metamodeling languages EMOF of OMG and Ecore of Eclipse.
Besides supporting the definition of the structure of a metamodel, Kermeta also provides an
action language that can be used to define the operational semantics of a metamodel in its opera-
tions. Kermeta can be used to implement metamodeling languages, action languages, constraint
languages and transformation languages. It incorporates concepts from the metamodeling lan-
guage MOF, the constraint language OCL and the model transformation language QVT. Kermeta
has an imperative syntax, it is object-oriented, model-oriented and aspect-oriented [4].

Kermeta provides an action language for MOF models and it can be seen as an extension of
MOF. This means that one can specify the structural aspects of a metamodel using EMOF and
add the behavioral specification afterwards using Kermeta [4]. This is visualized in Figure 6.2.

The Kermeta development environment is fully integrated with Eclipse and it provides an in-
terpreter and debugger that allows to run a metamodel [23].
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Figure 6.2: Architecture of Kermeta [4]

The model interpreter prototype built for this thesis was implemented using Java. Kermeta
constitutes an alternative technology for implementing a tool that enables the execution and
debugging of UML models according to the fUML standard. With Kermeta the metamodel of
fUML, which is provided by OMG using MOF, can be enhanced by the execution semantics
using Kermeta’s Action Language. This approach doesn’t require the code generation from
the metamodel and the structural as well as the behavioral aspects of fUML can be described
together in the fUML metamodel. [6] proposes an implementation of fUML using Kermeta.
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CHAPTER 7
Summary and Future Work

7.1 Summary

The need for executable models that can be tested and validated by executing them arose with
the emergence of the Model-Driven Development (MDD) paradigm. OMG’s MDD approach
known as the Model Driven Architecture (MDA) suggests the usage of the Unified Modeling
Language (UML) to create platform-independent models. UML is also the de facto standard for
modeling software systems. This thesis pointed out that UML models are not executable per se
because UML has no precise and complete execution semantics. Because of this shortcoming
the OMG released the new foundational UML (fUML) standard in February 2011. This standard
defines the precise execution semantics of a subset of UML 2, the so-called foundational UML
subset. The semantics of every modeling concept included in the foundational UML subset as
well as an execution engine for compliant models is defined by the standard using Java code.

Based on the new fUML standard, a prototypical model interpreter was implemented as main
outcome of this thesis. The aim was to enable the execution and debugging of UML activity
diagrams that model the manipulation of objects and links in a system. So the model interpreter
prototype supports activity diagrams that specify how objects are created and destroyed, how
attribute values of objects are set and unset and how links between objects are created and de-
stroyed. Therewith the supported modeling-concepts of fUML were restricted to object actions,
structural feature actions and link actions.

The model interpreter prototype was built by generating the code from the fUML metamodel
provided by OMG and implementing the methods of the semantic classes according to the ex-
ecution semantics defined in the formal specification of fUML. To accomplish this, the Eclipse
Modeling Framework (EMF) was used because it offers all functionality necessary to generate
code from a metamodel that is defined in a MOF-based format. Based on the implemented
model interpreter, an Eclipse plug-in was developed that provides the user interface for execut-
ing and debugging models. This plug-in provides tree-based editors for defining class diagrams
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that specify the static structure of objects and relationships between them, activity diagrams that
define the manipulation of objects and links and semantic object diagrams that specify the ex-
pected output of the execution of an activity diagram. Activity diagrams can then be executed
and debugged and the actual output can be saved in form of a semantic object diagram that
can then be compared with the defined expected output. The debugging feature of the plug-in
provides functionality that resembles the functionality known from the debugging of code: The
model can be executed stepwise, breakpoints can be set to simplify the debugging process, the
progress of the debugging is displayed as well as the existing runtime objects and a trace that
depicts the chronology of the already executed activity nodes.

This thesis also suggested extensions of the model interpreter prototype and the Eclipse plug-in
in order to provide an enhanced functionality for executing and debugging models in order to
test and validate them. The provision of graphical editors, the visualization of the debugging
progress in graphically displayed activity diagrams and analysis functionality are three exam-
ples of possible extensions.

By implementing the model interpreter prototype an insight was gained into the fUML stan-
dard and three main issues were experienced. The first of these issues is the fact that executable
models have to be very detailed by using only primitive UML actions what leads to models that
quickly exceed a reasonable size and become hard to handle. A new standard of OMG called
Action Language for fUML (Alf) that is currently in the finalization phase deals with exactly this
problem. Another point of critique is the form of provision of the fUML execution model that
suits as a reference guide but is inappropriate to give an overall understanding of how models
should be executed. Another shortcoming of the fUML standard that was detected during imple-
menting the prototype is that the checking of the models that shall be executed is insufficient. In
general it can be said that all constraints defined in UML and in fUML which are not addressed
in the fUML metamodel by means of OCL constraints are also not handled by the execution
engine. This leads to the execution of behavior that is not allowed according to the constraints
defined in the standard documents or to runtime errors.

Tools for executing UML models were implemented prior to the development of fUML. Exam-
ples are the Amuse plug-in for the Enterprise Architect of Sparx System or the Rational Software
Architect Simulation Toolkit of IBM. Because UML has no precise and complete execution se-
mantics leaving room for interpretation, each tool implements its own execution semantics and
these semantics are typically not exactly the same. By standardizing the semantics of UML in
the fUML standard, the first step to overcome this problem of interoperability is done. At the
moment there is no established or mature tool that allows users to define and execute UML mod-
els as specified in the fUML standard. The reason for this is that the fUML standard was only
recently released in February 2011 and tool vendors will need some time to build conformal
tools.
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7.2 Future Work

In order to provide comprehensive functionality for executing and debugging UML models the
prototypical model interpreter that was built in this thesis indeed has to be extended. The fol-
lowing extensions are the most interesting ones:

• Modeling concepts and diagram types. The built model interpreter prototype restricts
the UML modeling concepts very much and only supports activity diagrams that model
the manipulation of objects and links. The expansion of the supported modeling concepts
for UML class diagrams and activity diagrams as well as the support of supplementary
diagram types like sequence diagrams and state machines constitute a valuable extension.

• Parallel execution. The support of the parallel execution of an activity diagram is also a
reasonable extension of the prototypical model interpreter. Currently the prototype exe-
cutes activity diagrams sequentially and does not incorporate a thread model.

• Graphical editors and debugging process visualization. For creating class diagrams
and activity diagrams the implemented model interpreter prototype provides only tree-
based editors and also the progress of the debugging process is visualized in a tree-based
view. The provision of graphical editors as well as the visualization of the debugging
process in graphical displayed models would lead to an enhanced usability of the model
execution tool.

• Fault-tolerant model execution. The automatic validation of models for violations of
constraint defined in the fUML metamodel, plausibility-checks and the support of the
execution of incomplete models by enable the user to provide the missing information
during the execution process are features that would also enhance the usability of the
model interpreter.
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List of Abbreviations

Alf Action Language for fUML

CMOF Complete Meta Object Facility

EMF Eclipse Modeling Framework

EMOF Essential Meta Object Facility

fUML Foundational UML

MDA Model Driven Architecture

MDD Model-Driven Development

MOF Meta Object Facility

OCL Object Constraint Language

OMG Object Management Group

PIM Platform-Independent Model

PSM Platform-Specific Model

UML Unified Modeling Language

XMI Extensible Markup Language
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