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Abstract

Collaboration is an intriguing and promising aspect in Virtual and
Augmented Reality systems, whether participants are co-located or not. At
least, distant collaboration requires distribution capabilities to replicate the
Virtual Environment on all participating sites.
Studierstube is a Collaborative Augmented Reality system, providing reliable dis-
tribution in a limited way. This thesis extends these capabilities to long dis-
tance distribution, supporting ordinary IP -based networks like the Internet .
Collaboration between participants located in different cities, countries and even
continents becomes possible.
In order to apply these new features, Construct3D , a dynamic geometric con-
struction tool in 3D for educational purposes, was adapted. By reducing the
data amount to transmit, distribution efficiency was increased. Furthermore,
robustness, flexibility and scalability capabilities were improved. Distribution
and collaboration features directly profit from all of these efforts.



Zusammenfassung

Kollaboration ist ein faszinierender und vielversprechender Aspekt von Virtual
und Augmented Reality Systemen, unabhängig von der Tatsache, ob die Teilneh-
mer am selben Ort versammelt sind. Zumindest Kollaboration über Entfernung
erfordert die Fähigkeiten zur Verteilung, um das Virtual Environment an jeden
teilnehmenden Ort replizieren zu können.
Studierstube ist ein kollaboratives Augmented Reality System und stellt
zuverlässige Verteilung in einem beschränkten Ausmaß zur Verfügung. Diese
Diplomarbeit stellt eine Erweiterung dieser Fähigkeiten um die Möglichkeit zur
Verteilung über weite Strecken auf herkömmlichen IP -basierenden Netzwerken
wie dem Internet dar. Kollaboration zwischen Teilnehmern aus verschiedenen
Städten, Ländern, ja sogar Kontinenten wird damit möglich.
Um diese neuen Möglichkeiten anzuwenden, wurde Construct3D , ein dyna-
misches Konstruktions-Programm für 3D-Geometrie zu schulischen Zwecken,
adaptiert. Durch Reduktion des zu übertragenden Datenvolumens ließ sich
die Verteilungs-Effizienz steigern. Des weiteren wurden Eigenschaften betref-
fend Robustheit, Flexibilität und Skalierbarkeit verbessert. Die Fähigkeiten zur
Applikations-Verteilung und Kollaboration profitieren von all diesen Bemühun-
gen direkt.
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Chapter 1

Introduction

Modern technologies like Virtual and Augmented Reality have emerged in the
past as interesting media for work, education, and even entertainment. In the
meantime, these technologies have matured to the point, where they can be
applied to a wide range of application domains. For example, they can assist
in daily life, allowing new forms of knowledge aquisition, making use of objects
not present in the real world, manipulating them and interacting with them.
The ability to collaborate with collegues is an additional fascinating and very
useful concept in context to Virtual and Augmented Reality . It allows working
together on one project by utilizing modern communication technologies, even
if some participating people are geographically located hundreds of miles away.

1.1 Problem statement

As sharing a virtual workspace offers the possibility to work together with peo-
ple cituated all over the world, distribution and replication of data has to be
taken into account.
Ideally, data transmission should be fast to achieve quick response times. Espe-
cially in long distance distribution this aspect is crucial, as the travelling time
usually depends on the distance to cover. Also data transmission has to be
(in most cases) reliable. As an additional attempt for fast response times, to
prevent network congestion, and to increase efficiency, transmitted data should
be reduced to the lowest possible amount.
Depending on the application, distributed data can contain several aspects.

• Input data distribution:
By sharing tracked input device data, the actions and movements of other
participants can be visualized, especially of those working in distant loca-
tions.

• Output data distribution:
With replication of application content, directly perceivable by partici-
pants, the illusion of working closely together and collaboration in a shared
environment can be created, even if participants are geographically sep-
arated. Traditionally, application content stimulates mainly the human
visual sense.

1
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• Intermediate data distribution:
Sharing the application state, in the form of compacted meta information
reduces the amount of transmitted data. This allows to regenerate some
parts of application content by additional processing without the need for
network transmission.

To help creating the illusion of being immersed and involved in the shared
workspace, the application state has to stay consistent for all participating sites
to a certain degree. This implies that each participant perceives a similar stim-
ulus of the objects in the workspace, although some slight differences may be
observed. Viewing conditions depending solely on the relative position and cus-
tom settings of a single participant are common examples of these perception
differences. User roles to achieve different appearance or hiding certain parts of
shared information from users with lower privileges may be also desirable.

1.2 Contribution

Hesina [Hes01] introduced distribution features in the Studierstube1, an
Augmented Reality software framework (for details see section 2.1 and sec-
tion 2.8). A series of remaining shortcomings had to be resolved, as these
features were more or less restricted to small local networks, because the im-
plementation makes use of a special networking mode. This networking mode
called multicast UDP (for details see section 2.2) lacks of support for long dis-
tance distribution: As a major drawback, multicast UDP traffic cannot go di-
rectly beyond the borders to world wide networks as they exist today. Thus,
multicast UDP data packets are usually not routed into the world wide Internet ,
even if it is possible to route between two private local networks.
This work is supposed to fill this gap, enhancing distribution features, overcom-
ing this rigid restriction in terms of networking, and offering the possibility to
truly distribute Studierstube applications around the world. Beyond that, this
work also covers the aspect of distributing data of tracked input devices (for
details see section 2.4), as this is also part of shared data used by collaborative
applications.
As another aspect of this work, an example application called Construct3D
[KSW00] (for details see section 2.9) was selected to make in-depth long dis-
tance distribution tests. As useful tool in geometric education, it allows creating
and editing of three-dimensional geometric constructions in an intuitive way by
participating in a Collaborative Augmented Reality system.
Apart from extended distribution functionality, the replication behavior of this
application was adapted. Instead of transmitting the whole application state in-
cluding full visual representation, distribution is restricted to proper state data,
capable of regenerating all remaining application state. This means that distri-
bution is basically reduced to invisible meta information. This meta information
consists of application commands, containing data essential for regenerating the
application state. Processing these commands generates also instantly visible
geometric results to the observer.
Another huge amount of this work was spent into massively increasing stabil-
ity of present features by bug-fixing and reimplementation as well as extending

1http://www.studierstube.org/
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them and introducing new functionality to push the application further. De-
tails on this important part are not always easily describable. Nevertheless,
some aspects are included throughout this thesis and located at appropriate
places. Huge efforts are put into enhancing flexibility, concentrating on multi-
user as well as distribution capabilities, application operation history and layer
features.

1.3 Structure of this thesis

Chapter 2 gives a rough overview of related work as well as theoretical definitions
and fundamentals needed later. It also shortly outlines the frameworks used in
the implementation.
In chapter 3, design aspects of the implementation are thoroughly presented.
Apart from the contribution, preexisting functionality is also described in short,
especially if no or only few documentation exists. Also, well-documented aspects
are depicted focussing on the context of this work.
Chapter 4 is going further into implementation details by supplying additional
information about all design issues.
Finally, chapter 5 concludes this thesis by presenting results and outlining future
work possibilities.



Chapter 2

Related work

Before presenting related work, some necessary theoretical foundations have to
be described to define Virtual and Augmented Reality as well as basic network-
ing terminology. This will be useful for characterizing distribution capabilities of
selected related work as well as frameworks and applications depicted through-
out this work.

2.1 Virtual and Augmented Reality

Virtual and Augmented Reality are closely related to each other. In the concept
of Virtuality Continuum, as proposed by Milgran and Kishino [MK94], these
two technologies differ in the proportions of combination of real and virtual
world.

2.1.1 Virtual Reality

According to Rheingold [Rhe91], Virtual Reality is an environment, where a per-
son experiences being surrounded by a three-dimensional computer-generated
representation of an artificial world. In this environment, the person is able to
move around and see it from different angles. He can reach into it, grab it and
reshape it.
This is a definition closely related to optical senses, but Virtual Reality envi-
ronments (Virtual Environments) applying to nearly all human senses increase
the sensation of being fully immersed.

2.1.2 Augmented Reality

Augmented Reality differs from Virtual Reality by the way the real world is
treated. While in Virtual Reality the real environment is completely replaced
by a virtual counterpart, Augmented Reality enhances the real world by su-
perimposing or compositing with virtual objects. So, while being immersed in
Augmented Reality , some coexistance of the virtuality and reality can be ob-
served. Even better, a user experiencing Augmented Reality should discover
that the seams between virtual and real realm are beginning to blur.
The following characteristics apply to Augmented Reality systems, as defined by

4



CHAPTER 2. RELATED WORK 5

Azuma [Azu97]: These systems combine real and virtual, are registered in 3D
and interactive in real time.

2.1.3 Collaborative Augmented Reality

Providing collaboration features is an intuitive logical next step to enhance
Augmented Reality . These collaboration aspects offer rich possibilities, allow-
ing several users to work together. Billinghurst and Kato [BK99] pointed out
the benefits of Collaborative Augmented Reality systems.
Collaboration should not be restricted to participants using a single com-
puter system. In order to work together with users located at differ-
ent places somewhere around the world, networking and distribution tech-
niques have to be integrated into Collaborative Augmented Reality . As
Collaborative Augmented Reality relieves from the need of being co-located
(physically present in a shared workspace), this illustrates how naturally im-
portant networking is to overcome geographical boundaries, building somehow
a symbiotic relationship between these two distinct concepts.

2.2 Networking

Networking is a key aspect to long distance distribution: Amounts of data have
to be transmitted over network lines to achieve the goal of working collabora-
tively together in a shared workspace.

2.2.1 Networking basics

Before describing distribution capabilities, some key terminologies on network-
ing have to be explained.

Network definition

A network links several nodes (i.e. computers) together to share ressources. The
network hardware including connection lines and interfaces can be interpreted
as the physical network. In the software realm, networks are often seen on a
logical level when considering, how other network participants are discovered
and data is exchanged.

Network topology

Network topology describes the pattern of links of connecting pairs of
network nodes. These patterns, as there are several possibilities, are usually
depicted by a shape (line, star , mesh, ...). Network topologies often depend
on the point of view: Physical network topology refers to the geographical lay-
out, while logical network topology describes the path, data takes as it travels
through the network.
The topology on the physical level may be completely different from the one on
the logical level. Today, Ethernet is best characterized by star topology on the
physical level. But there is no problem achieving mesh topology on the logical
level by running a common file-sharing protocol. (In its beginnings, Ethernet
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originally conformed physically to bus topology , but as technological progress
was made, it complies more to star topology by now.)

Network interconnection

Networks can be interconnected by special devices, classified by their features:
Repeaters represent the simplest device type. Also known as hubs, these devices
retransmit physical signals without further investigation between a number of
networks with identical physical specifications, while bridges and switches for-
ward network traffic even between physically heterogenous network segments.
The latter manage this by inspecting and interpreting traffic data. As a con-
sequence of this, these devices usually have to maintain at least a local view
about the network structure.

Server and client roles

A server provides network services to other computer systems, consequently
called clients. Network participants (hosts) with ambigous classification,
whether acting as servers and clients alternatively or simultaneously, are simply
called peers.
A common server-client scenario is that a client actively contacts a server ,
which is passively listening for incoming requests. After handling the request ,
the server sends a proper response back to the client . This mechanism is also
known as request-response mechanism.

Data flow directionality

If sender and receiver roles are predefined and do not alternate, data al-
ways travels in one direction. The opposite of this unidirectional property is
bidirectionality , where data can be transmitted in either direction of a connect-
ing line.

Network connection types

Two different connection types exist: In connectionless networks, packets of
data are exchanged, whereas connection-oriented networks establish true con-
nections, even if they are only virtually present on a logical level. Packets
in connectionless networks are also called datagrams, while data exchange in
connection-oriented networks is often handled in a stream of continuous data.

Unicast, multicast and broadcast data delivery

Considering which nodes receive data, there exist three types: Unicast
(one-to-one) delivery features a single receiver, while broadcast (one-to-all) de-
scribes the mode, where each participant of the network receives the same data.
In between exists multicast (one-to-many) mode to address a configurable num-
ber of nodes.

Network reliability

In unreliable networks, there is no guarantee that transmitted data actually
reaches its destination. Furthermore, it is even not necessary to report an error,
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if transmission failures occur, no matter if they are of permanent or transient
nature.
Reliability in networks states that omission failures (data loss) are masked.
This is typically achieved by basic acknowledging and retransmission strate-
gies. Unmaskable transmission errors have to be reported to the sender, caus-
ing indication of failure to the sending process. Such strategies to ensure
network reliability on the logical level are needed to weed out the weaknesses of
physical unreliable networks.

Network scalability

Scalability describes the capability of a system to increase total throughput un-
der increased load, when additional ressources are added. In terms of networks,
this increase can be heightening the number of nodes, while maintaining sys-
tem performance and usability at the same time. In network systems without
scalability features, performance could decrease, when adding a number of extra
nodes participating in the network.

2.2.2 Network protocols

Network protocols describe sets of rules of how communication is handled be-
tween participants of a network. These rules cover various aspects including
data representation, error detection, and connection negotiation.
Stacking is a common mechanism to combine features of several protocols.
In the following some key protocols of the Internet are described.

IP

IP (Internet Protocol) is one of the most fundamental network protocols. With
IP , each host in a network can be addressed by means of an IP address. This
allows connecting heterogenous networks together and directing network data
packets properly so that the destination is reached by maintaining information
about network interconnections. This important network traffic forwarding pro-
cess is called routing .
Routers perform interconnection of several networks on a higher protocol level
than bridges and switches, as routing devices have to inspect IP header data.
Routing capabilities can be integrated in any host participating in the IP net-
work. But these features can also be implemented by special devices for the
single purpose of routing .
A firewall is a host to control network traffic for security issues. It is character-
ized by performing network data filtering on a per packet basis. By inspecting
properties of each packet like source and destination address, this filtering strat-
egy is defined by a set of rules.

TCP

TCP (Transmission Control Protocol) is another part of the well-known
TCP/IP protocol suite. Being a reliable protocol basing on IP , it estab-
lishes virtual connections between two participants. Maintaining these
connections requires some synchronization overhead. In this unicast ,
point-to-point connection, data exchange is abstracted by streams, delivering
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payload correctly in-order.
To allow multiple independent applications running TCP on a single host ,
port information is introduced: Socket information, containing IP address and
port number , uniquely identifies an application.

UDP

UDP (Universal Datagram Protocol) is the unreliable, connection-less counter-
part to TCP , offering networking by means of datagrams. Usually unicast , but
also offering (limited) possibilities for multicasting and broadcasting , it allows
efficient data exchange without much data overhead and synchronization ef-
fort. In multicasting and broadcasting mode, packets usually cannot go beyond
routers (mainly because of scalability reasons and limited network ressources).
UDP introduces ports in the same way as TCP does, resulting in a similar
socket definition.
The MBONE (multicast backbone) [Eri94] network is an attempt to be capable
of routing also multicast network traffic under certain conditions. Tunnelling
otherwise unroutable traffic (encapsulating unroutable data packets in routable
packets) is another strategy. However, these possibilities are no general option
in long distance distribution because of the requirement of being part of an ad-
ditional network or difficult specific configuration. Also, MBONE is not likely
going mainstream.

2.3 Tracking data distribution systems

Specialized software frameworks fill the gap between tracking devices and
Virtual and Augmented Reality toolkits. These middleware systems offer ser-
vices for other software systems and focus on generalization of tracking data
format in order to support various different input devices. In addition to these
abstraction capabilities, these frameworks usually allow device data preprocess-
ing and network transmission.
Currently, VRPN and OpenTracker belong to the major tracking device frame-
works with comprehensive features. While VRPN is described in the following,
details about OpenTracker can be found in section 2.4.

2.3.1 Tracking

Tracking is, in context to Virtual and Augmented Reality systems, measuring
poses of bodies (whether subjects or objects) in space. Poses consist of posi-
tional information and orientation, giving six degrees of freedom (6DOF ). Not
all devices are able to support 6DOF , usually because positional or orientation
information is completely missing and cannot be regained.
When thinking of a universal tracking data format, some characteristics can be
observed. Usually, input device data can be classified into two major categories:

• Accurate positional and orientation information (pose) has to be present
at any instant. This is best realized by streaming capabilities. Data from
the previous instant is constantly replaced by more recent information.

• Further information usually does not change as often as positional data.
Therefore, this data can be treated as events, reflecting the occured state
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change. Moreover, this can be also handled by integrating it into the
pose information stream and neglecting its event type nature. Examples
of this additional data include digital button press events and analogue
device data.

Tracking device data flow is usually unidirectional : Data is transferred from
the origin, the input device to the sink, the interface to the Virtual or
Augmented Reality system.
An example of an input device used in the Studierstube1 [SFH+02] environment
is shown in figure 2.1: This pen’s position and orientation is tracked optically
by evaluation of the positions of attached spherical markers with retroreflective
surface. Being wireless, a button event is transmitted by radio signal to a re-
ceiver station.

Figure 2.1: Example of a wireless input device: An optically tracked pen

The evaluation, mentioned before, is performed in a postprocessing step by in-
specting the images taken by a set of cameras like the ones shown in figure 2.2:
The reflections of the infrared light beams, actively transmitted by each of these
cameras, are used to geometrically calculate position and orientation.

2.3.2 VRPN

VRPN 2 (Virtual-Reality Private Network) [THS+01] is an example of a device-
independent and network-transparent framework for peripheral devices used in
Virtual and Augmented Reality systems. It is written in C++.
Devices are classified into a wide range of different types, depending on the kind

1http://www.studierstube.org/
2http://www.cs.unc.edu/Research/vrpn/



CHAPTER 2. RELATED WORK 10

Figure 2.2: Optical tracking devices: On the left an ARTTrack1 camera (pro-
vided by A.R.T.), on the right a camera used in an alternative custom setup,
developed by the Vienna University of Technology

of tracking data: Pose data, button states, analogue values and incremental
rotations belong to these data types. A device can offer interfaces for several
types, and devices can be layered by connecting device outputs to inputs of
other devices.
Networking is built upon UDP and TCP . Depending on the reliability delivery
property of tracking data type, the protocol is chosen on a per message basis.

2.4 OpenTracker

Virtual and Augmented Reality applications depend on input data typically
supplied by special input devices covering spatial information. These tracking
devices usually generate a continuous stream of input data, an application has
to work on. But data coming from these devices may require some preprocessing
like filtering, merging and transformations before.
OpenTracker3 [RS01], written in C++, is a universal and configurable frame-
work being capable of performing such operations on tracking data. A wide
range of tracking devices are supported by implemented modules. Support
of new input devices is achieved by extending OpenTracker with additional
modules. Tracking data records, as an attempt to achieve device abstraction,
support devices with up to six degrees of freedom (6DOF ): typically spatial in-
formation containing a position in space and orientation. An adequate number
of buttons, confidence information and timestamps are also part of this record.
This middleware solution is used in tracking device support in the Studierstube4

[SFH+02] framework (for details see section 2.8). It is implemented by an inte-
grated OpenTracker client in this Virtual and Augmented Reality system. This
also works well in combination with stand-alone OpenTracker instances.

2.4.1 Node concept

An OpenTracker specification is given in an XML file, representing the
data flow graph: Tracking data is typically inserted into this graph by nodes
called sources and forwarded to external outputs by sinks. Intermediate

3http://www.studierstube.org/opentracker/
4http://www.studierstube.org/
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nodes are also called filter nodes and perform preprocessing mentioned before.
Tracking data flows along the directed edges of the graph, occuring from sources,
processed by filters and reaching its final destination in form of sinks.
An illustration of how tracking data is propagated from sources, passing
filter nodes along the edges in a directed acyclic graph to sinks, is given in fig-
ure 2.3.

Figure 2.3: Example of a data flow graph in OpenTracker

2.4.2 Module concept

Modules are used in OpenTracker to apply some further structuring: A module
usually represents a certain tracking device type or function.
Modules are capable of performing actions common to all nodes of certain type
and, when implementing the node factory interface, handle node creation.
This concept is also reflected in the XML configuration file: With modules, it
is also possible to apply some global configuration to all nodes of certain type.

2.4.3 Tracking data distribution

A key feature of OpenTracker in distribution is to transmit tracking data over
networks. This can be simply done by means of special sinks. On the other side,
corresponding sources pick up received data from the network in OpenTracker
instances on other hosts. Inserting it into the data flow graph, received tracking
data is treated just like input data occured from any other true tracking device:
To OpenTraker , there is simply no difference, where data comes from.
Usually, tracking data transmission has not to be reliable. Dropped data is
likely to be replaced by more recent tracking data just in the next instant.
Thus, missed data has no negative impact on the application.
Originally implemented networking functionality is built upon multicast UDP
and therefore not practicable for long distance distribution. But there
is also support for VRPN (Virtual-Reality Private Network) [THS+01]: An
OpenTracker program can receive data from a VRPN server , but is also ca-
pable of acting like a VRPN server as well.
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2.5 Scene graphs

In 3D rendering systems, the scene graph concept is often and widely used to
achieve a certain degree of database structuring. Other database approaches
usually lack in suitability for rendering needs.
A scene graph is a common data structure used in vector-based graphics (mostly
3D rendering) systems. Being of tree structure, it resembles the rendering
content in a hierarchical, object oriented way: A single tree node resembles
a graphic element (for example a geometric primitive, visual appearance set-
tings or a transformation operation). The tree arranges these elements logically
and usually also spatially.
Scene graph trees are usually directed acyclic graphs (although in fractal ap-
plications cyclicality can be useful). The directional nature resembles the
parent-child relation of each node. Figure 2.4 illustrates an example of this
graph type.

Figure 2.4: Example of a directed acyclic graph

If each node must have at most one parent , the scene graph has exactly one
root node. In order to effectively reuse some scene graph parts, this restriction
is too obstructive: To add a certain part several times (as also illustrated in
figure 2.4), more than one parent node has to be allowed.
A common operation on a scene graph is the so-called traversal : The tree is
processed (traversed), starting from a certain node (usually a root), visiting
redundantly all child nodes. This traversal mechanism is excessively used in
rendering. But also a wide range of other preprocessing, calculation and search
operations take advantage from this mechanism. An important property of this
mechanism is the visiting order, whether deterministic or not. By preventing
cyclicality , traversal operations in the scene graph cannot consume infinite pro-
cessing time: A direct acyclic graph implicitely guarantees termination of the
traversal algorithm, which is usually implemented in a recursive way.
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2.5.1 Distributed scene graphs

Although shared memory systems are capable of directly sharing data, they have
additional hardware requirements. Granting access to memory for several par-
ticipating sites is complicated and requires synchronization and locking strate-
gies. Distributing and replicating scene graphs among heterogenous computer
systems do not require any additional hardware. Considering this replication
mechanism and the concept of shared memory , this replicated data can be seen
as residing in distributed shared memory [CD88].
In the following, some scene graph systems with distribution features are
shortly presented, including blue-c Distributed Scene Graph, Avango and sev-
eral Distributed Open Inventor attempts.

2.5.2 blue-c Distributed Scene Graph

blue-c Distributed Scene Graph (bcDSG) [NLSG03], written in C++, is based
on the OpenGL Performer5 toolkit [SC92]. Distribution features are built on
top of this framework and therefore cannot be integrated into Performer .
The whole scene graph can be divided and split into a shared and local parti-
tion. Shared parts of the scene graph have to be created solely using customized
nodes, as standard Performer nodes do not work in distribution. This is caused
by the unsuitability of the node identification mechanism (using pointers to
memory), when crossing local machine boundaries. So, it is required to replace
this information by a globally unique identifier among all participants. In the
implementation, this identifier is assigned on a central session manager site.
Scene graph synchronization is performed in a traversal operation each render-
ing frame. This mechanism includes consistency, locking and ownership features.
A relaxed locking scheme was implemented: Manipulations on any node are
possible, requesting and claiming ownership by a handshaking protocol directly
after these modifications. Even though this results in temporal inconsistencies,
they are usual acceptable.
Data transfer is done with the UDP protocol, enabling multicasting support
in system setups with more than two participating sites: While scene graph
synchronization messages are transmitted to any participating site, locking op-
erations are of unicast nature. For a very high number of participants, unicast
data channels are eliminated and their network traffic is transferred to their
multicast counterparts. On startup, network communication channels are es-
tablished using CORBA.
Relying on multicast UDP and its routing deficits, the system is not suitable
for long distance distribution. Apart from the requirement of exclusively using
customized nodes in the scene graph, its synchronization features are based on
nodes as atomic units: Changing a single field causes the whole node contents
to be transferred. This can be problematic, when having a huge amount of data
belonging to a single node. Also, late joining of participants was not originally
implemented.

5http://www.sgi.com/products/software/performer/
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2.5.3 Avango

Avango (formerly known as Avocado) [Tra99] is also based on Performer6 [SC92]
and implemented in C++. Similar to the Inventor toolkit [Str93], its own
customized scene graph nodes act as field containers, storing data in terms of
fields. Also the field connection and streaming mechanism are introduced and
much like in Inventor .
Distribution features are based on so-called distribution groups. To build a
shared object, first a local object has to be created and migrated to a distribution
group. On the other side, all group members reverse this process by creating a
local copy from this distributed object.
Networking is based on Ensemble [Hay98], making use of the Maestro toolkit.
It seems that nonstandard micro protocols are used in network communication,
but there is no precise information about this.
Late joining is supported by Avango, transferring the scene graph properly.
However, Avango relies completely on its subclassed node types in distribution.

2.5.4 Distributed Open Inventor

Distributed Open Inventor is based on Open Inventor , a popular rendering
toolkit thoroughly described in section 2.6. Several attempts in adding dis-
tribution features exist.

Hesina’s approach

Distributed Open Inventor (DIV ) [Hes01], as being part of the Studierstube7

[SFH+02] toolkit (for details see section 2.8), is one implementation, elaborately
described in section 2.7.

Pečiva’s approach

A somehow similar idea was implemented by Pečiva [Peč02], also based on
master-slave architecture: Opposed to previously presented solutions built on
top of Performer [SC92], Open Inventor is modified directly. This is achieved by
enhancing and extending the open source code base, written in C++. Benefiting
from this, scene graphs can be easily set up for distribution without replacing
each standard node by a customized counterpart.
The powerful field connection mechanism is enhanced by network capabilites.
Field containers, to where nodes and engines belong, are also made network
aware by additional methods. Groups, a special node type, being capable of
storing child nodes, are enhanced by additional functionality targeted on these
children. A custom node type supports sharing and distribution of a whole
scene graph.
Networking is currently built upon the Parallel Virtual Machine (PVM )
[GBD+94] framework, but subject to change.

6http://www.sgi.com/products/software/performer/
7http://www.studierstube.org/
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Open Inventor by TGS

Open Inventor r©8 from TGS , recently acquired by Mercury , contains internal
distribution management code, obviously and remarkably very similar to origi-
nal DIV by Hesina. As this TGS implementation is not open source, it is not
clearly evident, if and how this functionality is actually used.

2.6 Open Inventor

As Virtual and Augmented Reality are rooted in the real world, both of them
inherit its 3D nature. Open Inventor is a scene graph based rendering library,
offering an interface of C++ classes with the ability to represent so-called scenes
of (especially 3D graphical) objects. So it focuses on these objects, not on draw-
ings.
Open Inventor is the open-source version of original Inventor [Str93]. The im-
plementation used throughout this work is Coin3D9 from Systems in Motion
(SIM ) and built on top of OpenGL10.
In the following, some basic C++ class types of OIV are presented, as also
featured in the popular and famous Inventor Mentor [Wer93]:

• Nodes are basic Open Inventor (OIV ) units and contain functionality to
serialize to and read data from a stream of ASCII based or binary data.
Being a basic C++ class, these nodes cover also runtime type information.
Nodes are part of the scene database. A hierarchical tree of nodes can be
created by means of special nodes called groups. These groups can contain
a number of child nodes. Parent groups and child nodes are fundamental
to build up the hierarchical scene graph.
Scenes contain one ore more nodes grouped together.

• Node information and associated data is typically stored by means of
fields, another basic OIV C++ class. Fields contain data of of simple
(like string, integer and floating point numbers) or basic (like vectors and
matrices) type. Considering the number of data elements, fields can be
distinguished into two different types: Single-value fields contain exactly
one data element, whereas multiple-value fields store a list of elements of
the same data type. Just like nodes, fields support runtime type function-
ality and serialization ability.
Apart from that, fields can be connected together to keep data syn-
chronized between a master field and its connected counterparts called
slave fields.

• As third fundamental OIV data unit, engines are also capable of aggre-
gating fields and feature streaming capabilities as well as runtime type
information. So engines belong to the important field containers group,
just like nodes do. Engines are used to generate field data and manipulate
data occuring from incoming field connections.

8http://www.tgs.com/pro div/oiv main.htm
9http://www.coin3d.org/

10http://www.opengl.org/
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• Sensors can be attached to several entities in the database, especially
nodes and fields. This allows observing changes and react properly, as
callback code is executed. Due to the dependency to program instructions
in this notification and callback mechanism, sensors cannot be represented
in persistent storage.

Figure 2.5: Example of a scene graph in Open Inventor

Nodes are the most generic scene graph elements. Usually they can be distin-
guished further into separate types:

• Shape nodes represent geometry and graphic primitives.

• Property nodes define the visual appearance of graphics including material
properties, textures and lighting models.

• Group nodes, as already described, are essential for building up a
scene graph hierarchy and can be equipped with various additional func-
tionality.

Figure 2.5 shows a typical example of a scene graph containing some common
node types. It also uses well-known node icons and indicates scene graph di-
rectionality as well as parent-child relationship implicitely by the vertical order
instead of depicting arrows in graph edges.
Another important feature of Open Inventor is the node kits concept. Node kits
encapsulate several nodes in self-contained subparts of the scene graph, allowing
further restructuring of closely related elements in the scene database. Node kits
are very powerful to compose compound and highly configurable scene graphs,
acting like a single node and hiding their usually complex scene graph hierarchy
from the outside.
In Open Inventor , scene graph traversal is done by applying an action to a
starting node. Actions are passed down the scene graph recursively. Each node
independently defines a proper behavior for each action. Rendering, searching,
some computations, writing to stream and event handling are all done by ap-
plying certain actions. Events typically occur from input devices like mice and
keyboards to allow interaction.
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2.7 Distributed Open Inventor

Distributed Open Inventor (DIV ) extends Open Inventor (see section 2.6) by
distribution abilities. The whole or some selected parts of the scene graph
can be shared among a network of participating sites. This is a fundamen-
tal prerequisite for the collaboration aspect. Sharing the scene graph avoids the
dual database problem [MF98], being capable of distributing application and
graphic library state altogether without separation.
Distribution makes use of the notification mechanism in OIV and observes oc-
cured changes by sensors. For convenience, a special group called DivGroup
denotes a subtree for distribution, offering the possibility to share several inde-
pendent parts of a scene graph.
Usually a single master hosts the original copy of the scene graph for replica-
tion to guarantee total ordering of messages. This master is responsible for
transmission of scene graph changes to the network. In this transmission, the
node name is used as unique identifier. So naming lies in the responsibility of
the master . Considering that this is done just in the instant, when the name
is needed the first time, it is called lazy naming . Naming messages are related
to nodes, identified by path information. Paths contain a list of numerical in-
dices, indicating the way to follow down to the target node, starting at the
scene graph root . So lazy naming maps from path information to more conve-
nient unique names. Except for its unhandiness, path information can change
on structural scene graph modifications.
Scene graph modification messages, transmitted by the master , typically con-
tain the name of the node, where the change occured. In addition to this, the
remaining message body includes other information as well. This depends on
the change, which has taken place. So, additional message data consists of:

• appropriate field name and data, if a field update occured,

• structural information, if the update is of structural nature (involving
group node operations).

On the other side, slaves process received changes, modifying the scene graph.
Initially, slaves are also capable of sending polling packets to the network, re-
questing the scene graph from the master . The master reacts on this message
appropriately by transmitting the scene graph in its vcurrent state. This is ac-
tually an implementation of the late joining feature.
This predefined master-slave property can be dynamically changed: Any slave
can request becoming the new master , waiting for acknowledgment of the cur-
rent master . On approval, master status is transferred in the instance of this
positive acknowledgment message. For consistency reasons, only one single
master is recommended, while the number of slaves is irrelevant for this issue.

2.8 Studierstube

Studierstube11 [SFH+02] (named after the german word for the study room of
Goethe’s famous character Faust, where he gained insight) is a system provid-
ing a framework for Collaborative Augmented Reality applications. It consists

11http://www.studierstube.org/
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of a set of OIV extension classes to support rendering on various Virtual and
Augmented Reality hardware devices and aquiring data input from 3D input
devices.
The Studierstube framework integrates DIV for distribution capabilities and
OpenTracker , supporting various input devices. It contains also widgets suit-
able for the 3D nature and an application concept to allow dynamic application
loading and switching between them.
Figure 2.6 gives an idea about Studierstube, depicting two users collaboratively
working on several applications, equipped with head mounted displays and in-
terface devices in a highly immersive setup. Although wireless devices are more
frequently used in these days, the idea is clearly transported. One major ad-
vantage of wireless devices is that they effectively diminish the feeling of being
tethered.

Figure 2.6: Two users collaborating in Studierstube in an early version

2.8.1 Tracking data processing

Studierstube acquires tracking data from OpenTracker (see section 2.4). This
OpenTracker client seamlessly integrates into the framework. The interface is
provided by means of special sinks. Such a sink , called StbSink , inserts data as
3D event into the scene graph by applying a custom action. Just like tracking
data in OpenTracker , these 3D events consist of spatial (position and orienta-
tion) and button information. These events are passed down the scene graph
by the traversal mechanism.

2.8.2 Application distribution

As previously published [SRH03], Studierstube includes distribution features of
Augmented Reality applications based upon Distributed Open Inventor (see sec-
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tion 2.7). Furthermore, distribution abilities are put on a higher level, making
auto-configuration possible. This also allows applications to be implicitly dis-
tributed without further investigation.
All this is conducted by a special tool program, which manages parame-
ters and settings of application distribution. As this program is known as
session manager , it manages and maintains configuration data also referred
as sessions. Further details about this session manager can be found in sec-
tion 3.3.

2.8.3 Multiple users

In order to allow multiple users joining the shared workspace, a user concept is
implemented to represent all participating sites by internal data structures. The
number of users can be freely defined for each Studierstube instance, starting
with at least one user.
Strongly related to user configuration are associated user ressources: Rendering
output and interaction devices are specified on a per user basis.
Even if users can collaborate on a single application instance, common applica-
tion scenarios typically include multiple hosts. This implies the need for DIV
in Studierstube.
Utilizing their associated ressources, collaborators are able to define custom
viewing preferences. Especially users supplied with head-tracked and head
mounted displays profit from the ability to choose an individual viewpoint while
retaining full stereoscopic graphics. This immersive hardware setup is chosen in
figure 2.6.

2.8.4 Multiple applications

Studierstube supports dynamic loading of multiple applications. This concept
includes the fact that applications are represented by scene graphs, avoiding
the dual database problem [MF98]. By introduction of so-called contexts, ap-
plication data, data representation and the application itself become united.
Studierstube applications are composed by special node kits representing these
contexts.
Multiple applications are accessible by a 3D interface analogue of the
multiple documents interface in 2D. Contexts cover spatially a certain bound-
ing volume, a 3D window (analogously to windows in 2D). The 3D window is
visualized in figure 2.6 by wireframe boxes.

2.8.5 Multiple locales

By introduction of locales, multiple workspaces are possible, due to the fact that
a locale represents a coordinate space. A locale embeds a number of applications
and associated users. Workspaces can be separated from each other by defining
multiple locales.
It is not mandatory that a locale uniquely corresponds to a physical place. This
offers the possibility for long distance distribution and collaboration.
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2.8.6 Personal Interaction Panel

An established user interfacing method in Augmented Reality applications is
the Personal Interaction Panel (PIP) [SG96], as featured in Studierstube. As
an interface metaphor , a user can be equipped with a panel and a pen, resulting
in a two-handed interface. Both panel an pen are spatially tracked input de-
vices. The pen is stylus-like, containing at least one button for interaction. The
lightweight, notebook-sized panel is just a passive object without any built-in
intelligence. It provides basic haptic feedback when interacting and can be also
used as real world notepad. Joined together, these two devices compose the
PIP .
As the panel is just a simple prop, it has to be enhanced and augmented by
virtual objects (usually 3D widgets). The user is able to interact with these
PIP interface elements using a pen’s button to perform selections. The virtual
representation of both objects allows also interaction with the interfaces of other
users, even if they and especially their interface props are not physically located
nearby. This enriches the collaboration aspect, for example, by offering the pos-
sibility to teach interaction skills. In particular, it eases becoming familiar with
how to trigger certain application functions by watching a tutor interacting with
his or even demonstrating on the student’s own interface.
Although displayed in an early development stage, a typical PIP can be observed
in figure 2.6: Panel and pen are augmented with widgets and other graphics.
Nowadays, the panel usually consists of a generic application management in-
terface and other elements, accessing functions of a certain application. These
remaining elements, defined by the application are part of so-called sheets of a
PIP .

2.9 Construct3D

As an application in Studierstube, Construct3D [KSW00] profits directly from
the 3D nature of Virtual and Augmented Reality and offers new possibilities in
geometry and mathematics education:
The geometric construction is directly created in the surrounding space. It is
best seen in a highly immersive hardware setup. To name some advantages
in favor of classical education, natural viewpoint adaption by walking around
and collaboration techniques belong to the features. But perhaps one of the
most important educational intentions of this application is to train the power
of spatial imagination, as previously published [KSDG05]. Immediately evident
results of dynamic manipulations help exploring the nature of geometry and its
behavior to gain insight.
Construct3D supports multiple users working collaboratively together. The
Personal Interaction Panel is used as interface and contains a menu-driven sys-
tem, used to trigger all operations.
Apart from illustrating collaboration, figure 2.7 shows hardware devices used
in a typical setup: A see-through head mounted display, a PIP and optionally
a headset to provide input to the alternative speech interface is given to each
user. A virtual projection table is located in the background for presentation
purposes.
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Figure 2.7: Hardware setup in Construct3D and two users collaboratively work-
ing together

2.9.1 Features

Application features include:

• Creation of some geometric primitives (points, lines, spheres, cylinders,
...) and basic objects (curves, planes, surfaces, ...) is available as well
as the generation of compound objects by applying geometric operations
(boolean operations, sweeps, transformations, ...).
A preview function is offered for additional feedback.

• Dynamic modification of each geometric element is available at any time.
This manipulation influences all depending objects, resulting into reeval-
uation and altering the geometric construction.

• By projecting 3D geometric constructions onto orthogonal planes, 2D
views, best known from classic geometric drawings, are obtainable.

• Retaining the possibility to manipulate objects of other users, all objects
are associated to a specific user and displayed in his own color theme.

• Several layers are present to enhance the capabilities for further logical
structuring in geometric constructions.

• Persistant storage of construction results, based on OIV file format, is
also supported to make basic loading and saving mechanisms available.

• An undo history provides more flexibility and control while editing.

• Distribution capabilities contribute to enriched collaboration aspects.

Construct3D handles geometric operations with the help of the commercial
3D ACIS r© Modeler12 (ACIS , by Spatial). This geometry kernel is used in
all geometry calculation operations and keeps track of all associated data. With

12http://www.spatial.com/components/acis/
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such a powerfull toolkit, it is possible to update all depending objects of a ge-
ometric construction, when modifying a certain dependent object. Figure 2.8
shows a sample geometric construction result.

Figure 2.8: A result of a geometric construction in Construct3D

All geometric objects and results of operations are represented in a command
list (a pleasent side effect of the implemented undo/redo feature). As this de-
scriptive representation is already used in file storage, distribution features can
also be built upon this.

2.9.2 Interface

Each actively collaborating user is given a PIP (composed by panel and pen,
for details see section 2.8) to interact on, providing access to all application
functions in conjunction with the surrounding space. Comparing figure 2.1 and
figure 2.9, the similarities between the real pen and its virtual representation
can be observed.
The construction process is actually carried out by interacting with the stylus-
like pen in the surrounding space. The user’s panel provides access to all ap-
plication functions. In the working process of creating geometric constructions,
objects are moved around and new objects are placed into the workspace. These
two basic operations require spatial location information, which is directly pro-
vided by the tracked position of the pen. Similar in its requirements is the action
of selecting an object for further operations: This is performed intuitively by
pointing to its position and pressing the pen button.
The personal panel is customized and well-designed to fulfil the application
needs better than in the generic Studierstube version. Its sophisticated menu
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Figure 2.9: A user’s pen in Construct3D

structure gives access to rich geometric functionality, focussing on usability, es-
pecially as this is difficult to achieve in 3D. This interface is grouped into some
major areas (for details see figure 2.10):

• A vertical all purpose menu bar composed by File, View and Edit , provid-
ing access to some general program functions including file management
and undo/redo history,

• a horizontal menu bar consisting of Transform, Intersect , 2D and 3D to
perform all geometric operations,

• a single toggle button (Point) controlling, whether to draw points or enter
selection mode on occurence of button events in virtual space,

• a Layers widget group, making layer functionality accessible,

• and finally, the Help Notes text area to assist the user with context sensi-
tive help texts (analogous to tooltips used in 2D user interfaces).



CHAPTER 2. RELATED WORK 24

Figure 2.10: A user’s panel, augmented with widgets, as used in Construct3D



Chapter 3

Design

Long distance distribution requires Virtual and Augmented Reality frameworks
with appropriate capabilities. Studierstube bases on Distributed Open Inventor
and OpenTracker . Each of these three frameworks is enhanced and adapted
in context to long distance distribution. In application of these new features,
Construct3D is also modified. All design considerations shall be presented in
the following.

3.1 Tracking data distribution by OpenTracker

OpenTracker contains components providing tracking data transmission over
network between several OpenTracker instances on different hosts. Just like
Distributed Open Inventor , these capabilities are built upon multicast UDP so
far.

3.1.1 Requirements

Following the data flow principle of OpenTracker , tracking data is inserted
from the network into the data flow graph by means of a special source called
NetworkSource, while a special sink named NetworkSink transmits data to
the network. This implies that network traffic concerning tracking data is
unidirectional and of multicast nature: Payload data is always transmitted by a
single NetworkSink and received simultaneously by one or more sources, each of
them a NetworkSource. Figure 3.1 illustrates, how tracking data is exchanged
over network between different OpenTracker instances.
It is an important thing not to confuse NetworkSource and NetworkSink , as their
names seem to be contrary to their behavior in the network. But on the other
hand, these names reflect their role in OpenTracker and its data flow graph.
However, these terms will be superseeded by more appropriate ones as network
roles are determined in the following.

3.1.2 Solution

Considering the requirements, an alternative unicast UDP implementation to
multicast UDP can be easily achieved: A NetworkSink generating tracking data
packets has to deliver these data records simultaneously to associated receivers.

25
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Figure 3.1: Tracking data distribution over network between several
OpenTracker instances

To know where to send these datagrams, the NetworkSink has to maintain a list
of counterparts. Each of these is usually a NetworkSource of an OpenTracker
instance on the receiver side.
Although running unicast UDP , this data delivery strategy is clearly of
multicast nature with one-to-many property: A central site has to transmit
datagrams multiple times on a per receiver basis.

3.1.3 Multicast (one-to-many) data delivery on unicast
UDP

As a consequence of data flow properties on unicast UDP , the network topology
on the logical level is a star . Figure 3.2 illustrates delivery of data occuring in
the central instance.
Keeping this topology in mind, tracking data of several devices can be distributed
by a single network. As long as tracking data occurs on a single central location,
multiplexing of device data is possible: Tracking data packets are equipped with
so-called station information to distinguish between data of different tracking
devices.
Of course building several independent networks (consuming more network
ressources) is the alternative and more general way, as this allows distribution
of tracking data occuring at different places.
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Figure 3.2: Star topology and tracking data flow paths on network

3.1.4 Managing tracking data sender and receiver associ-
ations

Establishing the tracking data network is initiated by each NetworkSink , simi-
lar to the traditional server-client scenario: Each client must have knowledge
in advance about the server providing desired tracking data in terms of socket
information (host and port).
To inform a NetworkSink about the willingness of receiving tracking data, a
NetworkSource initially just transmits a datagram containing control informa-
tion. It is an important aspect that this datagram travels in the opposite di-
rection than packets containing tracking data, and therefore it cannot be mixed
up with the payload. Reading this datagram on the server side also includes
retrieving information about the origin, allowing the NetworkSink to provide
tracking data.
These small packets, received by the server from each associated client and
covering management information, come in two flavors:

• Poll commands indicate that the server should begin transmitting
tracking data. If the client is already part of the list of receivers, this
message is ignored. Considering the unreliable nature of UDP , random
start order of servers and clients (and even the possibility to participate
in several networks with contrary server-client roles in context with ran-
dom start order), poll packets have to be sent regularly. As receiving data
is implicitely an acknowledgment of a request for tracking information,
polling can be suspended, while tracking data is constantly obtained from
the network. But as soon as data retrieval is intercepted for a short time,
polling has to be resumed, because there is no way to rule out that the
server was not terminated (and restarted).

• A leave command is transmitted in the case of client termination to allow
the server to delete the client from the list of tracking data receivers,
preventing unsuccessful data delivery attempts to terminated clients.
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With these semantics, no explicit acknowledgment has to take place. Clients
indicate what they expect from the server without explicit confirmation and
being not aware about the status end even the presence of the server . And this
knowledge is simply not needed, as only tracking data is of interest.
Lost poll and tracking data packets due to unreliable networks are likely to
cause hardly any harm, implying that they are regularly retransmitted. Leave
packets cannot be retransmitted as the client is pushing for cleaning up and
releasing ressources when terminating. But even if this packet disappears, it
causes no serious trouble in most cases, although delivering data to terminated
clients due to unreceived (and therefore unprocessed) leave request may not be
the most efficient way.
As polling and tracking data reception is strictly performed alternately, network
performance is not influenced negatively.

3.2 Distributed Open Inventor

Distributed Open Inventor requires the presence of an underlying network to
operate on. As mentioned in section 1.2, DIV network traffic cannot go be-
yond routers (unless part of a MBONE [Eri94] network) in the current imple-
mentation [Hes01] due to the multicasting feature of UDP (see section 2.2 for
reference). This restricts distribution to a large extent.

3.2.1 Requirements

The requirements of the underlying network include reliability : The underlying
network layer has to guarantee that messages are delivered exactly as they are
sent i.e. in the correct number and order without data loss. Also transmitted
data has to be delivered to each participating site simultaneously and there is
no need to identify source and destination. As there are no predefined sender
and receiver roles, logical network links have to be present between each pair
of network participant and bidirectional data transfer on these links has to be
assumed.
In the past, a multicast UDP protocol, explicitely enhanced with additional
reliability capabilities, was used.

3.2.2 Solution

To overcome the previously invincible borders of private local networks, TCP
as a very widespread and reliable network protocol was chosen, but this implies
a lot of changes. The difference between the more lightweight UDP and TCP ,
as shown in table 3.1, are essential:
In contrast to multicast UDP but similar to ordinary (unicast) UDP , TCP
allows only point-to-point communication. But unlike in the multicast UDP
implementation no reliability treatment has to be done manually in TCP , as
this is implicitely taken care of in the protocol. In order to allow data de-
livery to all network nodes in TCP implementation, considering its unicast
nature, it has to emulate multicast data delivery to comply to the require-
ments of Distributed Open Inventor . As any network node might act as server ,
a many-to-many property has to be taken into account.
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UDP TCP
connection-less connection oriented
datagram abstraction stream of data abstraction
unreliable reliable
lightweight bigger synchronization overhead

Table 3.1: Comparison between UDP and TCP

3.2.3 Multicast (many-to-many) data delivery on TCP

Multicast data delivery on TCP with multiple senders is simply done by build-
ing up a logical network of so-called true mesh topology (figure 3.3), a network,
where each peer is logically connected to each other peers. As each other peer
can be directly reached from each peer , payload data forwarding from any con-
nection to any other has never to be done. The advantage of this is increased
robustness, as data transmission is not dependent on any other peer but the di-
rectly involved sender and receiver. It also makes peer functionality quite easy.
Ensuring true mesh topology at any time is the main challenge, while sending
and receiving is, as mentioned before, fairly simple: Data is automatically trans-
mitted to each connection simultaneously, on the other (receiver’s) side nothing
special has to be considered apart from the requirement not to mix up data of
distinct connections. Processing order of data received from different connec-
tions is uncritical as the next higher network layer implies that critical data in
terms of processing order is sent from exactly one peer at any time.

Figure 3.3: True mesh topology on network

3.2.4 TCP peer identification

For some reasons explained later, each peer has to be uniquely identified. The
information of the server socket is an appropriate identification, as long as this
information is globally valid along the network and identifies everywhere the
same peer .
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3.2.5 Arrival of new peers

Whenever a peer joins the distribution network, it has to know at least one peer
of the existing network. Otherwise, it will become the single participant of a
new network.
A new peer initially contacts the network by sending a special message, identi-
fying itself just after connection establishment. This identification contains the
server port of the peer (as each peer contains server as well as client functional-
ity). The arrival of a new peer has also to be forwarded to all other participating
sites of the network.

3.2.6 Peer arrival notification

Keeping in mind that in true mesh topology each peer is directly connected to
each other and therefore there is the distance of exactly one hop between each
pair of peers (as shown in figure 3.4), the arrival of a new peer can be commu-
nicated in a single step to all other peers currently present in the network.

Figure 3.4: Each peer is one hop away from each other

But thinking of two (or more) peers independently and concurrently joining the
network by contacting two distinct peers, which are currently part of the net-
work, the problem arises that these two new peers probably will not get known
of each other and therefore a TCP connection between them will not be estab-
lished. This problem is illustrated in figure 3.5.
The solution to this is to embed lifetime information in the message, indicating
a joining peer . This lifetime information is interpreted as the maximum num-
ber of hops, the message will travel and complies to the requirements of the
Time to live concept (TTL). In the previous example of two peers concurrently
joining the network a TTL value of 2 suffices. Bigger values can also cope with
the rarely case of cascades of simultaneously joining peers. But a drawback of
higher TTL is increased network load. So 2 is quite the optimum and a good
trade-off between universality and efficiency.
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Figure 3.5: Two peers concurrently joining the network

3.2.7 Ensuring true mesh topology

When receiving the forwarded message of a new participating peer , some things
have to happen as reaction:

1. First of all, the TTL value has to be examined.
If it is positive, the message with decremented TTL value is forwarded to
each connection but the one (for the purpose of optimization), where the
message was received.

2. After that and without taking care of the TTL value, the peer has to
check, if a connection to that peer currently exists. This implies that the
peer has to keep track of its TCP connections.
If no such connection exists, the peer has to establish a TCP connection
to its counterpart by using the received peer information, which is, as
mentioned before, at the same time the peer identification. Instantly after
connection establishment, the peer identifies itself to the counterpart.

This strategy covers some potential problems:

• Not forwarding messages with exceeded lifetime information ensures that
the network is not cluttered with such messages.

• Establishing connections dependent on current available connections guar-
antees that no undesirable redundancy is brought into the network.
Network redundancy (as illustrated in figure 3.6) can cause network con-
gestion, because traffic is unnecessarily higher. Especially loops over a
single peer (cycles) have bad impact and cannot be detected in advance
as easy as redundancy over more than one peer . This is done as reaction
to identification messages.

Identification messages come in two flavors:

• A new peer arrival message is sent, when a peer initially contacts the
network.
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Figure 3.6: Examples of undesired network redundancy

• A simple identification message is sent, when a peer initially contacts
another peer , for the purpose of identifying itself on the counterpart.

So, the simple identification message is the more common version of the new
peer arrival message, which can be also seen in the reaction:

1. On receiving any identification message, the peer has to check, if another
connection to the counterpart currently exists. If this is the case, the
connection is closed immediately. As network redundancy involving more
than a single peer is effectively prevented in advance, connection clos-
ing should only take place for cycles, even if it works for all types of
redundancy .

2. If the identification message is of the special type indicating an initial
connection to the network, the network is notified of the new peer by gen-
erating TTL equipped messages identifying the peer as described before.

Finally as all three control message types have been specified, a fourth message
containing payload data is used for the actual data transfer. Considering strict
network redundancy prevention (mentioned above), data messages are only valid
for previously identified TCP connections (i.e. ignored on unidentified connec-
tions to prevent harm).
To summarize all that, figure 3.7 illustrates, how the information is distributed
and TCP connections are established, when a new peer is joining the network:

1. The peer contacts another peer in the network, identifying itself.

2. The contacted peer notifies other peers participating in the network about
the arrival of the new peer .

3. All other peers establish connections to the new peer , identifying them-
selves. (Additionally in case of a TTL value greater than 1, new peer
arrival information is distributed at least once more, but causes no effect
in this example.)
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Figure 3.7: Sequence of a peer joining the network

3.2.8 Hybrid networks

As an extension and somehow located just slightly above both underlying net-
work types, hybrid networks are also possible to profit from the advantages of
those underlying network types.
TCP networks are not restricted to certain network structures like
multicast UDP , but some inherent drawbacks are revealed when considering
a huge number of peers. If n peers are part of the network, the number of
connections according to true mesh topology is:

n−1∑
i=1

i =
n · (n− 1)

2

So the relation between the number of connections and peers is quadratic, even
if only a small subset of these connections is used concurrently at each in-
stant. This can be seen as wasting ressources. Considering a peer sending
data to the network, one would observe that data is physically duplicated
n − 1 times to have access to each other peer . An operating system run-
ning multicast UDP on a single physical network with broadcast characteristics
(shared media networks like busses) is able to prevent that, because in such an
physical network topology all network traffic reaches each of the hosts connected
to the shared media anyway (regardless of the destination). On this physical
level, the network interfaces performs filtering so that only data addressed to
the corresponding host is forwarded to the operating system. As TCP allows
only point-to-point connections, data duplication is already done in the appli-
cation layer. This is essential for further considerations in this implementation.
But relying solely on multicast UDP is not always possible because of its im-
plied restrictions to supported networks. One way to deal with that is to group
several participants together, which are able to run multicast UDP and con-
nect these subnetworks by means of TCP . Figure 3.8 illustrates how TCP and
multicast UDP networks are coupled.
It is essential that hosts running both network protocols perform some kind of
bridging (not in strict conformance to networking terminology) between them to
forward network data from one to the other. This implies that hybrid networks
must not contain any redundancy to prevent data travelling endlessly. In con-
trast to TCP implementation, currently there is no robust algorithm imple-
mented to cope with redundancy : Bridging functionality would have to be dis-
abled on proper hosts so that the graph corresponding to the network is of
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spanning tree nature to meet the requirements.

Figure 3.8: Example of a proper hybrid network , interconnecting several
multicast UDP networks with TCP

3.2.9 Distributed Open Inventor functionality

On top of the established network Distributed Open Inventor commands are
exchanged. On this level, the network is already abstracted so that no partici-
pating site needs to know anything about other participants: Messages are just
sent to the network without explicit destination information and therefore re-
ceived by each of the other participants. Consequently, received messages do not
contain any information about their source. So the implementation of the under-
lying network requires that these messages are distributed to each participating
site. Reliability and maintaining message order are additional requirements and
mentioned before. As described earlier, the TCP implementation presented in
this work complies to these requirements as well as the reliable multicast UDP
implementation.
Usually, DIV features are enabled by utilizing DivGroup. Although DIV can be
directly used, DivGroup integrates the distribution concept as special group into
the scene graph. As shown in figure 3.9, the scene graph structure implies, what
is replicated, allowing to have several independently configurable scene graph
parts to distribute.

3.3 Studierstube

Among other extensions the enhancements on Distributed Open Inventor have
to be reflected in Studierstube. Furthermore, Studierstube applications are dis-
tributed automatically by a DivGroup, implicitly created as parent of each ap-
plication [SRH03]. The requirements of this functionality include configuration
of distribution. This is handled by the core library with the help of a tool pro-
gram called session manager .
With implicit distribution capabilities, network transparency is achieved. With-
out the effort of manually configuring settings, Studierstube applications are
distributed in a standard way. These features are completely transparent to the
application developer.
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Figure 3.9: Example of a scene graph containing one DivGroup per distributed
scene graph subtree

3.3.1 Distribution management

This session manager is the central point and manages network ressources.
To achieve central management, each Studierstube application contacts the
session manager and informs it about the so-called locale it wants to join.
This locale represents the shared workspace of all participants. It is up to
the session manager to reserve network ressources and notify all participants
about distribution configuration. Apart of that, messages concerning users and
applications are exchanged.
The participant, hosting a certain application, selects the underlying network
type used for distribution. According to this preselection, the session manager
takes care of requesting network ressources and transmits proper configuration
data to all participating sites. From this point on, distribution is activated and
performed independently, as the session manager itself is not included in the
distribution mechanism. It still operates in the background, monitoring changes
of participants and reconfigures them properly on demand. In other words, not
only late joining, but flexible joining and leaving of participating sites is fully
supported without having the need to know anything about potential partici-
pants in advance.
Distribution management message exchange is implemented in TCP and com-
pletely independent of any DIV functionality. Each participating site establishes
a permanent TCP connection to the session manager sitting in the center in
a network of star topology and unicastly exchanges distribution management
messages.

3.3.2 Distribution configuration

The session manager assigns master property to the participant originally host-
ing a certain application. All other participating sites (slaves) receive the ap-
plication scene graph by network due to the node transfer feature. Terminating
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the master results in reassigning master property to another participant. This
master-slave property assignment is conducted autonomously and cannot be
influenced by Studierstube instances.
Another task of the session manager is to create network ressources according
to the requested networking mode. In order to do this, a generator produces
network configuration data:

• In multicast UDP mode, a single multicast group address and associated
port number is generated on a per application basis.

• In TCP mode, each peer is given a unique port number to allow running
several applications on a single machine.

As mentioned earlier, the session manager has to reconfigure the whole distri-
bution network, if a participating site joins or leaves the workspace. Apart from
the master-slave property, TCP mode is crucial in terms of how new partici-
pants join the network. But as the assignment of network ressources lies in the
responsibility of the session manager , it simply creates a list containing proper
contact information of all other participants for each peer and includes this in
reconfiguration messages sent to each participating site. This strategy guaran-
tees highest chances to contact any of the other peers succesfully to build up a
network.

3.3.3 Distribution exclusion

Implicit distribution of an application as a whole can be problematic and un-
desirable. As long as there are no mechanisms to exclude certain parts of
scene graphs, there is no chance to hide them from other participants. As
the DivGroup is created implicitely, containing the whole application as child ,
undistributed nodes related to the application seem to be simply not possible.
But keeping scene graph parts private is often desired, whether to realize local
variations in appearance or to prevent network congestion by eliminating trans-
mission of redundant information.
Previous attempts to have undistributed subtrees of application scene graphs
within the reach of the DivGroup are based on filtering: Distribution function-
ality was prevented in the core of DIV by managing an exclusion list of nodes
and fields.
A more elegant way is to circumvent DIV core of getting notified of private
subtrees. This is achieved by breaking the propagation mechanism of update
notification: To efficiently hide updates from being recognized by the sensor ,
used in DIV to detect changes, a group disables forwarding notifications up-
wards the scene graph. Considering the node transfer feature, the group has
also to prevent writing its children to stream, as this feature makes use of the
write action. For consistency reasons, also reading is prevented.
This special group, hiding its children from reading, writing and distribution,
is called HiddenChildGroup. It is somehow the opposite of a DivGroup. Fig-
ure 3.10 illustrates, how scene graph parts in the reach of a DivGroup are pre-
vented from being distributed by utilizing this node type.
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Figure 3.10: Example of a HiddenChildGroup as child of a DivGroup preventing
distribution of a scene graph subtree

3.3.4 Implicit distribution domain

Implicit DIV distribution in Studierstube is bounded to the application
scene graph. Being more specific, the DivGroup is the direct parent of the
ApplicationKit containing the ContextKit . This ContextKit is strongly related
to application specific data, covering also application defined geometry for a
PIP sheet .
Other ressources, notably user ressources including general PIP geometry, are
not part of this distributed scene graph. A UserKit instance contains informa-
tion about a user, identified by its user id , and its associated devices (display,
panel and pen).
A LocaleKit represents the locale and joins applications with user information:
Each UserKit is directly part of the LocaleKit and each DivGroup used for dis-
tribution is also aggregated.
To accomplish full Studierstube application distribution, user information has
also to be replicated. So, the contents of each UserKit is distributed by other
means. Distribution management messages address this issue by including
UserKit information to supply necessary data not distributed by DIV .

3.3.5 Application vs. tracking data distribution

As mentioned in section 1.1, three different types of distribution can be distin-
guished. They are classified by the level, where synchronization occurs:

• input data distribution,

• intermediate data distribution,

• output data distribution.

When distributing Studierstube applications, a proper distribution strategy has
to be defined. Two extreme cases are possible:
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• Application content or state is distributed solely by means of DIV ,
tracking data is not distributed at all on slaves.
In variation to this, tracking device data can be used to position associ-
ated objects and user interface ressources (i.e. panel and pen). In order to
prevent application state modifications, caused by tracking distribution,
this data has to be ignored in (excluded from) further processing.
Conforming to terminology used in section 1.1, this distribution policy
can be interpreted as synchronizing application’s intermediate or output
data.

• Applications are not distributed at all. Instead, Studierstube instances
operate in stand-alone mode relying on distributed tracking data and its
consistency to achieve also consistent application state.
This strategy represents synchronizing applications indirectly by means of
input data, obtained by OpenTracker .

Table 3.2 gives an outline of differences of these two distinct distribution tech-
nologies.

OpenTracker distribution Distributed Open Inventor
synchronizing input data synchronizing intermediate/output data
tracking device data context application state (scene graph) context
focus on fastness focus on consistency
unreliable reliable
self-contained data units mutual data units dependencies
state-less state-full

Table 3.2: Comparison between OpenTracker distribution and
Distributed Open Inventor

Mixtures between these two extreme cases are possible, although this introduces
some issues, which have to be addressed. These problems depend on how and to
what extent these two distinct distribution strategies are mixed: If distributed
tracking data as well as DIV can cause modifications in application state, poten-
tial conflicts will arise. Separating responsibility or defining rules of precedence
are possible strategies to resolve these conflicts for individual solutions.
Somehow related to this issue is the problem, how slave associated users are able
to perform operations in applications. Due to the fact that actively distributing
application state on slaves is not directly possible, tracking data distribution
has to be included in any case to let the master actually carry out the operation.
This creates the illusion of being independent of master-slave property.
In section 3.4 these problems are addressed in detail and an example solution
is presented.

3.4 Construct3D

As Construct3D is an Collaborative Augmented Reality application, it supports
multiple users collaboratively working together. Giving a short overview, desired
distribution capabilities are implemented on several levels of synchronization,
as previously defined in section 1.1:
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• Intermediate and output data synchronization:
Distributed Open Inventor is responsible for synchronizing and replicating
the database containing application operation history. This consists of all
geometric operations (including final destination in object movements)
and shared application state (synchronizing widgets on the PIP). Some
remaining parts of the scene graph are also directly distributed by DIV .

• Input data synchronization:
OpenTracker is used to position all user interface ressources (each PIP)
accordingly to distributed tracking data. Relying on this distribution
method, widget states on the panel are indirectly synchronized, but wid-
gets representing application state are excluded from this. Also during
movements of objects, spatial positions are temporarily updated by dis-
tributed tracking data.

In the following, these multi-user capabilities are described in more detail. Dis-
tribution features and conflicts that may occur between these different synchro-
nisation strategies are also comprehensively depicted.

3.4.1 Multi-User concept

Construct3D is ready for supporting multiple users on different hardware and
display setups on multiple sites. The application supports users dynamically
joining and leaving the shared workspace.
Actively collaborating users are usually equipped with tracked devices, panel
and pen for interaction as well as head mounted displays (as displayed in
figure 3.11) for individual viewpoint adaption. Making use of the power of
Studierstube to support various devices, alternative hardware setups are also
possible.

Figure 3.11: A head mounted display and pen, as typically used in Construct3D
setup

Of course, passively watching users (without associating a PIP to their



CHAPTER 3. DESIGN 40

ressources) are also supported. This comes in handy to present to an audi-
ence, what is actually going on, or record movies for observations. Display
hardware with large extents are recommended: A projection wall or a virtual
table, as shown in figure 3.12, may be suitable for presentation purposes. An-
other intended use case of passive users might be having Construct3D running
as some simple kind of service for active users to dynamically join the workspace
by utilizing distribution features.

Figure 3.12: A Barco projection table

For easy visual user distinction, a color theme is assigned to each user. This
color coding can be seen on their panels and all geometric objects, indicating
the user being responsible for object creation. Figure 3.13 shows the virtual
representation of two users collaborating when performing geometric operations
in Construct3D : The results of geometric constructions can be seen beneath the
coordinate space axes. The user’s color theme of each panel is also related to
geometric object colors.

3.4.2 Application scene graph details

As Construct3D is just another Studierstube application, it inherits automati-
cally its distribution features. So, Construct3D is implicitely ready for distri-
bution, sharing its scene graph.
The internal structure of the application’s node kit (representing the context) is
rather simple. Avoiding the dual database problem [MF98], it encapsulates all of
the application’s data. Basically the scene graph hierarchy is composed by com-
mand lists storing all Construct3D operations and its associated counterpart,
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Figure 3.13: Two users collaborating in Construct3D , shown on desktop setup
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the visible geometry. These command lists and its representation (geometric
elements) are implemented by special node kits.
These two distinct parts, forming the scene graph, are strongly related to each
other: Manipulation of geometry causes the creation of new commands in these
command history list. On the other hand, the execution of commands in this
metadata produces deterministic results on visible geometry. Because of its
deterministic and regenerating property, the command list is used for file oper-
ations and undo/redo functionality. The latter use case is also the reason, why
this command list is called UndoRedoListKit .

3.4.3 Increasing distribution efficiency

Especially in long distance distribution, network performance and data through-
put are crucial aspects. The idea is to reduce distribution effort and network
traffic by keeping the geometry private, as this is only redundant informa-
tion, which can be regenerated by performing command executions of shared
UndoRedoListKit data.
By having a HiddenChildNode as parent of all geometry it is effectively ex-
cluded from distribution. Figure 3.14 illustrates the scene graph inside the
application’s node kit called CnDKit . Geometry resides in a subtree below a
HiddenChildGroup, while the UndoRedoListKit is distributed just as the re-
maining children of the root separator concerning various projection related
scene graph parts.

Figure 3.14: Structure of the scene graph inside CnDKit

But as command lists are not self-executable in the sense that they automati-
cally regenerate geometrics after modification, additional processing has to be
done:
On each slave, a sensor is attached to the UndoRedoListKit , observing all
changes. Whenever a modification occurs, it has to be determined, what actions
have to be taken to keep the geometry synchronized and up-to-date.
Also, each PIP sheet is excluded from distribution due to various (partly be-
cause of historic, partly because of efficiency) reasons. This requires to keep
them in sync by other mechanisms.
Figure 3.15 visualizes that PIP sheet geometry is also prevented from distri-
bution by means of a HiddenChildGroup. The parent node, being part of the
PipSheetKit , is implemented as a switch to allow context switching in terms of
changing between different PIP sheets of multiple running Studierstube appli-
cations.
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Figure 3.15: Structure of the scene graph inside PipSheetKit used in CnDKit

3.4.4 Geometry update using the undo/redo list

In order to reduce the amount of scene graph data to distribute, the
UndoRedoListKit plays a major role. Geometry update distribution is based
on the UndoRedoListKit content.

Undo/redo list

UndoRedoListKit is a node kit storing a list of all executed application com-
mands in descriptive form. A list entry, a special node kit , consists of a com-
mand string and associated arguments.
Additionally, the UndoRedoListKit maintains a field , pointing to the current po-
sition in undo/redo list records. This position pointer is used to step through the
undo/redo history: When performing such (undo/redo) operations, the value of
the position field is increased/decreased properly.
When triggering a new application operation, a new command list entry is ap-
pended at the current position. In order to clean up the list from outdated
records, it is truncated after the pointer position.

Geometry update

As each action causes modification of the UndoRedoListKit involving its index
pointer, this field is the key element in assisting to detect changes caused by
distribution.
Unfortunately, updates in UndoRedoListKit caused by DIV distribution are
atomic on a field level and not on the node level. This means that updates
to several fields are distributed sequentially. This is a problem, since there
are multiple fields involved to compose a proper and valid undo/redo state.
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Solving this problem requires to ensure stable conditions in UndoRedoListKit .
A possible solution is the ability to detect and wait for stability and validity.
All this is done by keeping a private copy of the undo/redo position pointer,
indicating the state of the last successful update. Whenever the shared pointer
changes, actions have to be taken. Ensuring stable conditions is done by trial
and error: In the absence of stability, update actions will fail, but are causing no
damage, as no change actually happens. On success, stability has been achieved
so far, as it is needed to perform necessary updates. In this case, the private
copy is updated afterwards to reflect the state update.
Since the undo/redo list pointer is an integer number, updates can be broken
down into several operations, each of them representing a single atomic entry
in the undo/redo list. Updates are performed sequentially to adjust the private
pointer copy towards the distributed pointer. Each of the updates can fail due
to unstability. So these sequential updates are performed until equality between
both pointers is achieved or the first failure is detected. In case of failure, further
updates have to be patiently postponed. So, pending updates are delayed until
the conditions are stable again. This is likely the case the next time the sensor
detects changes. So, the algorithm will have another try in performing updates.
This strategy can be seen as a somehow lazy, but robust behavior.

3.4.5 Collaboration aspect in context to distribution

Each actively participating user is given his private PIP in his own color theme.
Seeing the other user’s panels (mainly for demonstration purposes) implies that
the panel of each user is visible to each other participant and therefore has to
be in a system-wide consistent state. Especially educational teacher-student
scenarios benefit from this fact.
Application behavior is apparently independent of the master-slave property of
DIV , even though application operations are only possible on the single master .
This is achieved by performing tracking data distribution in OpenTracker : Input
device data of a user related to a DIV slave is transmitted to the DIV master ,
where operations are actually performed. DIV distribution ensures that the
effects of the operations are also observable by the user, who caused them. The
system of transfering tracking data to the master , triggering proper reactions at
this place, whose caused effects are again distributed among all slaves, creates
the illusion of being completely independent of the master-slave property.

3.4.6 Personal Interaction Panel synchronization

Some application states are shared among all users: Active layer selection and
layer visibility settings are globally defined. Information about these settings is
stored in fields in the application’s node kit . But this data is not distributed
directly, as these fields are not set up to be part of the field catalogue of the
node kit . This information of temporal nature is shared by integrating it into
the undo/redo history, providing special commands. Widget interaction alters
dynamically the corresponding field and generates the associated command.
By creating field connections to corresponding panel widgets, visual feedback is
guaranteed to be consistent to the global shared state.
Considering user defined states, similar strategies are applied: Multi-value fields
contain entries for each user’s settings, making proper field connections to each
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panel possible. This ensures, that all replicated panels of a certain user are in
sync.

3.4.7 Indirect synchronization mechanisms

Some remaining visual states of the panel do not belong to application states,
but should also be consistently displayed throughout the whole system: Menu
properties (visibility of submenus) and scrolling states are two examples of such
interaction, but non-application states. Keeping these in sync is implicitely
performed as pleasent side effect of tracking data distribution. Even if tracking
data networking is not reliable, most of the time each of the participating sites
should receive data from all involved tracking devices. Although each PIP of a
slave does not directly and locally trigger actions, visual feedback is generated.
So if a user presses a button on his panel, it is likely to be the case that data is
succesfully distributed to all other participants and the visual representations
of this user’s panel in the other participant’s views are updated according to
this.
This mechanism is also used in minor temporary geometric updates: When
moving objects, the position of its geometry is constantly updated to give visual
feedback. Nevertheless, a corresponding move command is not added to the
application history until the object is placed to its final position. Without
tracking data distribution, all other participating sites would not see the progress
of the move operation. Fortunately, distributed tracking data allows to perform
this preview on each other user’s view. Without or on (transient or permanent)
failure of tracking data distribution, they would have to rely on the reliable
fallback mechanism of distributed commands execution.

3.4.8 Conflicts between various synchronization strategies

Paying attention to the synchronization problem described earlier in section 3.3,
it is very important to state, that OpenTracker and DIV messages cannot be
put into total order . Although causality, order and dependency of messages
can be applied to DIV and to a certain degree to tracking data, this does not
work, when mixing both concepts. This introduces the problem how possible
inconsistencies can be prevented. An example to such a problematic synchro-
nization aspect is the object move operation, where both strategies (DIV as
well as OpenTracker) are involved.
To resolve this conflict, attention to data flow has to be paid to: Tracking data
is sent to the master to allow interaction also substitutionally for each slave.
So, OpenTracker networking features are used to indirectly perform application
operations on a central instance, the master . The effects of all operations are
distributed by DIV to all slaves. But as stated before, tracking data is also
used for some minor indirect synchronization features, DIV is not dealing with.
The solution is fairly easy: DIV always overrules OpenTracker and OpenTracker
data is prohibited to cause any transient and permanent application state change
on slaves. This means that tracking data can be used to generate some minor
modifications at a certain instant like displaying dragging status while moving
objects or updating visual menu appearance. Nevertheless, the final result of
a move operation and the visual representation of application states must not
be set by tracking data on slaves. This guarantees consistency by trusting the
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reliability and total message order property of DIV .
Considering data omission failures in OpenTracker data, numeric inaccuracies,
and late joining users, menu appearance (apart from application states) might
be different between several participating sites. Widgets reflecting an applica-
tion state, distributed by DIV , even have to prohibit direct manipulation caused
by tracking data to maintain consistency.
For similar reasons, it is also possible that different objects seem to be involved
in moving operations, not all participants are able to observe the move operation
or the positions at a certain instant are not the same. Reverting and resetting
the dragging operation on slaves afterwards, ensures that the final result is con-
sistent on all participating sites. After all, it is up to DIV to update the moved
object according to its final position. Even if the DIV message is received pre-
maturely (before actually resetting the dragging operation), this strategy works
fine: The reset position is updated according to the final destination determined
by DIV .



Chapter 4

Implementation

According to design considerations presented in chapter 3, some implementa-
tion details shall be roughly outlined. Maintaining the same order in the follow-
ing, OpenTracker , Distributed Open Inventor , Studierstube and Construct3D
are subject of implementation related issues:

4.1 Tracking data distribution by OpenTracker

Networking functionality in OpenTracker is implemented with the help of the
ACE 1 (ADAPTIVE Communication Environment) framework [Sch94]. This
is a platform independent toolkit for and written in C++. It provides a rich
set of components, performing common communication tasks including basic
networking.
As mentioned in section 3.1, datagrams are sent into and received from the
network, interacting with the data flow graph of OpenTracker .
The NetworkSource and NetworkSink functionality is managed in the corre-
sponding modules (NetworkSourceModule and NetworkSinkModule),
while (among other structures) the C++ classes NetworkSource and
NetworkSink serve mainly as data containers.
Internally, the NetworkSender class hierarchy with derived
UdpSender, MulticastSender and UnicastSender and, on the other
hand, NetworkReceiver, UdpReceiver, MulticastReceiver and
UnicastReceiver are responsible for storing network ressource information and
tracking data records, as used in the network (FlexibleTrackerDataRecord).
Station is used to demultiplex tracking data of different devices (stations) on
the receiver’s side.

4.1.1 XML configuration

Both NetworkSource and NetworkSink are created at runtime according to
the XML configuration file via NetworkSource and NetworkSink elements.
These elements (summarized in table 4.1 and table 4.2) allow configuration by
attributes:

1http://www.cs.wustl.edu/˜schmidt/ACE.html
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• First of all, mode specifies the networking mode: The identifiers
”unicast” and ”multicast” are possible, where multicast mode is the
default.

• number defines a station number, a nonnegative integer, allowing to dis-
tinguish tracking data of different devices.

• port identifies the UDP port to send or receive tracking data in both
networking modes.

• multicast-address is used in multicast mode, setting the multicast group
address.

• address has to be specified in unicast mode of a NetworkSource to
identify the address of a server to contact for tracking data.

• By adding the attribute interface, NetworkSink allows the specification
of the network interface to use.

• Finally name in NetworkSink assigns a name to tracking data.

attribute type required default
mode unicast or multicast no ”multicast”

number character data yes
port character data yes

multicast-address character data no
address character data no

DEF unique identifier no

Table 4.1: NetworkSource attributes

attribute type required default
mode unicast or multicast no ”multicast”

number character data yes
port character data yes

multicast-address character data no
interface character data no ””

name character data yes
DEF unique identifier no

Table 4.2: NetworkSink attributes

The name attribute can also be assigned to the NetworkSinkModule in the
NetworkSinkConfig XML element in order to provide additional identification
of the server (see table 4.3).

attribute type required default
name character data yes

Table 4.3: NetworkSinkConfig attributes

Putting all that together, an XML configuration file can look like this:
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<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE OpenTracker SYSTEM "opentracker.dtd">
<OpenTracker>

<configuration>
<NetworkSinkModule name="server name"/>

</configuration>
<NetworkSink mode="multicast" name="keyboard" number="0"

multicast-address="224.0.0.10" port="12345">
<StbKeyboardSource number="0"/>

</NetworkSink>
<NetworkSink mode="multicast" name="keyboard" number="1"

multicast-address="224.0.0.10" port="12345">
<StbKeyboardSource number="1"/>

</NetworkSink>
<NetworkSource mode="multicast" number="0"

multicast-address="224.0.0.10" port="12346"/>
<NetworkSource mode="unicast" number="0"

address="localhost" port="12347"/>
</OpenTracker>

4.1.2 Node implementation

A node (a C++ class derived from Node) has to implement an interface, which
definines how tracking data is communicated:

• A Node, implementing the event generator interface, simply returns 1 in
the isEventGenerator method.

• The method onEventGenerated is called whenever tracking data, rep-
resented by a State instance, is passing the Node instance, following the
path from sources to sinks.

• By calling updateObservers, State data is pushed further down the
data flow graph.

Both NetworkSource and NetworkSink implement the event generator
interface. Calling updateObservers from within onEventGenerated in
NetworkSink propagates State information and extends the sink seman-
tics to intermediate node type. As sources are the origin of tracking data,
onEventGenerated will not be called in NetworkSource.

4.1.3 Module implementation

The corresponding modules implement the node factory interface (deriving from
Module and NodeFactory classes):

• init allows module configuration as set in the XML file.

• The Module is actually started by start,

• while close does final cleanup.

• The method pullState pulls passed down State data for further actions,
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• wheras pushState is responsible for pushing State data into the graph.

• createNode is called when reading the XML configuration file to create
the tree of nodes.

The NetworkSinkModule handles sending tracking data in the pullState
method, while NetworkSourceModule implements pushState to reinsert
received tracking data. These methods have to associate between tracking
data and UDP network ressources, paying attention to station information and
caching State instances.

4.1.4 Multicast UDP implementation

In multicast mode, the NetworkSinkModule simply sends datagrams
to multicast groups as configured by NetworkSink elements, while
NetworkSourceModule (method runMulticastReceiver) has to spawn
one thread per multicast group to listen for incoming tracking data packets.
This multithreading model is needed to prevent process blocking while waiting
for datagrams to arrive. On the sender’s side no additional thread is needed.

4.1.5 Unicast UDP implementation

In contrast to multicast mode and as stated in section 3.1, unicast implemen-
tation has to maintain network membership manually without the help of a
multicast group.

NetworkSinkModule

The multithreading approach is also used in the NetworkSinkModule
(method runUnicastTransceiver), due to the fact that membership infor-
mation has to be received and processed without influencing other tasks. It
performs just inspection of the contents of a datagram containing a single char-
acter and reacts properly. This character distinguishes between poll (’P’) and
leave (’L’) commands.

NetworkSourceModule

Similar to multicast implementation, the threads in NetworkSourceModule
(method runUnicastTransceiver) have to listen for incoming tracking data
packets. If no datagrams arrive (a timeout in receiving packets occurs), polling
is performed regularly. This is done, because the tracking server might have
been terminated. These pPolling requests reassociate clients to the server if
the latter is restarted. Thread termination causes transmission of a single leave
command.

4.2 Distributed Open Inventor

The implementation of the Distributed Open Inventor design (as mentioned
in section 3.2) was also done with the help of ACE 2. Getting notified of
scene graph changes is achieved by attaching sensors to nodes.

2http://www.cs.wustl.edu/˜schmidt/ACE.html
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4.2.1 Synchronizing scene graphs

A master has to observe its shared scene graph (see section 3.2): In the
method shareNode of CDivMain, the implementation class of DIV , a
SoNodeSensor is attached to a SoNode instance. This allows reaction on
changes of the scene graph subtree relative to the node, where the sensor is at-
tached to. A callback function is indirectly called by the method rootChanged.
Even the deletion of this very same node can be detected (indirectly by the
method rootDeleted). unshareNode is the counterpart to shareNode to
disable scene graph distribution.
Inside these notification callbacks, information about changes in effect can be
obtained by retrieval methods of the SoSensor parameter. Evaluating this in-
formation (in sensor scope internally taken from a SoNotRec, the notification
data structure) causes the generation of proper DIV network messages. As
described earlier by Hesina [Hes01], these messages include:

• Update field messages (DIV MODIFY, DIV SOMFMODIFY) to in-
dicate changes of OIV fields,

• structural scene graph modification messages for group op-
erations (DIV ADDCHILD, DIV INSERTCHILD,
DIV REMOVEALLCHILDREN, DIV REMOVECHILD,
DIV REPLACECHILD),

• not further specifiable updates (DIV TOUCHMODIFIED) as well as

• node naming messages, also used in lazy naming (DIV SETNAME,
DIV SETSOSFNAME).

On the receiver’s side, DIV messages coming from the network have to be
interpreted. processMessage of CDivMain is indirectly called to evaluate
the contents of these messages and react properly as indicated by the message
type.

4.2.2 Additional control messages

Some additional DIV messages are available for other useful features:

• Node transfer permits initial transmission of scene graphs
and is handled by a request-response mechanism
(DIV REQUEST NODETRANSFER,
DIV TRANSFERNODE).

• DIV message compression (DIV COMPRESSED) tries to make net-
work traffic more efficient by compressing data of other DIV messages.
This is especially targeted on the node transfer feature.

• Master and slave property can be switched conforming to an-
other request-response mechanism, as described in section 3.2
(DIV REQUEST MASTER, DIV TRANSFER MASTER).
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4.2.3 Network interface

ControlModule defines the interface to implement an underlying network:

• dataReceived should be called within the implementation, when payload
data has been received to notify the associated NetworkProcessor, a
utility base class instance, which has been supplied via constructor.

• sendData is usually called by the NetworkProcessor and has to trans-
mit payload data stored in a buffer of supplied length.

• close should terminate access to the network, which should have been
established on construction time.

Targeted on ACE , ACE ControlModule (derived from ControlModule)
introduces some useful features: Sending and receiving is done in an extra thread
and managed by synchronized queues. Providing a thread allows to perform
network tasks asynchronously without blocking OIV and the rendering process.
Data exceeding a threshold of about 1 KByte can be optionally compressed
(DIV COMPRESSED message).

• sendQueuedData has to actually transmit payload data, as sendData
is already implemented to preprocess (compress) and queue data. It is
called by OutputMessageHandler, working on the output queue.

• queueReceivedData should be called to queue received pay-
load data. dataReceived is automatically called by means of
InputMessageHandler, processing the input queue uncompressing
data, if necessary.

4.2.4 Multicast UDP implementation

ACE RMCast ControlModule inherits all features from
ACE ControlModule and implements missing functionality to actually
join and leave multicast groups as well as send and receive data. The RMCast
library used in this implementation ensures reliability of the otherwise unreliable
nature of the UDP protocol.
Multicast UDP networks can be configured by specifying the multicast group
and port .

4.2.5 TCP implementation

ACE TCP ControlModule is also derived from ACE ControlModule
and conducts all TCP related actions: It establishes server functionality
via ACE TCP Acceptor and tries to discover the network actively via
ACE TCP Connector.
Both classes are derived from ACE Event Handler, a well known ACE con-
cept, to perform asynchronous actions. In the case of ACE TCP Acceptor,
the TCP connection accept functionality is implemented by this mechanism at
the same time.
Established connections are represented by ACE TCP Connection instances
and are stored in ACE TCP ControlModule. This class also utilizes
ACE Event Handler as callback mechanism to react on events concerning
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TCP connections: Whenever TCP is ready to read from or write to a connec-
tion, a certain method is called.

TCPCommand

All message processing is done inside classes derived from base
TCPCommand, each class representing a particular messages type:

• TCPDataCommand contains payload data and interfaces with
ACE TCP ControlModule for sending and receiving.

• Control message TCPIdentifyPeerCommand is sent, whenever a peer
actively establishes a connection. So, ACE TCP Connector is respon-
sible for creation and transmission of such messages. Receiving such a
message causes ACE TCP ControlModule to examine the given iden-
tification, closing redundant connections.

• TCPNewPeerCommand replaces TCPIdentifyPeerCommand,
when an initial connection is established. Apart of the reaction receiving
a TCPIdentifyPeerCommand, distribution of the new peer also has
to be performed.

• TCPDistributeNewPeerCommand contains information of new peers
including TTL lifetime information. This message is sent as reaction to
TCPNewPeerCommand or TCPDistributeNewPeerCommand (if
lifetime information is not expired) to all connections but the one which
triggered message processing. As mentioned in section 3.2, peer identifi-
cation and TTL value has to be examined, optionally establishing nonex-
isting connections via ACE TCP Connector and message forwarding.

TCP networks are configurable by server port , a list of potential peers running
a TCP network (for initial discovery) and an initial TTL value used for new
peer distribution, if directly contacted by a newly participating peer .

4.2.6 TCP multicast UDP hybrid implementation

ACE Bridging TCP RMCast ControlModule derives from
ControlModule and NetworkProcessor. As described in section 3.2,
it is in an experimental state of implementation and stores instance pointers to
a single ACE RMCast ControlModule and one TCP ControlModule.
Data is sent to both networks simultaneously. On data reception, it is processed
and resent to the network, where it was not received.
Configuration options include all multicast UDP and TCP settings.

4.2.7 Open Inventor extension

The OIV implementation, used throuhout this work, is Coin3D3. Its functional-
ity had to be extended to obtain additional information for efficient distribution:

• More precise information on changes of multiple-value fields (SoMField
and derived) is needed to identify parts that have actually changed.

3http://www.coin3d.org/



CHAPTER 4. IMPLEMENTATION 54

• Information on structural scene graph changes (SoGroup and derived)
has to be retrieved.

A SoNotRec object is essential to the core notification feature and accessible
from within any sensor . So this is the place to extend OIV by adding new
members and methods dealing with information of multiple-value field opera-
tions and structural scene graph modifications.
A SoNotRec is mainly constructed in basic OIV classes to initiate the
notification process. Modifying this framework, SoBase and SoField were
extended by a virtual method (createNotRec), transferring SoNotRec con-
struction. In subclasses, this allows to append additional information, ob-
tained by various manipulation methods. For example, SoGroup overloads this
method to store data reflecting the structural scene graph change, SoMField
(and derived) add information about modified multi-value field slots. Acci-
dently, this information is present only in manipulation methods and cannot be
passed down by arguments easily. So this data is temporarily cached and can be
accessed, when the update framework calls the overridden method somewhere
from within the manipulation method. From this point on, the information
resides in SoNotRec and the data cache is not needed anymore.

4.2.8 DivGroup

For convenience, DIV can be easily used by inclusion of DivGroup: Con-
figuration und usage is much simpler than directly performing operations on
CDivMain.
SoDivGroup is a group node, enhanced by DIV capabilities for its subtree.
Configuration effort is reduced to set up OIV fields properly (summarized in
table 4.4):

• First of all, networkLayer is an SoSFEnum indicating the network to
run DIV on: MULTICAST is the default, other options are TCP and
TCPMULTICAST (hybrid mode).

• multicastGroup (of type SoSFString) contains the multicast group ad-
dress to use in multicast UDP or hybrid mode.

• tcpPeers is the counterpart in TCP and hybrid mode, storing a number
of peers to contact initially. Being of SoMFString type, the list can
contain zero or more combinations of host and port address information.
This list is succesively processed, trying to establish a TCP connection.
On successfull connection to a peer , no further action is performed with
the list tail.
Initially contacted peers figure out the addresses of newly arriving peers by
inspecting the TCP connection properties. So it is important to empha-
size that each of these addresses should be globally defined and uniquely
valid, to guarantee that the figured out addresses also comply to this re-
quirements. This is needed, because these addresses are distributed among
other peers in TCPNewPeerCommand messages. If these requirements
are ignored, other peers might fail to contact the desired new peer .
Firewalls might also deny establishing TCP connections. This also can
lead to incomplete networks, lacking of some vital connections.
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• The SoSFInt32 port is the port number of the multicast group in
multicast and hybrid mode as well as the server port in TCP and hybrid
mode.

• nic, a SoSFString, allows to set the network interface for multicast UDP
in multicast and hybrid mode.

• tcpDistributePeersTTL (of SoSFInt32 type) controls the TTL value
used in distribution messages of new arriving peers in TCP and hybrid
mode and defaults to 2.

• The SoSFBool multicastAutoUniqueNaming is enabled by default
(TRUE), indicating that an automatically generated prefix created by
multicast group information should be used in multicast mode.

• manualUniqueNamingPostfix is used in TCP and hybrid mode as well
as in multicast mode, when multicastAutoUniqueNaming is disabled.
This SoSFString value (defaulting to ””) defines a prefix appended to
an unnamed node.
Naming is crucial due to the fact that nodes are identified in DIV by their
names. This implies that names of replicated nodes have to match.

• The flag (SoSFBool) active is used to enable DIV support. Initially,
this is disabled (FALSE).

• isMaster, a SoSFBool flag, allows to determine the master property.

• Triggering (SoSFTrigger) getMaster initiates the
request-response mechanism to become a master .

• initFromMaster (of type SoSFBool) defaults to TRUE, enabling the
node transfer feature.

• Finally the flag (SoSFBool) transferTextures allows disabling trans-
mission of textures and images to reduce network load. It defaults to
TRUE.

Putting all this together, a DivGroup can be represented like this in an OIV
file:

SoDivGroup
{

networkLayer TCP
port 12345
tcpPeers [ "localhost:12346" ]
active TRUE
manualUniqueNamingPostfix "Div_TCP"
initFromMaster TRUE

}

4.3 Studierstube

Stbapi is the core library in Studierstube written in C++. Apart from DIV
implementation (see section 4.2) it contains also distribution management func-
tionality as described in section 3.3.
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field type default
networkLayer SoSFEnum MULTICAST

multicastGroup SoSFString ””
tcpPeers SoMFString [””]

port SoSFInt32 0
nic SoSFString ””

tcpDistributePeersTTL SoSFInt32 2
multicastAutoUniqueNaming SoSFBool TRUE
manualUniqueNamingPostfix SoSFString ””

active SoSFBool FALSE
isMaster SoSFBool FALSE

getMaster SoSFTrigger
initFromMaster SoSFBool TRUE
transferTextures SoSFBool FALSE

Table 4.4: SoDivGroup fields

4.3.1 Distribution management

Client functions of distribution management are part of Stbapi , while the server
resides in the session manager , a stand-alone tool program (sman2).
workspace, the executable program to start Studierstube applications, is con-
figurable by a new additional option to indicate the desired network mode
for an application host: -dtcp (-dt for short) enables TCP mode instead of
multicast UDP mode.

SessionManager

SessionManager opens a server socket for all clients listening for requests.
Message is the base class of all messages of various types and exchanged be-
tween Studierstube and session manager . It defines some basic mechanisms:

• readMessage is used to inspect the contents of a message, setting mem-
ber data accordingly on success.

• writeMessage converts message data to proper network representation.

SessionMessage extends Message by the additional execute method, a
placeholder to perform actions depending on message data.
All messages are derived from SessionMessage, implementing readMessage,
writeMessage and execute. Additionally, a static method for interfacing
with MessageFactory is included to make all Message derived classes known
to distribution management and being able to construct the proper Message
instance from network representation.
Apart from messages carrying mainly user ressource data
(UserKitMessage derived) and those modelling user (AddUserMessage,
RemoveUserMessage) and locale (JoinLocaleMessage,
LeaveLocaleMessage) concepts, there are only few messages remaining:

• StartApplicationMessage as counterpart to
StopApplicationMessage includes data about the desired DIV
networking mode (DIVMode).
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• SetDIVParamMessage is perhaps of highest importance for DIV . This
message contains all parameters needed for DivGroup configuration: DIV
is activated according to a flag, the master-slave property is set and
DIVParam covers information about networking mode and associated
settings.

So, session manager does all DIV reconfiguration by sending a
SetDIVParamMessage to each participating site. With the help of
locale, user, and application messages, it keeps track of participant’s member-
ship, distributed applications and user presence: Locale, Application, User
and Host contain information about related concepts.
Application stores DIV configuration used by SetDIVParamMessage,
which contains DIVMode, application-wide multicast parameters
(DIVMulticastParam) and TCP information (DIVTcpParam) on a
per Host basis. These network settings are created by DIVAddressFactory,
a utility class, which generates unique address and port information by
maintaining counters.
When running DIV in TCP mode, it is important to contact the
session manager by passing a -smo option with globally defined and
uniquely valid network address to workspace. The reason of this is easily
explained: The address of each participant is figured out by inspecting the
TCP connection between session manager and Studierstube. On default, the
session manager (program sman2) is trying to be contacted on localhost,
an address not conforming to the network address requirements, mentioned
before: The address of the participating site, figured out and used by DIV in
TCP mode, might be also localhost. Usually, this causes failures in building
up the network, when not only a single hosts is participating. This is a result
of transmitting network addresses (without any translation effort) to all peers
in each SetDIVParamMessage.

StbDistrManager

StbDistrManager forms the client counterpart to distribution management
in Stbapi . It establishes a TCP connection to session manager and dele-
gates execution of commands to a DistributionStrategy instance, where
LocalDistribution is a dummy implementation without distribution abilities.
Derived RemoteDistribution does message sending and retrieval.

SoContextManagerKit

SoContextManagerKit is called from within RemoteDistribution while
execution of received application and DIV related messages. On the other hand,
it causes also transmission of those messages by calling StbDistrManager
methods:

• loadApplication causes the creation of the SoDivGroup (indirectly
by calling loadApps), used as parent of the application’s scene graph.
After building the application scene graph from stream representation, a
StartApplication message is generated and sent to the session manager .

• setDivParam is called as reaction to the reception of a
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SetDIVParamMessage and does all DIV reconfiguration. So
this is where distribution is enabled.

4.3.2 Distribution exclusion

SoHiddenChildGroup is the implementation of the HiddenChildGroup con-
cept (as mentioned in section 3.3). Even if this implementation seems so small,
it suffices to do all work well. Basically, methods of SoGroup are overridden:

• notify inspects a SoNotRec instance. If the origin of the notification
is not the current node instance, the notification is retriggered, omitting
propagation of the original notification record.
This smart retrigger strategy is needed to indicate that something has
happened in the subtree below, even if the actual origin is hidden by pre-
tending being the origin. Without this, some basic mechanisms including
rendering would likely fail.

• write modifies the behavior of the write action, blocking
scene graph traversal to exclude children from being written to stream.

• For consistency reasons, readChildren disallows children to be read from
stream.

These few modifications to original SoGroup behavior are sufficient to effec-
tively prevent distribution. But changing reading from and writing to streams
impacts also file operations: No children of a SoHiddenChildGroup are pos-
sible in file representation. Compared to the sensor used by DIV , breaking
notification propagation has the same effect on any other sensor attached
somewhere else than in any subtree of the children. Field connections in-
cluding engine concept work fine, as no notification propagation upwards the
scene graph takes place.

4.4 Construct3D

Construct3D is implemented in SoCnDKit. According to the scene graph
structure, depicted in section 3.4, a root separator contains all application spe-
cific nodes, while some additional data is present as fields inside the CnDKit .

4.4.1 Application startup

On application startup, a CnDKit is usually created by reading data from file,
if not obtained by distribution:
workspace is given a program argument like -a c3d.iv to supply a OIV
file containing a SoApplicationKit. A SoApplicationKit aggregates a
SoContextKit to define its context . By means of a SoClassLoader node,
Studierstube is able to locate the library, where custom classes are defined. This
dynamic loading mechanism, as described in section 3.3, is used to get access
to SoCndKit, a custom ContextKit implementation.
User configuration is happening in a similar manner:
The workspace option -uk allows the specification of an OIV file containing
at least one UserKit . Apart from assigning a unique user id , a SoUserKit
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instance consists of nodes storing viewing and PIP information: DisplayKit ,
WindowKit , PipKit and PenKit are part of this data collection to define user
ressources. Although a PIP sheet can be statically assigned via PipSheetKit ,
this is done dynamically in Construct3D .
These ressources directly determine rendering output mode, configure users and
associated PIP ressources, if necessary.
OpenTracker is configured by parsing an XML file, followed by the -tr program
option: StbSink elements are used in this configuration file to interface with
Studierstube, inserting tracking data as 3D events into the scene graph.
In distributed operation mode, a locale has to be specified to join to by supply-
ing an argument like -jl default. All but one Studierstube instances must not
specify the -a argument (unless users intend to load multiple applications), as
the application scene graph is obtained performing node transfer .

4.4.2 Dynamic initialization

The ContextKit interface defines useful methods to dynamically initialize a
SoContextKit instance like SoCnDKit:

• checkWindowGeometry is perhaps one of the most important meth-
ods:
In case of absence of a scene graph, it is built according to the structure
shown in section 3.4 including the HiddenChildGroup.
If the method is called and the structure is already present, it is likely
to be the case that it was initialized by distribution. If the slave prop-
erty was set, the implementation has to find the SoHiddenChildGroup
instance and add its undistributed subtrees manually. (Recalling the be-
havior of a HiddenChildGroup in section 3.3, distribution of subtrees is
effectively blocked, but the parent is actually replicated.) Finally the
SoUndoRedoListKit instance has to be searched for to attach the
sensor triggering geometry regeneration.

• checkPipGeometry is the place to focus on PIP sheet creation, used as
template for all users.
In Construct3D , the PIP sheet layout is dynamically loaded from a sepa-
rate file (pipSheet.iv) and added as child to a SoHiddenChildGroup
instance, previously defined as trunk in c3d.iv and found by applying a
search action to attach the PIP sheet geometry to.

• checkPipConnections allows initial PIP sheet configuration.
SoCnDKit performs operations on its database (pipLayouts), associ-
ating user id to PIP sheet geometry. This is needed to distinguish each
user’s PIP and being capable of determining user information when deal-
ing with interface actions.

• checkPipMasterMode is used for additional processing depending on
the master-slave property. As this method is called, whenever this prop-
erty changes, this is the central position to set up interfaces between the
application and each PIP properly.
In master mode, callbacks are registered to react on user’s PIP actions.
On slaves, most of these callbacks are undesired, as the master has to
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perform all actions, relying on tracking data distribution as emphasized
in section 3.4. Some callbacks have to be present also for slaves to prevent
direct widget interaction.
Also, field connections are set up between SoCnDKit fields and PIP in-
terface elements. These fields (summarized in table 4.5) automatically
keep PIP sheet appearance in sync to various application states. Instead
of adding these fields to the catalogue to perform direct synchronization,
application state is distributed by special commands.
undoAvail and redoAvail (both SoSFBool) determine, if undo and
redo operations are allowed. As there exists a single shared undo/redo
history, no distinction between each user is made. In fact, simple
field connections to interface elements are set up to enable and disable
them properly.
The activeLayer field (of type SoSFInt32) is connected via engines to
interface elements visualizing the current, globally defined active layer.
Each element of the also globally for all users defined layerOn field array
(of type SoSFBool[]) is connected to the layer related widget indicating
its visibility.
Finally, drawPoints contains user related settings of type SoMFBool.
This field specifies, if point setting or selection mode is active. An engine
is responsible for selecting the proper user value of this multi-value field .
This field connection controls the appropriate widget on the user’s PIP .

• setMasterMode is called, whenever the master-slave property changes.
Consequently, this method is also executed on startup.
A master tries to read from a special file called loadOnStart.iv, looking
for an UndoRedoListKit exactly in the same manner, as saved files are
treated: On success, its content is copied to the instance being part in the
scene graph and undo/redo list commands are executed.
Slaves must also execute undo/redo list commands until the actual index
position, but instead of reading from file, the UndoRedoListKit is already
up to date by node transfer caused by DIV . An initial execution is neces-
sary, because the sensor cannot be attached to the UndoRedoListKit in-
stance before node transfer takes place: Program execution in SoCnDKit
is not started, until an instance has been previously created by processing
OIV file format interpretation obtained from the node transfer stream.
Also, some minor differences between masters and slaves are dealt with
in this method to allow smoothely transitions in this property.

field type initialization
undoAvail SoSFBool FALSE
redoAvail SoSFBool FALSE

activeLayer SoSFInt32 0
layerOn SoSFBool[] {TRUE, FALSE, FALSE, ...}

drawPoints SoMFBool []
pipLayouts SoMFNode []

Table 4.5: Important SoCnDKit fields (not being part of the field catalogue)
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4.4.3 Undo/redo list

UndoRedoListKit is implemented in SoUndoRedoListKit. SoCnDKit in-
stantiates a single SoUndoRedoListKit to operate on. Undo/redo function-
ality is done in a few methods:

• findUndoRedoList is the recommended way to search for and retrieve
the SoUndoRedoListKit instance included in the scene graph.

• undo performs a single undo operation,

• while redo executes a redo.

• redoAll is used in file loading to perform several redo operations as a
whole. Commands are executed until the index pointer is reached.

• undoRedo does a similar thing and is called on slaves as reaction on
changes caused by DIV . The algorithm executes several undo/redo com-
mands, processing the working queue.

SoUndoRedoListKit

To the core, SoUndoRedoListKit aggregates SoCommandKit items, or-
ganized in an ordered list. This information is stored in fields of restricted
accessibility level, also summarized in table 4.6:

• undo redo List (of type SoMFNode) contains all SoCommandKit
instances,

• whereas undo redo List pos (SoSFInt32) resembles the information,
pointing to the current position in that list.

startTime is present only for informational purposes.

field type default
undo redo List SoMFNode []

undo redo List pos SoSFInt32 -1
startTime SoSFTime 0.0

Table 4.6: SoUndoRedoListKit fields

To access and manipulate these fields, the SoUndoRedoListKit provides pow-
erful methods:

• getNumOfItems retrieves the number of undo/redo list entries,

• while getListPos returns the index pointer, ranging from -1 to the posi-
tion of the last entry.

• getCommandLine can be used to return a particular SoCommandKit
instance. It ensures maximum flexiblitity, whether the undo/redo list
record at the current position is of interest, or random access to any com-
mand in the list by supplying an index as parameter prefered.

• incListPos increments the undo/redo list position (used in redo opera-
tions),
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• while decListPos performs decrementation (used when undoing opera-
tions).

• Moreover, setListPos directly manipulates the index, pointing to the
current undo/redo list record.

• truncateList flushes and truncates the undo/redo list after the current
position. This can be also used to clean the whole list on reinitialization.

• copyList sets all internal fields according to the settings of another
SoUndoRedoListKit instance. This is useful in the case of file load-
ing.

• Finally, add is used to add a new undo/redo list record
(SoCommandKit) at the current index position, flushing the list
beyond this position pointer before and incrementing the pointer
afterwards to guarantee a consistent state.

In the following, a small example of an UndoRedoListKit in OIV file format is
given. It represents two operations, adding a point and selecting it afterwards:

DEF undo_redo_List SoUndoRedoListKit
{

undo_redo_List [
SoCommandKit {

command "add"
commandPos 0
objectName "P_0"
objectType "Point"
selectedObjectNames [ ]
position 0.1 0.2 0.1
userID 0

},

SoCommandKit {
command "select"
commandPos 1
objectName "P_0"
selectedObjectNames [ ]

} ]
undo_redo_List_pos 1

}

SoCommandKit

As it was already observable in the small example before, SoCommandKit
contains many fields to cover information about a single operation. The most
important fields of table 4.7 shall be explained:

• The SoSFName command determines the carried out command.

• objectName specifies the name (SoSFName) of a single object an op-
eration is associated to,
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• while selectedObjectNames contains the names (SoMFName) of sev-
eral objects, if the operation relies on multiple objects.

• objectType (of type SoSFName) is the type of the object in object
creation operations.

• The user id of any operation, related to a certain user, is stored in userID
of type SoSFInt32.

field type default
command SoSFName ””

commandPos SoSFInt32 0
objectName SoSFName ””
objectType SoSFName ””

filePath SoSFName ””
selectedObjectNames SoMFName [””]

position SoSFVec3f 0.0 0.0 0.0
startPosition SoSFVec3f 0.0 0.0 0.0
endPosition SoSFVec3f 0.0 0.0 0.0
degreeNew SoSFInt32 0
degreeOld SoSFInt32 0

sliderValueNew SoSFFloat 0.0
sliderValueOld SoSFFloat 0.0

layer SoSFInt32 0
activeLayerNew SoSFInt32 0
activeLayerOld SoSFInt32 0

layerOn SoSFBool FALSE
userID SoSFInt32 -1
appID SoSFInt32 -1
time SoSFTime 0.0

Table 4.7: SoCommandKit fields

None of these fields can be directly accessed, but numerous retrieval methods
are provided.
SoCommandKit instances are not created directly. Instead, a wide range
of derived classes are present, offering a convenient way to construct new
undo/redo list records. All of these subclasses are not known to OIV as separate
node types. Nevertheless, the mechanism is fairly simple:

• By directly creating a specific subclass, all relevant parameters of the more
general base class are set and the instance can be treated like any ordinary
node, as the base class is a complete node implementation. Especially,
adding to SoUndoRedoListKit and writing to stream are possible.

• When reading from stream, SoCommandKit instances are created, as
OIV cannot distinguish between subclasses and even does not know any-
thing about them. But this suffices, as internal fields of the general
SoCommandKit define command and associated parameters, provid-
ing an interface to retrieve data. Subclasses offer additional convenience
methods, mainly to classify the SoCommandKit instance and also for
further information.



CHAPTER 4. IMPLEMENTATION 64

All SoCommandKit subclasses are closely related to Construct3D application
features:

• SoAddCommandKit is not intended for direct use and base for all cre-
ation commands:

– A SoAddPointKit represents a point generation operation.

– SoAdd2DPrimitiveKit covers major 2D primitives (line, circle,
ellipse and triangle),

– while SoAdd3DPrimitiveKit is the 3D counterpart (sphere, cylin-
der, cone, box).

– SoAddCurveKit is related to free-form curves (of approximation
or bezier type),

– whereas SoAddSurfaceKit represents surfaces (of approximation
or b-spline type).

– Planes are added to the undo/redo history by SoAddPlaneKit.

– Parameters for boolean or construct solid geometry operations are
stored by instantiating a SoAddBoolKit.

– Sweeps are represented in the undo/redo list by SoAddSweepKit.

– Data about slicing is added to history by creating a SoAddSliceKit.

– SoAddIntersectionKit covers information about intersection
curves.

– SoAddAngleBisectorKit is related to a bisector angle.

– Finally, SoAddTextKit concludes the list of creation commands
adding textual measurement information.

• Selection changes are generated by instantiation of a SoSelectKit,

• and SoDeselectAllKit is a special command to clean selection.

• Whenever an object moves, a corresponding SoMoveKit is constructed.

• SoDeleteKit represents deletion of certain objects,

• removing a single object can be done by adding SoDeleteOneKit to
undo/redo history.

• Curve creation parameters can be altered by means of a
SoRebuildCurveKit.

• General transformations (translation, rotation, mirroring) are represented
by SoTransformKit.

• With SoChangeLayerKit, objects can be moved between different lay-
ers.

• Changing the active layer causes instantiation of SoActiveLayerKit,

• while information about layer visibility is added via SoLayerOnKit to
the undo/redo list.
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• SoDrawPointsKit represents draw vs. selection mode property.

• Various slider value changes used for curve and surface creation are dis-
tributed by instantiating a SoSliderValueKit.

• SoLoadFileKit corresponds to the VRML file loading mechanism.

Some operations, particularly geometric construction functions, generate a
preview to give visual feedback before actual execution. This preview
is also implemented as single SoCommandKit, but not added to the
SoUndoRedoListKit. Furthermore, this preview is not distributed. So, be-
fore undoing or redoing, the effects of any preview command have to be reverted.

4.4.4 Geometry update detection and execution

As described in section 3.4, a sensor is used to detect updates in
the SoUndoRedoListKit. SoUndoRedoListSensor is attached to this
node kit , observing changes. It maintains pointers to SoCnDKit and
SoUndoRedoListKit and triggers updates in the callback method:
On slaves and if the origin of the detected update is the SoUndoRedoListKit,
undoRedo of SoCnDKit is called. This method conducts undo/redo oper-
ations, inspects the index pointing to the last successful executed undo/redo
operation and determines the direction of adjustment to the updated index.
Undo/redo operations are performed step by step, calling undo or redo, as
appropriate and monitoring success and failure: The private index pointer is
updated every time, after an atomic operation is actually carried out. An un-
successful attempt is characterized by returning false without altering anything.
In this case, the loop is prematurely terminated, waiting patiently for the next
distribution update to retry also the remaining pending operations.
Apart from this important undo/redo execution, the same sensor is used to
check, if undo/redo is possible in the current instant, setting availability field
information properly to give visual feedback to the user. This minor task has
to be performed independently of the master-slave property.

4.4.5 Personal Interaction Panel

As mentioned before, the panel is loaded from pipSheet.iv. This OIV
file references other subfiles, performing further structuring. For instance,
pipLayout.iv defines all PIP sheet geometry, while routings.iv adds a bunch
of engines, used to define and constrain interaction possibilities.
The statically defined interface behavior, residing in routings.iv and imple-
mented by engines, includes (for details see figure 4.1):

• simulating drop-down menus by displaying submenus according to the
toggle state of its parent menu button,

• simulating menu bar behavior (File, View and Edit menu bar as well as the
Transform, Intersect , Construct , 2D and 3D menu bar) by constraining
that at any instant only a single submenu is exclusively visible,

• simulating scrolling through a set of widgets by arrow buttons (Layers
widget group),
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• simulating radiobutton behavior in active layer selection buttons (Layers
widget group),

• constraining interaction between layer visibility and active layer selection,
so that an active layer cannot be made invisible and, on the other hand,
activating a layer implies turning its visibility on.

Figure 4.1: Interface panel in Construct3D

The interface behavior is implemented statically in OIV file. Application code
focuses solely on interfacing with the panels, not needing to pay attention to
the interaction logic. So, each panel is a self-contained system, being completely
independent of code in terms of performing and constraining user interaction
functionality. The strict separation of interaction logic and interface between
application and panel is proven to be very useful in distribution.
To visually distinguish each user’s panel, a color theme is applied to each of
them. Hence, pipSheet.iv does appearance altering performed by applying
characteristic material colors and textures (as shown in figure 3.13). As each
user is given the same set of PIP sheet geometry definitions with all possible
color schemes, selecting the proper appearance is done in a similar manner to
ordinary switches in OIV . In contrast to them, the index of the child to ren-
der is not specified as field located within the node, but defined elsewhere in
the scene graph by utilizing context sensitive scene graph traversal [RS05] func-
tionality: A SoContext instance in the scene database defines the index of
the child to render (via context property ”Stb.Owner”), when traversing the
SoContextSwitch containing all PIP sheets.
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4.4.6 Dynamic user management and master-slave prop-
erty

Studierstube supports users dynamically joining and leaving the workspace. So
Construct3D has to handle the arrival of late joining users. The number of users
in a single Studierstube instance can be freely defined.
Each PIP assigned to a user is automatically activated in the scene graph by
context sensitive functionality described earlier. Construct3D has to do setup
on all emerging panels, including creation of field connections, attaching sensors
and registering callbacks depending on the master-slave property. As mentioned
before, checkPipMasterMode is responsible for this task.
The majority of application operations are related to a certain user and displayed
in his own color theme. Each user id is uniquely associated to a theme. This
implies a field in SoCommandKit storing the associated user id . Recalling
table 4.5, all settings privately defined for each user are basically of SoMField
type. This grants access to user settings by indexing with the user id , while
global settings to be shared among all users are of SoSField type.
Distribution features of Studierstube automatically assign master-slave prop-
erty defined by the session manager . Terminating the master results in trans-
fering this property to one of the remaining slaves. This property change
is also handled in checkPipMasterMode (for PIP sheet related tasks) and
setMasterMode.

4.4.7 Slave specifics

Roughly speaking, a master behaves very similar to a stand-alone application
instance. As depicted earlier, it has only to ensure that distribution can suc-
cesfully take place by creating an appropriate scene graph and implementing
custom nodes properly. Besides, it does not actually take care of the fact, if
distribution is actually enabled or stand-alone operation mode is on.
In contrast to that, the functionality of a slave is in several aspects different.
Apart from the requirement to inspect undo/redo list changes and react prop-
erly, they have to pay also attention to other issues: On slaves, all operations
causing transient and permanent application state changes are prohibited.
Interfacing with any of the widgets in the PIP causes not a single effect in the
slave application instance. In contrast to a master , the majority of callbacks
are simply not activated.
Executing operations on the master virtually creates the illusion of being able to
directly perform interface operations in the local application instance. Tracking
data distribution is responsible for this behavior. Furthermore, visual feedback
of application state is caused solely by DIV distribution. Uncritical interface
states are excluded from this.
In move operations, local modifications are allowed until the instant, when the
manipulation is going to be persistent. At this moment, the previously saved
position is recalled. DIV updates the actual as well as the saved position. This
makes the resetting mechanism completely independent of the processing order
of DIV and OpenTracker data updates.
Also autoloading of a startup file (loadOnStart.iv) is disabled on slaves. In-
stead, the distributed undo/redo list is executed, which includes the contents of
the startup file previously read on the master .



CHAPTER 4. IMPLEMENTATION 68

The master-slave property is obtained by the context of Studierstube. An
associated member variable of SoContextKit is accessible via method
getMasterMode. The proper context of any node can be determined by
getAnyContextFromNode in SoContextManagerKit. As SoCnDKit is
derived from SoContextKit, this is not necessary from code within this class.
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Conclusion

In application of all previously presented implementation efforts, some results
could be gained. This work is concluded by giving an outlook to future im-
provements.

5.1 Results

Running DIV on TCP offers for the first time long distance distribution pos-
sibilities without the effort for tunnelling or relying on special infrastructure
(MBONE [Eri94]).
Platfrom independence is no problem, as long as a port for any involved software
framework exists. Coin3D1, the OIV implementation from Systems in Motion,
is available for Microsoft r© Windows r©, a wide range of UNIX , Linux and BSD
platforms as well as for Mac OS X (from Apple). Several GUI bindings plug
seamlessly into Coin3D : Microsoft r© Windows r©, Xt/Motif and native GUI for
Mac OS X as well as cross-platform Qt2 (from Trolltech) are supported. Uti-
lizing ACE 3, ported also on a wide range of platforms, DIV is also capable of
running on many operating systems. All these software frameworks are imple-
mented in C++.

5.1.1 Distributed Open Inventor

Plain DIV was tested on Microsoft r© Windows r© machines at
Vienna University of Technology and at Graz University of Technology
hosting Linux computers.
The test setup included a simple viewer application. This application allows
distribution of the contents of an OIV file by utilizing a DivGroup. Pro-
gram arguments thoroughly specify distribution configuration options: The
master-slave property is set, the network layer can be specified as well as
associated network configuration data. Scene graph content is transferred by
using the node transfer feature.
Figure 5.1 shows a typical test case, distributing a quite complex 3D model

1http://www.coin3d.org/
2http://www.trolltech.com/products/qt/index.html
3http://www.cs.wustl.edu/˜schmidt/ACE.html
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with simple interaction functionality across different platforms with individual
viewpoint selection. DIV is running on established TCP connections between
Vienna and Graz. Depending on the amount and complexity of scene graph
data, initial node transfer takes some time. But after this initialization state,
interaction is fast and responsive.

Figure 5.1: Cross-platform, long distance DIV distribution using TCP : Master
on top right and remote slave on bottom left

Comparing the multicast UDP and TCP implementation, it is easily observable
that TCP performance is basically overtopping multicast UDP , especially in
small networks: Generating huge amounts of DIV updates by heavily manipu-
lating the scene graph contents with draggers, network data throughput in the
TCP implementation seems to be much better. On multicast UDP , the send
queue gets full comparatively fast, which causes the render thread blocking the
master . Consequently, interactive manipulation is not possible while having
the render thread waiting for dequeuing to take place. Maintaining the same
conditions (queue size) while running these massive stress tests, this blocking
phenomenon could not be achieved on TCP . This congestion behavior is
already caused in the buffering queue used for a single purpose: synchronizing
data packets between rendering and network thread. Data packets are fetched
from this queue by the TCP network thread obviously faster than in the
multicast UDP implementation. This leads to the assumption that the add-on
library to ACE , guaranteeing reliable multicast UDP is sub-optimal in terms
of performance and data throughput. TCP and its inherent reliability feature
seems to be the better choice even for local networks, offering the possibility to
run multicast UDP directly.
Of course, more than two participating sites can be involved in distribution.
Further cross-platform tests included more computer systems and up to
5 application instances. Participating sites were dynamically joining and
leaving the distribution network, application instance start order is irrelevant.
Deficiencies in performance and responsiveness were not observable.
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Hybrid networking was also tested, interconnecting network fragments running
TCP and multicast UDP . Due to its early stage of development, attention had
to be paid to avoid any network redundancy .
As reworked Distributed Open Inventor was proven to be stable, its functional-
ity will be included as an add-on patch in the next release of Coin3D .

5.1.2 Distribution within Studierstube

Studierstube4 is also a cross-platform framework, primarily running on
Microsoft r© Windows r© and Linux machines.
First tests were performed in a scenario with a simple painting application,
shown in figure 2.6. This application bases on DIV , distributing PIP sheet con-
figuration options and object modifications caused by painting actions. Slaves
are completely passive, visualizing interaction results of the master . So, no
multi-user interaction mode is implemented in this test case and tracking data
distribution is not necessary. However, it is enabled for cross-platform testing,
as illustrated in figure 5.2.

Figure 5.2: Cross-platform, long distance DIV (using TCP) and tracking data
(using unicast UDP) distribution in Studierstube: Master (top right) and re-
mote slave (bottom left)

Similar to plain Distributed Open Inventor tests, further test cases involved sev-
eral computers and more Studierstube instances. Since networking was effec-
tively decoupled from rendering in DIV , each application instance seems to
contain robustness to a very high degree. So network latencies were not able
to cause an additional decrease of performance on other participants of the
distribution system.

5.1.3 Distributed Construct3D

Construct3D is finally fully benefiting from all distribution features: Multi-
user functionality raises the demand for tracking data distribution. Supporting

4http://www.studierstube.org/
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master transfer ability is desired for more flexible use cases.
Generally speaking, a very high degree of flexibility is ensured by three orthog-
onal aspects:

• User configuration and its associated ressources (output devices, panels
and pens) can be freely specified.

• The participating site originally hosting the application (DIV master) can
be selected without restriction and is completely independent of associ-
ated users and their ressources. Startup order is completely insignificant
and the master automatically migrates by session management on termi-
nation.

• Finally, by configuring OpenTracker properly, tracking data distribution,
is independent of all other aspects.

This means each Construct3D instance can be configured in multiple ways by
defining the number of users, its associated ressources, specifying application
retrieval method (by distribution as slave or by file input as master) and tracking
data obtaining strategy:

• As already mentioned in section 3.4, some kind of central and persis-
tent Construct3D service can be established without any active user and
rendering output associated. In contrast to this, dynamically migrating
Construct3D application hosts with actively collaborating users directly
associated, is also easily possible. The configuration effort is not difficult,
as contacting the session manager performs all bootstrapping.

• User configuration is quite unrestrictive: It suffices that each user has a
unique user id , although selecting sequential numbers starting from 0, is
recommended. (In addition to that, a color theme has to be present.)

• As OpenTracker data distribution network is completely independent of
the Distributed Open Inventor network, a separate stand-alone tracking
server, even without Studierstube running, can be realized, distributing
tracking data to all participants. On the other hand, multiple tracking
data distributors, whether stand-alone OpenTracker instances or inte-
grated into Studierstube, can be deployed.

Figure 5.3 shows three distributed Construct3D instances running on desktop
setup. In this non-immersive setup, each of the two actively collaborating users
is associated with one Studierstube instance. The remaining instance on the top
belongs to a passive user without associated interaction devices.
In this test case, it became clearly evident that geometric recalculation was the
limiting factor of performance. Obviously the goal of all efforts was achieved:
Distribution of application commands is performed very quickly, but geometry
updates can take some time, if complex geometry dependencies and operations
are pending. In favor of unburdening the master , each participating site became
autonomous in performing geometric recalculation. This is applied decentral-
ization in terms of geometric operations.
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Figure 5.3: Long distance DIV (using TCP) and tracking data (using
unicast UDP) distribution in Studierstube running Construct3D : The master
(associated with first user in blue color theme) is on bottom left, a slave (asso-
ciated with second user in red color theme) is displayed on bottom right and an
additional slave on top (a passive viewer) is also present.
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5.2 Future work

5.2.1 Network connection establishment issues

As described in section 3.2, TCP connections to a newly arrived peer are ac-
tively established by all but one other peers forming the network at this instant.
(A single peer is excluded, as a connection from the initially contacted peer
already persists.) This can cause trouble, when the peer is located behind a
firewall . A mechanism to notify the peer of all network participants, to whom
connections could not be established, would resolve this problem.
Currently, even if Studierstube is combined with the session manager , this prob-
lem persists with late joining participants located behind a firewall . Although
the session manager notifies all other participants indirectly by reconfiguring
the list of potential initial peers, this causes no reestablishment of TCP connec-
tions, if they are already part of a distribution network. The list of all peers is
also transferred to the late joining participant, but according to its connection
establishment strategy, no further action is performed, if a TCP connection
could be successfully established.

5.2.2 Hybrid networks

As stated in section 3.2, hybrid networking should be extended to run a protocol
making use of potential redundancy in network topology . The purpose of this
protocol is to detect network redundancy in advance and react properly by de-
termining those network nodes, where bridging functionality has to be disabled
to prevent packets from endlessly travelling in the network. On the other hand,
disabled bridging functionality has to be immediately reactivated, if the network
is separated under any circumstances. With other words, the protocol has to
ensure that at any instant the network conforms to spanning tree property in
actual network traffic data flow .
This would put hybrid networking out of its experimental stage and could be
integrated in Studierstube to allow hybrid networking for more effective distri-
bution capabilities. Hybrid networks are expected to be suitable for common
application scenarios: Running multicast UDP on local networks of participat-
ing organizations (schools, universities, ...) is usually possible, but several of
these networks have to be interconnected by TCP . Choosing heterogenous net-
work protocols helps keeping the number of TCP connections as low as possible,
especially in large-scale environments.

5.2.3 Large-scale and extensive performance tests

Up to now, distribution functionality was tested only for a relatively small num-
ber of participating sites (about 5). In the future, large-scale and comprehensive
scalability tests should take place, paying also attention to performance and data
throughput. Bottlenecks that might arise, could be possibly prevented by recon-
sidering the network topology , as this has great influence on scalability issues.
Ideally, these tests should be coupled with improved hybrid network support, as
a result of the capability to treat network ressources more efficiently.
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