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Kurzfassung

Diese Dissertation beschäftigt sich mit verschiedenen Aspekten bei der Mod-

ellierung von �niten Mischmodellen wie Modellidenti�zierbarkeit, Modell-

diagnose und Software-Implementierung. Das Hauptaugenmerk liegt bei

�niten Mischungen von generalisierten linearen Regressionsmodellen. Die

Popularität dieser Modelle ist in den letzten Jahrzehnten enorm gestiegen,

da die Schätzung durch die heutzutage stark gestiegene Rechenleistung bei

Computern erleichtert wurde. Verschiedene Varianten existieren wie Modelle

mit zufälligen E�ekten für den Achsenabschnitt oder Modelle mit begleiten-

den Variablen, um die Gewichte der Komponenten zu charakterisieren.

Hinreichende Bedingungen für die Identi�zierbarkeit werden gegeben,

wobei �nite Mischungen von multinomialen logit Modellen den interes-

santesten Spezialfall darstellen. Finite Mischungen von multinomialen

Verteilungen sind nämlich im Gegensatz zu anderen komponentenspezi�s-

chen Verteilungen wie die Normal-, Poisson- oder Gammaverteilung nicht

generisch identi�zierbar.

Die Verwendung von Resampling-Methoden zur Modelldiagnose im Rah-

men von frequentistischer Maximum Likelihood Schätzung wird diskutiert,

und verschiedene mögliche Verwendungszwecke werden unterschieden. Die

Anwendung wird an mehreren Beispielen veranschaulicht. Dieser Ansatz

erweitert bzw. vereinigt frühere Anwendungen der Bootstrap-Methode

(Münchhausen-Methode) zur Modelldiagnose. Mögliche Wege, das Label-

Switching Problem zu lösen, das in diesem Zusammenhang ähnlich wie bei

der Bayesianischen MCMC Schätzung auftritt, werden diskutiert.

Die Implementierung im R Paket �exmix wird beschrieben, indem die

Grundprinzipien des Designs skizziert und Details der Implementierung
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diskutiert werden. Diese Details zu kennen ist notwendig für das Schreiben

neuer Modelltreiber für die komponentenspezi�schen Modelle und die be-

gleitenden Variablenmodelle. Die Verwendung des Pakets wird an mehreren

Beispielen mit künstlichen und echten Daten veranschaulicht. Zusätzlich

werden auch Beispiele für das Schreiben neuer Modelltreiber gegeben.



Abstract

This thesis covers di�erent aspects in �nite mixture modelling such as model

identi�ability, model diagnostics and software implementation. The focus is

on �nite mixtures of generalized linear regression models. The popularity of

these models has tremendously increased in the last decades as estimation

was facilitated given the nowadays easily available computing power. Dif-

ferent variants exist such as random intercepts models or models including

concomitant variables for characterizing the component weights.

Su�cient conditions for identi�ability are given where �nite mixtures of

multinomial logit models are the most interesting special case. This is due

to the fact that �nite mixtures of multinomial distributions are not generi-

cally identi�able in contrast to other component speci�c distributions such

as Gaussian, Poisson or gamma.

The use of resampling methods for model diagnostics in a frequentist

maximum likelihood setting is discussed and di�erent possible purposes dis-

tinguished. The application is illustrated on several examples. This approach

extends or uni�es previous applications of the bootstrap for model diagnos-

tics. Possible ways to solve the label switching problem which also occurs in

this setting similar as in Bayesian MCMC estimation are discussed.

The implementation in the R package �exmix is described outlining the

design principles and discussing implementational details. To know these

details is necessary for writing new drivers for the component speci�c models

and concomitant variable models. The usage of the package is illustrated

on several examples for arti�cial data and real world data sets. In addition,

examples for writing new model drivers are given.
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Chapter 1

Introduction

This thesis is concerned with the identi�cation and estimation of �nite mix-

ture models. Finite mixtures are a popular method for statistical modelling

due to their �exibility and interpretational advantages for certain applica-

tions. The main focus is on mixtures of regression models. They have in-

creased in popularity in the last decades and di�erent special cases have been

applied in a lot of areas. However, a thorough investigation of the properties

of the general model class are still missing.

In this thesis general characteristics of this model class such as identi�a-

bility are discussed and su�cient conditions to guarantee identi�ability are

given. Identi�ability is a theoretic concept and theoretic identi�ability does

not guarantee practical identi�ability and the presence of theoretic identi�-

ability problems does not exclude that these models can be reasonably used

or that sensible results can be derived, such as in latent class analysis where

in general only local identi�ability can be guaranteed and the presence of

di�erent parameterizations for the same mixture is even sometimes known.

To complement the theoretical results and to allow data set and model

speci�c conclusions model diagnostics are an essential tool. They can be

used to check for identi�ability problems. In addition the model �t can be

assessed or a suitable model selected. Model diagnostics can rely on stan-

dard asymptotic theory or resampling methods can be applied. We focus

on bootstrapping techniques which may provide additional insights given the
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CHAPTER 1. INTRODUCTION 2

asymptotic results. The application of resampling techniques is in general

straightforward and these methods are easily implemented even though the

methods are computationally intensive. However, other problems arise simi-

lar to those already known for Bayesian estimation, such as label switching.

The estimation of these models with the EM algorithm is implemented in

the package �exmix (Leisch 2004) in R, an environment for statistical com-

puting and graphics (R Development Core Team 2006). The package design

and implementational details are described and the application illustrated.

All computations in this thesis are made in R using packages �exmix (Leisch

2004) and �exclust (Leisch 2006).

1.1 Finite mixture models

Finite mixture models are a popular technique and are used in a lot of dif-

ferent areas, such as astronomy, biology, marketing or medicine. On the one

hand they provide a �exible method for modelling unobserved heterogeneity

and on the other hand they can be applied to approximate general distribu-

tion functions in a semi-parametric way. Finite mixture models have been

known for more than 100 years. Early applications are given in Newcomb

(1886) and Pearson (1894). An introduction and overview on mixture models

are given in the following monographs: Everitt and Hand (1981); Tittering-

ton et al. (1985); McLachlan and Basford (1988); McLachlan and Peel (2000)

and, recently, Frühwirth-Schnatter (2006).

The popularity of �nite mixture models was damped at the beginning

due to estimation di�culties where moment estimators and graphical meth-

ods were used. With the introduction of the Expectation Maximization (EM)

algorithm (Dempster et al. 1977) maximum likelihood estimation became the

most popular estimation method due to its advantages, such as easy, straight-

forward implementation and general applicability. The EM algorithm is in

fact not a single algorithm, but a framework for maximum likelihood estima-

tion where di�erent component speci�c models can be speci�ed. In addition

there exist variations such as the stochastic EM (SEM; Diebolt and Ip 1996)

or the classi�cation EM (CEM; Celeux and Govaert 1992). These modi�ca-



CHAPTER 1. INTRODUCTION 3

tion have been proposed to overcome known di�culties of the EM algorithm

such as slow convergence or only convergence to a local optimum.

Bayesian estimation became feasible with the introduction of a Gibbs

sampling scheme using data augmentation (Diebolt and Robert 1994). Even

though this sampling scheme can be easily implemented, new problems have

arisen with these MCMC methods such as label switching or empty compo-

nents during sampling with improper priors. The convergence behavior of the

MCMC sampler has also been criticized as the component speci�c estimates

should be identical in the case of symmetric priors (Celeux et al. 2000). If

this behavior is not observed it is obvious that the sampler has not equally

visited all modes of the likelihood.

1.2 Overview of the thesis

This thesis focuses on di�erent aspects of �nite mixture modelling. Starting

with model speci�cation and notation it discusses identi�ability and related

problems, model diagnostics especially with the use of resampling methods

and implementation of ML estimation in �exmix.

Chapter 2 presents the class of mixture models which are covered in this

thesis. The focus is on mixtures of distributions also known as model-based

clustering and mixtures of generalized linear models (GLMs; McCullagh and

Nelder 1989) where each of the components is from the same parametric

distribution family for all components. The notation of this class of mix-

ture models is introduced. The estimation within a frequentist maximum

likelihood setting is described.

Chapter 3 discusses identi�ability problem encountered when �tting �-

nite mixture models. Trivial and generic identi�ability problems are distin-

guished. Even though trivial identi�ability problems can be theoretically

easily prevented by imposing constraints, they might still cause di�culties in

estimation and diagnostics. Su�cient conditions for (generic) identi�ability

are presented for mixtures of GLMs and mixtures of multinomial logit mod-

els. These conditions are a generalization of those given in Hennig (2000) for

mixtures of Gaussian regression models.
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Chapter 4 focuses on model diagnostics using resampling techniques.

Bootstrap methods are popular methods for assessing the model �t (Davison

and Hinkley 1997). They can either be used if standard asymptotic theory

is not available, to di�cult to derive or to complement these results. The

application of these methods to assess the model �t and determine di�erent

�genuine� modes is outlined and illustrated on several examples.

Chapter 5 discusses the implementation in R. Package �exmix (Leisch

2004; Grün and Leisch 2006a,b) provides functionality for ML estimation

with the EM algorithm. In addition functionality for (automatic) model

selection and for inspecting the �tted model is available.

Chapter 6 summarizes the main �ndings of the thesis. The Appendix

contains the mathematical details of the proof for the su�cient identi�abil-

ity conditions for mixtures of multinomial logit models (Appendix A) and

illustrates the wide applicability of the models and the use of the package

�exmix on various examples (Appendix B).



Chapter 2

Model speci�cation and

estimation

This chapter introduces the model class covered in this thesis and the nota-

tion used. Models for model-based clustering, i.e. �nite mixtures of distri-

butions, are described as well as �nite mixtures of generalized linear mod-

els. The most important distributions are covered for this case: Gaussian,

Poisson, gamma and binomial/ multinomial. For convenience a distinction

between the Gaussian, Poisson and gamma distribution and the multinomial

distribution is made. The estimation of these models is outlined where focus

is given on maximum likelihood estimation with the EM algorithm.

2.1 Model speci�cation

A general class of �nite mixture models is given by:

H(y|x,w,Θ) =
S∑

s=1

πs(w,α)Fs(y|x,ϑs),

where H(·|·) denotes the mixture distribution and Θ the vector of all pa-

rameters. The dependent variables are y, the independent variables x and

the concomitant w. Fs is the component speci�c distribution function. The

component speci�c parameters are given by ϑs. In the following it is as-
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CHAPTER 2. MODEL SPECIFICATION AND ESTIMATION 6

sumed that the mixture density exists and is denoted by h(·|·) and that the

component speci�c density functions are given by fs(·|·).
For the component weights πs it holds that

S∑
s=1

πs(w,α) = 1 and πs(w,α) > 0, ∀s,α,w (2.1)

where α are the parameters of the concomitant variable model. It should be

noted that in this de�nition the component weights are strictly positive and

no empty components are allowed.

Di�erent concomitant variable models are possible to determine the com-

ponent weights (Dayton and Macready 1988). The mapping function only

has to ful�ll condition (2.1). If the concomitant variables w are categorical

variables they induce di�erent groups in the observations and di�erent com-

ponent weights can be estimated for each of the groups. This case as well as

the case where numeric concomitant variables are present is covered by using

multinomial logit models for the πs given by

πs(w,α) =
ew′αs∑S

u=1 e
w′αu

with α = (α′
s)s=1,...,S and α1 ≡ 0, i.e. the �rst component is the baseline.

Finite mixtures where the component-speci�c densities are from di�erent

parametric families have been successfully used in the past, e.g., to model

outliers (see Dasgupta and Raftery 1998). However, in the following only

�nite mixtures where the component speci�c densities are from the same

parametric family are considered, i.e. Fs ≡ F for notational simplicity.

If the component distributions are the same, we can distinguish between

component speci�c parameters ϑs which are equal over all components and

those which vary between the components. Those parameters which are

equal are referred to as �xed e�ects and the others as varying e�ects. This is

similar to models with random e�ects (e.g., Diggle et al. 1994; Pinheiro and

Bates 2000) the main di�erence is that in our case the grouping variable for

the varying e�ects is unknown and has to be estimated. Thus the model is
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actually closer to the varying-coe�cients modelling framework (Hastie and

Tibshirani 1993), using convex combinations of discrete points as functional

form for the varying coe�cients. The covariates of the �xed e�ects are in the

following denoted by z, while those of the varying e�ects are denoted by x.

The dimension of the vectors is assumed to be U for x and V for z.

Often repeated measurements are given for some individuals, i.e. the class

membership is �xed for these observations. These observations are in gen-

eral assumed to be independent given the class membership. The following

notation takes this into account: T denotes the set of all individuals in the

population and Rt is the index set of observations belonging to individual

t ∈ T . The concomitant variables are assumed to be constant for each in-

dividual as they are used to determine speci�c component weights for each

individual given its values of the concomitant variables. Let

X := (x′
r : r ∈ Rt, t ∈ T )

Z := (z′
r : r ∈ Rt, t ∈ T )

Y := (y′
r : r ∈ Rt, t ∈ T )

W := (w′
t : t ∈ T ).

Given these assumptions the mixture distribution for T individuals is

denoted by:

H(Y |X,Z,W ,Θ) =
∏
t∈T

S∑
s=1

πs(wt,α)
∏
r∈Rt

F (yr|xr, zr,ϑs).

2.1.1 Model-based clustering

The use of �nite mixtures of distributions is referred to as model-based clus-

tering, as in these models assumptions on the distributions of each of the

clusters are made. This is in contrast to other clustering techniques such

as k-means or hierarchical clustering (e.g., Kaufman and Rousseeuw 1990)

which use a more heuristic approach. In this case w,x ≡ 1 and the depen-

dent variable y is often multivariate.

Finite mixtures of Gaussian distributions are often used for numeric mul-
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tivariate variables. The aim is either to �nd groups in the data or vector

quantization, i.e. data compression. As for the full model with arbitrary

variance-covariance matrices of the components the number of parameters

is equal to K(1 + p (p+3)
2

) − 1, where p denotes the dimension of the input

data, di�erent restrictions on the variance-covariance matrices have been

proposed to get more parsimonious representations (see Celeux and Govaert

1995; Fraley and Raftery 2002). This includes restrictions to have equal

variance-covariance matrices over the components or to allow only for diag-

onal matrices.

For multivariate binary or categorical data �nite mixture models are often

used to describe the data by several components under the assumption that

for each component the di�erent variables are independent. This is also

often referred as latent class analysis (Goodman 1974). These models are

very popular for applications in psychology or marketing in order to segment

respondents into groups given questionnaire answers collected on a binary

or ordinal scale or to account for correlation between the observations. An

example is given in Section 4.1.2 for market basket analysis.

A combination of numeric and categorical variables often occurs in prac-

tice and under the assumption of independence multivariate mixture models

can be estimated. This data is also referred to as mixed-mode data and �nite

mixtures for this kind of data are described in Everitt (1988) and Hunt and

Jorgensen (1999).

2.1.2 Finite mixtures of GLMs: Gaussian, Poisson and

gamma

In this case dependent and independent variables are given. Furthermore,

F is from the exponential family of distributions and for each component

a generalized linear model is �tted. These models are also referred to as

GLIMMIX models (Wedel and DeSarbo 1995).

The component speci�c parameters are given by ϑs = (β′
s, φs) where βs

are the regression coe�cients and φs is the dispersion parameter. If there are

also �xed e�ects for the regression parameters speci�ed they are denoted by
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γ. The dispersion can either be assumed to be varying, which is denoted by

φs, or to be �xed denoted by ψ.

The density of a distribution from the exponential family is given by

f(y|θ, φ) = exp

{
yθ − b(θ)

a(φ) + c(y, θ)

}
(see McCullagh and Nelder 1989, p. 28). In this case it is assumed that the

dependent variable is univariate.

Generalized linear models are extended to account for unobserved het-

erogeneity in the population by introducing varying e�ects following a �nite

mixture distribution. Assume there are S latent classes with component

weights πs > 0,
∑S

s=1 πs = 1. If observation r belongs to component s the

model with varying and �xed e�ects is given by

η = g (E[yr|xr, zr])

= x′
rβ

s + z′
rγ

where η is the linear predictor and g(·) the link function. xr are the covariates

and βs the coe�cients of the varying e�ects, and zr the covariates and γ the

coe�cients of the �xed e�ects.

The mixture distribution can now be written as

H(Y |X,Z,W ,Θ) =
∏
t∈T

[ S∑
s=1

πs(wt,α)
∏
r∈Rt

F (yr|θs
r,Φ)

]
,

where F (·|θ,Φ) is the Gaussian, Poisson or gamma with canonical parameter

θ and dispersion parameter Φ. For the parameter vectors it holds that

g−1 (θs
r) = x′

rβ
s + z′

rγ

and for the dispersion parameter

Φ =

{
φs for varying e�ects

ψ for �xed e�ects.
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The total parameter vector Θ is then either equal to ((πs,β
s, φs)s=1,...,S,γ)

or ((πs,β
s)s=1,...,S,γ, ψ).

2.1.3 Finite mixtures of GLMs: Multinomial logit

Assume a categorical dependent variable Y ∈ {1, . . . , K} to be given, and let

P(Y = k|x) be the probability that the dependent variable Y equals k given

the covariate values x. Two popular regression models for these probabilities

are the multinomial logit and conditional logit model, see e.g., Soo� (1992).

The multinomial logit model uses a common set of predictors x for all levels

of Y and choice-speci�c parameter vectors. The conditional logit model on

the other hand allows for alternative-speci�c predictors xk but uses the same

parameter vector for all of them.

The combined multinomial and conditional logit model is given by

P(Y = k|x) =
ex′

1,kγ1+x′
2γ2,k∑K

u=1 e
x′

1,uγ1+x′
2γ2,u

, k = 1, . . . , K

such that

logit[P(Y = k|x)] = x′
1,kγ1 + x′

2γ2,k, k = 1, . . . , K,

where x1,k are the covariates for the conditional logit part and x2 the covari-

ates for the multinomial logit part. For identi�ability di�erent contrasts can

be imposed, as e.g., taking category K as baseline and constraining γ2,K = 0

and x1,K = 0.

If there is a mixture distribution introduced to account for unobserved

heterogeneity in the population and if it is assumed that observation number

r belongs to component s the logit model with varying and �xed e�ects is

given by

logit[P(Yr = k|xr, zr, s)] = x′
1,k,rβ

s
1 + x′

2,rβ
s
2,k + z′

1,k,rγ1 + z′
2,rγ2,k,

∀k = 1, . . . , K where xr and β are the covariates and the coe�cients of the

varying e�ects, and zr and γ are the covariates and the coe�cients of the
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�xed e�ects.

As will be shown in Section 3.3.3 repeated measurements for some indi-

viduals are an important information in guaranteeing identi�ability of the

model. Therefore, the following notation is convenient, where T denotes the

set of all individuals in the population and Rt is the index set of observations

belonging to individual t ∈ T . All observations for a single individual t with
equal covariate values xr and zr can be combined using a new multinomial

variable as dependent variable. Let R∗
t be the index set of unique covariate

vectors (x′
r, z

′
r) and Nr the number of times this covariate vector occurs in

Rt. The dependent variable yr ∈ NK for these unique covariate points is the

vector of counts for each category, with 1′
Kyr = Nr where 1K is a vector of

K ones.

To simplify notation all unique covariate points and the dependent vari-

ables are row-wise combined into matrices. Let

X1,k := (x′
1,k,r : r ∈ R∗

t , t ∈ T )

X2 := (x′
2,r : r ∈ R∗

t , t ∈ T )

Xk := (X1,k,X2)

X := (Xk : k = 1, . . . , K),

and let Z1,k, Z2, Zk, Z and Y be de�ned analogously.

The mixture distribution can now be written as

H(Y |X,Z,W ,Θ) =
∏
t∈T

[ S∑
s=1

πs(wt,α)
∏
r∈R∗

t

F (yr|Nr,θ
s
r)

]
,

where F (·|N,θ) is the multinomial distribution with repetition parameter N

and probability parameter vector θ ∈ (0, 1)K . For the probability parameter

vectors it holds that

logit[θs
k,r] = x′

1,k,rβ
s
1 + x′

2,rβ
s
2,k + z′

1,k,rγ1 + z′
2,rγ2,k.

The total parameter vector Θ is equal to ((πs,βs)s=1,...,S,γ) where βs =
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(βs
1, (β

s
2,k)k=1,...,K) and γ = (γ1, (γ2,k)k=1,...,K).

2.2 Estimation

Finite mixture models can be either estimated within a frequentist framework

by using maximum likelihood, within a Bayesian framework, using moment

estimators (Lindsay 1989) or graphical tools (Titterington et al. 1985). An

important characteristic of the estimation method is if the number of com-

ponents has to be �xed a-priori or is simultaneously estimated.

In the following maximum likelihood estimation with the EM algorithm

is described as this is the most popular estimation method in a frequentist

setting. Bayesian estimation using MCMC samplers is only shortly described

as it is not the main focus of the thesis. There exists, however, a relation

between the problems which occur for this estimation method and those

arising for model diagnostics using resampling techniques in a frequentist

setting.

2.2.1 Frequentist maximum likelihood

There exist di�erent methods for frequentist estimation of �nite mixture

models. The most popular is the EM algorithm (Dempster et al. 1977;

McLachlan and Krishnan 1997) which aims at determining the ML estimator

for a �nite mixture model with a given number of components K. It has the

advantage that it provides a general framework for estimating di�erent kinds

of mixture models as often only the M-step has to be modi�ed if di�erent

component speci�c models or concomitant variable models are used. In ad-

dition, already available tools for weighted maximum likelihood estimation

might be used. Nevertheless, there are also some disadvantages known such

as slow convergence or that one might get stuck in local optima, i.e. it is

in general di�cult to ensure that the root corresponding to the maximum

likelihood estimator was detected.

For determining the non-parametric ML estimator (NPMLE) di�erent es-

timation methods have been proposed (Böhning et al. 1992; Lindsay 1995).
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In this case the number of components is not �xed a-priori. The proposed

methods focus on the special case without concomitant variables and inde-

pendent variables, i.e. w,x ≡ 1 and are, for example, the Vertex Exchange

Method (VEM) or the Vertex Directon Method (VDM). They exploit the

characteristic that the directional derivatives of the log likelihood should be

nonpositive for the NPMLE estimator.

EM algorithm

The EM algorithm uses a data augmentation scheme and is a general esti-

mation method in the presence of missing data. In the case of �nite mixture

models the missing data is the latent variable Dt ∈ {0, 1}S for each indi-

vidual t which indicates the component membership. This means that Dts

equals 1 if individual t is from component s and 0 otherwise. The data is

therefore augmented by estimates of the component memberships, i.e. the

estimated a-posteriori probabilities p̂ts.

For simplicity of notation it is assumed in the following that the com-

ponent density function f(·|·) takes all observations from each individual

as arguments and that the independent variables xt denote the variables of

the varying and �xed e�ects for individual t. For a sample of T individuals

{(y1,x1,w1), . . . , (yT ,xT ,wT )} the EM-algorithm is given by:

E-step: Given the current parameter estimates Θ(j) in the j-th iteration,

replace the missing data Dts by the estimated a-posteriori probabilities

p̂ts =
πs(wt,α

(j))f(yt|xt,ϑ
(j)
s )

S∑
u=1

πu(wt,α
(j))f(yt|xt,ϑ

(j)
u )

.

M-step: Given the estimates for the a-posteriori probabilities p̂ts (which are

functions of Θ(j)), obtain new estimates Θ(j+1) of the parameters by

maximizing

Q(Θ(j+1)|Θ(j)) = Q1(ϑ
(j+1)|Θ(j)) +Q2(α

(j+1)|Θ(j)),
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where

Q1(ϑ
(j+1)|Θ(j)) =

T∑
t=1

S∑
s=1

p̂ts log(f(yt|xt,ϑ
(j+1)
s )) (2.2)

and

Q2(α
(j+1)|Θ(j)) =

T∑
t=1

S∑
s=1

p̂ts log(πs(wt,α
(j+1))). (2.3)

Q1 and Q2 can be maximized separately. The maximization of Q1

gives new estimates ϑ(j+1) and the maximization of Q2 gives α(j+1).

Q1 is maximized using weighted ML estimation of GLMs and Q2 using

weighted ML estimation of multinomial logit models.

There exist variants of the EM algorithm such as the stochastic EM (SEM;

Diebolt and Ip 1996) or the classi�cation EM (CEM; Celeux and Govaert

1992). For both algorithms an additional step is made between estimation

and maximization. This additional step is given for the SEM by:

S-step: Given the a-posteriori probabilities p̂t := (p̂ts)s=1,...,S draw

D̂t ∼ Mult(p̂t, 1)

where Mult(θ,N) denotes the multinomial distribution with success

probabilities θ and number of repetitions N and D̂t := (D̂ts)s=1,...,S.

For the CEM this step is given by:

H-step: Given the a-posteriori probabilities de�ne

D̂ts =

{
1 if s = arg maxu=1,...,S p̂tu

0 otherwise

The D̂ts are used instead of the p̂ts in the E-step.

Both of these variants have been proposed to improve the performance

of the EM algorithm, because the EM algorithm converges in general rather
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slowly and only to a local optimum. The convergence behavior is better for

the CEM, while SEM can escape convergence to a local optimum. However,

the CEM does not give ML estimates as it maximizes the complete likelihood.

For SEM good approximations of the ML estimator are in general obtained

if the parameters where the maximum likelihood was encountered are used.

Another estimate for parameters could be from the SEM to use the mean after

discarding a suitable number of burn-ins. An implementational advantage of

both variations is that no weighted maximization is necessary in the M-step.

If there are only varying e�ects for the component distributions speci�ed,

the parameters can be separately determined for each component. However,

if there are also �xed e�ects, the vector of observations y = (yt)t=1,...,T has

to be replicated S times and the covariate matrix (X,Z) is given by

X = 1S ⊗ (x′
t)i=1,...,T

Z = IS ⊗ (z′
t)i=1,...,T ,

where 1S is a vector of 1s of length S, IS is the identity matrix of dimension

S × S, and ⊗ denotes the Kronecker product.

Before each M-step the average component sizes (over the given data

points) are checked and components which are smaller than a given (rela-

tively) small size are omitted in order to avoid too small components where

�tting problems might arise. This strategy has also been recommended for

SEM (Celeux and Diebolt 1988) in order to determine the number of com-

ponents. If the algorithm is started with too many components they will be

omitted during the estimation process. The algorithm is stopped if the rela-

tive change in the likelihood is smaller than a pre-speci�ed ε or the maximum

number of iterations is reached.

It has been shown that the values of the likelihood are monotonically

increased during the EM algorithm. This ensures the convergence of the

EM algorithm if the likelihood is bounded. Unboundedness of the likelihood,

however, might occur at the edge of the parameter space (Kiefer 1978), e.g.,

if the variance of one component tends to zero for mixtures of Gaussian dis-

tributions. As even in the case of boundedness only the detection of a local
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maximum can be guaranteed, it is in general recommended to repeat the EM

algorithm with di�erent initializations and to choose as �nal solution the

one with the maximum likelihood. Di�erent initialization strategies for the

EM algorithm have been proposed, as its convergence to the optimal solu-

tion depends on the initialization (Biernacki et al. 2003; Karlis and Xekalaki

2003).

2.2.2 Bayesian MCMC sampling

Estimation within a Bayesian framework has become popular with the ad-

vent of MCMC methods. An overview on the di�erent sampling approaches

is given in Marin et al. (2005), Jasra et al. (2005) and Frühwirth-Schnatter

(2006, chap. 3). Gibbs sampling is the most commonly used approach and it

is done by augmenting the data with the unobservable variable of class mem-

bership similar to the EM algorithm (Diebolt and Robert 1994). A drawback

of the Gibbs sampler is that it might fail to escape the attraction area of one

mode and therefore does not explore the entire parameter space. It was there-

fore suggested to use Metropolis-Hastings sampling schemes (Celeux et al.

2000). Alternatively, the permutation sampler (Frühwirth-Schnatter 2001)

may be used.

Additional approaches have been proposed for simultaneously estimating

the number of components and the parameter values. This includes reversible

jump MCMC (Richardson and Green 1997) and the inclusion of birth-and-

death processes (Stephens 2000a).



Chapter 3

Identi�ability

This chapter de�nes the term identi�ability and discusses di�erent issues such

as label switching, over�tting and generic identi�ability. Label switching

or over�tting are in general a problem for estimating �nite mixtures but

might be resolved in a post-processing step. By contrast mixtures su�ering

from generic identi�ability problems might be �tted without any problems

as for example local identi�ability is given and these problems are then only

detected if the model is further investigated.

3.1 De�nition

Statistical models are in general represented by parameter vectors. For �nite

mixture models the parameter vector Θ which consists of the component

weights, the component speci�c parameters as well as the parameters of

concomitant variable model determines a mixture distribution, i.e. there is

a mapping from the parameter space to the model space. For identi�ability

this mapping has to be injective, i.e. for each model in the model space there

is a unique parameter vector in the parameter space which is mapped to the

model. Lack of identi�ability can be a problem for model estimation or if

parameters are interpreted.

This can be formally de�ned similar to Titterington et al. (1985) by:

De�nition 1 (Identi�ability of �nite mixtures). Suppose Θ, Θ̂ ∈ Ω are two

17
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arbitrary parameter vectors which determine a mixture distribution and are

given by

Θ = ((ϑs)s=1,...,S,α)

Θ̂ =
(
(ϑ̂t)t=1,...,Ŝ, α̂

)
.

Ω is called identi�able if for arbitrary Θ, Θ̂ ∈ Ω

H(y|x,w,Θ) ≡ H(y|x,w, Θ̂)

holds for all admissible y, x and w only if

S = Ŝ

and there exist a suitable ordering of the component indices such that

αs = α̂s ϑs = ϑ̂s

∀s = 1, . . . , S.

In the following let Ω denote the space of admissible parameters for S-

component mixtures where the following conditions are ful�lled

� πs > 0 ∀s = 1, . . . , S,

� ∀s, t ∈ {1, . . . , S}: s 6= t→ ϑs 6= ϑt.

These two conditions prevent over�tting and identi�ability problems which

occur due to empty components where ϑs cannot be uniquely determined and

components with equal component parameter vectors and di�erent values for

α are possible.

Let AS = AS(F,Ω) be the set of all �nite mixture models with S compo-

nents, component speci�c distribution function F and mixture distributions

of form H(·|·,Θ), Θ ∈ Ω. Each parameter vector Θ ∈ Ω corresponds to one

model a ∈ AS, but each model a has at least S! parameterizations Θ due to

all possible permutations of the components, also known as label switching

(Redner and Walker 1984).
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AS induces a system of equivalence classes Ξ on Ω where two elements of

Ω are in the same equivalence class if they correspond to the same model a:

Θ, Θ̃ ∈ Ξ ⇔ H(·|·,Θ) ≡ H(·|·, Θ̃)

(see also Hennig 2000). The usual de�nition of model identi�ability is that

either all equivalence classes contain only one element (which is trivially not

true for mixture models), or that at least a unique representative for each

equivalence class can be selected.

Let ident(Ω) ⊂ Ω be the subset of parameterizations which contain only

one permutation of each possible set of component parameters. ident(Ω) can

be obtained from Ω by imposing an ordering constraint on the components

with respect to a certain parameter (or a combination of several parameters).

We refer to any identi�ability problems which are present for ident(Ω) as

generic (Frühwirth-Schnatter 2006).

3.2 Label switching

As described in Section 2.2 �nite mixture models can be either estimated

within a frequentist or a Bayesian framework. For a �xed S, the ML solution

is in general estimated in the unrestricted parameter space where the likeli-

hood is multimodal and a unique solution is determined by relabelling the

components with respect to an arbitrary ordering constraint, as e.g. on the

prior probabilities. Label switching is of concern if bootstrapping with ran-

dom initialization of the EM algorithm is used for model diagnostics (Grün

and Leisch 2004) as the choice of ordering constraint in�uences the com-

ponent speci�c analysis. Label switching does in general not occur if the

parametric bootstrap is applied with initialization in the solution (McLach-

lan and Peel 2000, p. 70) and hence, the bootstrap solutions can be directly

used without reordering them to ful�ll a certain constraint.

For Bayesian estimation with MCMC methods label switching makes it

impossible to make component speci�c inferences directly from the MCMC

draws. Di�erent approaches have been proposed to determine suitable esti-
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mates. An overview on the di�erent approaches to solve the label switching

problem in a Bayesian context is given in Marin et al. (2005), Jasra et al.

(2005) and Frühwirth-Schnatter (2006, chap. 3). The methods include spec-

i�cation of an (arti�cial) ordering constraint, �xing the membership of some

observations, applying label-invariant loss functions, cluster and relabelling

algorithms and relabelling with respect to the MAP estimate. Stephens

(2000b) outlines an approach where the possibility of multiple modes of the

likelihood is taken into account and component speci�c estimates for each of

the modes are determined.

Similar to the frequentist framework an ordering constraint can be im-

posed on one parameter (Diebolt and Robert 1994; Richardson and Green

1997). However, the choice of ordering constraint has a major impact on

the marginal a-posteriori distributions of the component speci�c parameters

(Richardson and Green 1997) and it is therefore necessary to �nd a suit-

able ordering constraint which takes the geometry of the likelihood into ac-

count and induces a unique labelling. This can be done in a post-processing

step given the MCMC results as shown by Stephens (1997). Accordingly,

Frühwirth-Schnatter (2001) proposes to use a permutation sampler and to

relabel the MCMC draws in a post-processing step given an appropriate or-

dering constraint based on expert knowledge or exploratory analysis of the

MCMC samples. The use of an ordering constraint has the drawback, that

all components have to di�er in one parameter. If the component speci�c

parameter vectors are multivariate, an appropriate ordering constraint might

either be di�cult to choose or even impossible, because there is no variable

where all components di�er.

Chung et al. (2004) suggest to break the symmetry of the likelihood by

�xing the class membership for one or more observations. This method is

only e�ective if observations with high a-posteriori probabilities (close to

one) for one component are selected. They present an example where the

results of their approach are as good as if an appropriate ordering constraint

is imposed. Hence, their method should be preferred if selecting observations

for �xing the membership is easier than determining a suitable ordering con-

straint. Another advantage of their method is that it is computationally less
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demanding than clustering or relabelling algorithms. Fixing the member-

ship in a Bayesian analysis signi�es increasing the prior information. Hence,

Chung et al. (2004) note that the degree of prior information implicit in pre-

classi�cation should be explored. Obviously, not only label switching but

also identi�ability problems in a regression setting due to violation of the

coverage condition (see Hennig 2000 and Section 3.3) can be eliminated by

�xing the membership of su�ciently many observations.

A decision-theoretic approach using label invariant loss functions is given

in Celeux et al. (2000) and Hurn et al. (2003). The loss function L(Θ, Θ̂)

describes the loss from estimating the parameter vector with Θ̂ if the true

parameter vector is equal to Θ. The Bayes estimator is determined by mini-

mizing the expected posterior loss and is given by

Θ̂∗ = arg min
Θ̂

EΘ|x,w,yL(Θ, Θ̂)

where L(Θ, Θ̂) is the label invariant loss function and Θ the true parameter

vector. The choice of loss function determines if the calculation of the es-

timator is analytically feasible or if it has to be approximated using e.g. a

combination of MCMC sampling and simulated annealing. Di�erent loss

functions have been proposed depending on the inferential conclusions which

shall be drawn. If inference for the parameters is the purpose Celeux et al.

(2000) propose to use a measure of discrepancy based on the Baddeley metric.

If the predictive distribution is of interest a symmetrized Kullback-Leibler

distance has been proposed (Celeux et al. 2000; Hurn et al. 2003).

Relabelling algorithms based on cluster methods have been proposed in

Stephens (1997) and Celeux (1998). Stephens (2000b) shows that the pro-

posed relabelling algorithms are special cases of the decision-theoretic ap-

proach using label-invariant loss functions. However, in contrast to the loss

functions proposed in Celeux et al. (2000) and Hurn et al. (2003) the rela-

belling algorithms do not only return an appropriate Bayes estimate Θ̂∗, but

determine a suitable labelling of the components for each MCMC draw.

Another reordering scheme is proposed in Marin et al. (2005). The Max-

imum a Posteriori (MAP) estimator is approximated by determining the
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parameters of the draw with the maximum a-posteriori density. All other

draws are then permuted in order to minimize the canonical scalar product

between their parameters and those of the approximate MAP estimator.

3.3 Generic identi�ability

In the following only �nite mixtures with constant component weights,

i.e. w ≡ 1, are considered, as research with respect to generic identi�a-

bility has focused on this special case. A possible generalization to the more

general model depends on assumptions for the concomitant variables, e.g. if

it can be assumed that they are independent from the covariates x and z in

the component speci�c models.

3.3.1 Model-based clustering

An overview on di�erent theorems for the identi�ability of mixtures of dis-

tributions is given in Titterington et al. (1985, pp. 35�42). A necessary and

su�cient condition for identi�ability is that the component distributions are

a linearly independent set over the �eld of real numbers R (Yakowitz and

Spragins 1968).

It has been shown that �nite mixture distributions of several popular

continuous parametric distributions are generically identi�able. This com-

prises the (multivariate) normal, gamma and exponential distribution (Te-

icher 1963; Yakowitz and Spragins 1968; Titterington et al. 1985). Iden-

ti�ability has also been shown for location-scale families on the real line

(Holzmann et al. 2004) which induces the identi�ability of mixtures of von

Mises distributions (see also Fraser et al. 1981; Kent 1983).

A discrete identi�able distribution is the Poisson distribution (Teicher

1960). By contrast the discrete and the continuous uniform distributions are

not generically identi�able. The binomial and the multinomial distributions

are identi�able if the number of components S is limited with respect to

the number of repetitions N (N ≥ 2S − 1; Teicher 1963; Blischke 1964;

Titterington et al. 1985; Grün 2002; Elmore and Wang 2003). This constraint
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is necessary and su�cient for the model class of all mixtures with a maximum

of S components.

3.3.2 Finite mixtures of GLMs: Gaussian, Poisson and

gamma

The identi�ability of mixtures of Gaussian regression models was analyzed

by Hennig (2000). He shows that requiring a covariate matrix of full rank �

as postulated previously (see for example Wang and Puterman 1998) � is not

su�cient. Contrarily, it is necessary to check a coverage condition in order to

ensure identi�ability. With respect to generic identi�ability of �nite mixtures

of regression models three in�uencing factors can therefore be distinguished:

� component distribution

� covariate matrix

� repeated observations/labelled observations

Repeated observations where the class membership is �xed are necessary for

binomial and multinomial mixtures to be identi�able. In a regression set-

ting repetitions over di�erent covariate points can help in making a mixture

identi�able as it changes the set of feasible hyperplanes for the coverage con-

dition. Labels for some observations indicating that they belong to the same

component have the same in�uence.

It can be concluded that the identi�ability of a mixture regression model

depends on the component distributions, the maximum number of compo-

nents allowed, the available information per object and the regressor matrix.

In order to present the theorem on su�cient conditions for identi�ability

of the model presented in Section 2.1.2 we choose a slightly di�erent repre-

sentation of the observations. We assign di�erent indices to the covariates

for the �xed and varying e�ects:

(xr, zr) → (xi, zj).
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The observations are sorted such that all equal covariates for individual t ∈ T
of the varying e�ects are grouped together in the index set It and we have a

set Ji with the indices of all covariates for the �xed e�ects where the varying

e�ects are equal to xi.

Theorem 1. The model de�ned by

H(Y |X,Z,Θ) =
∏
t∈T

[ S∑
s=1

πs

∏
i∈It

∏
j∈Ji

F (yij|θs
ij, φs)

]

and

g−1
(
θs

ij

)
= x′

iβ
s + z′

jγ

is identi�able if the following conditions are ful�lled:

1. q∗ > S with

q∗ := min

{
q : ∀i∗ ∈ I : ∃Hj ∈ {H1, . . . , Hq} :

{xi : i ∈ It(i∗)} ⊆ Hj ∧Hj ∈ HU

}
where I :=

⋃
t∈T It and HU is the set of H(α) := {x ∈ RU : α′x = 0}

where α 6= 0.

2. rk(X,Z) = U + V where rk(·) determines the rank of a matrix.

The proof is straight-forward given the results from Hennig (2000) and

Section 3.3.3. The di�erence to the conditions presented in Hennig (2000) is

that �xed e�ects are allowed in addition to the varying e�ects and that the

possibility of repeated observations for the individuals is taken into account.

Condition (1) indicates that the coverage condition necessary for the covari-

ates has only to be ful�lled for the varying e�ects. In addition this condition

is altered to take the repeated measurements into account and hence for each

individual t there has to be one of the q hyperplanes through the origin Hj

which covers all observations of this individual. For the �xed e�ects only a
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rank condition is necessary given in Condition (2), which ensures that each

of the covariate matrices as well as the combined covariate matrix have full

column rank.

These conditions inidicate that identi�ability problems can especially oc-

cur if the covariate matrix contains categorical variables. To our knowledge

this problem has only been noted by Hennig (2000) and no treatment is

proposed in the literature. We refer to identi�ability problems due to the

violation of the coverage condition as

Intra-component label switching: If the labels are �xed in one covariate

point according to some ordering constraint, then labels may switch in

other covariate points for di�erent parameterizations of the model.

For mixtures where the component distributions are identi�able this means

that the component weights and possible dispersion parameters are unique,

but the regression coe�cients vary because they depend on the combination

of the components between the covariate points. This identi�ability problem

is also of concern for prediction, because given the class membership the

predicted value for new data depends on the chosen solution.

Unidenti�ed mixture models with several isolated non-trivial (global)

modes in the likelihood are to some extent more of a theoretical problem,

because, e.g., minimal changes of the component weights πk often make

the model identi�ed by breaking symmetry. However, models �close� to an

unidenti�ed model will have multiple local modes.

The following example presents a simple mixture of regression models

with intra-component label switching. The model is unidenti�ed (with two

non-trivial modes) only if both components have exactly the same probabil-

ity.

Example 1. Assume we have a standard linear mixture regression with one

measurement per object and a single categorical regressor with two levels. The

usual design matrix for a model with intercept uses the two covariate points

x1 = (1, 0)′ and x2 = (1, 1)′. Furthermore, let the mixture consist of two

components with equal component weights. The mixture regression is given
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Figure 3.1: Balanced sample from the arti�cial example with the two the-
oretical solutions. The solid lines correspond to solution 1 and the dashed
lines to solution 2.

by

H(y|x,Θ) =
1

2
N(µ1, 0.1) +

1

2
N(µ2, 0.1)

where µk(x) = x′αk and N(µ, σ2) is the normal distribution.

Now let µ1(x1) = 1, µ2(x1) = 2, µ1(x2) = −1 and µ2(x2) = 4. As Gaus-

sian mixture distributions are generically identi�able the means, variances

and component weights are uniquely determined in each covariate point given

the mixture distribution. However, as the coverage condition is not ful�lled,

the two possible solutions for α are:

Solution 1: α
(1)
1 = (2, 2)′, α

(1)
2 = (1,−2)′

Solution 2: α
(2)
1 = (2,−3)′, α

(2)
2 = (1, 3)′

In Figure 3.1 a balanced sample with 50 observations in each covariate point

is plotted together with the two solutions for combining x1 and x2, i.e., this

illustrates intra-component label switching.
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This mixture model would be identi�able if

1. three di�erent covariate points were available, or

2. observations for both covariate points for the same object were available,

or

3. the component weights were unequal, e.g. π1 = 0.6.

Condition 1 is not an option, for instance, for a single 2-level categorical re-

gressor. Condition 2 is not possible if the categorical regressor cannot change

for repeated observations of the same subject like, for instance, the gender of

a person.

When developing a suitable measurement design, the possibility of these

problems to occur should be considered and could therefore in�uence the pro-

posed covariate matrix.

The coverage condition in Hennig (2000) and in Theorem 1 has the dis-

advantage that it is only a su�cient condition for a certain model class in-

dicating if there is at least one model which is not identi�able and that it is

hard to verify in practice as it is an NP hard problem. In general it will be

of interest if a �tted model su�ers from identi�ability problems. This means

that it has to be checked if there exist several modes of the likelihood in the

parameter space ident(Ω) given data sets sampled from the �tted mixture

model.

3.3.3 Finite mixtures of GLMs: Multinomial logit

The same notation as in the previous section for �nite mixtures of Gaus-

sian, Poisson and gamma regressionn models is used to distinguish between

di�erent values for the covariates of the �xed and the varying e�ects, i.e.

(xr, zr) → (xi, zj).

The number of observations Nr is referred to by Nij. This notation is illus-

trated by the following example where the data matrix for a given individual

t is presented.
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It Ji xi zij Nij yij

1 1 1.1 0 4 7 3 2 2
1 2 1.1 0 0 3 1 2 0
1 3 1.1 0 1 1 0 0 1
1 4 1.1 0 2 5 2 1 2
2 1 2.7 1 4 1 0 0 1
2 2 2.7 1 0 1 0 1 0
2 3 2.7 1 2 6 4 0 2

Table 3.1: Illustration of notation for a given individual t

Example 2. Let the dependent categorical variable have three di�erent cate-

gories. The covariates x of the random e�ects consist of a numeric variable

and a binary variable, whereas the covariate z of the �xed e�ects is a categor-

ical variable with 4 categories. For simplicity of presentation these variables

are all for a multinomial logit model.

Assume that for individual t 24 trinomial outcomes are observed at 7

di�erent covariate values. For example, when x = (1.1, 0) and z = 0 there

are 3 trinomial outcomes observed, a �1� and two �2�s. The varying covariate

x assumes two values (1.1, 0), and (2.7, 1). These have, respectively, 16, and

8 replicates where we allow di�erent z values. The corresponding data matrix

is given in Table 3.1.

The multinomial and conditional logit models can be combined and for-

mulated within the same framework, as the multinomial logit part can be

transformed to a conditional logit model (Agresti 1990, pp. 316�317). The

covariates and coe�cients are given by

xk,i :=

(
x1,k,i

ek ⊗ x2,i

)
∈ RU βs :=

(
βs

1

(βs
2,k)k=1,...,K−1

)
∈ RU

zk,j :=

(
z1,k,j

ek ⊗ z2,j

)
∈ RV γ :=

(
γ1

(γ2,k)k=1,...,K−1

)
∈ RV

with U = U1 + (K − 1)U2, V = V1 + (K − 1)V2, ek ∈ {0, 1}K−1 is a unit

vector with 1 at position k, and ⊗ is the Kronecker product.
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Su�cient identi�ability conditions

Conditional logit We �rst present su�cient conditions for identi�ability

of the conditional logit model with varying and �xed e�ects, results for the

combined model are then derived as a corollary.

Theorem 2. The model de�ned by

H(Y |X,Z,Θ) =
∏
t∈T

[ S∑
s=1

πs

∏
i∈It

∏
j∈Ji

F (yij|Nij,θ
s
ij)

]

and

ln

[
θs

k,ij

θs
K,ij

]
= x′

k,iβ
s + z′

k,jγ

is identi�able if the following conditions are ful�lled:

1. (a) ∀k ∈ {1, . . . , K − 1}: ∃Ĩk 6= ∅: Ĩk ⊆
⋃

t∈T It with:∑
i∈Ek,i∗

∑
j∈Ji

Nij ≥ 2S − 1 ∀i∗ ∈ Ĩk

where Ek,i∗ := {i ∈ It(i∗) : xk,i = xk,i∗}. It(i∗) is de�ned as the

index set of all observations for the individual t with covariate

vector xk,i∗.

(b) q∗ > S with

q∗ := min

{
q : ∀i∗ ∈

K−1⋃
k=1

Ĩk : ∃Hj ∈ {H1, . . . , Hq} :

{xk,i : i ∈ It(i∗) ∩ Ĩk, k = 1, . . . , K − 1} ⊆ Hj ∧Hj ∈ HU

}
where HU is the set of H(α) := {x ∈ RU : α′x = 0} where α 6= 0.

2. rk(X,Z) = U + V where rk(·) determines the rank of a matrix.

3. xK,i = 0 and zK,j = 0 ∀j ∈ Ji, ∀i ∈ It, ∀t ∈ T .
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The proof is given in Appendix A. Condition (1) guarantees that no intra-

component label switching is possible as the number of feasible hyperplanes

which are necessary to cover the set of covariate points where marginal iden-

ti�ability can be guaranteed is larger than the number of components. As the

component membership is �xed for each individual only those hyperplanes

are feasible where the covariate points from the same individual lie on the

same hyperplane. Condition (1a) implies that there exists a t ∈ T with at

least 2S−1 observations. For these observations the covariates for the varying

e�ects have to be constant, but they can vary for the �xed e�ects. The inclu-

sion of the set Ek,i∗ is possible, because the covariates are allowed to change

in the other categories of the multinomial distribution. Condition (1b) corre-

sponds to the coverage condition in Hennig (2000) for mixtures of Gaussian

regressions which ensures that no intra-component label switching is possi-

ble. While in Hennig (2000) only the case of one repetition per individual is

considered we generalize the condition for the case where there are repeated

observations per individual available.

Condition (2) and (3) correspond to conditions which are necessary for a

model without varying e�ects in order to uniquely determine the coe�cients.

Condition (2) also ensures that the partition between �xed and varying e�ects

is unique. Other equivalent conditions are possible at this point, as, for

instance, to require that the mean value is captured by the �xed e�ects and

therefore is zero for the varying e�ects. Condition (3) represents the choice

of contrasts between the K alternatives. We choose K as baseline category,

but again other contrasts are possible as for example to constrain that the

sum of the coe�cients over the categories is zero. In the future identi�ability

conditions could be established for these contrasts.

Multinomial and conditional logit The following theorem gives su�-

cient identi�ability conditions for the combined model (without concomitant

variables) presented in Section 2.1.3 .
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Theorem 3. The model de�ned by

H(Y |X,Z,Θ) =
∏
t∈T

[ S∑
s=1

πs

∏
i∈It

∏
j∈Ji

F (yij|Nij,θ
s
ij)

]

and

ln

[
θs

k,ij

θs
K,ij

]
= x′

1,k,iβ
s
1 + x′

2,iβ
s
2,k + z′

1,k,jγ1 + z′
2,jγ2,k

is identi�able if the following conditions are ful�lled:

1. (a) ∀k ∈ {1, . . . , K − 1}: ∃Ĩk 6= ∅: Ĩk ⊆
⋃

t∈T It with:∑
i∈Ek,i∗

∑
j∈Ji

Nij ≥ 2S − 1 ∀i∗ ∈ Ĩk

where Ek,i∗ := {i ∈ It(i∗) : x1,k,i = x1,k,i∗ ∧ x2,i = x2,i∗}.

(b) q∗ > S with

q∗ := min

{
q : ∀i∗ ∈

K−1⋃
k=1

Ĩk : ∃Hj ∈ {H1, . . . , Hq} :

{(x′
1,k,i,x

′
2,i) : i ∈ It(i∗)∩ Ĩk, k = 1, . . . , K−1} ⊆ Hj∧Hj ∈ HU

}
where HU is the set of H(α) := {x ∈ RU1+U2 : α′x = 0} where

α 6= 0.

2. rk(X,Z) = U + V

3. x1,K,i = 0 and z1,K,j = 0 ∀j ∈ Ji, ∀i ∈ It, ∀t ∈ T , β2,K = 0 and

γ2,K = 0.

The proof is straight-forward given Theorem 2.

Application to special cases

In the following sections we illustrate which su�cient identi�ability con-

straints can be derived from Theorem 3 for important special cases.
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Mixtures of multinomial distributions The simplest case are mixtures

of multinomial distributions without a regression part where only a compo-

nent speci�c intercept needs to be estimated such that x2,i ≡ 1 ∀i ∈ I and

U1 = V = 0:

ln

[
P(Yr = k)

P(Yr = K)

]
= βs

2,k ∀k = 1, . . . , K.

Condition (1a) ensures that there is at least one individual where the

number of observations N is larger or equal to 2S − 1. Hence we have the

same results as in Grün (2002) and Elmore and Wang (2003): The class of

mixtures of multinomial distributions with a maximum of S components is

identi�able if N ≥ 2S − 1.

Model in Follmann and Lambert (1991) Theorem 3 generalizes the

�rst set of su�cient conditions in Follmann and Lambert (1991). They con-

sidered mixtures of binomial logit distributions where only the intercept fol-

lowed a �nite mixture distribution and all other coe�cients were constant.

Hence for our model this signi�es K = 2, x1,1,i ≡ 1 ∀i ∈ I, U2 = 0 and V

arbitrary.

As there is no di�erence between multinomial and conditional logit models

in the binomial case the model is given by

ln

[
P(Yr = 1|zr)

P(Yr = 0|zr)

]
= βs

1 + z′
rγ.

The conditions in Follmann and Lambert (1991) are:

� ∃i ∈ I: ∃j ∈ Ji: Nij ≥ 2S − 1

� rk(1,Z) = 1 + V

For condition (1a) we need at least one individual with N ≥ 2S − 1. In

contrast to Follmann and Lambert (1991) the covariates for the �xed e�ects

are allowed to vary, i.e. we require only

∃i ∈ I :
∑
j∈Ji

Nij ≥ 2S − 1.
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The other condition which has to be checked is condition (2) which corre-

sponds to the rank condition of Follmann and Lambert (1991). The dif-

ference to their conditions is due to the fact that we allow for a grouping

variable where the component membership is �xed over di�erent covariate

points. Furthermore, we have established su�cient identi�ability constraints

for multinomial distributions while their constraints did only apply to bino-

mial.

Choice models Conditional logit models are often applied as choice mod-

els in marketing research based on random utility theory (McFadden 1974).

Using marketing mix variables like price and promotion as explanatory vari-

ables the probability of choosing a certain product is determined. In order

to account for heterogeneity among the customers and hence capture the

di�erences in their tastes �nite mixture models can be used.

Kamakura and Russell (1989) estimated a �nite mixture model of MNLs

including only conditional logits based on the assumption that the price

elasticity of the consumers varies over the consumer population but is �xed

for each consumer over the di�erent brands. This model can be speci�ed

within our framework by assuming that U2 = 0 and V = 0. The conditional

logit model with only varying e�ects is given by

ln

[
P(Yr = k|x1,k,i)

P(Yr = K|x1,k,i)

]
= x′

1,k,iβ
s
1 ∀k = 1, . . . , K.

Illustration on an arti�cial example

The identi�ability of �nite mixtures of multinomial logit models depends

on the covariate matrix and the available repetitions per individual. This

relationship is illustrated using an arti�cial example, where the number of

di�erent covariate points and the number of repetitions are varied such that

the corresponding data generating process is either identi�able or not.

For simplicity of presentation a binomial variable with categories 0 and

1 is used as dependent variable and the regressors are the intercept and a

univariate variable x. For both regressors varying e�ects are used. In the
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binomial logit model the probability of 1 is modelled which is also referred

to as choice probability. The component weights are assumed to be constant

over the individuals. The parameters of the mixture with two components

are given by

π1 = 0.5 β1 = (−2, 4)′

π2 = 0.5 β2 = ( 2,−4)′

We use 2, 3 or 5 di�erent covariate points x which are equidistantly spread

across the interval [0, 1]. The mixture is not identi�able if there are only 2

covariate points available. In this case intra-component label switching is

possible and the second solution is given by

π
(2)
1 = 0.5 β

(2)
1 = (−2, 0)′

π
(2)
2 = 0.5 β

(2)
2 = ( 2, 0)′

The number of repetitions is �xed over all individuals and repetitions are

only available for the same covariate point. The values for parameter N are

1, 2, 3, 5 and 10. The condition N ≥ 2S − 1 implies that the mixture is not

identi�able for N ∈ {1, 2}.
In Figure 3.2 the observed relative frequencies of choices of 1 for a random

sample with 100 observations are given where the number of di�erent x values

is either 2 or 5 (i.e. #x ∈ {2, 5}) and the number of repetitions for each

observation is 1 or 10. The symmetry of the speci�ed model is not entirely

re�ected in the observed values as the sample sizes are rather small.

The solid curves are the choice probabilities for each component of the

true underlying model. For N = 1 the mixture is observational equivalent

to a degenerate mixture with only one component. The probabilities of the

degenerate model are given by the dashed line. Following the principle of

parsimonity in the model �tting process, the degenerate mixture would be

selected as solution. In addition to the degenerate mixture all mixtures

with two components where the marginal choice probabilities over the two

components are equal to those of the true model for each covariate point and
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Figure 3.2: Observed values for the arti�cial example with N = {1, 10} and
where the number of di�erent x values is 2 or 5.

where the relationship between the logit of the choice probabilities and x is

linear are possible parameterizations of the same mixture.

For N = 10 it can be seen that intra-component label switching is possible

if there are only two di�erent covariate points available, whereas the mixture

is identi�able for �ve di�erent covariate points. The choice probabilities of

each component of the observational equivalent mixture for two covariate

points are given by the dotted lines.

100 samples with 100 observations each are drawn from the arti�cial

model for all possible combinations of N and #x. For the covariates we

use a balanced design with an equal number of observations in each covari-

ate point. To each sample we �t a mixture with two components using the

EM algorithm. As stopping criterion the di�erence in log likelihood is used,

i.e. the EM algorithm is stopped if the absolute relative di�erence between
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Figure 3.3: Parallel coordinate plots of the estimated parameters for 100
samples from the arti�cial example with di�erent repetition parameters N
and number of covariate points x. (Each coordinate has been independently
rescaled to [0,1].)

the log likelihoods is smaller than ε = 10−8.

In order to avoid local maxima we repeat the EM algorithm 5 times with

di�erent random initializations and report only the best solution with respect

to the log likelihood for each sample. The choice of 5 repetitions seems to

be reasonable as only for 3% of the �tted models the best model is detected

in the �fth repetition, while the best model is found in the �rst and second

repetition in 86%.

In Figure 3.3 parallel coordinate plots are used to investigate the esti-

mated parameters for all combinations of N and #x. For an identi�able

mixture with two components the parallel coordinate plot should contain

two �bundles� corresponding to the parameters of each of the components.

For N = 1 there is only one large bundle observed because given a certain
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initialization the EM algorithm converges to one of the possible parameter-

izations which maximize the likelihood. For higher N it depends on #x if

two or four bundles can be seen. Intra-component label switching occurs for

#x = 2 and four bundles can be seen. For N > 2 and #x > 2 the two bun-

dles can be distinguished which correspond to the parameter vectors for each

component of the true model. If N increases the variability in the estimates

decreases and the width of the bundles (visualizing variability of estimates)

gets smaller.

The parallel coordinate plot has the advantage that label switching is of

no concern as no unique labelling of the components is necessary. If we want

to look at the estimated parameters separately for each component, a suitable

relabelling of the components is necessary. As in our case the true model is

known, suitable ordering constraints can be easily determined. Furthermore,

an inspection of the parallel coordinate plot in Figure 3.3 suggests that if

N ≥ 3 an ordering constraint on the intercept can be imposed to induce a

unique labelling. If the number of di�erent covariate points is at least three

we might also use an ordering constraint on the coe�cient of x. An ordering

constraint on the component weights is not suitable, as the components have

equal component weights.

The e�ect of the di�erent repetition values N and number of covariate

points on the estimation of the coe�cients of x is investigated using violin

plots (Hintze and Nelson 1998) after imposing an ordering constraint on the

intercept to induce an unique assignment of the parameters to one of the two

components. This visualization method has the advantage that it is more

robust to outliers than the parallel coordinate plot. If the coe�cients for the

intercept and x di�er for the two components, which is true for our arti�cial

model, the violin plot should indicate that the coe�cients cluster around

one mode for each component and that these modes are di�erent for the two

components. Overlapping modes indicate that there is no di�erence between

the two components for the coe�cients of x such that a �xed e�ect for x is

more appropriate. If the coe�cients scatter around several modes for each

component, this signi�es either that the ordering constraint did not induce

a unique labelling or that intra-component label switching is present.
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Figure 3.4: Estimated coe�cients for x after imposing an ordering constraint
on the intercept for 100 samples from the arti�cial example with di�erent
repetitions parameters N and number of covariate points x.

Figure 3.4 shows that the coe�cients of x for the two components are

similar for N = 1 independently from #x. Especially for #x = 2 it can be

observed that the �tted mixture is degenerate which is caused by the random

initialization and the fact that to assume a linear relationship is no restriction

in the case of two covariate points.

For N ≥ 2 and #x = 2 the coe�cients scatter around two di�erent modes

for each component due to intra-component label switching. For N = 2 and

#x ≥ 3 a slight separation of the estimates for the coe�cients of x for the

two components can be observed, even if there is still quite a large overlap

and the su�cient identi�ability constraints do not apply. For N ≥ 3 and

#x ≥ 3 there are no longer identi�ability problems, the coe�cients of x are

well separated by the constraint on the intercept and cluster only around their
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true values. An increase in the number of repetitions reduces the variability

of the estimates.

In this arti�cial example no �nite mixture can be estimated for N = 1.

Furthermore, it can be seen that the quality of the parameter estimates

improves if the number of repetitions increases. However, the identi�ability

of the parameter estimates is only guaranteed if the coverage condition is

ful�lled in order to eliminate intra-component label switching.

3.4 Summary

Trivial identi�ability problems such as label switching or over�tting are a

problem for estimating �nite mixtures or validating these models. These

problems are a nuisance if they occur and have to be dealt with in this case.

Generic identi�ability problems can be present without being easily observ-

able as they are, for example, only due to di�erent separate parameterizations

of the same model. The existence of these competing parameterizations is in

general not easily detected during model estimation nor by model diagnostics

using standard asymptotic theory which rely on local characteristics and can

not be used to draw global conclusions.
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Model diagnostics using

resampling techniques

Model diagnostics are an important tool for model identi�cation. They can

be used to check if the data set is likely to be a sample from the �tted model,

i.e. the true data generating process (DGP) is well approximated by the

model (Gelman 2004). In addition, model assumptions can be validated and

the con�dence which can be reasonably given to the parameter estimates can

be determined by deriving standard deviations or posterior distributions.

In Section 4.1 a general framework for using resampling methods for

model diagnostics of �nite mixtures is formulated. This includes several

existing techniques as special cases, especially determining the number of

components (McLachlan 1987; Feng and McCulloch 1996), estimating stan-

dard errors of the parameters (Basford et al. 1997) and simple identi�ability

diagnostics (Grün and Leisch 2004), and provides a common basis for inte-

gration and software implementation of these tools. In addition, we propose

several new techniques for analyzing the distribution of estimated mixture

models. We demonstrate the advantages of using parallel coordinate plots

where the estimated parameters of each component and each bootstrap repli-

cate are used separately as data vectors. With this plot we can decide on

possible model restrictions, a suitable ordering constraint, investigate the dif-

ference of the parameter values between the components, which can be used

40
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for imposing model restrictions, and analyze the identi�ability of the �tted

model. If the �tted mixture model is used for clustering the data, the stabil-

ity of the clusters is of concern. This can be investigated by partitioning the

data according to the posterior probabilities given the �tted models to each

of the bootstrap samples. The congruence of the partitions between pairs

of bootstrap samples is determined using agreement measures like the Rand

index. All methods proposed have the advantage that they can be applied

independently from the dimension of the parameter space.

Methods for detecting di�erent (genuine) modes of a mixture model given

a certain data set are presented in Section 4.2. This includes on the one hand

methods to determine if genuine modes exist and on the other hand tools for

determining the di�erent modes and their attraction area. These tools are

based on a suggestion in Stephens (2000b). In addition constrained clustering

as outlined in Leisch and Grün (2006) can be used to simultaneously assign

the estimated models to di�erent modes and determine a suitable ordering of

the components for each model. The imposed constraints only have to ensure

that the component speci�c parameter estimates are assigned to di�erent

clusters.

4.1 Analyzing the model �t

When analyzing a �tted mixture model, we are interested in the distribution

of the model a ∈ AS which explains our data �best�. Let Xn denote a

sample with n independently identically distributed (iid) observations from

the DGP. For a given data set the �best� model a(Xn) is usually de�ned

as the one maximizing the likelihood, or in general the maximizer of an

arbitrary performance measure R(a,Xn). More speci�cally, R could encode

robust estimation or, if the model is used for prediction, R could minimize

the maximum error instead of average error, see also Hothorn et al. (2005).

For a given data set and performance measure the optimal model a(Xn)
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is

a(Xn) = arg sup
a∈AS

R(a,Xn)

Even for simple mixtures and maximum likelihood estimation no closed form

solution for the optimal model exists and iterative parameter estimation al-

gorithms like EM have to be used. Let a(Xn,Θ0) denote the local maximizer

of R to which the EM algorithm converges if it is started in Θ0. a(Xn) is

usually approximated by the maximizer of the likelihood from several runs

of the EM algorithm with di�erent starting values Θ0.

The �tted model â(Xn) has a distribution AS (depending on the DGP

of Xn) which can be explored for the analysis of model �t and identi�a-

bility by sampling either from the empirical distribution function F̂ of Xn

(non-parametric bootstrap) or from the estimated model â(Xn) (parametric

bootstrap).

A general framework for bootstrapping mixture models is

1. Estimate â(Xn) ∈ AS and determine a corresponding parameterization

Θ̂ ∈ Ω.

2. Sample B bootstrap samples X b
n (b = 1, . . . , B) independently using

either

(a) empirical bootstrap: X b
n ∼ F̂ (Xn), or

(b) parametric bootstrap: X b
n ∼ â(Xn).

3. Fit models to the bootstrap samples with either

(a) random initialization: âb(X b
n) ∈ AS0 with possibly S0 6= S, or

(b) initialization in Θ̂: âb(X b
n, Θ̂) ∈ AS0 with S0 = S.

4. Analyze the distribution AS0 using sample âb, b = 1, . . . B.

The set of models {â1, . . . , âB} can be used for exploring possible model

restrictions, checking for identi�ability, assessing the reliability of the es-

timated parameters, and analyzing the stability of the induced partitions.
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Sequence 1-2(b)-3(b)-4, for instance, is used in Basford et al. (1997) for deter-

mining standard errors. McLachlan (1987) and Feng and McCulloch (1996)

use 1-2(b)-3(a)-4 with S0 ∈ {S, S+1} and a likelihood ratio test statistic for

determining the number of components. Below we will use 1-2(b)-3(a)-4 with

S0 = S for assessment of identi�ability problems, especially intra-component

label switching.

Label switching is usually not of concern for âb(Xn, Θ̂) in step 3(b)

(McLachlan and Peel 2000) because most �tting algorithms will converge

to an optimum that has the same permutation of components. On the other

hand, label switching is a problem for âb(Xn) in step 3(a) if component spe-

ci�c analyses are to be made. A suitable relabelling of the components has to

be determined if the solutions which are equivalent up to a permutation of the

labels shall be matched before analyzing the component-speci�c parameters.

{â1, . . . , âB} is a set of iid observations which can be analyzed using stan-

dard techniques from exploratory and inferential statistics (Hothorn et al.

2005). When clustering data, two di�erent criteria should usually be ful�lled

if the suggested model �ts the data:

� the components should be as di�erent as possible from each other, and

� each component itself should be as homogeneous as possible.

The equality of parameters aggregated over all components can be tested with

location tests or tests for unimodality (e.g. the dip test; Hartigan and Harti-

gan 1985) or for the number of modes (e.g. with kernel density estimates; Sil-

verman 1981). This can be used to check, for example, if a restricted model,

where a certain parameter is �xed over the components, is suitable. Estimat-

ing the mixture indirectly maximizes the di�erences between the components,

so it is an even stronger indicator if the null hypothesis is not rejected. If

the �tted model is identi�able the coe�cients for each component follow an

unimodal distribution. If intra-component label switching is present, they

follow a mixture distribution (which can be multimodal).

Diagnostic plots can be used as an exploratory tool for analyzing identi-

�ability and also to gain further insight into the estimated parameters and

the di�erence between the components. Parallel coordinate plots (Wegman
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1990) where the estimated parameters for each component are used sepa-

rately as data vector are a suitable graphical representation, see Figure 4.1

for an example. Intra-component label switching between two solutions is

indicated if the number of di�erent �bundles� is twice the number of mixture

components. �Bundles� can be discerned because the data vectors scatter

around each of the true solutions. For the component weights and for the

dispersion parameters (if present) the estimates scatter at maximum around

S di�erent points in this case. An advantage of this plot is that no rela-

belling of the components is necessary in advance. However, using di�erent

line types or colors for components after choosing a suitable relabelling might

provide additional insights and help with interpretation.

A partition of the data can be determined with the models âb(X b
n) by

assigning the original data points to the component with the maximum a-

posteriori probability. In order to determine the agreement between the

partitions the Rand index corrected for agreement by chance (Hubert and

Arabie 1985) is calculated for pairs of bootstrap samples. The use of the

Rand index has the advantage that its value is independent of the speci�c

labelling of the components. The Rand index values assess the stability of

the induced partitions. Low stability is either an indicator for the presence

of observations which are di�cult to classify hard or intra-component label

switching. If intra-component label switching is present the density estimate

of the Rand index values has several modes. If the estimated parameters

correspond to the same solution the Rand index will be close to 1, while it

will be much smaller if they correspond to di�erent solutions. The exact

value depends on how many observations are combined di�erently.

4.1.1 Illustration using an arti�cial example

In the following we illustrate the proposed methods using the arti�cial exam-

ple from Section 3.3.2 which is not identi�ed due to intra-component label

switching. We approximate AK with the parametric bootstrap and B = 200

using a data set with 50 observations in each covariate point. The compo-

nent weights used are π1 ∈ {0.5, 0.6, 0.7}. For estimation of a(Xn) we let the
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EM algorithm run 5 times with random starting values and choose the best

solution with respect to the log likelihood.

In Figure 4.1 the parameters of âb(Xn), b = 1, . . . , 200, are plotted. For

equal component weights the components are similar for π and σ, whereas

this is only the case for σ for unequal component weights. For the intercept

two di�erent, clearly separated groups can be distinguished. There are 4

separate groups for the coe�cient of x for π1 ∈ {0.5, 0.6}, but the coe�cients

of x scatter almost only around two points for π1 = 0.7.

As we have only estimated mixtures with two components, the presence

of 4 distinct bundles indicates identi�ability problems for π1 ∈ {0.5, 0.6}.
Identi�ability is still a problem for π1 = 0.6 because the components have

similar values for x = 0 and observations in this point are falsely assigned

to the larger component if intra-component label switching is present. In

Figure 4.1 it can be seen that the smaller coe�cients of x are assigned to the

smaller component for π1 = 0.6. An ordering condition on the coe�cient of

x also gradually separates the component weight estimates.

Our set âb(Xn) of models is iid, hence we can use standard techniques

from inferential statistics to test hypotheses. Table 4.1 shows the results of

applying the dip test for unimodality for each of the parameters aggregated

over the components. The null hypothesis of unimodality can not be re-

jected at a signi�cance level of 0.05 for π and σ for equal component weights,

whereas this is only the case for σ for unequal component weights. These

variables are not suitable for imposing an ordering constraint. Furthermore,

a homoscedastic model with equal variances in all components may be more

suitable.

We now check for potential identi�ability problems using an ordering

constraint on the coe�cients of x. The null hypothesis of unimodality is

rejected for the intercept and x in both components for α = 0.05 for equal

and unequal component weights with π1 = 0.6, while it is not rejected for

the component weights with π1 = 0.7. This indicates that intra-component

label switching is present for the component weights π1 ∈ {0.5, 0.6}, while
the mixture distribution is identi�able for π1 = 0.7. All conclusions drawn

from applying the dip test agree well with the true DGP.
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Equal: ππ1 == ππ2 = 0.5

ππ σσ  coef.(Intercept)  coef.x

Unequal: ππ1 == 0.6, ππ2 == 0.4

ππ σσ  coef.(Intercept)  coef.x

Unequal: ππ1 == 0.7, ππ2 == 0.3

ππ σσ  coef.(Intercept)  coef.x

Figure 4.1: Parallel coordinate plot of the parameters of âb, b = 1, . . . , 200
�tted with the parametric bootstrap for the arti�cial example with di�erent
component weights and an ordering constraint on x.
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π Intercept x σ
0.5/0.5 Overall 0.01 0.17 0.17 0.01

C1 0.02 0.14 0.13 0.01
C2 0.02 0.15 0.13 0.02

0.6/0.4 Overall 0.05 0.15 0.17 0.01
C1 0.02 0.09 0.08 0.02
C2 0.02 0.07 0.07 0.02

0.7/0.3 Overall 0.12 0.13 0.20 0.02
C1 0.02 0.02 0.02 0.02
C2 0.02 0.02 0.02 0.02

Table 4.1: Test statistics of the dip test of unimodality for the arti�cial
data set in the overall parameter distribution and within a component (Ci,
i = 1, 2) after imposing an ordering constraint on the coe�cients of x. Those
test statistics which are signi�cant with respect to α = 0.05 are printed bold.

In addition to the parameter estimates we may also be interested in the

partitions induced by the di�erent models, i.e., how the data points are

grouped. We compare each subsequent pair of partitions with the Rand index

corrected for chance, resulting in B/2 Rand index values. A Rand index of

1 marks identical partitions, a Rand index of 0 marks agreement only by

chance (given cluster sizes). Kernel density estimates of the Rand indices for

the arti�cial example are shown in Figure 4.2. Especially for equal component

weights most Rand indices are either 0 or 1. Intra-component label switching

a�ects half of the observations, the Rand index of 0 corresponds to partition

pairs which are induced by the two di�erent modes of the likelihood.

4.1.2 Application

In the following the procedure for analyzing the model �t proposed in Sec-

tion 4.1 is applied to two real world examples. Data from a clinical trial is

used for �tting �nite mixtures of Poisson regressions and this example illus-

trates how the proposed procedure helps in detecting identi�ability problems.

The second application uses higher-dimensional market basket data for la-

tent class analysis. In this case the application of the resampling methods are
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Figure 4.2: Kernel density estimates for the Rand indices corrected for chance
of pairs of bootstrap samples for the arti�cial example with di�erent compo-
nent weights.

useful to validate the model and gain further insights into its characteristics.

Seizure data

In Wang et al. (1996) a Poisson mixture regression is �tted to data from a

clinical trial where the e�ect of intravenous gammaglobulin on suppression of

epileptic seizures is investigated. The data used were 140 observations from

one treated patient, where treatment started on the 28th day. In the regres-

sion model three independent variables were included: treatment, trend and

interaction treatment-trend. Treatment is a dummy variable indicating if the

treatment period has already started. Furthermore, the number of parental

observation hours per day were available and it is assumed that the number

of epileptic seizures per observation hour follows a Poisson mixture distribu-

tion. The number of epileptic seizures per parental observation hour for each

day are plotted in Figure 4.3. The �tted mixture distribution consisted of

two components which can be interpreted as representing 'good' and 'bad'

days of the patients.

The mixture model can be formulated by

H(y|x,Θ) = π1P (λ1) + π2P (λ2)



CHAPTER 4. MODEL DIAGNOSTICS 49

where λk = ex
′αk for k = 1, 2 and P (λ) is the Poisson distribution.

Identi�ability Even though mixtures of Poisson distributions are gener-

ically identi�able (Teicher 1960), this holds not true for the model class

speci�ed in this example. The covariate points lie on two lines and therefore,

the coverage condition is not ful�lled for a mixture with two components.

Theoretic non-identi�ability certainly only arises if there are equal compo-

nent weights. In this case the components can be combined di�erently for

the base and the treatment period and the following two solutions are valid:

Solution 1: α
(1)
k = (α

(1)
kp )p=1,...,4 for k = 1, 2

Solution 2: α
(2)
k = (α

(1)
k1 , α

(1)
l2 +α

(1)
l1 −α

(1)
k1 , α

(1)
k3 , α

(1)
l4 +α

(1)
l3 −α

(1)
k3 ) for (k, l) ∈

{(1, 2); (2, 1)}

If the model is restricted by imposing a zero coe�cient for treatment generic

identi�ability is still not given. However, this restriction imposes a con-

tinuity constraint between base and treatment period and therefore, non-

identi�ability can only arise if the mixture components cross at exactly this

point.

The repeated observations for one single patient do not help in this case as

it is assumed that the component memberships vary from day to day. Iden-

ti�ability could be established if there were class labels for one observation

from the base and one from the treatment period available.

Estimation When reestimating the model the results are the same (up

to numerical di�erences due to di�erent estimation software and control pa-

rameters) as in Wang et al. (1996). Our solution for αk, k = 1, 2, with

the corresponding standard deviations is given in Table 4.2. The component

weight of the �rst component representing 'bad' days is 0.28.

We also use an equivalent model with di�erent contrasts so that we can

estimate the coe�cient of the jump between the base and treatment period

directly. If we use standard asymptotic theory (without adjusting the de-

grees of freedom for the estimation of the component weights) to determine

the signi�cance of the estimated coe�cients the coe�cients for the jump are
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Full model Modi�ed model Rest. model
Covariate C1 C2 C1 C2 C1 C2

(Intercept) 2.84 2.07 1.49 1.17 1.43 1.10
(0.23) (0.09) (0.08) (0.06) (0.06) (0.05)

Treatment 1.30 7.43 -0.13 -0.15
(0.47) (0.52) (0.12) (0.10)

log(Day) -0.41 -0.27 -0.41 -0.27 -0.46 -0.30
(0.09) (0.04) (0.09) (0.04) (0.07) (0.03)

Interaction -0.43 -2.28 -0.43 -2.28 -0.46 -2.34
(0.13) (0.14) (0.13) (0.14) (0.13) (0.13)

π 0.28 0.72 0.28 0.72 0.28 0.72
log likelihood -376.18 -376.18 -377.36
AIC 770.35 770.35 768.73
BIC 796.83 796.83 789.32

Table 4.2: Parameter estimates (standard errors) for the model proposed in
Wang et al. (1996) with the same and di�erent contrasts and for the restricted
model.

insigni�cant for both components. The restricted model with no jump be-

tween base and treatment period has a better model �t with respect to the

AIC and BIC criteria and a likelihood ratio test also favors the more parsi-

monious model (χ2 = 2.38, p-value = 0.30). In contrast to the test for the

number of components the likelihood ratio test can be used for the nested

models as the asymptotic theory is applicable given that the null hypothesis

is not at the margin of the parameter space. When imposing the continuity

constraint on the model the remaining coe�cients change only slightly and

the component weights remain the same. All numerical results are given in

Table 4.2, the �tted values for the models together with the original data are

plotted in Figure 4.3.

Analyzing the model �t 200 parameteric bootstrap samples are drawn

from both �tted models and a mixture model is �tted to each of them using

the EM algorithm with random initialization and choosing the best solution

of 5 repetitions. In Figure 4.4 the �tted values for the 200 parametric boot-

strap samples are plotted for component 1, which is the component with the
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Figure 4.3: Seizure data with the �tted values for the Wang et al. model
(solid line) and for the restricted model (dashed line). The plotting character
for the observed values in the base period is a circle and for those in the
treatment period a triangle.

smaller component weight. On the left the results for the model proposed in

Wang et al. (1996) are shown and on the right for the restricted model. For

the full model it can be seen that the �tted values for the bootstrap samples

spread rather close around those from the original data in the treatment pe-

riod. For the base period the values �tted to the bootstrap samples scatter

around the �tted values of both components for the original data set, which

signi�es that intra-component label switching is present. Theoretically intra-

component label switching is only possible in mixtures where the coverage

condition is violated and where the component weights are equal. However,

it seems that intra-component label switching occurs even though the esti-

mated group sizes di�er because there are only few observations in the base

period and it is not possible to estimate the component weights well for the

mixture distribution in the base period. In the restricted model (Figure 4.4

right) the intra-component label switching e�ect is almost not present any

more, as in this model there is no jump between base and treatment pe-
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Figure 4.4: Fitted values for component 1 under the ordering constraint
π1 < π2 for the 200 parametric bootstrap samples from the Wang et al.
model (left) and the restricted model (right).

riod possible. The results for the second component are similar and given in

Figure 4.5.

In Figure 4.6 the parallel coordinate plots of the parameters of âb(X b
N)

(b = 1, . . . , B) for the model in Wang et al. (1996) and the restricted model

are given. The coe�cients assigned to component 1 according to an ascending

ordering constraint on π are drawn dashed and the others dotted. In both

cases it can clearly be seen that the component weights and the coe�cients

where Treatment is involved di�er strongly for the two components. They

are rather close for the main e�ect of Day for the full model. While only

few occurrences of intra-component label switching can be observed for the

restricted model, a considerable amount is present for the original model

proposed in Wang et al. (1996). In contrast to the arti�cial example there

are only two instead of four clusters present for the coe�cients involving

Treatment as the values di�er only slightly but are switched for the two

components of the two parametric representations.

The results of the application of the dip test are given in Table 4.3. For

the model proposed in Wang et al. (1996) the dip test indicates that the
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Figure 4.5: Fitted values for component 2 under the ordering constraint
π1 < π2 for the 200 parametric bootstrap samples from the Wang et al.
model (left) and the restricted model (right).

hypothesis of unimodality can not be rejected for α = 0.05 for the combined

values of the coe�cient of Day. This suggests that a model where the pa-

rameter for Day is �xed over the two components might be appropriate. For

the separate analysis of the components we use an ascending ordering con-

straint on the component weights. The dip test suggests that multimodality

is present (with α = 0.1) for the coe�cient of the intercept of component

1. For the restricted model the hypothesis of unimodality is rejected for

each parameter and no indication of multimodality is found in the separate

analysis of the components.

In Figure 4.7 the density estimates of the Rand indices corrected for

chance for the 200 bootstrap samples are given. It can be seen that the

density for the model proposed by Wang et al. is bimodal. This is caused by

intra-component label switching. For the restricted model it can be seen that

some solutions give slightly di�erent partitions but there can be no second

real mode identi�ed.

The methods and tools proposed indicate that intra-component label

switching is present for the model from Wang et al. (1996) and it can be
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Model in Wang et al.

ππ  coef.TreatmentYes − coef.TreatmentYes:log(Day) − coef.(Intercept)  coef.log(Day)

Restricted model

ππ − coef.I(log(Day) − log(28)):TreatmentYes − coef.(Intercept)  coef.I(log(Day) − log(28))

Figure 4.6: Diagnostic plot of the EM solutions for 200 parametric boot-
strap samples with random starting values for the model proposed in Wang
et al. (1996) and the restricted model using an ordering constraint on the
component weights.
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Model in Wang et al. Rest. model
Variable Overall C1 C2 Overall C1 C2

π 0.15 0.02 0.02 0.15 0.02 0.02
(Intercept) 0.08 0.04 0.02 0.07 0.02 0.02
Treatment 0.14 0.02 0.02 - - -
log(Day) 0.01 0.02 0.02 0.03 0.02 0.02
Interaction term 0.15 0.02 0.02 0.15 0.02 0.02

Table 4.3: Test statistics of the dip test of unimodality for the seizure data
set and the two di�erent models in the overall parameter distribution and
within a component (Ci, i = 1, 2) after imposing an ordering constraint on
π. Those test statistics which are signi�cant with respect to α = 0.05 are
printed bold and with respect to α = 0.1 italic.
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Figure 4.7: Diagnostic plot using Rand indices corrected for chance for pairs
of bootstrap samples for the full model and the restricted model.
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concluded that this mixture model is close to (empirical) non-identi�ability.

This problem can be alleviated by imposing a continuity constraint between

base and treatment period. These �ndings con�rm the conclusions drawn

from the more intuitive plot of the �tted values. However, this plot is only

possible because of the 2-dimensional relationship between dependent and

independent variables, while the other methods are less dependent on the

dimension of the covariate space.

Market basket data

The data used in this section is the ZUMA subsample of the 1995 Consumer-

Scan Household Panel (GfK, Nürnberg) data set. The data set includes 4424

households for which consumption data were collected throughout 1995. For

more speci�c information about the consumer panel data see Papastefanou

(2001). For clarity of presentation we restrict the following analysis to one

shopping basket for each household on 10 popular product groups. The data

are binary indicators if the respective product group has been bought or not.

The task here is market segmentation, i.e., we want to �nd households

with similar shopping behaviour. For model-based clustering we �t a �nite

mixture of binomial distributions under the assumption of local indepen-

dence: The probabilities of buying each of the 10 product groups is inde-

pendent given cluster membership. Hence, the parameter vector for each

component is a vector of 10 probabilities. First we �t models with 1 to 8

components using again the best out of 5 EM replications for each number

of components.

Model selection with the BIC recommends the solution with 3 compo-

nents, the purchase probabilities for each of the components and the respec-

tive component weights are given in Table 4.4. The standard deviations in

Table 4.4 are derived with standard asymptotic theory using the inverse of

the expected information matrix (de Menezes 1999). Full rank of the ex-

pected information matrix which can be checked by the estimated standard

deviations signi�es that the model is locally identi�able (Goodman 1974).

The �rst component consists of larger baskets with an average size of 2.95
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Covariate C1 C2 C3

pet food/cat litter 0.13 (0.02) 0.07 (0.01) 0.07 (0.01)
milk 0.59 (0.04) 0.17 (0.04) 0.34 (0.02)
mineral water 0.37 (0.04) 0.34 (0.06) 0.01 (0.04)
toilet paper 0.22 (0.03) 0.06 (0.01) 0.06 (0.01)
toothpaste 0.13 (0.02) 0.04 (0.01) 0.07 (0.01)
beer 0.20 (0.03) 0.22 (0.05) 0.00 (0.02)
yogurt 0.48 (0.04) 0.09 (0.03) 0.19 (0.01)
hard cheese 0.33 (0.04) 0.05 (0.02) 0.14 (0.01)
co�ee 0.30 (0.03) 0.11 (0.02) 0.13 (0.01)
tea 0.19 (0.02) 0.05 (0.01) 0.07 (0.01)
π 0.15 (0.03) 0.27 (0.09) 0.58 (0.10)

Table 4.4: Parameter estimates (standard errors) for the 3-component (Ci,
i = 1, 2, 3) �nite mixture �tted to the ZUMA data set.

product groups, and all product groups have a comparatively high purchase

probability. The other two components contain small baskets with an average

size of 1.21 and 1.07 product groups, respectively. The second component

has high probabilities for mineral water and beer only, the third component

has low probabilities for all product groups.

For the analysis of model �t we use 200 parametric bootstrap samples

and �t models to them using the best of 5 repetitions of the EM algorithm

with random initialization. The models �tted on bootstrap data are used

to con�rm model validity, as standard asymptotic theory might not work

well on sparse data with low expected frequencies (von Davier 1997). The

estimated p-values for the likelihood ratio test is 0.62 and for the Pearson

χ2-test is 0.26. Both goodness-of-�t tests indicate that model validity is no

problem for our �tted model.

Figure 4.8 shows a parallel coordinate plot of the parameter estimates of

the bootstrap samples. It can clearly be seen that at least two components

di�er for each parameter. Furthermore, component 1 containing the large

baskets is nearly always on top. Component 2 has always smaller purchase

probabilities than component 3 except for mineral water and beer. Formal

signi�cance tests for multimodality of the parameter estimates using the dip
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Figure 4.8: Diagnostic plot of the EM solutions for 200 parametric bootstrap
samples using an ordering constraint on �milk�.

test con�rm that the components are well separated (as expected given Fig-

ure 4.8) with a minimal dip test statistic of 0.15 which is highly signi�cant

given the sample size. Finally, Rand indices corrected for chance compar-

ing pairs of partitions shown in Figure 4.9 con�rm that basically the same

solution is found in every bootstrap replicate.

Fitting a mixture with too many components All model diagnostics

for the 3-component mixture model indicate stability of parameter estimates

and an identi�able model, hence from a statistician's point of view the model

�ts the data well. However, from a marketing researcher's point of view

the �tted model is not ideal, because two of the three components do not

di�erentiate between the product groups at all: both component 1 and 3

buy �everything�, only with di�erent probability (all high vs. all low). Only

component 2 is a real niche market (mineral water, beer) that could be used

e�ectively in an advertising campaign.

Hence, to identify more potential market segments we need a model with

more components. We do no longer assume the existence of natural seg-

ments, and use clustering procedures as a construction task rather than a

search mission for natural phenomena, i.e. we partition the data into �arbi-
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Figure 4.9: Diagnostic plot using Rand indices corrected for chance for pairs
of bootstrap samples for the ZUMA data set.

trary clusters� instead of �natural clusters� (Kruskal 1977). This strategy is

often necessary in market segmentation as distinct segments rarely exist in

empirical data sets (Mazanec et al. 1997).

In the following we �t a mixture with 8 components. In order to analyse

the stability of this solution, 200 empirical bootstrap samples are drawn and

a mixture with 8 components is �tted to each of them where the best solution

of 5 repetitions is chosen. The EM algorithm did only converge for 62% of

the samples to a mixture of 8 components and in the other cases the solution

had only 5 (0.5% of the samples), 6 (5.5% of the samples) or 7 (32% of the

samples) components, as components with a component weight smaller than

5% are omitted during the EM algorithm.

Figure 4.10 shows the parameter estimates. As the estimated parame-

ters overlap for each of the variables for di�erent components, any ordering

constraint fails to return a suitable labelling. Therefore, we use constrained

k-means clustering on the estimated parameters to determine a suitable la-

belling (see Section 4.2.3 or Leisch and Grün 2006). This allowed us to also

include those models where less than 8 components were �tted. Components

4 and 7 seem to be stable clusters, while the other components correspond to

arbitrary clusters, which arti�cially split the observations into groups. Com-

ponent 7 is again the mineral water & beer segment which we already know
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Figure 4.10: Parallel coordinate plot of the parameter estimates for the em-
pirical bootstrap samples. The components are labelled using constrained
k-means clustering.

from the 3-component model.

For further analysis the log likelihoods of the di�erent models are com-

pared as well as the induced clusterings. As can be seen in Figure 4.11

the likelihoods are comparable for all models. The class agreement levels of

the induced clusterings shows Rand indices corrected for chance scattering

around 0.5, thus agreement is larger than merely by chance, but considerably

lower than for the 3-component model.

The empirical bootstrap can be e�ciently used to determine which of

the components of a �tted mixture model correspond to natural clusters and

which are arti�cial clusters. This is a valuable information for a market

researcher when developing a suitable marketing strategy: one should be

aware that only components 4 and 7 are stable components, while the other

components correspond to arti�cially constructed market segments.
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Figure 4.11: Density estimates of log likelihoods and Rand indices corrected
for chance for pairs of bootstrap samples.

4.2 Genuine multimodality

4.2.1 De�nition

In the following we are interested in competing parameterizations for the

same model or to describe the underlying DGP which are not equivalent in

the parameter space Ω̃ of the equivalence classes induced by label permuta-

tion. The presence of these genuine competing parameterizations is referred

to as genuine multimodality.

De�nition 2. The distribution O of the parameters Θ ∈ Ω is called gen-

uinely multimodal if it holds for the set of modes M of O that

∃Θ1,Θ2 ∈M : Θ1 6= ν(Θ2) ∀ν ∈ Perm(S)

A mode of a probability distribution is de�ned as a local maximum in the

associated probability density function (Minnotte 1997). The distribution O
is called genuinely unimodal if the opposite holds for the set of modes M.

An equivalent de�nition where the admissible parameter space Ω has been

suitably restricted to Ω̃ is given by:
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De�nition 3. A distribution O of the parameters Θ ∈ Ω̃ is called genuinely

unimodal if it holds that the set of modes M of O is a singleton.

With this de�nition multimodality is a characteristic of the underlying

DGP and the speci�ed model, while in the case where multimodality is de-

�ned in dependency of the likelihood this is in fact only a characteristic of

the given data set Xn and the speci�ed model. Because in general a gen-

eralization from the given data set Xn on the DGP is desired focusing on

the distribution of the �tted parameters depending on the DGP seems to

be appropriate. Given a single data set Xn the distribution O can be ap-

proximated given the �tted model â(Xn) together with the application of

resampling methods. This is done by:

1. Determine â(Xn) ∈ AS and a corresponding parameterization Θ̂ ∈ Ω,

e.g. with the EM algorithm using the best solution of several random

initializations.

2. Sample B bootstrap samples X b
n independently for b = 1, . . . , B with

the parametric bootstrap, i.e. X b
n ∼ â(Xn).

3. Fit models to the bootstrap samples, i.e. determine â(X b
n) ∈ AS using

the EM algorithm with several random initializations.

4. Analyze the parameterizations Θ̂b of the bootstrap models â(X b
n) which

imply an approximation of the distribution O.

The use of the parametric bootstrap is based on the assumption that an

appropriate model has been �tted and that the characteristics of the �tted

model are analyzed, i.e. we are interested in model diagnostics of the �tted

model. The empirical bootstrap should be used instead if there can not be

much con�dence assigned to the model choice.

4.2.2 Checking for genuine multimodality

Testing procedure

Under the null hypothesis of genuine unimodality the distribution of the

component speci�c parameter vectors ϑb
s should be unimodal after suitable
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relabelling such that ∀b = 1, . . . , B: Θ̂b ∈ Ω̃. The relabelled components for

the parameters space Ω̃ may be determined using the methods proposed in a

Bayesian context, as e.g. imposing an ordering constraint or the relabelling

algorithms suggested by Stephens (2000b) or Frühwirth-Schnatter (2001).

The testing procedure is given by:

1. Determine a suitable parameter space Ω̃ and relabel the component

speci�c bootstrap samples ϑb
s accordingly.

2. Test each component speci�c parameter for unimodality, e.g. using the

dip test (Hartigan and Hartigan 1985).

3. Adjust the p-values for multiple testing, e.g. using the method proposed

in Holm (1979), and determine for a given signi�cance level α if the

null hypothesis of genuine unimodality is rejected.

The null hypothesis of unimodality is also rejected, if the relabelling algo-

rithm did not succeed in determining a unique labelling or if the EM al-

gorithm did not converge to a suitable root for the bootstrap samples. The

convergence of the EM algorithm to a suitable root can be ensured by repeat-

ing the �tting with (di�erent) random initializations and choosing the best

root with respect to the likelihood. Di�erent strategies to initialize the EM

algorithm and ensure the detection of a suitable root have been proposed,

e.g. by Biernacki et al. (2003). Another possibility is to compare the solution

found to the one derived using initialization in the �tted model and choose

the better one. However, this increases the chance that the model �tted to a

bootstrap sample corresponds to the maximum of the likelihood close to the

original model.

The dip test for unimodality uses the maximal di�erence between the

empirical distribution function and the unimodal distribution function that

minimizes this maximal di�erence as test statistic. In order to evaluate the

dip test the distribution of the test statistic under the null hypothesis has

to be determined. Hartigan and Hartigan (1985) sample under the null hy-

pothesis of a uniform distribution as this is the asymptotically least favorable

unimodal distribution. However, this makes the test rather conservative and
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therefore, Cheng and Hall (1998) choose a calibration distribution depending

on the form of the unique mode. Another possibility is suggested by Tantrum

et al. (2003) who sample from the unimodal distribution which is closest to

the empirical cumulative distribution function.

In the following we use the approach proposed by Cheng and Hall (1998)

but instead of estimating the form of the mode from the available data we

assume that prior knowledge is available. We sample from a Gaussian distri-

bution, because the bootstrap samples are expected under the null hypothe-

sis to follow this distribution. However, to account for possible convergence

problems of the EM algorithm it could also be considered to use a distribution

with heavier tails, as e.g. a t-distribution.

Exploratory analysis

In addition to the testing procedure which can be made in an automatic

way, also an exploratory analysis of the bootstrap samples can be applied

in order to investigate the distribution O. Genuine multimodality leads

to di�erences between the reliability results of standard asymptotic theory,

which are based on local characteristics, and those using resampling methods

where the complete parameter space is explored. For each component spe-

ci�c parameter vector ϑs the con�dence band CBα
s with signi�cance level α

is derived using the standard deviations of the parameters determined with

standard asymptotic theory and normal approximation. In order to deter-

mine a α% con�dence band Bonferroni correction is used to determine the

con�dence intervals for each component speci�c parameter. For each boot-

strap sample b = 1, . . . , B it is checked for each component s0 ∈ {1, . . . , S}
if ∃s ∈ {1, . . . , S}: ϑb

s0
∈ CBα

s and they are accordingly assigned to S classes

together with a class containing the remaining parameters. This procedure

implicitly assumes that the pairwise con�dence bands do not overlap for at

least one parameter, which is in fact not a restriction as an overlap for all

parameters indicates that a mixture with less components is suitable.

Under the assumption of genuine unimodality αB component speci�c

parameters of the bootstrap samples should be assigned to each of the con-
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�dence bands. Therefore, a large discrepancy between the observed and

expected values is an indication for the presence of genuine multimodality.

Other possible reasons for this di�erence are a bad approximation of the true

con�dence bands or a failure of the EM algorithm to converge to a suitable

root for the bootstrap samples. The validity of the asymptotic results can

be veri�ed by using the bootstrap approach with initialization in the solu-

tion. This in general eliminates convergence problems of the EM algorithm

and the detection of other global maxima. In addition the same methods as

proposed for the testing procedure can be used to check if the EM algorithm

converged to a suitable root.

The bootstrap results can be visualized using parallel coordinate plots

of the component speci�c parameters ϑb
s together with the con�dence bands

CBα
s , where the coloring indicates the class assignment. This allows to check

if there exist bundles of bootstrap parameters ϑb
s for those parameters which

have not been assigned to a con�dence band. The presence of bundles in-

dicates identi�ability problems, as the bootstrap results cluster around an-

other parameter value which might be given by a di�erent mode. Figure 4.13

shows this diagnostic plot for a �nite mixture where identi�ability problems

are present.

In addition the testing procedure can be complemented with an ex-

ploratory analysis of the results by visualizing the component speci�c distri-

butions using kernel density estimates and inspecting them for multimodality.

The suggested test and the exploratory tools should be used to check

the �tted model and be part of the usually applied model diagnostics. If

the null hypothesis is not rejected, this increases the con�dence in the �tted

model. However, as there are several possible reasons for rejecting the null

hypothesis, further investigations of the �tted model are necessary in this

case.

4.2.3 Determining the modes

If genuine multimodality is detected, the next step is to determine the pa-

rameters for each of the modes, because this gives us the competing parame-



CHAPTER 4. MODEL DIAGNOSTICS 66

terizations of the underlying DGP. Given some expert knowledge it might be

possible to eliminate one of the solutions or to choose the most appropriate

one. Furthermore, a restricted model can be considered in order to resolve

the identi�ability problems. A comparison of the di�erent parameterizations

reveals, if there are components of the mixture which are uniquely deter-

mined as they are present in all modes (cp. component 3 in the example in

Section 4.2.4).

A straight-forward approach to solve this problem is to cluster the com-

plete parameter vectors νb(Θb) after suitable relabelling in order to determine

the number of modes and assign each parameter vector to one of the modes.

This procedure relies on the assumption that a suitable parameter space Ω̃

has been determined which induced a unique labelling of the components.

However this is hard to verify as multimodality of the component speci�c

estimates occurs in any case due to the genuine multimodality.

Another approach is to use relabelling algorithms while allowing for mul-

timodality (Stephens 2000b). This approach has the advantage that in one

step the assignment to the di�erent modes and a suitable labelling given the

assignment to a mode are determined. A disadvantage is that the proposed

optimization methods do only converge to a local optimum. Therefore, it

might be necessary to repeat the algorithm several times with di�erent ini-

tializations in order to be able to detect the global optimum. An heuristic to

determine good initial values might improve the performance. In addition, a

combination of relabelling algorithms and clustering methods can be used as

exploratory data analysis tools to determine the number of di�erent modes.

Exploratory analysis using clustering methods

Standard clustering methods, as e.g. k-means or hierarchical clustering, are

useful tools to investigate the number of di�erent modes of O. The choice of
input data depends on the speci�c model �tting aim as either the component

speci�c parameter estimates ϑb
s or the component speci�c a-posteriori proba-

bilities pis(Θb) can be used. As the parameters ϑb
s are in general on di�erent

scales, we standardize them before clustering. Furthermore, we include only
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those parameters, where the aggregated component speci�c estimates follow

a multimodal distribution, to improve the performance of the clustering algo-

rithms. Choosing the appropriate number of clusters is a problem which has

not been completely resolved in cluster analysis yet but several methods and

heuristics have been proposed and can be applied to facilitate a decision. We

use a graphical tool: the scree plots of the sum of within cluster distances.

By clustering the component speci�c estimates the parameters of each

bootstrap sample should be assigned to S di�erent clusters. In addition, each

mode consists in general of S clusters. By combining the cluster assignments

with the information which estimates belong to the same bootstrap sample, it

is checked if the estimates from the same bootstrap sample belong to di�erent

clusters. An assignment to the same cluster indicates that the di�erence

between the components is not su�cient to ensure assignment to di�erent

clusters, i.e. this indicates that a mixture with less components might be

suitable. Furthermore, an estimate for the number of modes is determined

by investigating how many di�erent combinations of clusters occur for the

bootstrap samples.

As an assignment to di�erent modes can only be made if the estimates

from the same bootstrap sample are assigned to di�erent clusters, this can be

enforced by using constrained k-means clustering (Wagsta� et al. 2001; Leisch

and Grün 2006). The input data XB,S is given by {xb,s : b = 1, . . . , B; s =

1, . . . , S}, where xb,s is either ϑb
s after standardization or pis(Θb).

We implement the constrained k-means clustering algorithm by:

Algorithm 1. Starting with a random set of initial centroids CK =

{c1, . . . , cK}, e.g., by randomly choosing K vectors, iterate the following steps

until a �xed point is reached:

Step 1: Assign each vector of component speci�c estimates xb,s to the cluster

of the closest centroid:

c(xb,s) := arg min
c∈CK

d(xb,s, c)

where d(xb,s, c) denotes the Euclidean distance between observation xb,s
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and centroid c.

Step 2: If the constraint is violated for the estimates of one draw, i.e.

B̃ :=
{
b ∈ {1, . . . , B}|∃s, t ∈ {1, . . . , S} : s 6= t ∧ c(xb,s) = c(xb,t)

}
6= ∅,

then �nd the best assignment to the clusters under the constraint. This

can be done by solving a linear sum assignment problem (LSAP) which

consists of �nding a minimum cost assignment of S objects to K per-

sons given a cost matrix of dimension S times K under the constraint

that not more than one object is assigned to each person. This prob-

lem can be solved using a primal-dual algorithm such as the so-called

Hungarian method as outlined in Papadimitriou and Steiglitz (1982)

which �nds the optimum in time O(K3). In this application the LSAP

is solved ∀b ∈ B̃ with the cost matrix given by the distances between the

xb,s s = 1, . . . , S and the current centroids CK.

Step 3: Update the set of centroids by averaging over the points which were

assigned to each cluster:

ck := |Ak|−1
∑

xb,s∈Ak

xb,s

where Ak is the set of points in cluster k, i.e. Ak := {xb,s ∈
XB,S|c(xb,s) = ck}.

Relabelling algorithms

Stephens (2000b) proposed to take a decision theoretic approach by selecting

an action which corresponds to a mixture distribution where the number of

components is equal to the number of modesM . The prior class probabilities

of this mixture are given by ξm and the mode speci�c actions by am. The

loss between the action (ξ,a) and the true parameter vector Θ is determined
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by minimizing over the di�erent modes:

L
(
(ξ,a); Θ

)
= min

m
{− log ξm + L0(a

m; Θ)}

where a = (am)m=1,...,M and ξ = (ξm)m=1,...,M with ξm > 0 ∀m and∑M
m=1 ξ

m = 1.

The loss function for each mode can be taken as the Kullback-Leibler

divergence (`KLdiv') between the a-posteriori probabilities pis(Θ) of the ob-

servations and the action am where we drop the label-invariant term. This

is given by:

L0(Q
m; Θ) = min

ν

{
−

n∑
i=1

S∑
s=1

pis(ν(Θ)) log(qm
is )

}

The action am is given by Qm = (qm
is )i,s, where qm

is represents the probability

that observation i is assigned to group s for mode m.

The algorithm is given by:

Algorithm 2. Starting with some initial values for νb,m (setting them all to

the identity permutation for example) and mb, b = 1, . . . , B (using a random

partition of the draws for example), iterate the following steps until a �xed

point is reached holding all other parameters �xed in each step:

Step 1: Choose ∀m = 1, . . . ,M the Q̂m = (q̂m
is )i,s that minimizes

−
B∑

b=1

n∑
i=1

S∑
s=1

I{mb=m}pis(νb,m(Θb)) log(q̂m
is )

where I is the indicator function.

Step 2: For b = 1, . . . , B and m = 1, . . . ,M choose νb,m to minimize

−
n∑

i=1

S∑
s=1

pis(νb,m(Θb)) log(q̂m
is )
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Step 3: For b = 1, . . . , B choose mb to minimize

− log(ξ̂m)−
n∑

i=1

S∑
s=1

pis(νb,m(Θb)) log(q̂m
is )

Step 4: Determine ξ̂ by

ξ̂m =
1

B

B∑
b=1

I{mb=m}

The proposed loss function is especially appropriate for clustering infer-

ence. The advantage of this loss function is that it can be used for dif-

ferent component distribution functions and without modi�cations also in

the regression case. Other loss functions have been proposed in the case of

unimodality and can certainly also be applied in this context as the mode spe-

ci�c loss function. If the components follow a Gaussian distribution Stephens

(1997) suggested to use a Kullback-Leibler divergence measure between the

density functions. This loss function is given by

L0(π
m,µm,Σm; Θ) =

min
ν

{
−

S∑
s=1

πs(ν(Θ)) log(πm
s ) + (1− πs(ν(Θ))) log(1− πm

s )+

πs(ν(Θ))

∫
φ(x|µs(ν(Θ)),Σs(ν(Θ))) log(φ(x|µm

s ,Σ
m
s ))dx

}
where φ(·|·) is the Gaussian density function, πm = (πm

s )s, µm = (µm
s )s and

Σm = (Σm
s )s. The action am is given by (πm,µm,Σm). In the following we

refer to this loss function as `Densdiv'.

Another possibility mentioned in Stephens (2000b) similar to Celeux

(1998) is given by

L0(µ
m,Σm; Θ) = min

ν

{
−

S∑
s=1

log φ(µs(ν(Θ)); µm
s ,Σ

m
s )

}

where the action am is given by (µm,Σm). This loss function will be referred
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to as `Celeuxdiv'.

In addition to random initialization the clustering results of constrained

k-means can be used as heuristic to provide good initial values. For the

Kullback-Leibler divergence it makes sense to use the a-posteriori probabili-

ties pis(Θ) as input data, while for the other two loss functions the component

speci�c parameter values should be clustered after appropriate variable se-

lection and standardization.

4.2.4 Illustration using an arti�cial example

In this section we apply the methods proposed in the previous sections on an

arti�cial example in order to check for multimodality, make an exploratory

cluster analysis and to relabel the �tted bootstrap models given a speci�ed

number of modes. We use a �nite mixture of Gaussian regression models

which is not identi�able due to intra-component label switching. In this case

the number of global modes and the true parameters of the di�erent modes

are known and we can therefore evaluate the performance of the methods.

The mixture regression of the example is given by

H(y|x,Θ) =
3∑

s=1

1

3
N(µs(x), 0.01)

where µs(x) = x′βs and N(µ, σ2) is the Gaussian distribution.

We assume that the regressors consist of an intercept, a continuous vari-

able x1 ∈ [0, 1] and an interaction term between a binary variable x2 and x1.

For simplicity of presentation we assume that there is no main e�ect of the

binary variable x2, i.e. the coe�cient is equal to 0 for all components. The

interaction term between x1 and x2 is in the following denoted by x1:x2.

As Gaussian mixture distributions are generically identi�able the means,

variances and component weights are uniquely determined in each covariate

point. Due to the speci�c structure of the covariate matrix, only the follow-

ing three covariate points are necessary to uniquely determine the marginal

distributions in each possible covariate point. Let the component speci�c

means in these covariate points be given by µ(x1 = 0, x2 = 0) = (4, 4, 2),
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µ(x1 = 1, x2 = 0) = (4, 2, 2) and µ(x1 = 1, x2 = 1) = (2, 0, 2).

As the ordering of the components in each point is not unique due to the

violation of the coverage condition (Hennig 2000), the two possible solutions

for β := (β1,β2,β3) are:

Solution 1: β
(1)
1 = (4,−2, 0)′, β

(1)
2 = (4, 0,−4)′, β

(1)
3 = (2, 0, 0)′

Solution 2: β
(2)
1 = (4,−2,−2)′, β

(2)
2 = (4, 0,−2)′, β

(2)
3 = (2, 0, 0)′

The omission of x2 in the regression clearly simpli�es the example, because

the mixture with the same marginal distributions where the binary variable

x2 is also included in the regression and allowed to vary between the compo-

nents, has 6 di�erent parameterizations.

In the following we use a sample with 100 observations from this mixture

distribution, where the x1 values are equidistantly given in the interval [0, 1]

and we observe both x2 values for each x1 value. We �t a �nite mixture

model with 3 components to the sample using the EM algorithm. As the

EM algorithm may converge to a local maximum only, we report the best

solution with respect to the likelihood from 10 random initializations. Ran-

dom initialization means that an a-posteriori probability of 0.9 is assigned

to one of the three components and an a-posteriori probability of 0.05 to

the other two components for each observation where the component with

a-posteriori probability 0.9 is determined randomly with equal probability.

Further implementational details are given in Leisch (2004).

The sample together with the �tted values for all three components is

given in Figure 4.12. The estimated parameters with the standard deviations

derived using standard asymptotic theory as in Turner (2000) are given in

Table 4.5.

Checking for genuine multimodality

In order to check for genuine multimodality we proceed as outlined in Sec-

tion 4.2.2. We sample 200 parametric bootstrap samples from the �tted

model and �t a mixture model with three components using the EM algo-

rithm with 10 random initializations to each of them. In Figure 4.13 the
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Figure 4.12: Sample with 100 observations from the arti�cial example to-
gether with the �tted values for each component. The symbols of the data
points are correspond to the component with the maximum a-posteriori prob-
ability.

(Intercept) x1 x1:x2 σ π
Comp. 1 4.00 -2.08 0.09 0.11 0.45

(0.04) (0.07) (0.05) (0.05) (0.05)
Comp. 2 4.02 -0.07 -3.84 0.08 0.27

(0.03) (0.06) (0.06) (0.05) (0.05)
Comp. 3 2.00 -0.02 -0.01 0.08 0.28

(0.03) (0.07) (0.07) (0.05) (0.05)

Table 4.5: Estimated parameters (standard deviations) of the �nite mixture
�tted to a sample with 100 observations.
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Figure 4.13: Parallel coordinate plot of the parameter estimates for 200 boot-
strap samples. The black lines give the �tted values and the dashed black
lines the 95% con�dence bands. The coloring indicates the assigned mem-
bership to one component or to no component.

results are visualised using parallel coordinate plots for the component spe-

ci�c parameter estimates of the bootstrap samples together with the 95%

con�dence bands for the parameter estimates for each component.

We check if the con�dence bands and the bootstrap samples correspond.

There are 83% of the component speci�c bootstrap parameters completely

within one of the bands while we would expect 95%. The percentage within

one band given that 200 should belong to each component is for the �rst com-

ponent 81.5%, for the second 79.5% and for the third 87%. While there are

nearly as many bootstrap samples as expected within the band of component

3, there are a lot less than expected in the other two components indicating

that there is a problem for these two components. The di�erence between

the observed and expected values is mainly caused by intra-component label

switching, as two bundles corresponding to the second mode for these two

components can be clearly distinguished in Figure 4.13, due to the di�erence

of the coe�cients for the interaction x1:x2. In addition, there can be also a

few spurious results seen which are due to convergence problems of the EM

algorithm.
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Figure 4.14: Kernel density plot of the bootstrap parameter estimates after
relabelling with M = 1 and loss `KLdiv'.

For the second approach we use the relabelling algorithm with loss `KL-

div' to determine a unique labelling of the bootstrap samples. We check if

the relabelling algorithm returned a unique labelling by using density plots

and by testing for unimodality of the component speci�c parameters. In

Figure 4.14 we see that the component speci�c estimates are unimodal for

the intercept, the component weights and σ. Furthermore, they are also

unimodal for the other parameters for component 3. For components 1 and

2 there can be two di�erent, widely separated modes for the coe�cients of

x1 and x1 : x2 distinguished. This indicates that the relabelling algorithm

did not succeed in determining a unique labelling. As one reason for this is

multimodality of the likelihood, a further analysis is necessary.

The p-values of the dip test for the parameters aggregated over all compo-

nents and separately for each component are given in Table 4.6. The p-values
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(Intercept) x1 x1:x2 σ π
Aggregated 0.06 0.06 0.06 0.97 0.57
Comp. 1 1.00 0.00 0.00 1.00 1.00
Comp. 2 1.00 0.00 0.00 1.00 1.00
Comp. 3 1.00 1.00 1.00 1.00 1.00

Table 4.6: P-values of the dip test for the bootstrap parameter estimates
adjusted for multiple testing using the method given in Holm (1979).

are determined under the null hypothesis of a uniform distribution for the

aggregated values and of a Gaussian distribution for the separate compo-

nents and are adjusted for multiple testing using the method given in Holm

(1979). The dip test indicates that the components clearly do not di�er for

σ and the component weights for the aggregated parameter estimates. This

signi�es that these variables are not suitable for imposing an ordering con-

straint. Furthermore, it might be possible to estimate a constrained mixture

model with the variance �xed over all components. Similar to the density

plot unimodality is rejected for the component speci�c estimates of x1 and

x1 : x2 for components 1 and 2.

In order to investigate the size and power of the proposed testing proce-

dure 100 samples are drawn from an identi�able and an unidenti�able mix-

ture and the procedure is applied to each of them. For the power analysis

the samples are drawn from the given example, whereas for the size anal-

ysis the example is modi�ed such that there are 25 observations where the

component membership is �xed for both values of x2 in order to eliminate

intra-component label switching. In Table 4.7 the relative numbers of sam-

ples where the null hypothesis is rejected for a given nominal signi�cance

level are given. The p-values for the dip test are determined for each pa-

rameter and component under a uniform and a Gaussian null distribution

and are then adjusted for multiple testing using the method given in Holm

(1979).

Even if the number of replications is rather small due to the computa-

tional complexity involved, it can clearly be seen that the dip test under the

uniform null hypothesis is conservative while the Gaussian distribution gives



CHAPTER 4. MODEL DIAGNOSTICS 77

Size Power
Nominal level Uniform Gaussian Uniform Gaussian

0.01 0.00 0.01 0.93 0.98
0.02 0.00 0.01 0.93 0.98
0.04 0.00 0.05 0.93 0.99
0.06 0.00 0.06 0.94 0.99
0.08 0.00 0.08 0.96 0.99
0.10 0.00 0.09 0.97 0.99
0.20 0.00 0.17 0.97 0.99

Table 4.7: Estimated true levels and power for given nominal levels using
100 random samples from an identi�able and an unidenti�able mixture.

a good level accuracy. The power performance is very good for both null hy-

pothesis distributions for the given unidenti�able mixture distribution. The

null hypothesis is rejected for nearly all samples for any nominal signi�cance

level even though the performance under the Gaussian null distribution is

slightly better.

This small simulation study justi�es the choice of the Gaussian distribu-

tion as null distribution and validates the testing procedure as the nominal

signi�cance levels under the null distribution are met and the null hypothesis

is rejected for 99% of the samples for a signi�cance level of 0.05 if the mixture

is not identi�able.

Imposing an ordering constraint

As using an ordering constraint on a single variable to determine a unique

labelling is one of the most popular approaches to solve the label switching

problem we also apply this method. However, this is not a suitable way to

solve the label switching problem in this example, as at least two compo-

nents overlap for each of the variables. The dip test results in Table 4.6

clearly indicate that σ and the component weights are no suitable variables

for imposing an ordering constraint. The results for the other three variables

are given in Figure 4.15 and it can be seen that the label switching problem

has not been solved by any of them.

If the ordering constraint fails to determine a unique labelling for the
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Figure 4.15: Component assignment of the bootstrap results with an ordering
constraint for each of the variables where overall unimodality was rejected.

components for each of the modes, it is also not easily possible to separate

the two modes by clustering the relabelled complete parameter vectors. This

is shown using k-means as cluster algorithm and the complete bootstrap

parameter vectors after relabelling with respect to the intercept as input

data. The results suggest in fact the presence of at least 4 modes. The

4-cluster solution together with the sum of within cluster distances for the

di�erent number of clusters (modes) is given in Figure 4.16. Even if the

labelling is unique for the components and there are also only samples which

correspond to the same mode for each cluster in the 4-cluster solution, it can

be noticed that cluster 1 and 3 and cluster 2 and 4 correspond to the same

modes after suitable relabelling.

Exploratory analysis of the modes

k-means In the following we use only the component speci�c parameter

values to show the application of clustering methods using k-means and

constrained k-means. The results for clustering of the component speci�c

a-posteriori probabilities are omitted as they gave similar results. For the

constrained k-means algorithm at least 3 clusters have to be speci�ed be-
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Figure 4.16: Number of modes suggested by k-means and the solution for
each mode using the parameter vectors after imposing an ordering constraint
on the intercept.

cause there is no feasible solution otherwise. The maximum number of clus-

ters estimated is 12 which corresponds to at least four modes. As input we

use only the parameters where the dip test rejected the null hypothesis of

unimodality for the aggregated values, i.e. we exclude σ and the component

weights. Furthermore, we standardise the input variables.

All unconstrained k-means solutions for K = 4, . . . , 12 meet the con-

straints and only two bootstrap samples violate the constraints for K = 3.

This signi�es that the constraints are in fact not necessary, because the com-

ponents are su�ciently di�erent from each other. This result can be seen as

an indicator that the choice of number of components is adequate. The sum

of within cluster distances indicate that there are 5 clusters present in the

data.

In Figure 4.17 the suggested relabelling for each of the modes implied

by the constrained k-means solution with 5 clusters is given. 4 modes are

induced by the 5 clusters and the information which parameters belong to

the same bootstrap sample. The size of the modes are 24, 2, 2 and 172.
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Figure 4.17: Number of clusters suggested by unconstrained and constrained
k-means clustering and the parallel coordinate plot of the 200 bootstrap
samples where the coloring indicates the cluster assignments for 5 clusters.

The two small modes occur because the EM algorithm failed to detect the

global optimum and converged to a local optimum in these cases. The binary

numbers in the lower title strip of each panel indicate to which of the 5

clusters the components of the bootstrap samples have been assigned. This

shows that the third cluster is present in each mode.

Hierarchical clustering Similar to unconstrained k-means clustering hi-

erarchical clustering methods can also be used for an exploratory analysis in

order to determine the number of component speci�c estimates and modes.

In the following we use an agglomerative hierarchical clustering algorithm

with Euclidean distance measure after parameter speci�c standardisation

and complete linkage. We use again only the parameters where the dip test

rejected the null hypothesis of unimodality for the aggregated values.

The resulting dendrogram is given in Figure 4.18 (left). We choose a

7-cluster solution and cut the dendrogram in the respective height. The

parallel coordinate plot in Figure 4.18 (right) gives the estimates separately
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Figure 4.18: Dendrogram of the hierarchical clustering results and the paral-
lel coordinate plot of the 200 bootstrap samples where the coloring indicates
the cluster assignments for 7 clusters.

for each mode induced by the cluster assignments and the information which

estimates belong to the same bootstrap sample. The coloring is according to

the 7-cluster solution. The number of bootstrap samples in each mode are

again 24, 2, 2 and 172. The two small components contain the bootstrap

samples where the EM algorithm converged to a local maximum, while the

other two components correspond to one of the global modes.

Relabelling under genuine multimodality

Random initialization The relabelling algorithm given in Section 4.2.3 is

applied with M = 1, . . . , 4. As the algorithm might only converge to a local

minimum, the best solution of 10 runs with random initialization is reported.

This is in fact still not su�cient to determine the global maximum, as a local

maximum with less number of modes as speci�ed is found in certain cases.

The number of modes returned together with the corresponding objective

values are given in Figure 4.19 (left). On the right the solution for `KLdiv'

with 3 modes is given.
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Figure 4.19: Values of the objective function together with the number of
modes found and the parallel coordinate plot of the parameter estimates
for the 200 bootstrap samples. The coloring indicates the labels of each
component and mode using loss function `KLdiv'.

In Table 4.8 the correspondence between the cluster solutions using the

di�erent loss functions is given using the Rand index corrected for agreement

by chance (Hubert and Arabie 1985). Most of the Rand indices are close to

one if the number of modes is larger or equal to two, as in these cases the two

big modes can be separated while samples of the two small modes containing

the bootstrap samples where the EM algorithm did not converge to a suitable

root are di�erently assigned.

It can be therefore seen that the results of the relabelling algorithms are

Number of Modes
1 2 3 4

KLdiv vs. Densdiv 0.79 0.83 1.00 0.98
KLdiv vs. Celeuxdiv 0.79 0.97 0.98 0.96
Densdiv vs. Celeuxdiv 1.00 0.80 0.98 0.98

Table 4.8: Class agreement between the cluster solutions of the di�erent loss
functions using the Rand index corrected for agreement by chance.
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similar for the di�erent loss functions even in the case of multiple modes.

A similar conclusion was already drawn in the unimodal case (cf. Stephens

2000b).

Initialization in constrained k-means solution As 10 repetitions with

random initialization were not su�cient to detect the global optimum, we try

to initialize in the constrained k-means solution where the mode assignment

is determined using the cluster assignment together with the information

which components belong to the same sample.

The relabelled results for loss `KLdiv' and initialization with 5 clusters

are given in Table 4.9 together with the results for the relabelling with only

one mode speci�ed. The initialization in the k-means solution led to 4 modes,

which we were not able to detect with random initialization. There are two

small modes which contain the bootstrap results where the EM algorithm

converged to a local maximum and two larger modes, which correspond to

the two global modes. This method was not only able to separate the global

modes, but also the spurious results and it can be seen that the estimates

of the standard deviations for the largest mode correspond to those derived

with standard asymptotic theory (cp. Table 4.5).

4.3 Summary

In this chapter it has been shown that resampling methods are a useful tool

for �nite mixture model diagnostics. Given the increase in computing power

they are not prohibitive computational demanding any more and could be

applied by default in a standard application. The purpose of the application

might be to detect genuine multimodality as di�erent important modes are

suspected to be present for the �tted model given the available data. In

addition cluster stability can be assessed or the standard errors estimated

using standard asymptotic theory can be validated.

The label switching problem which occurs for random initialization of

the EM algorithm was addressed. The suggestion for using a relabelling

algorithm under the assumption of multimodality given in Stephens (2000b)
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Modes ξ Comp. (Intercept) x1 x1:x2 σ π
1 1.00 1 4.01 -1.84 -0.16 0.10 0.45

(0.04) (0.67) (0.67) (0.01) (0.06)
2 4.01 -0.33 -3.56 0.08 0.27

(0.05) (0.70) (0.70) (0.03) (0.06)
3 1.99 0.01 -0.03 0.09 0.28

(0.05) (0.25) (0.19) (0.04) (0.05)
4 0.86 1 4.01 -2.08 0.09 0.11 0.46

(0.04) (0.08) (0.07) (0.01) (0.05)
2 4.01 -0.06 -3.83 0.08 0.26

(0.05) (0.07) (0.12) (0.03) (0.05)
3 1.99 -0.02 -0.01 0.08 0.28

(0.03) (0.08) (0.07) (0.01) (0.05)
0.12 1 4.00 -2.08 -1.80 0.09 0.37

(0.04) (0.08) (0.07) (0.01) (0.06)
2 2.00 -0.02 -0.01 0.08 0.27

(0.03) (0.09) (0.08) (0.02) (0.05)
3 4.01 -0.04 -1.95 0.10 0.37

(0.06) (0.09) (0.05) (0.02) (0.05)
0.01 1 4.06 -2.20 0.13 0.11 0.56

(0.05) (0.18) (0.08) (0.03) (0.03)
2 2.06 0.12 -0.46 0.18 0.22

(0.14) (0.39) (0.15) (0.14) (0.05)
3 3.93 0.02 -3.31 0.07 0.22

(0.06) (0.02) (0.86) (0.04) (0.02)
0.01 1 1.62 2.34 -1.73 0.45 0.30

(0.12) (0.01) (0.19) (0.10) (0.05)
2 4.03 -2.14 0.09 0.08 0.43

(0.04) (0.00) (0.00) (0.02) (0.01)
3 4.30 -2.64 -1.60 0.23 0.27

(0.10) (0.05) (0.21) (0.00) (0.04)

Table 4.9: Mean component speci�c parameter estimates (standard devia-
tions) using 200 bootstrap samples and the relabelling algorithm with loss
`KLdiv' with initialization suggested by constrained k-means.
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was explored. In addition constrained clustering (Leisch and Grün 2006)

was considered for reordering the components under the assumption of uni-

or multimodality. This method can be applied even if there exists no ordering

constraint on a single variable which induces a unique labelling. It can also

be used for mixtures with a di�erent number of components. If there are

components omitted during the estimation of the models to the bootstrap

samples the remaining components can nevertheless be assigned to di�erent

clusters. If the presence of di�erent modes is suspected the number of clusters

can be increased and it is possible to simultaneously assign the estimated

models to di�erent modes and induce a suitable ordering of the components.



Chapter 5

Implementation in R

In this chapter the design principles of the R package �exmix are discussed

and the main functions presented. The implementational details which are

necessary for being able to extend the package and write new model drivers

are explained. The application of the package is demonstrated on two data

sets and examples for extending the package by writing a new concomitant

variable model and a new component speci�c model are given. The extension

of the package to allow for concomitant variable models and for varying and

�xed e�ects in the component speci�c models is also described in Grün and

Leisch (2006a,b).

5.1 Design principles

�exmix implements �exible �nite mixture modelling. It provides maximium

likelihood estimation with the EM algorithm and some of its variants. An

overview on the package is given in Leisch (2004). The main design principles

are easy extensibility and fast prototyping for new types of mixture models.

It uses S4 classes and methods (Chambers 1998) as implemented in the R
package methods and exploits certain features of R such as lexical scoping

(Gentleman and Ihaka 2000). It provides the E-step and all data handling,

while the M-step can be supplied by the user to easily de�ne new models. The

main focus is on �nite mixtures of regression models and it allows for multi-

86
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ple independent responses, repeated measurements, to specify some control

arguments for the EM algorithm and provides tools for automated model

search.

Functions and model formulae are �rst class objects in the S language,

which allows in combination with the lexical scoping rules of R for very

modular software design. Rather than using text mode arguments used as

switches within function bodies, �exmix uses driver functions to specify all

aspects of the mixture model. Users can either use the growing collection of

drivers distributed as part of �exmix, or write and use their own drivers.

In a �rst step the (un�tted) component speci�c model F (y|x,ϑs) and the

concomitant variable model π(w,α) have to be speci�ed. For this no data

are needed, only the names of the independent and dependent variables and

their respective interaction structure are de�ned. The component speci�c

model is speci�ed with FLXglm() or FLXglmFix() and the multinomial logit

concomitant variable model with FLXmultinom(). If no concomitant variable

model is �tted the function FLXconstant() is used by default.

FLXglm() only allows varying e�ects for the coe�cients and the disper-

sion parameters. In this case the likelihood can be maximized separately

for each component in the M-step of the EM algorithm. If there are also

�xed and nested varying e�ects for the regression coe�cients and dispersion

parameters, FLXglmFix() has to be used and the likelihood is maximized

simultaneously for all components. The design matrix is constructed by

replicating the observations K times with suitable columns of zeros added.

Model formulae for the varying, nested varying and �xed e�ects have to be

provided. These are evaluated by successively updating the formula of the

random e�ects with the formula for the �xed and then the nested varying

e�ects.

The concomitant variable model is speci�ed in a similar fashion. The

default dummy driver FLXconstant() uses no concomitant variables and acts

only as a placeholder. For multinomial logistic regression FLXmultinom() can

be used.

By default, EM is initialized using random assignment of observations

to mixture components, function stepFlexmix() can be used to automati-
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cally determine the best solution out of several random initializations. The

possibility to start EM with user-speci�ed posteriors or (more common) pos-

teriors from a previous run is also provided. To select a model with a suitable

number of components information criteria such as the Akaike information

criterion (AIC), the Bayesian information criterion (BIC) and the integrated

completed likelihood information criterion (ICL; Biernacki et al. 2000) can

be used.

The EM algorithm is controlled by the control argument of flemix(),

where the maximum number of iterations and the tolerance of (relative)

change of log-likelihood for stopping can be given. In addition it can be

speci�ed if the a-posteriori probabilities (�weighted�), the assignment to the

maximum a-posteriori probability (�hard�) or a random assignment to one

component by sampling from a multinomial distribution with probabilities

equal to the a-posteriori probabilities (�random�) is used in the M-step. The

variant with hard assignment is also referred to as Classi�cation EM (CEM;

Celeux and Govaert 1992) and with random assignment as Stochastic EM

(SEM; Diebolt and Ip 1996).

A minimum component weight or prior probability of the components can

be required such that components where the prior probability drops under

a certain threshold are omitted during the EM algorithm. If concomitant

variable models are �tted the average prior probabilities over the given data

points are used. This strategy can be either used for model selection if the

model builder is only interested in mixtures where the components are of

a given minimum size or to prevent convergence of the EM algorithm to a

solution with an unbounded likelihood, as e.g. Gaussian mixtures have an

unbounded likelihood if components with zero variance are present.

flexmix() returns an object of class flexmix and methods de�ned for

this class include show(), summary() and plot(). show() gives the call,

the table of cluster assignments and the number of iterations until conver-

gence. Further details are given by summary() which provides the prior

probabilities together with the table of cluster assignments, the number of

observations with a-posteriori probability larger than eps and the ratio of

these numbers, which indicates how well separated the components are. In
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addition the likelihood (with degrees of freedom used), the AIC and the BIC

are printed. The default plot is a rootogram of the a-posteriori probabilities

for each component. In addition there are accessor functions for the compo-

nent speci�c parameters (parameters()), for the a-posteriori probabilities

(posterior()), the maximum a-posteriori class assignments (cluster())

and the �tted values for each component (fitted()). More information on

the estimated paramters of the component speci�c and concomitant variable

models can be obtained using refit() (see Section 5.3.1).

5.2 Implementational details

With respect to �exmix version 1.0-0 described in Leisch (2004) the imple-

mentation had to be modi�ed to include concomitant variable models and

mixtures of regression with varying and �xed e�ects. This made the de�-

nition of a better class structure for the component speci�c models and the

modi�cation of the �t functions flexmix() and FLXfit() necessary.

For the component speci�c model we now have a virtual class "FLXM"

which has (currently) two subclasses: "FLXMC" for model-based clustering

and "FLXMR" for clusterwise regression, i.e. there are independent variables

given. Additional slots have been introduced to allow data preprocessing

and the construction of the components was separated from the �t and

is now captured as an expression (to allow for lexical scoping) in the slot

defineComponent. "FLXMC" has an additional slot dist to specify the name

of the distribution of the variable.

For flexmix() and FLXfit() code blocks which are model dependent

have been identi�ed in these functions and di�erent methods implemented.

Finite mixtures of regression with varying, nested and �xed e�ects were a

suitable model class for this identi�cation task as they are di�erent from

models previously implemented. The main di�erences are:

� The number of components is related to the component speci�c model

and the omission of small components during the EM algorithm impacts

on the model.
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� The parameters of the component speci�c models can not be deter-

mined separately in the M-step and a joint model matrix is needed.

This makes it also necessary to have di�erent model dependent methods for

fitted() and refit().

The default plot methods now use lattice graphics. Users familiar with

the syntax of lattice graphics and with the plotting and printing arguments

will �nd the application more intuitive as a lot of plotting arguments are

passed to lattice functions. In fact only new panel, pre-panel and group-panel

functions were implemented. The returned object is of class "trellis" and

the print method can be used for plotting.

5.2.1 Component models with varying and �xed e�ects

A new M-step driver is provided which �ts �nite mixtures of GLMs with

�xed and nested varying e�ects for the coe�cients and the dispersion pa-

rameters. The class "FLXMRglmfix" returned by the driver FLXglmFix has

the additional slots with respect to "FLXMRglm":

design: An incidence matrix indicating which columns of the model matrix

are used for which component.

nestedformula: An object of class "FLXnested" containing the formula

for the nested e�ects of the regression coe�cients and the number of

components in each Kc, c ∈ C.

�xed: The formula for the �xed e�ects of the regression coe�cients.

variance: A logical indicating if varying e�ects should be estimated or a

vector specifying the grouping of the nested e�ects for the variance of

the Gaussian distribution.

The di�erence between estimating �nite mixtures including only varying ef-

fects using models speci�ed with FLXglm() and those with varying and �xed

e�ects using function FLXglmFix() is hidden from the user, as the user in-

terface for function flexmix() is the same. The �tted model is of class
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"flexmix" and can be analyzed using the same functions as for any model

�tted using package �exmix. The methods used are the same except if the

slot containing the model is accessed and method dispatching is made via the

model class. New methods are provided for models of class "FLXMRglmfix"

for the following functions: refit(), fitted() and predict() which can

be used for analyzing the �tted model.

The implementation allows repeated measurements by specifying a group-

ing variable in the formula argument of flexmix(). Furthermore, it has to

be noticed that the formulas of the di�erent e�ects are evaluated by updating

the formula of the random e�ects successively with the formula of the �xed

and then of the nested varying e�ects. This ensures that if a random e�ect

is �tted to the intercept, the model matrix of a categorical variable includes

only the remaining columns for the �xed e�ects to have full column rank.

However, this updating scheme makes it impossible to estimate �xed e�ects

for the intercept while �tting random e�ects to a categorical variable.

5.2.2 Concomitant variable models

For representing concomitant variable models the class "FLXP" is de�ned. It

speci�es how the concomitant model is �tted using the concomitant variable

model matrix as independent variables and the current a-posteriori proba-

bility estimates as dependent variables. The object has the following slots:

�t: A function (x, y, ...) returning the �tted values for the component

weights during the EM algorithm.

re�t: A function (x, y, ...) used for re�tting the model.

df: A function (x, k, ...) returning the degrees of freedom used for estimating

the concomitant model given the model matrix x and the number of

components k.

x: A matrix containing the model matrix of the concomitant variables.

formula: Formula for determining the model matrix x.
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name: A character string describing the model, which is only used for print

output.

Two constructor functions for concomitant variable models are provided.

FLXconstant() is for constant component weights without concomitant vari-

ables and FLXmultinom for multinomial logit models. FLXmultinom() has its

own class "FLXPmultinom" which extends "FLXP" and has additional slots

for the �tted coe�cients. The multinomial logit models in Equation (2.3)

are �tted using package nnet (Venables and Ripley 2002).

5.3 Illustration

In this section the application of the package is demonstrated on two data sets

as well as the way how it can be extended for a concomitant variable model

with only categorical variables and to �t zero-in�ated Poisson or binomial

regression models.

5.3.1 Application

We now illustrate model �tting and model selection in R on simple arti�cial

data from a mixture of binomial regression models and on the patent data

set taken from Wang et al. (1998) for a mixture of Poisson regression models.

More examples for members of the GLM family are provided as part of the

software package through a collection of arti�cial and real world data sets,

most of which have been previously used in the literature (see references in

the online help pages). Each data set can be loaded to R with data(name)

and the �tting of the proposed models can be replayed using example(name).

Further details on these examples are given in the Appendix B. The data sets

are: betablocker and Mehta (Aitkin 1999b), fabricfault (Aitkin 1996),

salmonellaTA98 and seizure (Wang et al. 1996), tribolium (Wang and

Puterman 1998) and trypanosome (Follmann and Lambert 1989).
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Logistic Regression Example

The arti�cial data considered here are sampled from a mixture distribution

with three components and with varying e�ects for the intercept and nested

varying e�ects for covariate x. The mixture distribution is given by:

H(y|x,w,Θ) =
3∑

s=1

πs(w,α)Bi(y|N, θs)

where Bi(·|N, θ) denotes the binomial distribution with success probability θ

and number of repetitions N . The success probabilities are given by

logit(θ1) = xβ2,1 + β3,1

logit(θ2) = xβ2,1 + β3,2

logit(θ3) = xβ2,2 + β3,3

where β2,. = (2, 0) and β3,. = (−4, 1, 3). The component weights depend on

the variable w and are determined by

Class 2: logit[π2(w,α)] = 1− w

Class 3: logit[π3(w,α)] = w.

A random sample with 200 observations is drawn from this mixture distribu-

tion for N = 20, x standard Gaussian and w from the set {0, 1} with equal

probability (and independent of x). The observations are plotted separately

for the two levels of w in Figure 5.1, the plotting symbol corresponds to the

true component membership. It can be clearly seen that most observations

are from Class 2 for w = 0 and from Class 3 for w = 1.

In practice the true structure of the data is unknown, so we start by �tting

a full model with di�erent parameters for each component, the corresponding

R code is shown in Figure 5.2. After loading package and data and setting

a random seed for repoducability of the results, we de�ne the concomitant

variable model and store it in object Conc. Then we de�ne the full model

using function FLXglm() and store it in Model.1, note that the actual data
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Figure 5.1: Sample with 200 observations from a mixture of binomial re-
gression models. The plotting symbols correspond to the true component
memberships and the lines are the �tted values.

have not been used so far. Finally, we �t a mixture model with 2 to 4

components using nrep=5 replications of the EM algorithm for each model

and store the best of each models in Fitted.1. The number of components

can be selected using AIC or BIC by comparing the values of the information

criteria for these models, e.g. with sapply(Fitted.1, BIC). This suggests

three components. In the next step, we determine the correct structure for

the �xed and varying e�ects.

Figure 5.3 depicts the values of the intercept and coe�cients for covariate

x together with 95% con�dence intervals. The intercepts in the three compo-

nents are all di�erent and the con�dence intervals do not overlap. For x we

get a completely di�erent picture: The coe�cient for Component 3 is almost

zero (and hence greyed out), and the con�dence intervals for the other two

components overlap. Note that the con�dence intervals are not taking into

account that the components have been estimated simultaneously and are

not independent, hence overlaps with zero or other components should only

be interpreted as hints for model selection, not as formal signi�cance tests.

We now use function FLXglmFix() to specify a more parsimonious model:

We have a varying e�ect for the intercept (formula ~1) and restrict the �rst



CHAPTER 5. IMPLEMENTATION IN R 95

> library(flexmix)
> set.seed(8)
> data(BregFix)
> Conc <- FLXmultinom(~w)
> Model.1 <- FLXglm(~x, family = "binomial")
> Fitted.1 <- stepFlexmix(cbind(yes, no) ~ 1, data = BregFix,
+ model = Model.1, K = 2:4, concomitant = Conc,
+ nrep = 5)
> Model.2 <- FLXglmFix(~1, nested = list(formula = c(~x,
+ ~0), k = c(2, 1)), family = "binomial")
> Fitted.2 <- flexmix(cbind(yes, no) ~ 1, data = BregFix,
+ cluster = posterior(Fitted.1[["3"]]), model = Model.2,
+ concomitant = Conc)

Figure 5.2: Fitting mixtures of binomial regression models without con-
straints (Model.1) and with grouped varying e�ects (Model.2).

Comp. 3

Comp. 2

Comp. 1

−4 −2 0 2

(Intercept)

0.0 0.5 1.0 1.5 2.0

x

Figure 5.3: Coe�cients of the larger Model.1.
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two components to have the same coe�cient for x (nested formula ~x) and

the third component to have only the intercept (nested formula ~0). The

concomitant variable model remains unchanged. To get the same ordering

of the components and speed up computations we initialize EM with the

posteriors of the �rst model. Fitted.1[["3"]] has a BIC of 903.57, while

the BIC of Fitted.2 is 893.58, so the smaller model is prefered (AIC and

ICL lead to the same result). Details of the smaller model are shown in

Figure 5.4, all coe�cients di�er from zero and between components. Thus

the correct model would have been obtained even without knowledge of the

true data generating process. Figure 5.1 shows the corresponding predicted

values as lines.

Patent data: Poisson regression models

The patent data given in Wang et al. (1998) consist of 70 observations on

patent applications, R&D spending and sales in millions of dollar from phara-

maceutical and biomedical companies in 1976 taken from the National Bu-

reau of Economic Research R&D Master�le. The observations are displayed

in Figure 5.6. The model which is chosen as the best in Wang et al. (1998)

is given by:

H(Patents|lgRD,RDS,Θ) =
∑S

s=1 πs(RDS,α)Poi(Patents|λs),

where Poi(·|λ) denotes the Poisson distribution and

log(λs) = β1
3,s + β2

3,slgRD.

The R code for �tting this model is given in Figure 5.5. First, the data

set is loaded. The component speci�c model and the concomitant variable

model are speci�ed and assigned to Model.Patent.1 and Conc. This model

is �tted with stepFlexmix() which returns the best of nrep=5 runs of the

EM algorithm with random initialization.

The �tted values for the component speci�c models and the concomitant

variable model are given in Figure 5.6 and the estimated parameters in Fig-
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> refit(Fitted.2)

Call:
refit(Fitted.2)

Number of components: 3

$Comp.1
Estimate Std. Error z value Pr(>|z|)

x 2.00418 0.10094 19.856 < 2.2e-16
(Intercept) -4.28639 0.22399 -19.136 < 2.2e-16

$Comp.2
Estimate Std. Error z value Pr(>|z|)

x 2.004180 0.100937 19.856 < 2.2e-16
(Intercept) 1.005756 0.068438 14.696 < 2.2e-16

$Comp.3
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.89577 0.12146 23.841 < 2.2e-16

> refit(Fitted.2, which = "concomitant")

Call:
refit(Fitted.2, which = "concomitant")

Number of components: 3

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.19610 0.25460 4.6979 2.629e-06
w1 -1.23522 0.39169 -3.1536 0.001613

$Comp.3
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.031706 0.318041 -0.0997 0.92059
w1 0.783599 0.406276 1.9287 0.05376

Figure 5.4: Parameters of the model with nested varying e�ects.

> data(patent)
> Model.Patent.1 <- FLXglm(family = "poisson")
> Conc <- FLXmultinom(~RDS)
> Fitted.Patent.1 <- stepFlexmix(Patents ~ lgRD, k = 3,
+ nrep = 5, model = Model.Patent.1, data = patent,
+ concomitant = Conc)
> Model.Patent.2 <- FLXglmFix(family = "poisson", fixed = ~lgRD)
> Posteriors <- posterior(Fitted.Patent.1)
> Fitted.Patent.2 <- flexmix(Patents ~ 1, model = Model.Patent.2,
+ cluster = Posteriors, data = patent, concomitant = Conc)

Figure 5.5: Fitting mixtures of Poisson regression models without constraints
(Model.Patent.1) and with �xed e�ects (Model.Patent.2).
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Figure 5.6: Patent data with the �tted values of the component speci�c
models (left) and the concomitant variable model (right) for the model in
Wang et al. and with �xed e�ects for log(R&D). The plotting symbol
for each observation is determined by the component with the maximum
a-posteriori probability.
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> refit(Fitted.Patent.1)

Call:
refit(Fitted.Patent.1)

Number of components: 3

$Comp.1
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.638876 0.404726 -6.5202 7.023e-11
lgRD 1.587006 0.089986 17.6362 < 2.2e-16

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.507796 0.123663 4.1063 4.021e-05
lgRD 0.879831 0.033284 26.4343 < 2.2e-16

$Comp.3
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.962118 0.139667 14.049 < 2.2e-16
lgRD 0.671907 0.035712 18.815 < 2.2e-16

> refit(Fitted.Patent.1, which = "concomitant")

Call:
refit(Fitted.Patent.1, which = "concomitant")

Number of components: 3

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.89107 0.62629 4.6161 3.909e-06
RDS -40.22081 11.76771 -3.4179 0.0006311

$Comp.3
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.21417 0.41111 -0.5209 0.6024
RDS 0.74544 1.00438 0.7422 0.4580

Figure 5.7: Parameters of the model Model.Patent.1 �tted to the patent

data set with only varying e�ects.
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ure 5.7. The plotting symbol of the observations corresponds to the induced

clustering given by cluster(Fitted.Patent.1).

We modify this model to have �xed e�ects for the logarithmized R&D

spendings:

log(λs) = β3,s + β1lgRD.

We use the already �tted model for initialization, i.e. we start the EM al-

gorithm with an M-step given the a-posteriori probabilities. The R code for

�tting this model (Model.Patent.2) is given in Figure 5.5.

With respect to the BIC the full model is better than the model with

the �xed e�ects. However, �xed e�ects have the advantage that the di�er-

ent components di�er only in their baseline and the relation between the

components in return of investment for each additional unit of R&D spend-

ing is constant. Due to a-priori domain knowledge this model might seem

more plausible. The �tted values for the constrained model are also given in

Figure 5.6. The �tted parameters are given in Figure 5.8.

5.3.2 Writing your own drivers

New concomitant variable models can be de�ned by writing a constructor

function for a "FLXP" object and new component speci�c models by writing

a constructor function for an object which extends the class "FLXM". Two

examples are given in the following: concomitant variable models with only

categorical variables and component-speci�c models where one component

has a zero mean, i.e. this model class de�nes a zero-in�ated Poisson or bino-

mial regression model.

Concomitant variable models

If the concomitant variable is a categorical variable, the multinomial logit

model is equivalent to a model where the component weights for each level

of the concomitant variable are determined by the mean values of the a-

posteriori probabilities. The driver which implements this "FLXP" model is
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> refit(Fitted.Patent.2)

Call:
refit(Fitted.Patent.2)

Number of components: 3

$Comp.1
Estimate Std. Error z value Pr(>|z|)

lgRD 0.758960 0.023327 32.535 < 2.2e-16
(Intercept) 0.292339 0.097187 3.008 0.002630

$Comp.2
Estimate Std. Error z value Pr(>|z|)

lgRD 0.758960 0.023327 32.535 < 2.2e-16
(Intercept) 1.039521 0.096507 10.771 < 2.2e-16

$Comp.3
Estimate Std. Error z value Pr(>|z|)

lgRD 0.758960 0.023327 32.535 < 2.2e-16
(Intercept) 1.590995 0.100014 15.908 < 2.2e-16

> refit(Fitted.Patent.2, which = "concomitant")

Call:
refit(Fitted.Patent.2, which = "concomitant")

Number of components: 3

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.81202 0.47947 1.6936 0.09035
RDS -26.00943 11.05348 -2.3531 0.01862

$Comp.3
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.91353 0.34713 -2.6317 0.008496
RDS 1.24043 1.40271 0.8843 0.376527

Figure 5.8: Parameters of the model Model.Patent.2 �tted to the patent

data set with �xed e�ects for lgRD.
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setClass("FLXPaverage", contains = "FLXP")
myConcomitant <- function(formula = ~1) {

z <- new("FLXPaverage", name = "myConcomitant",
formula = formula)

z@fit <- function(x, y, ...) {
f <- as.integer(factor(apply(x, 1, paste,

collapse = "")))
AVG <- apply(y, 2, tapply, f, mean)
(AVG/rowSums(AVG))[f, , drop = FALSE]

}
z

}

Figure 5.9: Driver for a concomitant variable model where the component
weights are determined by averaging over the a-posteriori probabilities for
each level of the concomitant variable.

given in Figure 5.9. A name for the driver has to be speci�ed and a fit()

function.

Example: Using the driver If the concomitant variable model returned

by myConcomitant() is used for the arti�cial example in Section 5.3.1 the

same �tted model is returned as if a multinomial logit model is speci�ed. An

advantage is that in this case there are no problems if the �tted probabilities

are close to zero or one.

The �tting of the model with the new concomitant variable model is given

in Figure 5.10. The estimated component weights are compared for each level

of w using the function prior() with the �tted mixture where a multinomial

logit model is used for the concomitant variable model. Obviously the �tted

values of the two models correspond to each other.

Component models: zero-in�ated models

In Poisson or binomial regression models it can be often encountered that

the observed number of zeros is higher than expected. This can be modelled

by a mixture with two components where one has mean 0 (see for example

Böhning et al. 1999). This model can be even generalized to a mixture with

more than two components where one component has a mean �xed at zero. In

the following this component will be the �rst. This model can be de�ned for
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> Conc <- myConcomitant(~w)
> Fitted.3 <- stepFlexmix(cbind(yes, no) ~ 1, data = BregFix,
+ cluster = posterior(Fitted.1[["3"]]), model = Model.2,
+ concomitant = Conc)

* * *

> prior <- function(object) {
+ x <- object@concomitant@x
+ object@concomitant@fit(x, posterior(object))[!duplicated(x),
+ ]
+ }
> prior(Fitted.3)

[,1] [,2] [,3]
1 0.1895370 0.6268413 0.1836217
2 0.2449401 0.2355387 0.5195212

> prior(Fitted.2)

[,1] [,2] [,3]
1 0.1895382 0.6268390 0.1836229
3 0.2449390 0.2355429 0.5195182

Figure 5.10: Fitting a mixture model with the new concomitant model driver.

package �exmix by de�ning an appropriate model class with a construction

function and model-dependent methods for the M-step, if a component is

removed and to get the model matrix. In addition new methods for function

refit() can be de�ned.

The model class "FLXMRziglm" extends "FLXMRglm" and for construction

FLXglm() can be used. Only the family is restricted to binomial or Poisson,

an appropriate name is assigend and the correct class returned. In order to

ensure that the mean of the �rst component is equal to zero the model matrix

has to contain an intercept and the coe�cients are �xed to be -in�nity for

the intercept and zero for all other variables. The existence of the intercept

is checked in FLXgetModelmatrix(). FLXremoveComponent() is called if one

component is removed during the EM algorithm. It checks if this is the �rst

and in this case the model is changed to "FLXMRglm". In the M-step the

coe�cients of the �rst component are �xed and not estimated, while for the

remaining components the M-step of "FLXMRglm" objects can be used. A

similar modi�cation is necessary for re�tting the model.
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setClass("FLXMRziglm", contains = "FLXMRglm")
FLXziglm <- function(formula = . ~ ., family = c("binomial",

"poisson"), ...) {
family <- match.arg(family)
new("FLXMRziglm", FLXglm(formula, family, ...),

name = paste("FLXziglm", family, sep = ":"))
}
setMethod("FLXgetModelmatrix", signature(model = "FLXMRziglm"),

function(model, data, formula, lhs = TRUE, ...) {
model <- callNextMethod(model, data, formula,

lhs)
if (attr(terms(model@fullformula), "intercept") ==

0)
stop("please include an intercept")

new("FLXMRziglm", model)
})

setMethod("FLXremoveComponent", signature(model = "FLXMRziglm"),
function(model, nok, ...) {

if (1 %in% nok)
model <- as(model, "FLXMRglm")

model
})

setMethod("FLXmstep", signature(model = "FLXMRziglm"),
function(model, weights, ...) {

coef <- c(-Inf, rep(0, ncol(model@x) - 1))
names(coef) <- colnames(model@x)
comp.1 <- with(list(coef = coef, df = 0,

offset = NULL, family = model@family),
eval(model@defineComponent))

c(list(comp.1), FLXmstep(as(model, "FLXMRglm"),
weights[, -1, drop = FALSE]))

})
setClass("FLXRMRziglm", contains = "FLXRM")
setMethod("refit", signature(object = "FLXMRziglm"),

function(object, weights, ...) {
coef <- c(-Inf, rep(0, ncol(object@x) - 1))
names(coef) <- colnames(object@x)
comp.1 <- new("FLXRMRziglm", fitted = list(coef))
c(list(comp.1), callNextMethod(object, weights[,

-1, drop = FALSE]))
})

Figure 5.11: Driver for a zero-in�ated component speci�c model.
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> data(dmft)
> Model <- FLXziglm(family = "poisson")
> Fitted <- flexmix(End ~ log(Begin + 0.5) + Gender +
+ Ethnic + Treatment, model = Model, k = 2, data = dmft,
+ control = list(minprior = 0.01))

Figure 5.12: Fitting a zero-in�ated Poisson model to the dmft data set

Example: Using the driver This new M-step driver can be used to es-

timate a zero-in�ated Poisson model to the data given in Böhning et al.

(1999). The data set dmft is count data from a dental epidemiological study

for evaluation of various programs for reducing caries collected among school

children from an urban area of Belo Horizonte (Brazil). It includes the num-

ber of decayed, missing or �lled teeth at the beginning and at the end of the

observation period, the gender, the ethnic background and the treatment of

797 children.

The commands for �tting this model are given in Figure 5.12 and the

estimated coe�cients are given in Figure 5.13. The estimated coe�cients

with corresponding con�dence intervals are also given in Figure 5.14. As the

coe�cients of the �rst component are not interesting, we plot only the second

component. In this case scaling of the coe�cients does not make sense. The

box ratio modi�ed can be modi�ed as for barchart() in package lattice. The

code to produce this �gure is given by plot(refit(Fitted), components

= 2, scale = FALSE).

5.4 Summary

The modi�cations of package �exmix to allow for concomitant variable mod-

els and mixtures of regressions of varying and �xed e�ects as well as the

implementation of the new plot methods brought the package one step closer

to the �nal aim which is to be a toolbox for �tting general �nite mixture mod-

els providing functionality for �tting the models as well as model selection

or diagnostics.

Missing features are for example automated diagnostic tools based on
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> refit(Fitted)

Call:
refit(Fitted)

Number of components: 2

$Comp.1
(Intercept) log(Begin + 0.5) Gendermale Ethnicwhite

-Inf 0 0 0
Ethnicblack Treatmenteduc Treatmentall Treatmentenrich

0 0 0 0
Treatmentrinse Treatmenthygiene

0 0

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.146671 0.092856 -1.5796 0.1142097
log(Begin + 0.5) 0.730110 0.039221 18.6154 < 2.2e-16
Gendermale 0.006799 0.052999 0.1283 0.8979235
Ethnicwhite 0.050307 0.057455 0.8756 0.3812533
Ethnicblack -0.046808 0.087302 -0.5362 0.5918479
Treatmenteduc -0.236686 0.087209 -2.7140 0.0066476
Treatmentall -0.327512 0.096234 -3.4033 0.0006658
Treatmentenrich 0.017153 0.081894 0.2095 0.8340948
Treatmentrinse -0.240981 0.084555 -2.8500 0.0043721
Treatmenthygiene -0.102740 0.089279 -1.1508 0.2498288

Figure 5.13: Parameters of the zero-in�ated Poisson model.

Treatmenthygiene

Treatmentrinse

Treatmentenrich

Treatmentall

Treatmenteduc

Ethnicblack

Ethnicwhite

Gendermale

log(Begin + 0.5)

(Intercept)

−0.5 0.0 0.5

Comp. 2

Figure 5.14: The estimated coe�cients of the zero-in�ated model for the
dmft data set.
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resampling methods as bootstrap results might give valuable insights into

the model �t (see Section 4). To improve the model matrix determination

and the data management for repeated estimation of the same model with

di�erent data package modeltools (Hothorn et al. 2006) should be integrated

simultaneously with the implementation of the bootstrap methods.

To provide functionality for �tting zero-in�ated Poisson and binomial

regression models is a �rst step towards relaxing the assumption that all

component speci�c distributions are from the same parametric family. As

mixtures with components which follow distributions from di�erent para-

metric families can be useful for example to model outliers (Dasgupta and

Raftery 1998) it would be nice to also have this functionality readily available

in �exmix.



Chapter 6

Conclusions

Finite mixture models have been used for more than 100 years, but have

seen a real boost in popularity over the last decades due to the tremendous

increase in available computing power. Applications in disjoint scienti�c

communities have led to the development of a lot of variants and extensions

for special cases without proper analysis of many structural and statistical

properties of the general model class. The EM algorithm provides a unifying

framework for maximum likelihood estimation of parameters. However, the

identi�cation of these models was only considered for special cases and a

thorough investigation of recent extensions and variants, as, e.g., mixtures of

generalized linear models, is still missing.

This thesis tries to �ll the present gaps in research by providing su�-

cient identi�ability constraints for important model classes included in the

GLIMMIX framework, where mixtures of generalized linear models are de-

�ned. Mixtures of Gaussian, Poisson and binomial/multinomial regression

models are popular in applications and di�erent kinds of constraints are used

to model the regression coe�cients leading to a framework of varying and

�xed e�ects of the regression coe�cients and dispersion parameters. Theo-

retic identi�ability constraints can be used to formally check if a given model

class is theoretically identi�able. In addition they can also indicate how

much information is needed to be included in the data in order to be able to

sensibly estimate complex and �exible models such as �nite mixture mod-

108
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els. This is especially true for binomial or multinomial logit models where

the repetition parameters plays a crucial role in determining the maximum

number of components which can be distinguished. If there are not enough

repetitions available, �nite mixture models can still be estimated and can

also give good results. However, one has to be aware that heterogeneity can

potentially remain undetected as the true underlying data generating pro-

cess is observational equivalent to a mixture with less components given the

available data.

While a theoretic understanding of the model class is important, further

insights can be gained using resampling methods for model diagnostics. In

a frequentist maximum likelihood setting resampling methods can be used

to detect competing model parameterizations for the given data which can

all be considered to describe the true underlying data generating process. In

Bayesian modelling the posterior probabilities are supposed to convey the

same information given that the MCMC sampler used for estimating these

distributions moves around the whole parameter space and visits all modes.

The constrained clustering approach together with the relabelling algo-

rithm under the assumption of multi-modality are an important tool to si-

multaneously determine the di�erent modes present together with a suitable

labelling of the respective components. The constrained clustering method

even has the advantage that it reveals if there are only a subset of components

where di�erent competing parameterizations can be given.

A thorough analysis of the model �t is necessary in order to be able to

select the most appropriate model to describe the underlying data generating

process or to gain important insights. Depending on the application and

the modelling aims the focus will be on the estimated parameters of the

components, the component weights or the a-posteriori probabilities, i.e. the

implied clusterings. The diagnostics should be suitably chosen depending on

the purpose. Di�erent aspects are covered in this thesis and the application

for analyzing the model is demonstrated on several examples.

A �exible implementation for model estimation and the availability of

tools for convenient comparison of di�erent models is important for the de-

velopment of new models and to gain further insights into the �tted models.
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Especially graphical tools are invaluable in conveying important information

contained in the data or the �tted model. The statistical computing en-

vironment R is clearly suited and the R package �exmix is aimed to be a

computational toolbox for �exible �nite mixture modelling with the EM al-

gorithm. New component speci�c models can be easily de�ned and di�erent

concomitant variable models are possible. As the EM algorithm provides a

common framework for estimation, the �tted models are also from the same

class and model analysis methods which are component speci�c model or con-

comitant variable model independent, such as for example the investigation

of a-posteriori probabilities or the induced clusterings, are applicable for all

these models. This provides the opportunity to reuse a lot of the existing code

for new mixture models and provide only a few additional methods which

take care of the peculiarities of the new component speci�c or concomitant

variable model.



Appendix A

Proof of Theorem 2

If the model is not identi�able, there exist two di�erent parameterizations Θ

and Θ̂ with at most S components such that

H(· |X,Z,Θ) ≡ H(· |X,Z, Θ̂)

where Θ = (πl,β
l,γ)l=1,...,s and Θ̂ = (π̂m, β̂

m, γ̂)m=1,...,ŝ

With condition (1a) we show that the binomial distributions with alter-

natives {k,K} are identi�able ∀i∗ ∈ Ĩk ∀k (Step (a) and (b)). The covariate

points where binomial identi�ability was shown can be used to prove that

no intra-component label switching is possible (Step (c)). This gives us that

the coe�cients of the �xed and varying e�ects are identical up to arbitrary

constants. The rank condition is needed to prove that the constants are equal

to zero (Step (d)).

(a) We show that ∀k = 1, . . . , K:

∀i∗ ∈ Ĩk : z′
k,j(γ − γ̂) = ck,i∗ ∀j ∈

⋃
i∈Ek,i∗

Ji (A.1)

(b) We show that given an arbitrary k ∈ {1, . . . , K − 1} it holds ∀i∗ ∈
Ĩk that ŝ(i∗) = s(i∗) and that there exists a suitable ordering of the
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components such that:

αl
k,i∗ = α̂l

k,i∗ + ck,i∗ (A.2)

∀l = 1, . . . , s(i∗) with

αl
k,i∗ ∈ {x′

k,i∗β
u : u = 1, . . . , s}

and α̂l
k,i∗ analogously de�ned.

(c) We show with condition (1b) analogously to Hennig (2000) that ŝ = s

and that for a suitable ordering of the components it holds that ∀l =

1, . . . , s:

π̂l = πl (A.3)

β̂l = βl + δ (A.4)

where δ ∈ RU is suitably chosen.

(d) We show δ = 0 and γ = γ̂.

ad (a): The equation trivially holds for k = K and the following holds

∀k = 1, . . . , K − 1. If the mixture distributions are equivalent, this

equivalence must also hold for a subset of the covariate points. Hence,

we have ∀i∗ ∈ Ĩk:

s∑
l=1

πl

∏
i∈Ek,i∗

∏
j∈Ji

F (yij;Nij,θ
l
ij) =

ŝ∑
m=1

π̂m

∏
i∈Ek,i∗

∏
j∈Ji

F (yij;Nij, θ̂
m
ij )

The following holds ∀u ∈ Ek,i∗ and v ∈ Ju where (yij)j∈Ji,i∈Ek,i∗ is given

by yk,ij = δiu,jv and yK,ij = Nij − yk,ij. δiu,jv is the Kronecker delta,

i.e. it is one if i = u and j = v and zero otherwise.
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If we cancel the multinomial coe�cients on both sides, we have:

s∑
l=1

πl

[
eαl

k,i∗+z′k,vγ
∏

i∈Ek,i∗

∏
j∈Ji

(
K∑

h=1

eαl
h,i+z′h,jγ)−Nij

]
=

ŝ∑
m=1

π̂m

[
eα̂m

k,i∗+z′k,vγ̂
∏

i∈Ek,i∗

∏
j∈Ji

(
K∑

h=1

eα̂m
h,i+z′h,j γ̂)−Nij

]

The terms which do not depend on l or m can be taken out of the sums.

This leads to:

ez′k,v(γ−γ̂)
s∑

l=1

πl

[
eαl

k,i∗
∏

i∈Ek,i∗

∏
j∈Ji

(
K∑

h=1

eαl
h,i+z′h,jγ)−Nij

]
=

ŝ∑
m=1

π̂m

[
eα̂m

k,i∗
∏

i∈Ek,i∗

∏
j∈Ji

(
K∑

h=1

eα̂m
h,i+z′h,j γ̂)−Nij

]

Finally we have

ez′k,v(γ−γ̂) =

ŝ∑
m=1

π̂m

[
eα̂m

k,i∗
∏

i∈Ek,i∗

∏
j∈Ji

(
K∑

h=1

eα̂m
h,i+z′h,j γ̂)−Nij

]
s∑

l=1

πl

[
eαl

k,i∗
∏

i∈Ek,i∗

∏
j∈Ji

(
K∑

h=1

eαl
h,i+z′h,jγ)−Nij

]

where the right hand side does not depend on index v which signi�es

that the left hand side is constant ∀v ∈
⋃

u∈Ek,i∗
Ju given i∗. This

constant can be given by eck,i∗ . Hence, we have shown equation (A.1).

ad (b): For a given k and i∗ we de�ne yk,.. :=
∑

i∈Ek,i∗

∑
j∈Ji

yk,ij. In the

following we insert the dependent variable where yK,ij = Nij − yk,ij.
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Then it holds ∀i∗ ∈ Ĩk:

s∑
l=1

πl
e

yk,..α
l
k,i∗+

P
i∈Ek,i∗

P
j∈Ji

yk,ijz′k,jγ

∏
i∈Ek,i∗

∏
j∈Ji

( K∑
h=1

eαl
h,i+z′h,jγ

)Nij
=

ŝ∑
m=1

π̂m
e

yk,..α̂
m
k,i∗+

P
i∈Ek,i∗

P
j∈Ji

yk,ijz′k,jγ+yk,..ck,i∗

∏
i∈Ek,i∗

∏
j∈Ji

( K∑
h=1

eα̂m
h,i+z′h,jγ+ch,i∗

)Nij
(A.5)

As the denominator on the left hand side only depends on i∗ and l and

not on j and yk,ij, we de�ne:

λl
k,i∗ :=

πl∏
i∈Ek,i∗

∏
j∈Ji

( K∑
h=1

eαl
h,i+z′h,jγ

)Nij

and λ̂m
k,i∗ can be accordingly de�ned.

Substituting λl
k,i∗ and λ̂m

k,i∗ into equation (A.5) and eliminating the

equal terms on the left and right hand side gives ∀i∗ ∈ Ĩk:

s∑
l=1

λl
k,i∗

(
eαl

k,i∗

)yk,..

=
ŝ∑

m=1

λ̂m
k,i∗

(
eα̂m

k,i∗+ck,i∗

)yk,..

(A.6)

with yk,.. ∈ {0, . . . ,
∑

i∈Ek,i∗

∑
j∈Ji

Nij}.

With condition (1a) it follows that the sum over the unique elements in

equation (A.6) has only the trivial solution ∀i∗ ∈ Ĩk which signi�es that
equation (A.2) hold. This also means that the kth marginal binomial

distribution with alternatives {k,K} is identi�able in point xk,i∗ .

ad (c): We assume that there can be a β̃l de�ned ∀l such that it holds

∀i ∈ Ĩk given k ∈ {1, . . . , K − 1}:

X̃k,iβ
l + Z̃k,iγ = X̃k,iβ̃

l + Z̃k,iγ̂
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where X̃k,i := (x′
k,i)j∈Ji

and Z̃k,i is analogously de�ned.

The existence of these β̃l is guaranteed because the following equation

holds due to the fact that the inverse logit function is a one-to-one

mapping (due to condition (3)) and that ∀k = 1, . . . , K − 1 the kth

marginal binomial distribution with alternatives {k,K} is identi�able
∀i ∈ Ĩk:

s∑
l=1

πl

(
X̃Ĩβ

l + Z̃Ĩγ

)
=

ŝ∑
m=1

π̂m

(
X̃Ĩβ̂

m + Z̃Ĩ γ̂

)

X̃Ĩ

( s∑
l=1

πlβ
l −

ŝ∑
m=1

π̂mβ̂m

)
= Z̃Ĩ(γ̂ − γ)

where X̃Ĩ := (X̃k,i)i∈Ĩk,k=1,...,K−1 and Z̃Ĩ is analogously de�ned.

As because of condition (1b) X̃Ĩ has full column rank we can de�ne

β̃l := βl + δ with

δ :=

(
X̃ ′

Ĩ
X̃Ĩ

)−1

X̃ ′
Ĩ
Z̃Ĩ(γ − γ̂).

We assume without loss of generality that

π1 6= π̂1 and s ≥ ŝ (A.7)

where π̂1 is the a-priori probability for β̃1 with π̂1 ≥ 0.

As the marginal binomial mixture distributions for k = 1, . . . , K − 1

with alternatives {k,K} are identi�able ∀i ∈ Ĩk, the following must

hold ∀i ∈ Ĩk ∀k = 1, . . . , K − 1:∑
∀l=1,...,ŝ:

x′
k,iβ̂

l=x′
k,iβ̃

1

π̂l =
∑

∀h=1,...,s:
x′

k,iβ
h=x′

k,iβ
1

πh (A.8)

The assumption S < q∗ would be in contradiction to the existence of

some β̃ ∈ {β̃u : u = 1, . . . , s} such that ∀k = 1, . . . , K − 1: ∀i∗ ∈ Ĩk :
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∃l ∈ {1, . . . , s} with

β̃ 6= β̂l ∧ x′
k,iβ̃ = x′

k,iβ̂
l ∀k ∈ {1, . . . , K − 1} ∧ i ∈ It(i∗) ∩ Ĩk

because then q∗ ≤ s ≤ S would hold.

Thus it holds for all β̃l l = 1, . . . , s� and in particular for β̃1�that

there exists a k∗ = k(β̃l) and i∗ = i(β̃l) ∈ Ĩk such that:

∀β̂ ∈ {β̂m : m = 1, . . . , ŝ} : x′
k∗,i∗β̃

l = x′
k∗,i∗β̂ ⇒ β̃l = β̂

Considering the marginal mixture distribution for k∗ := k(β̃1) and

i∗ := i(β̃1), we have ∀l ∈ {1, . . . , ŝ}:

β̂l 6= β̃1 ⇒ x′
k∗,i∗β̂

l 6= x′
k∗,i∗β̃

1 (A.9)

Thus, using condition (A.8),

π̂1 =
∑

∀h=1,...,s:
x′

k∗,i∗βh=x′
k∗,i∗β1

πh

implying π̂1 > 0.

Because of (A.7) � π1 6= π̂1 � it must hold:

∃h ∈ {2, . . . , s} : βh 6= β1 ∧ x′
k∗,i∗β

h = x′
k∗,i∗β

1 (A.10)

Without loss of generality one can assume that this h equals 2.

Consider xk,i = xk(β̃2),i(β̃2) and apply the arguments above again to get

∃l: β̂l = β̃2. This leads to a contradiction between (A.9) and (A.10).

Hence we have shown equation (A.4).

ad (d): As equality of distributions implies equality of means we have

s∑
l=1

πl
ex′

k,iβ
l+z′k,jγ∑K

h=1 e
x′

h,iβ
l+z′h,jγ

=
s∑

l=1

πl
ex′

k,iβ
l+z′k,j γ̂+x′

k,iδ∑K
h=1 e

x′
h,iβ

l+z′h,j γ̂+x′
h,iδ
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∀k = 1, . . . , K; ∀j ∈ Ji;∀i ∈ I.

The equation above can be transformed to:

s∑
l=1

πle
x′

k,iβ
l+z′k,jγ

[
1∑K

h=1 e
x′

h,iβ
l+z′h,jγ

− ex′
k,iδ+z′k,jϑ∑K

h=1 e
x′

h,iβ
l+z′h,jγ+x′

h,iδ+z′h,jϑ

]
= 0

s∑
l=1

πle
x′

k,iβ
l+z′k,jγ

[( K∑
h=1

ex′
h,iβ

l+z′h,jγ

)−1

−

( K∑
h=1

ex′
h,iβ

l+z′h,jγ+(xh,i−xk,i)
′δ+(zh,j−zk,j)

′ϑ

)−1]
= 0

∀k = 1, . . . , K; ∀j ∈ Ji and ∀i ∈ I with ϑ := γ̂ − γ.

For every j ∈ Ji, i ∈ I there can be a ũij de�ned with

ũij ∈ arg max
k=1,...,K

{
x′

k,iδ + z′
k,jϑ

}
This choice of ũij implies

x′
ũij ,iδ + z′

ũij ,jϑ ≥ x′
k,iδ + z′

k,jϑ ∀k = 1, . . . , K

We will contradict the following assumption:

∃k ∈ {1, . . . , K} : x′
k,iδ + z′

k,jϑ 6= 0 (A.11)

This assumption together with the normalization condition (3), which

implies x′
K,iδ + z′

K,jϑ = 0, gives that there exists a ṽij ∈ {1, . . . , K}
for which it holds

x′
ũij ,iδ + z′

ũij ,jϑ > x′
ṽij ,iδ + z′

ṽij ,jϑ
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And therefore we get

K∑
h=1

ex′
h,iβ

l+z′k,jγ >
K∑

h=1

ex′
h,iβ

l+z′k,jγ+(xh,i−xũij ,i)
′δ+(zh,j−zũij ,j)

′ϑ

∀l = 1, . . . , s.

This leads to a contradiction of assumption (A.11), because a linear

combination of negative numbers using only positive coe�cients cannot

give 0. This means that x′
k,iδ − z′

k,jϑ = 0 ∀k; ∀j ∈ Ji and ∀i ∈ I.

Because of condition (2) it follows δ = ϑ = 0. Hence we get γ̂ = γ

and β̂l = βl ∀l = 1, . . . , s and ∀k = 1, . . . , K.



Appendix B

Exemplary applications of

mixtures of regression models

In the following, data sets from di�erent areas such as medicine, biology and

economics are used. There are three sections: for �nite mixtures of Gaussian

regressions, for �nite mixtures of binomial regression models and for �nite

mixtures of Poisson regression models.

B.1 Gaussian regressions

This arti�cial data set with 200 observations is given in Grün and Leisch

(2006b). The data is generated from a mixture of Gaussian regression mod-

els with three components. There is an intercept with varying e�ects, an

independent variable x1, which is a categorical variable with two levels, with

nested e�ects and another independent variable x2, which is a numeric vari-

able, with �xed e�ects. The prior probabilities depend on a concomitant

variable w, which is also a categorical variable with two levels. Fixed e�ects

are also assumed for the variance. The data is illustrated in Figure B.1 and

the true underlying model is given by:

H(y | (x1, x2), w,Θ) =
S∑

s=1

πs(w,α)N(y |µs, σ
2),

119
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Figure B.1: Sample with 200 observations from the arti�cial example of �nite
mixtures of Gaussian regression models.

with βs = (βs
Intercept, β

c(s)
x1 , βx2). The nesting signi�es that c(1) = c(2) and

β
c(3)
x1 = 0.

The mixture model is �tted by �rst loading the package and the data set

and then specifying the component speci�c model. In a �rst step a component

speci�c model with only varying e�ects is speci�ed. Then the �tting function

flexmix() is called repeatedly using stepFlexmix(). The code is given in

Figure B.2.

The estimated coe�cients indicate that the components di�er for the

intercept, but that they are not signi�cantly di�erent for the coe�cients of

x2. For x1 the coe�cient of the third component is not signi�cantly di�erent

form zero and the con�dence intervals for the other two components overlap.

Therefore we �t a modi�ed model, which is equivalent to the true underlying

model. The original �tted model is used for initializing the EM algorithm

(see Figure B.2). The BIC suggests that the restricted model should be

preferred.

Details of the second �tted model are given in Figure B.3. The coe�-
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> library(flexmix)
> data(NregFix)
> Model <- FLXglm(~x2 + x1)
> fittedModel <- stepFlexmix(y ~ 1, model = Model,
+ nrep = 5, k = 3, data = NregFix, concomitant = FLXmultinom(~w))

*Loading required package: nnet
* * * *

> refit(fittedModel)

Call:
refit(fittedModel)

Number of components: 3

$Comp.1
Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.641037 0.092629 -82.491 < 2.2e-16
x21 4.648780 0.141118 32.942 < 2.2e-16
x1 9.935412 0.061812 160.737 < 2.2e-16

$Comp.2
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.994595 0.102952 9.6607 < 2.2e-16
x21 5.287411 0.148321 35.6485 < 2.2e-16
x1 9.892441 0.072182 137.0481 < 2.2e-16

$Comp.3
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.869670 0.087103 32.9455 < 2e-16
x21 5.105260 0.129976 39.2784 < 2e-16
x1 0.134829 0.068085 1.9803 0.04906

> Model2 <- FLXglmFix(fixed = ~x2, nested = list(k = c(2,
+ 1), formula = c(~x1, ~0)), varFix = TRUE)
> fittedModel2 <- flexmix(y ~ 1, model = Model2, data = NregFix,
+ cluster = posterior(fittedModel), concomitant = FLXmultinom(~w))
> BIC(fittedModel)

[1] 883.5923

> BIC(fittedModel2)

[1] 856.9138

Figure B.2: Code for estimating a �nite mixture of Gaussian regression mod-
els to the NregFix data set.
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> refit(fittedModel2)

Call:
refit(fittedModel2)

Number of components: 3

$Comp.1
Estimate Std. Error t value Pr(>|t|)

x21 5.111686 0.080495 63.504 < 2.2e-16
x1 9.902215 0.052161 189.838 < 2.2e-16
(Intercept) -7.848595 0.107757 -72.836 < 2.2e-16

$Comp.2
Estimate Std. Error t value Pr(>|t|)

x21 5.111686 0.080495 63.504 < 2.2e-16
x1 9.902215 0.052161 189.838 < 2.2e-16
(Intercept) 1.072239 0.076863 13.950 < 2.2e-16

$Comp.3
Estimate Std. Error t value Pr(>|t|)

x21 5.111686 0.080495 63.504 < 2.2e-16
(Intercept) 2.857667 0.068253 41.869 < 2.2e-16

Figure B.3: Details of the �tted model to the arti�cial example of �nite
mixture of Gaussian regression models.

cients are ordered such that the �xed coe�cients are �rst, the nested varying

coe�cients second and the varying coe�cients last.

B.2 Binomial logit regressions

Beta blockers

The data set is analyzed in Aitkin (1999a,b) using a �nite mixture of binomial

regression models. Furthermore, it is described in McLachlan and Peel (2000)

on page 165. The data set is from a 22-center clinical trial of beta-blockers for

reducing mortality after myocardial infarction. A two-level model is assumed

to represent the data, where centers are at the upper level and patients at

the lower level. The data is illustrated in Figure B.5 and the model is given
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by:

H(Deaths |Total,Treatment,Center,Θ) =
S∑

s=1

πsBi(Deaths |Total, θs).

First, the center classi�cation is ignored and a binomial logit regres-

sion model with treatment as covariate is �tted using glm, i.e. S = 1. In

the next step the centre classi�cation is included by allowing a random ef-

fect for the intercept given the centers, i.e. the coe�cients βs are given by

(βs
Intercept|Center, βTreatment). This signi�es that the component membership is

�xed for each center. In order to determine the suitable number of compo-

nents, the mixture is �tted with di�erent numbers of components and the

BIC information criterion is used to select an appropriate model. In this case

a model with three components is selected. The code is given in Figure B.4

and the �tted values for the model with three components are illustrated in

Figure B.5. The centers are sorted by the relative number of deaths in the

control group. The lines indicate the �tted values for each component of

the 3-component mixture model with random intercept and �xed e�ect for

treatment.

In addition the treatment e�ect can be also included in the random part

of the model. As then all coe�cients for the covariates and the intercept

follow a mixture distribution the M-step can be speci�ed using FLXglm. The

coe�cients are βs = (βs
Intercept|Center, β

s
Treatment|Center), i.e. it is assumed that

the heterogeneity is only between centers and therefore the aggregated data

for each center can be used. The code is given in Figure B.4. The full model

with a random e�ect for treatment has a higher BIC and therefore the smaller

model would be preferred.

The default plot of the returned flexmix object is a rootogramm of the

a-posteriori probabilities where observations with a-posteriori probabilities

smaller than eps are omitted. Argument mark speci�es the component such

that the observations which are assigned to this component based on the

maximum a-posteriori probabilities are marked. This indicates which com-

ponents overlap and can be used as an indicator of closeness between the



APPENDIX B. EXEMPLARY APPLICATIONS 124

> data(betablocker)
> betaGlm <- glm(cbind(Deaths, Total - Deaths) ~ Treatment,
+ family = "binomial", data = betablocker)
> betaMixFix <- stepFlexmix(cbind(Deaths, Total - Deaths) ~
+ 1 | Center, model = FLXglmFix(family = "binomial",
+ fixed = ~Treatment), K = 2:4, nrep = 5, data = betablocker)

2 : * * * * *
3 : * * * * *
4 : * * * * *

> sapply(betaMixFix, BIC)

2 3 4
377.7985 341.4262 341.7815

> betaMix <- stepFlexmix(cbind(Deaths, Total - Deaths) ~
+ Treatment | Center, model = FLXglm(family = "binomial"),
+ k = 3, nrep = 5, data = betablocker)

* * * * *

> summary(betaMix)

Call:
stepFlexmix(cbind(Deaths, Total - Deaths) ~ Treatment |

Center, model = FLXglm(family = "binomial"),
k = 3, data = betablocker, nrep = 5)

prior size post>0 ratio
Comp.1 0.249 10 22 0.455
Comp.2 0.240 10 20 0.500
Comp.3 0.511 24 32 0.750

'log Lik.' -158.3095 (df=8)
AIC: 332.6190 BIC: 346.8925

Figure B.4: Code for �tting a mixture of binomial logit models to the
betablocker data set.
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Figure B.5: Relative number of deaths for the treatment and the control
group for each center in the betablocker data set.
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Figure B.6: Default plot for an object of class "flexmix".

components.

In Figure B.6 the �tted model with three components is plotted with the

second component marked. The default plot of the �tted model indicates

that the components are well separated. In addition component 2 has a

slight overlap with component 3, but none with component 1.

Code for analyzing the �tted model is given in Figure B.7. The �tted

parameters can be accessed with parameters() and the cluster assignments

given the maximum a-posteriori probabilities with cluster(). The esti-

mated probabilities for each component for the treated patients and those
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> parameters(betaMix, component = 2)

$coef
(Intercept) TreatmentTreated
-2.91634472 -0.08047735

> table(cluster(betaMix))

1 2 3
10 10 24

> predict(betaMix, newdata = data.frame(Treatment = c("Control",
+ "Treated")))

$Comp.1
[,1]

1 0.1707940
2 0.1295594

$Comp.2
[,1]

1 0.05135147
2 0.04756965

$Comp.3
[,1]

1 0.09554796
2 0.07511130

> fitted(betaMix)[c(1, 23), ]

Comp.1 Comp.2 Comp.3
[1,] 0.1707940 0.05135147 0.09554796
[2,] 0.1295594 0.04756965 0.07511130

> refit(betaMixFix[["3"]])

Call:
refit(betaMixFix[["3"]])

Number of components: 3

$Comp.1
Estimate Std. Error z value Pr(>|z|)

TreatmentTreated -0.258179 0.049743 -5.1902 2.1e-07
(Intercept) -1.609734 0.051355 -31.3451 < 2e-16

$Comp.2
Estimate Std. Error z value Pr(>|z|)

TreatmentTreated -0.258179 0.049743 -5.1902 2.1e-07
(Intercept) -2.833688 0.073686 -38.4563 < 2e-16

$Comp.3
Estimate Std. Error z value Pr(>|z|)

TreatmentTreated -0.258179 0.049743 -5.1902 2.1e-07
(Intercept) -2.250169 0.039938 -56.3412 < 2e-16

Figure B.7: Code for analyzing the model �tted to the betablocker data
set.
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in the control group can be obtained with predict() or fitted(). A fur-

ther analysis of the model is possible with function refit() which returns

the estimated coe�cients together with the standard deviations, z-values and

corresponding p-values. The printed coe�cients are ordered to have the �xed

e�ects before the varying e�ects.

Mehta et al. trial

This data set is similar to the beta blocker data set and is also analyzed in

Aitkin (1999b). The data set is visualized in Figure B.9. The observation for

the control group in center 15 is slightly conspicuous and might be classi�ed

to be an outlier.

The model is given by:

H(Response |Total,Θ) =
S∑

s=1

πsBi(Response |Total, θs),

with βs = (βs
Intercept|Site, βDrug). This model is �tted with the code in Fig-

ure B.8.

One component only contains the observations for center 15 and in order

to be able to �t a mixture with such a small component it is necessary to

modify the default argument for minprior which is 0.05. The �tted values

for this model are given separately for each component in Figure B.9. The

sites are sorted by the relative number of responses in the control group.

The code for also estimating a random e�ect for the coe�cient of Drug,

i.e. βs = (βs
Intercept|Site, β

s
Drug|Site), is also given in Figure B.8. The BIC is

smaller for the larger model and this indicates that the assumption of an

equal drug e�ect for all centers is not con�rmed by the data.

Given Figure B.9 a two-component model with �xed treatment is also

�tted to the data where site 15 is omitted. The code is given in Figure B.10.

Tribolium

A �nite mixture of binomial regressions is �tted to the Tribolium data set

given in Wang and Puterman (1998). The data was collected to investigate
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> data(Mehta)
> Model <- FLXglmFix(family = "binomial", fixed = ~Drug)
> mehtaMix <- stepFlexmix(cbind(Response, Total - Response) ~
+ 1 | Site, model = Model, k = 3, data = Mehta,
+ control = list(minprior = 0.04), nrep = 5)

* * * * *

> mehtaMix.2 <- stepFlexmix(cbind(Response, Total -
+ Response) ~ Drug | Site, model = FLXglm(family = "binomial"),
+ k = 3, control = list(minprior = 0.04), data = Mehta,
+ nrep = 5)

* * * * *

> BIC(mehtaMix)

[1] 156.3163

> BIC(mehtaMix.2)

[1] 154.3281

Figure B.8: Code for estimating a �nite mixture of binomial logit models to
the Mehta data set.
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Figure B.9: Relative number of responses for the treatment and the control
group for each site in the Mehta et al. trial data set together with the �tted
values.
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> Mehta.sub <- subset(Mehta, Site != 15)
> mehtaMix <- stepFlexmix(cbind(Response, Total - Response) ~
+ 1 | Site, model = FLXglmFix(family = "binomial",
+ fixed = ~Drug), data = Mehta.sub, k = 2, nrep = 5)

* * * * *

Figure B.10: Code for estimating a �nite mixture to only a subset of the
Mehta datset.

> data(tribolium)
> TribMix <- stepFlexmix(cbind(Remaining, Total - Remaining) ~
+ 1, K = 2:3, model = FLXglmFix(fixed = ~Species,
+ family = "binomial"), concomitant = FLXmultinom(~Replicate),
+ data = tribolium)

2 : * * *
3 : * * *

Figure B.11: Code for �tting a �nite mixture to the tribolium data set.

whether the adult Tribolium species Castaneum has developed an evolution-

ary advantage to recognize and avoid eggs of their own species while foraging,

as beetles of the genus Tribolium are cannibalistic in the sense that adults

eat the eggs of their own species as well as those of closely related species.

The experiment isolated a number of adult beetles of the same species

and presented them with a vial of 150 eggs (50 of each type), the eggs being

thoroughly mixed to ensure uniformity throughout the vial. The data gives

the consumption data for adult Castaneum species. It reports the number of

Castaneum, Confusum and Madens eggs, respectively, that remain uneaten

after two day exposure to the adult beetles. Replicates 1, 2, and 3 correspond

to di�erent occasions on which the experiment was conducted. The data is

visualized in Figure B.13 and the model is given by:

H(Remaining |Total,Θ) =
S∑

s=1

πs(Replicate,α)Bi(Remaining |Total, θs),

with βs = (βs
Intercept,βSpecies). The code for �tting this model is given in

Figure B.11.
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The model which is selected as the best in Wang and Puterman (1998)

can be estimated with the code given in Figure B.12. Wang and Puterman

(1998) also considered a model where they omit one conspicous observation.

The code for estimating this model is also given in Figure B.12.

Trypanosome

The data is used in Follmann and Lambert (1989). It is from a dosage-

response analysis where the proportion of organisms belonging to di�erent

populations shall be assessed. It is assumed that organisms belonging to dif-

ferent populations are indistinguishable other than in terms of their reaction

to the stimulus. The experimental technique involved inspection under the

microscope of a representative aliquot of a suspension, all organisms appear-

ing within two �elds of view being classi�ed either alive or dead. Hence the

total numbers of organisms present at each dose and the number showing

the quantal response were both random variables. The data is illustrated in

Figure B.15.

The model which is proposed in Follmann and Lambert (1989) is given

by:

H(Dead |Θ) =
S∑

s=1

πs(Dead,α)Bi(Dead | θs),

where Dead ∈ {0, 1} and with βs = (βs
Intercept,βlog(Dose)). This model is �tted

with the code given in Figure B.14.

The �tted values are visualized in Figure B.15 together with the �tted

values of a generalized linear model in order to facilitate comparison of the

two models.
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> modelWang <- FLXglmFix(fixed = ~I(Species == "Confusum"),
+ family = "binomial")
> concomitantWang <- FLXmultinom(~I(Replicate == 3))
> TribMixWang <- stepFlexmix(cbind(Remaining, Total -
+ Remaining) ~ 1, data = tribolium, model = modelWang,
+ concomitant = concomitantWang, k = 2)

* * *

> refit(TribMixWang)

Call:
refit(TribMixWang)

Number of components: 2

$Comp.1
Estimate Std. Error z value

I(Species == "Confusum")TRUE -0.559904 0.124641 -4.4921
(Intercept) -0.645144 0.095503 -6.7552

Pr(>|z|)
I(Species == "Confusum")TRUE 7.051e-06
(Intercept) 1.426e-11

$Comp.2
Estimate Std. Error z value

I(Species == "Confusum")TRUE -0.559904 0.124641 -4.4921
(Intercept) 0.194718 0.083817 2.3231

Pr(>|z|)
I(Species == "Confusum")TRUE 7.051e-06
(Intercept) 0.02017

> TribMixWangSub <- stepFlexmix(cbind(Remaining, Total -
+ Remaining) ~ 1, k = 2, data = tribolium[-7, ],
+ model = modelWang, concomitant = concomitantWang)

* * *

Figure B.12: Code for �tting the �nite mixture given in Wang and Puterman
1998 to the tribolium data set.
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the a-posteriori probabilities of the model suggested in Wang and Puterman
(1998).

> data(trypanosome)
> Model <- FLXglmFix(family = "binomial", fixed = ~log(Dose))
> TrypMix <- stepFlexmix(cbind(Dead, 1 - Dead) ~ 1,
+ k = 2, data = trypanosome, model = Model, nrep = 5)

* * * * *

> refit(TrypMix)

Call:
refit(TrypMix)

Number of components: 2

$Comp.1
Estimate Std. Error z value Pr(>|z|)

log(Dose) 124.856 15.417 8.0983 5.573e-16
(Intercept) -196.269 24.251 -8.0932 5.814e-16

$Comp.2
Estimate Std. Error z value Pr(>|z|)

log(Dose) 124.856 15.417 8.0983 5.573e-16
(Intercept) -205.804 25.414 -8.0979 5.590e-16

Figure B.14: Code for �tting a �nite mixture of the trypanosome data set.



APPENDIX B. EXEMPLARY APPLICATIONS 133

●

●

●
●

●

●

●

●

4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Dose

D
ea

d/
(D

ea
d 

+
 A

liv
e)

GLM
Mixture model

Figure B.15: Relative number of deaths for each dose level together with
the �tted values for the generalized linear model (�GLM�) and the random
intercept model (�Mixture model�)

B.3 Poisson regressions

Fabric faults

The data set is analyzed using a �nite mixture of Poisson regression models in

Aitkin (1996). Furthermore, it is described in McLachlan and Peel (2000) on

page 155. A random intercept model is used where a �xed e�ect is assumed

for the logarithm of length. The code is given in Figure B.16.

The intercept of the �rst component is not signi�cantly di�erent from

zero for a sign�cance level of 0.01. We therefore also �t a modi�ed model

where the intercept is a-priori set to zero for the �rst components. This

nested structure is given as part of the model speci�cation with argument

nested. In this case the argument k in flexmix() can be omitted. The code

is given in Figure B.17. The �tted values for both models together with data

are visualized in Figure B.18.
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> data(fabricfault)
> Model <- FLXglmFix(family = "poisson", fixed = ~log(Length))
> fabricMix <- stepFlexmix(Faults ~ 1, model = Model,
+ data = fabricfault, k = 2, nrep = 5)

* * * * *

> refit(fabricMix)

Call:
refit(fabricMix)

Number of components: 2

$Comp.1
Estimate Std. Error z value Pr(>|z|)

log(Length) 0.80072 0.16776 4.7730 1.815e-06
(Intercept) -2.37389 1.10083 -2.1565 0.03105

$Comp.2
Estimate Std. Error z value Pr(>|z|)

log(Length) 0.80072 0.16776 4.7730 1.815e-06
(Intercept) -3.13888 1.07437 -2.9216 0.003482

Figure B.16: Code for estimating a �nite mixture of Poisson regression mod-
els to the fabricfault data set.

> fabricMix2 <- stepFlexmix(Faults ~ 0, data = fabricfault,
+ nrep = 5, model = FLXglmFix(family = "poisson",
+ fixed = ~log(Length), nested = list(k = c(1,
+ 1), formula = list(~1, ~0))))

* * * * *

> refit(fabricMix2)

Call:
refit(fabricMix2)

Number of components: 2

$Comp.1
Estimate Std. Error z value Pr(>|z|)

log(Length) 0.448961 0.014894 30.1441 < 2.2e-16
(Intercept) -0.896638 0.119806 -7.4841 7.205e-14

$Comp.2
Estimate Std. Error z value Pr(>|z|)

log(Length) 0.448961 0.014894 30.144 < 2.2e-16

Figure B.17: Code for estimating a �nite mixture of Poisson regression mod-
els with nested varying e�ects to the fabricfault data set.
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Figure B.18: Observed values of the fabric faults data set together with the
�tted values for the components of each of the two �tted models

Seizure

The data is used in Wang et al. (1996) and in Section 4.1.2. It is also

included as an example in this section in order to illustrate how the model

can be estimated in R using package �exmix. The data is from a clinical trial

where the e�ect of intravenous gamma-globulin on suppression of epileptic

seizures is studied. There are daily observations for a period of 140 days on

one patient, where the �rst 27 days are a baseline period without treatment,

the remaining 113 days are the treatment period. The model proposed in

Wang et al. (1996) is given by:

H(Seizures | (Treatment, log(Day), log(Hours)),Θ) =
S∑

s=1

πsPoi(Seizures |λs),

where βs = (βs
Intercept, β

s
Treatment, β

s
log(Day), β

s
Treatment:log(Day)) and log(Hours) is

used as o�set. This model is �tted with the code given in Figure B.19.

A di�erent model with di�erent contrasts to directly estimate the coef-

�cients for the jump in the change between base and treatment period is
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> data(seizure)
> Model <- FLXglm(family = "poisson", offset = log(seizure$Hours))
> seizMix <- stepFlexmix(Seizures ~ Treatment * log(Day),
+ data = seizure, k = 2, nrep = 5, model = Model)

* * * * *

> BIC(seizMix)

[1] 796.8272

> refit(seizMix)

Call:
refit(seizMix)

Number of components: 2

$Comp.1
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.845121 0.234020 12.1576 < 2.2e-16
TreatmentYes 1.301616 0.473909 2.7465 0.006023
log(Day) -0.406364 0.088249 -4.6048 4.130e-06
TreatmentYes:log(Day) -0.430834 0.133414 -3.2293 0.001241

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.070458 0.089179 23.2169 < 2.2e-16
TreatmentYes 7.431700 0.518023 14.3463 < 2.2e-16
log(Day) -0.270713 0.038208 -7.0852 1.388e-12
TreatmentYes:log(Day) -2.276095 0.139691 -16.2938 < 2.2e-16

Figure B.19: Code for estimating a �nite mixture of Poisson regression mod-
els to the seizure data set.
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> seizMix2 <- stepFlexmix(Seizures ~ Treatment * log(Day/27),
+ data = seizure, k = 2, nrep = 5, model = Model)

* * * * *

> BIC(seizMix2)

[1] 796.8272

> refit(seizMix2)

Call:
refit(seizMix2)

Number of components: 2

$Comp.1
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.178570 0.058784 20.0491 < 2.2e-16
TreatmentYes -0.070186 0.103189 -0.6802 0.4964
log(Day/27) -0.270574 0.038195 -7.0840 1.401e-12
TreatmentYes:log(Day/27) -2.276288 0.139675 -16.2970 < 2.2e-16

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.506165 0.076395 19.7155 < 2.2e-16
TreatmentYes -0.118539 0.118805 -0.9978 0.318396
log(Day/27) -0.406109 0.088309 -4.5987 4.251e-06
TreatmentYes:log(Day/27) -0.431218 0.133468 -3.2309 0.001234

Figure B.20: Code for estimating a �nite mixture of Poisson regression mod-
els to the seizure data set with di�erent contrasts.

�tted in Figure B.20. As the treatment e�ect is not signi�cant for this model

a more parsimonious model is �tted which allows no jump at the change

between base and treatment period. The code is given in Figure B.21.

With respect to the BIC criterion the smaller model with no jump is

preferred. This is also the more intuitive model from a practitioner's point of

view, as it does not seem to be plausible that starting the treatment already

gives a signi�cant improvement, but that improvement develops over time.

The data points together with the �tted values for each component of the

two models are given in Figure B.22. It can clearly be seen that the �tted

values are nearly equal which also supports the smaller model.
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> seizMix3 <- stepFlexmix(Seizures ~ log(Day/27)/Treatment,
+ data = seizure, k = 2, nrep = 5, model = Model)

* * * * *

> BIC(seizMix3)

[1] 787.8906

> refit(seizMix3)

Call:
refit(seizMix3)

Number of components: 2

$Comp.1
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.458916 0.057775 25.2518 < 2.2e-16
log(Day/27) -0.447677 0.074909 -5.9763 2.282e-09
log(Day/27):TreatmentYes -0.458614 0.130660 -3.5100 0.0004481

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.149979 0.048972 23.483 < 2.2e-16
log(Day/27) -0.283968 0.034399 -8.255 < 2.2e-16
log(Day/27):TreatmentYes -2.311302 0.123914 -18.652 < 2.2e-16

Figure B.21: Code for estimating a �nite mixture of Poisson regression mod-
els to the seizure data set with no jump between basement and treatment
period.
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Figure B.22: Observed values for the seizure data set together with the �tted
values for the components of the two di�erent models.

Ames salmonella assay data

The ames salmonella assay data set was used in Wang et al. (1996). They

propose a model given by:

H(y | x,Θ) =
S∑

s=1

πsPoi(y |λs),

where βs = (βs
Intercept, βx, βlog(x+10)). The code for �tting this model is given

in Figure B.23. The data together with the �tted lines for each component

are given in Figure B.24.
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> data(salmonellaTA98)
> salmonMix <- stepFlexmix(y ~ 1, data = salmonellaTA98,
+ model = FLXglmFix(family = "poisson", fixed = ~x +
+ log(x + 10)), k = 2, nrep = 5)

* * * * *

Figure B.23: Code for estimating a �nite mixture to the salmonellaTA98

data set.
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