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Kurzfassung

Das Sammeln großer Mengen von Sensordaten, die von Maschinen erfasst werden—z. B.
in Produktionsanlagen—, ist mittlerweile allgegenwärtig. Diese Sensordaten verknüpfen
Werte mit der Zeit, zu der sie gemessen wurden, weshalb sie oft auch als Zeitreihendaten
bezeichnet werden. Durch die Analyse solcher Aufzeichnungen, die das Verhalten und
den Energieverbrauch von Maschinen detailliert beschreiben, können Ineffizienzen und
Anomalien aufgedeckt und anschließend zumindest abgeschwächt werden.

Um diese Vorteile von Zeitreihendaten nutzen zu können, sind Mittel zum effizienten
Speichern sowie Abfragen ebendieser erforderlich. Es bestehen zwar speziell entwickelte
Zeitreihen-Datenbanken, die leistungsstarkes Abspeichern und Verwalten von Zeitreihen-
daten unterstützen, doch sind ihre nativen Abfrage-Fähigkeiten im Allgemeinen eher
grundlegender Natur und operieren auf niedrigem Abstraktionsniveau. Es existieren
auch leistungsfähigere Ansätze zur Abfrage von Zeitreihendaten, die unabhängig von
konkreten Datenbanken sind. Diese sind jedoch oft konzeptionell komplex und es fehlt
ihnen an Werkzeug-Unterstützung, wodurch sie für den Einsatz in industriellen Umfeldern
ungeeignet sind.

Deshalb wird in dieser Arbeit DTSQL vorgestellt, eine neue deklarative Zeitreihen-
Abfragesprache, deren Kernfunktionalitäten in Zusammenarbeit mit auf Energieeffizienz
spezialisierten Domänen-Experten identifiziert wurden. Sowohl ihre Syntax als auch
ihre Semantik wurden auf präzise Weise formal definiert und operieren auf hohem
Abstraktionsniveau, was es Domänen-Experten ermöglicht, zielgerichtete Abfragen zu
formulieren. Darüber hinaus ist sie insofern generisch, als sie unabhängig von spezifischen
Zeitreihen-Datenbanken ist. Konkret ist es damit möglich, die Vorteile einer Datenbank zu
nutzen und gleichzeitig, mithilfe einer klar definierten Schnittstelle für Datenbankzugriffe,
die vorgestellte Abfragesprache zu verwenden.

Sowohl die Spezifikation der vorgeschlagenen Abfragesprache als auch ihre Referenzim-
plementierung wurden danach bewertet, wie effizient und akkurat sie die während des
Anforderungserfassungsprozesses identifizierten Anwendungsfälle abdecken. Die Ergebnis-
se waren sowohl für die Sprachspezifikation als auch für den implementierten Prototypen
recht positiv. Abfragen konnten innerhalb von akzeptablen Zeitspannen ausgewertet
werden und ihre Ergebnisse stimmten annähernd mit der von Menschen durchgeführten
Bewertung derselben Eingabe-Zeitreihe überein.
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Abstract

The practice of collecting large volumes of sensor data captured by machines—e.g., in
production plants—has become ubiquitous. These sensor data link values with the time
they were measured, which is why they are often also referred to as time series data.
By analyzing such records detailing the behavior and energy consumption of machines,
inefficiencies as well as anomalies can be detected and subsequently mitigated.

In order to derive these benefits from time series data, efficient means of storing and
querying them are required. While there are specifically designed temporal databases
supporting high-performance ingestion and storage of time series data, their native query
capabilities are generally rather basic and operate on a low abstraction level. There exist
more powerful approaches to querying time series data, independent of concrete temporal
databases. They often are, however, conceptually rather complex, lack tool support and
therefore, are not suitable for use in industrial environments.

Therefore, this thesis proposes DTSQL, a novel declarative time series query language
whose core features have been identified in collaboration with domain experts specializing
in energy efficiency. Its syntax and semantics were precisely and formally defined and
provide a high level of abstraction, allowing domain experts to formulate target-oriented
queries. Furthermore, it is generic in the sense that it is agnostic to specific temporal
databases. More specifically, it possible to leverage the efficiency of a database while also
utilizing the proposed query language by means of a predefined interface responsible for
storage accesses.

The proposed query language specification and its reference implementation were evalu-
ated according to how efficiently and accurately they cover the use cases identified during
the requirement collection process. The results for both the language specification and
the implemented prototype system were fairly positive. Query results were obtained
within an acceptable amount of time and approximately coincided with the assessment
of the same input time series conducted by humans.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
With concepts such as the Internet of Things and the Fourth Industrial Revolution
(Industry 4.0) on the rise, operators of manufacturing plants have gained the opportunity
to optimize their production processes based on data captured by their facilities. Sensors
and other instruments continuously produce data—more specifically, time series data.
They comprise a series of values which are associated with the date and time they were
measured. If utilized correctly, time series data have the potential to increase productivity,
decrease inefficiencies and mitigate anomalies.

High energy consumption leads to high costs. Therefore, it is crucial to be able to
locate, analyze and eliminate (or at least reduce) sources of unnecessary energy usage.
Conducting analyses of captured time series may help decrease energy expenditure and
potentially reduce wear on production machines. Being more energy-efficient is also
desirable from an environmental perspective because it entails a decline in CO2 emissions.

In order to derive this desired benefit from time series data, there need to be mechanisms
that enable them to be stored and queried efficiently. A mature, established and reliable
approach to storing, managing and querying data are relational database management
systems. They are a good solution to problems with structured data which can be
organized in tables. However, they might not be the most appropriate tool for dealing
with time series data. This is mainly due to their lack of structure (schemas) as well as
their high volatility (noise).

Therefore, dedicated time series databases have been built which are designed to support
exactly this use case. However, their query languages often operate on a low level of
abstraction or are associated with a steep learning curve. Yet, such databases might
still be used as baseline for other solutions to build upon them. One could, for example,
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1. Introduction

leverage their efficient storage capabilities as well as utilize them for basic queries such
as filtering.

The overall aim of this thesis is to design, implement and formally define the syntax and
semantics of a domain-specific language (DSL) which counters these issues of existing
time series query languages. It should provide an intuitive syntax with a low entry barrier
and represent a high-level approach to describing and querying time series data in a way
that supports domain experts’ practice-oriented requirements. This systematic, generic
approach to querying time series data is in direct opposition to repeatedly having to
develop individual solutions tailored to a specific use case.

1.2 Research Questions
The preceding section has introduced the broad research area. The concrete goals of this
thesis are narrowed down in the following research questions:

Q1) What are the most common, project-agnostic, characteristics domain experts pay
attention to when analyzing time series data?

Q2) What language features are required for a time series query language to be expressive
enough to capture these characteristics in a declarative way?

Q3) How can the DSL specification be implemented such that the resulting system is
able to efficiently evaluate practice-oriented queries?

Q4) To what extent does the prototypical DSL implementation support domain experts
in characterizing and finding key features of a given time series?

1.3 Solution Concept
The contribution of this work comprises two core tasks: (i) to conceptualize and implement
a DSL with a solid formal foundation which is powerful enough to express queries
identifying features to be investigated when analyzing time series data. In the following,
this language will be referred to as DTSQL (Declarative Time Series Query Language). A
reference implementation of DTSQL’s specification will exemplify its general applicability.
This prototype will deal with parsing, interpreting and evaluating queries expressed
in DTSQL. Moreover, (ii) a client environment will be provided that guides users in
constructing and executing valid queries. This relieves them of memorizing the exact
syntax and other intricacies usually arising when learning a computer language.

A central requirement of this work is intuitiveness and user assistance during query
formulation. An important part of achieving this is the employment of a structure editor,
also known as projectional editor. This means the user is not editing a plain-text query file,
but rather operates on a well-defined representation (a projection) of an abstract syntax

2



1.3. Solution Concept

tree (AST) of a query, before it is transformed into a textual query. In other words, the
editor offers a simplified textual or (semi-)visual way of building the query. Furthermore, it
displays context-aware hints and actions such as code completion, intentions (quick-fixes),
refactoring suggestions and clear, domain-specific error messages.

The requirements and use cases DTSQL should be able to express are acquired in
collaboration with external domain experts who work with time series data on a daily
basis. Their company offers consulting to other businesses with the goal of helping them
achieve a higher level of energy efficiency. This thesis aims to provide them with means of
formulating target-oriented queries over time series data. They should be able to retrieve
noteworthy features of a given time series without needing to involve computer scientists
or database engineers in the process. This leads to higher efficiency and efficacy due to
less communication overhead as well as a reduced potential of misunderstandings.

An example of what can be expressed using DTSQL is demonstrated in Listing 1.1. This
query exhibits the most important language features in the concrete syntax implemented
as part of the prototype. At first, it declares two aggregate values (samples): the
arithmetic mean of the whole data set as well as the minimum value only considering
data points between May 28th 2022 at 14:15 and the end of the records. Subsequently, it
filters out data points which were measured before the very same date and time. Then,
two kinds of periods are characterized (events): ones with values consistently above the
global average for more than thirty seconds and those with values that are all within a
±25 % range of the local minimum for at least two minutes. Finally, the query selects
composite periods capturing binary event sequences where, within less than four seconds,
a period corresponding to the first event follows (occurs after) a period corresponding to
the second event. These composite periods are then returned (yielded) as query result.

1 WITH SAMPLES:
2 avg() AS globalArithmeticMean,
3 min("2022-05-28T14:15:00Z", "") AS localMinimum
4 APPLY FILTER:
5 AND(NOT(before("2022-05-28T14:15:00Z")))
6 USING EVENTS:
7 AND(gt(globalArithmeticMean)) FOR (30,] seconds AS aboveAvg,
8 AND(around(rel, localMinimum, 25)) FOR [2,] minutes AS aroundMin
9 SELECT PERIODS:

10 (aboveAvg follows aroundMin WITHIN [,4) seconds)
11 YIELD:
12 all periods

Listing 1.1: Exemplary DTSQL Query

The source code associated with the reference implementation, its evaluation and the
client environment is structured into multiple repositories. They are all hosted on GitHub
and available at https://github.com/dtsql-oss/.

3

https://github.com/dtsql-oss/


1. Introduction

1.4 Methodology
The thesis encompasses the following research methods:

1. Literature Review and Research
In order to acquire an understanding of the state of the art in the selected problem
domain, a review of literature relevant to the topic at hand is conducted. The
goal of this is to gain insight into the ways similar problems have been approached
and solved. This also enables the identification of research gaps which could be
addressed in the thesis.

2. Requirements Analysis for the Query Language
Understanding the requirements and potential use cases of the query language is
imperative for designing it adequately. The requirements and desired characteristics
are determined as a result of repeated consultations with external domain experts
who are working with time series data as part of their occupation in the industry.
They have the expertise and experience to explain the use cases and capabilities
DTSQL should cover.

3. Grammar Definition and Language Parsing
Based on the requirements and desired language features determined during the
requirement collection process, a machine-readable specification of the language
syntax needs to be created. This is done under utilization of ANTLR4, i.e., the
fourth version of the well-established parser generator. From the grammar definition
in ANTLR syntax, the tool automatically generates a lexer and parser.

4. Formal and Mathematical Modelling
Apart from the syntax, the query language’s semantics need to be formally defined
as well. All operators and language constructs need to have a clearly specified
meaning in order to make reasoning about and working with queries on a conceptual
level possible. Some language features require the incorporation of logical and
mathematical notions in order to express their semantic meaning. For instance,
integral or aggregation operators have to involve the corresponding mathematical
concepts for a sufficiently precise definition of their semantics.

5. Implementation of a Prototype
As a result of the definition of the query language’s syntax and semantics—as
elaborated with domain experts according to their requirements—a prototypical
implementation of the query language is developed and exposed via a web service.
Furthermore, a way for users to formulate and execute queries over their instances
of time series data will be provided in the form of a projectional editor. The system
is generic in the sense that it is not tightly coupled to a specific storage solution.
Instead, it is extensible so that one can add any data source (e.g., a time series
database or a custom data provider) to execute queries over by implementing the
interfaces provided for this purpose.
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1.5. Structure

6. Performance Assessment and Evaluation by Domain Experts
Continuous consultations with domain experts providing feedback from a practice-
oriented point of view guides the development of the prototype as well as keeps it
on the right track. The prototype’s performance will be evaluated quantitatively
by repeatedly measuring its runtime with increasing workloads. These findings will
be used to locate optimization potentials in the implementation. Furthermore, the
system will be evaluated qualitatively by discussing its capabilities and the results
it obtained with respect to the requirements and assessment of the domain experts.

1.5 Structure
The rest of the thesis is structured into five main chapters, followed by a final concluding
one. The enumeration below outlines their respective purpose.

• Chapter 2 (Preliminaries): This chapter first introduces notable time series
databases and describes previous research efforts that have been made towards
describing, detecting and querying notable events within given time series data.
Furthermore, it explains the notion of domain-specific languages, their development
and how they are used in practice—e.g., with projectional editors. Finally, the
chapter introduces formal and mathematical concepts which are required for later
chapters.

• Chapter 3 (Collection of Requirements): This chapter describes the process
of requirements collection as well as its results. It outlines the fundamental require-
ments expressed by the domain experts accompanying this thesis. Furthermore,
it explains the practical use cases that have been identified and which serve as
a specification of features to be covered by DTSQL. Their descriptions contain
exemplary data instances and plots visualizing the results expected of queries
aiming to answer the respective use cases.

• Chapter 4 (Query Language Specification): This chapter is dedicated to
the design of the time series query language developed over the course of this
thesis. It presents the formal specification of the language resulting from Chapter 3.
This entails a definition of the language’s abstract syntax—along with a concrete,
parser-friendly grammar—and its semantics, precisely characterizing the result of a
given query. Furthermore, it provides numerous examples illustrating the (abstract
and concrete) syntax as well as the semantics of DTSQL’s features.

• Chapter 5 (Reference Implementation): After having established the specifica-
tion of the query language in Chapter 4, this chapter describes how the specification
has been implemented. It explains the software architecture and goes into detail
about how queries are parsed, validated and evaluated. Moreover, this chapter
demonstrates how the implemented client environment guides and assists users in
formulating and executing queries.

5



1. Introduction

• Chapter 6 (Evaluation): This chapter assesses whether and to what extent
the goals of this thesis have been achieved. It verifies if the query language is
powerful enough to express the requirements collected in Chapter 3. Additionally,
this chapter presents a quantitative and qualitative performance assessment: It
explores the progression of the query evaluation runtime with increasing input size,
and it compares the results computed by the system to intuitive human perception.
Finally, it gauges the perceived increase in utility for domain experts provided by
this new language, i.e., the improvement relative to the status quo.

• Chapter 7 (Conclusion): This concluding chapter provides a summary of the
key points of the thesis. Furthermore, it gives an outlook to future research aspects
that could be conducted on this topic which were not possible to address in this
thesis.

6



CHAPTER 2
Preliminaries

2.1 Management of Temporal Data

2.1.1 Time Series Data

The definition of time series data varies depending on author and discipline. The most
prominent commonality is that time series generally describe sequences of observations
(values) which are ordered by time. They may be continuous—for example, when
recording an electrical signal. However, in most cases, they are discrete and measure
values at specific time intervals. If data points consist of only one variable, a time series is
called univariate. If, on the other hand, multiple variables are observed (simultaneously),
then it is multivariate. [1, 2]

There can also be made a distinction between historical and streaming time series data.
With historical data, there is a clearly defined start and end time of the observations. In
the case of streaming data, however, there is no ending point—new measurements are
continuously ingested and processed. [3]

The thesis at hand is solely concerned with univariate, historical time series data. A
formal characterization of this concept, which will be used throughout the main sections
of this document, is provided in Section 2.4.

2.1.2 Temporal Databases and Extensions

There exist numerous time series databases which offer efficient storing and querying capa-
bilities, tailored to their individual (main) goals. For instance, tsdb [4] and Gorilla [5] focus
on monitoring and TSDS [6] prioritizes data analytics. Similarly, Waldo [7] is designed to
operate in potentially non-trustworthy (cloud) environments and therefore, is very much
concerned with security and privacy aspects. Lastly, less research-oriented and more
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2. Preliminaries

general-purpose time series databases such as InfluxDB1, QuestDB2 or TimescaleDB3

may be integrated into more complex (cloud) environments with, for instance, dedicated
data ingestion and external monitoring systems.

Such time series data management systems typically offer high throughput and reasonable
performance in diverse environments. Moreover, various benchmarks have been conducted
that identify the strengths and weaknesses of the different databases [8, 9, 10]. For
instance, InfluxDB exhibits efficient ingestion and querying, but has relatively high CPU
requirements. TimescaleDB provides decent performance regarding data ingestion and
query evaluation, but has a higher memory consumption.

From a technological standpoint, time series databases may expose their data either
via a SQL interface or via different mechanisms. For example, InfluxDB offers the
SQL-like language InfluxQL as well as, more recently, the functional language Flux with
slightly different capabilities. Both QuestDB and TimescaleDB directly build upon
relational database management systems and thus, enable querying via temporal SQL
extensions. Neither QuestDB nor TimescaleDB have published scientific papers detailing
their respective extensions. However, TSQL2 (Temporal Structured Query Language)
is noteworthy in this context. It is a consensus-based temporal SQL extension that
resulted from research efforts spanning multiple years [11, 12, 13]. As a final example,
the Warp 10 4 database offers rich support for time series analytics via WarpScript, a
data flow programming language, as well as FLoWS, a functional language whose feature
set is equivalent to WarpScript’s.

2.2 Event Detection in Time Series Data

There have already been substantial research efforts concerned with representing, querying
and reasoning about time series or temporal data in general. Some of these studies
are rather abstract and on the theoretical side. Others have more practice-oriented
contributions, such as concrete query languages. The following paragraphs give a succinct
overview of scientific work related to the representation of and information extraction
from time series data.

A lot of focus has been directed to temporal and description logics regarding the man-
agement and monitoring of temporal data. For example, [14] maps a subset of TSQL2
to temporal logic and vice versa. Similarly, [15] describes properties of time series data
using temporal logic. On the other hand, [16] employs description logics to represent and
query temporal data. On top of that, an approach to reasoning about temporal data
that combines both temporal and description logics is presented in [17].

1https://www.influxdata.com/
2https://questdb.io/
3https://www.timescale.com/
4https://www.warp10.io/
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2.3. Domain-Specific Languages

There are powerful query languages for time series or sensor log data. Rule-based
languages such as datalogMTL [18] and DslD [19] are powerful enough to characterize
events using multiple constraints over both the time and the value dimension. While they
are able to cover a wide array of use cases due to their high level of expressiveness, they
are often not suitable for widespread use. The main reasons for that are the required
level of expertise in formal methods, difficulty of implementation and therefore lacking
tool support. The amount of work necessary to formulate and execute purposeful queries
is too high for practical purposes.

There have been efforts to create systems that, by design, avoid this by allowing to specify
queries visually [20, 21, 22, 23]. These works are, however, not limited to time series
data alone. Solutions have also been proposed for two-dimensional data in general [24],
semantic data (i.e., data with ontological representations) [25] and graphs [26].

The problem of locating trends, specific patterns or shapes in time series data has
also been studied extensively by employing formal, mathematical and/or statistical
methods [27, 28, 29, 30, 31]. This may entail similarity or distance measures, (piece-wise)
linearizations of the input data, probabilistic models, summary statistics, trigonometric
functions as well as (discrete) differentiation.

Similarly, there are various studies which are concerned with detecting anomalies in time
series data. In this area of research, the goal is not to detect concrete shapes in a time
series, but to recognize events which are out of the ordinary. For example, [32] does so
under utilization of higher-order finite differences (see also Section 2.6.1). The approach
published by [33], on the other hand, employs neural networks to detect anomalies.
Moreover, [34] uses a stochastic model in the shape of a dynamic Markov model.

Lastly, Allen’s interval algebra [35] also deserves to be mentioned for its importance
in theoretical and also practical contributions that are concerned with time intervals.
It introduces notions which enable expressing and reasoning about thirteen different
temporal relationships between time intervals. They are depicted in Figure 2.1.

As the figure shows, there are seven unique relations, all of which (except equal) also
define a unique inverse relation. For instance, X before Y expresses that the interval X
occurs before the interval Y, with X ’s ending point being strictly before Y ’s starting
point. On the other hand, X meets Y has a very similar meaning, except that X ’s ending
point coincides with Y ’s starting point. As a final example, Y started-by X denotes that
the starting points of X and Y coincide, while X ’s ending point is strictly before Y ’s.

2.3 Domain-Specific Languages
The main objective of this thesis is to design, specify and implement a domain-specific
language (DSL) with the purpose of facilitating the detection of noteworthy intervals and
events in time series data. Therefore, this section gives a brief introduction to DSLs as
well as tools and concepts associated with their development.

9



2. Preliminaries

Relation Inverse Relation Illustration

Y

Y

X finishes Y Y finished-by X

X starts Y Y started-by X

X during Y Y contains X

X overlaps Y Y overlapped-by X

X meets Y Y met-by X

X equal Y Y equal X

X before Y Y after X
X

Y

X

Y

X

X
Y

X

X

Y

X

Y

Figure 2.1: Allen’s Interval Relations (Adapted From [35])

2.3.1 DSLs and Language-Oriented Programming

Even though domain-specific languages have been designed, used and studied for several
years now, there is no exact and generally agreed upon definition. In essence, however,
they are programming languages with limited expressiveness and are geared towards or
restricted to a particular problem domain. Since they usually operate on a deliberately
higher level of abstraction than general-purpose programming languages, it is not uncom-
mon for domain-specific languages to be declarative. In other words, it enables language
users to specify what they want to achieve, without requiring them to describe how to do
so (as it is the case with imperative programming languages). [36]

Occasionally, a distinction is made between external and internal domain-specific lan-
guages. According to [37, pp. 27–28], external DSLs are independent languages that have
their own syntax as well as parser, interpreter and/or compiler which are developed in
another programming language. In contrast to that, internal DSLs use a subset of a
general-purpose language such that they feel like a custom language, while still being
able to reuse existing tools such as parsers, compilers, or even debuggers.

Adopting DSLs may result in benefits like the ability to express problems concisely and
on an abstraction level adequate for the respective domain, with the possibility of an
increase in productivity. However, the effort of educating users in (new) DSLs as well
as the cost of designing, implementing and maintaining them has also to be taken into

10
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account. It is very well possible that, for a given use case, the advantages of introducing
a domain-specific language do not outweigh their cost, in comparison to hand-coded (ad
hoc) software. [36]

A term that is sometimes brought up in the context of DSLs is the paradigm of language-
oriented programming. It has as central aspect the development of formally well-defined,
use-case-specific, high-level languages. They should be able to express domain-oriented
problems succinctly and also capture domain knowledge—e.g., LATEX encapsulates complex
rules about the typsetting of mathematical formulas [38, 39]. In this sense, the thesis
at hand embraces language-oriented programming with the formal specification and
implementation of DTSQL. It is an external DSL that, by design, captures knowledge
about time series analysis and allows for the succinct formulation of common tasks in
this domain.

Closely linked to this mentality are language workbenches, development environments
which help create DSLs as well as design custom editing environments to write DSL
scripts [37, p. 28]. The next subsection provides an introduction to language workbenches,
their capabilities and also mentions some notable examples.

2.3.2 Language Workbenches
As already mentioned above, language workbenches serve the purpose of facilitating the
process of creating DSLs along with associated tools (development environments, parsers,
debuggers, etc.). They often provide a level of support to both DSL creators as well as
users writing DSL scripts that is comparable to modern development environments for
(general-purpose) programming languages [37, pp. 129–130]. This may include assisted
textual editing, auto-complete, intentions (quick-fixes), refactoring suggestions or even
graphical editors.

There exist numerous language workbenches, e.g., the Meta Programming System5 (MPS)
[39, 40, 41] by JetBrains, Xtext6 [42], MetaEdit+7 [43], Spoofax [44] or Cedalion [45].
They all possess individual strengths and weaknesses, which is why various efforts have
been made to evaluate available language workbenches. For instance, [46] focuses in
on an application of MPS in the domain of requirements specification, and [47] is a
study comparing many workbenches, based on an especially established feature model.
Moreover, several language workbench competitions have been held with the same goal,
most notably in 2013 [48] and 2016 [49].

The editors of language workbenches offer users the ability to create and manipulate
DSL scripts/programs in a textual, graphical, tabular or projectional manner. While
graphical editors may provide the ability to edit the underlying structure of a DSL
program via a diagram, projectional editors—e.g., as provided by MPS—let users operate
on a projection of the DSL’s internal model defined by the language designer [47]. More

5https://www.jetbrains.com/mps/
6https://www.eclipse.org/Xtext/
7https://www.metacase.com/products.html
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precisely, this projection is a mapping from the abstract syntax tree of a DSL program
to an editable, designer-defined representation of it [50]. This representation, again,
might be textual, (semi-)graphical, tabular or contain special symbols and images. Since
projectional editors build upon a DSL’s structure, they are also called structure editors.

While projectional editors have been around for many years now, they have not been able
to establish themselves on a broad scale, neither in the context of language workbenches
nor in development environments for general-purpose programming languages. There are
multiple studies regarding the acceptance and efficiency of projectional editors [50, 51].
Common findings are that, while fundamentally useful, they require programmers to
readjust from their accustomed style of plain-text source code editing, which they are
often reluctant to due to insufficient prospective benefit. Furthermore, the implementation
of practical, user-friendly projectional editors turns out to be rather difficult.

The scope of this thesis does not allow going into further detail about the anatomy and
mechanics of particular language workbenches and their editors. However, [39] contains
an explanation of its MPS’s design philosophy and [40] an overview of its most important
aspects. What is more, an in-depth view of MPS’s features with focus on industrial
applications, research projects and educational aspects is presented in [52]. Finally,
Section 5.3 (Client Environment) explains how MPS was employed in this thesis to create
a projectional editor for DTSQL queries.

2.4 Temporal Notions
The concepts introduced in later chapters of this thesis, especially in Chapter 4 (Query
Language Specification), are strongly connected with notions related to time. This section
provides formal definitions of our representation of time, time series and time intervals
so that their meaning is well-understood when they are used throughout the document.

2.4.1 Time

Specific points in time are represented as integers t ∈ Z. They are typographically
distinguished from “regular” integer variables by means of a sans serif font. Definition 2.1
captures this notion of time formally.

Definition 2.1 (Time as a Total Order) The concept of time is modelled by the
total order (Z, ≤). Therefore, these properties hold for any arbitrary point in time:

1. reflexivity: ∀t ∈ Z : t ≤ t

2. reflexivity: ∀t1, t2, t3 ∈ Z : (t1 ≤ t2 ∧ t2 ≤ t3) =⇒ t1 ≤ t3

3. antisymmetry: ∀t1, t2 ∈ Z : (t1 ≤ t2 ∧ t2 ≤ t1) =⇒ t1 = t2

4. totality: ∀t1, t2 ∈ Z : t1 ≤ t2 ∨ t2 ≤ t1

12
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This definition is reasonable because it is in accord with our intuitive understanding of
time. Reflexivity is naturally satisfied because any point in time coincides with itself.
Transitivity of any sequence of events is given by the fact that time—at least in its
day-to-day understanding—progresses linearly. If two points in time precede or coincide
with each other, they must be equal, which corresponds to antisymmetry. Lastly, as for
totality, given two points in time, one of them must occur before or coincide with the
other (there are no two points which cannot be ordered temporally).

Note that it would also be possible to use the total order constituted by (N≥0, ≥).
However, this order exhibits a lower bound, zero. Since—at least in theory—there is no
earliest date or point in time, (Z, ≤) is the better choice of analogy. Furthermore, we
do not specify an explicit function projecting time variables t ∈ Z onto specific dates
and times because such a mapping is not required for the purpose of this thesis. The
way of representing time is implementation-specific and not dictated by the language
specification, as long as the validity of the properties stated by Definition 2.1 is preserved.

We do, however, assume the existence of some time-related functions which allow for
a higher level of expressiveness and convenience when working with dates and times.
They are declared in Definition 2.2—their concrete definition is, again, left to the
implementation.

Definition 2.2 (Time-Related Functions)

1. extract(t, c) ∈ N, t ∈ Z, c ∈ {year, month, day, hour, minute, second, milli}:
Extracts a time component c of a given point t. The range of the function
depends on the choice of c:

• extract(t, year) ∈ N≥1

• extract(t, month) ∈ {1, 2, . . . , 12}
• extract(t, day) ∈ {1, 2, . . . , 31}
• extract(t, hour) ∈ {0, 1, 2, . . . , 23}
• extract(t, minute) ∈ {0, 1, 2, . . . , 59}
• extract(t, second) ∈ {0, 1, 2, . . . , 59}
• extract(t, milli) ∈ {0, 1, 2, . . . , 999}

2. duration(t∆, u) ∈ R, t∆ ∈ N≥0, u ∈ {weeks, days, hours, minutes, seconds,
millis}:
Returns the duration represented by the time difference t∆ between two points
in time in the unit u.

2.4.2 Time Series
One of the central concepts used throughout this work are time series because they
contain the data that queries are ultimately executed on. Intuitively, we understand a
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time series as an ordered sequence of time-value pairs, so-called data points. Definition 2.3
provides a definition of these two concepts and their most important properties.

Definition 2.3 (Data Points and Time Series) A data point is a pair

p := (t, v), with t ∈ Z, v ∈ R, (2.1)

meaning that at time t, the value v was recorded. The functions dpt and dpv return
the time and value component of a data point p, respectively, and are defined as

dpt(p) = dpt((t, v)) := t (2.2)
dpv(p) = dpv((t, v)) := v (2.3)

A time series is a sequence of data points

Ψ = ⟨pk⟩ = ⟨(tk, vk)⟩, with 0 ≤ k ≤ n (2.4)

that is ordered by the time component of the data points as per (Z, ≤). The size or
length of a time series is denoted by |Ψ| and is equal to the number of entries, i.e.,

|Ψ| := n (2.5)

The set of data points contained in a time series Ψ is denoted by

P(Ψ) := {p | p ∈ Ψ} (2.6)

We assume that data points in a time series are unique with respect to their time
component, i.e.,

∀pi, pk ∈ Ψ: i ̸= k =⇒ ti ̸= tk (2.7)

The definition above states that data points in a time series are in ascending order and
unique, both with respect to time. This further means that the elements of a time series
are even strictly monotonically increasing with respect to time, i.e.,

∀i, j ∈ N≥0, pi, pj ∈ Ψ: i > j =⇒ ti > ti (2.8)

holds. This assumption facilitates designing algorithms for the implementation of the
language specification significantly. Example 2.1 illustrates the interplay of definitions
introduced in this and the previous subsection.

Example 2.1 (Data Points and Time Series) Consider the (very small) extract of
data recorded by a sensor depicted in Table 2.1.
It defines the time series

Ψ = ⟨p1, p2, p3⟩ =
�
(t1, 524.5), (t2, 530.23), (t3, 544.72)

�
(2.9)
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timestamp identifier value
2022/08/16 13:30:45 t1 524.50
2022/08/16 14:00:45 t2 530.23
2022/08/16 14:30:45 t3 544.72

Table 2.1: Exemplary Time Series for Example 2.1

with its unordered point set P(Ψ) = {p1, p2, p3} and size |Ψ| = 3. All values were recorded
in the year

extract(dpt(p1), year) = extract(dpt(p2), year)
= extract(dpt(p3), year) = 2022

(2.10)

and the highest value is
dpv(p3) = 544.72 (2.11)

Finally, the total duration captured by Table 2.1 is

duration(dpt(p3) − dpt(p1)� �� �
t∆

, minutes) = 60 (2.12)

minutes. △

2.4.3 Time Intervals
A time interval, or short interval, of a time series is a segment of time that is defined by a
lower bound and upper bound and captures a subset of said time series. The specification
of an interval is formulated more formally in Definition 2.4.

Definition 2.4 (Time Intervals) Let Ψ be a time series, ti ∈ Z a lower bound
and tj ∈ Z an upper bound with tj ≥ ti. Then, the interval

πi j (2.13)

is representative of all data points from Ψ that are within the bounds ti and tj. More
specifically, the point set of an interval is given by

psΨ( πi j ) := {p ∈ Ψ | dpt(p) ≥ ti ∧ dpt(p) ≤ tj} (2.14)

The functions

intstart(iπj) := ti

intend(iπj) := tj
(2.15)
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denote the lower and upper bounds of πi j , respectively. Moreover, the length or
duration of an interval is non-negative and expressed by

| πi j | := intend(iπj) − intstart(iπj) (2.16)

It can be translated to familiar units with the duration function.

An illustration of how intervals may be used to denote subsection of a concrete time
series is depicted in Example 2.2.

Example 2.2 (Time Intervals) Consider the time series Ψ = ⟨p1, . . . , p5⟩ defined by
Table 2.2.

data point time identifier value
p1 2022-08-21 17:35:00 t1 230.23
p2 2022-08-21 17:50:00 t2 195.50
p3 2022-08-21 18:05:00 t3 215.30
p4 2022-08-21 18:20:00 t4 225.75
p5 2022-08-21 18:35:00 t5 232.13

Table 2.2: Exemplary Time Series for Example 2.2

The interval π2 4 consists of the data points

psΨ( π2 4) = {p2, p3, p4} (2.17)

and its bounds are given by

intstart(2π4) = t2

intend(2π4) = t4
(2.18)

The length of π2 4 is equal to

| π2 4| = intend(2π4) − intstart(2π4) = t4 − t2 (2.19)

which is equivalent to

duration(| π2 4|, hours) = duration(t4 − t2, hours) = 0.5 (2.20)

hours. △

2.5 Propositional Formulas
The syntax of DTSQL, the temporal query language presented in this thesis, directly
incorporates propositional logic—see Section 4.1.3 (Filters) and Section 4.1.4 (Events).
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While it is most likely that the reader is familiar with this formalism, the following
paragraphs will give a brief overview of its syntax and semantics. This description is
kept at a minimum, further definitions and explanations may be found in any standard
textbook on (classical) logic, e.g., [53].

In Definition 2.5, we define a syntactically restricted subset of propositional formulas
that only exhibits conjunction, disjunction, and negation. This restriction is made in
order to keep the syntax of the language proposed in Chapter 4 compact. We do not lose
expressiveness by this measure because conjunction and negation—as well as disjunction
and negation—are functionally complete sets of logical connectives. This means that
every other logical operator can be expressed as a combination of the operators in one
such set. A proof of this claim is provided in [53, p. 83].

Definition 2.5 (Syntax of Propositional Formulas) Let V = {v1, v2, . . . } be a
set of propositional variables—the terms atomic formulas or (propositional) atoms
are also applicable. Furthermore, let B := {true, false} be the set of propositional
constants. Then, the set F of propositional formulas is defined inductively as the
smallest set such that

1. V ⊆ F
2. B ⊆ F
3. If A ∈ F , then ¬A ∈ F .

4. If A, B ∈ F , then (A ◦ B) ∈ F , with ◦ ∈ {∧, ∨}.

Example 2.3 depicts a few exemplary propositional formulas according to the definition
used in the thesis at hand.

Example 2.3 (Syntax of Propositional Formulas) All formulas below are exam-
ples of syntactically valid propositional formulas according to Definition 2.5.

• v4

• ¬false

• (¬v1 ∨ v2)

•
�¬(v3 ∧ ¬v5) ∧ ¬(v5 ∧ ¬v3)

�
△

The (propositional) value or the result of the evaluation of a propositional formula f
depends on an interpretation (function) which assigns boolean values (propositional
constants) to atoms. In addition to that, the value of non-constant and non-atomic
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formulas—i.e., ones constructed by rule 3 or rule 4—is determined using the functions
depicted by Table 2.3. These two factors are combined in Definition 2.6, formalizing the
semantics of propositional formulas.

i ¬i

false true
true false

(a) Truth Table of Negation

i1 i2 i1 ∧ i2 i1 ∨ i2
false false false false
false true false true
true false false true
true true true true

(b) Truth Table of Conjunction and Disjunction

Table 2.3: Truth Table of Logical Operators Supported By Definition 2.5

Definition 2.6 (Semantics of Propositional Formulas) Let f ∈ F be a propo-
sitional formula over the set of variables V. Furthermore, let I =



I | I : V → B

�
be

the set of all interpretation functions mapping atoms to truth values. Then, the value
of f with respect to a concrete interpretation I ∈ I is determined by the evaluation
function evalI : I × V → B which is defined inductively:

1. If v ∈ V, then evalI(v) := I(v).

2. evalI(true) := true and evalI(false) := false

3. If A ∈ F , then evalI(¬A) := ¬(evalI(A)), where the function ¬ : B → B is
defined as in Table 2.3a.

4. If (A◦B) ∈ F , with ◦ ∈ {∧, ∨}, then evalI((A ◦ B)) := ◦(evalI(A), evalI(B)),
where the function ◦ : B × B → B is defined as in Table 2.3b.

To conclude this section, Example 2.4 demonstrates a step-by-step evaluation of a
propositional formula.

Example 2.4 (Semantics of Propositional Formulas) Let V = {v1, v2, v3} be a set
of atomic formulas, f = (¬(v1 ∨ v2) ∧ v3) a propositional formula over V and

I : V → B, v �→
	

false, if v = v1 or v = v2

true, if v = v3
(2.21)
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an interpretation function. Then, the value of f is determined by evalI as follows:

evalI(f) = evalI((¬(v1 ∨ v2) ∧ v3))
= ∧(evalI(¬(v1 ∨ v2)), evalI(v3))
= ∧(¬(evalI(v1 ∨ v2)), true)
= ∧(¬(∨(evalI(v1), evalI(v2))), true)
= ∧(¬(∨(false, false)), true)
= ∧(¬(false), true)
= ∧(true, true)
= true

(2.22)

△

2.6 Mathematical Concepts
Defining the semantics of DTSQL also requires some mathematical concepts. This section
provides a brief introduction to three methods which will be involved in Section 4.2 (Lan-
guage Semantics)—numerical differentiation, numerical integration and linear regression.
The explanations of these methods, as presented in this section, are in line with how they
are commonly defined. While they may be found in any standard textbook related to
the respective subject, initial resources for further reading will be provided.

2.6.1 Numerical Differentiation
This subsection has been adapted from [54, pp. 38–44] and [55, pp. 529–544]. Refer to
them for more detailed elaborations.

When talking about the rate of change of a function—e.g., when examining whether the
values are on an increasing or decreasing trend—we resort to the concept of differentiation.
Geometrically speaking, the derivative f ′ of a continuous function f at x is the slope of
the tangent line at x and defined as

f ′(x0) := lim
∆x→0

f(x0 + ∆x) − f(x0)
∆x

(2.23)

Intuitively, this means that the slope of the tangent line is the result of a process where
the difference between two points defining a secant line has become infinitely small.

This thesis primarily works with time series data consisting of discrete measurements.
Their smallest possible ∆x is dictated by the resolution of the data, i.e., the sampling
rate of the sensor recording the time series. Hence, it is not feasible to actually calculate
the limit as in Equation (2.23). We have to approximate the derivative of a time series
by the slope of a secant line.

This method of determining a numerical derivative using positive offsets defined by +∆x
is known as forward finite difference approximation. Similarly, considering negative steps
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−∆x is called a backward difference. The combination of both uses the average of forward
and backward differences and is referred to as the central difference. Using these notions,
Definition 2.7 depicts three approximations of a derivative.

Definition 2.7 (Numerical Derivative) Let f : R → R be a continuous function
and ∆x a (small) step width. Then, possible numerical derivatives f ′ at x0 include:

• forward derivative:
f ′

f (x0) ≈ f(x0 + ∆x) − f(x0)
∆x

(2.24)

• backward derivative:

f ′
b(x0) ≈ f(x0 − ∆x) − f(x0)

−∆x
(2.25)

• central derivative:

f ′
c(x0) ≈ f ′

f (x0) + f ′
b(x0)

2 = f(x0 + ∆x) − f(x0 − ∆x)
2 · ∆x

(2.26)

The error induced by these approximations, depending on ∆x, is called truncation error.
While estimations—which also consider higher-order derivatives—show that the central
derivative provides the highest accuracy, this thesis focuses on the forward derivative for
its simplicity. This is manifested in Definition 2.8, specifying the notion of the derivative
of a time series.

Definition 2.8 (Derivative of a Time Series) Let Ψ be a time series with sam-
pling rate ∆x. Further, let f : R → R be a function that models Ψ, i.e.,

∀p ∈ P(Ψ): f(dpt(p)) := dpv(p) (2.27)

with linear interpolation between measurements (data points) to make it continuous.
Then, the derivative of Ψ is the forward derivative of f according to Definition 2.7.

Note that, according to this definition, the derivative of a time series is not defined for its
last data point because there is no successor to build a difference with. This restriction
might seem grave in examples with very small time series. However, in practice, time
series consist of at least several thousand data points, which makes potentially missing
out on the last one a negligible drawback.

2.6.2 Numerical Integration
The contents of this subsection are based on [54, pp. 48–58] and [55, pp. 545–549]. They
provide more detailed explanations and also error estimations.
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A very common interpretation of the definite integral of a function f(x) from a to b, i.e.,� b

a
f(x)dx (2.28)

is that it represents the area of the shape made up of the primary axis and f ’s graph.

Again, since this thesis works with discrete time series, we need to employ a numerical
approach. Numerical integration methods usually come down to compartmentalizing
[a, b] into n sub-intervals and approximating the integral as the total area of shapes
constituted by those sub-intervals. The midpoint rule, for instance, sums up the area of
rectangles whose heights are given by the value of f at the midpoint of the respective
sub-interval. The trapezoid rule adds up areas of trapezoids whose parallel sides are given
by the values of f at the respective sub-interval’s bounds and whose heights are equal
to its width. Lastly, Simpson’s rule approximates f on each sub-interval as a parabola
going through the values of f at the sub-interval’s bounds and its mid-point. Since the
integral of a parabola is easily calculated, the numerical integral of f is then the total
sum of definite integrals of approximated parabolas on the sub-intervals.

Error estimations show that, in general, Simpson’s rule is the most accurate one. However,
due to the fact that time series are not a continuous function, the trapezoid rule comes as
a more natural way to represent the numerical integral. Apart from that, it also allows
for a more compact formulation—see Definition 2.9.

Definition 2.9 (Numerical Integral Using the Trapezoid Rule) Let f : R →
R be a continuous function, [a, b] an interval and n ∈ N≥1 the number of adjacent
sub-intervals which compartmentalize [a, b], but do not necessarily have equal widths.
Then, every sub-interval [ai, bi] with 1 ≤ i ≤ n gives rise to a trapezoid with area

Ai := (f(ai) + f(bi)) · (bi − ai)
2 (2.29)

Therefore, the integral of f from a to b is approximated as� b

a
f(x)dx ≈

n�
i=1

Ai

= 1
2 ·

n�
i=1

�
(f(ai) + f(bi)) · (bi − ai)

� (2.30)

If the sub-intervals have equal widths, the trapezoids’ height (bi − ai) reduces to a
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constant factor b−a
n . In that case, numerical integral has a simpler form:

� b

a
f(x)dx ≈

n�
i=1

Ai

= 1
2 ·

n�
i=1


(f(ai) + f(bi)) · b − a

n


= b − a

2n
·

n�
i=1

(f(ai) + f(bi))

(2.31)

Building on that, we are now able to define the (discrete) definite integral of a time series
in Definition 2.10.

Definition 2.10 (Integral of a Time Series) Let Ψ be a time series and ta, tb ∈
Z two points in time. Further, let f : R → R be a function that models Ψ, i.e.,

∀p ∈ P(Ψ): f(dpt(p)) := dpv(p) (2.32)

with linear interpolation between measurements (data points) to make it continuous.
Then, the integral of Ψ from ta to tb is the numerical integral of f from ta to tb
according to Definition 2.9.

2.6.3 Linear Regression
The formulas and definitions presented in this subsection are taken from [56, pp. 255–261].
Refer to that reference for a more detailed derivation and a proof of correctness.

In general, the idea behind linear regression is to fit the graph of a function

yr(x) := β0 · φ0(x) + β1 · φ1(x) + · · · + βm · φm(x) (2.33)

to a set of two-dimensional data {(x1, y1), (x2, y2), . . . , (xn, yn)}. The shape functions
φi(x) with 0 ≤ i ≤ m are assumed as given and dictate the model of regression. The
problem is determining the coefficients βi with 0 ≤ i ≤ m based on the data. The goal is
to minimize the sum of squares of errors, i.e., the expression

n�
i=1

�
yi − yr(xi)

�2 (2.34)

should be as small as possible. This approach is also called the method of least squares.

The regression is linear because yr depends linearly on the (unknown) coefficients βi.
One of the most commonly referred to regression problems—which is also employed in
this thesis—is simple or univariate linear regression where y describes a linear model. In
other words, we have φ0(x) := 1, φ1(x) := x and φk(x) := 0 for k > 1, which yields:

yr(x) := β0 + β1 · x (2.35)
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The solution to the minimization problem stated in Equation (2.34), for the regression
function from Equation (2.35), is summarized in Definition 2.11. The derivation of this
general representation of β0 and β1, depending on a concrete data set, goes beyond the
scope of this thesis. To get more information on that, refer to the literature mentioned
in the beginning of this subsection.

Definition 2.11 (Simple Linear Regression) Let Θ = {(x1, y1), (x2, y2), . . . , (xn,
yn)} be a data set where at least two x-values are different. Then, the regression line

yr(x) := β0 + β1 · x (2.36)

through this data set Θ has unique parameters β0 and β1 which minimize the constraint
from Equation (2.34) and are given by

β0 :=


1
n

n�
i=1

yi


−


1
n

n�
i=1

xi


· β1

β1 :=
�n

i=1 (xi · yi) −


1
n · �n

i=1 xi · �n
i=1 yi


(�n

i=1 xi
2) − 1

n · (�n
i=1 xi)2

(2.37)

In order to characterize the regression line during an interval πi j of a time series Ψ using
this definition, we first need to specify how to construct a data set Θ = ({x, y}) ⊂ R × R
from πi j . Evidently, the value components of data points from πi j can be assigned
directly to the y component. For the x component, we map the time components to the
duration between the start of the interval πi j and the point in time they represent. It is
crucial, however, to observe that the slope of the resulting regression line heavily depends
on the time unit in which this time difference is determined.

The slope of the regression line shrinks proportionally to the resolution of the unit in
which the time difference is expressed. For example, consider two data points which
are 15 minutes apart—{(10:00, 0), (10:15, 15)}. If the time difference is measured in
minutes—i.e., with Θ = {(0, 0), (15, 15)}—, they define a regression line of yr(x) = 1 · x.
If, on the other hand, the time difference is measured in seconds (which provide a temporal
resolution that is 60-times higher than with minutes), we have Θ = {(0, 0), (900, 15)}
and yr(x) = 1

60 · 1 · x = 0.016̇ · x.

Therefore, when calculating the regression line over a time interval, it is necessary to
determine the unit in which time differences are calculated based on the concrete time
series. A relatively simple way to do this is presented by Algorithm 2.1. It approximates
the temporal resolution of a time series—or, depending on the input, an interval—by
examining the average time difference between pairwise adjacent data points (line 2).
In increasing order of resolution, it gauges whether the current time unit supported by
DTSQL describes this time difference best (line 3). It considers this to be the case if the
difference, expressed in the respective unit, is at least 0.85 (lines 4–5). The algorithm
rounds up to 1 because, for instance, for an average time difference (sampling rate) of six
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days (≈ 0.8571 weeks), computing a regression line based on weeks yields more natural
results than when working with days. If no supported time unit exhibits a sufficiently
high resolution, the algorithm defaults to millis (line 8).

Algorithm 2.1: Inference of Temporal Resolution From a Time Series
Input: time series or set of data points Ψ = ⟨p1, . . . , pn⟩
Output: inferred unit of sampling rate

u ∈ {weeks, days, hours, minutes, seconds, millis}
1 function resolution(Ψ):
2 t∆ ← avg

pi, pi+1∈Ψ

�
dpt(pi+1) − dpt(pi)

�
3 foreach u ∈ ⟨weeks, days, hours, minutes, seconds, millis⟩ do
4 if duration(t∆, u) ≥ 0.85 then
5 return u
6 end
7 end
8 return millis
9 end

Finally, Definition 2.12 formalizes the just now established notion of regression lines over
intervals of time series under utilization of Algorithm 2.1.

Definition 2.12 (Linear Regression on Time Series) Let Ψ be a time series
and πi j an interval over Ψ. Let Θ further be a data set that contains the values of
data points in πi j , associated with the duration between ti and their time component,
determined in the unit returned by Algorithm 2.1. It is defined as follows:

Θ :=


(∆x, y) | p ∈ psΨ( πi j )

∧ u = resolution(psΨ( πi j))
∧ ∆x = duration(dpt(p) − intstart(iπj), u)
∧ y = dpv(p)

� (2.38)

Then, the regression line of Ψ with respect to the interval πi j is defined as the
regression line of the data set Θ as per Definition 2.11.
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CHAPTER 3
Collection of Requirements

This chapter elaborates on the requirements that DTSQL, the query language developed
as part of this thesis, aims to fulfill. The requirements were collected mainly in the form
of practice-oriented use cases, in collaboration with the domain experts introduced in
Section 1.3 (Solution Concept). The identified use cases will be explained and illustrated.
Along with descriptions and figures, each dedicated subsection also contains an example
of what a query covering a respective use case is expected to return, given a concrete
input time series.

3.1 Non-Functional Requirements

From a project management perspective, an iterative approach was chosen to capture
requirements and monitor their implementation—rather than producing an exhaustive
functional specification document at the start. This greatly facilitates ensuring that
developments do not diverge from the domain experts’ expectations. In practice, we held
regular meetings to discuss design as well as implementation aspects of the language
developed over the course of this thesis.

A central demand is that the system’s core functionality—i.e., the query mechanisms—
should not rely on any other database systems, it should be independent. The reason for
this is that query interfaces of databases may be volatile and continuously maintaining
the system to support the latest changes is resource-intensive. Additionally, materializing
the DTSQL implementation as a translation to an existing query language would mean
restricting ourselves to the constructs and features provided by this language. Apart from
that, the underlying primary storage mechanism employed is subject to change—making
the query language depend on it would associate switching to another database system
with significant effort.
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3. Collection of Requirements

Therefore, not only should the system not rely on query routines of other temporal
databases, but it should also be able to process time series data from heterogeneous
sources. In other words, a generic, extensible architecture should make it possible to
implement data adapters which enable executing queries over arbitrary data sources.

A syntactical requirement is to be as intuitive as possible. This is, of course, a highly
subjective constraint. In order to match the domain experts’ perception of intuitiveness,
new language features are reviewed as part of the regular meetings.

Finally, the system should be developed with performance in mind, but that is not a
primary concern. The highest priority is bestowed on being able to use DTSQL to express
concepts that are relevant to the domain. Certainly, all features should be implemented
as efficiently as possible, reducing runtime (and space) complexity by exploiting the
structure of given problems. However, conducting extensive performance profiling and
optimization of every computational step is not required at this point.

3.2 Functional Requirements
This section provides a detailed description of the identified use cases which should be
expressible in DTSQL.

3.2.1 UC1: Global Aggregates
The ability to compute aggregates with respect to the value dimension—e.g., in order
to summarize the power consumption of a production machine—is quintessential. This
concerns mainly the statistical measures arithmetic mean, standard deviation, minimum,
maximum, sum, and count. In the case of global aggregates, the entire time series is
considered for the calculation.

Example

In Figure 3.1, a sample time series is depicted which serves as input for the computation
of the above-mentioned global aggregates.

Expected Result

The global aggregate values to be computed from the time series visualized in Figure 3.1—
i.e., the expected result values of a corresponding DTSQL query—are shown in Table 3.1.

3.2.2 UC2: Local Aggregates
This use case is almost identical to global aggregates. The only difference is that it should
be possible to specify a start and/or end date of the range to consider when calculating
the aggregate values (instead of the entire time series).
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Figure 3.1: Illustration of DTSQL Use Case “UC1: Global Aggregates”

aggregate value
average 39.1667
standard deviation 7.8617
minimum 25
maximum 50
total (sum) 235
count 6

Table 3.1: Result Aggregates of “UC1: Global Aggregates” Given Figure 3.1

Example

In Figure 3.2, a sample time series is depicted which serves as input for the the compu-
tation of the above-mentioned local aggregates for data points between 12:10:00 and
13:10:00.

Expected Result

The local aggregate values for data points between 12:10:00 and 13:10:00 to be
computed from the time series visualized in Figure 3.2—i.e., the expected result values
of a corresponding DTSQL query—are shown in Table 3.2.
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Figure 3.2: Illustration of DTSQL Use Case “UC2: Local Aggregates”

aggregate value
average 40
standard deviation 3.5356
minimum 35
maximum 45
total (sum) 160
count 4

Table 3.2: Result Aggregates of “UC2: Local Aggregates” Given Figure 3.2

3.2.3 UC3: Temporal Aggregates
Assume a query or manual analysis yields multiple intervals capturing events of note—e.g.,
passive periods of a machine. In order to gain insights such as the average or total
amount of time spent in a passive state, it should be possible to compute the aggregates
mentioned in “UC1: Global Aggregates” and “UC2: Local Aggregates”, but with respect
to the duration of the previously identified intervals (instead of the values of the data
points contained in the intervals).

Example

Suppose there have been identified three, in any way relevant, intervals. They are
highlighted by red, green, and magenta markers in Figure 3.3. Calculate all supported
types of aggregate values from “UC1: Global Aggregates” and “UC2: Local Aggregates”,
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but with respect to the intervals’ durations.
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Figure 3.3: Illustration of DTSQL Use Case “UC3: Temporal Aggregates”

Expected Result

Table 3.3 gives a clearer definition of the three intervals of interest highlighted by
Figure 3.3. This table simplifies the calculation of the desired aggregate values is. They
are depicted in Table 3.4.

interval start end duration
red 07/18 19:00 07/18 21:15 135
green 07/18 21:30 07/18 22:15 45
magenta 07/18 22:30 07/19 00:15 105

Table 3.3: Intervals Processed By “UC3: Temporal Aggregates” Given Figure 3.3

3.2.4 UC4: Numerical Integral

A recurring task is observing the power measurements captured by a sensor and inferring
the energy (the work) that occurred during the process. Since power is the time derivative
of work, it is possible to approximate the energy consumption by calculating the numerical
definite integral of the power measured over time.
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aggregate value
average 95
standard deviation 37.4166
minimum 45
maximum 135
total (sum) 285
count 3

Table 3.4: Result Aggregates of “UC3: Temporal Aggregates” Given Table 3.3

Example

Approximate the energy consumption during the period from 12:45 until 13:45—
visualized by Figure 3.4, measurements in watts (W)—in kilojoule (kJ) by computing
during this period.
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Figure 3.4: Illustration of DTSQL Use Case “UC4: Numerical Integral”

Expected Result

Table 3.5 provides an in-depth view of the period in question. As Figure 3.4 shows, there
is a sampling rate of 15 minutes, i.e., 900 seconds. Hence, the integral can be calculated
by applying the trapezoidal rule as defined in Section 2.6.2 (Numerical Integration). This
calculation is depicted in Table 3.5. From that, it is evident that the integral amounts to
50175 J, or 50.175 kJ.
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time power (W) cumulative integral (J)
12:45 12.5 0
13:00 14.0 0 +

�
(12.5 + 14.0) · 900 · 0.5

�
= 11925

13:15 14.5 11925 +
�
(14.0 + 14.5) · 900 · 0.5

�
= 11925 + 12825 = 24750

13:30 14.5 24750 +
�
(14.5 + 14.5) · 900 · 0.5

�
= 24750 + 13050 = 37800

13:45 13.0 37800 +
�
(14.5 + 13.0) · 900 · 0.5

�
= 37800 + 12375 = 50175

Table 3.5: Interval Processed By “UC4: Numerical Integral” Given Figure 3.4

3.2.5 UC5: Threshold Filters

A very common, indispensable, filter operation is based on a threshold value. This makes
it possible to exclude outliers or focus in on a specific range of values. Hence, there
should be a way to filter out data points whose values are (not) greater than or (not) less
than a fixed threshold or aggregate value. It should also be possible to apply multiple
such constraints at once.

Example

Find all sensor data points of the time series depicted by Figure 3.5 whose values are
greater than 4, but not greater than 10.
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Figure 3.5: Illustration of DTSQL Use Case “UC5: Threshold Filters”
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Expected Result

The example specification asks for a filter that only includes data points whose values
are between 4.0 (exclusively) and 10 (inclusively). Table 3.6 depicts all data points which
satisfy these criteria, as already indicated by the color red in Figure 3.5.

time value
05/13 18:00 6
05/13 21:00 8
05/14 15:00 8
05/15 03:00 9
05/15 12:00 9
05/15 15:00 10
05/15 18:00 9

Table 3.6: Result Data Points of “UC5: Threshold Filters” Given Figure 3.5

3.2.6 UC6: Temporal Filters
This type of filter is the equivalent of “UC5: Threshold Filters” in the temporal dimension.
By filtering out data points which were recorded (not) before or (not) after specific points
in time, one is able to focus in on relevant periods.

Example

Filter out all data points from the time series illustrated by Figure 3.6 which were not
recorded between 2022-05-14 10:45 and 2022-05-15 00:00.

Expected Result

According to the example specification, all data points that were recorderd before
2022-05-14 10:45 or after 2022-05-15 00:00 should be discarded. Table 3.7
depicts those data points which satisfy these criteria, as already indicated by the color
red in Figure 3.6.

time value
2022-05-14 12:00 2
2022-05-14 15:00 8
2022-05-14 18:00 4
2022-05-14 21:00 13
2022-05-15 00:00 1

Table 3.7: Result Data Points of “UC6: Temporal Filters” Given Figure 3.6
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Figure 3.6: Illustration of DTSQL Use Case “UC6: Temporal Filters”

3.2.7 UC7: Threshold Events
Events are generally concerned with specifying intervals for which some condition(s)
should hold. Similar to “UC5: Threshold Filters”, for this use case it is relevant to detect
periods in which data point values are continuously (not) above or (not) below some
threshold. Based on intervals which were detected that way, further calculation can be
made—e.g., on periods with energy levels that are higher than the average.

A general note on this and all subsequent use cases which yield intervals: DTSQL should
not only be able to return all detected intervals, but also the minimum and maximum
ones (with respect to length).

Example

Find the maximum interval in the time series depicted by Figure 3.7 during which the
recorded value was consistently above 1500.

Expected Result

As already illustrated by Figure 3.7, there are three maximal intervals with values
consistently higher than 1500. They are denoted by red, magenta, and green square
markers. Table 3.8 gives a more detailed view on these three intervals. It makes evident
that the result to the question posed the red interval from 01:15 until 03:30 with a
length of 135 minutes.
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Figure 3.7: Illustration of DTSQL Use Case “UC7: Threshold Events”

interval start (HH:MM) end (HH:MM) length (minutes)
red 01:15 03:30 135
magenta 04:00 05:00 60
green 06:15 06:30 15

Table 3.8: Result Interval(s) of “UC7: Threshold Events” Given Figure 3.7

3.2.8 UC8: Deviation Events
An operation related to “UC7: Threshold Events” is the detection of periods where values
are in a specifiable range of an arbitrary reference value. This range of maximal deviation
from the reference value, depending on the purpose of the query, may be specified in
absolute or relative (percentage) numbers.

Example

Find all intervals in the time series depicted by Figure 3.8 with a recorded power that is
consistently within a range of ±10 % of the global average power.

Expected Result

The global average power recorded in the time series visualized by Figure 3.8 is approx-
imately 165.63. The resulting valid interval represented by 165.63 ± 10 % has a lower
bound of roughly 149.07 and an upper bound of about 182.19. There are two intervals
which satisfy this restriction. They have been annotated using red and green square
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Figure 3.8: Illustration of DTSQL Use Case “UC8: Deviation Events”

markers. A clearer justification as to why the red interval from 13:45 until 15:30 and
the green interval from 20:15 until 21:45 are valid solutions to the problem can be
observed in Table 3.9. Their respective minimum and maximum values are within the
interval [149.07, 182.19], hence they must satisfy the condition.

interval start end minimum maximum
red 13:45 15:30 153 175
green 20:15 21:45 159 181

Table 3.9: Result Intervals of “UC8: Deviation Events” Given Figure 3.8

3.2.9 UC9: Constant Events

It is highly valuable for time series analysts to be able to capture intervals with approx-
imately constant values. Manually, they do so mostly by examining the magnitude of
fluctuations displayed by the data as well as their general trend. Since the notion of
what is considered constant varies from subject to subject, the query language should
also provide means of specifying tolerance levels.

Example

The task is to find the longest constant interval of the time series shown in Figure 3.9.
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Figure 3.9: Illustration of DTSQL Use Case “UC9: Constant Events”

Expected Result

As already indicated by the red period in Figure 3.9, the longest constant interval is
between 07/18 14:30 and 07/18 18:15. The concrete data points it contains are
given in Table 3.10. The figure also features the regression line for those data points, as
defined in Section 2.6.3 (Linear Regression). While its trend is generally increasing, it
should still be deemed constant due to the small relative deviations shown in Table 3.10.

3.2.10 UC10: Monotonic Events
Similar to “UC9: Constant Events”, detecting roughly monotonically increasing or
decreasing intervals is particularly important, too. For instance, they may characterize
the switching on of a machine, or an unusual spike in energy expenditure. Not every
increase is worth investigating, however. Therefore, DTSQL should provide ways of
expressing that an increase must exhibit a minimum magnitude.

Example

Given the time series depicted by Figure 3.10, find all intervals that represent a monotonic
increase of at least 800 %.

Expected Result

Figure 3.10 already suggests that their are three intervals which may describe a monotonic
increase satisfying the given conditions. They may be examined closer in Table 3.11. It
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time value
07/18 14:30 198
07/18 14:45 193
07/18 15:00 192
07/18 15:15 192
07/18 15:30 192
07/18 15:45 193
07/18 16:00 194
07/18 16:15 195
07/18 16:30 195
07/18 16:45 196
07/18 17:00 196
07/18 17:15 196
07/18 17:30 199
07/18 17:45 200
07/18 18:00 200
07/18 18:15 201

Table 3.10: Result Interval of “UC9: Constant Events” Given Figure 3.9
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Figure 3.10: Illustration of DTSQL Use Case “UC10: Monotonic Events”

is evident that the first green interval represents a monotonic increase—even a strictly
monotonic one. The second green interval does exhibit temporary decreases, but they are
miniscule enough to be overlooked. The last one, the red interval as a whole, however,

37



3. Collection of Requirements

is different. While it displays an increase of more than 800 %, it is not a (roughly)
monotonic one since there are too many too pronounced decreases in between. Note
that there are sub-intervals of the red interval which individually might be considered
monotonic increases using different parameters.

start end start value end value increase
08/22 12:00 08/23 05:30 12 308 2467 %
08/23 09:45 08/24 10:30 19 334 1658 %
08/24 10:30 08/26 00:15 43 296 887 %

Table 3.11: (Potential) Result Intervals of “UC10: Monotonic Events” Given Figure 3.10

3.2.11 UC11: Duration Constraints for Events
For any event supported by DTSQL (threshold, deviation, constant, increase, decrease),
one should be able to impose duration constraints on their definition. This proves useful
since some phenomena are only interesting if they occur for or within a certain amount
of time. For instance, a significant increase in pressure might be much more noteworthy
if it occurs within seconds rather than, as expected, slowly over minutes.

Example

For this example, we slightly modify the one from “UC7: Threshold Events”. We are
now looking for all intervals in the time series depicted by Figure 3.11 during which the
recorded value was consistently above 1500, but for a maximum period of 60 minutes.
Since the underlying time series is the same as with “UC7: Threshold Events”, the plot
is almost identical. For clarity, the three intervals have been annotated according to their
satisfaction of the duration constraint.

Expected Result

As already illustrated by Figure 3.11, there are three maximal intervals with values
consistently higher than 1500. They are, again, denoted using red, magenta, and green
color. The figure also highlights that only two intervals, the magenta and green one,
satisfy the constraint of exhibiting a length of not more than 60 minutes. Table 3.8 gives
more insight into why this is the case. It shows that both the magenta interval—from
04:00 until 05:00—with a length of 60 minutes as well as the green interval—from
06:15 until 06:30—with a duration of 15 minutes constitute the expected result. The
red one—from 01:15 until 03:30—with a length of 135 minutes violates the constraint.

3.2.12 UC12: Binary Event Sequences
One of the central aspects making DTSQL useful is the ability to express temporal
sequences between periods which were detected as a result of event definitions. For
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Figure 3.11: Illustration of DTSQL Use Case “UC11: Duration Constraints for Events”

interval start (HH:MM) end (HH:MM) length (minutes)
red 01:15 03:30 135
magenta 04:00 05:00 60
green 06:15 06:30 15

Table 3.12: Result Intervals of “UC11: Duration Constraints for Events” Given Figure 3.11

instance, this might allow the specification of a composite interval which captures a
normal state of operation after turning on a machine—i.e., a constant period following
a monotonic increase. Analogously, sequences expressing that an event occurs before
another one should also be supported. Since, in this use case, there are always exactly
two events involved, they make up binary event sequences.

Example

In this example, two event definitions are present. One is concerned with detecting
periods where all values are greater than or equal to 220. The other one describes
constant periods. Now, given the time series illustrated by Figure 3.12, find composite
intervals where a period of the first event directly follows an interval from the second
event.

Expected Result

As it can be observed in Figure 3.12, there are multiple intervals where the two conditions
from the example specification are satisfied individually. They are denoted using green
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Figure 3.12: Illustration of DTSQL Use Case “UC12: Binary Event Sequences”

and red square markers, respectively. The interval which is actually requested in this
example, however, is a combination of those where a green interval appears directly
after a red one. In this instance, this happens exactly once. The exact boundaries of
the intervals involved are depicted in Table 3.13. It also shows that the expected result
interval shares its lower bound 10:30 with the red interval and its upper bound 16:00
with the green interval.

interval start end
red 10:30 12:15
green 12:30 16:00
green follows red 10:30 16:00

Table 3.13: Result Interval(s) of “UC12: Binary Event Sequences” Given Figure 3.12

3.2.13 UC13: Time Tolerance for Event Sequences

Expanding on “UC12: Binary Event Sequences” and similar to “UC11: Duration Con-
straints for Events”, some instances require the ability to allow for a certain amount of
time to transpire between two intervals constituting a binary event sequence. This is
necessary because realistic data only seldom has clear-cut transitions between individual
phenomena. Furthermore, some concepts are defined using these kinds of time-gap
constraints, as the example below shows.
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Example

Detect an active power trip, which happens when the active power is above 1.5 megawatt
for a period of at least ten seconds, after it has been below 0.15 megawatt for at least one
minute. The time-gap between two such periods must not exceed three seconds. This
could also be referred to as a power surge. An examplary time series visualizing an active
power trip is shown in Figure 3.13.
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Figure 3.13: Illustration of DTSQL Use Case “UC13: Time Tolerance for Event Sequences”

Expected Result

The intervals constituting the active power trip are visualized in Figure 3.13 and broken
down in Table 3.14. The green interval—from 13:14:06 until 13:15:15—satisfies the
condition of the example specification with its duration of 69 seconds, which is more
than one minute. The red interval satisfies the other condition because its duration of
15 seconds—from 13:15:18 until 13:15:33—is longer than 10 seconds. Furthermore,
the time-gap between the green and red interval—from 13:15:15 until 13:15:18—is
exactly three seconds, satisfying the final condition. Therefore, the expected result
capturing the active power trip is the interval from 13:14:06 until 13:15:33.

3.2.14 UC14: N-Ary Event Sequences

This use case is an extension of “UC13: Time Tolerance for Event Sequences”. Sometimes
it is not sufficient to detect binary sequences of events. For instance, in order to capture
the whole operational cycle of a machine (turn on, run, turn off), a ternary event sequence
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interval start end duration
green 13:14:06 13:15:15 69 sec
red 13:15:18 13:15:33 15 sec
red follows green 13:14:06 13:15:33 87 sec

Table 3.14: Result Interval(s) of “UC13: Time Tolerance for Event Sequences” Given
Figure 3.13

is required. Therefore, it is necessary for DTSQL to be able to express such—and, in
general, n-ary—sequences of events.

Example

Using the time series displayed in Figure 3.14 as base data, detect a three-stage process
where values are at first below or equal to 70, then above 70 and below or equal to 150,
and finally above 150.
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20:0
0

50

100
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200

250
three-stage process

 70 (stage 1)

> 70 &&  150 (stage 2)

> 150 (stage 3)

Figure 3.14: Illustration of DTSQL Use Case “UC14: N-Ary Event Sequences”

Expected Result

This example is very similar to the one in “UC12: Binary Event Sequences”. In this
instance, however, there are two result intervals satisfying the example specification
instead of only one. Table 3.15, in conjunction with Figure 3.14, illustrate why this is
the case. The three different stages defined by threshold values 70 and 150, occur several
times across the time series. As it can be observed in the figure, the required event
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sequence stage 1 → stage 2 → stage 3 occurs exactly twice—from 11:15 until 12:30
as well as between 13:15 and 16:00. Hence, these two intervals represent the expected
result of a query corresponding to this use case.

# interval start end

1

stage 1 11:15 11:30
stage 2 11:45 12:00
stage 3 12:15 12:30
stage 3 follows stage 2 follows stage 1 11:15 12:30

2

stage 1 13:15 13:45
stage 2 14:00 14:15
stage 3 14:30 16:00
stage 3 follows stage 2 follows stage 1 13:15 16:00

Table 3.15: Result Intervals of “UC14: N-Ary Event Sequences” Given Figure 3.14
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CHAPTER 4
Query Language Specification

One of the core contributions of this thesis is the design—i.e., formal specification—of
a query language for time series data that is expressive enough to cover the use cases
outlined in Chapter 3. This chapter provides such a specification of DTSQL by means
of three sections. At first, Section 4.1 introduces an abstract syntax of the language.
It formalizes the structure and properties of the individual components of a query and
provides an intuitive understanding of their meaning. Secondly, a precise definition of
the semantics of those language features is presented in Section 4.2. Lastly, Section 4.3
presents a concrete grammar that is compatible with the abstract syntax specified in
Section 4.1. This grammar is a plain-text representation of the language which can be
used to create parsers for DTSQL queries. This will be leveraged in Chapter 5 (Reference
Implementation).

4.1 Language Syntax
This section defines the abstract syntax of DTSQL and queries expressed in that language.
At first, the overall structure of DTSQL queries is presented, introducing their various
components. The subsequent subsections are each dedicated to one of these component.
They provide concrete definitions of their syntax and properties, along with demonstrative
examples.

4.1.1 DTSQL Query
A DTSQL query consists of five components:

1. A set of samples. Samples represent scalar values expressed by aggregation functions
such as an average or sum. These values may be referenced (reused) when defining
other query components—e.g., in filters or events—or serve as overall query result.
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2. A filter specification that excludes irrelevant data points of the input time series
from the query evaluation.

3. A set of events. Events are a declarative specification of intervals capturing specific
phenomena in a time series. For instance, intervals with values below a given
threshold, periods with (approximately) constant values or monotonic increases
may be described using events.

4. A selection consisting of a composition operator that defines temporal relations
between detected events. This component allows query creators to express that
events have to occur in a certain order of succession to be part of the query result.

5. A yield statement which ultimately determines the query result. The actual value
of this statement decides whether the result is made up of data points, intervals
(their lower and upper bounds) or sample values.

Out of these five components, only the last one—the yield statement—is mandatory.
The others are optional in the sense that the set of samples may be empty, the filter
specification may include not a single filter, the set of events may be empty and the
selection may be blank.

Definition 4.1 depicts a holistic overview of the syntax of a DTSQL query. Keep in mind
that the notations used in this definition will be explained and formalized more precisely
in the following subsections.

Definition 4.1 (DTSQL Query) Given an input time series Ψ, a DTSQL query
κ over Ψ is defined as the quintuple

κ := (S, Φ, Ξ, Ω, Υ)
=

�{s1, s2, . . . }� �� �
S

, (F , φ)� �� �
Φ

, {ε1, ε2, . . . }� �� �
Ξ

, ω����
Ω

, (γ, d)� �� �
Υ

� (4.1)

where S is a set of samples, Φ a filter specification with filters F connected by the
formula φ, Ξ a set of event definitions, Ω a composition operator relating detected
intervals to each other and Υ a yield statement of type γ and result definition
parameter d (e.g., for sample references).

4.1.2 Samples
A sample is a scalar, real value that can be computed given a time series Ψ. The
computation of a sample is never reliant upon other, previously computed samples, i.e.,
they are independent of each other. Essentially, samples are aggregate values that can
be (re-)used to make other components of the query depend on them—e.g., to compose
filters or define events instances (see Section 4.1.3 and Section 4.1.4, respectively). They
may also be utilized in the yield component so that a query returns one or more sample
values.
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DTSQL supports three types of samples, value aggregates—which may be global or local—
and temporal aggregates. Global value aggregates operate on all values of a time series
and are specified in Definition 4.2.

Definition 4.2 (Global Value Aggregates) Let Ψ be a time series and s ∈ R
a sample. Then, s is a global value aggregate if it was defined using one of the
following function symbols:

1. maxΨ: greatest value of all data points in Ψ

2. minΨ: lowest value of all data points in Ψ

3. avgΨ: arithmetic mean of all data point values in Ψ

4. countΨ: number of data points in Ψ

5. sumΨ: sum of all data point values in Ψ

6. integralΨ: definite integral of the discrete function modelled by Ψ

7. stddevΨ: population standard deviation of all data point values in Ψ

Local value aggregates are very similar to global ones. They only differ in the fact that
they are computed on a subset of the input time series that is specified by temporal
boundary values—see Definition 4.3.

Definition 4.3 (Local Value Aggregates) Let Ψ be a time series and t1, t2 ∈ Z
with t2 ≥ t1 be two arbitrary points in time. Further, let Ψ′ be a time series containing
only data points from Ψ whose time components are between t1 and t2, such that

P(Ψ′) = {p ∈ P(Ψ) | dpt(p) ≥ t1 ∧ dpt(p) ≤ t2} (4.2)

holds. Then, the sample s ∈ R is a local value aggregate if it was defined using one
of the following function symbols:

1. maxΨ(t1, t2): greatest value of all data points in Ψ′

2. minΨ(t1, t2): lowest value of all data points in Ψ′

3. avgΨ(t1, t2): arithmetic mean of all data point values in Ψ′

4. countΨ(t1, t2): number of data points in Ψ′

5. sumΨ(t1, t2): sum of all data point values in Ψ′

6. integralΨ(t1, t2): definite integral of the discrete function modelled by Ψ′

7. stddevΨ(t1, t2): population standard deviation of all data point values in Ψ′
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Lastly, temporal aggregates summarize intervals along their temporal dimension, i.e., they
operate on their length instead of the data point values residing in them. Definition 4.4
depicts the temporal aggregates supported by DTSQL.

Definition 4.4 (Temporal Aggregates) Let Ψ be a time series, Π = { πi1 j1 , πi2 j2 ,
. . . } a set of intervals over Ψ and s ∈ R a sample. Furthermore, let u ∈ {weeks, days,
hours, minutes, seconds, millis} be a time unit. Then, s is a temporal aggregate
if it was defined using one of the following function symbols:

1. max_tΨ(u, Π): length of the longest interval in Π in unit u

2. min_tΨ(u, Π): length of the shortest interval in Π in unit u

3. avg_tΨ(u, Π): average length of the intervals in Π in unit u

4. count_tΨ(Π): number of intervals in Π in unit u

5. sum_tΨ(u, Π): sum of interval lengths in Π in unit u

6. stddev_tΨ(u, Π): population standard deviation of interval lengths in Π in
unit u

After having defined all aggregate functions supported by DTSQL, Definition 4.5 specifies
the samples component of DTSQL queries.

Definition 4.5 (DTSQL Samples Component) Let κ be a query, Ψ a time se-
ries and S = {s1, s2, . . . } a set of aggregate function instances. Then, the samples
component S of κ is defined by

S := S (4.3)

At this point, we also introduce a notational convention for the sake of convenience. When
reusing (referencing) samples in filter or event definitions, their symbolic representations
are implicitly substituted by their respective value as real number. For instance, a global
aggregator avgΨ which is used as argument to a function in the events component is to
be implicitly understood as defined in Definition 4.19 (Semantics of DTSQL Samples
Component). This shorthand is warranted since it does not obscure the intended meaning,
and also simplifies dealing with samples in the way they are meant to.
A concluding example of a samples component that utilizes all three kinds of aggregates
is shown in Example 4.1.

Example 4.1 (DTSQL Samples Component) Let Ψ be a time series and κ a DT-
SQL query that refers to the global average, a local integral between t1 and t4, and the
total duration of the intervals Π = { π3 8, π10 12, π15 23} in minutes. Then, the samples
component S of κ is

S = {maxΨ, integralΨ(t1, t4), sum_tΨ(minutes, Π)} (4.4)
△
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4.1.3 Filters
A filter enables query creators to exclude data points of an input time series Ψ from the
query evaluation. Filters are applied to all data points p ∈ Ψ, after the computation of
samples. This is important because, otherwise, sample values could not be referenced
in filter definitions. Filters are conceptually simple in that they do not apply complex
transformations to an input signal as, for instance, a low-pass filter does. They merely
decide whether a data point p should be included in the query evaluation, solely based
on the information provided by p itself. Before specifying the concrete filter function
symbols supported by DTSQL, Definition 4.6 captures their common properties.

Definition 4.6 (DTSQL Filter Properties) Let fp(·, . . . , ·) be an arbitrary, n-
ary filter function. Then, the following properties pertain to fp:

1. fp is an n-ary predicate, i.e.,

∀p ∈ Ψ: fp(·, . . . , ·) ∈ {true, false} (4.5)

2. Since fp may be interpreted as propositional atom, its conceptual complement
is implicitly given by its logical negation. In other words, no separate filter
function is required to cover the opposite meaning of fp.

3. If fp is satisfied for a data point p—i.e., if fp(·, . . . , ·) = true holds—, then p
is eligible to be included in the query evaluation.

DTSQL provides three different kinds of filter functions: threshold filters, deviation filters
and temporal filters. They are introduced in more detail in Definition 4.7.

Definition 4.7 (DTSQL Filter Functions) Let Ψ be a time series and p ∈ Ψ a
data point from that time series. Then, the paragraphs below enumerate supported
filter function instances based on p.

Threshold Filters
• ltp(t), t ∈ R threshold:

Admits p to query evaluation if and only if its value component is less than the
threshold t.

• gtp(t), t ∈ R a threshold:
Admits p to query evaluation if and only if its value component is greater than
the threshold t.
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Deviation Filters
• around_absp(r, d), r ∈ R reference, d ∈ R≥0 maximum absolute deviation

Admits p to query evaluation if and only if the absolute difference between its
value component and the reference value is less than the maximum deviation.

• around_relp(r, d), r ∈ R \ {0} reference, d ∈ R≥0 maximum relative deviation
Admits p to query evaluation if and only if the relative (percentage-wise)
difference between its value component and the reference value is less than the
maximum deviation.

Temporal Filters
• beforep(t), t ∈ Z a point in time (temporal bound)

Admits p to query evaluation if and only if its time component is before the
temporal bound.

• afterp(t), t ∈ Z a point in time (temporal bound)
Admits p to query evaluation if and only if its time component is after the
temporal bound.

Recall that samples represent real, scalar values. Therefore, it is valid to reuse sample
definitions as filter parameters whose domain are the real numbers, e.g., a threshold.
Since the available filter functions have now been introduced, Definition 4.8 specifies the
structure of the filter component in a DTSQL query.

Definition 4.8 (DTSQL Filter Component) Let κ be a query, Ψ a time series,
F = {f1, f2, . . . } a set of filter instances over Ψ and φ a propositional formula with
F as set of atoms. Then, the filter component Φ of k is defined as the pair

Φ := (F , φ) (4.6)

A data point p ∈ Ψ is included in the query evaluation if and only if the formula φ
evaluates to true in the interpretation given by the set of propositional atoms F .

The filtered time series that results from applying Φ to Ψ is denoted by Ψ.

Finally, Example 4.2 demonstrates a filter component that excludes data points based on
a temporal lower bound and a maximum relative deviation.

Example 4.2 (DTSQL Filter Component) Let Ψ be a time series and κ a DTSQL
query. The query should only take into account data points from Ψ which were recorded
after t11 and whose value components are not within a 5.25 % margin of the global average.
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The corresponding filter component Φ of κ is

Φ = (F , φ)
=

�{f1, f2}, (f1 ∧ ¬f2)
�

=
�{afterp(t11)� �� �

f1

, around_relp(avgΨ, 5.25)� �� �
f2

}, (f1 ∧ ¬f2)
� (4.7)

△

4.1.4 Events
An event is a declarative specification of a set of intervals in which some condition(s)
hold(s). In other words, they are used to detect periods where incidents that are of
interest or to be further examined occur. Events are evaluated after filter application.
In fact, they extend the notion of filters by considering detected intervals as continuous
series of data points for which a propositional formula with event functions as atoms is
satisfied (instead of, as with filters, examining data points only individually).

DTSQL supports two types of event functions, filter events and complex events. While
filter events are syntactically and semantically equivalent to filter functions with respect
to Ψ, complex event functions are broader and, typically, conceptually more involved.
The syntax of both is depicted in Definition 4.9

Definition 4.9 (Syntax of DTSQL Event Functions) Let Ψ be a time series
and Ψ the filtered time series as a result of applying the filter component of a query
κ. Then, the paragraphs below enumerate supported event function instances.

Filter Events
All filter functions introduced in Definition 4.7 can be used as event functions
verbatim. In this context, they represent the largest possible intervals over Ψ in which
the corresponding function continuously evaluates to true.

Complex Events
• const(s, d), s ∈ R≥0 maximum slope, d ∈ R≥0 maximum relative deviation

Detects intervals over Ψ with (approximately) constant values. This means the
slope’s absolute value of the regression line in such an interval is not greater
than s %, and the values deviate not more than d % from the interval’s average.

• increase(l, u, t), l, u ∈ R≥0 (u ≥ l) min and max change, t ∈ R≥0 tolerance
Detects intervals representing an (approximately) monotonic increase of at
least l %, but not more than u %. Temporary decreases are tolerated as long as
their respective instantaneous rate of change does not fall below −t %.

• decrease(l, u, t), l, u ∈ R≥0 (u ≥ l) min and max change, t ∈ R≥0 tolerance
Detects intervals representing an (approximately) monotonic decrease of at

51



4. Query Language Specification

least l %, but not more than u %. Temporary increases are tolerated as long as
their respective instantaneous rate of change does not exceed +t %.

Remember that this subsection merely serves the purpose of introducing the syntax
of events. The concrete meaning of the event functions above, especially the complex
ones, will be explained and exemplified in Section 4.2.4. Nevertheless, we now have
gathered the definitions required to formalize the events component of a DTSQL query
in Definition 4.10.

Definition 4.10 (DTSQL Events Component) Let Ψ be a time series and κ a
query. Then, the events component Ξ of κ is defined as

Ξ := {ε1, ε2, . . . , εn} (4.8)

with the event definition εi being the quintuple

εi := (E i, χi, li, ui, ni), with 1 ≤ i ≤ n (4.9)

where E i := {ei,1, ei,2, . . . } is a set of event function instances and χi a propositional
formula with E i as atoms. Furthermore, li ∈ R≥0 and ui ∈ R≥0 with li ≤ ui declare
minimum and maximum duration constraints, respectively. They both are expressed
in the unit ni ∈ {weeks, days, hours, minutes, seconds, millis}.

Finally, Example 4.3 demonstrates the specification of an events component with multiple
event definitions.

Example 4.3 (DTSQL Events Component) Let Ψ be a time series and κ a query.
It should detect two kinds of incidents:

1. Periods in which the recorded value is either above 300 or below 100 for at least 30
minutes.

2. Periods of rapid, steep monotonic increases of at least 50 % in the space of 45
seconds with a tolerance against decreases of 5.75 %. Also, such periods should not
appear before the point in time t23.

The first event can be defined as

ε1 = (E1, χ1, l1, u1, n1)
=

�{e1,1, e1,2}, (e1,1 ∨ e1,2), 30, ∞, minutes
�

=
�{gtp(300)� �� �

e1,1

, ltp(100)� �� �
e1,2

}, (e1,1 ∨ e1,2), 30, ∞, minutes
� (4.10)
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The second event may be expressed similarly:

ε2 = (E2, χ2, l2, u2, n2)
=

�{e2,1, e2,2}, (e2,1 ∧ ¬e2,2), 0, 45, seconds
�

=
�{increase(50, ∞, 5.75)� �� �

e2,1

, beforep(t23)� �� �
e2,2

}, (e2,1 ∧ ¬e2,2), 0, 45, seconds
� (4.11)

In summary, the events component of κ is

Ξ = {ε1, ε2} (4.12)

△

4.1.5 Selection

The optional selection component of a DTSQL query κ utilizes composition operators
to define temporal relations between the intervals represented by the events component.
This makes it possible to create more complex, composite events by connecting the
previously defined (atomic) events temporally.

A description of various temporal relations between intervals has already been provided
in Section 2.2 (Event Detection in Time Series Data) in the form of Allen’s interval
algebra. In fact, DTSQL supports four of the thirteen relations introduced by [35]: meets,
met-by, before and after. This is realized by means of two composition operators
precedes and follows which have an optional time-gap constraint. If this constraint is
present, meets/met-by semantics are used, otherwise before/after.

An instance of such an operator forms a binary event sequence. DTSQL supports n-ary
sequences as well by allowing composition operators to be declared recursively. This is
specified in Definition 4.11.

Definition 4.11 (Composition Operators) Let κ be a DTSQL query with events
component Ξ = {ε1, . . . , εn}. Further, let precedes and follows be the supported
composition operator symbols. Then, valid composition operator instances ω with
op ∈ {precedes, follows} are defined as

ω = op(⊞1,⊞2) and ω = op(⊞1,⊞2, l, u, n) (4.13, 4.14)

where ⊞1 and ⊞2 are either event definitions ε ∈ Ξ or nested (recursive) composition
operator instances �ω with �op ∈ {precedes, follows}. In Equation (4.13), no time-
gap constraint is present, i.e., there should be no data points between the events
specified by ⊞1 and ⊞2. In Equation (4.14), the time-gap constraint defined by l, u ∈
R≥0 (l ≥ u) and n ∈ {weeks, days, hours, minutes, seconds, millis} represents the
minimum and/or maximum duration between the intervals specified by ⊞1 and ⊞2.

53



4. Query Language Specification

If there is no recorded data point between the end of one and start of another event,
then we also say one event immediately follows/precedes the other. Note that this does
not necessarily make a point about the duration between the events—this is entirely
dependent on the resolution of the data, e.g., the sampling rate.

Based on this definition, Definition 4.12 depicts the syntax of a query’s selection component
which, if present, consists of composition operators.

Definition 4.12 (DTSQL Selection Component) Let κ be a DTSQL query. Then,
its selection component Ω has two possible forms:

Ω := □ and Ω := ω (4.15, 4.16)

In Equation (4.15), the symbol □ represents “nothing”, meaning no selection is present
and the set of intervals detected by κ depends entirely on its events component. In
Equation (4.16), on the other hand, ω is an arbitrarily nested composition operator
instance as per Definition 4.11, representing composite events.

An illustration of multiple event sequences, given a specific set of intervals represented
by concrete event definitions, is displayed in Example 4.4.

Example 4.4 (DTSQL Selection Component) Assume a query κ with events com-
ponent Ξ = {ε1, ε2, ε3, ε4, . . . }. Furthermore, assume three different scenarios where the
evaluation of Ξ according to Section 4.2.4 yields event sequences depicted in Figure 4.1.
In scenario (a), ε1 immediately follows ε2, and ε4 immediately follows ε1. In scenario
(b), ε2 is immediately followed by some unspecified event definitions (“...”), but also by ε1
after 40 minutes, which is immediately followed by ε4. Lastly, scenario (c) shows a simple
ternary event sequence where ε1 immediately follows ε3 and also immediately precedes ε4.

ε2 ε1 ε4

(a)

ε2 . . . ε1 ε4

40 min

(b)

ε3 ε1 ε4

(c)

Figure 4.1: Detected Event Sequences for Example 4.4

Now, consider four different selection components:

Ω1 = follows(ε4, follows(ε1, ε2))

Ω2 = follows(ε4, follows(ε1, ε2, 0, 45, minutes))

Ω3 = follows(ε4, ε1)
Ω4 = precedes(ε2, follows(ε4, ε1), 0, 30, minutes)

(4.17)
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Ω1 represents scenario (a), but neither (b) nor (c). Ω2 describes scenario (b), and maybe
(a)—depending on the time between ε2 and ε1. Ω3 characterizes all scenarios (a), (b)
and (c). Finally, Ω4 is not guaranteed to match any scenario—only (a) could potentially
fit, if the end of ε2 and the start of ε1 are not more than 30 minutes apart. △

4.1.6 Yield

The yield statement ultimately determines the result of a DTSQL query. DTSQL supports
six different yield formats which are explained in Definition 4.13.

Definition 4.13 (Yield Formats) The supported yield formats of a DTSQL query
κ are defined by the set

Y := {allints, maxints, minints, datapoints, sample, sampleset} (4.18)

The element allints represents all intervals captured by κ′s events and/or selection
component. The longest and shortest intervals are addressed using maxints and
minints, respectively. With datapoints, all data points that have not been filtered
out or—if an events or selection component is present—are part of a detected
period are returned. Finally, sample and sampleset are used to return the concrete
(computed) value(s) of one or multiple sample(s).

The latter two yield formats—sample and sampleset—need to be combined with a
result definition parameter. This parameter denotes the sample(s) to be returned. This
knowledge makes it possible to specify the syntax of the yield component in Definition 4.14.

Definition 4.14 (DTSQL Yield Component) Let κ be a DTSQL query with sam-
ples component S. Its yield component is defined as the pair

Υ := (γ, d) (4.19)

with yield format γ ∈ Y and result definition parameter

d =


S ⊆ S (S ̸= ∅), if γ = samples
s ∈ S, if γ = sample
□, else

(4.20)

where the symbol □ represents “nothing” (no parameter).

An exhaustive showcase of all supported yield formats is presented in Example 4.5.
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Example 4.5 (DTSQL Yield Component) Let κ be a query with samples component
S = {s1, s2, s3, s4}. Then, possible yield components include:

Υ1 = (allints,□)
Υ2 = (maxints,□)
Υ3 = (minints,□)
Υ4 = (datapoints,□)
Υ5 = (sample, s2)
Υ6 = (samples, {s1, s3, s4})

(4.21)

△

4.2 Language Semantics
This section specifies the semantics of a DTSQL query, i.e., how the result is determined.
At first, an intuition for the evaluation of a query is provided by succinctly computing
the result of an example query step-by-step over a small input time series. Afterwards,
subsections each dedicated to one of the query components introduced in Section 4.1
thoroughly explain and specify their semantics.

4.2.1 DTSQL Query
The result of a DTSQL query is determined by successively evaluating its individual
components. This is a five-step process:

1. Compute samples as described in Section 4.2.2.

2. Filter out data points violating the filter definition as defined in Section 4.2.3.

3. Detect intervals corresponding to the event definitions according to Section 4.2.4.

4. Relate detected intervals to each other temporally according to the selection
component as per Section 4.2.5.

5. Assemble the final result based on the yield statement as presented in Section 4.2.6.

Formally, since the semantics of the individual components build upon each other, the
result of a query is equivalent to the evaluation of its yield component. This is also stated
in Definition 4.15. The actual meaning of this definition will be clear after reading the
remaining subsection regarding query semantics.
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Definition 4.15 (Semantics of DTSQL Query) Let Ψ be a time series and κ =
(S, Φ, Ξ, Ω, Υ) a DTSQL query over the input time series Ψ. Then, the result of κ is
denoted as and defined to be equivalent to

res(κ, Ψ), (4.22)

where the function res is defined as presented in Definition 4.28 (Semantics of
DTSQL Yield Component).

As mentioned in the introduction of this section, Example 4.6 provides a step-by-step
result computation of a simple query on a small time series. The goal of this example
is not formal rigor and precision, but to give an intuition as to how DTSQL queries are
evaluated. Therefore, the individual query components are evaluated rather concisely.
Again, for explanations on the notations used throughout the example, refer to the
respective component’s subsection.

Example 4.6 (Semantics of DTSQL Query) Suppose there is an input time series
Ψ = ⟨p1, . . . , p10⟩ as defined by Table 4.1. Cut off all data points whose values are within
a ±25 % range of the global maximum. Then, find intervals where values are consistently
below and above the global average, respectively. Relate such intervals to each other so
that those with values less than the average appear before those with values above the
average. Finally, return all data points that were recorded during such an event sequence.

data point time identifier value
p1 2022-08-27 12:00:00 t1 1
p2 2022-08-27 12:15:00 t2 2
p3 2022-08-27 12:30:00 t3 3
p4 2022-08-27 12:45:00 t4 4
p5 2022-08-27 13:00:00 t5 5
p6 2022-08-27 13:15:00 t6 6
p7 2022-08-27 13:30:00 t7 7
p8 2022-08-27 13:45:00 t8 8
p9 2022-08-27 14:00:00 t9 9
p10 2022-08-27 14:15:00 t10 10

Table 4.1: Exemplary Time Series for Example 4.6
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A DTSQL query expressing these criteria is:

κ = (S, Φ, Ξ, Ω, Υ)

=

{s1},

({f1}, ¬f1),

({e1,1, e1,1, 0, ∞, minutes}), ({e2,1, e2,1, 0, ∞, minutes})

�
,

precedes(ε1, ε2),

(datapoints,□)


=

{avgΨ},

({around_relp(avgΨ, 25)� �� �
f1

}, ¬f1),



({ltp(avgΨ)}, e1,1, 0, ∞, minutes)� �� �

ε1

, ({gtp(avgΨ)}, e2,1, 0, ∞, minutes)� �� �
ε2

�
,

precedes(ε1, ε2),

(datapoints,□)


(4.23)

In order to evaluate κ, we go through the five steps outlined above:

1. The set of computed samples amounts to

Sc = {eval_s(avgΨ)} = {5.5} (4.24)

2. The range avgΨ±25 % is equivalent to 5.5±25 % = [4.125, 6.875]. Therefore, we have
evalIp(¬f1) = true for p ∈ {p1, p2, p3, p4, p7, p8, p9, p10} and evalIp(¬f1) = false
for p ∈ {p5, p6}. Hence, the filtered time series is equal to

Ψ = {p1, p2, p3, p4, p7, p8, p9, p10} (4.25)

3. The intervals represented by the two event definitions ε1 and ε2 are evident from
Table 4.1. We have ints(ε1) = { π1 4} and ints(ε2) = { π7 10}, which leads to

ints(Ξ) =


(ε1, { π1 4}), (ε2, { π7 10})

�
(4.26)

4. The selection component Ω defines composite events where an interval charac-
terized by ε1 appears before an interval characterized by ε2. When examining
Equation (4.26), it is clear that

ints(Ω) = { π1 10} (4.27)
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5. The yield component asks for all data points contained in the intervals from the
composition operator, as shown in Equation (4.27). This also resorts back to the
filtered time series in Equation (4.25). Therefore, the final result of the query is

res(κ, Ψ) =
 

πi j ∈ ints(Ω)
psΨ( πi j )

= psΨ( π1 10)
= {p1, p2, p3, p4, p7, p8, p9, p10}

(4.28)

△

4.2.2 Samples
As already outlined by the syntax definition of samples in Section 4.1.2, DTSQL supports
three types of samples—global value aggregates, local value aggregates and temporal
aggregates. The following paragraphs provide a precise specification of the values
represented by the them.

The global value aggregates, as shown in Definition 4.16, follow standard definitions of
maximum, minimum, arithmetic mean and population standard deviation. Note that the
integral in Equation (4.34) is only a slight modification of Definition 2.10 (Integral of a
Time Series). It explicitly converts the time difference between adjacent data points to
seconds so that the integral is calculated using the SI base unit of time.

Definition 4.16 (Semantics of Global Value Aggregates) Let Ψ = ⟨p1, . . . , pn⟩
be a time series and eval_s(s) a function that maps an aggregator instance s to
a real value. Then, the global value aggregate functions of DTSQL are defined as
follows:

eval_s(maxΨ) := max
p∈P(Ψ)

dpv(p) (4.29)

eval_s(minΨ) := min
p∈P(Ψ)

dpv(p) (4.30)

eval_s(avgΨ) := eval_s(sumΨ)
eval_s(countΨ) (4.31)

eval_s(countΨ) := |Ψ| (4.32)

eval_s(sumΨ) :=
�

p∈P(Ψ)

�
dpv(p)

�
(4.33)
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eval_s(integralΨ) := 1
2 ·

n−1�
i=1

�
dpv(pi) + dpv(pi+1)

�
· duration

�
dpt(pi+1) − dpt(pi), seconds

�
(4.34)

eval_s(stddevΨ) :=
�

squares

eval_s(countΨ) ,

with squares =
�

p∈P(Ψ)


dpv(p) − eval_s(avgΨ)

2 (4.35)

In order to keep the definitions simple, the semantics of local value aggregates are
expressed as a reduction to global value aggregates on a temporally constrained variant
of the input time series. This is formally defined in Definition 4.17.

Definition 4.17 (Semantics of Local Value Aggregates) Let Ψ be a time se-
ries and let t1, t2 ∈ Z with t2 ≥ t1 be two arbitrary points in time. Then, Ψ′ is the
order-preserving variant of Ψ containing only data points whose time components
are between t1 and t2, such that

P(Ψ′) = {p ∈ Ψ | dpt(p) ≥ t1 ∧ dpt(p) ≤ t2} (4.36)

holds. Further, let eval_s(s) be a function that maps an aggregator instance s to a
real value. Then, the local value aggregates of DTSQL are evaluated as follows:

eval_s(maxΨ(t1, t2)) := eval_s(maxΨ′) (4.37)

eval_s(minΨ(t1, t2)) := eval_s(minΨ′) (4.38)

eval_s(avgΨ(t1, t2)) := eval_s(avgΨ′) (4.39)

eval_s(countΨ(t1, t2)) := eval_s(countΨ′) (4.40)

eval_s(sumΨ(t1, t2)) := eval_s(sumΨ′) (4.41)

eval_s(integralΨ(t1, t2)) := eval_s(integralΨ′) (4.42)

eval_s(stddevΨ(t1, t2)) := eval_s(stddevΨ′) (4.43)

Ultimately, the semantics of temporal aggregates are very similar to the ones of global
aggregates and are depicted in Definition 4.18. Note that there is no temporal aggregator
for the calculation of an integral because that operation is not applicable in this context.
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Definition 4.18 (Semantics of Temporal Aggregates) Let Ψ be a time series
and Π = { πi1 j1 , πi2 j2 , . . . } a set of intervals over Ψ and u ∈ {weeks, days, hours,
minutes, seconds, millis} a time unit. Furthermore, let

δ : Π → R, πi j �→ duration(| πi j |, u) (4.44)

be a function that maps an interval to its duration in the unit u and eval_s(s) a
function that maps an aggregator instance s to a real value. Then, the temporal
aggregate functions supported by DTSQL are defined as follows:

eval_s(max_tΨ(u, Π)) := max
πi j ∈Π

δ( πi j ) (4.45)

eval_s(min_tΨ(u, Π)) := min
πi j ∈Π

δ( πi j ) (4.46)

eval_s(avg_tΨ(u, Π)) := eval_s(sum_tΨ(u, Π))
eval_s(count_tΨ(Π)) (4.47)

eval_s(count_tΨ(Π)) := |Π| (4.48)

eval_s(sum_tΨ(u, Π)) :=
�
πi j ∈Π

�
δ( πi j )

�
(4.49)

eval_s(stddev_tΨ(u, Π)) :=
�

squares

eval_s(count_tΨ(Π)) ,

with squares =
�
πi j ∈Π


δ( πi j ) − eval_s(avg_tΨ(u, Π))

2 (4.50)

Building upon these definitions, the overall semantics of a samples component is summa-
rized in Definition 4.19.

Definition 4.19 (Semantics of DTSQL Samples Component) Let Ψ be a time
series and κ a query with samples component S = {s1, s2, . . . }. Then, the set of
sample values—i.e., the evaluated samples component—Sc ⊂ R is defined as:

Sc := {eval_s(s) | s ∈ S} (4.51)

In order to finalize this subsection, Example 4.7 provides an exemplary definition and
evaluation of a samples component.

Example 4.7 (Semantics of DTSQL Samples Component) Consider the time se-
ries Ψ = ⟨p1, . . . , p4⟩ depicted in Table 4.2.
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data point time identifier value
p1 2022-08-17 12:00:00 t1 15
p2 2022-08-17 12:23:00 t2 20
p3 2022-08-17 12:45:00 t3 14
p4 2022-08-07 13:02:00 t4 22

Table 4.2: Exemplary Time Series for Example 4.7

Let κ be a query that captures a global minimum, local standard deviation and temporal
average. More concretely, κ has a samples component

S =


minΨ, stddevΨ(t1, t3), avg_tΨ(minutes, { π1 2, π2 3, π3 4� �� �

Π

})
�

(4.52)

Then, the concrete sample values are as follows:

eval_s(minΨ) = min
p∈P(Ψ)

dpv(p) = 25 (4.53)

Ψ′ = ⟨p1, p2, p3⟩,
eval_s(avgΨ′) = 28.5 + 27.24 + 30.19

3 = 28.643̇

squares =
�
28.5 − 28.643̇

�2 +
�
27.24 − 28.643̇

�2

+
�
30.19 − 28.643̇

�2

≈ 4.3821
=⇒ eval_s(stddevΨ(t1, t3)) = stddevΨ′

=
�

1
3 · squares

≈ 1.21

(4.54)

eval_s(avg_tΨ(minutes, Π)) = 1
3 ·


duration(t2 − t1, minutes)

+ duration(t3 − t2, minutes)

+ duration(t4 − t3, minutes)


= 23 + 22 + 17
3

≈ 20.67

(4.55)

In summary, the evaluated samples component of κ is equivalent to

S = {25, 1.21, 20.67} (4.56)

△
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4.2.3 Filters
We now define a representation of the set of data points which are actually considered
when evaluating a DTSQL query, based on the syntax of the filter component defined in
Section 4.1.3. Also, recall the semantics of a propositional formula from Section 2.5.

At first, we need to specify the meaning of filter functions. As explained in Section 4.1.3,
the decision whether a filter function evaluates to true or false depends on a concrete
data point. Definition 4.20 provides specifications of how the filter functions supported
by DTSQL are evaluated.

Definition 4.20 (Semantics of DTSQL Filter Functions) Let Ψ be a time se-
ries, p ∈ Ψ a data point from that time series and f a filter function from Defini-
tion 4.7. Further, let eval_f(f, p) be an evaluation function that determines whether
p satisfies f . Then, the semantics of filter functions of DTSQL are as follows.

Threshold Filters

eval_f(ltp(t), p) = true :⇐⇒ dpv(p) < t (4.57)

eval_f(gtp(t), p) = true :⇐⇒ dpv(p) > t (4.58)

Deviation Filters

eval_f(around_absp(r, d), p) = true :⇐⇒ |dpv(p) − r| ≤ d (4.59)

eval_f(around_relp(r, d), p) = true :⇐⇒ |dpv(p) − r|
|r| · 100 ≤ d (4.60)

Temporal Filters

eval_f(beforep(t), p) = true :⇐⇒ dpt(p) < t (4.61)

eval_f(afterp(t), p) = true :⇐⇒ dpt(p) > t (4.62)

Based on the just determined semantics of filter functions, we are now able to specify
the set of data points admitted to query evaluation—see Definition 4.21.

Definition 4.21 (Semantics of DTSQL Filter Component) Let Ψ be a time
series and κ a query with filter component Φ = (F , φ). Moreover, let Ip : F →
{true, false} be an interpretation function that assigns truth values to filter function
instances—the atoms of φ—, given a data point p ∈ Ψ. It is defined as follows:

Ip(f) := eval_f(f, p), with f ∈ F (4.63)

Then, the filtered time series Ψ contains only those data points p from Ψ which
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satisfy φ in the interpretation Ip:

P(Ψ) := {p ∈ P(Ψ) | evalIp(φ) = true} (4.64)

Concluding, Example 4.8 demonstrates the evaluation of a filter component, given a
concrete time series.

Example 4.8 (Semantics of DTSQL Filter Component) Consider the time series
Ψ = ⟨p1, . . . , p4⟩ depicted in Table 4.3.

data point time value
p1 t1 15
p2 t2 20
p3 t3 14
p4 t4 22

Table 4.3: Exemplary Time Series for Example 4.8

Let κ be a query with filter component Φi = (F , φ) and i ∈ {1, 2, 3}. The trivial filters

Φ1 = (∅, true) (4.65)

Φ2 = (∅, false) (4.66)

result in P(Ψ) = {p1, . . . , p4} and P(Ψ) = ∅, respectively.

In contrast to that, a filter component which only admits values that are either in the
(absolute) range 22 ± 2 or less than 15, i.e.,

Φ3 = (F , φ)
=

�{f1, f2}, φ
�

=
�{around_absp(22, 2)� �� �

f1

, ltp(15)� �� �
f2

}, (f1 ∨ f2)
� (4.67)

results in P(Ψ) = {p2, p3, p4} because

Ip1(f1) = eval_f(around_absp1(22, 2), (t1, 15)) = false ✗

Ip1(f2) = eval_f(ltp1(15), (t1, 15)) = false ✗
(4.68)

Ip2(f1) = eval_f(around_absp2(22, 2), (t2, 20)) = true ✓ (4.69)

Ip3(f1) = eval_f(around_absp3(22, 2), (t3, 14)) = false ✗

Ip3(f2) = eval_f(ltp3(15), (t3, 14)) = true ✓
(4.70)

Ip4(f1) = eval_f(around_absp4(22, 2), (t4, 22)) = true ✓ (4.71)

△
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4.2.4 Events
After introducing the events component of a DTSQL query in Section 4.1.4, this section
provides a precise specification of the intervals represented by the event functions sup-
ported by the language. Filter events are all evaluated the same way. The semantics of
complex events, however, needs to be defined individually because, in general, they do
not exhibit many similarities.
There is, however, one key commonality among all kinds of event functions. Generally,
we are only interested in maximal intervals, i.e., ones that cannot be extended without
violating the event function. For filter events, this means that extensions of the respective
interval by exactly one data point to the left and right, respectively, are examined.
If we were to look even further, the interval might not continuously satisfy the filter
event function, and we do not consider intervals with gaps. For complex events, it may
be possible to extend an interval in either direction—temporarily violating the event
function—and extending it even more to, in the end, satisfy it again. In other words,
extending a locally maximal interval satisfying a complex event to a globally maximal
one is permissible, if temporarily invalidating it in the process is acceptable.
The evaluation of filter event function instances is specified in Definition 4.22.

Definition 4.22 (Semantics of DTSQL Filter Events) Let Ψ = ⟨p1, . . . , pn⟩ be
filtered a time series resulting from a DTSQL filter application, πi j an arbitrary
interval over Ψ with i, j ∈ {1, . . . , n} and e a filter event function from Definition 4.9
delegating to the filter function f . Moreover, let eval_e(e, πi j ) be an evaluation
function that determines whether πi j satisfies e. This is the case if and only if f is
continuously satisfied during the interval and πi j is maximal.

In more formal terms, this means eval_e(e, πi j ) is defined as

eval_e(e, πi j ) = true :⇐⇒ �∀p ∈ psΨ( πi j ) : eval_f(f, p) = true
�

∧ eval_f(f, pi−1) = false
∧ eval_f(f, pj+1) = false

(4.72)

where evalf is evaluted on Ψ.

The semantics of detecting intervals with constant values are given in Definition 4.23.

Definition 4.23 (Semantics of DTSQL Constant Events) Let Ψ = ⟨p1, . . . , pn⟩
be filtered a time series resulting from a DTSQL filter application, and πi j an ar-
bitrary interval over Ψ with i, j ∈ {1, . . . , n}. Moreover, let the evaluation func-
tion eval_e determine whether πi j satisfies const(s, d), denoted by the expression
eval_e(const(s, d), πi j ). A constant interval is defined by three criteria:

1. The slope of the simple linear regression line over πi j must not exceed s %.
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2. The value of all data points in πi j must not deviate more than d % from their
average value.

3. The interval πi j is (non-locally) maximal with respect to (1) and (2).

The first condition is equivalent to

regc( πi j , s) := |β1| · 100 ≤ s (4.73)

where β1 is the slope of the regression line over πi j as defined in Definition 2.12
(Linear Regression on Time Series) with ∆x being equal to the time difference between
pairwise adjacent data points, expressed in the unit determined by Algorithm 2.1.

The second condition is represented by

devc( πi j , d) := ∀p ∈ psΨ( πi j ) :
eval_f(around_relp(avgΨ(ti, tj), d), p) = true

(4.74)

The maximality constraint is given as

maxc( πi j , s, d) := ¬∃a, b ∈ N : ¬(a = 0 ∧ b = 0)
∧ regc( πi−a j+b, s) = true
∧ devc( πi−a j+b, d) = true

(4.75)

Finally, the evaluation of the complex event function instance const(s, d) is given by

eval_e(const(s, d), πi j ) = true :⇐⇒ regc( πi j , s) = true
∧ devc( πi j , d) = true
∧ maxc( πi j , s, d) = true

(4.76)

The two remaining event definition functions, increase and decrease, describe intervals
representing a monotonic progression. They exact meanings are similar enough to be
specified togehter—see Definition 4.24.

Definition 4.24 (Semantics of DTSQL Monotonic Events) Let Ψ = ⟨p1, . . . ,
pn⟩ be filtered a time series resulting from a DTSQL filter application, and πi j an
arbitrary interval over Ψ with i, j ∈ {1, . . . , n}. Moreover, let e be a monotonic event
function instance, i.e., either increase(l, u, t) or decrease(l, u, t). Furthermore, let
eval_e(e, πi j ) be a function that determines whether πi j satisfies e. A monotonic
interval is defined by three criteria:

1. The relative change in value (increase or decrease, respectively) between pi and
pj is at least l %, but not more than u %.
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2. The instantaneous rate of change of the data points in πi j never falls under −t %
or exceeds +t %, respectively—depending on whether e describes a monotonic
increase or decrease.

3. The interval πi j is (non-locally) maximal with respect to (1) and (2).

The first condition is encoded as

difc( πi j , l, u) :=
	

ch( πi j ) ≥ 0 ∧ ch(i, j) ∈ [l, u], if e = increase(l, u, t)
ch( πi j ) ≤ 0 ∧ |ch(i, j)| ∈ [l, u], if e = decrease(l, u, t)

,

with ch( πi j ) := dpv(pj) − dpv(pi)
|dpv(pi)| · 100

(4.77)

where ch(i, j) is the change in value between the bounds of πi j in percent.

The second constraint is equivalent to

ratc( πi j , t) :=
	

∀�p ∈ �P(i, j) : dpv(�p) · 100 ≥ −t, if e = increase(l, u, t)
∀�p ∈ �P(i, j) : dpv(�p) · 100 ≤ t if e = decrease(l, u, t)

,

with �P(i, j) := {�p ∈ �Ψ | dpt(�p) ≥ ti ∧ dpt(�p) ≤ tj}
(4.78)

where �Ψ = ⟨�p1, �p2, . . . , �pn⟩ is the first derivative of Ψ as defined in Definition 2.8
(Derivative of a Time Series).

The maximality constraint is given by

maxc( πi j , l, u, t) := ¬∃a, b ∈ N : ¬(a = 0 ∧ b = 0)
∧ difc( πi−a j+b, l, u) = true
∧ ratc( πi−a j+b, t) = true

(4.79)

Finally, the evaluation of the monotonic event function instance e ∈ {increase(l, u, t),
decrease(l, u, t)} is defined as

eval_e(e, πi j ) = true :⇐⇒ difc( πi j , l, u) = true
∧ ratc( πi j , t) = true
∧ maxc( πi j , l, u, t) = true

(4.80)

Since the semantics of all event functions have now been defined, they can be used to
formalize the meaning of event definitions. This is depicted in Definition 4.25.

67



4. Query Language Specification

Definition 4.25 (Semantics of DTSQL Events Component) Let Ψ be a time
series resulting from a DTSQL filter application and κ a query with an events
component

Ξ = {ε1, ε2, . . . , εn} (4.81)

and event definitions

εi = (E i, χi, li, ui, ni), with 1 ≤ i ≤ n (4.82)

Moreover, let I π
j k

: E i → {true, false} be an interpretation function that assigns
truth values to event function instances—the atoms of χi—, given a concrete interval
πj k over Ψ. It is defined as follows:

I π
j k

(e) := eval_e(e, πj k), with e ∈ E i (4.83)

Additionally, the duration constraints defined by li, ui and ni are encoded as

durc( πj k , li, ui, ni) := duration(| πj k |, n1) ≥ li ∧ duration(| πj k |, n1) ≤ ui (4.84)

Then, the set of intervals over Ψ characterized by εi is defined as those which satisfy
both χi in the interpretation I π

j k
and the duration constraint durc:

ints(εi) := { πj k | evalI π
j k

(χi) = true ∧ durc( πj k , li, ui, ni) = true} (4.85)

Finally, the semantics of the events component Ξ of κ is defined as the set of pairs
associating event definitions with the intervals they represent as per Equation (4.85):

ints(Ξ) :=
��

ε, ints(ε)
� | ε ∈ Ξ

�
(4.86)

As a conclusion to this subsection, Example 4.9 provides an—admittedly contrived, but
illustrative—demonstration of the semantics of events, given a concrete time series.

Example 4.9 (Semantics of DTSQL Events Component) Let Ψ = ⟨p1, . . . , p8⟩ be
the time series defined by Table 4.4.

Further, let κ be a DTSQL query with events component

Ξ = {ε1, ε2} (4.87)

that detects two specific kinds of events:

1. Intervals of not more than 1.25 hours length which exhibit a monotonic increase of
at least 750 %, with a tolerance against temporarily negative rates of change of 7 %.

2. Intervals with data points whose values are all either less than 5 or reside in the
range [6, 18] for at least 25 minutes.
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data point time identifier value
p1 2022-08-21 10:00:00 t1 10
p2 2022-08-21 10:15:00 t2 2
p3 2022-08-21 10:30:00 t3 3
p4 2022-08-21 10:45:00 t4 5
p5 2022-08-21 11:00:00 t5 4
p6 2022-08-21 11:15:00 t6 6
p7 2022-08-21 11:30:00 t7 18
p8 2022-08-21 11:45:00 t8 19

Table 4.4: Exemplary Time Series for Example 4.9

The first event definition is formalized as

ε1 = (E1, χ1, l1, u1, n1)
= ({e1,1}, e1,1, 0, 1.25, hours)
= ({increase(750, ∞, 7)� �� �

e1,1

}, e1,1, 0, 1.25, hours)
(4.88)

The second event definition is expressed as

ε2 = (E2, χ2, l2, u2, n2)
= ({e2,1, e2,2, e2,3},

�
e2,1 ∨ (¬e2,2 ∧ ¬e2,3)

�
, 25, ∞, minutes)

= ({ltp(5)� �� �
e2,1

, ltp(6)� �� �
e2,2

, gtp(18)� �� �
e2,3

},
�
e2,1 ∨ (¬e2,2 ∧ ¬e2,3)

�
, 25, ∞, minutes)

(4.89)

In order to determine the value of ints(Ξ), first notice that ints(ε1) = { π2 7} because:
• We have chk( π2 7) = 18−2

2 · 100 = 800 and thus, difc( π2 7, 750, ∞) =
(800 ≥ 0) ∧ �

800 ∈ [750, ∞[
�

= true ✓

• As per Definition 2.8, the derivative of Ψ in π2 7 with ∆x in minutes is �P(2, 7) =

(t2, 0.0667), (t3, 0.1333), (t4, −0.0667), (t5, 0.1333), (t6, 0.8), (t7, 0.0667)

�
. The only

data point with a negative value component in �P(2, 7) is (t4, −0.0667). Since −6.67
is not less than −t = −7, we have ratc( π2 7, 7) = true ✓

• The interval cannot be extended to include �p1 without violating difc and ratc. It
cannot be extended until t8 either, because �Ψ is not defined at t8. Hence, it also
holds maxc( π2 7, 750, ∞, 7) = true ✓

• We finally have eval_e(increase(750, ∞, 25), π2 7) = true. Moreover, the du-
ration constraint durc( π2 7, 0, 1.25, hours) = (1.25 ≥ 0) ∧ (1.25 ≤ 1.25) is also
satisfied. ✓
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• There is no other interval specified by ε1 because it already covers the whole time
series. Therefore, as stated, it holds that ints(ε1) = { π2 7}.

Similarly, it can be argued that ints(ε2) = { π1 3, π5 7}:

• Below, Table 4.5 provides a compact overview of the value of the event filter functions
employed by E2 across Ψ.

time value ltp(5) ltp(6) gtp(18)
�
ltp(5) ∨ (¬ltp(6) ∧ ¬gtp(18))

�
t1 10 false false false true
t2 2 true true false true
t3 3 true true false true
t4 5 false true false false
t5 4 true true false true
t6 6 false false false true
t7 18 false false false true
t8 19 false false true false

Table 4.5: Filter Event Evaluations for Example 4.9

• As a result of Definition 4.25 (Semantics of DTSQL Events Component), it is
evident from the table that χ2 is satisfied for the intervals π1 3 and π5 7.

• The duration constraint durc( πi j , 20, ∞, minutes), is also satisfied for them, because
duration( π1 3, minutes) = 30 ∈ [25, ∞[ as well as duration( π5 7, minutes) = 30 ∈
[25, ∞[.

• Therefore, as stated, it holds that ints(ε2) = { π1 3, π5 7}.

In conclusion, the events component of κ evaluates to

ints(Ξ) =
��

ε1, { π2 7}�
,

�
ε2, { π1 3, π5 7}��

(4.90)

△

4.2.5 Selection
The selection component of a DTSQL query, if, present, gives rise to new intervals based
on the intervals captured by the events component (see Section 4.2.4). To define its
semantics, we first need to specify the meaning of the precedes and follows operators.

Definition 4.26 depicts the semantics of the composition operators supported by DTSQL.
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Definition 4.26 (Semantics of Composition Operators) Let Ψ be a time se-
ries, Ψ its filtered counterpart and κ a query over Ψ with events component Ξ =
{ε1, . . . }, and ω a composition operator instance. Recall that there are two different
forms ω may take:

op(⊞1,⊞2) and op(⊞1,⊞2, l, u, n) (4.91, 4.92)

with op ∈ {precedes, follows}. This operator type of ω may also be determined
using the function opt which is defined as:

opt(ω) :=


precedes, if ω = precedes(⊞1,⊞2) or

ω = precedes(⊞1,⊞2, l, u, n)
follows, if ω = follows(⊞1,⊞2) or

ω = follows(⊞1,⊞2, l, u, n)

(4.93)

Then, a composite interval constituted by ω is characterized by three criteria:

1. One interval is represented by ⊞1, the other by ⊞2. Both ⊞1 and ⊞2 may refer
to an event definition ε ∈ Ξ or a nested operator instance �ω.

2. The sequence of events represented by ⊞1 and ⊞2 must be compatible with the
operator type dictated by opt(ω).

3. Depending on whether a time-gap constraint is present or not, the event sequence
must be immediate or within the specified time frame, respectively.

The evaluation of a composition operator instance is denoted by the function eval_o(ω)
(see Equation (4.100)) which encodes the three conditions above and yields a set of
intervals. In order to formalize the first constraint, membership, we need to introduce
a function that evaluates operator arguments ⊞ depending on what they represent:

eval_a(⊞) :=
	

ints(⊞), if ⊞ ∈ Ξ

eval_o(⊞), if ⊞ is of form (4.91) or (4.92)
(4.94)

This allows the membership constraint to be expressed as

memc( πa b, πc d) := πa b ∈ eval_a(⊞1) ∧ πc d ∈ eval_a(⊞2) (4.95)

The second condition, specifying the temporal relation, is equivalent to

relc( πa b, πc d, opt) :=
	

intend(aπb) ≤ intstart(cπd), if opt = precedes
intend(cπd) ≤ intstart(aπb), if opt = follows

(4.96)
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If no time-gap constraint is present, then the event sequence must be immediate:

immc( πa b, πc d, opt) :=


¬∃p ∈ P(Ψ): dpt(p) > intend(aπb)

∧ dpt(p) < intstart(cπd), if opt = precedes
¬∃p ∈ P(Ψ): dpt(p) > intend(cπd)

∧ dpt(p) < intstart(aπb), if opt = follows
(4.97)

If, on the other hand, a time-gap constraint is present, then it must be satisfied:

timc( πa b, πc d, l, u, n, opt) := dur( πa b, πc d, n, opt) ≥ l ∧ dur( πa b, πc d, n, opt) ≤ u,

with dur( πa b, πc d, n, opt) :=
	

duration(| πb c|, n), if opt = precedes
duration(| πd a|, n), if opt = follows

(4.98)

These two auxiliary predicates allow the definition of the sequence condition:

seqc( πa b, πc d, opt) :=
	

immc( πa b, πc d, opt), if ω is of form (4.91)
timc( πa b, πc d, l, u, n, opt), if ω is of form (4.92)

(4.99)

Finally, putting everything together, a composition operator instance ω gives rise to
the following set of intervals:

eval_o(ω) :=



πa d | ∃tb, tc ∈ Z : memc( πa b, πc d)
∧ relc( πa b, πc d, opt(ω))
∧ seqc( πa b, πc d, opt(ω))

� (4.100)

The semantics of the selection component of a DTSQL query can be reduced to this
characterization of the composite intervals represented by a composition operator, as
depicted in Definition 4.27.

Definition 4.27 (Semantics of DTSQL Selection Component) Let Ψ be a time
series, Ψ its filtered counterpart and κ a query over Ψ with events component
Ξ = {ε1, . . . }, and selection component Ω = ω. Then, the set of composite intervals
captured by Ω is defined as

ints(Ω) := eval_o(ω) (4.101)

with eval_o as specified in Definition 4.26.

Ultimately, Example 4.10 provides a demonstration of how the selection component
may give rise to composite events made up of atomic events following from the events
component of a DTSQL query.
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Example 4.10 (Semantics of DTSQL Selection Component) Assume that κ is a
query with events component Ξ = {ε1, ε2, ε3}. Suppose further that the evaluation of
Ξ results in periods which are illustrated schematically in Figure 4.2. The duration
in minutes between two detected intervals is annotated using arrows. The shading of
the sections between intervals indicates whether there are data points recorded in those
sections, as explained by the figure’s legend. Note also that, in practice, intervals resulting
from the same event definition do not necessarily have the same length—this is only to
make the illustration clearer and more easily understandable.

time

ε1 ε2 ε3 ε1 ε2 ε3 ε118 15 9 9 12 9

data points immediate

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

Figure 4.2: Detected Events for Example 4.10

Now assume κ has the following selection component:

Ω = follows(ε1,

ω1� �� �
precedes(ε2, ε3, 0, 15, minutes))� �� �

ω2

(4.102)

The (recursive) evaluation of Ω yields:

eval_o(ω1) = { π3 6, π9 12}
eval_o(ω2) = eval_o(Ω) = { π9 14}

(4.103)

Regarding ω1, both π3 6 and π9 12 evidently satisfy memc, relc, seqc. In the case of ω2,
there are two possible intervals— π3 8 and π9 14. The former one, π3 8 does not satisfy
secq because the time frame from t6 to t8 contains data points. This is invalid since,
due to ω1 not exhibiting a time-gap constraint, π7 8 should immediately follow π3 6. The
latter one, π9 14, satisfies this constraint because there are no data points between t12 and
t13. It also satisfies the other two constraints—memc and relc—, making the composite
(merged) interval π9 14 the result of evaluating ω2 = Ω. △
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4.2.6 Yield
The ultimate result of a DTSQL query is determined by the yield component. Its concrete
semantics are specified in Definition 4.28.

Definition 4.28 (Semantics of DTSQL Yield Component) Let Ψ be a time
series and κ = (S, Φ, Ξ, Ω, Υ) a query with yield component Υ = (γ, d). Then, the
result of κ given Ψ, denoted res(κ, Ψ), is defined via a case distinction on γ.

Case 1: γ = allints
If neither events nor selection component is present, an empty set of intervals is
returned. If only the events component is present, then the set of captured event
intervals is returned. If both events and selection component are present, all detected
composite intervals are returned. More concretely:

res(κ, Ψ) :=


∅, if Ξ = ∅ ∧ Ω = □ 
ε∈Ξ

ints(ε), if Ξ ̸= ∅ ∧ Ω = □

ints(Ω), if Ξ ̸= ∅ ∧ Ω ̸= □

(4.104)

The fourth case (Ξ = ∅ ∧ Ω ̸= □) is syntactically invalid and therefore undefined.

Case 2: γ = maxints
The set of detected intervals with maximum length is returned. Let Π be the set of
all detected intervals according to Equation (4.104). Then:

res(κ, Ψ) :=



πi j ∈ Π | | πi j | = max
π

a b
∈Π

| πa b|� (4.105)

Case 3: γ = minints
The set of detected intervals with minimum length is returned. Let Π be the set of all
detected intervals according to Equation (4.104). Then:

res(κ, Ψ) :=



πi j ∈ Π | | πi j | = min
π

a b
∈Π

| πa b|� (4.106)

Case 4: γ = datapoints
All data points that have not been filtered out and/or are contained in at least one
detected interval are returned. Let Π bet the set of all detected intervals according to
Equation (4.104). Then:

res(κ, Ψ) :=




p ∈ P(Ψ)

�
, if Ξ = ∅ 

πi j ∈Π
psΨ( πi j ), if Ξ ̸= ∅ (4.107)
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Case 5: γ = sample, d = s
The computed value of the sample s is returned:

res(κ, Ψ) := eval_s(s) (4.108)

Case 6: γ = samples, d = S
The computed values of the samples represented by S are returned:

res(κ, Ψ) := {eval_s(s) | s ∈ S} (4.109)

The final Example 4.11 illustrates the semantics of different yield formats given a set of
detected intervals.

Example 4.11 Assume Ψ is a time series and κ = (S, Φ, Ξ, Ω, Υ) a DTSQL query.
Assume further that the set of computed samples is equal to Sc = {195.12� �� �

s1

, 24.39� �� �
s2

, 31.81� �� �
s3

}

and the sets of intervals detected as a result of Ξ, Ω and Equation (4.104) is Π =
{ π3 5, π15 16, π19 21} with each one containing the data points

psΨ( π3 5) = {(t3, 17), (t4, 25.3), (t5, 24.25)}
psΨ( π15 16) = {(t15, 24), (t16, 31.81)}
psΨ( π19 21) = {(t19, 23.63), (t20, 28.01), (t21, 21.12)}

(4.110)

Then, possible yield components along with their query results include:

Υ1 = (allints,□), res(κ, Ψ)1 = { π3 5, π15 16, π19 21}
Υ2 = (maxints,□), res(κ, Ψ)2 = { π3 5, π19 21}
Υ3 = (minints,□), res(κ, Ψ)3 = { π15 16}
Υ4 = (datapoints,□), res(κ, Ψ)4 = psΨ( π3 5) ∪ psΨ( π15 16) ∪ psΨ( π19 21)

Υ5 = (sample, s3), res(κ, Ψ)5 = 31.81

Υ6 = (samples, {s1, s2}), res(κ, Ψ)6 = {192.12, 24.39}
(4.111)

△

4.3 Language Grammar
The preceding Section 4.1 has introduced the abstract syntax of DTSQL. In this section,
we present a language grammar that corresponds to that syntax specification. Note that
there are (many) other grammars which could still be a valid representation of the syntax
described in Section 4.1. The specific manifestation depicted in this section forms the
basis of the reference implementation detailed in Chapter 5.
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The grammar is specified in ANTLR41 syntax. This bridges the mental gap between the
language specification and its implementation because ANTLR will be used in Chapter 5
to generate a lexer and parser to process DTSQL queries. The syntax of ANTLR grammars
is very similar to EBNF (extended Backus-Naur form), which makes it relatively intuitive.
According to ANTLR’s notational conventions, the names of parser rules start with a
lowercase letter and names of lexer rules start with an uppercase letter. Furthermore,
the definition of auxiliary parser or lexer rules which are referenced by multiple other
rules are mentioned only at their first appearance.
The following subsections each depict the ANTLR definition of the respective DTSQL
query component, including an explanation of the rules involved. Moreover, examples of
these components corresponding to the abstract examples in Section 4.1 will be provided
in the concrete syntax.
On a final general note, in the grammar presented below, whitespaces generally do
not bear any meaning. There are isolated instances where at least one whitespace is
mandatory, but apart from that, the formatting of a DTSQL query is arbitrary and does
not influence its validity or semantics.

4.3.1 DTSQL Query
The grammar of valid DTSQL queries is the result of combining the grammars of all
individual query components, as presented in Listing 4.1. As lines 2–7 show, the
components are required to follow each other in the order they have been introduced in
Section 4.1 and Section 4.2.

1 dtsqlQuery
2 : WHITESPACE?
3 (samplesDeclaration WHITESPACE)?
4 (filtersDeclaration WHITESPACE)?
5 (eventsDeclaration WHITESPACE)?
6 (selectDeclaration WHITESPACE)?
7 yieldDeclaration WHITESPACE?
8 EOF ;
9

10 WHITESPACE : WHITESPACE_CHARACTER+ ;
11 fragment WHITESPACE_CHARACTER
12 : ’ ’ | ’\r’ | ’\n’ | ’\r\n’ | ’\t’ ;

Listing 4.1: ANTLR Grammar for a DTSQL Query

The parser rules referenced in the listing above are presented in the following subsections
and therefore, to avoid unnecessary repetitions, not elaborated on at this point. However,
for the sake of completeness, the full, uncompressed grammar is provided in Appendix A.1.
Parser rules are listed in Appendix A.1.1 and lexer rules in Appendix A.1.2.
The initial Example 4.12 gives an overview of the core features of the concrete DTSQL
grammar. Detailed explanations on the individual parts follow in the next subsections.

1https://www.antlr.org/
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Example 4.12 (Concrete Syntax of DTSQL Query) Consider the query from Ex-
ample 4.6 (Semantics of DTSQL Query), i.e.,

κ =

{avgΨ},

({around_relp(avgΨ, 25)� �� �
f1

}, ¬f1),



({

e1,1� �� �
ltp(avgΨ)}, e1,1, 0, ∞, minutes)� �� �

ε1

, ({
e2,1� �� �

gtp(avgΨ)}, e2,1, 0, ∞, minutes)� �� �
ε2

�
,

precedes(ε1, ε2),

(datapoints,□)


(4.112)

The concrete plain-text representation of κ is presented in Listing 4.2. Observe that the
grammar allows assigning human-readable identifiers to samples and event definitions,
which facilitates referencing them in other query components.

1 WITH SAMPLES:
2 avg() AS globalAverage
3 APPLY FILTER:
4 AND(NOT(around(rel, globalAverage, 25)))
5 USING EVENTS:
6 OR(lt(globalAverage)) AS low,
7 AND(gt(globalAverage)) AS high
8 SELECT PERIODS:
9 (low precedes high)

10 YIELD:
11 data points

Listing 4.2: Concrete Syntax of a Basic DTSQL Query

△

4.3.2 Samples
The concrete grammar of the DTSQL samples component is depicted in Listing 4.3.
Afterwards, Example 4.13 presents a samples component in this syntax.

1 samplesDeclaration : SAMPLES_CLAUSE COLON WHITESPACE
�→ aggregatorsDeclarationStatement ;

2 aggregatorsDeclarationStatement : aggregatorList ;
3
4 aggregatorList
5 : aggregators LIST_SEPARATOR aggregatorDeclaration
6 | aggregatorDeclaration ;
7 aggregators : aggregatorDeclaration (LIST_SEPARATOR aggregatorDeclaration)* ;
8
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9 aggregatorDeclaration : aggregatorFunctionDeclaration WHITESPACE
�→ identifierDeclaration ;

10 aggregatorFunctionDeclaration : valueAggregatorDeclaration |
�→ temporalAggregatorDeclaration ;

11
12 valueAggregatorDeclaration : VALUE_AGGREGATOR_FUNCTION PARENTHESIS_OPEN

�→ WHITESPACE? timeRange? WHITESPACE? PARENTHESIS_CLOSE ;
13 temporalAggregatorDeclaration
14 : TEMPORAL_AGGREGATOR_FUNCTION PARENTHESIS_OPEN WHITESPACE? TIME_UNIT

�→ LIST_SEPARATOR intervalList WHITESPACE? PARENTHESIS_CLOSE
15 | UNITLESS_TEMPORAL_AGGREGATOR_FUNCTION PARENTHESIS_OPEN WHITESPACE?

�→ intervalList WHITESPACE? PARENTHESIS_CLOSE ;
16
17 intervalList
18 : intervals LIST_SEPARATOR STRING_LITERAL
19 | STRING_LITERAL ;
20 intervals : STRING_LITERAL (LIST_SEPARATOR STRING_LITERAL)* ;
21
22 timeRange : STRING_LITERAL LIST_SEPARATOR STRING_LITERAL ;
23 identifierDeclaration : AS WHITESPACE IDENTIFIER ;
24
25 SAMPLES_CLAUSE : ’WITH SAMPLES’ ;
26
27 VALUE_AGGREGATOR_FUNCTION : ’avg’ | ’max’ | ’min’ | ’sum’ | ’count’

�→ | ’integral’ | ’stddev’ ;
28 TEMPORAL_AGGREGATOR_FUNCTION : ’avg_t’ | ’max_t’ | ’min_t’ | ’sum_t’

�→ | ’stddev_t’ ;
29 UNITLESS_TEMPORAL_AGGREGATOR_FUNCTION : ’count_t’ ;
30 TIME_UNIT : ’weeks’ | ’days’ | ’hours’ | ’minutes’ | ’seconds’ |

�→ ’millis’ ;
31
32 PARENTHESIS_OPEN : ’(’ ;
33 PARENTHESIS_CLOSE : ’)’ ;
34 COLON : ’:’ ;
35 fragment COMMA : ’,’ ;
36 LIST_SEPARATOR : WHITESPACE? COMMA WHITESPACE? ;
37
38 IDENTIFIER : IDENTIFIER_FIRST_CHARACTER IDENTIFIER_CHARACTER* ;
39 fragment IDENTIFIER_FIRST_CHARACTER : LETTER_CHARACTER ;
40 fragment IDENTIFIER_CHARACTER : LETTER_CHARACTER | DIGIT_CHARACTER ;
41
42 STRING_LITERAL : ’"’ STRING_CHARACTERS? ’"’ ;
43 fragment STRING_CHARACTERS : STRING_CHARACTER+ ;
44 fragment STRING_CHARACTER : ~["\\\r\n] ;

Listing 4.3: ANTLR Grammar for the Samples Component in a DTSQL Query

Explanation

• Lines 1–2: The samples component starts with WITH SAMPLES: , followed by an
aggregator list.
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• Lines 4–7: The aggregator list consists of either two or more aggregators (line 5),
separated by ,, or exactly one (line 6).

• Lines 9–10: An aggregator is defined by an aggregator function, followed by
an identifier. Aggregator functions either operate on the value or the temporal
dimension.

• Lines 12–15: Value aggregators are local if their timeRange component consisting
of two date literals is present, otherwise global. The specific format of the date
literals is implementation-specific. Temporal aggregators expect a time unit (except
for count_t) determining the scale of its value and a list of interval literals. The
specific format for specifying an interval is also up to the implementation.

Example 4.13 (Concrete Syntax of DTSQL Samples) Consider the samples com-
ponent specified in Example 4.1 (DTSQL Samples Component), i.e.,

S =


maxΨ, integralΨ(t1, t4), sum_tΨ(minutes, { π3 8, π10 12, π15 23})

�
(4.113)

Listing 4.4 expresses S in the concrete grammar, where time identifiers ti represent the
point in time 2022-08-28 14:00:00 plus i hours.

1 WITH SAMPLES:
2 max() AS globalAverage,
3 integral("2022-08-28T15:00:00Z", "2022-08-28 16:00:00Z") AS localIntegral,
4 sum_t(minutes, "2022-08-28T17:00:00Z/2022-08-28T22:00:00Z",
5 "2022-08-29T00:00:00Z/2022-08-29T02:00:00Z",
6 "2022-08-29T05:00:00Z/2022-08-29T13:00:00Z") AS temporalSum

Listing 4.4: Concrete Syntax of a DTSQL Samples Component

△

4.3.3 Filters
Listing 4.5 provides an overview of the concrete grammar of the DTSQL filter compo-
nent. Moreover, an exemplary filter component expressed in this grammar is depicted
Example 4.14.

1 filtersDeclaration : FILTER_CLAUSE COLON WHITESPACE filterConnective ;
2 filterConnective : CONNECTIVE_IDENTIFIER PARENTHESIS_OPEN WHITESPACE?

�→ singlePointFilterList WHITESPACE? PARENTHESIS_CLOSE ;
3
4 singlePointFilterList
5 : singlePointFilters LIST_SEPARATOR singlePointFilterDeclaration
6 | singlePointFilterDeclaration ;
7 singlePointFilters : singlePointFilterDeclaration (LIST_SEPARATOR

�→ singlePointFilterDeclaration)* ;
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8
9 singlePointFilterDeclaration : singlePointFilter |

�→ negatedSinglePointFilter ;
10 singlePointFilter : thresholdFilter | temporalFilter | deviationFilter ;
11 negatedSinglePointFilter : CONNECTIVE_NOT PARENTHESIS_OPEN WHITESPACE?

�→ singlePointFilter WHITESPACE? PARENTHESIS_CLOSE ;
12
13 temporalFilter : TEMPORAL_FILTER_TYPE PARENTHESIS_OPEN WHITESPACE?

�→ STRING_LITERAL WHITESPACE? PARENTHESIS_CLOSE ;
14 thresholdFilter : THRESHOLD_FILTER_TYPE PARENTHESIS_OPEN WHITESPACE?

�→ scalarArgument WHITESPACE? PARENTHESIS_CLOSE ;
15 deviationFilter : DEVIATION_FILTER_TYPE PARENTHESIS_OPEN WHITESPACE?

�→ deviationFilterArguments WHITESPACE? PARENTHESIS_CLOSE ;
16
17 scalarArgument : NUMBER | IDENTIFIER ;
18 deviationFilterArguments : AROUND_FILTER_TYPE LIST_SEPARATOR reference=

�→ scalarArgument LIST_SEPARATOR deviation=scalarArgument ;
19
20 FILTER_CLAUSE : ’APPLY FILTER’ ;
21
22 CONNECTIVE_NOT : ’NOT’ ;
23 CONNECTIVE_IDENTIFIER : ’AND’ | ’OR’ ;
24
25 THRESHOLD_FILTER_TYPE : ’gt’ | ’lt’ ;
26 TEMPORAL_FILTER_TYPE : ’before’ | ’after’ ;
27 DEVIATION_FILTER_TYPE : ’around’ ;
28 AROUND_FILTER_TYPE : ’rel’ | ’abs’ ;
29
30 NUMBER : INT | FLOAT ;
31 fragment DIGIT : [0-9] ;
32 fragment SIGN : ’-’? ;
33 INT : SIGN? DIGIT+ ;
34 FLOAT : SIGN? DIGIT+ ’.’ DIGIT+ ;

Listing 4.5: ANTLR Grammar for the Filter Component in a DTSQL Query

Explanation

• Lines 1–2: The filter component starts with APPLY FILTER: , followed by a
filter connective consisting of a root connective AND or OR and a list of filters as
arguments.

• Lines 4–7: A (single point) filter list is made up of either two or more filters (line 5),
separated by ,, or exactly one (line 6).

• Lines 9–11: Filters may be negated and take the form of a threshold, temporal or
deviation filter.

• Lines 13–15: Temporal filters accept a date literal as argument, threshold filters
one scalar (which may reference a sample), and deviation filters a type (relative or
absolute) as well as two scalars.
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Example 4.14 (Concrete Syntax of DTSQL Filters) Consider the filter component
specified in Example 4.2 (DTSQL Filter Component), i.e.,

Φ =
�{afterp(t11)� �� �

f1

, around_relp(avgΨ, 5.25)� �� �
f2

}, (f1 ∧ ¬f2)
�

(4.114)

The concrete syntax of Φ is depicted in Listing 4.6, where t11 represents the point in time
2022-08-28 14:00:00 and the sample avgΨ is denoted by the identifier avg1.

1 WITH SAMPLES:
2 avg() AS avg1
3 APPLY FILTER:
4 AND(
5 after("2022-08-28T14:00:00.000Z"),
6 NOT(around(rel, avg1, 5.25))
7 )

Listing 4.6: Concrete Syntax of a DTSQL Filter Component

△

4.3.4 Events
In Listing 4.7, the concrete grammar of the DTSQL events component is shown. In
addition to that, Example 4.15 demonstrates a specific events component in this syntax.

1 eventsDeclaration : EVENTS_CLAUSE COLON WHITESPACE
�→ eventsDeclarationStatement ;

2 eventsDeclarationStatement : eventList ;
3
4 eventList
5 : events LIST_SEPARATOR eventDeclaration
6 | eventDeclaration ;
7 events : eventDeclaration (LIST_SEPARATOR eventDeclaration)* ;
8
9 eventDeclaration : eventConnective WHITESPACE? (durationSpecification

�→ WHITESPACE?)? identifierDeclaration ;
10 durationSpecification : EVENT_DURATION WHITESPACE TIME_UNIT ;
11 eventConnective : CONNECTIVE_IDENTIFIER PARENTHESIS_OPEN WHITESPACE?

�→ eventFunctionList WHITESPACE? PARENTHESIS_CLOSE ;
12
13 eventFunctionList
14 : eventFunctions LIST_SEPARATOR eventFunctionDeclaration
15 | eventFunctionDeclaration ;
16 eventFunctions : eventFunctionDeclaration (LIST_SEPARATOR

�→ eventFunctionDeclaration)* ;
17 eventFunctionDeclaration : singlePointFilterDeclaration |

�→ complexEventDeclaration ;
18
19 complexEventDeclaration : complexEvent | negatedComplexEvent ;
20 complexEvent : constantEvent | increaseEvent | decreaseEvent ;
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21 negatedComplexEvent : CONNECTIVE_NOT PARENTHESIS_OPEN WHITESPACE?
�→ complexEvent WHITESPACE? PARENTHESIS_CLOSE ;

22
23 constantEvent : EVENT_CONSTANT PARENTHESIS_OPEN WHITESPACE? slope=

�→ scalarArgument LIST_SEPARATOR deviation=scalarArgument WHITESPACE?
�→ PARENTHESIS_CLOSE ;

24 increaseEvent : EVENT_INCREASE PARENTHESIS_OPEN WHITESPACE? minChange=
�→ scalarArgument LIST_SEPARATOR monotonicUpperBound LIST_SEPARATOR
�→ tolerance=scalarArgument WHITESPACE? PARENTHESIS_CLOSE ;

25 decreaseEvent : EVENT_DECREASE PARENTHESIS_OPEN WHITESPACE? minChange=
�→ scalarArgument LIST_SEPARATOR monotonicUpperBound LIST_SEPARATOR
�→ tolerance=scalarArgument WHITESPACE? PARENTHESIS_CLOSE ;

26
27 monotonicUpperBound : scalarArgument | HYPHEN ;
28
29 EVENTS_CLAUSE : ’USING EVENTS’ ;
30 AS : ’AS’ ;
31 EVENT_CONSTANT : ’const’ ;
32 EVENT_INCREASE : ’increase’ ;
33 EVENT_DECREASE : ’decrease’ ;
34 HYPHEN : ’-’ ;
35
36 EVENT_DURATION : DURATION_FOR WHITESPACE DURATION_RANGE_OPEN WHITESPACE?

�→ INT? LIST_SEPARATOR INT? DURATION_RANGE_CLOSE ;
37 fragment DURATION_FOR : ’FOR’ ;
38 fragment DURATION_RANGE_OPEN : PARENTHESIS_OPEN | ’[’ ;
39 fragment DURATION_RANGE_CLOSE : PARENTHESIS_CLOSE | ’]’ ;

Listing 4.7: ANTLR Grammar for the Events Component in a DTSQL Query

Explanation

• Lines 3–7: The events component starts with USING EVENTS: , followed by an
event list.

• Lines 4–7: An event list consists of either two or more event declarations (line 5),
separated by ,, or exactly one (line 6).

• Lines 9–11: An event declaration is mainly constituted by an event connective, but
also has an identifier and—optionally—a minimum and/or maximum duration.

• Lines 13–17: Event connectives are represented by a list of one (line 15) or more
(line 14) event function declarations, separated by ,. An event function declaration
either represents a filter event, or a complex event.

• Lines 19–21: Complex events may be negated and correspond to constant, increase
or decrease events.

• Lines 23–27: While constant events accept two scalar arguments, increase and
decrease events receive three scalar arguments. For monotonic upper bounds, a
hyphen (-) is also a valid value, representing infinity (“no upper bound”).
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Example 4.15 (Concrete Syntax of DTSQL Events) Consider the events compo-
nent specified in Example 4.3 (DTSQL Events Component), i.e., Ξ = {ε1, ε2} with

ε1 =
�{gtp(300)� �� �

e1,1

, ltp(100)� �� �
e1,2

}, (e1,1 ∨ e1,2), 30, ∞, minutes
�

ε2 =
�{increase(50, ∞, 5.75)� �� �

e2,1

, beforep(t23)� �� �
e2,2

}, (e2,1 ∧ ¬e2,2), 0, 45, seconds
� (4.115)

The concrete syntax of Φ is depicted in Listing 4.8, where t23 represents the point in time
2022-08-28 17:45:23.

1 USING EVENTS:
2 OR(gt(300), lt(100)) FOR [30,] minutes AS event1,
3 AND(increase(50, -, 5.75),
4 NOT(before("2022-08-28 17:45:23.000Z"))
5 ) FOR [0,45] seconds AS event2

Listing 4.8: Concrete Syntax of a DTSQL Events Component

△

4.3.5 Selection
Listing 4.9 presents the concrete grammar of the DTSQL selection component. After
that, a specific selection component according to this syntax is given in Example 4.16.

1 selectDeclaration : SELECT_CLAUSE COLON WHITESPACE temporalRelation ;
2
3 temporalRelation
4 : PARENTHESIS_OPEN op1=IDENTIFIER WHITESPACE TEMPORAL_RELATION WHITESPACE

�→ op2=IDENTIFIER WHITESPACE? timeToleranceSpecification?
�→ PARENTHESIS_CLOSE #EventEvent

5 | PARENTHESIS_OPEN op1=IDENTIFIER WHITESPACE TEMPORAL_RELATION WHITESPACE
�→ op2=temporalRelation WHITESPACE? timeToleranceSpecification?
�→ PARENTHESIS_CLOSE #EventRecursive

6 | PARENTHESIS_OPEN op1=temporalRelation WHITESPACE TEMPORAL_RELATION
�→ WHITESPACE op2=IDENTIFIER WHITESPACE? timeToleranceSpecification?
�→ PARENTHESIS_CLOSE #RecursiveEvent

7 | PARENTHESIS_OPEN op1=temporalRelation WHITESPACE TEMPORAL_RELATION
�→ WHITESPACE op2=temporalRelation WHITESPACE? timeToleranceSpecification
�→ ? PARENTHESIS_CLOSE #RecursiveRecursive ;

8
9 timeToleranceSpecification : TIME_TOLERANCE WHITESPACE TIME_UNIT ;

10
11 SELECT_CLAUSE : ’SELECT PERIODS’ ;
12 TEMPORAL_RELATION : ’precedes’ | ’follows’ ;
13
14 TIME_TOLERANCE : TIME_TOLERANCE_WITHIN WHITESPACE DURATION_RANGE_OPEN

�→ WHITESPACE? INT? LIST_SEPARATOR INT? DURATION_RANGE_CLOSE ;
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15 fragment TIME_TOLERANCE_WITHIN : ’WITHIN’ ;
16 fragment TIME_TOLERANCE_OPEN : PARENTHESIS_OPEN | ’[’ ;
17 fragment TIME_TOLERANCE_CLOSE : PARENTHESIS_CLOSE | ’]’ ;

Listing 4.9: ANTLR Grammar for the Selection Component in a DTSQL Query

Explanation

• Line 1: The selection component starts with SELECT PERIODS: , followed by a
(potentially nested) temporal relation between (composite) events.

• Lines 3–7: Valid temporal relation operators are precedes and follows. The
temporal relations supported by DTSQL are binary and arguments may represent
either an event (via its identifier) or a recursive operator instance. Therefore, the
rule temporalRelation covers all four permutations—with each being labelled
accordingly, e.g., #EventEvent in line 5.

Example 4.16 (Concrete Syntax of DTSQL Selection) Consider the selection com-
ponent Ω4 specified in Example 4.4 (DTSQL Selection Component), i.e.,

Ω4 = precedes(ε2, follows(ε4, ε1), 0, 30, minutes) (4.116)

A representation of Ω4 in its concrete grammar is depicted in Listing 4.10, where the event
definitions ε1, ε2 and ε4 are identified by event1, event2 and event4, respectively.

1 USING EVENTS:
2 (...) AS event1,
3 (...) AS event2,
4 (...) AS event4
5 SELECT PERIODS:
6 (
7 event2
8 precedes
9 (event4 follows event1)

10 ) WITHIN [0,30] minutes

Listing 4.10: Concrete Syntax of a DTSQL Selection Component

△

4.3.6 Yield
The grammar of the DTSQL yield component is specified in Listing 4.11. Subsequently,
Example 4.17 depicts a specific yield component compatible with this grammar.

1 yieldDeclaration : YIELD COLON WHITESPACE yieldType ;
2 yieldType
3 : YIELD_ALL_PERIODS
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4 | YIELD_LONGEST_PERIOD
5 | YIELD_SHORTEST_PERIOD
6 | YIELD_DATA_POINTS
7 | YIELD_SAMPLE WHITESPACE IDENTIFIER
8 | YIELD_SAMPLE_SET WHITESPACE identifierList ;
9

10 identifierList
11 : identifiers LIST_SEPARATOR IDENTIFIER
12 | IDENTIFIER ;
13 identifiers : IDENTIFIER (LIST_SEPARATOR IDENTIFIER)* ;
14
15 YIELD : ’YIELD’ ;
16 YIELD_ALL_PERIODS : ’all periods’ ;
17 YIELD_LONGEST_PERIOD : ’longest period’ ;
18 YIELD_SHORTEST_PERIOD : ’shortest period’ ;
19 YIELD_DATA_POINTS : ’data points’ ;
20 YIELD_SAMPLE : ’sample’ ;
21 YIELD_SAMPLE_SET : ’samples’ ;

Listing 4.11: ANTLR Grammar for the Yield Component in a DTSQL Query

Explanation
• Line 1: The yield component starts with YIELD: , followed by a yield type.

• Line 2: The majority of yield types do not require arguments. However, sample
expects one sample identifier and samples a list of them.

Example 4.17 (Concrete Syntax of DTSQL Yield) Consider the yield components
specified in Example 4.5 (DTSQL Yield Component), i.e.,

Υ1 = (allints,□)
Υ2 = (maxints,□)
Υ3 = (minints,□)
Υ4 = (datapoints,□)
Υ5 = (sample, s2)
Υ6 = (samples, {s1, s3, s4})

(4.117)

Listing 4.12 depicts concrete representations of Υ1 through Υ6, where the samples si are
identified as samplei, respectively, with i ∈ {1, . . . , 4}.

1 YIELD: all periods
2 YIELD: longest period
3 YIELD: shortest period
4 YIELD: data points
5 YIELD: sample sample2
6 YIELD: samples sample1, sample3, sample4

Listing 4.12: Concrete Syntax of a DTSQL Yield Component

△
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CHAPTER 5
Reference Implementation

This chapter goes into detail about how the reference implementation of the time series
query language DTSQL specified in Chapter 4 has been created. First, a general overview
of the system architecture is presented. This is followed by a section dedicated to
the process of parsing and evaluating incoming queries. The chapter concludes with a
description of the client environment which assists users in conveniently creating and
executing DTSQL queries over their time series data.

5.1 Architecture Overview
The DTSQL system proposed as part of this thesis is designed with extensibility in mind.
Its query routines operate on a simple, canonical representation of time series which
essentially corresponds to how they were defined in Section 2.4.2, i.e., a list of time-value
pairs. In order to support arbitrary storage solutions (e.g., an InfluxDB database, a local
CSV file, data accessible via a web service, . . . ), there is a StorageService interface
which defines the following main routines:

• load: Reads a time series from the respective storage solution and loads it in a
storage-specific format into memory.

• transform: Defines a transformation from the storage-specific format into the
canonical representation of a time series used by the system.

• store: Persists a time series in canonical representation in the respective storage
solution.

If there is demand to add DTSQL query support for a new storage solution—one might
want to query time series in a specific SQL database—one merely needs to implement
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these methods defined by the StorageService interface. They accept storage-specific
configurations as parameters. A CSV implementation, for instance, requires information
about which column in a file denotes the time of a data point, or which format should be
used to parse the date and time values.

The diagram depicted in Figure 5.1 shows a high-level overview of the most important
components that constitute the DTSQL reference implementation. It also emphasizes
the sequence of steps conducted in the process of creating, interpreting and evaluating
DTSQL queries. The enumeration below gives a more in-depth explanation of the system
architecture by elaborating on each step highlighted in the figure.

generates

generates storage 
specification

query
payload

Client

1

MPS 
Query Editor

2 invokesreturns 8

Spring Boot 
query service

instantiates using 
storage specification

3

extracts 
4
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passes query 
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5
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6
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result
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CSV

Web

...

value

time

query string
DTSQL

Figure 5.1: Core Components of the DTSQL Reference Implementation
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1 Users create queries in a semi-visual way by means of a projectional editor (see
Chapter 2) provided via JetBrains MPS1. Apart from guiding users through the
query formulation process, it also allows them to create a storage specification
containing information required for reading and transforming time series to be
queried. Based on the abstract syntax tree created by the user in the projectional
editor, MPS generates the DTSQL query string and storage specification. For
further elaborations on and exemplary screenshots of the MPS editor, refer to
Section 5.3.

2 The query string and storage specification are packed together into a JSON2 payload
and sent to the server application, initiating a query request. This backend service
is a REST3 web service implemented as a Spring Boot4 application using the Java
programming language.

3 By utilizing the storage specification which is part of the request body, the server
application instantiates and initializes the specified StorageService implemen-
tation.

4 Making use of the storage specification again, the initialized storage implementation
then reads data in its native format and subsequently transforms it into the canonical
representation of a time series to be queried.

5 Now, all data required to execute the query contained in the request body has been
assembled. The Spring Boot application passes both the time series and the query
string to the component which implements the actual query functionality.

6 Based on the grammar presented in Section 4.3 and Appendix A.1, a parser gener-
ated by ANTLR45 is used to convert the query string into an internal representation
of a DTSQL query that can be processed effectively.

7 As penultimate step, the internal representation of the input query is evaluated to
compute the query result. More information on how queries are parsed and how
their result objects are computed can be found in Section 5.2.

8 Finally, the query result is encoded as web service response, returned to and
visualized by the MPS client.

5.2 Query Processing
This section sheds light on the core components of the Java server implementation—i.e.,
the query evaluation process. Its full source code is available at https://github.
com/dtsql-oss/server.

1https://www.jetbrains.com/mps/
2JavaScript Object Notation: https://www.json.org/json-en.html
3Representational State Transfer: a very common architecture for web services exchanging resources
4https://spring.io/projects/spring-boot
5https://www.antlr.org/index.html
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5.2.1 Parsing and Validation of Query Strings
As already mentioned, ANTLR4 is used to parse DTSQL query strings. The scope of this
thesis does not allow to go into detail about ANTLR’s architecture and features. The
Definitive ANTLR 4 Reference [57], written by its creator, provides more exhaustive
descriptions than this subsection and additionally presents numerous examples on how
to use the parser generator.

In general, ANTLR builds a parse tree from the input string, where each node corresponds
to a parser rule of the underlying grammar. Afterwards, it offers two interfaces to
explore this tree, the visitor and the listener pattern. With visitors, developers have
full control over how the parse tree is traversed. One has to explicitly instruct ANTLR
to visit the children of a node, otherwise they are skipped. This provides developers
with more flexibility, but also the responsibility to ensure that all relevant nodes are
covered during the tree walk. Parse tree listeners, on the other hand, provide an interface
reminiscent of SAX6 parsers. There are enter and exit callbacks for each node that is
encountered by ANTLR’s tree walker. Developers may override these callbacks to attach
application-specific behavior when processing the various parser-rule-induced nodes.

The DTSQL implementation uses a listener for the majority of language components, due
to its simplicity. For recursive structures, however, a custom visitor implementation is
employed—e.g., for nested composition operators (see Definition 4.11). By doing so, the
nodes processed during the parse tree traversal are read into an internal representation
of the DTSQL query string. This allows for an object-oriented query processing and,
subsequently, the evaluation (result generation) over given input time series data.

While the grammar ensures basic syntactic validity, the Java listener and visitor imple-
mentations also verify some additional constraints regarding semantic integrity:

1. Identifiers of samples and event definitions must be globally unique, i.e., no two
identifiable concepts may define the same identifier. More specifically, two events
or one event and one sample having the same identifier is invalid.

2. When referencing a concept using an identifier—in a filter, event or composition
operator definition—it must have been declared first, using the same identifier.

3. When referencing a concept using an identifier, the target concept must be applicable
in the respective context. For instance, a filter argument may be represented by a
sample identifer, but not by an event identifier. Analogously, composition operators
only accept event identifiers, but no sample identifiers.

4. Query parameters representing points in time must be valid ISO 8601 [58, 59]
timestamps. The preferred format is yyyy-MM-dd’T’HH:mm:ss.zzzXX. For
instance, 2022-09-18T16:42:23.254+01:00 stands for September 18th 2022
at 16:42:23 (and 254 milliseconds) in a timezone which is one hour ahead of UTC
(Universal Time Coordinated)—e.g., CET (Central European Time).

6Simple API for XML: a standard way of parsing XML documents
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If a syntactic or semantic error is encountered during the parsing process, it is halted and
a descriptive error message is thrown. Otherwise, if a DTSQL query is successfully parsed
into an equivalent internal representation, it as passed onto the evaluation module. The
next subsection explains how this module uses that query representation and an input
time series to obtain the declaratively specified query result.

5.2.2 Evaluation and Result Generation

The query evaluation process is implemented as outlined in the five-step process from
Section 4.2.1. The implementation of steps one (compute samples), two (apply filter), and
five (assemble result to yield) are relatively direct Java manifestations of the language
semantics presented in Section 4.2.2, Section 4.2.3 and Section 4.2.6, respectively.

While a detailed explanation of the implementation of these steps would not provide
more value than the specification of their semantics, it is worth noting that algorithms
for high efficiency and numerical accuracy were utilized. For example, all supported
summary aggregates (minimum, maximum, sum, standard deviation, count, average) are
calculated at once with a single scan of the input time series per unique interval bounds
(e.g., all global aggregates have the same interval bounds). The standard deviation is
determined using Welford’s algorithm [60] which inspects each data point exactly once
and significantly reduces imprecision induced by floating point arithmetic. It has been
extensively analyzed and compared with other approaches [61, 62]. Similarly, Neumaier’s
summation algorithm [63] provides a high degree of numerical stability by keeping track
of and compensating for numerical errors. It is able to accurately sum up values with
considerable differences in magnitude and is therefore an improvement of the previously
known Kahan-Babuška method [64, 65].

The methods employed for efficiently capturing intervals specified by event definitions
(step three) as well as the selection component (step four) do deserve closer inspection,
however. In the following paragraphs, the four most important algorithms linked to these
tasks are presented.

Multiple filter event specifications are evaluated at once with only one iteration over
the filtered input time series, as shown in Algorithm 5.1. The idea of this method
is similar to the single scan coalescing algorithm proposed in [66]. In the context of
temporal databases, the coalesce operation is comparable to deleting tuples with identical
values from a conventional database (duplicate elimination). It merges value-equivalent
tuples that have adjacent or overlapping time periods [67]. The process displayed in
Algorithm 5.1 differs from the single-scan coalesce algorithm in that it coalesces the data
points into intervals based on whether they satisfy the respective event definition, rather
than them having equivalent values. It keeps track of the point in time starting from
which an event is continuously satisfied using the map m (lines 3, 12–13). If an event is
not satisfied anymore, then the interval described by the current point in time and the
memorized one is added to the set of detected intervals (lines 2, 16–18). There is also a
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special case that ends a period—even though the event is still satisfied—if the end of the
input data is reached (lines 8–10).

Algorithm 5.1: Interval Detection of Filter Events
Input: filtered time series Ψ = ⟨p1, . . . , pn⟩,

filter event functions Ef = {e1, . . . , em}
Output: set of intervals Π over Ψ such that eval_e(e, πi j ) = true for at least

one e ∈ Ef for all πi j ∈ Π

1 function detectFilterEventIntervals(Ψ, Ef):
2 Π ← ∅ // set of detected intervals
3 m ← {(Ef → Z)} // maps events to starts of open periods

4 foreach pi ∈ Ψ do
5 foreach e ∈ Ef do // event e is equivalent to filter f
6 if eval_f(f, pi) = true then
7 if m[e] ̸= null then
8 if i = n then
9 Π = Π ∪ 


πm[e] dpt(pi)
�

10 m[e] ← null
11 end
12 else
13 m[e] ← dpt(pi)
14 end
15 else
16 if m[e] ̸= null then
17 Π = Π ∪

�
πm[e] dpt(pi)

�
18 m[e] ← null
19 end
20 end
21 end
22 end
23 return Π
24 end

In the category of complex events, the procedure for capturing periods of constant events
is outlined in Algorithm 5.2. At first, an over-approximation of interval candidates is
determined by capturing periods within which the instantaneous rate of change is in the
range ±t, where t is an internal sensitivity threshold which depends on the input data
(line 2). Afterwards, the slope of the regression line in the interval candidates (lines 5–6)
as well as the deviation from the average value (lines 12–13) are verified. If both checks
succeed, the respective period is added to the result set (line 14). It should be mentioned
that, strictly speaking, this procedure does not guarantee maximality. Furthermore, line
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2 only yields a “true” over-approximation if the data-dependent sensitivity threshold t is
large enough (but not so large that no interval candidate satisfies regc and devc). In
order to ensure that the maximality criterion holds, an efficient neighborhood search—in
the sense of enlarging and/or shrinking candidate intervals to the left and/or right until
its size is maximal—would have to be devised.

Algorithm 5.2: Interval Detection of Constant Events
Input: filtered time series Ψ = ⟨p1, . . . , pn⟩,

constant event e = const(s, d)
Output: interval set Π over Ψ such that eval_e(e, πi j ) = true for all πi j ∈ Π

1 function detectConstantEventIntervals(Ψ, s, d):
// interval candidates, (Ψ′: derivative)

2 c ← detectFilterEventIntervals
�
Ψ′

, {around_absp(0.0, t)}�
3 r ← ∅ // intervals satisfying regc constraint
4 foreach πi j ∈ c do
5 β ← linearRegressionSlope(psΨ( πi j ))
6 if |β| · 100 ≤ s then
7 r ← r ∪ { πi j }
8 end
9 end

10 rd ← ∅ // intervals satisfying regc and devc constraints
11 foreach πi j ∈ r do
12 a ← eval_s(avgpsΨ( πi j ))

13 if ∀p ∈ psΨ( πi j ) :
 |dpv(p)−a|

|a| · 100 ≤ d


then
14 rd ← rd ∪ { πi j }
15 end
16 end
17 return rd

18 end

The intervals specified by monotonic events are determined similarly. In Algorithm 5.3,
the process of detecting monotonically increasing intervals is depicted. First, all intervals
satisfying the constraint regarding the instantaneous rate of change are determined (line 2).
This ensures maximality because, due to the maximality of detectFilterEventIntervals,
there can be no longer intervals where ratc continuously holds. Afterwards, the relative
change in value between the starting and ending points of the just determined intervals
is verified (lines 5–6). If this check succeeds as well, the respective period is added to
the result set. This algorithm works analogously for decreasing intervals, with slight
modifications: The filter argument in line 2 would need to be changed to “{ltp( t

100)}”
and the condition in line 6 to “c ≤ 0 and |c| ∈ [l, u]”.
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Algorithm 5.3: Interval Detection of Monotonic Increase Events
Input: filtered time series Ψ = ⟨p1, . . . , pn⟩,

increase event e = increase(l, u, t)
Output: interval set Π over Ψ such that eval_e(e, πi j ) = true for all πi j ∈ Π

1 function detectIncreaseEventIntervals(Ψ, l, u, t):
// intervals satisfying ratc constraint (Ψ′: derivative)

2 r ← detectFilterEventIntervals
�
Ψ′

, {gtp(− t
100)}�

3 rd ← ∅ // intervals satisfying ratc and difc constraints
4 foreach πi j ∈ r do
5 c ← dpv(pj)−dpv(pi)

|dpv(pi)| · 100
6 if c ≥ 0 and c ∈ [l, u] then
7 rd ← rd ∪ { πi j }
8 end
9 end

10 return rd

11 end

Finally, Algorithm 5.4 demonstrates how the intervals resulting from event specifications—
detected using the preceding three algorithms—are used to create composite events, i.e.,
event sequences. A selection component consists of either a precedes or a follows root
composition operator. Since the follows relation is the inverse of the precedes relation,
the evaluation of follows is reduced to evaluating precedes operators with swapped
arguments (lines 2–5). In lines 9–14, the set of intervals to consider when looking for event
sequences corresponding to the selection component is assembled. Should an operator not
represent an event, but be a nested (recursive) composition operator, then all intervals
represented by it are determined by invoking the algorithm recursively (lines 11 and 14).
Afterwards, pairs of periods pi and pj—where pj starts before pi—are examined with
respect to whether they satisfy the conditions of the precedes composition operator
(line 19). If they do, then the corresponding composite (merged) interval—made up of
the start of pj and the end of pi—is added to the result set (line 20).

After evaluating the selection component, the overall query result is generated and
returned to the user as specified in Definition 4.28 (Semantics of DTSQL Yield Component).
As mentioned before, there is no additional value in providing a concrete pseudocode
implementing the yield semantics.
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Algorithm 5.4: Evaluation of Selection Component
Input: composition operator ω = opt(⊞1,⊞2) with

opt ∈ {precedes, follows},
set of intervals Π detected from event definitions

Output: set of intervals specified by input, i.e., value of eval_o(opt(⊞1,⊞2))
1 function evaluateSelection(opt, ⊞1, ⊞2, Π):
2 if opt = precedes then
3 return evaluatePrecedes(⊞1,⊞2)
4 else
5 return evaluatePrecedes(⊞2,⊞1)
6 end
7 end
8 function evaluatePrecedes(⊞1, ⊞2, Π):
9 �Π ← Π // set of intervals to examine

10 if ⊞1 = �opt1( �⊞1, �⊞2) then // recursive first argument

11 �Π ← �Π ∪ evaluateSelection(�opt1, �⊞1, �⊞2, Π) // adds eval_a(⊞1)
12 end
13 if ⊞2 = �opt2( �⊞3, �⊞4) then // recursive second argument

14 �Π ← �Π ∪ evaluateSelection(�opt2, �⊞3, �⊞4, Π) // adds eval_a(⊞2)
15 end
16 Π′ ← ∅ // set of chosen intervals

17 foreach pi ∈ �Π, i ∈ {1, . . . , |�Π|} do
18 foreach pj ∈ �Π, j ∈ {1, . . . , i − 1} do
19 if memc(pj , pi) = true and relc(pj , pi, precedes) = true and

seqc(pj , pi, precedes) = true then
20 Π′ ← Π′ ∪

�
πintstart(pj) intend(pi)

�
21 end
22 end
23 end
24 return Π′

25 end
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5.3 Client Environment
This section presents how JetBrains MPS was used to create a client environment that
assists users in formulating and executing DTSQL queries. As already noted in Sec-
tion 2.3.2, due to space restrictions, it is not possible to give in-depth explanations of how
to use MPS. Therefore, this section only showcases the resulting client environment. Its
implementation is available at https://github.com/dtsql-oss/query-client.
The interested reader may also find MPS-related resources in the official documentation7

or relevant textbooks, e.g., [68, 69, 52].

5.3.1 Query Formulation
MPS offers purpose-tailored ways to model the structure (syntax) of a DSL, define a
projectional editor for writing programs in it, express (syntactic and semantic) validity
constraints, implement context-actions as well as add code generation from a valid DSL
program. While MPS provides much more than listed in this enumeration, these are the
main features used by the DTSQL client environment.

The especially designed projectional editor guides users through the DTSQL query creation
process. It provides context-sensitive auto-complete functionality as well as interactive
elements such as checkboxes, relieving users of memorizing the exact syntax of every
language feature by heart. Furthermore, the use of colors for different query elements
makes it easier to grasp the intention of a query. As an example, the result of modelling
the query from Listing 4.2 in MPS is depicted in Figure 5.2.

Figure 5.3 demonstrates in more detail how the editor supports users in formulating
DTSQL queries. For instance, it offers available types of samples (a), event functions (c)
and result (d) types. Furthermore, it suggests negating event or filter functions (b) using
intentions. Similarly, many parameters in a DTSQL query may either be literal values
or reference samples (e). In the latter case, the auto-complete menu only offers valid,
previously defined sample identifiers (f). Finally, event sequences might be equipped with
time-gap constraints (g). If such a constraint is present, the editor exclusively offers time
units that are supported by DTSQL (h).

In addition to the above ways the projectional editor helps users create DTSQL queries,
it also makes use of MPS’s capabilities in formulating constraints for DSLs. This has the
positive effect of issuing domain-specific and clear error messages during the query design
process, rather than receiving abstract error messages generated by the ANTLR parser
during the query evaluation process. Five instances of such domain-specific errors are
depicted in Figure 5.4. It shows that sample identifiers must not start with letters and that
timestamps must be valid with respect to the ISO 8601 standard (a). Furthermore, event
durations must be expressed in a concrete unit and must not be negative (b). Ultimately,
a yield component returning the computed values of samples must be accompanied by at
least one sample identifier (c).

7https://www.jetbrains.com/help/mps/mps-user-s-guide.html
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Figure 5.2: MPS Representation of DTSQL Query From Listing 4.2
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(a) Sample Types (b) Context-Aware Intentions

(c) Event Types (d) Result Types

(e) Parameter Types

(f) Reusing Samples

(g) Event Sequences With or Without Time-Gap Constraint

(h) Supported Time Units

Figure 5.3: Selected Aspects of Interactive MPS Editor for DTSQL Queries
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(a) Invalid Identifier and Lower Bound for Local Sample

(b) Incomplete and Invalid Duration Constraint for Event

(c) Missing Result Definition Parameter in Yield Component

Figure 5.4: DTSQL Query Validation Provided by the MPS Editor
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5.3.2 Query Execution

Using code generation, MPS makes it possible to build and execute a Java application
from a given DSL program. In order to create such a program that executes a modelled
DTSQL query, a storage configuration that defines how to obtain an input time series
is also required. Figure 5.5 shows how the client environment enables users to define
a storage specification. In (a), the storage definition for a time series deposited in a
CSV file series2.csv is depicted—its data may also be found in Appendix A.2. This
storage configuration features various configuration properties necessary to parse the CSV
time series into the canonical representation—e.g., field separator, number of lines to
skip and timestamp format. Generally, storage configurations may contain boolean (b),
number (integer or float) and string properties (c).

(a) CSV Storage Specification (b) Projection of Boolean Properties

(c) Supported Storage Property Types

Figure 5.5: MPS Representation of Storage Specifications

Combining this storage specification with the previously explained query model, the
client environment is able to generate the Java application shown in Figure 5.6. It gives
a hierarchical overview of the storage specification as well as the generated DTSQL query
string (a). In addition to that, it visualizes the input time series that was obtained using
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the storage specification (b)—again, see Appendix A.2 for the concrete data.

(a) Storage Specification and Generated
DTSQL Query (b) Visualization of Input Time Series

Figure 5.6: Java Application Generated by MPS

Finally, after executing the generated DTSQL query shown in Figure 5.6a, its result
is visualized in a separate window. There are specific views for each supported result
type (yield format). Two examples are given in Figure 5.7. While the result depicted in
Figure 5.7a corresponds to the query from Figure 5.6a, Figure 5.7b shows a version of
the same query which has been adapted to return all detected periods. As the figures
illustrate, the data point view shows the timestamps and values of the returned data
points. On the other hand, the period set view displays the number of detected periods
together with their respective start and end timestamps.
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(a) Result View for YIELD: data points (b) Result View for YIELD: all periods

Figure 5.7: Query Result Views in Java Application for Two Yield Components
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CHAPTER 6
Evaluation

This chapter evaluates the core contributions of this thesis. First, it gauges whether the
use cases described in Chapter 3 can be expressed using DTSQL, as it has been specified
in Chapter 4. Afterwards, a quantitative as well as qualitative assessment examines
the performance of the reference implementation, as presented in Chapter 5. Lastly,
the overall system’s usefulness is discussed from the perspective of the domain experts
accompanying this work.

6.1 Coverage of Practical Use Cases
The language specification from Chapter 4 has turned out to be expressive enough to
cover all the use cases identified in Chapter 3. In order to demonstrate this, the following
subsections will provide a query for each use case.

6.1.1 UC1: Global Aggregates
This use case is concerned with calculating aggregate functions that represent the average,
count, maximum, minimum, standard deviation and sum of all values in a time series.
The query depicted by Listing 6.1 shows how to capture these values.

1 WITH SAMPLES:
2 avg() AS myAverage,
3 count() AS myCount,
4 max() AS myMax,
5 min() AS myMin,
6 stddev() AS myStdDev,
7 sum() AS mySum
8 YIELD:
9 samples myAvg, myStdDev, myMin, myMax, mySum, myCount

Listing 6.1: DTSQL Query Expressing “UC1: Global Aggregates”
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6.1.2 UC2: Local Aggregates

Very similar to the first use case, this one necessitates the very same aggregate functions,
but only in sub-intervals of a time series. A query showcasing this is illustrated in
Listing 6.2. Notice that DTSQL allows the lower and/or upper bound of a local aggregate
to be left unspecified, denoted by empty string literal (""). In that case, the start/end
of the overall time series is used as interval bound(s).

1 WITH SAMPLES:
2 avg("2017-09-09T10:00:00Z", "") AS localAverage,
3 count("", "2019-09-04T10:00:00Z") AS localCount,
4 max("2017-09-09T10:00:00Z", "2019-09-04T10:00:00Z") AS localMax,
5 min("2017-09-09T10:00:00Z", "2019-09-04T10:00:00Z") AS localMin,
6 stddev("2017-09-09T10:00:00Z", "2019-09-04T10:00:00Z") AS localStdDev,
7 sum("2017-09-09T10:00:00Z", "2019-09-04T10:00:00Z") AS localSum
8 YIELD:
9 samples localAverage, localStdDev, localMin, localMax, localSum, localCount

Listing 6.2: DTSQL Query Expressing “UC2: Local Aggregates”

6.1.3 UC3: Temporal Aggregates

In this use case, the same aggregate functions as before are calculated, but over the
temporal instead of the value dimension. In other words, the duration of a number of
intervals—each specified in the format "start/end"—is aggregated and returned in a
time unit supported by DTSQL. This is exemplified by the query in Listing 6.3.

1 WITH SAMPLES:
2 avg_t(minutes, "2017-09-09T10:00:00Z/2019-09-04T10:00:00Z",
3 "2018-06-11T10:00:00Z/2019-01-08T10:00:00Z",
4 "2019-06-27T10:00:00Z/2019-09-12T10:00:00Z") AS tempAverage,
5 count_t("2017-09-09T10:00:00Z/2019-09-04T10:00:00Z",
6 "2018-06-11T10:00:00Z/2019-01-08T10:00:00Z",
7 "2019-06-27T10:00:00Z/2019-09-12T10:00:00Z") AS tempCount,
8 max_t(hours, "2017-09-09T10:00:00Z/2019-09-04T10:00:00Z",
9 "2018-06-11T10:00:00Z/2019-01-08T10:00:00Z",

10 "2019-06-27T10:00:00Z/2019-09-12T10:00:00Z") AS tempMax,
11 min_t(seconds, "2017-09-09T10:00:00Z/2019-09-04T10:00:00Z",
12 "2018-06-11T10:00:00Z/2019-01-08T10:00:00Z",
13 "2019-06-27T10:00:00Z/2019-09-12T10:00:00Z") AS tempMin,
14 stddev_t(days, "2017-09-09T10:00:00Z/2019-09-04T10:00:00Z",
15 "2018-06-11T10:00:00Z/2019-01-08T10:00:00Z",
16 "2019-06-27T10:00:00Z/2019-09-12T10:00:00Z") AS tempStdDev,
17 sum_t(weeks, "2017-09-09T10:00:00Z/2019-09-04T10:00:00Z",
18 "2018-06-11T10:00:00Z/2019-01-08T10:00:00Z",
19 "2019-06-27T10:00:00Z/2019-09-12T10:00:00Z") AS tempSum
20 YIELD:
21 samples tempAverage, tempStdDev, tempMin, tempMax, tempSum, tempCount

Listing 6.3: DTSQL Query Expressing “UC3: Temporal Aggregates”
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6.1.4 UC4: Numerical Integral
This use case represents the calculation of a numerical integral by computing the area
under the curve described by a time series with linear interpolation between pairwise
adjacent data points. In DTSQL, this is expressed the same way as global and local
aggregates—as demonstrated in Listing 6.4.

1 WITH SAMPLES:
2 integral() AS globalIntegral,
3 integral("2017-09-08T10:00:00Z", "2017-10-12T10:00:00Z") AS localIntegral,
4 YIELD:
5 samples globalIntegral, localIntegral

Listing 6.4: DTSQL Query Expressing “UC4: Numerical Integral”

6.1.5 UC5: Threshold Filters
Threshold filters are used to filter out data points with value components that are higher
or lower than a certain threshold. Listing 6.5 displays a query that only keeps data points
whose values are greater than the global average, but not greater than 875.75.

1 WITH SAMPLES:
2 avg() AS globalAvg
3 APPLY FILTER:
4 AND(gt(globalAvg), NOT(gt(875.75)))
5 YIELD:
6 data points

Listing 6.5: DTSQL Query Expressing “UC5: Threshold Filters”

6.1.6 UC6: Temporal Filters
Temporal filters are conceptually very similar to threshold filters. However, they filter
out data points based on whether their time component is before or after a certain point
in time. The query depicted in Listing 6.6 keeps only data points which were recorded
either before 2018-01-13T10:00:00Z or not before 2019-08-07T10:00:00Z.

1 APPLY FILTER:
2 OR(before("2018-01-13T10:00:00Z"), NOT(before("2019-08-07T10:00:00Z")))
3 YIELD:
4 data points

Listing 6.6: DTSQL Query Expressing “UC6: Temporal Filters”

6.1.7 UC7: Threshold Events
This use case aims to detect intervals during which the data point values are consistently
above or below a certain threshold. A corresponding query that captures all periods with
values above the global average is given in Listing 6.7.
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1 WITH SAMPLES:
2 avg() AS globalAvg
3 USING EVENTS:
4 AND(gt(globalAvg)) AS high
5 YIELD:
6 all periods

Listing 6.7: DTSQL Query Expressing “UC7: Threshold Events”

6.1.8 UC8: Deviation Events
Using deviation events, it is possible to detect periods where the values of recorded data
points are within a specifiable (relative or absolute) range of an arbitrary reference value.
The query in Listing 6.8 first applies a temporal filter and then detects the longest period
with values that are in a ±2.5 % range of a local average.

1 WITH SAMPLES:
2 avg("2018-06-04T10:00:00Z", "2019-01-22T10:00:00Z") AS localAvg
3 APPLY FILTER:
4 AND(NOT(before("2018-06-04T10:00:00Z")),NOT(after("2019-01-22T10:00:00Z")))
5 USING EVENTS:
6 AND(around(rel, localAvg, 2.5)) AS deviationEvent
7 YIELD:
8 longest period

Listing 6.8: DTSQL Query Expressing “UC8: Deviation Events”

6.1.9 UC9: Constant Events
This use case is concerned with detecting periods that represent (approximately) constant
signals, according to two tolerance parameters. In Listing 6.9, constant periods are
detected which define a regression line whose slope is not greater than 10 % and whose
values reside in a ±5 % range of its average.

1 USING EVENTS:
2 AND(const(10, 5)) AS constantEvent
3 YIELD:
4 all periods

Listing 6.9: DTSQL Query Expressing “UC9: Constant Events”

6.1.10 UC10: Monotonic Events
Monotonic events describe periods of increase or decrease. In DTSQL, they are defined
by a minimum and maximum relative change occurring during a period as well as a value
that specifies a tolerance against temporary decreases/increases. For instance, the query
in Listing 6.10 demonstrates how to detect periods of moderate increase (5.25–25.5 %)
which at no point have an instantaneous rate of change lower than -600 %.
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1 USING EVENTS:
2 AND(increase(5.25, 25.5, 600.0)) AS increaseEvent
3 YIELD:
4 all periods

Listing 6.10: DTSQL Query Expressing “UC10: Monotonic Events”

6.1.11 UC11: Duration Constraints for Events
There are cases where events are only relevant if their duration is within a specific range.
Listing 6.11 modifies the query from Listing 6.10 to include only those periods which are
more than two, but not more than five weeks long.

1 USING EVENTS:
2 AND(increase(5.25, 25.5, 600.0)) FOR (2,5] weeks AS increaseEvent
3 YIELD:
4 all periods

Listing 6.11: DTSQL Query Expressing “UC11: Duration Constraints for Events”

6.1.12 UC12: Binary Event Sequences
In this use case, it is required to express temporal relations between periods detected as
a result of event definitions. For example, a query capturing periods where a period with
values higher than the global average appears before a period with values lower than the
global average is presented in Listing 6.12. Both kinds of periods should exhibit a length
of at least 20 days.

1 WITH SAMPLES:
2 avg() AS globalAvg
3 USING EVENTS:
4 AND(lt(globalAvg)) FOR [20,] days AS low,
5 AND(gt(globalAvg)) FOR [20,] days AS high
6 SELECT PERIODS:
7 (high precedes low)
8 YIELD:
9 all periods

Listing 6.12: DTSQL Query Expressing “UC12: Binary Event Sequences”

6.1.13 UC13: Time Tolerance for Event Sequences
This use case has the purpose of formulating time-gap constraints for temporal relations,
i.e., a minimum and/or maximum amount of time that may pass between periods in an
event sequence. A query demonstrating a time gap of 30 to 100 days between a constant
and an increasing period is shown in Listing 6.13.

107



6. Evaluation

1 USING EVENTS:
2 AND(const(10.0, 5.0)) AS constantEvent,
3 AND(increase(5.25, 25.5, 600.0)) FOR (2,5] weeks AS increaseEvent
4 SELECT PERIODS:
5 (constantEvent precedes increaseEvent WITHIN [30,100] days)
6 YIELD:
7 all periods

Listing 6.13: DTSQL Query Expressing “UC13: Time Tolerance for Event Sequences”

6.1.14 UC14: N-Ary Event Sequences
Temporal relations can also be formulated recursively to express n-ary event sequences.
The query depicted in Listing 6.14 first applies a temporal filter, and then detects periods
where a constant period appears before a switch from values above to below the global
average, with not more than two days in between.

1 WITH SAMPLES:
2 avg() AS globalAvg
3 APPLY FILTER:
4 AND(NOT(after("2019-08-29T10:00:00Z")))
5 USING EVENTS:
6 AND(const(10.0, 5.0)) AS constantEvent,
7 AND(lt(globalAvg)) FOR [20,] days AS low,
8 AND(gt(globalAvg)) FOR [20,] days AS high
9 SELECT PERIODS:

10 (constantEvent precedes (low follows high) WITHIN [0,2] days)
11 YIELD:
12 all periods

Listing 6.14: DTSQL Query Expressing “UC14: N-Ary Event Sequences”

6.2 Performance Assessment
This section assesses the performance of the prototypical implementation of the language
specification, as described in Chapter 5. First, Section 6.2.1 is concerned with how the
duration of the query evaluation process changes with increasingly large input time series.
Afterwards, Section 6.2.2 interprets and compares the results of the queries presented in
Section 6.1 with what human intuition yields.

Both subsections operate on the same signal depicted in Figure 6.1. The concrete dates and
values of its 743 data points are provided in Appendix A.3. For the quantitative evaluation,
additional larger input data has been artificially created by gradually increasing the
sampling rate, with linear interpolation between data points. That way, the number of
data points was roughly doubled each time until the resulting time series had reached a
size of about 3 million data points, equating to a CSV file of 110 MB.

The input data files as well as the source code of benchmark scripts utilized in this
evaluation are available at https://github.com/dtsql-oss/scripting.
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Figure 6.1: Input Time Series for Performance Assessment

6.2.1 Quantitative Analysis
The aim of this runtime performance analysis is not to provide an exhaustive, highly
sophisticated benchmark. It should rather give a general indication of how the reference
implementation’s runtime changes with increasing input size. Furthermore, the measure-
ments are only concerned with the amount of time elapsed during the query evaluation
process. Other computational tasks such as parsing the input data or converting the
query result into a format that is transmissible via the web service are not included
because they are not strictly part of the system’s core functionalities.

The benchmark consists of the fourteen use-case-specific queries presented in Section 6.1.
It was conducted on a machine running Windows 11, an Intel Core i9-9900K CPU with
3.60 GHz and 32 GB of RAM. The queries were executed ten times on twelve time series,
each describing the signal from Figure 6.1 with increasing levels of accuracy and size.

While we recognize that there are mathematical arguments for using the minimum of
multiple performance measurements [70], we opted to take the arithmetic mean of the
ten query executions per use case and input size. This is because, in practice, the system
would not be running in an isolated environment and therefore, also be subject to noise.
The performance assessment should give indications of what runtime performance is to
be expected in general, not only under ideal conditions.

The results of the benchmarks are visualized in Figure 6.2. The horizontal axis contains
the size of the input time series. The vertical axis is scaled logarithmically and represents
the average query processing time for the given use case and input size. A table with the
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concrete measured values illustrated by this figure can be found in Appendix A.4.
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Figure 6.2: Progression of Query Evaluation Runtime in Relation to Input Size

At a wholistic glance, the diagram shows that it took around 2–3 seconds to evaluate the
computationally most expensive queries on the largest input time series. Compared to the
smaller input sizes—where evaluation times are (significantly) less than 100 milliseconds—
, there are relatively substantial increases in runtime starting at around 7 MB. Profiling
efforts conducted after the benchmark revealed that the reason for this are repeated
scans of the whole time series. The algorithmic components for detecting and computing
the various kinds of events and aggregates are, on their own, implemented efficiently.
However, when combining them—as it often happens in the benchmark queries—, they
all individually iterate over the input time series, which, in total, contributes noticeably
to the observed runtime increases.

While this is evidently not ideal in theory, it is not a grave drawback in practice. The
absolute runtime of the query evaluation is, with a few seconds, in a margin that is
acceptable for the domain experts accompanying this thesis. Furthermore, the size of
time series they process at once is well within the range of the ones in the benchmark
data set. Nevertheless, the prototype should, of course, be improved in this regard in the
future.

6.2.2 Qualitative Analysis

This subsection displays and assesses the results obtained by the prototypical DTSQL
implementation from the queries shown in Section 6.1.
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UC1: Global Aggregates

The result of the global aggregate calculation depicted in Listing 6.1 is presented in
Table 6.1. One could carry out manual calculations—e.g., using a script—to verify that
the values are correct.

aggregate value
myAverage 826.9558
myStdDev 37.1425
myMin 730.8675
myMax 880.5267
mySum 613,601.1758
myCount 742.0000

Table 6.1: Result of Listing 6.1 (“UC1: Global Aggregates”) Given Figure 6.1

UC2: Local Aggregates

The result of the local aggregate calculation depicted in Listing 6.2 is presented in
Table 6.2. Again, manual calculations could verify that the values obtained by the
reference implementation are correct.

aggregate value
localAverage 827.2236
localStdDev 37.1609
localMin 730.8675
localMax 880.5267
localSum 600,130.5449
localCount 733.0000

Table 6.2: Result of Listing 6.2 (“UC2: Local Aggregates”) Given Figure 6.1

UC3: Temporal Aggregates

The result of the temporal aggregate calculation depicted in Listing 6.3 is presented in
Table 6.3. As before, the correctness of the values in the table could be confirmed using
manual calculations.

UC4: Numerical Integral

The result of the remaining aggregate functions—global and local integrals—as depicted
in Listing 6.4, is presented in Table 6.4. Similar to before, the correctness of these values
may be verified using a simple script or manual calculations.
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aggregate value
tempAverage 486,240.0000
tempStdDev 279.2959
tempMin 6,652,800.0000
tempMax 17,400.0000
tempSum 144.7143
tempCount 3.0000

Table 6.3: Result of Listing 6.3 (“UC3: Temporal Aggregates”) Given Figure 6.1

aggregate value
globalIntegral 52,946,454,865.1791
localIntegral 2,312,475,894.0000

Table 6.4: Result of Listing 6.4 (“UC4: Numerical Integral”) Given Figure 6.1

UC5: Threshold Filters

The result of the filter application depicted in Listing 6.5 is illustrated in Figure 6.3.
In order to visualize the result more clearly, the included and excluded data points are
shown in a scatter plot. That way, for instance, it is evident that the few data points
with values greater than 875.5 have been filtered out correctly.
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Figure 6.3: Result of Listing 6.5 (“UC5: Threshold Filters”) Given Figure 6.1
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UC6: Temporal Filters

The result of the filter application depicted in Listing 6.6 is illustrated in Figure 6.4. It
shows how the disjunctive temporal filter has been evaluated correctly to exclude the
time range from 2018-01-13T10:00:00Z (exclusive) until 2019-08-07T10:00:00Z
(inclusive).
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Figure 6.4: Result of Listing 6.6 (“UC6: Temporal Filters”) Given Figure 6.1

UC7: Threshold Events

The result of the threshold event query depicted in Listing 6.7 is shown in Figure 6.5.
Note that the start and ending points of the red result intervals do not coincide exactly
with the line representing the average because the time series consists of discrete values,
i.e., there are time-gaps between the data points.

UC8: Deviation Events

The longest interval in the value range specified by the query depicted in Listing 6.8 is
visualized in Figure 6.6. The acceptable range is illustrated using two horizontal, green
lines. Even though it seems like there are intervals within this range that are longer
than the highlighted one, that is not the case. Again, due to the discrete nature of the
input time series, these intervals are in fact shorter than they appear in this continuous
visualization (because the data points are closer to each other than they seem), or do not
even contain a data point (e.g., during a very short, steep increase).
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Figure 6.5: Result of Listing 6.7 (“UC7: Threshold Events”) Given Figure 6.1
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Figure 6.6: Result of Listing 6.8 (“UC8: Deviation Events”) Given Figure 6.1

UC9: Constant Events

The constant periods detected by the system, as per the query in Listing 6.9, are depicted
in Figure 6.7. The system has captured intervals which predominantly are in accord with
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what humans would classify as constant intervals. One might argue that the interval
around 10/01/2018 should also be considered constant. Furthermore, the last detected
interval, around 01/01/2019, could also be narrowed down, i.e., the start could be a
small amount of time later, and the end a small amount of time earlier.
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Figure 6.7: Result of Listing 6.9 (“UC9: Constant Events”) Given Figure 6.1

UC10: Monotonic Events

The intervals of increasing values which have been captured as a result of the query
in Listing 6.10 are shown in Figure 6.8. Recall that this query explicitly only regards
increases of around 5 % to 25 %. It does seem to be in accord with what humans
might consider a moderate increase. However, there is one increase—directly after the
second highlighted period—which was not detected. This could be amended with slightly
different query parameters.

UC11: Duration Constraints for Events

The query in Listing 6.11 is nearly identical to the one from the previous use case. The
only difference is that it is only concerned with intervals which are between 2 and 5
weeks long. Such a duration constraint might be useful to define whether a steep increase
or decrease happens fast or slowly. Therefore, the result of the query—depicted in
Figure 6.9—is equivalent to the one from before, except for three intervals which are
either too long or too short.
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Figure 6.8: Result of Listing 6.10 (“UC10: Monotonic Events”) Given Figure 6.1
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Figure 6.9: Result of Listing 6.11 (“UC11: Duration Constraints for Events”) Given
Figure 6.1

UC12: Binary Event Sequences

Listing 6.12 represents a query that identifies intervals where a period with values above
the global average appears before a period with values below the global average. Its result
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is visualized in Figure 6.10. Furthermore, recall that the query only considers detected
intervals which have a minimum duration of 20 days. This is why seemingly matching
periods—e.g., at the beginning of the time series—have not been detected. The detection
of the event sequences align with what is visible to the human eye. Moreover, the
automatic verification of the duration constraint(s) simplified filtering out non-relevant
event sequences.
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Figure 6.10: Result of Listing 6.12 (“UC12: Binary Event Sequences”) Given Figure 6.1

UC13: Time Tolerance for Event Sequences

The result of the query depicted in Listing 6.13 is shown in Figure 6.11. The goal
was to detect constant intervals which appear before increasing intervals, with a gap
of 30 to 100 days between them. While the first captured period—the red one—seems
very plausible, the second—the green one—probably is not what a human would have
chosen. Intuitively, the interval should probably end with the increase which occurs
around 07/01/2018. However, since the reference implementation always tries to find
maximal intervals satisfying the query constraints, it extended the interval until the next
increase around 10/01/2018. It would not have done so if it had considered the short
period around 10/01/2018 as constant—see also remarks in “UC9: Constant Events”.
However, an improved version of the system should be able to refrain from maximizing
such an event sequence, if it entails subsuming other notable events located in between
(e.g., increases, decreases, constants).
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Figure 6.11: Result of Listing 6.13 (“UC13: Time Tolerance for Event Sequences”) Given
Figure 6.1

UC14: N-Ary Event Sequences

The result of the ternary event sequence represented by the query in Listing 6.14 is
visualized in Figure 6.12. Again, the accuracy of the periods retrieved by the reference
implementation depends on whether the period around 10/01/2018 should be considered
constant or not. If the system had regarded it as a constant interval, then it would have
returned two result periods (the second one spanning from slightly before 10/01/2018
until around 04/01/2019).

6.3 Utility for Domain Experts
The previous subsections, especially Section 6.2.2, have shown that the query language
specification and its manifestation in the form of the reference implementation perform
reasonably well on the fourteen isolated use cases. However, a final discussion with the
domain experts accompanying this thesis revealed aspects which are still missing for its
contributions to be effectively applicable in practice.

The main factor deterring domain experts from using the developed system in their daily
work is that it is not able to abstract away the mathematical thresholds and tolerance
parameters that are required by event and filter definitions. While they are necessary
for the system to verify the criteria defined in the language specification, it does not
accurately model human behavior. Analysts rarely think about concrete threshold values
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Figure 6.12: Result of Listing 6.14 (“UC14: N-Ary Event Sequences”) Given Figure 6.1

and, for instance, never about slopes of regression lines or rates of instantaneous change
when examining a time series. In our discussion, they maintained that these parameters
are important and should be part of the language specification because they are a decent
way to formally describe human intuition. Nevertheless, an additional abstraction layer
on top of DTSQL which automatically determines sensible values for these parameters
might be required.

Such a functionality is especially important since the parameters in question highly
depend on the considered interval. For instance, locally significant peaks (increases)
might not be discovered in two periods of the same time series with the same query
parameters. This is due to differences in measures such as durations, value distributions
or standard deviations. In order to detect the increases in both instances, the parameters
need to be tweaked accordingly, based on the respectively examined period (or data
instance in general, if we were talking about different time series). This burden, however,
should not lie with the end user. Ideally, the aforementioned desired meta-layer on top of
DTSQL should be able to infer appropriate parameter values based on the data currently
focused in on as well as based on their temporal resolution.

A direct consequence of such a dynamic—i.e., data-aware—meta-layer would be that
queries and their parameters would not have to be adjusted to newly ingested data. As
explained above, the criteria whether an interval is noteworthy highly depends on aspects
like its duration and fluctuations in the value dimension. These criteria change as the
curve described by the time series changes. Subsequently, the query parameters need to
be re-evaluated. This re-evaluation step could—and for scalability reasons, should—be
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automated by such a meta-layer, so as to avoid reusable, parameterized queries being
rendered ineffective by new data.

Putting this shortcoming aside, the system, in its current form, does already provide
benefits to the domain experts. The feature set of DTSQL allows them to express periods
and occurrences of note in a manner they currently are not able to. The declarative
nature of this DSL furthermore allows for a clear separation of conveying intentions
and ways of achieving them. In other words, the algorithms and computational tasks
associated with the various language features can be improved and extended completely
independent from existing queries. This is not possible with ad hoc scripts and programs
specifically created for individual tasks.

Finally, feature-wise, DTSQL is able to cover the majority of objectives immediately
relevant to the domain experts. They specifically mentioned that the supported aggregate
functions (the concept of samples) are very useful to them. One important potential
extension they mentioned, however, is support for multivariate time series. This would
enable them to relate detected phenomena of different variables—e.g., temperature and
pressure of the same machine—to each other, which is a valuable use case for them. In
addition, they also expressed interest in being able to weaken the condition of immediate
event sequences such that no other contextually relevant period may appear in between
(instead of no other data point). This has also been recognized in the evaluation of
“UC13: Time Tolerance for Event Sequences”. For example, a constant period that follows
an increase within 15 minutes should—if this criterion is applied—only be detected as
event sequence if there is no decrease in between.
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CHAPTER 7
Conclusion

7.1 Summary
Factory operators have been recording sensor data of their production machines for
years. While this results in huge amounts of time series data possibly harboring valuable
optimization potentials, these data can only be exploited if there are efficient means of
querying and extracting information from them in a target-oriented manner. There are
purpose-built temporal databases which are able to ingest and manage large amounts of
time series data efficiently. They also provide rudimentary query capabilities which are
suitable for low-level use cases such as basic filtering or grouping. What available time
series databases mostly lack, however, are high-level query instruments allowing domain
experts to analyze historical temporal data with respect to phenomena that are directly
relevant to their domain.

In this thesis, a declarative domain-specific language (DSL) which aims to alleviate this
problem has been designed, formally specified and implemented: DTSQL (Declarative
Time Series Query Language). Its feature set is a result of a requirement collection
process which consisted of several consultations with external domain experts whose
company specializes in optimizing the energy efficiency of business clients. As a result,
DTSQL offers functionality such as declaring global and local aggregate values (e.g.,
arithmetic mean, standard deviation, numerical integral) which can be reused throughout
a query. Furthermore, input time series may be filtered based on temporal or value
thresholds as well as by specifying an acceptable range in which data point values should
reside.

Most importantly, DTSQL detects intervals, or periods, in a time series which are specified
declaratively as a combination of event functions expressed in propositional logic. For
example, this allows query creators to find periods in which all data points were measured
after a specific date and have value components which do not reside within a 5% interval
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of the local average between the start of the recordings and the aforementioned threshold
date. The query language is also able to express conceptually more involved intervals
such as ones displaying a monotonic increase or an (approximately) constant signal.

All of DTSQL’s features have been formally modelled and specified precisely. This
allowed for the development of a reference implementation that offers exactly those
features. While efficiency was a factor that was taken into account, the prototype’s
primary concern is conformance to the formal language specification. Additionally, a
client environment has been developed that provides an easy way to utilize the reference
implementation. It offers guidance during the query formulation process and makes
use of a projectional editor that is equipped with auto-complete, domain-specific error
messages and context-aware suggestions (intentions). The client environment also lets
users execute a query on a given time series once the formulation process is complete as
well as visualizes its result.

Finally, an evaluation of the reference implementation centered around example queries
targeting the use cases gathered during the requirement collection process was conducted.
This evaluation pointed out potential performance optimizations and, more importantly,
showed that the language specification captures the demands of time series analysts quite
well. In a subsequent discussion, the domain experts accompanying this thesis highlighted
strengths of DTSQL as well as opportunities for improvement from their perspective.
Those and other possible future research efforts are presented in the section below.

7.2 Future Work
Although the evaluation has shown that both the language specification and its reference
implementation are suitable to handle the identified use cases, they do exhibit certain
limitations. These shortcomings can be roughly divided into three categories: issues
pertaining to the language design, the reference implementation or aspects which would
increase the general utility. They are discussed in the following paragraphs.

It is immediately evident that the lack of support for subqueries and chained queries is
detrimental to DTSQL’s expressiveness. Currently, in order for queries to be able to build
on previous queries, an implementation-specific caching mechanism needs to be put in
place that implicitly retains query results for future access if needed. Ideally, the language
specification should make it possible to formulate the whole analysis of a time series in a
single query (or, at least, conceptually related parts of it). Making the evaluation module
aware of the entire analysis would also enable optimizations like internal query rewriting.
Furthermore, the selection component could be made more powerful. Possible extensions
include additional Allen relations (e.g., for detecting overlapping events or ones that occur
during others) or even incorporating more complex operators from temporal logics such
as LTL (linear temporal logic) or CTL (computation tree logic). Moreover, as already
mentioned in the evaluation, it would be more reasonable to weaken the condition for
events following/preceding each other immediately to there being no otherwise captured
period between them (instead of no data points).
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It has been stated before that the reference implementation’s main objective has been to
stay fully conform to the language specification. While this is true semantics-wise, there
are syntactic restrictions for filter and event definitions. They only support one “root”
connective—i.e., conjunction or disjunction—with filter and event functions, respectively,
as literals, but no boolean subexpressions (nested propositional formulas). Although
this feature is already able to cover many practical use cases in its limited form, the
full syntactic capabilities of DTSQL should be implemented in the future. Furthermore,
the evaluation showed that, for large input sizes, there is potential for performance
optimizations. Many algorithms involved in the query evaluation process need only
one scan of the whole input series, i.e., exhibit linear time complexity with respect to
the input size. However, the reference implementation executes the majority of them
sequentially, thus negatively affecting the overall runtime. Mitigation measures for this
include adopting a computational approach that performs all calculations in a single scan
or executing multiple algorithms in parallel. The individual algorithms could even be
specifically designed with parallelism in mind: The input time series could be split into
smaller batches which are then processed concurrently—without having to hold all the
data in memory at once—and afterwards, their local results would be combined into an
overall result.

Again, the evaluation has already mentioned that having a meta-layer on top of the query
module provided by the reference implementation which dynamically determines query
parameters (e.g., for event functions) would improve the system’s utility significantly.
Ideally, this would be done based on the respective input time series, the fluctuations in its
value dimension as well as relative durations of the phenomena it captures. This separation
of mathematical modelling (parameters as required by the semantics specification) from
domain-specific constraints (the definition of certain events—e.g., significant increases—
differs from project to project) would also preserve the generality of the system as
determining the parameters internally could potentially result in a bias towards the
energy efficiency domain. Additionally, a crucial future use case is the handling of
multivariate or multiple time series. This introduces challenges such as divergent sampling
rates—which need to be accounted for, e.g., using linear interpolation—and different
or even incompatible physical units in the value dimension. Finally, a more extensive
quantitative and qualitative evaluation to gauge both the language specification’s and the
reference implementation’s practicability is desirable. More specifically, it should include
input data with less clear manifestations of significant periods, enabling more interesting
comparisons of the programmatically retrieved results with data interpretations made by
humans. Furthermore, substantially larger amounts of input data should be considered
in order to obtain a longer-term trend regarding the runtime required by the query
evaluation process.
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APPENDIX A
Appendix

A.1 Full DTSQL Grammar

A.1.1 Parser Rules
1 parser grammar DtsqlParser;
2
3 options
4 {
5 tokenVocab = DtsqlLexer;
6 }
7
8 dtsqlQuery
9 : WHITESPACE?

10 (samplesDeclaration WHITESPACE)?
11 (filtersDeclaration WHITESPACE)?
12 (eventsDeclaration WHITESPACE)?
13 (selectDeclaration WHITESPACE)?
14 yieldDeclaration WHITESPACE?
15 EOF
16 ;
17
18 samplesDeclaration
19 : SAMPLES_CLAUSE COLON WHITESPACE aggregatorsDeclarationStatement
20 ;
21
22 eventsDeclaration
23 : EVENTS_CLAUSE COLON WHITESPACE eventsDeclarationStatement
24 ;
25
26 eventsDeclarationStatement
27 : eventList
28 ;
29
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30 eventList
31 : events LIST_SEPARATOR eventDeclaration
32 | eventDeclaration
33 ;
34
35 events
36 : eventDeclaration (LIST_SEPARATOR eventDeclaration)*
37 ;
38
39 eventDeclaration
40 : eventConnective WHITESPACE? (durationSpecification WHITESPACE?)?

�→ identifierDeclaration
41 ;
42
43 eventConnective
44 : CONNECTIVE_IDENTIFIER PARENTHESIS_OPEN WHITESPACE? eventFunctionList

�→ WHITESPACE? PARENTHESIS_CLOSE
45 ;
46
47 eventFunctionList
48 : eventFunctions LIST_SEPARATOR eventFunctionDeclaration
49 | eventFunctionDeclaration
50 ;
51
52 eventFunctions
53 : eventFunctionDeclaration (LIST_SEPARATOR eventFunctionDeclaration)*
54 ;
55
56 eventFunctionDeclaration
57 : singlePointFilterDeclaration
58 | complexEventDeclaration
59 ;
60
61 complexEventDeclaration
62 : complexEvent
63 | negatedComplexEvent
64 ;
65
66 complexEvent
67 : constantEvent
68 | increaseEvent
69 | decreaseEvent
70 ;
71
72 negatedComplexEvent
73 : CONNECTIVE_NOT PARENTHESIS_OPEN WHITESPACE? complexEvent WHITESPACE?

�→ PARENTHESIS_CLOSE
74 ;
75
76 constantEvent
77 : EVENT_CONSTANT PARENTHESIS_OPEN WHITESPACE? slope=scalarArgument

�→ LIST_SEPARATOR deviation=scalarArgument WHITESPACE? PARENTHESIS_CLOSE
78 ;
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79
80 increaseEvent
81 : EVENT_INCREASE PARENTHESIS_OPEN WHITESPACE? minChange=scalarArgument

�→ LIST_SEPARATOR monotonicUpperBound LIST_SEPARATOR tolerance=
�→ scalarArgument WHITESPACE? PARENTHESIS_CLOSE

82 ;
83
84 decreaseEvent
85 : EVENT_DECREASE PARENTHESIS_OPEN WHITESPACE? minChange=scalarArgument

�→ LIST_SEPARATOR monotonicUpperBound LIST_SEPARATOR tolerance=
�→ scalarArgument WHITESPACE? PARENTHESIS_CLOSE

86 ;
87
88 monotonicUpperBound
89 : scalarArgument
90 | HYPHEN
91 ;
92
93 durationSpecification
94 : EVENT_DURATION WHITESPACE TIME_UNIT
95 ;
96
97 selectDeclaration
98 : SELECT_CLAUSE COLON WHITESPACE temporalRelation
99 ;

100
101 temporalRelation
102 : PARENTHESIS_OPEN op1=IDENTIFIER WHITESPACE TEMPORAL_RELATION WHITESPACE

�→ op2=IDENTIFIER WHITESPACE? timeToleranceSpecification?
�→ PARENTHESIS_CLOSE #EventEvent

103 | PARENTHESIS_OPEN op1=IDENTIFIER WHITESPACE TEMPORAL_RELATION WHITESPACE
�→ op2=temporalRelation WHITESPACE? timeToleranceSpecification?
�→ PARENTHESIS_CLOSE #EventRecursive

104 | PARENTHESIS_OPEN op1=temporalRelation WHITESPACE TEMPORAL_RELATION
�→ WHITESPACE op2=IDENTIFIER WHITESPACE? timeToleranceSpecification?
�→ PARENTHESIS_CLOSE #RecursiveEvent

105 | PARENTHESIS_OPEN op1=temporalRelation WHITESPACE TEMPORAL_RELATION
�→ WHITESPACE op2=temporalRelation WHITESPACE? timeToleranceSpecification
�→ ? PARENTHESIS_CLOSE #RecursiveRecursive

106 ;
107
108 timeToleranceSpecification
109 : TIME_TOLERANCE WHITESPACE TIME_UNIT
110 ;
111
112 yieldDeclaration
113 : YIELD COLON WHITESPACE yieldType
114 ;
115
116 yieldType
117 : YIELD_ALL_PERIODS
118 | YIELD_LONGEST_PERIOD
119 | YIELD_SHORTEST_PERIOD
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120 | YIELD_DATA_POINTS
121 | YIELD_SAMPLE WHITESPACE IDENTIFIER
122 | YIELD_SAMPLE_SET WHITESPACE identifierList
123 ;
124
125 filtersDeclaration
126 : FILTER_CLAUSE COLON WHITESPACE filterConnective
127 ;
128
129 filterConnective
130 : CONNECTIVE_IDENTIFIER PARENTHESIS_OPEN WHITESPACE? singlePointFilterList

�→ WHITESPACE? PARENTHESIS_CLOSE
131 ;
132
133 aggregatorsDeclarationStatement
134 : aggregatorList
135 ;
136
137 aggregatorList
138 : aggregators LIST_SEPARATOR aggregatorDeclaration
139 | aggregatorDeclaration
140 ;
141
142 aggregators
143 : aggregatorDeclaration (LIST_SEPARATOR aggregatorDeclaration)*
144 ;
145
146 aggregatorDeclaration
147 : aggregatorFunctionDeclaration WHITESPACE identifierDeclaration
148 ;
149
150 identifierList
151 : identifiers LIST_SEPARATOR IDENTIFIER
152 | IDENTIFIER
153 ;
154
155 identifiers
156 : IDENTIFIER (LIST_SEPARATOR IDENTIFIER)*
157 ;
158
159 aggregatorFunctionDeclaration
160 : valueAggregatorDeclaration
161 | temporalAggregatorDeclaration
162 ;
163
164 valueAggregatorDeclaration
165 : VALUE_AGGREGATOR_FUNCTION PARENTHESIS_OPEN WHITESPACE? timeRange?

�→ WHITESPACE? PARENTHESIS_CLOSE
166 ;
167
168 timeRange
169 : STRING_LITERAL LIST_SEPARATOR STRING_LITERAL
170 ;
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171
172 temporalAggregatorDeclaration
173 : TEMPORAL_AGGREGATOR_FUNCTION PARENTHESIS_OPEN WHITESPACE? TIME_UNIT

�→ LIST_SEPARATOR intervalList WHITESPACE? PARENTHESIS_CLOSE
174 | UNITLESS_TEMPORAL_AGGREGATOR_FUNCTION PARENTHESIS_OPEN WHITESPACE?

�→ intervalList WHITESPACE? PARENTHESIS_CLOSE
175 ;
176
177 intervalList
178 : intervals LIST_SEPARATOR STRING_LITERAL
179 | STRING_LITERAL
180 ;
181
182 intervals
183 : STRING_LITERAL (LIST_SEPARATOR STRING_LITERAL)*
184 ;
185
186 identifierDeclaration
187 : AS WHITESPACE IDENTIFIER
188 ;
189
190 singlePointFilterList
191 : singlePointFilters LIST_SEPARATOR singlePointFilterDeclaration
192 | singlePointFilterDeclaration
193 ;
194
195 singlePointFilters
196 : singlePointFilterDeclaration (LIST_SEPARATOR

�→ singlePointFilterDeclaration)*
197 ;
198
199 singlePointFilterDeclaration
200 : singlePointFilter
201 | negatedSinglePointFilter
202 ;
203
204 singlePointFilter
205 : thresholdFilter
206 | temporalFilter
207 | deviationFilter
208 ;
209
210 negatedSinglePointFilter
211 : CONNECTIVE_NOT PARENTHESIS_OPEN WHITESPACE? singlePointFilter WHITESPACE

�→ ? PARENTHESIS_CLOSE
212 ;
213
214 temporalFilter
215 : TEMPORAL_FILTER_TYPE PARENTHESIS_OPEN WHITESPACE? STRING_LITERAL

�→ WHITESPACE? PARENTHESIS_CLOSE
216 ;
217
218 thresholdFilter
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219 : THRESHOLD_FILTER_TYPE PARENTHESIS_OPEN WHITESPACE? scalarArgument
�→ WHITESPACE? PARENTHESIS_CLOSE

220 ;
221
222 scalarArgument
223 : NUMBER
224 | IDENTIFIER
225 ;
226
227 deviationFilter
228 : DEVIATION_FILTER_TYPE PARENTHESIS_OPEN WHITESPACE?

�→ deviationFilterArguments WHITESPACE? PARENTHESIS_CLOSE
229 ;
230
231 deviationFilterArguments
232 : AROUND_FILTER_TYPE LIST_SEPARATOR reference=scalarArgument

�→ LIST_SEPARATOR deviation=scalarArgument
233 ;

Listing A.1: All ANTLR Parser Rules for DTSQL Queries

A.1.2 Lexer Rules
1 lexer grammar DtsqlLexer;
2
3 WHITESPACE : WHITESPACE_CHARACTER+ ;
4 fragment WHITESPACE_CHARACTER
5 : ’ ’ | ’\r’ | ’\n’ | ’\r\n’ | ’\t’ ;
6
7 SAMPLES_CLAUSE : ’WITH SAMPLES’ ;
8 EVENTS_CLAUSE : ’USING EVENTS’ ;
9 FILTER_CLAUSE : ’APPLY FILTER’ ;

10 SELECT_CLAUSE : ’SELECT PERIODS’ ;
11
12 YIELD : ’YIELD’ ;
13 YIELD_ALL_PERIODS : ’all periods’ ;
14 YIELD_LONGEST_PERIOD : ’longest period’ ;
15 YIELD_SHORTEST_PERIOD : ’shortest period’ ;
16 YIELD_DATA_POINTS : ’data points’ ;
17 YIELD_SAMPLE : ’sample’ ;
18 YIELD_SAMPLE_SET : ’samples’ ;
19
20 CONNECTIVE_NOT : ’NOT’ ;
21 CONNECTIVE_IDENTIFIER : ’AND’ | ’OR’ ;
22
23 THRESHOLD_FILTER_TYPE
24 : ’gt’
25 | ’lt’
26 ;
27
28 TEMPORAL_FILTER_TYPE
29 : ’before’
30 | ’after’
31 ;
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32
33 DEVIATION_FILTER_TYPE
34 : ’around’
35 ;
36
37 AROUND_FILTER_TYPE
38 : ’rel’
39 | ’abs’
40 ;
41
42 EVENT_CONSTANT : ’const’ ;
43 EVENT_INCREASE : ’increase’ ;
44 EVENT_DECREASE : ’decrease’ ;
45
46 HYPHEN : ’-’ ;
47 PARENTHESIS_OPEN : ’(’ ;
48 PARENTHESIS_CLOSE : ’)’ ;
49 COLON : ’:’ ;
50 fragment COMMA : ’,’ ;
51 LIST_SEPARATOR : WHITESPACE? COMMA WHITESPACE? ;
52
53 NUMBER : INT | FLOAT ;
54
55 fragment DIGIT : [0-9] ;
56 fragment SIGN : ’-’? ;
57
58 INT : SIGN? DIGIT+ ;
59
60 FLOAT : SIGN? DIGIT+ ’.’ DIGIT+ ;
61
62 AS : ’AS’ ;
63
64 TEMPORAL_RELATION
65 : ’precedes’
66 | ’follows’
67 ;
68
69 VALUE_AGGREGATOR_FUNCTION
70 : ’avg’
71 | ’max’
72 | ’min’
73 | ’sum’
74 | ’count’
75 | ’integral’
76 | ’stddev’
77 ;
78
79 TEMPORAL_AGGREGATOR_FUNCTION
80 : ’avg_t’
81 | ’max_t’
82 | ’min_t’
83 | ’sum_t’
84 | ’stddev_t’
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85 ;
86
87 UNITLESS_TEMPORAL_AGGREGATOR_FUNCTION : ’count_t’ ;
88
89 TIME_TOLERANCE : TIME_TOLERANCE_WITHIN WHITESPACE DURATION_RANGE_OPEN

�→ WHITESPACE? INT? LIST_SEPARATOR INT? DURATION_RANGE_CLOSE ;
90 fragment TIME_TOLERANCE_WITHIN : ’WITHIN’ ;
91 fragment TIME_TOLERANCE_OPEN : PARENTHESIS_OPEN | ’[’ ;
92 fragment TIME_TOLERANCE_CLOSE : PARENTHESIS_CLOSE | ’]’ ;
93
94 EVENT_DURATION : DURATION_FOR WHITESPACE DURATION_RANGE_OPEN WHITESPACE?

�→ INT? LIST_SEPARATOR INT? DURATION_RANGE_CLOSE ;
95 fragment DURATION_FOR : ’FOR’ ;
96 fragment DURATION_RANGE_OPEN : PARENTHESIS_OPEN | ’[’ ;
97 fragment DURATION_RANGE_CLOSE : PARENTHESIS_CLOSE | ’]’ ;
98
99 TIME_UNIT

100 : ’weeks’
101 | ’days’
102 | ’hours’
103 | ’minutes’
104 | ’seconds’
105 | ’millis’
106 ;
107
108 STRING_LITERAL : ’"’ STRING_CHARACTERS? ’"’ ;
109 fragment STRING_CHARACTERS : STRING_CHARACTER+ ;
110 fragment STRING_CHARACTER : ~["\\\r\n] ;
111
112 IDENTIFIER
113 : IDENTIFIER_FIRST_CHARACTER IDENTIFIER_CHARACTER*
114 ;
115
116 fragment IDENTIFIER_FIRST_CHARACTER : LETTER_CHARACTER ;
117 fragment IDENTIFIER_CHARACTER : LETTER_CHARACTER | DIGIT_CHARACTER ;
118
119 fragment DIGIT_CHARACTER : DIGIT ;
120 fragment LETTER_CHARACTER : [A-Za-z] ;

Listing A.2: All ANTLR Lexer Rules for DTSQL Queries
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A.2 Exemplary Time Series
1 2022-12-15 01:21:48.000;37.0
2 2022-12-15 01:36:48.000;41.0
3 2022-12-15 01:51:48.000;45.0
4 2022-12-15 02:06:48.000;65.0
5 2022-12-15 02:21:48.000;45.0
6 2022-12-15 02:36:48.000;43.0
7 2022-12-15 02:51:48.000;220.0
8 2022-12-15 03:06:48.000;270.0
9 2022-12-15 03:21:48.000;222.0

10 2022-12-15 03:36:48.000;265.0
11 2022-12-15 03:51:48.000;106.0
12 2022-12-15 04:06:48.000;112.0
13 2022-12-15 04:21:48.000;114.0
14 2022-12-15 04:36:48.000;113.0
15 2022-12-15 04:51:48.000;253.0
16 2022-12-15 05:06:48.000;291.0
17 2022-12-15 05:21:48.000;310.0
18 2022-12-15 05:36:48.000;314.0
19 2022-12-15 05:51:48.000;335.0
20 2022-12-15 06:06:48.000;299.0
21 2022-12-15 06:21:48.000;295.0
22 2022-12-15 06:36:48.000;277.0
23 2022-12-15 06:51:48.000;260.0
24 2022-12-15 07:06:48.000;259.0
25 2022-12-15 07:21:48.000;262.0
26 2022-12-15 07:36:48.000;277.0
27 2022-12-15 07:51:48.000;293.0
28 2022-12-15 08:06:48.000;-69.0
29 2022-12-15 08:21:48.000;-75.0
30 2022-12-15 08:36:48.000;-77.0
31 2022-12-15 08:51:48.000;-75.0
32 2022-12-15 09:06:48.000;-70.0
33 2022-12-15 09:21:48.000;-73.0

Listing A.3: Exemplary Time Series for Section 5.3 (Client Environment)
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A.3 Evaluation Time Series
Please note that, in order to take up less space, the time of day has been left out. Every
data point has been measured at 00:00:00Z. Furthermore, there are four data points
per line, separated by the pipe symbol (|). In order to correctly parse the time series,
one would need to replace pipe symbols with line breaks beforehand.

1 Time,Value
2 2017-09-01,800.90 | 2017-09-02,804.53 | 2017-09-03,805.66 | 2017-09-04,804.06
3 2017-09-05,799.72 | 2017-09-06,800.46 | 2017-09-07,803.27 | 2017-09-08,800.44
4 2017-09-09,800.87 | 2017-09-10,801.21 | 2017-09-11,797.54 | 2017-09-12,808.45
5 2017-09-13,806.14 | 2017-09-14,802.77 | 2017-09-15,806.75 | 2017-09-16,808.72
6 2017-09-17,810.22 | 2017-09-18,805.28 | 2017-09-19,803.30 | 2017-09-20,805.59
7 2017-09-21,796.98 | 2017-09-22,798.12 | 2017-09-23,799.60 | 2017-09-24,806.48
8 2017-09-25,811.58 | 2017-09-26,805.90 | 2017-09-27,806.28 | 2017-09-28,809.80
9 2017-09-29,807.34 | 2017-09-30,812.11 | 2017-10-01,809.42 | 2017-10-02,816.54

10 2017-10-03,812.97 | 2017-10-04,811.80 | 2017-10-05,812.59 | 2017-10-06,822.09
11 2017-10-07,823.52 | 2017-10-08,826.55 | 2017-10-09,828.84 | 2017-10-10,836.77
12 2017-10-11,836.75 | 2017-10-12,832.20 | 2017-10-13,839.73 | 2017-10-14,844.33
13 2017-10-15,840.40 | 2017-10-16,835.99 | 2017-10-17,845.56 | 2017-10-18,847.97
14 2017-10-19,847.36 | 2017-10-20,856.95 | 2017-10-21,854.61 | 2017-10-22,853.78
15 2017-10-23,855.49 | 2017-10-24,861.11 | 2017-10-25,862.10 | 2017-10-26,857.85
16 2017-10-27,855.21 | 2017-10-28,862.69 | 2017-10-29,863.27 | 2017-10-30,865.07
17 2017-10-31,866.80 | 2017-11-01,870.15 | 2017-11-02,868.02 | 2017-11-03,871.38
18 2017-11-04,868.84 | 2017-11-05,876.85 | 2017-11-06,870.16 | 2017-11-07,865.88
19 2017-11-08,857.83 | 2017-11-09,859.15 | 2017-11-10,845.71 | 2017-11-11,835.81
20 2017-11-12,825.47 | 2017-11-13,821.81 | 2017-11-14,824.26 | 2017-11-15,821.00
21 2017-11-16,819.04 | 2017-11-17,810.65 | 2017-11-18,816.62 | 2017-11-19,817.58
22 2017-11-20,816.06 | 2017-11-21,813.59 | 2017-11-22,815.08 | 2017-11-23,812.46
23 2017-11-24,815.17 | 2017-11-25,815.34 | 2017-11-26,816.98 | 2017-11-27,818.03
24 2017-11-28,820.10 | 2017-11-29,825.59 | 2017-11-30,829.94 | 2017-12-01,838.18
25 2017-12-02,835.93 | 2017-12-03,840.53 | 2017-12-04,842.19 | 2017-12-05,845.54
26 2017-12-06,845.01 | 2017-12-07,850.15 | 2017-12-08,857.70 | 2017-12-09,856.47
27 2017-12-10,849.09 | 2017-12-11,848.06 | 2017-12-12,826.94 | 2017-12-13,818.09
28 2017-12-14,816.63 | 2017-12-15,817.36 | 2017-12-16,811.87 | 2017-12-17,822.68
29 2017-12-18,821.06 | 2017-12-19,824.94 | 2017-12-20,831.91 | 2017-12-21,836.82
30 2017-12-22,841.09 | 2017-12-23,840.57 | 2017-12-24,850.58 | 2017-12-25,841.70
31 2017-12-26,840.51 | 2017-12-27,844.11 | 2017-12-28,837.80 | 2017-12-29,837.32
32 2017-12-30,834.42 | 2017-12-31,814.01 | 2018-01-01,807.76 | 2018-01-02,811.48
33 2018-01-03,809.19 | 2018-01-04,807.31 | 2018-01-05,804.56 | 2018-01-06,809.33
34 2018-01-07,802.66 | 2018-01-08,807.85 | 2018-01-09,805.75 | 2018-01-10,806.20
35 2018-01-11,801.78 | 2018-01-12,805.06 | 2018-01-13,803.93 | 2018-01-14,803.47
36 2018-01-15,806.05 | 2018-01-16,803.43 | 2018-01-17,800.03 | 2018-01-18,796.87
37 2018-01-19,807.59 | 2018-01-20,805.29 | 2018-01-21,798.16 | 2018-01-22,797.49
38 2018-01-23,797.54 | 2018-01-24,804.68 | 2018-01-25,796.45 | 2018-01-26,800.55
39 2018-01-27,803.20 | 2018-01-28,798.97 | 2018-01-29,802.71 | 2018-01-30,802.07
40 2018-01-31,800.54 | 2018-02-01,800.20 | 2018-02-02,800.82 | 2018-02-03,802.32
41 2018-02-04,798.15 | 2018-02-05,807.27 | 2018-02-06,804.01 | 2018-02-07,806.61
42 2018-02-08,803.65 | 2018-02-09,798.84 | 2018-02-10,796.72 | 2018-02-11,800.33
43 2018-02-12,805.61 | 2018-02-13,797.91 | 2018-02-14,798.58 | 2018-02-15,807.53
44 2018-02-16,809.13 | 2018-02-17,804.72 | 2018-02-18,807.72 | 2018-02-19,808.03
45 2018-02-20,809.12 | 2018-02-21,803.27 | 2018-02-22,796.42 | 2018-02-23,798.54
46 2018-02-24,803.79 | 2018-02-25,800.97 | 2018-02-26,802.45 | 2018-02-27,801.12

134



A.3. Evaluation Time Series

47 2018-02-28,800.85 | 2018-03-01,802.57 | 2018-03-02,806.00 | 2018-03-03,802.45
48 2018-03-04,802.27 | 2018-03-05,800.59 | 2018-03-06,803.28 | 2018-03-07,794.60
49 2018-03-08,799.34 | 2018-03-09,797.92 | 2018-03-10,801.49 | 2018-03-11,804.27
50 2018-03-12,803.75 | 2018-03-13,800.59 | 2018-03-14,798.50 | 2018-03-15,799.64
51 2018-03-16,804.18 | 2018-03-17,806.55 | 2018-03-18,803.25 | 2018-03-19,801.12
52 2018-03-20,808.93 | 2018-03-21,806.23 | 2018-03-22,803.61 | 2018-03-23,807.47
53 2018-03-24,808.30 | 2018-03-25,804.77 | 2018-03-26,807.36 | 2018-03-27,801.55
54 2018-03-28,802.73 | 2018-03-29,806.81 | 2018-03-30,806.26 | 2018-03-31,801.84
55 2018-04-01,800.68 | 2018-04-02,803.76 | 2018-04-03,804.00 | 2018-04-04,804.72
56 2018-04-05,805.93 | 2018-04-06,809.90 | 2018-04-07,810.37 | 2018-04-08,840.22
57 2018-04-09,860.25 | 2018-04-10,870.20 | 2018-04-11,875.67 | 2018-04-12,870.19
58 2018-04-13,863.27 | 2018-04-14,866.85 | 2018-04-15,872.42 | 2018-04-16,870.10
59 2018-04-17,866.74 | 2018-04-18,866.25 | 2018-04-19,871.64 | 2018-04-20,866.80
60 2018-04-21,867.02 | 2018-04-22,869.50 | 2018-04-23,869.53 | 2018-04-24,867.36
61 2018-04-25,867.46 | 2018-04-26,867.99 | 2018-04-27,868.09 | 2018-04-28,871.89
62 2018-04-29,874.69 | 2018-04-30,868.80 | 2018-05-01,865.72 | 2018-05-02,862.37
63 2018-05-03,866.30 | 2018-05-04,863.56 | 2018-05-05,863.96 | 2018-05-06,870.96
64 2018-05-07,870.15 | 2018-05-08,860.17 | 2018-05-09,864.35 | 2018-05-10,870.47
65 2018-05-11,874.56 | 2018-05-12,870.40 | 2018-05-13,870.38 | 2018-05-14,869.02
66 2018-05-15,864.17 | 2018-05-16,867.12 | 2018-05-17,864.39 | 2018-05-18,866.64
67 2018-05-19,866.23 | 2018-05-20,869.92 | 2018-05-21,868.29 | 2018-05-22,869.90
68 2018-05-23,869.81 | 2018-05-24,861.43 | 2018-05-25,866.80 | 2018-05-26,869.70
69 2018-05-27,869.38 | 2018-05-28,872.64 | 2018-05-29,874.28 | 2018-05-30,866.77
70 2018-05-31,865.62 | 2018-06-01,876.56 | 2018-06-02,870.83 | 2018-06-03,872.88
71 2018-06-04,869.49 | 2018-06-05,864.73 | 2018-06-06,870.52 | 2018-06-07,874.63
72 2018-06-08,874.52 | 2018-06-09,871.48 | 2018-06-10,868.80 | 2018-06-11,874.30
73 2018-06-12,872.71 | 2018-06-13,870.27 | 2018-06-14,870.80 | 2018-06-15,870.93
74 2018-06-16,867.20 | 2018-06-17,868.74 | 2018-06-18,863.44 | 2018-06-19,864.08
75 2018-06-20,864.66 | 2018-06-21,859.08 | 2018-06-22,833.03 | 2018-06-23,848.09
76 2018-06-24,848.85 | 2018-06-25,798.28 | 2018-06-26,775.46 | 2018-06-27,769.90
77 2018-06-28,764.91 | 2018-06-29,752.93 | 2018-06-30,754.51 | 2018-07-01,754.19
78 2018-07-02,752.90 | 2018-07-03,752.83 | 2018-07-04,752.07 | 2018-07-05,751.31
79 2018-07-06,752.32 | 2018-07-07,748.42 | 2018-07-08,742.45 | 2018-07-09,740.59
80 2018-07-10,741.13 | 2018-07-11,735.60 | 2018-07-12,733.96 | 2018-07-13,740.04
81 2018-07-14,730.86 | 2018-07-15,735.65 | 2018-07-16,732.91 | 2018-07-17,732.56
82 2018-07-18,734.45 | 2018-07-19,734.96 | 2018-07-20,736.53 | 2018-07-21,733.36
83 2018-07-22,737.14 | 2018-07-23,732.66 | 2018-07-24,732.84 | 2018-07-25,736.60
84 2018-07-26,737.08 | 2018-07-27,748.92 | 2018-07-28,768.53 | 2018-07-29,788.90
85 2018-07-30,813.38 | 2018-07-31,817.90 | 2018-08-01,824.13 | 2018-08-02,820.39
86 2018-08-03,821.96 | 2018-08-04,828.68 | 2018-08-05,834.23 | 2018-08-06,833.54
87 2018-08-07,837.61 | 2018-08-08,843.06 | 2018-08-09,838.00 | 2018-08-10,837.30
88 2018-08-11,840.02 | 2018-08-12,848.39 | 2018-08-13,846.86 | 2018-08-14,844.44
89 2018-08-15,842.89 | 2018-08-16,840.27 | 2018-08-17,835.33 | 2018-08-18,835.44
90 2018-08-19,838.16 | 2018-08-20,837.93 | 2018-08-21,827.50 | 2018-08-22,819.26
91 2018-08-23,782.60 | 2018-08-24,779.22 | 2018-08-25,772.44 | 2018-08-26,773.18
92 2018-08-27,771.90 | 2018-08-28,765.72 | 2018-08-29,764.38 | 2018-08-30,765.25
93 2018-08-31,769.24 | 2018-09-01,766.64 | 2018-09-02,762.05 | 2018-09-03,762.92
94 2018-09-04,767.49 | 2018-09-05,770.54 | 2018-09-06,763.68 | 2018-09-07,764.32
95 2018-09-08,760.89 | 2018-09-09,760.84 | 2018-09-10,758.34 | 2018-09-11,761.15
96 2018-09-12,761.43 | 2018-09-13,763.84 | 2018-09-14,769.76 | 2018-09-15,767.58
97 2018-09-16,764.49 | 2018-09-17,761.80 | 2018-09-18,762.96 | 2018-09-19,761.48
98 2018-09-20,770.42 | 2018-09-21,772.92 | 2018-09-22,762.89 | 2018-09-23,760.80
99 2018-09-24,768.75 | 2018-09-25,766.13 | 2018-09-26,771.86 | 2018-09-27,764.80
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100 2018-09-28,767.02 | 2018-09-29,763.93 | 2018-09-30,770.86 | 2018-10-01,767.02
101 2018-10-02,767.35 | 2018-10-03,766.45 | 2018-10-04,832.01 | 2018-10-05,846.69
102 2018-10-06,842.87 | 2018-10-07,843.47 | 2018-10-08,847.03 | 2018-10-09,851.89
103 2018-10-10,853.06 | 2018-10-11,854.22 | 2018-10-12,854.23 | 2018-10-13,853.97
104 2018-10-14,857.58 | 2018-10-15,852.36 | 2018-10-16,846.15 | 2018-10-17,857.43
105 2018-10-18,852.43 | 2018-10-19,855.70 | 2018-10-20,855.34 | 2018-10-21,857.44
106 2018-10-22,854.11 | 2018-10-23,855.80 | 2018-10-24,855.50 | 2018-10-25,855.26
107 2018-10-26,854.78 | 2018-10-27,849.38 | 2018-10-28,841.76 | 2018-10-29,843.98
108 2018-10-30,848.63 | 2018-10-31,855.99 | 2018-11-01,848.92 | 2018-11-02,851.97
109 2018-11-03,855.96 | 2018-11-04,856.63 | 2018-11-05,855.18 | 2018-11-06,844.48
110 2018-11-07,851.53 | 2018-11-08,850.27 | 2018-11-09,849.53 | 2018-11-10,856.47
111 2018-11-11,852.87 | 2018-11-12,852.70 | 2018-11-13,856.30 | 2018-11-14,857.64
112 2018-11-15,853.90 | 2018-11-16,846.38 | 2018-11-17,843.03 | 2018-11-18,849.42
113 2018-11-19,850.79 | 2018-11-20,853.57 | 2018-11-21,853.98 | 2018-11-22,855.42
114 2018-11-23,856.85 | 2018-11-24,852.52 | 2018-11-25,854.92 | 2018-11-26,855.46
115 2018-11-27,858.36 | 2018-11-28,854.58 | 2018-11-29,854.60 | 2018-11-30,856.37
116 2018-12-01,861.77 | 2018-12-02,852.04 | 2018-12-03,852.67 | 2018-12-04,851.54
117 2018-12-05,857.34 | 2018-12-06,852.65 | 2018-12-07,849.54 | 2018-12-08,856.60
118 2018-12-09,858.84 | 2018-12-10,852.79 | 2018-12-11,849.23 | 2018-12-12,854.17
119 2018-12-13,846.63 | 2018-12-14,844.99 | 2018-12-15,852.77 | 2018-12-16,851.88
120 2018-12-17,854.17 | 2018-12-18,855.49 | 2018-12-19,854.40 | 2018-12-20,850.06
121 2018-12-21,855.15 | 2018-12-22,849.99 | 2018-12-23,851.74 | 2018-12-24,852.62
122 2018-12-25,854.58 | 2018-12-26,850.31 | 2018-12-27,845.58 | 2018-12-28,840.58
123 2018-12-29,848.68 | 2018-12-30,855.66 | 2018-12-31,847.89 | 2019-01-01,846.28
124 2019-01-02,850.00 | 2019-01-03,848.45 | 2019-01-04,848.25 | 2019-01-05,853.41
125 2019-01-06,856.25 | 2019-01-07,844.98 | 2019-01-08,845.74 | 2019-01-09,850.50
126 2019-01-10,858.12 | 2019-01-11,855.26 | 2019-01-12,853.73 | 2019-01-13,847.13
127 2019-01-14,853.62 | 2019-01-15,855.62 | 2019-01-16,851.61 | 2019-01-17,847.69
128 2019-01-18,851.36 | 2019-01-19,851.54 | 2019-01-20,850.20 | 2019-01-21,854.97
129 2019-01-22,848.96 | 2019-01-23,851.00 | 2019-01-24,852.61 | 2019-01-25,854.16
130 2019-01-26,854.16 | 2019-01-27,848.03 | 2019-01-28,853.39 | 2019-01-29,853.62
131 2019-01-30,854.20 | 2019-01-31,852.04 | 2019-02-01,847.95 | 2019-02-02,849.98
132 2019-02-03,849.75 | 2019-02-04,847.85 | 2019-02-05,847.67 | 2019-02-06,855.90
133 2019-02-07,858.20 | 2019-02-08,857.51 | 2019-02-09,854.99 | 2019-02-10,858.87
134 2019-02-11,857.90 | 2019-02-12,859.54 | 2019-02-13,851.96 | 2019-02-14,852.60
135 2019-02-15,847.60 | 2019-02-16,846.90 | 2019-02-17,848.30 | 2019-02-18,847.60
136 2019-02-19,848.32 | 2019-02-20,846.29 | 2019-02-21,841.83 | 2019-02-22,834.87
137 2019-02-23,821.60 | 2019-02-24,804.75 | 2019-02-25,797.30 | 2019-02-26,800.36
138 2019-02-27,801.80 | 2019-02-28,792.36 | 2019-03-01,800.14 | 2019-03-02,793.69
139 2019-03-03,790.71 | 2019-03-04,790.24 | 2019-03-05,784.14 | 2019-03-06,788.02
140 2019-03-07,788.45 | 2019-03-08,780.11 | 2019-03-09,780.32 | 2019-03-10,778.16
141 2019-03-11,774.92 | 2019-03-12,776.76 | 2019-03-13,779.26 | 2019-03-14,776.75
142 2019-03-15,778.38 | 2019-03-16,770.48 | 2019-03-17,774.83 | 2019-03-18,778.13
143 2019-03-19,779.68 | 2019-03-20,778.13 | 2019-03-21,780.58 | 2019-03-22,784.11
144 2019-03-23,792.46 | 2019-03-24,802.88 | 2019-03-25,806.41 | 2019-03-26,818.70
145 2019-03-27,829.24 | 2019-03-28,831.00 | 2019-03-29,839.51 | 2019-03-30,839.71
146 2019-03-31,844.27 | 2019-04-01,851.35 | 2019-04-02,846.96 | 2019-04-03,855.71
147 2019-04-04,851.70 | 2019-04-05,852.49 | 2019-04-06,853.24 | 2019-04-07,858.25
148 2019-04-08,864.40 | 2019-04-09,864.12 | 2019-04-10,866.68 | 2019-04-11,861.26
149 2019-04-12,867.95 | 2019-04-13,871.13 | 2019-04-14,869.74 | 2019-04-15,869.97
150 2019-04-16,872.73 | 2019-04-17,870.77 | 2019-04-18,870.55 | 2019-04-19,871.09
151 2019-04-20,872.70 | 2019-04-21,878.58 | 2019-04-22,880.52 | 2019-04-23,875.39
152 2019-04-24,874.43 | 2019-04-25,877.60 | 2019-04-26,871.80 | 2019-04-27,873.31
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153 2019-04-28,874.66 | 2019-04-29,867.40 | 2019-04-30,870.28 | 2019-05-01,871.11
154 2019-05-02,876.39 | 2019-05-03,871.12 | 2019-05-04,867.28 | 2019-05-05,869.24
155 2019-05-06,869.70 | 2019-05-07,868.11 | 2019-05-08,869.26 | 2019-05-09,867.26
156 2019-05-10,858.80 | 2019-05-11,858.83 | 2019-05-12,863.46 | 2019-05-13,859.08
157 2019-05-14,856.00 | 2019-05-15,850.81 | 2019-05-16,845.99 | 2019-05-17,851.67
158 2019-05-18,848.07 | 2019-05-19,851.64 | 2019-05-20,856.28 | 2019-05-21,857.56
159 2019-05-22,859.41 | 2019-05-23,866.19 | 2019-05-24,867.13 | 2019-05-25,867.74
160 2019-05-26,865.72 | 2019-05-27,864.76 | 2019-05-28,869.74 | 2019-05-29,870.77
161 2019-05-30,870.26 | 2019-05-31,866.37 | 2019-06-01,869.45 | 2019-06-02,866.08
162 2019-06-03,870.64 | 2019-06-04,872.09 | 2019-06-05,865.70 | 2019-06-06,859.69
163 2019-06-07,858.68 | 2019-06-08,859.20 | 2019-06-09,857.50 | 2019-06-10,849.25
164 2019-06-11,845.60 | 2019-06-12,837.34 | 2019-06-13,841.43 | 2019-06-14,840.96
165 2019-06-15,846.10 | 2019-06-16,842.51 | 2019-06-17,845.92 | 2019-06-18,847.45
166 2019-06-19,840.91 | 2019-06-20,838.42 | 2019-06-21,837.04 | 2019-06-22,843.69
167 2019-06-23,853.14 | 2019-06-24,850.00 | 2019-06-25,854.48 | 2019-06-26,854.62
168 2019-06-27,858.22 | 2019-06-28,863.60 | 2019-06-29,860.82 | 2019-06-30,863.41
169 2019-07-01,860.68 | 2019-07-02,860.70 | 2019-07-03,861.51 | 2019-07-04,861.01
170 2019-07-05,859.73 | 2019-07-06,861.93 | 2019-07-07,862.47 | 2019-07-08,862.35
171 2019-07-09,858.86 | 2019-07-10,863.76 | 2019-07-11,865.46 | 2019-07-12,864.11
172 2019-07-13,858.31 | 2019-07-14,860.18 | 2019-07-15,862.57 | 2019-07-16,861.87
173 2019-07-17,862.49 | 2019-07-18,866.06 | 2019-07-19,861.39 | 2019-07-20,859.65
174 2019-07-21,857.62 | 2019-07-22,854.08 | 2019-07-23,848.36 | 2019-07-24,840.56
175 2019-07-25,834.04 | 2019-07-26,827.53 | 2019-07-27,819.23 | 2019-07-28,808.89
176 2019-07-29,805.36 | 2019-07-30,805.09 | 2019-07-31,795.42 | 2019-08-01,789.04
177 2019-08-02,791.35 | 2019-08-03,785.16 | 2019-08-04,792.54 | 2019-08-05,787.22
178 2019-08-06,779.72 | 2019-08-07,775.33 | 2019-08-08,779.00 | 2019-08-09,775.20
179 2019-08-10,773.89 | 2019-08-11,771.77 | 2019-08-12,773.10 | 2019-08-13,765.97
180 2019-08-14,772.20 | 2019-08-15,770.05 | 2019-08-16,776.72 | 2019-08-17,780.71
181 2019-08-18,775.26 | 2019-08-19,765.92 | 2019-08-20,773.98 | 2019-08-21,775.81
182 2019-08-22,775.52 | 2019-08-23,775.20 | 2019-08-24,771.29 | 2019-08-25,770.29
183 2019-08-26,766.67 | 2019-08-27,770.77 | 2019-08-28,773.84 | 2019-08-29,775.95
184 2019-08-30,778.90 | 2019-08-31,777.49 | 2019-09-01,780.58 | 2019-09-02,778.38
185 2019-09-03,776.14 | 2019-09-04,776.49 | 2019-09-05,783.82 | 2019-09-06,782.94
186 2019-09-07,779.86 | 2019-09-08,776.87 | 2019-09-09,780.73 | 2019-09-10,784.01
187 2019-09-11,788.10 | 2019-09-12,789.79 | 2019-09-13,785.43

Listing A.4: Input Time Series for Chapter 6 (Evaluation)
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A.4 Quantitative Evaluation Results
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Glossary

ANTLR ANother Tool for Language Recognition; a parser generator used to process
plain text DTSQL queries. 4, 76, 78, 80, 82, 84, 85, 89, 90, 96, 130, 132, 143

CSV Comma-Separated Value; used in files for information exchange. 87, 88, 100, 108

declarative programming paradigm which focuses on what problem should be solved
instead of how this is achieved. xiii, 2, 10, 46, 51, 91, 120, 121

DSL Domain-Specific Language; programming language with limited expressiveness
geared towards a particular problem domain; commonly declarative. 2, 9–12, 96,
100, 120, 121

DTSQL Declarative Time Series Query Language; the query language proposed by this
thesis. xi, xiii, 2–5, 11, 12, 16, 19, 23, 25–31, 33–42, 45–61, 63–66, 68, 70, 72–85,
87–91, 94, 96–101, 103–108, 110, 119–123, 130, 132, 139, 143

JSON JavaScript Object Notation; lightweight format for data exchange; used in the
DTSQL reference implementation. 89

language workbench development environments facilitating the creation of DSLs;
often paired with projectional editors . 11, 12

MPS Meta Programming System; a language workbench and projectional editor devel-
oped by JetBrains. 11, 12, 89, 96, 97, 99–101, 139

projectional editor enables editing of documents based on a projection of their internal
model (abstract syntax tree) instead of plain text. 2, 4, 5, 11, 12, 89, 96, 122

REST Representational State Transfer; a very common architecture for web services
exchanges resources; used in the DTSQL reference implementation. 89

Spring Boot a Java framework for simplifying the creation of (web server) backends;
used in the DTSQL reference implementation. 89
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structure editor see projectional editor. 12

time series sequence of time-value pairs; commonly recorded by a sensor situated on a
machine. xiii, 1, 7, 13
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