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Abstract

Robotic systems are meant to provide support to humans, be it in their homes or work
places. Manipulating objects is one of the most fundamental tasks for such systems,
since this enables robots to autonomously take over tasks from humans. Relevant
applications are diverse, ranging from making predictions for mobile manipulation, bin
picking and augmented reality. Using real-world data for training is not desired since
estimators are biased towards the data characteristics, capturing and annotating data is
cumbersome and data in the target domain is not always available. Thus, using synthetic
data is preferable. However, this requires that algorithms for object localisation need to
generalise to novel domains. Another challenge is handling Relevant applications require
object pose estimators to handle multiple distinct objects. Efficiently handling involved
objects keeps cycle times short and computational system load low. The challenge is to
effectively encode feature space for object sets with different shape complexities and
symmetries.

This thesis presents methods to adapt, respectively generalise to novel domains and
formulations for object pose estimators that handle multiple objects with different scales
well with respect to the number of object instances in the image. Generalising to novel
domains requires unbiased estimators. Rendering training data allows to randomise
the relevant data characteristics, creating unbiased data well suited for training models
meant to generalise well. Solutions for adapting synthetic depth data to the real-
world domain and for generalising in the RGB-domain are presented. We formulate
object pose estimation as a multi-task problem, performing detection, classification and
pose correspondence estimation simultaneously for multiple objects. This approach is
extended with direct pose regression resulting in scalable object pose estimation with
constant runtime with respect to the number of object instances in the image.

Evaluations are provided on five datasets and on two different grasping scenarios.
Presented experiments indicate that synthetic training data is well suited for learning-
based object localisation. Training the presented object pose estimators using the
domain adaptation for the depth domain and our domain generalisation strategies for
the RGB domain results in competitive performance compared to the state of the art.
The direct pose regression extension for scalable object pose estimation improves over
other single-staged approaches and results in negligible runtime increase for up to 90
object instances in an image. We present grasping experiments showing the suitability
of the presented methods for real-world deployment.

II



Contents

Abstract II

1 Introduction 1
1.1 Object Localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problems and Research Questions . . . . . . . . . . . . . . . . . . . . . 4
1.3 Scientific Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Domain Generalisation for Object Localisation . . . . . . . . . . 8
1.3.2 Simultaneous Object Detection and Pose Estimation . . . . . . 9
1.3.3 Multi-Instance Direct Pose Regression with Constant Runtime . 10

1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Related Work 13
2.1 Synthetic Data Creation . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 2D Localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 6D Localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Classical Approaches: . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Learning-based Approaches: . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Pose representation . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.4 Multi-model Pose Estimation . . . . . . . . . . . . . . . . . . . 18
2.4.5 Direct Pose Regression . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Object Localisation under Domain Shift 22
3.1 Training Data Creation and Transfer Learning . . . . . . . . . . . . . . 22

3.1.1 Training Data Rendering for the Depth Domain . . . . . . . . . 23
3.1.2 Adaptation in the Depth Domain . . . . . . . . . . . . . . . . . 25
3.1.3 Training Data Rendering for the RGB Domain . . . . . . . . . . 26
3.1.4 Generalisation in the RGB Domain . . . . . . . . . . . . . . . . 27

3.2 Supervised Simultaneous Detection and Pose Estimation . . . . . . . . 29
3.2.1 Basic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Pose Representation . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.4 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.5 Symmetry Handling . . . . . . . . . . . . . . . . . . . . . . . . 33

III



IV Contents

3.2.6 Deriving Object Poses . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 SyDPose: Object Detection and Pose Estimation in Cluttered Real-World

Depth Images Trained using only Synthetic Data . . . . . . . . . . . . 35
3.3.1 Approach Description . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Multi-Object Handling . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Orthogonality Favouring Loss . . . . . . . . . . . . . . . . . . . 38

3.4 PyraPose: Feature Pyramids for Fast and Accurate Object Pose Estima-
tion under Domain Shift . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Pose Feature Pyramid Network . . . . . . . . . . . . . . . . . . 40
3.4.3 Task Heads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.4 Domain Generalisation . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 COPE: End-to-end trainable Constant Runtime Object Pose Estimation 43
3.5.1 Constant Runtime via Direct-pose regression . . . . . . . . . . . 45
3.5.2 Training Target Sampling . . . . . . . . . . . . . . . . . . . . . 46
3.5.3 Symmetry-aware Loss . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.4 Multi-instance Handling . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Object Grasping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Experiments 52
4.1 Object Localisation from Depth Data under Domain Shift . . . . . . . 52

4.1.1 Object Detection from Synthetic Depth Data . . . . . . . . . . 52
4.1.2 Domain Adaptation for Object Pose Estimation using SyDPose 57

4.2 Generalising Object Pose Estimation within the RGB Domain using
PyraPose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 Multi-object Pose Estimation trained on Synthetic RGB Data . 63
4.2.2 Domain Generalisation of PyraPose . . . . . . . . . . . . . . . . 65
4.2.3 Object Grasping in the Real-world using PyraPose . . . . . . . 67

4.3 Scalable End-to-end Trainable Object Pose Estimation using COPE . . 69
4.3.1 Scalable Multi-object Multi-instance Pose Estimation . . . . . . 70
4.3.2 Constant Runtime with Respect to the Number of Object Instances 74
4.3.3 Grasping Transparent Objects with COPE . . . . . . . . . . . . 74

4.4 Self-Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Conclusion 79
5.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

List of Figures 83

List of Tables 86

Bibliography 88



Chapter 1

Introduction

Robots, autonomous systems and agents are there to support humans. These systems
are confronted with diverse applications. Mobile robots in retirement homes are meant to
help elderly people to master their day. Facing tasks such as picking up objects from the
ground and delivering requested items to humans they aid. Industrial robots are designed
to support or autonomously handle production processes. A typical task is to provide
scene information to ontology-based reasoning systems to perform complex assemblies
or the reverse processes. Agents for augmenting and enhancing user experience display
environmental information or highlight scene context to heads-on devices. These
applications are solved with pipelines sequentially solving the involved tasks, such as
sensing the environment, processing the resulting sensor readings and navigating to and
interacting with their environment and users. Processing sensor readings is one of the
truly fundamental challenges for essentially all of these applications which take place in
man-made environments. Human environments are inherently designed to be processed
through human vision. As such, visual perception of the environment naturally provides
crucial information to solve these challenges. Thus, it is natural to base the perception
of these systems on vision systems.

Visually perceiving the environment requires estimators to differentiate between
useful information and noise in the image, such as foreground-background separation.
The feature space of the image is filtered for prior task-specific information. Those
complex computer vision applications mentioned above hold challenges that consider
objects to be the relevant foreground information. Objects are part of everyday life
and come in diverse shapes, appearances and sizes, like containers, tools, toys and
consumables. Manipulating objects enables robots to autonomously perform tasks,
including mobile manipulation [1]–[3], bin picking [4]–[6], augmented reality [7], [8] and
reconstruction [9], [10]. During deployment the most crucial first step to realise such
tasks is object localisation. After extracting object hypotheses task specific problem
solving is performed, e.g. object pose refinement [1], [11], object tracking [12], [13] and
grasp pose estimation [2].

Currently, Convolutional Neural Networks (CNN) are the Swiss army knife of com-
puter vision. Tremendous results are achieved for image recognition [14], object detec-
tion [15], image segmentation [16], pose estimation [17], and many more. CNNs are
dominating computer vision since encoding a latent representation of training samples
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2 1 Introduction

Figure 1.1: From Meshes to 6D Object Locations: It is of great applicability and
feasibility to train object pose estimators exclusively from geometry and
appearance priors. Handling the domain shift effectively enables deployment
on diverse applications with robust performance.

enables formulating efficient problem solvers with excellent interpolation between data
points [18], [19]. Yet, in order to provide robust problem solving large amounts of data
are needed [14]. For one thing capturing an annotating training data in the real-world
is very demanding in manual labor and thus the aim is to automate that process. Addi-
tionally, encoding a latent representation of the captured and annotated data induces
a bias [20], [21]. This overfitting to the latent data distribution is disadvantageous
for generalising to unseen domains. Important dimensions of this distribution are
scene illumination, occlusion patterns, object configurations and object appearance [20],
[22], [23]. Deep learning models generalise poorly under domain shift, i.e. different
distribution of training and test data with respect to these dimensions. Due to these
reasons it is desired to automatically synthesise data with sufficient variation along
these dimensions and employ regularisation strategies to provide deep learning models
that are robust across domains.

In this work we improve object localisation under domain shift. Figure 1.1 presents
a visual representation. We solely assume the availability of textured or not-textured
geometry priors of the objects of interest. Using rendering engines, training data
is created. During training diverse means for regularising learning are employed to
generalise the trained models to unseen domains.
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Figure 1.2: 2D versus 6D Object Localisation: Object detection, respectively 2D
localisation aims to recover the rough image location containing an object of
interest. This requires the learned encoding to be equivariant with respect
to image space translation and scale, allowing invariant mappings w.r.t
object rotation and ambiguities resulting from object symmetries. Object
pose estimation, respectively 6D localisation, requires learning an encoding
equivariant w.r.t. 3D translation and rotation and object symmetries.

1.1 Object Localisation
The main variants of object localisation that this work focuses on are object detection and
object pose estimation. Object detection refers to estimating the object location in the
two-dimensional image space, and object pose estimation refers to estimating the object
pose in the three-dimensional camera space. Additionally, we assume no availability of
real world images, as is the case for classical pose estimation approaches [24]–[27]. We
aim to solve the problem of localising one or more objects (multi-object) with multiple
instances of each (multi-instance). Standard challenges for such localisation problems
are cluttered environments, partial object visibility, object symmetries and changing
appearance in different domains. Solutions to solve these challenges vary for object
detection and pose estimation, see Figure 1.2. The following paragraphs provide a
comparison of the problems object detection and object pose estimation.

Object Detection The task of object detection refers to localising the object of
interest in an RGB image, thus in 2D space. As such the desired information to be
estimated are the upper left and the lower right image coordinates forming the smallest
bounding box encapsulating the respective object [15], [28]–[30]. Thus object detectors
need to be equivariant with respect to image space translation and scale of the object.
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Properties such as the object’s relative rotation to the camera and its geometrical and
textural symmetries are treated as invariant.

Due to the invariance with respect to the aforementioned properties, the amount
of trainable parameters can be quite low. As such, many parameter-efficient object
detectors scale well with respect to the number of object classes [29], [31]–[33]. A trait
needed for object detection due to the large amount of object classes [34]. Additionally,
object detectors scale well with respect to the amount of object instances due to the
low output dimensionality.

Object Pose Estimation The task of object pose estimation requires estimating
the relative transformation of one or multiple objects and instances with respect to
the camera. The output space is the relative transformation from camera to object
coordinate system, and thus parameterised with three dimensions for translation and
three for rotation, as such a 6D space. Pose estimators require learning an encoding
and output space that is equivariant to translation in 3D, rotation in 3D and visual
object symmetries. This increased complexity leads to a fundamental difference in how
objects are detected and how their pose is estimated.

An important aspect of this work is to demonstrate the similarity of 2D and 6D
localisation problems in terms of formulation, and to present the substantial difference
of how they are handled due to the difference in complexity. By focusing and building
on the similarities of those two problems we aim to provide solutions for solving the
2D and the 6D object localisation simultaneously. As such, findings and contributions
presented in this thesis are meant to introduce the advantages of 2D object localisation,
such as end-to-end trainability, robustness to domain shift and constant runtime with
respect to the number of object instances in an image to 6D object localisation.

1.2 Problems and Research Questions
The following sections outline the problems connected to training pose estimators
from geometry priors, and bridging their applicability to that of object detectors.
Solving the problem of object localisation for diverse real-world scenarios is challenging
due to the many latent aspects of the data, such as camera intrinsics and extrinsics,
imaging noise, scene context and photometric attributes. Using real-world data for
training leads to a drop in performance in novel domains since deep learning approaches
encode a representation of the training data, which induces a bias as to such latent data
characteristics [20], [21], [35]. In order to generalise object detection and pose estimation
performance to novel domains, deep learning models need to be invariant with respect
to these aspects. Thus, training with synthetically created data is preferable [20]. Yet,
this requires overcoming the domain shift between synthetically created renderings and
the real-world test images.

The low dimensional output space of object detectors allows high-performance single-
stage approaches. However, the state of the art for pose estimation are multi-staged,
multi-model approaches in order to maximise performance as compared to single-
model ones. Object pose estimation detects objects in the first stage, estimates pose
correspondences in the second, and derives poses using Perspective-n-Points (PnP) [36]
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in the third [17], [37]–[41]. Often poses are subsequently refined using additional
stages [1], [11], [17], [38]. Simultaneously performing these individual steps provides
scalable, parameter-efficient and easy-to-use formulations.

Besides solving object detection and pose estimation with separate models, state-
of-the-art approaches split pose estimation into correspondence prediction and pose
estimation with PnP. Correspondences are adopted as regression targets since directly
regressing object poses from image features leads to severely reduced performance.
Directly estimating the 6D object pose, however, enables scalable formulations with
improved performance through the more meaningful guidance of solving the actual
problem and not a proxy one. The following paragraphs present the problems outlined
above in detail.

Domain shift Classical pose estimation approaches encode look-up tables that
contain descriptors of template poses for matching during runtime [24]–[27]. These
templates are created from reconstructed or designed object models and as such, no
domain-specific real-world data is required for training. Due to the diverse hyperparam-
eters of those methods, the method can be tuned specifically to the scene characteristics
during deployment. Deep-learning-based approaches require task and domain specific
data to encode a representation for problem solving. Using real-world data for training,
however, has the major disadvantage of generalising badly to novel domains. Data
characteristics of the test scene such as photometric attributes, scene context, imaging
noise and the data distribution in SE(3) are not always known or controllable [20].

Important characteristics of the data are photometric attributes of the scene, such as
illumination and the interaction of the light rays with the physical world. These are
directly reproducible through rendering when parameters are known. However, inverting
this process to estimate parameters is ill-posed due to the infeasibility of tracing the
ray of light and its interaction with different materials and their physical properties.
Similarly unconstrained is the scene context in the real world. Consider the case where
the real-world training examples are captured on the surface of a desk and the task is
grasping objects in a shop floor. During test time, predictions have to be made from
images that feature many more of different objects as compared to what is known from
the training set. The imaging sensor noise also introduces uncertainties regarding the
domain. It can be measured to a certain extent, but exhaustively determining all the
relevant parameters and their interconnectedness is similarly intangible as estimating
photometric attributes. Creating real-world training data with unbiased pose sampling
is not as intangible as the aspects mentioned above, yet, it is difficult and costly to do.
Exhaustive and uniform sampling of object poses in SE(3) camera space and producing
annotations leads to an extensive involvement of humans, and thus manual labor.

Considering these aspects it is desirable to automatically synthesise training data.
Generalising to novel domains requires the latent synthetic data characteristics to be a
super-set of those to expect during application. Since generalising to novel domains,
respectively adapting to them, is a difficult task in RGB images, many works address this
domain gap in depth images [6], [42]–[45]. However, capturing depth data comes with
disadvantages and limited applicability due to its comparably costly sensors, missing
textural cues and low image resolution. Though, overcoming the domain gap in RGB is
more difficult due to the higher variations of the image noise and the variations of the
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latent data characteristics, numerous works thus prefer using RGB and either addressing
the domain gap by using annotated data with the expected characteristics [22], [39], [40],
[46]–[49] or by using not annotated samples of the expected domain [49]–[52]. For one
thing, using real-world samples for training induces a bias for estimation making. Then
again, assuming the availability of real-world images with the expected characteristics
is infeasible for real-world applications. The domain of deployment and as such also
the camera characteristics are not always known beforehand and the physical objects
are often unavailable for training. The authors of [20] show that a severe reduction in
performance is to be expected when the available real-world data characteristics diverge
from those during deployment.

As a consequence, researchers tend to train on mixed data, consisting of real-world
samples, with the expected characteristics, and rendered samples [22], [40], [46], [47],
[53], [54]. The real-world samples guide trained models to perform well on the expected
test sets and the renderings increase the data variation in terms of poses, occlusion
patterns, lighting conditions and background. Exclusively training on synthetic data
reduces performance as compared to using real-world data for training [55].

Reduced Performance of Single-staged Approaches A general problem for
object localisation is that single-stage approaches result in lower detection performance
than their two-staged counterparts, 10% to 40% for object detectors as of 2017 [56].
Though exhibiting that performance gap, in the meantime single-staged detectors
superseded their multi-staged counterparts as the State of the Art [33], [57], providing
estimates in a single stage enables parameter-efficient, scalable and simpler solutions.
As a consequence of their end-to-end trainable nature, object detectors scale well with
respect to the number of object classes [28], [29], [31]–[33].

Learning-based object pose estimation is currently a multi-staged problem. Many
top-performing approaches expect sparse 2D location priors from object detectors as
image location priors [17], [23], [38]–[40], [46], [47], [54]. Some of these and others [22],
[49], [53], [58], [59] adopt geometric correspondences as training targets to reduce the
dimensionality of the output space, and thus to improve performance. In the final
stage poses are estimated using Perspective-n-Points (PnP) algorithm [36] from these
correspondences. Research for combining detection and geometric correspondence
estimation is also conducted [22], [49], [58], [59], yet only [58] provides results indicating
performance comparable to state-of-the-art approaches with more stages and end-
to-end trainability. A downside of this method is that computationally expensive
post-processing is required to cluster predicted geometric correspondences to distinct
object instances [60].

Missing Scalability in Object Pose Estimation Early deep learning-based pose
estimators directly regress the 6D pose [6], [48], [61], [62]. Later research adopts
surrogate training targets, corresponding to the observed pose. Since predictions are
made in a lower dimensional space than 6D, either 2D or 3D, these approaches provide
a more natural representation for CNNs and thus improve in performance, as outline
in Section 1.1 [17], [23], [38]–[40], [46], [47], [54]. Using these so-called surrogate
training targets requires deriving the pose through algorithms like Perspective-n-Points
(PnP) [36]. Nonetheless an accompanying problem is that adopting such means reduces
the ability of the network to learn descriptive features for the actual tasks. Additionally,
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multi-staged problem solvers are required, effectively leading to reduced scalability.
Ongoing research directly estimates 6D poses from intermediate geometric corre-

spondences [37], [41], [63], [64]. In [41] and [37], detection is separated from the pose
estimation stage, thus, these are not end-to-end trainable since an object detector is
required for sparse location prior prediction. The work of [64] is end-to-end trainable
but separate networks need to be trained and pooling geometric correspondences means
multiple objects and instances cannot be handled simultaneously. While regressing
object poses from intermediate geometric correspondences circumvents the drop in pose
estimation performance, current state of the art does not acknowledge the resulting
potential for scalability. This strategy can naturally implement the desired traits of
object detectors to object pose estimators: scalability, simpler application (i.e. less
post-processing) and end-to-end trainability for all objects.

The goal of this work is to provide a solution for single-stage object pose estimation
assuming only the availability of geometric object priors. Considering the state of the
art and the open problems outlined above, the following research questions emerge:

1. How to generalise object localisation to unknown domains?

2. How to enable simultaneous object detection and correspondence estimation?

3. How to formulate scalable, single-staged pose estimation?

1.3 Scientific Contribution
By adopting and improving recent advancements we provide solutions for the problems
connected to aforementioned research questions. We improve domain generalisation
when using RGB and domain adaptation when using depth, in order to train object
pose estimators from synthetic data. By adopting feature pyramid-based network
architectures, commonly used for object detection, we enable efficient simultaneous
object detection and correspondence estimation. Empirical analysis that this formulation
scales well with the number of object classes of interest is provided. Ultimately, by
learning to directly regress 6D object poses from latent geometric correspondences,
we provide an efficient formulation for processing all object instances in an image in
parallel. Summarising the scientific contributions of this thesis:

1. We present means for improving domain adaptation in the depth domain and
domain generalisation in RGB.

2. We present an efficient feature pyramid-based solution for simultaneous object
detection and pose correspondence estimation.

3. We present end-to-end trainable direct pose estimation with constant runtime.
Providing object poses with similar scalability as object detectors estimate bound-
ing boxes.

The remainder of this section presents an overview of each of these contributions,
followed by the list of publications in which these are presented.
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1.3.1 Domain Generalisation for Object Localisation
For generalising to novel domains we address the problem at different stages of the
deep learning training process. We improve training data distributions, the training
process, and explore better suited formulations than the standard ones, see Figure 1.3.
The principles we adapt and improve upon for effective domain generalisation are:

• Domain Randomisation For synthetic data rendering, we randomise different
aspects of the physical properties used for rendering training images from virtual
scenes. Depending on the expected use case and domain, aspects such as scene
background, illumination, object and camera poses and material properties of the
objects are randomised.

• Data Augmentation As a preprocessing step for training, images are augmented
to create a superset of the expected real-world data variations. We present findings
showing improvements in RGB and depth.

• Restricted Training We use a pre-trained backbone with frozen layers during
fine-tuning. Initial stages of the backbone are not updated during training, to
force the network to learn high-level features conditioned on low-level ones learned
from rich real-world data. In order to maximise the effect of the frozen initial
stages batch normalization parameters are also not updated during fine-tuning.

• Network Architecture We introduce formulations of common object detectors
to object pose estimation. We show that these lead to efficient object pose
estimation reaching state-of-the-art performance with comparably little network
parameters.

The following paragraphs outline the means taken to transfer trained models to a
novel domain in the RGB and depth domain, respectively.

Domain Adaptation in Depth We show that randomising the domain of the
virtual scene used for training data rendering and augmenting the data with errors
expected from the imaging process leads to improved object detection, compared to using
available real-world data. Using the same process for creating object pose estimation
training data results in state-of-the-art performance.

Domain Generalisation in RGB Many works provide analysis that the depth
domain is well suited for problems with domain shift because of of its limited variations
in comparison with RGB [45]. This limitedness however leads to less informative value
to draw conclusions from, e.g. when handling transparent objects or similarly shaped
objects where the discriminative part is the texture. For such cases it is advisable
to switch to RGB. Yet, due to the richness of the domain it is difficult to generalise
well. We improve over commonly used data augmentation techniques by introducing
contrast noise. Furthermore, forcing the network to encode high-level features from
low-level features learned during pre-training improves performance in the real domain
tremendously. Lastly, our networks are built on feature pyramids, which are known to
generalise well. The following section presents the feature-pyramid-based estimation
making more in detail.
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Figure 1.3: Domain Generalisation: We adopt and improve on multiple approaches
for domain generalisation. By randomising synthetic data creation, varying
online data augmentation, pre-training on real-world data and restricting the
layers that are updated during training, and by using regularising network
architectures, our network generalises well to novel domains.

1.3.2 Simultaneous Object Detection and Pose Estimation

The previously presented methods provide synthetic data and means to generalise
trained models to novel domains. This section outlines how object detection and pose
estimation is performed simultaneously. In order to solve that challenge, formulations for
multi-task learning are required that scale well with regards to the amount of the objects
of interest. Object detection solves the multi-task problem by sliding sub-networks over
query image locations, producing outputs for each required task. As a consequence,
downstream network parts are trained with guidance from all involved tasks.

Many single- and multi-stage object detection approaches are based on feature
pyramids [32] for producing latent multi-scale feature maps. Feature pyramids provide
efficient solutions for object detection, that generalise well. Thus, they are ideally
suited for object pose estimation under domain shift. Anchors [28] are used as location
priors and for target standardisation in the feature pyramid. Shared sub-networks for
prediction making slide over those feature maps and estimate bounding boxes while
differentiating foreground from background.

These principles are adopted and improved upon for object pose estimation, see
Figure 1.4. We present a network for simultaneous multi-object detection and pose
estimation based on a modified feature pyramid. We sample image locations in the
latent multi-scale feature maps of our feature pyramid, using an anchor-based approach
to additionally estimate geometric correspondences for each object, and furthermore
estimate the object pose using RANSAC-PnP [36], [65], [66]. The presented results show
that such a formulation lead to improved performance and scalability as compared to
state-of-the-art multi-stage approaches. Furthermore, a specialised loss for 3D bounding
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Figure 1.4: Simultaneous Detection and Pose Estimation: A pre-trained back-
bone extracts multi-scale image features to solve object localisation and
classification in 2D, and to predict geometric correspondences of multiple
objects simultaneously. Poses are ultimately derived using RANSAC-PnP.

box estimation that improves performance is proposed. The following sections present
an extension for direct pose regression for multi-object and multi-instance scenarios that
features similar scalability to object detection approaches, though solving a problem of
higher dimensionality (6D for object pose estimation, as compared to 2D, for object
detection).

1.3.3 Multi-Instance Direct Pose Regression with Constant
Runtime

Having robust geometric correspondence estimation provides a good basis for directly
learning to derive 6D poses. However, while object detectors provide 2D estimates
that are directly used in sequential problem solvers of vision pipelines, providing 6D
poses directly is not as straightforward. Current object pose estimators require PnP to
compute the 6D pose from the predicted 2D correspondences.

In order to provide the same ease of application and scalability of object detectors,
we equip our pose estimator presented above with a direct pose regression network, see
Figure 1.5. The additional sub-network slides over the predicted geometric correspon-
dences and learns to directly estimate the 6D pose from them. This additional guidance
during training improves the downstream task of geometric correspondence estimation,
and removes the additional requirement of applying RANSAC-PnP to each set of object
pose hypotheses. Modifying the commonly used non-maximum suppression in object
detection, we filter for the predicted 6D poses with the highest confidence per object
instance. We provide experiments showing that direct pose regression, as upstream
task, guides learning towards better geometric correspondence estimation, while also
allowing scalable processing of multiple objects and their instances, as is the case for
object detectors.

Despite their effectiveness, anchors [30] also come with downsides. In order to
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Figure 1.5: Direct Pose Estimation with Constant Runtime: We formulate an
end-to-end trainable learning task, with the downstream task of geometric
correspondence learning and the upstream task of direct pose estimation.
Computationally efficient multi-instance clustering is applied to extract the
per-instance poses in an image. This procedure results in constant network
time and improved pose estimation due to the additional supervision.

detect objects from specific feature map resolutions 16 hyperparameters are required
for sampling a dense bounding box prior space. Due to the large output space of
sampling nine anchors per feature map location, convergence and training speed are
low. We directly estimate object poses from locations of the multi-scale feature map,
which overlap with the object mask in the image space. The respective feature map
resolution is chosen using a scalar object size parameter projected to the image space.
This parameter is calculated from the object dimensions. Geometric correspondences
are also standardised using that parameter. This results in increased convergence and
reduced training time. The following section presents a list of publications this thesis is
derived from.

1.4 List of Publications
The content in this dissertations has been partially previously published in the following
publications:

• Thalhammer, S. and Vincze, M. (2022). COPE: End-to-end Trainable Con-
stant Runtime Object Pose Estimation. Accepted for publication at the Winter
Conference in Applications for Computer Vision (WACV).

• Gupta, H., Thalhammer, S. and Vincze, M. (2022). Grasping the Inconspicuous.
Accepted for publication at the Austrian Robotics Workshop.

• Gallauner, B., Thalhammer, S. and Vincze, M. (2021). Enabling Classification
of Heavily-occluded Objects through Class-agnostic Image Manipulation. OAGM
Workshop, 27-31. DOI: 10.3217/978-3-85125-869-1-05

• Thalhammer, S., Leitner, M., Patten, T. and Vincze, M. (2021). PyraPose:
Feature Pyramids for Fast and Accurate Object Pose Estimation under Domain
Shift, IEEE International Conference on Robotics and Automation (ICRA), 13909-
13915. DOI: 10.1109/ICRA48506.2021.9562108
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Chapter 2

Related Work

The first part of this section presents the state of the art for synthetic data creation for
the RGB and the depth domain and means for generalising and adapting to unknown
domains. As follow up object detection is summarised, the state of the art for object
pose estimation is presented and the chapter concludes with a presentation of relevant
metrics for quantitative evaluation.

2.1 Synthetic Data Creation
Due to the large amounts of requirement training data and the challenges accompanying
capturing real-world, deep learning research for creating synthetic training data is
multifaceted [23], [43], [62], [67]–[74]. Rozantsev et al. [73] project the object geometry,
taken from CAD models, into RGB images. A texture filling algorithm varies the object
appearance with respect to blur, noise and material properties. Su et al. [74] render
multiple views of 3D objects to generate a single compact descriptor of that object
using a CNN. This is a common strategy for pre-deep-learning object pose estimation
approaches [25]. In [70] the authors create annotated synthetic indoor scenes using
an automatic furniture arrangement mechanism. They use a simulated Kinect noise
model to include noise in the synthetic depth scans. Carlucci et al. [67] use Blender1

to create a synthetic depth image dataset for object recognition. They use 3D CAD
models downloaded from different databases to create object categories. Views are
rendered from a configuration space consisting of object distance, camera position,
focal length and random object warping. The amount of identical rendered images is
minimised. Planche et al. [44] present a pipeline to render realistic depth images for
object recognition. They simulate the image appearance for a wide range of sensors.
Their pipeline consists of a pattern projection mechanism, an intermediate step injecting
sensor noise followed by stereo matching and post-processing to reproduce the spatial
sensitivity of the sensors, and to simulate the impact of surface materials. Backgrounds
such as primitive shapes and captured real-world scans can be added. The authors
of [62] project rendered views of object models on top of Microsoft COCO [34] to
provide training data for their object pose estimation approach. This approach has

1https://www.blender.org/
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been successfully adopted by the object pose estimation community [22], [40]. The
authors of [69] employ a similar strategy to increase the amount of real-world training
images, by extracting the object of interest based on its mask from training images
and pasting them on random background. Sundermeyer et al. [23] use synthetically
created RGB-crops of objects for object pose estimation. Park et al. [43] render RGB-D
images from physically sampled virtual scenes. Hodan et al. [71] show the suitability
of physically-based-rendering (pbr) for synthetic-to-real object detection. Denninger et
al. [68] provide a framework for creating synthetic training data for diverse computer
vision problems using PBR, which in turns is used to provide the training data base for
the BOP-challenge [75].

2.2 Transfer Learning
The generality of trained deep learning models, as a family of algorithms that learns a
representation of the provided training data, is highly dependent on the amount and the
domain of that data. Thus, a bias is induced during training. Transfer learning subsumes
those cases for which labelled data is not available over all domains [76]. Depending on
the availability of data and corresponding annotations, diverse solving strategies exist,
ranging from domain randomisation over domain alignment to unsupervised domain
adaptation [42], [67], [77]–[79]. This work expects neither availability of target domain
annotations, nor target domain samples, since it is infeasible to always expect the
availability of data in the test domain. Therefore, this work aims to generalise to unseen
domains.

Diverse techniques to improve the trained model’s generality exist. Regularising the
kernels’ weight updates improves generality of learned representations [80]. Randomly
dropping network weights from updating during training can be seen as a form of
ensemble learning which leads to improved generalisation [81]. Aligning the statistics of
learned feature spaces also helps to improve transfer when facing data with a shift in
domain [82]. The parameter space of the model itself specifies the model’s capacity. As
such it has an influence on the learned representation and thus controls the generalisation
ability of the trained model. Additional training hyperparameters such as batch size and
learning rate also influence the performance under domain shift, and in practice need
to be adjusted based on the specific problem [83]. The following paragraphs present
specific techniques to improve domain transfer when using depth images, followed by
those for the RGB domain.

Transfer Learning in the Depth Domain: Transfer learning subsumes the cases
where labelled data is not available over all domains for the task at hand. In this work
we consider the case that we have the same task for source and target domain, but
labelled data is only available in the source domain. This requires the application of
domain adaptation techniques for the transductive transfer learning task [76]. Solutions
to this problem include domain randomisation, domain alignment and unsupervised
domain adaptation [42], [67], [77]–[79], [84]. We use an off-the-shelf architecture as an
detector, which requires strategies to transfer the image domain.

In [85] collision avoidance for autonomous flight is learned from simulation. They
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render images from synthetic 3D hallways. Parameters such as wall textures, furniture
position, illumination and camera pose are randomised. Tobin et al. [72] use domain
randomisation to produce sufficient variability at training time to enable robot grasping.
Their approach randomises shape, position, orientation, texture of the objects involved,
illumination and camera extrinsics. In [45], Zakharov et al. use domain randomisation
to augment depth images. Perlin noise [86], Voronoi texturing and white noise is used
as background for rendered 3D object models. Perlin noise is an inexpensive way to
simulate sensor noise. Randomised patterns are used to simulate occlusion.

A remaining challenge is to adapt to the target domain when no data is available. We
address this by augmenting synthetic depth scans with Perlin noise and a randomised
sensor noise model.

Transfer Learning in the RGB Domain: The two most common methods for
synthetic-to-real transfer for learning-based pose estimation are unsupervised domain
adaptation and domain randomisation [72]. For unsupervised domain adaptation,
Generative Adversarial Networks (GAN) are employed to map images from a source to a
target domain [42], [45]. Bousmalis et al. [42] train one model to map images from the
synthetic source domain to the real target domain, followed by a second model to classify
and estimate 3D poses. The authors of [87] learn a mapping between the synthetic and
real-world features spaces for domain adaptation. A self-supervised approach using
differential rendering is proposed to overcome the requirement of annotated real-world
images [52]. However, while neither [87] nor [52] need annotated real-world images,
both require a considerable amount of images in the target domain. Our approach
works purely with synthetic data without the requirement of any real-world images
during training. We do not aim to adapt to the target domain, we generalise to unseen
domains via randomising the noise applied to the synthetic domain and by regularising
training.

When randomising domains, the image space is augmented by inducing noise [23],
[62] to create a synthetic domain that is a superset of the real-world domain. In [62],
rendered images are pasted onto images from MS COCO [34] and trained for end-to-
end object detection, classification and pose prediction using a network based on [28].
In [49], the authors follow the same strategy to estimate poses using an encoder-decoder
architecture. Sundermeyer et al. [23] train separate networks for detection and pose
estimation. For detection, the models from [28] and [56] are used, then an encoder-
decoder network is trained to reconstruct rendered images from augmented renderings.
In this work, we leverage and improve over recent RGB augmentation strategies to
improve generalisation.

2.3 2D Localisation
Single-stage object detectors present efficient solutions for multi-object, multi-instance
object localisation in 2D [28], [56], [57], [88]–[90]. Object detection benefits from making
predictions from the multi-scale feature maps of a feature pyramid network [28], [32],
[33], [91], [92]. In the next paragraph we present the state of the art for feature pyramids
in deep networks in detail. It was shown that using location priors such as anchors [28],



16 2 Related Work

[30], [56], [92] to sample training locations in specific pyramid levels improves object
detection performance. The last paragraph of this section discusses the use of anchors.

Feature Pyramid Networks: Feature pyramid networks aggregate features over
various spatially resolved feature maps. This provides local to global object appearance
cues and thus encodes scale information into feature maps. By aggregating features
using a top-down pathway then upsampling lower-resolved feature maps for feature
fusion, Feature Pyramid Network (FPN) [32] improves performance over using the
feature maps from a single image resolution. Building on FPN, the Path Aggregating
Network [93] adds a bottom-up pathway, improving over FPN. Recently, [91] used
Neural Architecture Search [94] to design an effective feature pyramid. In [33], an
efficient modification of FPN is presented in which the introduction of skip connections
leads to a more lightweight and better performing variant. We translate the concept
to pose estimation. By leveraging recent findings for feature pyramids and with the
specifics of 6D localisation scenarios in mind we design a Pose Feature Pyramid Network
(PFPN).

Anchors for Object Detection: The standard approach for choosing training
locations in the multi-scale feature maps is to threshold the overlaps of the ground
truth bounding boxes and assumed box priors, so-called anchors [28], [30], [56], [92].
Bounding box priors with different sizes and aspect ratios are sampled depending on
the individual feature map resolutions in the feature pyramid. For training, foreground
image locations are chosen based on the Intersection-over-Union (IoU) between ground
truth bounding boxes and the respective anchor priors. As such, training locations are
correlated with the projected object shape in the image space. This leads to effective
encoding and handling of objects with different scales. However, using anchors has two
downsides, firstly, it requires manual specification of 16 hyperparameters that reflect
the expected training and test dataset statistics; secondly, the size of the output space
depends on the number of anchors sampled for each image location. Recent approaches
propose alternative formulations to circumvent these shortcomings, while retaining the
advantages of anchors [88]–[90], [95]. The authors of [90] choose the respective feature
map resolution for training explicitly by using the bounding box size to overcome the
necessity for sampling anchor boxes. True image locations of the feature maps are
assigned based on the respective pixel’s center-ness with respect to the ground truth
bounding box. Alternatively, [89] models objects as paired-keypoints: the top-left and
the bottom-right corner of the bounding box. Similarly, [88] addresses the inefficiency of
anchor-based object detection by modelling objects as their center points and estimating
the bounding box relative to it. The authors of [95] overcome the requirement of
hyperparameters for assigning objects to anchors by designing a flexible maximum
likelihood estimation assignment for network training. We propose to sample training
locations based on the visible object mask and the 3D object dimensions. We also
use the 3D object dimension to effectively replace the anchor-based target annotation
standardisation. As such we encode objects of different sizes and eccentricities more
effectively, while also reducing the size of the output space and the number of required
hyperparameters.
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2.4 6D Localisation
After an outline of recent developments in monocular 6D object pose estimation, we dive
into deriving direct pose estimates from intermediate geometric object representations.
This is followed by reviewing location sampling and target standardisation for object
detection.

2.4.1 Classical Approaches:
Classical approaches use different types of hand-crafted features to encode view-
dependent descriptors for object pose estimation. Early works encode templates from
depth or RGB-D data [24]–[26], [96]. Drost et al. [26] match descriptors comprised of
point-pair features to a point cloud of the test scene. Pose votes are generated based
on the query’s similarity to entries of a look-up hash table. Votes are accumulated
and hypotheses are refined using ICP. Hypotheses are favoured when the detected 3D
edges match the model contours. Hinterstoisser et al. [25] match queries to RGB-D
template descriptors encoding local image gradients and surface normals. Aldoma et al.
[97] encode SHOT descriptors [98] for object recognition and 6D pose estimation. A
global hypotheses verification framework improves performance in clutter and under
occlusion [96]. Hodan et al. [24] use a sliding window with cascading evaluation.
Pre-filtering differentiates between object and background. Hypotheses are generated
for every window by hashing. Hypotheses verification consists of verifying size, normals,
gradients, depth template and color. Object pose refinement is initialised from the veri-
fied hypotheses using particle swarm optimization. Vidal et al. [27] and Alexandrov et
al. [99] improve the performance of [26] and thus show that point-pair feature templates
still provide strong estimators today. For hypotheses generation, a local clustering step
and an additional filtering step to remove non-discriminative pairs between neighbouring
clusters[27]. After hypotheses generation, a re-scoring is used on the top 500 based
on how well they fit to the scene data. The top 200 are then refined using projective
ICP. During post-processing, hypotheses that only partially fit the scene are removed.
Additionally object silhouettes that do not overlap with scene edges are filtered. Apart
from point-pair feature-based methods, template-matching methods are also relevant
for learning-based pose estimation [100].

2.4.2 Learning-based Approaches:
It has been shown that decision forests are a learning-based alternative to hand-crafted
matching frameworks [101], [102]. Tejani adopts the multi-modal templates of [25]
to predict the probability distribution over templates for detection and object pose
estimation. Brachmann et al. [102] also employ a random forest approach to predict
object class and pose per pixel. A RANSAC-based optimisation scheme is used to
sample poses. The pose is subsequently iteratively refined by maximising the likelihood
over the distributions estimated by their random forest. Kehl et al. [62] present a
deep-learning solution modifying SSD [28] as backbone network to regress bounding
boxes and to predict class, viewpoints and in-plane rotation. The 3D translation is
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derived from the detected bounding box. They argue that classifying poses is more
accurate than regressing and allows parsing multiple detections as well as handling
symmetries in a straightforward way. They train SSD on real images with objects of
interest rendered into the scene. Xiang et al. [48] predict instance segmentations and
pose from RGB images. They regress the center direction per pixel to estimate the
object’s center using a Hough voting layer. The authors introduce the ShapeMatch-Loss
that enables handling symmetrical objects. During training the offset between the
estimated model points and the ground truth model points is minimised. ICP is used
as refinement. Rad et al. [47] employ VGG [103] to obtain coarse object segmentation
and passes the object crop through two other networks. One network estimates the pose
based on control points and another network subsequently refines the initial estimate.
Sundermeyer et al. [23] use RetinaNet [56] for object detection and 3D translation
derivation. An autoencoder is trained to extract a latent feature vector to derive the
object rotation. Sock et al. [6] employ Faster-RCNN [104] for feature extraction in
depth images and add a pose branch, separately estimating the object center, depth and
rotation. These initial estimates are coarse. Since they estimate object poses in crowd
scenarios, they apply a joint registration module taking neighbouring object hypotheses
into account separates true from false positives.

2.4.3 Pose representation
Xiang et al. [48] directly regress the quaternion representing the object rotation and
the object’s translation. Kehl et al. [62] argue that rotation estimation improves when
formulating it as a classification problem. They classify the viewpoint and derive the
3D translation from a precomputed bounding box depending on the rotation. Do et al.
[61] regress values of the Rodrigues rotation formulation. Sock et al. [6] separately
classify the three Euler angles and the object’s depth. Crivellaro et al. [105] propose to
estimate geometric correspondences and to regress their image locations. This keypoint
prediction can be formulated similarly efficient as bounding box estimation. The pose is
derived by solving PnP with these 2D estimates of corresponding 3D points in the object
coordinate frame. This approach is widely adopted by the community [22], [47], [53], [59],
[106], [107]. An alternative strategy is to use encoder-decoder architectures for dense
hypotheses generation and subsequent pose estimation using the PnP algorithm [22],
[39], [40], [46], [49], [54], [58], [107]. The majority of these approaches colour the mesh
model based on the uv-coordinates. The networks are trained to regress the vertex
location in the object coordinate system, i.e., 2D-3D correspondences, that are the input
to PnP. While many state-of-the-art methods adopt these trends it is computationally
expensive, since dense correspondence prediction requires an output space of the input
space’s size, while keypoint estimation enables a scalable pose estimation formulation.

2.4.4 Multi-model Pose Estimation
Since single-model approaches result in inferior performance as compared multi-model
approaches [56], researchers tend to train separate models for each object of interest to
improve performance [22], [43], [47], [49], [59]. Even more performance gain is achieved
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when first detecting objects in images, secondly predicting geometric correspondences
as surrogate targets and lastly estimating the pose using the PnP algorithm [22], [39],
[40], [46], [49], [54], [107]. The performance improvement occurs from sequentially
estimating multiple representations and as such using all of the network’s capacity for
the respective task.

We argue that the state of the art for object detection, feature pyramid networks,
provides a solution to alleviate that problem. Making predictions from multi-scale
features better encodes object scale information, since differently resolved feature maps
are used for making predictions of objects with varying scales. Which is beneficial
for RGB, as no direct depth information is available. Additionally, solving multi-task
problems encodes more general latent feature spaces that are well suited for providing
estimates under domain shift.

2.4.5 Direct Pose Regression

Considering that direct pose regression from the feature space leads to inferior per-
formance, the best-performing monocular object pose estimation approaches leverage
geometric correspondences as regression targets [39], [40], [49], [53], [54], [58], [108].
Poses are derived for each estimated set of object correspondences using variants of
PnP [36], [66], [109]. Recent trends replace the classical solver with trainable ver-
sions [37], [41], [63], [64], [110] to infer the 6D pose directly from the intermediate
geometric correspondences. This enables end-to-end trainable object pose estimation,
as it provides the additional supervision for the down-stream network parts with the
6D pose. Their findings indicate that direct 6D pose estimation also results in state-
of-the-art performance by sharing the pose regressor over the objects classes [37], [41].
However, efficient and simultaneous single-stage multi-object instances handling is a
problem that still remains [58].

The BOP challenge [75] is a benchmark that aims to provide a standardised protocol
for unbiased comparison of object pose estimators. Considering the top performing
approaches, a frequently used technique to handle multiple object instances in an image
is to separate object detection from pose estimation [17], [38]–[40], [58], [111]. In
the first stage, 2D location hypotheses are provided using common object detectors
such as FasterRCNN [30], RetinaNet [56] or FCOS [90]. In the second stage, object
crops are passed to the pose estimator but this leads to considerable temporal and
computational cost, and in the third stage poses are derived. An exception is EPOS [58]
where multi-instance handling is facilitated by using Graph-Cut RANSAC [60] to cluster
the predicted geometric correspondences to individual instances. Despite providing a
sophisticated approach for addressing object symmetries and multiple object instances
with one forward pass through a network, their multi-instance fitting of poses using [60]
is computationally very demanding. In our work, we alleviate this issue by adopting
ideas from object detectors and incorporate direct pose regression into the detection
stage.
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2.5 Metrics
This section provides the reader with an overview of the metrics used throughout the

thesis. The next paragraph introduces metrics for object detection. Afterwards common
metrics for object pose estimation are presented.

2D Localisation The most common heuristic that defines if a bounding box detection
counts as correct is the Intersection-over-union, abbreviated to IoU:

IoU =
ˆbox ∩ box
ˆbox ∪ box

, (2.1)

where ˆbox and box are the estimated and the ground truth 2D bounding box, respec-
tively. Based on their IoU-values true positive detections are distinguished from false
positive detections. Using the IoU for thresholding one of the most basic metrics for
object detection is the recall:

recall = tp

tp + fn
, (2.2)

Where tp, fn are the number of true positive and false negative detections, respectively.
The precision:

precision = tp

tp + fp
, (2.3)

with fp being the number of false positive detections. Using these metrics the
harmonic mean of recall and precision is defined as:

F1 = 2 · precision · recall

precision + recall
, (2.4)

Results for object detection according to the Microsoft COCO object detection
challenge [34] are reported using the the mean Average Precision (mAP):

mAP = 1
a

a�
a=0

t−1�
t=0

(recallt · recallt+1) · precisiont, (2.5)

for different values of IoU thresholds t and the mean over the number of object classes
a. When reported we use the discrete integral of t from 0.5 to 0.95 in 0.05 steps.

6D Localisation A commonly used metric to report object pose estimation quality
is the ADD(-S) error [112]:

eADD = avg
m∈Mi

||P̂m − Pm||, (2.6)

eADDS = avg
m1∈Mi

min
m2∈Mi

||P̂m1 − Pm2||. (2.7)

ADD measures the average deviation of model points using the corresponding point
distance. For objects exhibiting coordinate frame transformations that result in am-
biguous views, i.e. visual object symmetries, the ADDS error, using the closest point
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distance, is calculated. We report the fraction of poses below the commonly used error
threshold of 10% of the object diameter, the ADD(-S) recall.

When comparing against the BOP challenge [75], we use the respective metric. The
deviation of the estimated pose P̂ to the ground truth P is projected to a scalar value
using the average recall of three error metrics. These are the Visual Surface Discrepancy,
the Maximum Symmetry-Aware Surface Distance and the Maximum Symmetry-Aware
Projection Distance:

eV SD = avg
p∈V̂ ∪V

0 if p ∈ V̂ ∩ V ∧ |D̂(p) − D(p)| < τ ,

1 otherwise
(2.8)

eMSSD = min
s∈Si

max
m∈Mi

||P̂m − Ps||2, (2.9)

eMSP D = min
s∈Si

max
m∈Mi

||proj3D→2D(P̂m) (2.10)

− proj3D→2D(Psm)||2,

where V̂ and V are sets of image pixels; D̂ and D are distance maps and τ is a
misalignment tolerance. Distance maps are rendered and compared to the distance
map of the test image to derive V̂ and V . Si is a set of symmetry transformations
that depend on the visual ambiguities of the object mesh. Mi is a subset of the mesh
vertices and proj3D→2D(.) denotes the projection to the image space. For each of these
metrics the average recall (AR) is measured when comparing errors to multiple error
thresholds (and τ in the case of eV SD). Results are then reported as the Average Recall:
AR = (ARV SD + ARMSSD + ARMSP D)/3.



Chapter 3

Object Localisation under Domain Shift

This section presents detailed descriptions of the methods proposed in this thesis. After
introducing the relevant concepts for creating rich background information and physical
sampling of scenes for synthetic data creation, we present techniques to adapt to the
depth, respectively to generalise within the RGB domain. Thereafter, we demonstrate
the basic approach to solve the problem of efficient simultaneous detection and 6D
pose estimation of multiple objects of interest. Subsequently, this approach is extended
to RGB-based pose estimation, specifically addressing the challenges accompanying
domain shift in this richer domain. Ultimately, our method is extended by proposing a
more efficient true location sampling scheme for training, and by providing end-to-end
trainability for constant runtime object pose estimation. For training object meshes
either generated using Computer Aided Design (CAD) or reconstructed from physical
object models are used.

3.1 Training Data Creation and Transfer Learning

The following paragraphs present physically-based scene sampling for training data
rendering. We render synthetic depth data of a virtual scene resembling the area of
deployment of our model, using Blender1. These data are subsequently augmented
and annotated using a randomised noise model and are used for supervised training.
Domain randomisation, i.e. diverse scene setups and various background information,
produces training data with high variation regarding views and occlusion patterns.
Additionally, noise heuristics are applied. We create an augmented domain Xa that
creates a superset Xa ⊇ Xr of the variations in real-world RGB-D images. We take care
that Xa does not diverge far from Xr by choosing variations to not violate the sampling
theory. We show that this generates high-quality data to train deep architectures for
object detection and pose estimation in depth images. An example of a virtual scene is
presented in Figure 3.1.

1www.blender.org
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Figure 3.1: Virtual Scene Setup An example of a randomly sampled virtual scene
for synthetic depth data rendering.

3.1.1 Training Data Rendering for the Depth Domain

We create synthetic data with diverse scene setups and background information in
order to produce data with high variation to train object detectors and pose estimators.
Three different approaches to create synthetic scenes are chosen in order to evaluate
the importance of the background information:

• simple: Objects are arranged on a table, without further background information.

• limited: Objects are arranged on a table with static domain-relevant background
objects.

• realistic: Objects are arranged on a table with static domain-relevant background
objects and randomly placed domain-relevant objects.

Table 3.1 presents a list of background objects used for rendering. The additional
objects are downloaded from GrabCAD2.

In order to render training images from virtual scenes exhibiting the expected
variations regarding views, object poses and occlusion patterns, for each image we:

1. Set a plane that acts as a ground plane for object sampling. Domain-related
objects are set to fixed positions, depending on the experiment in Table 3.1. These
are either none for simple or those listed under limited and realistic. The center
of the tabletop is colocated with the origin of the scene’s coordinate system. The
x-y-plane of the coordinate system is parallel to the tabletop.

2https://grabcad.com
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Table 3.1: Virtual Scene Background Objects sampled for different virtual scenes’
background clutter.

simple no additional background information
limited Apple IMac, bin, keyboard, lamp, laptop, two types of screens,

mouse, pot plant, speakers
realistic All from the limited objects, Apple Iphone, ball, BeatsAudio, two

types of cans, bottle, Buick model, bulb, DualShock 4 controller,
pc fan, knife, Nintendo Gameboy, Nvidia GeForce GTX 1080, plier,
spacer, stapler, tablet

2. Draw nine objects of interest and drop them onto the tabletop. The x and y offset
is sampled uniformly and independently up to 30 centimeters away from the scene
coordinate system’s center.

3. Draw either no domain related object for the case of testing simple background
(Table 3.1), or between six to ten domain related objects for testing the realistic
case and drop them anywhere on the tabletop.

4. Sample the camera pose similar to the expected poses uniformly in the upper
hemisphere of the table. The viewing direction is fixed to the origin of the scene’s
coordinate system. The virtual camera system consists of one camera and a light
source mimicking an infrared light projector.

5. Render a depth image, a binary mask indicating visible image regions, object masks
indicating pixel-level class correspondences of the visible pixels and individual
object masks without occlusion.

6. Compute the ground truth for bounding boxes, class identities, object poses in
the camera coordinate frame and per object visibility ratios using the previously
rendered object masks.

The output of the rendering process is a quadruplet of a depth image, binary visibility
mask, object masks and the ground truth annotations. The binary mask provides
information about image regions with invalid depth values depending on the imaging
geometry of the virtual infrared depth sensor setup. Objects are annotated with a
bounding box, 6-DoF pose and visibility ratios in the image plane. Figure 3.2 shows an
example of the synthetically rendered depth images and visibility masks.

In theory this procedure can easily be extended to RGB rendering by assigning
material properties to the scene objects and using a ray tracing-based rendering engine.
In practice we use the renderer of [68], which was released during the creation of this
thesis. Both versions are interchangeable, yet [68] provide a stand-alone Python 3 API,
which makes their approach more modular.

3https://www.python.org/
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Figure 3.2: Renderer Output Synthetic depth image (left), visibility mask (middle)
and pixel level class correspondence (right).

3.1.2 Adaptation in the Depth Domain

Different works address the problem of creating synthetic depth data with realistic
noise characteristics [44], [73], [113]–[115]. We combine their findings with domain
randomisation [72] to apply an advanced augmentation strategy. We pair a sensor
model with Perlin [86] noise-based pixel warping to augment rendered depth images
with realistic noise. In order to create a superset of the variations of real-world depth
images, and to force the trained networks to handle diverse levels of noise, we randomly
choose the parameters of our augmentation for each image. Various works evaluate and
quantify the errors of the depth scans from infrared-based structured light cameras such
as the Microsoft Kinect V1 [116]–[118]. The most common sources of error are the depth
sensor itself, the measurement setup and the properties of the object surface. Missing
depth values are typically caused by infrared occlusion, specular surface reflection and
gaps in the depth images due to strong light [118]. Our approach is designed for objects
of interest with surface materials that diffusely scatter incoming light, hence omitting
the simulation of specular reflections. We propose to randomise the parameters of our
augmentation to account for the intractable number of variations and combinations of
the influences in the depth image capturing process.

Randomised Sensor Model Based on the imaging geometry, parts of the scene are
occluded, these occlusions are affected by strong light illuminating the scene. In order
to simulate that influence, morphological opening and subsequent median filtering is
applied to the mask image, which is created by the rendering script. The binary mask
is applied to the synthetic depth images to remove the occluded image regions. The
kernel sizes are sampled from {3, 5, 7}. These kernel sizes are also used for blurring.
For further augmentation, depth images are resized to 320 by 240 pixels, since that
is the resolution of the infra-red based structured light camera, the Microsoft Kinect
V1. The images are down-sampled using area interpolation to avoid aliasing. Blur
is added to minimise the discrepancy between depth gradients in the real-world and
synthetic images. The standard deviation of the blurring operation is chosen uniformly
in a range from 0.25 to 3.5. The synthetic depth values are rounded to the nearest
quantisation value, based on the hypothesised sensor’s depth resolution [118] to obtain
synthetic depth values in an eleven bit range. Additional noise is added to the quantized
depth values using an offset chosen randomly from a Gaussian distribution. The depth
noise of the sensor increases non-linearly with depth, though since the expected object
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placement lies in the range between 30 centimeters and 150 centimeters we approximate
it linearly, similar to [119]. The offset is calculated per pixel using its nearest quantised
value, scaled by the parameter nsd. The randomized parameter nsd is drawn uniformly
between 0.002 and 0.004. This range is based on the actual depth noise of the Microsoft
Kinect V1.

Perlin Noise Further randomness of the appearance of occluded scene parts, depth
and lateral noise is added by warping the depth images through the application of pixel
offsets, using the Perlin noise technique [86]. This approach is similar to Zakharov et
al. [45]. The basic concept is that a 3D vector field is generated to randomly distort
synthetic depth images. Pixel locations are warped by applying the sampled vector field
to the already augmented depth images. We use their proposed parameter ranges. For
training, images are colour coded using the approach of [120]. A comparison of a real
world depth image (left) and a synthetic depth image (right) is presented in Figure 3.3.
Figure 3.4 compares different levels of augmentation.

Figure 3.3: Depth Domain Comparison Comparison of a real-world (left) and a
synthetic augmented (right) depth image, colour coded to using [120].

Figure 3.4: Depth Augmentation Synthetic depth images with different intensity
levels of our camera model, colour coded using [120].

3.1.3 Training Data Rendering for the RGB Domain
Early deep learning-based object pose estimation approaches train on synthetic data
generated using rasterisation [23], [48], [62]. Hodan et al. [71] show that physically-
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based pose, camera and appearance sampling improve object detection rates. The
authors of [68] present a publicly available toolkit for creating training data with rich
annotations suited for diverse computer vision problems. Rendered using physically-
based rendering (pbr). For standard datasets we use the data generated by [68] provided
with the BOP-challenge [75].

For high-performance custom dataset creation we generate data using OpenGL4,
rendering approximately 50,000 training images with a resolution of 640 × 480 in ∼ 5
hours. Data sampling per image is performed with the following steps:

1. Randomly sample background image from [34].

2. Randomly choose objects from the set of object meshes and uniformly sample the
6D object pose in the camera frustum. Randomise rendering parameters based
on ranges centered at physically plausible values, such as index of refraction (ior).
In practice the ior can be derived from look-up tables depending on the material.
Approximations based on parameters such as the ior provide practical mean values
of the distributions to sample the respective parameter such as diffuse, specular
and metallic reflection from.

3. Randomise illumination and light color.

4. Render objects starting with the farthest from the camera. Iteratively update the
image and the mask image.

5. Render all sampled objects separately transformed to the image center using
the lookAt-function5 to create per instance mask images and compute visibility
fractions.

6. Derive annotations such as amodal and visible bounding box from the per instance
mask or the mask image, respectively.

For custom PBR data we use the BlenderProc toolbox of [68], which takes roughly 50
hours for rendering 50,000 images on an NVIDIA Geforce RTX 2080 Ti. Figure 3.5
presents training images rendered using OpenGL with the left image pair and Blender-
Proc with the right image pair. The highlighted crops, the second and the fourth image
from the left present appearance changes based on the respective rendering type.

3.1.4 Generalisation in the RGB Domain
This section provides descriptions about the main concepts used for generalisation
within the RGB domain. We apply randomised image augmentations during training,
training is initialised using pre-trained weights and during fine-tuning with the presented
synthetic data, parts of the network are not updated to improve domain generalisation.

Data Augmentation Domain generalisation is encouraged by applying randomised
image augmentations during training. We apply augmentations to the synthetic training

4https://www.opengl.org/
5https://www.euclideanspace.com/maths/algebra/vectors/lookat/index.htm
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Figure 3.5: Training Data Rendering Comparison of rendering object views on top
of Microsoft COCO images [34] using rasterisation (left image pair) and ren-
dering from cluttered virtual scenes using raytracing with BlenderProc [68]
(right image pair).

Table 3.2: Data Augmentations RGB image augmentations are sampled from the
listed chances and parameter distributions.

Augmentation Chance (per channel) Range
gaussian blur 0.2 σ ∼ U(0.0, 2.0)

average/median/motion blur 0.2 σ ∼ U(3, 7)
bilateral blur 0.2 σ ∼ U(1, 7)

hue/saturation 0.5 U(−15, 15)
grayscale 0.5 U(0.0, 0.2)

add 0.5 (0.5) U(−0.04, 0.04)
multiply 0.5 (0.5) U(0.75, 1.25)

gamma contrast 0.5 (0.5) U(0.75, 1.25)
sigmoid contrast 0.5 (0.5) U(0, 10)

logarithmic contrast 0.5 (0.5) U(0.75, 1.0)
linear contrast 0.5 (0.5) U(0.7, 1.3)

images similar to those of [23], [39], [40]. All parameters and ranges can be viewed in
Table 3.2. However, two aspects are not sufficiently addressed by the state of the art.
Rendering synthetic data produces smooth object contours, especially when rendering
object views and pasting these on random backgrounds. In order to induce increased
noise on object contours, linear, gamma, sigmoid and logarithmic contrast functions
are applied as augmenters. Since illumination changes largely contribute to the image
appearance, we choose to increase local image variations by sampling blob-like patterns
using frequency noise and changing contrast and brightness locally. The scale for
the noise function is sampled uniformly between 0 and 4. Masked image regions are
additionally augmented sampling multiply and linear contrast of Table 3.2. Figure 3.6
compares a raw rendered image to three random augmentation samples.

Pretrained CNN-layers Initialising backbone networks [104], [121], [122] of CNNs
with weights that are already trained for image recognition has widely been shown to
improve learned representations [40], [49], [50], [58] and enables fast network fine-tuning
for problems such as object detection [123]. As such, our networks used for generating
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Figure 3.6: Exemplary Augmented Images Comparison of raw and randomly aug-
mented RGB images.

the results from RGB data are pre-trained on ImageNet [14]. This initialisation also
allows to freeze the weights of certain layers to improve generalisation.

Restricted Training The performance reduction occurring when estimating poses
under domain shift is partially alleviated by setting low-level stages of the backbone
to non-trainable [49], [58], [124]. EPOS [58] freezes the majority of the backbone, i.e.
early and middle flow of Xception-65 [121] when training exclusively on synthetic data.
We experienced this strategy to be infeasible for feature pyramid-based approaches,
since predictions are made from different feature map resolutions taken also from early
and intermediate feature maps of the backbone. Thus, freezing the weights of all
layers up to the output layers reduces the pose estimation performance due to the
fact feature learning for the present task is limited. We only freeze 14 convolution
layers, similar to [49], [106]. As such, the first 2 stages of Resnet [104] are effectively
frozen. We additionally experience performance drops when updating any of the batch
normalization layer’s parameters. Best results are achieved by not updating these
layers at all during training. Additional performance improvements are observed when
exploiting the self-regularising effect of Mish [125] in task specific network heads.

3.2 Supervised Simultaneous Detection and Pose
Estimation

This section starts by presenting the basic principles adopted for simultaneous object
detection and pose estimation. Subsequently, these principles are adopted and modified
for object detection and pose estimation from depth images. The presented formulation
is extended for providing estimates from RGB data. Ultimately, the approach is
improved to provide scalable object detection and pose estimation. The approach
results in negligible runtime increase with respect to the number of processed object
instances.

3.2.1 Basic Approach
Our aim is to classify and estimate the poses of all object instances in a single RGB
input image. The 6D pose is defined as P̂ ∈ SE(3), which represents the object’s
rotation R ∈ R3 and translation t ∈ R3 with respect to the camera’s coordinate frame.
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Single-stage feature pyramid-based object detectors provide efficient multi-object
handling and generalise well under domain shift [28], [29], [33], [56]. Their main building
blocks are a backbone network for feature extraction, a feature pyramid network
for creating hierarchical multi-scale semantic feature maps [32], [33], [91], [93] and
task specific network heads. Our approach is based on Retinanet6 [56] with Resnet
backbone [104], pre-trained on ImageNet[126], with the Feature Pyramid Network [32]
(FPN) for multi-scale feature learning and two head networks. The first predicts a
one-hot encoding of the object class per feature map location, learning is supervised
using focal loss [56]. The second head estimates a bounding box per location and is
supervised using smooth-l1. Figure 3.7 presents the basic network for multi-object pose
estimation. An additional network head is added to Retinanet. Like the two generic
heads, the additional head takes the hierarchical features from the feature pyramid
network as input. The output per location is an estimate of the standardised encoding of
the sampled training targets for pose estimation, i.e. geometric object correspondences.

Figure 3.7: Basic Pose Estimator We adopt Retinanet [56]. Resnet [104] is used as
feature extractor, FPN [32] for hierarchical feature learning and we add a
head-network for pose estimation.

3.2.2 Anchors
Effective assignment of true image locations for updating network weights during
training is an ongoing research problem [56], [88]–[90], [95], [127]. For feature pyramid-
based networks these locations are sampled in the hierarchical feature maps of feature
pyramids [32]. Anchors [30] are a widely-used approach for providing bounding box
priors to choose these locations [28], [30], [56], [92]. We adopt this sampling strategy for
our basic approach. For each image location in the multi-scale feature map, 9 differently
shaped and sized bounding box priors are sampled. This requires 16 hyperparameters:
5 each for base sizes and strides and 3 each for ratios and scales [56]. The resulting
priors that overlap the 2D ground truth bounding boxes with an IoU of more than 0.5

6https://github.com/fizyr/keras-retinanet
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are considered as true training locations and are used to update the weights. Training
targets for regression are standardised using the offset of the respective location from
the image space origin as mean, and the prior’s width and height as standard deviation.
In practice, ratios, scales and sizes are adjusted based on the expected bounding box
sizes. This results in two convenient traits:

• Sampling anchors leads to a uniform scale space for the expected bounding boxes.
As such, a similar amount of training locations are sampled per object, independent
of the object’s size in the image space.

• Regression targets are standardized using the respective anchor’s center, width
and height. This means that the regression target space has similar statistics for
differently sized objects.

3.2.3 Pose Representation
Providing appropriate regression targets is very important in order to enable effective
task learning, and for deriving poses from the predicted representation. Early learning-
based approaches tried to directly estimate or classify rotation in terms of Euler angles,
Quaternion or using the Rodrigues’ rotation representation [6], [23], [48], [61], [62].
Object translation is inferred from the 2D bounding box size and the estimated object
rotation, or is directly regressed or classified. An arguably better suited representation
for learning-based pose estimation are geometric correspondences [22], [39], [40], [49], [53],
[54], [58], [59]. The two standard ways to use geometric correspondences as regression
targets are either to predict uv-coordinates [39], [40], [49], [58] or keypoints [22],
[53], [54], [59]. Using the 3D geometric correspondences in the object frame and
their corresponding predictions in the camera frame, solving PnP estimates the 6D
transformation that solves the perspective projection equation. This is equal to the
object pose. While no clear study exists comparing uv-coordinates and keypoints, the
two obvious main differences are output size and number of hypotheses. Predicting
uv-coordinates in practice requires encoder-decoder networks since the output space has
to be dense. Most of uv-coordinate-based approaches make predictions using separate
networks per object, with object crops derived from the estimated bounding box as
the input. Keypoints are sparse geometric correspondences, thus can be predicted
from latent feature spaces like those of hierarchical feature maps. As an example, the
required output parameters for Pix2Pose [40] to produce geometric correspondences
for one object are 256 × 256 × 3, thus 196,608. EPOS [58] presents a single-model
estimator independent of the number of objects and instances involved, their output
space for the standard pose estimation image space of 640 × 480 [75], is 640 × 480 × 3,
thus 921,600. In contrast to these, estimating a sparse set of correspondences using
the approach presented in Section 3.5 only requires 6300 × 16, thus 108,000 output
parameters for processing multi-object multi-instance scenarios. The state of the art
reports a higher performance for dense correspondences due to their larger hypotheses
space, compared to keypoint-based approaches [47], [54], [59]. Notably, the authors
of [22] show that providing a large set of keypoint hypotheses also leads to good pose
estimation results. Since we use all anchors that sufficiently overlap with an object
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Figure 3.8: Geometric Correspondences a) Keypoints, green corner points of small-
est cuboid enclosing the object and b) color values based on the vertex
location in the object coordinate frame.

bounding box for location sampling, our formulation also results in many hypotheses
per object instance. Therefore, a diverse set of hypotheses from multiple latent feature
vectors is created. We argue that this procedure leads to similarly rich hypotheses space
as those of approaches using dense correspondences, while being computationally more
efficient.

Object meshes are considered to be known in advance, but no additional information
regarding the test scene is required. We define the corner points of the smallest
cuboid enclosing the respective object mesh in its coordinate frame as the geometric
correspondences (G3D). Figure 3.8 provides an example of the smallest enclosing cuboid
of LM’s Drill [112] in a. Keypoint locations are indicated as green dots with black
borders. The image in b presents a dense set of correspondences, coloured based on
their uv-coordinates.

3.2.4 Supervised Learning

The basic network learns to generate the outputs Ô, B̂ and Ĝ. The first predictions are
the set of object class probabilities Ô := { ô0, ..., ôk}, where k is the number of image
locations in the multi-scale feature map and ôk ∈ Ra is the Bernoulli-distributed object
class prediction. We denote the number of object classes in the dataset with a. The
second module predicts the amodal bounding boxes B̂ := { b̂0, ..., b̂k}, where b̂k ∈ R4.
The third module predicts the projection of G3D to the image space Ĝ := { ĝ0, ..., ĝk},
where ĝk ∈ R16. The overall loss function is defined as:

L = α · LO + β · LB + γ · LG, (3.1)

where LO, LB and LG are the losses for object classification, bounding box and
correspondence regression and where α, β and γ are loss weights. Learning to predict
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the Bernoulli distribution for the object class is supervised using the Focal loss [56]
and the loss for learning bounding box and keypoint prediction is supervised using the
Smooth-l1 [56].

We weigh the contribution of each component of the overall loss differently. In
practice the weights are set in a way that the starting loss for LB is twice and that for
Lg four times as much as LO. Our networks are trained using Adam [128] optimiser
with a base learning rate of 10−5, reducing the learning rate to one tenth every time
the overall loss didn’t reduce for two consecutive epochs.

3.2.5 Symmetry Handling
Symmetry handling in the context of deep learning is necessary to not hinder the
learning process while training networks [23], [40], [47], [48], [58], [129]. Objects with
continuous symmetries can be rotated arbitrarily around the axis of symmetry, resulting
in an infinite number of similar, thus ambiguous views. When training these cases,
without employing special measures to keep the angle error between the predicted and
the ground truth pose near zero, the training process is hindered. The left plot of
Figure 3.9 compares the calculated angle error and the desired angle error for the loss
calculation of objects with continuous symmetries. When handling objects with discrete
symmetry transformations, transforming the objects with said transformation leads to
views resulting in the same object appearance. This can lead to ambiguities during
loss computation. The right plot of Figure 3.9 compares the calculated and the desired
angle error for the loss calculation of an object with discrete symmetry. The desired
absolute angle error is zero for similar views.

Figure 3.9: The Problem of Object Symmetries Calculated versus desired angle
error for loss calculation of object 17 of T-LESS, revolved around its axis of
symmetry (left) and calculated versus desired angle error for loss calculation
of object 9 of T-LESS, revolved around z-axis, resulting in ambiguous views
(right).

The standard case is that object models and annotations of object transformations
that result in ambiguous views are available, or can easily be manually defined if not
available. As such, common strategies to take these symmetries into consideration are
restricted training data creation [23], [47], [130] and formulating learning in a way to not
hinder convergence [38], [58], [129], [131], [132]. However, there are works considering
learning to recognise such symmetries [133].
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In this work, in order to disambiguate continuous symmetries, the annotated object
pose is transformed by rotating the object along its axis of symmetry. The object
is transformed so that the plane spanned by the axis of symmetry and an arbitrary
orthogonal axis of the object frame pass through the camera center. The left portion
of Figure 3.10 presents the annotation before and after transformation. Hence, we
overcome the problem of mapping identical views to a continuous set of possible poses.
In order to disambiguate discrete cases, object pose annotations are transformed such

Figure 3.10: Transformed Annotations Left presents a solution to map continuous
symmetries to unambiguous pose annotations, right presents mapping
discrete symmetries to unambiguous pose annotations, on objects of YCB-
video [48].

that the normal of the plane of symmetry always points to the same side of the image,
i.e., to the positive or negative x-direction of the image frame. Consequently, the
same control points are consistently either on the right or on the left side of the
object during training. As such ambiguous views are consistently annotated with
only one ground truth pose, the right side of Figure 3.10 presents an example. These
simple transformations disambiguate object symmetries and thus do not hinder network
convergence during training. The proposed transformations can already be applied
during rendering. Yet are also applicable online, during training data annotation or
training target sampling.

3.2.6 Deriving Object Poses
Each location sampled in the hierarchical feature maps outputs the image locations
of the corner points of the smallest cuboid enclosing the respective object. During
runtime anchors with a sigmoid classification score above the detection threshold
are considered as true anchor locations, and are used to generate the hypotheses for
geometric correspondences in the test image. Having the 3D locations of the defined
keypoints in the object frame g3D, their estimated 2D projections in image frame g2D

and the intrinsics K of the calibrated camera, solves the perspective projection model:

g2D = K · [R|t] · g3D (3.2)

for R, the 3D rotation, and t, the 3D translation retrieves the object pose. Figure 3.11
shows a visual representation of the relationship between the geometric correspondences
in object and in the image frame. The Perspective-n-Points (PnP) algorithm provides a
solver for deriving R and t [36], [66], [109]. Since the set of estimated correspondences is
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Figure 3.11: Perspective Projection Knowing the corresponding 3D locations in the
object frame of the estimated keypoints in the 2D image frame allows
estimating the relative transformation using PnP.

noisy, the RANSAC version of EPnP is used [36], [65]. As break conditions we use 300
iterations or an accumulated reprojection error of 5 millimeters with an inlier threshold
of 0.99. If any of these conditions is met, the estimated pose leading to the lowest
reprojection error is returned and used as object pose.

3.3 SyDPose: Object Detection and Pose Estima-
tion in Cluttered Real-World Depth Images
Trained using only Synthetic Data

Recently deep learning advanced the state of the art for computer vision tasks. Neverthe-
less, the advent of deep networks for 3D pose estimation has yet to be fully realised, given
that classical approaches predict poses exclusively from geometry priors with higher
performance compared to deep-leaning approaches [55]. While deep networks achieve
superior performance, they require a huge amount of training data [14]. Capturing and
annotating these data is time-consuming and labour-intensive, requiring physical object
instances, which is problematic in fast paced manufacturing environments. Thus, for
industrial applications it is desirable to train pose estimation pipelines from CAD data
only, since it is usually readily available.

Classical feature- and template-based approaches for pose estimation employ meshes
or point clouds, to create templates or hash tables in order to detect objects and
estimate their pose at runtime [24]–[26], [134]. Consequently, these methods require
no real-world data for training. Current deep learning approaches do not close the
domain gap, i.e. traversing from synthetic to real-world data without a decrease in
performance, therefore they need real-world data during training [47], [48], [54], [59].
Recent approaches showed that domain adaptation for 6D pose estimation is easier in
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the depth domain [6], [45], [87]. Therefore, we address the task of training deep pose
estimators only from synthetic depth data by rendering and augmenting these data in
terms of background information and sensor noise through random shape perturbations,
presented in Section 3.1.2 and Section 3.1.2.

Pose estimation is a non-trivial task for learning-based approaches, consequently
researchers tend to separate detection from pose estimation or even train separately
for distinct classes [23], [45], [47], [48], [59]. However, end-to-end learning, i.e. training
and deploying multiple stages of a vision pipeline at once, is desirable to reach a high
frame rate and to allow practical application. Additionally, when deep architectures
are trained on multiple objectives, i.e. in a multi-task fashion, the learned features are
stronger, which has been shown to be beneficial for each individual task [92]. Especially
when employing pre-trained models in a domain different from RGB, e.g. on depth data,
retraining the backbone with additional guidance is required to adopt the learned feature
extraction to the domain. We experiment with the output space for multi-object 6D
pose estimation. By providing specific output parameters per object class we improve
pose estimation performance. Our multi-task, end-to-end models for pose estimation
are thus trained with the capacity to simultaneously localise the distinct desired objects
in image space, and to estimate their poses in 6D.

A standard approach to predict 6D object poses is the prediction of the 3D bounding
box encapsulating the object of interest. The bounding box’s control points are projected
into 3D using PnP to estimate the pose [47], [54], [59], [105]. These approaches require
a lot of training data and time to converge to a usable state. We provide a simple
extension that improves convergence. Comparing edge length differences in image space
enforces orthogonality on the estimated 3D bounding box. Since this is done without
having to re-project the control points to the 3D space while training, the computational
overhead is kept low.

In summary, we propose a method for texture-less object pose estimation in real-world
depth images using only synthetic data for training. Our approach runs at almost 20
frames per second (fps) using an Nvidia Geforce GTX 1080.

• To the best of our knowledge we present the first end-to-end learning-based
approach for simultaneous object detection, classification and pose estimation of
an arbitrary number of texture-less objects in real-world depth images trained
using only meshes.

• We present a general extension to the loss function used for 3D bounding box
estimation. By comparing all parallel 3D bounding box edge length differences,
we favour 3D orthogonality and thus increase performance.

• State-of-the-art performance on the LM [112] and LM-O [135] dataset.

3.3.1 Approach Description
Figure 3.12 presents an overview of the 6D pose estimation approach. One end-to-end
trainable network produces outputs for all objects of interest, described in Section 3.2.1.
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Figure 3.12: SyDPose Multi-task, end-to-end network for object detection, classifica-
tion and pose estimation. Trained on augmented synthetic data, poses are
represented as geometric correspondence locations in the image space of
real-world depth images. 6D poses are estimated using RANSAC-PnP.

Estimated outputs are multiple one-hot encoding vectors presenting the object class,
2D bounding boxes and geometric correspondences, for all object instances in an image.
Training data is created as described in Section 3.1.1. Since only synthetic data is used
for training, the domain adaptation presented in Section 3.1.2 is applied to the data.
The network is trained on this synthetic data and estimates are produced on real-world
depth images. During training, compared to the vanilla anchors used in RetinaNet, we
do not use different scales for anchors creation, described in Section 3.2.2. This is done
since no performance reduction is observed, but training time is decreased considerably
due to the reduction of the output space to one third. We additionally regularise the
layers of the keypoint head using l2 regularisation with the hyperparameter set to 0.001.
During inference, foreground-background separation is performed using a detection
threshold of 0.5 on the one-hot class encoding vector. Non-maximum suppression is
applied to the foreground samples per class. Using an IoU of 0.5 the estimated bounding
boxes are filtered for that with the highest detection score. The final output is one
set bounding box points per object instance. Using these, poses are estimated using
RANSAC-PnP, see Section 3.2.6.

3.3.2 Multi-Object Handling

The basic pose estimation network described in 3.2.1 employs the same network head
architecture for bounding box estimation and keypoint prediction. These two problems
are similar in terms of formulation, yet geometric correspondence prediction is inherently
more demanding with respect to the learned encoding, see Section 1.1. Thus, in order
to improve multi-object pose estimation performance, we split the output space of the
keypoint network head.

The output space for bounding box prediction is k × 4, with k again referring to the
amount of latent image locations and 4 values for the x and y coordinates of the upper
left and lower right corner of the bounding box. We observe that directly using the
same head network for keypoint prediction, with k × 16, the x and y coordinates of the
8 cuboid corners per image location, leads to a low convergence of LG, see Equation 3.1.
In order to improve convergence and the localisation accuracy of the keypoints for



38 3 Object Localisation under Domain Shift

pose estimation we generate an output space of k × a × 16. In practice we assign 16
specific output channels for each object class in a. During training we only update the
corresponding parameters.

3.3.3 Orthogonality Favouring Loss
We observe that the edges of the predicted 3D bounding boxes are not orthogonal to
each other when projected to 3D. The state of the art does not take the geometry of
the bounding box in 3D into consideration during training [47], [54], [59], [105]. We
hypothesise that guiding learning with that additional information improves the learned
representation and improves physical plausibility of the estimates. This in turns leads
to improved performance using PnP since the set of correspondences to estimate the
pose from has less error.

As such, we propose to additionally supervise the keypoint loss LG of Equation 3.1
with an orthogonality constraint. Thus, LG becomes:

LG = δ · Lpts + (1 − δ) · Lorth (3.3)

where Lpts is the augmented l1 loss used in [56], [136] and Lorth is an orthogonality
favouring loss with weighting parameter δ. The orthogonality constraint is formally
defined as

Lorth =
k�

k=0

1
12

�
{∀cicj∥|i ̸=j,ei∥ej}

���(∥ei∥ − ∥ej∥) − (∥êi∥ − ∥êj∥)
��� (3.4)

per image, where e are the edge lengths, respectively estimated edge lengths ê of the
3D smallest cuboid enclosing the corresponding object. The factor for normalisation,
12, results from the amount of non-redundant parallel edges of the cuboid.

This loss penalises predicted length differences of two parallel edges on the 3D
bounding box in proportion to the deviation from the ground truth length difference.
Comparing these over all parallel edges favors orthogonality of the estimated cuboid
in 3D space. Since this constraint is directly computed from the estimated keypoints
without the need to project points to 3D, the computational overhead is negligible.

3.4 PyraPose: Feature Pyramids for Fast and Ac-
curate Object Pose Estimation under Domain
Shift

Exploiting synthetic data is a popular direction in order to generalise to novel domains
and to fully automate the training procedure. The best performing deep learning-
approaches for monocular 6D object pose estimation employ encoder-decoder architec-
tures [22], [39], [40], [49], [53]. These methods only focus on local changes in image space,
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Figure 3.13: PyraPose: Monocular 6D object pose estimation under domain shift.
Multi-resolution feature aggregation from different backbone stages using
a specialized Pose Feature Pyramid Network (PFPN) enables domain
generalisation and effective encoding of object scales to the feature space.

which is detrimental to pose estimation under domain shift, i.e., synthetic and real.
Alternatively, predicting from coalesced features at multiple spatial resolutions enables
processing of local to global information in parallel, and has shown remarkable success
for object detection [28], [32], [33], [56], [91], [93]. We hypothesise that this is highly
suitable for generalising to novel domains and therefore for object pose estimation under
domain shift. RGB-based approaches lack in performance compared to depth-based
ones, since the object depth is not directly observable [39]. Given that feature pyramids
explicitly incorporate object scales in the learning process, we further hypothesise that
they are well suited for RGB-based object pose estimation.

This work proposes to use feature pyramids as the main building block for extracting
meaningful hierarchical features for pose estimation, in contrast to those generated by
encoder-decoder networks. We show that making predictions from multi-resolution
feature maps guides the network to learn robust pose estimation under occlusion
and domain shift. Our approach PyraPose, shown in Figure 3.13, is based on a
novel Pose Feature Pyramid Network (PFPN), specialised for pose estimation. Our
design needs only one network (less than 43M parameters) per set of objects, which
leads to fast inference time of ∼26 fps. In comparison to state-of-the-art methods
also trained on synthetic data, we achieve up to ∼35% higher accuracy. We show
that we effectively transition to novel domains by testing on data that has a severe
shift in data characteristics, such as scene setup, illumination and camera intrinsics.
Furthermore, real-world grasping experiments with a mobile manipulator demonstrate
the full capability of our approach.

In summary, our contributions are the following:

• A novel RGB-based approach for pose estimation based on a new feature pyramid
network, PFPN, that creates meaningful multi-scale features for pose estimation.

• The demonstration that multi-scale features are well suited for pose estimation
under domain shift, allowing generalisation to different domains of deployment by
only training on synthetic data.

• State-of-the-art performance on multiple standard datasets and demonstration of
the usability for real-world robot grasping.
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Figure 3.14: Object Scale Ratios Frequency of relative bounding box ratios for Microsoft
COCO’s 2017 validation set [34] and the original Linemod test set [112].

3.4.1 Approach Overview
Our proposed approach for single-shot 6D object pose estimation is trained with synthetic
RGB data, introduced in Section 3.1.4. Physically-based rendering [68], [71] provides
data with realistic interactions of the object materials with the scene illumination. The
first stage is an end-to-end trainable multi-task CNN. This network detects objects
in the image and estimates the image locations of the projected per-object geometric
correspondences. The centerpiece of the proposed approach is a specialised feature
pyramid network, shown in Figure 3.13. In the second stage, RANSAC-PnP computes
the 6D pose from the sampled set of correspondence hypotheses per object.

Only one shared network is used, independent of the number of objects. Therefore,
only one model is trained per dataset in contrast to the majority of state-of-the-art
approaches [22], [23], [40], [46], [47], [49], [129]. This is advantageous because the
memory footprint is low, it is easy to apply and training time is short. Furthermore,
only one forward pass at runtime is required, independent of the application. As a
result, pose estimation is achieved at ∼ 26 fps on an Nvidia Titan V.

3.4.2 Pose Feature Pyramid Network
This section presents a specialised Pose Feature Pyramid Network (PFPN) that is
designed to learn hierarchical feature maps for object detection and pose estimation.
We hypothesise that pose estimation benefits from focusing on low-level features during
feature aggregation because:

1. Using Neural Architecture Search [94] to learn better hierarchical feature aggre-
gation architectures [32] in object detection [91] results in an architecture that
assigns more layers and feature map merging to low-level features maps than to
the high-level ones. This can be explained by the findings of [137], which demon-
strate that it is beneficial to encode more abstraction into low-level, respectively
highly-resolved feature maps of the feature pyramid.
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2. Object pose estimation tendentiously has to deal with objects in a clutter. Conse-
quently, many standard pose estimation tasks are characterised by small object to
image scale ratios, see Figure 3.14. Revisiting the anchor box computation of [30],
anchors are sampled in the image locations, i.e. pixels, of the hierarchical feature
map of feature pyramids. With an input of 640 × 480, P3 has a spatial resolution
of 80 × 60 pixels, P4 has 40 × 30 pixels and P5 20 × 15. For each of these feature
maps and for each pixel, a specific set of anchors is sampled using a base size,
scales and aspect ratios. Scales and aspect ratios are the same over all resolution,
but base sizes correlate with the ratio of image downsampling. The standard
value for the base size for P3 is 32 pixels, for P4 it is 64 pixels and for P5 it is
128. The biggest sampled scale is 1.59. Thus, the biggest anchor to image ratio
when using these 3 levels is 36%. While there are no objects with a bounding
box to image diagonal ratio of more than 36% for Linemod, in Microsoft COCO’s
2017 validation set [34] 16.9% of the featured objects are above that threshold,
indicated with a red vertical line. Thus, object detection also requires a broader
anchor box distribution to properly sample bounding box priors for all expected
object scales. For pose estimation, these larger locations produce a considerable
computational overhead for little performance improvement and therefore are
removed.

3. Features from lower-levels of the backbone provide a larger hypotheses space due
to the higher feature map resolution, and they condition the prediction making on
local views. Using an IoU-threshold of 0.5 between bounding box and anchor prior
is intuitive and in practice showed the best performance. However, in high-level
feature maps more anchor locations with a low object to anchor ratio are sampled.
This is not desired since learning is biased for holistic object appearances and not
local ones, which has been shown to be beneficial [53], [54].

Thus, our network design omits higher-levels of the feature pyramid, which are usually
used for object detection (i.e., C6 and C7), and we only rely on the backbone levels
C3, C4, and C5 of Resnet [104]. In Figure 3.13, each node represents an add operation
followed by a 3 × 3 convolution with stride 1 and ReLU activation. In order to create
pyramid level P3, the low-level features from C3 and C4 are combined. Following [91],
all spatial resolutions from the backbone are used to create pyramid level P4. This
aggregates features from each available pyramid level and applies a higher amount
of convolutions than for P5. The smallest resolved backbone level C5 is minimally
processed to keep the computational overhead low. Cross connections are designed to
provide information from all available backbone levels to create P5. Skip connections are
used on P3 and P4, as is known to be beneficial [33], [104]. We observe that combining
only two inputs per add operation and applying a convolution to the output achieves
best performance. The aggregated features are then forwarded to the task heads.

3.4.3 Task Heads
Our approach is supervised with 2D and 3D bounding boxes as well as segmentation
masks. The 3D bounding box and segmentation mask predictions update the trainable
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Figure 3.15: Sampled Locations and Predicted Masks: Left shows all the sampled
priors (white boxes) used to predict the pose of YCB-video’s [48] mustard
bottle. Images on the right and top present some partial views in more
detail. Right shows coarse mask prediction on an image of Occlusion
dataset [135]. Predictions made with resolution 80×60 pixels.

weights while the 2D bounding boxes are only used to compute image locations for
pose hypotheses prediction. The location and correspondence heads are used for pose
estimation and the mask head predicts the coarse instance segmentation. During
training, 3D bounding boxes are projected into image space using the object pose in
the camera frame and the camera intrinsics. During inference, 3D bounding boxes
are estimated in image space and subsequently re-projected to 3D using PnP and the
camera intrinsics to estimate the object’s pose.

Pose Hypotheses Prediction The location and correspondence heads classify
image regions that contain an object and create 2D-3D correspondence hypotheses,
respectively. The left frame of Figure 3.15 shows examples of such image region priors.

Location sampling and correspondence standardisation is done using anchors, see
Section 3.2.2. The predicted geometric correspondences representing the object pose
are described in Section 3.2.3. Using anchor boxes as priors conditions the network on
producing hypotheses from different scales and partial views. This includes a small
object to background ratio, which is shown to be beneficial in [53], [54]. The location
and correspondence heads use all three feature map resolutions coming from PFPN for
prediction making (i.e., P3, P4, P5).

Mask Prediction Since depth data is widely available on robotic platforms, the
Iterative Closest Point (ICP) algorithm can be used to refine initial pose estimates.
The higher the ratio of object to background points the more accurate is the estimated
transformation. Mask prediction is thus vital to achieve high quality performance with
ICP. We apply a similar approach to [53] by predicting the mask at one eighth of
the image resolution, see the right frame of Figure 3.15 for an example of predicted
masks. This leads to reasonable masks while keeping the computational overhead low,
as transposed convolutions are not used to upsample. Conversely to the location and
the correspondence heads, the mask head takes only the features from P3 as input.

Head Architectures All three task heads share the same architecture. Each consists
of four convolution layers with a kernel size of 3 × 3, a stride of 1 and ReLU [138]
activation, followed by another 3 × 3 convolution to regress the image locations of
the eight 3D bounding box corners with linear activation, or to classify with sigmoid
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activation. The first four convolutions in the location and mask heads extract 256
features per location. Conversely to the basic approach presented in Section 3.2.1 and
the keypoint regression head of Section 3.3 we use 512 features channels. This results
in similar performance as compared to using specific output channels per object class,
yet improves convergence and simplifies loss weight determination.

Loss Functions For the correspondence head, the orthogonality favouring loss,
introduced in Section 3.3.3 is used with δ set to 0.8. By punishing edge length differences
of the ground truth and estimated 3D bounding boxes, the regression incorporates 3D
information. Both the location and mask heads are optimised using the focal loss [56],
which is commonly used to improve the cross entropy loss by overcoming imbalances
of per-class samples and in the amount of foreground and background samples. This
is achieved by dynamically re-weighting difficult examples during loss computations.
During training, the losses are normalised over batches, anchors (location head) and
anchor locations (mask head). Weights for the loss of the correspondence, location and
mask heads are 0.125, 1.0 and 0.1, respectively.

3.4.4 Domain Generalisation
We use the pbr-data introduced in Section 3.1.3 as training data for the proposed
approach. This data contributes to the generalisation of our trained models. Refer
to the ablations in Section 4.2.2 for more details on that matter. The generalisation
of our trained models to novel domains is encouraged by applying different means for
regularisation during training, as described in Section 3.1.4. Random image augmenta-
tions are sampled online, individually for each image in a batch. The weights of the
backbone are pretrained on ImageNet [14]. The first two stages of Resnet [104] are
not updated during fine-tuning, similar to [49], [58], [124]. While [58], [124] freeze the
majority of the convolution layers in the backbones, we only freeze the first 28% since
detrimental otherwise. This might be connected to the usage of a feature pyramid based
approach, where the earliest features used in the feature pyramid are outputs after
the 24th convolution, as such after ∼ 48% of the backbone. This indicates the need
to fine-tune some convolutions on task. Convolution layers of PFPN and the network
heads are regularised using the l2 penalty term.

3.5 COPE: End-to-end trainable Constant Runtime
Object Pose Estimation

Learning-based object pose estimation research focuses on maximising the performance
under challenging conditions like domain shift, object occlusion and object symmetries
by tendentiously separating the detection from the pose correspondence estimation
stage [17], [23], [38]–[40], [47], [54] then deriving the 6D pose with the Perspective-n-
Points (PnP) algorithm [36], [66], [109] using the estimated geometric correspondences.
This leads to shortcomings because a) adopting surrogate training targets decouples
pose estimation from the training process and thus limits learning [37] and b) run-
ning inference for multi-instance scenarios leads to a computational complexity of at



44 3 Object Localisation under Domain Shift

least O (n) with respect to the number of objects (n) for the pose estimation stage.
Consequently, this type of approach has severely diminishing applicability for realistic
scenarios.

Recent object pose estimation research trends recognise those shortcomings and
partially alleviate them by directly regressing the 6D pose from the intermediate
pose correspondences, and achieve tremendous results [37], [41], [63], [64]. In [41]
and [37], detection is separated from the pose estimation stage, which makes them
not end-to-end trainable because they require an object detector. The work in [64] is
end-to-end trainable but separate networks need to be trained and pooling geometric
correspondences means multiple objects and instances cannot be handled simultaneously.
We improve upon these findings by proposing a natural extension to efficiently handle
multi-object multi-instance scenarios.

This work solves the aforementioned shortcomings by sharing the latent representation,
as well as the direct pose regressor over objects and their instances. We classify image
locations in the feature maps, regress bounding box and view-dependent object geometric
correspondences and regress the direct 6D pose. While the geometric correspondences
are intermediate representations, the direct 6D pose head takes this intermediate
output as input. Consequently, the loss related to the 6D pose is also backpropagated
to the down-stream task of geometric correspondence estimation. This design also
allows further guidance of the learning process by enforcing consistency between these
consecutive tasks, which additionally improves each of them. Additionally, we propose
a concurrent solution to anchors [30] for true location sampling during training that
does not require manually choosing hyperparameters based on the expected test data
distribution and reduces the output space by a factor of 9. True locations are sampled
and regression targets are standardised from a scalar shape prior derived from the
respective object mesh and the backpropagated loss is normalised for each object class.
Thus, training is not biased towards larger objects and no prior assumptions need to be
made in contrast to the case for anchors.

In summary, our contributions are:

• A simple and efficient solution for multi-object multi-instance object pose estima-
tion that improves over the state of the art.

• A training target sampling scheme that requires no assumptions about the test
data distribution.

• Experiments quantitatively showing the advantage of directly regressing the pose
from estimated surrogate targets.

Efficiently sharing internal representations over objects and instances enables end-to-
end trainability that requires only one forward pass through the network to process all
object instances in a single input image. We show that, processing more than 90 object
instances in a single image with more than 24fps on an Nvidia Geforce RTX 3090, our
method’s performance is competitive to similar state-of-the-art approaches but up to
35 times faster.
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Figure 3.16: Constant Runtime Object Pose Estimation. Given an input image
and a 3D model, image locations are classified while bounding boxes and
geometric correspondences are regressed. A direct pose regression module
slides over the image locations and regresses the 6D pose from the geometric
correspondences. Training is supervised with losses for each module (Lcls,
Lbox, Lkey, Ltra and Lrot) as well as auxiliary losses (Lproj and Lcons) to
enforce consistency between estimated correspondences and direct poses.
During testing, instances are efficiently clustered using their 2D IoU then
the n hypotheses with the highest consistency generate the 6D output.

3.5.1 Constant Runtime via Direct-pose regression

Our aim is to classify and estimate the poses of all object instances in a single RGB
input image. The 6D pose is defined as P̂ ∈ SE(3), which represents the object’s
rotation R ∈ R3 and translation t ∈ R3 with respect to the camera’s coordinate frame.
Object meshes are considered to be known in advance but no additional information
regarding the test scene is required. We define the corner points of the smallest
cuboid enclosing the respective object mesh in its coordinate frame as the geometric
correspondences (G3D). COPE, outlined in Figure 3.16, outputs the set of object
instances visible in the image, parameterised with object type and 6D pose.

COPE builds upon the success of recent efficient object detection approaches [56],
[88]–[90]. The RGB input image is first processed with a CNN backbone and then
multi-scale features are computed using a feature pyramid to estimate the intermediate
object representation. Three modules shared over feature maps of sizes [s/8, s/16,
s/32], with s being the input image resolution, generate the intermediate outputs Ô,
B̂ and Ĝ. The first predicts the set of object class probabilities Ô := { ô0, ..., ôk},
where k is the number of image locations in the multi-scale feature map and ôk ∈ Ra

is the Bernoulli-distributed object class prediction. We denote the number of object
classes in the dataset with a. The second module predicts the amodal bounding boxes
B̂ := { b̂0, ..., b̂k}, where b̂k ∈ R4. The third module predicts the projection of G3D to
the image space Ĝ := { ĝ0, ..., ĝk}, where ĝk ∈ R16. A shared direct pose module slides
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over the set Ĝ estimating direct pose hypotheses P̂ := { p̂0, ..., p̂k}, where p̂k ∈ R9. The
pose output is parameterized by 3 values for translation in R3 and the first two basis
vectors of the rotation matrix in R3, thus 6 values [139]. A set Ĉ := { ĉ0, ..., ĉk} is
computed that quantifies the consistency ĉk ∈ R1 between ĝk and proj3D→2D(G3D · p̂k)
for each image location separately.

During inference, given a query image the network predicts H = {Ô, B̂, Ĝ, P̂ ,
Ĉ} with constant runtime. Corresponding elements of H with an image location k of
maximum class probability ôk below the detection threshold are discarded. The resulting
subsets are clustered into object instances using the IoU between elements of B̂. We
define a hyperparameter n for the highest number of consistencies in Ĉ. This parameter
is set to 10 for the presented experiments; see the ablation in Table 4.16. Finally, the
detected object classes and the mean of the n poses with the highest consistencies per
instance are returned with negligible increase in runtime with respect to the number of
object instances. Through this procedure, our method can estimate the poses of a large
number of object instances in a single test image in real-time (> 24fps) on an Nvidia
Geforce RTX 3090.

3.5.2 Training Target Sampling

Effective assignment of true image locations for updating network weights during
training is an ongoing research problem [56], [88]–[90], [95], [127]. These true image
locations are often sampled in the output feature maps of feature pyramids [32], which
are a great tool to efficiently encode scale information to the feature space. Anchors [30]
are the standard representation for providing bounding box priors to sample true image
location based on the IoU with the ground truth during training [28], [30], [56]. For
each image location in the multi-scale feature map, 9 differently shaped and sized
bounding box priors are sampled. This requires 16 hyperparameters: 5 each for base
sizes and strides and 3 each for ratios and scales [56]. This results in two convenient
traits since anchor locations used for updating the network’s weights are chosen based
on a threshold-parameter for the IoU with the ground truth:

• Sampling anchors leads to a uniform scale space for the expected bounding boxes.
As such, a similar amount of training locations are sampled per object, independent
of the object’s size in the image space.

• Regression targets are standardised using the respective anchor’s center, width
and height. This way regression targets have similar statistics for differently sized
objects.

Despite these convenient traits, training target sampling can still be improved since
anchors require a) choosing 16 hyperparameters depending on the expected object scales
in image space and b) generating 9 anchors per feature map location, which results in a
large output space that slows down convergence. We overcome these shortcomings by
using a regression target standardisation scheme that reflects the object’s geometry and
scale.
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3.5.2.1 True Location Sampling

Object masks are used for true training location sampling as in [53]. However, instead of
predicting object masks and correspondences from a single feature map resolution, our
work adopts the divide-and-conquer strategy of feature pyramids to make predictions
from multiple feature map resolutions. To overcome the necessity of requiring hyperpa-
rameters [30], [90] for choosing the best suited feature map resolution for locating an
object, we propose a geometry-based approach to assign true training locations. We
supplement true location sampling with a scalar shape prior:

δo = max||(mi − mj)||2 ∀ mi, mj ∈ M, i ̸= j (3.5)

where M is the set of object model vertices. Since the spatial downsampling of the
input image through the backbone follows an exponential function, it is intuitive to
explicitly choose pyramid levels using a logarithmic function. As such, we choose the
respective feature pyramid level with:

level = f + logd(δo/tz), (3.6)

where f depends on the number of pyramid levels used, tz corresponds to the object’s
distance from the camera and d is the only remaining hyperparameter. Since we use
PFPN presented in Section 3.4.2 with three pyramid levels for prediction making, this
requires choosing 6 hyperparameters when using the FCOS sampling scheme and 12
when using anchors. An additional advantage is that δo better reflects the object shape
in all three spatial dimensions and thus also the visible object surface in the image space
compared to using the bounding boxes for the assignment of true training locations. As
a consequence, elongated objects are tendentiously sampled in higher resolved feature
pyramid levels than boxy shaped objects. Despite needing fewer hyperparameters, we
retain a similar amount of true locations used for training. Classifying true image
locations (Lcls) is supervised using the focal loss [56].

3.5.2.2 Geometric Correspondence Standardisation

Instead of standardising the projected object correspondences G using anchor priors
or with a scalar value agnostic to object shape [90], we directly incorporate δo to scale
regression targets of different objects to a similar magnitude:

yG = (c − G)/δo, (3.7)

where c is the center of the respective feature map location, G are the image locations
of the geometric correspondences and yG are the standardised regression targets. As
such, regression targets are encoded similarly as with anchors (with similar σ for G of
all objects independent of their scale or shape eccentricity). Thus, the computed error
is independent of the object’s scale in the image space and the training process is not
biased for larger objects. Our approach needs no hyperparameters for standardisation
and since 9 times fewer network output parameters per feature map location are required
as compared to anchors, convergence is improved.
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3.5.2.3 Imbalance Problem of Target Locations

Choosing training target locations based on the object mask leads to a training process
that is biased towards objects with a larger projected image surface. For classification
this is commonly circumvented using the focal loss [30]. Using anchors as location priors
alleviates the issue since anchors are sampled uniformly over the expected object scale
space. We define a concurrent solution by normalising over the number of true training
locations l and accumulating the gradient afterwards. The regression loss is:

Lreg(ŷ,y) = 1
a

·
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·
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j=0
huber(ŷj, yj), (3.8)

where huber is the loss used in RetinaNet [56], [136] and y and ŷ are ground truth and
the estimate, respectively. This procedure requires no additional trainable parameters
and leads to minor computational overhead during training time, and to none during
test time, despite improving multi-object handling.

3.5.2.4 Direct Pose Regression

The direct pose is regressed using the output ŷ of the module, estimating intermediate
geometric correspondences as done in [37], [41], [64], [110]. The 6D pose is parameterised
as P ∈ SE(3), with t ∈ R3 being the 3D translation vector and R ∈ R6 the first two
base vectors of the SO(3) rotation matrix as done in [37], [41], [140].

Prior methods perform pose estimation on zoomed crops of the detected objects of
interest. Using the object rotation in the camera coordinate system, i.e. the allocentric
rotation [140], leads to mapping different object views to the same rotation. To alleviate
that problem, these approaches use the rotation of the camera in the object coordinate
frame, i.e. the egocentric rotation.

In contrast, we learn to predict geometric correspondences directly in the image space.
These correspondences are destandardised with the inversion of Equation (3.7) and fed
to the direct pose estimation module. As such, our approach correlates object rotation
with its image location. This means that we are able to directly regress the allocentric
rotation since we require no zooming or cropping. Additionally, we can directly regress
the 3D translation without requiring a scale-invariant translation representation as used
in [37], [39], [41]. The network training is supervised using the image locations sampled
with Equation (3.6).

3.5.3 Symmetry-aware Loss

Objects exhibiting discrete or continuous symmetries, i.e. similar views that correspond
to different ground truth poses P, are detrimental to the convergence of the network
training [40], [129], [132]. We adopt the transformer loss of [40] since symmetries are
efficiently handled during loss computation and require no additional trainable weights.
We define our keypoint estimation loss for supervising the training of the geometric
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correspondence learning with:

Lkey = min
s∈Si

Lreg(ŷ, hy), (3.9)

where Si is a set of symmetry transformations that depend on the visual ambiguities of
the object. We observed that separately choosing hypotheses with Lkey, and substituting
the direct pose losses for Lrot and Ltra with Equations (3.9) introduces ambiguities
since the 6D pose is directly derived from the estimated intermediate geometric cor-
respondences. To alleviate this issue we define an indicator function I, indicating the
symmetry that minimizes Lkey. As such, we supervise the direct pose regression with:

Lrot/tra = Lreg(ŷ, I(S)y). (3.10)

Since only one set of Ĝ is predicted per image location and Equations (3.9) and (3.10)
sufficiently account for object symmetries, Lproj and Lcons can directly be computed
with Lkey. The projection and the consistency loss are thus defined as:

Lproj = Lreg(G3DP̂ , G), (3.11)
Lcons = Lreg(G3DP̂ , Ĝ). (3.12)

The overall loss is presented in Equation 3.1 is thus extended to:

L = α · LO + β · Lbox + γ · Lkey + δ · Lrot

+ ϵ · Ltra + ζ · Lproj + η · Lcons, (3.13)

where α, β, γ, δ, ϵ, ζ and η are loss weights. The bounding box estimation, Lbox, is
supervised using Equation (3.8).

3.5.4 Multi-instance Handling
Commonly, multiple instances of the same object in a single image are handled before
correspondence estimation, by non-maximum suppression of the detection stage [17],
[39], [40], [52] or by clustering correspondences afterwards [58]. The first family of
methods individually processes each instance’s image crop to estimate the 6D pose.
The second family of methods is more advantageous, however, because the network is
shared over all objects of interest. Unfortunately, since [58] predicts dense geometric
correspondences, the method has a high runtime. This is due to the clustering of
correspondences to object instances using [60], which is computationally demanding.

In our work, a first filtering stage of H is performed by discarding the non-maximally
scoring object classes for each image location k. Subsequently, image locations with a
detection score below the detection threshold are pruned. The remaining hypotheses
correspond to detected objects. The 2D bounding boxes, B̂, are used to cluster object
instances based on the respective IoU between the outputs of different image locations.
Ultimately, using the computed consistency Ĉ, the pose is averaged over the n hypotheses
of P̂ with the highest consistency for each object instance.



50 3 Object Localisation under Domain Shift

Figure 3.17: Grasp Pipeline Overview Poses are estimated using our presented
methods. Grasps are planned using pre-defined grasp points. The closest
collision-free trajectory is executed to grasp the object of interest.

3.6 Object Grasping
Performance of pose estimation methods often deteriorates when deployed on real-world
robots [1], [141], [142]. This section presents the setup used for evaluating the suitability
of the poses, estimated by the presented methods for real-world object grasping. An
overview of the grasping pipeline is given in Figure 3.17. Poses are estimated, grasp
points are sampled and filtered for their grasping success, and the grasp is executed.

Grasping experiments are conducted with the Toyota Human Support Robot (HSR) [143],
[144] to demonstrate the transition to real-world applications using only synthetic data
for training. The proposed approaches are trained using the meshes of the objects of
interest. All known objects are detected and poses are estimated in the camera frame
of the RGB-D camera in its head, the Xtion PRO LIVE 7. The poses of the detected
object instances of interest are used to transform manually pre-defined grasp poses to
the robot coordinate frame. Pre-defined grasp poses are annotated per object using a
model of the gripper, as shown in the left image of Figure 3.18. These annotated grasp
poses are then transformed to the robot base frame, using the estimated pose. For
each potential grasp pose trajectories for execution are computed, and grasp success is
evaluated. The right image of Figure 3.18 displays computed gripper positions. Point
clouds coloured in red indicate infeasible gripper configurations due to collisions, blue
indicates valid gripper configurations and green indicates the chosen grasp. The grasp
with the shortest gripper trajectory is executed.

7http://xtionprolive.com/asus-3d-depth-camera
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Figure 3.18: Grasp Annotation and Success Checking Left image: 20 possible
grasp configurations are annotated. The randomly coloured grippers are
scaled to 50% for visibility. Right image: Sampled grasp positions based
on the object pose, invalid grasps in red, possible grasps in blue and green,
where green also presents the executed grasp.



Chapter 4

Experiments

This chapter presents experimental setups, quantitative and qualitative evaluations,
and robotic grasping experiments of the methods and strategies presented in Chapter 3.
At first results for object localisation when using synthetic augmented depth data
for training are presented. Subsequently, object localisation results when using our
proposed formulations with RGB are demonstrated. After providing robotic grasping
experiments the section concludes with a direct comparison of our presented pose
estimation methods.

4.1 Object Localisation from Depth Data under
Domain Shift

This section analyses the creation process of synthetic depth data presented in Sec-
tion 3.1.1. The influence of the augmentations for domain adaptation presented in
Section 3.1.2 is evaluated. Lastly, pose estimation from this data is compared to the
state of the art.

4.1.1 Object Detection from Synthetic Depth Data

Synthetic training data created using the method presented in Section 3.1.1 and the
domain adaptation of Section 3.1.2 is denoted as Synthetic Depth Data (SyDD). Results
for object detection are presented on the Linemod dataset [112]. A standard and
well-known baseline for object recognition and pose estimation in RGB-D. The test
set of the LineMOD dataset consists of 15 test sets, one for each dataset object, with
approximately 1200 captured images per scene. Every set has different object instances
visible, although only the object in the center of the image is annotated with a bounding
box, class and pose. Since different object instances without annotation are visible in
the test images, only the annotated object is considered for calculating the detection
recall. In all experiments we report the percentage of the amount of annotated objects
per test set that is correctly detected and classified. An estimate counts as correct if
the estimated bounding box has at least an IoU of 0.5 with the ground truth.

Experimental Setup All tests are conducted with the following preprocessing and

52
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Table 4.1: Detection Recall on Linemod Recall of FasterRCNN [30] trained on
real-world and on synthetic data. Numbers are the percent of correctly
estimated bounding boxes.

Classes real SyDD
ape 53.56 76.86
can 97.24 94.15
cat 41.31 82.70
driller 96.21 92.76
duck 89.39 93.70
eggbox 64.8 81.01
glue 81.72 70.08
holepuncher 89.89 77.69
overall 76.77 83.62

network configuration. All real-world and synthetic images are converted to three
channel RGB images and coloured based on the normal direction using the approach
of Nakagawa et al. [120]. Image regions with missing depth values are inpainted
using [145] and depth cuts are applied to image regions up to 0.2 meters and regions
further away than 1.8 meters.

We use FasterRCNN [30] with Resnet101 [104] backbone, pretrained on ImageNet [126],
with the standard optimizer and loss functions. The learning rate starts at 1 · 10−2 and
decays to 1 · 10−4. We train for 180,000 iterations using a batch size of one and a weight
decay of 1 · 10−4.

Performance on Real-world Data We compare training the object detector on
real-world images and on our augmented synthetic depth data. Results on Linemod are
provided using the re-annotated test set of benchvise by [135] for training and using the
same amount of images created using SyDD. Table 4.1 compares the detection recall
for the respective per-instance annotated sets of Linemod.

The average recall of the detector trained on our synthetic dataset outperforms the
recogniser trained on real-world data. The performance margin results from the higher
variability in the synthetic dataset. The biggest differences in detection recall are visible
for the objects ape, cat and eggbox. This is caused by the scene setup of the real-world
depth scans used for training. The ape is placed in different poses in the scene and
is either not occluded or completely occluded in most of the images. In comparison,
using randomly sampled scene setups as done in our rendering creates samples with
diverse occlusion ratios. The cat is viewed with similar rotation respective to the camera
in many of the scans used for training on real-world data, which again results low
variability of the pose space, leading to an biased estimator. The training samples of
eggbox also exhibit a low variability of viewpoints. Furthermore, occlusion is mostly
caused by the same object. The randomised augmentation covers a wider range of
variations influencing the image creation process, as well as the placement of objects in
the virtual scene. This increases the variation of occlusions and views in comparison
to the real-world images of [135]. Figure 4.1 shows that while using randomised
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Figure 4.1: Detection Rates with Respect to IoU Recall and precision curve
comparison of real-world and synthetic data using different IoU scores on
Linemod.

synthetic data improves detection recall, compared to using available real-world data for
training, the precision does not decrease. Thus our presented synthetic data generation
and augmentation method even leads to slightly improved robustness with respect to
false-positive detections and as such presents effective domain adaptation.

Influence of the Background Information The importance of the background
information provided in the training data is evaluated by training FasterRCNN, with
data generated using the different background sets presented in Section 3.1.1. Each
training set consists of 10,000 synthetic images. Table 4.2 shows a comparison of the
detection recall. The results indicate that providing richer background information
during synthetic data generation improves the detection recall. Results also indicate
that it is not necessary to use the same background objects for training as observable
during deployment. Our findings show that domain specific background objects are
sufficient for detectors to yield similar performance to detectors trained on real-world,
hand-annotated images. When providing richer background information object detection
rates improve for all objects but bowl. The recall for this object decreases when using
realistic background sampling.

Evaluation of the Augmentation Method The performance influence of the
separate parts of the augmentation for domain adaptation presented in Section 3.1.2 is
evaluated using 10,000 generated images. The augmentation methods are:

• synth: non augmented synthetic depth data.

• perlin: augmenting the synthetic images using only Perlin noise [86] with the
parameters from [45], after removing occluded image regions based on the imaging
geometry of the Microsoft Kinect V1, using the randomised visibility masks.

• auth: randomised realistic sensor model, where the difference to our proposed
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Table 4.2: Background Information Comparison Detection recall of FasterRCNN
trained on SyDD, with different backgrounds in the virtual scenes. Numbers
are the percent of correctly estimated bounding boxes.

Classes simple limited realistic
ape 57.79 59.79 79.69
benchvise 65.16 64.09 96.05
bowl 91.24 93.03 85.81
camera 66.61 74.94 94.17
can 57.02 79.10 91.97
cat 58.95 80.75 97.71
cup 76.13 83.06 88.06
driller 65.99 84.76 96.72
duck 82.30 81.58 95.37
eggbox 83.32 92.42 93.77
glue 65.16 79.98 82.79
holepuncher 74.54 85.53 92.97
iron 42.19 64.58 89.84
lamp 50.77 65.69 96.09
phone 71.36 68.22 93.00
overall 63.03 72.29 85.88

method SyDD is that the depth noise is added before quantising to eleven bit
range.

• SyDD: Full augmentation presented in Section 3.1.2.

The results presented in Table 4.3 indicate that strong average detection recall is
already achieved by adding Perlin noise. However, even better performance is achieved

Figure 4.2: Example Images for Background Complexity Images displaying the
synthetic training dataset, with simple background information (left) and
limited background information (right).
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Table 4.3: Augmentation Method Comparison Detection recall of Faster-RCNN
trained using different augmentation methods. Numbers in percent.

Classes synth. perlin auth. SyDD
ape 59.06 71.76 67.96 79.69
benchvise 71.99 93.90 91.85 96.05
bowl 91.64 91.48 91.08 85.81
camera 56.54 84.60 89.84 94.17
can 53.51 94.15 95.32 91.97
cat 89.91 97.20 91.18 97.71
cup 73.23 84.19 81.21 88.06
driller 89.31 95.62 95.71 96.72
duck 62.04 93.78 89.63 95.37
eggbox 45.49 81.80 90.90 93.77
glue 44.02 85.08 83.44 82.79
holepuncher 59.18 93.37 81.33 92.97
iron 39.15 89.41 78.83 89.84
lamp 75.31 93.48 97.96 96.09
phone 45.78 91.31 90.27 93.00
overall 59.76 83.82 82.28 85.88

Figure 4.3: False Negative Detections Incorrectly classified driller, indicated with a
red bounding box, left image. Missed detection of duck, right image.

by combining Perlin noise with the proposed randomised camera model. We conclude
that augmenting images with Perlin noise can effectively close the domain gap, however,
it lacks the artefacts of the physical depth data capturing process. Re-sampling the
augmented images to the Microsoft Kinect V1 depth resolution decreases detection
recall as compared to Perlin and SyDD.

Open Problems Qualitative results of object detection using the training images
from SyDD and test images from Linemod are presented in Figure 4.3 and Figure 4.4.
The RGB-images are only used for visualisation. The top of Figure 4.3 shows ape

placed on top of the camera, which is incorrectly classified as driller. A similar error is
visible in the bottom of Figure 4.3. The benchvise is correctly classified but the duck is
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Figure 4.4: False Positive Detections Detection result with incorrect detections on
boundary regions of the image or fabric.

not detected. This error occurs because objects in the virtual scene are enclosed by
a convex hull. Consequently, stacked objects are not sampled for data rendering. A
convex hull is used to represent the collision shape of objects to minimise errors when
performing the physics simulation.

Figure 4.4 shows detection results with objects incorrectly detected on fabric, near
the image boundary. The left image shows an incorrect detection of benchvise in the
upper left corner of the image and one of cup nearby. The middle and the right image
show incorrect detections of driller and bowl on fabric featuring similar curvatures.
Another incorrectly detected instance of iron is visible on the right edge of the middle
image. These detections result from training on partially visible objects that are cut off
by the image boundary. Another common error is the detection of objects on smoothly
curved fabric surfaces as can be seen in the bottom parts of the middle and the right
image in Figure 4.4. This error is a combination of training on boundary regions and
missing background information during the rendering process.

4.1.2 Domain Adaptation for Object Pose Estimation using
SyDPose

The approach presented in Section 3.3 is evaluated for object pose estimation on the
Linemod [112] and the Occlusion dataset [135]. We provide results comparing to the
deep learning-based state of the art and against the point-pair-feature approach of [26].
Additionally, ablations to evaluate the influence of our proposed orthogonality constraint
and our multi-object formulation are presented.

Experimental Setup For testing we use only the depth images of the datasets that
are captured using a Microsoft Kinect V1. Images are converted to three channel RGB
images, coloured based on the depth gradient using the approach of Nakagawa et al.
[120]. Image regions with missing depth values are inpainted using [145] and depth cuts
are applied to image regions farther than two meters. Our networks are trained using
the Adam optimiser [128] with adaptive learning rate initialised at 1 · 10−5. In order to
prevent the network from overfitting to the limited amount of training data, we apply
extensive geometric data augmentation of the training images. Every input image is
randomly augmented online using a superposition of translation and scaling up to 20
percent. All experiments are conducted on a Nvidia Geforce GTX 1080.
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Figure 4.5: Multi-object Keypoint Branch Right: Comparison of different convolu-
tion layer setups of our keypoint regression branch. Left: Comparison of
our architecture with and without our orthogonality favouring loss for 3D
bounding box estimation.

Evaluation Metrics Evaluation is performed using the average distance between
points, comparing the estimated and the ground truth pose (ADD/S) [112], defined
in Equation 2.6 and the F1 -score based on the ADD/S metric comparing against the
state of the art [101]. Using the ADD/S metric, the pose is considered correct if the
average distance difference of corresponding transformed points, using the estimated
and the ground truth pose, is below a certain threshold multiplied with the object model
diameter. We use the commonly used threshold of 10% of the object diameter. For
symmetric objects, eggbox and glue, the closest point distance is used. The F1 -score
represents the harmonic mean between recall and precision. Thus, it considers the
false positive rate when calculating the amount of correctly predicted poses. Using
the F1 -score, predicted poses are considered correct if the ADD/S score is below the
threshold set to 0.15, as in [101].

Pose Estimation Branch Architecture Training one network for simultaneous
object detection, classification and pose estimation on multiple objects leads to a
decrease in overall pose estimation performance, compared to training one model per
object of interest. We provide studies regarding our architectural choices to show that
we are able to circumvent losing the major part of performance, by simply training the
last convolution layer separately for each object of interest.

The left plot of Figure 4.5 presents a self-comparison for different network config-
urations using the Linemod dataset. Using four shared convolutional layers and one
separate layer per class (sha[4]+sep[1]) leads to similar pose estimation performance as
using separately trained networks and higher pose estimation performance than using
three shared and two separate layers (sha[3]+sep[2]). We also provide results for using
three shared and one separate layer (sha[3]+sep[1]), showing that reducing the amount
of convolution layers reduces performance. Using three shared and two separate layers
(sha[3]+sep[2]) also reduces performance due to the different convergence speeds of the
network branches.

A clear advantage of using shared feature extraction over all objects of interest for
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Table 4.4: Parameters and Runtimes Amount of trainable parameters and training
and inference time of different keypoint regression branch architectures.

Design Parameters Train [ms] Test [ms]
sep[5] 40,333,727 202 56

sha[3]+sep[1] 39,840,457 199 55
sha[4]+sep[1] 40,430,537 208 56
sha[3]+sep[2] 48,691,657 282 79

pose estimation is that less than one sixth of the total training iterations is needed to
achieve similar performance compared to training separate networks. Table 4.4 shows
parameters, training (train) and inference (test) time of our end-to-end models using
different pose estimation head designs. Architectures that are combinations of separate
and shared layers lead only to marginal differences regarding time consumption per
training iteration and during inference. While replacing the last shared convolutional
layer in the control point regression branch with separate layers leads to increased results,
comparable to training separate networks per object, the computational overhead for
this configuration is still reasonable.

Performance Improvement via Orthogonality Using the proposed orthogonality
loss, presented in Equation 3.3, improves the trained model’s performance when nearing
convergence. We present a comparison between regressing the keypoints of the 3D
bounding box using only Huber loss, see Equation 3.1, and regressing the keypoints
incorporating our orthogonality favouring loss with the parameter δ of Equation 3.4 set
to 0.8. We also calculate the moving averages for easier comparison, using a kernel size
of five. The right plot of Figure 4.5 presents the percentage of correct pose estimates
using the ADD/S metric plotted against epochs.

Comparison to the State of the Art Deep learning architectures for 6-DoF pose
estimation from synthetic data using only depth images exist, however, it is difficult to
evaluate against these since the code is not publicly available [6], [146]. Consequently, we
present comparison against fully-synthetic learning-based pipelines for pose estimation
using RGB and against the point-pair-feature (PPF) method of [26]. Figure 4.6 shows
regressed 3D bounding boxes for scenes of the Occlusion dataset.

Recent deep learning approaches achieve strong performance on the Linemod dataset
which contains approximately 1,200 test images for each of the 13 dataset objects.
Each object is placed in a heavily cluttered scene and annotated with a bounding box,
class and 6D pose. However, many approaches reach the reported performance using
real-world RGB data for training to overcome the domain shift [47], [53], [54], [59].
Consequently, these are not well suited for practical scenarios where object meshes
are often available or can be generated at low cost, while capturing and annotating
real-world images requires a significant effort. Table 4.5 compares our method to the
fully-synthetic approaches of Kehl et al. [62] and Sundermeyer et al. [23] using the
ADD/S metric. The numbers for [62] are taken from [59]. Both approaches train and
test on RGB data only, while ours uses depth data only. As such, we only require
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Figure 4.6: Multi-object Pose Estimation Visualisation of the 3D box estimation
on images of the Occlusion dataset [135], yellow represents the ground truth
and blue our estimated boxes. RGB is only used for visualization.

Figure 4.7: Object Detection and Multi-Object Pose Estimation Left: Detection
recall and precision on Linemod. Right: Percentage of correct poses on the
Occlusion dataset [135] for different ADD/S thresholds.

geometry priors, although the methods we compare against require texture information.
We also present the results of the PPF method of Drost et al. [26], showing their
superiority to CNN approaches when disregarding false positives. PPF methods [26],
[27] are the top-performing pose estimation methods [55]. However, when incorporating
the false positive ratio in the evaluation as done by [101], we achieve results that
outperform the PPF method of [26]. The left plot of Figure 4.7 shows the recall and
precision for detection with respect to different IoU thresholds on the Linemod dataset.
Given that we only employ one model we do this at approximately 20 fps, which is
faster than the PPF methods that report runtimes of multiple seconds. Nevertheless,
we have to mention that our method is not on par with the most recent advancement
of PPF [27], since this method has strong refinement and verification steps.

The Occlusion dataset [135] is a subset of Linemod, re-annotated to provide annota-
tions for all Linemod objects present in the image sequence of the benchvise. We follow
the standard procedure excluding the benchvise from evaluation.

Table 4.6 reports the mAP for object detection, presented in Equation 2.5, in
comparison to state-of-the-art learning-based pose estimation methods. We achieve
a mAP of 0.517 when using an IoU threshold of 0.5 over all classes. The right plot
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Table 4.5: Comparison to the State of the Art with SydPose Comparison to
synthetically trained pose estimation pipelines, on Linemod [112]. Reported
is the percentage of correctly estimated poses using the respective metric.

Metric ADD/S F1
Type CNN PPF PPF CNN

Method SSD-6D[62] AAE[23] Ours Drost[26] Drost[26] Ours
Ape 0.00 3.96 16.35 86.5 62.8 43.8

Benchvise 0.18 20.92 35.17 70.7 23.7 63.4
Cam 0.41 30.47 16.67 78.6 51.3 44.0
Can 1.35 35.87 27.27 80.2 51.0 59.1
Cat 0.51 17.9 34.19 85.4 56.6 65.8

Driller 2.58 23.99 30.71 87.3 59.7 65.4
Duck 0.00 4.86 9.32 46.0 31.3 35.5

Eggbox 8.90 81.01 52.76 97.0 82.6 74.8
Glue 0.00 45.49 51.66 57.2 38.2 77.7

Holepuncher 0.30 17.6 29.21 77.4 50.0 58.6
Iron 8.86 32.03 34.25 84.9 40.5 69.0

Lamp 8.20 60.47 37.50 93.3 77.6 68.4
Phone 0.18 33.79 17.24 80.7 47.1 42.9

Average 2.42 28.65 30.21 78.9 51.7 59.1

of Figure 4.7 shows pose estimation results for heavily occluded and cluttered scenes.
We produce good pose estimates on single-shot multi-object scenarios with high object
occlusion.

4.2 Generalising Object Pose Estimation within the
RGB Domain using PyraPose

This section presents experiments to evaluate PyraPose, presented in Section 3.4. We
use three different datasets to compare to state of the art, show the advantage of using
synthetic data to generalise to new domains, perform ablations of our architectural
design and conduct grasping experiments to demonstrate the suitability for real-world
robotic applications.

Datasets Single-object pose estimation of objects with little texture is evaluated on
the Linemod [112] dataset, which consists of approximately 1200 images of cluttered
scenes per object. Linemod comes with 15 textured meshes of the objects of interest
and corresponding pose annotations on the frame level. We use the same subset of
objects as [23], [49], [52], [87]. Multi-object experiments for objects with little texture
are performed on Occlusion [135], which is the test set of Linemod’s benchvise object
featuring annotations for all dataset objects that appear in the images.
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Table 4.6: Detection on Occlusion using SydPose Detection performance on the
Occlusion dataset [135].

method mAP
Brachmann et al. [102] 0.51

Kehl et al. [62] 0.38
Tekin et al. [59] 0.48

ours 0.52

Figure 4.8: Visualisation of PyraPose on Occlusion Examples of correctly esti-
mated (green), incorrectly estimated (red) and ground truth (blue) poses
on images from the Occlusion dataset [135].

In addition to single- and multi-object experiments, we also present experiments on
Homebrewed’s [20] second sequence to show that using synthetic data for training is
better for generalising to new settings. The specific sequence of Homebrewed features
three of Linemod’s objects in a different setting, which includes scene setup, illumination
and camera intrinsics. We show that PyraPose trained on synthetic images for the
Linemod setting generalises well to Homebrewed. Lastly, in order to bridge from
training on synthetic data to performing tasks in the physical world, we present
grasping experiments on YCB-video objects [48] following the layout of the GRASPA
1.0 benchmark [147].

Training Data Training images are rendered from complete scenes of textured
3D object models with realistic material and lighting interactions. The geometric
configuration of objects and cameras is generated using physics simulation. Synthesising
images is performed by physically-based rendering [68], [71]. For Linemod and Occlusion,
we use the same training images. The synthetic Linemod, Homebrewed and YCB-video
datasets contain 50k samples taken from the BOP challenge [55].

Implementation Details Our networks are trained using the Adam optimiser with
a learning rate initialized with 1 · 10−5 and a batch size of 8. The learning rate is
decreased by one magnitude if the loss does not decrease for two epochs. Results
are provided after 200 epochs of training on 50k synthetic RGB images on an Nvidia
Geforce Titan V.

The domain generalisation of our models is encouraged by applying different strategies
described in Section 3.1.4. Synthetic training images are randomly augmented in random
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order to minimise the domain gap. We apply randomised image augmentations similar
to [23]. However, we found slightly different ranges of the parameters to be beneficial,
presented in Section 3.1.4. We also additionally vary the contrast, which is not performed
in [23]. The weights of the first 14 convolutions are frozen similar to [49], [106]. Batch
normalization layers are set to non-trainable and parameters are frozen.

Evaluation Setting For object detection, we consider the existence of an object
as true if the detection score of at least one anchor is above 0.5. For these true
anchors, the estimated 2D-3D correspondences are considered as hypotheses. For pose
estimation, the ADD-(S) recall is used, as presented in Section 2.5. This measures
the average distance difference between the corresponding transformed object points
from the estimated and the ground truth pose. For the objects eggbox and glue in
Linemod the symmetric version (ADDS) is used, in which the closest point distance is
used for calculation. For all experiments, we report the percent of correctly estimated
poses when the ADD(-S)-score is less than the standard threshold of 10% of the model
diameter [112].

4.2.1 Multi-object Pose Estimation trained on Synthetic RGB
Data

We provide a quantitative comparison to recent learning-based object pose estimation
methods of [23], [129] and [49] that use only synthetic data for training, and therefore,
are the most similar to our approach, as well as against two winning methods of the
2019 BOP challenge [148], i.e., [39] and [40].

Single-object scenario Table 4.7 presents results on Linemod [112]. Our method
significantly outperforms [23], [49], [129]1, which are methods training on synthetic
data with domain randomisation applied for domain adaptation. We achieve the best
results on average, and for all individual objects except from the ape. The poor results
for the ape might be caused by the suboptimal anchor parameters for the small object
scale. The last two columns show results of [87] and [52]. Both methods use the test
set of Linemod without pose annotation for unsupervised and self-supervised domain
adaptation for training, respectively. We achieve better performance in comparison to
both, even though no real images are used to train our network.

Our method provides strong estimates over all object scales due to the multi-scale
nature when using feature pyramids. Especially for robotic scenarios, our approach is
beneficial because we train only one network for all objects, while all competing meth-
ods [23], [49], [52], [87], [129] train one network per object to gain better performance.
Our approach keeps the memory load low, provides easier usage and still outperforms
the state of the art.

Multi-object scenario Table 4.8 reports the ADD(-S)-recall for multi-object de-
tection and pose estimation in comparison to the state-of-the-art learning-based pose
estimation approaches of [39], [40], [49]. These three methods employ encoder-decoder
networks for pose hypotheses creation and we achieve significantly better performance

1Results of [49] provided by the authors; these differ from their presented results because ADD-
precision is presented while we present ADD-recall
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Table 4.7: PyraPose on Linemod ADD/S-recall on Linemod [112] in comparison to
synthetically trained methods. Last two columns show results of methods
using test images without pose annotation for training. Objects with (*) are
evaluated using ADDS.

Training Synthetic Real w/o pose
Method AAE MHP DPOD PyraPose DTPE Self6D

[23] [129] [49] (ours) [87] [52]
Ape 4.2 11.9 35.1 22.8 19.8 38.9

Benchv. 22.9 66.2 59.4 78.6 69.0 75.2
Cam 32.9 22.4 15.5 56.5 37.6 36.9
Can 37.0 59.8 48.8 81.9 42.3 65.6
Cat 18.7 26.9 28.1 56.2 35.4 57.9
Drill 24.8 44.6 59.3 70.2 54.7 67.0
Duck 5.9 8.3 25.6 40.4 29.4 19.6

Eggbox* 81.0 55.7 51.2 84.4 85.2 99.0
Glue* 46.2 54.6 34.6 82.4 77.8 94.1
Holep. 18.2 15.5 17.7 42.6 36.0 16.2
Iron 35.1 60.8 84.7 86.4 63.1 77.9

Lamp 61.2 - 45.0 62.0 75.1 68.2
Phone 36.3 34.4 20.9 59.5 44.8 50.1
Avg. 32.6 38.8 40.5 63.4 51.6 58.9

using only synthetic data for training. Our multi-hypotheses creation scheme in com-
bination with PFPN, presented in Section 3.4.2 leads to robust prediction making
under occlusion and effective multi-object pose estimation, as such achieving a relative
improvement of ∼35 % over the state of the art.

Runtime A comparison of runtime is provided against other single-shot object pose
estimators that are designed for fast inference. A forward pass of our method takes
on average 39 ms on an NVIDIA Titan V (∼26 fps), excluding PnP. RANSAC-PnP
produces an overhead of approx 1 ms per detected object. In comparison, AAE [23]
computes estimates at a rate of 13 fps when using RetinaNet [56] as backbone (used
for the results in Table 4.7) and DPOD at 33 fps. The best performing methods [40]
and [39] are significantly slower, computing estimates at a rate of ∼0.8 and ∼1 fps,
respectively, without refinement2.

Feature aggregation with PFPN Results provided in Table 4.9 compare PFPN,
presented in Section 3.4.2 to FPN [56]. Using 3 pyramid levels for prediction making
for PFPN shows a relative improvement of 5% and 3% over FPN on Linemod and
Occlusion, respectively. Using 5 levels of features instead of 3 improves the performance
of FPN but is detrimental to PFPN, since PFPN is conditioned on low-level features
and more levels require prediction making from coarse pyramid levels with high-level

2Inference times taken from [148]
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Table 4.8: PyraPose on Occlusion ADD/S-recall on Occlusion [135] in comparison
to methods only using synthetic data for training. Objects with (*) are
evaluated using ADDS. Methods indicated with (†) use the training data
of [75].

Method DPOD CDPN Pix2Pose† PyraPose†

[49] [39] [40] (ours)
Ape 2.3 20.0 11.3 18.5
Can 4.0 15.1 18.5 46.4
Cat 1.2 16.4 17.1 11.7
Drill 10.5 5.0 34.5 48.2
Duck 7.2 22.2 25.3 19.4

Eggbox* 4.4 36.1 12.0 16.7
Glue* 12.9 27.9 30.8 30.7
Holep. 7.5 24.0 12.2 33.0
Avg. 6.3 20.8 20.2 28.1

Table 4.9: Evaluation of PFPN Multi-scale feature aggregation comparison of PFPN,
Section 3.4.2, and FPN [56] on Linemod [112] and Occlusion [135] using the
ADD-recall.

Feature Aggregation Linemod[112] Occlusion[135]
none 46.5 21.3

FPN[32] (3 lvl.) 60.2 27.3
PFPN(ours) (3 lvl.) 63.4 28.1

FPN[32] (5 lvl.) 64.1 29.6
PFPN(ours) (5 lvl.) 61.7 28.2

features. Thus, the advantage of PFPN with 3 feature levels is that it effectively bridges
the performance gap of 3 to 5-level FPN [32] and also reduces runtime by ∼ 10%,
compared to 5-level FPN. Using no feature aggregation results in a considerable decrease
in performance and supports the hypothesis that feature aggregation is a useful tool for
pose estimation.

4.2.2 Domain Generalisation of PyraPose

This section presents an experiment evaluating PyraPose with respect to pose estimation
performance in a novel domain and ablations for the augmentation parameter choices
and ranges.

Novel domain Pose estimators trained on real-world data tend to overfit to certain
characteristics of the data that they are trained on [20]. Training on synthetic data
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Table 4.10: PyraPose in a Novel Domain ADD-recall on second test sequence of
Homebrewed [20] in comparison to the baseline method of [49].

Method Mesh origin benchvise drill phone Avg.
DPOD [49] Homebrewed[20] 52.9 37.8 7.3 32.7

PyraPose (ours) Homebrewed[20] 62.9 22.6 38.5 41.3
PyraPose (ours) Linemod [112] 10.9 60.0 44.4 38.4

Figure 4.9: Visualisation of PyraPose on Homebrewed Left image shows pose
estimates from HomebrewedDB [20]. Ground truth in blue and correctly
estimates poses in green. Right image shows the mesh of the Benchvise
from [112] and [20], respectively.

provides the benefit of translating better to novel domains, i.e., new places of deployment.
As such, we show results on the second sequence of Homebrewed [20], which has images
with pose annotations of Linemod’s benchvise, drill and phone. DPOD [49]3 is used by
the authors of Homebrewed [20] as a baseline for the dataset. This method is trained
on synthetic images using the provided meshes.

The results provided in Table 4.10, using the ADD-recall on the validation set of [75],
show that PyraPose outperforms DPOD when trained with synthetic data rendered for
the Homebrewed setting (using meshes of all dataset objects for training). Figure 4.9
(left) shows an example of pose estimates. The last row in Table 4.10 gives results of
our method when reusing our network trained for Linemod [112]. In order to use our
model trained on Linemod, the corresponding object models are manually aligned to
compute the ADD-score, since the coordinate frame origin of all three models differ
in [112] and [20]. The resulting relative transformations between models are added
as a constant offset to Homebrewed’s test annotations. For deriving the pose with
RANSAC-PnP, see Section 3.2.6, we simply use the intrinsics of Homebrewed, though
PyraPose is trained with Linemod intrinsics. Our method effectively transitions to the
novel place of deployment, i.e., overcomes the domain shift by training on synthetic

3Results are taken from [52]
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Table 4.11: RGB Image Data Augmentation Augmentation strategy, multi-scale
feature aggregation, network design and comparison on Linemod [112] and
Occlusion [135] using the ADD-recall.

Strategy Linemod[112] Occlusion[135]
none 34.6 14.3

Pix2Pose[40] 53.3 23.1
CDPN[39] 56.7 24.4

PyraPose(ours) 63.4 28.1

data, which is highly useful in robotics. The results for the benchvise, using Linemod,
are low. However, we conjecture that is due to the considerably different reconstruction
used to render training data for Linemod, as shown in Figure 4.9 (right).

Image Augmentation in RGB Our proposed augmentation scheme yields the best
performance compared to the augmentations applied by [39] and [40], see Table 4.11.
We remark that our model trained without colour space augmentations, already results
in better performance than the methods of [23] and [49], see Table 4.7 and Table 4.8,
respectively. This shows the effectiveness of feature pyramids for generalising to new
domains. This however, is at least partially to be attributed to the better training
data, see Section 3.1.3. In comparison to the augmentations of [40] and [39], our
augmentations lead to 21% and 15% relative improvement, respectively.

Table 4.12 compares augmentation strategies of [23], [40] and [39]. The main difference
in comparison to the augmentations used by PyraPose, presented in Section 3.1.4, is that
we significantly vary the contrast. We randomly sample gamma, sigmoid, logarithmic
and linear contrast with a probability of 0.5 for each, per image. As such, the results in
Table 4.11 indicate that varying contrast is important for synthetic to real object pose
estimation.

4.2.3 Object Grasping in the Real-world using PyraPose
Grasping experiments are conducted with the Toyota HSR [143], [144] to demonstrate
that PyraPose is suited for real-world applications using only synthetic data for training.
The printable GRASPA benchmark layout 0 [147] is used, which consists of five objects
from YCB-video [48]: mustard bottle (mustard), gelatine box (jell-o), potted meat can
(spam), banana and foam brick (foam). The grasping pipeline is described in Section 3.6:
Grasp poses are annotated for each object and transformed to the robot base frame
using the estimated object pose; based on theses grasp poses, multiple trajectories are
calculated and the grasp that is expected to result in the least positioning error is
chosen; a grasp is successful if the object is lifted and remains stable in the gripper.

Table 4.13 compares grasping performance using only the initial pose estimate and
refining that estimate using the predicted instance segmentation mask and ICP. Good
performance is achieved for many objects, in particular, mustard, spam and foam (after
refinement). The poor performance for jell-o is explained by the significantly different
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Table 4.12: Augmentation strategies in comparison.

Augmentation AAE [23] Pix2Pose [40] CDPN [39]

Add p = 0.5(0.3) p = 1.0(1.0) p = 0.5(0.3)
U(−0.01, 0.01) U(−0.06, 0.06) U(−0.01, 0.01)

Contrast p = 0.5(0.3) p = 1.0(0.0) p = 0.5(0.3)
Normalization U(0.4, 2.3) U(0.8, 1.3) U(0.5, 2.2)

Contrast - p = 0.5(0.3) -
Normalization U(0.5, 2.2)

Multiply p = 0.5(0.3) p = 1.0(0.5) p = 0.5(0.5)
U(0.6, 1.4) U(0.8, 1.3) U(0.6, 1.4)

Gaussian blur p = 1.0 p = 1.0 p = 1.0
σ ∼ U(0.0, 1.2) σ ∼ U(0.0, 0.5) σ ∼ U(0.0, 1.2 ∗ N (0.0, 1.0)

Additive Gaussian - p = 0.1(1.0) -
noise U(0.0, 0.1)

Coarse dropout - - p = 0.5(0.0) U(0.6, 1.4)
size% ∼ U(0.1, 0.25)

Invert yes, n.a. - p = 0.5(1.0)
U(0.0, 0.2)

Table 4.13: Grasping Experiment with PyraPose. Grasping YCB-video [48] objects,
10 trials are performed per object. Comparison is given for grasping without
refinement (w/o ICP) and when refining the initial pose with instance
segmentation and ICP (/w ICP).

Object Mustard Jell-o Spam Banana Foam Success
w/o ICP 10 1 9 7 3 60%
/w ICP 10 5 10 3 7 70%

texture of the real object compared to the model used to render the training data.
Interestingly, the grasp success for the banana drops when using refinement. This
is explained by the observation that the locally optimal output of ICP often results
in a pose that is rotated towards the table, which leads to many grasp trajectories
protruding the table plane. For the other objects, however, using instance segmentation
to crop the point clouds for ICP-refinement improves performance. This highlight the
advantage of computing the masks. Figure 4.10 shows an example of a successful grasp
of mustard.
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Figure 4.10: Visualisation of a Mustard bottle Grasp YCB-video’s mustard bottle
is successfully grasped from a pose supported by foam and remains stable
in the gripper.

4.3 Scalable End-to-end Trainable Object Pose Es-
timation using COPE

This section provides quantitative and qualitative evaluation of COPE on several
datasets. After introducing the experimental setup, we proceed with comparisons to the
state of the art on two challenging datasets using the BOP protocol [75]. In addition,
ablation studies are presented to quantify the influence of direct pose supervision on
an additional dataset. To further validate and thoroughly test the capabilities of our
method, we present results on a synthetic dataset with up to 100 object instances per
image.

Datasets Evaluation is provided on three standard datasets: Linemod [112], Oc-
clusion [135] and IC-bin [149]. For evaluation, we use the subsets provided with the
BOP challenge. Linemod provides 200 test images for each of the 13 objects that come
with watertight object models. Linemod constitutes a common benchmark for object
pose estimation in cluttered environments. Occlusion consists of 200 test images of
Linemod’s second test sequence with all eight objects annotated in each. Linemod
provides test images with challenging object occlusions. IC-bin presents 150 test images
of up to 21 instances of two objects with heavy occlusion.

For training we use the 50k physically-based renderings for each dataset available
through the BOP challenge [68]. These are generated using physically based rendering
(pbr) [71], as described in Section 3.1.3. Results on Linemod and Linemod are provided
with the same models trained on all 13 objects of Linemod. No annotated real images
are used for training.

Evaluation Metrics Comparison to the state of the art is provided using the
performance score of the BOP challenge [75]. Results for pose estimation are reported
using the Average Recall (AR), the average over the metrics presented in Equation 2.8.
Ablations are evaluated using the ADD recall, or ADDS recall for objects exhibiting
symmetries [112], presented in Equation 2.6. We report the fraction of poses below
the commonly used error threshold of 10% of the object diameter. Results for object
detection are reported using the the mean Average Precision (mAP) of the Microsoft
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COCO object detection challenge [34], presented in Equation 2.5. The results are those
for the IoU values from 0.5 to 0.95 in 0.05 steps.

Implementation Details The weights of the backbone are pre-trained on Ima-
geNet [126] and fine-tuned for 120 epochs using the Adam [128] optimiser with a learning
rate of 1 · 10−5 and a batch size of 8. Previous work suggests overcoming the domain
gap between training on synthetic and testing on real images by not updating certain
network weights during optimisation [49], [124]. Similarly, we do not update parameters
of batch normalizations and the convolutions of the first two stages of the backbone
during fine-tuning. We apply image augmentations as described in Section 3.1.4. The
parameter d in Equation (3.6) is set to 3 for all experiments. Additionally, we exploit
the self-regularising effect of Mish [125] in all layers up to the last layers of the task
heads, which are linearly activated.

4.3.1 Scalable Multi-object Multi-instance Pose Estimation

This section compares the performance of COPE to the state of the art on IC-bin [149]
and Occlusion [135]. Results using the BOP setting reporting the AR are provided in
Table 4.14. The bottom section compares single-model methods, i.e approaches that
produce estimates for all object classes and their instances in a single forward pass. Both
DPOD [49] and EPOS [58] require PnP for deriving the 6D pose from the predicted
geometric correspondences, while COPE directly outputs the 6D pose. COPE improves
over both methods in AR on average. Compared to the previous single-model state
of the art, EPOS, COPE achieves similar AR on Linemod 0.543 as compared to 0.547
but improves to 0.440 in comparison to 0.363 on IC-bin. More remarkable, however, is
that the runtime of COPE is 37 times faster using the inference speed calculated by
the BOP toolkit4.

The top section of Table 4.14 presents the results of multi-model methods. These multi-
model methods provide results using an object detector to sample sparse locations priors
in the first stage and separately trained networks per object class for correspondence
prediction, respectively pose estimation, in the second. For the methods [37], [150]–[152]
no results on IC-bin are available. Compared to the best individually performing
methods on both datasets, CosyPose on IC-bin and ZebraPose on Linemod, COPE
results in ∼ 24% relative performance decrease. This is in the expected range due to
the known performance decrease for single-staged approaches [56].

Runtime Figure 4.11 presents the average runtime and standard deviation on IC-bin
for five test runs of COPE, CDPNv2 and CosyPose on an Intel CPU with 3.6GHz and an
Nvidia Geforce 3090 GPU. The times reported for CDPNv2 exclude the time required
for detecting objects. Despite omitting the runtime of CDPNv2’s first stage, our method
is more than 12 times faster and 7 times faster than CosyPose when processing 15 object
instances. Most notably, in contrast to multi-model approaches, COPE is capable of
directly providing 6D poses for multi-object multi-instance cases at almost constant
runtime, which makes it highly suitable for real-time scenarios.

Object Detection Table 4.15 compares the object detection accuracy, using mAP,
4https://github.com/thodan/bop_toolkit
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Table 4.14: Comparison to the State of the Art for Pose Estimation. Presented
are the Average Recall on IC-bin and Occlusion, the average over both and
the inference speed using the BOP toolkit.

Method IC-bin Occlusion Avg. Time
Multi-model

AAE [23] 0.217 0.146 0.182 0.199
Pix2Pose [40] 0.226 0.363 0.295 1.230
2Dto3D [111] 0.342 0.525 0.434 0.546
CDPNv2 [39] 0.473 0.624 0.549 1.010
SurfEmb [38] 0.550 0.623 0.587 6.296
CosyPose [17] 0.574 0.618 0.596 0.227
SO-Pose [37] - 0.613 - -

CIR [150] - 0.655 - -
PFA [151] - 0.683 - -

ZebraPose [152] - 0.718 - 0.250
Single-model

DPOD [49] 0.169 0.130 0.150 0.211
EPOS [58] 0.363 0.547 0.455 2.804

COPE(ours) 0.440 0.543 0.492 0.075

Figure 4.11: Runtime Comparison to the State of the Art on IC-bin. Provided
are the times it takes to estimate poses for all object instances in a single
image.

of COPE to the state of the art on IC-bin and Linemod using the same training data.
The mAP metric quantifies the quality of bounding box estimation. On average, COPE
outperforms both MaskRCNN [92] and FCOS [90]. COPE achieves the highest average
mAP over both datasets. On Linemod, COPE is superior to MaskRCNN, achieving
0.532 as compared to 0.375 but slightly inferior to FCOS that reaches 0.622. However,
we draw this conclusion with caution since FCOS only performs 2D Detection. The
network size of FCOS is ∼ 50 million parameters just for object detection while COPE
additionally predict geometric correspondences and direct 6D poses with only ∼ 17
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Table 4.15: Comparison to the State of the Art for Object Detection. Presented
are the mAP on IC-bin and Linemod and the average using the BOP toolkit.

Method IC-bin Linemod Avg.
MaskRCNN [17], [38], [92] 0.316 0.375 0.346

FCOS [39], [90], [152] 0.323 0.622 0.473
COPE(ours) 0.431 0.532 0.482

Table 4.16: Ablation Study for Pose Supervision. Provided is the average ADD/(-
S) recall. The objects eggbox and glue are considered as symmetric objects.

Supervision Voting Linemod Occlusion
IM 2D PnP 0.654 0.280
DR 2D PnP 0.712 0.330

6D all 0.715 0.342
DR-P 2D PnP 0.672 0.341

6D all 0.672 0.345
DR-PC 2D PnP 0.712 0.348

6D n=1 0.722 0.338
6D n=5 0.724 0.346
6D n=10 0.732 0.350
6D all 0.738 0.349

million parameters more. Additionally, FCOS uses an input image resolution with up
to 1333 pixels for the larger image side while COPE uses 640 × 480 input images. Thus,
COPE solves twice as many tasks with higher complexity from images with half of
the input resolution. COPE’s detected bounding boxes are more precise than both
standard detectors used by many multi-model methods on IC-bin, achieving 0.431 as
compared to 0.323 and 0.316. As such our method provides excellent location priors for
pose refinement.

Direct-pose Regression Table 4.16 displays the influence of direct pose regression
on the end-to-end architecture on the Linemod [112] and Occlusion [135] datasets using
the ADD/(-S) recall. The column Voting indicates the pose voting procedure using
RANSAC-EPnP, an average of all direct pose hypotheses, or an average of the direct
pose estimates with the best n hypotheses in terms of Ĉ.

The results show that supervising the training process with direct pose regression
(DR) improves the quality of the intermediate representation (IM) tremendously. The
improvement is from 0.654 to 0.715 on Occlusion and from 0.280 to 0.342 on Linemod.
Using DR direct pose estimates is superior to using those estimated by RANSAC-EPnP.
Providing additional guidance with Lproj (DR-P) improves for the occluded scenario of
Occlusion, but is detrimental for Linemod. Ultimately, enforcing consistency between
the internal representation and the correspondences projected to 2D using the regressed
6D pose with Lcons (DR-PC) leads to good results for direct regression and when
using the intermediate representation on both datasets. Figure 5 shows an example of
Linemod’s cat under occlusion. The re-projected model using the ground truth is colored
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Figure 4.12: Pose Supervision Comparison on Linemod’s cat. From left to right:
raw image, pose obtained from geometric correspondences and RANSAC-
EPnP, and direct pose regression. Blue, red and green meshes indicate
ground truth, false positive and true positive pose (as measured by ADD).

Figure 4.13: Qualitative results on Occlusion, Linemod and IC-bin. Top row
shows reprojected object meshes based on the estimated poses, bottom
row shows bounding box estimates. Blue boxes indicate the ground truth
while green boxes indicate estimates.

blue and the wrong estimate based on ADD, using the intermediate representation and
RANSAC-EPnP, is coloured red (middle image). Direct pose regression recovers from
the incorrect intermediate representation, which is displayed in green (right image).

Error Cases Figure 4.13 shows results on Occlusion, Linemod and IC-bin. Projected
object meshes based on the estimated pose are displayed in the top row, while estimated
bounding boxes in comparison to the respective ground truth are illustrated in the
bottom row. Green and red bounding boxes portray estimates and ground truth,
respectively. The left image pair indicates a common error for Occlusion: a false
negative detection of the eggbox. The right image pair shows that some of IC-bin’s
instances of juice are difficult to detect while detecting coffeecup works well even under
heavy occlusion if more than the lid is visible.
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Figure 4.14: Runtime Evaluation of COPE on IC-bin and IC-bin syn. (a) COPE
provides negligible runtime increase up to 70 object instances per image.
The black line indicates the threshold for real-time processing. (b) An
example of a test image of IC-bin syn and a visualization of the estimated
poses.

4.3.2 Constant Runtime with Respect to the Number of Object
Instances

In order to exhaustively test the runtime and scalability of COPE, we create a synthetic
test dataset using the IC-bin objects and OpenGL5 rendering, named IC-bin syn. The
number of object instances to render per image is sampled from a uniform distribution
with a lower bound of 10 and upper bound of 100. We render the sampled number
of object instances randomly from the IC-bin objects onto the test images of IC-bin.
Results are again provided for processing one test image on an Intel CPU with 3.6GHz
and an Nvidia Geforce 3090 GPU.

Figure 4.14 (a) presents the runtime of our method for detecting and estimating the
poses of up to 100 object instances in a single image. We report the average runtime
and standard deviation for five test runs. The runtime increases negligibly up to 70
detected object instances. Our method exceeds real-time processing for more than
90 instances per image. Therefore, it provides quantitative proof of the tremendous
scalability of the presented approach, and the constancy of the runtime with respect to
the number of object instances in a single test image. Figure 4 (b) provides a rendered
synthetic test image (top) and projected object models based on the estimated poses
(bottom).

4.3.3 Grasping Transparent Objects with COPE
This section presents transparent object grasping using COPE. Grasping is performed
with the Toyota HSR robot [143], [144]. Object poses are estimated in the camera
frame of the RGB-D camera in its head, the Xtion PRO LIVE. A transparent canister
is placed on a wooden table, where the robot is positioned to look at the table at

5https://github.com/thodan/bop_renderer
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approximately 45◦ angle elevation. We place the canister on the table in three different
ways: upright position, recumbent position, and attached to the base plate. We also
use two different backgrounds, in-particular we use the checkerboard and the original
wooden background of our table. The first is part of our training dataset and the other
is for evaluating the generalisation to unseen backgrounds.

Real-world Training Data Real-world data is captured using the Realsense D4356

and the ZED from stereolabs7. The camera is attached to the end-effector of the KUKA
arm robot8 and moved around the object in a sequence, taking 104 images from three
different angles of elevation. In total, we record 15 sequences, 6 sequences with one
object instance using the ZED, and 9 with two instances using the D435. In total 1352
training images are captured and annotated. Object poses, lighting and background
patterns vary while data capturing. Four different backgrounds (a metallic surface,
green fabric and 2 black-white checkerboard patterns) and three levels of illumination
are combined.

Quantitative Grasping Results using COPE This section quantitatively evalu-
ates grasping with COPE. In total, 5 grasps trails for the each of the four scenarios
upright and recumbent with seen and unseen tabletop are performed. Three grasp
results defined:

• Full Grasp: The object is grasped and remains stable in the gripper

• Reached Grasp: A suitable grasp position is reached, but the grasp is unsuccessful
due to the gripper moving the object previous to grasping.

• Failed Grasp: Neither the object is grasped nor a suitable grasping position is
reached.

We assign a score of 1, 0.5 and 0 for Full Grasp, Reached Grasp and Failed Grasp,
respectively. Reported scores in Table 4.17 are normalised by the number of grasp
attempts.

Table 4.17: Grasping Experiments with COPE Canister grasping from a tabletop
with seen and unseen surface.

Tabletop Seen Unseen
upright recumbent upright recumbent

Full Grasp 0.6 0.2 0.4 0.2
Reached Grasp 0.1 0.1 0.1 0.0

overall 0.7 0.3 0.5 0.2

Table 4.17 shows that COPE also provides pose estimates suited for grasping a trans-
parent object. The grasping success rate is higher for the case of the seen background as

6https://www.intelrealsense.com/depth-camera-d435/
7https://www.stereolabs.com/assets/datasheets/zed2-camera-datasheet.pdf
8https://www.kuka.com/de-at/produkte-leistungen/robotersysteme/industrieroboter/lbr-iiwa
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compared to the unseen background. Yet, the trained model generalises well to unseen
object appearances. Grasping success rate significantly drops when the canister is lying
on the table (recumbant). This stems from the fact that estimating the depth of the
object with respect to the camera is very challenging. Hence, estimating the object pose
only slightly too far away as compared to the ground truth already leads to finding no
executable gripper trajectory.

Figure 4.15: Pose Estimation and Grasp Point Sampling The left column of
images indicates estimated poses with a green bounding box. Right shows
all grasps, grasps protruding the table (red), grasps not protruding the
table plane (blue and green), and chosen grasp (green).

Qualitative Grasping Results using COPE Figure 4.15 shows the estimated
6D poses for the transparent object and transformed grasp points. We observe a small
offset of the estimated rotations in the left images. The rotation is difficult to estimate
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Figure 4.16: Grasping Sequences with COPE The Canister placed in its base plate,
as such unseen during training, is picked from the table.

since only the top part of the canister provides cues to disambiguate the rotational
symmetry along the longitudinal axis of the object. The right images shows the possible
grasp points around the pose estimated canister. Red point clouds denote to grasp
points that are protruding the table plane, blue and green point clouds are the valid
configurations not protruding the table plane. The top and bottom row show that for
the upright position of the canister it is easy to plan executable grasp trajectories, while
the middle row shows few valid grasp points for the canister in the recumbent position.

Grasping the Canister The top two rows of Figure 4.16 show examples of successful
grasp. The top row shows the canister being grasped from a lying position. The bottom
row presents a successful grasp with a distractor, which is not visible during training.
As such, we show that COPE is robust with respect to distractors.

4.4 Self-Comparison
This section provides a comparison of the methods presented in this thesis, SyDPose
(Section 3.3), PyraPose (Section 3.4) and COPE (Section 3.5). Presented is the ADD/(-
S) recall, Equation 2.6, on the Linemod [112] and the Occlusion [135] dataset.

SyDPose estimates 30.2% of Linemod’s and 9.1% of Occlusion’s poses correctly.
PyraPose estimates 63.4% of Linemod’s and 28.1% of Occlusion’s poses correctly.
Directly comparing these two methods, the majority of the performance improvement
of PyraPose results from using RGB as input modality. Both methods use Resnet50
as backbone, pretrained on ImageNet. PyraPose drawns large benefit from this [153].



78 4 Experiments

Table 4.18: Self-Comparison of the presented Methods. Provided is the average
ADD/(-S) recall. The objects eggbox and glue are considered as symmetric
objects.

Method Linemod [112] Occlusion [135]
SyDPose (Section 3.3) 0.302 0.091
PyraPose (Section 3.4) 0.634 0.281

COPE (Section 3.5) 0.732 0.350

Using pretrained network weights allows to freeze the first two stages of Resnet, thus
improves generality of learned representations. Additionally, PyraPose is not restricted
to a certain camera principle as SyDPose, thus more widely applicable. However,
SyDPose has the advantage that no texture priors of the objects are required. This is
also the case for Graph convolutional networks, which are better suited for depth data
than CNN’S.

PyraPose estimates 63.4% of Linemod’s and 28.1% of Occlusion’s poses correctly.
COPE estimates 73.2% of Linemod’s and 35.0% of Occlusion poses correctly. The
performance difference is due to having additional direct pose supervision with Cope
and due to using Resnet101 as backbone for COPE and Resnet50 as backbone for
PyraPose. Yet, Cope has multiple advantages over PyraPose. Using the true location
sampling scheme of COPE only requires choosing 1 instead of 12 hyperparameters.
We argue that our choice of setting COPE’s hyperparameter d, in Equation 3.6, to
3 is quite general and as such valid for a broad variety of datasets. Choosing anchor
parameters [30] as used by PyraPose in practice requires at least approximate statistics
of the test set in terms of object poses and object sizes to maximise the performance.
Additionally, COPE has a nine times smaller output space, thus convergence is improved
and training time reduced. Defining full convergence as encountering two loss plateaus,
with a loss plateau being two consecutive epochs without reduction in overall loss,
COPE only requires 120 epochs for full convergence as compared to 200 required by
PyraPose. The smaller output space also leads a training time of ∼ 55 minutes per
epoch with COPE, as compared to ∼ 70 minutes with PyraPose. Both of these aspects
considered Cope requires only half of the training time. Furthermore, COPE estimates
poses with negligible runtime increase for up to 90 object instances. Per-instances
geometric correspondences have to be processed separately with PyraPose to derive
object poses. This requires running RANSAC-PnP on each set of hypotheses. Thus
COPE provides a natural and simple formulation for object pose estimation, with ease
of use and scalability comparable to approaches for the lower-dimensional problem of
object detection.



Chapter 5

Conclusion

Scenarios involving robotic object manipulation provide manifold challenges depending
on the scene setup, such as diverse object sets, clutter, occlusion, illumination and
object material properties. Object pose estimators overfit to the training data with
respect to these characterisitcs, thus generalisation to arbitrary places of testing is
limited. Since capturing and annotating data in and retraining the pose estimator for
each distinct place of deployment is infeasible, it is desired to train on synthetic data to
simulate arbitrary scene complexity and variation while retaining correct annotations.
Especially given that it cannot be assumed that data or precise information of the target
domain is available beforehand. Therefore, object localisation is exclusively enabled
from geometric objects priors.

5.1 Problems
This section outlines the problems tackled in this thesis and restates the connected
research questions.

Using synthetic data comes with major advantages over using annotated real-world
data. Large amounts of data can easily be created without requiring manual labour
and geometric object priors are sufficient for data generation, as is the case for classical
methods. Furthermore, using real-world data leads to a bias of trained models with
respect to the training data characteristics such as camera in- and extrinsics, imaging
noise, scene context and photometric attributes. These variations are controllable and
can be arbitrarily complex when using synthetic data. However, the major challenge
when using rendered data is overcoming the domain gap, i.e. the adaptation or
generalisation to the domain of deployment. As such, the first research question to
answer is how to adapt or generalise trained models to novel domains.

Recently learning-based object pose estimation approaches started to catch up and
surpass classical ones with respect to pose estimation performance. The clear advantages
of these approaches is that CNNs encode functions, instead of templates like classical
approaches do. These resulting continuous output spaces of learning-based approaches
enable effective interpolation between the available training samples, and efficient
multi-task approach formulations. Thus, learning-based object pose estimation is
theoretically well suited for multi-object problems. Nonetheless, predicting poses of
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multiple distinct objects simultaneously comes with challenges, namely finding adequate
pose representation for training target sampling and handling objects of multiple
scales to avoid inducing a bias. Hence, many approaches are multi-staged, using
separately trained networks for detection and pose estimation, which limits efficiency.
As a consequence, the second research question is how to enable simultaneous object
detection and correspondence estimation.

Detecting objects in the image and subsequently processing the resulting sparse
location priors for each object separately, is detrimental to runtime and scalability.
Apart from that, most pose estimation approaches adopt surrogate training targets
in the form of geometric correspondences to formulate easier-to-solve problems, since
direct pose regression has been shown to result in worse performance. Outputting
surrogate representations for the 6D pose requires PnP to subsequently derive the
object pose. This leads to shortcomings because a) adopting surrogate training targets
decouples pose estimation from the training process and thus limits learning and b)
running inference for multi-instance scenarios leads to a computational complexity of at
least O(n) with respect to the number of objects n for the pose estimation stage. Thus,
this type of approach has severely diminishing applicability for realistic scenarios. In
order to overcome these shortcomings the last relevant research question for this work
is how to formulate scalable, single-staged object pose estimation.

5.2 Summary
This section reviews the contributions of this thesis, summarises our findings and
acknowledges limitations.

Domain Adaptation and Generalisation For object localisation in the depth
domain we present a strategy that renders and augments synthetic data in a way that
effectively transitions trained models to real-world depth data. During synthetic scene
creation, non-textured models and random distractor objects are physically sampled
to create realistic scene setups and object interactions. Images are rendered with a
camera setup that resembles the imaging geometry of the expected physical sensor. A
realistic sensor model in combination with simplex noise augments the synthetic depth
images to enable domain adaptation. Experiments are presented showing that the
resulting data improves detection performance over training with available real-world
data, since it is easier to create more diverse variations and object interactions in
the virtual scene. These data are also suited for object pose estimation and results
in state-of-the-art performance on two standard datasets. The findings are limited
to structured light depth sensors. Further experiments are needed to establish the
requirements to generalise to depth sensors that use other physical principles for data
capturing.

For object localisation in the RGB domain we employ a combination of strategies.
Training images are generated using physically-based rendering, sampling physically
plausible poses, and object interactions and randomising material properties. Domain
generalisation of the trained models is encouraged through the application of randomised
image augmentations, pretraining the backbone and freezing the parameters of the
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convolutions of early backbone stages and the Batch normalization layers. We present
results showing that the inclusion of different types of contrast noise in the data
augmentation improves generality of encoded representations.

Multi-object Pose Estimation We demonstrate that employing the strategies
described above in feature pyramid-based network training leads to pose estimators
that generalise well in RGB. The presented network design effectively shares inter-
nal representations over multiple objects through standardising training targets using
anchors and a specialised feature pyramid. Objects are detected and geometric corre-
spondences are predicted simultaneously for multiple objects. Poses are estimated from
the geometric correspondences using PnP. The network is thus end-to-end trainable and
only 1 network is required per dataset. Results are presented that show that this leads
to state-of-the-art performance, suitability for robotic grasping and pose estimation
in novel domains, i.e. with a difference in object placement, illumination and with a
different camera.

Scalable Object Pose Estimation The state of the art for object pose estimation
adopts surrogate training targets, such as geometric correspondences, since directly
regressing the 6D pose leads to worse results. The feasibility of regressing the 6D
pose from these intermediate correspondences has recently been demonstrated. We
directly regress the 6D pose from the predicted 2D geometric correspondences. This
is done simultaneously for all feature map locations in the multi-scale feature map of
feature pyramids. Feature map training locations are sampled and standardised using
the object shape. For testing, instance-specific output is computed by clustering the
set of hypotheses using their mutual IoUs of the predicted 2D bounding boxes. As
such, we handle multi-object multi-instance cases in a single stage, directly outputting
6D poses. This efficient formulation is end-to-end trainable and results in practically
constant runtime for up to 90 object instances, due to the negligible runtime increase
with respect to the number of object instances in the test image.

5.3 Outlook
This section acknowledges the general limitations of the presented thesis and proposes
untouched future research tasks to progress the state of the art in promising directions.

Texture-agnostic Pose Estimation This thesis provides solutions for object
localisation using depth data. As such, objects where no texture is available can be
handled. However, it is desired to solve the problem of pose estimation in RGB, since
this modality provides richer information on transparent or strongly specular reflecting
objects, and is better suited to overcome ambiguities resulting from geometric symmetries
and heavy clutter. Additionally, using object textures for synthetic-to-real object pose
estimation is disadvantageous. Reconstructing the texture of physically available objects
often results in artefacts on either the texture or the object’s geometry. Then again
CNN’s are biased towards these textural cues [154], which might be detrimental for
the generalisation of the trained models, especially considering the resulting bias due
to imperfect reconstructions. Ongoing research tackles the problem of training object
pose estimators in RGB from meshes with no texture priors available, which has not
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been addressed in this thesis. Random textures are assigned to the objects instead of
using the vanilla reconstructed ones. Initial experiments show that for LM’s [112] ape
5 different textures per training view and for T-less’ [119] object number 6 already 3
different textures are sufficient to improve over training with the reconstructed object
texture.

Self-supervised Pose Estimation Recent works adopt geometric correspondences
as surrogate training targets to maximise pose estimation performance. Though these
achieve tremendous results, the hand-crafted nature does not present an optimal solution.
Future work should thus investigate self-supervised approaches for descriptor learning.
Self-supervised descriptor space encoding using Vision Transformers and contrastive
learning might be a promising direction [155]. Especially, since self-supervised learning
already shows promising results for encoding general objects representations, and thus
might be well suited for pose estimation under domain shift [100]. Additionally, self-
supervised learning allows using setup-specific real-world data without the requirement
of annotations. Including pose annotations, synthetic samples are mapped to the same
locations in descriptor space as real-world ones, hence improving domain adaptation.

Transparent Object Pose Estimation Grasping or estimating poses of transparent
objects is a very challenging problem due to their material properties. The material’s
transmissivity of incoming light rays makes it difficult to produce robust estimates with
standard approaches. Recently [156] showed that it is feasible to learn object matting,
i.e. light ray refraction and attenuation, with CNNs. Future work will thus investigate
if encoding such photometric representations is better suited for transparent object
pose estimation, than using geometric correspondences.
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