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Kurzfassung
In dieser Arbeit wird ein Simulationsprogramm entwickelt, das basierend auf der Theorie der Mole-
kulardynamik die Bildung von magnetischen Nanoclustern beschreibt. Da Metalle nicht durch einen
einfachen Paarpotential-Ansatz beschrieben werden können, wird die Embedded-Atom-Methode
verwendet, um den spezifischen Eigenschaften der zu untersuchenden Materialien Rechnung zu
tragen. Zusammen mit einem Legierungsmodell von Johnson ermöglicht die Embedded-Atom-
Methode Untersuchungen an Systemen, die aus verschiedensten Materialien zusammengesetzt sind.
In der Simulation wird die Temperatur durch ein Nosé-Hoover Thermostat kontrolliert. Um das
entwickelte Simulationswerkzeug zu testen, werden Kenngrößen wie beispielsweise die Gleich-
gewichtsgitterkonstante oder der thermische Ausdehnungskoeffizient für verschiedenste publizierte
Potentiale berechnet. Weiters wird eine experimentell bestätigte Schalen-Kern-Formation simuliert.
Die Berechnung des Anlassvorgangs ergibt eine klar definierte Segregation der Ag-Atome an die
Oberfläche. Die Kristallebenen des Kerns weisen keine einheitliche Stapelfolge auf. Um die Kristall-
struktur des Kerns zu bestimmen, wird ein automatisches Analysewerkzeug entwickelt. Unter den
verwendeten Systemparametern weisen CoAg Kern-Schalen Formationen eine Mischung aus hex-
agonal dichtester Packung und flächenzentriert kubischer Struktur auf.
Verglichen mit den magnetischen Eigenschaften eines Festkörpers zeigen Nanopartikel signifikante
Unterschiede. Das Verhältnis zwischen Atomen an der Oberfläche und im Inneren dieser Partikel
beeinflußt die magnetischen Eigenschaften maßgeblich. Zusätzlich bestimmt die Morphologie der
Partikel die effektive magnetokristalline Anisotropie. Die Facetierung von Partikeln, welche aus
wenigen tausend Atomen bestehen, hängt von der Systemgröße ab und hat ihre direkte Ursache in
der Minimierung der Oberflächenenergie. Diese Eigenschaft magnetischer Cluster wird in einem
magnetischen Modell berücksichtigt. Eine langreichweitige Formulierung der Austauschenergie be-
schreibt die Abweichung der Austauschenergie von Atomen nahe der Oberfläche. Oberflächen-
atome besitzen weniger Nachbarn als Nichtoberflächenatome, deshalb weisen oberflächennahe
Atome eine geringere Austauschenergie auf. Für die magnetokristalline Anisotropie von Ober-
flächenatomen und Nichtoberflächenatomen werden verschiedene Modelle verwendet. Die magne-
tokristalline Anisotropie von Nichtoberflächenatomen wird durch lokale Anisotropieachsen
beschrieben. Diese Anisotropierichtungen sind von den Fluktuation der Nachbaratome abhängig.
Der Einfluss der thermischen Fluktuationen aufgrund der Bewegungen der Atome wird untersucht.
Die spezifische Formulierung des phononenabhängigen magnetischen Modells führt auf ein implizit
gekoppeltes Phononen-Magnonen-System. Eine Berücksichtigung der zusätzlichen Fluktuationen
aufgrund der variierenden Atompositionen bewirkt nur eine geringe Änderung der magnetischen
Eigenschaften. Im Gegensatz dazu führt die Verwendung einer langreichweitigen Formulierung der
Austauschenergie auf ein Koerzitivfeld, das um 20% kleiner ist als bei einem vergleichbaren Modell
mit kurzreichweitiger Austauschenergieformulierung.
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Abstract
The formation of magnetic nanoclusters is simulated using molecular dynamics simulations. In gen-
eral, metals can not be described by a simple pair potential approach. Therefore, the embedded atom
method is used to account for the specific properties of the investigated materials. In combination
with an alloy model proposed by Johnson, the embedded atom method allows for investigations
with multiple substituents making it a feasible tool to explore crystalline formations in magnetic ma-
terials. The temperature is adjusted and controlled by a Nosé-Hoover thermostat. To test the devel-
oped simulation tool, bulk material properties such as the equilibrium lattice constant or the thermal
expansion coefficient are determined for different published potentials. Furthermore, the experi-
mentally approved core-shell formation of CoAg is simulated. The calculation of the annealing pro-
cess yields a clear segregation of the Ag atoms towards the surface. The crystal planes of the core do
not show a unique stacking order. To investigate the layering of the core, an automated analysis tool
is employed. CoAg core-shell formations exhibit an intermixture between hexagonal closed packed
fractions and a face centered cubic structure in the considered parameter range.
Magnetically, nanoparticles behave differently as compared to bulk materials. The high surface-to-
volume ratio of nanoclusters influences the magnetic properties drastically. Additionally, the mor-
phology of a nanocluster influences the effective magnetocrystalline anisotropy. The facets of aggre-
gates consisting of a few thousand atoms depend on the systems size and is a direct consequence of
the surface energy minimization. A magnetic model is introduced to account for the peculiarities of
nanoclusters. A long-range formulation of the exchange energy accounts for deviations in the ex-
change energy appearing for atoms close to the surface. Surface atoms exhibit less neighbors than
non-surface atoms, leading to lower exchange energies. Therefore, the magnetocrystalline anisotro-
py is modeled differently for surface atoms and non-surface atoms. The magnetocrystalline aniso-
tropy of non-surface atoms is described by using local anisotropy axes depending on the fluctuations
of the neighboring atoms. Subsequently, thermal fluctuations arising from the motion of the atoms
in the magnetic system are explored. The specific formulation of the phonon dependent magnetic
model leads to an implicitly coupled phonon-magnon system. The additional fluctuations arising
from the varying positions of the atoms do not significantly change the magnetic behavior. In con-
trast, using a long-range exchange formulation yields a coercive field 20% smaller as compared to a
standard next neighbor exchange model.
3
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1INTRODUCTION

1.1 Motivation
Ultra high density storage media with a low signal-to-noise ratio require small magnetic grains. For
a given material its maximum areal density is ultimately limited by thermal stability. The energy bar-
rier for thermally activated switching is given by the product , where  is the magnetocrystal-
line anisotropy constant and  is the volume of the magnetic grain. Therefore, reducing the grain
size can be balanced by a large anisotropy. Chemically ordered FePt alloys have a magnetocrystalline
anisotropy constant in the order of 7 106 J/m³ which is more than ten times larger than that of cur-
rently used Co-based alloys. Such a high anisotropy will ensure thermal stability at an average grain
size of 5 nm and below, leading to an areal storage density in the Tbit/in² regime [1]. Additionally,
the magnetic properties of nanoparticles strongly depend on their morphology and the high surface-
to-volume ratio. Moreover, the structural properties of nanoparticles strongly depend on their com-
position. Klemmer and co-workers [2] systematically studied the change of the lattice parameters
with composition using X-ray diffraction. The results confirm that the magnetocrystalline anisotro-
py is correlated with the c/a ratio of the crystal phase. The maximum anisotropy occurs at the max-
imum tetragonality.
The current roadmap for magnetic storage at ultra-high densities is heat assisted magnetic recording
on highly coercive magnetic nanoparticles [3]. A second increasingly important application area of
magnetic nanoclusters is nanobiomagnetics [4]. Magnetic nanoparticles will be used for magnetic
sensing and for magnetic sorting of biomolecules, proteins, and DNA or for the mechanical mani-
pulation of biological cells. With decreasing size, structural details and the morphology of nanoclus-
ters are primarily determining the overal magnetic properties. The design of magnetic devices and
tools in information science and biotechnology requires a fundamental understanding of the mag-
netic properties of nanoclusters. Magnetic measurements and characterization on the single particle
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INTRODUCTION
level require an enormous effort. Alternatively, computer simulation can provide a detailed under-
standing of structure-property relations in magnetic nanoclusters.
In this PhD thesis, a computational framework for investigations on nanocrystalline particles is de-
veloped. The objective is a simulation tool that is capable of calculating equilibrium structures of
binary alloys and solving the equation of motion for atomic moments in the classical Heisenberg ap-
proximation. Furthermore, the simulation of atomic motion and magnetization dynamics should be
performed simultaneously, in order to provide a tool to investigate different coupling mechanisms
between the elastic system and the magnetic system of a nanocluster. In particular this novel feature
of the software is used in chapter 5 of this thesis for the simulation of the effects of surface anisot-
ropy and exchange on the dynamic magnetic properties of nanoparticles. For example, the influence
of a change in the surface anisotropy due to thermal fluctuations can be directly computed and is
seen in a shift of the thermal stability of magnetic nanoparticles [11].
Whereas software packages for molecular dynamic simulations based on the embedded atom meth-
od exist in the public domain [5,6,7], atomistic magnetization dynamics software is used within re-
search groups only [9,10]. In order to combine molecular dynamics and magnetization dynamics it
is necessary to have full access to the source code. Furthermore, the molecular dynamics code
should be thoroughly understood before adding new features such as the coupling between the mag-
netization dynamics and the motion of the atoms. Therefore a new software package (cp Appendix
6.3) is developed. The quantum mechanical orign of the forces between the atoms and the ferro-
magnetic exchange between the atoms is not directly addressed with the simulation tools developed
in this thesis. Rather, the interatomic potential, the Heisenberg exchange integral, or the local inter-
face anisotropy are used as input for the simulation. Both, molecular dynamics and magnetization
dynamics are based on equations of classical physics. The input parameters may either be taken from
empirical studies and measurements or from ab-initio simulations delivering interatomic potentials
and exchange integrals. By solving the equation of motion for the atoms and the equation of motion
for the magnetic moments simultaneously, mutual interactions between structure and magnetic
properties can be studied dynamically.
Chapter 2 of the thesis introduces molecular simulation and in particular discusses the embedded
atom method for the simulation of binary alloys. To test the developed methods, bulk material pa-
rameters are extracted and compared to known experimental values in chapter 3. The formation of
the nanocrystals is modeled using a molecular dynamics approach combined with the embedded
atom method in chapter 4.  A magnetic model which includes effects arising from morphology and
structural composition of nanoclusters is proposed in chapter 5. Furthermore, a representative
model system consisting of 1289 Co atoms is used to demonstrate the importance of including the
motion of atoms and the specific shape of nanoparticles in magnetic simulations.
9
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2MOLECULAR DYNAMICS

In this chapter, the most important concepts necessary to perform mo-
lecular dynamics are discussed. Hamilton’s formulation is introduced to
describe an interacting particle system mathematically. Numerical meth-
ods for solving Newton’s equations are discussed. Moreover, proper
ways of extracting and introducing physical properties such as tempera-
ture and pressure are described. Finally, selected numerical aspects and
their according implementations are presented.

2.1 Introduction
Molecular dynamics simulations belong to the modeling class of particle models. Particles in a wider
sense can be atoms, molecules, dust-particles or even galaxies. Each particle is described by assigning
properties such as mass, velocity, charge or a magnetic moment. The dynamics of the particles is
modeled by using Newton’s second law of motion, giving a direct proportionality between the forces
acting on each particle and the rate of change of the momentum (i.e. acceleration) for each particle.
Moreover, the direction of the acceleration is equivalent to the direction of the acting force. Know-
ing the initial values such as velocities and positions, the solution of Newton’s equations delivers the
dynamic evolution of the system. The forces are calculated by building the derivative of the total
potential energy function. Therefore, it is the potential function representing the underlying physical
situation.
While the potential function of two separated stars in the (ideally empty) universe is simply the grav-
itational energy, potential functions for more complex systems can be very hard to determine. Con-
sidering atomic structures such as complicated molecules, the calculation of the exact total potential
energy function is difficult to determine. In principle it would be possible to use Schrödinger’s equa-
tion and calculate the evolution of the system from first principles. This approach is numerically
challenging and not efficient enough to simulate systems consisting of more than some ten atoms.
10



MOLECULAR DYNAMICS
Using approximations is therefore the only way to describe large-scale systems on an atomic length
scale.
Although solving Newton’s equations of motion in an algorithmic way was well known in the last
centuries, the development of the methods used in molecular dynamics (MD) simulations is strongly
linked with the appearence of “fast electronic computors” [12], as stated in one of the first publications
employing molecular dynamics numerically. Alder and Wainwright calculated the phase diagram of
a hard-sphere system and found a phase transition from liquid to solid, which was very surprising at
that time, since the used hard-sphere potential did not have an attractive part.
Rahman investigated liquid Argon by means of molecular dynamics [13]. He was using a Lennard-
Jones type potential and, due to the chemical inertness of Argon, this approach delivered excellent
results for that time. It should be noted that Argon can still be considered a favorite system to test
MD codes since there are numerous results published and the system is sufficiently simple.
Verlet introduced an efficient method to organize a simulation: by keeping lists of neighbors for each
atom, the efficiency of the evaluation of the according potential function was improved. He also in-
troduced an integration scheme to solve Newton’s equation of motion, which is still in use to-
day [14]. Although this code is denoted as Verlet-Scheme, the origin of his proposed method can be
attributed to at least two other persons: to Störmer and even to Delambre (1791) [15].
The basics of molecular dynamics simulations are well established, but research on the methodology
of how to simulate different ensembles of atoms correctly is still an ongoing work. In order to com-
pare the results from a simulation with analytical results from thermodynamics, different prerequi-
sites concerning the various thermodynamic potentials have to be established for simulations as well.
The modeling of these different ensembles is described in section 2.2.4.
Today, molecular dynamic simulation can be used for complex systems with various elaborate inter-
actions. This is not only due to the fast increase in computation speed but also because of the mini-
aturization of potentially interesting systems which has rendered detailed investigations possible.
Modern magnetic recording applications depend on magnetic grains of the size of some nanometers.
Future biomedical applications, such as drug-delivery, will probably utilize small gold-capped mag-
netic particles to carry medication by means of magnetic fields. Today, these systems can be simu-
lated easily. Their size is small enough to simulate the dynamics on appropriate length scales.

2.2 Mathematical Formulation
Numerous textbooks have been published on the topic of molecular dynamics (e.g. Ref. [16], [17],
and [18]), each of them discussing the methodology and concepts used in molecular dynamics sim-
ulations. All of them approach the topic from a slightly different point of view. It is not intended to
give a comprehensive introduction to all the different mathematical formulations, yet the main ideas
used in molecular dynamics simulations will be presented.
11



MOLECULAR DYNAMICS
2.2.1 Hamiltonian Mechanics in a Nutshell
Using the Hamiltonian mechanics which is a reformulation of the Lagrangian Dynamics, the so-
called canonical equations of Hamilton pull together the Hamiltonian , the generalized variables

 and their conjugate momentum .

(2.1)

(2.2)

Working with Cartesian coordinates, the generalized momentum describes the linear momentum. In
contrast to the Lagrangian formulation which consists of second-order differential equations,
Hamilton’s equations are first-order and thus more convenient to handle.
Assuming a time-independent transformation of the generalized coordinates, the Hamilton function
for a system of N degrees of freedom can be written as

, (2.3)

where  denotes the kinetic energy and  is the potential energy, respectively.  is the generalized
momentum of particle  and  denotes the mass. Applying Hamilton’s equations (Eq. 2.1 and
Eq. 2.2) and using Cartesian coordinates (i.e. the generalized momentum equals the linear momen-
tum ), one gets:

, (2.4)

. (2.5)

Here,  denotes the velocity of the -th particle and  is the negative gradient of a potential func-
tion which is not explicitely time-dependent.

. (2.6)

Since , the Hamilton function represents the total energy of the system. If  does not ex-
plicitly depend on time, the total energy of a system remains constant and the energy is a conserved
quantity. Therefore, building the total derivation of  with respect to the time  yields

. (2.7)
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MOLECULAR DYNAMICS
Since , Eq. 2.7 proves that the Hamiltonian function does not change with time, i.e. the
total energy is constant. A molecular dynamics simulation should reproduce this behaviour.
Apart from the total energy, the linear momentum and the angular momentum are also constants of
motion. In order to verify a simulation code, calculating constants of motion is a quick and practi-
cable method.

2.2.2 Thermodynamic Quantities in Simple Simulations
Since a mechanically and thermally isolated system can not change its internal energy, solving Eq. 2.4
and Eq. 2.5 delivers an isokinetic simulation, also known as microcanonical ensemble. Unfortunate-
ly, isokinetic circumstances are hard to set up in real-life experiments. Instead, it is the temperature
which can be adjusted easily on a macroscopic length-scale. Experimentally, the temperature can be
adjusted by a heat-bath surrounding the system under investigation. Another quantity which is easily
accessible in real life is the pressure. The pressure can be changed by mechanical devices which are
limiting or expanding the volume of the experiment. Both associations are mimicked in molecular
dynamic simulations to introduce temperature and pressure.
Before the temperature or the pressure can be altered, one has to extract these quantities from the
simulation. The temperature can be calculated using the equipartition theorem, the pressure can be
determined by using the Clausius virial equation.

Calculation of the Temperature
According to the thermodynamic equipartition theorem, temperature and kinetic energy are directly
proportional:

. (2.8)

 denotes the number of particles and  is Boltzmann’s constant (cp. section 6.1). Considering a
fixed system (i.e. a fixed center of mass), three degrees of freedom have to be substracted from 3 ,
which is the total number of degrees of freedom.
Consequently the temperature can be calculated from Eq. 2.8:

. (2.9)
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MOLECULAR DYNAMICS
Calculation of the Pressure1

Using the Clausius virial function is the starting point for the derivation of the pressure in a mole-
cular dynamics simulation:

. (2.10)

Here,  is the total force acting on atom . It includes the interatomic forces and the forces orig-
inated from the walls of the simulation box. Calculating the statistical average of this function along
a trajectory in space yields

. (2.11)

Solving the integral partially delivers

. (2.12)

The sum on the right-hand-side represents twice the kinetic energy of the system and can thus be
related with the temperature (cp. Eq. 2.9):

. (2.13)

Since the total force can be attributed to internal and external forces, Eq. 2.13 can be reformulated
in terms of internal virial contributions and external contributions. Considering a simulation setup
with particles located in a box with side lengths ,  and , respectively, the force acting on the

-plane of this box equals , assuming an isotropic external pressure. Accounting for all three
dimensions, the external virial can be written as:

. (2.14)

Combining Eq. 2.14 and Eq. 2.9 yields

(2.15)

and therefore a possibility to measure the pressure within a molecular dynamics simulation:

1. The derivation of the pressure in the presented form has been taken from [19].
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MOLECULAR DYNAMICS
. (2.16)

This equation is called virial equation. In case of non-interacting particles (i.e. ), one gets
the well-known equation of state of an ideal gas .

Simple Thermostat
Considering Eq. 2.9, the simplest way to set up a desired temperature is to directly change the ve-
locities. This can be done with a correction factor which sets up the desired temperature:

. (2.17)

Multiplying every single velocity with  transforms a system from  to . This is usually
performed every few time-steps to allow the system to evolve during the scaling process. In terms
of thermodynamics, this procedure does not comply with any known natural source of changing the
temperature. Moreover, configurations produced with this attempt do not sample any known statis-
tical mechanic ensemble und therefore it can not be used to extract any thermodynamic quantities.
Anyhow, due to its simplicity and its numerical robustness this method is still used to equilibrate a
system to reach the designated temperature of a simulation.
Variations of this method use different definitions of the scaling factor. The Berendson method [20]
is implemented by using a time-step dependent value of , which causes a more gentle way to alter
the velocities.

(2.18)

Here, the pertubations of the dynamics can be adjusted by the use of large values of the time con-
stant . Anyhow, using this method does neither allow to adjust the temperature in a correct way
nor does it deliver any known thermodynamic ensemble.
After a reasonable equilibration time the scaling mechanism can be switched off. Subsequently, the
temperature will be close to the desired temperature. The system then represents a microcanonical
ensemble with fluctuating temperature and pressure and a constant internal energy. Further adjust-
ments on the temperature are not possible anymore.

2.2.3 Integration Methods
In order to solve Eq. 2.4 and Eq. 2.5 numerically, a discretization of time is necessary. The time pe-
riod  is therefore devided into  equal intervals. Then, the set of differential equations de-
scribing the evolution of the system is only evaluated at discrete points  in time.
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As already mentioned, conservation of energy, angular momentum and linear momentum are pre-
requisites for a good computer simulation. In addition, the equations of interest are time reversible,
thus an integration method should also maintain this feature.

Euler Algorithm
A very simple method to solve Eq. 2.4 and Eq. 2.5 is the Euler algorithm. A Taylor expansion de-
livers the new positions and the new velocities of the particles at the time 

(2.19)

(2.20)
The new position  can thus be calculated from the old position , the velocity , and
the acceleration . The latter is evaluated by using Eq. 2.6 and .
The Euler algorithm is an explicit integration scheme and very simple. Unfortunately, the total en-
ergy of the system is not conserved strictly. Moreover, it is not time reversible.

Verlet Algorithm
Expanding the position  at two different positions  and  yields

.

Summation of these two equations leads to

. (2.21)
Starting from the actual position and the positions of the system at time , the new positions
can be calculated. The accelerations  are gathered by using Eq. 2.6 again. Since the velocities are
not explicitly quoted in this scheme, a second-order differential scheme can be used to get these val-
ues:

The Verlet algorithm [14] is time reversible and does not obtain any energy drift. Since the calcula-
tion of the new positions requires to store the actual position and one position from the past, the
memory consumption of an implementation of this code is higher as compared to the Euler algo-
rithm. Moreover, when starting the calculation, positions at time step  have to be supplied with
a different method, since no data for  is available.
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Leapfrog Algorithm
The lack of velocities within the main algorithm can be overcome by defining half step velocities:

(2.22)

(2.23)

From the last expression one gets an integration rule for the new positions utilizing the velocity at a
semi-future point in time:

. (2.24)
Rearranging Eq. 2.21 and utilizing Eq. 2.22 yields the velocities at the future half-step :

(2.25)
First, the accelerations are again calculated by building the gradient of the potential function, then
the velocities at the time step  are evaluated (Eq. 2.25) and finally the new positions can be
obtained by using Eq. 2.24.
Compared to the Verlet algorithm, only the values of the actual positions are used to calculate the
new position at time step . A disadvantage of this scheme is, that the velocities are only known
at half-time steps. This can be overcome by simply interpolating between the known half-time steps.
Again, a special start-up sequence has to be implemented to get the inital velocities at .

Velocity Verlet Algorithm

Since the Leapfrog algorithm does not supply the velocities at the time step , which is necessary
to calculate the kinetic energy, a different approach is used to solve this problem. Again, the starting
point is a Taylor expansion, carried out for the position . The velocities at this time step are
calculated by adding a mean value of the actual and the future acceleration (Eq. 2.26). This will lead
to a scheme where the velocities are known at the desired time step.

(2.26)

This algorithm can be implemented by calculating the new velocities at the half-step  from
the actual accelerations and the actual velocities. To obtain the new positions, the mid-point veloc-
ities are used (Eq. 2.27). The new accelerations are then evaluated at the new positions using the gra-
dient of the potential at the position . Finally, the new velocities at the time-step  can
be calculated by using the result from Eq. 2.27 and adding the new accelerations from Eq. 2.29.
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(2.27)

(2.28)

(2.29)

(2.30)

Since the velocities have to be stored at the half-time step during an integration step, the Velocity-
Verlet algorithm needs an additional variable in the implementation. Anyhow, since the velocities
are naturally known at each time step, this method is very feasible in practice. Moreover, the Velo-
city-Verlet-Scheme is often used for more elaborate integration schemes involving different thermo-
dynamic ensembles.

2.2.4 Extended Hamiltonians
In order to simulate thermodynamic ensembles such as the canonical ensemble or the isothermal-
isobaric ensemble correctly, the standard Hamiltonian has to be extended. This extension mimicks
the underlying physical situation. In the case of a canonical ensemble (NVT) with a constant number
of particles , constant volume  and temperature , the according extension to Eq. 2.3 is a rep-
resentation of a heat bath. Apart from the Nosé-Hoover thermostat below, several other methods
to control temperature and pressure have been published. To illustrate the ideas behind extended
Hamiltonians, the Nosé-Hoover formalism is discussed in detail.

Nosé-Hoover Thermostat

Nosé [21] proposed an extended Hamiltionian with an additional degree of freedom featuring the
heat bath.

(2.31)

 is the the extended momentum of the heat bath and  its conjugate variable which can be inter-
preted as a position.  represents the virtual mass assigned to the heat bath and  with 
being the number of degrees of freedom of the real system. The extendend system is described in a
virtual formulation of the variables which are related to real variables by the following transforma-
tions

                        (2.32)

x· t Δ t 2⁄( )+( ) x· t( ) Δt
2
-----x·· t( )+=

x t Δt+( ) x t( ) x· t Δt 2⁄+( )Δt+=

x·· t Δt+( ) 1
m
----∇U x t Δt+( )( )–=

x· t Δt+( ) x· t Δt 2⁄+( ) Δt
2
-----x·· t Δt+( )+=

N V T

HNosé
p̃2

2mi s
2

--------------
i
∑ V x̃1 … x̃N, ,( ) π2

2Q
------- g̃kBT sln+ + +=

π s

Q g̃ Nf 1+= Nf

xi x̃i= pi
p̃i
s
----= t dt̃

s
-----

0

t

∫=
18
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Eq. 2.31 implies, that the system is described in a virtual time formulation [22]. That is to say that
configurations are not available at evenly spaced times. Anyhow, as long as no correlation functions
are calculated, where data is needed at the equidistant points in time, this issue does not matter.
Applying Eq. 2.1 and Eq. 2.2 on the extended Hamiltonian yields

        (2.33)

for the coordinates and

           (2.34)

for the according momenta. Using the transformation rules given in Eq. 2.32 results in a real time
formulation:

     

     (2.35)

Here, the time derivative is carried out in respect to the real time  (represented by a superior dot
notation). Hoover [23] proposed another transformation of the variables, namely

       . (2.36)

These transformations result in a decoupling of the coordinate  from the system and eliminate the
variable :

       

    (2.37)

This system of equations of motion is called Nosé-Hoover formulation. Compared to the original
set of equations, here  represents the number of degrees of freedom of the system in order to get
the correct temperature.
To solve Eq. 2.37, implicit [17] and explicit [24],[25] integration schemes have been published. In
order to make the integration scheme comparable, the solution is given in the same form as present-
ed in Eq. 2.27 - Eq. 2.30:
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(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

It should be noted that the Nosé-Hoover formulation represents a NVT-ensemble thermodynami-
cally, the internal energy is now fluctuating and not any longer a constant of motion. However,
Eq. 2.31 features a conserved quantity, an extended energy accounting for both, the internal degrees
of freedom and the modeled heat bath.

(2.43)

Discussion
The Nosé-Hoover method is commonly used to adjust the temperature in a molecular dynamics
simulation. It samples canonical configurations. Therefore, results can be directly used to obtain
thermodynamic quantities from the simulation. Anyhow, since the variable transformations change
the structure of the equations of motion, the transformation is non-Hamiltonian. Recently, this issue
has been solved by introducing the Nosé-Poincaré method [22]. This method does not need any non-
Hamiltonian transformation, therefore the system is symplectic and time reversible. It was Nosé,
who published an explicit symplectic time-integrator for the Nosé-Poincaré thermostat [26].
The introduction of a heat bath with associated fictional mass , momentum  and coordinate 
allows for energy exchange. Consequently, not only the system being investigated needs time to
equilibrate, also the heat bath has to be equilibrated. Generally, a different approach should be used
to set up an initial temperature before extracting thermodynamical quantities from the simulation.
In practice, this can be implemented by using two different thermostats, e.g. a velocity scaling meth-
od in the beginning of the simulation and a more elaborate method for the production period.
It should be noted that due to the introduction of a fictional degree of freedom, the dynamics of the
system also change. Non-physical oscillations exhibiting a period of 
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MOLECULAR DYNAMICS
are introduced. Consequently, data collection can only be obtained by averaging over many of these
periods. The fictional mass should be chosen in a way that  is large compared to dynamic fluctu-
ations of the system. An effective method to evaluate the choice of  is to compare the distribution
of temperatures with the expected canonical distribution of temperatures:

. (2.44)

A heat bath should be large compared to the system which it is equilibrated with. Modeling this heat
bath with a single degree of freedom might therefore be a weak approach. Thus, a chaining of the
thermostats has been proposed. That is to say, a second (or even more) degree(s) of freedom acts as
a thermostat on the first degree of freedom. This can be extended to an arbitrary number of ther-
mostats, called chaining of thermostats. Recently, Leimkuhler and co-workers [27] presented a sym-
plectic integration scheme for both Nosé and Nosé-Poincaré chains.
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Figure 2.1: Temperature distribution for a velocity scaling scheme and the Nosé-Hoover method.
Whereas the Nosé-Hoover scheme  reproduces the canonical distribution well, the velocity scaling
scheme does not reproduce the desired distribution. (simulated system: Ag, 100 atoms, total num-
ber of integration steps: 2x106,  Q=106, desired temperature: 1500K)
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2.3 Potentials
Using appropriate integrators is only one part of a successful and correct simulation of a physical
system. Interactions between particles are described by the potential function which is used to cal-
culate the intra-particle forces. Thus, it is important to use potentials capable of reproducing real
physical quantities.
However, describing a set of a relatively small number of atoms by means of classical mechanics
might need some further justification. Interactions on atomic scales are generally described by the
Schrödinger equation. Consequently the solution of the time-dependent Schrödinger equation
should describe a system evolving in time. Unfortunately, solving a many-body Schrödinger equa-
tion for a large number of atoms is still a challenge to even the fastest computers available. Therefore
approximations and simplifications are necessary. A comprehensive discussion about deriving mo-
lecular dynamics from first principle considerations can be found in [18].
In terms of quantum mechanics, one of the most powerful ideas is to separate the electronic and the
nucleus’ wave functions (Born-Oppenheimer approximation). Solving the electronic part of the
problem provides a potential which can be subsequently used as potential in the second Schrödinger
equation to calculate the motion of the nuclei. Due to the fact that the total mass of electrons is
much smaller than the mass of the nuclei, this separation seems valid. This approach results in ab-
inito molecular dynamics.
A further simplification can be made by using an effective potential describing the electronic system.
This potential is then used to calculate the intra-atomic forces. This approach is used in the classical
molecular dynamics approach.
Due to its historical importance, the Lennard-Jones potential will be discussed to illustrate the main
features of a pair-potential and its usage in a molecular dynamics simulation. The focus of this thesis
is predominantly set to metals, thus the embedded atom method has been chosen to model this class
of materials. It is discussed in section 2.3.2.
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2.3.1 Lennard-Jones Potentials
Introduced well before the invention of automatic
computer devices, Lennard-Jones [28] proposed a
potential function best known for describing the
interaction between noble gas atoms. Due to its
simplicity, the Lennard-Jones potential is appro-
priate to test a new molecular dynamics code. The
potential consists of a repulsive and an attractive
part, the repulsive part can be interpreted as being
a representation of the Pauli-repulsion caused by
overlapping electron wave functions exhibiting
equal spins. The attractive part of the potential
models mainly Van-der-Waals forces and perma-
nent dipol-dipol-interactions. In its parameterized form it often appears as

(2.45)

where  is the distance between atom  and ,  is the depth of the potential. A higher value of
leads therefore to tighter bindings.  describes the zero-crossing point of the potential; the mini-
mum of the potential (i.e. zero force) can be found at . Fig. 2.2 shows a Lennard-Jones poten-
tial for  and , respectively.
Building the gradient of this potential delivers the direction and the strength of the force (devided
by ) acting on atom :

(2.46)
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Figure 2.2: Lennard-Jones potential for 
and . Note that on the abscissa the po-
tential approaches zero rapidly. This legiti-
mates the usage of a cut-off radius.
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2.3.2 Embedded Atom Method
Molecular dynamics simulations using empirical two-body potentials, like the Lennard-Jones poten-
tial type, are not suitable for applications involving chemical active materials or metals [29]. Although
such simple approaches can deliver the correct ground-state energy, specific properties, such as the
elastic constants of metals, can not be reproduced [30]. To overcome these problems more elaborate
potentials were developed: Daw and Baskes introduced the embedded atom method [31], an ap-
proach based on the idea of quasiatoms [32]. A quasiatom is defined as a unit consisting of the ion
and its electronic screening cloud. Considering this unit as impurity in an electronic system, the en-
ergy of this quasiatom only depends on the electron density of the host.
The main feature of the embedded atom method is based on the idea of quasiatoms: every single
atom in a system is now considered as beeing an impurity in the host. The energy of the embedded
atom  is now calculated via an embedding function , dependent on the electronic density caused
by the host at the position of the impurity:

. (2.47)

Here, the electronic density  is just the sum over all electron density functions of all other atoms:

(2.48)

Combining the embedding potential with a pair potential

(2.49)

yields the total embedding atom potential function:

(2.50)

Although these potentials exhibit features of many-body interactions, their mathematical form is still
simple to implement.
In practice, the embedding function  is fitted to obtain reasonable bulk material parameters such
as the lattice constants, elastic constants or vacancy free energies. For the electron density function

 only electron orbitals outside the screening regime of an atom have to be considered. They can
be either calculated by a simple Hartree-Fock approximation [18] or other functional shapes are fit-
ted to the desired density [33]. A comprehensive analytical investigation on the nature of the embed-
ded atom method can be found in Ref. [34].
Building the gradient of the total potential function with respect to the particle position  yields the
force on this particle.
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(2.51)

with  being the distance between particle  and :

.

To evaluate Eq. 2.51 the two terms on the right-hand-side are evaluated separately:

. (2.52)

(2.53)

Since both, the derivative of the embedding function and the density function, can be tabulated, this
form is especially useful in numeric calculations. Combining Eq. 2.52 and Eq. 2.53 yields the force
on the particle :

(2.54)
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In practice, potential functions are either published as columns of numbers or in parameterized
form. Numerically it is more efficient to store the potential functions and density functions as pre-
computed values with a subsequent interpolation scheme after the look-up process than to evaluate
the potential functions.

2.4 Selected Numerical Aspects and Data Structures
Normally, molecular dynamics simulations are performed with time-independent potentials. Thus,
using a decent integration scheme and a reasonable potential should obtain physical properties such
as the conservation of the total energy or the conservation of the total momentum. The extraction
of these quantities after a simulation run is therefore an excellent method to evaluate the quality of
a given code.

2.4.1 Integration of Closed Loops
In order to prove the calculation of the forces from building the gradient of the potential function,
a random configuration of atoms is used and their respective positions in space is kept fix.
Additionally, another atom is used, which is now moved along a closed path through this cloud of
atoms. Since the performed work on a closed path in a conservative energy landscape yields zero,
line-integrating the force on a closed track should also result in zero work. To get a decent accuracy,

 was chosen to be as small as . Although no special integration algorithm has been
used, the work at the inital position after a full loop was in the order of  relative to full scale.
Δx 0.1 10 13–⋅ m

10 4–
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2.4.2 Cut-off Radius and Representation of the Simulation
In general molecular dynamics is numerically challenging. Apart from the integration scheme, the
evaluation of the forces is very time-consuming (Eq. 2.54). In principle, the distance between each
particle has to be calculated to evaluate a single force. For large-scale calculations, calculating the 
distances and the appropriate forces slows down the simulation.
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Figure 2.3: Method to test, wheth-
er a used potential is conservative
or not. The blue spheres represent
a configuration of atoms at fixed
postitions whereas the red sphere
follows a closed loop. Integrating
the calculated forces along the
closed loop should yield zero
work when reaching the initial po-
sition again. State 1, 5 and 9 clearly
show that no work has been per-
formed on a closed loop, which
indicates that the potential func-
tion is conservative. The graph
below depicts three different
closed loops through the configu-
ration of the blue spheres generat-
ing the potential landscape. An
embedded atom potential for Co
was used for this calculation.
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MOLECULAR DYNAMICS
Luckily, interatomic forces are in general short-ranged. That is to say, atoms with a larger distance
do not contribute significantly to the total force on the considered atom. Therefore, defining a cut-
off radius around each atom reduces the number of significant atoms to a constant number, inde-
pendent on the total number of atoms of the system. It should be noted, that it is important to use
potential functions exhibiting a smooth crossover from non-zero values to zero for distances larger
than the cut-off radius, since it is not the potential function itself but the derivative of the function
being used to calculate the force. A step at the cut-off radius would therefore lead to irregularities in
the simulation results.
Anyhow, using a cut-off radius does only reduce the number of force evaluations - the number of
distance calculations remains constant. Especially at low temperatures the neighborhood of an atom
does not change significantly with time. In other words, the determination of the neighboring atoms
within the cut-off radius at each timestep can be reduced to a determination of the neighborhood
every few time-steps. The neighbors of an atom are therefore stored in special lists, the distances to
this neighborhood-atoms are updated every time-step. This approach is called neighbor list scheme
and is very effective for small scale simulations ( ).

Another possibility is to split the simulation regime into pieces exhibiting a typical length of . If
stored in a decent data structure, it is only necessary to consider the neighbors of a cell (cp. Fig. 2.4).
The individual cells are at least  in size. Therefore, almost only relevant atoms will be found in
the immediate neighbor cells. In order to design this process effectively, a linked list algorithm is
used to access atoms of different cells.
Due to it special design, the linked-cell scheme does have some limitations. Since each cell has to be
at least  in size and no cell can have itself as neighbor, the minimum simulation volume is

. Using a smaller number of cells results in atoms interacting with themselves. On the
other hand, a reduction of the cell size to values smaller than  yields unsteady potential functions
at the cell boundary. Both situations are unphysical.

N 103≤

Figure 2.4: Linked-cell geometry (two-dimensional). The left picture represents
a 7x5 cell geometry. Each cell has to have at least a side length of . Thus, only
neighboring cells have to be considered while finding relevant atoms. On the
right, the minimum image convention is depicted, i.e. an atom in the corner cell
interacts with cells from the opposite border. Each cell has 8 (2D) and 26 (3D)
neighbor cells, respectively.
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MOLECULAR DYNAMICS
Due to the special way of storing the atoms, additional computation is necessary. Migrating atoms
need special treatment, since they can leave their initial cell. They have to be moved to a different
cell. It is the overhead-calculation which makes the linked-cell scheme better suited for large scale
simulations ( ). Linked cell schemes are also well suited to be implemented on parallel com-
puters.
Fig. 2.5 shows a comparison between both ways to handle the geometry. Whereas the simulation
time per particle is independent on the total number of atoms for the linked cell scheme, the simu-
lation time per particle rises when calculated with the neighborlist method.  

2.4.3 Comparison Between Tabulated Potentials and Analytical Functions
Using the embedded atom method, the calculation of the individual forces acting on the atoms in-
volves the derivatives of the pair potential function , the electron density  and the derivative
of the embedding function . Usually, these functions are given in a parameterized form, for ex-
ample as cubic spline functions (cp. section 6.1). If given in an analytical form, implementing this
parameterized function including the necessary derivatives yields the best numerical accuracy possi-
ble.
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Figure 2.5: Comparison between an algorithm using the linked-cells meth-
od and the neighbor list algorithm. The linked-cells computation time per
particle is independent on the total number of particles simulated. When
performing calculations with only some hundreds of atoms involved, the
neighbor list algorithm is faster due to additional overhead computation.
The unit on the ordinate represents a measure between reality and simula-
tion: Unity would represent a real-time capability of a simulation in a one-
processor per particle approach.
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MOLECULAR DYNAMICS
Since the evaluation of these parameterized functions has to be performed every time step, complex
functions are slowing down a molecular dynamics simulation drastically. A different way to evaluate
these functions is to store pre-computed values for the expected input values. In the case of the pair
potential and the electron function it is sufficient to store values up to the cut-off radius as upper
limit and half of the nearest neighbor distance as lower limit. The embedding function should be
evaluated within an intervall of  and several multiples of the equilibrium electron density. A
reasonable number of supporting points should be computed (>5000).
In order to evaluate a tabulated function at a desired distance or electron density, a simple lookup-
algorithm in combination with a first-order interpolation scheme is sufficient. Second-order inter-
polation schemes can improve the accuracy as compared to an analytical implementation further.
Anyhow, considering the reproducibility of experimental quantities, a second order scheme does not
yield a significant improvement.

ρ 0=
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3EVALUATION OF DIFFERENT POTENTIALS: 
CALCULATION OF BULK PROPERTIES

The embedded atom method used in this work requires three functions:
the electronic density, a pair potential and an embedding energy function,
which depends on the local electron density. Although it is possible to
use first-principle calculations to obtain such potentials, this approach is
rather complex. Fitting a potential to various experimental findings is an
alternative way. As this approach involves numerical optimization of
many parameters it is also very time-consuming. Fortunately, parameter-
ized potentials have been published in the last years. In the following, the
concepts and the particular parameterization of those potentials are in-
troduced. Furthermore, test methods to calculate bulk properties are pre-
sented and the different potential schemes are evaluated by comparing
the results with experimental findings.

3.1 Introduction
Using well developed potentials in molecular dynamics simulation is the key to obtain reasonable
results. Knowing the peculiarities of published potentials and their construction is helpful when
evaluating these potentials. Two particular attempts to design an embedded atom potential are dis-
cussed: the initial approach of Daw and Baskes [30] and a more contemporary method presented by
Zhou and co-workers [41]. Moreover, a discussion about creating appropriate pair potentials to sim-
ulate alloys is given.

3.1.1 The Original Potentials of Daw and Baskes
Daw and Baskes introduced the embedded atom method (Refs. [30,31]) and published their poten-
tial functions for Ni and Pd, respectively. An ab-inito approach is used to determine the electron
densities. They refer to calculations performed by Clementi [101], who was using a single-determi-
nant Hartree-Fock approximation to calculate the electron density of different elements. Since the
31



EVALUATION OF DIFFERENT POTENTIALS
exact ground-state is not known for an atom in the bulk (for Nickel it can be [Ar].3d8.4s2,
[Ar].3d9.4s1 or [Ar].3d10), a mixing procedure between s-like and d-like contributions was proposed. 

(3.1)

Here,  represents the electrons in the s-state, whereas  represents a density function of d-elec-
trons. The number  gives the fraction of s-like density of the total atomic density, while the integer
number  corresponds to the total number of electrons of both electrons in the 3s-state and 4d-
state (for Ni).
The electron densities  and  can be calculated by the following equations:

, (3.2)

. (3.3)

The parameters ,  and  can be found in Ref. [101]. Parameters for Nickel from different au-
thors are listed in section 6.2.1.
Beside the mixing rule for 4s- and 3d-electrons, the electron density function is a result from first-
principle calculation. In contrast, the pair potential function  is modeled by a repulsive electro-
static interaction between atoms. It is constructed assuming a Coloumb potential (cp. section 6.2.1
and Ref. [30])

, (3.4)

with  being the effective distance-dependent charge distribution of a screened atom. Daw and
Baskes are using experimental values to fit the pair potential  and the embedding function .
For example, the lattice constant, sublimation energy and elastic constants are used. The numerical
representation of  is given as a set of spline knots and results entirely from a fitting procedure
to reproduce experimental values. The pair potential is normally short ranged (approaches zero with-
in few nearest-neighbor distances). This is a benefit for numerical calculations, since only few neigh-
bors have to be taken into account when calculating Eq. 2.49.
The embedding function  is also represented by a set of spline knots. Again, data to construct
the function  and the embedding function  can be found in section 6.2.1. Additionally, the
embedding function, the pair potential and the electron density for Nickel is given as graph.

3.1.2 Embedding Atom Potentials by Zhou et al.
Zhou and co-workers [41] have published a complete set of embedded atom potentials for Cu, Ag,
Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr, respectively. Those potentials are well-
tested (with one exception - see Ref. [97] and section 6.2) and are suited for simulations incorporat-
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EVALUATION OF DIFFERENT POTENTIALS
ing multiple constituents. Recently, they investigated the interface formation between the different
layers of a giant-magneto resistive device and compared them with 3D-atomic-probe experiments
[41]. Furthermore, simulations of the growth of such multilayers have been published [42,8]. They
also extended their potentials to cover metal-oxide systems to investigate tunneling magneto-resis-
tive devices [40].
Contrary to the approach given by Daw and Baskes, where the pair potential is exclusively repulsive,
a modified Morse-potential function was used to fit the pair potential.

(3.5)

Due to the specially constructed denominator, the potential is forced to very small values at larger
distances , which is again a benefit in simulations, as long as the cut-off radius is chosen efficiently
large.
The electron density function  is given by

. (3.6)

Apart from the coefficient ,  is equal to the second term in Eq. 3.5. Again, the denominator
forces Eq. 3.6 to values near zero for large distances. It should be noted that there is no link to ab-
initio calculations with this approach. However, the functional shape of  is similar to the initially
proposed electron density function.
The embedding energy function is given by three cubic equations for three different intervals: below,
around and above the equilibrium electron density.

                 (3.7)

                   (3.8)

     (3.9)

Here  denotes the equilibrium electron density. Sets of parameters to construct potentials for the
elements Ag, Au, Co, Fe, Ni and Pt are given in section 6.2.2.
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EVALUATION OF DIFFERENT POTENTIALS
3.1.3 Modeling Alloys with the Embedded Atom Method
All three functions necessary to perform simulations utilizing EAM potentials are specific to a pure
element, therefore there is no obvious extension to handle simulations involving more than one sort
of atoms. Anyhow, the physical origin of the embedding function  lies in assuming a change of
energy per atom, which depends on the electron density at the position of the considered atom with-
out specifying the source of this density. That is to say, an atom experiencing a certain amount of

 should exhibit the same embedding energy, no matter whether  is constructed from mono-
atomic sources or it is a superposition of electron densities arising from different atoms. Together
with the restriction to consider only pair interactions, the accordant embedding function can there-
fore be used in alloys as well.
Abrahamson investigated different approaches to describe the interatomic potentials of binary no-
ble-gas systems [36], which was later extended to potential functions for almost all elements [37].
Building the geometric mean  of the potential functions  and  was found to give
the best results. The symbols A and B refer to the two different elements which interatomic potential
should be described. Using this approach in combination with Eq. 3.4 delivers

. (3.10)

This method was used by Foiles and co-workers. They have developed a potential set for the fcc-
elements Cu, Ag, Au, Ni, Pd and Pt by fitting the underlying effective charge functions [102] to de-
scribe any combination of the mentioned elements.
However, the method of calculating the pair potential using Eq. 3.10 works only well for mono-
atomic pair functions exhibiting positive values, i.e. which are repulsive for all distances. Using pair
potentials which are attractive (i.e. negative) for a dedicated distance range can result in an imaginary
potential and is thus not physical.
Apart from this problem, the total energy of a system described by Eq. 2.50 is invariant by the fol-
lowing concurrent transformations [38]:

(3.11)

and

. (3.12)
Eq. 3.11 and Eq. 3.12 do not alter the total energy, thus  and  can be used as additional fitting
parameters, when designing a monoatomic potential. What is useful in a monoatomic case, causes
problems in a binary model. The scaling of the electron density function in Eq. 3.11 prevents a sen-
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EVALUATION OF DIFFERENT POTENTIALS
sible construction of , since in an alloy model  would then be a superposition of possibly dif-
ferently scaled atomic electron densities (cp. Eq. 2.48). Moreover, transforming a single
monoatomic potential yields a change in the binary pair potential (Eq. 3.10). Thus, the proposed in-
teratomic potential  (Eq. 3.10) is not invariant by the transformation rules given above. Apart
from these obvious problems, a comparison of different potentials for a single element is difficult
due to the arbitrariness introduced by Eq. 3.11 and Eq. 3.12.
Johnson [39] proposed a transformation law for given monoatomic potentials to make them com-
parable buy claiming a vanishing first derivative of the embedding function at the equilibrium elec-
tron density,

. (3.13)

Here, the equilibrium electron density is defined as being the superposition of all relevant atomic
electron densities (i.e. contributions of atoms  within the cut-off radius):

. (3.14)

Using Eq. 3.12 in combination with the condition given in Eq. 3.13 yields

and thus

(3.15)

Here,  denotes the new, transformed embedding function. The term “normalized potential”
is commonly used in the literature when referring to this transformation scheme. All the potential
functions discussed in section 3.1.2 are normalized and therefore applicable for comparisons with
other normalized potential functions.
As a consequence, the pair potential is also changed (Eq. 3.12). If the system is in its equilibrated
state, i.e. every atom experiences a host electron density of , the pair potential is then the only
driving force, since the terms involving the derivative of the embedding function in Eq. 2.54 vanish.

 represents then an effective pair potential.
As already mentioned, constructing a pair potential for alloys by using the geometric mean of the
monoatomic pair potentials breaks the invariance of the total energy function of the system. To
overcome this problem, Johnson [39] has proposed a new way of constructing the necessary poten-
tial for alloy calculations:
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. (3.16)

According to Eq. 2.50, the energy of a system consisting of atom  and  is given as (see also
Ref. [39]):

(3.17)

If using the proposed alloy potential (Eq. 3.16), the total energy should be invariant by the following
set of transformations:

     (3.18)

     (3.19)

. (3.20)
Applying the transformed potential functions yields an invariant total energy .

 (3.21)

Assuming a symmetric alloy potential  and using Eq. 3.14 proves the invariance of the
total energy, i.e. Eq. 3.21 and Eq. 3.17 are identical. Therefore, Johnson’s alloy potential is invariant
under the given transformations.
However, since the electron function appears in Johnson’s function, the functional shape of
Eq. 3.16 can still be changed by choosing different scaling factors in Eq. 3.11. It is for this reason
that constructing a pair potential for alloys is again a fitting task to experimental or ab-inito data for
the alloy potential. If not available, a starting point for the scaling of the electron density function is
to normalize them to deliver  and subsequently changing one of the scaling parameters of the
electron density function. 
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EVALUATION OF DIFFERENT POTENTIALS
3.1.4 Conclusion
It should be noted, that the scaling possibilities offered by the formulation of the embedded atom
method loosens the link to the initially published underlying first-principle calculations for the elec-
tron density. If reviewed critically that early approach of calculating the electron density function by
using Hartree-Fock wave-functions of free atoms [101] already comprised a weak degree of freedom
to adjust the electron density: Since it is not exactly known which electronic state the system exhibits
in a bulk system, the amount of 4s-state density and 3d-state density has to be adjusted in order to
reproduce experimental values. Thus, using adjustable functions for the electron density generally is
also a valid method. Aside from that, the fitting procedures used for the embedding function 
rely on experimental values, which bears much more inaccuracy than the calculation of the electron
density can show.
Constructing transformation-invariant pair potentials for alloys by using monoatomic potentials is
possible. Since the electron density function can still be chosen arbitrarily, additional fitting is nec-
essary. Thus, using well-tested published potentials for alloys is a convenient way to avoid the diffi-
culties discussed above.

3.2 Calculation of Bulk Properties
A canonical ensemble in equilibrium is characterized by the minimum of the free energy:

(3.22)
where  is the free energy,  the internal energy,  the temperature and  is the entropy. The tem-
perature and the internal energy are well known in molecular dynamics simulation. It is the entropy
which is not easily accessible. A possibility to obtain values for the entropy is to use a quasiharmonic
approximation [44]. Here, a quadratic expansion is used to approximate the potential energy around
the equilibrium lattice constant. The free energy  can then be written as the potential energy at the
lattice constant and contributions from the vibrational modes of the solid.

(3.23)

The second term in this expression contains contributions from the phonon frequencies . A
method to calculate this quantities can be found in Ref. [45]. Minimizing Eq. 3.23 with respect to 
at a given temperature yields the equilibrium lattice constant.
Morris and Ho [43] presented a different method to determine the entropy of a system using the
correlation matrices of the coordinates. An upper bound of the entropy can then be expressed using
determinants of the correlation matrix. Numerically, this approach is also challenging, since it in-
volves the calculation of high dimensional determinants.
Anyhow, to calculate special properties like the lattice constant  or the thermal expansion coeffi-
cient, other methods are employable. The pressure  of a simulated system can be monitored by
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EVALUATION OF DIFFERENT POTENTIALS
utilizing Eq. 2.16. Since the pressure within a solid in an equilibrated state should be zero, the equi-
librium lattice constant  can be determined by finding a system volume  which results in a van-
ishing value of .

3.2.1 Equilibrium Lattice Constant 

The lattice constant  is an easily extractable quantity in a molecular dynamics simulation. By set-
ting up a simulation with constant volume and constant temperature, the resulting pressure can be
plotted with respect to the volume. Using several different volumes at a given temperature, the con-
dition  is then used to identify the equilibrium volume. That is to say, the system is at its
equilibrium volume when no internal pressure is measurable.
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Figure 3.1: Four different crystal structures for the elements Nickel (A),
Iron (B), Cobalt (C) and the alloy Iron-Platinum (D). The arrows indicate
the lattice constant  and .
At room temperature, Ni appears in the face-centered cubic structure
(space group: Fm3m, Pearson symbol: cF4, Strukturbericht designation:
A1), Fe can be found in the body-centered cubic structure (Im3m, cI2,
A2), Co appears in hexagonal closed-packed form (P63/mmc, hP2, A3)
and one of the possibilities for FePt is a face-centered tetragonal structure
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EVALUATION OF DIFFERENT POTENTIALS
The elements of interest in this thesis are metals which appear in different crystal structures. Molec-
ular dynamics simulations have to be set up in the corresponding crystal structure, since the under-
lying potentials have been fitted to these structures. In most cases the crystal is built by emulating
the primitive cell. Anyhow, the simulation of a bulk system demands a sequel which can be period-
ically arranged. Comprehensive data for this purpose is available on the Internet [46,47]. Fig. 3.1
shows four different and commonly used structures in the molecular dynamics’ coordinate system.
Fig. 3.2 gives the pressure as a function of the primitive cell’s volume of Nickel at =10 K. Several
different potentials have been used. The intersection of the curve with the abscissa delivers an equi-
librium volume of the cubic primitive cell. The lattice constant for a cubic crystal can then be calcu-
lated by using

. (3.24)

A total number of =4000 atoms has been used, the time-step in these simulations was =1 fs. A
rough temperature setup was achieved by employing a velocity-scaling method during the first 2 ps
of the simulation. After that, a Nosé-Hoover thermostat was utilized to equilibrate the system. The
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EVALUATION OF DIFFERENT POTENTIALS
total simulation time was 140 ps, the pressure was determined by calculating the mean value during
the last 60 ps. The cut-off radius was adjusted according to the different potentials used.
Using the first published embedded atom potential for Nickel (Daw and Baskes) delivers

=3.521 Å, the modified version of this potential (Kadau) yields =3.524 Å and the potential
published by Zhou et al. leads to =3.520 Å. All values are very close to the values used for the
fitting procedure of the respective potentials. 
It should be noted, that the method described above can be applied only to systems with a cubic
structure. Since the pressure in a non-cubic crystal behaves anisotropically, the pressure tensor 
has to be employed to determine the equilibrium structure. The stress tensor is defined as

(3.25)

This matrix is linked with the ordinary expression for the pressure (Eq. 2.16) via the relation

. (3.26)

In case of Cobalt, the volume of the system is then not only a single parameter but it carries two
other parameters, since Cobalt exhibits two lattice parameters  and . That is to say, for a given
lattice constant  several lattice constants  have to be calculated. Each simulation yields the
pressures ,  and , which can be interpreted as the partial pressure at the according face of
the volume. All three terms should be zero to deduce equilibrium, presumed to have small non-di-
agonal pressures.
 

Table 3.1: Equilibrium lattice constants for various elements in different crystal
structures. The potentials used for these calculations are given in section 6.2.2. The
values used for fitting are well reproduced.

element crystal structure , sim. [Å] , fit [Å] deviation [Å]

Ag fcc 4.0900 4.0896 0.3 10-3

Au fcc 4.0803 4.0896 0.4 10-3

Co hcp a = 2.5060 
c = 4.0822

a=2.5060
n.a.

-

Fe bcc 2.8690 2.8660 3.0 10-3

Ni fcc 3.5210 3.5196 1.4 10-3

Pt fcc 3.9200 3.9201 0.1 10-3
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Table 3.1 lists the equilibrium lattice constant for Ag, Au, Co, Fe, Ni and Pt bulk at a constant tem-
perature of 10 K. Although the values used for fitting are well reproduced, there is a mismatch with
experimental data at this temperature. Interestingly, all known potentials are constructed using the
experimental lattice constant at room temperature. This experimental lattice constant can only be re-
produced when performing a simulation at very low temperatures. As a consequence, at higher tem-
peratures the simulated lattice constants are estimated slightly too high. A solution for this problem
would be to use the low-temperature lattice constants to fit the potentials.

3.2.2 Thermal Expansion Coefficient 

Most materials tend to expand with raising temperatures. A measure of this expansion is the linear
thermal coefficient, which is defined as

. (3.27)

To calculate the thermal expansion coefficient by means of molecular dynamics simulation, the equi-
librium lattice constant has to be calculated at several different temperatures around =273 K. To-
gether with Eq. 3.27 these lattice constants are then used to calculate  (cp. Table 3.2)
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Figure 3.3: Lattice constant  as a function of the temperature for Nickel. In
general, the potential proposed by Zhou et al. reproduces the experimental
findings best. Anyhow, compared to experimental data, all three simulations
tend to overestimate the lattice constant. The experimental data have been
taken from Ref. [48].
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.

The thermal expansion does not depend linearly on the temperature, but can be approximated using
Grüneisen’s theory. In the case of ferromagnetic materials, this method is only valid for tempera-
tures much smaller than the Curie-temperature. Below the Curie-temperature, the thermal expan-
sion is mainly driven by the anharmonicity of the potential. When approaching , the loss of
magnetization is responsible for a further expansion of the volume. This additional increase in vol-
ume is reflected by a strong deviation from Grüneisen’s formula (cp. Ref. [49]). Using molecular dy-
namics, this deviation can not be reproduced, since the current model does not include structural
effects based on magnetism. Anyhow, the simulated thermal expansions coefficient for =273 K
agrees well with experiments, since obvious magnetic effects can only be expected at temperatures
around =325 K ([49]).

3.2.3 Bulk Modulus 

As a general rule, the bulk modulus  is used in fitting algorithms to obtain embedded atom po-
tentials. It is defined as:

. (3.28)

Since the pressure is known in molecular dynamics simulations, it is an easily available quantity.
However, a different approach is being presented hereinafter1. In contrast to the Virial-equation, the
pressure can also be defined by the thermodynamic relation

. (3.29)

Again, neither the entropy  can be held constant, nor is the free energy  known. However, if one
performs MD calculations in the near-zero temperature regime, the free energy  can be approxi-
mated by the internal energy . By the way, this approximation can be used to evaluate the pressure
calculation within a code by comparing both methods to calculate the pressure.
Assuming a linear dependence of  on the pressure yields

Table 3.2: Experimental and simulated linear thermal
expansion coefficient for Nickel

exp. value [49] simul. value

  [10-6 K-1] 12.5 12.4

1. Parts of this derivation have been taken from Ref [50].
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, (3.30)

where  denotes the bulk modulus at . Furthermore,  is the derivative of  at zero pres-
sure. This value is found to be nearly constant experimentally.
Combining Eq. 3.29 and Eq. 3.30 and integration from  to  delivers

. (3.31)

 represents the pressure at  and is therefore zero per definition. Redefining  and 
and reducing Eq. 3.31 results in an equation for the pressure:

. (3.32)

Since only the low-temperature regime is considered, the internal energy may be written as

. (3.33)

Integration of Eq. 3.32 yields 

. (3.34)

The derivation of this equation of state was attributed to Francis Birch [51]. Since Eq. 3.34 contains
three quantities at once, it is particularly useful to fit the energy with this expression to obtain ,

 and . From  the lattice constant of a given structure can again be calculated and compared
with the method described in section 3.2.1. Fig. 3.4 depicts the dependence of the energy on the vol-
ume of the simulation for three different Nickel potentials. Additionally, a fit to Eq. 3.34 is given in
the plot.
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Table 3.3 lists calculated values of the bulk modulus for different elements (Zhou potentials). Addi-
tionally, a different potential for Nickel was tested (denoted by Ni* in the table). Potentials published
by Zhou generally delivered adequate values for the bulk modulus. Therefore, subsequent simula-
tions were performed using these potentials.

Table 3.3: Simulated and experimental bulk moduli for
various elements (potentials taken from [40]). The
second value for Ni* was calculated using the proposed
potential by Daw and Baskes and exhibits a strong
deviation as compared to experimental values.

       B sim. [GPa] B exp. [GPa] dev. [%]

Ag 101 100 1.

Au 166 220 25.

Fe 166 170 3.

Ni 168 180 6.

Ni* 338 180 88.

Pt 282 230 23.
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Figure 3.4: Energy per atom in dependence of the volume of the system. The
temperature in these simulations was =10 K. Again, three different poten-
tials were used. The dashed lines are fitting curves corresponding to Eq. 3.34.
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3.2.4 Sublimation Energy 

The sublimation energy  is defined as the energy an atom experiences in its equilibrium bulk struc-
ture in comparison to the free vacuum state. Once more, this quantity can be obtained by using
Eq. 3.34. Table 3.4 compares experimental values with simulated energies. The results are consistent
with experimental data
.

3.2.5 Heat Capacity 

Materials show the ability to store heat when the temperature is increased. The heat capacity quan-
tifies this ability. In experiments, the pressure of the system can be easily fixed while changing the
temperature. In contrast, fixing the volume of a system is simple in simulations. Unfortunately, the
heat capacity depends on these side conditions while changing the temperature, therefore two dif-
ferent definitions exist: , which is the heat capacity obtained at a constant pressure and , de-
noting the heat capacity at constant volume.
The definition of the  is given by

, (3.35)

where  is the enthalpy of the system:

. (3.36)
Calculating a bulk system at several different temperatures at its equilibrium lattice constant (i.e.

) is therefore a possibility to calculate  by means of molecular dynamics simulations. In this

Table 3.4: Comparison between simulated sublimation
energies and experimental results (potentials taken
from [40]). Ni* denotes an alternative potential
(cp. Tab. 3.3).

       Es sim. [eV] Es exp. [eV] dev. [eV]

Ag -2.85 -2.96 0.11

Au -3.93 -3.78 -0.15

Fe -4.29 -4.28 -0.01

Ni -4.45 -4.44 -0.01

Ni* -4.45 -4.44 -0.01

Pt -5.77 -5.86 0.09
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special case,  reduces to the internal energy. Fig. 3.5 shows how the sublimation energy depends
on the temperature. Extracting the slope of these functions yields the heat capacity .
Simulation results can be found in Table 3.5. It should be noted, that again the potentials published
by Zhou yield the best results.

 

3.2.6 Equilibrium Properties of FePt
As discussed in section 3.1.3, the embedded atom method can be used to model alloys, presumed to
use the respective potentials. Ultra-high density recording media consist of alloyed materials which
are perfectly fitted to be described by the EAM. One of the most promising candidates for future
recording applications is Iron-Platinum. FePt exhibits a complex phase diagram (Fig. 3.6) showing
the

Table 3.5: Comparison of the experimental value of the heat capacity
 for Nickel with the results obtained from different published

embedded atom method potentials (cp. section 6.2).

exp. value Zhou Kadau Daw and Bases

  J/mol K 26.1 25.6 21.6 22.6
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Figure 3.5: Sublimation energy of Ni for different potentials as a func-
tion of the temperature.  depends linearly on the temperature.Es
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possibility of a phase transition from chemically disorderd face-centered cubic phase (fcc) to a chem-
ically ordered face-centered tetragonal phase (fct, L10). Experimentally, self assembled arrays of
monodisperse FePt nanoparticles can be prepared by solution phase chemical synthesis [53]. Sput-
tering techniques can be employed to prepare thin films of FePt [54] or nanoparticles [55].
Both methods yield FePt in a disordered fcc phase after preparation. The magnetically more inter-
esting crystal phase is the chemically ordered fct phase, exhibiting a magnetocrystalline anisotropy
of . Thermal stability of a recording media depends on the product , with  be-
ing the volume of a magnetic grain. Thus, an increase of the areal storage density (smaller volumes)
can be achieved by using materials with a high magnetocrystalline anisotropy. The maximum value
of  was found to correspond to a maximum of tetragonality, i.e. a small c/a ratio [2]. 
The transition from the disordered fcc phase to an ordered fct phase is obtained by a thermal an-
nealing process. Experimentally, after annealing the system at a temperature of about =873 K
which is applied for several hours, the system can be found in the fct phase. Unfortunately, the ex-
perimental time scale makes a direct simulation by means of molecular dynamics impossible. Any-
how, molecular dynamics simulations permits the calculation of the equilibrium lattice constants of
both, the disordered fcc phase and the ordered tetragonal phase.

Figure 3.6: Phase diagram of FePt, taken from Ref. [52].

Ku 7 106 J/m3⋅≅ KuV V
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The calculation of the equilibrium lattice constants  and  of the ordered fct phase again involves
variations of two parameters, as proposed for the equilibrium constants of Co. The lattice constants
determined in this ways are listed in Table 3.6. In case of an ordered system, the ratio c/a is close to
the experimental value. Comparing absolute values of c and a does not yield a satisfactory result.
While the experimental lattice constant of the disordered phase was determined at room tempera-
ture, the simulation has been performed in the low temperature limit ( =10 K). This can be an ex-
planation for the obvious deviation. However, the main feature comprised by the L10 phase of FePt
could be reproduced: the c/a ratio is significantly smaller than unity.

 
Additionally, the sublimation energy has been determined for both structures. The absolute energy
difference between the two phases is small compared to the changes in the element specific subli-
mation energies. However, the mean sublimation energy of the L10-Fe50Pt50 system is slightly lower,
indicating a preference for this phase as expected (cp. Table 3.7).

Table 3.6: Comparison between experimental equilibrium lattice constants and
simulation results for Fe50Pt50. The value indicating the tetragonality for the
fct phase agrees well with experiments.

asim [Å] csim [Å] aexp [Å] cexp [Å] c/asim c/aexp

fcc disordereda

a. exp. values taken from Ref. [48]

3.686 N/A 3.841 N/A

fct orderedb

b. values taken from Ref. [2]

3.751 3.606 3.87 3.73 0.961 0.964

A B

Figure 3.7: Atomic configuration for Fe50Pt50 in the disordered fcc phase (A)
and the ordered face-centered tetragonal phase (B). The yellow spheres represent
Fe, whereas the blue spheres depict Pt.

a c
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3.3 Conclusion
The embedded atom method is well suited to describe bulk properties of metals. For the simulation
of pure bulk materials sufficiently accurate potentials have been published. Compared to the test cal-
culation necessary for benchmarking a potential, the fitting procedure to build a new EAM potential
is much more complex.
In principle, the calculation of alloys can be achieved by combining monoatomic potentials. Al-
though some of the potential degrees of freedom can be eliminated by normalizing the monoatomic
descriptions, the pair potential function describing A-B interactions is not unique. For the most ac-
curate results, specific fitting routines to create an alloy potential should therefore be performed.
However, the used alloy model proposed by Johnson yields satisfying results. Anyhow, it is suppos-
able to scale the monoatomic electron density function to get better accuracy. Since this scaling
mechanism does not break the transformation invariance of Johnson’s alloy model, it is a way to fit
the pair potentials of an alloy model separately after the monoatomic functions have been deter-
mined.

Table 3.7: Sublimation energies for Fe and Pt in a fcc
disordered alloy and a fct configuration. Although Fe exhibits
a lower sublimation energy in the disordered phase, the mean
sublimation energy per atom in the fct phase is lower
compared to the fcc phase.

Es,Fe [eV] Es,Pt [eV] Es,mean [eV]

fcc disordered -4.603 -6.149 -5.376

fct ordered -4.471 -6.355 -5.413
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4STRUCTURE SIMULATION OF

MAGNETIC NANOCLUSTERS

Detailed studies of the structure of magnetic nanoclusters are crucial for
understanding their magnetic properties. Molecular dynamics simula-
tions are used to investigate the formation of nanostructured materials.
Special analyzing methods are introduced and employed to understand
the resulting structures and their specific differences as compared to bulk
properties. The developed methods are applied to a representative core-
shell system (CoxAg1-x) and the simulation results are compared to exper-
imental findings.

4.1 Introduction
Today, high density magnetic data storage on hard discs is based on granular magnetic media. The
ongoing run for the highest areal storage density in magnetic recording industry results in magnetic
structures becoming smaller and smaller. Obviously, the size of the magnetic grains is the key feature
to achieve higher storage densities. However, the size of such particles is restricted by the superpara-
magnetic limit, marking a minimum volume per grain to store data magnetically. The long-time sta-
bility of recorded data depends on both, the magnetocrystalline anisotropy of the used material and
the according volume of the grain. Therefore, using ultra-small particles requires a large magnetoc-
rystalline anisotropy. Promising materials for this purpose are magnetic alloys in the L10 phase
(FePt, CoPt, FePd). Long-term stability in magnetic storage applications means a stable magnetiza-
tion of about 10 years. The minimum stable grain size can then be calculated by

. (4.1)Dg
60kBT

Ku
---------------3=
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Here  denotes the temperature and  is the uniaxial magnetocrystalline anisotropy. In case of
FePt grains, the minimum stable grain diameter is 2.8-3.3 nm, making it a promising future candidate
for ultra-high magnetic storage densities [1]. An atomic cluster with a size of only 2.8 nm consists of
about 1000 atoms. Such clusters exhibit properties strongly deviating from the respective bulk prop-
erties. The high surface-to-volume ratio and the specific shape of such clusters influence the mag-
netic behavior. Material modeling has to take account of these size dependent effects. Therefore,
such systems can not be described properly by continuum modeling techniques.
Not only the magnetic recording industry is interested in ultra-small particles. By using biocompat-
ible magnetic systems, also a possibility for drug delivery is conceivable: attaching magnetic particles
to drugs allows the specific local delivery of a given medication by magnetic fields. Biocompatibility
includes prevention of the magnetic particles from coalescence, which would cause thromboses in
the body. Naturally, due to the target application in the human body, preventing oxidation of such
particles is also a necessity. On the useable length scales, oxidized materials such as Co, or Fe signif-
icantly change the magnetic properties which is of course unfavorable. Therefore, capping layers are
used, which ideally do not alter the magnetic behavior and do not harm humans being treated by this
method. Currently, FeAu particles are discussed as possible candidates for this purpose. Au is espe-
cially suited, because of it is “chemical inertness” and its “functionality with enzymes” [56]. Exper-
imentally, the reverse micelle reaction is used to prepare FeAu particles [57,58]. The particle size can
be controlled to create clusters from 5 nm to 30 nm.

Figure 4.1: Development of the storage density for hard-disk and solid-state
memory. Today, hard disks with 100 GBit/in² are produced. The ambition of
an areal storage density of 1 TB/in² requires the use of novel materials and
recording techniques (image taken from www.hgst.com).
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Below, a simulation setup and the according analyzing methods to investigate different features of
nanoclusters are described. Simulation results of the formation of a core-shell (CoxAg1-x) system are
discussed and the differences in the crystal structure formation of small Co-particles are presented.

4.2 Simulation Method
In experiments, atomic clusters can be prepared in different ways. Whereas complex chemical pro-
cesses are hard to simulate, the gas-phase formation of clusters can easily be mimicked by means of
molecular dynamics simulations. In contrast to the simulation of a bulk, where the minimum image
convention is used to emulate a bulk material by using images of the simulation geometry on the
boundaries, cluster simulations have to be performed differently. The simulation box has to be large
enough to prevent individual atoms to interact with surface atoms on the other side of the forma-
tion.
Ideally, the center of mass of the initial configuration should be in the center of the simulation box.
The initial velocity distribution should yield a zero center of mass motion of the cluster. This pre-
vents a collective motion of the cluster towards the simulation box’ boundaries. Presumed to have
a proper implementation of the minimum image convention, the motion of the aggregate atoms
does not alter the simulation results, but it is more convenient for further geometric analyses to find
the cluster in the middle of the simulation box.
The formation of the clusters is initiated by elevating the temperature to values high enough to touch
at least the liquid phase of the investigated material. Subsequently, the temperature is lowered and
the resulting geometry is analyzed. Although the center-of-mass motion and the rotation of the clus-
ter can easily be suppressed by using appropriate distributions of the initial velocities, the final rela-
tive orientation of the crystallized cluster is arbitrary. Unfortunately, only the resulting crystal
structure is of interest. For example, the magnetocrystalline anisotropy is related with the crystal
structure, and its mathematical description assumes to have a material aligned in a global coordinate
system. In case of a uniaxial anisotropy, one of the three axes of the coordinate system is at the same
time the direction of the easy axis. In this respect, knowing and changing the resulting orientation
of a cluster simulation is important.
To overcome this problem, two slightly different approaches have been implemented. If the final
shape of a system is already known, some atoms have been chosen to act like anchors for the rest
of the system. Those atoms were fixed in space, but did act like normal atoms, i.e. they contributed
to the total potential energy of the system. Even if this method harms several physical laws, it per-
fectly suits the purpose to fix a known geometry in space while applying high temperatures. The
method is adequate to simulate known geometries and investigate their mechanical stability in de-
pendence of the temperature. While fixing some atoms is a quick and yet unphysical way, a better
method is to determine the orientation of the particles after the calculation process.
The used analysis methods are described in detail in the next chapter.
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4.3 Analyzing Methods

4.3.1 Radial Distribution Function
An important quantity when performing simulation analysis is the radial distribution function
(RDF). It can be interpreted as the probability to find ’s neighbor atom  in a distance .  is
defined as

. (4.2)

 denotes the number of atoms within the volume shell between  and , the denom-
inator represents the volume of this shell. To increase the accuracy of the radial distribution func-
tion, more than one atom can be used to calculate . In case of multiple atoms, the definition
given above has to be weighted with the number of considered atoms.
The radial distribution function can be easily compared with experimental findings. It is linked with
the structure factor  by the following equation:

. (4.3)

Here,  is the reciprocal lattice vector and  denotes the atomic density [59]. Experimentally 
can be measured by electron scattering or neutron scattering. An example radial distribution func-
tion for fcc Ni and hcp Co at different temperatures is given in Fig. 4.2.

An advantage of the radial distribution function is that intuitive graphs can be produced. Informa-
tion about the crystal structure is obtained by comparing them with RDFs from known structures.
A drawback of this method is its dependence on the number of used atoms for calculation. That is
to say, RDF functions of only a few hundred atoms can only deliver approximate mean values of
the crystal structure.
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4.3.2 Tesselation Method
Usually, the output of a molecular dynamics simulation of a crystallized material are snapshots of
the positions of the atoms. As long as the material is simulated below the melting temperature and
periodic boundary conditions are used, it is likely that the atoms still remain near their initial posi-
tions. The crystal structure of such simulations can be easily determined by simply displaying the re-
sults with appropriate software [60,61].
The calculation of the formation of atoms building a cluster does not necessarily result in crystal
structures known from their bulk configuration. Size dependent configurations can occur. Together
with the unknown relative orientation of the final cluster a visual determination of the resulting
structure is impossible. Even if the crystal axes were known, a mapping of the resulting positions
onto assumed structures is difficult due to possible stacking faults.
Consequently, a method has to be employed which should be capable of determining the structure
of clusters by local analysis. That means, the neighborhood of an atom is explored and evaluated.
Patterns of possible atomic configurations are then quested leading to the identification of fractions
similar to known bulk structures. This concept brings up the question about a precise definition of
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fcc Nickel, T=10K
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Figure 4.2: Radial distribution function for the crystal structure hcp (Co) and
fcc (Ni) at a temperature of =10 K ( =4000). Additionally,  for Ni
was plotted at an elevated temperature ( =293 K). In the low-temperature
case, the relative position of atoms is well defined, whereas the peaks are
broadened at higher temperatures, indicating stronger fluctuations of the po-
sitions. The resulting functional shape of the radial distribution function is
specific to the underlying crystal structure. Thus,  can be used to deter-
mine the crystal structure of a simulation.
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the local neighborhood of an atom. What comes first to one’s mind is a simple next neighbor analysis
by choosing a radius which defines surrounding atoms  as neighbors of atom . In combination
with an evaluation of the angles between atoms and a subsequent analysis scheme, this approach can
deliver sufficient information to determine the structure of a cluster in detail.
A better and more precise definition of the neighborhood can be achieved by accomplishing a
Voronoi tesselation of the given positions in space (cp. Fig. 4.3). Neighbors are defined as atoms

which are sharing an edge (2D) or a facet (3D) in the tessellated graph, respectively. Thus, this meth-
od provides a good definition of the neighborhood of each atom. Furthermore, surface atoms can
be recognized easily since surface atoms exhibit one opened facet (i.e. a facet with infinite area).
Efficient free software is available to perform a Voronoi tesselation. In this work, parts of the soft-
ware package Qhull [65] have been used and modified to fit the demands.
O’Malley has used a tesselation scheme to analyze the crystallization of atoms described by a hard
sphere potential [66]. O’Malley and Snook investigated the nucleation process of a hard sphere po-
tential system by means of a modified Voronoi tesselation [67]. The sharp definition of the neigh-
borhood of an atom is especially helpful when working with geometry formations which are beyond
the periodic structures of bulk materials. The application of the Voronoi tesselation for geometry
analysis purposes is described on the basis of a specific nanocrystalline formation in Section 4.4.3.

j i

Figure 4.3: Voronoi tesselation of randomly distributed
points in two dimensions. Points sharing an edge are
neighbors per definition. Therefore, position A and B are
not neighbors because they do not share a common edge.

A B
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4.4 The CoAg Core-Shell System

4.4.1 Experimental Results
CoAg is a highly investigated alloy system due to its specific formation process. CoAg nanoclusters
can form a core-shell system with Co building the core and Ag segregating towards the surface,
forming a capping layer for Co. Experimentally, the preparation of such clusters is performed by
using laser vaporization with a gas phase condensation source (low energy cluster beam deposition
- LECBD). Recently, Dupuis et al. [68] investigated the magnetic properties of single CoM (M=
Ag, Pt) clusters by means of the microSQUID technique [69]. The clusters were embedded in dif-
ferent materials (Nb and MgO). The geometry of the resulting clusters was investigated by high res-
olution transmission electron microscopy (HRTEM). The mean diameter of the investigated clusters
was between 3 nm and 4 nm. The shape of the prepared core-shell system exhibited the morphology
of a truncated octahedron. The crystal structure of those particles was identified to be face-centered
cubic.
The magnetic properties of experimentally investigated nanoclusters strongly depend on the embed-
ding matrix used. Pure Co nanoparticles exhibit an interfacial alloying of some monolayers, when
being embedded in a Nb matrix. This interfacial alloy is magnetically “dead”, i.e. it does not contrib-
ute to the effective magnetic volume [70]. In contrast, if Co is protected by a shell of Ag, the effective
magnetic volume does not depend on the embedding matrix. Consequently, the blocking tempera-
ture of CoAg is higher (30K) as compared to CoNb (12K).

4.4.2 Simulation of a Core-Shell Formation
The embedded atom method can describe the bulk properties of Co and Ag and provides a well es-
tablished theory to describe alloys. Therefore the formation of a core-shell system should yield sim-
ilar results as compared to experimental measurements. Due to the fact that the experimentally
necessary matrix (Nb) does not contribute to the magnetic properties (as long as Co is covered with
Ag), it was not included in the simulation setup. However, in experiments the matrix is needed to
fix the nanoclusters in space, whereas simulated clusters are not exposed to gravitation. Thus, fixing
an atom in terms of molecular dynamics means removing the center of mass motion of the cluster.
Starting from a completely random distribution of Co and Ag atoms, the clusters were heated up
and subsequently cooled down. The initial temperature was set to 1300 K which was decreased in
20 K steps towards 100 K. At each temperature step 6x104 integration steps (time step = 1 fs) were
performed. The size of the resulting particles was 2.8 nm (864 atoms) in diameter. During the sim-
ulated annealing process, a clear segregation of the Ag atoms towards the surface of the Co-core was
obtained. 
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4.4.3 Results and Discussion

Calculation of the Formation Process
Simulations were made at different Co-Ag ratios with a constant total number of atoms (864). After
the annealing process, the clusters exhibited a shape similar to a truncated octaheadron. Annealing
always resulted in a clear Co core and a Ag shell.

The segregation of Ag can be explained with the lower surface energy of silver (1.2 J/m2) compared
to cobalt (2.6 J/m2) [68] and was found for similar systems as well [71]. Fig. 4.4 shows the initial
configuration and three snapshots taken at =1100 K, 600 K and 100 K for a Co65Ag35 system.
It should be noted that the segregation process occurs very rapidly after heating the particle. After a
simulation time of 1 ns only few Ag atoms could be found within the Co core.
For a system consisting of a total number of 864 atoms, a relative concentration of at least 25% Ag
atoms is necessary to cover the Co core completely with a monolayer Ag. Higher ratios of Ag yield

Figure 4.4: Snapshots taken during the simulation of the formation of a
Co65Ag35 cluster, consisting of 864 atoms in total. (A) depicts the initial
configuration with Co and Ag atoms randomly distributed on a fcc grid.
(B,C) are snapshots at =1100 K and 600 K, respectively. (D) displays the
final configuration. 
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a non-uniform coverage with a second monolayer of Ag. These second monolayers grow on the fac-
ets of the truncated octahedron.
Determining the atomic concentration in dependence of the distance from the center of the cluster
yields a sharp transition from the Co-core to the Ag-shell (cp. Fig. 4.5). Not a single Ag atom could
be found within the Co core.

Crystal Structure
In order to determine the crystal structure of the Co core, the stacking order has been investigated.
As discussed previously, this can be either performed by calculating the radial distribution function
of the resulting geometry or by using the more elaborate Voronoi tesselation scheme.
Fig. 4.6 shows the radial distribution function  of the atoms forming the Co core. Experimen-
tally, CoAg core-shell systems were found to exhibit a clear fcc Co core, whereas the simulation
shows the existence of peaks in the radial distribution function, which can be attributed to a partial
hcp stacking order within the core. The appearance of a typical hcp peak at 4.1 Å and 4.8 Å is clearly
visible. These peaks are missing in the fcc RDF of fcc bulk cobalt. Compared to the hcp bulk RDF,
the ratio between the peaks at 4.8 Å and 5.0 Å of the Co-core is 1:1, whereas the peaks in the bulk
hcp RDF exhibit a ratio of 2.5:1. This indicates a partial hcp-like structure in the calculated core-shell
systems.
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Figure 4.5: Atomic concentration of a CoAg cluster, measured from the center. A
sharp transition between the Co core and the Ag shell occurs at 1.2 nm from the
center. The inset on the right shows a Co70Ag30 cluster sliced along a (111)-plane. 
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The information provided by comparing the radial distribution function with known structures can
only deliver mean values of the underlying structure. Applying a Voronoi tesselation yields a defini-
tion of the individual neighborhood of each atom, independent on the relative orientation of the
cluster. After the tesselation of the cluster structure, a subsequent analysis including the detection of
individual crystal planes has to be performed. Furthermore, a rotation of the particle towards a de-
tected crystal axis is necessary to display the initially arbitrary orientated system from a known per-
spective. The tool used to perform all these tasks is described in section 6.3.3.
The analysis of the relative position of neighboring planes again yields a mix between the hcp and
the fcc structure (cp. Fig. 4.7). Five planes exhibit an ABA stacking order, whereas four planes can
be identified to exhibit an ABC stacking order. Whereas a fcc structure shows an ABC stacking order
and a hcp structure exhibits an ABA stacking scheme, the cobalt core of the investigated core-shell
systems did not show a unique stacking. 
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Figure 4.6: Calculated radial distribution function of the core of a Co75Ag25
cluster at 100K. Compared to the RDF of fcc Co, two additional peaks at 4.1 Å
and 4.8 Å arise (see arrows). This is a clear indication for partial hcp stacking in
the core.
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The planes itself are almost perfect (111)-planes, only minor in-plane stacking faults occur. Fig. 4.8
depicts the individual crystal planes of a Co65Ag25 cluster. The center plane is given as inset. Although
no clear stacking order can be determined along the splitting axis in Fig. 4.8 (cp also Fig. 4.7), in-
plane stacking faults are rare. 
Experimentally, the crystalline structure of the core of CoAg clusters was determined to be fcc [70].
Due to the fact that clusters in an experimental setup are prepared by a gas-phase adsorption meth-
od, the relaxation times and the atomic coalescence of such processes differ from the simulation set-
up presented in this work. Moreover, the initial temperature used in the simulations (1300K) is
below the melting point of Co (1768K), which may result in an imperfect arrangement of the core.
Thus, a direct comparison of a gas-phase-adsorption method and the results presented here is not
valid. Nevertheless, the theoretical approach to simulate an annealing process with a relatively low
initial temperature reveals the possibility of coexisting fcc- and hcp-like crystal phases. 
Apart from the differences of the experimental setup with respect to the simulation process, the in-
ternal structure of nanocrystals may depend on the size of the system. The size of the simulated
CoAg systems (D = 2.8 nm) was smaller than the experimentally investigated systems (D = 4.4 nm).
The number of Co atoms was =500 in the simulation setup, whereas the experimentally deter-
mined Co count was =1000. A simulation of a large CoAg system ( =4000) did show less stack-
ing faults as compared to a system with =864. Unfortunately, simulating the annealing process at
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Figure 4.7: Left: Stacking order of the Co core (without the Ag shell) of a
Co70Ag30 cluster. Right: The arrow indicates the line of sight with respect to
the depiction on the left side. Whereas each plane A, B and C itself are perfect
(111)-planes, the vertical stacking order does neither follow the fcc-stacking
ABC nor does it follow a plain hcp-stacking AB.
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preferably small temperature steps and long time scales is numerically very time consuming. Thus, a
systematic investigation of the dependence of the stacking fault density with respect to the system
size could not be performed within a reasonable time. 
The coexistence of both, hcp-like and fcc-like stacking may result in a different magnetic behavior
compared to plain fcc cores. Lu and co-workers investigated the influence of stacking faults in per-
pendicular recording media [72,73]. To achieve a maximum magnetocrystalline anisotropy, a hcp
stacking order is preferred. Chantrell et al. presented a micromagnetic model, relating the stacking
fault density in perpendicular CoPt recording media to the effective reduction of the magnetocrys-
talline anisotropy [74]. The effective anisotropy decreases linearly with the amount of stacking faults.
Moreover, the stacking fault density in CoPt increases with the amount of Pt.

Figure 4.8: Exploded view of a CoAg cluster. Silver spheres
represent Ag, purple spheres are Co atoms. Additionally, the
center plane of the structure is depicted (without Ag). The
individual planes are (111)-planes, which only exhibit occa-
sional in-plane stacking faults.
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Shape of CoAg Nanoparticles
Apart from the crystal structure, the shape of nanocrystalline particles is of special interest. The min-
imization of the surface energy of a given assembly of atoms yields specific shapes of the cluster.
Wulff introduced a construction scheme describing the equilibrium shape of crystal structures by
minimizing the free surface energy at a constant volume [75]. Herring presented thermodynamic
studies based on Wulff’s construction scheme [76]. Experimentally, nanoclusters of Gold atoms
were the first materials which confirmed the predicted faceted morphology [77,78].
CoAg shows a shape similar to a truncated octahedron. A truncated octahedron exists of 36 edges
and 24 apexes formed by 6 square facets and 8 hexagons. The simulation results in the same number
of facets. Since the formation of a perfect truncated octahedron depends on an exact count of at-
oms, some facets covered by Ag exhibited in-facet stacking faults.

4.5 Summary and Outlook
Molecular dynamic simulations using the embedded atom method have been successfully used to
calculate the crystal structure of binary magnetic nanoclusters. The peculiarities of such systems, in-
cluding stacking faults and interfacial contribution to the magnetic anisotropy, have to be taken into
account for the design of future applications of such clusters. MD studies can provide quantitative
inputs for multi-scale magnetic simulations. Structural properties derived from the MD simulations
can be used as input for magnetic simulations on a mesoscopic length scale. 
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5MAGNETIC PROPERTIES OF NANOCLUSTERS

Nanoclusters behave differently as compared with the respective bulk
material magnetic manner. The high surface-to-volume ratio substantial-
ly determines the magnetic properties. Thus, magnetic modeling of
nanoparticles has to account for surface induced effects. Moreover, the
fluctuation of the positions of the atoms are implicitly included in the
magnetic description. This includes a fluctuation dependence of the
magnetocrystalline anisotropy and a distance dependent formulation of
the exchange interaction. The proposed models are tested and discussed
on the basis of a standard model consisting of 1289 Co atoms showing
the morphology of a truncated octahedron.

5.1 Introduction
In this chapter, a molecular dynamics approach is combined with an atomistic magnetic model. The
introduced magnetic model is subsequently applied to a modeled nanocluster.
In section 5.2, the basics of magnetic modeling are discussed. The Landau-Lifshitz-Gilbert (LLG)
equation is introduced, the energy contributions of an atomistic magnetic model are described and
specific models to account for the fluctuation of the atoms are introduced. Moreover, the stochastic
LLG equation and an integration method are presented.
In order to test the magnetic model, a representative nanocluster consisting of 1289 Co atoms is de-
scribed (Section 5.3). Subsequently, simulations based on this standard geometry are carried out. The
proposed magnetic models which implicitly couple the motion of the atoms with the magnetic
model are investigated to evaluate their relevance. Effects arising from the surface anisotropy and
magnetocrystalline anisotropy are presented in section 5.4. The influence of a long-range exchange
formulation will be presented in section 5.5 and thermal effects are discussed in section 5.6.
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5.2 Basics of Magnetism
The origin of magnetism in matter can be attributed to the quantum mechanical operators of the
orbital momentum  and the spin momentum  [63]. Due to a quenching of the orbital momen-
tum,  can be neglected in most ferromagnetic materials [79], leaving  as the main quantum me-
chanical operator to describe magnetic properties.  can be related with the magnetic moment

. (5.1)

Here,  is the Landé g-factor and  denotes Bohr’s magneton (cp. section 6.1.1). In
Heisenberg’s point of view, the states of a quantum mechanical system are time independent, but
the mean value of an observable  is evolving in time, as described by the equation:

. (5.2)

Here,  denotes the Hamiltonian of the system. The observable of interest is the magnetic moment
, which is not explicitly time dependent. Thus, Eq. 5.2 can be written as

. (5.3)

The Hamiltonian of this system is defined by the energy of the magnetic moment in a magnetic field
:

(5.4)
After defining the gyromagnetic ratio , the x-component of the commutator in Eq. 5.3
can be written as:

(5.5)

Using the following commutator rule and Einstein’s summation convention

(5.6)

and performing a cyclic permutation of this result yields

(5.7)

(5.8)

(5.9)

Using equations Eq. 5.1 and Eq. 5.3, we can obtain

. (5.10)
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The next simplification includes the replacement of the expectation value  by a classical magne-
tization . If each atom has a total angular momentum of , the magnetic moment of an atom
is given by

. (5.11)

 is a unit vector pointing along the direction of the magnetic moment and  is the total spin quan-
tum number. This formulation is particularly useful in numerical simulations, since the magnetiza-
tion can be represented by a unit vector.
Using the simplifications described above together with Eq. 5.10 yields

. (5.12)

Here,  is the gyromagnetic ratio ( , cp. section 6.1.1) and  denotes
an effective field acting on the magnetic moment. Eq. 5.12 describes an undamped precessional mo-
tion of a magnetic moment around the direction of the effective field. Unfortunately, no changes of
the direction of the magnetization can be achieved by describing a system with this equation. In oth-
er words, the change of the magnetization direction has to be modeled by a phenomenological
damping term. Gilbert proposed an additional damping term of the form

. (5.13)

Combining Eq. 5.12 and Eq. 5.13 yields the Gilbert equation

(5.14)

Multiplying this equation by  from left delivers , which is equivalent to
. That is to say, the length of the magnetization does not change, only the direction is

affected by Eq. 5.14. A schematic plot displaying the nature of the Gilbert equation is given in
Fig. 5.1.
Unfortunately, Eq. 5.14 features a first order derivative on both sides of the equation. Multiplying

from left and using the identity  gives

.
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Substituting this result in the Gilbert equation leads to the Landau-Lifshitz-Gilbert equation:

(5.15)

By integrating Eq. 5.15 the evolution of the magnetic moments can be calculated. The only un-
known quantity remaining is the effective field . The effective field at an atom  can be obtained
by the derivative of Gibbs’ free energy in respect to the magnetic moment:

. (5.16)

The different contributions to the total energy are described in the next chapter.

5.2.1 Energy Contributions in a Magnetic System
During an isothermal and isobaric change of a system, the Gibbs free energy  is a minimum. The
most relevant energy contributions in small magnetic systems are the exchange energy, the magne-
tocrystalline anisotropy, and the energy arising from an external field. Since the calculation of the
strayfield energy is numerically very time consuming, it has been neglected in this work.

(5.17)
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Figure 5.1: Motion of the magnetic mo-
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Landau-Lifshitz-Gilbert equation. (taken
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Exchange Energy
Heisenberg’s model of exchange interaction is given by

. (5.18)

 denotes the exchange integral between spin  and spin . Positive exchange values yield
ferromagnetic ordering, whereas negative values of  result in antiferromagnetic ordering.
In micromagnetic simulations with discretization length in the nanometer regime it is sufficient to
account only for next neighbor interactions in Eq. 5.18. Indeed, exchange integrals often approach
zero rapidly with increasing distance. Contributions of the exchange integral at distances larger than

 can therefore be neglected. That is to say, as long as the discretization length of a micromag-
netic simulation is larger than , the next neighbor approach is valid. In micromagnetic simu-
lations the (minimum) discretization length is often determined by using the definition of the
exchange length:

. (5.19)

Here,  is the exchange constant and  is the anisotropy constant. Consequently, materials which
exhibit a strong anisotropy (FePt) require small discretization lengths (e.g. 1 nm for FePt).
However, systems such as magnetic core-shell formations exhibit a typical size comparable to the
exchange length. If described atomistically, the discretization length is naturally determined by the
lattice constant, which is in general smaller than . Thus, describing exchange interactions on an
atomic length scale by a next neighbor approach is not strictly valid.
Moreover, the exchange integral depends on the distance and orientation between atoms  and .
Micromagnetic simulations are performed on a discretized fixed grid. In combination with the next
neighbor approach it is therefore possible to describe exchange interactions by an exchange constant.
By contrast, in an atomistic simulation the positions of the atoms may be allowed to change due to
thermal fluctuations. Ideally, the distance dependence of the exchange integral should be taken into
account.
Unfortunately, the exchange integral  can neither be obtained experimentally, nor is it easy
to calculate  as a function of distance. However, Bruno and co-workers have managed to calculate
distance-dependent exchange parameters for Fe (bcc), Co and Ni (fcc). That is to say, the itinerant
electron system is mapped onto an effective Heisenberg description of exchange interaction.
From the effective Heisenberg parameters  quoted in Ref. [82] the spin stiffness constant can be
calculated:

. (5.20)
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Here,  is the magnetic moment per atom and  denotes Bohr’s magneton. The spin stiffness
constant  is related with the exchange constant  by the following relation [83]:

(5.21)

In micromagnetic simulations it is the exchange constant  which is used as material parameter,
therefore a direct comparison between experimental values of  and values obtained from the cal-
culated exchange parameters  is possible.
In case of Co and Ni, values of  for 10 relevant distances are available, resulting in a summation
of 176 atoms in case of a face centered cubic structure. If only the nearest neighbors are taken into
account, the exchange energy of an atom is given by the interaction with the 12 next neighbors.
The values of the exchange parameters  are given in dependence of both the direction and the
distance between atom  and atom . Hence, the formulation of a long-range exchange interaction
has to take into account both the distance and the relative position for each atom. This would result
in a function , delivering a value that depends on the relative position of atom  and atom .
Fortunately, the exchange parameters given by Bruno et al. are almost non-ambiguous with respect
to the distance between atoms. That is to say, neighbor atoms at a given distance exhibit almost al-
ways the same value of . The positions  and  (in units of the lat-
tice constant ) are the only exceptions. They are neighbors at the same distance but exhibit
different exchange parameters. Since the value of the exchange parameter at this distance is only 50
times smaller than the most relevant contribution, it can be neglected. This simplification allows a
description of  as a function of distance rather than as a function of relative positions. Thus, 
can be estimated by a simple cubic spline approximation between the different quoted distances. The
functional shape of this estimation as a function of distance for Co (fcc) is given in Fig. 5.2. It should
be noted that  turns negative at distances of about 5 Å and 6.5 Å, leading to a weak antiferromag-
netic coupling. This feature will be missed if the exchange interaction is described by a nearest neigh-
bor approximation only.

Discussion
The proposed method to describe long-range exchange interaction by simply connecting a few
known points of the exchange integral was based on several assumptions:
The values of the exchange parameters were obtained by first principle calculations at T=0 K. The
dependence of the exchange parameters on the temperature is not known. Therefore, the simula-
tions are restricted to a low temperature regime ( ). Furthermore, the estimation of the func-
tional shape by a simple cubic spline does not have any physical origin. Yet, this method allows for
qualitative studies of effects arising from long-range exchange interaction in ultra-small magnetic
systems.
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Magnetocrystalline Anisotropy Energy
The magnetization in a ferromagnetic material can not be changed isotropically to arbitrary direc-
tions. Depending on the crystal structure and the considered material, the energy necessary to
change the orientation of the magnetization depends on the direction with respect to the crystal axes.
This effect is often illustrated by “easy directions” and “hard” directions. A common type of mag-
netocrystalline anisotropy energy is the cubic anisotropy, described by

. (5.22)

Here, ,  and  are the directional cosines between the primitive lattice vectors and the mag-
netization. The dependence of the resulting easy and hard directions on the anisotropy constants ,

 and  is given in detail in Ref. [81].
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Since subsequent simulations are dealing exclusively with face-centered cubic Co which exhibits
positive cubic anisotropy constants, the energy landscape for this situation is given in Fig. 5.3. The
easy axes for fcc Co are aligned along the primitive cubic cells’ crystal axes.

In standard micromagnetic simulations, the positions of the individual magnetic moments are fixed
in space. By contrast, if the motion of the atoms in an atomistic simulation is included in a micro-
magnetic simulation, it is arguable whether the use of global anisotropy directions in form of three
constant directions is still a valid way to model magnetocrystalline anisotropy. Therefore, depending
on the neighborhood of each non-surface atom, local cubic anisotropy directions can be determined
by a very simple approach: A local analysis of the according next neighbors delivers anisotropy axes
depending on the vibration of the neighbors. For example, the local [100] direction usually points
towards the z-direction. Looking up the two next neighbors next to this direction and connecting
this positions yield a local cubic anisotropy direction which is then used as the local [100]-direction.
The same is performed for the local [010] and [001] direction, respectively. Since the exact position
of the next neighbors is changing each time step, also the local anisotropy directions have to be up-
dated at every integration step. Of course, since the proposed approach depends directly on the
mean dislocation of each neighbor atom, it only works well at low temperatures.
The formulation of the cubic anisotropy energy is strongly linked to the crystal axes and the period-
icity of the crystal itself. Therefore, surface atoms can not be described by Eq. 5.22. Neél has intro-
duced a model capable of describing the surface anisotropy [89]:

Figure 5.3: Energy landscape for a system exhib-
iting cubic anisotropy ( > 0 and > 0). Easy
directions are aligned along the [100], [010] and
[001] direction.
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. (5.23)

In dependence on the sign of the surface anisotropy , the magnetic moments on the surface ex-
hibit an easy direction either in-plane or out-of-plane.  is a unit vector between position  and :

. (5.24)

 is the number of nearest neighbors at atom site . The value of the surface anisotropy constant
 can be much higher than the corresponding cubic anisotropy constants (up to 15 times  at

room temperature [70]).

Zeeman Energy
The energy arising from an external field is given by

. (5.25)

5.2.2 Thermal Effects
In order to account for thermal effects in a magnetic system, a stochastic thermal field is added to
the effective field , as proposed by Brown [84]. The additional thermal field results in the sto-
chastic Landau-Lifshitz-Gilbert equation:

(5.26)

The thermal field should now mimic the influence of elevated temperatures on the magnetic mo-
ments. In a magnetic system, there are a lot of independent stochastic sources which may contribute
to thermal effects. Independent stochastic processes yield a Gaussian random process (central limit
theorem, cp. Ref. [85]).
The thermal field is therefore defined by its mean value and its second moment:

, (5.27)

. (5.28)

Considering the last equation, neither spatial nor temporal correlations of the thermal field are given.
The strength of the thermal field can be derived from the Fokker-Planck equation [86].
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5.2.3 Integration Method
Effective numerical methods are available to solve ordinary differential equations such as Eq. 5.15.
For example, CVODE is a free software package which is capable of integrating the Landau-Lif-
shitz-Gilbert equation [91].
Unfortunately, the introduction of a stochastic quantity requires to utilize different methods. Scholz
has investigated numerical methods to solve the stochastic Landau-Lifshitz-Gilbert equation [87].
Based on his work, a Heun integration scheme has been implemented.
In order to have a standard form of a Langevin equation, stochastic and deterministic parts are sep-
arated:

. (5.30)

For better clarity, the abbreviation  is used.
Defining

(5.31)

and

(5.32)

and using Einstein’s summation convention and the antisymmetric unit tensor  yields

. (5.33)

Eq. 5.33 still represents the stochastic Landau-Lifshitz-Gilbert equation, written in its Langevin
form with multiplicative noise.
The Heun integration scheme is a two-step method to solve for . The first step (predictor
step) can be interpreted as a simple difference scheme:

(5.34)
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. (5.35)

The second step (corrector step) yields the magnetization at time step 

. (5.36)

Further details about the integration of the stochastic Landau-Lifshitz-Gilbert equation can be
found in Ref. [86] and [87].

5.3 The Model System
The focus of this chapter lies on magnetic properties of nanoclusters. Unfortunately, experimental
data of single atomic clusters are rare. Most publications are dealing with an assembly of thousands
of clusters. As a consequence, the measured results are averaged values. However, some features of
the measured nanoclusters can be extracted easily. The shape of Co clusters and their typical size can
be determined by means of high resolution electron microscopy. Moreover, Jamet and co-workers
developed a sophisticated measurement technique to extract magnetic properties of a single Co clus-
ter [70].
Experimentally, the crystal structure of nanoparticles depends on both the diameter and the prepa-
ration procedure. CoAg clusters, prepared by using laser vaporization with a gas phase condensation
source [low energy cluster beam deposition (LEBCD)] were found to exhibit a core in the fcc ( )
crystal phase. By contrast, a size-dependent crystal structure distribution was found in synthesized
Co particles by means of dc sputtering ranging from pure -Co (2nm) to a nearly pure hcp ( )-Co
structure (4 nm).
The surface of such small systems is of special interest when considering the effective magnetic
anisotropy of such particles. Both the distribution of the facets on the surface and the crystalline
phase distribution have a strong influence on the magnetic anisotropy. More information about the
crystal structure of nanoparticles can be found in chapter 4.
One of the most interesting features of nanoclusters is their high surface-to-volume ratio. Thus,
magnetic modeling of such systems should be focussed on effects attributed to the surface. For ex-
ample, the formulation of the magnetocrystalline anisotropy on the surface is different from the core
of a nanocluster. Moreover, due to its dependence on the neighborhood, the exchange energy at the
surface is expected to be different as compared to the core. The morphology of the cluster is there-
fore a key feature in magnetic simulations of nanoclusters.
In order to investigate the influence of surface related effects, a model system consisting of 1289 Co
atoms (3.2 nm diameter) in its fcc crystal phase is used. According to experimental findings and mo-
lecular dynamics simulations, the nanocluster exhibits the shape of a truncated octahedron. In this
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morphology, 482 atoms form the surface. Fig. 5.4 depicts the geometry of this cluster. It should be
noted, that all following simulation results refer to this model geometry.
Although both molecular dynamics simulations and experimental measurements showed the possi-
bility of partially irregular faceting, a perfectly faceted particle has been chosen to investigate the
magnetic features. Irregular faceting of a nanocluster would introduce additional symmetry breaking
on the surfaces, which makes the interpretation of results dependent on the specific geometry inves-
tigated. Therefore, using a perfect truncated octahedron allows for attributing effects to a well-de-
fined morphology.

In order to investigate the influence of vibrational modes of the atoms in the nanocluster on the
magnetic system, each atomic position is equipped with a magnetic moment. An important fact of
the implementation of the combined model is that different contributions can be easily switched on
and off, allowing to identify relevant contributions of a specific effect.
Following parameters were used, unless otherwise noted: At each Co position a magnetic moment
with =1.6  is positioned. This leads to a spontaneous magnetic polarization of =1.74 T. The
anisotropy constants of non-surface atoms are =7 105 J/m³ and 1.8 105 J/m³ (taken from Ref.
[83], low temperature values). In case of a short range exchange interaction, an exchange constant
of =1 10-12 J/m has been used. The value of the surface anisotropy constant was taken from [70]

=-15 106 J/m³. All the quoted values refer to bulk Cobalt. Since material constants for nanopar-

z

x y

Facts and Figures:
• 482 surface atoms
• 8 (111)-facets
• 6 (100)-facets
• 24 apex positions
• 54 atoms on a (100)-sur-

face (excluding edges)
• 296 atoms on a (111)-sur-

face (excluding edges)
• 36 atoms form a (111)-(111) 

edge
• 72 atoms form a (100)-(111) 

edge

apex

(111)-(100) edge

(111)-(111) edge

(111) facet

(100) facet

Figure 5.4: 1289 Co atoms forming a truncated octahedron. The
surface-to-volume ratio is 482:807. Whereas in bulk materials this
ratio can often be neglected, here the properties of the system are
mainly determined by surface effects.
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ticles are not available, using bulk material parameters is a good starting point. Finally, for efficiency
reasons the damping constant  has been set to unity. The motion of the atoms was simulated by
means of molecular dynamics (cp. chapter 2), the embedded atom potential for Cobalt has been tak-
en from Ref. [33].

5.4 Surface Anisotropy in Nanoclusters

5.4.1 A First Test
In order to get a feeling whether the combination of two models which are only weakly coupled can
deliver reasonable results, a simple approach to test for possible effects arising from the surface
anisotropy has been calculated in collaboration with Richard Evans and Roy Chantrell from the Uni-
versity of York.
In this first test, two atomic configurations were used to calculate the effective anisotropy energy
landscape. The first snapshot represents the model system as depicted in Fig. 5.4, the second snap-
shot was taken after a molecular dynamics simulation performed at 25K (5x105 integration steps).
The morphology of the cluster did not change during the equilibrium process.
For non-surface atoms a simple uniaxial magnetic anisotropy was assumed. 

(5.37)

Here,  is the magnitude of the core uniaxial magnetocrystalline anisotropy,  is a unit vector
pointing along the magnetic moment and  is the unit vector along the z-axis. The surface anisot-
ropy was simulated assuming the Néel model applied to an atomistic spin system with Heisenberg-
type exchange (nearest neighbor model). The value of  was about 15 times larger than .
The energy landscape of the particles was calculated using the Lagrangian multiplier technique [90].
The method essentially involves adding a corrective field into the spin Hamiltonian to constrain the
net magnetization of the overall spin system to lie along an arbitrary direction. The spin system is
then allowed to relax to a minimum energy state and the energy of the magnetic configuration is cal-
culated. The average spin direction is mapped onto spherical polar coordinates and the energy cal-
culated for angles of  (core easy axis) and  (rotation) giving the energy surface of the nanoparticle.
In a uniaxial case the minima in the energy surface will be at  = 0° and  = 180°. Changes in the
crystal arrangement and the spin configuration will in general give a more complex energy surface,
often with different maxima. The energy barrier for a magnetic reversal can be calculated from the
energy surface by taking the minimum energy path between two minima, thus giving an indication
of the magnetic stability of the particle.

Results and Discussion
The energy surface plot of a truncated octahedron particle cut from a bulk crystal without any fur-
ther annealing is shown in Fig. 5.5. It can be seen that the particle has an overall uniaxial anisotropy,
but with additional features near the energy maximum. Correlating these features with the geometry
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of the particle reveals that the square facets correspond to local minima, while the edges of the hex-
agonal planes correspond to local maxima. This leads to a minimum energy path with the magneti-
zation moving along the edges of the particle.

A similar energy surface plot of the simulated annealed particle is shown in Fig. 5.6. Here, the energy
surface is highly asymmetric, arising from the deviation of the atoms from their mean position. This
also leads to an increase in the effective energy barrier in the annealed case of about 10% compared
with the particle cut from a bulk crystal with a static structure. The energy barrier increases from
2.80  to 3.11  at a temperature of 298 K.
Since only a single snapshot at an elevated temperature has been used to determine the energy land-
scape, the increase of the energy barrier with increasing fluctuations of the atoms can not be claimed
as a general rule. However, this first test revealed a strong influence of the surface anisotropy on the
magnetic behavior.

Figure 5.5: Energy landscape of a perfectly truncated Co oc-
tahedron without annealing (static system). The system
shows an overall uniaxial anisotropy with minor deviations
coming from the facets of the particle.

kBT kBT
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5.4.2 Surface Anisotropy and Saturation Polarization 

In order to understand the influence of the surface anisotropy, the dependence of the saturation po-
larization  with respect to the value of  has been investigated. The sign of  determines wheth-
er the effective anisotropy direction on the surface lies in-plane (positive value of ) or out-of-plane
(negative value of ). Therefore, the saturation magnetization depends on the surface anisotropy.
Fig. 5.7 shows the two different magnetic configurations at =0 K. The direction of all moments
was set to z-direction initially. The magnetic system was then equilibrated at zero field. Depending
on the sign of the surface anisotropy constant, magnetic moments on the facets of the cluster show
a pronounced non-uniform behavior. The inhomogeneities arise from the surface anisotropy. Since
the individual atoms are exchange-coupled, also non-surface atoms are affected. Thus, the common
assumption that small nanoparticles can be described by a homogenous magnetization is not strictly
valid.
Chen and co-workers investigated Co nanoparticles prepared by a microemulsion method (average
diameter 3.3 nm) [92]. They found out that the particles could not be saturated entirely, even at an
external field of =5.5 T (measurements were performed at =2 K). Assuming a non-homoge-
nous distribution of magnetic moments, inhomogenities arising from the surface anisotropy allow
for a further increase of the saturation magnetization when applying strong fields. An external field
results in a more homogenous magnetization within the cluster.

Figure 5.6:  Energy surface for a simulated annealed core
of a CoAg system.
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To illustrate this behavior, the z-component  of the total magnetization is given as a function of
 in Fig. 5.8. Both positive and negative values of the surface anisotropy constant yield a decrease

of  due to the non-uniform magnetic moments at the surface of the cluster.
However, surface anisotropy alone can not explain the observed inhomogenities of the magnetic
configuration. It is the specific faceting which allows for a pronounced out-of-plane behavior of sur-
face magnetic moments.
Additionally, the same simulation has been performed at non-zero temperatures ( =50 K). The
temperature introduces fluctuating atomic positions. Since the Neél model relates the surface energy
with the relative positions of neighboring atoms, an implicit coupling between the motion of the at-
oms and the magnetic system can be expected. In order to investigate this feature exclusively, tem-
perature effects have been switched off in the magnetic part of the simulation. That is to say, the
thermal field has not been taken into account in the integration of the Landau-Lifshitz-Gilbert equa-
tion. In contrast to zero temperature simulations, there is no well-defined equilibrium configuration.
Thus, the results have been averaged over 105 integration steps.
The introduction of fluctuations of the atomic positions results in a further decrease of the z-com-
ponent of the magnetization. This feature is a direct consequence of the Neél model: Energetically,
the most favorable state of a surface atom can be achieved when all neighbors of this atom lie on a
plane (apart from neighbor atoms beneath the surface). This lowest energy configuration is disrupt-
ed by the motion of the atoms. Consequently, the surface magnetic moments fluctuate, yielding a
lower magnetization in z-direction.

Figure 5.7: Equilibrium magnetic configuration in dependence of the
value of the surface anisotropy constant  at =0 K. (A) shows the
configuration simulated with =-15 MJ/m³. (B) was calculated with

=15 MJ/m³. Negative values of  lead to surface moments prefer-
ring an out-of-plane direction whereas positive values yield an in-plane
surface anisotropy.
(C) indicates the point of view (along the y axis)
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5.4.3 Anisotropy in Nanoclusters and its Impact on the Coercive Field 

In a nanocluster two main anisotropy contributions exist: the surface anisotropy and the magnetoc-
rystalline anisotropy of non-surface atoms. In addition to a high surface-to-volume ratio the surface
anisotropy yields a coercive field mainly determined by the surface anisotropy.
Fig. 5.9 shows one side of a hysteresis loop for the standard model at =0 K. Whereas a simulation
with a surface anisotropy constant of =-15 MJ/m³ delivers a coercive field of about

=1.13 T, a calculation with neglected surface anisotropy shows only =0.55 T. That
is to say, the effective anisotropy is significantly increased by the surface energy. It should be noted
that the external field was changed rapidly in order to decrease the required CPU time. Fast changing
external fields lead to an increase in the coercive field. Therefore, the quoted values of the coercive
field do not correspond to values gathered from experiments.
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Figure 5.8: Magnetization  as a function of the surface anisotropy con-
stant . The surface anisotropy introduces a inhomogenous magnetic
configuration resulting in a decrease of . Furthermore, the effect of
implicit coupling between the vibrations of the surface atoms at elevated
temperatures is depicted (dashed line).
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A similar increase of the coercive field with surface anisotropy was found in micromagnetic simula-
tions of small magnetic particles by Zhang and co-workers [93,94]. In contrast to the simulations of
Zhang, the combined molecular dynamics and magnetization dynamics simulations presented here
include the motion of the surface atoms with time. 
The model describing surface anisotropy implicitly couples the motion of the atoms with the mag-
netic model, introducing additional fluctuations into the magnetic model. In addition to surface ef-
fects, a method defining the local cubic anisotropy axes within the particle core has been introduced.
This leads to a change of the local anisotropy direction with time which accounts for the motion of
non-surface atoms. To study the implicit coupling between magnetic and atomic models, the simu-
lation has been repeated at an elevated temperature (100 K). The thermal field has again been
switched off to account exclusively for effects attributable to fluctuations arising from the motion
of the atoms.
Fig. 5.10 shows the simulated demagnetization curve for both, a simulation including the introduced
anisotropy fluctuations and a calculation with fixed anisotropy axes. Although the introduced fluc-
tuations reduce the dynamic coercive field, the effect is rather small. A decrease in  from
1.13 T to 1.12 T can be observed.
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Figure 5.9: Dependence of the dynamic coercive field on the sur-
face anisotropy constant. Contributions arising from the surface
anisotropy are primarily determining the dynamic coercive field.
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5.5 Influence of Long-Range Exchange on 

As proposed in section 5.2.1, a long-range exchange formulation has been introduced to the mag-
netic model. In the long range exchange formulation not only nearest neighbor atoms but all atoms
within a certain radius contribute to the exchange energy of a specific atom. Within the short-range
exchange formulation only the contribution of next neighbors is added to the exchange energy of
an atom. The coordination number of surface atoms is smaller than the coordination number of at-
oms in the core. Thus, for the surface atoms the exchange energy is smaller than for all the other
atoms. All but the surface atoms have a coordination number 12 in a face-centered cubic crystal.
However, if more than the next nearest neighbors contribute to the exchange energy of an atom,
surface effects are not only seen in the outermost shell of atoms but are extended to atoms at inner
shells. With long range exchange interactions, surface atoms have a significantly different exchange
energy than atoms in the core. A similar but smaller difference in exchange energy will be seen be-
tween atoms in the second shell and atoms in the core. The number and relative location of neigh-
bors that contribute to exchange energy for an atom in the second shell is different from those of
an atom in the core. Considering a long range exchange formulation, much more atoms show a dif-
ferent exchange energy as compared to a site far away from the surface. In order to make the short-
range exchange formulation and the long-range exchange formulation comparable, the two models
yield the same exchange energy for fully coordinated sites.
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Figure 5.10: Dynamic coercive field in dependence of fluctuating
local anisotropy axes. The introduction of magnetic fluctuation
introduces only minor changes of the coercive field.
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Fig. 5.11 depicts site-dependent exchange energies. The exchange energy per atom is shown in a
plane of the model system for both, the short-range exchange model and the long-range exchange
formulation. As expected, sites on the surface exhibit a lower exchange energy compared to atoms
within the particles. For the short-range exchange formulation only the atoms in the outermost shell
show a smaller exchange energy. In contrast, for the long-range exchange formulation the reduction
of the exchange energy at the surface extends over more than one shell of atoms.

To answer the question whether differences in the formulation of exchange energy yield any effect
on the coercive field, a hysteresis loop has been simulated ( =0 K). Fig. 5.12 shows the second
quadrant of this hysteresis loop. Whereas a short-range exchange formulation exhibits a dynamic co-
ercive field of =1.55 T, the long-range exchange model shows =1.3 T. The long-range ex-
change formulation leads to a non-uniform exchange energy density near the surface of the particle.
Once a surface atom becomes reversed, the reversed nucleus can more easily expand into the core
of the particle which lowers the coercive field.

yx

z

Figure 5.11: Spatially resolved exchange
energy for both: short-range exchange
and long-range exchange interactions.
The spheres represent positions of
magnetic moments in the simulation.
They are color coded with respect to
the exchange energy. Red spheres indi-
cate high exchange coupling, whereas
grey spheres represent weakly coupled
moments.
(A) depicts the simulation geometry
and a section plane. (B) shows short-
range exchange interaction and (C) rep-
resents a section plane modeled with a
long-range exchange formulation.
It should be noted that the pictures (B)
and (C) were contrast enhanced to visu-
alize the relevant features.
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5.6 Thermal Effects
It has been demonstrated that long-range exchange and surface anisotropy described by the Neél
model implicitly couples the motion of the atoms with the magnetic model. Therefore, this implicit
coupling should also affect the saturation magnetization  in dependence on the temperature.
Fig. 5.13 depicts two different simulations exploring  as a function of the temperature. Again, the
magnetic moments are set to the z-direction initially and  is determined at 17 different tempera-
tures between =0 K and =150 K. To distinguish between thermal effects based on the thermal
field  and effects introduced from the vibration of the individual atom, the magnetization has
been additionally calculated with the motion of the atoms being suppressed. Moreover, Fig. 5.13
shows a fit to Bloch’s T3/2-law:

(5.38)

Bloch’s law is well reproduced by both simulations. Due to the additional fluctuations introduced
by the motion of the atoms, a stronger decrease in the saturation magnetization occurs. The addi-
tional fluctuations are directly linked with the mean atomic displacement. The atomic displacements
are in turn linked with the temperature of the system. Thus, the decrease of the saturation magneti-
zation with respect to the simulations performed with fixed atomic positions can be attributed to
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Figure 5.12: Second quadrant of a hysteresis loop simulation. The external
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cive field than expected from experiments. The dashed line refers to a
long-range exchange model, as introduced in section 5.2.1.
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crystalline vibrations. At =150 K the implicit introduction of fluctuations yields a decrease of
about 10% of  as compared to a simulation on fixed atomic positions
.
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Figure 5.13: Saturation magnetization as a function of temperature.
The dotted line corresponds to a fit to the Bloch law ( ). Where-
as black symbols represent the saturation magnetization gathered
from a simulation with fixed positions of the individual magnetic
moments, the red symbols are results from a simulation including
the lattice vibration.
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5.7 Summary and Outlook
Combining molecular dynamics simulation with magnetic modeling techniques allows for direct in-
vestigations of magnetic features influenced and determined by lattice vibrations. By including the
motion of the atoms the crystalline configuration changes. Consequently, the effective anisotropy is
affected. Moreover, due to the specific morphology of magnetic nanoclusters, exchange interactions
should be modeled by an adequate long-range formulation. It has been shown that the motion of
the atoms can change magnetic nanoparticles.
Phonons and magnons are thermodynamic systems which are influencing each other. For example,
a crystal can be heated up by simply applying appropriate magnetic oscillating fields. On the other
hand, heating a system thermally influences the magnetic state. Thus, energy can be exchanged be-
tween the phonon system and the magnon system allowing for an equilibrium situation between
both systems. The approach used in this work does not strictly follow this thermodynamical point
of view, the coupling between the motion of the atoms and the individual magnetic moments is in-
troduced implicitly. Moreover, in its current formulation it is only a one-way coupling, i.e. magnons
are not influencing phonons. Therefore, a future challenge might be the formulation of a coupled
system allowing to interchange energy in both directions.
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6APPENDIX

6.1 Scaling Properties and Reducing Units
The considered physical quantities in molecular dynamics simulations are either extremely small
(length scales) or very large (pressures), therefore it is a good idea to scale specific quantities to nu-
merically reasonable numbers. This scaling process often reduces the units of the physical quantities
to dimensionless numbers. Although scaling of quantities and reducing of units looks like a trivial
task, it can be more complicated than it seems. Therefore, a detailed discussion about this issue is
given in this chapter. Both, the equations necessary to calculate the motion of the atoms and the
equations describing the evolution of the magnetic moments will be discussed. Moreover, often used
physical constants are introduced.

6.1.1 Physical Constants
The following physical constants appear in conversion schemes and were taken from Ref. [95]:

,

where  represents Boltzmann’s constant and  is the atomic unit mass. Energies are often given
in eV, which is the energy an electron gains or looses when moving through an electrical potential
of 1V.

.

Bohr’s magneton is defined as

kB 1.380 650 3 10 23– J
K
----⋅=

mu 1.660 540 1 10⋅ 27– kg=

kB mu

1eV 1.602 176 53 10 19– J⋅=
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.

It represents the magnetic moment of an electron.  denotes the charge of the electron and  is
its mass.  is Planck’s constant divided by .

In SI units, magnetic fields are given in A/m. However, it is more convenient to specify fields after
multiplying , leading to the unit .

.

Another constant often used in magnetic calculations is the Landé g-factor of an electron and the
gyromagnetic ratio : 

.

6.1.2 Scaling Equations for Molecular Dynamics Calculations
Typical time steps in molecular dynamics simulations are in the s regime, thus the physical
time is scaled via

. (6.1)

Here,  denotes the relative atomic mass. Since the scaling law contains , different masses
result in different scaling factors. When dealing with alloys,  should be chosen to get the smallest
time step . Since  has the physical SI unit ,  is dimensionless.
The masses used in MD simulations are also reduced and rescaled by

. (6.2)

Again,  has the unit  yielding a dimensionless mass . Finally, physical distances are trans-
formed by the following relation:

. (6.3)

μB
qeh
2me
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qe me
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qe 1.602 176 10 19– C⋅=
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μ0 T kg s2A( )⁄=
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In order to get conversion rules for derived units, such as forces, energies and pressures, the Kir-
schner-method [96] is introduced: First, the equation expressing the quantity of interest is written in
the desired unit. Each quantity is followed by a subscript in square brackets that gives the actual
units. For example, the conversion factor for the force is obtained as follows:

. (6.4)

Applying this method on the kinetic energy yields:

. (6.5)

Since the temperature in molecular dynamics is derived from the mean-square velocities, this rela-
tion is used to determine the prefactor to get the temperature in Kelvin from the numeric calcula-
tions. The derivation is performed only for one particle which is, considered physically, pointless.
Without loss of generality, the following equation is valid to obtain the right prescaling factor for the
numerical temperature:

(6.6)

It should be pointed out that . This relation is often found to be the starting point
in scaling laws. Here it was derived naturally by first scaling the basic units and then getting expres-
sions for derived quantities.
Another important value in molecular dynamics is the pressure :

(6.7)

Due to the fact that calculating forces in molecular dynamic simulation is always linked with building
the gradient of potentials, the units of the potentials have to be investigated further. Conventional
embedded atom potentials are likely to be given in eV instead of J. Typically Å (10-10 m) is used as

F N[ ] m kg[ ] t s[ ]

2

d
d x t s[ ]( ) 1

k
m kg 1–[ ]

----------------- 1
k

x m 1–[ ]

---------------m 1[ ]
*

t s[ ]
2

2

d
d x* t 1[ ]

* t s[ ]( )( )

1
k

m kg 1–[ ]

----------------- 1
k

x m 1–[ ]

---------------m 1[ ]
*

td
dt*

⎝ ⎠
⎛ ⎞

2

t 1[ ]
*2

2

d
d x* t 1[ ]

*( )
kt

2

kmkx
-----------m*

t*2

2

d
d x* t*( ) 1

k
F N 1–[ ]

----------------m*a*

= = =

= =

Ekin[J]
1
2
---m

kg[ ] t s[ ]d
d x t s[ ]( )⎝ ⎠

⎛ ⎞ 2

k
t s 2–[ ]
2

2k
x m 2–[ ]
2 k

m kg 1–[ ]

------------------------------------
t 1[ ]
*d
d x* t 1[ ]

*( )
⎝ ⎠
⎜ ⎟
⎛ ⎞ 2 1

k
E J 1–[ ]

--------------1
2
---m*v*2

= =

=

m v2〈 〉
2

---------------
J[ ]

3
2
---kB J/K[ ]T K[ ]

T K[ ]
2
3
--- 1

kB
-----

kt
2

kx
2km

-----------
⎝ ⎠
⎜ ⎟
⎛ ⎞

K[ ]

1
2
---m*v* 1

3
--- 1

k
T K 1–[ ]

---------------m*v*

=

= =

1 kT⁄ 1eV( ) kB⁄=

p

p Pa[ ]
F N[ ]

A
m2[ ]

------------
1 kF⁄( )F*

1 kx⁄( )2A*
-------------------------

kx
2

kF
-----p* kt

2kx
km

----------p*= = = =
88



APPENDIX
length unit. As long as one uses the three scaling laws (Eq. 6.1, Eq. 6.2 and Eq. 6.3), the numerical
values stemming from tabulated potentials (eV, Å) are correct. Changing one of the introduced scal-
ing schemes yields an additional scaling factor before solving Newton’s equations.

6.1.3 Scaling of the Landau-Lifshitz-Gilbert Equation
The Landau-Lifshitz-Gilbert equation can be written as

.

denotes the magnetization in ,  is the effective field in ,  is the gyromagnetic ratio
in .  represents the phenomenological damping term.
In this work, each atom is equipped with a magnetic moment

.

Here,  is a unit-vector pointing along the direction of the local magnetization. The constant  is
adjusted to get comparable values for the saturation magnetization  (in ):

,

where  is the volume per atom. In the case of face centered cubic crystals,  can be calculated
via the lattice constant :

,

since each primitive cell comprises 4 atoms.
The Landau-Lifshitz-Gilbert equation can now be reformulated by taking into account magnetic
fields given in  and magnetizations represented by unit-vectors:

.

with

.

6.2 Potential Parameters
In this work, several different published potential functions were used. Although every author claims
to have published a well-tested set of parameters, a verification of the asserted quality is highly rec-
ommended. In the ideal case, the verification procedure should be conducted with two different
MD-codes to make sure that the potential delivers right results. This method is also very useful when
developing a new molecular dynamics code.
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If an alternative computer program is not available, there are still possibilities to locate bugs and to
generate intermediate results with a new code. Apart from obvious problems like exploding clusters
of atoms (wrong sign at the force calculation), some effective tricks have been developed to decide
whether a problem has its origin in a faulty code or if it can be attributed to the potential itself.
It might sound ridiculous, but the first test being performed should be a plot of the potentials. A
smooth curve is expected for all three functions (electronic density, pair potential and embedding
function). In this context, the work of Zhou et al. [97] should be mentioned, where the given poten-
tials for Pt and Ag (and probably other elements) exhibit points of discontinuities. Thus it is not rec-
ommended to use those potentials.
Plotting the pair potential  and the density function  delivers another important feature: The
value of the cut-off radius can be chosen easily. In most cases, it is the electronic density which re-
quires a reasonable cut-off radius. Both functions should exhibit small values (zero) at the cut-off
distance. Some authors specify the mean electronic density  an atom experiences when in an equil-
ibrated structure. Setting up a low-temperature simulation and monitoring the mean electron density
should deliver exactly the specified number. Since the electronic density per atom is directly depen-
dent on the cut-off radius, this method can be used to check if the cut-off radius has been chosen
adequately. Obviously, too small values of  indicate a too small value of . Since lower electronic
densities deliver a wrong embedding energy for that structure, one consequence of wrong electronic
densities is to find wrong sublimation energies. If the cut-off radius has been chosen correctly and
still the mean electronic density per atom does not match the quoted value, monitoring the number
of neighbors per atom can help: Choosing consciously a wrong value for the cut-off radius between
the first and the second nearest neighbor in a structure should deliver 12 nearest neighbors per atom
for fcc-structures and 8 nearest neighbors for bcc structures. If these numbers are not found, the
problem might be in the geometry part of the code.
Knowing the number of neighbors and their respective distances can also be helpful to verify a po-
tential. By simply using graphs of ,  and , the sublimation energy can be calculated
manually via looking up the respective energy values.
Some of the potentials used are given hereinafter as a set of parameters and as plottings.

6.2.1 The Original Approach
Daw and Baskes, the inventors of the embedding atom method, published potentials for Nickel and
Palladium [30]. Still, authors publishing potentials today are using their method to specify the differ-
ent function by using knots of either natural or clamped splines [98,99]. For instance, Foiles and co-
workers published potentials for Cu, Ag, Au, Ni, Pd and Pt [102], Meyer et al. published potentials
for Fe and Ni [104]. The electronic density function is calculated using ab-inito data from Clementi
et al. [101]. Although better first-principle calculations are available today, the accuracy of this data
is still sufficient, since the fitting process necessary to obtain the embedding energy function and the
pair potential function is much more imprecise than an ab-initio calculation can ever be.

φ r( ) ρ r( )

ρ

ρ rcut

ρ r( ) F ρ( ) φ r( )
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Representative data to construct the pair potential, the electron density function and the embedding
function are given in Table 6.1-6.3. Additionally, plottings of the functions from different authors
are depicted in Fig. 6.1-6.3. The theory to construct the necessary functions is given in section 3.1.1.

Table 6.1: Effective charge function for Nickel. The function is given as a
set of spline knots. Here, a clamped spline function is used (i.e. the first
derivative of the function is specified). The first values (second row) refer
to Daw and Baskes [30], the second set (fifth row) refer to Ref. [103].

r [Å] ZNi(r) [a.u.]
Daw and Baskes [30]

Z´Ni(r) r [Å] ZNi(r) [a.u.]
K. Kadau [103]

Z´Ni(r)

0.0 28.0 0.0 0.0 28.0 0.0

1.5136 5.054 2.112 0.9874

2.2880 0.294 2.4992 0.1596

2.4992 0.137 2.992 0.0 0.0

2.9920 0.0 0.0

2 2.2 2.4 2.6
r  (Å)

0
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φ(r) Daw and Baskes
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Figure 6.1: Comparison between different pair potential functions pub-
lished by Daw and Baskes and Kai Kadau, respectively. It should be
noted that both functions rapidly approach zero (between first [2.49Å]
and second nearest neighbors [3.52Å]).
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Table 6.2: Embedding function FNi( ). Again, the function is given as a
set of spline knots. Contrary to the effective charge function, the spline
given below is a natural spline with vanishing second derivatives at the
first and the last knot. Values larger than Å-3 result in a
linear extrapolation of the last gradient at this value.

 [Å-3] FNi( ) [eV]
Daw and Baskes [30]

 [Å-3] FNi( ) [eV]
K. Kadau [103]

F´´Ni( )

0.0 0.0 0.0 0.0 0.0

0.014275 -3.586 0.014126643 -3.6666553

0.028550 -5.148 0.028253286 -5.38909894

0.057100 -3.407 0.056506572 -3.61087316

0.065665 0.0 0.064982557 0.0 0.0

ρ

ρ 0.065665=

ρ
ρ

ρ
ρ ρ

0 0.02 0.04 0.06 0.08
ρ  (Å
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)
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Figure 6.2: Embedding function  for Nickel. Since the pair potential for this
category of potentials is entirely repulsive, the embedding function exhibits a pro-
nounced attractive part. The mean electronic density,

  

for an equilibrated system is given in [103] to be . Daw and
Baskes [30] were using .

F ρ( )

ρi
h ρ rij( )

neighbors
∑=

ρKK 0.028253=
ρDB 0.02855=
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Table 6.3: Parameters to calculate the electronic
density of Nickel (taken from [30] and [18]).

i ni
 [Å-1]

Daw and Baskes [30]

 [Å-1]
Kai Kadau 

[103]

Ci

4s

1 1 54.88885 54.87049 -0.00389

2 1 38.48431 38.47144 -0.02991

3 2 27.42703 27.41786 -0.03189

4 2 20.88204 20.87506 0.15289

5 3 10.95707 10.95341 -0.20048

6 3 7.319580 7.31714 -0.05423

7 4 3.926500 3.92519 0.49292

8 4 2.152890 2.15217 0.61875

3d

1 3 12.67582 12.67158 0.4212

2 3 5.43253 5.43072 0.70658

ξi
ξi

2 2.5 3 3.5 4
r  (Å)

0

0.001

0.002

0.003

0.004

ρ 
 (

Å
-3

)

ρ(r) Daw and Baskes
ρ  Kadau
500 Δρ

Figure 6.3: Electronic density function . Although in Ref. [103] better ab-initio values
have been used, the difference between both functions is minimal. As described in the text,
testing this function whether it can produce  is simple. A face centered cubic crystal has 12
nearest neighbors at  (about 2.5Å for Ni) and 6 second nearest neighbors at 
(3.52Å for Ni). Looking up  at these distances and multiplying  with the according num-
ber of neighbors yields: , which is close to the expected .

F ρ( )

ρ
a0 2( )⁄ a0

ρ ρ
12 0.002⋅ 6 0.0003⋅+ 0.0258= ρ
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6.2.2 Zhou Potential
Zhou and co-workers developed a comprehensive set of potential function parameters (cp. Sect.
3.1.2). Since the presented potentials are normalized, they are suited for the simulation of alloys.
Some selected parameter sets are given below.

Table 6.4: Potential parameters of selected elements. Parameters of the same form for Cu, Pd, Al,
Pb, Mo, Ta, W, Mg, Ti and Zr can be found in Ref. [41].

Ag Au Co Fe Ni Pt

re 2.891814 2.885034 2.505979 2.481987 2.488746 2.771916

fe 1.106232 1.529021 1.975299 1.885957 2.007018 2.336509

15.539255 21.319637 27.206789 20.041463 27.984706 34.108882

7.944536 8.086176 8.679625 9.818270 8.029633 7.079952

4.237086 4.312627 4.629134 5.236411 4.282471 3.775974

A 0.266074 0.230728 0.421378 0.392811 0.439664 0.449644

B 0.386272 0.336695 0.640107 0.646243 0.632771 0.593713

0.425351 0.420755 0.500000 0.170306 0.413436 0.413484

Fn0 0.850703 0.841511 1.000000 0.340613 0.826873 0.826967

Fn1 -1.729619 -2.930281 -2.541799 -2.534992 -2.693996 -4.099542

Fn2 -0.221025 -0.554034 -0.219415 -0.059605 -0.066073 -0.754764

Fn3 0.541558 1.489437 0.733381 0.193065 0.170482 1.766503

-0.967036 -0.886809 -1.589003 -2.282322 -2.457442 -1.578274

F0 -1.750000 -2.980000 -2.560000 -2.540000 -2.700000 -4.170000

F1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

F2 0.983967 2.283863 0.705845 0.200269 0.282257 3.474733

F3 0.520904 0.494127 -0.687140 -0.148770 0.102879 2.288323

1.149461 1.286960 0.694608 0.391750 0.509860 1.393490

Fe -1.751274 -2.981365 -2.559307 -2.539945 -2.700493 -4.174332

ρe

α

β

κ

λ

η
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Fig. 6.4 and Fig. 6.5 show examples of the pair potential functions for Ni, Fe and Ag and their re-
spective embedding energy function .
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Figure 6.4: Pair potential function  for Ni, Fe and Ag. In contrast to the
potentials discussed in the last chapter,  exhibits also attractive parts,
which is due to the fact that these potentials are normalized (cp. Eq. 3.15).
Due to their special parameterized construction, the potential functions auto-
matically approach zero within the cut-off radius.
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Figure 6.5: Embedding functions for Ni, Fe and Ag. The inset shows the first de-
rivative of the according embedding functions. Due to the normalization rule, the
first derivative vanishes at = 27.985, = 20.041 and = 15.539 (cp.
Table 6.4).

ρNi ρFe ρAg
95



APPENDIX
Fig. 6.6 depicts different electron density functions and  as it is experienced by Ag in a distance
of 1 Å in a fcc bulk structure.

6.3 A Short Guide to FMD
It is beyond the scope of this thesis to discuss and present all the written software tools used. Any-
how, this chapter should provide enough information to start a molecular dynamics simulation using
FMD, which was used to calculate all the presented results. FMD and further necessary tools are de-
scribed in a general way rather than discussing the specific source code.
A typical workflow for a molecular dynamics simulations comprises

• Parameter and geometry setup
• Simulation of the desired system
• Analysis of the results

ρhost

2 3 4 5 6
r  (Å)

0

1

2

3
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6

ρ(
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  (
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)

ρ(r) Nickel
ρ(r) Iron
ρ(r) Silver

Figure 6.6: Left: Electron density function for Ni, Fe and Ag, respectively. Since
they are constructed in a similar way as the pair potential function,  approach-
es zero within the cut-off radius.
Right: Distribution of the superimposed electron density around a Ag atom in a
fcc bulk structure. The electron density function has been evaluated in a radial dis-
tance of 1 Å from the (not depicted) Ag center atom. Red areas represent a high
electron density, whereas blue areas depict regions with a low density. It should be
noted that, although the underlying atomic electron density functions are radial
symmetric, the superposition of these atomic functions reflects the underlying
face centered cubic structure.

ρ r( )
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6.3.1 The Parameter File

All parameters for a molecular dynamics simulation can be adjusted by providing an initialization file
as a parameter to FMD. Values in this file are specified in the following way:

l_x = 7.046

Comments are allowed and are defined by a preceding “#”.
The initialization file consists of three blocks of data: general parameters for the simulation (e.g. time
step ), configurational data for each atom (e.g. mass, type) and a description of the external quan-
tities being changed during a simulation run. The latter is specified by using the character “>”. A typ-
ical configuration to simulate a (very fast) hysteresis loop is given as example:

#> t[ps] Hx Hy Hz [T] T [K] newlog nroffld nroflogentr
>    0   0  0    -2.8  293    1      10       1000
>   10   0  0    -2.8  293
>   20   0  0    -2.8  293    1      10       1000
>   40   0  0    0     293
>   60   0  0    2.8   293    1      10       1000
>   80   0  0    2.8   293
>  100   0  0    2.8   293

The first column represents a point in time, the next three columns are used to describe the external
field  acting on the system and the last column provides information about the desired temper-
ature  as a function of time. The next three columns are optional and allow detailed adjustments
of the amount of data being produced by FMD. newlog is a flag indicating that a new LOG file should
be created. Every nroffld lines in the LOG file, the complete configuration (including a frame in
a XYZ1-file and a FLD/DAT2 combination in case of magnetic simulations) will be written. nrof-
logentr specifies the number of lines of the actual LOG file. In the example above, three different
LOG files are produced, each containing 1000 entries. During the processing of each section, 100
snapshots (spins, positions) will be produced. Fig. 6.7 is a graphical representation of the example
given above. Values between declared points in time are interpolated linearly. The according C-Code
providing the necessary interface to get the information given in the parameter file, is explained in
detail in Ref. [63].

1. XYZ-files can be displayed using either VMD [60] or MDL® Chime [61].
2. FLD/DAT combinations represent vector informations (i.e. the spin-system) and can be visual-

ized with MicroAVS® [62].

Δt

H t( )

T
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It is possible to enable or disable the logging of quantities in the parameter file by specifying the re-
spective LOG_ switches.

LOG_SCALEV = 1
LOG_TACT = 0
LOG_TAVR = 1

Here, the actual value of the velocity scaling mechanism and the average temperature will be logged,
whereas the actual temperature is excluded. A line in the LOG file always starts with the actual time
(column 1) followed by the specified quantities in the LOG file. The most important quantities are:
LOG_TACT (actual temperature), LOG_PACT (actual pressure), LOG_EPHI, LOG_EEMB, LOG_EKIN,
LOG_EPOT, LOG_ETOT (energies), LOG_EEXT (extended total energy of the Nosé-Hoover thermostat).
LOG_RHOMEAN can be used to analyze the mean electron density per atom and LOG_NR_NN is used to
get the mean number of neighbors being used for the given cut-off radius. A complete list of possi-
ble entries in the LOG file can be found in the file md.h.
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t  (ps)
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T
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Figure 6.7: Visualization of the control mechanism of physical quanti-
ties. In this example, three sections are defined. Each red diamond
represents a line in the descriptive section of the parameter file. Within
each section, the number of complete snapshots can be controlled by
the values of nroffld. The values between two diamonds are interpo-
lated by FMD.

section 1 section 2 section 3
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The desired initial geometry and specific information for each atom (e.g. initial spin direction) can
also be specified in the parameter file. Each atom starts with the character “p” and a subsequent
number. As an example, a system with four Nickel atoms at a temperature of 10K is given below.

#nr  x   y   z    vx       vy       vz       FxFyFz SxSySz fx type
p1 = 4.4 6.1 6.1  2.3e-02  9.2e-04 -1.3e-02  0 0 0  0 0 1  0  28
p2 = 6.1 4.4 6.1  3.5e-02 -4.0e-02  1.5e-02  0 0 0  0 0 1  0  28
p3 = 6.1 6.1 4.4  2.9e-02  4.1e-02  3.5e-02  0 0 0  0 0 1  0  28
p4 = 4.4 4.4 4.4 -1.9e-02  2.5e-03 -2.0e-02  0 0 0  0 0 1  0  28

The first three columns specify the positions of the individual atoms in Å, the next three values are
the according velocity in internal units, the forces are set to zero in this example. The initial spin
direction is set to the z-direction. fx is a flag to fix an atom in space, i.e. it is excluded from the po-
sition update process and is especially useful to fix a cluster in space during the equilibrium process.
It should be noted that fixing atoms in space severely harms thermodynamic laws. It can also be used
to model a surface at T=0K. The last column denotes the material used, in the example above it is
Nickel (atomic number 28). After processing the parameter file, FMD tries to find potential files for
each specified material. In the example above, Ni.pfi will be opened, i.e. potential files always con-
sist of the short chemical name of the material with the extension .pfi. If more than one material
is specified, FMD automatically calculates the necessary alloy potentials internally. Potential files are
simple text files holding the three potential functions and their respective derivatives. The pfi for-
mat used with FMD is very similar to the POCO pfi format described in Ref. [64].
In addition to the specific XYZ - and FLD/DAT- files, a complete system configuration is written
as CFG file. The format used in this file type is identical with the format used in the parameter file
to specify the system’s geometry. Therefore, a simulation can be resumed by copying the according
snapshot to the parameter file.
The information about the atoms’ geometry are read into a linked cell scheme. The cell size can be
specified with the parameters l_x, l_y, l_z. The number of cells used in the simulation is given by
the values nc_x, nc_y, nc_z. Therefore, the volume of the simulation box equals

. (6.8)

The positions of the atoms have to lie within this volume. The given geometry can be changed by
special scaling values, specified by scale_geom_x, scale_geom_y and scale_geom_z affecting the
positions and the volume of each cell of the linked cell geometry. This feature is useful to perform
a range of simulations at different system volumes.
Initial configurations can be created automatically by gen_config.

gen_config CTYPE=FCC LATA=3.85 STYPE=BULK TEMP=100 NX=3 NY=3 NZ=3
              CELL=7.7 ATOMS=Fe:53;Pt:47 NROFAT=864 OUTPUT=FePt.cfg

Vbox lxlylzncxncyncz=
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Here, a fcc bulk system with a lattice constant =3.85 Å is specified. STYPE allows to change from
a bulk structure to a cluster simulation. This is achieved by adding enough empty cells on the bound-
aries of the simulation geometry to oppress the minimum image convention code. In other words,
the distances between atoms on the surface of the simulations are too big to fulfill the periodic
boundary condition. TEMP can be used to specify the initial temperature of the simulation1, NX, NY,
NZ refer to the linked cell scheme. CELL denotes the size of a single cell. ATOMS specifies the different
types of materials used. Here an Fe53Pt47 alloy is set up. The atoms are distributed randomly on the
fcc lattice. NROFAT specifies the total number of atoms of the simulation and OUTPUT denotes the
name of the CFG file to be written. This file can be copied directly to the parameter file. Addition-
ally, a XYZ file is written to control the output of gen_config (config.xyz). Due to the fact that the
parameters of gen_config allows ambiguous combinations (e.g. NROFAT depends on the specified
size of the simulation box and on STYPE), the generated configuration should also be double-
checked by opening config.xyz with an appropriate visualization program. Invoking gen_config
without parameters displays a complete list of possible parameters.

6.3.2 Starting a Simulation
After reading the parameter file, the simulation process is invoked by starting FMD with the file con-
taining all information as parameter. Fig. 6.8 shows a simplified flow diagram of the simulation code.

1. not implemented yet

a
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Simulation setup
• adjust parameters according to the input file
• set up the geometry of the simulation
• if necessary, remove center of mass motion

in dependence of the desired simulation type (mag-
netics or molecular dynamics), following steps are
performed for each atom i each time step :
• calculate positions x, migrate if cell is left (MD)
• determine neighbors of each atom (MD/M)
• compute the electron density  (MD)
• calculate the forces F (MD)
• determine the velocities v (MD)
• perform Heun-Stratonovich

integration step (M)
• calculate temperature, energies, pressure and 

total magnetic moment (MD/M)

Δt

ρhost

time to dump the complete configuration?

reached ?tend

time to write a line in the LOG file?

first section being processed?

rescale velocities

Depends on type of simulation:
• write a complete snapshot of 

the current simulation state 
(MD and M)

• add a frame to the actual 
XYZ-file (MD)

• write a new FLD file (M)

release reserved memory, exit.

add a line in the current in the log file

Figure 6.8: Flow diagram of the simulation core of FMD.
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6.3.3 Analysis of Simulation Results
Standard analysis of molecular dynamics results comprises plotting desired LOG-entries as a func-
tion of time. XMGrace is a well-suited tool for this purpose [100]. More complex visualization tasks
can be performed with MDL® Chime [61] or VMD [60]. However, although many tools are avail-
able to visualize simulation results, there is almost no software available to analyze geometry data.
For example, no code could be found to detect crystal planes within an arbitrarily orientated struc-
ture. Therefore, an analysis library was written to perform specific post-processing tasks. Addition-
ally, a graphical frontend was designed, combining some of the most frequently used tasks. Fig. 6.9
shows a screen-shot of GeoToolbox, which provides easy access to some of the features of the writ-
ten analysis library. GeoToolbox can be used to determine the relative orientation of a cluster with
respect to the z-axis. The detection of crystal planes and their relative position is also possible. That
is to say, a determination of fractional crystal structures within an arbitrary configuration of atoms
is possible. The methods used are described in a general way in section 4.4.3.

After loading the dedicated XYZ file holding snapshots of the atoms’ position, an individual snap-
shot can be selected (in the example above, snapshot number 454 was selected). By using the “pre-
pare”-function, the atom closest to the center of the aggregate atoms is determined. Two
neighboring atoms of this center atom are necessary to detect the according plane the center atom
belongs to. Two parameters have to be adjusted for this purpose: a maximum distance between de-

Figure 6.9: Graphical User Interface for
the post-processing library. GeoToolbox is
capable of reading XYZ files. It displays
the number of snapshots of the specified
file. The radial distribution function and
potential energies of the according snap-
shots can be calculated easily. Moreover,
an automated plane-detection was imple-
mented. Starting from the center atom and
two other neighbors of the center atom,
the tool tries to find a crystal structure
within the given assembly of atoms. A
Voronoi tesselation is performed to get the
neighborhood of each atom.
If the structure could be determined by
finding individual crystal planes, the nor-
mal vector of these planes can be used to
transform this normal vector to point to
the z-direction. Finally, in case of a struc-
ture with a faulty stacking order (fcc and
hcp), GeoToolbox can identify individual
planes as fcc planes or hcp planes, depend-
ing on their neighboring planes.
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tectable crystal planes and a maximum volume. To decide whether an atom is a member of a dedi-
cated plane, the maximum volume declares the upper bound for the volume defined by four atoms
(i.e. the three initial atoms and the atom to test). After the detection of the first plane, neighboring
planes are searched parallel to the first plane. GeoToolbox tries to assign each individual atom to a
crystal plane which lies parallel to the first found plane. That is to say, multiple twinned particles can
not be analyzed in this way.
Finally, the normal vector (perpendicular to the initial plane) is used to rotate the configuration in a
way that the detected crystal planes are parallel to the xy-plane of the coordinate system.
Additionally, GeoToolbox is capable of determining the stacking order of mixed fcc/hcp structures,
presumed to have a (111) plane as initial plane. The neighboring planes of the investigated crystal
planes are mapped onto each other (i.e. mirrored on the plane to be determined). If the neighboring
planes match, an ABA ordering exists, if no matching can be achieved, an ABC ordering is detected.
In terms of crystal structures, an ABA stacking ordering represents a hcp plane whereas an ABC or-
dering indicates a fcc plane.
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Figure 5.11: Spatially resolved exchange energy for both: short-range exchange and long-range ex-
change interactions. The spheres represent positions of magnetic moments in the simulation. They
are color coded with respect to the exchange energy. Red spheres indicate high exchange coupling,
whereas grey spheres represent weakly coupled moments. (A) depicts the simulation geometry and
a section plane. (B) shows short-range exchange interaction and (C) represents a section plane mod-
eled with a long-range exchange formulation. It should be noted that the pictures (B) and (C) were
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Figure 6.6: Left: Electron density function for Ni, Fe and Ag, respectively. Since they are constructed
in a similar way as the pair potential function,  approaches zero within the cut-off radius.
Right: Distribution of the superimposed electron density around a Ag atom in a fcc bulk structure.
The electron density function has been evaluated in a radial distance of 1 Å from the (not depicted)
Ag center atom. Red areas represent a high electron density, whereas blue areas depict regions with
a low density. It should be noted that, although the underlying atomic electron density functions are
radial symmetric, the superposition of these atomic functions reflects the underlying face centered
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