
DISSERTATION

A Distributed Computing Environment

for Material Sciences

ausgeführt zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Naturwissenschaften

unter der Leitung von

Univ.Prof. Dr.phil. Karlheinz Schwarz

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Blaha

E165 – Institut für Materialchemie

eingereicht an der Technischen Universität Wien

Fakultät für Technische Chemie

von

Dipl.Ing. Johannes M. Schweifer

Matrikelnummer: 9525661

Aspangstr 51/27, 1030 Wien

Wien, am 12. Dezember 2006

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung:

WIEN2k ist eine materialwissenschaftliche Anwendung zur Berechnung der Elektronenstruktur

von Festkörpern und basiert auf der Dichtefunktionaltheorie. Der Zeitaufwand solcher Rech-

nungen liegt im Bereich von Stunden bis Tagen und kann durch Parallelisierung verkürzt wer-

den. Um möglichst viel Rechenleistung nützen zu können sollten alle verfügbaren Computer

benutzt werden können, jedoch hat dies den Nachteil, daß der Anwender mit unterschiedlichen

Betriebssystemen und Queuing Systemen arbeiten muß. Damit eine solche , zunehmend

komplexe, verteilte Rechenumgebung auf einfache Weise genützt werden kann, sind Pro-

gramme notwendig, die einen heterogenen Ressourcen Pool in eine homogene Umgebung -

eine sogenannte Grid Umgebung - verwandeln. Die Schnittstelle zwischen der Hardware und

den Anwendungen wird “Middleware” genannt. Leider stellt der Großteil der bereits verfüg-

baren Middleware hohe Anforderungen an Anwender, Entwickler und Systemadministratoren,

weshalb im Rahmen dieser Dissertation nach einer neuen Lösung gesucht wurde, die nur

die wichtigste Funktionalität einer solchen Middleware implementiert, wie beispielsweise die

automatische Auswahl von Computern, Datenübertragung, die Durchführung einer Rechnung

und deren Überwachung, jedoch ohne besondere Rechte auf dem Zielsystem oder grundle-

gendes Expertenwissen zu erfordern. Zu diesem Zweck wurde W2GRID entwickelt, eine auf

Perl basierende Middleware mit minimalen Systemanforderungen. Die Neuheit dieser En-

twicklung besteht darin, daß alle kritischen und von der Architektur abhängigen Aspekte von

der Anwendung getrennt werden, wobei es aber gleichzeitig nicht notwendig ist, den Code

derselben zu verändern. Statt dessen wird die Anwendung nur mit geeigneten Interface-

Skripten gesteuert (Anwendungs-plugins). W2GRID ist kein monolithischer Code sondern eine

Sammlung von voneinander unabhängigen Komponenten (plugins), die bei der Installation in

passender Weise kombiniert werden. Somit kann man die Unterstützung für andere Betriebs-

und Queuing-Systeme durch die Entwicklung entsprechender Plugins erweitern. Das Inter-

face zwischen W2GRID und der Anwendung bleibt aber davon unabhängig. Die Middleware

eignet sich sehr gut, um Programme innerhalb einer einzigen Rechnerdomäne auszuführen,

ist aber nicht in der Lage über Domänengrenzen hinweg zu parallelisieren, denn eine solche

Funktionalität ist nicht mit den Interface-Skripten zu bewerkstelligen. Im Gegensatz zu vie-

len anderen Middleware Produkten, die bereits eine bestimmte Infrastruktur und etliche Tools

und Dienste voraussetzen, um auf diesen aufbauen zu können, beschränkt sich W2GRID als

“Standalone-Lösung” nur auf die wichtigsten Aspekte von verteiltem Rechnen. Daher ist der

Anwender nicht gezwungen zusätzliche Software zu installieren, denn W2GRID benötigt nur

jene Tools und Bibliotheken, die auf den üblichen Unix/Linux basierten Rechnern standard-

mäßig vorhanden sind. Die vorliegende Arbeit beschreibt die grundlegenden Konzepte der

Middleware und die Entwicklung des Anwendungs-plugins für WIEN2k, das es dem Anwen-

der ermöglicht sich auf seine wissenschaftliche Arbeit zu konzentrieren und die Rechenarbeit

einem automatisierten Prozeß zu überlassen. Das WIEN2k plugin bewertet die Rechenauf-

gabe in Hinblick auf die erforderlichen Ressourcen, fordert die momentane Auslastung der

verwendbaren Rechner an und wählt auf dieser Basis das am besten geeignete Computersys-

tem aus. Die Input Dateien werden auf den Zielrechner kopiert, die Rechnung gestartet und

überwacht, wobei die Output Dateien in regelmäßigen Abständen auf dem lokalen Rechner

auf den neuesten Stand gebracht werden. Manche davon müssen nicht als ganzes kopiert

werden, daher reicht es, das jeweils aktuellste Fragment an die bereits existierende Datei

anzuhängen. Während der Rechnung wird die Lastverteilung dynamisch an eine sich verän-

dernde Auslastung angepaßt, wodurch die vorhandenen Ressourcen effektiver ausgenutzt

werden können. Das Plugin wurde entwickelt, um die mittlerweile 1000 wissenschaftliche

Gruppen und Firmen umfassende WIEN2k Gemeinde bei der Verwendung von verteilten het-

erogenen Rechenumgebungen zu unterstützen. Schließlich wurde gezeigt, daß auch andere

Anwendungen mit ähnlichen Anforderungen W2GRID nutzen können indem ein entsprechen-

des Plugin entwickelt wird.

Abstract:

WIEN2k is a material science application, which uses Density Functional Theory to calcu-

late the electronic structure of solids. Such calculations can take many hours up to several

days, therefore parallelisation is used to speed up the computations. In order to harvest as

much computing power as possible, it is desirable to employ all hardware available to a scien-

tist. This, however, comes with the unfavourable disadvantage, that the user has to cope with

different operating systems and methods of job-submission. To cope with such an increasingly

complex and distributed environment, certain tools are necessary, which turn a heterogeneous

pool of computing resources into a homogeneous one, forming a so called “Grid environment”

and provide an interface layer in between the application and the hardware, termed middle-

ware. The majority of existing middleware solutions come with an unfavourable overhead

of requirements for users, developers and system administrators. Therefore the motivation

of this work was to find novel solutions for the most basic features an application needs in

a distributed computing environment, namely automated resource selection, filetransfer, job-

submission and its monitoring, without strict requirements in terms of permissions and experi-

ence. For this purpose W2GRID, a lightweight Perl-based middleware, has been developed. It

represents a novel approach to address the increasing heterogeneity of distributed resources

by separating all critical architecture dependent aspects of scientific computing from the ap-

plication, but obviates the necessity to modify the source code of the application, instead the

latter is wrapped with proper interface scripts (application plugins). W2GRID does not come

as a monolithic code with limited portability but instead consists of a collection of independent

components (plugins), which are combined during the installation in such a way, that support

for new job-submission schemes or new operating systems can be added by developing new

plugins, but the interface in between the application and W2GRID remains independent of both.

The middleware is well suited to run programs within a single domain having a shared filesys-

tem, whereas it is not possible to parallelise programs across several computing sites, since

parallelism cannot be added with W2GRID but must already be provided by the application.

In contrast to numerous other middleware schemes, which are built on top of an already ex-

isting infrastructure or certain high-level tools, W2GRID restricts itself to the essential parts of

distributed computing and provides a standalone solution, which can interact with a variety of

infrastructures by the means of proper plugins. The user does not have to install additional

software, since W2GRID is free of third party dependencies. It does not need tools or libraries

other than those, which can be expected on any Unix/Linux based system. The presented

work covers the design and implementation of the middleware as well as the development of

the application plugin, which allows the user to focus on the material science problem and

to leave all computational tasks to an automated scheme. The WIEN2k plugin analyses the

submitted task with respect to its requirements, collects immediate status-informations of all

suitable computing resources and selects the best one for this task. It transfers the input files

to the remote host, starts the calculation, monitors it and continously updates the local output

files, some of which are not copied repeatedly as a whole, but instead are just appended by

the most recent chunk of data. During the execution, the load-distribution can be adjusted dy-

namically leading to an efficient and economic use of all available computing resources. The

plugin is designed to promote the use of distributed computing in the growing WIEN2k user

community, which consists already of more than 1000 academic workgroups and companies.

Finally it was shown that W2GRID can also be used for other scientific applications with similar

demands by writing the corresponding application plugin.

Acknowledgements

I would like to thank the many people who made this thesis possible. First of all I want to

express my gratitude to my two supervisors Karlheinz Schwarz and Peter Blaha, who gave

me the chance to pursue this interesting topic, which proved to be exactly the kind of inter-

disciplinary work I had been searching for. With their enthusiasm, their inspiration, and great

efforts to explain things clearly and simply I experienced a great leap of my skills.

Sincere thanks are due to Prof. Armin Scrinzi of the Photonics Institute for the many fruit-

ful discussions we enjoyed at the occasion of numerous AURORA meetings and also for his

openness to employ W2GRID on his computing facilities. I also want to thank his fellow worker

Christopher Ede for the great effort to do the alpha and beta testing of W2GRID. It was mainly

due to his invaluable feedback, that numerous bugs could be detected and fixed. And it was

also him, who contributed the application plugin for MCTDHF.

Furthermore I am delighted to thank my colleagues (in alphabetical order) Clemens Först,

Thomas Gallauner, Robert Laskowsky, Andreas Mattern, Günther Schmidt, Bernd Sonalkar

and Christian Spiel for the atmosphere of friendship during these last four years. I am grateful

that I could enjoy their expertise in countless scientific and non-scientific matters. Thanks to

all of you.

I am especially indebted to my parents, as my studies would not have been possible with-

out their help and encouragement.

My ultimate thanks, however, belong to my partner Michaela, who is a source of continuous

support and inspiration. Without her, the days I experienced during the thesis-writing period

would have been much tougher to endure. To her I dedicate this thesis.

Contents

1 Introduction 1

1.1 Computational Material Sciences . 2

1.1.1 Quantum mechanics . 2

1.1.2 Material Science applications . 8

1.1.3 WIEN2k . 9

1.1.4 MCTDHF . 13

1.2 Distributed Computing . 13

1.2.1 Challenges for Scientific HPC applications 13

1.2.2 Challenges for the Scientist . 14

1.2.3 Origin and Evolution of the Grid . 15

1.2.4 Major Grid-projects . 16

1.3 Difficulties with existing middleware . 22

1.3.1 Implementation paradigms . 23

1.3.2 ’Lightweight middleware’ as a solution 24

1.4 W2GRID . 25

1.4.1 Design philosophy . 26

1.4.2 Desired benefits for WIEN2k . 26

1.4.3 Related work . 27

2 Implementation and Concepts of W2GRID 30

2.1 Programming languages . 30

2.1.1 C . 31

2.1.2 Perl . 32

2.1.3 C-Shell (csh) . 32

2.2 Client/Server architecture . 33

2.2.1 Purpose of the GridServer . 35

2.2.2 Purpose of the GridClient . 36

2.2.3 Interaction between the daemons and the user 37

2.3 Security . 37

i

CONTENTS ii

2.3.1 Policy . 38

2.3.2 Encryption . 38

2.3.3 Authentication . 39

2.3.4 Logon protocol . 39

2.3.5 DoS attacks . 40

2.4 Directory structure . 42

2.5 Wiensql-database daemon . 44

2.5.1 Purpose . 44

2.5.2 Workflow . 45

2.5.3 Accessing the database . 46

2.5.4 Optimisation . 48

2.5.5 Security measures . 49

2.5.6 Supported data-types . 50

2.6 GridServer and GridClient daemons . 51

2.6.1 Directory structure . 53

2.6.2 Commands (foreground tasks) . 53

2.6.3 Jobs (background tasks) . 56

2.6.4 Interplay of commands and jobs . 59

2.6.5 Persistent data containers: ’Slots’ . 61

2.6.6 Registry . 65

2.6.7 Minimising the memory requirement of the Perl-daemons 67

2.6.8 Performance tuning . 70

2.6.9 Logon . 71

2.6.10 The Bouncer . 72

2.6.11 The Progress Indicator . 73

2.7 C-Shell scripts . 75

2.8 C and Perl-tools . 75

2.9 Core and plugins . 77

2.9.1 Operating system (platform) plugin . 79

2.9.2 Job-submission (execution) plugin . 79

2.9.3 Connection plugin . 80

2.9.4 File transfer plugin . 81

2.9.5 Application plugin . 81

2.9.6 Processor plugin . 81

2.9.7 Plugin development . 82

2.9.8 Interoperability . 82

2.10 W2GRID Component packages . 83

CONTENTS iii

3 Using and extending the middleware 85

3.1 Installation . 86

3.1.1 Task-overview . 86

3.1.2 Quick Installation . 91

3.1.3 Menu-guided (interactive or manual) installation and configuration . . . 92

3.1.4 Removal . 93

3.2 Usage . 93

3.2.1 Daemon processes . 93

3.2.2 Status check . 94

3.2.3 Commandline interfaces . 94

3.2.4 Selected GridClient-commands . 97

3.3 Development . 99

3.3.1 Commands . 100

3.3.2 Jobs . 101

3.3.3 Important libraries . 102

3.3.4 Important variables . 104

3.3.5 Application plugin . 105

3.3.6 Platform plugin . 106

3.3.7 Execution plugin . 108

3.3.8 Connection plugin . 110

3.3.9 File transfer plugin ’ftp’ . 111

3.3.10 Processor plugin . 112

3.3.11 W2GRID-packages . 112

4 The WIEN2k application plugin 116

4.1 Purpose . 117

4.2 Performing an SCF-calculation . 117

4.2.1 CASE-evaluation . 117

4.2.2 Host selection . 118

4.2.3 File transfer . 121

4.2.4 Starting the computation . 121

4.2.5 Frequent checks . 121

4.2.6 Cleanup . 122

4.3 Interfaces . 122

4.3.1 migrate_lapw . 122

4.3.2 testcomplex_lapw . 123

4.3.3 run_lapw, runsp_lapw, runafm_lapw, 123

CONTENTS iv

4.3.4 .machines . 123

4.3.5 .stop . 124

4.3.6 lapw1 . 124

4.3.7 x_lapw . 125

4.3.8 CASE.nmat_only . 125

4.3.9 input files . 125

4.3.10 .parameter . 125

4.3.11 .w2grid_lock . 126

4.4 Resource evaluation . 126

4.4.1 Memory requirement . 126

4.4.2 Analytic performance model . 126

4.5 Design of the application plugin . 129

4.5.1 Installation . 130

4.5.2 GridClient . 131

4.5.3 GridServer . 133

4.5.4 Interplay of the command-stubs . 134

4.5.5 Tuning the parallelisation . 136

4.5.6 Development of larger workflows . 137

4.5.7 Tools . 138

5 Proof of Concepts 139

5.1 Installation of W2GRID on the testbed hosts 140

5.1.1 HAL . 140

5.1.2 ATHENA . 140

5.1.3 GESCHER . 140

5.1.4 LUNA . 141

5.1.5 AURORA . 141

5.1.6 AURA . 141

5.2 Proof of the standalone principle . 142

5.3 Plugin concept . 143

5.3.1 Connection and filetransfer plugin . 143

5.3.2 Platform . 143

5.3.3 Execution plugin . 144

5.4 Applicability for other scientific programs . 145

5.4.1 Problem definition . 145

5.4.2 Solution . 145

5.5 WIEN2k . 146

CONTENTS v

5.5.1 Portability of the plugin . 147

5.5.2 Host selection . 147

5.5.3 Results obtained from realistic CASES 149

6 Discussion 152

A Appendices 156

A.I Remarks, abbreviations and special terms . 156

A.II Definition of Grid Computing . 162

A.III Important library-functions for development . 163

A.IV Sample Code and Screenshots . 176

B Indices 188

B.I List of Figures . 188

B.II List of Tables . 192

B.III Bibliography . 193

Curriculum Vitae 202

Chapter 1

Introduction

Chemistry and physics increasingly employ computational methods in order to study and un-

derstand matter. In these evolving disciplines, which became known as ’computational mate-

rial sciences’ the computer itself is the primary instrument of research, distinct from its use for

the storage and display of results obtained from experiments. While scientists and application

developers can profit on the one hand from the formidable hardware progress in recent years,

they already encounter problems due to the rising number of mostly different computing archi-

tectures on the other hand. It is therefore aimed to reduce the administrative overhead, which

is inevitably related with heterogeneous computing pools.

The motivation of this thesis was to investigate the impact of distributed resources on WIEN2k,

a quantum mechanical electronic structure code for solids. It aims to find a solution, which

allows scientists to focus on their material science problem while leaving all the computational

details of the (often time-intensive) calculations to an automated scheme that runs in the back-

ground.

Soon after this project was launched, a survey on existing infrastructures serving a similar pur-

pose made apparent that the task could not be solved by the use of any of them without either

having to make vast changes to the WIEN2k-code1 or imposing a number of unfavourable re-

quirements that limit its use for many scientific workgroups. Therefore it was decided to pursue

a proprietary development, which was named W2GRID2 with respect to its initial purpose. In

a later stage of development the concept was generalised to serve also the demands of other

scientific applications such as MCTDHF.

Since both applications are based on quantum mechanics, the thesis will introduce the reader

into its basics as this is required to understand the scientific background of the applications.

Furthermore it is considered very helpful to explain the underlying principle of material sci-

1hence producing a very architecture-dependent solution, which is barely portable.
2WIEN-to-grid

Introduction 2

ence within the scope of this document as it eases the understanding of the demands of such

applications and the problems for scientists and developers, which arise from the work in a het-

erogeneous distributed environment. A detailed description thereof is given next, followed by

a survey of the commonly used infrastructures, which are offered as a generalised but heavy-

weight solution. The introduction is concluded with a list of reasons, why these solutions are

far from optimal for certain applications such as WIEN2k or MCTDHF and how W2GRID can help

to improve the usage of scientific applications on a pool of remote user-accounts. Chapter 2

and 3 describe its design-concepts and the way how third party software can be integrated,

which is demonstrated on the basis of WIEN2k in chapter 4. The proof that both, the under-

lying principle of architecture-independence as well as the presented implementation of the

WIEN2k-specific solution works as desired, is finally given in chapter 5.

Besides its original purpose to find a portable solution for the WIEN2k community, W2GRID can

be used to run almost any application on distributed resources provided that the proper inter-

face is implemented. Therefore this thesis shall additionally serve as a guide for developers.

1.1 Computational Material Sciences

This field of research allows to predict physical properties of materials and to study their be-

haviour in certain environments before they are synthesised and analysed in the laboratory.

Computational material sciences may be used as a guide to exclude less favourable reactions

or unstable products, or to select more fruitful reaction-paths from the many possible ones. An

additional benefit is the possibility to examine effects on a scale of space or time that is difficult

to reach by present experimental techniques, thus giving an insight beyond that provided by

experiments. The success of this field is based on quantum mechanics3, which gave us the

fundamentals to develop new modern materials (e.g. optic/magnetic storage devices, sensors,

shape memory alloys, the laser or magnetic resonance imaging). The study of semiconduc-

tors for example led to the invention of the diode and the transistor, which are indispensable

for modern electronics.

The following text is based on the literature [1, 2, 3, 4, 5, 6], lecture-notes and the Internet.

1.1.1 Quantum mechanics

Quantum mechanics is the underlying physical, mathematical and theoretical framework to ex-

plain, study and simulate matter. It evolved in the beginning of the twentieth century from the

aim to understand matter on an atomic scale and below, when classical mechanics proved to

3The term ’quantum’ is Latin (’how much’) and refers to the property of waves being measurable in particle-like
discrete packets of energy called ’quanta’.

Introduction 3

be inadequate for this purpose. Experiments led to a theory of unity between subatomic par-

ticles and electromagnetic waves called wave-particle duality, in which particles and waves

were neither one nor the other, but had certain properties of both, giving rise to a fierce search

for new models to explain the experiments. Based on the results, Niels Bohr proposed a plan-

etary model for the atom, with electrons orbiting a sun-like nucleus. To stabilise the system,

which would otherwise collapse, he had to introduce a few fundamental postulates. Bohr’s

model agrees with the hydrogen atom but fails to explain any of the heavier elements and thus

lacks an approach to chemical bonding. The next step by Erwin Schrödinger, who employed

wavefunctions ψ to describe matter, was a resounding success and made quantum mechanics

the pillar of modern physics.

1.1.1.1 The Schrödinger equation

On the basis of the wave-particle dualism it was concluded, that matter can be described as

a superposition of numerous waves of different frequencies4, amplifying in a certain region of

space and destructively interfering elsewhere. In this approach all particles are described by

a partial differential equation (1.1) of a wavefunction (ψ) in space (r) and time (t) where V (r) is

a given potential energy.

ih̄
δψ(r, t)

δt
= − h̄2

2m
δ2ψ(r, t)

δr2 +V (r)ψ(r, t) (1.1)

This is the fundamental non-relativistic equation of quantum mechanics and was first proposed

by Schrödinger. It is very often referred to as the corresponding counterpart of Newton’s

second law and simplified into equation 1.2.

ih̄
δψ(r, t)

δt
= −Hψ(r, t) (1.2)

where H is the Hamilton operator5. In a stationary state, the total energy of the system is

constant. Separating the variables and removing the time-dependence leads to the well known

time-independent Schrödinger equation 1.3

Hψ = Eψ (1.3)

4De Broglie related the momentum of a particle to its wavelength p = h/λ, which allowed to calculate the
quantum wavelength of electrons by the knowledge of their momentum.

5The Hamilton operator is the counterpart of the Hamilton-function in classical mechanics. An introduction to
operators is given in [2]

Introduction 4

where E is a scalar eigenvalue and ψ is an eigenfunction, which must be unique and continu-

ous, such that the integral
R |ψ|2 dτ = A is finite6 so that ψ can be normalised.

Trajectories are not known in quantum mechanics due to Heisenberg’s uncertainty principle,

saying that the position and the momentum of a particle cannot be determined exactly at the

same time (∆x∆p = h̄
2). Instead, the position of a particle is described by a probability of find-

ing it within a certain volume of space, expressed as the product of the wavefunction with its

complex conjugated counterpart ψψ∗. This probability of finding the particle in a finite volume

of space, requires that the wavefunction is normalised by
R |ψ|2 dτ = 1

In contrast to the Bohr model, the Schrödinger equation allows the electrons to occupy three-

dimensional regions of space, hence their description requires three coordinates. Solving

Schrödinger’s equation for the hydrogen atom, which is colourfully demonstrated in [1], yields

three quantum numbers (QN), that are well known to chemists:

• principal QN (n): defines the sizes of the orbitals

• angular QN (l): defines the shape (spherical, polar, cloverleaf,..)

• magnetic QN (m): defines the orientation in space

The intriguing fundamental postulate of quantum mechanics is that a wavefunction ψ exists for

any (chemical) system. Once it is obtained, one can go from an appropriate operator (function)

acting upon ψ to any desired observable by calculating the ’expectation value’7.

< α >=

R

ψ∗αψdτ
R

ψ∗ψdτ
(1.4)

This is expressed by equation 1.4, where α is an operator, ψ is an eigenfunction to H but not

necessarily to α. If the distribution is sharp (αψ = aψ), the expectation value is the eigenvalue

(< α >= a).

1.1.1.2 The electron many-body problem

Unfortunately the Schrödinger equation, being the ultimate key to all properties of interest,

is unsolvable in all practical cases except for the most simple system, namely the hydrogen

atom. To account for the interactions of electrons and nuclei the Hamilton-operator can be

written according to equation 1.5, where i and j run over electrons, k and l run over nuclei,

me is the mass of the electron, mk is the mass of the nucleus k, ∇2 is the Laplacian operator

6dτ = dxdydz
7If one measures this quantity in a series of experiments, the expectation value is the average value of all the

results. This average can also be calculated.

Introduction 5

(4), e is the charge of an electron, Zk is the atomic number of atom k, and rab is the distance

between two particles a and b.

H = −∑
i

h̄2

2me
∇2

i −∑
k

h̄2

2mk
∇2

k −∑
i
∑
k

e2Zk

rik
+ ∑

i< j

e2

ri j
+ ∑

k<l

e2ZkZl

rkl
(1.5)

In Cartesian coordinates, the Laplacian has the form of equation 1.6.

∇2
i =

∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

(1.6)

The Hamiltonian H contains contributions from the kinetic (the first two terms) and potential

energy (the last three terms) of all particles (electrons and nuclei) where the latter appear ex-

actly as in classical mechanics. Since an analytic solution cannot be obtained, the problem

must be simplified by approximations and constraints. The Born Oppenheimer Approxima-

tion is based on the fact, that the nuclei are much heavier and thus move much slower than

the electrons, hence their motions can be assumed to be independent. This allows to elimi-

nate the kinetic energy of the nuclei, and the nuclei-nuclei interaction becomes a constant for

a given geometry. The new equation for the electrons is written as:

(Hel +VN)ψel = Eelψel (1.7)

Yet the remaining treatment of the electronic structure is still challenging. According to equa-

tion 1.4 every observable can be calculated from the wavefunction. Since there are many pos-

sible solutions but only a single ’exact’ one, which cannot be obtained directly, one is helped

by the variational principle. It governs, that a calculated observable (expectation value of

an operator) for any approximate wavefunction is greater or equal the exact value. Hence a

systematic variation of this trial function allows to minimise the result, which finally yields a

wavefunction close to the exact ψ.

Many approaches have been developed to explain chemical bonding and to find useful approx-

imations. The interested reader is referred to [2, 3] for the LCAO model, the Hückel method

and related theories. In the following sections two often used schemes are outlined, namely

the ’Hartree-Fock’ and ’DFT’ method. In order to simplify the equations atomic units will be

used, which are listed in table 1.1.

Introduction 6

symbol Quantity Value in a.u Value in SI units
me mass of an electron 1 9.110·10−31kg
e charge of an electron 1 1.603·10−19C
h̄ momentum (h

2π) 1 1.055·10−34Js
a0 Bohr radius (distance) 1 5.292·10−11m
EH Hartree (energy) 1 4.360·10−18J

Table 1.1: Atomic units

1.1.1.3 Hartree Fock

The fundamental assumption of the HF theory is to have independent electrons, which obey

the Pauli principle. Each electron sees all the others as an average field. If the Hamiltonian

can be written as a sum of one-electron operators with the kinetic energy, the nuclear attraction

and the Coulomb interaction with the other electrons, the operator is separable and may be

expressed as

H =
N

∑
i=1

hi = −1
2

N

∑
i=1

∇2
i −

M

∑
k=1

Zk

rik
+ ∑

j 6=i

Z ρ j

ri j
dr (1.8)

where N is the total number of electrons, hi is the one-electron Hamiltonian and ρ j is the

charge density associated with electron j. Eigenfunctions of the one-electron Hamiltonian

must satisfy the one-electron Schrödinger equation, therefore the many-electron eigenfunction

ψ can be constructed as products of the one-electron eigenfunctions φi. Equation 1.9 is called

a ’product ansatz’ and ψHP a Hartree product-wavefunction.

ψHP = φ1φ2 · · ·φN (1.9)

The problem is, that calculating the wavefunction φi requires the knowledge of the other densi-

ties ρ j =
∣

∣ρ j
∣

∣

2, which in turn depend on the wavefunction again. To solve this problem, Hartree

proposed an iterative ’self-consistent field’ (SCF) method. In the first step, one guesses the

wavefunctions φi for all of the occupied orbitals and uses them to construct the necessary one-

electron operators hi. The solution of each differential equation provides a new set of functions

φ, different from the initial guess. This procedure is continued iteratively until the difference be-

tween the old and the new functions converges within a certain threshold criterion.

To account for the electron-spin and the Pauli principle, namely that the many-electron wave-

function must be antisymmetric, Fock extended the Hartree product by a Slater determinant of

Introduction 7

the following form:

ψSD =
1√
N!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χ1(1) χ2(1) · · · χN(1)

χ1(2) χ2(2) · · · χN(2)
...

...
. . .

...

χ1(N) χ2(N) · · · χN(N)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1.10)

where N is again the total number of electrons and χi(n) are ’spin orbitals’, a product of the

spacial orbital φi and an electron-spin eigenfunction (for spin-up or spin-down).

HF theory treats exchange exactly but ignores correlation, and thus cannot realistically be used

to represent real systems with chemical accuracy, for example if one is interested in quantities

such as the heat of formation.

1.1.1.4 DFT

Density Functional Theory (DFT) is one of the most popular and successful quantum mechan-

ical approaches to matter. Nowadays it is routinely applied for calculating, e.g., the binding

energy of molecules in chemistry and the band structure of solids in physics. The advan-

tage of DFT is that it is not necessary to calculate the complicated N-electron wavefunction

ψ(x1,x2, · · · ,xN), but instead one can restrict oneself to calculating the much simpler electron

density (ρ(r)), a fact that was first proven by Hohenberg and Kohn. The practical scheme that

they devised is based on a hypothetical reference system of noninteracting electrons, chosen

in such a way that the density of this system is identical to the exact density of the real phys-

ical system under consideration. The Hohenberg-Kohn theorem is exact and says: “The total

energy of an interacting inhomogeneous electron gas in the presence of an external potential

Vext(r) is a functional of the density ρ(r)”.

Etot(ρ) = Ts(ρ)+Eee(ρ)+ENe(ρ)+Exc(ρ)+ENN (1.11)

Where Ts is the kinetic energy term for the non-interacting particles, Eee accounts for electron-

electron and ENe for the nucleus-electron interactions, ENN represents the Coulomb interaction

between the nuclei and finally Exc adds the exchange-correlation energy, which contains the

difference between the energy of the system calculated by the other four contributions and

the ’exact’ energy. The many-body problem of interacting electrons and nuclei is mapped to a

series of one-electron Schrödinger-like (so called Kohn-Sham) [7] partial differential equations,

that lead to the same density as the real system.

[−1
2

∇2
i +Vi]Φi = EiΦi. (1.12)

Introduction 8

ρ(r) =
N

∑
i

|φi|2 (1.13)

While their theorems show, that it is possible to use the ground state density to calculate

properties of the system, there is no way provided to find the ground state density, because

the approach actually does not solve the equation, it only shifts the so far insoluble parts to Exc,

whereas all the other expressions can be calculated very accurately. Finally Exc is obtained

from different approximation techniques (e.g. LDA). The interested reader is referred to the

literature [8, 9]. The partial differential equations 1.12 correspond to an eigenvalue problem

with the eigenfunctions Φi and the eigenvalues Ei, which can only be solved iteratively, since

the potential requires the knowledge of the density, but the density is computed from the

sum Φ∗
i Φi over all occupied electronic states i, which need the potential for obtaining the

corresponding one-electron Kohn-Sham orbitals Φi. The procedure is already known from

Hartree-Fock and is illustrated in Fig.1.1. The electronic, magnetic, mechanical or optical

Figure 1.1: The iterative SCF-scheme

properties of many systems (molecules and solids) can all be studied with DFT.

1.1.2 Material Science applications

Simulations in material science can be characterised by the following three types, ’ab initio’,

’semi-empirical’ and ’molecular mechanics’ calculations.

• ab initio: Latin for “from scratch” stands for “first principles” methods. Molecular or

solid structures can be calculated based on quantum mechanics using nothing but the

Schrödinger equation, the values of the fundamental constants and the atomic numbers

of the constituent atoms. The described methods of DFT and HF belong to this category.

Introduction 9

• semi-empirical: Such techniques simplify the calculations by the use of approximations

(e.g. for integrals, which rely on empirical data) to adjust results to experimental values.

• molecular mechanics: Uses classical physics and empirical or semi-empirical (pre-

determined) force fields (based on balls and springs) to explain and interpret the be-

haviour of atoms and molecules. No information on the electronic structure can be ob-

tained from such a classical treatment. However it can model the atomic structure of

very large size.

Popular applications besides WIEN2k and MCTDHF, which are discussed in the following sec-

tions, are among many others Gaussian, ABINIT , GROMACS, SIESTA, AMBER or VASP.

1.1.3 WIEN2k

WIEN2k is a material science application, which uses Density Functional Theory [8] to calcu-

late the electronic structure of a given solid [9, 10]. It was developed in the group during the

last 25 years.

1.1.3.1 Scientific background

WIEN2k calculates the electronic structure of crystalline solids, which are based on a certain

basic structural unit infinitely repeated in all three dimensions. This reduces the problem with

infinite boundaries to a calculation of a ’small’ or at least finite number of atoms within the

unit cell. It is assumed, that the material can be described as an ideal single-crystal having

a well defined stoichiometry and a fixed translational symmetry, which allows the calculation

to be done in reciprocal space, whose base-vectors are orthogonal to the base-vectors in real

space. The reciprocal lattice basis-vectors span a vector-space that is commonly referred

to as reciprocal space, or often in the context of quantum mechanics, k-space. One of the

points in the reciprocal lattice is then designated to be the origin. The unit cell in reciprocal

space is obtained by drawing lines from this origin to all nearby (closest) lattice points. At the

midpoint of each line between the lattice points a perpendicular plane is drawn. The resulting

cell is called the first Brillouin-zone. As a result of the Bloch theorem, the general solution

of the wavefunctions are Bloch functions that can be expressed by plane-waves (sinusoidal

functions). What distinguishes the linearised augmented plane wave (LAPW) method from

others is the choice of the basis set. The LAPW basis is constructed to be particularly accurate

and efficient for the solution of the all-electron ab initio electronic structure problem, where

solutions are rapidly varying and atomic-like (like isolated-atom solutions) near the nuclei but

are smoothly varying throughout the rest of the cell. Close to the nucleus, the oscillations

of the wavefunctions are significantly more vigorous than in the distance. To describe these

Introduction 10

oscillations properly, a large number of plane-waves would be needed, hence the idea of

LAPW is to reduce the number of basis functions by separating the unit cell of a crystal into

two types of regions: The atomic spheres and the so-called interstitial region. The radius of the

spheres is called the muffin-tin radius, which should be chosen as big as possible as long as

the radii of different atoms do not overlap. The LAPW basis functions are then constructed by

connecting plane-waves in the interstitial region to linear combinations of atomic-like functions

inside the spheres. This ansatz leads to a linear-eigenvalue problem, which is solved iteratively

by the SCF-method described earlier.

1.1.3.2 Important features and some computable quantities

WIEN2k allows to calculate the total energy and the electron-density of a crystal, which may

be used to compute many quantities, represented by a few examples:

• Total Energy (ENE): Allows to calculate the relative phase stability and the equilibrium

lattice constants.

• Density-of-states (DOS): is a property that quantifies how closely packed energy levels

are in some physical system and gives the number of states per unit volume in an energy

interval.

• Electric Field Gradient (EFG): is an important structural property of a crystalline solid,

which is defined at the nuclear site. The EFG is non-zero only if the charge surrounding

the nucleus deviates from spherical symmetry and thus generates an inhomogeneous

electric field at the position of the nucleus. It can be measured by nuclear quadrupole

interactions using NMR or NQR.

• Bandstructure: describes energy bands of electrons. The band structure determines

a material’s electronic, optical, and a variety of other properties.

By calculating the forces (FOR) acting on each atom, a geometry optimisation is possible by

moving the atoms according to the force-vectors to reach equilibrium, where all forces should

vanish.

1.1.3.3 Workflows

WIEN2k consists of a set of independent Fortran programs8 that are linked by C-Shell scripts9,

which directly represent the workflow of an SCF-calculation. Apart from the most frequently

8e.g. LAPW0, LAPW1, LAPW2, LCORE and MIXER
9Such an implementation is quite common in science [11] due to its flexibility

Introduction 11

used example illustrated in Fig.1.2, half a dozen other workflows (e.g. runsp_lapw, runafm_lapw,

runfsm_lapw) are available, which basically represent modifications or extensions of the one

presented. The SCF cycle, however, remains the elemental principle. The left-hand side of

Figure 1.2: Sample workflow of a self-consistent-field cycle (SCF) of WIEN2k

Fig.1.2 represents a single mode run. Different executables are invoked sequentially, and

the output of one process is usually the input of the next one. The computation time for the

whole SCF calculation can range from a few seconds to several hours depending on the input.

The average fraction of computation time for individual executables is given right to the boxes

(*). In order to speed up the calculation, the most time-consuming processes (e.g. LAPW1,

LAPW2) may be split into independent tasks (chunks) and run in parallel (right-hand side), if

the number of k-points permits it. Otherwise the task has to be MPI-parallelised. For details

see [12]. The SCF-cycle is the basic element of all kinds of tasks a scientist may perform by

using WIEN2k, hence itself can be an element in larger workflows like phonon calculations or

structure optimisations (Fig.1.3).

Introduction 12

Figure 1.3: Example of two workflows, which are built on top of the SCF-cycle (phonon calculation
and structure optimisation)

1.1.3.4 Definition of a WIEN2k-CASE

A specific calculation is referred to as a ’CASE’ (e.g. ’graphite’). It is usually characterised

by the crystal structure and special settings defined in various input files for the particular

calculation. In the naming convention of WIEN2k, this CASE-name is used for the directory

name, which contains all data. Additionally all important input- and output files are named

after the CASE, only the file extension will define their content and purpose (e.g. the file

’CASE.struct’ contains the lattice, the atomic positions and the crystal symmetry) . A sample

user@localhost:/home/user/lapw/NaF> ll NaF.*
32 -rw-rw-r-- 31569 2006-10-31 03:53 NaF.clmcor

216 -rw-rw-r-- 213880 2006-10-31 03:53 NaF.clmsum
200 -rw-rw-r-- 197938 2006-10-31 03:53 NaF.clmval
4 -rw-rw-r-- 666 2006-10-31 03:53 NaF.dayfile
16 -rw-rw-r-- 12611 2006-10-31 03:53 NaF.energy
4 -rw-rw-r-- 70 2006-10-29 19:26 NaF.in0
4 -rw-rw-r-- 503 2006-10-29 19:26 NaF.in1
4 -rw-rw-r-- 291 2006-10-29 19:26 NaF.in2
4 -rw-rw-r-- 189 2006-10-29 19:26 NaF.inc
4 -rw-rw-r-- 170 2006-10-29 19:26 NaF.inm
4 -rw-rw-r-- 161 2006-10-29 19:26 NaF.inst
8 -rw-rw-r-- 5196 2006-10-29 19:26 NaF.kgen
4 -rw-rw-r-- 765 2006-10-29 19:26 NaF.klist
32 -rw-rw-r-- 28900 2006-10-31 03:53 NaF.scf
20 -rw-r--r-- 16701 2006-10-29 19:26 NaF.struct

168 -rw-rw-r-- 166610 2006-10-31 03:51 NaF.vns
32 -rw-rw-r-- 31473 2006-10-31 03:51 NaF.vsp

Figure 1.4: A sample directory listing of a the CASE ’NaF’ (truncated)

directory listing of a few CASE-files is shown in Fig.1.4, in which the name ’NaF’ (sodium

fluoride) is used for the files as well as for the name of the directory.

Introduction 13

1.1.4 MCTDHF

The motion of several electrons in the presence of a strong field is a complex wave-packet

problem that can only be treated by numerical methods. Straight-forward discretisations of

the time-dependent Schroedinger equation lead to huge numerical systems already in the

case of only two electrons, which is troublesome since even the simplest system investigated

in attosecond physics (core-hole formation and Auger decay) involves the motion of three

electrons. For such systems, the group of A. Scrinzi [13] pioneered the development of the

Multi-Configuration Time-Dependent Hartree-Fock (MCTDHF) method [14, 15], which allowed

for the first time three-dimensional ab initio calculations of molecules in strong laser pulses.

It takes an intermediate position between a full solution of the time-dependent Schrödinger

equation and the time-dependent Density Functional Theory.

1.1.4.1 Scientific background

In Hartree-Fock methods the full N-electron wavefunction ψq1,q2, . . . ,qN is approximated in

terms of products of single-electron orbitals φi, expressed as a single Slater determinant (or

“configuration”) to account for the antisymmetry of the many-electron wavefunction ψ. The

multiconfigurational Hartree-Fock ansatz consists of a linear combination of all Slater deter-

minants that can be formed from N linearly independent orbitals. Its time-dependent version

is particularly powerful for calculating the interaction of few-electron systems: By allowing the

factor functions φ(x; t) to adjust with time, the wavefunction is expanded only on those parts of

the space where it has significant amplitude.

1.1.4.2 Computational basics

The effort for the calculations grows as N4. The code is MPI-parallelised [16] and shows nearly

linear scaling of the runtime, which is in the range of hours on a parallel computer. A typical

calculation consumes roughly 500 MB of memory.

1.2 Distributed Computing

1.2.1 Challenges for Scientific HPC applications

The computational effort for the simulation of material properties depends on the applied

method and the problem size. While scientists are constantly improving their algorithms, the

rising demands on the precision of the obtained results and the increased complexity of inter-

esting modern materials, require extensive computing resources. We all know and accept the

Introduction 14

fact that experiments are often costly but we rarely realise, that computational studies can be

expensive too. It is not only the expenses for the hardware but also the costs of operation, pre-

dominantly the power consumption of the processors on the one hand and the same amount

of energy required for cooling. Consequently computational material science is an expensive

scientific discipline, although its costs may be calculated differently.

The hardware, which is available for scientific computing today is different to the one, which

has been in use less than a decade ago, since the large multi-processor supercomputing

systems at the local university [17] have been replaced by clusters and arrays of idle desk-

top computers to be the dominant resources for researchers. The change is due to a matter

of cost rather than technology [18]. Propelled by Moore’s law [19] the increasing power of

commodity PC’s allow to build highly scalable clusters [20], which yield the same computing

power at significantly lower cost than a multi-processor shared memory machine. As a con-

sequence, application developers had to change their programming paradigms and focus on

effective means of parallelisation and load distribution. This task is becoming even more chal-

lenging, since the number of nodes and CPUs on a cluster and even the number of cores per

CPU are rising. To support the implementation of parallel tasks, application designers can

rely on powerful libraries and toolkits such as the message-passing interface ’MPI’ [21] (or the

parallel-virtual-machine ’PVM’ [22]). On the other hand present-days hardware is far more

short-lived [23] than a decade ago. Commodity clusters are expected to yield an acceptable

performance/cost ratio not longer than 3-6 years until they have to be replaced, hence the

application must be flexible and portable and as hardware-independent as possible, otherwise

it will require significant adaptations every couple of years.

1.2.2 Challenges for the Scientist

The inevitable impact on the researcher, who uses such a (parallel) application in a distributed

environment, is a significantly increased effort. The control of an array of PC’s in a commodity

cluster is usually dedicated to a cluster management software [24] like e.g. PBS [25] or the

Sun-Grid-Engine [26], which on the one hand simplifies the administration and the sharing of

the hardware in a multi-user environment, but on the other hand uses its very unique syntax

to negotiate computing resources. In most cases different clusters will be equipped with a

different type or version of such a cluster management software10, demanding quite some ex-

pertise from the user.

Furthermore parallelism was not the only hardware-driven change the scientific community

had to face in the recent past. The Internet, which could in its infancy only provide minor data

transfer rates, barely sufficient for interactive terminal-access to remote sites, was pushed

10also known as ’queuing system’

Introduction 15

forward by quickly expanding capacities and bandwidths. At present it is capable to transfer

huge amounts of data in reasonable time [27] and thus to crosslink all available resources,

whose sizes may range from small few-CPU clusters to large arrays of thousands of individ-

ual nodes, such that computing power can be harnessed remotely. As a consequence only

a few groups operate and fully exploit powerful computer systems on their own and instead

share resources, because it is cheaper to access high computing power on demand without

having to own the respective resources. The drawback of this sharing, however, is a mostly

heterogeneous mixture of architectures, which have in common some Unix/Linux type operat-

ing system [28] but are completely different in terms of their operating and queuing systems.

In contrast to the submission of tasks to single cluster sites, which are supported by a cluster

management software, it is still an ongoing issue to provide suitable solutions to simplify the

use of scientific applications across different domains and sites.

1.2.3 Origin and Evolution of the Grid

The more resources become part of a pool of computing facilities, the more complex and

time-consuming becomes its administration for the user. Time, which a scientist is usually not

willing to spend. To alleviate the use of distributed resources, it is highly desirable to design

applications in such a way, that the user does not have to care where and how the calcu-

lations are performed. A concept pointing in this direction has already been anticipated in

the seventies, at a time, when the very basic protocols for the Internet have been developed.

Leonard Kleinrock [29] vaguely predicted in 1969 the evolution of a large infrastructure, which

is capable of providing computing power in the same convenient way as the electric power-

grid delivers electricity. The idea of a highly transparent and abstract network of computers is

still a vision, yet the use of distributed resources has already evolved from a simple manual

interaction by the researcher to a framework of protocols, automated mechanisms and aggre-

gates of tools, which can be integrated by application developers to run tasks across large

resource pools. This concept of harnessing and sharing distributed compute power was first

termed ’meta-computing’ in 1992 by Catlett et. al. [30]. Similar to the electric power-grid, these

new meta-computing infrastructures shall provide access to pervasive collections of compute-

related resources and services [31], which finally coined the term ’Grid Computing’ in 1999 by

Foster et. al. [32]. Today in general it may be defined as “distributed computing performed

transparently across multiple administrative domains, referring to any activity involved in the

processing of digital information” [33].

At the departmental level grids are built from workstations or commodity clusters which would

otherwise be infrequently used but can be harnessed to obviate the need to purchase mid-

range servers [18]. At the national level they may be built by collaborating computing centres

Introduction 16

or university research groups [34, 35, 36]. Activities at the international level involve govern-

ment laboratories and large national centres [37, 38]. ’Grid Computing’ is understood as an

advanced form of distributed computing and provides a large array of tools in order to use

physically remote computing sites in the same way as local resources. In most approaches,

the scientific part is separated from the computational one implying a certain layer in between

the hardware and the application, which became known as the ’middleware’ [31, 39, 40, 41].

Unfortunately the different understandings of the purpose [42] of such a middleware, its capa-

bilities and complexity lead to the development of numerous different products [43], which are

briefly reviewed in section 1.2.4. A literature-based definition of ’Grid Computing’ is given in

the appendix on page 162).

1.2.3.1 A scientists view on Distributed Computing

These many different and sometimes also contradictory definitions of a Grid are irrelevant to

the scientist, since his perspective on computational Grids is usually quite simple [28] and

driven by necessity. Hence, all usable11 hardware shall be cross-linked with fairly simple tools

, that can be applied by the scientist himself without special expertise on Grid-computing. Sim-

plicity [44] and necessity [28] govern, that these tools do not have to provide all of the cited

features [45], but only the most basic features to run applications on the many different com-

puting resources, while most of the involved administrative tasks are done automatically in the

background. One feature, which can mostly be omitted is the support for parallel calculations

across many remote sites [46]. Given the definitions in literature, it is ’distributing computing’,

what many applications really need. Therefore the capabilities provided by the projects cited in

the following section would be of little relevance for most material science applications, since

only a small fraction of their features can be used.

1.2.4 Major Grid-projects

Certain projects are spear heading the Grid-community by size and reputation. Their work has

already had a significant impact on e-science [47], and therefore they are briefly introduced

and described in the following sections.

1.2.4.1 GLOBUS

The GLOBUS project [48] is developing a basic software infrastructure for computations that

integrate geographically distributed hardware and information resources. GLOBUS is a joint
11“Usable” does not include handheld devices, sensors or other electronic devices, whose main purpose is

different to providing computing capacity. Hardware for data management exceeding the scope of a simple file-
server is also not affected.

Introduction 17

project of Argonne National Laboratory and the University of Southern California’s Information

Sciences Institute. The research project developed a software toolkit addressing key technical

problems in the development of Grid infrastructures, services, and applications and provides

technologies in a modular fashion being available under a liberal open source license. The

Figure 1.5: GLOBUS layers(Figure taken from [49])

layered architecture of GLOBUS is illustrated in Fig.1.5. Application developers are supposed

to integrate high-level services into their software12, which use the core-services to attach to a

local architecture. One of its core components is the Grid Security Infrastructure [50] (GSI) for

authentication and related security services. It provides public key based single-sign-on. GSI

supports proxy credentials, interoperability with local security mechanisms, local control over

access, and delegation. A wide range of GSI-based applications has been developed, ranging

from SSH and FTP to MPI and other Grid-middleware [18]. The GSI is the most widespread

component of the GLOBUS toolkit. Another essential component is the Grid Resource Al-

location Management (GRAM), which allows programs to be started on remote resources.

The Resource Specification Language (RSL) is used to describe the requirements of the ap-

plication [51, 52]. The process of running applications in a GLOBUS environment and the

interplay of its components and protocols is illustrated in Fig.1.6. Each component may be

used independently or in connection with the other services. Applications need to include the

corresponding component-libraries, which are provided among other languages in C, Fortran

and Java. The installation however requires root-permissions. At present, the GLOBUS toolkit

is available as version 4 [54], although the previous versions are still maintained and used by

application developers [55].
12libraries and tools are provided as a Software Development Kit (SDK) in source code and binary form.

Introduction 18

Figure 1.6: GLOBUS components (Figure taken from [53])

1.2.4.2 CONDOR

CONDOR is a specialised workload management system for compute-intensive jobs. The goal

of the project is to develop, implement and deploy mechanisms that support high-throughput

computing on large collections of computing resources with distributed ownership [18]. Like

other full-featured batch systems, CONDOR provides a job queuing mechanism, scheduling

policy, priority scheme, resource monitoring, and resource management. Users submit their

serial or parallel jobs to CONDOR, which places the jobs into a queue, chooses when and

where to run them based upon a policy. It carefully monitors their progress and informs the

user upon completion [56]. CONDOR can be used to manage a cluster of dedicated compute

nodes (such as a "Beowulf"cluster [57]). In addition, unique mechanisms enable CONDOR to

effectively harness wasted CPU power from otherwise idle desktop workstations. For instance,

it can be configured to only use desktop machines where the keyboard and mouse are idle.

Should CONDOR detect that a machine is no longer available (such as a key press detected),

in many circumstances it is able to produce a checkpoint and migrate the job to a different

machine. CONDOR does not require a shared filesystem across machines, it can transfer

the job’s data files on behalf of the user, or it may be able to transparently redirect all the I/O

requests of a job back to the submit-machine. As a result, CONDOR can be used to seam-

lessly combine all of an organisation’s computational power into one resource [56] (CONDOR

pool). Several run-time mechanisms are provided in the CONDOR model to facilitate different

load sharing strategies. The purpose is to harness CPU cycles from idle workstations [58, 59].

However, several essential components require root-permissions.

Introduction 19

Figure 1.7: CONDOR Layers (Figure taken from [56])

1.2.4.3 UNICORE

The name stems from Uniform access to Computing Resources and is funded by the German

ministry for science and education, starting in August 1997, as a prototype for sharing access

to facilities at German supercomputing centres intended as a "ready to use"alternative for the

GLOBUS toolkit [18]. The aim is to provide seamless, secure and intuitive batch access for

diverse computing resources [60, 61]. The architecture consists of three layers, namely user,

Figure 1.8: UNICORE layers (Figure taken from [62])

server, and target system. The user is represented by the UNICORE Client, a Graphical User

Interface (GUI) that exploits all services offered by the underlying server layer. Abstract Job

Objects (AJO), the implementation of UNICORE’s job model concept, are used to commu-

nicate with the server layer. An AJO contains platform and site independent descriptions of

computational and data related tasks, resource information, and workflow specifications. The

Introduction 20

Figure 1.9: UNICORE architecture (Figure taken from [62])

sending and receiving of AJOs and attached files within UNICORE is managed by the UNI-

CORE Protocol Layer (UPL) that is placed on top of the Secure Socket Layer (SSL) protocol.

The user of an UNICORE Grid does not need to know how these protocols are implemented,

as the UNICORE Client assists the user in creating complex, interdependent jobs. For more

experienced users a Command Line Interface (CLI) is also available. Both, the UNICORE

Client and CLI, provide the functionalities to create and monitor jobs that can be executed on

any UNICORE site (Usite) without requiring any modifications, including data management

functions like import, export, or transfer of files from one target system to another. In addition,

a plugin technology allows the creation of application-specific interfaces inside the UNICORE

Client [63]. The middleware includes a web-based Java GUI for batch submission, which

facilitates the distribution of tasks to the most suitable platform and site. Information about

resources is provided. Use is made of existing technology with access to distributed data. The

three-layer approach comprises a browser running on the user’s workstation that communi-

cates with a UNICORE gateway running at any of the collaborating sites. This contains an

authentication procedure (using X.509 certificates) and site-specific authentication and login

authorisation. Finally a resource management layer will submit the job to the local system

or initiate further authentication for submission to a remote site. Early users included Debis

and INPRO who carry out modelling work for the German automobile industry. Certain com-

ponents must be installed as root, but for the majority of components user-permissions are

sufficient. Many of its features are built on GLOBUS components [64].

Introduction 21

1.2.4.4 NETSOLVE/GRIDSOLVE

It is an RPC based client/agent/server system that allows one to remotely access both hard-

ware and software components to harness loosely coupled systems on a network [18]. The

purpose of GRIDSOLVE is to create the middleware necessary to provide a seamless bridge

between the simple, standard programming interfaces and desktop Scientific Computing En-

vironments (SCEs) that dominate the work of computational scientists [65] and the rich supply

of services supported by the emerging Grid architecture, so that the users of the former can

easily access and harness the benefits (shared processing, storage, software, data resources,

etc.) of using the latter [66]. NETSOLVE is intended to provide transparent access to a whole

variety of software libraries, highly tuned for the target architecture. This improves maintain-

ability of software and avoids the end user having to download and compile it. NETSOLVE is

implemented as a three-tiered system [18]:

1. The client may be a C or Fortran program linked to the NETSOLVE library, Mathematica

sessions, or Java applets calling the NETSOLVE library. If the client needs resources

to solve a computationally demanding problem, this request is sent to the agent, which

performs a match-making and selects a proper resource from the pool of servers.

2. Agents are C programs running as daemons and act as resource brokers.

3. Servers are registered with agents and can perform certain services (e.g. have par-

ticular applications installed). They are supposed to provide an optimal computation

environment for their particular architectures. A server processes the task and returns

the results to the client.

If the client needs resources to solve a computationally demanding problem, this request is

sent to the agent, which performs a match-making and selects a proper resource from the

pool of servers. The server finally processes the task and returns the results to the client.

At the API level NETSOLVE looks like a high-level library with a single function call (’netsolve’).

Character strings are introduced to specify the required action. A non-blocking version is

also available, but the user has to take care of resource usage and determinism [67, 68].

NETSOLVE searches for computational resources on a network, chooses the best one avail-

able, solves a problem (e.g. matrix-multiplication), and returns the results to the user. A load-

balancing policy is used by the NETSOLVE system to ensure good performance by enabling

the system to use the computational resources available as efficiently as possible. The frame-

work is based on the premise that distributed computations involve resources, processes,

data, and users, and that secure yet flexible mechanisms for cooperation and communication

between these entities is the key to meta-computing infrastructures. Interfaces in Fortran, C,

Introduction 22

Figure 1.10: NETSOLVE architecture (Data for the figure taken from [66])

Matlab, Mathematica, and Octave have been designed and implemented which enable

users to access and use NETSOLVE more easily, it currently has an interface to ScaLAPACK

and related components [66]. NETSOLVE uses CONDOR for its distributed computing man-

agement.

1.3 Difficulties with existing middleware

The majority of the existing toolkits and middleware projects have certain peculiar handicaps,

which limit their applicability for scientific programs. Especially small workgroups and single

researchers can only poorly benefit from the offered solutions due to an excessive overhead

for the implementation and the installation on the computing sites. Such and other problems

have been identified by numerous authors [28, 45, 69] and shall be summarised below.

• The existing toolkits have an excessively heavy set of software and administrative re-

quirements, even for relatively simple demands from applications.

• Currently propagated ’general’ solutions require that someone dedicates a lot of time to

the implementation.

• They are mostly painful and difficult to install and maintain, due to excessive reliance on

custom-patched libraries, poor package management, and severe lack of documentation

for end users.

• Middleware developers only poorly cooperate with application developers and therefore

run a substantial risk of producing and implementing Grid architectures which are irrele-

vant to the requirements of application scientists.

Introduction 23

• The development of protocols and standards are driven by a few large scaled commu-

nities [38], which will only poorly accommodate the present hardware situation of small

research groups.

• Frequent changes of paradigms, protocols and interfaces as well as very short compati-

bility periods make it difficult for application designers to implement their software for use

with a certain toolkit, since this is a major effort and a strategic decision for many years.

As a consequence, there is a significant lack of real Grid-applications [70], because sci-

entists rather stick with the technology they know and from which they can expect to

have an adequate life cycle.

• The offered solutions do not consider the typical hardware situation of scientific work-

groups, which is a mixture of accounts at Computing centres, some own clusters, several

Desktops and numerous ’borrowed’ resources [28]. Very different among all the individ-

ual items is the security policy, the policy of administration and the level of permission.

The personal resource pool of a researcher spans several sites with different tools and maybe

certain Grid-infrastructures provided, but it is highly improbable that all different administrative

domains offer the same - if any - middleware. Unfortunately the powerful, yet heavy-weight

common Grid-middleware requires permissions a user mostly is not granted, especially on

the most powerful clusters. It is therefore impossible, that he may install any of the Grid

infrastructures listed in section 1.2.4 by his own means. As a consequence he either has to

abandon several resources and limit himself to the few matching architectures, or employ a

different middleware, which has fewer requirements.

1.3.1 Implementation paradigms

Heavy-weight infrastructures do not only limited the use of computing sites. Their disadvan-

tage also becomes evident in the case of application design, since there are two different

methods to make an application run on distributed resources.

• The necessary functionality to access the Grid-resources are ’embedded’ into the pro-

gram by libraries (C, Java, Fortran, etc.). This invasive approach requires mostly vast

changes to already existing applications. Porting the application is difficult, due to the

numerous libraries, which are required in advance. Hence the result is prone to compat-

ibility problems. The undeniable advantage, however, is an optimal performance.

• The non-invasive approach only wraps an application (mostly) by the aid of scripts in any

high-level language and ’attaches’ Grid-capabilities. The scripts bridge the gap between

the application and the Grid and require a proper set of interfaces (files, commands) for

Introduction 24

steering. The application will remain almost unchanged, but it cannot beat the invasive

method in terms of performance. The implementation is usually accompanied with less

effort and offers a better portability.

Numerous scientific applications are already in use since many years and have originally been

designed to run locally, maybe in parallel but not in a distributed environment. An invasive

approach will usually require to redesign the applications, which is an effort only few devel-

opers are willing to take, especially if the application performs quite well on local resources,

therefore the most favourable approach is the non-invasive one, since it will leave the original

code mostly untouched.

1.3.2 ’Lightweight middleware’ as a solution

The numerous problems arising from the use of such powerful toolkits inspired a plea [45] for

lightweight middleware [28, 71, 72]. The common objective is to abandon several features,

which may only be interesting for certain global-scale [38]13 but not for small-scale projects,

in favour of a simplified installation and an easy implementation. It is desirable for lightweight

solutions to maintain a reasonable relationship between the effort of implementation and the

yielded benefits, hence there are a few important requirements:

• The middleware should be easy to install without root-permission to machines.

• It must be substantially more portable, lightweight and modular in design as well as being

extensible with little effort.

• It should provide sufficient safety to convince system administrators to install and use

the middleware on their site.

• The installation of additional software/libraries/modules should be avoided. The infras-

tructure shall make use of tools, which can be expected to be available on every common

Unix/Linux based system.

• The existing scientific application should not be changed in any way, but instead only

wrapped by proper scripts in a non-invasive way.

The concept of lightweight approaches found approval by many scientists and developers and

is already applied to several products [69, 73, 74, 75, 76, 77, 78].

13like the ’LHC computing grid’, which runs a complex and time-consuming task in parallel on many thousands
of different nodes at the same time and accesses Terabytes of data from many physically remote databases [69].

Introduction 25

1.4 W2GRID

The development of W2GRID should based on the demands for a lightweight middleware and

hence the installation of all parts - server-side and client-side - must be possible exclusively

with user-permissions and should be manageable with little effort by the user without spe-

cial expertise. Additionally the whole middleware must be a standalone product, that is in-

dependent of any third-party software (libraries and applications) and only relies on the tools

and programming languages, which can be expected on any common Unix/Linux platform

(“standalone principle”). It should be allowed, that each user may create his “personal Grid”

(Fig.1.11) by linking all the various computing resources he has access to, while at the same

time this Grid may overlap with the “personal Grid” of other users, who have a different re-

source pool. Therefore it should also be possible, that individual user-installations of W2GRID

run independently on the same host. Implementing applications with W2GRID must be possi-

Figure 1.11: A user’s personal Grid as provided by W2GRID

ble in a non-invasive way with the aid of scripts, which just wrap the application thus avoiding

to change the source code. These scripts must be portable, such that both, the user and the

developer do not need to hard code any platform or job-submission specific commands into

the scripts. In order to simplify the interaction of the application with the infrastructure, it should

be possible to completely separate the job-submission from the application, such that it is suf-

ficient to specify once (during installation) how the job-submission works in general on a given

host. Then all application specific scripts can simply use these definitions, without having to

contain any hard coded host-specific commands. None of the other lightweight projects (see

section 1.4.3), could fulfil all the demanded properties, though some approaches and solutions

come close but lack the desired independence from any kind of third party software, which is

demanded for WIEN2k and material science applications as a whole.

Introduction 26

1.4.1 Design philosophy

W2GRID should be implemented as a client/server infrastructure and should make use of

remote-procedure-calls (RPC) [79, 80], which have been found to be powerful abstractions

for distributed computing [81, 82, 83]. This approach is particularly useful since it provides an

intuitive programming interface, allowing users to easily make applications Grid-enabled [84]

by the aid of ’commands’, which may be used in a similar fashion as local ones. For portability

the code of W2GRID has to be separated into two parts:

• A fully portable core, which does neither contain hard coded routines for individual plat-

forms, methods of job-submission, file- and data transfer nor application-specific com-

mands.

• An array of plugins, which contain the specific capabilites for the listed purposes. The

plugins can be included into the code on demand and are independent from each other.

All capabilities provided by these special kind of libraries are used (in an abstract way)

by other plugins and the elements of the core.

The application-specific scripts must come as plugins too (referred to as “application plugins”).

The advantage of this modular approach is, that all kinds of plugins, once they are developed,

can be shared and used without further adaptations. As a result of this concept W2GRID does

not need to integrate any third-party Grid-components such as the GSI [50] of the GLOBUS

toolkit (section 1.2.4.1), but it may interoperate with other middleware and their tools by means

of a proper plugin.

1.4.2 Desired benefits for WIEN2k

Licenses for WIEN2k have already been sold over a thousand times worldwide to workgroups

and companies, which use their specialised hardware configuration and maybe their very own

Grid-middleware. The W2GRID-implementation must remain an optional feature, which can

be attached to the existing application, but WIEN2k must remain operable without W2GRID.

The workflows coded into the application plugin must help the user to handle the complex

filetransfer of the numerous input- and output files involved in a calculation. Additionally it

should support the non-trivial creation and control of coarse grained parallel processes, which

require a monitoring and automated steering for performance optimisation. As a whole, the

plugin must help to improve the usability of WIEN2k.

Introduction 27

1.4.3 Related work

Some of the related projects have been developed at the same time as W2GRID, and are

described because of the similar approach in terms of simplicity. What all the projects have in

common is that they can be installed with user-permissions and provide the applications and

additional functions by means of web-services.

1.4.3.1 Web-Service based Environment for Distributed Computing (WEDS)

WEDS is a hosting environment for distributed simulations within a single administrative do-

main. It is designed to let scientists remotely deploy single or multiple instances of a pre-

Figure 1.12: WEDS architecture (Figure taken from [74])

existing code across multiple resources and give steering, visualisation and workflow function-

ality with only simple modifications to the program code. WEDS [85] is built on a lightweight

Perl-based WSRF compliant web services container (WSRF::Lite), developed at the Univer-

sity of Manchester. WEDS is written in Perl and is easy to install by ordinary users, requiring

little effort on behalf of the system administrator. Only standard libraries (Perl, SOAP etc)

are required for a successful implementation and can be installed in a user specified direc-

tory. WEDS requires at least two ports. It was developed and produced by scientists, and

intended to be used for simulation launching, interaction and visualisation. WEDS is suitable

for low-complexity Grids, for which a single broker machine can manage all registration and

job-submission tasks [74].

Introduction 28

1.4.3.2 Vienna Grid Environment (VGE)

VGE is a prototype framework for Grid-enabling HPC applications, which can be exposed as

generic application services and securely accessed by multiple remote clients over the Internet

within a service-oriented environment. VGE has been realised based on state-of-the-art Grid

and Web Services technologies, Java and XML [86]. As a key feature, VGE supports a flexible

QoS14 negotiation model, which guarantees on execution time and price with potential service

providers. The VGE service provision framework is currently utilised in the context of the EU

Project GEMSS, which focuses on the provision of advanced medical simulation services by

means of a Grid infrastructure [78]. The VGE is composed of a Grid Service Environment

(VGSE) and a Grid Client Environment (VGCE) (see Fig.1.13).

Figure 1.13: VGE architecture (Figure taken from [86])

• VGSE is an application framework intended to be used by service providers in order to

ease the process of transforming native applications into Grid Services. It is available for

Solaris 9, Windows 2000,XP,NT and Linux.

• VGCE is a client-side framework and API for the development of user interfaces for Grid-

enabled applications. VGCE supports the selection of and interaction with Grid services

from a client-side application component or a user interface.

1.4.3.3 Application Hosting Environment (AHE)

The AHE [77] is designed to provide the simplest possible service interface to a client for

submitting jobs to highly complex grids. The AHE, similarly to WEDS, is a lightweight web

service hosting environment but is able to operate over multiple administrative domains. The

AHE stores all necessary informations about how an application should be run on the various

computational resources of a Grid and provides uniform interface to the client for running that

application across those resources. The AHE can interact with the GLOBUS toolkit and CON-

DOR. Its design assumes that the client is behind a firewall allowing only outgoing connections.

All the AHE requires from the client is to support HTTP HTTPS and SOAP. The lightweight

client could be accessed by the user via a PC, a PDA or even by mobile phone. It provides

14Quality-of-Service

Introduction 29

a higher level abstraction of a Grid than is offered by existing grid middleware schemes such

as the GLOBUS toolkit. As a result the computational scientist does not need to know the

details of any particular underlying Grid middleware and is isolated from any changes to it on

the distributed resources. The functionality provided by the AHE is ‘application-centric’: appli-

cations are exposed as web services with a well-defined standards-compliant interface. This

allows the computational scientist to start and manage application instances on a Grid in a

transparent manner, thus greatly simplifying the user experience [74].

1.4.3.4 Styx Grid Services (SGS)

SGS is based on web-services and focuses on commandline programs, which are wrapped

and may be used exactly as if they were installed locally. Workflows may be created on the

basis of shell-scripts by simply invoking remote services from a general-purpose commandline.

Each service will establish a persistent connection until the task is completed. The software is

lightweight and quick to install15. There are only few demands on firewalls, only one incoming

port to the server is required and no incoming ports to the client machines. The key idea of

SGS is, that all resources are represented as files, hence it is a kind of file sharing protocol

and therefore every service can be represented by its URL. Programs are wrapped by an

XML description, specifying the commandline parameters and input files as well as the output

files. Remote programs are started from a general-purpose commandline client, which fetches

the XML description from the server, parses the data and the arguments to the commandline

interface, uploads the input and starts the remote program. The SGS-protocol does not require

any particular security mechanism [76].

1.4.3.5 Other Concepts

Myers et.al. developed a client/server model, which employs simple worker-clients on remote

resources and a more complex server at the local site, according to the idea, that at the

local site root permissions will be granted, hence the processes running there can be allowed

to be more complex, whereas the single clients are sufficiently served with any Unix/Linux

architecture, Perl and some standard tools [28]. GRIDBENCH [87] uses a plugin-concept for

interoperability with Grid middleware in order to perform benchmarks. Application plugins can

also be found in NETSOLVE [66].

15less than 5 MB

Chapter 2

Implementation and Concepts of

W2GRID

2.1 Programming languages

Every programming language can be characterised by its specific features, advantages and

disadvantages. In general there exists a simple relationship: The more powerful, the more

complex is the development of code. Hence this may lead to an unwanted overhead if the

resulting program shall only serve a simple purpose (i.e. an installation routine). A software

like W2GRID, which consists of many independent components with different purposes and

demands should therefore not be written by the use of only a single programming language.

In contrast it will profit from combining the best facets of a few different ones, to satisfy the

three predominant purposes, which are listed below.

• Data manipulation: time-critical read/write operations from and to files. The respec-

tive programs should have minimal memory consumption and provide an optimal perfor-

mance.

• Network components (i.e. daemons): as can be seen in Fig.2.1, W2GRID will need

some highly flexible network components which should not require an excessive effort

for development and debugging. These daemons in general perform complex tasks and

will consist of dynamic code, which may change very often. The performance - although

important - is less critical than the stability (robustness of the infrastructure). Regular

expression handling will be needed to extract data from the output of numerous tools.

• Installation: will consist of standard Unix/Linux commands embedded into simple syn-

tactical elements such as conditions and loops. The implementation should be possible

with the least effort. Issues like performance or memory consumption can be neglected.

Implementation and Concepts of W2GRID 31

For each of the given demands, an individual programming language has been selected, which

is supposed to serve the respective purpose best. Those, which are finally used for the imple-

mentation of W2GRID are chosen from among several equally or even better qualified ones,

due to an important constraint: It is demanded that the compiler/interpreter must be available

and already pre-installed on most platforms. Therefore popular ones like Java are omitted in

favour of a more widespread one. Finally it is taken into account, that the resulting code needs

to be maintained by the members of the workgroup, hence the preferred language is also the

most frequently used one in the group (e.g. csh vs. bash; see below). The provenience,

advantages and disadvantages of the three chosen ones are listed as follows.

2.1.1 C

C is a general-purpose, procedural, imperative computer programming language developed

in the early 1970s by Dennis Ritchie for use on the Unix operating system. Since then it

has has spread to many other operating systems, being now one of the most widely used

programming languages. C is commonly used in computer science education, in part because

the language is so pervasive1. It is applied for complex and time-critical file I/O operations of

W2GRID, namely for the wiensql-database (see section 2.5), which is needed by most other

components. It has to provide optimal performance and avoid bottlenecks

• Advantages: Yields very fast and powerful applications with minimal memory consump-

tion. This is especially important for the wiensql-database, because there will be many

simultaneous instances.

• Disadvantages: Difficult to debug, since the data-types and also the memory allocation

must be handled explicitly by the developer. Code, which is subject to frequent changes

but less critical in terms of memory consumption and performance is mostly better served

with a more flexible yet equally powerful language (e.g. Perl or python).

• Alternate choices: Perl is significantly more demanding with respect to its memory

consumption and is also inferior in terms of the performance of file-operations. It can

therefore not be used for the wiensql-database. C++ is more advanced, hence more

powerful and almost equally widespread, it is however not used for W2GRID, since most

C++ compilers do not completely support ANSI C++ standards. Furthermore, the capa-

bilities of C are sufficient.

1http://en.wikipedia.org/wiki/C_programming_language

Implementation and Concepts of W2GRID 32

2.1.2 Perl

The language has originally been created by Larry Wall in 1987 and is now a de-facto standard,

which can be expected to exist on any Linux/Unix based distribution2. W2GRID requires at

least version 5, since it makes use of references and modules, which do not exist in earlier

releases. Perl offers the needed capabilities to develop powerful network components but is

much easier to implement than the corresponding C-code. It is used for the two daemons,

which are referred to as ’the backbone’ of the W2GRID infrastructure (see Fig.2.1). Perl offers

the desired flexibility for the frequent changes, updates and adaptations.

• Advantages: The language handles the data-types and memory allocation internally,

hence the developer does no have to care about these issues explicitly. Thus the sources

are interpreted and don’t need to be compiled, which simplifies debugging. Only little ef-

fort is needed for creating daemon processes, yet it is highly portable and very powerful,

because it borrows features from C, Bourne-Shell (sh), awk, sed, Lisp, and, to a lesser

extent, many other programming languages. Finally it comes with the advantage, that

additional code can be included at runtime without previous compilation or linking (see

the concept of core and plugins in section 2.9). Regular expression handling is a built-in

feature, which makes string-manipulations one of its core competences.

• Disadvantages: Creates large processes in memory and requires, that the application

is thoroughly checked for memory leaks.

• Alternate choices: Java and Python are not available by default on all different plat-

forms yet, especially not on older distributions. Other scripting languages are still more

exotic and less widespread. Most of them would need to be installed by the user in

advance to the W2GRID-installation, which would corrupt the standalone concept (see

1.4).

2.1.3 C-Shell (csh)

Being a very convenient and straightforward scripting language, which is most common on

almost every platform, C-Shell is chosen for the implementation of the W2GRID installation

routines. It was developed by Bill Joy for the BSD Unix system, but originally derived from the

6th Edition Unix /bin/sh (which was the Thompson shell), the predecessor of the Bourne shell.

Its syntax is modelled after the C programming language. Nowadays the C-Shell3 exists on

almost all Unix/Linux operating system distributions. If used as login-shell, it is often replaced

by the Tenex C-Shell (tcsh), which offers more capabilities but basically has the same syntax.

2http://en.wikipedia.org/wiki/Perl
3http://en.wikipedia.org/wiki/C_Shell

Implementation and Concepts of W2GRID 33

• Advantages: Provides a simple implementation of an installation workflow (e.g. cre-

ation of directories, expanding archives, copying files). Error-handling and debugging

at the console-level is easy. It is highly portable, if only standard Unix tools and their

standard flags and options are used (e.g. ps, grep, sed, awk, top, tar, gzip, ...).

• Disadvantages: Different to other shell-scripting languages, csh uses an inconvenient

way to implement subroutines, which employ the ’alias’ command. Especially large pro-

grams (i.e. several hundred lines and more) may therefore be difficult to read. The pat-

tern matching with grep, egrep and sed is cumbersome and can better be accomplished

by Perl.

• Alternate choices: The Bourne-Again Shell (bash) is equally suited for the same pur-

pose and even provides functions, however its syntax is less C like and it is not as

frequently used by the workgroup members, so that it was omitted in favour of the csh.

Other shell-scripting languages like the Korn-shell (ksh) are not as widespread, Perl on

the other hand is too complex for most of the simple tasks, which need to be performed

during the installation. Additionally it lacks a convenient and portable4 method for erasing

the content of the terminal window (e.g. clear of csh).

2.2 Client/Server architecture

W2GRID is intended to turn a number of individual hosts into a transparent environment. Ac-

cording to the definitions of Orfalie et.al [89], the server ’exports’ capabilities, which are re-

quested by the client. This architecture-style is widely applied for distributed computing [90].

W2GRID will make use of Remote-procedure-calls (RPC) for this purpose (see 2.6.2.1) and

accordingly employ two Perl-daemons: The GridServer provides access to the computing re-

sources and has to be installed on each host. The GridClient on the other hand will manage

the communication between the user and his resources and needs to be installed only once on

a single site (i.e. the local desktop). The left-hand side of Fig.2.1 - the User-side - is in most

cases the local desktop, whereas the right-hand (or Server-) side represents each individual

resource5. The illustrated items of Fig. 2.1 are briefly discussed in the following list.

4Some modules (e.g. Term::InKey) are available on CPAN [88]. Because this is third party code, none of them
is used.

5For clarity, the third daemon (wiensql-database) is omitted in this figure. It is the central tool for data manage-
ment of all other components of W2GRID, the GridServer, the GridClient and several Perl-tools and will be explained
in section 2.5.

Implementation and Concepts of W2GRID 34

Figure 2.1: W2GRID architecture

1 The registry is a database-table provided by the wiensql-daemon and contains a list

of GridServers and the associated informations of how to connect to them. It will be

explained in section 2.6.6.

2 The GridClient (section 2.2.2) represents an interface between the user and his Grid-

Servers.

3 W2GRID provides a simple commandline interface for the user in order to interact with

the GridClient daemon. It offers a similar usability like a common terminal client and may

also be used in batch mode (see 3.2.3)

4 By embedding such batch mode calls to the commandline interface into dynamic HTML-

code6 one can obtain a web interface [91], but W2GRID does not provide such a GUI 7

yet.

5 A GridServer (see section 2.2.1) is mandatory on each resource. When installed on

a managed cluster, served by some queuing system, it only needs to be present on a

single node (usually the frontend). If used for desktops, which are not clustered by cycle-

6PHP, Perl, etc.
7Graphical-User-Interface

Implementation and Concepts of W2GRID 35

harvesting software such as CONDOR [58], the GridServer has to be installed on each

single desktop

6 Each of these desktop GridServers can be used as a one-node resource, but a high

number of individual hosts may be difficult to manage. Therefore W2GRID offers to em-

ulate the functionalities of a queuing system by the use of an additional setting, which

is applied during the installation. The Master will serve as the frontend, whereas the

Slave 7 represents an individual node of the W2GRID-’cluster’ 8 , which is only ’virtual’,

because the middleware lacks the proper permissions to manage the resources in the

same way, a queuing system may do this. Thus it lacks the ability to guarantee any

quality of service.

The presented infrastructure supports only one-way connections from the client to the server

[92]. A ’call-back’ in the other direction is not possible, hence the GridServer cannot broadcast

any event (e.g. the completion of a calculation) to the GridClient. Instead the latter needs to

connect in regular intervals and request the corresponding informations (e.g. the status of a

calculation).

2.2.1 Purpose of the GridServer

As it was already said above, this Perl-daemon is installed on each remote computing resource

and serves as a ’frontend’ for job-submission and system-status retrieval (e.g. the current

load, the free memory, list of running processes). Especially the job-submission is a critical

and demanding task in distributed computing, since this is very individual among the different

hosts and requires the exact knowledge of the local features (e.g. the details for writing a

submission-script) and the details of the given installation (e.g. the way how additional tools

like MPI can be applied). A sample code for such a submission script on a LoadLeveller-

managed cluster is given in Fig.A.3 in the appendix. All processes invoked by the GridServer

will run in behalf of the user, who owns the daemon. As a consequence, they will have only

the same (user-)permissions granted.

The daemon can be set up in three different modes: The standalone mode (default) is used

on the frontend of clusters or on individual desktops, whereas the master- and slave- modes

allow to generate a virtual W2GRID cluster 8 2.1. The GridServer will accept the input (and

also return the output) in a machine-readable and platform-independent XML-format (see for

example the output of Fig.2.2). Status data like the ’load’ are returned in a transparent way,

independent of any specific formatting due to the operating system or the job-submission

scheme. Both daemons (the GridServer and the GridClient) are controlled by the aid of RPC8

8Remote-Procedure-Calls will be explained in section 2.6.2

Implementation and Concepts of W2GRID 36

<HOSTS>
<NODE>

<NAME>athena</NAME>
<LOAD>0.25</LOAD>
<WEIGHT unit=percent, type=average>25</WEIGHT>
<QUEUED>0</QUEUED>
<FREENODES type=total>1</FREENODES>
<FREESLOTS>6</FREESLOTS>
<FORECAST unit=percent, type=best>80</FORECAST>
<STARTTIME unit=seconds, type=best>0</STARTTIME>

</NODE>
</HOSTS>

Figure 2.2: Sample output of a ’load’ request as returned from the GridServer

commands, which represent different workflows. To extend the capabilities, new workflows

(i.e. new RPC-commands) must be developed (see section 3.3.1).

Direct interactive access to the GridServer-daemon is possible for debugging purposes by

using the provided commandline interface ’gridsrv_console.pl’, yet this is not very appreciable

due to the XML-format of input and output. The user, however, will not have to interact in

person with each GridServer daemon, since this is done by the GridClient on his behalf (see

below).

W2GRID allows that either one daemon can be shared among several users or that each user

can run his private one. The individual daemons on the same machine will be independent

from each other. However on a managed cluster 5 2.1 it is recommended to use individual

daemons, whereas on a ’virtual cluster 8 2.1’, several users should share a single daemon, as

this simplifies the administration.

2.2.2 Purpose of the GridClient

Because the registered resources may be quite numerous9, it would quickly become an an-

noying effort to contact each single one directly by the use of the commandline interface and

issue the mostly complex commands. The GridClient 2 2.1 can do this on the user’s behalf

with much more efficiency. Additionally it serves as resource broker. Depending on the imple-

mented workflow, the GridClient can search for the most suitable resource, transfer the input

files and use the provided RPC-commands of the GridServer to submit tasks to the queuing

system. Out of all components of the W2GRID infrastructure, the GridClient is the only dae-

mon, which is contacted interactively by the user. Different to the GridServer interface, the

input and the output (as sent and received by by the commandline interface gridclient.pl) is

therefore sent as plain text, as it is supposed to be read and written by the user. Every user

needs only a single GridClient daemon.

9One GridServer for each resource

Implementation and Concepts of W2GRID 37

2.2.3 Interaction between the daemons and the user

Image 2.3 shows the communication in between the three main-entities in the W2GRID en-

vironment. A user submits a request (e.g. to check the ’load’-situation of his resources) 1

to the GridClient. Depending on the triggered workflow, this request (see section 2.6.2) will

require, that several (or all) registered GridServers are contacted 2 (in parallel). Finally all

the incoming results 3 , which are provided in XML format for improved machine-readability

are collected and merged into the final report. The output returned to the user 4 contains a

summary of all retrieved data.

• black arrow 1 : The ’load’ situation is
a dynamic information and must be re-
trieved on-demand, hence the request
is ’forwarded’ 2 to the GridServers.

• red arrow/box 3 : The intermediate re-
sults must already be provided in an
architecture independent format. The
’load’ for example is returned as a frac-
tion of busy nodes of the total number of
available ones.

• green arrow/box 4 : Since the inter-
mediate results are XML-formatted, the
GridClient must render the data into
well-formatted plain text.

Figure 2.3: The interaction between the user, the GridClient and the GridServer

2.3 Security

The W2GRID middleware is supposed to be installed on foreign resources, therefore it must

provide a sufficient degree of safety, since system- administrators do not like having their

firewalls or other security measures punctured from the inside. For this reason it is desired to

offer a secure product, which can withstand the most common and threatening attacks [93].

The three daemons (GridServer, GridClient and wiensql), which are explained in section 2.2

employ similar security mechanisms. Hence they will be described here in general. The

purpose of the security measures is to avoid that any component of the infrastructure is abused

by an attacker to crash the host, block authorised users from accessing W2GRID or to hack the

user-account and corrupt his data.

Implementation and Concepts of W2GRID 38

2.3.1 Policy

Much safety can already be provided by avoiding common risks. W2GRID is supposed to

be installed and run by users with their respective user-permissions only, therefore none of its

processes will have root-permissions granted and thus cannot endanger essential components

of the architecture. Additionally the default RPC-commands (see section 2.6.2) will not offer

any interactive terminal-access to the host, so even in the very unlikely case of an intrusion,

these commands cannot be abused to perform illegal operations.

2.3.2 Encryption

Avoiding plain text for the communication between the daemons contributes to the safety, too.

Even the intranet-connections should be secured by encryption, because all traffic can easily

be ’sniffed’ by any host of the local network.

2.3.2.1 AES

The encryption is symmetric, in contrast to the very popular asymmetric “public-key cryptog-

raphy”, which is applied by SSH for example. The same key, which is used for encryption

also serves for the decryption. It is evident, that this key must be kept secret, hence the

method is also known as “secret-key cryptography”. The algorithm yields an excellent perfor-

mance, even for long texts. For details about the method it shall be referred to the literature

[94, 95] and the appendix (160). The algorithm is not protected [96] as intellectual property

and can be downloaded and used freely. It is amended to the W2GRID sources and used as

a C-library (rijndael.o†). The encryption causes some delays to the communication, therefore

it is only applied for the critical logon-phase (see section 2.3.4), whereas all traffic following

the successful authentication of the client will be carried out in plain text10. For the sake of

performance, the encryption can be turned off completely, which is not recommended.

2.3.2.2 SSH-tunneling

A remote port is accessed through a secure connection11.This method has two advantages:

On the one hand the entire traffic (not just the logon-protocol) is encrypted by an RSA (or an

equally powerful asynchronous) algorithm. And on the other hand it is the only technical solu-

tion to bypass a firewall without violating the security. Tunneling traffic through SSH requires

some expertise in order to create the corresponding background SSH-session, which will fur-

thermore not survive a reboot of the host and therefore may have to be restarted in certain

10Spoofing [93] has been considered a very unlikely threat.
11see http://en.wikipedia.org/wiki/SSH_tunneling for details

Implementation and Concepts of W2GRID 39

intervals. Therefore this mechanism is fully supported by W2GRID. The setup as well as the

restart is done automatically, once all essential informations have been provided. It requires

password-less (public-key) authentication, because W2GRID cannot authenticate interactively

or supply the password to the SSH-client. The SSH-tunneling also solves the potential spoof-

ing problem, since it is not possible to spoof SSH-tunnelled traffic without prior intrusion into

the secure connection. This is unlikely due to the mismatch of effort and potential gain. SSH-

tunneling is therefore recommended for a critical environment.

2.3.3 Authentication

All three daemons support user-accounts12, but since W2GRID cannot offer single-sign-on

capabilities. The W2GRID account(s) should therefore not be confused with Unix/Linux user-

accounts on the local or remote hosts. For security reasons it is not recommended to use the

same password for both types of accounts.

2.3.4 Logon protocol

In order to connect to a daemon and successfully pass the authentication, the client as well

as the server must follow a mandatory protocol before the client can actually send its requests

and receive the results. The sequence of queries and answers as illustrated in Fig.2.4 is due

to the necessity to get rid of a trouble-making client as quickly as possible.

Fig.2.4 illustrates the sequence of requests
and replies in the course of a session.

• gray boxes: Logon sequence

• orange boxes: Once the client is au-
thenticated, it may submit one or more
commands.

• blue arrow: client writes, server reads

• red arrow: server writes, client reads

The client to the left will initiate the process by
establishing a connection to the port, the server
(to the right) is listening to.

Figure 2.4: The logon protocol for establishing a connection.

Screenshots of this protocol are provided in Fig.2.13 and Fig.2.29.

12While this is an optional feature for the Perl-daemons, it is mandatory for the wiensql-daemon.

Implementation and Concepts of W2GRID 40

1 A client connects to the port, the daemon is waiting on. The client remains silent, while

waiting for the server to initiate the process with a short greeting.

2 This greeting string is always sent in plain text and contains the name and version of the

daemon. Additionally it may provide informations, if an authentication is required and

whether the following traffic will be encrypted or not. The daemon version is foreseen

for future development, if the protocol changes for some reason. The version number

will ensure, that the appropriate protocol is used by the client. The GridServer and the

GridClient provide user-accounts as an additional option, which are disabled by default.

The indication whether one of these two daemons will need to authenticate the user is

given as a lowercase character prior to the version-number (see Fig.2.29).

3 The server asks the client to solve a simple maths test, which consists of random integer

numbers and some of the four different operations (+, −, %, ∗). This test is already

sent encrypted, provided that the encryption has not been disabled. Only if the client

possesses the proper encryption-key, it can return the correct result 4 within the few

seconds granted before timeout. This approach replaces the authentication for the Grid-

Server and the GridClient if the user-accounts are disabled, and on the other hand it

renders a brute force decryption much more difficult, since the random numbers will

prevent an attacker from using his knowledge about the protocol.

5 If the authentication is required, the server will demand the login and password. Wiensql

will additionally ask for the name of the user database (see the screenshot of a wiensql-

logon in Fig.2.13).

6 An answer to each query has to be received within a few seconds, otherwise the con-

nection will time out and closed from the server-side.

7 Finally, depending of the success, the server either returns ’access granted’ or ’access

denied’. In the latter case it also supplies a reason like ’wrong login or password’ or ’too

many clients connected at the moment’.

8 If the client passes the logon, it can continue and submit its requests and receive the

results 9 . The total number of requests is not limited. If the connection is idle for longer

than a given timeout, it will automatically be closed by the server. The client needs to

perform the same procedure again for the next request, beginning at 1 .

2.3.5 DoS attacks

The basic security measures have already been described above. Apart from AES encryption,

SSH-tunneling and the Maths-test, which help to make the brute-force decryption (and hence

Implementation and Concepts of W2GRID 41

the retrieval of the encryption keys) more difficult, the three daemons additionally need to be

protected against more dangerous attacks. The DoS attack13 can be performed with very

simple tools and does not even require that the attacker possesses the proper encryption-key.

Instead the whole service is simply overloaded by numerous connection attempts. This will

at least result in a deadlock of the daemon, hence no other user can connect to it. A more

serious attempt however may even crash the host [93].

The DoS attack is aimed at the logon-process. Directly after having accepted a connection

from a client 1 2.4, the server immediately forks and continues to listen to its socket for the next

connection, whereas its child process meanwhile cares for the authentication of the client.

The advantage of this common procedure is, that the daemon can almost immediately serve

the next client. Also a crash (due to whatever reason) during the logon will not affect the

parent process. The disadvantage however is that every single child process will drain memory

and a few CPU cycles from the server. Hence the DoS attack simply tries to open as many

simultaneous connections as possible and to send gigabytes of data into the open socket

(flooding). As a consequence, the child processes will severely expand, resulting in a memory

shortage. Either this or the excess of open sockets will damage the system and eventually

force a reboot. Unfortunately this will happen regardless of the permissions granted to the

owner of the daemon, hence even a process running under user-permissions can cause the

system to fail. To prevent such a situation, several counter measures are applied:

• The total number of connections are limited to fewer than the absolute system-maximum.

Once the limit of simultaneous open connections is reached, the daemon will not fork any

more unless one of the already open sessions is closed. The logon-process is already

cancelled at step 2 2.4.

• To protect against flooding, an open connection must not soak up strings of unlimited

lengths from the client, but instead read only a limited number of characters from the

input stream at 4 2.4. The first string received by the daemon is supposed to contain the

result of the maths-test and never exceeds 32 characters. It is decrypted immediately. If

it does not contain the proper result the connection is cancelled and the flooding will be

ceased.

• Any service can also be lamed by opening a connection and keeping it open without

sending data, which is less critical but annoying. Hence the protocol is deadlocked, as

long as the server waits for the result. Since the maximum number of total connections is

already limited, this cannot crash the host but it drains all allowed connections. Therefore

W2GRID defines timeouts for each step of the logon-process. Especially the most critical

13Denial-of-Service

Implementation and Concepts of W2GRID 42

reply 4 needs to be sent within 5 seconds.

• These 5 seconds are still enough to lame the service and to prevent authorised users

from opening a valid connection (DoS = denial-of-service). This can therefore be over-

come either by a shorter timeout or a greater number of allowed connections. None

of these choices is appealing. Instead W2GRID solves the problem by limiting the total

number of connections originating from a single IP to the half of allowed connections.

This will prevent a standard DoS-, but cannot cope with a DDos (distributed-DoS) attack,

which employs a lot of servers with different IP’s.

• Finally it shall be concluded, that an attack may only be averted, if the daemon is able

to identify it in due time. Therefore a W2GRID-daemon keeps a history of unsuccess-

ful logon attempts. Every time, a new client initiates the logon-sequence, its IP will be

checked against the entries of this history. Once a certain client exceeds a given thresh-

old of failed attempts, no further connection from this IP will be served. To keep the

number of records manageable, the history is cleaned after a few minutes.

By employing the presented measures, W2GRID can counter most DoS attacks but will fail

to avert DDos14 attacks, which are very unlikely anyway due to their effort. Most danger,

however can be prevented by using the SSH-tunneling mechanism. The combination of all

security measures presented in this section are sufficient to employ W2GRID even in critical

environments.

2.4 Directory structure

At several occasions later in this text, it will be referred to the location of certain files or exe-

cutables. For clarity the directory structure is shown and briefly explained here.

The archive of W2GRID needs to be expanded into a certain directory (e.g.]
∼/W2GRID/),

which is referred to as ’GRIDSRC’, because it contains the sources of W2GRID. After installa-

tion the corresponding path is stored in a variable of the same name ($GRIDSRC). The two

additional directories, namely $WIENSQL_ROOT and $GRIDROOT are created during the in-

stallation process and afterwards available as an environment variable, too. The actual paths

for all three variables can be chosen freely by the user a 2.5. The $GRIDSRC-directory b 2.5

contains the unmodified sources and all parts of W2GRID, which don’t have to be compiled.

Also some executables and Perl-tools, which are located in 4 2.5. Upon compilation, the bina-

ries and C-libraries are compiled in]$GRIDROOT/ 1 and]libs/ 2 . Finally the contents of 5

14distributed DoS attack: An intruder will first hijack numerous computers and instruct them remotely to conduct
DoS attacks. The owners usually don’t recognise that their hardware is being abused.

Implementation and Concepts of W2GRID 43

Figure 2.5: Directory structure of W2GRID

will be given a closer look in section 2.6.2 (see Fig.2.15). Also the temporary directory ’slot’ 3

will be explained later (see section 2.6.5.1). Further details are given in the usersguide [97].

Implementation and Concepts of W2GRID 44

2.5 Wiensql-database daemon

W2GRID maintains a very small SQL database for centralised data management. It is devel-

oped in accordance with the standalone concept in order to avoid dependencies on third-party

software (e.g. mysql or postgre-sql). Whereas commercial or free databases offer much more

capabilities, they also require in most cases extended permissions for installation and hence

erode the independence of the infrastructure. Usually there is one wiensql-daemon per user

and host, which can serve any or both of the Perl-daemons illustrated in Fig.2.1.

2.5.1 Purpose

The Perl-daemons and several tools have to access and manipulate a lot of data at run-

time, which may be written, read and updated by different concurrent processes. To avoid

data-corruption, these processes need a proper data management, which is best served by a

database daemon. Consequently it will serve as the only authority, which is allowed to read

and write directly from and to the respective files, whereas its clients have to manipulate the

data in an abstract way. The constraints enforced by the use of a database provides data-

consistency, since all instructions for data-manipulation and data-retrieval have to conform to

the syntax of the employed language (SQL15). The following list shows a few practical exam-

ples, where the database comes to play.

• The registry (see section 2.6.6) contains the settings of the daemons (’hostinfo.server’

or ’hostinfo.client’) such as the IP, the port, the hostname or the encryption-key. These

informations are needed for the start-up as well as for the logon-process to authenticate

a client.

• if the authentication is enabled the daemons need to maintain user-accounts in order to

compare the transmitted login and password of a connecting client with the authorised

entries.

• When a calculation is started on a GridServer, it will be associated with a certain PID16 .

In order to check whether the calculation is still running or already done, the Grid-

Server must use this PID to retrieve the corresponding informations from the underlying

execution-layer (e.g. PBS). The script, which is responsible for performing this check is

executed in regular intervals (see jobs in section 2.6.3). The PID and a lot of additional

data have to be stored intermediately, otherwise they could not be recovered with the

next check. (see slots in section 2.6.5.1)

15Structured-Query-Language
16This can be any string or number

Implementation and Concepts of W2GRID 45

• W2GRID performs regular tasks such as the check of a calculation or the check of the

slots. The Perl-daemons has to be told, which tasks are to be executed and when. Such

informations are supplied from a table (see job-registry in section 2.6.6)

• When searching for resources to submit a calculation, the GridClient needs to know a

description of is GridServers, the method of how to connect to them and how to transfer

data. Thus it requires the knowledge of some static informations like the total-memory

or the available applications (see the host-registry in section 2.6.6).

2.5.2 Workflow

The wiensql-database daemon must provide an excellent performance and avoid to consume

excessive memory otherwise it will be a bottleneck for all other processes. Therefore it was

implemented entirely in ’C’. In order to be portable to any architecture it uses only standard

libraries, which come by default with every compiler installation. Its simple workflow is shown

in Fig.2.7. At startup the daemon reads its connection-parameters and some additional data

such as security settings from the file .wiensqlrc† (Fig.2.6), which is also read by its many

wiensql-clients (lines 1 - 4) to determine, which port the daemon is listening on.

1: server:athena
2: port:18847
3: key:YnZpe5e4w0Nd
4: database:athena
5: max:30
6: allow:*.*.*.*
7: timeout:120
8: cmdline_posix:1

Figure 2.6: Sample content of the wiensql startup-file .wiensqlrc†

1 wiensql reads a startup-file (.wiensqlrc†) and extracts the port
(line 2) and the encryption-key (line 3). The lines 5 - 7 affect the
security policy.

2 The daemon binds to its assigned port and listens for incoming
connections.

3 Child processes serve the clients.

The parent will quit the loop if it receives a proper external (SIG-
INT,SIGTERM,SIGKILL) or internal signal (SIGUSR1).

Figure 2.7: Workflow of the wiensql-daemon

Implementation and Concepts of W2GRID 46

2.5.3 Accessing the database

Only the wiensql-daemon is allowed read and write directly from and to the database-tables

(i.e. the respective files). Other processes (programs) have to create a tcp-connection to the

wiensql-daemon and manipulate or request the data by the use of SQL strings. These client-

functionalities are at present only implemented in Perl as a single library libs_perl/wiensqllib.pl† .

Providing a C-implementation of these functions has not been necessary so far, and the C-

Shell lacks sufficient capabilities.

2.5.3.1 Commandline interface

The user does not need to access the database interactively. For debugging purposes, W2GRID

provides a commandline interface ’wiensql.pl’, which also supports batch mode. Its usage will

be described in section 3.2.3.3.

2.5.3.2 Perl-tools

Several executables, especially those used for the installation (or a later modification) of

W2GRID need wiensql-support. Fig.2.8 shows an example, how the respective library is in-

cluded and used from within a Perl-program. In contrast to the daemons the tools will usually

not fork, and hence not establish more than a single connection, which is therefore easier to

handle. The contents of the startup-file are read in line 2, since the client needs to know the

1: require "$PATH{LIB}/wiensqllib.pl";
2: &readwiensqlrc();
3: &wiensql__setlogin("gridclient_athena");
4: if(!&wiensql__connect())
5: {
6: &handle_extra_output();
7: exit(1);
8: }
9: my $display=0; #(tabular output)
10: my $request="select * from hostinfo.client"; #some command
11: my $mode="sql"; #treats $request as SQL-string
12: my ($result,$errors,$warning)=&wiensql__exec($request,$display,$mode);
13: print "$result\n";

Figure 2.8: A Perl-code fragment to demonstrate the use of the wiensql-client library

encryption-key and the port. (Fig.2.6). If the authentication succeeds (line 4), the client can

submit the request (line 10), and will receive the result (line 12). The output is available in

different styles (line 9), among which the tabular format is the most common one. Additionally

the daemons knows an “sql” mode and a “cmd” mode for non-SQL strings (line 11).

Implementation and Concepts of W2GRID 47

2.5.3.3 Perl-daemons

Different to the Perl-tools, the daemons will fork a couple of times and also create and main-

tain several simultaneous connections, which is the final reason for the demand to obtain a

database with low memory consumption. A wiensql-connection should not be shared between

a parent and its child process, since the behaviour of an open tcp-socket is unforeseeable if

one of the involved processes is terminated. Therefore the wiensql-connection is closed in the

child process and reopened, which results in several independent connections being served at

the same time. These are especially numerous in the case of a parallel workflow as illustrated

in Fig.2.9, where each ’DB’ icon in the drawing represents an individual connection. The figure

already anticipates the workflow of a command, which is explained in detail in Fig.2.14 and

Fig.2.17. Every child process of a Perl-daemon (such as the GridServer), 1 2.9 needs its own

Figure 2.9: Abstract view on the number of independent database client sessions, that are created
throughout the workflow of a command

database-connection to retrieve login and password in order to authenticate the client. Once

successfully logged on, the client submits requests 2 , which is processed by another child

(grandchild) 3 . If the included workflow contains parallel tasks like querying GridServers,

each of these 4 might need an additional database-access17.

17e.g. for retrieving the connection parameters of each individual host

Implementation and Concepts of W2GRID 48

2.5.3.4 C-Shell scripts

Numerous inserts and updates have to be done in the course the installation of W2GRID.

Since the C-Shell is not capable of connecting directly to the wiensql-database, the script

employs the commandline interface wiensql.pl in batch mode. A sample script is provided in

Fig.2.10. Yet if the performed operations are more complex and require several subsequent

1: #!/bin/csh
2: set sql = "select * from hostinfo.client"
3: set login = "-l_sql gridclient_athena"
4: set result = ‘wiensql.pl $login -S "$sql"‘
5: echo $result

Figure 2.10: Sample code, which illustrates the use of the wiensql-database from within C-Shell
scripts

operations and intermediate regular expression manipulation, the whole database-workflow is

coded entirely in Perl and provided as a Perl-tool. This tool is invoked from within the csh-code

with proper arguments. Such a tool is provided for example for installing the proper platform

plugin (see Fig.2.11). The argument to be supplied (line 5) is the ID of the plugin (see section

2.9), which is selected from a list (line 4), supplied from another Perl-tool in line 2. The code-

snippet does not show any error-checks.

1: #!/bin/csh
2: listplatforms.pl
3: echo -n " select the platform: "
4: set platform = $<
5: install_platform.pl $platform

Figure 2.11: Complex database-operations in C-Shell script are better accomplished by the use of
Perl tools.

2.5.4 Optimisation

According to the illustration in Fig.2.9 numerous connections may be open simultaneously.

As a matter of implementation, even a simple RPC command submitted to one of the Perl-

daemons (Fig.2.1) will require at least two connections, and each of them performs a full

logon-process starting from 1 2.4. To avoid a bottleneck, the protocol must be simplified, which

is possible by reducing the number of strings being sent across the network as illustrated in

Fig.2.12. The potential for the optimisation comes from the delay of the socket-write operation

and from the encryption of each individual string. Reducing the number of these operations

significantly improves the performance. The maths-test, login, password and database queries

are not performed sequentially as illustrated in a 2.12, instead the client will pack everything

into a single string, thus performing only a single encryption and a single write-operation 1 .

Implementation and Concepts of W2GRID 49

Figure 2.12: Optimisation of the logon-process

The server decrypts the string and extracts the required results for all the individual requests

2 . If any of the results is missing in the string, it will be requested separately as usual18.

The optimised process b comes with only three read/write and encrypt/decrypt operations

instead of the nine of before. A screenshot ofthe verbose output, obtained with the improved

logon protocol is shown Fig.2.13.

1: [SOCKET] Trying to connect to athena on port 18837!
2: [SOCKET] Socket creation succeeded
3: [SOCKET] Bind succeeded
4: [SOCKET] Connect succeeded
5: [SOCKET] reading ’WIENSQLD v:3.0’
6: [INTERNAL] connection to wiensql demon version ’3’
7: [SOCKET] reading ’*******************’
8: [INTERNAL] READING ENCRYPTED ’tellme:690448+54564852+82068889+18622724’
9: [INTERNAL] we are connected to a server, which can read the complete greeting
10: [INTERNAL] SENDING ENCRYPTED: ’155946913;login=gridsrv_athena;pwd=abc;db=athena’
11: [SOCKET] sending ’****************’
12: [SOCKET] reading ’*************’
13: [INTERNAL] SERVER said:access granted

Figure 2.13: Verbose output of wiensql.pl collected during a connection attempt to the wiensql-daemon

2.5.5 Security measures

The principal step is to keep the encryption-key secret. Since the data is stored in a file located

in the]$WIENSQL_ROOT/-directory, it is by default not readable by anyone but the user.

To avert random attacks, the wiensql-daemon implements the security mechanisms, which

have been explained in section 2.3.5. The total number of connections is limited to a maxi-

mum of 30 by default, but this setting can be changed in the file .wiensqlrc† (line 5 of Fig.2.6).

Additionally the IP of all clients, which have successfully logged on is stored in a shared mem-

ory segment. Once the maximum number of clients is reached, the daemon will not accept

18The sequence of the individual requests (login, password, database) is not mandatory anyway.

Implementation and Concepts of W2GRID 50

any further connection until one of the existing ones is terminated. Idle connections are closed

automatically by the server after a certain time of inactivity (line 6 of Fig.2.6). It is also possible

to constrain the IP of the client to e.g. the IP of the local host. The example shown in Fig.2.6

(line 6) does not instruct the daemon to impose any such restrictions (*.*.*.*).

2.5.6 Supported data-types

A definition of the available wiensql data-types is presented in table 2.1.

name corresponding C-type purpose
tinyint char small INTEGER

mediumint signed short int medium INTEGER
int signed int regular INTEGER

bigint signed long int big INTEGER
char char (1-255) string (fixed length)

varchar char (1-255) string (variable length)
float double the only floating-point type
time time_t HH:MM:SS
date time_t dd-mm-yyyy

datetime time_t HH:MM:SS dd-mm-yyyy
ipaddr char (6) IPv4 or IPv6
tinytext char (1-8192) regular string

mediumtext char (1-32768) medium size string
text char (1-131072) long string

bigtext char (1-1048576) very long string
encrypted char (1-255) encrypted in the table-file

Table 2.1: Wiensql data-types

Implementation and Concepts of W2GRID 51

2.6 GridServer and GridClient daemons

The two Perl-daemons 2 2.1 and 5-7 2.1 serve different purposes (see section 2.2) but the over-

all principle and the methods of operation are identical and can be illustrated by the simplified

scheme in Fig.2.14. The daemons must accept and verify incoming connections and respond

to the requests by executing RPC-workflows (see section 2.6.2), but also run scheduled tasks

in regular intervals (see section 2.6.3). Both tasks are served in an efficient way by two differ-

ent processes.

Figure 2.14: Workflow of a W2GRID Perl-daemon

1 As a pre-requirement, the wiensql-daemon must be online and operable, thus each Perl-

daemon needs an account and an array of tables with proper data being filled in (see

section 2.6.6). If this is provided, the process will fork19, since the diverse tasks (see

above) can best be served with two independent threads.

2 One instance of the original process binds to the specified port and waits for incoming

connections (e.g. from a commandline interface or the GridClient daemon). This in-

stance is the actual daemon process. Each client20 causes this process to fork again.

19Forking means to double an existing process, generating an identical copy in memory, which has a different
PID. The original process is called the ’parent’, whereas the newly created one is the ’child’

20The incoming connection is always referred to as the ’client’ [89], which must not be confused with the Grid-
Client, whereas the listening process is called the ’server’, which is again not to be confused with the GridServer!

Implementation and Concepts of W2GRID 52

This is essential, otherwise the daemon could not serve the next client.

3 This child process will perform the authentication (see section 2.3.4), execute all the

incoming requests and return the results to the client. The illustrated instance is shown

in further detail in Fig.2.17. The process is sequential, hence no further request can

be read and processed unless the current one is done. The individual requests are run

in ’foreground’ in contrast to 6 . When the connection is closed either by the client on

purpose or by the server due to an exceeded timeout, this instance will be terminated.

4 The second process created after initialisation is used for executing regular tasks such as

checking running calculations or the cleaning up of temporary-directories. The purpose

of these regular tasks is comparable to ’cron jobs’ on Unix, details will be given in section

2.6.3. This process, which controls these regular tasks and serves a similar purpose as

the ’cron daemon’ is correspondingly called the controller.

5 A database-table - the job-registry - maintains the scheduled tasks. The controller 4

reads the table in regular intervals. This interval is by default set to sixty seconds, which

is sufficient for all W2GRID-tasks (see the examples on page 57). For this reason, the jobs

cannot be executed exactly at a given time (e.g. in contrast to real cron jobs), instead

the execution-date given in the table just refers to the time, until which the job is delayed.

Once this date is exceeded, it will be run by the controller in its next check-cycle.

6 All the scheduled tasks are processed in parallel in the background in contrast to the

commands 3 , hence the controller has to fork as many times as it has got entries in the

table, whose execution date is already exceeded. Each one is an independent process.

It is left to the task to remove or update its entry in the table or even leave it unchanged.

In the latter case it will be run again with the next check-cycle, since the date remains in

the past.

7 The controller does not wait for the jobs 6 to be finished. It cleans up and remains idle

for the given interval between each check-cycle. This idle-phase will use the ’sleep()’

command, which causes the process to stop execution unless it receives a TIMER signal

from the operating system.

Implementation and Concepts of W2GRID 53

2.6.1 Directory structure

To improve the readability of the explanations given in some of the following subsections, it

will be referred to the contents of the respective daemon directory, which is shown in Fig.2.15.

Since the directory structure of both Perl-daemons (]SRC_gridsrv/ and]SRC_gridclient/) is

identical, only one is shown here. For further informations it is referred to the usersguide [97].

Figure 2.15: Directory structure of]SRC_gridsrv/

1 Contains the Perl-scripts of the background processes 6 2.14 (section 2.6.3) and may

also have subdirectories.

2 Some (Perl-) tools are required for the installation like listplatforms.pl or install_platform.pl

as shown in screenshot Fig.2.11.

3 Contains the Perl-scripts of the foreground processes 3 2.14 (section 2.6.2) and may also

have subdirectories.

2.6.2 Commands (foreground tasks)

Both Perl-demons export their capabilities as RPC-commands (or briefly ’commands’). In

order to improve the reading of this paper, the commands are enclosed in curly braces and la-

belled with a corresponding subscript-character, indicating which daemon offers it. A Gridclient-

{command}C will have a subscript ’C’ attached to the command-name, whereas a GridServer

{command}S gets a subscript ’S’. Several {commands}S,C are available by name on both

daemons, the GridServer and the GridClient as well, but the respective source code will be

different. Those commands have both characters attached to their command-names.

The daemons accept such requests only by ways of an authorised tcp-connection 3 2.14, which

can be established by any client, such as the commandline interface. Its behaviour is similar

to any standard Unix/Linux terminal session with the respective usability.

The command, which is actually a workflow provided by a Perl-script can be followed by one

or more mandatory or optional arguments. It is included at runtime into a child process of the

daemon code. The naming convention, applied by W2GRID will rule, that the command-name

is also the filename (rump without the Perl-extension .pl).

Implementation and Concepts of W2GRID 54

Example:

The command {test}S,C will return a simple output (something like ’Hello World’). It is invoked by

typing the string ’test’ into the commandline interface, which is subsequently sent to the dae-

mon. The file test.pl† contains the respective workflow, whose source code can be found as

an example in the appendix (see Fig.A.4). The screenshot of its output is shown in in (Fig.2.16)

Each command triggers a complex workflow, which is governed by the necessity to provide

>test
#command took 0 seconds to complete
If you read this the gridserver is operational
>

Figure 2.16: Sample output of the command {test}S

certain failsafe mechanisms as illustrated in Fig.2.17.

The content of this figure is a more detailed
view on the processes, which are triggered
after a connection has been established by a
client 3 2.14.

• dark orange box: parent process.

• light orange box: child process.

• blue arrow: pipe for interprocess com-
munication between parent and child.

The additional processes serve for failsafe
and to enhance the stability. Further it helps
with the debugging, since feedback on errors,
which occurred in the command-script can be
caught and sent to the client.

Figure 2.17: The workflow triggered in respond to an incoming command

The processing is sequential, only a single command can be executed at a time. The connec-

tion will not process any further input unless the last one is finished.

1 A command is received as a string and split into two pieces at the first blank, of which

the first one has to contain the command-name, whereas the second (optional) piece is

supposed to contain additional arguments. This workflow-element is part of 3 2.14.

2 Some ’built-in’ or ’default’ -commands bypass the complicated workflow and do neither

Implementation and Concepts of W2GRID 55

need the Bouncer-process 3 nor require to be processed by a separate child 5 and

hence return the result much faster. These are: {?}S,C {help}S,C {whoami}S,C {ping}S,C

{version}S,C {exit}S,C {quit}S,C {shutdown}S,C.

If the process encounters a non-fatal error (e.g. no wiensql-database connection possi-

ble) at this state, it will bypass the usual processing too and return the error-message to

the client.

3 The first child instance, which is created by the daemon is the so called ’Bouncer’, which

serves two very important purposes and is explained in detail in section 2.6.10. On the

one hand it keeps a connection open, which would otherwise be closed after a certain

time of inactivity. This is important if the workflow of the triggered command takes more

than the given timeout to be processed. And on the other hand its periodically transmitted

data-packets are hitchhiked by a mechanism, which forwards informations about the

progress of the current command-processing. The Bouncer has to be terminated before

the result is returned to the client 8 .

4 All non-default21 commands have to exist as a Perl-file in]SRC_gridsrv/commands/
3 2.15. If this is not the case, the client will receive an error-message. A command must

not contain a dot • in its name (see 2.6.2.2) and needs to be spelled correctly, since the

daemon is case sensitive.

5 The actual command-file is not directly processed by the parent 1 for failsafe. If the

included Perl-file contains an error, the whole process would be terminated and there

is no instance left, which could report the reason for the error to the client. Therefore

the parent forks again and delegates the execution of the command to its child, which

includes the respective file and calls the entry-function of the workflow (&exec_request()).

A sample code is provided in the appendix in Fig.A.4 (see line 12). In the case of a fatal

error, only this child process will crash, but may still forward the error-messages to the

parent 6 . Non-fatal errors (e.g. invalid input) can be handled by the command itself and

will be reported like a standard-result over the pipe 7 .

8 The parent must safely terminate all its child processes 3 and 5 before it sends the

result-data to the client and returns to waiting for the next command.

21Those, which are not built-in and do not bypass the regular processing.

Implementation and Concepts of W2GRID 56

2.6.2.1 RPC-stubs

RPC-commands are often referred to as ’RPC stubs’, because they complement each other.

and contribute to a bigger workflow, which extends the scope of each single one. In the

illustrated example (Fig.2.3), there is an RPC stub called {load}C, which is requested by the

user. This in turn invokes the corresponding {load}S stub of the GridServer. The user will

receive only the final result 4 2.3 and not the intermediate ones. Not everything is implemented

in a stub-like manner. There exist certain (simple) commands (e.g.{help}S,C), which do not

depend on others.

2.6.2.2 Grouped commands

Having to work with numerous individual commands is found to be quite inconvenient and diffi-

cult to overlook. Furthermore each command-name could only be used once, since they would

all be located in the same directory. To overcome these constraints W2GRID allows to ’group’

commands (see section 2.6.3). The grouping is directory-based, hence each subdirectory of

3 2.15 is the group-name and the files contained therein belong to the group. To separate the

group- and the command name, W2GRID uses a dot.

Example:

{host.list}C shows all registered GridServers and their properties, which are known to the Grid-

Client. The string ’host’ is the name of the group (i.e. the subdirectory name), and ’list’ is the

name of the command22

As a result of this approach there may be several commands having the same command-

name, provided they belong to different groups and can be distinguished from one another.

Example:

{host.list}C vs. {job.list}C. The commands are not identical although both filenames are ’list.pl’,

because they are located in different directories.

2.6.3 Jobs (background tasks)

The infrastructure makes use of scheduled workflows, which are executed in the background in

regular intervals. Since they can be compared to ’cron jobs’ they will be simply called ’jobs’ in

22The workflow can be found in the file $GRIDSRC/SRC_gridsrv/commands/host/list.pl†

Implementation and Concepts of W2GRID 57

this text. As this term has intuitively a different meaning in common speech, the W2GRID back-

ground p
xJOBq

y is marked with rectangles wherever it appears to be ambiguous. The reading is

further improved by a naming convention similar to the commands. Each p
x jobq

yS,C is enclosed

in rectangles with a subscript character attached, which refers to the respective Perl-daemon

(’C’ for the GridClient, ’S’ for the GridServer).

Since W2GRID only wraps applications and does not use an invasive approach like other mid-

dleware, it lacks the ability to react immediately to events (e.g. completion of a calculation).

Instead it has to check in regular intervals if a certain observable property changes (e.g. the

PID has vanished from the process-table, indicating that the calculation is finished). Hence in

contrast to other approaches, W2GRID does not get notified by the system or the application,

and has to capture the event by its own means. In most cases this approach means a delay of

roughly one minute to a workflow, which is usually not significant in comparison to the overall

runtime of realistic tasks.

The procedure is shown in Fig.2.14. The controller 4 2.14 will iteratively check its schedule

5 2.14 and execute those p
xJOBSq

y with expired target-dates 6 2.14. The purpose of this mecha-

nism shall be explained by the use of some examples:

• The GridClient keeps a list of GridServers in its host-registry. The job p
xhost.checkq

yC con-

tacts the daemons regularly and reports broken links to the user. Additionally it will

request and compare the static host-informations with the entries stored in the local reg-

istry, and update the same if necessary [98].

• On unmanaged desktops, the GridServer needs to keep record of the overall memory

utilisation to avoid causing memory bottleneck. For this purpose, the job p
xmemstatqy S will

be run in intervals of roughly two minutes, fetch the most recent memory statistics and

write it to a database-table.

• The two examples above remind of the purpose of cron jobs, which is undeniably true.

Yet a more important feature of the p
xJOBSq

y is the fact, that they are run in the background.

There are ways to exploit this in order to make workflows becoming smoother. Tasks

like the filetransfer for example can take a long time to be completed. If such a time-

consuming task is performed by a command-script, the commandline will be blocked for

the whole time it takes to complete the copying. The user, who submitted the command

will have to wait for the filetransfer to be completed until he can submit the next one. This

is due to the blocking fashion [99] of RPC’s, but such a task can better be accomplished in

the background, by generating the respective p
xJOBq

y from within a command and starting

it immediately. While the p
xJOBq

y performs e.g. the filetransfer, the user may submit

Implementation and Concepts of W2GRID 58

another command. Since the output of this background process cannot be sent to the

socket (the connection stays with foreground processes), the p
xJOBq

y must write it to a

database-table. The principle of this process is illustrated in Fig.2.19).

A sample Perl-script of such a job (e.g. p
xtestqy S) is presented in the appendix (Fig.A.5). The

scripts are located in directory 1 2.15 or in one of its custom subdirectories.

The p
xJOBSq

y add a lot of flexibility to the middleware and improve the overall performance sig-

nificantly. For writing efficient workflows (e.g. the submission of a calculation) both, commands

as well as p
xJOBSq

y are required (see section 2.6.4).

2.6.3.1 Grouped jobs

The same feature, which turns the numerous commands into an organised list can be applied

for the p
xJOBSq

y.

2.6.3.2 The job-registry

The database-table 5 2.14, which contains the schedule of the regular background tasks has

already been mentioned earlier. Each of the two Perl-daemons owns such a table, whose def-

inition is shown in Tab.2.2. Only the essential columns are represented, since the definitions

on both daemons are not completely identical. The differences, however, are not essential for

explaining the principle. A unique integer [job_id] is used to identify the p
xJOBq

y distinctly. Sev-

column datatype

job_id int
command char 50

state int
job_date datetime

pid int
parameter text

Table 2.2: Essential columns of the job-registry

eral commands, whose purpose is to manipulate certain entries of this table (e.g. {job.kill}S,C)

will need it as a mandatory argument, in order to retrieve the respective row in the record-set.

Additionally, the p
xJOBq

y has to be linked to the corresponding Perl-script, which contains its

workflow and can be found either directly in directory 1 2.15 or in one of its subdirectories. This

information is container in the column [command]. The [job_date] finally defines the time,

when a p
xJOBq

y is to be processed. For clarity it must be stressed again, that the controller can-

not run a job at exactly that time, which is specified in the registry, because it will check the re-

Implementation and Concepts of W2GRID 59

spective table only in regular intervals. For that reason, the job-registry should not be confused

with a schedule like those of the cron daemon. Instead the controller fetches all entries, whose

corresponding [job_date] has already passed. All p
xJOBSq

y in contrast, whose [job_date] is

still in the future are not affected. In order to execute the code, the controller forks and gener-

ates a child process, which will subsequently include the corresponding Perl-file and invoke its

entry-function (line 9 of Fig.A.5). The PID of this child will be stored in the table in column [pid]
for failsafe, because as long as this PID is recognised by the operating system, the p

xJOBq
y is

considered to be running and will not be started again by the controller, even it the [job_date]
may still be in the past. This prevents a harmful racing condition, such that several instances

of the same p
xJOBq

y are running in parallel. Before the script exits, it has got to update its own

entry, either by updating the [job_date] to a time in the future (line 28) in order to run again or

by deleting the row from the table (line 34). If for instance the p
xJOBq

y quits without updating the

table in any of the two possible ways, it will be run again in the next cycle, because the row re-

mains in the table with a date in the past. The [state] of a p
xJOBq

y offers the feature to subdivide

the workflow into sections. The first section ’init’ is executed with the first run of the script. If the

[state] is set to e.g. ’running’ afterwards, the other section -provided it exists in the workflow-

will be execute with the second run, whereas the ’init’ part is skipped. A p
xJOBq

y may addition-

ally contain some custom data, which are stored in [parameter]. As a matter of convenience

these are mostly XML-formatted strings, as shown in the example of Fig.2.18. The interested

reader is referred to the appendix (page 163) for the purpose of the Perl-functions used in the

code. . The lines 1 - 5 define the contents of [parameter], which will be the following XML-

1: my %jobdata=&new_dtgr("PARAMETER");
2: &dtgr__additem(\%jobdata,"A","",1);
3: &dtgr__additem(\%jobdata,"B","",2);
4: &dtgr__additem(\%jobdata,"C","",3);
5: my $parameter=&dtgr__data2str(\%jobdata);
6: my $command="wien.exec";
7: my $job_date="20s"; #will be stored as now+20 seconds
8: my $local_job_id=&jobutils__newjob($command,$job_date,$parameter);

Figure 2.18: Sample code snippet, which inserts a new item into the job-registry

string: “<PARAMETER><A>12<C>3</C></PARAMETER>” line 8 finally inserts

the p
xJOBq

y into the job-registry and returns the [job_id].

2.6.4 Interplay of commands and jobs

It has already been mentioned, that for realistic workflows such as the execution of applications

commands and p
xJOBSq

y, whose purpose and concept have already been discussed intensively

above, are required. In this section it shall be demonstrated in simple terms, how these two

elemental building blocks can be employed to perform a complex workflow, which is composed

Implementation and Concepts of W2GRID 60

of a filetransfer, the subsequent calculation-start and frequent monitoring of the same until the

calculation is done. In principal one could use a single command, which contains all these

tasks, however there are two disadvantages:

• The design of the RPC-commands (see Fig.2.17) does not allow that any result is sent

to the client unless the whole workflow has been processed (see line 39 of Fig.A.4). The

connection will be blocked and no other command can be sent until this line is reached.

That means, that the commandline is not usable for as long as the process takes to be

run in the foreground, which is in this case the duration of the whole calculation (maybe

hours).

• Yet more cumbersome, the execution of a command will be stopped if the server looses

the connection to the client, which may happen either accidentally or on purpose. In any

case it is especially troublesome, if the command takes several minutes or even hours to

complete, because all data is lost.

An appealing feature of W2GRID is, that the middleware leaves the implementation of the work-

flows completely to the developers and provides only a large set of tools and libraries, hence

it is up to the person who implements the workflow, whether to use the unfavourable solution

with a single command or to employ p
xJOBSq

y as illustrated in Fig.2.19 to profit from the flexi-

bility of background processes. The command-names {optimal.exec}C and {optimal.info}C

Figure 2.19: An example for the interplay of {COMMANDS} and p
xJOBSq

y

in this example are fictitious and serve only for a demonstration of the principle of interplay.

Implementation and Concepts of W2GRID 61

The left-hand side of Fig.2.19 shows the initial command, which has been submitted to the

daemon. It starts the workflow by registering the p
xJOBq

y 1 and obtains the associated unique

[job_id], which is returned as a result to the client 2 . Before the command quits, it invokes

the p
xJOBq

y 3 , which runs in the background and is disconnected from the socket-connection.

All the client has got is the [job_id], which ultimately refers to the corresponding entry in the

database. Since the output cannot be sent to the socket any more, the p
xJOBq

y must write im-

portant data such as the progress of the calculation into the respective column [parameter]
4 , and the same data may be retrieved 5 by the aid of the command {optimal.info}C at

any time. This command requires the [job_id] and simply reads the data, which is constantly

updated in the background. If the p
xJOBq

y is finally done, the respective entry will be removed

from the table, and the [job_id] is not recognised any more, which is similar to the behaviour

of common Unix/Linux background processes. Hence the job-registry can be qualified as a

non-persistent data container, because the lifetime of the respective entry expires with the life-

time of the job. This is okay for most purposes, otherwise a persistent data container must be

employed, which will be explained in the next section.

2.6.5 Persistent data containers: ’Slots’

Sometimes W2GRID requires a data-deposit, which outlasts the scope of a p
xJOBq

y and allows to

store informations for later use. This is however not their only purpose. The illustrated example

in Fig.2.19 was deliberately set up for the GridClient, because its files are supposed to be

’local’. The situation is different for the GridServer. Most applications usually need some input,

and if the files of the GridClient are not accessible, they have to be transferred prior to starting

the calculation. But where are they copied to? This is the first and predominant purpose of

a slot: To distinctly identify a certain (temporary) directory23 -whose absolute path does not

have to be known to the client- by a unique ID, which is called the [slot_id]. A convenient set

of commands allow to create, delete and manipulate the slots by a given [slot_id].
Because the slot is just an entry to a table (the slot-registry), it can be linked with any kind of

data. This is the second important feature, which shall be explained in detail. In contrast to

the data stored in the job-registry, which is perished after the p
xJOBq

y has come to an end, the

slot-data are persistent and have to be deleted on purpose by the aid of a certain command

{slot.kill}C or {slot.release}S. This property provides a lot of additional features for complex

workflows:

• It can serve as a ’history’ for calculations.

23It is just temporary on the GridServer. The GridClient in the opposite requires only a pointer to the local
directory.

Implementation and Concepts of W2GRID 62

• The final state of the calculation is conserved, whereas a p
xJOBq

y will have to transfer all

its content to a file, otherwise it is lost.

• Numerous p
xJOBSq

y can make use of the same slot, either at the same time or sequen-

tially (e.g. the filetransfer and the monitoring of a calculation could be two independent
p
xJOBSq

y)

• The filetransfer can make use of the ’abstract’ ID, which is more convenient than working

with absolute pathnames.

• All relevant informations and methods can be pooled and accessed with a single ID. This

[slot_id] can be re-used (e.g. the same calculation can be rerun), whereas the [job_id]
is deleted when a p

xJOBq
y expires.

The advantages of the slot are quite pervasive, therefore it should be used by default for ev-

ery bigger workflow, which employs elements such as filetransfer and remote operations in a

similar way as illustrated by Fig.2.20. In this example, the [slot_id]c uses the attached char-

Figure 2.20: The purpose of a slot as a persistent data container.

acter ’C’ to indicate, that this ID is supposed to identify a slot of the GridClient. Common

workflows usually start with the slot-reservation 1 , which returns the corresponding [slot_id]c

2 . This number can be used as input for all other commands 8,9,10 , which either display

data or steer the process. Therefore the slot becomes identical to the whole calculation and

its [slot_id]c is at the same time also the ’calculation-ID’, since the slot pools all relevant in-

formations such as the directory and the runtime data, which are generated by the daemons

and provide informations about how the calculation performs. The time-consuming tasks are

performed by p
xJOBSq

y in the background 4 and may or may not use the job-registry 5 as a

Implementation and Concepts of W2GRID 63

temporary storage container. In contrast to the previous example in Fig.2.6.4 the respective

[job_id]C is not relevant to the user any more, since all data of interest have to be written to the

slot-registry now 6 , from where it can be retrieved as before 10 by the respective command,

which requires the [slot_id]c as a mandatory argument. In this case now, the command also

returns data if the calculation has already come to an end and the p
xJOBq

y has been deleted

7 from the table, because the calculation-data are persistent in the slot-registry. If desired,

the calculation can also be rerun 9 . For simplicity the presented example focuses on the

GridClient-side of the workflow. Of course a remote calculation also needs a corresponding

GridServer-slot, otherwise there would not be a temporary directory on the GridServer, but the

respective [slot_id]S is irrelevant for the user and is one of many runtime-data, which are stored

in the GridClient-slot. The pervasive purpose of this container becomes apparent if one takes

into account, that the single client-side [slot_id]C also represents the server-side processes,

its data and p
xJOBSq

y, simply the whole calculation. The GridClient- and the GridServer-slots

are slightly different and are discussed in detail in the following subsections.

2.6.5.1 GridServer

In order to start a calculation on a remote host, the GridServer needs access to the input

files. These files may either be accessible directly without copying if the source code direc-

tory is available to the GridServer (NFS) or have to be copied to a local temporary directory.

Additionally most GridServer-processes produce numerous logfiles, which are provided for

debugging purposes but are mostly irrelevant otherwise. W2GRID imposes a policy, which de-

mands, that these logfiles are written to a temporary directory on the GridServer first and only

copied on demand. Therefore a temporary directory on the GridServer is needed anyway. The

advantage of this solution is, that all temporary data, which is accumulated during the calcu-

lation is cleared when the slot is released. Table 2.3 shows the definition of the slot-registry.

When a slot is reserved ({slot.reserve}S), an additional entry is inserted into the table, which

column datatype

slot_id int
user_id int
status int

expiration datetime
tempdir char 150
workdir char 150

parameter text

Table 2.3: GridServer slots (table:slots.server)

Implementation and Concepts of W2GRID 64

is identified by the [slot_id]S. In a second stage, the temporary directory [tempdir] 3 2.5 is

created in the directory]$GRIDROOT/temp/. Its (random) name is composed of the string

’slot_’ and an attached integer. The [workdir] is by default the same directory as [tempdir],
unless it is specified explicitly upon reservation. Whereas [tempdir] is used for temporary

data such as logfiles, the [workdir] points to the directory, where the files (input and output)

are located. If the original source code directory is accessible (e.g. by NFS) and [workdir]
is set accordingly no files have to be copied. During the calculation, the database-entry may

hold a lot of additional data in the column [parameter]. The data and its formats are entirely

up to the developer. Since a slot represents a calculation, the column [status] reports the state

of this calculation. It may be one out of four integer values associated with a corresponding

string: The default-status is ’INACTIVE’ (0). If the calculation is started, it will be updated to

’RUNNING’ (1). Finally it can either be ’FINISHED’ (2) or ’ERROR’ (-1). The sum of INAC-

TIVE and RUNNING slots is limited and has to be specified during the installation. The default

value is 6, but it may be changed freely to any other number. If this threshold is reached,

no additional slot can be registered, hence the command {slot.reserve}S will return an error,

unless one of the ’INACTIVE’ slots is removed by {slot.release}S or a ’RUNNING’ one comes

to the final status ’FINISHED’ or ’ERROR’. For failsafe and to avoid a shortage on slots due

to application bugs, each slot has got an expiration date [expiration], which is monitored by

a job (pxslot.checkq
yS,C). If the slot is not updated until this date it will be changed to ’ERROR’

and removed after a certain time. The content of the slot-registry may be retrieved by the use

of {slot.list}S (list of all slots) or {slot.info}S (single slot). A sample output is given in Fig:2.21.

The GridServer-slots are usually managed by the GridClient (see Fig.2.1). As explained in

>slot.list
#command took 1 seconds to complete
ID: [1] | reserved: [12:57:26 12-10-2006] INACTIVE

Figure 2.21: Screenshot of the command {slot.list}S

chapter 4, at the beginning of a workflow the GridClient will select a host and reserve a slot.

Subsequently it copies the input files and starts the calculation. Once the calculation is done,

the GridServer-slot will not be needed any more and is released by the GridClient. If some of

the logfiles are considered to be important, they have to be copied, otherwise they are deleted.

2.6.5.2 GridClient

In contrast to the GridServer, the slots are managed by the user directly by the aid of the

commands {slot.create}C, {slot.kill}C and {slot.list}C. A temporary directory is not necessary

in this case, since the working-directory is supposed to be accessible anyway and the logfiles

Implementation and Concepts of W2GRID 65

are written directly into it. Hence there is only a single column provided [dir] which points to

the source code directory of the calculation. The command {slot.kill}C does of course NOT

remove this directory and just deletes the entry of the slot-registry instead. The definition of

this table is given in Table 2.4. Additional informations can be provided, such as the [pro-

column datatype

slot_id int
program char 100

name char 100
server char 100
status int

dir char 150
parameter text

Table 2.4: GridClient slots (table:slots.client)

gram] or a [name], which allows the user to set the purpose of a calculation. The WIEN2k

plugin uses this column for the name of the CASE (see 1.1.3.4). The entry for the [server] in-

dicates, which GridServer received the calculation. For arbitrary and very calculation-specific

data (e.g. the number of already completed iterations of WIEN2k, see chapter 4) an addi-

tional column [parameter] is provided. It may contain any kind of information, relevant to

the user. Finally, the slots may also serve as a ’history’ of all calculations performed so far.

The screenshot in Fig.2.22 illustrates this purpose. Application-specific commands may also

use more sophisticated methods to display these data since they can read and interpret the

column [parameter] (see the output of {wien.list}C Fig.4.8).

>slot.list
#command took 0 seconds to complete
ID:[20] test [FINISHED: WIEN2k on ’gescher’] /data/test
ID:[21] old tic [ERROR : WIEN2k on ’athena’] /data/tic_old
ID:[22] tic [FINISHED: WIEN2k on ’aurora’] /data/tic
ID:[23] tio2 [RUNNING : WIEN2k on ’gescher’] /data/tio2
ID:[24] old tio2 [FINISHED: WIEN2k on ’gescher’] /data/tio2_old
ID:[25] random numbers [QUEUED : TEST on ’athena’] /data/random

Figure 2.22: Screenshot of the command {slot.list}C

2.6.6 Registry

Previous sections already mention certain tables, which are termed ’registries’ (e.g. ’job-

registry’, ’host-registry’), where the prefix (e.g. ’job-’ indicates their content and purpose).

The actual registry (without prefix!) of this section is a special table, which stores runtime

informations about the daemons such as the port, the encryption-key and some configuration

Implementation and Concepts of W2GRID 66

data. The definition of the registry, which is the same for both Perl-daemons is shown in

table 2.5. Certain entries are mandatory and will be checked by the daemon at start-up 1 2.14

column datatype

key char 100
type char 50 (contains either ’STRING’ or ’NUMBER’)
value tinytext

Table 2.5: Table-definition of the registry

(e.g. ’host_port’, ’host_key’, ’host_ip’). The number of optional entries is not limited, hence

this table can be used to store any kind of data (e.g. the configuration of the plugins). This

becomes evident by comparing the sample contents of the GridClient-registry (Fig.2.23) and

the GridServer-registry (Fig.2.24). The registry-tables are also needed by their respective

commandline interfaces to retrieve IP, port and key. Details about the tables are provided in

the following subsections.

2.6.6.1 GridClient

A sample content of the GridClient registry is shown in Figure 2.23. Since this daemon does

not need to interact directly with the operating system or submit any calculations, the entries

are limited to the items required to bind to a port. No configuration is required.

>select * from hostinfo.client

| key | type | value |

| host_port | NUMBER | 9675 |
| host_ip | STRING | 192.168.000.019|
| host_key | STRING | POzisHb_IQdZ |

Figure 2.23: A sample content of the GridClient-registry

2.6.6.2 GridServer

The configuration of the GridServer requires more effort, because this daemon must interact

closely with the architecture and take care of the individual setup of given software compo-

nents. To account for the long strings, a single configuration entry may create, the column

[value] may take up to 8192 bytes. Most of these items are stored in XML-format for conve-

nient machine-readability as shown in table 2.24, whose entries exceeded the line-width and

had to be truncated.

Implementation and Concepts of W2GRID 67

>select key,type from hostinfo.server

| key | type | value |

| host_port | NUMBER | 8833 |
| host_ip | STRING | 228.130.134.45 |
| host_key | STRING | SomeKey |
| host_name | STRING | athena |
| slots | NUMBER | 6 |
| free_slots | NUMBER | 3 |
| host_type | STRING | standalone |
| enable_authentication | NUMBER | 0 |
| platform_id | STRING | _PLAT_SUSE |
| platform_options | STRING | <options><item><name>platform</name><value>... |
| processor_id | STRING | _CPU_P4_2.4 |
| processor_options | STRING | <options><item><name>SPEED</name><value>500... |
| execution_id | STRING | _EXEC_CMDLINE |
| execution_options | STRING | <options><item><name>cpus</name><value>1... |
| execution_file | STRING | /WGRID/libs_perl/execs/commandline.pl |

Figure 2.24: A sample content of the GridServer-registry (truncated)

2.6.7 Minimising the memory requirement of the Perl-daemons

If many users want to access the same host, there are two possibilities. Since the GridServer

(as well as the GridClient) provides user-accounts24, this feature can be used to share a single

GridServer among several users. Or on the other hand, every user may install his own Grid-

Server. W2GRID does not impose preferences for any of the two solutions. Given, that many

independent GridServers are running on the same host, the most unfavoured disadvantage of

Perl becomes apparent, because in comparison to compiler languages such as C or Fortran it

consumes much more memory for the very same task [100, 101]. This property is even more

striking, since the child processes always inherit the size of their parent, hence each child and

grandchild will consequently be larger than its ancestor. The workflow of the Perl-daemons

(Fig.2.14) makes apparent, that the processes fork quite often, therefore already a small re-

duction of the memory requirement will result in a reasonable saving of resources. As can

be clearly seen in Figures 2.14 and 2.17, two processes are required for an idle daemon25,

one additional process for any connection26 and two additional processes for every command

being executed. This makes at least 5 processes at the same time for a single command such

as {wien.exec}S. It is necessary to reduce the memory consumptions in such a way, that the

overall memory occupied by the Perl-processes remains below a certain threshold.

24which are disabled by default
25yet not serving any connection or executing any job
26e.g. different users

Implementation and Concepts of W2GRID 68

2.6.7.1 Breaking the daemons into smaller pieces

Each section is ’dead weight’ for any of the other sections.

1. Commandline arguments are processed. This code is
only needed at start-up.

2. The code for the ’controller’ of background processes
(pxJOBSq

y), which is illustrated in 4 2.14.

3. The actual daemon process, which waits for incoming
connections. It is illustrated in 2 2.14.

The additional libraries, which are needed for each single sec-
tion in addition to the source of the daemon are not explicitly
shown in this figure.

Figure 2.25: The three sections of the source code of Perl-daemons

Scripting languages are in general known to be excessively memory demanding, which does

usually not matter for tools, that take a defined time to run. Yet in the case of daemons, which

run for weeks and months, this is different. Their memory consumption must be as minimal as

possible, which directs the attention to such lines of code, which are present in the sources but

not used by the daemon although adding to its memory requirement. This becomes evident

in Fig.2.25, which illustrates the composition of the respective source code file of a daemon.

The section, which processes the input is used only once at startup 1 2.25 and for the many

hours, days or even months while the daemon is online none of the therein provided functions

will be executed again. 2 and 3 of Fig.2.25 are even less favourable, since they never

use a line of code of each others section. The solution for this problem is simple: The code

1 The still small process at ’start-up’.

2 Library A is included into the daemon, which
listens to the socket.

3 Library B is needed by the Controller, which
processes the jobs.

Figure 2.26: Optimisation of the child processes of a Perl daemon with respect to the memory
consumption

is split into three pieces, according to Fig.2.25. While the first section 1 2.25 remains as the

executable (gridsrvd.pl), the other sections are placed into the library files A 2.26 and B 2.26.

These files are now included right after forking, which prevents, that the code of one instance

Implementation and Concepts of W2GRID 69

contributes to the size of the other one. Still the input 1 2.25 is part of both processes, which is

unfavourable. Therefore a third library C 2.27 is necessary, which consists of the code required

for processing the arguments of the daemons. The ’dead weight’ problem of this library is

1 The original process 1 2.26 still without any additional code.

2 Arguments are read by the use of library C , which will here be in-
cluded directly into the (one and only) parent process.

C contains the code, which reads and processes the commandline-
arguments of the daemon.

3 Only the extracted data shall be passed on.

4 All further processes do not need the functions of C , which is ’dead
weight’.

Figure 2.27: Unfavourable processing of commandline arguments

illustrated in Fig.2.27, where the file will still be passed on to all children of this process. The

solution - shown in Fig.2.28 - is not trivial but allows to obtain the desired data without having

to keep the respective library in the persisting code of the daemon. The presented method

allows to ’load’ and ’unload’ additional code into and out of a Perl program by the use of two

processes and interprocess communication. Only the input data is passed on to the parent

process, but the library is used once and then ’discarded’.

The original process forks and uses the child
2a to include the argument-processing library

C 2.27. Once this is done, the already verified
arguments 2c are sent to the parent 2b by
the use of a pipe. The workflow will continue
without any extra memory requirement. The
child quits and its allocated memory is freed.

Figure 2.28: Memory-saving processing of commandline arguments

2.6.7.2 Other dispensable libraries

The solution described in Fig.2.28 applies to the daemon process 2 2.14 and the control-

process 4 2.14 and reduce the memory requirement of the Perl-daemon to an acceptable ex-

tent. Several other child processes such as the Bouncer 3 2.17 (see Fig.2.17) will also need-

Implementation and Concepts of W2GRID 70

lessly waste memory, although not performing any highly complex task. The procedure applied

to these processes is similar and is not discussed here in detail.

2.6.7.3 Including modules

Perl comes with the favourable option to include foreign code27 as a ’module’ [102]. This is

very convenient, because some tasks will better be solved with C-code, which requires less

memory and is usually faster. A lot of functionalities such as the AES encryption are already

provided in C-libraries, which can be directly included into the scripts, and helps to save many

lines of Perl code, thus reduces the overall memory requirement.

2.6.8 Performance tuning

A major issue was the performance of the Perl daemons, which is especially critical if con-

tacted from the commandline in batch mode28. If many subsequent commands are sent to

the daemon (e.g. from a web interface, which cannot maintain an interactive session with the

daemon), the logon process needs to be repeated for every single command individually and

quickly becomes a significant overhead. In contrast to the improvement of the protocol, shown

in section 2.3.4, this section instead is focused on improving the speed of the corresponding

Perl-code. The - already optimised - protocol remains unchanged.

2.6.8.1 Replacing encryption by SSH-tunnelling

The encryption of the logon-process is optional but enabled by default. It can be disabled

and replaced by SSH-tunnelling, which yields the additional benefit, that it encrypts the whole

traffic. The corresponding tools are provided by the operating system and can employ more

effective means, since they are optimised for the given architecture. Hence this solution is

usually faster for short strings than the AES encryption.

2.6.8.2 Including C-code

Not only memory intensive but also time-consuming functionalities are best handled with C-

code. There are two ways to use C-code in Perl-programs. The latter has already been

mentioned in section 2.6.7.3.
27C, C++, perl
28batch mode means, that the interface is invoked only for submitting a single command, obtaining the result and

quitting right afterwards

Implementation and Concepts of W2GRID 71

• Compiling the code as an application (C-tool) and invoking this application with the

proper arguments by a ’system’ statement29 from within the Perl-code. This has the

advantage, that the C-code does not contribute to the memory requirement of the Perl-

code requirement. Yet it is slower since the internal shell causes a significant delay

(several milliseconds per statement).

• Including C-code as a module and calling its functions from within Perl will provide a

good performance, although this increases again the memory requirement. Modules

have already been mentioned in the previous section.

Whereas the module solution will yield the better performance, the external code will be smaller

in size. Both methods are offered for choice during the installation. By default, the C-code will

be included as a module, but this setting can be modified for the sake of memory consumption

at any time. The usersguide [97] explains how to compile the module properly and restart the

Perl-daemons to make the new environment variable take effect.

2.6.9 Logon

In contrast to the full protocol, which is employed by the wiensql-daemon and is explained in

section 2.3.4, the Perl-daemons do not query for login and password by default and instead

use the encryption key to authenticate a client. The user-authentication can be enabled with

the aid of installation scripts, which also provide means to create user-accounts (i.e insert and

manage entries to table 2.6). Enabling user-authentication will slow down the logon-process,

column datatype

user_id int
login char 100

password encrypted 100
full_name char 100
description tinytext

Table 2.6: Essential columns of the user-registry

which may be a problem if many commands are submitted in batch mode. The screenshot pro-

vided in figure 2.29 illustrates the default logon process without login or password being asked

by the server. This verbose output is collected from the gridsrv_console.pl, which connects to

the GridServer, hence the screenshot shows the client’s perspective on the logon-process.

The initial Greeting is shown in line 6. The ’u’ before the version-number indicates, that the

29A Perl-command, which allows to create an intrinsic Bourne-Shell (sh) for the execution of shell-commands.

Implementation and Concepts of W2GRID 72

1: [SOCKET] Trying to connect to localhost on port 8811!
2: [SOCKET] Socket creation succeeded
3: [SOCKET] Bind succeeded
4: [SOCKET] Connect succeeded
5: [INTERNAL] sending greetings
6: [SOCKET] reading ’GRIDSRVD u.2.12 encrypted’
7: [INTERNAL] connection to gridserver version ’2.12’
8: [INTERNAL] Gridserver will authenticate you as admin
9: [INTERNAL] Gridserver is encrypted ...
10: [SOCKET] reading ’************************’
11: [INTERNAL] READING ENCRYPTED: ’tellme:9946%1430+2340-9011+2783*5467’ [4]
12: [VERBOSE] Latest Transmission was considered type:4 (everything >=0 is good)
13: [INTERNAL] SENDING ENCRYPTED: ’15209356’
14: [SOCKET] sending ’******’
15: [SOCKET] reading ’************’
16: [INTERNAL] READING ENCRYPTED: ’access granted’

Figure 2.29: The verbose output of the commandline interface gridsrv_console.pl showing the
communication between client and server during the default logon process

server will not ask for login and password, otherwise it would send an ’a’. Right after process-

ing the greeting, this is noticed by the client on line 8. The encrypted Maths-test is received

on line 1030 and the result returned on line 14. The encrypted Result may either be ’access

granted’ (line 16) or ’access denied’ followed by the respective reason.

2.6.10 The Bouncer

W2GRID does not impose any strict rules concerning the development of the command-scripts,

hence some of them may take extremely long to be processed or even crash and cause unpre-

dictable results. To provide a fault tolerant framework for commands and to catch these prob-

lems -especially the timeout of the pending connection due to an exceeding time-consumption

- an additional child process 3 2.17 is introduced. It will send short ’pings’ in intervals of one

second. As long as these pings are transmitted, the client which waits for data at the other end

of the connection considers the remote process alive and does not close the socket, because

the TIMER will be reset each time a packet arrives. This child process is referred to as the

’Bouncer’. The ’keep alive strategy’ is illustrated in Fig.2.30. It is however only reasonable to

keep a connection open as long as a command is being processed. If the command-instance

5 2.17 is done with the workflow, the Bouncer will terminate and return the control of the socket

back to the parent. Also, if this instance dies before it can actually return any response, which

might be caused by a severe error in the script, the Bouncer will terminate, too. This triggers

the exception handling of the client, which closes the connection safely. A regular check 1 2.31

if the parent still exists makes sure, that the failsafe-mechanism works even in the case of

a fatal error. Program-flaws like an endless loop however cannot be caught by the Bouncer,

since the parent will still exist. There is no mechanism available to distinguish such a bug from

30line 11 shows the same line in plain text

Implementation and Concepts of W2GRID 73

a really time-consuming process.

• blue arrow The command-process 5 2.17

writes to the socket.

• black line 5 2.17 is silent.

• 1 starting the command workflow.

• 2 command workflow is done.

• green circles Bouncer packets.

Figure 2.30: Socket-traffic between client and server (’keep-alive strategy’)

The child, which processes the command workflow will not write data to the socket unless

the processing is done 2 . In Figure:2.30 a) the situation is illustrated without a Bouncer.

After a threshold of several seconds, during which the child process is working through its

instructions and remains silent, the client will consider the silence to be caused by a fatal error

and close the connection. To prevent this unwanted interruption, the Bouncer sends small

packets in regular intervals (see Fig:2.30 b). The content of these packets is not important

as long as this part of the traffic can be distinguished easily from the output of the command-

instance. If the command-instance dies, due to a fatal error in the script, its parent 6 2.17 will

1 If the parent process does not exist any more, the Bouncer will quit
instantly.

2 Even a single character is sufficient to keep the connection open.
These packets can be used as carrier for other purposes (see later).

3 The interval in between two Bouncer cycles is approximately one
second. The threshold for timeout is in the range of 5-10 seconds.

Figure 2.31: Bouncer-workflow

notice it and kill the Bouncer. For failsafe, the Bouncer itself also checks with each cycle,

if its parent still exists. This double-failsafe procedure catches even the unlikely case that a

crashing command-workflow kills the parent and would keep the Bouncer -now an orphan-

bouncing forever.

2.6.11 The Progress Indicator

Whereas the minimum latency between submitting a command from the commandline to a

daemon and receiving the result is in the range of a fraction of a second, the maximum latency

is practically unlimited, since the workflow is up to the developer and the connection will not

be closed thanks to the Bouncer. A user will grow anxious already after a few seconds if

Implementation and Concepts of W2GRID 74

no output is displayed. resulting from the way, the RPC-commands are implemented, it has

to to be completed up to the very last line of the workflow until the first byte of the result

can be sent. Sending partial or even intermediate results is not supported. Hence, W2GRID

needs a mechanism to inform the user about the progress of the command. For this purpose

the progress indicator is amended to the data-transmission protocol. The progress may be

displayed at the commandline in %.

2.6.11.1 Implementation

The progress indicator is a method to send such progress feedback packets to the client.

Since the Bouncer (see section2.6.10) already constantly sends data to the client, and be-

cause the content of these packets is not important, they are hijacked to serve for an additional

purpose. Hence, with the aid of the Bouncer, a constant feed of progress-packages are of-

fered in intervals of a single second. A code fragment, which shows the implementation of

such a progress report in a command script is shown in Fig.2.32 A list of ten filenames (a-j)

1: my @files=("a","b","c","d","e","f","g","h","i","j");
2: foreach(@files)
3: {
4: ©_file($_);
5: &demon__progress(10); #10%
6: }

Figure 2.32: A sample code for including progress indication into the filetransfer

is created as an array in line 1, which are copied individually in line 431. Assuming all files

have got the same size, the overall workflow will progress by 10 percent with each file, hence

the respective progress (also in percent) is sent in line 5. The result, which is extracted from

the Bouncer-packets in the meantime by the client is shown in Fig.2.33 The packets are (in-

1: [SOCKET] reading ’<*>10</*>’
2: [SOCKET] reading ’<*>20</*>’
3: [SOCKET] reading ’<*>20</*>’
4: [SOCKET] reading ’<*>20</*>’
5: [SOCKET] reading ’<*>20</*>’
6: [SOCKET] reading ’<*>10</*>’

Figure 2.33: Verbose output of the commandline interface gridsrv_console.pl showing the packets as
received from the Bouncer process

valid) XML-fragments, which can be distinctly identified and ignored in the final string. The

figure will yield a total sum of 100%, however there are only seven lines instead of ten, since

some lines contribute a progress of 20%. This is due to the implementation, which implies that

31This is a dummy function, which does not exist. It only serves for illustration.

Implementation and Concepts of W2GRID 75

the progress is passed on from one instance to the next one (parallel-process -> Bouncer ->

GridClient daemon -> commandline). This is only possible by the aid of files. The Bouncer

collects these files with each cycle, sums them up and forwards the progress. If in the mean-

time according to the above example, two of these packets have been written to the respective

temporary directory, the Bouncer will add their contributions and send only the result instead

of each individual progress-packet.

2.7 C-Shell scripts

For the installation and configuration of W2GRID, several standard Unix/Linux commands need

to be nested within syntactical elements. This yields simple straight forward workflows, which

can be easily developed and modified. W2GRID comes with two master-scripts to perform the

installation, which are described in more detail in chapter 3. One will invoke a fully script-

based installation, whereas the other will offer a menu-guided interactive installation. All other

shell-scripts are invoked from within the master-scripts and do not have to be called manually.

The purpose of the provided routines is as follows:

• Installation: Creation of Environment variables, Modification of the shell startup-files32,

compilation of the source code33, Creation of temporary directories, menu-guided setup

of the daemons.

• Modification: Installation of new plugins, source updates, change of runtime-parameters34,

registration of new hosts.

• Removal: stop of the daemon processes, removal of Environment variables, restoration

of the original shell startup-files, removal of temporary directories.

2.8 C and Perl-tools

Some tasks are not or only barely accessible within the scope of the C-Shell language like

AES encryption or tcp functions. Also complex workflows, which require more than a single

database-operation or occur several times in different C-Shell scripts are better solved with

Perl, since wiensql can only be accessed from within Perl-programs. The plugin-installation

routines will be encapsulated by C-Shell code, but the actual workflow is written in perl. En-

cryption and decryption on the other hand is supplied by C-programs. Only a few important

32This file is executed when a new shell is created. The C-Shell for example needs the .cshrc file, whereas the
bash will execute the /.bashrc oder ./profile file

33database and C tools
34e.g. the port or the encryption-key(see registry and security)

Implementation and Concepts of W2GRID 76

examples are itemized, the others are described in the usersguide [97] and the developers-

guide [103].

• rijndenc AES encryption of files (rijndael). The rijndael algorithm has been implemented

as a C-library. The binary makes this library available to parts of W2GRID, which cannot

include the C-code neither as library nor as module.

• rijndec AES decryption

• bintest allows to perform a quick check, if the compiled binaries work. This is used by the

installation scripts in order to check if the compilation has been successful

• query_password hidden password input

• filehash Generates a 16-100 bytes (base64 encoded) hash-key for a file. Developers

may use this key to check if a file has changed by simply comparing the keys from before

the change and after the change. It is a bit-by-bit algorithm, which must work on every

machine and yields the same key for the same file for any kind of operating system

(little-endian and big-endian).

• logview.pl Turns the XML-format of logfiles (see section 6) into a readable output.

• logalizer.pl Reads the logfile of the wiensql-daemon and returns a statistics of the exit-

codes.

• gridpackage_create.pl Packs source code files, installation and removal- instructions into

a single file, which can be used to distribute e.g. plugins or bug fixes (see section 3.3.11).

• gridpackage_install.pl Used for installing such a package (see section 3.3.11).

Implementation and Concepts of W2GRID 77

2.9 Core and plugins

Portable code has two different aspects. One is the portability to a given architecture, which

can either be achieved by the use of a platform-independent scripting language (e.g. python,

Perl) or by providing the source code binaries35.

The other aspect is the capability to cope with the given configuration of a host and to interact

with other applications or tools. This is especially important for such essential workflow ele-

ments like running of a calculation and its frequent monitoring. Starting a calculation requires

to know the job-submission method, which is applied by the host in question. Since there

are numerous methods, it is out of question, that the respective commands can ever be hard

coded directly in the source code.

Example:

Given two clusters: One is managed by PBS and another one by the LoadLeveller. To start a

calculation on PBS, one needs to write a submission script, which is different to the LoadLev-

eller script and submit it by the use of the command

>qsub pbs.script

in contrast to

>llsubmit ll.script

on the other cluster.

Even if the same cluster management software is used, the submission-script may look dif-

ferent due to different versions of the software or due to certain individual properties of the

host such as the number of CPUs per node or the number of cores per CPU or simply due to

the queue-names. Additionally the different methods of how to submit a calculation need to

correspond with the given operating system. For this reason all such tasks, which require the

use of very specific commands and an individual formatting due to the configuration of a host

are abstracted in W2GRID as so called ’plugins’. This feature is illustrated for a task like the

job-submission in Fig.2.34.

Example:

{wien.exec}S starts a WIEN2k-calculation on the host. If this host is a PBS-managed cluster,

it has to be submitted by the aid of the qsub command as shown in the previous example.

The corresponding file wien/exec.pl† will not contain this command. Instead it will invoke a

35W2GRID actually employs both

Implementation and Concepts of W2GRID 78

Figure 2.34: Abstraction of the job-submission by the use of plugins

so-called ’plugin-function’

The proper plugin-function for submitting a command is &exec__submit(), which is pre-

defined and has a uniform formatting of the input as well as the output. The command-script

uses this function 1 2.34 instead of explicit commands like qsub or llsubmit. Each plugin-library

contains exactly one such function. The actual implementations 3 are different among the

individual files and conform to the specific needs of the submission-scheme. In order to know,

which library shall be used, this has to be specified upon installation of the GridServer. The

individual properties such as the memory of each node have to be configured. Each time, a

command calls the function &exec__submit(), it will be mapped 2 to the appropriate method

(e.g. ’qsub’).

The library files are referred to as the ’plugin-library’ or simply the plugin. The same principle

is employed for all aspects, which need an individual architecture-dependent implementation.

This core and plugin-approach allows to use of W2GRID on virtually any Unix-like architec-

ture.

The core is by far the largest part of the W2GRID code and is stripped of all parts which

require an explicit implementation of the items listed above. It provides the framework and the

interfaces for including the plugins in a transparent way. The core is independent from any

of the plugin- capabilities and is reduced to the parts, which can be compiled and run on any

host. Only the Perl-daemons and the Perl-tools require this special treatment, consequently

all C- and C-Shell code is part of the core. All plugins are restricted to providing explicite

methods only for their specific purpose. Execution plugins only code the methods for interact-

ing with the queuing system but do not interact directly with the platform. If for example the

Implementation and Concepts of W2GRID 79

total memory has to be retrieved, the execution plugin has to use the corresponding mapped

platform plugin function instead of directly calling one of the many possible commands for the

different operating systems. Therefore the plugins remain independent of each other, which

allows that each plugin is coded exactly once.

Example:

The Sun-Grid-Engine SGE may be used on different operating systems. The same SGE plu-

gin which is used for Linux, can also be used on a Solaris cluster, since all platform-specific

flavour is contributed from the platform plugin, and the execution plugin does not have to care.

The types of plugins are discussed in further detail in the following sections

2.9.1 Operating system (platform) plugin

Some ’standard’ Unix/Linux functionalities do not always use the same arguments or output

such as ps or top. Others do not even have the same command-name or be achievable by

the use of a single tool (e.g. retrieval of the free memory or formatting of local dates). The

operating system plugin is also referred to as the ’platform plugin’

already provided:

• SuSE

• Solaris

• Redhat

• AIX

Two code fragments are provided, which shall illustrate the functionality. The implementation

of a simple functionality like the retrieval of the total memory of a host is shown for two different

platforms. In both case a string, obtained from invoking different commands is processed by

different regular expressions to extract the property of interest. The code is truncated to its

elemental part.

2.9.2 Job-submission (execution) plugin

This is also referred to as the ’execution plugin’, because it does not only address the job-

submission, but also all other tasks associated with running applications, like monitoring and

status information retrieval.

Implementation and Concepts of W2GRID 80

sub totalmem
{

my $aix=‘lsattr -E -lmem0‘;
if($aix=~/goodsize ([0-9]+)/)
{

return $1;
}
return 0;

}

Figure 2.35: Code snippet for retrieving the total memory on AIX

sub totalmem
{

my $suse=‘cat /proc/meminfo‘;
if($suse=~/MemTotal:\s+([0-9]+)/)
{

return $1;
}
return 0;

}

Figure 2.36: Code snippet for retrieving the total memory on SuSE Linux

already provided:

• LoadLeveller (LL)

• Portable Batch System (PBS)

• Sun Grid Engine (SGE)

• Commandline

2.9.3 Connection plugin

This plugin defines, how commands are submitted to a server and the respective results are

received. It serves basically for all data transfer except the filetransfer. The client has to

contact the server and establish a connection first. This process does not always follow the

same scheme. If the ports in question are blocked by a firewall, one can use SSH-tunneling,

which forwards a local port to the SSH-port, but requires completely different methods for

initialisation than the usual tcp socket connection. It is yet more difficult if other middleware is

involved. The GLOBUS Security Infrastructure for example needs a proper certificate-handling

and to tunnel commands trough third-party executables. All these different issues can only be

addressed by using a proper plugin.

Implementation and Concepts of W2GRID 81

already provided:

• socket (tcp)

• SSH-tunneling

2.9.4 File transfer plugin

Different to the connection plugin, this one is needed exclusively (as the name suggests) to

copy files from and to a server.

already provided:

• cp

• rcp

• scp

2.9.5 Application plugin

The application plugins add the capability to control a certain application by the use of W2GRID.

This requires however, that the application itself has already been installed properly in ad-

vance. The development of application plugins in general is explained in section 3.3.5. The

WIEN2k plugin is illustrated in detail in chapter 4.

2.9.6 Processor plugin

The client-side methods of an application plugin usually contain strategies, how to select the

proper resources out of the pool of registered GridServers. This in turn requires, that the

GridServers are able to predict the runtime of an application, which depends on the power of

the CPU. To measure this power, W2GRID uses an arbitrary number, often simply referred to

as the ’speed’, which is a benchmark number in the range of 200-1000 at present. The user

does not know this number, and it is not very convenient to supply a list, from which one could

select the number and enter it manually. Instead, the number is supplied from this plugin.

The processor plugin just comes with a single XML-file, which defines the name of the chip,

a short description and the number. Additional scripts like those necessary for all the other

plugin-types are not required.

Implementation and Concepts of W2GRID 82

2.9.7 Plugin development

A plugin is composed of commands and jobs, tools (in any language), library file(s) and in

most cases an XML-configuration-file (see a sample content in Fig. 2.37). The latter one is

required to query informations from the user like the version-number of the operating system.

Application plugins may be implemented freely and do not even need the plugin-descriptor,

<PLUGIN>
<ID>_PLAT_AIX</ID>
<TYPE>PLATFORM</TYPE>
<NAME>Aix</NAME>
<CUSTOM>

<ITEM>
<NAME>platform</NAME>
<REGEXP empty=yes default=unknown>STRING</REGEXP>
<DESCRIPTION>The AIX version</DESCRIPTION>
<QUERY>Which version of AIX do you use:</QUERY>

</ITEM>
</CUSTOM>
<FIXED>

<ITEM>
<NAME>system_file</NAME>
<VALUE>libs_perl/platforms/aix.pl</VALUE>

</ITEM>
<ITEM>

<NAME>endian</NAME>
<VALUE>1</VALUE>

</ITEM>
</FIXED>
<DESCRIPTION>IBM operating system</DESCRIPTION>

</PLUGIN>

Figure 2.37: A sample content of a plugin configuration-file (extracted from pbs.plg)

whereas the others are more or less constrained by their very specific nature and impose, that

the libraries offer certain functions, which are well-defined by their name, input- and output-

format.

The development is explained in detail in chapter3.

2.9.8 Interoperability

Most newly developed middleware lacks a proper interoperability with existing ones. W2GRID

addresses this issue by abstracting the functionalities of other middleware simply to a method

of job-submission, filetransfer or connection, which can be picked up by the proper plugin. If a

cluster for example is entirely built on GLOBUS tools, submitting jobs to this cluster can only be

done by the aid of commands like ’globus-job-run’. This is not very different from the way, how

jobs are submitted to any other queuing system like PBS. This possibility has been explored

only in theory. A proof-of-concept is in preparation.

Implementation and Concepts of W2GRID 83

2.10 W2GRID Component packages

Distributing code for W2GRID (e.g. plugins, bug fixes) often requires more than simply providing

an archive, which contains the source code files. Prior to the installation of an additional part

it may be desirable to perform some checks, if a certain list of pre-requirements are met (e.g.

if certain directories exist). Some tools may be supplied as source code instead of binaries,

and have to be compiled. Bug-fixes have to replace components and maybe need to alter

table-definitions. Providing the source code and an ASCII file (README.txt) for the user is not

a reliable and convenient approach. Instead W2GRID provides an automated scheme, which

executes such instructions that are supplied by a script file. A ’package’ is a single binary

file, which consist of the tared and compressed source code files and also contains a set

of XML-coded instructions, which are supposed to be interpreted and executed by a certain

tool (gridpackage_install.pl). Some of these instructions also rule, how this package may be

removed again or how a certain bug fix can be undone. The structure of such a package is

shown in Fig.2.38.

Figure 2.38: Contents of a W2GRID-package file

1 A list of the files, which belong to the package have to be supplied as a simple ASCII file

with relative pathnames. (see a sample file in the appendix Fig.A.18). The respective

files are compressed into the archive 2 . Files are optional, since a bug fix may for

example only contain a simple regular expression instruction in 3 to correct a piece of

code, hence also this list is not mandatory.

2 The tared and compressed archive becomes attached to the end of the package D

Implementation and Concepts of W2GRID 84

3 The installer file is XML coded and separated into several sections. A sample file is

shown in the appendix (Fig.A.16). It is appended as the second section to the package

B . The file is optional too, but either this or 1 has to be supplied to the package

creation-tool, otherwise it will return an error.

4 The package may also provide removal-instructions, which allow to revert the installation

process. A sample file is shown in the appendix (Fig.A.17). It is appended as third

section to the package C and is of course optional too.

5 The header section A of the package file contains the sizes of the respective parts B

and C in order to separate the sections again upon installation.

The purpose of the package-feature of W2GRID and the creation of own packages for e.g.

sharing application plugins is shown in section 3.3.11. The tasks, which are supported in the

installation/removal scripts are as follows:

• Creation/removal of additional databases

• Creation/removal/Check of tables

• Creation/removal of directories (e.g. for command-groups or job-groups)

• Compilation of sources and copying of the resulting binary to]$GRIDROOT/bin/

• Inserts/Updates/Deletes to the wiensql-database

• Check for environment variables.

• Interactively query dynamic variables and use the results as conditions for the installa-

tion/removal workflow.

• Check for installed programs/versions

• Insert/Delete of a corresponding package-entry to the database

• Registration of plugins

Chapter 3

Using and extending the middleware

The predominant purpose of W2GRID is to turn numerous user-accounts on different resources

into the private Grid-environment of a scientist, which has to be installed to a large extent

by the user in person. Since the GridServers need to interoperate properly with the architec-

Figure 3.1: Collaboration of developers and users of W2GRID

ture and the setup of their host, a number of plugins has to be installed and configured. A

basic set for the most common platforms and queuing systems are already provided, whereas

additional plugins may be developed and published at any time by any person, who wants to

contribute to W2GRID.

In order to use a certain software by means of the presented middleware, one needs to have

an ’application plugin’, which consists of scripts that ’wrap’ the software and allow it to be run

on the infrastructure. In most cases these scripts are provided by the developer(s) of the ap-

plication. The users obtain it either with the distribution of the HPC software or download it

Using and extending the middleware 86

from the Internet. The three collaborating parties and their responsibilities within the W2GRID

framework are illustrated in Figure 3.1.

Remarks to this chapter

The detailed informations provided in this chapter are not intended to serve as a usersguide

for installation and maintenance, as this exceeds the scope of what one needs to know about

W2GRID. Furthermore the tasks to be performed for installing the middleware on computing

resources are described in the first sections of [97]. Instead the chapter shall provide the

developer with a profound understanding of the many processes, that are performed in the

background invisible to the user.

3.1 Installation

W2GRID is installed by the aid of several csh-scripts, which may either be used in an interactive

(or manual) mode (section 3.1.3) or by the aid of config-scripts (section 3.1.2). Both methods

offer basically the same flexibility and options for the installation, yet the manual mode is the

only way to modify the setup afterwards, whereas the installation based on config-scripts is

intended to be applied for installing W2GRID completely from scratch. Most details of either

mode are hidden from the user, hence this section will highlight the processes, that are per-

formed in the background (section 3.1.1). Extended informations and troubleshooting-tips are

provided in the usersguide [97], yet the essentials are summarised in this section for clarity

and completeness of the thesis.

3.1.1 Task-overview

The extent of user-interference required for the individual tasks is different. Some need only

little (or even no) interaction (e.g. compilation) whereas others, such as the configuration of

the GridClient and the GridServer, usually comes with a list of details about the architecture,

which have to be specified interactively by the user. The installation covers the following tasks:

• Creation of 4 environment variables and modification of the startup-file(s)1.

• Creation of two directories ($GRIDROOT and $WIENSQL_ROOT).

• Compilation of the C-source code.

• If required, the interpreter-path of the Perl-scripts has to be changed.

1The C-Shell is used as internal default-shell, hence the .cshrc file has to be provided anyway. If the bash is
used, the modifications need to be done to both startup-files.

Using and extending the middleware 87

• Installation of the database.

• Installation and configuration (plugins) of the GridServer daemon on each computing

resource.

• Installation of the GridClient daemon (only on a single host) usually on the local desktop.

• In a last step, the GridServer daemons have to be added to the host-registry, which gives

the infrastructure the intended shape (see Fig.2.1). The required data are [host_ip],
[host_port], [host_key] and optionally also a pair of login and password if the user-

authentication is enabled. After configuration of the connection plugin (section 2.9.3)

and filetransfer plugin (section 2.9.4), the GridClient will retrieve all further static data

(e.g. memory, installed applications) autonomously.

The individual sections of the infrastructure setup are referred to as ’layers’ (see Fig.3.2), which

depend on each other and have to be installed in the presented hierarchical order (arrow).

• GRIDSRC: Compiles all executables and makes the Perl-
binaries work. Directories and environment variables are
created. The Infrastructure is not operable, but individual
parts may already be used.

• WIENSQL: Installs the wiensql-database and starts its
daemon. The infrastructure is still not operable, but the
database may already be used.

• Perl-daemons: Either a GridServer or a GridClient daemon
has to be installed to make this host part of the infrastruc-
ture.

• Fabric: After having installed either one or both daemons,
the respective resource needs to be integrated into the in-
frastructure (see Fig.2.1). The corresponding shell-script
provided for this tasks is only available in an interactive
mode.

Figure 3.2: The task-layers of a W2GRID installation

3.1.1.1 GRIDSRC

This layer will yield fully functional binaries and Perl-executables of W2GRID. It is useful for

testing the success of the compilation and the functionality of the installation scripts on the

host in question. The two Perl-daemons and the wiensql daemon are not usable yet, nor

any script which either needs wiensql-access or has to connect to one of the daemons (e.g.

commandline interfaces). To stop the installation after completion of this single layer (e.g. for

debugging purposes), the quick-installation has to be invoked with the command:

Using and extending the middleware 88

>./quick_install.csh GRIDSRC

The input is read from the file gridsrc_autoinstall.conf† (see Fig.3.3). The following tasks are

performed:

• Two environment variables -$GRIDSRC and $GRIDROOT- are added to the startup-file

(see lines 12 - 13 of Fig.A.19 in the appendix).

• The directory]$GRIDROOT/ and its many subdirectories c 2.5 are created, which will

contain all compiled binaries, libraries, the Perl-module(s) and temporary data. It is by

default located at]
∼/.wgrid_$hostname/2.

• Some essential paths and host-properties are retrieved autonomously and used in order

to adjust certain settings in the numerous Makefiles (e.g. compiler name).

• The libraries and binaries are compiled and written to the directories]$GRIDROOT/libs/
and]$GRIDROOT/bin/.

• If the optional modules have been enabled, they are compiled and copied to a subdirec-

tory of]$GRIDROOT/libs/.

• An additional environment variable ($PERLLIB) is either added or modified. Since the

Perl-module is optional, the variable is optional, too.

• The directories]$GRIDROOT/bin/ and]$GRIDSRC/bin/ will be attached to the path-

variable.

• The correct path to the Perl interpreter will be written to the shebang-line3, if it differs

from the default.

Since some changes have been made to the startup-file, it has to be reloaded to make the

changes take effect.

3.1.1.2 WIENSQL

The wiensql-database, which is installed in the second layer is required by the two Perl-

daemons and most of the tools. To stop the installation, right after completing the database-

installation, quick-install.csh has to be called with the command:

>./quick_install.csh WIENSQL

2This is the hostname of the local computer without the domain-name attached.
3The first line in the script. It usually looks like this ’#!/usr/bin/perl’. See http://faq.perl.org/perlfaq7.html

Using and extending the middleware 89

A fully operable (and in most cases already running4) database-daemon is obtained. Its tools

such as the wiensql commandline interface (wiensql.pl), which can be retrieved in the directory
]SRC_wiensql/bin/ may be used now. The Perl-daemons on the other hand are still not oper-

able, because none of the required tables exist yet. The input for quick_install.csh is read from

the file wiensql_autoinstall.conf†. The following tasks are performed:

• An additional mandatory environment variable ($WIENSQL_ROOT) is created (see line

10 of Fig.A.19 in the appendix).

• The corresponding directory]$WIENSQL_ROOT/ is created, which by default is located

at]
∼/.wiensql_$hostname5/.

• The runtime-parameters are written to the configuration-file .wiensqlrc†.

Again some changes are made to the startup-file, that require it to be reloaded in order to

make the changes take effect.

3.1.1.3 Perl-daemons: GRIDSRV, GRIDCLIENT

The pre-requisite for installing this layer is a working database6. The type of the daemon

(’GRIDSRV’ or ’GRIDCLIENT’) has to be specified at the commandline.

>./quick_install.csh $daemon

installs only the respective $daemon, whereas the command

>./quick_install.csh GRIDSRV,GRIDCLIENT

installs both. The following tasks require only little user-intervention:

• Creation of a wiensql user-account.

• Creation of the necessary tables and insertion of essential data (e.g. [host_ip], [host_port]
or [host_key]).

• Registration of available plugins. All XML plugin-descriptors are read and their data

inserted into the plugin-registry.

The subsequent configuration of the daemons requires a certain user-knowledge and may only

be performed interactively. For this purpose the script quick-install.csh will launch the manual

installer, as soon as the installation reaches this point. The performed tasks focus primarily on

the configuration of two GridServer-specific plugins, which are mandatory:

4depends on the settings in the config-files
5The hostname without the domain-name
6Both daemons will use separate accounts.

Using and extending the middleware 90

• Install and configure the proper platform plugin for interaction with the operating system.

• Install and configure the execution plugin. The informations about the type of the CPU,

the size of the memory, the number of nodes/CPUs/cores are mandatory (only if these

data cannot be retrieved automatically). Depending on the plugin additional data may

be required (e.g. the command for submitting MPI-parallel jobs). A more detailed ex-

planation of the available options of execution plugins are provided in the users-guide

[97].

Since no further changes are made to the startup-files, they do not have to be reloaded after

installation/update of any of the Perl-daemons. Additional application plugins may be installed

and removed at any time.

3.1.1.4 Fabric

In a final step, the individual GridServers must be registered as resources to the GridClient

in order to obtain a working W2GRID infrastructure. This feature is not available from within

quick_install.csh and has therefore to be performed by the aid of the manual installer:

• A [host_name] for identification7 is required.

• The [host_ip] and the [host_port] must be supplied, afterwards the script tries to contact

the GridServer in order to verify the given input. Since this test employs the default

connection plugin (socket), which does not work through firewalls, this first shot may fail

and can be ignored.

• For the logon, the client also needs the [host_key], which is probed in a second connec-

tion attempt. The same reasons as before may cause the attempt to fail, which can be

ignored, too.

• Depending on the setup of the GridServer it might also be required to authenticate a

user by login and password. The input is written to the host-registry of the GridClient

and does not have to be provided again.

• Finally the GridClient must be told, how the remote daemon can be contacted. A list of

connection plugins is displayed in a list. The user has to select the proper one and enter

a few additional details such as the remote login-name.

• In the same manner, the filetransfer plugin is selected and configured.

Provided the GridClient daemon (and at least one GridServer daemon) is online, the personal

Grid-infrastructure is ready for use.
7does not have to be the actual ’hostname’

Using and extending the middleware 91

3.1.2 Quick Installation

The input is read from configuration-files and does not have to be provided manually. The

process is actually performed by four separate subscripts, which are called subsequently from

within the master-script as illustrated in Fig.3.3. Whether the one or the other script is invoked

depends on the input.

The installation is started upon the command:

Figure 3.3: Four individual scripts are subsequently invoked by the script quick_install.csh in the
course of a default installation

>quick_install.csh LAYER(S)

, where the argument ’LAYER(S)’ is one of the layers of Fig.3.2 and may be a string out of the

following list, whose individual items have already been discussed in the previous sections.

• GRIDSRC: see section 3.1.1.1

• WIENSQL: performs all GRIDSRC-tasks + Installs the database

• GRIDSRV: performs all WIENSQL tasks + installs only the GridServer

• GRIDCLIENT: performs all WIENSQL tasks + installs only the GridClient

• GRIDSRV,GRIDCLIENT: (or the other way round) will install both, the GridServer and

the GridClient as well.

The individual scripts shown in Fig.3.3 are also accessible independently. Due to the hierar-

chical order of the layers and the way, the master-script interprets the input, it is not possible

to run the program quick_install.csh twice on the same host without a prior removal of the pre-

vious installation, hence ’adding’ a layer (e.g. the GridClient) afterwards is not possible with

the master-script. For this purpose the manual installer (section 3.1.3) is provided.

The quick-installation is usually recommended to perform a default-setup of the W2GRID com-

ponents, since the settings of the config-files will suite most hosts, whereas the selection of

Using and extending the middleware 92

the proper plugins and their configuration is to be done manually afterwards anyway. The in-

stallation scripts illustrated in Fig.3.3 glue together a greater set of very basic tools (Perl and

csh), some of which are also used by the menu-guided installation (see Fig.3.5).

3.1.3 Menu-guided (interactive or manual) installation and configuration

In addition to the capabilites, which are also provided by quick_install.csh, the manual in-

stallation offers tools to select and configure plugins, install/remove packages, start/stop the

daemons and to modify each part of the installation. It is possible to remove parts of it or install

additional ones. A sample screenshot of the main-menu (bin/gridsrc_install.csh) is shown in

Fig.3.4. The master-script is launched by the command

----------- CHECK INFO and RESET -------------
[t] test current setup and

find conflicts and problems
[i] info (a guide for the items in this menu)
[n] read the releasenotes
[r] remove present W2Grid setup
--

------------------ USER ----------------------
[w] wiensql (database)
[s] gridserver
[c] gridclient
--

----------------- EXPERT ---------------------
[b] BASIC (compiler,perl,environment,modules)
[cr] CRON jobs
--

[qr] quit (remove temporary data)
[q] quit (keep temporary data, login, passwords)

Figure 3.4: Screenshot of the startup screen of the manual installer

>cd $GRIDSRC/bin8;gridsrc_install.csh

Both methods (menu-guided and quick-install), however, are basically only frameworks that

glue together several Perl- and csh-scripts, which are used from within both. This is illustrated

in Fig.3.5. The main difference between quick_install.csh and bin/gridsrc_install.csh (apart from

the greater capabilities of the latter one) is the source of the input data. In the case of the

menu-guided installation the input is requested at the commandline each time a tool is in-

voked, whereas in the case of the script-based installation, the input is read once, at startup,

from the config-file and then supplied to the tool.

8Although]bin/ is added to the $path variable of the shell, the script has to be executed from within this directory.

Using and extending the middleware 93

Figure 3.5: The installation scripts gridsrc_install.csh and quick_install.csh employ the same tools, only
their input is acquired differently

3.1.4 Removal

The command

>reset.csh

removes W2GRID completely. The shell-script runs the layers of the infrastructure in the re-

verse order and first stops all processes, afterwards removes the daemons, then the database

and finally deletes the temporary directories and cleans the W2GRID-specific entries from the

startup-files.

Partial removals of individual components (e.g. the GridServer) without removing W2GRID

completely is also possible, since each of the sub-menus provides an option [r] for removing

the respective component (see Fig.3.4). If changes have been made to the environment vari-

ables, it is recommended to reload the startup-files (i.e. the session) afterwards. The necessity

of doing so will be announced explicitly by the master-script before quitting.

3.2 Usage

3.2.1 Daemon processes

After installing the infrastructure, it may be necessary to start/stop the daemons or to ob-

tain additional verbose output for debugging during the development of {COMMANDS} and
p
xJOBSq

y.

A simple way to start and stop daemons is accessible from within the interactive installer script

gridsrc_install.csh, whereas other operations (e.g. verbose output) require to work on the com-

mandline. To change the behaviour of a daemon manually, soft-links to all three daemons can

be found in the directory]demons/9. The available default-options are: start|status|restart|stop.

9The misspelled name has been defined at an early stage of development and kept for the names of this
directory, some files and functions in order to avoid conflicts, although the correct spelling would be ’daemon’.

Using and extending the middleware 94

Exactly one argument has to be supplied (e.g.)

>demons/gridsrvd start

The Perl-daemons additionally accept the following arguments:

• --verbose [ALL|SOCKET|STANDARD|...]: Allows to obtain (selected) debug output. For

a complete list of all options use the flag ’-h’

• -nojobs: Prevents the original process 1 2.14 from forking into the daemon 2 2.14 and

controller 4 2.14. Only the RPC-commands (section 2.6.2) are available, whereas the
p
xJOBSq

y (section 2.6.3) are disabled.

• -keepterm: Will not set the process into the background and hence not return the ter-

minal to the user. Terminating the process with CTRL + C will shut down the daemon

safely.

• -nocrypt: Does not use the AES encryption and forces the server as well as the client

to send and receive data in plain text. This may be helpful to improve the performance

or to debug the logon-protocol.

Additional options and flags are explained in the usersguide [97].

3.2.2 Status check

A quick status check can be obtained by the use of the csh-script gridstatus.csh. A sample

output is provided in Fig.3.6.

checking authentication ... done
W2GRID INSTALLED : YES
WIENSQL INSTALLED : YES
WIENSQL RUNNING : YES
GRIDSERVER INSTALLED : YES
GRIDSERVER RUNNING : YES
GRIDCLIENT INSTALLED : YES
GRIDCLIENT RUNNING : YES

Figure 3.6: A sample output of the C-Shell script gridstatus.csh

3.2.3 Commandline interfaces

W2GRID offers three Perl commandline interfaces (one for each daemon), which are described

in the following sections. The most important flags and options of these commandline-tools

are itemized as follows:

Using and extending the middleware 95

• -posix Includes the posix-library, which is needed to catch single key-strokes like the

arrow-keys and thereby allows to keep a ’history’ of the entered command strings in the

same convenient way as most common terminals.

• -S [COMMAND] Runs an command (e.g. an SQL query) in batch mode and closes the

connection immediately afterwards.

• --verbose [MODE] The argument supplied to this option is a string out of ’STANDARD,

ERROR, WARNING, SOCKET, INTERNAL, WIENSQL, ALL’ or a combination thereof

(separated by colons).

• -h Shows a complete list of available options and flags.

Some arguments are only available for the commandline interfaces of the two Perl-daemons.

• -progress displays the remote progress of the currently processed command in %.

• -time The first line of output will show the time-difference in seconds between the sub-

mission of the command to the daemon and the arrival of the corresponding result.

3.2.3.1 GridServer interface (gridsrv_console.pl)

Allows to contact the local GridServer directly. It reads the connection data ([host_port],
[host_key]) from the registry and employs the default connection plugin to contact the daemon

at the local IP address. It is supposed to be used by developers for debugging server-side

{commands} and p
xJOBSq

y. Most of its input and output is based on XML strings for better

machine-readability. It is located in]SRC_gridsrv/bin/ and invoked from the commandline by:

>gridsrv_console.pl [FLAGS] [OPTIONS]

For sample commands it is referred to the usersguide [97].

3.2.3.2 GridClient interface (gridclient.pl)

It is provided for the regular user, hence the input as well as the output is plain text. It is located

in]SRC_gridclient/bin/ and invoked with:

>gridclient.pl [FLAGS] [OPTIONS]

Some sample commands are explained in section 3.2.4.

Using and extending the middleware 96

3.2.3.3 Wiensql interface (wiensql.pl)

The commandline interface to the wiensql-database is located in]SRC_wiensql/bin/. It is

invoked with:

>wiensql.pl [FLAGS] [OPTIONS]

Only the most basic syntactical elements of ANSI SQL have been implemented in a non-

relational way, hence its capabilities are very limited but sufficient for the all-day-use of W2GRID

and its components.

element example comment
SELECT select * from jobs.server no natural joins
INSERT insert into jobs.server (***) values (***)
UPDATE update jobs.server set ***=*** where ***
CREATE create table jobs.server (***)

create user ’login’ (’pwd’,’db’,’name’,’etc.’)
create database ’db’

DELETE delete * from jobs.server where job_id=***
delete user ***
delete table ***
delete database ***

WHERE ...where job_id=*** and,or,<,>,>=,<=,like
LIKE ...like ’%job%’ only for text-columns

Table 3.1: Syntactical elements of wiensql

In addition to the default arguments wiensql.pl supports also the following ones:

• -o [TYPE] The output is by default formatted as a tabular frame. It may also be XML-

wrapped or a frame less list, according to the supplied [TYPE], which is a number from

0-5 (the default is 0).

• -f [FILE] Reads the SQL instructions from a file (e.g. used for creating the tables during

the installation process).

• -host [HOST], -port [PORT], -key [KEY] By default the interface connects to the local

daemon and extracts the required connection data from the file $WIENSQL_root/.wiensqlrc†.

If supplied different values, the interface can also contact remote wiensql-daemons.

• -l_sql [LOGIN] Specify a different login than the default ’anonymous’ (e.g. gridsrv_$hostname)

• -C [COMMAND] Interprets non-SQL commands (e.g. ’shutdown’, ’ping’ or ’dump’) in

batch mode.

Using and extending the middleware 97

3.2.4 Selected GridClient-commands

This section illustrates the usage, purpose and output of some of the GridClient default-

commands, which are available already without any additional application plugin. The respec-

tive GridServer commands are omitted, since this would exceed the scope of this document.

The interested developer is referred to the usersguide [97].

3.2.4.1 Built-in commands

Several commands are interpreted directly by the parent process of the daemon and bypass

all the complicated child processes illustrated in Fig.2.17. The advantage is a significantly

shorter response-time, since they do not have to include their workflow from a file.

• {ping}C returns ’1’. A ’ping’ internally precedes each command to check if the connection

is open.

• {?}C or {help}C displays a list of all available commands.

• {shutdown}C stops the daemon.

• {version}C displays the daemon version

• {exit}C or {quit}C terminates the connection.

3.2.4.2 Pathnames

Commands, which need a path as input, may also get the current path from the interpreter.

{pwd}C is used to display this path, {cd}C for changing it and {dir}C for showing the content of

the directory. This internal handling of path names is especially convenient if the commandline

interface is used in batch mode from within a script.

3.2.4.3 Hello world

The ’test’ workflow {test}C is the W2GRID version of a “Hello World” program and returns only

a single string (see the source code in Fig.A.4 in the appendix). It is provided for debugging

and serves as a template.

3.2.4.4 GridServers and their properties

The host-registry has been explained in section 2.6.6. This table contains informations about

the registered GridServers and the plugin-configuration data for connecting and transferring

files.

Using and extending the middleware 98

• {host.list}C retrieves all hosts from the registry and displays them. The output may be

customised as shown in Fig.3.7.

• {host.check}C forces the check, which is otherwise run by the job p
xhost.checkq

yC automat-

ically once a day in the background to be performed immediately.

• {host.info}C provides extended informations about specific hosts. Either the [host_name],
the [host_id] or [host_ip] must be supplied as a mandatory argument.

• {host.usage}C returns a report of the current resource consumption as reported from all

registered hosts. The results are presented in a uniform (queuing system independent)

format.

• {host.add}C adds a new GridServer to the registry, which can be modified with {host.modify}C

and removed with {host.delete}C. It is recommended to use the corresponding and more

convenient (interactive) functionalities of the menu-guided installer gridsrc_install.csh in-

stead.

>host.list --format "[ID %id] %n %nds nodes %c (%ip:%p)" -c
#command took 2 seconds to complete
[ID 2] athena 16 nodes ONLINE (128.130.134.045:8888)
[ID 3] aurora 72 nodes ONLINE (128.130.033.145:8334)
[ID 4] gescher 16 nodes ONLINE (131.130.186.180:8180)

Figure 3.7: The result of {host.list}C with a user-defined formatting

3.2.4.5 Show/update/delete resource slots

The persistent storage containers have been explained in section 2.6.5.

• {slot.create}C creates a new slot and returns the respective [slot_id]c.

• {slot.list}C displays a summary of all currently existing slots.

• {slot.kill}C removes an entry from the slot-registry e.g. after a calculation is finished

successfully. It needs the [slot_id]c as a mandatory argument.

3.2.4.6 Show/update/delete jobs

Background-tasks have been explained in section 2.6.3. These p
xJOBSq

y avoid the ’blocking’

effect of RPC-commands on the one hand and perform regular tasks in the background on the

other hand.

Using and extending the middleware 99

• {job.list}C displays the contents of the job-registry.

• {job.kill}C removes an entry. If the respective process is executed at the moment, just its

registry-entry is deleted, but the process is not stopped.

• {job.nextexec}C displays three dates/times. The current date, the last run of the con-

troller 4 2.14 and its next run.

• {job.run}C bypasses the controller and immediately executes a p
xJOBq

y (still in the back-

ground).

3.3 Development

The concept of core and plugins, which is explained in section 2.9 simplifies the way, how

developers can contribute their own code to W2GRID. Knowing Perl is the only requirement,

however it is possible to reduce the amount of Perl-code to an absolute minimum, which only

glues together external components (see section 3.3.5.2). The components, which may be

contributed by third-party developers are:

• (RPC-) commands (see section 2.6.2)

• Background tasks p
xJOBSq

y (see section 2.6.3)

• Platform plugins for interoperability with additional operating systems (see section 2.9.1)

• Execution plugins to submit/control/steer tasks by the use of a queuing system (see

section 2.9.2)

• Filetransfer plugins (see section 2.9.4)

• Connection plugins (see section 2.9.4).

• Processor plugins, which supply the arbitrary performance numbers for a given CPU

(see section 2.9.6)

• Application plugins for integrating third-party software (e.g. HPC programs) into W2GRID.

Apart from scientific applications, this kind of plugin also allows to introduce e.g. support

for other databases than wiensql (see section 2.9.5).

Templates and numerous sample scripts are provided in the appendix.

Using and extending the middleware 100

3.3.1 Commands

Commands are an essential ingredient for most application plugins and may also serve for

debugging and testing basically any part of W2GRID. The purpose and method of their oper-

ation is explained in section 2.6.2, whereas this section focuses on the development of the

respective source code. A typical file structure as illustrated in Fig.3.8 is not mandatory but

recommended. The line numbers used in the following explanation refer to the sample code

provided in the appendix (Fig.A.4). All initial settings such as loading libraries (line 7) or defin-

Figure 3.8: Sections of a RPC-command file

ing/setting global variables is performed in the first section A , whose code is not contained in

any function and hence executed right after including the file and even before the entry func-

tion &exec_request() 1 (line 12) is called. The sequence of tasks executed afterwards is up

to the developer, it is however recommended to start with the processing of the arguments B

(lines 19 - 24). The help-flag, which should be supported in any command (line 19) obtains

its output from a subroutine (lines 55 - 70), which is part of section D . The name of this (op-

tional) subroutine is up to the developer. At the end of section B it is recommended to check

for invalid arguments (line 24, see also section 6).

Section C contains the workflow-code. Since it should only be executed if no error has oc-

curred yet, it has to be enveloped in a condition (lines 30 - 33). The given sample just returns a

string, but section C may contain virtually anything. At its end, the result must be written into

the result-buffer (line 32), otherwise the RPC-command will return an empty string. The func-

tion is left with the ’return’ statement in line 39. The formatting of the return-value 2 should

be left to the provided function, otherwise the string, which is directly sent to the client may not

Using and extending the middleware 101

be readable.

A second entry-function &exec_help() is defined, which returns a single-line documentation if

the command has been submitted with a preceding question mark (e.g. {?test}S,C). The func-

tion (lines 42 - 49) is part of the documentation D and is usually not invoked from within the

other parts since it uses the same exit-function as section C to format the result-string.

3.3.2 Jobs

p
xJOBSq

y are used for background tasks. They are not invoked directly by the user from the com-

mandline10. Instead they are mostly run by the controlling process 4 2.14 in regular intervals.

The purpose and their workflow is explained in section 2.6.3. The source code (Fig.3.9) of a

Figure 3.9: Sections of a p
xJOBq

y-file

p
xJOBq

y-file contains four important sections, which are not mandatory but recommended. They

are explained in the the following paragraph, whose line numbers refer to the sample Fig.A.5

in the appendix.

Upon including the file, the initialisation A is invoked instantly in the same way as before

(section 3.3.1), since it is not enveloped by any subroutine. Its exact position is irrelevant, the

respective code (e.g. including additional libraries, defining global variables) may therefore

also be placed at the end of the file, although it is recommended to insert it into the provided

and commented section at line 7.

The entry-function &exec_command() 1 starts the p
xJOBq

y-workflow and contains all relevant

code lines 13 - 47, such as the processing of the stored p
xJOBq

y-data, which are read from the

10although it is possible to force the immediate execution of a p
xJOBq

y by the aid of {job.run}S,C [job_id]

Using and extending the middleware 102

database 2 and stored in a buffer in the background. The items of interest may be extracted

on demand (section B , lines 19-20 -). The main-part C processes the workflow of the
p
xJOBq

y-script. Because no output can be sent to the client, all data must either be written to

files (e.g. logfiles) or to the job-registry, which is not done immediately. Instead all updates are

accumulated until section C is finished and finally ’committed’ to be written to the table 3 in

the final section D , which concludes the function &exec_command(). The p
xJOBq

y exits without

return-value 4 . Different to commands, a documentation does not make sense because it

cannot be displayed anywhere. The developers are however encouraged to attach comments

to their code.

3.3.3 Important libraries

The W2GRID code spans roughly 150.000 lines and almost 1500 unique functions. The ma-

jority of them is used only internally and their explanation clearly exceeds the scope of this

thesis, hence the reader is referred to the developersguide [103]. Yet for completeness and

to illustrate the capabilities, a list of frequently used libraries and their purpose are presented

in this section, whereas the most important functions thereof are explained in the appendix

(section 6).

• Utilities: Basic I/O such as queries and formatting of data, encryption/decryption, cre-

ation of temporary directories and files, extraction of data from files and strings, file-

statistics.

• Exception handling: The provided functions offer methods to write, read and check

for error-messages and warnings, which are automatically appended to any result-data

returned by the daemon. Thus the developer does not have to handle them explicitly.

• Verbose and regular output: The verbose-strings may be used to debug scripts in their

development phase. To see them on STDOUT, the verbosity of the daemon must be

enabled (section 3.2.1). An additional benefit of the verbose-commands is their use for

an intrinsic documentation of the Perl-scripts.

• Logfiles: W2GRID offers to capture all output of warnings, errors and verbose-strings

in logfiles, which is a convenient way of tracking errors, even if the verbose output has

not been enabled. All the developer needs to do is opening a logfile and placing several

verbose-statements at important sections of the code to e.g. preserve the content of

certain variables.

• Execution plugin: Its functions provide the necessary capabilities to attach to a given

queuing system and submit jobs, check their state as well as the state of the overall queu-

Using and extending the middleware 103

ing system or cancel them. The same function names, their input and output is identical

in every library, therefore an application plugin must use these functions instead of hard

coded calls to any explicit queuing system. The important functions are discussed in

section 3.3.7.

• Slots: The functions allow to create slots, manipulate their content and delete them. The

content of their [parameter] column makes use of XML-datagrams, which require to use

functions of an additional library (see below).

• Jobs: This library allows to create, manipulate and delete background tasks(p
xJOBSq

y).

A special feature about the respective functions is the fact, that all p
xJOBq

y related data

is retrieved from the table and already processed before the entry-function of the script

is called. Therefore all data is already available and does not have to be fetched and

processed explicitly by the developer. If changes are made to the data, all respective

functions of this library do not immediately write the new content to the table. Instead

it is stored in a temporary container and committed in one of the last lines of the script

before it quits. If this function is omitted for some reason (e.g. a crash happens above

this line), all data collected up to the crash is lost.

• Misc. daemon functions: Provided to read and manipulate the content of the registry.

• GridServer connection: This library offers the functions, which interact directly with a

GridServer. The opening of a connection, the submission of commands by the use of the

respective protocol, the transfer of files (put and get), the termination of the connection.

• Files: Files11 are handled by W2GRID in an object-like manner. A hash, referred to as

the %filelist, contains individual ’objects’ %filelist{0...COUNT-1}. Each of them is again a

hash and contains items like the NAME, the PATH and SIZE of a file. The predominant

purpose of the filelist is to collect and handle a large array of filenames with a single

object and by template-functions, which allow the developer to perform some common

file-operations: Copying from source to target, packing into an archive, concatenating the

names into a long string to be supplied to any tool (such as tar), updating the properties

(e.g. the SIZE), applying modifications (e.g. replacing the template-string ’CASE’ by the

actual name ’tic’ simultaneously in all stored filenames).

• XML-datagrams: Datagrams are frequently used in W2GRID for data transfer and to

wrap complex parameters or results. This is especially essential for storing complex

data such as the numerous configuration-data in the registry or turning a %filelist, which

11or more precisely the ’filenames’ and the important properties of the same. Basically everything but the actual
file content.

Using and extending the middleware 104

is basically a specifically formatted segment of memory into something, which can be

stored in the e.g. slot-registry. A sample code in the appendix (Fig.A.10) illustrates their

use.

• wiensql: A very important feature is the database-connectivity, which has to be avail-

able to all commands and p
xJOBSq

y. Most of this file’s content is irrelevant to the developer,

since the usual operations performed on certain registry-tables can be done more effi-

ciently by proper slot or p
xJOBq

y related commands, which also care for the formatting of

the result. In other cases, the wiensql-functions have to be used. They allow to select

data either as a single row or a complete record-set, update, delete and insert data as

well as open and close the database-connection.

• Input: Arguments may be supplied to tools and commands12. Hence it is necessary to

process these strings and extract the desired informations.

• Shared utilities: The processes covered by this libraries are quite complex, but very

important for application plugins. They allow to perform a filetransfer by simply supplying

the %filelist variable as a reference. This single statement is sufficient and saves the

developer many thousand lines of code. Another function determines the state of a

calculation based on the combined states of the respective slot and remote p
xJOBq

y. The

third crucial function is used to run parallel processes.

3.3.4 Important variables

W2GRID offers several variables, which are available by default in all scripts. They are defined

in the library file $GRIDROOT/libs/global.pl†. The most important are:

• $PATH{LIB}]$GRIDSRC/libs_perl/

• $PATH{SHAREDLIB}]$GRIDSRC/libs_perl/gridshared/

• $PATH{SYSTEMLIB}]$GRIDROOT/libs/

• $PATH{SRVLIB}]$GRIDSRC/libs_perl/gridsrv/

• $PATH{CLIENTLIB}]$GRIDSRC/libs_perl/gridclient/

• $PATH{LOG}]$GRIDROOT/log/

• $PATH{BIN}]$GRIDSRC/bin/

12p
xJOBSq

y in the contrary use other methods to retrieve input (see above).

Using and extending the middleware 105

• $PATH{TEMP} will point to a temporary-directory assigned to each command/pxJOBq
y,

that will be destroyed once the command/pxJOBq
y is done. Storing essential informations,

which shall outlast the scope of a command/pxJOBq
y is therefore not recommended. The

directory will also be removed if a p
xJOBq

y is run subsequently, because it is bound to the

PID. Since the child process has a different PID, it is not possible to keep the directory.

• $PATH{CURRENT} The current path, which is passed by the client.

• $GLOBAL{HOSTNAME} The local hostname.

• $GLOBAL{LOGNAME} The login of the local user.

3.3.5 Application plugin

In order to integrate an application into W2GRID, it is necessary to write the corresponding

RPC-commands and p
xJOBSq

y for the GridServer and the GridClient. Certain tasks, which

have to be performed by both daemons may be put into libraries, which are recommended

to be placed into the directory]libs_perl/$app-name/. General tools should be provided in
]bin/$app-name/ or simply]bin/. For the implementation of complex workflows exist basi-

cally two different approaches, which are illustrated in Fig.3.10 for comparison.

Figure 3.10: Two different approaches for implementing application plugins.

3.3.5.1 Full implementation a 3.10

If the developer is familiar with Perl and if the plugin requires numerous regular expression

operations it is recommended to code all instructions required for wrapping the application

in the command-script, since it is a very convenient language to handle regular expressions,

Using and extending the middleware 106

and most of the required tools are already provided as templates too. The resulting plugin

is therefore fully portable and does not depend on external tools other than provided by the

application itself. The only disadvantage is, that the use of Perl is mandatory. If some exter-

nal tools exist already but are written in any other language, they will have to be re-written.

Usual instructions, which are part of this approach invoke/steer the application directly 1 or

write/modify some input files 2 .

3.3.5.2 Partial implementation b 3.10

If there are already some existing scripts and tools, they don’t have to be re-written. Instead,

the Perl-code of the commands and p
xJOBSq

y may be used to glue together the individual com-

ponents, whereas the steering 3 of the application or the modification of certain files 4 is

done by the external tools and not directly from within the plugin. This is especially useful,

if the developer is not familiar with Perl or prefers other languages such as Java, Python or

Fortran to write the workflows. Whereas this may be a convenient approach for some applica-

tions, it comes with the disadvantage to introduce external dependencies, which can limit the

portability.

3.3.5.3 Sharing the plugin

It is recommended to write proper installation and removal instructions and to share it as a

W2GRID-package (see section 3.3.11). In the course of installing such a package, the neces-

sary paths will be created automatically (depending on the instructions) and the commands,
p
xJOBSq

y, library files and tools copied to their proper location. After some optional database-

operations, the plugin is operable without having to restart any of the daemons.

3.3.6 Platform plugin

This plugin is included in every Perl-script and will interact with the operating system. It needs

a single library file, which is recommended to be stored in]libs_perl/platforms/. Upon instal-

lation, it is copied to]$GRIDROOT/libs/ and renamed to system.pl†. For development, it is

recommended to take an existing plugin as template (e.g. redhat.pl†), copy it to the new tar-

get system (e.g. knoppix.pl†) and replace the corresponding functions, whose names, input-

and output-format are mandatory.

• &exists_pid($PID): Checks, if the $PID still exists in the process-table and returns ’1’ or

’0’ correspondingly.

Using and extending the middleware 107

• &process_memory($PID): Returns the amount of memory (MB), which is occupied by

the process $PID.

• &nslookup($host): Returns a hash, containing the HOSTNAME and the IP. It usually

employs different tools such as ’dig’, ’host’, ’arp’, etc... to obtain the result.

• &childprocesses($PID): Returns an array containing the list of child processes, which

belong to $PID.

• &getload(): Returns the current processor load. Usually &exec__load() is used instead.

• &read_local_ip(): Returns the local IP address.

• &totalmem(): Returns the physical RAM.

• &freemem(): Returns the free RAM.

• &list_processes(): Returns a hash containing all PID’s currently present on the system

(ps -ef). The number of processes is returned as $RESULT{COUNT}. The individual

PID’s are accessible as $RESULT{0}, $RESULT{1}, etc...

• &sysps($string): Takes the output of a ’ps -ef’ call (only a single line) as an input and

returns the PID.

• &syspsf($string): Same argument as &sysps() but it returns a hash, which contains the

elements OWNER, PID and PARENT.

• &systop(): returns the output of a ’top’ command. The result is a hash, containing the

COUNT-element to indicate the number of its entry. Each entry (e.g. $TOP{0}) is a

hash, too. It contains the elements RAW (rawtext, the complete line), PID, USR, VIRT

(virtual memory), SHR (shared memory), CPU (processor usage in %), MEM (%), TIME

(unformatted), CMD (command).

• &getuptime(): Returns the uptime.

• ¤t_dir(): Returns the current directory (absolute path).

• &get_home(): Returns the home-directory $HOME or ∼/ (absolute path).

• &read_time($string): String-to-date conversion. Each host uses a defined locale date-

and time-format, which has to be converted frequently to the format used internally by

wiensql (HH:MM:SS dd-mm-yyyy).

Using and extending the middleware 108

This plugin has to be registered to the plugin-registry, before it can be used. For this purpose,

an XML-descriptor is to be provided in the directory]plugins/server/platforms/. A sample file

is shown in the appendix (see Fig.A.11). It is recommended to name the new descriptor after

the platform name, too (e.g. knoppix.plg†). The most important value to be replaced is the

<ID>-tag in line 2, because this is used for identifying the plugin. The path to the newly created

library file has to be supplied in line 16 and is mandatory, too as well as the endian-type (little

’0’ or big ’1’) in line 20. To use the plugin, it is sufficient to copy both new files (the library

file containing the functions and the XML-descriptor) to the specified locations on the target

machine and to run

>reinstall_plugins.csh

which updates the plugin-registry. Afterwards, it can be installed and configured by the use of

the manual installer (see above).

3.3.7 Execution plugin

This is the most important yet most complex plugin of W2GRID, since it allows applications

to be run on a given infrastructure. The execution plugin is included into every GridServer

command and p
xJOBq

y by default and does not have to be loaded explicitly. The GridClient

in the contrary does not need it. Upon installation, it is copied to]$GRIDROOT/libs/ and

renamed to exec.pl†. The function names are mandatory, too and have to be adjusted to

the queuing system. It consists of a library file, usually stored in]libs_perl/execs/ and the

mandatory plugin descriptor. A sample XML-file for PBS is provided in the appendix (Fig.A.15).

Its important functions are:

• &exec__submit($dir,$command,\%parameter): To submit jobs, the base-directory

$dir, where the command shall be started and the $command itself are the two manda-

tory arguments. The command must not contain any MPI or other instructions, since

these details are supposed to be added by W2GRID according to the previous setup of

the plugin. The parameter-list (HASH) contains several additional informations about

e.g. the resources (number of nodes, expected runtime, required memory). A sample

code is provided in the appendix (see Fig.A.7, After submission, the function returns the

internal PIDQ, whose meaning and format is only ’known’ to the queuing system.

• &exec__state($PIDQ): checks, if the $PIDQ is currently executed or queued. Returns

’-1’, if the function produced an error, ’0’ if the $PIDQ does not exist, ’1’ if it is queued and

’2’ if it is running. In any other case (e.g. stopped) it will return ’3’.

Using and extending the middleware 109

• &exec__kill($PIDQ): Removes the process $PIDQ. Returns ’-1’ in the case of an error

’0’ if the kill has not been submitted successfully and ’1’ if the job is gone.

• &exec__refresh(): Refreshes the informations about the state of the queuing system

(running jobs, available nodes, etc.)

• &exec__load(): The ratio of busy-nodes / total-nodes in %.

• &exec__dynamic(): Reveals, if the name of the nodes may be known in advance (single

host or master of a virtual W2GRID-cluster) or if the queuing system will supply the nodes

after the submission-script is started.

• &exec__queued(): Number of queued jobs.

• &exec__starttime($cpus): An estimated starttime in seconds, specifying the time when

the given number of $cpus might finally be available.

• &exec__forecast($processes): The fraction of CPU capacity for one of the requested

number of $processes13

• &exec__freenodes(): the number of free nodes.

• &exec__nodes(): The total number of nodes

• &exec__maxnodes(): The maximum number of nodes as supplied during the configu-

ration of the plugin.

• &exec__power(): The product of CPUs per node and cores per CPU. A two-processor

node with dual-core CPUs will return ’4’ as a result.

• &exec__totalmem(): The total memory of a single node (or total in the case of shared-

memory). This value is taken from the configuration.

• &exec__freemem(): The free memory on a single node. Use &exec__isshm() to check

if this is individual or total-memory.

• &exec__existspid($PIDQ): checks if the $PIDQ still exists on the queuing system. Re-

turns ’1’ or ’0’.

• &exec__initialize(): Initialises the plugin (e.g. loads current jobs and the system-status

and fetches the configuration-data from the database).

13e.g. If a dual-core processor already executes a single and shall serve an additional one, each of the two will
get 100%. If two tasks run on a single-core CPU, each will get only 50% (assuming the same nice-level).

Using and extending the middleware 110

• &exec__ismpi(): Checks, if MPI has been enabled during the configuration. Returns ’1’

or ’0’.

• &exec__isshm(): Checks whether the memory is shared or not. Returns ’1’ or ’0’.

• &exec__version(): Returns the version number. This is critical, since it allows an ap-

plication to determine, which capabilities are supported by the installed execution plugin

and to judge if the host can be used at all. The numbers and the capabilities (respectively

the functions) must correspond to the given definitions in the developersguide [103]. At

present all execution-plugins are available as version 1. This feature has been introduced

to avoid incompatibilities in the future as different capabilities are indicated by different

numbers.

• &exec__isthread(): Checks if the threading has been configured. Returns ’1’ or ’0’.

• &exec__probability($cpus): Returns an estimated probability in % for the chance that

the requested number of $cpus are available at once. In the case of a managed cluster

this should usually return 100% assuming that the respective queue exists.

• &exec__jobs(): Fetches the statistics of running and queued jobs and presents a sum-

mary, which is used for the command {host.usage}C.

The plugin has to provide the respective library file and the XML descriptor. Optionally it may

also come with some commands to test the functionality (e.g. {pbs.test}S). The command

{test.exec}S may be used as a default command to test those functions, which return simple

strings or numbers. It uses the currently installed execution plugin, but has to work for all

different ones.

3.3.8 Connection plugin

It requires a library file, which should be usable by the GridClient and the GridServer. It is

stored in the directory]libs_perl/connections/ and different to the platform and the execution

plugin, it is not copied anywhere upon installation. The XML plugin-descriptor has to be differ-

ent for each of the two Perl-daemons.

Whereas the functions provided by the platform plugin and the execution plugin may be used

directly in the code of commands and p
xJOBSq

y, the functions of the filetransfer plugin (and the

connection plugin, too) are called indirectly. This is referred to as ’mapping’ and it is neces-

sary, since there may be several different filetransfer plugins loaded at the same time to serve

different connection methods to each individual GridServer. For this reason it is obliging to use

Using and extending the middleware 111

different function names for each of these libraries14. The following functions are presented

by their purpose and the name of the corresponding tag in the XML plugin-descriptor (see

Fig.A.14 in the appendix):

• &connection_init(\%data,$path): Initialises a connection (lines 46 - 49). The hash

contains the data, which have to be supplied upon installation and configuration of this

plugin (e.g. IP, port, etc.). The $path indicates the location, where the progress-packages

(see section 2.6.11) have to be written to. It is not mandatory but strongly recommended

to support this feature, otherwise the progress indication will not work. The initialisation

spans all tasks, which have to be performed only once before a connection is opened.

• &connection_open($string): Opens the connection. It must be possible to call this

function again after closing the connection, without having to initialising it again (lines 21

- 23).

• &connection_close(): Closes the connection (lines 41 - 43).

• &connection_status(): Returns either ’1’ if the connection is still open or ’0’ if it is

already closed (lines 36 - 38).

• &connection_read(): Reads data from the connection (lines 31 - 33).

• &connection_write($string): Writes the $string into it (lines 26 - 29).

An illustration of the ’function-mapping’ is provided in Fig.3.11. The template function name,

1:<ITEM>
2: <NAME>connection_open</NAME>
3: <DESCRIPTION>Routine for reading data</DESCRIPTION>
4: <VALUE>standard_socket_open</VALUE>
5:</ITEM>

Figure 3.11: The ’function-mapping’ of the connection plugin

which is used as a variable internally by W2GRID is provided with the <NAME> tag (line 2) (e.g.

’connection_open’) and must not be changed. The actual function name, the template is to be

mapped to, has to be supplied with the <VALUE> tag (line 4) (e.g. ’standard_socket__open’).

3.3.9 File transfer plugin ’ftp’

The development is similar to the previous one and requires a single library file (or an indi-

vidual one for each daemon), which contains all elemental functions for the filetransfer. The

14It is recommended to use the filename of the library as a prefix for the function names (e.g. ’tunnel.pl’ will use
’tunnel__’ as prefix for each function).

Using and extending the middleware 112

function names have to be mapped, too. In contrast to the connection plugin, the filetransfer is

assumed to be connection-less, hence there are no ’open’ or ’close’ functions. Additionally the

connection to the respective GridServer must be opened prior to using any of the filetransfer

functions

• &ftp_init(\%data): Initialises the filetransfer method (lines 27 - 29). The hash contains

the data of all items, which have been supplied upon installation and configuration (e.g.

IP address, port, login, etc.).

• &ftp_get($remote,$slot_id,$local): Copies a file $remote, which is stored in a remote

temporary directory (identified by $slot_id but not known by its absolute name) to the ab-

solute local path $local. In order to retrieve the absolute remote path, the corresponding

server-command {slot.workdir}S is employed.

• &ftp_put($local,$slot_id): Copies a file from the absolute location $local to the remote

slot $slot_id. The retrieval of the absolute remote path is done in the same way as before.

The XML plugin-descriptor can be found in the appendix (Fig.A.13).

3.3.10 Processor plugin

The only purpose is to provide a convenient method for supplying a speed number for the

numerous processor and to avoid, that the user has to provide it manually. Hence it does

not require any libraries or commands by default and only needs a short XML descriptor. A

sample thereof can be found in the appendix (Fig.A.12). It contains an absolute but arbitrary

speed-number, which is obtained from several benchmarks (line 9) as its only mandatory item

(apart from the ID). This supplied number does not have to be exact, because each program

may use its own internal methods for benchmarking the resource similar to the WIEN2k plugin

(see chapter 4).

3.3.11 W2GRID-packages

In order to share code with other users or to distribute bug fixes and new versions, it might be

mostly sufficient to provide the commands, p
xJOBSq

y and libraries as an archive, download and

expand them and perform some database-entries manually.

Yet the more convenient method provided by W2GRID supplies plugins, bug fixes and versions

as a ’package’, which does not only contain the source files, but also the instructions for their

installation and removal. The instructions are read and executed by a W2GRID tool. If no input

from the user is required, even very complex tasks can be performed without any interaction

(see section 2.10).

Using and extending the middleware 113

3.3.11.1 Creating a package

First all commands, p
xJOBSq

y, libraries, tools, etc. have to be created and tested and have to be

fully operable. The respective source code files, which shall be part of the package are sup-

plied as a simple list, contained in an ASCII file (see the sample in the appendix: Fig.A.18).

The installation instructions must be provided in an XML-coded form (Fig.A.16), which is sep-

arated into individual sections by pre-defined labels (e.g. ’:etc’ line 1). The available sections

are:

• :etc Define the <header> and <footer> text for the begin and the end of the installa-

tion/removal (Fig.A.16 lines 1 - 3).

• :envvars Check environment variables. The respective value may be used in the script

as $ENVenvvar-name (Fig.A.16 lines 4 - 14).

• :variables Interactively query the user. The entered results may be checked by regular

expressions and the values used in the script as $VARvariable-name (Fig.A.16 lines 15

- 27).

• :directories_install Check/create a directory (Fig.A.16 lines 28 - 53).

• :directories_uninstall Remove a directory (Fig.A.17 lines 10 - 34).

• :files_install Check if a file exists.

• :files_uninstall Remove a file (Fig.A.17 lines 35 - 53).

• :databases_install Check/create a database.

• :databases_uninstall Remove a database.

• :tables_install Check/create a table.

• :tables_uninstall Remove a table.

• :dbinserts Make a table-insert (Fig.A.16 lines 54 - 69).

• :dbdeletes Delete entries from a table (Fig.A.17 lines 54 - 63).

• :dbupdates Update entries.

Each of the sections listed above can contain only specific XML-tags. The only floating one

is the <SHELLCMD>, which allows to execute commands from an internal Bourne-Shell (sh)

and have to be written in an appropriate syntax. They may be used to e.g. compile sources.

Using and extending the middleware 114

Example:

“<SHELLCMD begin = yes echo = ’compiling database’>cd $ENV{GRIDSRC}/SRC_wiensql/;

make </SHELLCMD>” will recompile the database. This instruction may be placed into any

section (see above). It is executed before the other elements of this section, because of the

setting ’begin=yes’. If it shall be run afterwards it needs ’end=yes’. Before executing the com-

mand, the message ’compiling database’ will be written to the screen.

The three files (archive, install-instructions, removal-instructions) are turned into a package

by the aid of the tool gridpackage_create.pl. GridServer and GridClient packages have to be

provided separately, because both daemons maintain different database accounts. If e.g. a

GridServer package with the name WIEN2k_server† shall be created, the appropriate com-

mand is:

>gridpackage_create.pl -signature SERVER WIEN2k_server

A screenshot of the creation of such a package is provided in Fig.3.12. The text of this screen-

shot has been truncated to fit the given line-width of this document. The resulting package

> gridpackage_create.pl -signature SERVER WIEN2k_server

File, which contains the sources : wien_server.files
File, which contains the INSTALLATION-instructions: wien_server.install
File, which contains the REMOVAL-instructions: wien_server.uninstall
adding SRC_gridsrv/commands/wien/ ... done
adding SRC_gridsrv/jobs/wien/ ... done
adding libs_perl/wien/gridsrv ... done
adding libs_perl/wien/in1.pl ... done
adding libs_perl/wien/klist.pl ... done
adding libs_perl/wien/machines.pl ... done
adding libs_perl/wien/parameter.pl ... done
adding libs_perl/wien/struct.pl ... done
adding libs_perl/wien/wienfiles.pl ... done
adding libs_perl/wien/wien.pl ... done
adding libs_perl/wien/wienvar.pl ... done
adding bin/memory_lapw.pl ... done
adding bin/parameter_lapw.pl ... done
adding bin/calctime_lapw.pl ... done
FINISHED!

Figure 3.12: The creation of a W2GRID package, which will install the GridServer side sources of the
WIEN2k plugin.

may afterwards be put on a web site and shared with other users.

3.3.11.2 Installation

In order to use this package it has to be copied into the directory]packages/. Because it was

created with the option ’-signature SERVER’ only the GridServer will accept it. For installation,

Using and extending the middleware 115

one may either use the menu-guided scripts or install it manually from the commandline. The

latter is invoked with the command:

>gridpackage_install.pl WIEN2k_server -authentication SERVER –install

whereas the menu-guided approach starts with launching the master-script

>cd $GRIDSRC/bin;gridsrc_install.csh

and navigating through the menus to the appropriate one. Since it is a server-package, the

user has to change to the server-menu [s]15 and and further to the package-installation [pi]. All

available server plugins stored in the directory]packages/ are displayed in an enumerated

list, unless they are already installed. The desired plugin has to be selected by typing its

number (e.g. ’1’ for the WIEN plugin). The subsequent installation process will be exactly the

same as the manual one. This procedure is explained by the aid of numerous screenshots in

the usersguide. [97].

3.3.11.3 Removal

The removal, too may either be performed manually or by the aid of the same sub menu. The

brute-force removal - simply deleting the files - is not recommended, since some leftovers in

the database may confuse the daemon. The command for removing a package is:

>gridpackage_install.pl WIEN2k_server -authentication SERVER –uninstall

The menu-guided choice requires to select [pr] (package-removal) from the GridServer menu

(instead of [pi] as before). All installed GridServer plugins are displayed again as an enu-

merated list. To remove the desired plugin, its number must be entered at the commandline.

The following procedure will either employ the removal-instructions of the provided package or

simply delete the list of the package-files if no uninstall-instructions are given.

15 S + RETURN

Chapter 4

The WIEN2k application plugin

According to the Hohenberg-Kohn theorem, all properties of a crystalline solid can be obtained

from the electron-density, which is calculated by WIEN2k in a self-consistent-field cycle (see

Figure 1.1 in the introduction). A lot of observables can already be derived from the results

Figure 4.1: Scientific computing with WIEN2k: Generation of input, SCF-cycle and analysis

of the SCF cycle, whereas other features of WIEN2k require to run additional programs after-

wards. From a researcher’s viewpoint, most chemical and physical knowledge is needed in the

initial phase 1 4.1, when the input is generated and afterwards 4 for interpreting the results

or feeding them as input to other executables. The task in between, however, especially the

actual execution of the SCF-calculation 2 can be demanding with respect to the computing

time but require little interference from the user, so that this task can be coded with reasonable

effort into proper scripts. Even a workflow like a structure optimisation 3 is from the compu-

tational point of view not more than a sequence of SCF-calculations, which can be automated

too.

The WIEN2k application plugin 117

4.1 Purpose

For this reason the WIEN2k plugin is focused on the main task, namely to run SCF-calculations

whereas the preceding tasks (i.e. the generation of the input) and the analysis of the results

will remain unchanged and still needs to be done by the user in person. The plugin shall

provide: A fully automatic submission of an SCF-calculation, which involves the evaluation of

the given task (section 4.2.1), the selection of the most suitable machine (section 4.2.2), the

filetransfer (section 4.2.3), the remote calculation-start (section 4.2.4), an intermediate file-

transfer to update (section 4.2.5) the local output files and a proper cleanup after the calcula-

tion has finished (section 4.2.6). If an already submitted calculation does not yield the desired

performance/results, there needs to be a reliable kill-method, which terminates all processes,

that were invoked remotely. Finally the plugin has to offer a convenient interface to view status

data of the individual WIEN2k-calculations. As a constraint for the selection of hosts, it is not

allowed that parallelised SCF-calculations are run across several domains, instead they will

either be submitted to a single managed cluster or several GridServers (slaves) of a virtual

W2GRID-cluster.

4.2 Performing an SCF-calculation

The pseudo-workflow shown in Fig.4.2 illustrates the tasks, which are to be performed by the

plugin. It shall be pointed out, that the procedure is exactly the same for the user as well as

for W2GRID.

4.2.1 CASE-evaluation

Before any calculation can be started, the resource requirements have to be evaluated 1 4.2 in

terms of the estimated memory consumption (see section 4.4.1) and the respective runtime,

which is obtained from an analytic performance model (see section 4.4.2). GridServers with

insufficient total memory will be removed from the list of possible hosts already at the very

beginning. The capabilities of the inbound network are important in the case of big lattices,

which have only a few or even just a single k-point1. Since the k-point parallelism is not

applicable in such a CASE, MPI must be employed. In order to yield a reasonable gain in

performance, it requires a fast network (i.e Myrinet or Infiniband). The current version of the

WIEN2k plugin does not use MPI-parallelism.

1The bigger a unit cell in real space the smaller it will be in reciprocal space. The integration is done in the
reciprocal space, hence a smaller reciprocal lattice requires less k-points for integration.

The WIEN2k application plugin 118

Figure 4.2: Administrative tasks of a WIEN2k calculation by the use of different types of
job-submission schemes

4.2.2 Host selection

The selection - also referred to as ’match-making’ - is based on the results of an evaluation,

which should help to find the optimal resource for a given CASE. Contributions from the fol-

lowing aspects of the match-making are taken into account:

1. Static data: All informations, which describe the host and have been collected already

in advance. Hosts incapable of running the respective CASE (e.g. due to insufficient

memory or simply because WIEN2k is not installed) are omitted.

2. Dynamic data: This requires to contact the host and to request current status infor-

mations [98]. A host may have sufficient capacities (e.g. memory/nodes) and therefore

passes the static evaluation, but can be “busy” at the moment. In this case it may ei-

ther be worth waiting for its resources to become available within a reasonable time, or

otherwise it is omitted, too.

3. Preferences: As a result from the dynamic analysis, each host offers a certain per-

formance to run the given CASE. The match-making is completed by applying specific

preferences (e.g. performance or total runtime).

The WIEN2k application plugin 119

4.2.2.1 Static

It is evident, that WIEN2k must be pre-installed and configured properly on each host, where

a WIEN2k-job is supposed to be run. What seems to be obvious for a user, needs to be coded

in the plugin. The GridClient keeps a long list of properties in its host-registry, one of these

properties is a list of installed programs. The first restriction, which is applied to the selection

of GridServers is the availability of WIEN2k. Such information about GridServers is automat-

ically fetched by the job p
xhost.checkq

yC, which keeps the registry up to date. This restriction is

important for WIEN2k, because its installation is not trivial since it requires some expertise

and cannot be done at runtime. Copying the numerous binaries before starting the calculation

would be an other option which does, however, not make much sense for performance rea-

sons.

The second important quantity is the memory: Each Fortran executable of an SCF-workflow

consumes different amounts of physical memory, but lapw1 consumes the most, hence it im-

poses the amount of memory, which has to be available for a good portion of the total runtime,

otherwise the respective host will not be able to complete a single iteration within a reason-

able time2. Consequently hosts with less or barely enough memory must be omitted. This

evaluation is referred to as ’static’, because the required information is available in advance.

4.2.2.2 Dynamic

The memory required by LAPW1 has to be available at runtime and thus the host must be

contacted to retrieve its current memory situation. At the same time, the load-situation is

checked, too. This information -although obtained from different plugins- is formatted in such

a way, that the WIEN2k plugin can easily retrieve the number of free nodes and their CPU

usage. The load-situation influences the k-point distribution. On a managed cluster consisting

Figure 4.3: Contributions to the total runtime of a k-point parallel SCF-cycle (run_lapw)

of identical nodes, each node dedicated to the actual CASE will usually process the same

2The performance of a WIEN2k job is significantly affected if swap memory is used.

The WIEN2k application plugin 120

number of k-points as long as the queuing system can guarantee that no other task is run

on the very same CPU/core at the same time, which would drain performance from the node.

On an unmanaged cluster or an array of individual desktop computers, the load situation may

change frequently, therefore it cannot be taken for granted, that the CPU will only be exploited

by the WIEN2k calculation. For this reason each machine is given an individual number of

k-points, which is determined from the product of the current load, the power of the CPU

and some factor. The resulting runtime will be different for each chunk, which is illustrated in

Fig.4.3. It is desirable, that the runtimes of the chunks match as close as possible, otherwise

the faster nodes will be idle until all remaining parallel processes of this step (e.g. LAPW1)

are completed and the workflow can proceed to the next one (e.g. LAPW2). This waste of

CPU cycles shall be avoided as much as possible, hence the WIEN2k plugin has to care for

an optimal load distribution.

4.2.2.3 Preferences

In most cases it is the fastest host, which will be assigned to run the given CASE, but there

are circumstances, why a host with inferior performance my be preferred though:

• The slower host/cluster can access the local CASE-directory directly by NFS. As a ben-

efit, the filetransfer can be avoided. This choice yields an additional benefit, since the

scientist will obtain the results in real time in the local directory, hence there is no latency

between the remote generation and the local update of the data like in any other case.

• Sometimes it is a waste of resources to occupy the powerful machines with small or

less important CASES, which are better served by a set of medium sized local desktops,

while the powerful clusters can be kept for larger CASES.

• Submitting a CASE to the queuing system of a managed cluster is not always the best

choice, even if the cluster offers an array of fairly powerful nodes. If this cluster is quite

busy, the job will be queued for a long time. The corresponding probability that a job

is granted the requested computing facilities within a certain time is difficult to estimate

exactly. If this job can be run on a less powerful host but with a presumably shorter or

even no queuing time it might be a better choice.

• If the memory is barely sufficient for the CASE, a second task submitted by another user

during the runtime of the job will diminish its performance, hence a host with more RAM

is preferred.

The WIEN2k application plugin 121

4.2.3 File transfer

If the selected host(s) cannot directly access the source code directory, the input files need

to be transferred 2 4.2. Usually it is not reasonable to copy the whole directory, especially

if this CASE has already been run before and thus contains numerous (large) output files

(e.g.CASE.vector) causing a significant and unwanted overhead. To avoid this, the files may

either be selected manually (provided the corresponding expertise is given), or by the use of

the shell-script migrate_lapw, which supplies a list of all important input- and output files. This

executable will be explained later in this chapter.

4.2.4 Starting the computation

The SCF-calculation can be run in two modes (see Fig.1.2), either single or parallel. The single

mode is chosen if either a the executable lapw1 takes less than a couple of minutes to complete

(the adjustable threshold of the plugin is set to a default of 120 seconds) or, if only a single

node is available. The parallel mode in contrast needs a properly formatted .machines†-file,

which distributes the k-points. Depending on the kind of job-submission scheme, there are

two different ways to generate this file. On an unmanaged cluster or on a set of desktops, the

hostnames are known in advance, and the content of the .machines†-file 4 4.2 will assign each

host an individual number of k-points. It needs to be provided before the job is started. This is

different to the situation on a managed cluster, where the nodes are not known in advance. In

this case submitting a job requires to write a proper submission-script 3 4.2, whose syntax has

to conform to the requirements imposed by the installed queuing system. All corresponding

instructions, such as how to create the .machines†-file from the supplied node-list3 and how

to run the application have to be coded in this submission-script.

4.2.5 Frequent checks

In either case (parallel or single mode) the invoked computation will be associated with a

certain PIDQ
4 5 4.2, which can be used to retrieve its status. With the proper architecture-

dependent command it can be checked whether the calculation is queued, running or already

finished5. In the latter case one needs to find out how the process has finished. For this

purpose WIEN2k provides a logfile, which contains all important process-related informations.

The final entries allow to tell whether the CASE has been accomplished successfully or termi-

nated with errors.
3A list of the nodes, which are allocated for the job
4Process-ID. The lower-case ’q’ refers to the fact, that this PID is only recognised by the queuing system and is

distinct from the PID of the operating system.
5Either successfully or with an error

The WIEN2k application plugin 122

4.2.6 Cleanup

Usually it is necessary to copy the output files from the remote directory back to the local one,

unless they are identical. As mentioned before, the executable migrate_lapw can be used to

retrieve the names of the files in question. In most cases, the remote files can be discarded

afterwards.

4.3 Interfaces

As explained in the introduction, W2GRID is supposed to be a non-invasive infrastructure for

distributed computing, hence the application plugin is restricted to the same mechanisms for

interacting with WIEN2k, which are also available to the user, however, a few non-critical

changes and extensions were required, mainly to enhance the data-acquisition. These changes

are minimal and can of course also be used without W2GRID. Basically they serve for a better

maintainability of the plugin than any alternate solution. None of them will affect the regular

use of WIEN2k, thus the application can still be run as before without W2GRID. The interfaces

are explained in the following subsections. Any required changes or extensions are marked

explicitly.

4.3.1 migrate_lapw

This is a C-Shell script, which provides a list of CASE-related input- and output-files, if in-

voked with the additional flag:

>migrate_lapw -show

Originally this script was intended to transfer the input of a CASE to a remote location and

copy the results back to the local workstation. This functionality could not directly be em-

ployed, but since the list of files can easily be extracted, the script was modified in order to

recognise this flag and return the list. A sample output is shown in Fig.4.4. The files listed as

’file_end_append:’ indicate a special type of output files, which are not re-written after each

iteration. Instead they grow continously during the runtime of the calculation. In order to avoid

the overhead of transferring these files with each update, the plugin is able to request just a

chunk of its content, namely exactly that piece which is missing locally from from the remote

GridServer and append it to the existing stub in the local directory.

The WIEN2k application plugin 123

file_start:
tic.struct tic.clmsum tic.clmup tic.clmdn tic.klist tic.kgen tic.dmatup \
tic.dmatdn tic.vorbup tic.vorbdn tic.scf tic.broyd1 tic.broyd2 .machines *.in*

file_end_append:
tic.dayfile tic.scf

file_end_optional:
tic.vector* tic.energy* tic.help*

file_end_default:
tic.struct tic.in1* tic.in2* tic.clmsum tic.clmup tic.clmdn tic.clmval* tic.dmat* \
tic.clmcor* tic.vorb* tic.broyd* tic.output0* tic.output1* tic.outputso* *.error \
tic.output2* tic.outputdm* tic.outputorb* tic.outputc* tic.outputm

Figure 4.4: Sample output of the C-Shell script migrate_lapw

4.3.2 testcomplex_lapw

This is a C-Shell script, which analyses, whether a CASE leads to complex or real matrices,

simply by checking the existence of the file CASE.in1c†. Being complex means that the CASE

has an increased memory requirement and also affects the runtime. This is the only script that

had to be newly generated for W2GRID.

4.3.3 run_lapw, runsp_lapw, runafm_lapw, ...

These are several C-Shell scripts, which represent a workflow similar to Fig.1.2. In addition

to the few Fortran executables illustrated so far, there are others like LAPWDM or LAPWSO.

Since W2GRID does not interfere with the internal mechanisms of the shell-scripts, their indi-

vidual tasks and contents do not need to be discussed here as they are also concealed from

the plugin. Details about the SCF-cycle, its individual components and its input are provided

in the WIEN2k usersguide [9]. To start a calculation, the respective command

>run_lapw [OPTIONS] [FLAGS]

is invoked either directly on the commandline 4 4.2 or from within the submission-script 3 . Par-

allel (k-point and/or MPI) processes require the flag ’-p’ and the presence of the .machines†

file. Other flags and options are available from the built-in help.

4.3.4 .machines

This is the data file for parallelisation, which contains the list of all hosts/nodes to be used and

the number of k-points, which are assigned to them. The content of the sample file in Fig.4.5

assumes a total number of 10 k-points6. In the given example hostA will process two times

6Basically the numbers before the colons are just weights, and the k-points are distributed accordingly as a
share. The given example will agree also with any number of k-points, which is a whole numbered multiple of 10.

The WIEN2k application plugin 124

2:hostA
4:hostB
1:hostC
3:hostD

Figure 4.5: Sample content of a .machines† file

as many k-points than hostC, which is either due to the CPU being two times as powerful

as the other one or due to the current load situation, which allows hostA to exploit 100% of

the CPU capacity, whereas hostC gets only 50%. Additional parameters (such as extrafine,

granularity or residue) can be used to tune the load balance. These parameters do not change

the number of k-points assigned to the individual hosts and thus do not need to be discussed

here. For further details the reader is referred to the WIEN2k usersguide [9].

4.3.5 .stop

Each workflow-script (e.g. run_lapw) will check for the presence of this command-file at the end

of an iteration before starting the next one. If the file exists in the CASE-directory, the workflow

is stopped. A corresponding entry in the CASE.dayfile† will indicate that the calculation has

been cancelled by the user. The reason for terminating the (mostly numerous) processes

invoked by WIEN2k by this command-file is, that the result of the current iteration will not be

overwritten and thus the user does not risk corrupted output files, which might result from a

brute-force termination. Yet the process is not stopped immediately but with a delay of at most

a single iteration, which can be considered to be a disadvantage of this scheme.

4.3.6 lapw1

The Fortran executable, which performs the time-consuming set-up and diagonalisation of the

Hamiltonian matrix. The size of this matrix is a key quantity for the performance model and

the estimation of the memory requirement. This number is calculated at the beginning of

lapw1 but originally was not displayed, hence the executable had to be modified in order to

obtain this value. The new version of lapw1 will accept an additional input-parameter, which

has the effect to only write the desired MATRIX-size to a file (CASE.nmat_only†) but to quit

afterwards without commencing the set-up or the diagonalisation. A user, who wants to apply

W2GRID and the WIEN2k application plugin either has to install the new version of WIEN2k

or just replace lapw1 with the new version and recompile it. Instructions for how to recompile

individual executables of are provided in the usersguide WIEN2k [9].

The WIEN2k application plugin 125

4.3.7 x_lapw

All WIEN2k binaries are enveloped by a powerful C-Shell script, which manages the com-

plex input. x_lapw (aliased to x) takes the name of the executable (e.g. lapw1) and several

input-parameters as arguments to create a single input file (e.g. lapw1.def), which contains

all important filenames and Fortran filehandler-numbers that are used internally by the exe-

cutable. Afterwards the program is executed [9]. To retrieve the MATRIX size, the following

command must be invoked:

>x lapw1 -nmat_only

The additional flag ’-nmat_only’ did not exist in the original implementation of WIEN2k and had

to be included into the code.

4.3.8 CASE.nmat_only

This file contains the MATRIX-size that was determined in a short run of LAPW1 as described

above.

4.3.9 input files

Certain files (e.g. CASE.in1†7) are required to retrieve some calculation parameters. The

filenames and their content are summarised in Table 4.1.

4.3.10 .parameter

matrix:1867
k:12
atoms:4
complex:0
lm:39

Figure 4.6: Sample content of a .parameter† file

W2GRID retrieves all parameters that are required for estimating of the computational effort

(memory and runtime) and writes them to the file .parameter†. Its purpose is to allow a

convenient retrieval of the data without the need to compute and extract the data again. By

comparing the modification dates of this file and the respective input files, W2GRID can tell

whether the .parameter† is still valid or needs to be updated. A sample content is shown in

Fig.4.6 and shows (in this order) the matrix size, the number of k-points, the number of non

7A complex CASE will use the filename CASE.in1c instead

The WIEN2k application plugin 126

equivalent atoms, the type of the matrices (complex or real) and the number of lm components

in the spherical harmonics expansion.

4.3.11 .w2grid_lock

This command-file is created in the CASE-directory by W2GRID after the WIEN2k plugin has

started to process the files. It is removed again after the calculation has finished. This file

serves to signal another programs or scripts, that the directory is in use. In the scope of a

larger workflow (see section 4.5.6) it is needed to pause a loop of sequential calculations.

4.4 Resource evaluation

4.4.1 Memory requirement

An estimation of the required memory allows to pre-select possible hosts from the list of Grid-

Server characterised with ’static’ parameters. Since LAPW1 is the most memory consuming

workflow element, only its maximum size has to be calculated, whereas the other programs

can be omitted due to the fact that the executables are run sequentially. The memory require-

ment of LAPW1 can be obtained with equation 4.1, whose symbols are explained in Table

4.1.

size = M2 ·8 · c · (bytes) c =







1 real, (inversion)

2 complex, (no inversion),
(4.1)

When the plugin scans the registry for an appropriate host the size must not exceed 80% of

the static total memory of a machine (or a single node of a cluster), otherwise this resource

must be omitted.

4.4.2 Analytic performance model

The computational effort is more difficult to obtain, since numerical methods are only poorly

accessible to analytic approaches. The intrinsic constraints are listed below.

• The time for a single iteration of an SCF calculation can more easily be estimated than

the number of cycles, which depends on the desired accuracy as well as on the accuracy

already achieved in previous runs8.

• A single iteration employs numeric methods and thus cannot be timed precisely. Further-

more each CASE is unique and thus a general approach of a given performance model

8An already converged calculation, which is run again with higher accuracy, usually needs fewer iterations

The WIEN2k application plugin 127

can never fully cover all different CASES.

• The total runtime is a sum of contributions from several independent Fortran executables

(see Fig.1.2), of which ’LAPW1’ is the dominant one, so that the runtime of the others

can be estimated as a fraction thereof. Therefore the performance model will calculate

the runtime of ’LAPW1’ according to eq. 4.5 and account for the additional contributions

from the other executables by multiplying this result with a constant factor (see below).

• The runtime of a CASE depends in the first place on the machine-performance with

respect to the numerous floating-point- and I/O operations, whose numerous architecture

dependent contributions can practically not be taken into account. Instead the overall

performance is abstracted by a single scalar constant: A machine-speed f supplied

once at the installation of W2GRID. Note that this number can be retrieved by every

plugin, independent from the application it is supposed to serve. Since this is only a poor

approximation of many different contributions, an additional application-dependent tuning

factor g is necessary. It is up to each plugin, whether this factor is used or not. In the case

of WIEN2k it results from an automated self-benchmarking, where every completed SCF

calculation refines the value. This factor is supposed to correct the insufficient machine

speed f and account also for the specific compilation of the WIEN2k-code on a given

host, which can cause a gain or loss in performance (e.g. 32bit vs. 64bit executables).

A crude performance model is sufficient, since the main purpose is to estimate the order of

magnitude, whether a job runs for minutes, hours or days. This shall help to make a proper

decision on the required computing resources rather than time the process exactly.

In order to estimate the runtime of LAPW1 it is necessary to inspect the different contributions.

The generalised eigenvalue problem is set up and solved, which comes with three major contri-

butions to the runtime: Setting up the Hamiltonian matrix (HAMILT; equation 4.2), adding the

non spherical potential terms to this matrix (HNS; equation 4.3) and diagonalizing it (DIAG;

equation 4.4). When a CASE is run, the executable writes the time consumptions of these

parts to the file ’CASE.output1’, whose content can be used to test and improve the model.

The WIEN2k application plugin 128

symbol purpose origin

nat number of atoms from ’CASE.struct’
M matrix-size x lapw1 -nmat_only

nLM angular momentum contributions from ’CASE.vns’
α, β and γ fitting parameters fit from sample cases

k number of k-points from ’CASE.klist’
f nominal machine-speed W2GRID (installation)
g correction factor for the speed WIEN2k plugin (adaptive)
c constant: 1 (real) or 3.2 (complex) from the symmetry

tLAPW1 total runtime of LAPW1 equation 4.4

Table 4.1: Symbols used for equations 4.2-4.5

tHAMILT = α ·nat ·M2 · c (4.2)

tHNS = β ·nat ·
25+ nLM

nat

25
·M2 · c (4.3)

tDIAG = γ ·M3 · c (4.4)

tLAPW1 = f ·g · k · (tHAMILT + tHNS + tDIAG) (4.5)

To obtain the total runtime of an SCF calculation, the result of equation 4.5 will be increased by

+40% to account for other executables and multiplied by 20, an average number of iterations

to reach self-consistency.

4.4.2.1 Test cases

The properties of interest, which shall be evaluated by test cases are:

• The machine-speed f (initially the adjustable tuning factor g is set to ’1’) of equation 4.5.

• The value of the complex-parameter c in the equations 4.2-4.4, which accounts for the

fact that a complex takes longer than a real arithmetic.

• The three constants α, β, γ in the equations 4.2-4.4.

Since the compiler technology, the third-party libraries and hence the performance of the

code improved over the years it is hardly possible to reconstruct the detailed conditions of

CASES, which have been run in the past. Therefore 73 material science studies were se-

lected and run again in single mode on four different hosts. The runtime statistics stored in

the file CASE.output1† were used to fit the performance parameters. To obtain the nominal

The WIEN2k application plugin 129

speeds (f), the slowest host is set to the arbitrary value ’500’ and the individual runtimes of all

CASES are compared to the runtime of the slowest. The median of the resulting factor is used

as machine-speed. The complex-parameter c is determined on the slowest host by a least-

square fit of equation 4.2. Finally the three constants α, β, γ are optimised by a least-square

fit and averaged over the hosts. The correction factor was ignored (g = 1).

f itting− parameter result

α 2.6 ·10−5

β 7.7 ·10−6

γ 8.6 ·10−7

Table 4.2: Results for the fitting parameter

The given fitting parameters yield an average accuracy of +/−16% for the inspected 73 cases.

With these parameters one can, for example, estimate (according to eq. 4.4) that the diago-

nalisation of a complex CASE with a matrix size of M = 10000 will take roughly 5300 seconds

(or 1.5 hours) on a Pentium IV (2.66 GHz) with a nominal speed of f = 520 to perform the

diagonalisation.

4.5 Design of the application plugin

According to section 3.3.5 the plugin only consists of {COMMANDS} (section 2.6.2), p
xJOBSq

y

(section 2.6.3) and certain (optional) Perl-tools. None of its components need to be compiled

and thus the scripts can easily be copied into the respective $GRIDSRC (sub) directories of the

target hosts. Since the concept of W2GRID is RPC based, there are both, server-side as well as

client-side stubs, hence the plugin actually consists of two parts which need to be installed on

the GridServer and the GridClient, respectively. The essential command {wien.exec}C, which

submits and controls a calculation, involves most of the implemented stubs. It is illustrated

in Fig.4.9. For the implementation of the plugin, no other changes and extensions than those

already mentioned in section 4.3 are made to the code. Especially no Grid-routines or libraries

are included into the WIEN2k-code, according to the definition of a lightweight infrastructure

described in the introduction. It is up to the developer of a plugin to decide, which changes

(if any) have to be made in the application, since W2GRID does not make any restrictions. In

the case of the WIEN2k plugin it was decided, that all relevant parts, which may be subject

to future modifications (such as a change of the list of input- and output files) remain in the

responsibility of the WIEN2k code and are not implemented directly in the plugin.

The WIEN2k application plugin 130

4.5.1 Installation

4.5.1.1 WIEN2k

WIEN2k must be available for both daemons, the GridServer as well as the GridClient. While

the GridServer runs the calculation, the GridClient must in the beginning evaluate a CASE

and extract the required parameters. For example the retrieval of the MATRIX-size requires

the execution of lapw19 by the GridClient, which additionally has to obtain the list of input- and

output files by executing migrate_lapw.

• Install WIEN2k from Scratch: If WIEN2k does not exist on the respective host, the

installation must be performed from scratch. Instructions how to do this are given in the

WIEN2k usersguide [9].

• Update: In order to use the plugin, the recent WIEN2k-sources need to be obtained

from the vendor10 and copied into the proper directory. A subsequent compilation of

lapw1 (]$WIENROOT/SRC_lapw1/) is mandatory.

4.5.1.2 Application plugin

The application plugin comes as a package for each daemon (see section 2.10) and will need

to be copied into the directory]packages/. It is expanded and configured by the aid of the

package-installer (section 3.3.11), which runs the provided installation routines and performs

the following tasks:

• Check for the environment variable $WIENROOT and cancel the installation, if it is not

set.

• Check, if the $WIENROOT-directory is still valid.

• Check the W2GRID directory tree and create the subdirectory]wien/ in the proper command-

and job-directory of the respective daemon (see command-groups in section 2.6.2.2).

• Create the subdirectories]libs_perl/wien/gridsrv/ and]libs_perl/wien/gridclient/

• Copy the Perl-tools to]bin/

• Copy the {COMMANDS}, p
xJOBSq

y and libraries into the subdirectories, which have previ-

ously been created for this purpose.

9The GridClient could also delegate the MATRIX-size calculation to any of the registered GridServers, if WIEN2k
is not installed locally. Such an approach might be considered in the future.

10http://www.wien2k.at

The WIEN2k application plugin 131

4.5.2 GridClient

The selection of the optimal host is mainly governed by the total runtime, but there are also

contributions from node- and memory utilisation as well as the estimated queuing time11. In

order to find the best host, the GridClient will first check static data such as the total memory

and exclude those hosts, which are not capable to run the job anyway. Then it will request a

proposal for the runtime and other job-submission related parameters as well as the intended

load-distribution (k-point parallelism). For debugging purposes it is required, that the user

may check these ’runtime-proposals’ made by the GridServers without actually submitting the

calculation. In order to perform all the listed tasks, the GridClient plugin offers the following

commands:

• {wien.mkmachines}C allows to preview the proposals (number of nodes, total runtime),

which the GridClient uses to choose the optimal host from among all capable ones, see

sample output in Fig.4.7.

• {wien.exec}C submits a CASE to the optimal host (The workflow is illustrated on the

left-hand side of Fig.4.9). It will return a unique identifier ([slot_id]C), which can be used

as argument for other commands (e.g. {wien.list}C). The command will write an empty

file ’.w2gridlock’ to the CASE-directory. This file will not be removed unless the cal-

culation is done, hence it can be used to pause a larger workflow (see section 4.5.6).

After having reserved the required resources on the GridServer (section 2.6.5.1) and the

GridClient, the command quits and returns the client-side ID ([slot_id]C) to the user. The

time-consuming tasks (filetransfer and submission of the calculation) will be done in the

background by a p
xJOBq

y. p
xwien.execq

yC is invoked by the command {wien.exec}C for the

first time just before the command quits and writes its output to the logfile (CASE.log†),

whose content is XML encoded and may be read by the aid of the utility logview.pl.

>logview.pl CASE.log

. After having started the remote calculation, the same p
xJOBq

y is invoked in regular in-

tervals in order to monitor the remote process and transfer the files if necessary. If the

remote calculation is finished, the p
xJOBq

y will clean up, set the local slot state accordingly

either to ’FINISHED’ or ’ERROR’ and de-register itself.

• {wien.list}C: All calculations are stored in the table ’slots.client’, which is a persistent data

container that preserves data beyond the end of the p
xJOBq

y (see Fig.2.20). This command

retrieves slot-informations from this table, which are labelled to belong to the WIEN2k

11Waiting half an hour to run a minute-job on a busy cluster is not acceptable, but for a big job, which takes
several days the queuing-time will not matter.

The WIEN2k application plugin 132

plugin (column [program] of Table 2.4). If submitted without argument it will display all

WIEN2k-calculations (running, erroneous and finished). To restrict the output to a single

entry, the [slot_id]C as returned by the command {wien.exec}C may be supplied as an

argument (see sample output in Fig.4.8).

• {wien.check}C While p
xwien.execq

yC performs the check and filetransfer operations in reg-

ular intervals, this command does the same instantly on user-demand, which might be

of interest for steering. It needs the [slot_id]C.

• {wien.kill}C If supplied the [slot_id]C of a running calculation, the latter will be stopped

immediately by triggering a safe kill-method on the remote host.

• {wien.clean}C The table ’slots.client’ is a persistent data container for any kind of data

relevant for a certain calculation. If entries shall be deleted, they must be deleted on

purpose either by the use of the command {slot.kill}C or more conveniently with the re-

spective plugin-command {wien.clean}C. Without additional parameters it will delete all

finished and erroneous calculations and leave only the running ones. if given a [slot_id]C,

only the respective entry will be removed.

>wien.mkmachines
#command took 8 seconds to complete
**
HOST athena
**
RATING 1124 units
.machines (one entry means single-mode)

17:eos
16:eos
14:ne
12:iris
11:susi

COPY NO
FREE SLOTS 30
MEMORY 1%
EFFICIENCY 45% (node efficiency)
ITERATIONS 20
START estimated in 0 s (0+00:00:00)
SINGLE: running on eos

1 k-point 5 seconds (00:00:05)
1 iteration 357 seconds (00:05:57)
1 scf cycle 7140 seconds (01:59:00)

PARALLEL: running on 5 machines
1 k-point 1 seconds (00:00:01)
1 iteration 87 seconds (00:01:27)
1 scf cycle 1740 seconds (00:29:00)

COMMENT Access to the local CASE-DIRECTORY is given.
This improves the rating.

Figure 4.7: A sample output of the command {wien.mkmachines}C

The WIEN2k application plugin 133

>wien.list 31
#command took 0 seconds to complete
1 [0 running, 1 finished, 0 queued, 0 error]

[31] tio2 FINISHED
SERVER :gescher
LOCAL DIR:/athena/hschweifer/lapw/tio2
SUBMITTED:19:52:24 24-08-2006
STARTED :19:52:40 24-08-2006
FINISHED :20:15:52 24-08-2006
END :finished properly

Figure 4.8: A sample output of the command {wien.list}C

4.5.3 GridServer

The purpose of its stubs, which are shown on the right-hand side of Fig.4.9 is to complement

the workflow of the GridClient. The input as well as the output is XML-formatted. All com-

mands will need the local resource identifier12 ([slot_id]S) to be supplied by the GridClient. In-

visible and inaccessible to the user, the GridServer employs heuristic methods for improving

the runtime-prediction (by adjusting g in eq. 4.5 using the obtained runtimes of each finished

calculation). In order to run executables in parallel, a.machines†-file has to be created. An

adaptive load-distribution mechanism allows to react to changing load-situations and to opti-

mise the resource utilisation by adapting the contents of this file. MPI parallel processes are

not implemented at the moment, but threading can already be employed.

• {wien.exec}S starts a calculation13. The command just prepares everything for the

WIEN2k-job and delegates the frequent checks to the job p
xwien.execq

yS. This interplay of

command and p
xJOBq

y is comparable to the respective pair {wien.exec}C and p
xwien.execq

yC.

The [job_id]S is returned to the client.

• {wien.kill}S will properly terminate all invoked WIEN2k tasks immediately.

• {wien.benchmark}S benchmarks the local binaries and adjusts g (see table 4.1). It

extracts the actual runtime of lapw1 from CASE.dayfile† and compares it with the one

calculated by the aid of the performance model (see equation 4.5) yielding a new factor

gnew. The factor gold stored in the table ’programs.server’ will be updated according to

equation 4.6, where a maximum change of 20% is allowed for each completed SCF-

calculation. The contribution must be related to the calculated total-runtime tSCF (sec-

onds) since long-running CASES better conform to the runtime model than shorter ones

(TSCF < 60s). 5 minutes (300 seconds) are considered to be a sufficiently long runtime to

12which must have been obtained previously from executing the command {slot.reserve}S
13An additional flag (-machines) will cause it to return just a .machines † -file proposal for {wien.mkmachines}C

instead of performing the calculation.

The WIEN2k application plugin 134

diminish contributions I/O effects.

g = 0.8·gold +0.2·gold ∗300+gnew ∗ tSCF

300+ tSCF
(4.6)

4.5.4 Interplay of the command-stubs

Many individual commands on both daemons contribute to certain longer workflows. An ex-

ample is shown for the workflow, invoked by {wien.exec}C, which is illustrated in Fig.4.9. It

contains also other commands than the already explained WIEN2k-specific ones. These are

explained in the sections 2.6.5.1 and 2.6.3 as well as in the usersguide [97].

Figure 4.9: Workflow of {wien.exec} C : Interplay of GridServer and GridClient commands/jobs

1 Each calculation is stored in a table and identified by a unique number, the [slot_id]C.

The entry contains a reference to the directory of the source code files and data about the

job-name and calculation parameters. Later the data are appended with the [slot_id]S of

the GridServer and the current status informations. The [slot_id]C is a mandatory/optional

argument for {wien.list}C, {wien.kill}C, {wien.check}C and {wien.clean}C.

2 A matchmaking process of the registered GridServers and the estimated memory re-

quirement leaves only those hosts, which are capable of running the job. The GridClient

The WIEN2k application plugin 135

will then extract all CASE-related calculation parameters k, M, c, nat , nLM (see Table 4.1)

and query all capable hosts in parallel14. The GridServers employ the analytic perfor-

mance model and generate a proposal for a k-point distribution and the estimated total-

runtime with respect to their given load-situation. The GridClient ranks the individual

proposals and takes the top-ranked GridServer.

3 In order to identify a remote calculation, a resource has to be reserved. This resource,

which is referred to as ’slot’ is a database-entry, which contains some temporary data

and a pointer to a temporary directory. This ID, the remote [slot_id]S is only used by the

GridClient.

4 When all foreground tasks are done, the command will return the [slot_id]C as an output

to the user. The workflow is continued in the background by p
xwien.execq

yC, whose output

is written to the slot-registry and can be retrieved by the aid of {wien.list}C.

5 In the background, the actual input files are obtained from the executable ’migrate_lapw’

and copied to the remote resource (’[slot_id]S ’), then the calculation is started and the

GridClient receives the corresponding [job_id]S of the GridServer background process.

6 The following loop will monitor the ongoing calculation and care for the file synchronisa-

tion. The interval between each run of this p
xJOBq

y depends on the configuration of the

GridClient and is usually in the range from 60-120 seconds.

7 The GridClient does not receive the remote PIDQ, since it would not know how to retrieve

the actual status. Hence this task will be left to the GridServer (p
xwien.execq

yS), which is

supposed to monitor the process and to update the corresponding slot accordingly 10 .

This status can be IDLE, RUNNING, FINISHED or ERROR. The output files transferred

during or at the end of the calculation depend on the status. As long as the calculation

is RUNNING, intermediate results will be fetched, whereas the complete output will be

copied only at the end (FINISHED or ERROR). During the runtime, updated input files

are copied in the other direction (from the GridClient to the GridServer), which allows to

steer the calculation. This can also be applied to transfer the file .stop† or to intentionally

change the settings in the .machines† file.

8 The optimisation of the list of hosts depends on the performance model. The GridServer

will adaptively improve its correction factor (g in Table 4.1) to yield a better prediction.

The list is obtained by fetching the list of free resources (nodes) and iteratively improving

14{wien.exec}S -machines

The WIEN2k application plugin 136

the k-point distribution until the runtime is optimal with respect to the given constraints15.

9 The GridServer uses its ’execution plugin’ (see section 3.3.7) for submitting the calcula-

tion (’exec__submit’) and receives a local PIDQ, which is stored as a string and will only

be used locally. The function ’&exec__existspid()’ comes to play in the retrieval of the

calculation state.

10 The status of the remote-slot represents the state of the calculation (see above). The

status is set by the job p
xwien.execq

yS, but it may happen, that this p
xJOBq

y fails to update the

slot properly due to some problems. Therefore the status of a slot only makes sense if

combined with the state of the p
xJOBq

y that must exist as long as the slot is RUNNING but

has to be gone, once the slot-status is either FINISHED or ERROR. Other combinations

will be interpreted as FATAL and trigger the error handling. The treatment of such cases

is up to the developer. The WIEN2k plugin repeats this check two times and then finally

quits with an error.

4.5.5 Tuning the parallelisation

In most cases the expertise of a user cannot be replaced by an automatic system, but the

application plugin provides several parameters to influence the proposals for the .machines†

file. The parameters can be supplied as arguments16 to the commands {wien.exec}C and

{wien.mkmachines}C and are forwarded to {wien.exec}S.

• mintime: If the workload is shared on several nodes, each chunk will take a certain and

maybe different time to run, (depending on the speed of the node and/or the number of

k-points assigned to it). Theoretically (assuming, that all nodes are free and that there

are enough k-points) W2GRID could spread the task on all available nodes, but often

is not desirable to have a single CASE occupy all available resources (in a multi-user

environment this is mostly the case), then the number of involved hosts can be limited.

This can be done by setting a minimum runtime. The optimisation of the proposal always

starts with all available hosts. If the runtime of a chunk is less than the minimum and

cannot be increased by shifting a k-point from a slower node to the faster one without

causing the other runtime to drop below this limit, the slowest host17 is abandoned and

its k-points are equally distributed on the others. The default for this parameter is set to

125 seconds.
15The minimum runtime of a single chunk of k-points is limited, as well as the total number of hosts and the

maximum CPU load.
16e.g. ’-runtime 20’ will set the lower bound of the runtime of a single chunk to 20 seconds.
17The slowest host is determined by comparing the runtimes of all hosts for a single k-point. The host, which

would take longest offers the least performance.

The WIEN2k application plugin 137

• cpulimit: W2GRID needs to distinguish on the one hand a ’busy’ CPU from a ’free’

one and on the other hand must properly handle multicore or multi-processor systems.

W2GRID is able to forecast the estimated CPU usage (in %) a process would be allowed

to exploit if started on a certain host18. If three processes run on a single-core CPU,

each will use 33% of the total CPU power. If it is a dual-core CPU, each process gets

66%. The cpulimit is the threshold for this forecast. If the estimated CPU usage drops

below this threshold value, the machine will not be used 19. This prevents that a dozen

of WIEN2k jobs are submitted at the same time to the same node/CPU. The default is

set to 66% and allows that two tasks may be run in parallel on a dual-core but not on a

single-core CPU.

• maxhosts: The purpose of this parameter is related to ’mintime’, yet this one allows

to restrict the total number of hosts employed for big jobs, where the runtime of a single

chunk does not undercut ’mintime’. If not constrained by the ’cpulimit’, the plugin will

therefore take all free nodes for the CASE. If this argument is provided (e.g. ’-maxhosts

6’) the host-list, which is sorted by the runtimes starting with the fastest ones, will first be

cleared of the slowest excess hosts and limited to ’maxhosts’ machines. The remaining

list will be optimised as usual.

4.5.6 Development of larger workflows

’Phonon-calculations’ or ’structure optimisations’ [9, 12] will be composed of individual SCF-

calculations being run either sequentially or in parallel. Since the commandline interface sup-

ports a batch mode (-S flag) and because the application plugin can invoke any of the exist-

ing WIEN2k workflows (e.g. run_lapw, runsp_lapw, ...), the client-side commands can easily

be integrated in C-Shell scripts. A sample code for a structure optimisation is provided in

Fig.4.10. The use of .w2grid_lock† is demonstrated in lines 6 - 8. As long as the file exists,

1: #!/bin/csh -f
2: foreach i (FePt3_vol_-3.0 FePt3_vol_0.0 FePt3_vol_3.0)
3: cp $i.struct FePt3.struct
4: set RPC = "wien.exec -program runsp_lapw -parameter ’-cc 0.001’"
5: gridclient.pl -S "$RPC"
6: while (-e .w2gridlock)
7: sleep 60
8: end
9: end

Figure 4.10: Code sample of a volume-optimisation with W2GRID

18This estimation is always calculated per host/node, consequently one dual-core CPU will be treated in the
same way as two single-core CPUs.

19or more precisely: no further process will be added to this host/node since a single host can receive more than
a single chunk (provided it has more than one CPU or core).

The WIEN2k application plugin 138

the workflow is paused and no additional calculation can be submitted to W2GRID. If the recent

SCF-calculation is done, the file is removed and the workflow of the script proceeds.

4.5.7 Tools

The plugin also comes with certain tools, which are implemented to debug the respective

libraries. They will be copied to $GRIDSRC/bin/.

• parameter_lapw.pl extracts the calculation parameters from the input files and runs x

lapw1 -nmat_only if required. It creates the data file .parameter†

• calctime_lapw.pl [SPEED] applies equation 4.5 to forecast the runtime of lapw1 in sin-

gle mode on a given host. In order to yield a machine-dependent calculation time, the

program needs the nominal machine speed (e.g. 500) as an argument.

• memory_lapw.pl applies equation 4.1 to estimate the memory requirement.

Chapter 5

Proof of Concepts

The principles of operation of W2GRID as well as the WIEN2k plugin have been described

in detail. To prove, that the concept of the new middleware works for realistic applications,

this chapter will provide results from the installation on different hosts and the work with the

WIEN2k plugin. Table 5.1 shows the hosts, which have been chosen as testbeds: The Gnu

HAL ATHENA GESCHER LUNA AURORA AURA
Platform AIX SuSE SuSE Solaris Redhat SuSE
Perl v. 5.005_03 5.8.5 v5.8.8 5.8.4 v5.8.0 v5.8.6

RAM (GB) 16 (shm) 1-4 2 8 4 2
CPU IBM Pow.3 Intel P4 Intel P4 AMD Opt. Intel Xeon Intel P4
Arch 32bit 32-64bit 32bit 64bit 64bit 32bit

Nodes 3 15 16 72 72 8
CPU/node 16 1 1 2 2 1
cores/CPU 1 1-2 1 2 1 1

queue Cmd Cmd PBS SGE LL SGE
symbol [A] [B] [C] [D] [E] [F]

Table 5.1: Testbed hosts for the proof of principle

C-compiler was available on all testbeds, hence the sources of the wiensql-database (section

2.5) and several tools (section 2.8) were always compiled with gcc. The GridClient was installed

on the same host, which runs the master of the virtual ATHENA cluster. If it is not explicitly

mentioned in sections 5.1.1–5.1.6, the connection between the GridClient and the GridServer

was established with the ’socket’ plugin, and for the filetransfer the ’scp’ plugin was used.

The WIEN2k application plugin 140

5.1 Installation of W2GRID on the testbed hosts

5.1.1 HAL

The rather old system IBM RS/6000 SP 9070-550 is equipped with an AIX operating system

(version 4.3) and consists of three independent nodes with 16 Power3, 375 MHz, Nighthawk2

CPUs and 16 GB of shared memory on each node. W2GRID was actually installed on a single

node, since the cluster was only used for testing the infrastructure. The installation of the

database made several bugs of the original C-code apparent, which had to be fixed. Another

difficulty occurred due to the quite old Perl-version, which had several bugs1. In contrast

to all other architectures the compilation of the modules did not work properly. Therefore

the module-installation had to be skipped and instead the default-library was used, which is

provided as a second choice for such cases. Furthermore this Perl version failed to properly

send and receive encrypted strings, although the AES encryption and decryption alone worked

as desired. Consequently the encryption was turned off (see section 3.2.1). The installation of

W2GRID succeeded and the resulting infrastructure was operable, but it showed a noticeable

latency with all RPC-commands due to the module replacement.

5.1.2 ATHENA

An array of different local desktop computers was used to build a virtual W2GRID cluster 8 2.1

as illustrated in Fig.2.1. The desktops run different versions of SuSE Linux operating systems

(9.1 to 10.1) and use Intel Pentium IV processors ranging from old 32bit 1.7-2.55 GHz to

64bit Core Duo 2.4 GHz. The computers are equipped with 1-4 GB of RAM. All GridServer-

slaves employed the commandline plugin, while the master is not used for calculations (see

’adding slaves’ in the usersguide [97]). No problems are reported for the installation of the

individual GridServers. Since the GridClient and the GridServer master are installed on the

same computer, the ’cp’ plugin could be used.

5.1.3 GESCHER

This is a small 16-node Beowulf cluster equipped with SuSE Linux 10.1 and 32bit Intel Pentium

IV CPUs (3.06 GHz). No problems were observed during the installation.

1http://perldoc.perl.org/perl572delta.html

The WIEN2k application plugin 141

5.1.4 LUNA

The SUN X4100 72-node cluster is equipped with four dual core AMD 64 bit Opteron 275 2,4

GHz processors per node and 8 GByte of memory, it is managed by the SGE. Solaris is used

as operating system. Some minor problems were experienced when compiling the database.

These problems resulted from an improper statement to free allocated memory, which has

been fixed. Additionally the installation scripts triggered an error which has not been observed

on other operating systems and could be related to an incompatible flag for the GNU grep

tool. Since this flag ’-e’ was not recognised by the C-Shell version of this tool, the interpreter

was changed to tcsh for all scripts beyond the basic installation, namely GRIDSRV and GRID-

CLIENT (see section 3.1), whereas the rarely occurring statements in the scripts for the layers

GRIDSRC and WIENSQL were replaced by the corresponding GNU tool egrep, which exists

on all platforms so far examined2. After this fix, the installation and configuration of the Perl-

daemons could be completed without any difficulty. Since the host had been commissioned

just a few weeks before this thesis was submitted, the time for debugging and thorough testing

was too short. Alas, there are no long-term stability proofs available so far.

5.1.5 AURORA

The IBM 1350 cluster, which uses the LoadLeveller for load-management is equipped with

two Pentium IV Nocona 3.6 GHz processors on each node and 4 GB of RAM. Problems

occurred after the installation of the wiensql-database, since the original code was ANSI- but

not POSIX-compliant, hence the signal-statements, namely SIGCHLD resulted in two lines of

error-messages being appended to the file /var/log/messages†. This was more annoying

than critical, but as a consequence led to an improvement of the code. The new version

detects, whether the host is POSIX-compliant or not, and use the respective library. By default

the POSIX-library is needed, since it provides advanced methods for signal-handling, which

are not available in corresponding ANSI compliant code.

5.1.6 AURA

AURA is a small Beowulf cluster with 8 nodes, each equipped with one 3.2 GHz Pentium IV

CPU. The account has been provided by the Photonics-group. Since the account has been

granted for testing the infrastructure, it was not used to run WIEN2k-cases. This host was

especially interesting because it employs the same queuing system (SGE), which is used on

2If this does not prove to be applicable for other platforms, all grep statements will be separated from the code
and replaced by a C-Shell script (e.g. w2grep.csh), which can be adjusted to the needs of the actual platform by an
automated routine as a first action to be performed by the installation scripts.

The WIEN2k application plugin 142

LUNA, too. The installation and configuration could be accomplished without difficulties. For

the safety of the environment, SSH-tunneling was employed.

5.2 Proof of the standalone principle

According to the principle, described in the introduction (section 1.4) W2GRID should be in-

stalled without the need of additional libraries or tools apart from those, which can be expected

to exist on any common Unix/Linux system. Since it was possible to install and configure the

infrastructure on each of the testbed hosts the few requirements (i.e. C-compiler, Perl inter-

preter, C-Shell) were shown to be sufficient. All of the difficulties (described in section 5.1)

were due to bugs in the C- and csh-code and do not contradict the standalone principle, since

they could all be solved without having to make use of other software than the one provided

within the W2GRID sources. None of the problems reported for the individual machines lim-

ited the use. Even on the AIX host, the situation could be handled by making use of several

already provided and built-in features of W2GRID, namely to replace the inoperative module

with the default-library and to turn off the encryption. Usually the daemons are only shut down

on purpose or upon rebooting the host. Since only the wiensql-database daemon records the

accesses from its clients, a sample output of a summary of the logfile content as obtained from

the program logalizer.pl is shown in Fig.5.1.

hschweifer@athena:/athena/hschweifer> logalizer.pl
LOGFILE contains 1092676 lines
LOGFILE is 91946208 bytes in size
SHUTDOWN : 15 times
LASTSHUT: 12:30:40 03-07-2006
STARTUP : 16 times
LASTSTART: 07:48:42 04-09-2006
ACCESSES SINCE LAST START:199020
LASTCLIENT at 09:33:21 06-12-2006 [pid:7659]
CODE 0 (everything all right) : 198953
CODE 1 (unspecified problem) : 0
CODE 2 (something internal ...) : 0
CODE 3 (too many clients) : 0
CODE 4 (IP not acceptable) : 0
CODE 5 (wrong protocol) : 0
CODE 6 (wrong key) : 0
CODE 7 (login failed) : 0
CODE 9 (login connection timeout) : 0
CODE 10 (empty string read) : 1
CODE 11 (empty encrypted string read) : 6
CODE 12 (write failed) : 0
CODE 13 (encrypted writing failed) : 0
CODE 14 (timeout, after some minutes) : 60
CODE 20 (Segmentation fault) : 0

Figure 5.1: The number of connections served by the wiensql-daemon on ATHENA and their
exit-codes

The WIEN2k application plugin 143

5.3 Plugin concept

The concept of core and plugins (see section 2.9) allows W2GRID to separate different aspects

of an architecture into independent pieces. Hence, the interaction can be expanded for all

kinds of operating systems, job-submission schemes and to different methods of filetransfer

and connections can be expanded. The development and improvement was done based on

the experience gained from various architectures. Therefore it was necessary to prove the

portability to different hosts.

5.3.1 Connection and filetransfer plugin

Both plugins are routinely applied and were fully functional on all testbed hosts. AURA was

contacted by means of the SSH-tunnel plugin, which always has to examine whether the tunnel

is available or not before actually opening the connection, thus leading to a minimal latency,

especially if the tunnel was gone and had to be restarted. The different filetransfer plugins

implemented so far are all based on the same principle and worked as expected. It was shown,

that ftp plugins can be implemented for all connection-less methods (e.g. globus-url-copy).

5.3.2 Platform

When installed on a Redhat System, the former ’Linux’ platform plugin was subdivided into

’SuSE’ and ’Redhat’, since both operating systems differ in certain flavours, which became

apparent during the tests. The ’Linux’ has been kept though, and is intended to be used as a

general platform plugin for those cases where no specialised version is available. Since it is

written in a way to serve most kinds of Linux systems, it may suffer from a longer latency due

to more complicated regular expression operations. Whenever a new plugin for a Linux-type

platform is created one should try to integrate the methods into the standard ’Linux’ plugin.

While the AIX and Solaris plugin could only be used on a single host (HAL and LUNA), those

for SuSE (ATHENA and GESCHER) and for Redhat Linux (AURORA and AURA) were in-

stalled on two hosts each. They proved to be fully portable. To probe the functionality, a tiny

test command {system.test}S has been written, which invokes the plugin-functions and dis-

plays their results, which can be checked manually by retrieving the values manually. It was

successfully shown for all hosts, that the platform plugin worked as desired. An output of this

command for LUNA is shown in Fig.5.2.

The WIEN2k application plugin 144

>system.test
Local hostname:’mgt001’
&nslookup returns:

Local IP ’192.168.20.254’
Hostname ’mgt001’

&read_local_ip 192.168.20.254
PID of this process:7165
&exists_pid 1
&process_memory 5804
&syspsf returns:

PID 7382
OWNER hschweif
PARENT 7165

&systop returns 139 processes:
PID 7165
USER hschweif
MEM (%) 0.0
CPU (%) 0.0
COMMAND gridsrvd.pl

DAEMON PID 27079
&childprocesses 27079 27080 27168
&getuptime 7:39pm up 25 day(s), 8:08, 12 users, load average: 0.04, 0.02, 0.01
&getload 0.02
&totalmem 8064.0
&freemem 7.0
¤t_dir /export/aurora/hschweif/WGRID/demons
&get_home /export/aurora/hschweif
CURRENT DATE ’Fri Dec 8 19:39:52 CET 2006’
&read_time 19:39:52 8-12-2006

Figure 5.2: The results of the command {system.test}S on host LUNA

5.3.3 Execution plugin

The key issue of the W2GRID concept is the independence of the execution plugin from the

underlying platform. Based on the fact, that the SGE plugin works for AURA (SuSE) as well

as for LUNA (Solaris), it can be concluded, that independence can be taken granted. Fur-

thermore the ’commandline’ being the default plugin was tested on all six hosts and gave the

expected results. Due to the fact, that this plugin invokes the processes on the frontend of a

managed cluster, no real calculations have been run there, but only short sleep-jobs. To probe

the functionality, W2GRID provides a test script {test.exec}S, which allows to query the load

of the queuing system, submit a job (sleep 100), check its status and remove it again. It was

applied properly on all hosts. A screenshot of these results is shown for HAL in Fig.5.3.

>test.exec submit 1
42574

>test.exec exists 42574
SUCCESS:Process-ID (or Job-ID) ’42574’ exists

>test.exec kill 42574
SUCCESS:Process-ID (or Job-ID) ’42574’ was killed

>test.exec exists 42574
FAILED:Process-ID (or Job-ID) ’42574’ does not exist

Figure 5.3: The results of the command {test.exec}S on host HAL

The WIEN2k application plugin 145

5.4 Applicability for other scientific programs

W2GRID is structured to be a more or less general-purpose infrastructure, which fits the needs

of different applications. It was already said in the introduction, that W2GRID was not exclu-

sively used for WIEN2k, but also for an other scientific applications, namely MCTDHF. Since the

plugin has been developed by the Photonics group [13], only the ideas and the concept will be

shown in this section.

5.4.1 Problem definition

The Photonics group develops and uses different numerical simulation codes, such as MCTDHF,

TDSE3 and QDS4. To run these codes on their quite heterogeneous computing infrastructure

causes -similar to WIEN2k- a significant administrative overhead, especially with the parallel

MCTDHF version [16]. An additional challenge for the researcher is to keep track of the nu-

merous material science cases, which are already computed or are still investigated, since the

applications are not only used to compute the results but also to visualise the data and render

them e.g. into movies.

5.4.2 Solution

Figure 5.4: Purpose of the web interface for MCTDHF and other codes of the Photonics group, figure
taken from [91]

A web interface [91] has been created, which serves as a tool for starting calculations, retriev-

ing their status and for checking the output. The results and the numerous output files can

3Time Dependent Schrödinger Equation Solver: A single CPU application for doing studies of the dynamics of
single quantum mechanical particles.

4Quantum Dot Solver: A single CPU application for studying quantum dots.

The WIEN2k application plugin 146

be handled conveniently and features are provided for the researcher to analyse the data.

W2GRID is employed for the load-management system, namely the execution and control

of processes on a subset of the resources. The web interface does not exclusively employ

W2GRID but may in principle use any kind of infrastructure (e.g CONDOR [58], VGE [78]),

as long as an interface can be implemented. The principle of the web interface is illustrated

in Fig.5.4. W2GRID is used as a batch system for hosts, for which no root-access is avail-

able to install CONDOR, whereas the latter is used for all the others. It was shown, that the

same mechanisms, which apply for WIEN2k also worked for another application, that needs

only the basic mechanisms of distributed computing like filetransfer, job-start and the respec-

tive monitoring. Figure 5.5 shows the testbed for the web interface, where W2GRID comes to

Figure 5.5: The testbed for MCTDHF at the Photonics institute, figure taken from [91]

play at several locations. Some of the hosts can only be reached by SSH-tunnels to avoid

compromising remote security.

5.5 WIEN2k

In chapter 4, the WIEN2k application plugin was presented in terms of its functionality and

the details of the operation principle. This section provides data and results from realistic

examples of WIEN2k-CASES, which have been run on W2GRID. Certain data are extracted

from the logfiles to confirm the assumptions made in chapter 4.

The WIEN2k application plugin 147

5.5.1 Portability of the plugin

The WIEN2k plugin was successfully installed on all hosts in the way as described in section

3.3.5. The $WIENROOT environment variable had to exist and must point to the proper lo-

cation of the WIEN2k executables, otherwise the installation would have been cancelled5. All

parts of the plugin are fully portable to all hosts of the testbed.

5.5.2 Host selection

A central capability of the plugin is the ability to make an autonomous decision on the proper

resource, which best suits the requirements of a CASE with respect to its memory consumption

and estimated computing time. This basically needs to be done in two steps. A static one,

which offers a match-making of the requirements against the contents of the registry and a

dynamic one, which queries each host and analyses its current load and memory situation.

5.5.2.1 Memory constraints (static)

In order to prove that the middleware is able to make a proper pre-selection, a set of test

CASES was created6, which differ only with respect to their memory requirement. To prove

the concept it was sufficient to fetch the proposals for the .machines†-file by the aid of

the command {wien.mkmachines}C instead of actually submitting the jobs to W2GRID by

{wien.exec}C (see table 5.2)

I II III IV
M 9000 11000 15000 22000
nat 3 3 3 3
k 6 6 6 6
c 1 1 1 1

size (MB) 1620 2420 4500 9680
hosts [A-E] [A][B][D][E] [A][D][E] [A]

Table 5.2: Different memory requirements of a WIEN2k-CASE as selection criteria for the GridClient

The size was calculated according to equation 4.1 by using the tool memory_lapw.pl. The ob-

tained host selections agree with the expectation, since only those computers were proposed,

which have sufficient memory to run the CASE. Furthermore it should be noted, that host

AURA [F] was never considered, because it did not have the WIEN2k plugin installed. Since

5WIEN2k has already been pre-installed on all machines.
6basically the same CASE with different MATRIX-sizes.

The WIEN2k application plugin 148

the GridClient keeps in its registry a list of installed programs for all GridServers , this fact is

part of the static host selection7.

5.5.2.2 .machines†-file proposals and dynamic selection criteria

To check the ability of W2GRID to parallelise a CASE properly, the input as shown in Table 5.3

was used, which was adjusted in such a way that all hosts are acceptable. The parameters

si3n4
M 923
nat 3
nLM 112

k 153
c 1

size (MB) 17

Table 5.3: Parameters of a prepared WIEN2k-CASE, which has been used to analyse the
.machines† -file proposals of the individual hosts.

that allow a user to influence the .machines†-file proposals are ’mintime’, ’maxhosts’ and

’cpulimit’, which by default are set to the following values: ’mintime=120’, ’maxhosts=unlimited’

and ’cpulimit=66’ respectively. By the use of the command {wien.mkmachines}C and keeping

these default-parameters the results shown in table 5.4 were obtained, which are discussed

in the following subsections. The column ’LAPW1 runtime’ represents an average runtime

for a single LAPW1-chunk (which is equal to the runtime of the whole LAPW1 workflow-step,

according to Fig.4.3).

HAL ATHENA GESCHER LUNA AURORA
free nodes 16 15 16 2 2

queued nodes 0 0 0 0 68
load 100% 20% 0% 97% 97%

No. nodes 5 5 6 2 2
No. processes 5 5 6 4 4

LAPW1 runtime (s) 317 138 142 134 150
proposal 2*30+3*31 39+32+30+29+23 3*25+3*26 39+3*38 39+3*38

Table 5.4: .machines† -file proposals

7All informations, the GridClient stores in its registry is shown for GESCHER in Fig.A.20 in the appendix

The WIEN2k application plugin 149

• HAL: Since the commandline plugin is used, all 16 CPUs can be employed for the calcu-

lation although they may be occupied already. A heavy load of 100% is indicated, but this

is irrelevant to the GridClient and just serves as an information. As 100% is the upper

limit that is displayed, the ’true’ load is concealed, which had a value of 19 (∼118%). Up

to five additional processes (the effective load will be 24, which equals ∼150%) will yield

a single processor utilisation of more than 66%, whereas the sixth process causes the

efficiency to drop below the threshold. Therefore the plugin may exploit a maximum of

five CPUs and distribute the workload as evenly as possible.

• ATHENA: The constraint for the selection was the runtime of a single chunk (120 sec). If

a sixth host had been added, the runtime of one of the chunks would have dropped below

the limit. The different load-distribution is due to the different powers (speed number) and

loads of the machines.

• GESCHER: The selection is due to the mintime constraint.

• LUNA: The host had got two free nodes. It would employ both for this job and run

two tasks per node with two threads, which makes four processes and therefore four

entries to the machines file. So far the WIEN2k plugin does not quantify the effect of the

threading in the proposal, but the job submission does. The runtime is still calculated on

the basis of a single thread and should be less than 134 seconds.

• AURORA: The cluster was occupied and 68 nodes were already requested, and thus it

is unlikely, that the job will be run soon. The proposal uses two nodes, and two tasks per

node, which again makes four processes and four entries to the .machines†-file. The

threading is not used, therefore the runtime is accurate.

5.5.3 Results obtained from realistic CASES

After it has been shown, that {wien.mkmachines}C, the binaries of the plugin and all required

libraries work, realistic CASES have been run. The workflow of this command and some of

the triggered processes are shown in Fig. 4.9 on page 134. For this purpose the three CASES

shown in table 5.4 have been submitted to all hosts ([A-E]). To bypass the automated scheme,

which decides on the optimal resource, the constraint to run on a dedicated server (option ’-

server [SERVER] ’) was used8. The runtime timeLAPW1 is an average runtime for LAPW1, which

has been calculated for an Intel Pentium IV 2.4 GHz (speed=500).

8Otherwise it would have been difficult to study the behaviour of all hosts, if the selection is left to the GridClient.

The WIEN2k application plugin 150

cu2o si3n4 ir_7l
M 734 3813 1924
nat 2 3 4
nLM 11 112 39

k 165 6 272
size (MB) 5 290 37

c 0 1 0
timeLAPW1 (s) 124 1906 3627

Table 5.5: Three different realistic cases, which have been run on all hosts.

5.5.3.1 Analysis: Self-benchmark

After an SCF calculation has come to an end without observing an error, the GridServer (mas-

ter) extracts the runtimes of the machines as well as the number of k-points they processed

and invokes the command {wien.benchmark}S, which compares its own prediction against

the actual runtime and modifies the factor g accordingly by ways of equation 4.6. On a virtual

host, the GridServer master executes {wien.benchmark}S on all of its slaves, whereas on a

managed cluster the standalone GridServer benchmarks itself in the same way by establish-

ing a connection to its own port. In order to study this scheme, one of the GridServer slaves

on host ATHENA, namely ’ne’ has for testing purposes been set up with a completely wrong

machine-speed (1500 instead of 800), which led to an over estimated proposal for this ma-

chine. The logfile shown in Fig.5.7 illustrates, how the initial k-point distribution suffered from

this wrong machine-speed of host ’ne’, whereas the following cycles already used a much

better distribution. The employed scheme can only effectively change the distribution after

the first cycle has been completed, otherwise the pattern matching does not return a result

from the dayfile. A few lines of the logfile content are shown in Fig.5.6. The original value of

1: (INFO) found in dayfile: HOST ’ne’
2: (INFO) nslookup resulted in IP ’128.130.134.32’
3: (INFO) host ’ne’ was identified as ’ne’ in the database
. ...
4: (INFO) benchmarking host ’ne’
5: (INFO) Latest Transmission was considered type:4 (everything >=0 is good)
6: (INFO) sending request ’wien.benchmark’ to gridserver (parameter omitted)
7: (INFO) ’ne’ said: "speed diluted by ’0.4149’ from ’1.0000’ to ’0.9464’

Figure 5.6: Selected content of a logfile, indicating the self-benchmark

the correction-factor g has been 1. The results of this calculation show, that the relation of

estimated and real runtime yielded a factor of 0.41. The self-benchmark does, however, not

allow such big leaps in the correction-factor with a single run, furthermore it must be avoided,

that short CASES have too much influence on the result. This is why, the value for g was only

The WIEN2k application plugin 151

reduced by roughly 5.4%. Numerous runs are necessary to achieve an accurate prediction

(line 7).

5.5.3.2 Analysis: Adjusting the k-point distribution

So far this feature has only been implemented for a virtual cluster such as ATHENA, since

it can be assumed that often usual HPC clusters will consist of identical nodes. During the

execution of a CASE the k-points are redistributed as a reaction to a changed load-situation

or because the initial guess of the machine-speed has been wrong. The redistribution uses

the actual runtimes, which are extracted from the logfile CASE.dayfile† and represent the real

performance in contrast to the proposals of the individual hosts, which is based on the runtime

model (see equation 4.5) and may not be accurate. This scheme is illustrated with one CASE

of table 5.5, namely ir_7l .

1: ne (101) 441.319u 5.728s 7:37.52 97.7%
2: eos (48) 212.749u 2.368s 3:37.42 98.9%
3: xe (46) 193.476u 2.168s 3:18.20 98.7%
4: kr (44) 184.767u 2.152s 3:11.22 97.7%
5: iris (33) 252.735u 4.652s 4:23.85 97.5%

.. ...
6: ne (58) 255.579u 3.060s 4:25.21 97.5%
7: eos (59) 262.584u 3.116s 4:31.09 98.0%
8: xe (61) 267.500u 3.132s 4:34.70 98.5%
9: kr (61) 260.360u 2.960s 4:28.35 98.1%

10: iris (33) 252.395u 4.604s 4:23.74 97.4%
.. ...
12: ne (58) 261.220u 3.316s 4:34.63 96.3%
13: eos (59) 264.192u 2.924s 4:35.39 96.9%
14: xe (60) 265.908u 3.088s 4:32.58 98.6%
15: kr (61) 266.096u 2.924s 4:32.66 98.6%
16: iris (34) 263.576u 4.852s 4:50.67 92.3%

Figure 5.7: Selected content of a CASE.dayfile, which shows the automated adjustment of the k-point
distribution

The CASE was run with a smaller MATRIX size (1418 instead of 1924) in order to obtain the

results faster9. The principle is demonstrated by manipulating the speed number for host ’ne’.

The same run was used to demonstrate the self-benchmark. The few important lines have

been extracted from the dayfile (ir_7l.dayfile†) and are shown in Fig.5.7. While the k-point

distribution is unfortunate in the beginning (line 1), it is already close to optimal in the following

cycle (line 6), where host ’ne’ received almost half the k-points it originally processed. The

relation of the k-points 58/101 (0.57) is close to the relation of the speed-numbers 800/1500

(0.53).

9The runtime-prediction is cut by half to 1494 seconds.

Chapter 6

Discussion

It was shown in chapter 5, that it is possible to install the middleware on many typical operat-

ing systems, which are used for scientific computing resources. All reported difficulties of the

installation routines (csh-scripts) and the C-code (wiensql-database), which were experienced

on some hosts of the testbed could be solved without a violation of the standalone concept,

since the fixed code afterwards still works on all the other target systems. Third-party software

was not required in either case. It is expected that upon porting the code to other platforms

(such as HP-UX, IRIX, Tru64, Ultrix, Mac OS X, NetBSD, NextStep, Plan 9, QNX, System V

-to mention a few Unix-like systems, among which some are proprietary and not 100% POSIX

compliant-) may lead to similar difficulties, which will be solved in the same way.

The idea to use a standardised scripting language proved to be successful, as Perl provides

powerful tools to solve complex problems. Difficulties were only experienced with the AIX

operating system, but those were related to bugs in the rather old Perl interpreter and could

be solved too. Since it is expected that all newer hardware will be equipped with more ad-

vanced Perl versions than 5.005, these incompatibilities are unlikely to recur. Although the

set of investigated platforms has been limited to a few essential ones, it could be shown that

the principle of operation works as desired. The approach of W2GRID to separate all platform

and job-submission related tasks as plugins from the rest of the infrastructure (core) as well

as from the scientific applications provides the desired framework to run scientific applications

such as WIEN2k or MCTDHF on different kinds of hardware with the same application plugin.

It was shown, that the platform and the execution plugin are independent of each other (see

section 5.3.3) and that the application plugin may also be written in an independent way such

that it does not require to call platform or queuing system specific commands explicitly. Hence

it can be concluded, that additional platforms, queuing systems and applications can be inte-

grated into W2GRID simply by writing the corresponding plugins. A guide for this development

is given with this thesis (see chapter 3).

Discussion 153

The concept of lightweight middleware as presented in the introduction (see section 1.3.2)

imposes certain limitations for the design of the application plugin, as it sacrifices certain fea-

tures, which are rarely required in scientific computing and instead focuses on the few essential

issues of distributed computing for the sake of portability and a better usability. For example

W2GRID is well suited to run programs within a single domain having a shared filesystem,

whereas it is not possible to parallelise programs across several computing sites, since par-

allelism cannot be added by W2GRID but must already be provided by the application. If a

calculation is started on a remote host, which does not have access to the local filesystem

W2GRID can manage the filetransfer in both directions. This updating of input files on the

GridServer sites1 and the output files on the local site is done in regular intervals and there-

fore comes with a certain latency, which does not allow immediate steering, since one does

not possess real time data. Furthermore the filesystem is used as the primary data-storage.

Certain informations of a maximum string length of roughly one Megabyte may also be stored

in the wiensql-database, whereas extended database-support such as interfaces to mysql or

postgre-sql or even distributed data-storages as provided by data grids cannot be offered by

W2GRID. Therefore programs, whose files must be up-to-date all the time or have to employ

remote databases are better served with other middleware. W2GRID is already used by the

Photonics group to run the MCTDHF and QDS codes on their computing resources (see Fig.5.5).

Already at the beginning of the development phase, security has been taken seriously, since it

was evident, that such kind of middleware may put the safety of a computing centre at risk if it

is vulnerable to the most basic kinds of attacks. For this reason the AES encryption has been

employed in order to protect the daemons and to provide a sufficient security, such that sys-

tem administrators do not consider their firewalls punctured from the inside. W2GRID proved

to work well even in critical environments, where the computing resources could only be con-

tacted by the aid of SSH-tunnels with certificate-based authentication.

The present implementation of W2GRID requires, that a GridServer daemon runs on the fron-

tend of each computing site and is accessible from the outbound network. Restrictions im-

posed by firewalls can be addressed properly with SSH-tunneling, but there is the policy en-

forced by some system administrators, who will not give users the permission to run daemon

processes at all, due to security concerns. This problem can be overcome by operating the

host in question remotely through an interactive shell-session. At the moment such hosts can-

not be used, unless this feature is implemented in W2GRID. Furthermore interactive access is

required.

Many Grid-infrastructures, also lightweight ones [78] highlight the importance of quality of

service (QoS), because certain distributed applications (e.g. medical data processing) need

1for the purpose of steering

Discussion 154

reliable forecast models. This issue has largely been neglected by W2GRID, which is due to

the fact, that the infrastructure is supposed to be operated under user-permissions. W2GRID

may only guarantee the kind of quality of service, which is provided by underlying queuing

system, but is not able to enforce a strict policy for the resource usage by its own means.

The WIEN2k-application plugin proved to work on all testbed hosts as it delivered the expected

results. Although the runtime forecasts on all hosts have been in the proper range, the analytic

performance model as applied at present is too rigid to be used on all platforms, because the

parameters (α, β, γ) depend on numerous parameters, which cannot be attributed by simply

adjusting a linear factor. It was observed, that the model applies well for ’known’ systems such

as the Intel architecture, but does not scale accordingly on Power 3 processors. Instead of

improving the forecast by modifying a single linear parameter it may be better to tune α,β and

γ with each benchmark as this will provide a more reliable prediction model in the future.

The automated adjustment of the k-point distribution showed to enhance the CPU efficiency

significantly since this is done with respect to the dynamically changing load situation of the

hosts and allows to optimise the utilisation of resources on a given computing site. Although

this scheme is well suited for cases with many k-points, it became evident that it does not work

well for CASES with fewer, since W2GRID usually shifts excess k-points from a slower host to

the faster host (with the least runtime for its chunk) without caring about the runtime difference,

which may result in an unfavourable load balance. This scheme needs to be improved in or-

der to optimise the k-point distribution with respect to an optimal total-runtime of the involved

chunks. Additionally the method cannot be applied unless a whole iteration is completed, since

the regular expression pattern does not work otherwise. If the job p
xwien.execq

yS, which checks

the calculation and optimises the k-point distribution happens to be run by the controller in ex-

actly that time-interval between the finishing of a preceding iteration and the start of the parallel

LAPW1 in the next one, already the second iteration may profit from an improved distribution,

otherwise it is usually the third iteration. It is evident that the mechanism must incorporate a

second pattern, which allows to extract the runtimes already after the parallel LAPW1 step is

completed.

It can be concluded that W2GRID turned out to be flexible in the desired way. The infrastruc-

ture can be installed with the means and permissions granted to a user and is relatively simple

to configure. It can be used on hosts, where many other middleware products fail due to in-

sufficient permissions or unavailable libraries. With the development of new plugins for other

platforms, queuing systems, filetransfer- and connection-methods it can in principle be ported

to any Unix-like computing resource.

As it was shown, the offered solution also applies to other programs. The effort for the devel-

Discussion 155

opment of such application plugins scales with the desired capability. While a simple workflow

may be already satisfied with some hundred lines of Perl-code (including the processing of in-

put arguments and the recommended documentation) complex tasks like those performed by

the WIEN2k plugin may need up to several thousand lines of code. This is due to the fact that

many features, which are needed in a similar way by different applications are already offered

as simple function calls that allow to execute complex tasks like the filetransfer by a single line

of code. On the other hand all special features exclusively needed by the application such as

the sophisticated distribution of k-points on the available nodes in the case of WIEN2k have

to be coded explicitly and thus require the same effort of program code as with any other lan-

guage or Grid middleware.

One of the most promising features of W2GRID is that it allows application developers to de-

velop a single plugin for their programs, which may in principle be used on many different

architectures, regardless of what kind of queuing system may be installed there. This fea-

ture is of course limited to the capabilities, which are supported by the plugin-type (e.g. The

execution plugin supports MPI but not PVM). Since execution plugins may also be written for

heavyweight middleware such as CONDOR or GLOBUS, W2GRID could be used as a top-level

batch system and extended to larger scales. Many features, which have been omitted in the

initial design of the middleware can be added as plugins later on. W2GRID in its current state

(version 2.8.11) is ready for use.

Abbreviations and special terms

Abbreviations

• AES Advanced Encryption Standard (see below)

• AHE Application Hosting Environment

• AJO Abstract Job Objects

• API Application Programming Interface2

• CLI CommandLine Interface

• CPAN Comprehensive Perl Archive Network

• DES Data Encryption Standard

• DFT Density Functional Theory

• GRAM Grid Resource Allocation Management

• GSI Grid Security Infrastructure

• GUI Graphical User interface

• HF Hartree Fock

• HPC High Performance Computing

• HTTP HyperText Transfer Protocol

• HTTPS HyperText Transfer Protocol Secure

• IP Internet Protocol

• LCAO Linear Combination of Atomic Orbitals
2http://en.wikipedia.org/wiki/API

Abbreviations and special terms 157

• LHC Large Hadron Collider

• LL LoadLeveller

• MCTDHF Multi Configurational Time Dependent Hartree Fock

• NIST National Institute of Standards and Technology

• PBS Portable Batch System

• PID Process-identifier (see below)

• PVM Parallel Virtual Machine

• QDS Quantum Dot solver

• QN Quantum Number

• QoS Quality of Service

• RPC Remote Procedure Calls (see below)

• RSL Resource Specification Language

• SCE Scientific Computing Environment

• SDK Software Development Kit

• SGE Sun Grid Engine

• SGML Standard Generalised Markup Language

• SGS Styx Grid-Services

• SOAP Simple Object Access Protocol

• SQL Structured Query Language

• TCP Transmission control Protocol

• TDSE Time Dependent Schrödinger Equation Solver

• UNICORE Uniform access to Computing Resources

• UPL UNICORE Protocol Layer

• VGE Vienna Grid Environment

Abbreviations and special terms 158

• VGCE Vienna Grid Client Environment

• VGSE Vienna Grid Service Environment

• W2GRID Wien-to-Grid

• WEDS Web-Service based Environment for Distributed Computing

• XML Extensible Markup Language

Special notations

• p
xJOBq

yS,C: A background process. The attached suffix identifies, for which daemon it is

written.

•]directory/: The directory is marked with a preceding sharp (]) symbol and written

in ’Avant Garde’. In order to avoid scrambling the text with long paths, only relative

pathnames, which originate in]$GRIDSRC/ will be used. For example]libs_perl/ is

to be expanded into]$GRIDSRC/libs_perl/. However, if a path is located outside of
]$GRIDSRC/ (e.g.]$GRIDROOT/) it will be specified explicitly.

• executable: Executables are written in ’Adobe Times’ (bold and itallic).

• PROGRAM: Tradenames for programs such as WIEN2k or MCTDHF are written monospaced.

• file†: Files are written in ’Avant Garde’ and marked with a succeeding dagger. If not said

otherwise in the text,]$GRIDSRC has to be added to the path.

• [column]: In the chapters 2–4 numerous column-names are used and explained. To

improve the readability, the column is written bold and enclosed in parentheses.

• {COMMAND}S,C: The RPC-command, which can be invoked on the daemon. The suf-

fixes serve the same purposes as for the p
xJOBSq

y.

• PIDQ: The process-ID, which is returned from a queuing system. This is not identical to

the procecess-ID’s as obtained from the commands ps or top.

• $VARIABLE: An ordinary variable (e.g. STRING, INTEGER, FLOAT, ...). Perl handles

the types internally, type-definitions are therefore not required.

• @ARRAY: The array data-type of Perl. Arrays may only contain numbers as indices (e.g.

$ARRAY[0] is the first element).

Abbreviations and special terms 159

• \@ARRAYREF: A pointer to an array.

• %HASH: A special kind of array in Perl. The indices, which point to its content do not

necessarily have to be numbers but may also be strings (e.g. $HASH{0} or $HASH{a})

Different to the square brackets used for the conventional arrays, the HASH uses curled

braces. Its content may be other hashes, hence this variable type is useful to simulate

objects.

• \%HASHREF: A %HASH cannot be passed to a function, due to the intrinsic way how

Perl handles the input. Therefore it must be passed as a reference, which is nothing else

than a pointer to the location in memory, where the content of the HASH is stored. The

value of this reference variable is a string and can also be printed to the screen. It will

show a hexadecimal address space. Assuming $ref=\%HASH, the original value can be

retained by dereferencing the pointer with %HASH=%{$ref}

• BUTTON : A button on the keyboard.

Special terms used in this thesis

• Workflow: terms the movement of tasks through a work process. More specifically, a

workflow is the operational aspect of a work procedure: how tasks are structured, who

performs them, what their relative order is, how they are synchronised, how information

flows to support the tasks and how tasks are being tracked. It is a mostly visualised

abstraction of some processes3.

• RPC: Remote-Procedure-Calls are widely used in distributed computing and allow to

invoke commands remotely on different hosts. RPC’s make the construction of dis-

tributed programs an easy task by extending the conventional procedure-call scheme

to distributed environments and hiding from programmers the complications involved in

concurrent communication, as well as transmission errors. When writing PRC programs,

programmers can use paradigms similar to conventional local procedure calls while call-

ing and called procedures are allowed to reside on different machines. In the RPC mech-

anism, when a caller makes a remote procedure call, the caller is suspended and the

parameters of the called procedure are passed across the network to the callee where

the execution of the called procedure takes place. After completion the result is passed

back to the caller, which resumes its execution as if it returned from a local procedure

call. this paradigm is well suited for use in the client-server model. [104]

3http://en.wikipedia.org/wiki/Workflow

Abbreviations and special terms 160

• Registry: Always refers to some kind of data-storage, mostly a database-table. To

register an item means to insert data, whereas de-register refers to deleting data from

the storage container.

• AES: AES is a symmetric key encryption technique which replaces the commonly used

Data Encryption Standard (DES).It was the result of a worldwide call for submissions

of encryption algorithms issued by the US Government’s National Institute of Standards

and Technology (NIST) in 1997 and completed in 2000. The winning algorithm, Rijndael,

was developed by two Belgian cryptologists, Vincent Rijmen and Joan Daemen. AES

provides strong encryption and has been selected by NIST as a Federal Information

Processing Standard in November 2001 (FIPS-197), and in June 2003 the U.S. Gov-

ernment (NSA) announced that AES is secure enough to protect classified information

up to the TOP SECRET level, which is the highest security level and defined as infor-

mation which would cause "exceptionally grave damage"to national security if disclosed

to the public.The AES algorithm uses one of three cipher key strengths: a 128-, 192-,

or 256-bit encryption key (password). Each encryption key size causes the algorithm to

behave slightly differently, so the increasing key sizes not only offer a larger number of

bits with which you can scramble the data, but also increase the complexity of the cipher

algorithm.

• client/server: The naming convention results from the dataflow. The server is the pro-

cess, which listens to a certain port for incoming connections and offers certain capabil-

ities. An other process, the client connects to this port and requests these capabilities.

This is especially important in a case, where the GridServer daemon connects to the

wiensql daemon. The convention makes the GridServer the ’client’ because it is served

by the wiensql daemon, which is hereby the ’server’.

• PID (PID) Every process on the host has got a unique number, which can be used to

identify it. Within the scope of this document, the PID is the numeric process-identifier for

commandline-processes. It is not equal to the JOB-ID, which is assigned by a queuing

system to a submitted job.

• CASE This refers to the name of the WIEN2k calculation in question and to the name of

the directory, which will also be the prefix for most files (see section 1.1.3.4).

• LAPW1 As a workflow-element, the program is written with uppercase characters, whereas

if it is used as a binary, it is written as the respective binary lapw1.

• XML The Extensible Markup Language (XML) is a W3C-recommended general-purpose

markup language that supports a wide variety of applications. XML languages or ’di-

Abbreviations and special terms 161

alects’ are easy to design and to process. XML is a simplified subset of Standard Gener-

alised Markup Language (SGML). Its primary purpose is to facilitate the sharing of data

across different information systems, particularly systems connected via the Internet.

Formally defined languages based on XML (such as RSS, MathML, XHTML, Scalable

Vector Graphics, MusicXML and thousands of other examples) allow diverse software

reliably to understand information formatted and passed in these languages4.

4http://en.wikipedia.org/wiki/XML

Definition of Grid Computing

The meaning of the term ’Grid computing’ changed over the years [32, 51, 105, 106], and it

is quite difficult to find an obliging definition, since developers look at it from their very per-

sonal perspective. The present understanding is, that “a computational Grid is a hardware and

software infrastructure that provides dependable, consistent, pervasive and inexpensive ac-

cess to high-end computational capabilities” [32]. It forms with the pooling of resources such

as computing resources and storage capacities, hence the most prominent types of ’grids’

are computational grids and data grids [107]. The key concept is the ability to negotiate re-

source sharing arrangements among a set of participating parties (providers and consumers)

and then to use the resulting resource pool for some purpose. Foster et.al. [106] define

a Grid as an infrastructure, which coordinates resources, that are not subject to centralised

control, uses standard, open general-purpose protocols and interfaces and delivers nontriv-

ial qualities of service. Cluster management systems such as PBS or SGE do therefore not

qualify as grids, due to the centralised control. Other authors [98] determine Grids by their Re-

source management system, which is governed by tasks such as access to resource information,

status monitoring and scheduling, reservation management and execution. Depending on the

purpose and the size, it may be of interest to maintain record of the usage for accounting and billing

[108]. Yet most of these requirements represent a certain ’common sense’ within the Grid-

community, whereas s stringent definition is still outstanding.

Important library functions for

development

Only the essential functions are illustrated and explained. A complete list is provided in the de-

velopersguide [103]. The informations provided in this chapter require a basic understanding

of Perl.

Utilities

The utility-functions are already included by default in any {COMMAND} and p
xJOBq

y and pro-

vide some general-purpose capabilities.

File: $GRIDSRC/libs_perl/utils.pl†

Perl: include “$PATH{LIB}/utils.pl”;

• &run_external($statement): Executes the string ’$statement’ on the commandline from

within an internal Bourne-Shell (sh) and returns the obtained result. The commands must

conform to the Bourne-Shell syntax.

• &rijndenc($key,$plain_text): Encrypts a given $plain_text by the aid of the AES algo-

rithm and the supplied $key and returns the encrypted text.

• &rijndec($key,$encrypted_text): Decrypts an $encrypted_text and returns the plain

text.

• &create_tempdir(): Creates a temporary directory in]$GRIDROOT/temp/ b 2.5 and

returns its name.

• &file_tempname($dir,$rump): Suggests a unique filename in directory $dir but does

not create it. The returned result is composed of the string ’$rump’ and an attached

number.

Important library functions for development 164

• &extract_parameter($string): takes a $string of the form ’a=1 b=10 x=test ’ and returns

a hash e.g. %TEMP. The elements of the hash are the parameters contained in the string

(e.g. $TEMP{a}=1).

• &filestat($filename):retrieves the current file informations and returns a hash containing

the results (e.g. MTIME, ATIME, CTIME, SIZE, ...).

Errors and Warnings

W2GRID keeps an internal stack of error- and warning-messages, which accumulates all mes-

sages. The errors and warnings are automatically appended to any result string returned from

the daemon, hence the developer does not have to print them explicitly. The respective func-

tions are already included by default in any {COMMAND} and p
xJOBq

y.

File: $GRIDSRC/libs_perl/w2grid.pl†

Perl: include “$PATH{LIB}/w2grid.pl”;

• &write_error($errmsg): Adds $errmsg to the error-stack and changes the internal sta-

tus. &check_error() now returns ’1’. The error-message is also appended to the logfile

(see &gridlog__write()).

• &check_error(): Returns ’1’ if &write_error() has been called at least once, or ’0’ other-

wise.

• &write_warning($warnmsg): Similar to &write_error(). The messages are usually not

critical and are appended to the logfile, too.

• &check_warning(): Similar to &check_error().

• &check_abort(): Returns ’1’ if either an error has been triggered or if the function &in-

put__finish() was called (see Fig.A.4, line 22).

Verbose and regular output

The verbose-strings may be used to debug the code in the development phase, but can addi-

tionally serve as an intrinsic documentation of the code. To see these strings on STDOUT, the

verbosity of the daemon must be turned on explicitly (see section 3.2.1). The functions are

already included.

File: $GRIDSRC/libs_perl/w2grid.pl†

Perl: include “$PATH{LIB}/w2grid.pl”;

Important library functions for development 165

• &write_verbose($verbose): Writes a verbose message to the stack, which is appended

to the logfile,too (see &gridlog__write()).

• &write_verbose_internal($verbose): Writes a verbose message to the internal stack.

This message is not appended to the logfile.

• &write_result($result): The most important function for RPC-commands. The string

$result will be returned to the client. Different to verbose, warning and error it is not

written to a stack but overwritten each time, the function is called. It is recommended

to use it only a single time at the end of a command (line 32 in Fig.A.4). The string is

not appended to the logfile.

Logfiles

The verbose output may only be sent to STDOUT if the verbosity of the daemon has been

enabled and if the terminal still exists. In any other case, the output is usually lost, unless it

is written to a logfile, which collects all $strings, obtained from the functions &write_verbose(),

&write_error() and &write_warning(). The logfile-functions are available by default to com-

mands and jobs.

File: $GRIDSRC/libs_perl/gridlog.pl†

Perl: include “$PATH{LIB}/gridlog.pl”;

• &gridlog__open($filename): Opens the logfile ’$filename’ or newly creates it if it did

not exist. An absolute pathname must be provided.

• &gridlog__write($text): Writes the $text to the logfile. The use of this function should

be avoided in favour of the above mentioned ones.

• &gridlog__close(): Usually the log-data is not written immediately to the file after each

call of &gridlog__write() but instead stored and finally written with the callingo of the

function &gridlog__close(). If the script is terminated prematurely for any reason, the

respective command will not be reached and the data is lost. Although the logfile will

automatically be closed at the end of every {COMMAND}/pxJOBq
y by the subsequent

cleanup-process of the daemon/controller it is however recommended to include this

statement at the end of each command/job in order to avoid the risk of a loss of data.

• &gridlog__flush(): immediately writes all accumulated log-data, but does not close the

logfile.

Important library functions for development 166

Execution plugin

The functions of the execution plugin are only to be used by the GridServer and are included

by default. The important functions are discussed in section 3.3.7.

File: $GRIDROOT/libs/exec.pl†

Perl:include “$PATH{SYSTEMLIB}/exec.pl”;

GridServer-Slots

The slot serves as a temporary storage container for all kinds of data and has to be created and

destroyed explicitly, therefore its lifetime may exceed the scope of p
xJOBSq

y and {COMMANDS}.
The library is not included by default. The explanation of some functions below will refer to the

columns in table Tab.2.3. The column-names refer to table2.3.

File: $GRIDSRC/libs_perl/gridsrv/srvutils.pl†

Perl: include“$PATH{SRVLIB}/srvutils.pl”;

• &srv__reserveslot($workdir): Creates a new slot, which automatically expires after 10

minutes, if it is not used and updated in the meantime. The optionally supplied $workdir

will be written into the corresponding column [workdir], otherwise the same temporary

directory stored in column [tempdir] will be used instead. Usually an RPC-command

other than {slot.reserve}S does not have to call this function explicitly, since a larger

workflow should be composed like illustrated in Fig.2.20. In such a case the GridClient

will create the slot by the aid of the command {slot.reserve}S in advance. The status of

the slot is by default ’0’ (INACTIVE).

• &srv__releaseslot(\@slots): Removes the slot(s) from the registry and deletes the

temporary directory [tempdir], whereas [workdir] -if different- is not removed. The com-

mand {slot.release}S uses this function.

• &srv__slot_extend($slot_id,$time): Extends the expiry-date [expiration] of the slot to

the given value, which is now plus $time. The string may be composed of days, hours,

minutes and seconds e.g “12d3h5m12s”.

• &srv__slot_seterror($slot_id): Changes the [status] to ’-1’.

• &srv__slot_setactive($slot_id): Changes the [status] to ’1’.

• &srv__slot_setfinished($slot_id): Changes the [status] to ’2’.

Apart from the provided functions, it is possible to manipulate the slot-content directly by the

use of the wiensql-functions (see Fig.A.1).

Important library functions for development 167

1: my $slot_id=10;
2: my $SQL="select * from slots.server where slot_id=$slot_id";
3: my %DATA=&db_cmd_array($SQL);
4: if($DATA{COUNT}==0)
5: {
6: &write_error("The slot ’$slot_id’ does not exist");
7: }
8: else
9: {

10: &write_verbose("The original content is ’$DATA{parameter}’");
11: my $set="parameter=’<A>test’";
12: &write_verbose("changing parameter to ’<A>test’");
13: my $SQL="update slots.server set $set where slot_id=$slot_id";
14: if(!&db_cmd($SQL))
15: {
16: &write_error("could not update data");
17: }
18: else
19: {
20: &write_result("slot successfully updated");
21: }
22: }

Figure A.1: Sample code for a manual modification of the slot-registry by the aid of the
database-functions

GridClient-Slots

The following functions, which must be included explicitly behave similar to the previous ones.

The column-names refer to table2.4.

File: $GRIDSRC/libs_perl/gridclient/clientutils.pl†

Perl: include “$PATH{CLIENTLIB}/clientutils.pl”;

• &client_reserveslot($program,$servername,$time,$dir): Register a new slot with default-

status ’0’ and returns the slot_id The $time is the expiry-time of the slot supplied as now

+ $time (see above). The name of the $program, the $servername and the directory

$dir are optional and may be updated later.

• &client_releaseslot($slot_id): Removes the slot. In contrast to the related function of

the corresponding GridServer library, the directory [dir] will not be removed!

• &client_slot_extend($slot_id,$time): extends the expiry of the slot to now + $time (as

before).

• &client_slot_seterror($slot_id): Changes the [status] to ’-1’.

• &client_slot_setactive($slot_id): Changes the [status] to ’1’.

• &client_slot_setfinished($slot_id): Changes the [status] to ’2’.

• &client_slot_setjob($slot_id,$job_id): Links the slot with a $job_id.

Important library functions for development 168

• &client_slot_setname($slot_id,$jobname): Changes the value of column [name] (e.g.

the CASENAME of a WIEN2k-calculation).

• &client_slot_setserver($slot_id,$servername): The name of the GridServer, where

the calculation shall be submitted to.

The sample code illustrated in Fig.A.1 may be used also for the GridClient-slots, if the table-

name in line 2 and line 13 is changed from ’slots.server’ to ’slots.client’.

GridServer-Jobs (identical to GridClient-jobs)

Only the function &jobutils__newjob() is supposed to be used in {COMMANDS}, whereas all

other functions are reserved for p
xJOBSq

y. The data-exchange of the latter kind of functions uses

an internal buffer, which fetches and stores all data. Also the instructions to modify data are

not transacted immediately, instead only the values in the buffer are modified. Similar to the

logfiles, the transaction is performed upon the call of a single function: &jobutils__update(). If

this call is omitted (for any reason), the modifications made in the scope of the p
xJOBq

y are lost.

By default, these functions are available to every p
xJOBq

y-script, whereas the respective library

has to be included in {COMMAND}-scripts. The column-names refer to the table 2.2.

GridClient-File:$GRIDSRC/libs_perl/gridclient/jobutils.pl†

GridClient-Perl:include “$PATH{CLIENTLIB}/jobutils.pl”;

GridServer-File:$GRIDSRC/libs_perl/gridsrv/jobutils.pl†

GridServer-Perl:include “$PATH{SRVLIB}/jobutils.pl”;

• &jobutils__newjob($job,$time,$param,$files,$slot_id): Register a new p
x$ jobq

yS,C, which

is scheduled for execution at the date now +$time (string formatted as before) and re-

turns the [job_id]. The list of parameters $param is usually an XML-datagram, but this

is up to the developer. The optional filelist $files is the datagram-style expression of the

respective hash as obtained from &filelist__data2str() (see 6).

• &jobutils__setnextexec($time): Changes the next execution [job_date] of the job.

• &jobutils__killjob(): Removes the job from the registry.

• &jobutils__getparameter(): Returns a datagram-hash.

• &jobutils__setparameter(\%param): Updates the column [parameter] of the p
xJOBq

y.

The list must be passed as a reference to the datagram-hash, which is the default-

method to use the parameter-column of the job-registry. If it is intended to store an

unformatted string, the corresponding database-functions have to be used.

Important library functions for development 169

• &jobutils__getslotdata(): Returns a hash, which contains the column-names of the

slot-registry. The data can only be fetched, if the [slot_id] has been specified, otherwise

it will be empty.

• &jobutils__getfiles(): returns a file-list hash as read from column [files].

• &jobutils__update_files(\%files): Changes the file-list hash to \%files.

• &jobutils__update(): Realises all instructed updates to the table or removes the p
xJOBq

y.

Misc. GridClient-functions

This is a collection of some useful functions, column-names refer to the host-registry.

File: $GRIDSRC/libs_perl/gridclient/clientutils.pl†

Perl: include “$PATH{CLIENTLIB}/clientutils.pl”;

• &gridclient__searchhosts($string): Accepts an argument-string, which may look like

’mem>1000,cpu>=3,prog=WIEN’ and returns the wiensql-query result (HASH) of &db_cmd_rows()

(see section 6).

• &gridclient__findhost($host): The string $host may either be the [host_id], the [host_ip]
or the [host_name]. The function returns the wiensql-query result of &db_cmd_array()

(see section 6). The COUNT-element of the result-hash (e.g. $DATA{COUNT}) contains

the number of matches. If it is less than 1, the host could not be found, if it is greater

than 1 the input is ambiguous. The other elements of the hash are the column-names of

the host-registry (to be used as e.g. $DATA{host_name}).

• &gridclient__fork($parameter): Forks a process and returns the new PID of the child.

Usually the parent will retain the control of the logfile and the open connection to the

client. By default no wiensql-connection will be established. To change this behaviour,

an optional list of parameters $parameter may be supplied, which can look like this:

’wiensql=yes gridlog=child connection=child’5.

• &gridclient__execjob($job,$job_id): Immediately runs a p
x$ jobq

yS,C in the background.

the job must already be registered, hence it is mandatory to pass a valid $job_id in order

to retrieve and manipulate the data. Since this function is supposed to be used from

within a {COMMAND}, it is recommended to fork the process in advance, otherwise the
p
xJOBq

y will run in the foreground and block the {COMMAND}.
5The illustrated string will create a new wiensql-connection for the child and gives the control of the open logfile

and also the control of the client connection to the child.

Important library functions for development 170

Misc. GridServer-functions

The functions are already included and serve a similar purpose like those for the GridClient.

• &gridsrv__fork($parameter): Same as &gridclient__fork().

• &gridsrv__execjob($job,$job_id): Same as &gridclient__execjob().

GridServer connection

The respective library file is already included in {COMMAND}- and p
xJOBq

y-scripts. It contains

the client-functions for connecting to and interacting with a GridServer. A sample code is

provided with Fig.A.8 on page 180, the line numbers will refer to it.

File: $GRIDSRC/libs_perl/gridsrv.pl†

Perl: include “$PATH{LIB}/gridsrv.pl”;

• &gridsrv__connect($host): Establishes a connection to a GridServer, which has to

be in the host-registry. It is retrieved from the host-registry by the aid of the supplied

string $host, which may either be the [host_id], the [host_ip] or the [host_name] (see

&gridclient__findhost()). The function returns ’1’ upon success or ’0’ in the case of an

error (line 6)

• &gridsrv__exec($command,$parameter): Submits the {$command}S together with

some arguments ’$parameter’ to the GridServer and returns three strings: result,error,warning

(line 12).

• &gridsrv__disconnect(): Terminates the connection (line 22).

These three are the only functions, developers will need from this library, whereas others like

&gridsrv__put() and &gridsrv__get() should not be used. Instead it is recommended to use

&utils_shared__filetransfer() (see page 175).

Important library functions for development 171

Files

Files (or more accurately: filenames) are treated by W2GRID in an object-like manner. A hash,

referred to as the %filelist, contains individual ’objects’ used like that: %filelist{0...COUNT-1}.

Each of them is another hash, which contains items like the NAME, the PATH and SIZE of

a file. The predominant purpose of the filelist is to store and handle a large number of files

by the use of a single variable. The entries may be turned easily into an XML-string in order

to store the contents in the database and also reverted to the object again. For filetransfer it

is sufficient to supply this object to the function &utils_shared__filetransfer() (see page 175).

The capabilities are available by default.

File: $GRIDSRC/libs_perl/filelist.pl†

Perl: include “$PATH{LIB}/filelist.pl”;

• &new_filelist($local,$remote): Generates a new filelist object and returns the respec-

tive hash %filelist. Both arguments are optional. The string $local is attached to the local

path of the filenames, and $remote to the remote ones.

• &filelist__additem(\%filelist,$name,$location,$checkpoint,$parameter): Adds a new

item to the object $filelist. The $name of the file is an absolute path (and may also contain

the asterisk ’*’ character). The $location is a string (either ’local’ or ’remote’) and indicates

whether the file has to be copied from the client to the server or the other way round.

Checkpoints allow to mark files with a certain label (e.g. ’error’,’finished’,’check’,’input’)

and to apply the function &utils_shared__filetransfer() only to a selected sublist, which

bears this label. An additional $parameter can be used to influence the transfer-method.

By default the file is copied as a whole. If the string ’append’ is supplied, only the most

recent chunk will be appended.

• &filelist__data2str(\%filelist): The filelist cannot be stored directly in the database, be-

cause it is represented by an internal Perl-address. For this purpose, it has to be turned

into an XML-string. The result of this function may be stored directly in any sufficiently

spacious text-type column.

• &filelist__str2data($string): Reverts the function &filelist__data2str(\%filelist) in order

to get back the %filelist out of the XML-string.

• &filelist__mklist(\%filelist): Concats all items contained in the list into a single string,

which may be used e.g. as an argument for a command like tar.

• &filelist__compress(\%filelist,$archive): Compresses the files and returns either ’1’

upon success or ’0’ on error. The archive name $archive must be supplied as an absolute

Important library functions for development 172

path, its extension will define the type of the archive and the applied method (at present

only .gz, .tgz, .tar.gz and .tar are valid).

• &filelist__refresh(\%filelist): Walks through the items and collects new informations

(SIZE, timestamps,...).

XML-datagrams

XML-like structures are frequently used in W2GRID for data transfer and to wrap complex

parameters or results. A sample code is shown in Fig.A.10 (page 181) that illustrates their

use.

File: $GRIDSRC/libs_perl/datagramm.pl†6

Perl: include “$PATH{LIB}/datagramm.pl”;

• &new_dtgr($name,$param,$value): Generates a new datagram (line 1) and returns it

as a %HASH. The $name is the root-tag, which contains all other items7. Optionally

some parameters $param and a $value may be specified8. Additional tags should not

be passed by $value but instead added by using &dtgr__additem().

• &dtgr__additem(\%HASH,$name,$param,$value): Adds new items (lines 2 - 6). The

function returns a reference to the recently created object, which may in turn be used to

add new tags to it (lines 5 - 6).

• &dtgr__readitem(\%HASH,$name): Reads the value of items (lines 9 - 11).

• &dtgr__readparam(\%HASH,$name,$element): Reads the parameter of items (line

12)

• &dtgr__countmembers(\%HASH,$name): Counts the number of items having the

same name (e.g. <DATA><A><A></DATA>, <A> occurs two times;line 13)

• &dtgr__countitems(\%HASH,$name): Counts the number of items in total, which have

been added to a certain tag. (e.g. <DATA><A></DATA>, contains two

items; line 14)

• &dtgr__data2str(\%HASH): Turns the hash into a string in order to store it in e.g. a

database-table. The string is returned (line 7).

6The original name has been kept, to avoid conflicts, although it is misspelled.
7e.g. <DATA>...</DATA>
8e.g. <DATA $param>$value</DATA>

Important library functions for development 173

• &str2dtgr($string): Processes a string and returns the datagram. This is useful to turn

database-results from strings back into objects (HASH) (line 8).

wiensql

A very important feature is the database-connectivity, which is available to all {COMMANDS}
and p

xJOBSq
y by default. In many cases it can be avoided to use the illustrated functions,

because some regularly requested tasks are already provided with appropriate template-

functions, which contain the SQL query as part of their workflow and reduce the amount of

code-lines (e.g. manipulating slots and p
xJOBSq

y). A sample script, which illustrates the use of

the functions is shown in Fig.A.1. The library is already included by default.

File: $GRIDSRC/libs_perl/wiensql.pl†

Perl: include “$PATH{LIB}/wiensql.pl”;

• &wiensql__connect(): Connects to the database and returns either ’1’ upon success or

’0’ on error.

• &wiensql__disconnect(): Terminates the connection.

• &db_cmd($SQL): Executs an SQL statement and returns the result. This function is

useful for deleting or updating data (line 14), but not recommended for ’SELECT’ state-

ments, since the recordset will be obtained as an unformatted string (line 14).

• &db_cmd_array($SQL): Returns only the first row of a query, assuming, the query leads

to a single match. The data is returned as hash, its elements are named after the column-

names (e.g. ’parameter’ line 10). An additional entry COUNT (line 4) indicates how many

entries matched the query in total, thus this allows to determine whether the selection

criteria leads to ambiguous results.

• &db_cmd_rows($SQL): Returns a complete recordset as a hash. The element COUNT

contains the total number of rows. Each individual row is stored as an item bearing the

respective index: 0...$COUNT-1 (e.g. $result{0} contains the first row). Each row is again

a hash, containing elements, which are named after the columns (see Fig.A.2).

my %DATA=&db_cmd_rows("select * from slots.server");
for(my $i=0;$i<$DATA{COUNT};$i++)
{

print "$DATA{$i}{slot_id}\n";
}

Figure A.2: Sample code of &db_cmd_rows()

Important library functions for development 174

Input

Arguments may be supplied to tools and commands9. Hence it is necessary to process these

strings and extract the desired informations. The respective functions are already provided by

default. A sample code is shown in Fig.A.4 (page 177), the line numbers in this section refer

to it.

File: $GRIDSRC/libs_perl/input.pl†

Perl: include “$PATH{LIB}/input.pl”;

• &input__split($string): Splits the arguments (supplied as $string) into individual pieces

and stores them in an intermediate buffer. The function does not return a result.

• &input__argument($param,$name,$regexp,$errmsg): Checks if the argument $name

(e.g. ’--help’) exists in the input string. If it is supposed to be a flag, $regexp and $er-

rmsg must be empty, otherwise it is regarded to be an option, which requires an ad-

ditional value to be attached to $name. A flag and an option must not have the same

$name. The string $regexp may be any regular expression or a template such as (’NUM-

BER’, ’FILE’, ’DIR’, ’INTEGER’ or ’STRING’). The $errmsg will be returned (see function

&write_error()) if either the option does not exist at all in the input-string, if no value has

been passed or if the value does not match the given $regexp. $param may contain an

additional definition of the argument (e.g. ’mandatory’). The function returns either ’1’ in

the case of success or ’0’ on error.

• &input__arguments($param,$names,$regexp,$errmsg): Behaves identically to &in-

put__argument(), but it accepts several $names, which must be separated by a slash

(e.g. -h/--help) and allows to process many arguments at once.

• &input__freeparam($param,$regexp,$errmsg): Some parameters are neither options

nor flags (e.g. just a number or a filename supplied to a {COMMAND} or tool). The be-

havior is identical to &input__argument(), yet the $name is missing. $regexp is manda-

tory.

• &input__read(): Every time an option or free parameter is successfully retrieved from

the string, its value will be stored internally and may be retrieved by the aid of this func-

tion.

• &input__finish(): Checks if some arguments are still in the stack, which have not been

asked for. All such items (e.g. misspelled ones) are considered to be inadequate and

9p
xJOBSq

y in the contrary use other methods to retrieve their input (see above).

Important library functions for development 175

reported as an error. It is therefore recommended to check for errors before the pro-

gram/command enters the main-part (line 24).

Shared utilities

The shared utilities are very important in W2GRID, since they offer the most useful capabilities

for client/server command interplay and complex processes. They have to be included on

demand.

File: $GRIDSRC/libs_perl/gridshared/utils_shared.pl†

Perl: include “$PATH{SHAREDLIB}/utils_shared.pl”;

• &utils_shared__getcalcstate($slot_id,$job_id): The function can only be used, if a

connection to a GridServer has already been established successfully (&gridsrv__connect()).

It returns the state of a remote calculation, which is a combination of the states of the
p
xJOBq

y and the slot. The return value is a string out of the following list: ’FATAL’ ’ERROR’

’CRAZY’ ’NOSTART’ ’CRASHED’ ’RUNNING’ ’FINISHED’. ’FATAL’ is returned if any of

the two states could not be obtained. A state is CRAZY if the slot-state and the p
xJOBq

y-

state do not match (e.g. the p
xJOBq

y exists but the slot is already finished). A calculation is

’CRASHED’, if the slot is recognised to be still active, but the controlling p
xJOBq

y is gone.

This is different from ERROR.

• &utils_shared__filetransfer(\%filelist,$slot_id,$param): This function needs an open

GridServer connection, too. The filelist object %filelist and the remote $slot_id are

mandatory arguments. The transfers is performed in both directions, according to the

given $location of a file (see function &filelist__additem on page 171). A ’remote’ file

will be copied from the server to the client, whereas a ’local’ file will be transferred the

other way round. Additional constraints $param allow to pre-select the files (e.g. ’check-

point=finished’ only transfers files, which are labelled as ’finished’).

• &utils_shared__parallel_processes(\@input,$function): A sample code is shown in

Fig.A.6 (page 179). The function invokes asynchronous parallel processes, which re-

ceive exactly one element out of the array of input data. The number of invoked parallel

processes equals the number of elements contained in the array. The string $function

contains the name of the function, which shall be executed by each process. The results

of each single function will be collected and returned as an array. If the number of ele-

ments of the output-array does not match the number of elements of the input, an error

has occurred.

Sample Code and Screenshots

All sample code shown in this section will use line numbers to simplify referring to certain

functionalities from other parts of the text. If using these scripts for development, the line

number must of course not be included.

1: #!/bin/csh
2: # @ job_type = parallel
3: # @ input = /dev/null
4: # @ output = $(Executable).$(Cluster).$(Process).out
5: # @ error = $(Executable).$(Cluster).$(Process).err
6: # @ notify_user = pblaha@susi.theochem.tuwien.ac.at
7: # @ node_usage = not_shared
8: # @ initialdir = ~/lapw/LiF
9: # @ tasks_per_node = 2

10: # @ node = 8
11: # @ class = large
12: # @ queue
13: set mpijob=1
14: setenv OMP_NUM_THREADS 1
15: limit coredumpsize 0
16: set proclist=‘echo $LOADL_PROCESSOR_LIST‘
17: set nproc=$#proclist
18: echo ’#’ > .machines
19: #k-point and mpi parallel lapw1/2
20: set i=1
21: while ($i <= $nproc)
22: echo -n ’1:’ >>.machines
23: @ i1 = $i + $mpijob
24: @ i2 = $i1 - 1
25: echo $proclist[$i-$i2] >>.machines
26: set i=$i1
27: end
28: echo ’granularity:1’ >>.machines
29: echo ’extrafine:1’ >>.machines

Figure A.3: submission-script for a WIEN2k calculation on the LoadLeveller (LL)

Sample Code and Screenshots 177

1: #Creation:20.2.04
2: #Author:Johannes Schweifer
3: #+---+
4: #+ REQUIRE LIBRARIES +
5: #+---+
6:
7: require "$PATH{SRVLIB}/srvutils.pl";
8:
9: #+---+
10: #+ MAIN ROUTINES +
11: #+---+
12: sub exec_request
13: {
14:
15: #---------------------------------------
16: # Evaluating commandline arguments
17: #---------------------------------------
18:
19: if(&input__arguments("","-h/--help"))
20: {
21: &write_result(&test__help());
22: &set_finished();
23: }
24: &input__finish();
25:
26: #---------------------------------------
27: # Main code
28: #---------------------------------------
29:
30: if(!&check_abort())
31: {
32: &write_result("If you read this the gridserver is operational");
33: }
34:
35: #---------------------------------------
36: # Send answer ...
37: #---------------------------------------
38:
39: return &gridsrv__make_response();
40: }
41:
42: sub exec_help
43: {
44: #---------------------------------------
45: # Available options and flags (without explanation!)
46: #---------------------------------------
47: &write_result(&w2grid__getcommand()." [-h/--h]");
48: return &gridsrv__make_response();
49: }
50:
51: #+---+
52: #+ HELP +
53: #+---+
54:
55: sub test__help
56: {
57: my $commandname=&w2grid__getcommand();
58: my $output=<<_END;
59:
60: USAGE: $commandname [-flags]
61:
62: PURPOSE: On the one hand a template for further
63: commands. On the other hand a test for
64: the server.
65: FLAGS:
66: -h/--help --> displays this text
67:
68: _END
69: return $output;
70: }
71: 1;

Figure A.4: Source code of the W2GRID version of ’Hello World’ {test}S

Sample Code and Screenshots 178

1: #Creation:17.11.04
2: #Author:Johannes Schweifer
3: #+---+
4: #+ REQUIRE LIBRARIES +
5: #+---+
6:
7: my $global_variable=10;
8:
9: #+---+
10: #+ MAIN ROUTINES +
11: #+---+
12:
13: sub exec_command
14: {
15: #---------------------------------------
16: # Evaluating stored parameters
17: #---------------------------------------
18:
19: my %jobdtgr=%{&jobutils__getdata("PARAMETER")};
20: my %slotdata=&jobutils__getslotdata();
21:
22: #---------------------------------------
23: # Main code
24: #---------------------------------------
25:
26: if(&jobutils__isstate("init"))
27: {
28: &write_verbose("The job is in the initialization phase");
29: &run_external("echo initialization’ >> $PATH{LOG}/jobtest.txt");
30: &jobutils__changestate("running");
31: &write_verbose("Next execution in now+90 seconds");
32: &jobutils__setnextexec("90s");
33: }
34: else
35: {
36: &run_external("echo done’ >> $PATH{LOG}/jobtest.txt");
37: &write_verbose("The job will not be executed again");
38: &jobutils__killjob();
39: }
40:
41: #---------------------------------------
42: # Clean up and handle next execution
43: #---------------------------------------
44:
45: &jobutils__setparameter(\%jobdtgr);
46: &jobutils__update();
47: }
48: 1;

Figure A.5: Source code of a background task (’job’ {test}S)

Sample Code and Screenshots 179

1: #+---+
2: #+ REQUIRE LIBRARIES +
3: #+---+
4: require "$PATH{SHAREDLIB}/utils_shared.pl";
5: #+---+
6: #+ MAIN ROUTINES +
7: #+---+
8: sub exec_request
9: {

10: #---------------------------------------
11: # Evaluating commandline arguments
12: #---------------------------------------
13: if(&input__arguments("","-h/--help"))
14: {
15: &write_result(&test__help());
16: &set_finished();
17: }
18: &input__finish();
19: #---------------------------------------
20: # Main code
21: #---------------------------------------
22: if(!&check_abort())
23: {
24: #first we create some input
25: my $result="";
26: my @input=(1,2,3,4,5,6,7,8,9,10);
27: my @output=&utils_shared__parallel_processes(\@input,\&pfunc,100);
28: foreach(@output)
29: {
30: $result.="$_\n";
31: }
32: $result.="10 jobs were launched. x^^2 with x in [2-11]";
33: &write_result($result);
34: }
35: #---------------------------------------
36: # Send answer ...
37: #---------------------------------------
38: return &gridclient__make_response();
39: }
40: sub exec_help
41: {
42: #---------------------------------------
43: # Available options and flags (without explanation!)
44: #---------------------------------------
45: &write_result(&w2grid__getcommand()." [-h/--h]");
46: return &gridclient__make_response();
47: }
48: sub pfunc
49: {
50: #here we receive some input
51: #the input is used for a calculation...
52: my $input=$_[0];
53: sleep(1);
54: &demon__progress(50);
55: sleep(1);
56: &demon__progress(50);
57: return ($input+1)*($input+1);
58: }
59: #+---+
60: #+ HELP +
61: #+---+
62: sub test__help
63: {
64: my $commandname=&w2grid__getcommand();
65: my $output=<<_END;
66: USAGE: $commandname [-flags]
67: PURPOSE: shows parallel processes
68: FLAGS:
69: -h/--help --> displays this text
70: _END
71: return $output;
72: }
73: 1;

Figure A.6: Parallel sample command-code (GridClient and GridServer compliant)

Sample Code and Screenshots 180

1: my $templates="$PATH{TEMP}/template=>$PATH{TEMP}/pbsnodelist";
2: my $command="sleep 100";
3: my %parameter=(
4: "MPI" =>1,
5: "CPU" =>10,
6: "MEM" =>200, #MB
7: "TIME" =>10h, #time-string
8: "PREAMBLE" =>"", #some commands
9: "NOTIFY" =>"me@home",

10: "FILES"=>$templates,
11: "TASKS_PER_NODE"=>2,
12: "THREADS_PER_NODE"=>2,
13: "ERRORFILE"=>"test.err",
14: "OUTPUTFILE"=>"test.out",
15: "INPUTFILE"=>"test.in",
16: "COPYINPUT"=>1, #MPI:to each node
17: "COPYPROGRAM"=>1, #MPI:to each node
18: "COPYOUTPUT"=>1, #MPI:from each node
19:);
10: $ID=&exec__submit($PATH{TEMP},$command,\%parameter);

Figure A.7: The using of plugin-functions in order to submit a job to a queuing system

1: my %HOST=(
2: "host_name"=>"athena",
3: "host_id"=>"12",
4: "slot_id"=>23,
5:);
6: if(!&gridsrv__connect("$HOST{host_id}"))
7: {
8: &write_error("could not connect to ’$HOST{host_name}’");
9: }

10: else
11: {
12: my ($data,$error,$warning)=&gridsrv__exec("slot.release","$HOST{slot_id}");
13: if($error!~/\w/)
14: {
15: &write_verbose("The remote slot $HOST{slot_id} has been released");
16: return 1;
17: }
18: else
19: {
20: &write_error($error);
21: }
22: &gridsrv__disconnect();
23: }

Figure A.8: Sample code for sending a remote-procedure-call to a GridServer

my %jobdtgr=%{&jobutils__getparameter()};
my $local_slot_id=&dtgr__readitem(\%jobdtgr,"PARAMETER.LOCAL_SLOT_ID");
my $str_machines=&dtgr__readitem(\%jobdtgr,"PARAMETER.MACHINES");
my $maxnodes=&dtgr__readitem(\%jobdtgr,"PARAMETER.MAXNODES");
my $processes=&dtgr__readitem(\%jobdtgr,"PARAMETER.PROCESSES");
my $maxmem=&dtgr__readitem(\%jobdtgr,"PARAMETER.MAXMEM");
my $program=&dtgr__readitem(\%jobdtgr,"PARAMETER.PROGRAM");
my $str_wienvar=&dtgr__readitem(\%jobdtgr,"PARAMETER.WIENVAR");
my $logfile=&dtgr__readitem(\%jobdtgr,"PARAMETER.LOGFILE");
my $keep=&dtgr__readitem(\%jobdtgr,"PARAMETER.KEEP");
my $cycle=&dtgr__readitem(\%jobdtgr,"PARAMETER.CYCLE");
my $local_pid=&dtgr__readitem(\%jobdtgr,"PARAMETER.PID");
my $outfile=&dtgr__readitem(\%jobdtgr,"PARAMETER.OUTFILE");
my $errfile=&dtgr__readitem(\%jobdtgr,"PARAMETER.ERRFILE");
my $wien2kparam=&dtgr__readitem(\%jobdtgr,"PARAMETER.WIEN2KPARAM");

Figure A.9: Sample code for retrieving data from the parameter-column of the job-registry

Sample Code and Screenshots 181

1: my %dtgr=&new_dtgr("DATA"); #<DATA></DATA>
2: &dtgr__additem(\%dtgr,"A","",1); #<DATA><A>1</DATA>
3: &dtgr__additem(\%dtgr,"A","",10); #<DATA><A>1<A>10</DATA>
4: &dtgr__additem(\%dtgr,"B","",2); #<DATA>...2</DATA>
5: my $c=&dtgr__additem(\%dtgr,"C","test=yes",3); #returns reference
6: &dtgr__additem($c,"X","","hello"); #<DATA>...<C test=yes><X>hello</X></C>...
7: my $string=&dtgr__data2str(\%dtgr); #returns the string
8: my %new_dtgr=&str2dtgr($string); #returns the hash
9: my $a1=&dtgr__readitem(\%dtgr,"DATA.A[0]"); #returns 1
10: my $a2=&dtgr__readitem(\%dtgr,"DATA.A[1]"); #returns 10
11: my $x=&dtgr__readitem(\%dtgr,"DATA.C.X"); #returns 10
12: my $param=&dtgr__readparam(\%dtgr,"DATA.C.X","test"); #returns yes
13: my $count_a=&dtgr__countmembers(\%dtgr,"DATA.A"); #returns 2
14: my $items=&dtgr__countitems(\%dtgr,"DATA"); #returns 3 (items:A,B,C)

Figure A.10: Sample code illustrating the manipulation of XML-datagrams

1: <PLUGIN>
2: <ID>_PLAT_REDHAT</ID>
3: <TYPE>PLATFORM</TYPE>
4: <NAME>RedHat</NAME>
5: <CUSTOM>
6: <ITEM>
7: <NAME>platform</NAME>
8: <REGEXP empty=true default=unknown>STRING</REGEXP>
9: <DESCRIPTION>The redHat-linux version</DESCRIPTION>

10: <QUERY>Supply the version number if you know it:</QUERY>
11: </ITEM>
12: </CUSTOM>
13: <FIXED>
14: <ITEM>
15: <NAME>system_file</NAME>
16: <VALUE>libs_perl/platforms/redhat.pl</VALUE>
17: </ITEM>
18: <ITEM>
19: <NAME>endian</NAME>
20: <VALUE>0</VALUE>
21: </ITEM>
22: </FIXED>
23: <DESCRIPTION>Special for RedHat-versions</DESCRIPTION>
24: </PLUGIN>

Figure A.11: Sample XML-descriptor of a platform plugin

1: <PLUGIN>
2: <ID>_CPU_P4_3.2</ID>
3: <TYPE>CPU</TYPE>
4: <NAME>Pentium 4 (3.2 GHz)</NAME>
5: <CUSTOM></CUSTOM>
6: <FIXED>
7: <ITEM>
8: <NAME>SPEED</NAME>
9: <VALUE>650</VALUE>

10: </ITEM>
11: </FIXED>
12: <DESCRIPTION></DESCRIPTION>
13: </PLUGIN>

Figure A.12: Sample XML-descriptor of a processor plugin

Sample Code and Screenshots 182

1: <PLUGIN>
2: <ID>_FTP_SCP</ID>
3: <TYPE>FTP</TYPE>
4: <NAME>unix secure-copy (scp)</NAME>
5: <CUSTOM>
6: <ITEM>
7: <NAME>protocol</NAME>
8: <REGEXP default=2>^(1|2)$</REGEXP>
9: <DESCRIPTION>The version of the RSA algorithm</DESCRIPTION>

10: <QUERY>Please enter the RSA version (default=2):</QUERY>
11: </ITEM>
12: <ITEM>
13: <NAME>ip</NAME>
14: <REGEXP>IP</REGEXP>
15: <DESCRIPTION>scp xy.txt IP:(path)</DESCRIPTION>
16: <QUERY>Enter the IP/hostname of the remote host:</QUERY>
17: </ITEM>
18: <ITEM>
19: <NAME>login</NAME>
20: <REGEXP>STRING</REGEXP>
21: <DESCRIPTION>for ssh login@host</DESCRIPTION>
22: <QUERY>Enter the login name on the remote host:</QUERY>
23: </ITEM>
24: </CUSTOM>
25: <FIXED>
26: <ITEM>
27: <NAME>ftp_init</NAME>
28: <DESCRIPTION>Initializing the FTP-connection</DESCRIPTION>
29: <VALUE>standard_ftp_init</VALUE>
30: </ITEM>
31: <ITEM>
32: <NAME>ftp_get</NAME>
33: <DESCRIPTION>Copy data from remote to local</DESCRIPTION>
34: <VALUE>standard_scp_get</VALUE>
35: </ITEM>
36: <ITEM>
37: <NAME>ftp_put</NAME>
38: <DESCRIPTION>Copy data from local to remote</DESCRIPTION>
39: <VALUE>standard_scp_put</VALUE>
40: </ITEM>
41: <ITEM>
42: <NAME>file</NAME>
43: <DESCRIPTION>Relative path to the library-file</DESCRIPTION>
44: <VALUE>ftps/rscp.pl</VALUE>
45: </ITEM>
46: </FIXED>
47: <DESCRIPTION>scp is currently the safest data transfer method. Use it
48: as a default method on any kind of system, where you have an account.
49: The automatic authentication must be enabled (ssh-keygen!). If you still
50: have to provide a password on login, the method will fail</DESCRIPTION>
51: </PLUGIN>

Figure A.13: Sample XML-descriptor of a filetransfer plugin

Sample Code and Screenshots 183

1: <PLUGIN>
2: <ID>_CONN_SOCKET</ID>
3: <TYPE>CONNECTION</TYPE>
4: <NAME>socket</NAME>
5: <CUSTOM>
6: <ITEM>
7: <NAME>ip</NAME>
8: <REGEXP>IP</REGEXP>
9: <DESCRIPTION>The remote IP</DESCRIPTION>

10: <QUERY>Please enter the remote IP:</QUERY>
11: </ITEM>
12: <ITEM>
13: <NAME>port</NAME>
14: <REGEXP>INTEGER</REGEXP>
15: <DESCRIPTION>The remote port</DESCRIPTION>
16: <QUERY>Please enter the remote port:</QUERY>
17: </ITEM>
18: </CUSTOM>
19: <FIXED>
20: <ITEM>
21: <NAME>connection_open</NAME>
22: <DESCRIPTION>Open a remote connection</DESCRIPTION>
23: <VALUE>standard_socket_open</VALUE>
24: </ITEM>
25: <ITEM>
26: <NAME>connection_write</NAME>
27: <DESCRIPTION>Routine for sending data</DESCRIPTION>
28: <VALUE>standard_socket_write</VALUE>
29: </ITEM>
30: <ITEM>
31: <NAME>connection_read</NAME>
32: <DESCRIPTION>Routine for reading data</DESCRIPTION>
33: <VALUE>standard_socket_read</VALUE>
34: </ITEM>
35: <ITEM>
36: <NAME>connection_status</NAME>
37: <DESCRIPTION>Checking the connection status</DESCRIPTION>
38: <VALUE>standard_socket_status</VALUE>
39: </ITEM>
40: <ITEM>
41: <NAME>connection_close</NAME>
42: <DESCRIPTION>Closing a remote connection</DESCRIPTION>
43: <VALUE>standard_socket_close</VALUE>
44: </ITEM>
45: <ITEM>
46: <NAME>connection_init</NAME>
47: <DESCRIPTION>Prepare for opening the connection</DESCRIPTION>
48: <VALUE>standard_socket_init</VALUE>
49: </ITEM>
50: <ITEM>
51: <NAME>file</NAME>
52: <DESCRIPTION>Relative library-path</DESCRIPTION>
53: <VALUE>connections/socket.pl</VALUE>
54: </ITEM>
55: <ITEM>
56: <NAME>name</NAME>
57: <DESCRIPTION>The internal socket-descriptor</DESCRIPTION>
58: <VALUE>GRIDSRV</VALUE>
59: </ITEM>
60: </FIXED>
61: <DESCRIPTION>Standard unix socket employs a direct connection from one
62: endpoint(specified by ip:port) to the remote one. If remote ports are
63: blocked you can use an ssh-tunneling mechanism</DESCRIPTION>
64: </PLUGIN>

Figure A.14: Sample XML-descriptor of a connection plugin

Sample Code and Screenshots 184

1: <PLUGIN>
2: <ID>_EXEC_PBS</ID>
3: <TYPE>EXEC</TYPE>
4: <NAME>PBS</NAME>
5: <CUSTOM>
6: <ITEM>
7: <NAME>nodes</NAME>
8: <REGEXP empty=true default=1>INTEGER</REGEXP>
9: <QUERY>Please enter the number of nodes:</QUERY>

10: </ITEM>
11: <ITEM>
12: <NAME>maxnodes</NAME>
13: <REGEXP empty=true>INTEGER</REGEXP>
14: <QUERY>The maximum number of nodes for a single job:</QUERY>
15: </ITEM>
16: <ITEM>
17: <NAME>cpus</NAME>
18: <REGEXP empty=true default=1 set="gt(1)">INTEGER</REGEXP>
19: <QUERY>Please enter the number of CPUs per node:</QUERY>
20: </ITEM>
21: <ITEM>
22: <NAME>cores</NAME>
23: <REGEXP empty=true default=1 set="gt(1)">INTEGER</REGEXP>
24: <QUERY>Please enter the number of cores per CPU:</QUERY>
25: </ITEM>
26: <ITEM>
27: <NAME>threadvar</NAME>
28: <REGEXP empty=true condition="$cores||$cpus">STRING</REGEXP>
29: <QUERY>Threading variable (e.g.:OMP_NUM_THREADS):</QUERY>
30: </ITEM>
31: <ITEM>
32: <NAME>mem</NAME>
33: <REGEXP>INTEGER</REGEXP>
34: <QUERY>Enter the memory/node or total if shared:</QUERY>
35: </ITEM>
36: <ITEM>
37: <NAME>shm</NAME>
38: <REGEXP empty=true default=1>(yes|no|y|n|1|0)</REGEXP>
39: <QUERY>Is this memory shared among all nodes? (y/n):</QUERY>
40: </ITEM>
41: <ITEM>
42: <NAME>shell</NAME>
43: <REGEXP>STRING</REGEXP>
44: <QUERY>Shell (e.g.: /bin/bash, or /bin/csh):</QUERY>
45: </ITEM>
46: <ITEM>
47: <NAME>mpi</NAME>
48: <REGEXP empty=true default=0 set="reg(yes|y)">(yes|no|y|n)</REGEXP>
49: <QUERY>Do you want to enable MPI? (y/n):</QUERY>
50: </ITEM>
51: <ITEM>
52: <NAME>mpiinit</NAME>
53: <REGEXP empty=true condition=$mpi>STRING</REGEXP>
54: <QUERY>The command, which prepares your MPI-environment:</QUERY>
55: </ITEM>
56: <ITEM>
57: <NAME>mpirun</NAME>
58: <REGEXP empty=false condition=$mpi>STRING</REGEXP>
59: <QUERY>The MPI-string (see variables in the usersguide):</QUERY>
60: </ITEM>
61: <ITEM>
62: <NAME>mpicleanup</NAME>
63: <REGEXP empty=true condition=$mpi>STRING</REGEXP>
64: <QUERY>Enter a command, which cleans your MPI-environment:</QUERY>
65: </ITEM>
66: </CUSTOM>
67: <FIXED>
68: <ITEM>
69: <NAME>system_file</NAME>
70: <VALUE>libs_perl/execs/pbs.pl</VALUE>
71: </ITEM>
72: </FIXED>
73: </PLUGIN>

Figure A.15: Sample XML-descriptor of a execution plugin

Sample Code and Screenshots 185

1: :etc
2: <header>This will install the WIEN2k-plugin</header>
3: <footer>The installation is done, try ’wien.test’</footer>
4: :envvars
5: <ENVVAR>
6: <NAME>WIENROOT</NAME>
7: <MISSING>EXIT</MISSING>
8: <ON_MISSING>Check your WIEN2k-installation!</ON_MISSING>
9: </ENVVAR>

10: <ENVVAR>
11: <NAME>GRIDSRC</NAME>
12: <MISSING>EXIT</MISSING>
13: <ON_MISSING>Check your W2GRID-installation!</ON_MISSING>
14: </ENVVAR>
15: :variables
16: <VARIABLE>
17: <NAME>WIENROOT</NAME>
18: <QUERY>The path of your WIENROOT (default: $ENV{WIENROOT})</QUERY>
19: <REGEXP default="$ENV{WIENROOT}";empty=true>PATHNAME</REGEXP>
20: <ERROR>The path does not exist</ERROR>
21: </VARIABLE>
22: <VARIABLE>
23: <NAME>HEURISTICS</NAME>
24: <QUERY>Do you want to use heuristics [y/n]?\n(default: yes)</QUERY>
25: <REGEXP default="1";empty=true>[01ynYN]</REGEXP>
26: <ERROR>say y(es) or n(o)</ERROR>
27: </VARIABLE>
28: :directories_install
29: <DIRECTORY>
30: <NAME>$VAR{WIENROOT}</NAME>
31: <MISSING>EXIT</MISSING>
32: <ON_MISSING>The WIENROOT-directory MUST exist!</ON_MISSING>
33: </DIRECTORY>
34: <DIRECTORY>
35: <NAME>$ENV{GRIDSRC}/SRC_gridsrv/commands/wien</NAME>
36: <MISSING>CREATE</MISSING>
37: <ON_MISSING>$SRC_gridsrv/commands/wien will be created</ON_MISSING>
38: </DIRECTORY>
39: <DIRECTORY>
40: <NAME>$ENV{GRIDSRC}/SRC_gridsrv/jobs/wien</NAME>
41: <MISSING>CREATE</MISSING>
42: <ON_MISSING>SRC_gridsrv/jobs/wien will be created</ON_MISSING>
43: </DIRECTORY>
44: <DIRECTORY>
45: <NAME>$ENV{GRIDSRC}/libs_perl/wien</NAME>
46: <MISSING>CREATE</MISSING>
47: <ON_MISSING>libs_perl/wien will be created</ON_MISSING>
48: </DIRECTORY>
49: <DIRECTORY>
50: <NAME>$ENV{GRIDSRC}/libs_perl/wien/gridsrv</NAME>
51: <MISSING>CREATE</MISSING>
52: <ON_MISSING>libs_perl/wien/gridsrv will be created</ON_MISSING>
53: </DIRECTORY>
54: :dbinserts
55: <DBINSERT>
56: <TABLENAME>programs.server</TABLENAME>
57: <EXIST query=true>UPDATE</EXIST>
58: <ON_EXIST>update entry? (y/n) </ON_EXIST>
59: <FAIL>WARN</FAIL>
60: <ON_FAIL>The update failed.</ON_FAIL>
61: <INSERT_ID>program_id</INSERT_ID>
62: <options>
63: <PARAMETER><HEURISTICS>$VAR{HEURISTICS}</HEURISTICS><WIENROOT>
64: $VAR{WIENROOT}</WIENROOT><COUNT>1</COUNT></PARAMETER>
65: </options>
66: <program unique=true>WIEN</program>
67: <speed>1</speed>
68: <version unique=true>2k</version>
69: </DBINSERT>

Figure A.16: Sample installation instructions for the GridServer WIEN2k-package

Sample Code and Screenshots 186

1: :etc
2: <header>This will remove the GridServer WIEN2k-plugin</header>
3: <footer>Plugin removed.</footer>
4: :envvars
5: <ENVVAR>
6: <NAME>GRIDSRC</NAME>
7: <MISSING>EXIT</MISSING>
8: <ON_MISSING>Check your W2GRID installation</ON_MISSING>
9: </ENVVAR>

10: :directories_uninstall
11: <DIRECTORY>
12: <QUERY></QUERY>
13: <NAME>$ENV{GRIDSRC}/SRC_gridsrv/commands/wien</NAME>
14: <NOT_EXIST>WARN</NOT_EXIST>
15: <ON_NOT_EXIST>commands/wien does not exist</ON_NOT_EXIST>
16: </DIRECTORY>
17: <DIRECTORY>
18: <QUERY></QUERY>
19: <NAME>$ENV{GRIDSRC}/SRC_gridsrv/jobs/wien</NAME>
20: <NOT_EXIST>WARN</NOT_EXIST>
21: <ON_NOT_EXIST>jobs/wien does not exist</ON_NOT_EXIST>
22: </DIRECTORY>
23: <DIRECTORY>
24: <QUERY></QUERY>
25: <NAME>$ENV{GRIDSRC}/libs_perl/wien/gridsrv</NAME>
26: <NOT_EXIST>WARN</NOT_EXIST>
27: <ON_NOT_EXIST>libs_perl/wien/gridsrv does not exist</ON_NOT_EXIST>
28: </DIRECTORY>
29: <DIRECTORY>
30: <QUERY>Keep libs_perl/wien for the GridClient (y/n)?</QUERY>
31: <NAME>libs_perl/wien</NAME>
32: <NOT_EXIST>WARN</NOT_EXIST>
33: <ON_NOT_EXIST>libs_perl/wien does not exist</ON_NOT_EXIST>
34: </DIRECTORY>
35: :files_uninstall
36: <FILE>
37: <QUERY>Keep bin/memory_lapw.pl for GridClient (y/n)?</QUERY>
38: <NAME>$ENV{GRIDSRC}/bin/memory_lapw.pl</NAME>
39: <NOT_EXIST>WARN</NOT_EXIST>
40: <ON_NOT_EXIST>bin/memory_lapw.pl does not exist!</ON_NOT_EXIST>
41: </FILE>
42: <FILE>
43: <QUERY>Keep bin/calctime_lapw.pl for GridClient (y/n)?</QUERY>
44: <NAME>$ENV{GRIDSRC}/bin/calctime_lapw.pl</NAME>
45: <NOT_EXIST>WARN</NOT_EXIST>
46: <ON_NOT_EXIST>bin/calctime_lapw.pl does not exist!</ON_NOT_EXIST>
47: </FILE>
48: <FILE>
49: <QUERY>Keep bin/parameter_lapw.pl for GridClient (y/n)? </QUERY>
50: <NAME>$ENV{GRIDSRC}/bin/parameter_lapw.pl</NAME>
51: <NOT_EXIST>WARN</NOT_EXIST>
52: <ON_NOT_EXIST>bin/parameter_lapw.pl does not exist!</ON_NOT_EXIST>
53: </FILE>
54: :dbdeletes
55: <DBDELETE>
56: <TABLENAME>programs.server</TABLENAME>
57: <QUERY></QUERY>
58: <FAIL>WARN</FAIL>
59: <ON_FAIL></ON_FAIL>
60: <host_id>0</host_id>
61: <program>WIEN</program>
62: <version>2k</version>
63: </DBDELETE>

Figure A.17: Sample removal instructions for the GridServer WIEN2k-package

Sample Code and Screenshots 187

1: SRC_gridsrv/commands/wien/
2: SRC_gridsrv/jobs/wien/
3: libs_perl/wien/gridsrv
4: libs_perl/wien/in1.pl
5: libs_perl/wien/klist.pl
6: libs_perl/wien/machines.pl
7: libs_perl/wien/parameter.pl
8: libs_perl/wien/struct.pl
9: libs_perl/wien/wienfiles.pl

10: libs_perl/wien/wien.pl
11: libs_perl/wien/wienvar.pl
12: bin/memory_lapw.pl
13: bin/parameter_lapw.pl
14: bin/calctime_lapw.pl

Figure A.18: List of files, which will be included in the package (WIEN2k on the GridServer)

1: set hostname = ‘hostname‘
2: set oldlib = ""
3: if ($?PERLLIB) then
4: set oldlib = "${PERLLIB}:"
5: else
6: setenv PERLLIB ""
7: endif
8:
9: if ("$hostname" == "linux") then

10: setenv WIENSQL_ROOT /home/.wiensql_linux
11: setenv PERLLIB ${oldlib}/home/.wgrid_linux/libs/i586-linux-thread-multi
12: setenv GRIDROOT /home/.wgrid_linux
13: setenv GRIDSRC /home/WGRID
14: set path = ($path $GRIDROOT/bin $GRIDSRC/bin $GRIDSRC/SRC_wiensql/bin)
15: set path = ($path $GRIDSRC/SRC_gridsrv/bin $GRIDSRC/SRC_gridclient/bin)
16: endif

Figure A.19: Sample code snippet of a .cshrc file (Modifications by W2GRID)

>host.info gescher
#command took 0 seconds to complete
HOSTNAME gescher
ID 4
IP 131.130.186.180
PORT 8180
LAST-CHECK 15-11-2006
RELIABILITY 99.00 %
FAILED CONNECTIONS 6.49 %
RESPONSETIME 0 s
CPU 1 processors / node
MEM 4000 MB / node
SPEED 600 speed-units
NODES 16
CONNECTION socket

Standard unix socket employs a direct connection from one
endpoint (specified by ip:port) to the remote one. If remote
ports are blocked you can use an ssh-tunneling mechanism

FTP unix secure-copy (scp)
scp is currently the safest data transfer method. Use it as a
default method on any kind of system, where you have an
account. The automatic authentication must be enabled
(ssh-keygen!). If you still have to provide a password on
login, the method will fail

PROGRAMS WIEN

Figure A.20: Screenshot of the output of the command {host.info}C

List of Figures

1.1 The iterative SCF-scheme . 8

1.2 Sample workflow of a self-consistent-field cycle (SCF) of WIEN2k 11

1.3 Example of two workflows, which are built on top of the SCF-cycle (phonon

calculation and structure optimisation) . 12

1.4 A sample directory listing of a the CASE ’NaF’ (truncated) 12

1.5 GLOBUS layers(Figure taken from [49]) . 17

1.6 GLOBUS components (Figure taken from [53]) 18

1.7 CONDOR Layers (Figure taken from [56]) . 19

1.8 UNICORE layers (Figure taken from [62]) . 19

1.9 UNICORE architecture (Figure taken from [62]) 20

1.10 NETSOLVE architecture (Data for the figure taken from [66]) 22

1.11 A user’s personal Grid as provided by W2GRID 25

1.12 WEDS architecture (Figure taken from [74]) . 27

1.13 VGE architecture (Figure taken from [86]) . 28

2.1 W2GRID architecture . 34

2.2 Sample output of a ’load’ request as returned from the GridServer 36

2.3 The interaction between the user, the GridClient and the GridServer 37

2.4 The logon protocol for establishing a connection. 39

2.5 Directory structure of W2GRID . 43

2.6 Sample content of the wiensql startup-file .wiensqlrc† 45

2.7 Workflow of the wiensql-daemon . 45

2.8 A Perl-code fragment to demonstrate the use of the wiensql-client library 46

2.9 Abstract view on the number of independent database client sessions, that are

created throughout the workflow of a command 47

2.10 Sample code, which illustrates the use of the wiensql-database from within C-

Shell scripts . 48

188

B.I List of Figures 189

2.11 Complex database-operations in C-Shell script are better accomplished by the

use of Perl tools. 48

2.12 Optimisation of the logon-process . 49

2.13 Verbose output of wiensql.pl collected during a connection attempt to the wiensql-

daemon . 49

2.14 Workflow of a W2GRID Perl-daemon . 51

2.15 Directory structure of]SRC_gridsrv/ . 53

2.16 Sample output of the command {test}S . 54

2.17 The workflow triggered in respond to an incoming command 54

2.18 Sample code snippet, which inserts a new item into the job-registry 59

2.19 An example for the interplay of {COMMANDS} and p
xJOBSq

y 60

2.20 The purpose of a slot as a persistent data container. 62

2.21 Screenshot of the command {slot.list}S . 64

2.22 Screenshot of the command {slot.list}C . 65

2.23 A sample content of the GridClient-registry . 66

2.24 A sample content of the GridServer-registry (truncated) 67

2.25 The three sections of the source code of Perl-daemons 68

2.26 Optimisation of the child processes of a Perl daemon with respect to the memory

consumption . 68

2.27 Unfavourable processing of commandline arguments 69

2.28 Memory-saving processing of commandline arguments 69

2.29 The verbose output of the commandline interface gridsrv_console.pl showing the

communication between client and server during the default logon process . . 72

2.30 Socket-traffic between client and server (’keep-alive strategy’) 73

2.31 Bouncer-workflow . 73

2.32 A sample code for including progress indication into the filetransfer 74

2.33 Verbose output of the commandline interface gridsrv_console.pl showing the

packets as received from the Bouncer process 74

2.34 Abstraction of the job-submission by the use of plugins 78

2.35 Code snippet for retrieving the total memory on AIX 80

2.36 Code snippet for retrieving the total memory on SuSE Linux 80

2.37 A sample content of a plugin configuration-file (extracted from pbs.plg) 82

2.38 Contents of a W2GRID-package file . 83

3.1 Collaboration of developers and users of W2GRID 85

3.2 The task-layers of a W2GRID installation . 87

B.I List of Figures 190

3.3 Four individual scripts are subsequently invoked by the script quick_install.csh in

the course of a default installation . 91

3.4 Screenshot of the startup screen of the manual installer 92

3.5 The installation scripts gridsrc_install.csh and quick_install.csh employ the same

tools, only their input is acquired differently . 93

3.6 A sample output of the C-Shell script gridstatus.csh 94

3.7 The result of {host.list}C with a user-defined formatting 98

3.8 Sections of a RPC-command file . 100

3.9 Sections of a p
xJOBq

y-file . 101

3.10 Two different approaches for implementing application plugins. 105

3.11 The ’function-mapping’ of the connection plugin 111

3.12 The creation of a W2GRID package, which will install the GridServer side sources

of the WIEN2k plugin. 114

4.1 Scientific computing with WIEN2k: Generation of input, SCF-cycle and analysis 116

4.2 Administrative tasks of a WIEN2k calculation by the use of different types of

job-submission schemes . 118

4.3 Contributions to the total runtime of a k-point parallel SCF-cycle (run_lapw) . . 119

4.4 Sample output of the C-Shell script migrate_lapw 123

4.5 Sample content of a .machines† file . 124

4.6 Sample content of a .parameter† file . 125

4.7 A sample output of the command {wien.mkmachines}C 132

4.8 A sample output of the command {wien.list}C 133

4.9 Workflow of {wien.exec}C: Interplay of GridServer and GridClient commands/jobs134

4.10 Code sample of a volume-optimisation with W2GRID 137

5.1 The number of connections served by the wiensql-daemon on ATHENA and

their exit-codes . 142

5.2 The results of the command {system.test}S on host LUNA 144

5.3 The results of the command {test.exec}S on host HAL 144

5.4 Purpose of the web interface for MCTDHF and other codes of the Photonics

group, figure taken from [91] . 145

5.5 The testbed for MCTDHF at the Photonics institute, figure taken from [91] . . . 146

5.6 Selected content of a logfile, indicating the self-benchmark 150

5.7 Selected content of a CASE.dayfile, which shows the automated adjustment of

the k-point distribution . 151

B.I List of Figures 191

A.1 Sample code for a manual modification of the slot-registry by the aid of the

database-functions . 167

A.2 Sample code of &db_cmd_rows() . 173

A.3 submission-script for a WIEN2k calculation on the LoadLeveller (LL) 176

A.4 Source code of the W2GRID version of ’Hello World’ {test}S 177

A.5 Source code of a background task (’job’ {test}S) 178

A.6 Parallel sample command-code (GridClient and GridServer compliant) 179

A.7 The using of plugin-functions in order to submit a job to a queuing system . . . 180

A.8 Sample code for sending a remote-procedure-call to a GridServer 180

A.9 Sample code for retrieving data from the parameter-column of the job-registry . 180

A.10 Sample code illustrating the manipulation of XML-datagrams 181

A.11 Sample XML-descriptor of a platform plugin . 181

A.12 Sample XML-descriptor of a processor plugin 181

A.13 Sample XML-descriptor of a filetransfer plugin 182

A.14 Sample XML-descriptor of a connection plugin 183

A.15 Sample XML-descriptor of a execution plugin 184

A.16 Sample installation instructions for the GridServer WIEN2k-package 185

A.17 Sample removal instructions for the GridServer WIEN2k-package 186

A.18 List of files, which will be included in the package (WIEN2k on the GridServer) 187

A.19 Sample code snippet of a .cshrc file (Modifications by W2GRID) 187

A.20 Screenshot of the output of the command {host.info}C 187

List of Tables

1.1 Atomic units . 6

2.1 Wiensql data-types . 50

2.2 Essential columns of the job-registry . 58

2.3 GridServer slots (table:slots.server) . 63

2.4 GridClient slots (table:slots.client) . 65

2.5 Table-definition of the registry . 66

2.6 Essential columns of the user-registry . 71

3.1 Syntactical elements of wiensql . 96

4.1 Symbols used for equations 4.2-4.5 . 128

4.2 Results for the fitting parameter . 129

5.1 Testbed hosts for the proof of principle . 139

5.2 Different memory requirements of a WIEN2k-CASE as selection criteria for the

GridClient . 147

5.3 Parameters of a prepared WIEN2k-CASE, which has been used to analyse the

.machines†-file proposals of the individual hosts. 148

5.4 .machines†-file proposals . 148

5.5 Three different realistic cases, which have been run on all hosts. 150

192

Bibliography

[1] H.J. Leisi. Quantenphysik. Springer-Verlag, 2006.

[2] W. Kutzelnigg. Einführung in die Theoretische Chemie. Wiley-VCH, 2002.

[3] Ch.J. Cramer. Essentials of Computational Chemistry. John Wiley & Sons, Ltd., 2004.

[4] Atoms in Molecules, a quantum theory. Oxford Science Publications, 1990.

[5] R.M. Dreizler and E.K.U. Gross. Density Functional Theory. Springer-Verlag, 1990.

[6] V. Staemmler. Introduction to Hartree-Fock and CI Methods, volume 31 of NIC series,

chapter Computational Nanoscience: Do it Yourself. John von Neumann Institute for

Computing, Jülich, 2006.

[7] W. Kohn and L.S. Sham. Self-consistent equations including exchange and correlation

effects. Phys. Rev. B, 140:1133, 1965.

[8] P. Blaha, K. Schwarz, and G.K.H. Madsen. Electronic structure calculations of solids

using the WIEN2k package for materials sciences. Comp. Phys. Commun., 147:71,

2002.

[9] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz. An Augmented Plane

Wave Plus Local Orbital Program for Calculating Crystal Properties. Number ISBN:3-

9501031- 1-2 in WIEN2k. K.Schwarz, 2001.

[10] K. Schwarz. DFT calculations of solids with LAPW and WIEN2k. Solid State Commun.,

176:319, 2003.

[11] D. Laforenza. Grid programming: some indications where we are headed. Parallel

Comput., 28(12):1733–1752, 2002.

[12] K. Schwarz, P. Blaha, and J. Schweifer. From crystal structure to properties of solids

with the grid-enabled WIEN2k. In Jens Volkert, Thomas Fahringer, Dieter Kranzlmueller,

193

B.III Bibliography 194

and Wolfgang Schreiner, editors, 1st Austrian Grid Symposium, pages 25–37, Schloss

Hagenberg, Austria, December 2005. Austrian Computer Society.

[13] Photonics institute, vienna university of technology.

http://info.tuwien.ac.at/photonik/index.htm. Gusshausstrasse 27/387, A-1040 Vienna.

[14] J. Zanghellini, M. Kitzler, C. Fabian, T. Brabec, and A. Scrinzi. An MCTDHF approach to

multielectron dynamics in laser fields. Laser Physics, 13(8):1064–1068, 2003.

[15] J. Caillat, J. Zanghellini, M. Kitzler, O. Koch, W. Kreuzer, and A. Scrinzi. Correlated multi-

electron systems in strong laser fields: A multiconfiguration time-dependent hartree-fock

approach. Physical review A, 71:012712, 2005.

[16] J. Caillat, J. Zanghellini, and A. Scrinzi. Parallelization of the MCTDHF code. Technical

Report 19, AURORA, 2004.

[17] S.A. Jarvis, D.P.Spooner, H.N. Lim Choi Keung, J. Cao, S. Saini, and G.R. Nudd. Per-

formance prediction and its use in parallel and distributed computing systems. Future

Generation Computer Systems, 22:745–754, 2006.

[18] R.J. Allan and M. Ashworth. A survey of distributed computing, computational grid,

meta-computing and network information tools. Daresbury, Warrington WA4 4AD, UK,

2001.

[19] A. Aizcorbe and S. Kortum. Moore’s law and the semiconductor industry: A vin-

tage model. Industrial Organization 0412008, EconWPA, Dec 2004. available at

http://ideas.repec.org/p/wpa/wuwpio/0412008.html.

[20] K.A. Hawick, D.A. Grove, and F.A. Vaughan. Beowulf - A New Hope for Parallel Com-

puting? In Proc. of the 6th IDEA Workshop, Rutherglen, 1999.

[21] Message Passing Interface Forum. MPI: A message passing interface standard. Inter-

national Journal of Supercomputer Applications, 8(3/4):159–416, 1994.

[22] B. Mohr, J. Larsson Träff, J. Worringen, and J. Dongarra, editors. Recent Advances

in Parallel Virtual Machine and Message Passing Interface, 13th European PVM/MPI

User’s Group Meeting, Bonn, Germany, September 17-20, 2006, Proceedings, volume

4192 of Lecture Notes in Computer Science. Springer, 2006.

[23] G.V. Post. How often should a firm buy new pcs? Commun. ACM, 42(5):17–21, 1999.

[24] M. Baker, G. Fox, and H. Yau. A review of commercial and research cluster management

software, 1995.

B.III Bibliography 195

[25] R.L. Henderson. Job scheduling under the portable batch system. In IPPS ’95: Pro-

ceedings of the Workshop on Job Scheduling Strategies for Parallel Processing, pages

279–294, London, UK, 1995. Springer-Verlag.

[26] W. Gentzsch (Sun Microsystems). Sun grid engine: Towards creating a compute power

grid. In CCGRID ’01: Proceedings of the 1st International Symposium on Cluster Com-

puting and the Grid, page 35, Washington, DC, USA, 2001. IEEE Computer Society.

[27] F. Bouhafs, J.P Gelas, L. Lefèvre, M. Maimour, C. Pham, P. Vicat-Blanc Primet, and

B. Tourancheau. Designing and evaluating an active grid architecture. Future Generation

Comp. Syst., 21(2):315–330, 2005.

[28] D.S. Myers and M.P. Cummings. Necessity is the mother of invention: a simple grid

computing system using commodity tools. J. Parallel Distrib. Comput., 63(5):578–589,

2003.

[29] L. Kleinrock. UCLA to be first station in nationwide computer network. available from

http://www.cs.ucla.edu/ lk/REPORT/press.htm, July 1969. UCLA Press release.

[30] L. Smarr and Ch.E. Catlett. Metacomputing. Communications of the ACM Digital library,

35(6):44–52, June 1992.

[31] G. von Laszewski and K. Amin. Grid Middleware, chapter Chapter 5 in Middleware for

Communications, pages 109–130. Wiley, 2004.

[32] I. Foster and C. Kesselmann. The Grid, Blueprint for a New Computing Infrastructure.

Morgan Kaufmann Publishers, San Francisco, 1999.

[33] P.V. Coveney, J. Chin, M.J. Harvey, and Sh. Jha. Scientific grid computing: The first

generation. Computing in Science and Engg., 7(5):24–32, 2005.

[34] R.P. Bruin, M.T. Dove, M. Calleja, and M.G. Tucker. Building and managing the eminerals

clusters: A case study in grid-enabled cluster operation. Computing in Science and

Engg., 7(6):30–37, 2005.

[35] M. Alfredsson, E. Artacho, M. Blanchard, J.P. Brodholt, C.R.A. Catlow, D.J. Cooke, M.T.

Dove, Z. Du, N.H. de Leeuw, A. Marmier, S.C. Parker, G.D. Prie, J.M.A. Pruneda,

W. Smith, I Todorov, K. Trachenko, and K. Wright. eMinerals: Science outcomes en-

abled by new grid tools. In Proceedings of the UK e-Science All Hands Meeting, pages

788–795, September 2005.

B.III Bibliography 196

[36] P. Eerola, T. Ekelof, M. Ellert, J.R. Hansen, A. Konstantinov, B. Konya, J.L. Nielsen,

F. Ould-Saada, O. Smirnova, and A. Waananen. The nordugrid architecture and tools,

2003.

[37] D.A. Reed. Grids, the teragrid, and beyond. Computer, 36(1):62–68, 2003.

[38] LHC computing grid project "quarterly status and progress report - second

quarter 2005". http://lcg.web.cern.ch/LCG/PEB/Documents/LCG-ProgressReport1-

02Q05_02aug05.pdf, august 2004.

[39] W.A. Ruh, W.J. Brown, and W.X. Maginnis. Enterprise Application Integration: A Tech

Brief. John Wiley & Sons, Inc., New York, NY, USA, 2001.

[40] G. Coulson, G.S. Blair, M. Clarke, and N. Parlavantzas. The design of a configurable

and reconfigurable middleware platform. Distributed Computing, 15:109–126, 2002.

[41] G. Alonso, editor. Middleware 2005, ACM/IFIP/USENIX, 6th International Middleware

Conference, Grenoble, France, November 28 - December 2, 2005, Proceedings, volume

3790 of Lecture Notes in Computer Science. Springer, 2005.

[42] J.C. Cunha, O.F. Rana, and P.D. Medeiros. Future trends in distributed applications and

problem-solving environments. Future Gener. Comput. Syst., 21(6):843–855, 2005.

[43] P. Grace, G. Coulson, G.S. Blair, and B. Porter. Deep middleware for the divergent grid.

In Middleware, pages 334–353, 2005.

[44] R.P. Gabriel. LISP: Good news, bad news, how to win big. AI Expert, 6(6):30–39, jun

1991.

[45] J. Chin and P. V. Coveney. Towards tractable toolkits for the grid: a plea for lightweight,

usable middleware. Technical report, National e-Science Centre, February 2004.

[46] S. Smallen, W. Cirne, J. Frey, F. Berman, R. Wolski, M. H. Su, C. Kesselman, S. Young,

and M. Ellisman. Combining workstations and supercomputers to support grid appli-

cations: The parallel tomography experience. In Proceedings of the 9th Heterogenous

Computing Workshop, May 2000.

[47] T. Hey and A. Trefethen. e-science and its implications. Philosophical Transactions of

the Royal Society of London Series A-Mathematical Physical and Engineering Sciences,

361(1809):1809–1825, August 2003.

[48] I. Foster and C. Kesselman. The Globus project: a status report. Future Generation

Computer Systems, 15(5–6):607–621, 1999.

B.III Bibliography 197

[49] The Global Grid Forum. The globus project. http://www.globus.org. Argonne National

Laboratory, USC Information Sciences Institute.

[50] M. Draoli, C. Gaibisso, and D. Giannelli. Deploying the globus security infrastructure in

a production environment: Testing and evaluation. In EuroWeb, 2002.

[51] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable

virtual organizations. Int. J. High Perform. Comput. Appl., 15(3):200–222, 2001.

[52] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An open

grid services architecture for distributed systems integration, 2002.

[53] Globus components in action. http://hpc.doc.ic.ac.uk/PPS/globus4/sld037.htm. Tutorial

for the Globus Toolkit.

[54] I. Foster. Globus toolkit version 4: Software for service-oriented systems. In NPC, pages

2–13, 2005.

[55] S. Yang, M Hayes, K.W. Jenkins, and S. Cant. The cambridge CFD grid for large-scale

distributed CFD applications. Future Generation Comp. Syst., 21(1):45–51, 2005.

[56] M. Livny and M. Solomon. Condor - high throughput computing. Online available.

[57] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor – a distributed job scheduler.

In Thomas Sterling, editor, Beowulf Cluster Computing with Linux. MIT Press, October

2001.

[58] D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In Fran Berman, Geoffrey

Fox, and Tony Hey, editors, Grid Computing: Making the Global Infrastructure a Reality.

John Wiley & Sons Inc., December 2002.

[59] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the condor

experience. Concurrency - Practice and Experience, 17(2-4):323–356, 2005.

[60] J. Pytlinski, L. Skorwider, V. Huber, M. Wronski, and P. Bala. UNICORE - An Uniform

Platform for Chemistry on the Grid. Journal of Computational Methods in Science and

Engineering, 2(3s-4s):369–376, 2002.

[61] M. Romberg. The UNICORE grid infrastructure. Special Issue on Grid Computing of

Scientifc Programming Journal, 10:149 – 157, 2002.

[62] D. Breuer, D. Erwin, D. Mallmann, R. Menday, M. Romberg, V. Sander, B. Schuller, and

Ph. Wieder. Scientific computing with UNICORE. In D. Wolf, G. Münster, and M. Kremer,

B.III Bibliography 198

editors, NIC Symposium, volume 20 of NIC series, pages 429 – 440, Forschungszen-

trum Jülich, February 2004.

[63] Unicore. http://www.unicore.eu. Project Homepage.

[64] D. Breuer, P. Wieder, S. van den Berghe, G. von Laszewski, J. MacLaren, D. Nicole,

and H.C. Hoppe. A UNICORE globus interoperability layer. Computing and Informatics,

21:399 – 411, 2002.

[65] K. Seymour, A. YarKhan, S. Agrawal, and J. Dongarra. Netsolve: Grid enabling scien-

tific computing environments. Grid Computing and New Frontiers of High Performance

Processing, Advances in Parallel Computing, 14.

[66] Netsolve. http://icl.cs.utk.edu/netsolve/index.html. Project Homepage.

[67] H. Casanova and J. Dongarra. NetSolve: A network server for solving computational

science problems. Technical Report CS-96-328, Knoxville, TN 37996, USA, 1996.

[68] J.S. Plank, H. Casanova, J. Dongarra, and T. Moore. Netsolve: An environment for de-

ploying fault-tolerant computing. In FastAbstracts Session, FTCS-28: 28th International

Symposium on Fault-tolerant Computing, Munich, June 1998.

[69] H. Hussain-Khan and O. Michielin. XGrid, a "just do it"grid solution for non it’s. EMB-

net.news, 11(3):13–19, September 2005.

[70] R. Sirvent, A. Merzky, R.M. Badia, and T. Kielmann. GRID superscalar and SAGA: form-

ing a high-level and platform-independent grid programming environment. In CoreGRID

Integration WorkShop 2005, 2005.

[71] H.S. Sarjoughian, B.P. Zeigler, and S. Park. Collaborative distributed network system: a

lightweight middleware supporting collaborative DEVS modeling. Future Gener. Com-

put. Syst., 17(2):89–105, 2000.

[72] C. Gaspar, M. Dönszelmann, and Ph. Charpentier. DIM, a portable, light weight package

form information publishing, data transfer and inter-process communication. Computer

Physics Communications, 140:102–109, 2001.

[73] F. Curbera, M.J. Duftler, R. Khalaf, W.A. Nagy, N. Mukhi, and S. Weerawarana. Colombo:

lightweight middleware for service-oriented computing. IBM Syst. J., 44(4):799–820,

2005.

B.III Bibliography 199

[74] P.V. Coveney, J. Suter, R. Saksena, L. Pedesseau, J. Blower, and E. Auden. Usable

middleware for grid based computational science. presented at the e-Science Usability

Meeting at NeSC, January 2006.

[75] M Hayes, L. Morris, R. Crouchley, D. Grose, T. van Ark, R. Allan, and J.M. Kewley.

GROWL: A lightweight grid services toolkit and applications. In Simon Cox and David W

Walker, editors, Proceedings of the UK e-Science All Hands Meeting, Nottingham, UK,

2005.

[76] J.D. Blower, A.B. Harrison, and K. Haines. Styx grid services: Lightweight, easy-to-

use middleware for scientific workflows. In International Conference on Computational

Science (3), pages 996–1003, 2006.

[77] P.V. Coveney, R.S. Saksena, S.J. Zasada, M. McKeown, and S. Pickles. The applica-

tion hosting environment: Lightweight middleware for grid-based computational science,

2006.

[78] S. Benkner, I. Brandic, G. Engelbrecht, and R. Schmidt. VGE - a service-oriented grid

environment for on-demand supercomputing. In GRID ’04: Proceedings of the Fifth

IEEE/ACM International Workshop on Grid Computing (GRID’04), pages 11–18, Wash-

ington, DC, USA, 2004. IEEE Computer Society.

[79] Sun Microsystems, Inc. RFC 1057: RPC: Remote procedure call protocol specification:

Version 2, jun 1988.

[80] R. Srinivasan. RFC 1831: RPC: Remote procedure call protocol specification version 2,

aug 1995. Status: PROPOSED STANDARD.

[81] S.S. Vadhiyar and J. Dongarra. GrADSolve: a grid-based RPC system for parallel com-

puting with application-level scheduling. J. Parallel Distrib. Comput., 64(6):774–783,

2004.

[82] C. C. Chang, G. Czajkowski, and T. Von Eicken. MRPC: A high performance RPC sys-

tem for MPMD parallel computing. Concurrency - Practice and Experience, 29(1):43–66,

1999.

[83] H. Nakada, S. Masuoka, K. Seymour, J. Dongarra, C. Lee, and H. Casanova. A gridRPC

model and API for end-user applications. Technical report, GridRPC Working Group,

2005.

[84] M. Hirano, M. Sato, and Y. Tanaka. OpenGR: a directive-based grid programming envi-

ronment. Parallel Comput., 31(10-12):1140–1154, 2005.

B.III Bibliography 200

[85] P.V. Coveney, J. Vicary, J. Chin, and M. Harvey. WEDS:a web services-based environ-

ment for distributed simulation. Phil. Trans. R. Soc. A., (363):1807–1816, 2005.

[86] S. Benkner et.al. VGE - the vienna grid environment.

http://www.par.univie.ac.at/project/vge/.

[87] G. Tsouloupas and M. Dikaiakos. Design and implementation of gridbench. In Ad-

vances in Grid Computing - European Grid Conference 2005, volume 3470 of Lecture

Notes in Computer Science, pages 211–225, Amsterdam, The Netherlands, June 2005.

Springer. Revised Selected Papers.

[88] Cpan. http://www.cpan.org.

[89] R. Orfali, D. Harkey, and J. Edwards. The essential client/server survival guide (2nd ed.).

John Wiley & Sons, Inc., New York, NY, USA, 1996.

[90] W. Zhou. Supporting fault-tolerant and open distributed processing using RPC. Com-

puter Communications, 19(6-7):528–538, 1996.

[91] Ch. Ede, J. Schweifer, and A. Scrinzi. An HTML-based grid-interface for computational

photonics application. Technical report, Photonics Institute, Vienna University of Tech-

nology, Gusshausstrasse 27/387, A-1040 Vienna, December 2006.

[92] K.W. Umbach. What is "push technology"? Technical Report 6, California Research

Bureau, California State Library, October 1997. CRB Note.

[93] Anonymous and Sams Development Staff. Maximum Security: A Hacker’s Guide to

Protecting Your Internet Site and Network, 2nd Edition. Sams, Indianapolis, IN, USA,

1998.

[94] J. Daemen and V. Rijmen. The design of Rijndael: AES — the Advanced Encryption

Standard. Springer-Verlag, 2002.

[95] Specification for the advanced encryption standard (aes). Federal Information Process-

ing Standards Publication 197, 2001.

[96] P. Chown. AES ciphersuite for TLS. Internet draft by the Network Working Group,

October 2000.

[97] J. Schweifer and K. Schwarz. W2GRID - users guide. online available at

(http://www.w2grid.at/downloads/usersguide.pdf), 2006.

[98] U. Schwiegelshohn, P. Wieder, and R. Yahyapour. Resource management for future

generation grids. volume TR-0005 of CoreGRID Technical Report, May 2005.

B.III Bibliography 201

[99] A.D. Birrell and B.J. Nelson. Implementing remote procedure calls. In Proceedings of the

ACM Symposium on Operating System Principles, page 3, Bretton Woods, NH, 1983.

Association for Computing Machinery.

[100] L. Prechelt. An empirical comparison of seven programming languages. Computer,

33(10):23–29, 2000.

[101] L. Prechelt. Are scripting languages any good? A validation of perl, python, rexx, and

tcl against C, C++, and Java. Advances in Computers, 57:207–271, 2003.

[102] S. Tregar. Writing Perl Modules for CPAN. APress, New York, NY, 1st edition, 2002.

[103] J. Schweifer and K. Schwarz. W2GRID - developers guide. will soon be available online

at (http://www.w2grid.at/downloads/developersguide.pdf), 2006.

[104] J.T. Chiou, Ch. Changli Chin, and S.R. Tsai. A fault tolerant RPC mechanism based on

ip multicasting. J. Syst. Archit., 43(10):701–717, 1997.

[105] G. von Laszewski. The grid-idea and its evolution. it - Information Technology,

47(6):319–329, 2005.

[106] I. Foster. What is a grid? a three point checklist. Grid Today, 1(6), July 2002.

[107] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman, K. Blackburn, P. Ehrens,

A. Lazzarini, R. Williams, and S. Koranda. GriPhyN and LIGO, building a virtual data

grid for gravitational wave scientists. In HPDC ’02: Proceedings of the 11 th IEEE

International Symposium on High Performance Distributed Computing HPDC-11 20002

(HPDC’02), page 225, Washington, DC, USA, 2002. IEEE Computer Society.

[108] A. Barmouta and R. Buyya. Gridbank: A grid accounting services architecture (GASA)

for distributed systems sharing and integration. In IPDPS ’03: Proceedings of the 17th

International Symposium on Parallel and Distributed Processing, page 245.1, Washing-

ton, DC, USA, 2003. IEEE Computer Society.

CURRICULUM VITAE

Johannes M. Schweifer

ADDRESS

Aspangstrasse 51/27

1030 Wien, Austria

Phone: +43-1-58801-15672

Fax: +43-1-58801-15698

Email: jsch@mail.zserv.tuwien.ac.at

PERSONAL DATA

Sex: male

Date of Birth: Eisenstadt, Ausria

Parents: Johann and Waltraud Schweifer

Citizenship: Austria

EDUCATION

1982-1986 Elementary School in St. Margarethen

1986-1995 Secondary School in Mattersburg

1995-2002 Study of Chemical Engineering at the Vienna University of Technology

finished with honor on the 14.1.2002

PROFESSIONAL APPOINTMENTS

1999-2001 Researcher in the group of Prof. Wolgang Linert at the Institute of Inorganic

Chemistry within the TMR/TOSS project.

2000-2001 employed as tutor at the institute of Inorganic Chemistry

2002 Project assistant in the group of Prof. Walter Lengauer at the Institute of

Chemical Technologies and Analytics

2003- Researcher in the group of Prof. Karlheinz Schwarz at the

Institute for Materials Chemistry within the AURORA project.

PUBLICATIONS

1. The W2GRID middleware plugin for WIEN2k
J. Schweifer and P. Blaha and K. Schwarz

to appear in: "2nd Austrian Grid Symposium", J. Volkert, T. Fahringer, D. Kran-

zlmüller, W. Schreiner (Hrg.); Österreichische Computer Gesellschaft

2. "From crystal structure to properties of solids with the grid-enabled WIEN2k"
K. Schwarz, P. Blaha, J. Schweifer

in: "1st Austrian Grid Symposium", J. Volkert, T. Fahringer, D. Kranzlmüller, W.

Schreiner (Hrg.); Österreichische Computer Gesellschaft, 2006, 3-85403-210-2,

S. 25 - 35

3. "Competing structural instabilities in the ferroelectric Aurivillius compound
SrBi2Ta2O9"
J.M. Perez-Mato, M. Aroyo, A. Garcia, P. Blaha, K. Schwarz, J. Schweifer, K. Par-

linski

Physical Review B, 70 (2004), S. 214111

4. "Synthesis and characterisation of tetrazole compounds: 3 series of new
ligands representing versatile building blocks for iron(II) spin-crossover
compounds"
M. Grunert, P. Weinberger, J. Schweifer, C. Hampel, A. Stassen, K. Mereiter, W.

Linert

Journal of Molecular Structure, 733 (2005), S. 41 - 52

5. "Structure and Physical Properties of [µ-Tris(1,4-bis(tetrazol-1-yl)butane -
N4,N4’)iron(II)] Bis(hexafluorophosphate), a New Fe(II) Spin-Crossover Com-
pound wizh a Three-Dimensional Threefold Interlocked Crystal Lattice"
M. Grunert, J. Schweifer, P. Weinberger, W. Linert, K. Mereiter, G. Hilscher, M.

Müller, G. Wiesinger, P. van Konigsbruggen

Inorganic Chemistry, 43 (2004), S. 155 - 165

6. "Catena [µ-Tris(1,2-bis(tetrazol-1-yl)ethane-N4,N4’)iron(II)] bis(tetrafluorborates):
Synthesis, Structure, Spectroscopic and Magnetic Characterization of a
chain-type Coordination Polymer Spin-Crossover Compound"
J. Schweifer, P. Weinberger, K. Mereiter, M. Boca, C. Reichl, G. Wiesinger, G.

Hilscher, P. van Konigsbruggen, H. Kooijman, M. Grunert, W. Linert

Inorganica Chimica Acta, 339 (2002), S. 297 - 306

7. "Metallomesogenic β-diketone and salicylaldimine oxovanadium(IV)complexes"
O. Costisor, J. Schweifer, M. Grunert, W. Linert

in: "Recent Research Developments in Materials Science", Transworld Research

Network, Trivandrum, Kerala, Indien, 2001, ISBN 81-7736-045-0, S. 1 - 18

PRESENTATIONS

1. The W2GRID middleware plugin for WIEN2k
2nd Austrian Grid Symposium, Innsbruck; 22.09.2006

2. W2GRID - a perl based middleware
Dept. Earth Sciences, University Cambridge, Cambridge, UK; 13.09.2006

3. W2GRID in two applications"
13th Aurora Plenary Meeting, Strobl/Wolfgangsee; 09.06.2006 - 11.06.2006

4. W2GRID, a generic Grid infrastructure
Scientific Grid-Computing, TU Wien; 22.04.2005

5. Functionality of W2GRID
9th AURORA Plenary Meeting, Strobl/Wolfgangsee; 04.06.2004 - 06.06.2004

POSTERS

1. W2GRID, a grid computing infrastructure for WIEN2k
J. Schweifer, K. Schwarz, P. Blaha

19th Workshop on Novel Materials and Superconductivity, Planneralm; 22.02.2004

- 28.02.2004

Wien, am 14. Dezember 2006

