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Abstract

In the beginnings of the Internet, the connected host computers operated on
peer-to-peer protocols. This mode of operation has been superseded by the
well-known client-server architectures. In the past few years, peer-to-peer net-
works have again become a focus of public interest. The popularity of peer-
to-peer applications is mostly due to file-sharing software. Less controversial
applications of the peer-to-peer paradigm include the distribution of work-
load between host computers or aim at efficient network routing.
This thesis deals with a class of peer-to-peer algorithms which are inspired
by the food gathering behaviour of certain species of ants. When searching
for food, ants of a colony communicate indirectly by marking the path to the
food source with chemical substances called pheromones. A marked path be-
comes more attractive for other ants, which will increase its pheromone con-
centration, and as a consequence a short path, which is used by most of the
ants, emerges. This trail-laying and trail-following principle has been adapted
to solve distributed problems from the domain of computer science. Agents
travel the links of a network graph and mark their routes according to the
quality of the solution described by the route. Ant-based algorithms have
been applied with great success to tackle problems like the travelling sales-
man, graph coloring, network routing, and many others.
SemAnt is an ant-based resource location algorithm which has been designed
to efficiently route queries through a network. The network’s nodes hold
repositories of documents which are annotated with search keys. The aim of
SemAnt is to find a maximal number of documents matching the search keys
specified in the query, while using the least possible network resources. When
searching for documents, semantic similarities between the search keys may
be exploited by SemAnt.
As of now, the performance of the algorithm has not been verified due to the
lack of a suitable simulation environment. In the course of this work, a simu-
lation environment dubbed SimulAnt has been implemented. The design and
implementation issues of SimulAnt are presented in this thesis. Although Sim-
ulAnt has been developed for the SemAnt algorithm, it can be reconfigured to
simulate other ant-algorithms with little effort.
The simulation results obtained with SimulAnt indicate that SemAnt is a suit-
able algorithm for the problem at hand, and encourage further research efforts
for the algorithm. SemAnt outperforms standard reference algorithms like the
k-random-walk strategy. The simulation runs give insight into the distribution
of pheromones throughout the network, and show that SemAnt can be applied
to both, maximizing the retrieved documents and minimizing the network
load.
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Kurzfassung

In den Anfängen des Internet kommunizierten die vernetzten Computer mit-
tels Peer-to-Peer Protokollen. Diese Form der Vernetzung wurde größtenteils
von den bekannten Client-Server Architekturen abgelöst. Aufgrund der Pop-
ularität von Filetauschbörsen hat das öffentliche Interesse an Peer-to-Peer An-
wendungen in der letzten Zeit stark zugenommen. Weniger kontroversielle
Anwendungen, die auf dem Peer-to-Peer Prinzip beruhen, ermöglichen die
Verteilung von rechenintensiven Aufgaben auf mehrere Computer oder haben
ein effektives Routing von Datenpaketen durch Netzwerke als Ziel.
Diese Diplomarbeit behandelt eine Klasse von Peer-to-Peer Algorithmen,
welche das Nahrungssuchverhalten von Ameisen nachahmen. Auf der Suche
nach Nahrung markieren Ameisen ihre Wege mit chemischen Duftstoffen
(Pheromonen), und kommunizieren so indirekt miteinander. Die Duftspuren
ziehen andere Ameisen an, und ein kurzer Pfad, der von vielen Ameisen
verwendet wird, entsteht. Dieses “Spuren legen und verfolgen” kann adap-
tiert werden, um Probleme aus dem Bereich der Informatik zu lösen: Agen-
ten bewegen sich auf den Pfaden zwischen Netzwerkknoten und markieren
ihren Weg. Die Stärke der Markierung ist abhängig von der Qualität der
Lösung, die durch den Weg beschrieben wird. Ameisenalgorithmen wurden
mit großem Erfolg eingesetzt, um Probleme wie das Handelsreisendenprob-
lem, Kartenfärben, Netzwerk-Routing, und viele andere zu lösen.
SemAnt ist ein Ameisenalgorithmus, der ein effizientes Finden von Resourcen
in Netzwerken ermöglicht. Die Knoten im Netzwerk speichern Dokumente,
welchen Suchkriterien zugeordnet sind. Suchanfragen sollen so durch das
Netzwerk befördert werden, dass eine maximale Anzahl von Dokumenten bei
einer minimalen Netzwerklast gefunden wird. Während der Suche können se-
mantische Ähnlichkeiten der Anfragen von SemAnt ausgenützt werden. Die
Leistungsfähigkeit von SemAnt konnte bis jetzt noch nicht getestet werden, da
eine entsprechende Simulationsumgebung fehlte. Im Rahmen dieser Diplo-
marbeit wurde SimulAnt, eine Simulationsumgebung für SemAnt, implemen-
tiert. In dieser Arbeit werden Designüberlegungen und die Implementierung
präsentiert. SimulAnt kann mit geringem Aufwand zur Simulation von an-
deren Ameisenalgorithmen als SemAnt adaptiert werden.
Simulationsergebnisse, die mittels SimulAnt generiert wurden, lassen erken-
nen, dass SemAnt dazu geeignet ist, die vorgegebene Problemstellung
zu lösen, und ermutigen zu weiterer Arbeit am Algorithmus. Die Leis-
tungsfähigkeit von SemAnt wird durch den Vergleich mit dem “k-random-
walk” Algorithmus gezeigt. Die Auswertung der Simulationsläufe geben Ein-
sichten in die Verteilung der Pheromone im Netzwerk und zeigen, dass Sem-
Ant geeignet ist, sowohl die Anzahl der gefundenen Dokumente zu max-
imieren, als auch die Netzwerklast zu minimieren.
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1 Introduction

In the last few years, peer-to-peer networks have received an increased public
interest. This can be readily seen by the amount of different peer-to-peer appli-
cations that can be found on the Internet today. Peer-to-peer networks exist on
top of established physical network architectures, and the participating nodes
form networks of their own. For these reasons, peer-to-peer networks are also
known as “overlay networks”.

Peer-to-peer networks are used for a variety of purposes including – first and
foremost – file sharing, which has earned them an ill reputation due to its
capacity for copyright infringements. Filesharing, although very popular, is
only one out of many applications for which peer-to-peer networks can be
employed. Less controversial applications of peer-to-peer technologies are the
distribution of workload and storage space between different host machines,
or supporting collaboration between persons which log on to networks on an
infrequent basis.

A main aspect of peer-to-peer networks is the location of resources which are
available throughout the network. Location of resources is also referred to as
search or query routing. Strategies to tackle the resource location problem range
from uninformed search algorithms, like network flooding [53] and random
walking [37], to sophisticated solutions which maintain local indices [16] to
efficiently find resources on remote nodes.

Peer-to-peer structures cannot only be found in computing environments but
also in social networks, economic principles or biological phenomena. Peer-to-
peer technologies can therefore be used not only to replicate natural networks
and exploit “algorithms” created by evolution, but also to simulate them and
gain more insight into how these complex constructs function.

Ant algorithms are a class of algorithms that are inspired by the food gathering
strategy of certain species of ants. Algorithms based on insects’ “swarm intel-
ligence” have successfully been implemented to solve optimization problems
which can be mapped onto network graphs. The travelling salesman [17], or
map coloring [14] are two examples out of many for the problems that have
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1 Introduction

been successfully solved by employing ant algorithms. This thesis deals with
employing ant algorithms for location of resources in peer-to-peer networks.

1.1 Contribution

SemAnt [40] is an ant-based algorithm intended for resource location in peer-
to-peer environments. Resource location in this case means searching for
documents which are distributed between the nodes of an overlay network.
The search keys of the documents are taken from a hierarchical classification
scheme (a taxonomy), which allows to infer semantic similarities between doc-
uments. These similarities between documents can be exploited during the
search process. In addition, it is assumed that each node’s owner is interested
in a specific topic, and for this reason, owns many documents which are re-
lated to this topic. These patterns in the content distribution are another source
for improvemnet of the search algorithm.
While the SemAnt algorithm has already been formulated, its performance
could not be validated because it has never been tested in a real system or
a simulated network. The goal of this thesis is to create a simulation environ-
ment for the SemAnt algorithm. The main challenges of creating the simulation
environment are the following:

Efficient memory usage The lack of hardware resources, the overhead of
(re-)configuring network nodes, and retrieving simulation data between
simulation runs makes it unfeasible to test SemAnt in a real network.
SemAnt has therefore to be tested in a virtual network on a single host
computer. Since the network’s size may well reach a few thousand nodes
and millions of ants are expected to travel the network, it is imperative
that memory resources are carefully managed, and that memory space
is not taken up by objects which are no longer needed.

Synchronization A great number of ants will be travelling along the links of
the SemAnt network. These ants update routing information located in
the network’s nodes. It has to be ensured that all ants arrive at the correct
time to perform their updates so that subsequent ants may profit from
the gathered information.

Storage of Results Huge amounts of data will be generated during the sim-
ulations of the SemAnt algorithm. Some efficient way of storing and eval-
uating the collected data has to be found.
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1 Introduction

Graphical User Interface Althought it would be possible to create the sim-
ulator with a command line interface, the commands to configure the
simulations would be fairly complicated. This could be avoided by us-
ing configuration files, which have to be edited in between simulation
runs. To alleviate these problems, it is desirable that the simulation en-
vironment has a clearly laid out graphical user interface, which is also
capable of remembering the previous algorithm settings. This way only
a few parameters, and not the whole list of available algorithm parame-
ters have to be edited when tweaking the algorithm’s performance.

Visualization of Results The results of the simulation runs need to be vi-
sualized in some way. Simple columns of numbers are inadequate to
determine the quality of the simulation results. Between the simulation
runs, the parameters of SemAnt will be tweaked and the effect of these
changes on the performance needs to be evaluated. Therefore some met-
rics which specify the algorithm’s performance have to be found and the
results have to be displayed in some sort of chart to allow direct visual
comparison of different simulation runs.

1.2 Organization of the thesis

Chapter 2 gives a general overview of peer-to-peer technologies. In the first
part of this chapter, characteristics and possible architectures of peer-
to-peer networks are discussed. The second part deals with network
topologies which are typical for peer-to-peer systems.

Chapter 3 focuses on a specific group of algorithms which can be employed
to solve distributed problems in peer-to-peer environments: ant-based
algorithms. Basic concepts of ant-based algorithms are explained and
two algorithms that build the foundation of the SemAnt algorithm are
explored in more detail.

Chapter 4 presents the SemAnt algorithm, an ant-based algorithm designed
to locate documents which are associated with metadata taken from con-
trolled vocabularies or hierarchical classification schemes, such as tax-
onomies.

Chapter 5 discusses the design considerations of SimulAnt. SimulAnt, which
is developed in the course of this diploma thesis, is a novel simulation
environment for the SemAnt algorithm.

3



1 Introduction

Chapter 6 deals with implementation issues of the SimulAnt platform. Soft-
ware libraries and software development tools which are used to create
SimulAnt are described.

Chapter 7 presents the results of SemAnt simulation runs. The k-random
walk algorithm, which is used as a reference algorithm, is explained.

Chapter 8 contains the conclusions which can be drawn from the work with
the SemAnt algorithm and proposes directions for future work on the
algorithm and simulation environment.
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2 Peer-to-Peer networks

This chapter gives an overview of peer-to-peer systems. In Section 2.1, a def-
inition of the peer-to-peer concept can is given. Following this, key concepts,
architectures, and a classification system for peer-to-peer systems are pre-
sented. The building blocks of a peer will then be explained. Section 2.2 deals
with patterns which can be commonly observed when analyzing the proper-
ties of the connections between the peers in a network.

2.1 Peer-to-peer concepts

Although peer-to-peer technologies have become rather popular in the last
couple of years, their concept is not a new one. The peer-to-peer approach to
design distributed applications is as old as the Internet itself. In the beginnings
of the Internet, all the host computers in the network had the capability to
bidirectionally communicate with each other, and all of them participated in
the routing of IP-packets. Each host could act both as server and as client for
certain protocols such as FTP or telnet, and was in this respect equal to each
other host.

What is peer-to-peer? There are probably as many definitions for peer-to-peer
systems as there are systems. I try to give a rough idea of what peer-to-peer is
all about by analyzing a quotation of Clay Shirky [56]:

Peer-to-peer is a class of applications that take advantage of resources –
storage, cycles, content, human presence – available at the edges of the
Internet. Because accessing these decentralized resources means operat-
ing in an environment of unstable connectivity and unpredictable IP ad-
dresses, peer-to-peer nodes must operate outside the DNS and have sig-
nificant or total autonomy of central servers.

• Peer: Every peer is an equal among equals. All nodes participating in the
network have the same rights and responsibilities.
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• . . . taking advantage of resources . . . : Resources are available throughout the
Internet. These resources include CPU cycles, storage space and files. By
making them accessible to the public, (unused) resources of a computer
may be tapped and of benefit for others who are in need of those re-
sources.

• . . . at the edges of the Internet . . . : The majority of hosts capable of provid-
ing these resources are located on the fringes of the Internet. They are
home and personal computers connected to the network via modems or
broadband connections.

• . . . environment of unstable connectivity . . . Personal computers are not con-
nected to the network all around the clock. They are available only when
their owners power them up and establish a connection to the Internet.

• . . . operate outside the DNS . . . The IP address of a host computer repeat-
edly joining and leaving a network may change. This can happen due
to dynamic IP addresses assigned by service providers or by connecting
laptop computers to different networks. It is therefore not possible to
identify a certain node by its IP address. Nodes form a network on top
of the IP layer – which is also referred to as ’overlay network’.

• . . . autonomy of central servers. There is no instance which has a global
view of the peer-to-peer network or controls nodes other than itself. The
network built by peer-to-peer nodes is self-organized by the participat-
ing nodes themselves.

2.1.1 System characteristics

In the following section the major characteristics of peer-to-peer systems,
which may be a driving force for their development, are presented:

Decentralization In client-server architectures, information and processing
power are located in a single centralized server. This aggregation of re-
sources in a single spot may lead to performance bottlenecks, waste of
resources, or system failure in the case where the server becomes inoper-
able. Furthermore, centralized systems are expensive to set up in terms
of money and maintenance cost. Centralization may be necessary for
systems where a single dedicated server is needed – such as security or
access-right management systems – but many of the problems entailed
by it may be avoided by a decentralized architecture.
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In fully decentralized systems it might be problematic to join the net-
work, since no server which knows about the participating network
nodes exists. To join the decentralized system, the IP address of at least
one node which is currently a member of the network has to be known.
One further aspect of decentralization is that a node’s owner has full
control over the resources (data and performance) he or she wants to
make available for the network.

Scalability Directly tied to decentralization is the issue of scalability. The scal-
ability of a system is affected by factors such as centralized computation
necessary, maintenance of system state, or inherent parallelism of the ap-
plication and programming model. Peer-to-peer systems which have a
low ratio of bandwidth usage to computation scale extremely well. Ex-
amples for those applications would be code breaking or prime number
searches, where each node is given a part of the solution space to work
upon and then is able to work without communicating with other nodes
until the computation has finished.

Self-Organization Self-organization can be defined as a process where the
organization of a system increases in complexity without any guidance
from outside the system [31]. Self-organization is necessary in peer-to-
peer systems, since the connection of a node to the peer-to-peer network
is temporary by nature. Nodes can join or leave the network anytime
and without prior announcement. In addition, the system load of the
network or the amount of nodes which are connected at any time is im-
possible to predict. An increase of scale of the network brings with it
an increase of the probability that nodes in the system will fail or leave.
To deal with the dynamic connection of nodes and expected failure of
nodes, peer-to-peer systems require self-maintenance and self-repair ca-
pabilities.

Cost Sharing the cost of system hardware, content, and system maintenance
allows for cheap yet powerful systems. The typical node in a peer-to-
peer network is a private personal computer which is available at rel-
atively low cost. By sharing computing resources with other nodes it
is possible to outperform super-computers at a fraction of their system
cost. Sharing of files enables users to access huge amounts of available
data (or storage space) while the local system alone has only little storage
capability.

Performance Performance in peer-to-peer systems is influenced by the fol-
lowing resources: processing power, storage capacity, and networking
bandwidth. In peer-to-peer systems it is not sensible to measure perfor-
mance in how long an operation takes in milliseconds, but rather how
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quick a query to the system can be answered and how much communi-
cation overhead is associated with the query.
Key approaches to gaining performance in a distributed system are
caching or replication of data, and intelligent network routing strate-
gies. Caching and replication reduce the network distance between a
querying peer and the requested object, while routing strategies allow
for efficient network usage and object location.

Fault tolerance Eliminating the risks entailed by architectures with a central
point of failure is a key goal of peer-to-peer systems. While peer-to-peer
systems don’t suffer from a complete cessation of service if the central
server fails, network disconnections, unreachability of hosts, network
partitions, and node failures are an issue nonetheless. In some systems it
is desirable that a node which becomes unavailable for a period of time
can resume its function after becoming connected again. To transmit the
messages which the node has missed during its absence, different strate-
gies can be employed. In some systems designated nodes (relays) store
messages for nodes which are currently unreachable and transmit them
when they become active again. Another strategy is to queue messages
at their source and send them when the receiver reappears on the net-
work.
In resource location systems, it is important that resources don’t become
unavailable due to node failures. To tackle this problem, resources can
be replicated. In systems such as Napster or Gnutella [32] replication
is implemented in a passive and uncontrolled way. The availability of
a resource is based on its popularity and on how many nodes have
already downloaded the resource. Other peer-to-peer applications like
Freenet [11] use a controlled strategy for data replication.

2.1.2 System architectures

There are several approaches how a distributed system can be set up. Al-
though a lot of systems are called peer-to-peer systems, a distinction can be
made according to which extent the peer-to-peer paradigm is implemented.
One extreme is the traditional client-server approach which offers no peer-
to-peer functionality at all. On the other side of the spectrum there are pure
peer-to-peer networks where each node is an equal among equals. Hybrid
networks that are in between client-server architectures and peer-to-peer ar-
chitectures are also in use. In the following, these architectures and their ad-
vantages and disadvantages are explained.
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In the client-server approach to distributed systems, one (possibly redundant)
host computer is responsible for servicing all requests sent by its clients (see
Figure 2.1.a). Two major drawbacks of this architecture can be identified. The
first one is that the server has limited network and computing resources at
its disposal. Should the server run out of resources, more computing power
or network bandwidth has to be provided to service the clients. This is an
approach which doesn’t scale well for big systems.
The second drawback is that a single server architecture brings with it a single
point of failure. Should the server fail (hardware fault, network disconnection,
attack on the server) all of the clients become inoperable.

In pure peer-to-peer networks (Figure 2.1.c), each node of the network func-
tions both as server and client. Because of this double function, the term “ser-
vent” is often used to describe nodes in peer-to-peer networks. The function-
alities of each node are exactly the same as that of any other node in the net-
work. This architecture allows for nodes to join and leave the network at will.
The operation of all other nodes will not be impaired should any single node
fail. Although the communication overhead in the whole system will increase
since no central source of information can be identified, and queries may have
to be relayed by several nodes, the work which has do be performed by each
node is considerably less than that of a single server.

Hybrid networks maintain information about resource location on a single
centralized server (Figure 2.1.b). This approach allows for efficient searching
and frees the server from providing the actual resources, which uses most
of the network bandwidth. Peers which search for documents are given the
identifier of the node which holds the desired document, and the download is
done in a peer-to-peer context.
The single point of failure is the server which holds the centralized search
directory. Therefore, hybrid systems are susceptible to attacks or network fail-
ures.

2.1.3 Classification of approaches

Peer-to-peer systems cover a wide range of application areas, and many differ-
ent approaches to search in peer-to-peer networks exist. Hauswirth and Dust-
dar [30] propose a classification of peer-to-peer systems according to three
criteria: degree of strucurization, degree of hierarchy and degree of coupling.

Degree of structurization The degree of structurization is determined by the
amount of information peers have about resources which are located

9



2 Peer-to-Peer networks

Figure 2.1: System architectures

at remote peers. In unstructured peer-to-peer systems, a peer holds no
knowledge about resources stored at other nodes. This allows for highly
independent and fault resilient systems, but since no data which can be
used for a well directed routing of queries is available, the network load
of such systems is rather high.
Structured systems maintain routing tables or other mechanisms to store
data about other peers. This data allows for an efficient routing of
queries through the system, and therefore the communication overhead
between peers is reduced. The reduction of network activity comes at
the cost of keeping the routing information up to date.
The most prominent examples for structured systems are distributed
hashtables (DHTs) such as CAN [52], Chord [44], Tapestry [69] and Pas-
try [54]. In distributed hashtables, a hashvalue is calculated for each re-
source. It serves as a search key. Each node is responsible for the storage
of resources matching a certain range of the keyspace. If a node wants to
store a resource, the resource has to be copied to the node which is re-
sponsble for its key. To allow for efficient searching a small-world graph
(see Section 2.2.1) is created by having the routing tables hold references
to nodes with exponentially increasing distance to the own keyspace.
Distributed hashtables allow a highly efficient search at the cost of relo-
cating whole resources.

Degree of hierarchy The degree of hierarchy describes the role each peer
plays in the network. It is differentiated between flat and hierarchical
systems. In flat peer-to-peer systems, there is no distinction between the
nodes. Each node has exactly the same rights, responsibilities, and tasks
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as each other node. In hierarchical systems, there are some nodes, re-
ferred to as super-peers, which have functionalities that others don’t
have. Super-peer networks [68] are an attempt combine the efficient
search capability of hybrid networks with the autonomy and robustness
of pure peer-to-peer networks. Super-peers act as servers to a number
of clients. They also interoperate with other super-peers in the fashion
of pure peer-to-peer systems. Super-peers are equals where search capa-
bility is concerned, and all nodes in the network, including the clients,
are equals for downloading purposes. Super-peer networks are easier to
service and search operations are less costly in terms of network load,
but these advantages come at the price of reduced fault tolerance.

Degree of coupling Two degrees of coupling are possible: tight and loose
coupling. In tightly coupled systems, there is only one group of peers
at every point in time. Every peer in the network is part of this global
group. Peers joining the group are assigned identities which also deter-
mine which function the peer plays in the network. There is no possibil-
ity for peer groups to form separate networks and evolve independently
from the rest of the network. In loosely coupled systems these restric-
tions do not apply. Peers are free to join and leave networks at will and
subnetworks may separate or merge.

The classification of several peer-to-peer applications 1 according to the above
criteria is shown in Table 2.1.

Structurization Hierarchy Coupling
unstructured structured flat hierarchic lose tight

Gnutella × × ×
Freenet × × ×
CAN × × ×
Chord × × ×
Tapestry × × ×
Pastry × × ×
SemAnt × × ×

Table 2.1: Peer-to-peer system classification

The SemAnt algorithm, which will be introduced in Chapter 4, can be classi-
fied as an unstructured, flat, and loosely coupled system. Although SemAnt
maintains tables which facilitate the efficient routing of queries, it cannot be

1An overview of these applications (other than SemAnt) is given in [1].
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considered a structured system, because it lacks an explicit knowledge about
the content of other nodes. Nodes in SemAnt are equal in every respect and
therefore SemAnt qualifies as a system with a flat hierarchy. Since it is expected
that SemAnt’s nodes fail, and network separation or merging is possible, Sem-
Ant is a loosely coupled peer-to-peer system.

2.1.4 ”Servent” components

Each node of a peer-to-peer system needs at least the following components
for interaction with other peers in order to be able to perform a search for
resources:

Networking component Peer-to-peer systems are dynamic by nature. Nodes
are not permanently connected to the overlay network but may join and
leave the group at any time. Even the IP-addresses of participants cannot
be said to be constant. In between subsequent connections to a peer-
to-peer network computers may be assigned different IP-addresses by
their service providers each time they connect to the Internet. Therefore,
simple DNS lookups to identify nodes are not sufficient.

The purpose of the network component is to take account of this dy-
namic connection aspects and manage the connection and neighbour-
hood properties of nodes. To perform the task of mapping peer-to-peer
specific node identifiers to actual network addresses, a node must pro-
vide a join-method which allows other nodes to inform the node they
want to connect to of their presence. A node wishing to join a peer-to-
peer network needs to know the identity of at least one peer of the group
to which it can send the join-message. Joining the network may – de-
pending on the architecture – of the network result in further messages
which reorganize the networks neighbourhood relations.
Leaving the network is usually not announced. Peers are likely to fail or
leave the peer group at any time without warning. This may be due to
network congestion or disconnections, shutting down the peer-to-peer
protocol or simply powering down the hosting machine. The network
component should have some capability to detect the unavailability of
nodes which have been connected to the network and reorganize the
network structure accordingly.
It is possible that a peer joining a network is already a member of an-
other peer group. This can create a bridge between the two groups and
thus merge the two separate networks into a single one.
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Resource management component As the name implies, the resource
management components purpose is to organize the resources provided
by the host computers or their users. The following functionalities are
crucial to resource management:

• insert(k, r) This function is used to add a resource r to those which
are published by the node. The resource is associated with a key k
which serves as search criterion to locate r.

• delete(r) This function removes the resource r from the node’s
repository, thus making it unavailable for search requests.

• search(k) This function retrieves resources tied to the key k from a
node’s repository of available resources. If the resource is not found
at the node receiving a search call, it can forward the request to other
nodes in its neighbourhood.

In tightly coupled peer-to-peer systems, the insert and delete functions
may cause a relocation of the resources between the peers since the ser-
vices they provide are directly tied to their node identifiers.

2.2 Network structures

Peer-to-peer networks consist of nodes connected by links. Due to the self or-
ganizing capabilities of peer-to-peer networks, some interesting phenomena
concerning the topologies of these networks may emerge. There is a class of
networks where, although their size is huge, each node is just a couple of links
away from each other node. These networks are called small-world networks.
Moreover, there are networks in which the amount of links to a node (its de-
gree) is indirectly proportional to the availability of the node. Networks with
such a property are called power-law networks. In this section, these two types
of networks will be explored in more detail.

2.2.1 Small-world networks

Small-world networks are based on the assumption that individuals have
lots of acquaintances in their immediate neighbourhood and know only some
other individuals who are located at a distance from them. The Small-world
theory has originally been investigated as a series of sociological experiments
by Stanley Milgram [43]. In these experiments, persons from Nebraska at-
tempted to forward postcards to persons they didn’t know in Massachusetts.
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The postcards had to be forwarded via people that were known by their first
name to the current holder of the card. The conclusion of these experiments
was that on average six steps were needed to deliver the postcards and that
individuals who act based on their own local knowledge only are good at
finding short paths to the destination persons.

Duncan Watts and Steven Strogatz [67] showed that the results of Milgram’s
experiments are caused by the small-world effect. If only a few people in a so-
cial network have very diverse acquaintances, these people may serve as a
bridge between highly interconnected parts of the network that would oth-
erwise be unaware of each other. These bridges can significantly reduce path
lengths through the network. Small-world networks have the property that,
compared with the amounts of nodes in the network, the networks have a
small diameter. Each node in the network is only a few hops away from each
other node.
In [47] it has been shown that by randomly changing connections in a regu-
lar network-graph, the small-world effect may emerge. A regular graph has
each node connected to its neighbours in the same way and is highly clus-
tered: nodes that are near to each other are interconnected by a dense mesh of
links. Changing about only one percent of those links to point to distant parts
of the network may reduce the network diameter while the clustering in the
network is preserved.
Watt’s beta small-world model is generated by starting with a one-dimensional
ring lattice network where each node is connected to k neighbours. Each path
in the network has a probability β to be placed between two random nodes.
For certain values k and β a network with a low characteristic path length and
high clustering coefficient may be created.

Figure 2.2: Increasing network randomness
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An example of how increasing randomness of links affects a network is shown
in Figure 2.2.

Jon Kleinberg [34] has further investigated how algorithms perform in spe-
cially structured small-world networks. His conclusions might also be used
to gain some insights into how efficient the SemAnt algorithm works. In
Kleinberg-small-worlds, the nodes of the network are placed on a toroid with
a lattice size of n × n nodes. Each node is connected to its immediate neigh-
bours and has one connection to another node which is farther away. The
destination of the long distance connection is controlled by a clustering ex-
ponent α, which is based on a probability function of the network distance
between the two nodes it connects: The node u is connected to v with a proba-
bility that is proportional to r−α, where r is the lattice distance between u and
v (see Figure 2.3).

Figure 2.3: Kleinberg-Small-world network lattice

Kleinberg states that the diameter of small-world networks is a logarithmic
function of their size. Any two nodes in a network with N nodes are logN
steps away from each other at the maximum. When the long range connec-
tions in small-world networks are distributed with an inverse-square function
– the clustering exponent α = 2 – any decentralized algorithm may find a
path between any two nodes in the network in a time T , where T is bounded
by logN . With increasing exponent α, the expected time for a decentralized
algorithm to find a path between two network nodes rises asymptotically.

2.2.2 Power-law networks

Power-law distributions [2] describe phenomena where “large” events are
rare and “small” events occur very often. An example for this distribution
can be seen in the frequency in which words are used in texts: a few words
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like “the” and “and” are used often, while other words, which take most of
the space of any dictionary, are used only infrequently.
The power-law distribution P (k) ∼ k−γ describes that the size of an event k is
inverse proportional to its occurrence. In a log− log plot, a power-law function
can be seen as a straight line with a slope of −γ.
Networks in which the degrees of the nodes follow a power-law distribution
are also called scale-free networks [7]. They can be created by consecutively
adding nodes n to the network and linking them to other nodes i with a prob-
ability

P ∼ ki

Σjkj

where k is the degree of a node.

Power-law distributions can be observed in various aspects of the Internet:

• access frequency to websites,

• interconnection of documents on the WWW,

• links between Internet routers, etc.

Govindan and Tangmunarunkit [26] developed Mercator, a program which
maps the connection between Internet routers by sending hop-limited probes
from a single host computer. Maps on different scales generated by Mercator
are shown in Figure 2.4. It can be seen that nodes close to the center of the
maps are highly interconnected while the peripheral nodes, which are more
frequent have only a few links to other nodes.

Figure 2.4: Maps generated by Mercator
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Figure 2.5: Degree distribution of Mercator maps

The degrees of connections between nodes, which follows a power-law distri-
bution, is plotted in Figure 2.5.
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3 Ant-based approaches to
routing in peer-to-peer
environments

This chapter shows how the food gathering (foraging) behaviour of real ant
colonies can be exploited for finding solutions to graph-based optimization
problems in computer science. In Section 3.1, the basic concepts of ant-based
algorithms are explained. Section 3.2 presents the Ant Colony Optimization
meta-heuristic which is a generalization of techniques for applying the forag-
ing behaviour of real ants to optimization problems. Ant Colony Optimization
and especially Ant Colony Routing, which is described in Section 3.3, are the
foundations of the SemAnt algorithm which will be introduced in Chapter 4.

3.1 Introduction

Ant algorithms are inspired by the behaviour and by the communication
methods of real ants. In this section, the properties of communication meth-
ods used by ant colonies are explained. It is shown how marking a path with
chemical substances efficiently leads individual ants of a colony to a food
source. This method can be adapted and extended to solve optimization prob-
lems in artificial intelligence.

3.1.1 Natural Ants

Natural ants as individuals are very simple animals when their behaviour is
considered. They have only little memory and seem to act mostly at random.
Ant colonies, which are composed of a number of individual ants, are able to
perform various complex tasks by working as a collective. To coordinate tasks
such as efficient food gathering, the individual ants need to communicate with
each other.
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Ants do not communicate directly, but use a type of communication called
stigmergy [27] instead. Stigmergy is a form of indirect communication in which
the environment is used to convey information. A single ant’s behaviour is
largely controlled by reactions to stimuli it gets from its environment. If an
ant changes its local environment in such a way that a specific stimulus is al-
tered, this will affect the behaviour of other ants which pass the location.
The environment can be changed in two ways: by altering it physically in a
task-related manner, or sign-based by depositing something which is not di-
rectly related to the current task but will affect task-related behaviour. Physi-
cally altering the environment by, for example, depositing a ball of mud some-
where will cause other ants also to drop mud-balls near the first one and
thus cause the construction of some kind of structure. When using sign-based
stigmergy, ants are dropping a variety of volatile chemical substances called
pheromones to leave messages for other ants. This form of communication is
employed in the food gathering process of ant colonies.

3.1.2 Trail-laying and trail-following

Using a colony of Argentine ants (iridomyrmex humilis), Goss et al. [25] inves-
tigated the food gathering behaviour of those creatures. In the experiment,
the colony was separated from a food source. It was then given access to the
source by two bridges of different length (see Figure 3.1). An ant travelling to
the food source faces the choice of taking either the longer or the shorter route.
Since ants do not have a global view of the area, they can only make their deci-
sion at the fork of the path. The first ants choosing a path have no information
at all about how to reach the food source quickly, and therefore make a deci-
sion at random. If two ants start at the same time and take different branches,
the one taking the shorter path will be the first one to return to the nest with
some food item. Since the ants are marking the paths they have been travel-
ling with pheromone trails, the shorter path will have a higher concentration
of pheromones at the time the first ant returns (see Figure 3.2). If another ant
starts its way and comes to the bifurcation of the path it can make its choice by
analyzing the pheromone concentrations on the paths. With a high probability,
it will choose the shorter path because more pheromones have already been
dropped there. By choosing the shorter path and marking it as well, this deci-
sion will further increase the attractiveness of the path for subsequent ants.
In this experiment, after a few minutes most ants will use the shorter path.
The emergence of the problem’s solution is caused by positive feedback and by
differential path length. Goss et al. observed that the amount of ants that will be
travelling either path is directly proportional to how great the lenght differ-
ence between the two paths is.
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Two further experiments show that there are problems associated with the
pheromone trail laying. In the first experiment, the ants are presented only
the longer path first, and after a while the shorter path is made accessible. As a
consequence the ants won’t choose the shorter path since the pheromone con-
centration on the longer path is already high and will be further reinforced. In
the second experiment, the shorter path is blocked after awhile. The ants will
still try to follow the path only to realize they can not reach the food source. It
takes rather long for the colony to discover and start to utilize the longer path.
Although the pheromone trails will evaporate over time, the evaporation rate
of natural pheromones is too low to be of any real use for quickly accounting
to the two situations described above.

Figure 3.1: Differential pathlength,
initial state

Figure 3.2: Differential pathlength,
advanced state

3.1.3 Application of trail-laying and trail-following to
optimization problems

Ant-based algorithms mimic the pheromone trail laying communication
strategies of real ant colonies to solve optimization problems which can be
mapped onto a network graph. They employ the stigmergic principle realized
by trail-laying and trail-following, which has been described in the previous
section. The selection of a short path between two points is extended to find
the best path between any two vertices in a graph as shown in Figure 3.3.

Two strategies for the evaluation of the paths found by the ants are employed:
implicit and explicit solution evaluation. In the case of implicit solution evalu-
ation, the differential path length effect is exploited. Ants which find solutions
faster are the first to bias the search process of the following ants. They drop a
fixed amount of pheromones, and thus reinforce their found solutions. When
evaluating the solution explicitly, the actual quality of the found solution has
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Figure 3.3: Solution building

Problem Algorithms
Travelling Salesman AS [19], MMAS [60]
Network routing ABC [55], AntNet 3.3
Graph colouring ANTCOL [15]
Quadratic Assignment HAS-QAP [22], MMAS-QAP [61], AS-

QAP [39]
Machine scheduling ACS-SMTTP [8]
Vehicle routing AS-VRP [9], MACS-VRPTW [21]
Multiple knapsack AS-MKP [35]
Frequency assignment ANTS-FAP [38]
Sequential ordering HAS-SOP [20]

Table 3.1: Problems solved by ant-algorithms

to be calculated in some way, and the amount of pheromones dropped by ants
depends on the solution’s quality. Usually the combination of implicit and ex-
plicit solution evaluation is applied in ant algorithms.
As already mentioned, pheromones evaporate with passing time, and so
paths that have been marked by ants are “forgotten” again. While natural
pheromones evaporate very slowly, increasing the evaporation rate of artifi-
cial pheromones can improve the optimization process. Paths which are good,
but less than optimal, do not get too much attention by ants if the pheromone
amounts dropped there diminish quickly.

Different optimization problems ranging from the Travelling Salesman Prob-
lem (TSP) to graph coloring have been tackled by employing ant algorithms.
Table 3.1 shows some of these problems and some algorithms which have been
used to solve them.
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3.2 Ant Colony Optimization Meta-Heuristic

The Ant Colony Optimization meta-heuristic as proposed by Marco Dorigo
and Gianni Di Caro [17] can be applied to solving optimization problems with
the following characteristics:

• The problem can be mapped onto a graph G(C, L) composed of the com-
ponents C = {c1, c2, . . . , cn} and links L = {lcicj

|(ci.cj) ∈ (C × C)} be-
tween a subset of the components. The components are the nodes of the
graph.

• Each link lcicj
∈ L has an associated cost function Jcicj

≡ J(lcicj
, t) where

t is a parameter possibly denoting time.

• A set of constraints Ω ≡ Ω(C, L, t) is assigned over the components of
the graph.

• The states of the problem are defined as sequences s = 〈ci, cj, . . . , ck, . . .〉
over the elements of C. S is the set of all possible sequences and S̃ is a
subset of S containing all sequences which are feasible under the con-
straints defined in Ω.

• A neighbourhood structure of states is defined as follows. The state s2 is
a neighbour of s1 if s1, s2 ⊆ S and s2 is reachable from s1 in one logical
step. This means that if c1 is the last component of s1, there has to be a
c2 ∈ C with lc1c2 ∈ L and s2 ≡ 〈s1, c2〉

• A solution Ψ is an element of S̃ which satisfies all requirements of the
problem.

• Each solution Ψ has a cost JΨ(L, t) which is calculated as a function of
all costs Jcicj

of connections belonging to the particular solution.

In Ant Colony Optimization a problem defined as above, is solved by em-
ploying the trail-laying and trail-following priciples as described in Sec-
tion 3.1.2. The ants will travel the links, and upon finding a solution will up-
date pheromone trails τij for each link lcicj

which is part of their solution.
Associated with the ant colony and its individual ants are the properties listed
below:

• Each ant has enough complexity to find a solution to the defined prob-
lem. The solution is probably poor. Good solutions are found only
through the collaboration of the ants.
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• Ants make use only of information they themselves possess or informa-
tion which is stored at the node they are currently visiting. Ants do not
have any global knowledge about the system in which they are operat-
ing.

• Communication between ants is performed only by laying and follow-
ing pheromone trails.

• Ants do not adapt to a problem. Instead, they change the representation
of the problem and how it is seen by other ants.

• Ants search for feasible solutions with a minimal cost.

• Each ant k has a memory M‖ to store information about the path that
has been travelled. The memory is used to build solutions, evaluate the
solution, and backtrace the paths they have followed.

• An ant k in a state sr = 〈sr−1, i〉 can move to any node cj in its feasible
neighbourhood so that the next state sr+1 is valid in the sense that sr+1 ∈
S̃.

• An ant k is assigned a start-state sk
s and can have multiple termination-

states ek.

• Ants start at their start-state sk
s and incrementally build a solution by

travelling between neighbouring nodes. The solution construction stops
when any termination-state ek is reached by at least one ant.

• An ant can move from a node ci to any neighbouring node cj as long as
there is no constraint in Ω prohibiting it. Which node it will travel to is
chosen in a probabilistic manner. The function which governs the choice
is influenced by (i) the problem constraints, (ii) the content of the ants
memoryM‖, and (iii) information from the ci’s routing table A〉 which
is derived from the pheromone levels τij for paths to ci’s neighbours.

• When travelling from node ci to node cj in order to find a solution, an
ant may update the pheromone levels τij on the link between the two
nodes. This action is called “online step-by-step pheromone update”.

• If a feasible solution has been found and the ant retraces its steps to the
originating node it may also update the pheromone levels on the paths
it passes. This is called “online delayed pheromone update”.

• If an ant has found a solution and has retraced its path to its originating
node, it dies and all resources allocated to the ant are freed.
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Besides the ants’ activities, there are two other possible actions in algorithms
which implement the ACO heuristic. These actions are pheromone evaporation
and daemon actions. Globally reducing pheromone levels is performed to pre-
vent that solutions which are good but not optimal receive too much atten-
tion. “Forgetting” paths by evaporating pheromones leads to a greater area of
exploration by the ants. Daemon actions are any actions which cannot be per-
formed by the ants themselves. Daemon actions may have a global view of the
system and may update pheromones to control the search process. Pheromone
updates by a daemon are called “offline pheromone updates”.

A pseudocode representation of the above heuristic is given in Figure 3.4.

The travelling salesman problem (TSP) was the first problem to be tackled
by this approach. In the case of the TSP, C would be the set of cities, L the
available paths between the cities, and a solution Ψ would be a Hamiltonian
circuit (a sequence containing all elements of C exactly once) through all the
cities.

3.3 Ant Colony Routing

Ant based optimization can also be applied to routing data packets through
communication networks in an efficient manner. Routing in this case means
building routing tables, which are consulted to select the path along which a
data packet is sent from its source to its destination node. While always select-
ing the shortest path for a data packet reduces the overall load of the network,
individual nodes may experience a high communication load, become con-
gested, and thus increase the time it takes the data to reach its destination. It
may therefore be desirable to distribute the workload over the network, and
also select longer paths through less used parts of the network, to avoid de-
lays or packet-loss due to node congestion.
In ant based routing algorithms, ants are used to gather information about the
workload at the nodes in the network, and the time it takes to travel the links
between the nodes. This information is used to update routing tables at each
node. The routing tables hold probabilistic values that are used to select the
links along which the data packets are sent to their respective destinations.

Prominent routing systems based on ant algorithms are Ant Based Control
(ABC) [55] by Ruud Schoonderwoerd et al., and AntNet [10] by Gianni Di Caro
and Marco Dorigo. Concepts from the AntNet algorithm have been adapted to
SemAnt (see Chapter 4). The remainder of this chapter will explain the AntNet
algorithm, starting with the data structures and concepts used by AntNet.
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procedure acoMetaHeuristic() {

while (!terminationCriterionSatisfied){

scheduleAntCreation();

newActiveAnt();

pheromoneEvaporation();

daemonActios(); // optional

}

}

procedure newActiveAnt() {

initializeAnt();

M = updateAntMemory();

while (currentState != targetState) {

A = readLocalAntRoutingTable();

P = computeTransitionProbabilities(A, P, Ω);

nextState = applyAntDecisionPolicy(P, Ω);

moveToNextState(nextState);

if (onlineStepByStepPeromoneUpdate) {

depositPheromoneOnTheVisitedArc();

updateAntRoutingTable();

}

M = updateInternalState();

}

if (onlineDelayedPheromoneUpdate) {

foreach (visitedArc ∈ Ψ) {

depositPheromoneOnTheVisitedArc();

updateAntRoutingTable();

}

}

expire();

}

Figure 3.4: ACO meta-heuristic pseudocode

25



3 Ant-based approaches to routing in peer-to-peer environments

P11 P12 . . . P1N

P21 P22 . . . P2N

...
...

...
...

PL1 PL2 . . . PLN

Table 3.2: AntNet routing table

Forward-Ant Forward-Ants are agents which are sent at regular time inter-
vals by all nodes in the network. The aim of a Forward-Ant is to find a
good (in terms of time) path to a destination node, and measure the time
of each intermediate hop to the destination node. Because a Forward-
Ant’s job is also to detect network congestions, Forward-Ants are sent
through the same queue as data-packets in the network. Therefore, if a
Forward-Ant encounters a node which is currently experiencing heavy
traffic, it will be somewhat delayed by the waiting data-packets. To store
information about the route it took, each Forward-Ant has a stack where
it puts the data collected from each node on its way to the destination.

Backward-Ant If a Forward-Ant has arrived at its destination, the timing
data that it has acquired on its way is copied to a Backward-Ant. The
Forward-Ant dies and the Backward-Ant retraces the path taken by the
Forward-Ant, back to its originating node. On its way back, the routing
tables of the nodes it passes may be updated. Backward-Ants do not use
the same queue as data packets and Forward-Ants, but a high priority
queue, so that the network state can be quickly and accurately updated.

Routing table Each node in AntNet owns a routing table T , holding prob-
abilistic values which influence the routes taken by Forward-Ants and
data packets. The size of the routing table is N × L, where N is the
amount of nodes in the network and L the amount of neighbors of the
node (see Table 3.2). An entry Pnd in the routing table describes the prob-
ability that n will be the next node chosen by a Forward-Ant, if its desti-
nation node is d. Obviously the following equation has to be satisfied:∑

n∈Nk

Pnd = 1, d ∈ [1, N ], Nk = {neighbors(k)}

Model Besides the routing table each node owns a modelM, which describes
the network traffic distribution as it is perceived the node. For each
node n in the network there is an entry in M storing the best time,
mean time, and variance it took to reach the node in a defined time
window. The model is used to get an estimation how long it will take
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a packet to reach a certain destination node. Upon return of a Backward-
Ant the data gathered by the ant is compared with the model, and the
routing table is updated according to the quality of the path chosen by
the Forward-Ant.

The AntNet algorithm itself can be described as follows.

• At regular time intervals at each node s in the network a Forward-Ant
Fs→d is generated. The probability pd for choosing a node d as destination
is calculated as

pd =
fsd∑N

d′=1 fsd′
,

where fsd is a measure of the data flow in bits or packets from s to d. This
probability favors the exploration of paths to nodes which are preferred
destinations for data packets from s.

• At a node k, the selection of the next node n in a Forward-Ant’s path
is based on a probability P ′

nd, which takes into account the probabilistic
values stored in T and the current workload of the transport queues to
the neighbors of k. In the equations below, qn is the size of the queue to
k’s neighbor n in bits, and α is a parameter weighting the influence of
the queues’ workloads.

P ′
nd =

Pnd + αln
1 + α(|Nk| − 1)

, where ln = 1− qn∑|Nk|
n′=1 qn′

• On its way to the destination node d, the Forward-Ant collects informa-
tion about the traffic conditions encountered at the intermediate nodes k
on its way. The node identifiers and the time it took to reach the nodes
are pushed on the ant’s stack Ss→d(k).

• If the ant has moved in a cycle, all data collected during the time in the
cycle is deleted from the ant’s stack. If the ant has spent more than half
of its lifetime in the circle the ant itself is deleted, otherwise it continues
its way to its destination.

• If the Forward-Ant Fs→d reaches its destination, a Backward-Ant Bd→s

is generated. Bd→s travels back to s along the same path that has been
taken by Fs→d. It uses a high priority queue so that the routing tables can
be quickly updated.

• When, on its way back, Bd→s arrives at a node k coming from a node f
the model Mk and routing table Tk are updated. Entries in those data
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structures which correspond to the destination node d′ are affected by
the updates. If the time it took to reach a node on the way other than d
(i.e. a node in the path from k to d) is considered to be good (by compar-
ing it with the estimates inM), the entries for these nodes may also be
updated.
In M the mean, and variance estimates, as well as the best time to
reach d′ from k are recalculated according to the timing information col-
lected in the ants stack.
In T the value of Pfd′ is increased. All other values Pfn are decreased by
normalization. The transition rule for the increase is

Pfd′ ← Pfd′ + r(1− Pfd′)

where r ∈ (0, 1] is a reinforcement factor measuring the quality (depend-
ing on trip time and estimations inM) of the path. The above transition
rule favors the increase of Pfd′ which have low values, so newly found
good paths will be explored more quickly.

A pseudocode description of the AntNet algorithm is shown in Figure 3.5.
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t = CurrentTime;

t end = EndTimeOfSimulation;

t int = AntGenerationInterval;

foreach (Peer) { # Concurrent activity

M = localTrafficModel;

T = nodeRoutingTable;

while (t <= t end) {

in parallel { # Concurrent activity at each node

if (t % t int == 0) {

destinationNode = selectDestinationNode(dataTrafficDistribution);

launchForwardAnt(destinationNode, sourceNode);

}

foreach (ActiveForwardAnt) {

while (currentNode != destinationNode) {

nextNode = selectLink(currentNode, destinationNode, T ,

linkQueues);

putAntOnLinkQueue(currentNode, nextNode);

waitOnDataLinkQueue(currentNode, nextNode);

traverseLink(currentNode, nextNode);

pushOnStack(nextNode, elapsedTime);

currentNode = nextNode;

}

launchBackwardAnt(destinationNode, sourceNode, stackData);

expire();

}

foreach (ActiveBackwardAnt) {

while (currentNode != destinationNode) {

nextNode = popFromStack();

waitOnHighPriorityLinkQueue(currentNode, nextNode);

traverseLink(currentNode, nextNode);

updateLocalTrafficModel(M, currentNode, sourceNode, stackData);

reinforcement = getReinforcement(currentNode, sourceNode,

stackData, M);

updateLocalRoutingTable((T ), currentNode, sourceNode,

reinforcement);

}

}

}

}

}

Figure 3.5: AntNet pseudocode
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This chapter gives a description of the SemAnt algorithm which has been pro-
posed by E. Michlmayr et al. in [40]. The algorithm presented here is the base
of the practical work – the implementation of a simulation environment for
this algorithm – which will be discussed starting with chapter 5.

In Section 4.1, an application scenario for SemAnt is constructed. The algo-
rithm’s specification is presented in Section 4.2. Exploitation of hierarchical
structures will be covered in Section 4.3, and in Section 4.4 it is described how
SemAnt deals with dynamic network behaviour.

4.1 Application scenario

The SemAnt algorithm is a distributed search engine designed to operate in
an overlay network where each peer stores a number of documents in a lo-
cal repository. The stored documents are classified with keywords or concepts
which are taken from a hierarchical classification scheme or taxonomy. Hierar-
chical classification schemes are employed for example by the ACM Comput-
ing Classification System [5] which is used to describe scientific articles from
the domain of computer science, or the DMOZ - Open Directory Project [46],
which aims to classify websites according to their content. One or more con-
cepts taken from the classification scheme may be assigned to one document.
Users operating the nodes in the network may employ keywords, which of
course have to be taken from the classification scheme, to query for docu-
ments. Documents meeting the search requirements of this query have to be
associated with all of the keywords in the query.
If the node that has been queried cannot satisfy the query by retrieving docu-
ments from its local storage, it generates messages to ask its neighbour nodes
for matching documents.

Peers are identified by a unique id, for example their IP address. Documents
can be identified by their filenames and may be added or removed from a
peers repository while the peer is connected to the network.
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The algorithm doesn’t provide for peer discovery, so it is assumed that when
joining the network, each peer is already aware of its neighbours. Another
requirement is that the peers’ clocks are synchronized or a single reference
clock is used for all peers.
The aim of SemAnt is to create routing tables at each peer to optimize the
network so that querying for a document will result in a minimal network
load while a maximal amount of documents is found.

4.2 Specification of the algorithm

SemAnt is a pure peer-to-peer search algorithm. No super-peers or special
peers providing meta-information about the network are employed in this
solution. Each peer shows exactly the same behaviour and offers the same
functionality.
The SemAnt design is based on Ant Colony Optimization (see Section 3.2) and
Ant Colony Routing (see Section 3.3). SemAnt incorporates modified features
of ACO and ACR to provide distributed query routing functionality in a dy-
namic environment.

4.2.1 Data structures of SemAnt Peers

Each peer in SemAnt is aware of its neighbours and holds a table η where
the cost of sending a message to a neighbouring peer Pu is stored for each
neighbouring peer. Each peer also holds a table τ to store the quality of links
represented by pheromones. Since the network has to be optimized not only
for a single concept, but for all concepts in the taxonomy, there have to be as
many different pheromones as there are concepts. Consequently the size of τ
is |C| × n, where |C| is the number of concepts in the taxonomy and n is the
number of neighbours of the peer owning τ . The usage of multiple pheromone
types to optimize a network is elaborated by Sim and Sun in [57].
Together the tables τ and η will be used to route messages between peers.
A path for a message is more likely to be chosen if its pheromone levels are
high and the cost for using the path is small. Initially, each entry in τ will be
initialized with the same small amount of pheromones.
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4.2.2 Types of Ants

Messages between peers will be represented by ants in SemAnt. The AntNet
strategy to employ forward and backward ants to solve distributed problems
is adopted in SemAnt. AntNet aims at finding the optimal path between a
starting node and known destination node. In SemAnt the destination of an
ant depends on the content of the query. Since each node is only aware of its
own routing tables the destination node is unknown or might not even exist
if there are no documents matching the query. To prevent ants from search-
ing for a document that does not exist, each ant has a lifetime parameter Tmax

specifying the maximum time an ant will spend to look for documents. Upon
finding appropriate documents, backward ants will return them to the user’s
node along the path that has been taken by the forward ant. This will limit
the maximum time between dispatching a query and receiving documents to
2 · Tmax.

Basically, there are three different kinds of ants:

• Forward Ants are used to locate documents in the networks. A query
for documents will be carried from peer to peer by a forward ant. When
searching for documents, the forward ants employ two different strate-
gies: exploitation and exploration. Choosing the exploitation strategy
causes an ant to follow a known and often travelled path. When a for-
ward ant is exploring, it tries to create new paths by finding documents
on paths that are less frequented. Exploration in SemAnt may cause a
forward ant to be cloned so that more than one path can be investigated.

• Backward Ants are spawned by forward ants which have discovered a
peer that provides documents matching the query they are transport-
ing. Whenever documents are found, a backward ant carries these docu-
ments back to the peer where the query has been issued. The backward
ant will backtrace the path that the forward ant has taken to locate the
document source. On its way back to the original node the backward
ant will instruct intermediate nodes to update their pheromone tables so
that the path to the document source will be marked.

• Change Ants will be created by peers which add or remove documents
from the network. They are sent to inform other peers of this change
and cause them to modify their pheromone tables to reflect this change.
Change Ants are described in Section 4.4.
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4.2.3 Routing the ants

The routing information at each peer is provided by the tables η (link cost)
and τ (pheromone amounts). These tables will be maintained and updated by
backward ants that are returning with documents. The amount of pheromones
dropped on an entry τcu depends on the number of documents that have been
found and the path cost associated with finding those documents. Since all
peer clocks are synchronized, a forward ant can determine the time it takes
to travel between two peers. Backward ants carry this information back and
update the link costs stored in η accordingly.

Since forward ants generate backward ants which update the pheromone ta-
bles, paths that are heavily travelled will be reinforced while paths that are
seldom taken vanish due to pheromone evaporation. The degree of optimiza-
tion for a concept depends on the amount of backward ants that update
pheromone tables for this concept. It therefore is directly dependent on the
popularity of a concept in queries.

A general overview of the algorithm is presented as pseudo-code in Figure 4.1
and as flowcharts in Figures 4.2 and 4.3. A detailed description of the algo-
rithm will be given starting with Section 4.2.4.

4.2.4 Step-by-step description

In this section a step by step description of the original version of the algo-
rithm is given. The algorithm starts when a query Q is issued at a peer PQ.
Q is a query used to search for documents that have been assigned the key-
word c.

Step 1 The document repository at the peer that issues the query (PQ) is
checked. If it contains any documents matching the search criteria, they
are returned to the user. If the number of documents found in PQ’s
repository is less than a predefined parameter Dmax, the algorithm will
continue at Step 2. If enough documents are returned, the algorithm will
terminate.

Step 2 A forward ant FQ is created at PQ. The forward ant is assigned a start-
ing time TFstart and a timeout parameter Tmax limiting the lifetime of the
ant. PQ is put on the ants empty stack S(FQ) of already visited peers. A
list LC(FQ) storing the link costs of all paths travelled by FQ is initial-
ized.

33



4 The SemAnt algorithm

t = CurrentTime;

t end = EndTimeOfSimulation;

foreach (Peer) { # Concurrent activity

initializePheromoneTables();

initializeLinkCostsToNeighbourPeers();

while (t < = t end) {

in parallel { # Concurrent activity at each peer

if (Query Q) {

checkLocalDocumentRepository();

createForwardAnt(query parameter);

}

foreach (StartingForwardAnt) {

while (Timeout not reached) {

applyTransitionRule ();

t a = CurrentTime;

foreach (ActiveForwardAnt) {

GoToPeer(P j);

t b = CurrentTime;

checkLocalDocumentRepository();

if (DocumentsFound > 0) {

createBackwardAnt(stackData, P j);

}

addDataToStack(P j, t b-t a);

}

}

}

foreach (StartingBackwardAnt) {

do {

peer = pepStackData Peer();

GoToPeer(peer);

applyPheromoneTrailUpdateRule();

updateListCosts(popStackData Costs());

} while (peer != source peer);

foreach (PeriodicalTimeInterval t e) {

applyEvaporationRule();

}

}

}

}

Figure 4.1: SemAnt pseudo-code
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Figure 4.2: Forward Ant Flowchart
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Figure 4.3: Backward Ant Flowchart

Step 3 Routing forward ants to their destinations is done by employing ex-
ploitation and exploration strategies which are also used in Ant Colony
System [18]. Each time a route for an ant has to be found, one of
these strategies is chosen at random. The exploitation strategy is pretty
straightforward: the ant follows the path with the highest quality - de-
pending on pheromone amounts and link cost.
Since more than one node can be the destination of a forward ant, the
exploration strategy where new paths are discovered, has to be adapted.
When exploring, a random value (again depending on pheromone
amounts and link cost) denoting whether a path should be chosen is
calculated for each possible path. Should more than one path be selected
for exploration, the forward ant has to be duplicated and copies of the
original ant continue in different directions.

The transition rule is applied to find out which path or paths should
be travelled by FQ. With a probability ωe the forward ant will employ
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the exploiting strategy. The exploring strategy is chosen with probability
1− ωe.
If FQ makes use of the exploiting strategy, the following transition rule is
applied to choose a path to the present best neighbour peer Pj :

j = arg maxu∈U∧u/∈S(F Q) ([τcu] · [ηu]
β)

where U is the set of neighbour peers to the current peer Pi and S(FQ) is
the set of peers that have already been visited by FQ. τcu is the amount
of pheromones on the path to the neighbour node u and ηu is the cost to
travel to Pu which again is weighted with a parameter β.
If the exploring strategy is chosen, the transition rule below is checked for
every neighbour peer Pj to see if a forward ant should be sent to Pj .

pj =
[τcj ]·[ηj ]

βP
u∈U∧u/∈S(FQ) ([τcu]·[ηu]β)

, GOTOj =

{
1 if q ≤ pj ∧ j ∈ U
0 else

where q is a random value q ∈ [0, 1] and
∑

j∈U∧j /∈S(F Q)pj
= 1. If GOTOj

equals 1, a clone of FQ is created and sent to Pj .

Step 4 When FQ arrives at Pj , the local document repository of Pj is checked
to find documents d that match keywords c of the query Q.The result of
the local search is a set D containing every found document.

Step 5 If documents were found and thus D is not an empty set, a backward
ant BQ is generated. The document set D is attached to BQ. PD – the
node that stores D – is passed to BQ so that upon return of the backward
ant a direct connection between PQ and PD can be established to down-
load the found documents. BQ also receives a copy of S(FQ).
The total path cost TD from PQ to PD is calculated by summing up
all entries in the set LC(FQ). BQ then travels back to its originating
node PQ along the path connected by the nodes that have been accu-
mulated on the stack S(FQ). At each node it passes BQ drops an amount
of pheromones Z to mark the quality of the travelled path according to
the following rule:

τcj ← τcj + Z, where Z = ωd ·
|D|
d∗

+ (1− ωd) ·
Tmax

2 · Td

The amount of pheromones dropped is dependent on the number of
documents that have been retrieved and the cost of the path that has
been travelled by FQ to find the documents. In the above rule, ωd is a
parameter weighting the influence of the amount of found documents
against the path cost to reach PD from PQ. Z is derived by comparing
the quality of the found solution against an optimal solution. Since no
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known optimal solution exists, an ’optimum’ for the total path cost is
assumed to be Tmax

2
and the ’optimal’ number of documents is estimated

by using a constant parameter d∗.

Step 6 Pi is put on FQ’s stack of visited peers S(FQ) and the cost of the last
travelled path is added to LC(FQ).

Step 7 If the forward ant has exceeded its lifetime, i.e., TFstart + Tmax >
CurrentT ime, the forward ant is terminated. Otherwise, the algorithm
continues at Step 3.

4.2.5 Multiple keywords

The algorithm as presented in the previous section works on the assumption
that queries will be used to search for documents with a single keyword. The
aim of SemAnt is to use multiple keywords though. Some adaptations to the
algorithm need to be made to provide for the application of multiple key-
words. In case more than one keyword is used, the pheromone trails for all
used keywords c1, ..., cn need to be updated.

4.2.6 Evaporation

Since documents can be removed from repositories, or nodes may leave the
network altogether, pheromone trails will become inaccurate or obsolete. To
prevent ants from following outdated pheromone trails, the pheromones need
to be updated as a function of passing time. Pheromone trails will gradu-
ally become weaker and paths that are not used anymore due to missing
documents will become subject to deterioration, since no backward ants will
drop pheromones on them anymore. Thus the so called evaporation of the
pheromones will stop ants from travelling in the wrong direction for an ex-
tended period of time.

In defined intervals te each node has to update the pheromones on the paths to
its neighbour nodes. Pheromones for all concepts c on paths to each neighbour
node Pu are reduced by an evaporation parameter ρ ∈ [0, 1] according to the
evaporation rule below.

τcu ← (1− ρ) · τcu

38



4 The SemAnt algorithm

4.3 SemAnt and taxonomies

SemAnt is supposed to locate documents which have been classified with con-
cepts taken from a taxonomy. It is assumed that there exists a locality as far as
document distribution between peers is concerned. This means that if a node
holds some documents that fit a certain concept it is also likely that docu-
ments of related concepts can be found at this node [59]. For example if a node
has some documents on the subject ’/recreation/sports/martial-arts/ju-jutsu’
there is a good chance that the nodes user may also show interest in sports
such as karate, judo, aikido, etc. which can also be classified as martial-arts.

As shown in [42], it is possible to increase the search performance of the al-
gorithm by exploiting the relation between concepts and the locality men-
tioned above. To do so, the proposition is that backward ants also drop an
equal amount of pheromones on each superconcept of the keywords c used in
the query.
Forward ants searching for a document additionally check the amount of
pheromones on the superconcepts to decide upon which path to take. This be-
haviour leads forward ants to find the desired documents faster. This is done
by changing the transition rule for the exploiting strategy to

j = arg maxu∈U∧u/∈S(F Q)(
n−1∑
i=0

τciu ·
1

xi
)

where i is the distance between a concept c and its super-concept ci, n is the
amount of super-concepts which are included in the search process, and x ∈
[2, 4, 8, 16, . . .] determines to which extent they are considered.

4.4 Dynamic aspects of SemAnt

SemAnt operates in a peer-to-peer environment which is dynamic by nature.
Peers may join or leave the network at any time. Peers entering or leaving the
network will add documents to the network or reduce the overall amount of
documents. Also users may choose to add documents to a nodes repository
or remove some documents. To improve the performance of the search algo-
rithm, these changes should be reflected in the pheromone trails. If a node fails
unexpectedly (possibly due to a network failure) no action can be taken to cor-
rect the pheromones. In this case, evaporation of pheromones as described in
Section 4.2.6 will be responsible for the adaptation of the pheromone levels.
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In the η-strategy presented by Guntsch and Middendorf [29] it is proposed
that the closer a peer is to the peer where the change occurs, the greater has to
be the amount of pheromones which are added or removed to account for the
change. SemAnt employs a simplified adaptation of the η-strategy, where the
distance to the change event is measured in hops between peers. The change
will affect only those peers that are up to three hops away from the peer which
is responsible for the modification of the overall amount of documents in the
network.

If a peer Px leaves the network in a controlled way, or documents are removed
from the peers repository, it can send a ’leave’-ant Lx to peers in its vicinity to
inform them that the documents will no longer be available. The closer a peer
receiving Lx is to Px, the greater the amount of removed pheromones will be.
Lx is given a list Cx that contains the keywords c and total amount of docu-
ments |Dc| that will be deleted. Lx is initialized with a parameter h = 1 denot-
ing the distance of Lx from its originating peer Px.
As soon as a node Pu receives Lx, it updates the pheromones on the path to
the node from which Lx was sent. The amount of pheromones to evaporate is
calculated as follows:

τcu ←

{
τcu − τcu · λh if |Dc| ≥ d∗

τcu − τcu · λh · |Dc|
d∗

else

where the list λ = {λ1, λ2, λ3} holds predefined factors reflecting the degree
of pheromone reduction. To decrease the pheromone reduction with growing
distance from Px it has to be ensured that λ1 < λ2 < λ3 and λh ∈ [0, 1].
Pu increases the distance parameter h by one and sends the ’leave’-ant to its
neighbour nodes which again update their pheromone trails and send the ant
to all peers that are three hops away from Px. Lx will expire after it has gone
to a node that is three hops from its originating node.

If a node Py joins the network, each entry τcu for each concept c and each neigh-
bouring node Pu is initialized with a small pheromone amount τinit. Joining
nodes and nodes where documents are added to the repository send ’join’-
ants Jy to their neighbours to inform them that new documents are available.
The principle for joining peers is the same as for leaving nodes. A list with
keywords and corresponding number of documents is passed to Jy, and Jy

will travel to nodes Pu up to three hops away from Py. Each Pu has to apply
the modification rule above where λh ≥ 1.
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In the course of this work a simulation environment, dubbed SimulAnt, is de-
veloped to evaluate the performance of the SemAnt algorithm. In this chapter
design issues of the simulation environment are discussed. In Section 5.1 the
requirements for SimulAnt are specified. Section 5.2 deals with SimulAnts ar-
chitecture – the main packages and classes are described. In Section 5.3, the
data storage concept for the simulator is explained. In Section 5.4 presents ex-
isting simulators for peer-to-peer routing algorithms, which were considered
for adaptation or reuse in SimulAnt.

5.1 Introduction

In Chapter 4 the SemAnt algorithm which aims at routing queries through a
peer-to-peer environment has been presented. Up to now, the performance of
SemAnt has not been tested due to the lack of a suitable simulation environ-
ment. SimulAnt, which is developed in the course of this diploma thesis, is a
new simulator for the SemAnt algorithm. The basic demands of SimulAnt will
be presented in this section.

Realism A major issue in the development of SimulAnt is realism. The sim-
ulations should generate results which can be related to an application
running on the Internet.
SemAnts domain of operation is a peer-to-peer environment. It is consid-
ered vital to test SemAnt in network graphs which closely correspond to
the network structure of the Internet. Smallworld and power-law phe-
nomena (see Section 2.2) can be observed in this structure. It is desirable
that SimulAnt supports the generation and manipulation of those types
of network-graphs.
The distribution of resources which are the target of queries is expected
to have great influence on the simulation results. It is desired that the
resources be distributed among the networks nodes in a manner which
can be observed in a real environment. Again, a power-law distribution
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is deemed to be a likely function for the initial allocation of resources to
network nodes.
One of SemAnt’s goals is to exploit interest-based localities – similar re-
sources are expected to be located close to each other (i.e., at one network
node). The domain from which the resources are taken should therefore
support hierarchic structures. The ACM classification scheme [5], which
comprises about 900 topics in four hierarchical levels is chosen to be used
to annotate the resources with metadata.

Usability It should be possible for the simulator to be used by persons other
than the developer, and with a minimum of prior knowledge about the
internal workings or data structures of the software. This goal cannot
easily be accomplished with a command line interface and configura-
tion files. A graphical user interface shall free the user from the need to
learn command line parameters and the syntax of configuration files.
Although SimulAnt’s main field of application lies in scientific research
of SemAnt’s performance, it should also be possible to extend it to visual-
ize the execution of the algorithm. With such a visualization it is possible
to use the simulator for giving people a quick introduction to ant-based
algorithms.

Platform independence A great number of simulation runs has to be per-
formed to obtain expressive data about SemAnt’s behaviour. Simulation
runs are expected to work in fairly big networks – thousands of nodes,
ten thousands of documents distributed between the nodes, and an ap-
propriately huge amount of queries to optimize the search capabilities.
To efficiently perform these simulations, it is desirable to run them on
multiple computer systems simultaneously. It is therefore desirable that
the simulator can be run on host systems with different operating sys-
tems and window managers.

Comparability and Data persistence Queries in the simulation will gener-
ate loads of data which is used to analyze the performance of the tested
algorithm. It is desirable that data of different simulation runs is stored
so that it is available for direct comparisons between simulations which
have been performed with similar parameters. The impact of changing
simulation parameters can then easily be recognized and the parame-
ters can be repeatedly tweaked to reach an optimal performance of the
SemAnt algorithm.
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5.2 System architecture

In this section the structure of the SimulAnt system is presented. In SimulAnt,
five main building blocks can be identified. These are shown in 5.1. The core
system, which is responsible for performing the simulation, consists of the
Network, Message, Repository and Storage packages. The UI package
provides a graphical user interface which is used to conveniently control sim-
ulation parameters and evaluate the simulation results.

Figure 5.1: System Packages

5.2.1 Message package

Messages that are passed in the SimulAnt environment are represented by
Ants. This package contains the classes that are employed for realizing the
messaging mechanism, and to gather data which is used to optimize the net-
work. The components of the Message package are shown in Figure 5.2.

Query This class is used to specify the concepts which are the criteria by
which documents are searched. It is also used as a container in which
the documents that have been found are transported back to the node
where the query originates. Each Query object has a unique identifier
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Figure 5.2: Message Package

and a timestamp of its creation. It holds several fields where statistical
data, like the number of messages that have been generated to satisfy the
query, and the amount of documents that have been found, are stored.
A single Query object may simultaneously be transported between
nodes by more than one Ant. Upon termination of the query – its life-
time has been exceeded, or all Ant instances that were associated with
this Query have either returned or died – the data which has been accu-
mulated in the Query is stored for later analysis.

QueryGenerator The QueryGenerator’s role is to create new queries at
random. At each clocktick the QueryGenerator randomly chooses
nodes which will serve as the origin of a query. The amount of nodes
which are selected can be controlled by a simulation parameter. When
a node is chosen to be the origin of a query, the concepts which are the
search criteria for the query are randomly selected from a list of all con-
cepts, which are actually used to classify documents in the network.

Ant Ant is the base abstract class which is used for passing information (or
queries) between network nodes. Each Ant has a sender- and receiver
node and can hold a Query object. Ants store the backtrace of nodes
that have already been included in their search path. They also store the
information how far they have travelled in terms of network links, and
path costs.

ForwardAnt This class, which is derived from the Ant class, models the ants
which are used to propagate a query to search for documents. Every
time a Query is forwarded to another node, a new ForwardAnt is cre-
ated. The data that has so far been gathered by previous ForwardAnts
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is passed to a new instance. ForwardAnts have the additional function
to add nodes to the backtrace and thus update the distance information
of the base Ant class.

BackwardAnt The BackwardAnt is another class derived from Ant. When
documents matching a query have been discovered by a ForwardAnt,
a BackwardAnt is created to bring the documents back to the query’s
originating node. The BackwardAnt adds the backtrack functionality to
the Ant base class, which will – when repeatedly invoked – bring the ant
back to the queries originating node.

MessageHandler The MessageHandler, which is implemented as a single-
ton [23], is responsible for the delivery of Ant instances to the network
nodes. In the simulation Ants are not actually sent via paths but are
given to the MessageHandler, which will pass them to the receiving
nodes.
Whenever an ant A travels from its current S node to the next node D in
its path, a delivery time is calculated. The delivery time depends on the
cost of taking the path between S and D. It is the time at which A will – in
terms of clock ticks – arrive at D. A is placed in the MessageHandler’s
queue, which is prioritized by Ants’ delivery times. At each clock-tick,
the MessageHandler is notified and checks the queue whether any
Ants are due for delivery. Ants whose delivery time matches the current
clock-tick are passed to their destination nodes. The path from which the
ant was incoming is retrieved by the node from the Ant object itself.

5.2.2 Network package

As its name implies, the Network package deals with all aspects of the sim-
ulation that are related to network graph manipulation. It provides function-
alities for controlling and designing the network environments in which the
SemAnt algorithm is tested. The Network package is backed by JUNG – a net-
work/graph framework – which will be presented in Section 6.1.1. The classes
contained in the Network package are shown in Figure 5.3.

Network This class is the central hub of all network activity. It is imple-
mented using the singleton design pattern. It provides methods for cre-
ating network graphs by either generating random networks (small-
world or powerlaw), or by adding and removing nodes and links man-
ually. Networks can be stored and retrieved so that the same network
can be reused in different simulation runs.
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Figure 5.3: Network Package

Additionally to network management, the class provides functions to
perform actions that apply to the whole network, like evaporation of
pheromones, or storage of Query instances which have finished their
lifecycle.

AntNode The AntNodes hold the repositories where documents are stored.
They are also the source of queries and the points between which Ants
are travelling.
In SemAnt’s description (see Section 4.2) it is said that the nodes hold the
pheromone tables. This is due to the fact that network paths cannot usu-
ally hold any data. In the case of this simulation environment, data may
be attached to the paths. This resembles the natural behaviour of ants
more closely. They don’t drop their pheromones in anthills but dissemi-
nate them while travelling along a path. The actual routing information
is therefore located in the AntPath class.
The most important method of the AntNode (and SimulAnt) is the
method receiveAnt(Ant ant). It is responsible for retrieving doc-
uments, maintaining the routing information, and selecting paths for
ForwardAnts. A flowchart diagram illustrating this method is pre-
sented in Figure 5.4.

AntPath The AntPath represents a connection between two AntNodes.
Each path has a field for the costs that are incurred by choosing the
path, and data structures to store the pheromones that are dropped
by BackwardAnts. Currently, there is a flat and a hierarchical im-
plementation of the AntPath. The hierarchical implementation stores
pheromones for the concepts in a tree-structure, while the flat im-
plementation is storing them in a table, where the keys are a string-
representations of the concepts. The hierarchical implementation better
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Figure 5.4: receiveAnt(Ant ant) method
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represents the structure of the concepts, but accessing the pheromones
is more complicated and time consuming than data access in the flat im-
plementation.
AntPaths are directed and for each path between two nodes, the exis-
tence of a path in the opposite direction is required. This requirement
has two reasons:

• BackwardAnts backtrack the paths that have been taken by the
ForwardAnts from which they were spawned. If paths between
nodes were available only in a single direction, the backtracking
would be impossible.

• The pheromone tables are stored in the paths rather than in the
nodes. If the tables were stored in the nodes, the direction of paths
would not be needed. The direction would be implicated by the
pheromone tables always storing pheromones for paths leading
away from the node.

When a BackwardAnt arrives at an AntNode and the pheromone
amounts are updated, the pheromones on the path which is opposed to
the path from which the BackwardAnt came (the path originally taken
by the ForwardAnt) are increased.

5.2.3 Repository package

The Repository package is responsible for management of the documents
which are distributed between the networks nodes. It contains the following
three classes:

Document The Documents are the resources for which the ants are searching
in the network. Documents are identified by their title. They hold a list
of keywords which are used as search criteria. The documents’ content
is irrelevant for the purposes of the simulation and therefore omitted.

DocumentRepository DocumentRepository objects are located at each
network node. Documents can be added to or removed from a repos-
itory. The documents are stored in a hashtable where their hash values
depend on their associated concepts.

DocumentGenerator When a new network graph is generated, it needs to
be populated with document instances. This process is the responsibility
of the DocumentGenerator. Currently there is one implementation of
the generator which produces an equal number of documents for each
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concept. The documents are distributed between the nodes following
a crude approximation of a power-law distribution. The assumption is
that in the network there are some nodes which show great interest in
a specific topic, some nodes that are moderately interested in the topic,
and nodes which have for some reason requested a document and hold
it in their repository. Documents are distributed as follows:

1. Each concept is assigned primary (high interest) and secondary
(moderate interest) nodes.

2. Each node may be primary node for only one concept but may be a
secondary node for many concepts.

3. Each document generated is for a concept is assigned to the con-
cepts primary node with a probability of 60 percent. With a prob-
ability of 20 percent, the document is assigned to the concepts sec-
ondary node. The remaining documents are assigned to any node
in the network.

5.2.4 Storage package

The purpose of the Storage package is to provide access to storage systems
like databases or filesystems, so that simulation properties and results which
need to be kept or reused can be stored and reloaded. Currently, the Storage
package is made up of a single class:

DBHandler Storage of data is implemented with a database (see Section 5.3).
The DBHandler is a singleton class which provides methods for access-
ing a database instance. Methods for the following operations are avail-
able:

• storing and loading of networks

• storing and loading of concepts for document classification

• storing and loading of documents

• storing of simulation parameters

• storing of query statistics

• loading and preprocessing of statistical query data
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5.2.5 UI package

The UI package implements the graphical frontend of the simulator. Its com-
position is shown in Figure 5.5. Its components allow creation of new simu-
lations and network graphs, checking the progress of the simulation, issuing
commands to control a running simulation, and viewing the simulation re-
sults.

Figure 5.5: UI Package

Composites are user interface elements which act as containers and are ca-
pable of containing other user interface elements. The following Composites
are associated with pages of the user interface:

ControlComposite The ControlComposite is used to set up and start new
simulations. In the control composite the parameters for the SemAnt al-
gorithm are specified. The values of the parameters are retained between
simulation runs. When different simulations with slightly varying pa-
rameters are run, not all of the parameters need to be specified again,
but only the parameters which need to be changed can be updated.
Creation of new network graphs is done via a dialog where the type and
parameters of the new network can be specified.
A screenshot of the form created by the ControlComposite is shown in
Figure 5.6.

InteractionComposite In the InteractionComposite, commands which
affect the simulation during runtime can be issued. Commands which

50



5 Design

will be executed are presented in a list. They each have a time at which
clocktick they will be processed. Commands include:

• halting a simulation, so that current pheromone levels, document
repositories contents, and network links can be checked

• adding and removing nodes from the network graph

• adding and removing documents from a nodes repository

Sets of commands can be stored and reloaded so that they can be reused
in subsequent simulation runs.
A screenshot of the command interface is shown in Figure 5.7.

VisualComposite The VisualComposite allows to check the state of the
network. It shows a graphical representation of the network graph (this
is probably useful only for very small networks). Nodes can be selected
by clicking on them in the graph or choosing them from a list of all
nodes in the network. For selected nodes information about its links,
pheromones on the links, and documents in the nodes repository can be
displayed.
A screenshot is shown in Figure 5.8.

ChartComposite The ChartComposite is used to display a graphical anal-
ysis of simulation results. By selecting the identifiers of finished simu-
lations and timing parameters, line charts of the network optimization
performed in a simulation are generated. It is possible to select multiple
simulations to enable a direct comparison between simulations with dif-
ferent parameters.
A screenshot of the charting window is presented in Figure 5.9.

5.2.6 Utility Classes

In the following, classes which did not fit in the above packages or are not
used at runtime of the simulation will be described:

Simulation The Simulation singleton class implements the main() method
of SimulAnt. It is responsible for instantiation of the Network and user in-
terface. Simulation manages the current state of the simulation (run-
ning/ paused/ stopped) and is responsible for loading and storing the
simulation parameters. A sequence diagram showing the events trig-
gered by the Simulation class is presented in Figure 5.10.

51



5 Design

Figure 5.6: Screenshot: Control Figure 5.7: Screenshot: Interaction

Figure 5.8: Screenshot: Visual Figure 5.9: Screenshot: Chart
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Figure 5.10: Simulation sequence diagram

ACM2DB The documents which are used for the simulation are associated
with concepts taken from the ACM classification scheme. ACMs classi-
fication tree is available as an RDF schema [66]. The ACM classification
needs to be imported into SimulAnts data structures where a flat repre-
sentation of the taxonomies is implemented. The ACM2DB class is used to
parse the RDF schema, extract the keywords and insert them into Simul-
Ants data storage.

Chart2SWT The charts displaying the simulation results are generated in a
Java Swing context by the jfreechart (see Section 6.1.3) library. The
Chart2SWT class provides a static method to convert the Swing graphics
into the SWT picture format, which is used by SimulAnt.

5.3 Data Storage

During the simulations, a huge amount of data about the query routes and
routing performance will be accumulated. This data has to be stored to be
able to evaluate the performance of the algorithm and to compare the impact
of different model parameters. This data could either be stored directly in a
file, for example as comma separated values, or in a database.

Writing the data to a file would be easier to implement but has the draw-
back that evaluation would have to be done by employing spreadsheet soft-
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ware. The usage of spreadsheets when dealing with massive amounts of data
is awkward at its best and useless at its worst. The shortcomings of spread-
sheet software are that they only allow a certain amount of lines to be used,
thus preventing the evaluation of huge amounts of data. Furthermore, data
cannot be easily manipulated. One would have to resort to time consuming
import/export and copy/paste functions to structure the data to obtain the
desired results.

Using a database to store the simulation data takes a little more design and
implementation effort but it’s well worth the cost. The advantages of using a
database (and the accompanying query language) are the following:

• Graph data and model parameters can be stored and reused in further
simulations without having to resort to multiple configuration files.

• Model data and result data can be stored together without having to
invent a data structure for storage (XML...).

• Results of different simulations can be directly compared

• Scaling of the results (i.e., stretching of the time-axis) is easily possible.

5.3.1 Choice of Database

Once it was clear that a database will be used for storage a decision about
the database product had to be made. I decided on using the MySQL 4.1.14
database [45] for the following reasons:

• MySQL is distributed under GNU GPL and thus it is free to use.

• Simulations will be done on different operating systems and MySQL
runs on Linux as well as on Windows systems.

• Installation and administration of MySQL is very simple compared to
products such as Oracle or DB/2.

• During the simulation all access to the database will be write opera-
tions. Read operations involving joins over multiple tables and huge
data amounts will not be necessary or are not time critical since they
will be performed after the simulation has finished. Thus, an industrial
strength database which is optimized for such conditions is necessary.
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5.3.2 Data Model

The database schema provides for storing the simulations network graph,
the network parameters of each simulation, and statistical data generated by
sending and receiving query messages. The model is displayed as an EER-
Diagram in Figure 5.11. The table definitions are given in Tables 5.1 to 5.8. The
usage of each table is outlined in the following:

Network The ’network’ table is used for storing the name of the network. By
referencing the network by its name it may be used in simulations with
different model parameters so that the impact of the changed parameters
can be evaluated

Node The ’node’ table is used for storing all nodes that are initially available
in a network.

Path The ’path’ table stores the paths between network nodes and the cost
associated with travelling the path.

Taxonomy The ’taxonomy’ table stores the identifiers for the taxonomies.

Concept The ’concept’ table holds all keywords associated with a taxonomy.
The keyword table is not structured hierarchically. Instead, a flat rep-
resentation of the taxonomies hierarchy is used. This is poor database
design, but emphasis was laid on execution speed of the simulation and
a flat representation of the concepts has proven to be much faster than a
tree based approach.

Document The ’document’ table holds all documents that are initially avail-
able in a network. Documents are assigned to nodes where they can be
located, and concepts which can be used to query for them.

Simulation The ’simulation’ table is used to store the parameters of a single
simulation run.

Query The ’query’ table stores data about each query sent during a simula-
tion run. The query’s starting time as well as the number of messages
it generates, and how many of those messages actually contributed to
returning documents are stored. After finishing a simulation, this data
may be used for analyzing the behaviour of the algorithm in a certain
network with a certain set of model parameters.
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Figure 5.11: Database EER-Model

column type null key comment
id int N PK
name varchar(32) N

Table 5.1: Network

column type null key comment
id int N PK
network id int N FK references network.id

Table 5.2: Node

column type null key comment
node id start int N PK,

FK
references node.id

node id end int N PK,
FK

references node.id

cost double Y default 1.0

Table 5.3: Path

column type null key comment
id int N PK
name varchar(32) N

Table 5.4: Taxonomy
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column type null key comment
id int N PK
taxonomy id int N FK references taxonomy.id
keyword varchar(256) N flat representation, sep-

arated by ’—’
description varchar(256) Y

Table 5.5: Concept

column type null key comment
id int N PK
title varchar(256) N
content varchar(256) Y

Table 5.6: Document

column type null key comment
id int N PK
network id int N FK references network.id
name varchar(32) N U
algorithm int N 0: SemAnt

1: k-Random
optimal documents int N semant parameter
path cost weight float N semant parameter
document weight float N semant parameter
exploit probability float N semant parameter
exploit ant limit int N semant parameter
use hierarchy boolean N semant parameter
ant lifetime int N semant parameter
evaporation rate float N semant parameter
evaporation ticks int N semant parameter
answer repeat boolean N semant parameter
query probability float N semant parameter
k random int N k-random parameter

Table 5.7: Simulation
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column type null key comment
simulation id int N PK,

FK
references simula-
tion.id

id int N PK
node id int N FK references node.id,

node that created
query

clocktick int N start time
messages int N total amount of mes-

sages
effective messages int N messages useful for

document retrieval
documents returned int N amount of retrieved

documents

Table 5.8: Query

5.4 Related Work

Before deciding upon creating a new framework for simulating the SemAnt al-
gorithm, a few other simulation platforms were evaluated to find out whether
they can be reused or adapted to suit the needs of the SemAnt simulation.
In this section two such simulators are described. In each of those two some
shortcomings were found that made them unsuitable for testing SemAnts per-
formance.

5.4.1 Anthill

The Anthill Project [6], which has been developed at the University of
Bologna, aims at providing researchers with a framework to implement and
test ant-based peer-to-peer algorithms. Its implementation allows for testing
algorithms in a real IP network, or in a simulated network on a single host.
AntHills main building blocks are Nests and Ants. Similar to SimulAnt’s
AntNodes, the Nests represent nodes in a peer-to-peer network and contain
documents or offer computing functionalities. The interface of a Nest allows
for:

• addition of documents

• posing requests
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• adding or removing connections to other nests

• getting connections to neighbouring nests

The components of a Nest are the document storage, an ant manager which is
used to schedule computations performed by ants, and a gateway which man-
ages the communication between Nests by sending and recieving ants.

Ants which are used to gather information and optimize the network need
to implement a single run() method. The ant’s behaviour is modeled in this
method by the user of the AntHill Framework. The run() method is invoked
by the ant manager each time an Ant visits a Nest. The following operations
are allowed by the ant manager:

• move the ant to another nest

• query and update the document storage

• add new nests as neighbours

• get the set of neighbours of the nest

• retrieve and update of pheromone informations

• notify the nest about a response to a query

AntHill contains an evaluation framework which collects data about the algo-
rithms behaviour. This data includes the number of requests that have been
generated, the number of requests which have been completed satisfactorily,
the number of ant movements and the amount of documents which have been
copied between nests.

An evaluation of AntHill showed that it was unsuitable as a base on which
to implement SimulAnt because out-of-memory errors occurred when algo-
rithms were run for a few thousand iterations.

5.4.2 Simulator for INGA

The INGA (Interest-based Node Group Algorithm) algorithm devised by C.
Tempich et al. [36] is applied for semantic search in a peer-to-peer environ-
ment. It works by analyzing successfully answered queries at each node the
query passes through, and creating network shortcuts to nodes which have
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been helpful in procuring the desired documents.
When building the routing indices by analyzing the queries, the nodes which
helped finding the documents may assume four different roles:

• Content Providers are nodes which have successfully answered a query
or semantically similar query.

• Recommenders are peers which have posed a similar query in the past,
and thus are assumed to have knowledge how to find the desired docu-
ments.

• Bootstrapping Peers are peers which have established a network to other
peers and cover a variety of topics. These peers make up a bootstrapping
network.

• Default Peers are random peers which do not meet any of the above cri-
teria.

Routing queries is done by forwarding them, depending on availability, to
content providers, recommenders or bootstrapping peers. If none of the above
are present, the query is sent to a default peer.

Each INGA peer is composed of the following components:

• A network component is used to provide basic network functionalities and
manage peer identification.

• The content database stores the nodes resources and may be queried to
retrieve them.

• The shortcut management component manages the routing indices by ex-
tracting information from the query. Routing indices are built only for
topics in which the node itself is interested.

• A routing logic component is responsible for selecting peers to which the
own queries, or queries forwarded by other peers, are relayed. Peers are
selected depending on the information which the local peer has already
gathered about the specific or similar queries.

The simulation engine for the INGA algorithm has been evaluated. Like Simul-
Ant, it is also built on the JUNG (see Section 6.1.1) framework but does not ex-
ploit JUNGs feature of user data annotation. Therefore, the mapping of peer
information to network nodes is rather awkward. A further design flaw, which
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made it unsuitable for adaptation to SimulAnts needs, is that the timing infor-
mation for the algorithm was derived from the system clock and therefore
simulation results are not reproducible on different host computers, or, in ex-
treme cases, even the same host.
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In this chapter, the components and tools which were used to create the Simul-
Ant-environment are briefly discussed. Section 6.1 deals with Java libraries
that have been utilized to create SimulAnt. In Section 6.2, the main software
applications which were used to build SimulAnt will be presented.

6.1 Components

In this section the software libraries which constitute the main building blocks
of the simulation environment will be presented. These components are the
JUNG framework for network-graph manipulation (Section 6.1.1), the Java-
SWT for creating graphical interfaces (Section 6.1.2), and JFreeChart which
has been employed to obtain visual representations of simulation results (Sec-
tion 6.1.3).

6.1.1 JUNG

The Java Universal Network/Graph (JUNG) framework [49], which was first
released in August 2003, is an open source library that was created with the in-
tent of providing a common framework for graph and network manipulation,
visualization and analysis.

Several different types of graphs or networks can be created by using very
basic manipulation methods. Graph types that are supported include directed
and undirected graphs, multigraphs and hypergraphs. Graphs can be edited
by calling the appropriate add or remove methods for edges and vertices on
the graph instances. Vertices offer methods to query for their edges, neighbor
vertices or – in the case of directed graphs – their predecessors or successors.
Edges provide methods to access the vertices they are connected to.
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Network entities may be annotated with user data. User data can be any Java
object. The data is attached to the network entity as key-value pairs.
In addition, JUNG also offers functionalities to generate different types of
networks: random networks, smallworld networks, powerlaw networks, and
others.
JUNG has a visual component with which Swing images of the current net-
work can be displayed. Nodes and edges in the image can be annotated with
user data. The visual component supports selection and dragging of nodes. In
the case of SimulAnt, this feature has been found to be mostly useless though.
The Swing style image needs to be converted to fit into the SWT framework,
which is a rather time consuming task, and since SimulAnt is supposed to
run with networks with thousands of nodes the visualization would be too
crowded to be of any real use.

6.1.2 SWT / JFace

When programming graphical user interfaces in Java there are two different
technologies which might be used: AWT/Swing [62, 63] which are portable
Java APIs from the Java Foundation Classes and SWT/JFace [65, 33] which
are the graphical components on which the Eclipse UI is built. There is some
tension between UI programmers whether AWT (Abstract Widget Toolkit) or
SWT (Standard Widget Toolkit) is better. Since SimulAnt has been built using
the Eclipse Framework the decision was to use Eclipses graphical components
as well so that SimulAnt could be easily embedded into the platform as plug-
in.

6.1.2.1 SWT

The AWT technology is a portable API that uses operating sytem widgets only
if they are supported by all operating systems or window managers. Widgets
which are not included in this least common denominator are emulated. AWT
therefore needs lots of memory and has a comparatively high response time.
IBM found the AWT/Swing technologies to be too slow to build the Eclipse
platform with it and therfore, SWT has been developed [28]. SWT is using dif-
ferent native libraries for each supported operating system and utilises native
widgets whereever possible. Widgets which are not supported by the operat-
ing system on which the SWT application is running are emulated. For exam-
ple, the Tree widget is native in the Windows OS but is emulated in the Motif
GUI toolkit. At the cost of portability, which is an arguable case for some Java
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applications anyway, response time and embedding in the operating systems
look-and-feel is superior to that of AWT based products.

The three building blocks of any SWT based UI are the Shell, Display and Wid-
get. The Shell is the operating systems instance of a window. Styles can be set
for a Shell so that it can take the appearance of different commonly used win-
dows: empty windows, dialogs, modal pop-ups, etc.
The Display is used to relay actions between the thread running the user in-
terface and threads that are realizing the core functionality of the system.
Widgets are the user interface elements like buttons, labels, and text areas
which are placed on the Shell instance.

The correlation between Shell, Display and Widgets is shown from three dif-
ferent angles in Figure 6.1.

Figure 6.1: SWT Components

6.1.2.2 JFace

SWT provides the programmer with a raw set of widgets only. It is lacking
support for higher level interactions or model based approaches to GUI build-
ing like those that can be found in the Swing API. To support easy integration
of the user interface with the application-model of the software, the JFace API
has been developed. JFace is built on top of SWT but doesn’t hide SWT func-
tionality from the programmer. Each JFace component offers access to the ba-
sic SWT widgets from which it has been constructed.
The aim of the Jface API is to free the programmer from the more tedious and
repetitive tasks of building a user interface and allow him or her to put more
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focus on designing the softwares interaction with the end-user.
Some concepts that are realized by the JFace API are listed below:

• Windows allow easy creation

• Viewers can be used to populate tree and list-like widgets and syncronize
them with the data structures that hold their raw content.

• Actions are used to define the interface’s behaviour and to link function-
ality to different places (like toolbars and menus) in the user interface.

• Registries are employed to manage image and font handling.

• Wizards and Dialogs support the programmer by allowing creation of
more complex user interactions.

6.1.3 JFreeChart

To get a visual representation of the simulation results, some charting capa-
bility had to be integrated into SimulAnt. Several libraries providing charting
functionality are freely available. Charting libraries released under LGPL in-
clude the JFreeChart project, JOpenChart, the JCCK (Java Chart Construction
Kit), JChart2D and others.

JFreeChart [48] is a very comprehensive charting tool. It supports a lot of dif-
ferent chart types including some that are not found in other charting libraries.
Charts supported by JFreeChart are:

• line and area charts

• 2D and 3D pie charts

• bar charts

• scatter plots and bubble charts

• time series, high/low/open/close charts and candle stick charts

• combination charts

• Pareto charts

• Gantt charts
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Charts created with JFreeChart can easily be integrated into Java-Swing envi-
ronments. To display them in an SWT context, the image data can be copied
from AWT to SWT using the source code shown in Figure 6.2. Charts may not
only be displayed inside Java user interfaces but also be exported to different
graphics formats. JFreeCharts directly supports PNG and JPEG graphics. PDF
and SVG graphics may be created by including the appropriate additional li-
braries (iText or Batik).

// Color adjustment

Color swtBackground = parent.getBackground();

java.awt.Color awtBackground = new java.awt.Color(swtBackground.getRed(),

swtBackground.getGreen(),

swtBackground.getBlue());

chart.setBackgroundPaint(awtBackground);

// Draw the chart in an AWT buffered image

BufferedImage bufferedImage = chart.createBufferedImage(width, height, null);

// Get the data buffer of the image

DataBuffer buffer = bufferedImage.getRaster().getDataBuffer();

DataBufferInt intBuffer = (DataBufferInt) buffer;

// Copy the data from the AWT buffer to a SWT buffer

PaletteData paletteData = new PaletteData(0x00FF0000, 0x0000FF00, 0x000000FF);

ImageData imageData = new ImageData(width, height, 32, paletteData);

for (int bank = 0; bank < intBuffer.getNumBanks(); bank++) {

int[] bankData = intBuffer.getData(bank);

imageData.setPixels(0, bank, bankData.length, bankData, 0);

}

// Create an SWT image

Image swtImage = new Image(parent.getDisplay(), imageData);

Figure 6.2: AWT to SWT image conversion

According to Walter Goh [24], the use of JFreeGraph may incur some perfor-
mance issues. In most cases, bad performance seems to be caused by a bug
in Java or wrong application of the API. Since (1) the charting is mainly done
after the simulation run has finished and (2) no realtime charting is needed,
these performance problems do not apply to SimulAnt.

6.2 Production environment

A brief description of the tools and applications used to create the SimulAnt
system will be given in this section. These software applications include the
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Eclipse project (Section 6.2.1), the Jigloo Eclipse plug-in which supports the
creation of graphical user interfaces (Section 6.2.2) and the Aqua Datastudio
(Section 6.2.3), which is a comfortable frontend for accessing and manipulat-
ing databases.

6.2.1 Eclipse Platform

The Eclipse [64] platform serves two purposes. First, it is a framework de-
signed for the purpose of building integrated development environments
(IDEs) and other software applications. Second, it is a fully featured Java de-
velopment environment in its own right.

6.2.1.1 Eclipse as Framework

When Eclipse is used as a framework to develop new applications, it can
be seen as an integration point where programs or parts of programs are
able to interact. Eclipse has the functionality to discover and integrate pro-
grams which are called plug-ins. By discovering and loading these plug-ins
at startup, the platform can be configured to offer such functionality as the
user intends it to have. This functionality is not restricted to programming
and software development only. One could imagine plug-ins that facilitate
database access, typesetting, data modeling, etc. This thesis, for example, is
written using Eclipse and TexLipse [58], a plug-in which supports the creation
of LATEXdocuments.

Plug-ins are coded in Java and adhere to the OSGi specification [50]. To inte-
grate with the platform, they utilize extension points provided by Eclipse or
other plug-ins. By using these extension points, a plug-in can add new func-
tionality to the existing one. Each plug-in may in its manifest file also declare
points where plug-ins written by other parties may insert functionality. Bigger
applications coded to run in the Eclipse environment (like the Eclipse platform
itself) are typically distributed as multiple interacting plug-ins.

A very general overview of the platform – which also provides its own APIs
known as Eclipse Software Development Kit (SDK) – is shown in Figure 6.3.
A short description of each of these components will be given in the following
paragraphs:

Platform Runtime The Platform Runtime, like all other components of
Eclipse, is built as a plug-in. During the startup of the Eclipse frame-
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Figure 6.3: Eclipse Platform

work, it is the Platform Runtime’s responsibility to find all available
other plug-ins and check their manifests. With the information gathered
from the plug-in manifests, the Platform builds a runtime plug-in reg-
istry by matching plug-in extension points with extension declarations.
Plug-ins themselves are loaded only when their functionality is actually
needed by the user, thus reducing the memory load if several large plug-
ins are installed but are not used concurrently.

Workspace The Workspace is where user’s projects are stored. The projects
may be located anywhere in the filesystem but are subdirectories of a
designated workspace directory by default. Files in a project are referred
to as resources. The Workspace provides for resource annotation which
may be used to tag resources with todo-items, breakpoints, bookmarks
and others. A history of resource changes is kept, so that previous ver-
sions of resources may be used for rollback, or to recover resources that
have accidentally been deleted. Upon modification of resources or re-
source sets, events are generated and propagated to all plug-ins register-
ing with these events. The resource change events can then be used to
keep user interface elements up do date or detect whether different tools
are currently working on the same set of resources.

Workbench The Workbench is Eclipse’s user interface. It displays a collection
of Viewers and Editors. Editors are used to open, edit and save objects,
whereas viewers display information about the objects that are manip-
ulated by the user. Unlike other editor applications, the Eclipse editors
may be tightly coupled with the workbench and add to the functionality
of the workbench menus and toolbars if they are active. Different editors

68



6 Implementation

and views may be needed to perform certain tasks. The visibility and
arrangement of these user interface elements may be stored in Perspec-
tives. The user can switch between different Perspectives to completely
change the layout of the UI. The workbench is built upon the SWT and
JFace APIs which have already been presented in Section 6.1.2.

Team Projects in the workspace may be associated with version and configu-
ration control repositories such as CVS [51] or Subversion [13]. Different
version control products have different workflows. Rather than forcing
its own views of version control on team repository providers, Eclipse
offers them a set of basic hooks so that they may take appropriate ac-
tions if certain resources are modified. These hooks provide support for
both optimistic and pessimistic versioning models. The Eclipse platform
itself supports team versioning with CVS via pserver, ssh and extssh con-
nections.

Help Plug-ins are usually distributed with their manual pages in a sub-
directory of the plug-ins bundle. Larger projects may include their doc-
umentation as a separate plug-in. When creating documentation for a
project, one has to supply both the raw content, in form of HTML pages,
and the navigation structure as XML. Content and structure are kept sep-
arate so that existing online documentations can easily be extended at
defined insertion points. The Eclipse platform provides its own content
server to resolve links between documentation pages supplied by differ-
ent plug-ins and display all available documentations as a tree structure
of online-books with their respective topic subtrees.

Plug-in The plug-ins are software components which use and offer extension
points to add to the functionality of the Eclipse Platform.

6.2.1.2 Eclipse as Java Development Environment

The Software Development Kit consists not only of APIs to create new appli-
cations on the Eclipse Platform but also includes Java Development Tooling
(JDT). JDT is a series of plug-ins which aim at supporting software develop-
ment in Java in general. The JDT implementation is divided in two groups of
plug-ins: User interface and core functionality. This division makes it possible
that core functionality can be used by other plug-ins without having to worry
about the interface.

In the following, a list of key features of the JDT which greatly aid program-
ming in Java is presented.
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Editor The sourcecode editor offers functionality which allows quick, clean
and transparent creation of Java code:

• highlighting of syntax, keywords and javadoc comments

• code completion

• code folding

• annotation of bookmarks, changed lines of code, compiler errors,
open tasks and others in a sidebar

• outline of the resource in the current editor (updated while the re-
source is edited)

• formatting of code according to templates

• automatic generation of constructors, getter/setter- methods,
method implementations required by abstract classes (including in-
terfaces)

• comparison of current resource version with previous versions

Navigation Several search mechanisms and viewers allow the programmer
to quickly find and access packages, classes, methods and fields:

• view of the project as filesystem or Java-packages (flat or hierarchic)

• view of type hierarchies and call hierarchies

• searching for references and declarations of types, fields and meth-
ods

• searching for read/write access to fields and variables

• finding the last edit position

Refactoring Several JDT features support quick and safe restructuring of the
software projects. When refactoring sourcecode, JDT will ensure that
classes referencing or referenced by the changed code are also updated
to reflect these changes and retain a correct program source.

• renaming and moving of members

• pulling up or pushing down members in the class hierarchy

• changing method signatures

• inlining of methods, fields and local variables

• interface extraction

Compilation Each Java project is assigned a project builder by JDT. The
project builder can be configured to compile the project on demand, or
whenever a source file has been changed. With the initial compilation

70



6 Implementation

process, a dependency graph between the sources is created in memory.
The builder supports incremental compilation in such a way that, after a
full compilation of the project, only those sources which are dependent
on edited files will be compiled.
If the compiler encounters errors in the sourcecode, the code is annotated
with error messages and they are also displayed in a special ”Problems”-
view.
Of course it is also possible to integrate Apache Ant [3] into the Eclipse
platform and use Ant-buildfiles to compile and package the project.

Debugging A well implemented logging mechanism is the key to successful
tracking of programming errors, but sometimes a runtime debugging
tool will help to find bugs that could not be located with logging output.

• view of threads and execution stacks
• stepping through breakpoints in the sourcecode, breakpoints may

be conditional
• viewing and modifying fields and variables
• dynamic class reloading if possible in the Java VM

6.2.2 Jigloo

Since building graphical user interfaces requires large amounts of standard-
ized code, it is virtually impossible to program a decent UI without soft-
ware support. Jigloo [12] is a plug-in for the Eclipse framework which as-
sists the creation of graphical user interfaces. Jigloo supports creation of both
AWT/Swing and SWT/JFace style UIs and also converts UIs between those
two.

Building the user interfaces is done in two editors: the sourcecode editor and
the form editor. Inside the form editor the interface can be created by drag-
ging, dropping and correctly placing UI-elements. Two-way editing is sup-
ported by Jigloo so that any changes made in the form editor will instantly
be updated in the appropriate source code sections and vice versa.The style of
the produced code can be controlled by the programmer at a very fine grained
level. Different styles by other GUI-building applications will be recognized
by Jigloo and may be used as code templates.

Two key aspects which have to be considered when building user interfaces
are the layout and handling of the interface. Jigloo supports a wide array of
component layouts including JGoodies FormLayout, Clearthoughts TableLay-
out, AWT GridBag and SWT Form and Absolute layouts.
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6.2.3 Aqua Datastudio

Accessing databases with the associated command line interfaces is a cumber-
some task which can be greatly aided by more advanced database manipu-
lation tools. Since most Eclipse plug-ins for database support that have been
considered for building SimulAnt are either commercial software or seemed
to be too simple or buggy, the tool of choice has become AquaFold’s Datastu-
dio [4].
Datastudio offers support for most common databases. It visually assists cre-
ation of databases and schema.
When typing SQL statements, a lot of queries can be produced with a few
keystrokes. Templates for producing insert-, update-, and select-statements
can be invoked by pressing hotkeys. As soon as the tables have been selected
for those statements, the column names can be automatically inserted into se-
lection and insert-statements.
Aqua Datastudio offers a script-generator to create scripts from an existing
database structure. The content and style of the scripts may be controlled at a
very fine grained level.
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This chapter presents some of the insights gained by evaluating the results of
several simulation runs of SemAnt. In the first part of Section 7.1, the efficiency
of SemAnt is compared to the efficiency of a k-random-walk algorithm. The sec-
ond part of this section shows how using the hierarchic classification of the
documents can affect the search process. Section 7.2 deals with the distribu-
tion of pheromones across the network, and the effects the distribution has on
the behaviour of the ants.

7.1 Efficiency

The following experiments are conducted using a Kleinberg-small-world net-
work (see Section 2.2.1) with 1024 nodes and a clustering coefficient of 2. The
path cost of all links in the network is set to 1.0. The documents distributed
between the nodes of the network are classified using the ACM Computing
Classification System [5]. Each document is associated with one leaf concept
of the ACM System. Each topic from the system is assigned an equal number
of documents. Each node holds roughly the same amount of documents. In
total 30940 documents are distributed throughout the network. The distribu-
tion of the documents between the nodes is governed by a parameter Pexpert.
Pexpert determines the amount of similar documents stored at each node. Two
documents are similar if they are instances of a sub-concept of the same third-
level concept of the ACM system. The remaining documents are instances of
random concepts. Pexpert = 100% means that all documents stored at a node
are similar, while with a setting of Pexpert = 0% the documents are distributed
between the nodes totally at random.
A global clock is used to synchronize the ants movements. At each tick of the
clock, each node in the network has a 10 percent chance to create a new search
query.

The parameter settings which are used for the SemAnt algorithm are shown in
Table 7.1.
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ρ evaporation rate 0.07
Tmax forward ant lifetime 25
ωe probability of exploiting vs. exploring 0.85
Dmax maximum number of documents 10
ωd weight of document quantity vs. link costs 0.5
β weight of link costs 1

Table 7.1: SemAnt parameters

The following metrics are used for the experiments:

• Hit rate is defined as the number of documents that are retrieved for each
query within a given period of time.

• Resource usage is defined as the number of messages that are sent for each
query within a given period of time. The resource usage includes both
forward and backward ants.

• Efficiency is the ratio of resource usage to hit rate. By dividing the number
of sent messages by the amount of documents found the average number
of links travelled to find one document is obtained.

7.1.1 Reference algorithm

Lacking any implementations of other informed algorithms in SimulAnt, the
performance of SemAnt is compared to that of an uninformed search algo-
rithm. As a reference algorithm, a random walk strategy [37] is employed.
In a random walk algorithm, a message is forwarded at each noda along a
randomly chosen outgoing link until the destination node of the message has
been reached. Compared to broadcasting strategies for resource location, a
random walk approach is likely to find a lower amount of documents, but at
the same time to consume considerably less network resources. The response
time of the random walk algorithm is higher than that of a broadcast, but it
can be reduced by simultaneously sending multiple walkers.
Pseudo-code for a random walk with k walkers is shown in Figure 7.1.

In the case of SimulAnt the k-random-walk is implemented by starting k ants
from the source node and routing them to a random neighbour of the current
node. Since the destination node (the node which stores the most documents
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void kRandomWalk(Graph g, int k, Node startNode, Node destinationNode) {

Node n = startNode;

while (!n.equals(destinationNode)) {

for (int i = 0; i < k; i++) {

List neighbours = n.getNeighbours();

if (n.size() != 0) {

n = neighbours.get((int)Math.random()*nodeList.size());

}

}

}

}

Figure 7.1: k-random-walk algorithm

for a query) is unknown, the walkers continue until their allotted lifetime has
expired.

An advantage of using a random walk algorithm to compare the simulation
results is, that the number of messages used and the number of documents
returned by the random walk can be set by tweaking the k and lifetime pa-
rameters. Hence it is possible to send roughly the same amount of messages
ai in the algorithm which is tested (i.e., SemAnt), and to compare the number
of documents retrieved.

7.1.2 SemAnt vs. random-walk

In this experiment, the performance of SemAnt is compared to the efficiency
of the k-random-walk algorithm which was presented in the previous sec-
tion. Since it is easily possible to tune the random-walker’s resource usage
and document hit rate, the algorithm is set up, in such a way that it uses up
approximately the same network resources as SemAnt does when starting. The
settings for the random-walk are 2 walkers (k = 2) with a lifetime of 25 clock
ticks. Both the random-walk and SemAnt are run for 10.000 clock ticks. When
searching for documents, only the pheromone trails which exactly match the
search query are considered. The document distribution parameter Pexpert was
set to 60%, exactly as described in Section 5.2.3.
Charts depicting a resource usage and hit rate comparison of the two algo-
rithms are shown in Figures 7.2 and 7.3.
The resource usage and hit rate of the random-walk algorithm remains con-
stant at about 59.27 messages (including messages which return documents
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to the source of the query) and a yield of 1.49 documents per query. SemAnt
starts out with 60.44 messages (including forward and backward ants) and a
hit rate of 1.82 documents per query. The optimization performed by SemAnt
increases these values to an average of 55.13 messages and 3.8 documents after
1000 clockticks. After about 2000 clock ticks SemAnt reaches its peak perfor-
mance, and returns an average of 3.95 documents while sending 53.02 mes-
sages.
A detailed description of the experiment can be found in [41].
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7.1.3 Exploiting the hierarchic classification of documents

This experiment shows (1) the effect of including super-concepts in the search
process, and (2) how the distribution of documents in the network affects
SemAnts’ performance. Six scenarios with different document distributions
(Pexpert = [100%, 80%, 60%, 40%, 20%, 0%]) were created. For each of six scenar-
ios two simulation runs with a duration of 5.000 clock ticks were started. In the
first simulation run, the documents were searched by following pheromone
trails which exactly matched the queries’ keywords. In the second run, the
super-concepts of the keywords were integrated into the search process as de-
scribed in Section 4.3. Figure 7.5 depicts the results of the first simulation run
(not using the hierarchy of keywords). The efficiency is a measure of messages
sent per found document. Lower values indicate a better performance of the
algorithm. As expected, the algorithm’s performance increases with the num-
ber of similar documents that are located at the same node. In Figure 7.4 the
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results of the second simulation run are displayed. It can be seen that the algo-
rithm’s performance is worse if all documents are randomly distributed across
the network and the super-concepts are considered. For situations where some
patterns in the document distribution can be found, the algorithm’s perfor-
mance increases and the optimization is done faster than without using the
trails of the super-concepts. The greatest increase of performance is found
where Pexpert is set to 60%. In this case the inclusion of super-concepts in the
search process raises the efficiency of SemAnt by 39.5 percent.
A detailed description of this experiment can be found in [42].

7.2 Pheromone distribution

In this section the distribution of pheromones across the network is explained.
Contrary to the previous experiments, only one of the network’s nodes holds
documents for a specific search key. All of the queries that are generated dur-
ing the simulation are using this concept as search key, and are therefore look-
ing for the one node owning the documents. The network has a diameter of
9 and ants have a lifetime of 10, thus each ant has a chance to find the docu-
ments before it expires. The simulation was run for 100 clock ticks.
Table 7.2 shows the average pheromone amounts of pheromones on all paths
of the nodes, depending on the shortest path distance between each node and
the node holding the documents. It can be seen that the closer an ant gets to
the documents, the higher the pheromone concentration leading to the docu-
ments gets.

Distance Pheromone concentration
9 0.0000349
8 0.6604124
7 2.7342447
6 7.0967345
5 18.155665
4 34.864378
3 76.079236
2 184.44743
1 530.63213
0 3205.7666

Table 7.2: Pheromone concentration
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7.2.1 Circling the nodes

As shown in the previous section, the concentration of pheromones drasti-
cally increases with the proximity of documents matching the pheromone
trail. When they have found the documents, forward ants spawn a back-
ward ant, which returns the documents to the querying node. The forward
ants then continue their path and try to find some more documents. Since the
pheromone trails leading to the node they have found are very strong, the for-
ward ants try to reach this node again. Ants are allowed to visit each node
only once, therefore forward ants try to stay close to the node for the rest of
their lifetime. It is unlikely that they will find another significant source of
documents.
This behaviour probably depends on the clustering coefficient of the network.
If the network is not clustered, ants may find other document sources, since
there is a low probability that they find a circle back to the first node where
they located a document source.
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The final chapter sums up the insights gained by the work on the SimulAnt
system in Section 8.1. Some ideas how the SemAnt algorithm and the simula-
tion environment may be improved are presented in Section 8.2.

8.1 Conclusion

Ant algorithms are a class of algorithms which are inspired by the food gather-
ing behaviour of real ant colonies (Chapter 3). The trails that are built by ants
are a result of an indirect communication system used by the ants. This indi-
rect communication, called stigmergy, employs the dropping of volatile chem-
ical substances (pheromones) to mark the environment. On their way to the
food source and back to the nest the ants drop pheromones their path, which
attract other ants and cause them to follow that path. Due to the differential
path length, shorter paths get marked with greater amounts of pheromones
and thus become more attractive to be followed. The stigmergic communica-
tion and the resulting trail laying and trail following behaviour of real ants can
be adapted to solve optimization problems from the domain of computer sci-
ence. Several optimization problems, including the travelling salesman prob-
lem, map coloring, and query routing have been tackled by ant algorithms
with great success.
The SemAnt algorithm (Chapter 4) is an ant algorithm designed to efficiently
route queries through peer-to-peer networks. Queries, in SemAnts’ case, are
used to search for documents which are located in the nodes of the network.
The documents are annotated with keywords from hierarchical classification
schemes, so that the semantic relations between the keywords may be ex-
ploited when routing the queries through the network.

As the practical part of this diploma thesis a simulation environment, Simul-
Ant, used to test the applicability of SemAnt to query routing in peer-to-peer
networks has been designed and implemented (Chapters 5 and 6). SimulAnt
can be controlled via a graphical user interface, and is capable of simulat-
ing ant-based algorithms in networks with several thousands of nodes and
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hundred-thousands of ants. The performance of the algorithm can be checked
during and after the simulation run by plotting charts of metrics such as the
average number of messages sent, or average number of documents found.
Simulation data (Chapter 7) generated with the SimulAnt system show that
SemAnt is well suited to solve the query routing problem at hand. According
to the simulation results, the SemAnt algorithm is much more efficient than the
k-random-walk algorithm, which was chosen as reference algorithm for perfor-
mance comparisons.

8.2 Future Work

Several issues concerning the algorithm’s performance and the usability of
the simulation environment, which are up to now not resolved, have arisen.
In the following, some propositions about future work, which may enhance
the capabilities of the SemAnt algorithm or the SimulAnt platform, are given.

Optimization of network and algorithm parameters Currently the SemAnt
algorithm has only been tested in networks with a constant path length,
therefore neglecting parameters like the weighting of documents and
path length when distributing pheromones. When performing tests with
networks with varying path lengths, the impact of those parameters on
the search behaviour can be determined. In addition, the effect of chang-
ing the pheromone evaporation rate has not yet been explored.

Upper bound for retrieved documents As stated in Section 7.2, ants which
have found a node which has many documents matching its search
query will, after sending a backward-ant, circle the node for the rest of
their lifetime because of the high pheromone concentration on its neigh-
bours. This behaviour leads to a great number of messages, which yield
few to no documents. To prevent ants from circling nodes, an upper
bound on the documents which will be fetched by ants could be intro-
duced. If an ant hits a node which has enough documents to satisfy the
upper bound, the ant would spawn a backward-ant, and then expire.

Decisions at paths with close to equal pheromone levels Related to the
upper bound for fetched documents are the ants’ decisions at paths
where two trails are near to equal in their pheromone concentration. If
two nodes holding large amounts of documents exist, and an ant comes
close to them, it would, when using the exploitation strategy, find only
one of those nodes. It is thinkable that between those two nodes there
exists a node from which paths lead to both of those nodes, and that the
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pheromone concentrations on these paths are nearly the same. In this
case, another forward-ant could be spawned, and the two ants could ex-
ploit both paths. A similar behaviour could be achieved if ants which
are confronted with such a situation would choose their exploration be-
haviour by default.
Whether this spawning of multiple ants actually entails a higher num-
ber of found documents, or just sends more ants to the same node on
different paths, is probably depending on the structure of the network
and has yet to be tested.

Adaptation to other algorithms SimulAnt has been designed to support the
execution of the SemAnt algorithm. While SemAnt is a query routing al-
gorithm, most other ant-based algorithms work on the same principles,
which are based on the ACO-meta-heuristic (see Section 3.2). If the need
arises to use SimulAnt to simulate algorithms similar to SemAnt, some
refactoring work could be done. The simulant.network.AntNode
class, and especially its receiveAnt method, are responsible for the
ants’ behaviour. By making the receiveAnt method abstract and im-
plementing it in classes derived from AntNode, implementations of var-
ious ant-based algorithms would be possible. The different algorithms
could then be chosen by loading the appropriate subclass of AntNode.
In addition, by doing so the k-random-walk reference algorithm, which
is currently implemented in the same method as the SemAnt behaviour,
could be moved to its own class, allowing for a more modular and clear
source code.
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