
M A S T E R A R B E I T

A Lagrangian Decomposition Approach Combined
with Metaheuristics for the Knapsack Constrained

Maximum Spanning Tree Problem

ausgeführt am

Institut für Computergraphik und Algorithmen
der Technischen Universität Wien

unter der Anleitung von

Univ.-Prof. Dipl.-Ing. Dr.techn. Günther Raidl
und

Univ.-Ass. Dipl.-Ing. Dr.techn. Jakob Puchinger

durch

Sandro Pirkwieser, Bakk.techn.
Matrikelnummer 0116200

Simmeringer Hauptstraße 50/30, A-1110 Wien

Datum Unterschrift

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



Abstract

This master’s thesis deals with solving the Knapsack Constrained Maximum Spanning Tree
(KCMST) problem, which is a so far less addressed NP-hard combinatorial optimization
problem belonging to the area of network design. Thereby sought is a spanning tree whose
profit is maximal, but at the same time its total weight must not exceed a specified value.

For this purpose a Lagrangian decomposition approach, which is a special variant of La-
grangian relaxation, is applied to derive upper bounds. In the course of the application the
problem is split up in two subproblems, which are likewise to be maximized but easier to
solve on its own. The subgradient optimization method as well as the Volume Algorithm
are deployed to solve the Lagrangian dual problem. To derive according lower bounds,
i.e. feasible solutions, a simple Lagrangian heuristic is applied which is strengthened by a
problem specific local search. Furthermore an Evolutionary Algorithm is presented which
uses a suitable encoding for the solutions and appropriate operators, whereas the latter are
able to utilize heuristics based on defined edge-profits. It is shown that simple edge-profits,
derived straightforward from the data given by an instance, are of no benefit. Afterwards
the Lagrangian and the Evolutionary algorithm are combined to form a hybrid algorithm,
within both algorithms exchange as much information as possible. Thereby the two al-
gorithms can be combined either in sequential or intertwined order, whereas this choice
depends on the desired requirements.

Extensive tests were made on specially created instances of different types. The Lag-
rangian algorithm turns out to derive the optimal upper bound for all instances except
for a few, and to yield, particularly in conjunction with local search, very good and for
the most part optimal feasible solutions. Least optimal solutions are derived for maximal
plane graphs, where a further improvement is expected by applying the hybrid algorithm.
The Lagrangian algorithm is generally superior to previously applied solution methods,
especially when considering its run-time.
The Hybrid Lagrangian Evolutionary Algorithm can nevertheless partly improve these re-
sults. Whereas the sequential variant actually finds more provably optimal solutions for
large maximal plane graphs with up to 12000 nodes, the intertwined variant allows to ob-
tain high-quality solutions usually earlier during a run, in particular on complete graphs.



Zusammenfassung

Diese Masterarbeit befasst sich mit der Lösung des rucksackbeschränkten maximalen
Spannbaum-Problems (Knapsack Constrained Maximum Spanning Tree (KCMST) pro-
blem), einem bisher wenig behandelten NP-schwierigen kombinatorischen Optimierungs-
problem das dem Bereich des Netzwerkdesigns zuzuordnen ist. Dabei ist ein Spannbaum
gesucht, dessen Profit maximal ist aber zugleich sein Gesamtgewicht einen gewissen Wert
nicht überschreitet.

Es wird ein Lagrangescher Dekompositionsansatz präsentiert, welcher eine spezielle Va-
riante der Lagrangeschen Relaxierung ist, um obere Schranken zu ermitteln. Im Zuge des
Verfahrens wird das Problem in zwei ebenfalls zu maximierende Teilprobleme aufgespalten,
die jedoch für sich gesehen leichter zu lösen sind. Zur Lösung des Lagrangeschen dualen Pro-
blems werden sowohl das Subgradientenverfahren als auch der Volume-Algorithmus her-
angezogen. Um auch entsprechende untere Schranken, also gültige Lösungen zu erhalten,
wird eine einfache Lagrangesche Heuristik verwendet, die durch eine problemspezifische lo-
kale Suche gestärkt wird. Des Weiteren wird ein Evolutionärer Algorithmus vorgestellt, der
eine geeignete Kodierung der Lösungen und entsprechende Operatoren verwendet, wobei
letztere in der Lage sind Heuristiken basierend auf definierten Kantenprofiten einzusetzen.
Es wird gezeigt, dass einfache Kantenprofite, die direkt anhand der gegebenen Problemin-
stanz ermittelt werden, nicht von Vorteil sind. Danach werden der Lagrangesche und der
Evolutionäre Algorithmus zu einem hybriden Algorithmus vereint, innerhalb dessen so viel
Information wie möglich zwischen beiden ausgetauscht wird. Dabei können die zwei Al-
gorithmen entweder in sequenzieller oder verschachtelter Reihenfolge kombiniert werden,
wobei diese Wahl von den gewünschten Anforderungen abhängt.

Ausführliche Tests auf eigens generierten unterschiedlichen Instanzen ergeben, dass der
Lagrangesche Algorithmus bis auf wenige Ausnahmen die optimale obere Schranke findet
und vor allem zusammen mit der lokalen Suche auch sehr gute und meist sogar optimale
gültige Lösungen liefert. Am wenigsten optimale Lösungen erhält man für maximal planare
Graphen, wo durch die Anwendung des hybriden Algorithmus eine Verbesserung erwartet
wird. Der Lagrangesche Algorithmus ist im Allgemeinen bisherigen Verfahren überlegen,
besonders wenn man die Laufzeit in Betracht zieht.
Der Hybride Lagrangesche Evolutionäre Algorithmus kann dennoch diese Ergebnisse teil-
weise verbessern. Während die sequenzielle Variante tatsächlich mehr beweisbar optimale
Lösungen für große maximal planare Graphen mit bis zu 12000 Knoten findet, ermöglicht
die verschachtelte Variante, dass bei einem Lauf üblicherweise früher Lösungen mit höherer
Güte erlangt werden, besonders für vollständige Graphen.
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1 Introduction

1.1 Problem Description
The problem this thesis deals with is the Knapsack Constrained Maximum Spanning Tree
(KCMST) problem. It was first formulated in Yamamato and Kubo [43]. In [42] Yamada
et al. gave a proof for its NP-hardness (see Chapter 3), as well as algorithms and com-
putational experiments. The following is given (see [42]): an undirected connected graph
G = (V, E), where V is a finite set of vertices and E ⊆ V × V is the set of edges. Each
edge is associated with a weight w : E → Z+ and a profit p : E → Z+. In addition to
that a knapsack with integer capacity c > 0 is given. The objective is to find a spanning
tree T ⊆ E on G, i.e. a cycle-free subgraph on G connecting all nodes V , whose weight
w(T ) =

∑
e∈T w(e) does not exceed c and whose profit p(T ) =

∑
e∈T p(e) is maximal. A

spanning tree is said to be feasible if it satisfies w(T ) ≤ c.
Formally the KCMST problem can be written as:

maximize p(T ) (1.1)
subject to w(T ) ≤ c, (1.2)

T is a spanning tree. (1.3)

As one can see, this is a combination of the maximum spanning tree problem ((1.1) and
(1.3)) and the knapsack problem ((1.1) and (1.2)), hence the resulting name. An exemplary
instance and its solution are presented in Figure 1.1.
By using negative profits the problem would be equivalent to the knapsack constrained
minimum spanning tree problem.

1.2 Applied Solution Methods
In this work the KCMST problem will be tackled by applying a Lagrangian decomposition
with a simple Lagrangian heuristic as well as a problem specific local search to strengthen
the heuristic. To solve the Lagrangian dual problem the Subgradient Optimization method
and the Volume Algorithm are used. The subproblems resulting from decomposition are
solved by adequate efficient algorithms. We will further investigate if a Hybrid Lagrangian
Evolutionary Algorithm, obtained by appropriately combining an Evolutionary Algorithm
tailored to this problem with the Lagrangian method, is of benefit.
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Figure 1.1: Exemplary small KCMST instance and its solution.

1.3 Motivation
This problem arises in the area of communication networks, though it can be of relevance
for all kinds of networks. Assume that the goal is to connect all nodes of the network,
whereas the before mentioned weight of an edge is related to the cost of construction (e.g.
money or time) and the profit is related to whatever benefit the connection between two
specific nodes is. The additional knapsack constraint can be a time interval or the budget
for the project.

1.4 Thesis Overview
Chapter 2 introduces the necessary basics (terms, definitions and methods) which are used
throughout the work. In Chapter 3 previous work relevant for the thesis will be mentioned.
Chapter 4 deals with the developed algorithms based on Lagrangian decomposition for
solving the KCMST problem. The experimental results of this algorithms and the test
instances used are presented in Chapter 5. Thereby comparing our results with previous
ones as well as presenting new results. In Chapter 6 an Evolutionary Algorithm with a
suitable solution representation is developed for the KCMST problem and tested. Further
possible ways to combine the Lagrangian algorithms with the Evolutionary Algorithm into
a Hybrid Lagrangian EA will be described, followed by their experimental results. Details
of the implementation are described in Chapter 7. Finally the conclusions on the work are
drawn in Chapter 8, together with suggestions for further work.



2 Preliminaries

In this chapter we will describe the necessary preliminaries.

2.1 Combinatorial Optimization Problems
Combinatorial Optimization Problems (COPs) are a special class of optimization problems.
They occur in a great variety of applications, e.g. in cutting and packing, routing, schedul-
ing, timetabling, network design and many others, and have a high degree of practical as
well as academic relevance.

When solving a COP one seeks to find a solution generally being an integer number, a
subset, a permutation or a graph structure of a given basic set (either finite or countably
infinite), satisfying specific constraints and having associated the maximum or minimum
objective value of all feasible solutions. A more formal definition of a COP, partly based
on [5]:

Definition 1. A Combinatorial Optimization problem P = (S, f) can be defined by:

• a vector of variables x = (x1, . . . , xn)

• variable domains D = (D1, . . . , Dn)

• constraints among variables

• an objective function f to be minimized or maximized (depending on the problem),
where f : D1 × . . .×Dn → R+

The set of all possible feasible assignments is

S = {x = (x1, . . . , xn) ∈ D | x satisfies all the constraints}

The set S is also called a search or solution space. Every s ∈ S is assigned an objective
value f(s).
As mentioned above, to solve a COP means finding the best solution, defined as the globally
optimal solution or global optimum.

Definition 2. A solution s∗ ∈ S is said to be globally optimal if, assuming a maximization
problem, ∀s ∈ S : f(s∗) ≥ f(s).

Two classes of algorithms to solve COPs are described in the next sections.
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2.2 Exact Algorithms
We will first mention the class of complete or exact algorithms. They are guaranteed to find
the optimal solution for a finite size instance in bounded time and prove its optimality.
Before dealing with the implication of this statement some more definitions need to be
introduced.

Definition 3. The time complexity function for an algorithm expresses its time require-
ment by giving, for each possible input length, the largest amount of time needed by the
algorithm to solve a problem instance of that size.

Definition 4. Big Oh. A function f(n) is O(g(n)) whenever there exists a constant c such
that |f(n)| ≤ c · |g(n)| for all values of n ≥ 0. Thus c · g(n) is an upper bound on f(n).

Definition 5. A polynomial time algorithm is an algorithm whose time complexity func-
tion is O(p(n)), where p is some polynomial function and n is the size of the instance (or
its input length). If k is the largest exponent of such a polynomial in n, the corresponding
problem is said to be solvable in O(nk).

Definition 6. If an algorithm’s time complexity function can not be bounded by a poly-
nomial in n, it is called an exponential time algorithm.

According to the theory of NP-completeness [17] COPs can be divided in those which
are known to be solvable in polynomial time (we will present one in Section 2.6) and those
that are not (see one in Section 2.7). The former are said to be tractable and the latter
intractable. Though some important COPs are tractable, the great majority of them are
intractable and not considered to be “well-solved”.

Hence applying exact algorithms on NP-hard [17] COPs needs, in the worst case, ex-
ponential time. Thus only small to moderately sized instances can be solved in reasonable
time. These algorithms additionally do not scale well on bigger instances.

Examples for exact algorithms which are often applied onNP-hard problems are Branch-
And-Bound (B&B), cutting-plane approaches, Branch-And-Cut (B&C), Branch-And-Prize
(B&P) and Branch-And-Cut-And-Prize (BCP). They generally apply clever enumeration
techniques based on Linear Programming (see Section 2.8) to efficiently explore the whole
search space to yield a better performance than doing an exhaustive search by enumerating
all possible solutions.

2.3 Metaheuristics
This section introduces algorithms that are classified as heuristic algorithms or heuristics.
Contrary to the previously mentioned exact algorithms, which guarantee to find the prov-
ably optimal solution, but possibly need exponential time to do so, heuristic algorithms
aim at reaching good or even near-optimal solutions in shorter and thus reasonable (i.e. in
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polynomial) time, but without optimality guarantee. These algorithms trade optimality
for efficiency.

A metaheuristic, which was first mentioned in [19], can be seen as a problem independent
high-level concept for efficiently exploring the search space by guiding lower-level or sub-
ordinate heuristics to find (near-)optimal solutions. It is important that a metaheuristic
appropriately balances diversification and intensification of the search.

One of many classifications can be made between single point search-based and population-
based metaheuristics. Before dealing with them we define some more necessary terms [5],
complementing those in Section 2.1. If not stated otherwise we will only consider maxi-
mization problems.

Definition 7. A neighborhood structure is a functionN : S → 2S , where 2S is the powerset
of S, that assigns to every s ∈ S a set of neighbors N (s) ⊆ S.
N (s) is called the neighborhood of s.

A neighboring solution s′ of s can in general be reached from s by applying a single
move, which is for solutions represented as trees usually an edge exchange.

Definition 8. A locally optimal solution or local optimum with respect to a neighborhood
structure N is a solution s′ such that ∀s ∈ N (s′) : f(s′) ≥ f(s).

Following this definition each global optimum is also a local optimum. Local and global
optima for a maximization problem are illustrated in Figure 2.1.

A good overview of metaheuristics is given in Blum and Roli [5], Fogel and Michalewicz
[12] and Gendreau and Potvin [18].

2.3.1 Basic Local Search

The “simplest” member among the single point search-based metaheuristics is the Basic
Local Search or iterative improvement. In the strict sense this basic search does not really
belong to the metaheuristics, it is rather a normal heuristic), utilized by metaheuristics.
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Algorithm 1: Basic Local Search
Input: starting solution s
Result: solution s after local search
repeat

select s′ ∈ N (s);
if f(s′) > f(s) then

s = s′;
until termination condition ;
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Figure 2.2: Starting solutions and their neighborhood.

The meaning of iterative improvement becomes clear when looking at Algorithm 1. This
search only accepts improving solutions. It depends on the neighborhood structure N ,
how it is processed (select s′ ∈ N (s)) and a given starting solution s, usually created
either randomly or by simple construction heuristics. Regarding the processing of N (s)
and accepting a new solution, the most important variants are: (1) best improvement scans
the whole neighborhood and selects the local optimum, (2) first improvement scans the
neighborhood in a predefined order and takes the first solution s′ with f(s′) > f(s) and (3)
random improvement selects a solution s′ ∈ N (s) at random and accepts it if f(s′) > f(s).

The termination condition(s) might be based on a duration limit (either time or overall
iterations) or how many iterations have passed without an improvement.

Two starting solutions with their defined neighborhood and the direction of their tra-
jectory can be seen in Figure 2.2. When starting with the first solution (the left one in the
figure), chances are high to reach the nearby local optimum, whereas starting solution two
(the right one) is heading for the global optimum. Because of this behavior this search is
said to do a hill climbing.
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Basic Local Search is easy to implement and fast, but a major drawback is the inability
to overcome local optima. This circumstance is tackled by many more sophisticated sin-
gle point based-searchs, like Simulated Annealing, Tabu Search, Variable Neighborhood
Search, Iterated Local Search and many more [5], which actually belong to the class of
metaheuristics.

2.3.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) [1] are a class of population-based metaheuristics, and have
often been successfully applied to COPs. The idea is to gain such an adaptive behavior
like evolutionary processes occurring in nature by modelling them on the computer in
a strongly simplified way. Thus the goal of the artificial evolution is to adapt to the
environment represented by a specific problem and thereby evolving good solutions.
The general outline of an EA, biased towards a Genetic Algorithm (GA) (a more specific
subclass of EAs), is depicted in Algorithm 2, and will be described in the following:

• At the beginning an initial population P is generated, usually with a random con-
structive heuristic to yield a diversified set of individuals or chromosomes. The rep-
resentation of a solution as an individual is called the genotype, whereas the solution
itself is called the phenotype.

• All individuals of P are evaluated,i.e. their fitness is determined, corresponding but
not necessarily being equal to the objective value of the encoded solution.

• The following steps, comprising one generation, are repeated until a termination
condition is met, which might be a limit on overall generations or on running time.

– From the actual population P a set Qs of individuals is selected as candidates
for the next step. The fitness value of an individual reflects the desirability
and thus the probability of being chosen, resulting in an intensification of the
search. The selection process is often implemented by a tournament selection
of size k, where k individuals are randomly chosen and the fittest of these is
taken.

– In this step the individuals Qs selected as parents are recombined to produce the
new individuals (the offspring) Qr. These individuals should be primarily made
up of attributes (or genes) of their parents, thus modelling heritability, thereby
possibly favoring “good” parts of them (another form of intensification). The
concrete implementation highly depends on the genotype.

– The offspring Qr has to undergo a mutation operation (corresponding to some
extent to natural mutation). With a certain rather small probability each indi-
vidual is randomly changed to a minor degree. Mutation brings new information
into the population and ensures together with recombination a diversification
of the search. To strengthen an EA one can also use some sort of improvement,
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mostly local search, instead or in addition of mutation. Such EAs are often
referred to as Hybrid EAs or Memetic Algorithms [32].
This step results in the final offspring P ′.

– After evaluating P ′ the population of the next generation is selected among
the old and new individuals. If the new population consists only of individuals
drawn from the offspring it is called generational replacement. When using
overlapping populations then individuals can “survive” a generation, i.e being
transferred from the old to the new population. This can be taken even further
to so-called steady-state or incremental strategies, in which usually only one
offspring is created and integrated in the population, thereby replacing another
chromosome, probably the worst one. An elitism strategy is applied if the best
solution always survives.
The selection process generally resembles the concept of the “survival of the
fittest”.

Algorithm 2: Evolutionary Algorithm
P ← generate initial population;
Evaluate(P);
repeat

Qs ← Selection(P);
Qr ← Recombine(Qs);
P ′ ← Mutate(Qr);
Evaluate(P ′);
P ← SelectSurvivors(P, P ′);

until termination condition ;

Compared to the Basis Local Search an EA has the advantage of conducting a broader
search due to the diversification operators and a whole population of solutions. It is thus
generally less vulnerable to local optima. By using an adequate intensification strategy it
is further able to evolve near-optimal solutions.

To illustrate the applicability and performance of EAs as a representative for metaheuris-
tics and search techniques tailored to a specific problem see Figure 2.3. Not surprisingly
the more problem specific knowledge is included in the search method the narrower is its
range of application.
Covering this and a lot more about EAs does the book of Eiben and Smith [9].

2.4 Combination of Exact Algorithms and Metaheuristics
A rather new research area is to combine exact algorithms and metaheuristics, thereby
using the advantages of both, i.e. obtaining better solutions in shorter time with an
additional quality guarantee or occasionally even an optimality-proof.
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Figure 2.3: Performance of metaheuristics over range of problems.

Puchinger and Raidl [37] gave a general classification scheme for different combinations
of metaheuristics and exact algorithms, thus enabling different works to be compared at
a high level. The two main categories are (1) collaborative combination where the two
methods exchange information, but are not part of each other, thereby running (1a) in
sequential order or (1b) being executed in a parallel or intertwined way, and (2) integrative
combination with a distinguished master and at least one integrated slave algorithm, where
(2a) exact algorithms are incorporated in metaheuristics or vice versa (2b) metaheuristics
are incorporated in exact algorithms. They also presented examples for each combination.

2.5 Graph Theory
A comprehensive introduction and general treatment of this topic is presented in Diestel [7].
We will only present the needed definitions in necessary detail.

Definition 9. A graph, or undirected graph G consists of a pair of sets G = (V, E), where
V is a finite set of vertices or nodes (from thereon the latter term is used), and E ⊆ V ×V
is a set of edges. An edge is an unordered pair of distinct nodes.

Definition 10. A plane graph is one that can be drawn in a plane without crossings of
edges.

In the following we will denote a plane graph by Pn,m, having n nodes and m edges.

Definition 11. If a plane graph is no longer planar if an additional edge is added (without
adding nodes), the graph is said to be a maximal or maximally planar graph.

Such a graph will be denoted by Pn, having n nodes and for n ≥ 3 exactly m = 3 · n− 6
edges, as an example the graph P7 is illustrated in Figure 2.4.

Definition 12. A complete graph is a graph where every node is connected to all others
(except to itself).
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(a) P7 (b) K7

Figure 2.4: Example for (a) maximal planar and (b) complete graph with n = 7.

This graph is denoted by Kn, having n nodes and m = n·(n−1)
2

edges, e.g. see Figure 2.4
for the graph K7.

Definition 13. A path is a non-empty graph P = (V, E) consisting of V = {x0, x1, . . . , xk}
and E = {x0x1, x1x2, . . . , xk−1xk}, where all xi are distinct. The nodes x0 and xk are linked
by P and are called its ends, the nodes x1, . . . , xk−1 are the inner nodes of P . The length
of a path is its number of edges.

One can also refer to a path by the natural sequence of nodes, therefore resulting in
P = x0x1 . . . xk, a path from x0 to xk.

Definition 14. Assume P = x0 . . . xk is a path with k ≥ 2, then the graph C := P +xkx0

is called a cycle, and can again be referred to by its (cyclic) sequence of nodes:
C = x0 . . . xkx0.

Definition 15. A non-empty graph G is called connected if any two of its nodes are linked
by a path in G, else its called disconnected.

Definition 16. A graph G is called a tree if any two nodes of G are linked by exactly one
path in G. A tree is thus acyclic, i.e, it contains no cycles, and connected.

Definition 17. It can be shown that every connected graph G = (V, E) contains a span-
ning tree, which is a subgraph GT = (V, T ) with T ⊆ E whose edges span all nodes, and
for which |V | = |E|+ 1.

2.6 Maximum Spanning Tree Problem
The Maximum Spanning Tree (MST) problem, or its complement, the Minimum Spanning
Tree problem, arise in many applications as a subproblem (e.g. in the design of communi-
cation networks) and are well studied. One either seeks to find a spanning tree whose cost
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is minimal or whose profit is maximal. In the following we will only deal with the latter
case.
Given is an undirected connected Graph G = (V, E), with a node set V , an edge set
E ⊆ V × V , and additional edge profits p : E → R.
The formulation of the MST problem is:

maximize p(T ) =
∑
e∈T

p(e) (2.1)

subject to T is a spanning tree. (2.2)

The problem is solvable in polynomial time, and two classical greedy algorithms will be
presented. The first one is the algorithm of Kruskal [26] (see Algorithm 3). Foremost the
edges are sorted according to decreasing profit and a separate tree is created for every node
in the graph. Then the edges are consecutively tried to be included in the partial spanning
tree, thereby constrained not to induce a cycle. Everytime an edge is included two trees are
combined to a single tree which finally results in the maximum spanning tree. Checking
if an edge would induce a cycle can be implemented efficiently using a Union-Find data
structure, whose operations need constant amortized time, yielding a total running time
of O(|E| · log |E|), depending only on the sorting of the edges.

The second algorithm is the one of Prim [36] (see Algorithm 4). Contrary to Kruskal’s
algorithm this one starts with an arbitrary starting node. Then new edges are consecu-
tively added to the partial tree, thereby taking in each step the current most profitable
edge connecting a previously unconnected node. This procedure stops when all nodes
are connected, yielding the maximum spanning tree. To find the edge with the maximal
profit generally a heap is used, for best time complexity either a Fibonacci-Heap [16] or a
Pairing-Heap [15]. If this is done, the overall running time is O(|V |2).

Since for sparse graphs |E| ≈ Θ(|V |), and for dense graphs |E| = Θ(|V |2), Kruskal’s
algorithm is preferable for the former case, whereas Prim’s algorithm usually is the better
choice for the latter case.

A good overview is given in Moret and Shapiro [30,31].

2.7 Knapsack Problem
Another widely known and well-investigated problem is the Knapsack Problem, or KP for
short. Given is a set of n items, where every item i has associated a weight wi > 0 and a
profit pi > 0, and a capacity c > 0. Sought is a subset of all items with a maximal total
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Algorithm 3: Kruskal-MST
Input: graph G = (V, E) and p : E → R
Result: spanning tree T
S = ∅; T = ∅; i = 1;
sort edges according to decreasing profit: p(e1) ≥ p(e2) ≥ . . . ≥ p(en);
forall v ∈ V do

S = {{v} | v ∈ V }; // initialize Union-Find data structure

while |S| > 1 do // contains more than one set
// be ei = (ui, vi) the next edge
if ui and vi do not belong to the same set in S then

T = T ∪ {(ui, vi)};
unite the sets in S containing ui and vi;

i = i + 1;

Algorithm 4: Prim-MST
Input: graph G = (V, E) and p : E → R
Result: spanning tree T
Select an arbitrary starting node s ∈ V ;
C = {s};
T = ∅;
while |C| 6= |V | do

Select an edge e = (u, v) ∈ E, u ∈ C, v ∈ V \ C with maximal profit p(e);
T = T ∪ {e};
C = C ∪ {v};
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profit but whose total weight must not exceed the capacity, which is more formally stated
as:

maximize
∑
j∈S

pj (2.3)

subject to
∑
j∈S

wj ≤ c (2.4)

S ⊆ {1, . . . , n} (2.5)

Trivial cases, like every weight of an item is bigger than c or the sum of all weights is
smaller than c, are excluded. There exist many specialized as well as generalized forms
of the problem, but we will only deal with the most obvious one, which corresponds to
the formulation above. This is the so called Binary Knapsack Problem (BKP) or 0/1-KP,
which simply restricts an item to be chosen or not. The solution is presented by a vector
x of length n, whereas xj states if item j is included (xj = 1) or not (xj = 0). Using this
representation results in the following formulation:

maximize
n∑

j=1

pj · xj (2.6)

subject to
n∑

j=1

wj · xj ≤ c (2.7)

xj ∈ {0, 1}, j = 1, . . . , n (2.8)

Though this problem is generally NP-hard, it is said to be weakly NP-hard because there
exists a pseudopolynomial algorithm based on Dynamic Programming (DP). Thus even
large instances can be efficiently solved.

A comprehensive overview of the different KP variants as well as solution methods is
given in Kellerer et al. [25]. An enhanced and currently one of the fastest DP algorithms
is presented in Martello et al. [29], which will be used later.

2.8 Linear Programming
In Linear Programming (LP) one is given a problem (LP program), formulated as follows:

maximize cT x (2.9)
subject to Ax ≤ b (2.10)

x ∈ Rn (2.11)

with (2.9) being the linear objective function to be maximized, with c ∈ Rn, and A ∈ Rm×n

and b ∈ Rm forming the linear constraints in (2.10). Integrality constraints can be imposed



2 Preliminaries 14

on a few or even all variables of x, resulting in a Mixed Integer Program (MIP) in the former
and in a pure Integer (Linear) Program (I(L)P) in the latter case. The important link to
COPs is that they can often be formulated as MIPs.

If one restricts the variables in the program to zero or one, this leads to a so called
Binary Linear Program (BLP) or 0-1 Integer Program (0-1 IP)

maximize cT x (2.12)
subject to Ax ≤ b (2.13)

x ∈ {0, 1}n (2.14)

The solution space S of this 0-1 IP is

S = {x ∈ {0, 1}n : Ax ≤ b}. (2.15)

The optimal solution value of a program P will henceforth be denoted as v(P ).

Whereas LPs can be solved efficiently using the Simplex or Interior-point method,
(M)IPs are in general NP-hard. For a thorough review of LP the reader is referred
to Vanderbei [41].

A 0-1 IP will also be the starting point of our work later on in Chapter 4.

2.8.1 Relaxation

Since IPs are in general NP-hard, it is of benefit to deal with a relaxation of the problem
at hand, in the following assuming a maximization problem with corresponding program
P .

The relaxed program RP of the original program P is a simplification in which some of
the constraints are removed. The solution space SR of RP is thus larger, i.e. the solution
space of the original problem is a subset of the new one, stated as S ⊆ SR. In addition to
that the objective function fR of RP dominates (i.e. is better than) those of P over the
original solution space, i.e. ∀x ∈ S : fR(x) ≥ f(x) and thus also v(RP ) ≥ v(P ). RP is
further said to be an optimistic version of P .

The main purpose of relaxations is to get upper bounds for the original problem. Al-
though the resulting solution of the relaxed problem might be infeasible for the original
problem, it can lend itself to derive a feasible solution (i.e. a lower bound) by applying a
problem specific algorithm. In the end there is hopefully a narrow gap between the best
lower and upper bound.

One such relaxation is the Linear Programming Relaxation (LP Relaxation) or Con-
tinuous Relaxation (CR), where the integrality constraints of a program P are dropped.
Another relaxation will be presented in the next section.
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2.9 Lagrangian Relaxation and Decomposition
The following section is based on Beasley [4], Fisher [10,11], Guignard [20], Frangioni [13]
and Lemaréchal [27].

We start with the following IP P :

maximize cT x (2.16)
subject to Ax ≤ b (2.17)

Cx ≤ d (2.18)
x ∈ Zn (2.19)

with {A, B} ∈ Rm×n, {b, d} ∈ Rm and c ∈ Rn. Again the objective function (2.16) has to
be maximized, thereby considering the constraints (2.17) and (2.18).
Assume that it would be easy to deal with the constraints Cx ≤ d, but the constraints
Ax ≤ b are complicating the situation. It would be best to get rid of the latter somehow.
This is the time when Lagrangian Relaxation (LR) comes into play. We formulate the new
relaxed problem LRλ:

maximize cT x + λT (b− Ax) (2.20)
subject to Cx ≤ d (2.21)

x ∈ Zn (2.22)

The slacks of the former complicating constraints have been added to the objective func-
tion, thereby replacing the constraints, which are now said to be dualized. More precisely
the slacks have been added with weights λi ≥ 0 for i = 1, . . . ,m, which are called La-
grangian multipliers.

It is obvious that SP ⊆ SLRλ
holds for every λ, and the objective function of the relaxed

program dominates the former one over the original solution space SP since the term
λ(b−Ax) with λi ≥ 0 can merely add something to the objective value, thus v(LRλ) ≥ v(P )
holds, too. So for every positive vector λ the value of v(LRλ) is an upper bound on the
optimal value of the original problem P . In order to find the best (i.e. lowest) upper
bound we state the problem LR:

max
λ≥0

v(LRλ) (2.23)

This problem is called the Lagrangian dual of P . LR is optimized over the dual space of
the Lagrangian multipliers, whereas LRλ was optimized over x.
Ideally it holds that v(LR) = v(P ), i.e. the values of both optimal solutions coincide. If
this is not the case a so called duality gap exists, stating the relative difference between
both optimal solutions.

In comparison to the already mentioned LP Relaxation, Lagrangian Relaxation has the
advantage of sometimes being able to produce tighter upper bounds, though this is only
true if the LR does not have the Integrality Property. If the convex hull of the original
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integral solution

convex hull

Figure 2.5: The convex hull of a solution set.

solution space regarding the unrelaxed constraints is the same as the LP relaxed solution
space, i.e. more formally if conv{x ∈ Zn | Cx ≤ d} = {x ∈ Rn | Cx ≤ d}, the LR is said
to have this property. A simple example of a solution set and the corresponding convex
hull is depicted in Figure 2.5.

Denoting the LP Relaxation of program P by LP following can be stated:

v(P ) ≤ v(LR) ≤ v(LP ).

In the worst case the optimal values of the Lagrangian Relaxation and the LP Relaxation
are equal.

A special form of Lagrangian Relaxation is the Lagrangian Decomposition (LD). It can be
applied when there is evidence for two or possibly more intertwined subproblems, which
would be easier to solve on their own, because there possibly already exist specialized
algorithms.

We will use again the program P stated at the beginning of this section and start with
introducing a new variable vector y for the second constraints (now seen as the second
problem):

maximize cT x (2.24)
subject to Ax ≤ b (2.25)

x = y (2.26)
Cy ≤ d (2.27)
x ∈ Zn (2.28)
y ∈ Zn (2.29)
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Since the equality constraints linking x and y (2.26) are introduced too, the program is still
equivalent to P . Now these particular constraints can be relaxed in Lagrangian fashion,
resulting in program LDλ:

maximize cT x− λT (x− y) (2.30)
subject to Ax ≤ b (2.31)

Cy ≤ d (2.32)
x ∈ Zn (2.33)
y ∈ Zn (2.34)

A reformulation makes the separation into two independent problems, when considering λ
to be constant, explicit:

(Problem 1) max
x
{(c− λ)T x | Ax ≤ b, x ∈ {0, 1}n}+ (2.35)

(Problem 2) max
y
{λT y | Cy ≤ d, y ∈ {0, 1}n} (2.36)

As before we can again state the Lagrangian dual problem LD of LDλ:

max
λ

v(LDλ) (2.37)

Notice that for equality constraints the multipliers need no longer be nonnegative.
Regarding the Integrality Property and the quality of the best upper bound, following can
be stated: (1) in case one of the subproblems has the Integrality Property, the best upper
bound of LD is equal to the better of the two LR bounds that would result in relaxing
either Ax ≤ b or Cx ≤ d, and (2) if both subproblems have the Integrality Property the
best upper bound of LD equals the upper bound of the LP relaxation.

Yet missing is a method to solve the Lagrangian dual problem, i.e. to find best suited
Lagrangian multipliers. The Lagrangian function z(λ) = v(LRλ) is a convex function of λ
(illustrated in Figure 2.6). Well known and widely applied is the Subgradient Optimization
originally proposed by Held and Karp [22, 23]. An improved and extended version of this
method is the Volume Algorithm (VA) [3]. Both will be addressed in Chapter 4.



2 Preliminaries 18

Figure 2.6: Lagrangian function z(λ).



3 Previous Work

As already noted in Chapter 1, Yamamato and Kubo [43] were the first to formulate the
KCMST problem and they “...discussed the Lagrangian relaxation, but neither proved NP-
hardness nor gave solution algorithms” [42, page 24] according to Yamada et al. (since the
former is only available in Japanese).
The latter authors finally proved NP-hardness by using an appropriately constructed
graph (including profits and weights of the edges) and reducing the Knapsack Problem
(KP) to the KCMST problem, which completed the proof since KP is itself NP-hard. But
it is yet unknown if the problem is either strongly or weakly NP-hard.
They also proposed a Lagrangian relaxation by relaxing the knapsack constraint, leading
to:

maximize L(λ, T ) = p(T ) + λ(c− w(T )) (3.1)
subject to T is a spanning tree. (3.2)

This reduces the problem for a given λ to the simple MST problem. They described a
bisection method to find the optimal Lagrangian multiplier value (i.e., solving the La-
grangian dual), thus obtaining the best upper bound, and simultaneously derived a lower
bound. Further they mentioned a 2-opt local search method (see Algorithm 5) and a

Algorithm 5: Local Search of Yamada et al. [42]
T ← lower bound from LR;
while ∃ T ′ ∈ N (T ) : p(T ′) > p(T ) do

T = T ′;

corresponding neighborhood structure. For a spanning tree T the neighborhood N (T )
consists of all feasible trees T ′ which can be created from T by adding an arbitrary edge
not yet included, which induces a cycle and then removing another edge from this cycle.
The derived Lagrangian lower bound acts as a starting point.
The authors continue by introducing a decomposition scheme to divide the problem into
mutually disjoint subproblems and present a recursive B&B algorithm utilizing this scheme
and the bounds created before.
Since the bounds used play a crucial role in B&B algorithms, they propose a shooting
method which guesses an artificial lower bound lying between the derived lower and upper
bounds. As long as the B&B algorithm fails when using this lower bound, i.e. it terminates
without finding the solution to the problem, the guessed value is decreased according to
a non-increasing function. This should result in less overall subproblems solved and thus
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less computation time.
They conclude their work with numerical experiments, thereby using self-defined instances,
both will be addressed later.

Another work dealing with the KCMST problem is reported in Pirkwieser [33]. Therein
a B&C algorithm has been devised using an extended local branching framework intro-
duced by Lichtenberger [28]. The algorithm applies three different cuts with increasing
complexity and contains a heuristic to derive incumbent solutions. The heuristic itself
makes use of a local search that will be used in this work, too. It is described in the next
chapter.

Although Haouaria and Siala [21] deal with the Prize Collecting Steiner Tree (PCST)
problem the work of this thesis shares some similarities with theirs:

• They are applying a hybrid Lagrangian GA.

• To generate good lower bounds (since it is a minimization problem) they relax the
problem using Lagrangian decomposition obtaining a MST and a KP problem.

• The Lagrangian dual is solved with the Volume Algorithm.

• The resulting hybrid GA exploits information from solving the Lagrangian dual.

Apart from the details, among mainly the problem specificity, some aspects of their work
are a good point of reference for our work.

Following the scheme presented in Section 2.4 Haouaria and Siala applied a collaborative
combination with sequential execution because both methods, i.e. solving the Lagrangian
dual as well as the hybrid GA, are independent of each other and the latter method is
started after the former has finished, thus sequential. Since the hybrid GA uses information
provided by the solution of the Lagrangian dual it qualifies as a collaborative combination.



4 Lagrangian Decomposition for the KCMST
Problem

In this chapter we will apply Lagrangian decomposition to the KCMST problem. Further
we will also present two well known methods to solve the Lagrangian dual problem, meth-
ods to solve the subproblems resulting from decomposition and finally a simple Lagrangian
heuristic to derive incumbent solutions and a local search to improve them.

At first the original KCMST problem, denoted as KCMST-P , is given:

max
m∑

i=1

pixi (4.1)

s. t. x is a spanning tree (4.2)
m∑

i=1

wixi ≤ c (4.3)

x ∈ {0, 1}m (4.4)

where m is the number of edges and pi and wi with i = 1, . . . ,m, are the profit and weight
values of the edges, respectively. As already mentioned before the problem is a composition
of the MST and KP problem, thus we already know the subproblems and it is not hard
to spot the starting point for a decomposition. We begin with splitting the variables by
introducing new ones for the second constraint (regarding the maximal weight) and equate
both variables:

max
m∑

i=1

pixi (4.5)

s. t. x is a spanning tree (4.6)
x = y (4.7)
m∑

i=1

wiyi ≤ c (4.8)

x ∈ {0, 1}m (4.9)
y ∈ {0, 1}m (4.10)

It is obvious that this program is still equivalent to KCMST-P .
The next step is to relax equality constraint (4.7) in a Lagrangian fashion (as noted in
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Section 2.9) using the Lagrangian multipliers λ ∈ Rm . By doing this we obtain the
Lagrangian decomposition of the original problem, which is denoted as KCMST-LDλ:

max
m∑

i=1

pixi −
m∑

i=1

λi(xi − yi) (4.11)

s. t. x is a spanning tree (4.12)
m∑

i=1

wiyi ≤ c (4.13)

x ∈ {0, 1}m (4.14)
y ∈ {0, 1}m (4.15)

Stating KCMST-LDλ in a more compact way and additionally emphasizing the separated
problems yields:

(MST) max
x
{(p− λ)T x | x is a spanning tree, x ∈ {0, 1}m}+ (4.16)

(KP) max
y
{λT y | wT y ≤ c, y ∈ {0, 1}m} (4.17)

Due to the properties of Lagrangian relaxation, following can be stated:

∀λ v(KCMST-LDλ) ≥ v(KCMST-P ) (4.18)

Thus, for any λ we obtain an upper bound for the original 0-1 IP.
To find the best (lowest) upper bound we can finally formulate the Lagrangian dual prob-
lem:

KCMST-LD = min
λ

v(KCMST-LDλ). (4.19)

Now we will consider the strength of the relaxation. Whether the MST problem has
the Integrality Property depends on its concrete formulation (we only stated that “x is a
spanning tree”), however the KP certainly does not possess it. We therefore expect better
upper bounds as if using a simple LP relaxation.

4.1 Solving the Lagrangian Dual Problem
In this section we will describe the application of two well known methods for solving the
Lagrangian dual problem to our specific problem KCMST-LD (4.19).

4.1.1 Subgradient Optimization Method

The Subgradient Optimization method has been applied to many problems because of its
generality. The fact that it is working directly on the constraints makes it simple to adapt
to a specific problem. We use the description given in Beasley [4]. The method applied
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to KCMST-LD is presented in Algorithm 6. In the following we will go through the

Algorithm 6: Subgrad Optimization algorithm
Result: best lower bound zLB, best upper bound zUB and best solution found bestSol
(sol, p(sol))← getInitialSolution(); // see Algorithm 71

bestSol← sol;2

zLB ← p(sol);3

zUB =∞;4

choose initial values for λ;5

initialize T and f accordingly;6

t = 0;7

subgradSteps = 0;8

while zLB 6= bzUBc and subgradSteps 6= maxSteps do9

t = t + 1;10

(zt
MST , xt)← solveMST(p− λ); // see Section 4.211

(zt
KP , yt)← solveKP(λ); // see Section 4.312

zt = zt
MST + zt

KP ; // actual upper bound13

LagrangianHeuristic(xt); // see Section 4.414

if zt < zUB then // better (lower) upper bound found15

if zt < bzUBc then16

subgradSteps = 0;17

else18

subgradSteps = subgradSteps + 1;19

zUB = zt; // update best upper bound20

else21

subgradSteps = subgradSteps + 1;22

update T and f accordingly;23

vt = xt − yt; // determine actual subgradients24

s = f · (zUB − T )/||vt||2; // determine step size25

λ = λ + svt; // update multipliers26

algorithm and describe relevant parts of it.
The function getInitialSolution() (see Algorithm 7) in the first line generates a feasible
solution (=spanning tree) which is used as the initial lower bound and to initialize other
parameters mentioned later. It uses the function solveMST that determines a Maximum
Spanning Tree regarding to profit values per edge, defined as input (for further details
see Section 4.2). At first the values are calculated from p/w, as a measure of profit per
weight, thus favoring edges with high profit and small weight. If this generates a spanning
tree whose weight is too mighty, i.e. w(x) > c, then a new tree is determined using 1/w
as profit values, preferring edges with small weight, which finally guarantees that a fea-
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sible solution can be found assuming we are given a correct (i.e. solvable) problem instance.

The initial values of λi in line 5 are chosen as following:

λi =
3

4
pi + σi, with σi ∈

[
0,

pi

4

]
chosen randomly. (4.20)

Though Beasley [4] stated that the convergence behavior as well as the final result are
independent of the initial values of λ, it was observed in preliminary tests (not detailed
here) that when using this initialization scheme the method consistently started out with
creating smaller upper bounds (=zt in the algorithm) and thus needing fewer iterations to
converge when compared to other schemes tried (e.g. complete random generation).

The termination condition in line 9 is kept simple and intuitive. The first criterion is
if zLB = bzUBc holds, which means that the provably optimal solution is found. Since we
are dealing with integral variables and thus integral objective values of solutions it is valid
to use bzUBc instead of zUB. The second criterion, subgradSteps = maxSteps, assures
that the algorithm terminates by restricting the number of consecutive iterations where
zt ≥ bzUBc holds.

In each iteration the actual upper bound zt is calculated by solving the two subproblems
in line 11 and 12 and adding zt

MST and zt
KP . If this upper bound is better than the best

upper bound so far, the latter is updated in line 20. The Lagrangian heuristic applied in
line 14 will be described in Section 4.4.
The subgradients vt are determined in line 24 by calculating the slack xt − yt. The sub-
gradients determine the direction in which the Lagrangian multipliers λ are altered. The
amount of change depends on the step size s, but to compute it we have to introduce two
more parameters, namely T and f .
The target value T acts as substitution for the best lower bound zLB and is initialized with
0.95 · zLB. Further it is updated every time new information regarding T is derived, more
precisely if the problem instance is a plane graph with

T = 0.95 · zLB (4.21)

or if we deal with a complete (or generally a non-plane) graph using

T = 0.475 · (zLB + zUB). (4.22)

Additionally if zUB < 1.05 · T holds, i.e. zUB lies within 5% of T , then T is decreased
by 5% with the purpose to avoid the convergence getting slower when the two bounds
approach each other [4]. This scheme was also developed in preliminary tests and seemed
to be satisfying.
The parameter f is initially set to 2, and is multiplied by an assignable parameter multiply <
1 (thus is decreased) as soon as a specified amount, given by parameter steps, of consecu-
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tive iterations without improvement of zUB have passed and f > 10−7 holds.
The values of T , f and vt allow to compute the step size s (line 25) and finally to adapt
the Lagrangian multipliers accordingly (line 26).
As can be noticed λ is changed at every iteration, unaffected of the actual improvement.
There is further no exploitation of past computations. The method presented next tries
to incorporate both.
Results of the Subgradient method are presented in Chapter 5.

Algorithm 7: getInitialSolution()
Input: profit values p and weight values w of all edges
Result: feasible solution x, solution weight w(x) and solution profit p(x)
for i=1 to m do // m . . . number of edges

valuesi = pi/wi;
(x, w(x), p(x))← solveMST(values);
if w(x) > c then // solution x is infeasible

for i=1 to m do
valuesi = 1/wi;

(x, w(x), p(x))← solveMST(values);

4.1.2 Volume Algorithm

The Volume Algorithm (VA) was introduced in Barahona and Anbil [3]. It is an extension
and improvement of the Subgradient Optimization method presented in the previous sec-
tion and has been applied to many COPs, among them the Steiner Tree Problem [2]. Thus
the two algorithms share many similarities, which will be seen in the following description.
The VA is depicted in Algorithm 8.
The process of creating an initial solution as well as choosing the initial values of the

multipliers is exactly the same as before. The first difference is an iteration 0 (lines 5 and
6) during the initialization phase to generate initial values for zUB (line 7) as well as for
both primal vectors xP and yP (line 8). These primal vectors represent an approximation
to a primal solution. The VA determines this values by estimating the volume (hence the
name of the algorithm) below the faces that are active at an optimal dual solution [3], thus
they can be regarded as probabilities. As can be seen in line 22 they are a convex combi-
nation of the dual solutions produced at each iteration, and depending on the coefficient
α. The updating scheme of α is as following, depending itself on the binary parameter
optimalAlpha:

• If optimalAlpha = 0 then the first proposal of [3] is applied, namely setting it to
a fixed value for a number of iterations and decreasing it afterwards. So at the
beginning we set α to the parameter alphaStart. Then after every 100 iterations for
plane and every 200 iterations for non-plane graphs (since the latter require more
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Algorithm 8: Volume Algorithm
Result: best lower bound zLB, best upper bound zUB and best solution found bestSol
(sol, p(sol))← getInitialSolution(); // see Algorithm 71

bestSol← sol;2

zLB ← p(sol);3

choose initial values for λ;4

(z0
MST , x0)← solveMST(p− λ); // see Section 4.25

(z0
KP , y0)← solveKP(λ); // see Section 4.36

zUB = z0
MST + z0

KP ;7

(xP , yP ) = (x0, y0); // initialize primal values8

initialize T and f accordingly;9

t = 0;10

volAlgSteps = 0;11

while zLB 6= bzUBc and volAlgSteps 6= maxSteps do12

t = t + 1;13

vt = xP − yP ; // determine actual subgradients14

s = f · (zUB − T )/||vt||2; // determine step size15

λt = λ + svt; // determine actual multipliers16

(zt
MST , xt)← solveMST(p− λt);17

(zt
KP , yt)← solveKP(λt);18

zt = zt
MST + zt

KP ; // actual upper bound19

LagrangianHeuristic(xt); // see Section 4.420

determine actual α;21

(xP , yP ) = α(xt, yt) + (1− α)(xP , yP ); // update primal values22

if zt < zUB then // better (lower) upper bound found23

if zt < bzUBc then24

volAlgSteps = 0;25

else26

volAlgSteps = volAlgSteps + 1;27

zUB = zt; // update best upper bound28

λ = λt; // update multipliers29

else30

volAlgSteps = volAlgSteps + 1;31

update T and f accordingly;32
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iterations, which will be seen later) it is checked if zUB decreased less than 1%, if so
and α > 10−5 holds then α = 0.85 · α.

• In case optimalAlpha = 1 let vP = xP −yP , vt = xt−yt and αmax be initialized with
the value of alphaStart. Then αopt = minα ||αvt + (1 − α)vP || is computed using a
Golden Section Search [35]. If αopt < 0 then α = αmax/10 otherwise
α = min{αopt, αmax} is used. Additionally the same decreasing strategy as in case
optimalAlpha = 0 is used, but with αmax altered instead of α. A similar strategy
was proposed in [2] and was also used by [21].

Though the VA would make better defined stopping criteria possible [3], we will use the
same as before since it proved to work well in preliminary tests.

Another difference is that the actual subgradients are based on the slack of the primal
values xP − yP (line 14), thus allowing a finer grained subgradient since the primal values
are not necessarily integral. Whereas the formula for determining the step size s (in line
15) is the same as well as the updating scheme of the target value T (but since we have
an upper bound derived from iteration 0 the update step differentiating between the two
graph types can already be used at initialization), we will use another one for parameter
f , therefore defining three types of iterations [3]:

• If no improvement was made, this iteration is called red.

• If zt < zUB then d = vt(xt − yt) is computed.

– If d < 0 holds, then a longer step in the direction vt would have resulted in a
smaller value of zt. This iteration is called yellow.

– If d ≥ 0 the iteration is called green and indicates the need for a larger step
size.

The initial value of f is 0.1. If enough consecutive red iterations occurred, determined
by the parameter steps, and f > 10−8 in case of plane and f > 10−6 in case of complete
graphs (these values were determined in preliminary tests by looking at the value of f
occurring at optimal solutions), f is multiplied by the parameter multiply < 1. After
every green iteration and if f < 1 we multiply f by 1.1. A yellow iteration has no effect.
As can be seen, though the actual Lagrangian multipliers λt are calculated at every iter-
ation (line 16), the quasi prime Lagrangian multipliers λ are only updated if the former
one led to a better upper bound (line 29).

Summarizing, the main differences compared to the Subgradient method are: (1) the
computation of primal values and (2) using this convex combination of preceding dual
values for the determination of the actual subgradients, (3) an advanced calculation of the
step size by using an extended update scheme for the coefficient f and (4) to take only
multipliers that led to an improvement.
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4.2 Problem 1 - MST
The first of the two subproblems in the Lagrangian decomposition approach is the MST
problem already mentioned in Section 2.6. The MST algorithm is given the edge profits
p− λ, i.e. the original profits p are modified by subtracting the Lagrangian multipliers λ.
The following MST algorithms have been implemented and tested (parameter mstAlg):

0: Kruskal’s algorithm (Algorithm 3) with complete presorting of the edges, thus de-
signed for rather sparse graphs and called Kruskal-P.

1: Kruskal’s algorithm with sorting on demand realized using Heap Sort, designed for
dense graphs and called Kruskal-C.

2: Prim’s algorithm (Algorithm 4) using a Pairing-Heap [15] with dynamic insertion,
called Prim-p-heap.

3: Prim’s algorithm using a Fibonacci Heap [16] with dynamic insertion, called
Prim-f-heap.

4: Kruskal’s algorithm using a Pairing-Heap as a form of on demand sorting, called
KruskalPQ-p-heap.

5: Kruskal’s algorithm using a Fibonacci-Heap as a form of on demand sorting, called
KruskalPQ-f-heap.

Every instance of Kruskal’s algorithm was implemented using a Union-Find data structure.
All of these versions of MST algorithms have been mentioned in literature (see [30] for a
compact overview).
Since we set a high value on efficiency of the overall algorithm we tried all these algorithms
to find the most suitable. The results are presented in Chapter 5.

4.3 Problem 2 - KP
The second subproblem is the Knapsack Problem, first mentioned in Section 2.7. More
precisely we deal with the 0/1-KP since each item of the KP corresponding to an edge of
the graph is either selected or not.
We are given the 0/1-KP (we use the same notation as the Lagrangian decomposition):

maximize
m∑

j=1

λj · yj (4.23)

subject to
m∑

j=1

wj · yj ≤ c (4.24)

yj ∈ {0, 1}, j = 1, . . . ,m (4.25)
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The profit value per item is the actual value of the corresponding Lagrangian multiplier
λj, whereas the weight wj is the weight of edge j defined by the problem instance.
To solve this problem we will use the COMBO algorithm described in Martello et al. [29]
(see Chapter 7 for further details), a successor of the algorithm presented in [34]. The
COMBO algorithm is a sophisticated Dynamic Programming algorithm which was also
used in [21].

As suggested in [4] one can include constraints in the Lagrangian relaxed program LR
which would have been redundant and thus unnecessary in the original ILP P , but which
strengthen the bound attainable from LR. We can apply this idea to the KP subproblem:
whereas the complete KCMST problem as well as the MST subproblem restrict their
solutions to being a spanning tree, thus having exactly n− 1 edges selected (with n being
the number of nodes), the KP as stated above does not have this property. If we constrain
the number of items to an exact sum we obtain the exact k-item knapsack problem (E-
kKP) [6] which is a special case of the cardinality constrained knapsack problem. The
resulting E-kKP can be stated as:

maximize
m∑

j=1

λj · yj (4.26)

subject to
m∑

j=1

wj · yj ≤ c (4.27)

m∑
j=1

yj = n− 1 (4.28)

yj ∈ {0, 1}, j = 1, . . . ,m (4.29)

Caprara et al. [6] presented a pseudopolynomial dynamic programming scheme for solving
the E-kKP in O(nkc) time and O(k2c) space (when using DP by weights), where n is the
number of items, k is the number of items to be chosen and c is the knapsack constraint.
When determining the time and space requirements depending on the number of nodes n
for the KCMST problem we have to consider that the items are the edges of the graph,
thus being in the worst case m ≈ O(n2) for complete graphs and k and c both depend
linearly on n. This yields a running time of O(n4) and a space requirement of O(n3). Since
these characteristics are not very satisfying and a proper implementation would probably
be a thesis on its own, we will use an ILP solver instead. For a comparison of KP versus
E-kKP see Section 5.4.2.

4.4 Lagrangian Heuristic and Local Search
A Lagrangian heuristic [4] is responsible for generating feasible solutions to derive better
lower bounds. It therefore uses the solution to the Lagrangian dual to generate primal
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solutions. Ideally the method is simple enough, i.e. computationally not very demanding,
to be applied each iteration. Furthermore a local search (probably problem specific) can be
used to derive even better bounds. Since it is consecutively applied to different solutions
it acts like a multistart local search.
We will use the heuristic illustrated in Algorithm 9.
It receives the solution to the MST subproblem and checks if it is feasible. If not, the

Algorithm 9: Lagrangian heuristic
Input: actual solution x of the MST subproblem
if w(x) ≤ c then // solution x is feasible

if zLB/zUB > klsMinGap then // gap between zLB and zLB is tight enough
x′ ← LocalSearch(x); // see Algorithm 10
if f(x′) > f(bestSol) then

bestSol = x′;
zLB = p(x′);

else if f(x) > f(bestSol) then
bestSol = x;
zLB = p(x);

heuristic does nothing, since we only deal with yet feasible solutions. It has been tried to
randomly repair the solutions and run the local search mentioned below on it, but this
did not result in a noticeable improvement, so we will skip this option. However if the
solution is already feasible the ratio of the lower and upper bound is calculated, which
serves as a measure for the remaining gap, and compared with parameter klsMinGap
(with 0 ≤ klsMinGap ≤ 1). If the quasi gap lies below or is equal to the parameter value
the current best solution bestSol as well as the lower bound zLB are updated if the yet
feasible solution x is better, i.e., if f(x) > f(bestSol).
Otherwise if the ratio is higher than klsMinGap a local search–henceforth denoted by
KLS (from KCMST Local Search)–is applied to x and produces another solution x′ being
at least as good as x, thus f(x′) ≥ f(x) is assured. This resulting solution then updates
bestSol and zLB if required.
The introduction of the parameter klsMinGap prevents the KLS from being applied too
early in the process where good solutions are neither required nor easy to obtain. The
idea is to save the local search until the Lagrangian multipliers are supposed to be of good
quality [13], thus intensifying the heuristic search at the end of the solution process. The
local search KLS is presented in Algorithm 10. The general idea is the same as in [42], to
exchange an edge with another one and thereby retaining a spanning tree. The procedure
is to include an edge not present in the solution, thus inducing a cycle in the tree, and
then to remove an edge from that cycle, see Figure 4.1. One has to decide about which
edge is tried to be included and given that edge, which one to remove from the introduced
cycle. The latter is clear after stating when an intermediate tree T ′, resulting from one
exchange step on the basis of the tree T , is better:
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• if T ′ has a higher profit value as T , i.e. when p(T ′) > p(T ) or

• if T ′ has the same profit assigned, but weighs less than T , i.e p(T ′) = p(T ) and
w(T ′) < w(T ).

The first proposition is obvious. The second one considers the knapsack character of the
problem by preferring solutions with less total weight, which are subsequently easier to
improve. This is implemented in the algorithm by searching for an edge to be deleted in
the induced cycle having either less profit or the same profit but more weight as the edge
to be included (line 9). Since the maximal weight c given by the problem instance may not
be exceeded after exchange, the removed edge must satisfy a minimum weight constraint,
denoted by wmin in the algorithm (calculated in line 4).
What remains to be defined is the method of selecting the edge to be included, denoted

Algorithm 10: Local Search (KLS)
Input: feasible solution x represented as tree T , graph G = (V, E)
Result: probably improved solution x′

while retries < klsRetries do1

enew ← getNextEdge();2

wmax = w(enew);3

wmin = w(T ) + w(enew)− c;4

pmin = p(enew);5

eremove = enew;6

determine cycle C ∈ T ∪{enew}; // there is exactly one cycle in T ∪{enew}7

foreach e ∈ C do8

if (w(e) ≥ wmin) ∧ (p(e) < pmin ∨ (p(e) = pmin ∧ w(e) > wmax)) then9

wmax = w(e);10

pmin = p(e);11

eremove = e; // save worse edge12

if eremove 6= enew then // replaceable edge found13

T = T \ {eremove} ∪ {enew};14

retries = 0;15

else16

retries = retries + 1;17

x′ ← T ;18

return x′;19

by the function getNextEdge() in line 2. This is an important part of KLS, since it is
responsible for guiding the search. We used three such selection processes, which are
determined by the parameter klsType:

0: Select an edge not active in the current solution at random.
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1: Like above plus excluding all edges that were selected and active so far, i.e. select
edges at most once and do not reconsider already removed edges.

2: At the beginning of KLS the edges are sorted according to descending order defined
by their current modified profit values p′i = pi−λi (being equal the values used to solve
the MST subproblem of that iteration) resulting in p′(e1) ≥ p′(e2) ≥ . . . ≥ p′(em).
Then in every retry of KLS the next less profitable edge not active in the current
solution is selected. This results in a greedy search where every edge is considered
at most once.

In case of klsType = 2 the applied method to sort the edges depends on the graph type of
the instance, being once again complete presorting for plane graphs and sorting on demand
using Heap Sort for non-plane graphs. As indicated in preliminary tests using sorting on
demand instead of complete presorting for non-plane graphs resulted in a remarkable speed
improvement.

Furthermore it was investigated if the approximate primal solution, available when using
the Volume Algorithm, could lend itself to derive better solutions. Unfortunately neither
the direct solution generated by calling solveMST (xP ), i.e. determine the MST by using
the probability as some sort of profit and thus preferring edges which are likely to be in
the optimal primal solution, nor using the approximate values to sort the edges in case of
klsType = 2 turned out to be beneficial.
Regarding the target value T , mentioned in the algorithm sections, one can either decide
to use the locally improved solutions for updating T or not, which is determined by the
binary parameter useLBfromKLS.
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enew enew

(a) (b) (c)

eremove

cycle C

Figure 4.1: Exchanging two edges in KLS. (a) given part of the spanning tree, (b) try
to include edge enew, thereby inducing cycle C and (c) found replaceable (i.e.
worse) edge eremove to be removed and finally include cnew.



5 Experimental Results of Lagrangian
Decomposition

This chapter introduces the test instances, presents various experimental results and com-
pares them to previous ones.
If not stated otherwise the test environment consists for the rest of this thesis of a Pen-
tium M 1.6GHz with 1.25GB RAM using GCC in version 4.0.3. All attributes which will
be used are listed in Table 5.1.

5.1 Used Test Instances
An instance is determined by the number of nodes n, the number of edges m, the knapsack
capacity c and tuples of the form (ei, vj, vk, p(ei), w(ei)), i = 1, . . . ,m, stating that the i-th
edge connects nodes vj and vk, has profit p(ei) and weight w(ei).
All test instances can be categorized according to graph type and correlation type. We use
three graph types (see Section 2.5 for a definition): plane graphs, maximal plane graphs
and complete graphs. The correlation type states the correlation between weight w(e) and
profit p(e) of an edge e. Three correlations were defined in [42]:

• uncorrelated:
p(e) and w(e) are independently and uniformly distributed over [1, 100]

• weakly correlated:
w(e) are independently and uniformly distributed over [1, 100] and
p(e) := b0.8 ∗ w(e) + v(e)c, v(e) is uniformly random over [1, 20]

• strongly correlated:
w(e) are independently and uniformly distributed over [1, 100] and
p(e) := b0.9 ∗ w(e) + 10c.

The type of correlation is in the following denoted as the first letter (u, w or s) being
subscripted.

We will also set the knapsack capacity c for all instances as defined in [42]:

• c = 35 · n for plane and maximal plane graphs and

• c = 20 · n− 20 for complete graphs.
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Attribute Description
graph The used graph.
corr The type of correlation between weight and profit: u = uncorre-

lated, w = weakly correlated and s = strongly correlated.
graphcorr The combination of both (see above).
c The knapsack capacity.
t[s] Avg. running time in seconds.
iter Avg. number of iterations until a stopping criterion is met.
LB Avg. best found lower bound (i.e., feasible solution with highest

objective value).
UB Avg. best found upper bound.
%-gap = UB−LB

LB
· 100%, i.e., avg. relative difference between LB and UB

against LB.
σ%-gap The standard deviation of %-gap.
Opt How many instances out of ten were solved to provable optimality,

i.e. it was checked if LB = bUBc.
wLB Avg. weight of the best feasible solution found (=LB).

Table 5.1: Attributes used in the evaluation.

5.1.1 Test Set 1

The instances used by Yamada et al. [42] consist of plane graphs (not being maximal
plane) ranging from 50 to 1000 nodes and complete graphs between 20 and 200 nodes.
The structure of the plane graphs was fixed by them, e.g. see Figure 5.1 for a visualization
of the graph P200,560, whereas the structure of all complete graphs is unambiguous. Since
they gave us their instance generator we tried to reproduce their graphs at the best possible
rate, but of course the computed random values for the profits and weights are not the
same. We also randomly generated 10 instances per combination of graph and correlation
type to be tested, among them the same combinations as they used as well as for each
correlation type all remaining larger graphs to have an extended test set, see Table 5.2 for
all instances.

5.1.2 Test Set 2

We generated further instances for more extensive testing by an own instance generator
(see Chapter 7) which can in addition to complete graphs also produce maximal plane
graphs. The second test set is presented in Table 5.3. Like before we randomly generated
10 instances per graph and correlation type.

From now on if we loosely speak of an instance we always actually mean the set of 10
randomly generated instances of that type, which will be referred to by graph in addition
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P200,560

Figure 5.1: The structure of the graph P200,560.

plane graphs complete graphs
graph corr c graph corr c

P50,127 u,w,s 1750 K20 w,s 380
P100,260 u,w,s 3500 K30 s 580
P200,560 u,w,s 7000 K40 u,w,s 780
P400,1120 u,w,s 14000 K60 u,w,s 1180
P600,1680 u,w,s 21000 K80 u,w,s 1580
P800,2240 u,w,s 28000 K100 u,w,s 1980
P1000,280 u,w,s 35000 K120 u,w,s 2380

K140 u,w,s 2780
K160 u,w,s 3180
K180 u,w,s 3580
K200 u,w,s 3980

Table 5.2: Instances of test set 1.
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maximal plane graphs large complete graphs
graph corr c graph corr c

P2000 u,w,s 70000 K250 u,w,s 4980
P4000 u,w,s 140000 K300 u,w,s 5980
P6000 u,w,s 210000 K350 u,w,s 6980
P8000 u,w,s 280000 K400 u,w,s 7980
P10000 u,w,s 350000 K450 u,w,s 8980
P12000 u,w,s 420000 K500 u,w,s 9980

Table 5.3: Instances of test set 2.

with corr or mostly by graphcorr alone. The knapsack capacity c is left out and can be
looked up in the mentioned table of the corresponding test set.

5.2 Comparing the MST Algorithms
Now we will analyze the performance of the different variants of the MST algorithms
described in Section 4.2 when applied in our Lagrangian algorithm (using the corresponding
settings described later in Section 5.4). To do this we will run all variants (by changing
the parameter mstAlg) on different graphs (all 10 instances each), record the time spent
of the MST algorithm and compare the average values over all 10 instances per graph.
Thereby the number of iterations of the Lagrangian algorithm is fixed to 600 for maximal
plane graphs and to 1200 for complete graphs. The limit is due to have the same test
conditions per graph type since taking higher or no limits at all could lead to convergence
and thus falsifying the results.
The average time of each variant for a collection of maximal plane and complete graphs
is presented in Table 5.4. It can be seen that the average times are very different and
considering efficiency it is of great importance to choose the right variant for a specific
graph type. The variant with Kruskal’s algorithm using a priority queue takes the most
time and is thus uninteresting, except that using a Pairing-Heap instead of a Fibonacci-
Heap leads to a significant improvement. A difference when using either of these heaps
can be noticed in Prim’s algorithm too, whereby the Pairing-Heap is again the priority
queue of choice. This is consistent with findings reported in Stasko and Vitter [40] and in
Fredman [14], suggesting to take the Pairing-Heap instead of the Fibonacci-Heap. Prim’s
algorithm using a Pairing-Heap performs best for complete graphs, and will be henceforth
used as the default variant for these graphs. When comparing the results of the variants of
Kruskal’s algorithm, it can be stated that the variant with complete presorting of all edges
is the fastest for maximal plane graphs (and assuming for plane graphs too) and will be
the default one for these graphs. Though the variant with sorting on demand makes quite
a difference compared to complete presorting when used for complete graphs, the before
mentioned variant of Prim’s algorithm performs better.



5 Experimental Results of Lagrangian Decomposition 38

In
st

an
ce

av
g.

ti
m

e
of

M
S

T
al

go
ri

th
m

[s
]

g
ra

ph
co

rr
K

ru
sk

al
-P

K
ru

sk
al

-C
K

ru
sk

al
P

Q
-f

-h
ea

p
K

ru
sk

al
P

Q
-p

-h
ea

p
P

ri
m

-f
-h

ea
p

P
ri

m
-p

-h
ea

p

P
2
0
0
0

u
0.

78
1.

95
5.

42
2.

85
2.

35
1.

55
w

0.
79

1.
99

5.
59

2.
89

2.
21

1.
57

s
0.

87
1.

99
5.

41
2.

86
2.

20
1.

60
P

6
0
0
0

u
3.

07
6.

77
20

.4
4

10
.2

9
10

.1
8

7.
57

w
3.

12
6.

76
20

.7
9

10
.4

7
10

.0
6

7.
57

s
3.

41
6.

80
20

.8
7

10
.6

1
10

.0
9

7.
66

P
1
0
0
0
0

u
6.

07
12

.0
0

40
.7

8
20

.0
7

19
.3

0
14

.7
3

w
6.

14
12

.2
6

41
.1

4
20

.6
0

19
.3

7
14

.8
0

s
6.

40
12

.2
5

41
.2

8
20

.3
4

19
.4

2
14

.7
9

K
2
0
0

u
3.

75
1.

97
9.

88
7.

02
1.

27
1.

11
w

2.
87

1.
60

8.
99

6.
38

1.
23

1.
16

s
3.

56
1.

49
8.

26
6.

30
1.

29
1.

14
K

3
0
0

u
9.

82
4.

70
27

.8
7

18
.4

4
3.

18
2.

97
w

8.
32

4.
15

28
.4

7
18

.5
8

3.
11

2.
83

s
8.

91
3.

70
26

.7
4

17
.7

4
3.

08
2.

83
K

4
0
0

u
18

.6
8

8.
06

72
.9

9
54

.6
4

5.
55

5.
25

w
16

.5
8

7.
80

71
.8

7
51

.9
8

5.
57

5.
34

s
16

.7
6

7.
01

67
.8

9
50

.1
1

5.
66

5.
21

T
ab

le
5.

4:
R

eq
ui

re
d

ti
m

es
of

di
ffe

re
nt

M
ST

al
go

ri
th

m
s

w
he

n
us

ed
w

it
hi

n
th

e
La

gr
an

gi
an

al
go

ri
th

m
.



5 Experimental Results of Lagrangian Decomposition 39

5.3 Experimental Results of the Subgradient
Optimization Method

Solving KCMST-LD with the Subgradient Optimization method will henceforth be denoted
as KCMST-LDSO, if additionally the local search KLS is used it will be termed KCMST-
LDSO&KLS.
Two of the remaining parameters of the algorithm are set to the values suggested in [4],
which seem to be a good choice here, too. Thus the parameter multiply is set to 0.5 and
steps to 30.
For plane graphs maxSteps is fixed to 500, whereas the configuration of KLS depends
on the correlation type and was determined in trial runs:

• uncorrelated: the best variant of KLS, though not improving much, was to set
klsType = 0 and klsRetries = 200

• weakly correlated: again klsType = 0 with klsRetries = 200, this time having more
effect

• strongly correlated: here we chose again klsType = 0 but less retries with
klsRetries = 100, which gives excellent results.

The parameter klsMinGap was fixed for all plane graphs to 0.99, and only “naturally”
occurring feasible solutions are used for updating the target value T by setting useLB-
fromKLS = 0.

The results of KCMST-LDSO as well as KCMST-LDSO&KLS on plane graphs using these
parameters are presented in Table 5.5. We will first examine the results of KCMST-LDSO.
In case of uncorrelated graphs there is a tendency to get better solutions as the graph size
increases, even solving all instances to optimality for P800,2240u and P1000,2800u. The opposite
is true for strongly correlated graphs, there the solutions get worse with increasing graph
size. Constantly good results are obtained in case of weak correlation. Although %-gap is
already small, so is sometimes the number of optimal solutions Opt. Therefore we apply
KLS and can see that the results are improving for nearly all graphs. The most striking
increase in solution quality can be noticed for the strongly correlated graphs, henceforth
all instances are solved to optimality. Also improved are the results for some of the weakly
correlated graphs, most notably around the size of 400 nodes. For P800,2240w and P1000,2800w

no improvement was possible. Most of the uncorrelated graphs are not improved at all, or
otherwise not significantly.
The bad results obtained on the smallest graphs are due to the Subgradient Optimization
method sometimes being unable to derive the optimal upper bound, thus even though
using KLS can narrow the gap and actually find the optimal solution, the number of prov-
ably optimal solutions stays the same. This was detected after running the algorithm a
few times on these instances and comparing the upper bounds with the solutions obtained
by the Branch-And-Cut (B&C) algorithm used in [33].
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The configuration for maximal plane graphs was maxSteps = 300, which is less than
before but seemed to be enough (except for P10000s where it was not possible to derive the
optimal upper bound for one instance, so we consistently used maxSteps = 500 for all
instances of this graph), and a uniform KLS setting with klsType = 0, klsRetries = 100
and klsMinGap = 0.995. Test runs suggested to use improved solutions from KLS for
updating T , thus setting useLBfromKLS = 1. The results of KCMST-LDSO as well as
KCMST-LDSO&KLS on maximal plane graphs are presented in Table 5.6. Without KLS
the worst results are clearly obtained for strongly correlated graphs, whereas uncorrelated
graphs yield the best results. The results on weakly correlated graphs are also quite good
but a bit worse than in case of no correlation. Again the relative gap %-gap is very small for
all graphs but good values of Opt are missing. This is different when additionally applying
KLS at the end of the process. Though this increases the running time remarkably, in
many cases a lot more optimal solutions are found. Again the degree of improvement is
roughly proportional to the strength of correlation. There was only one graph, P12000u,
where the results without KLS are slightly better.

By using KCMST-LDSO&KLS the results on the different correlation types are quite
identical, showing no clear advantage for a specific correlation, which is apparent when
summing up the optimal solutions per correlation type (see Table 5.7).

It was not possible to find suitable parameter values to reasonably solve complete graph
instances, except a few small ones. With increasing graph size the Subgradient Optimiza-
tion method took more and more iterations and was unable to derive good bounds. So we
will skip these instances for this algorithm.
Since the Volume Algorithm does not have this problem, and performs, as will soon be
seen, on the other instances also very well, we will from now on concentrate more on this
method, thereby going into more detail.
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5.4 Experimental Results of the Volume Algorithm
When the VA is used to solve the problem, we will denote the whole algorithm by KCMST-
LDVA, and like before, when KLS is used too, by KCMST-LDVA&KLS.
We will fix the parameter multiply to 0.67 and steps will be set to 20, as it was done in [2]
and [21], which seemed to be robust values. Contrary to the Subgradient Optimization
method the same values are suitable regardless of the graph type. The advanced update
scheme for the parameter α showed no advantage, merely a little overhead in running time,
so we will always use the simple one by setting optimalAlpha = 0 and further choose an
initial value of alphaStart = 0.1.

When dealing with plane graphs the same parameters selected for the Subgradient
Optimization method for these graphs will be used, including the settings in case of KLS
is applied. In Table 5.8 are given the results of KCMST-LDVA and KCMST-LDVA&KLS

with this configuration. The results of KCMST-LDVA and KCMST-LDSO (Table 5.5) look
quite the same, and all what was said before holds here too, also the same weakness when
applied to small plane graphs, i.e. being unable to find the optimal upper bound though
already having the optimal lower bound. The only really notable difference is that less
strongly correlated graphs are solved to optimality by KCMST-LDVA.
When comparing the results of KCMST-LDVA&KLS with those of KCMST-LDSO&KLS (Table
5.5), then it is seen that the former method produces more provably optimal solutions at
the larger graphs with 800 and 1000 nodes, though only a total of three, whereas the latter
method generally takes less iterations and thus requires less times.

Since we are more interested in optimal solutions and the difference of the running time
is anyway not large, we will prefer KCMST-LDVA&KLS. The running time of this method
on plane graphs is presented in the upper plot of Figure 5.2, showing for all correlation
types a more or less linear dependence on the graph size.

The parameter settings of KCMST-LDSO and KCMST-LDSO&KLS for maximal plane
graphs will also be used for KCMST-LDVA and KCMST-LDVA&KLS, since these val-
ues turned out to be suitable here too (including to use maxSteps = 500 instead of
maxSteps = 300 for P10000s). The only difference is not to use locally improved solutions
for updating the target value T . As both methods exhibit very small values of %-gap
on all maximal plane graphs and the average running times are again comparable (the
variant with Subgradient Optimization is once again faster, but it is only a question of a
few seconds) we will oppose the number of optimal solutions obtained, which is done in
Table 5.7. The result is quite interesting, revealing that when using no KLS the method of
choice is KCMST-LDSO, whereas KCMST-LDVA&KLS performs slightly better among the
variants with KLS, although it is worse on weakly correlated graphs. A possible reason why
KCMST-LDVA&KLS performs sometimes better than KCMST-LDSO&KLS may be because
it applies KLS to solutions being a little worse than in the latter method, thus leaving
more room for improvement instead of using it on probably locally optimal solutions. An
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corr

∑
Opt of KCMST-LD using

SO VA SO&KLS VA&KLS
u 44 43 52 56
w 39 26 53 47
s 15 12 52 56∑

98 81 157 159

Table 5.7: Number of provably optimal solutions on maximal plane graphs.

evidence for this are the mentioned fewer optimal solutions of KCMST-LDVA compared to
KCMST-LDSO.

In the end none of the two methods is clearly better than the other. It seems that
KCMST-LDVA&KLS is to prefer for uncorrelated and strongly correlated maximal plane
graphs and KCMST-LDSO&KLS in case of weak correlation. The average running time
of KCMST-LDVA&KLS depending on the number of nodes is displayed in the lower plot
of Figure 5.2, where there is clearly shown to be a linear dependence for all correlation
types. The progression of the lower and upper bound for three of the largest maximal
plane graphs (P12000u1, P12000w1 and P12000s1) is visualized at the left side of Figure 5.4. As
can be seen the algorithm shows the characteristic saw-tooth pattern for the upper bound
with a slower convergence at the end. The lower bound bears a certain resemblance to
this progress, but being updated less often with increasing correlation.

When the VA is applied to complete graphs we set maxSteps = 1000, thus allowing
a longer period of none or small improvement. First tests suggested that the variant of
KLS where information from solving the Lagrangian dual is used to guide the local search
is superior to the other two variants, thereby using the current Lagrangian multipliers de-
noted by λt in the VA (see Algorithm 4.1.2) to derive the modified profit values mentioned
in Section 4.4. Therefore when using KLS we choose klsType = 2, klsRetries = 100 and
klsMinGap = 0.99. Contrary to plane graphs we also update the target value T with
solutions produced by KLS, i.e. we set useLBfromKLS = 1.

The results of KCMST-LDVA and KCMST-LDVA&KLS on all complete graphs of test set
1 are given in Tables 5.10 and 5.11. The hardest instances to solve (when looking at the
resulting %-gap) for KCMST-LDVA up to 100 nodes are the strongly correlated graphs and
above the weakly correlated graphs, although they take less time than the former graphs.
Almost all uncorrelated and strongly correlated instances are solved to optimality when
n ≥ 120, except for K180u, but there was only 1 out of 10 instances not solved provably
optimal.

When running KCMST-LDVA&KLS on these instances then %-gap is always at least as
good (i.e. low) as without KLS applied, in fact in most cases even being zero. Further-
more the weakly correlated instances with n ≥ 120 are no longer a problem. It was again
found that all instances of uncorrelated graphs and one of K20w which were not solved to
optimality, except of K60u5, was due to the VA being unable to derive the optimal upper
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bound. This was again checked by running the algorithm a few times on these instances
and comparing the upper bounds with the solutions obtained in [33]. Fortunately this sort
of flaw occurs seldom and rather only on small graphs (actually supposed to be easier to
solve), but as we will see in Section 5.4.2, there is a possible way to circumvent this to a
certain degree.

We will use the same settings as for complete graphs for the large complete graphs
of test set 2. The results are presented in Table 5.12. We will begin by looking at the
results of KCMST-LDVA. This time all uncorrelated graphs are solved to optimality, and
the algorithm persists to deliver the worst results on the weakly correlated graphs. The
results on the strongly correlated graphs are twofold, being very satisfying up to 400 nodes,
but quite bad for n = 450 and n = 500, particularly the values of Opt.
Additionally applying KLS, which is done in KCMST-LDVA&KLS, yields superb results on
all large complete graphs. Finally the algorithm delivers for all 10 instances per graph the
optimal bounds, except for one of K300w. The effects of KLS will be addressed in more
detail in the next section.
The running time of KCMST-LDVA on all uncorrelated complete graphs (since using KLS
brought no improvement) as well as the running times of KCMST-LDVA&KLS on all weakly
and strongly correlated complete graphs are illustrated in Figure 5.3. The curves for
complete and large complete graphs are looking very similar. It can be seen that the times
of uncorrelated and weakly correlated graphs are nearly equal and showing a running time
about roughly proportional to n1.5, but bearing in mind that KLS is used for the latter
but not former graphs. The strongly correlated graphs clearly demand more iterations and
yielding a running time that seems to be proportional to n2.
The course of the lower and upper bound for three of the largest complete graphs, namely
K500u1, K500w1 and K500s1 are represented at the right side of Figure 5.4. Contrary to plane
graphs there is a rather smooth progression towards the optimal upper bound. Apart from
the beginning there is no big change in the course of the upper bound. Also unlike in the
case of plane graphs the algorithm starts out with extremely high values for the upper
bound, especially for the uncorrelated case. This was the reason to use another updating
scheme for the target value T for complete graphs, because otherwise the algorithm would
go against this by reducing the parameter f already too much at the beginning and yield
worse results.
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Figure 5.2: CPU-times of KCMST-LDVA&KLS on plane and maximal plane graphs.
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Figure 5.3: CPU-times of KCMST-LDVA on uncorrelated and KCMST-LDVA&KLS on
weakly and strongly correlated complete and large complete graphs.



5 Experimental Results of Lagrangian Decomposition 53

0 200 400 600 800

80
00

00
85

00
00

90
00

00
95

00
00

10
00

00
0

P12000u1

iteration

ob
je

ct
iv

e 
va

lu
e

upper bound
lower bound

0 500 1000 1500 2000 2500 3000

50
00

0
10

00
00

15
00

00
20

00
00

K500u1

iteration

ob
je

ct
iv

e 
va

lu
e

upper bound
lower bound

0 200 400 600 800 1000

45
00

00
50

00
00

55
00

00
60

00
00

P12000w1

iteration

ob
je

ct
iv

e 
va

lu
e

upper bound
lower bound

0 500 1000 1500 2000

10
00

0
20

00
0

30
00

0
40

00
0

60
00

0
K500w1

iteration

ob
je

ct
iv

e 
va

lu
e

upper bound
lower bound

0 200 400 600 800

35
00

00
40

00
00

45
00

00
50

00
00

55
00

00

P12000s1

iteration

ob
je

ct
iv

e 
va

lu
e

upper bound
lower bound

0 1000 2000 3000 4000 5000

50
00

10
00

0
20

00
0

50
00

0

K500s1

iteration

ob
je

ct
iv

e 
va

lu
e

upper bound
lower bound

Figure 5.4: Plot of the progression of lower and upper bound on some of the largest in-
stances of maximal plane and complete graphs (with logarithmized y-axis).
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5.4.1 Effect of KLS

Now we will consider the effects of the local search KLS in more detail for the graphs of
test set 2, since these are larger and thus harder to solve (except seemingly the smallest
graphs, which will be discussed in the next section). To see the difference of the results
with and without applying KLS more clearly, we present histograms of the running time
and boxplots of %-gap, the latter giving more information than by stating the average gap
and its standard deviation.

First we look at the results for the maximal plane graphs which are illustrated in Figures
5.5, 5.6 and 5.7 for the uncorrelated, weakly and strongly correlated graphs, respectively.
In case of maximal plane graphs we have used pure random search with klsType = 0.
As already mentioned and what can now be clearly seen is that the running time is al-
ways increased when using KLS. This increase is on average about 50% for uncorrelated,
40% for weakly and 30% for strongly correlated graphs. When examining the solutions
more closely that act as starting solutions for KLS, i.e. the feasible solutions generated
during the Lagrangian decomposition, then it turns out that all of them are already very
good (i.e. have a high objective value). Anyhow KLS is able to even improve the nearly
optimal incumbent uncorrelated solutions, where on average an increase of profit about
0.007% is achieved. There is a bit more room for improvement for the other two corre-
lation types, leading to an average increase of 0.035% for weakly and 0.05% for strongly
correlated graphs. To conclude, for maximal plane graphs KLS generally leads to lower
bounds that are either provably optimal (LB = bUBc) or it yields a very tight bound with
LB = bUBc − 1.

The plots for the large complete graphs are presented in Figures 5.8, 5.9 and 5.10 for
each correlation type. For this graph type we used guided KLS with klsType = 2. As
already mentioned before the algorithm solves all uncorrelated graphs to optimality even
without applying KLS, so using it does not improve %-gap or Opt but merely increases
the running time at most about 15%. The starting solutions are again very good, so only
an average increase of profit of about 0.25% occurs.
The effect on weakly correlated graphs is quite different. There the application of KLS
reduces the running time from 15% to 40%, getting less with increasing graph size. This
reduction is due to faster convergence because the optimal lower bound is found earlier
or in most cases at all, which happens for all instances but one of K300w. This time the
average increase of profit is about 5%.
Finally applying KLS on strongly correlated graphs leads again to a decrease of running
time between 10% and 18%, which is for graphs up to 400 nodes the only positive effect,
except of solving 10 instead of 9 instances to optimality for K350s. However for the two
remaining largest graphs K450s and K500s the number of optimal solutions Opt is increased
substantially, henceforth solving all 10 instances per graph to optimality. The average
relative increase of profit by KLS is the highest of all graphs, and ranges from about 13%
for K250s to about 23% for K500s. This is due to the starting solutions having the worst
objective value so far, but this circumstance seemingly helps in finding the best solution,
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since especially for strongly correlated complete graphs it is often found after applying
KLS to a rather bad feasible solution and thereby increasing the profit up to 40%.
In summary, applying KCMST-LDVA&KLS on complete graphs, with the variant of KLS
guided by information from solving the Lagrangian dual, almost guarantees to find the
optimal solution.

5.4.2 KP vs. E-kKP

As mentioned in Section 4.3 it is also possible to use a special variant of the knapsack
problem, the exact k-item knapsack problem, to solve the Lagrangian dual. This may
lead to a strengthened Lagrangian relaxation, which will be investigated in this section.
Therefore CPLEX 10.0, a commercial ILP solver from ILOG1 is used to solve the E-kKP.
KCMST-LDVA using E-kKP solved by CPLEX will be applied to those instances where
KCMST-LDVA using KP solved by the COMBO algorithm was unable to derive the op-
timal upper bound, among mostly uncorrelated graphs. The tests with CPLEX are run
on a Pentium IV having 2.8GHz and 2GB RAM using GCC 3.4. Since the computing
environment stated at the beginning of this chapter turned out to be comparable with
this one (the former is in fact only weaker to a small degree) we will use the results al-
ready obtained before for comparison. Both results of KCMST-LDVA are opposed in Table
5.4.2. We always applied the new variant to all 10 instances per graph to get a better
picture of it, apart from the largest complete graphs where only the relevant instances are
solved. When using CPLEX the running time is often hundred times more than with the
COMBO algorithm, but our interest concerns mainly the relative gap and especially the
upper bound. Therefore, when comparing the average upper bounds UB the variant using
E-kKP produces lower ones for nearly all graphs, the only exceptions being the graphs
P200,560w and the single instance K100u4, where it stays the same. Though the decrease
is only small it sometimes suffices to increase the number of instances solved to provable
optimality, since the lower bounds were seen to be optimal in most cases, only a corre-
sponding upper bound was missing, as is clearly seen for the graph P50,127u. Moreover it
happens that the decrease of the upper bound is accompanied by an increase of the lower
bound, thus having so to speak a positive influence on the whole process, for example when
applied to the single instance K180u4. Nevertheless even when using E-kKP the algorithm
is unable to find all optimal upper bounds, especially some instances of the small graphs
remain to be a problem.
The boxplot of %-gap of these results (except the two single instances) is shown in Figure
5.11.

All in all using E-kKP instead of KP does not strengthen the Lagrangian relaxation
much, and regarding the few better lower bounds it was already shown that using KCMST-
LDVA&KLS instead of KCMST-LDVA generally delivers better lower bounds too. Further
keeping in mind the drastic increase in running time when using E-KKP by solving it with

1see http://www.ilog.com/products/cplex/ (last checked on October 10, 2006)

http://www.ilog.com/products/cplex/
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Figure 5.5: Average time and %-gap of KCMST-LDVA and KCMST-LDVA&KLS on maximal
plane uncorrelated graphs.
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Figure 5.8: Average time of KMCST-LDVA and KMCST-LDVA&KLS on large complete un-
correlated graphs (boxplot of %-gap was omitted since all instances were solved
to optimality).

CPLEX, we will stick to solving KP with the COMBO algorithm. Although if necessary
one could use the former variant to possibly guarantee better bounds and thus a smaller %-
gap in case only a few optimal solutions are found with KP, which occurs for our instances
especially on rather small uncorrelated graphs.
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5.5 Comparison to Previous Results
Now we will compare the new results of the Lagrangian decomposition using the VA with
all results achieved before that are known and available to the author.
To be able to compare our results, especially the %-gap, with those presented in [42]
we must define some more attributes, since they compared the bounds derived through
Lagrangian relaxation with the optimal solution found by their B&B method. They gave
the relative error of the Lagrangian upper bound (ErrU), of the Lagrangian lower bound
(Errb

L) and the 2-opt lower bound (Err#
L ). We will formulate two more measures using

these:

%-gapb =
ErrU + Errb

L

100− Errb
L

· 100% (5.1)

which is the relative difference between pb and p, the Lagrangian lower and upper bound,
respectively, and

%-gap# =
ErrU + Err#

L

100− Err#
L

· 100% (5.2)

which is the relative difference between the 2-opt lower bound p# and again the Lagrangian
upper bound p (for definitions of ErrU , Errb

L, Err#
L , pb, p# and p see [42]).

The first gap, %-gapb, can be compared with our %-gap when the local search KLS is not
used, whereas %-gap# is comparable with our gap when using KLS.
As they gave no CPU-time of their Lagrangian relaxation we will list the times given for
the B&B method (now denoted by t[s]). Additionally we will state how many out of ten
instances were solved by them within 2000 CPU seconds (now denoted by Opt). Since they
used a IBM RS/6000 44P Model 270 workstation on a different set of randomly generated
instances, only a comparison of the order of magnitude of the values is possible.
We will also give the best results obtained by the B&C method presented in [33], stating
the average running time and the number of optimal solutions out of ten, again solved
within 2000 CPU seconds. The test set 1, presented in this work, is an extension of the
instances used in [33], so the same generated instances were used for testing. Additionally
the computing environment was the same as for the CPLEX tests done in the previous
section, thus being comparable to the newest results achieved in this thesis.

The results on plane graphs are opposed in Table 5.14 and for complete graphs in Table
5.15. Now we will look at the results of every correlation type of both graph types.
Since our developed algorithm is for some instances unable to derive the optimal upper
bound, the optimality of many actually optimal solutions cannot be proven. This occurs
especially for uncorrelated plane graphs up to P600,1680u. For these graphs the B&B algo-
rithm of Yamada and colleagues is suited best, but for the graphs P800,2240u and P1000,2800u

our algorithm outperforms the other two, being extremely fast and finding all optimal
solutions. For the graphs P50,127w and P100,260w we have again seemingly worse results due
to non-optimal upper bounds, though for the former graph are actually found 9 and for
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the latter even all 10 optimal solutions. All in all KCMST-LDVA&KLS performs best for
the remaining weakly correlated plane graphs, as well as clearly for all strongly correlated
plane graphs. The CPU-times of the compared methods on plane graphs are shown in
Figure 5.12.
Though for all instances of uncorrelated complete graphs but one (K60u5) the optimal solu-
tion was found by KCMST-LDVA&KLS, they can again not always be proven to be optimal.
For these rather rare cases the B&C algorithm in [33] is to prefer, otherwise KCMST-
LDVA&KLS yields good results. In case of weakly correlated complete graphs only two
solutions are not optimal, but one of K20w merely lacks the corresponding optimal upper
bound and K120w9 was found out to be solved to optimality in 7 out of 10 testruns. When
only considering the number of provably optimal solutions then the B&C method is the
winner, whereas when also taking the running time into account then KCMST-LDVA&KLS

is a good alternative.
Finally when looking at the results on the strongly correlated graphs our new algorithm
clearly outperforms the other two, like for strongly correlated plane graphs.
When comparing the relative gaps %-gapb and %-gap# of the Lagrangian relaxation used
in [42] with the values of %-gap of KCMST-LDVA and KCMST-LDVA&KLS, respectively,
clearly reveals an advantage of our method, producing a much tighter gap, in fact being
several orders of magnitude smaller. The second great advantage over the B&B as well as
the B&C algorithm is the small running time, which is especially apparent as the graphs
are getting bigger, as can be seen in Figure 5.13. The only disadvantage is the examined
fact that the derived upper bounds are in some cases not optimal, therefore reducing the
number of possible provably optimal solutions.
However, our new algorithm is likely the only one of these which can be (and in fact was)
successfully applied to the instances of test set 2, being to date unrivalled for such large
graphs.
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Figure 5.12: CPU-times of the different methods for plane graphs.
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Figure 5.13: CPU-times of the different methods for complete graphs.



6 Hybrid Lagrangian Evolutionary Algorithm for
the KCMST Problem

This chapter introduces a suitable coding for spanning trees, an EA for the KCMST
problem, building upon this coding, and presents two ways to combine the EA with the
Lagrangian algorithms presented in Chapter 4, resulting in a Hybrid Lagrangian EA.

6.1 The Edge-Set Coding Scheme
The kind of genotype, i.e the representation of a solution, is probably the most important
decision when designing an EA. It is a decisive factor regarding the performance of the
whole algorithm, furthermore all operators must be laid out accordingly. An adequate
representation for spanning trees is a so called edge-set introduced in Julstrom and Raidl
[24], see Figure 6.1 for an example. This coding scheme was shown by them to have
favorable properties compared to others used for this kind of problems so far. They also

1
3 2

4

6

5 7

8

9

{(1,3), (2,3), (3,5),
(4,5), (4,6), (5,7),
(7,8), (7,9)}

Figure 6.1: Example of an edge-set representation of a spanning tree.

described variations of Kruskal’s and Prim’s algorithm as well as a random-walk algorithm
for the purpose of generating random spanning trees (RSTs) for a given graph. These
algorithms can be used to create an initial diversified population. Further they presented
appropriate operators, among them the recombination of two spanning trees T1 and T2

represented as edge-sets. The idea is to merge both edge-sets and generate a spanning
tree using again one of the RST algorithms, i.e. T3 = RST (T1 ∪ T2). Using only parental
edges ensures strong heritability, but the constraints of the problem at hand may enforce
to use other edges as well, i.e. one of E − (T1 ∪ T2). They mentioned the possibility to
favor common edges, i.e. which appear in both parents, by always including them in the
offspring.
The two variants of mutation are either mutation by insertion, i.e. include a new edge
and remove another from the induced cycle (thus termed insertion-before-deletion), or
mutation by deletion, i.e. removing an edge, determine the separated components and
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reconnect them by a new edge (called deletion-before-insertion).
Additionally they described how to include heuristics in the EA based on probabilities
according to the edge-costs, thus probably improving its performance. We will present the
possible applications proposed by them:

• One can favor low-cost edges in the initialization phase by considering them first in
the RST algorithm, though this variant is only possible in case of Kruskal’s algorithm.
But one has to ensure diversified solutions. This method is more detailed in the next
section.

• When applying recombination one can select the (remaining) edges to be included in
the offspring according to their costs. This can be done via a tournament selection
or even selecting them in a greedy fashion.

• Finally the edge-costs can also be utilized by the insertion-before-deletion mutation.
There the unused edges to be inserted can be determined either via a tournament
or by using their cost-based rank and identify a rank by sampling a suitable random
variable, thus applying a rank-based selection. They concluded from experimental
results that the latter variant is more effective than a tournament. It will be explained
in the next section.

They also developed an EA for the degree-constrained minimum spanning tree problem
(d-MST), thereby including the above mentioned heuristics and further designing the op-
erators to generate only feasible solutions.

6.2 Evolutionary Algorithm for the KCMST Problem
Our EA, henceforth called KCMST-EA, is based on that described in [24] for the d-MST
problem, though adapted to the KCMST problem and extended where necessary. Since
we deal with a maximization problem we introduce edge-profits p′(e) > 0 (not to be
confused with the profit values p(e) given by a problem instance) instead of the edge-costs
mentioned before. How these edge-profits are determined will be explained later, for now
we just assume that they exist and that preferable edges of an instance have a high profit
and vice versa.

We apply a steady state EA with elitism, i.e. in each iteration two parents are selected
and recombined to generate one offspring which replaces in our case the worst chromosome
of the population, thereby always keeping the best chromosome in the population. To fa-
cilitate diversity no duplicate solutions are allowed. The fitness of a chromosome is simply
its objective value, i.e.

∑
e∈T p(e). Now the initialization phase as well as the operators of

KCMST-EA are described.

Initialization: We will only use the Kruskal-RST algorithm, since we want to use a
profit-based heuristic. By applying the suggestion of Julstrom and Raidl [24] adapted to
our problem, we start with sorting the edges according to decreasing profit. The first tree
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is built using this edge sequence, then the number of permuted edges is increased with
each tree using the formula

k = α(i− 1)n/P, (6.1)

where P is the population size, i = 1, . . . , P is the index of the next tree and α (set by the
program parameter heuinik) controls the degree of bias towards high-profit edges. The
higher α the more diversified is the initial population. Thus the determined amount of
the most profitable edges are permuted before running the Kruskal-RST algorithm. If
the generated tree T is infeasible because it does not satisfy the weight constraint, thus
w(T ) > c, it is randomly repaired. Thereby edges of the set E−T , i.e. the remaining edges
of the graph are selected at random to be included and it is tried to remove another edge
from the induced cycle which has more weight assigned, to derive a tree weighing less. In
case two ore more edges in the cycle have the same maximum weight, those with minimal
p(e) is chosen to be removed, thus favoring edges with higher profit. This is repeated until
the tree is feasible, which is guaranteed to happen.

Recombination: Here we use again the Kruskal-RST algorithm, because of the sim-
pler data structures applied. The recombination works like following. Given two parent
solutions T1 and T2, one can decide whether to include the edges T1∩T2 appearing in both
parents immediately in the offspring solution T3 or not, by setting the binary parameter
prefib. The remaining edges, either (T1 ∪ T2) − (T1 ∩ T2) or T1 ∪ T2 in case no common
edges were included, are examined in a specific order, defined by the parameter crotype:

0: In random order, favoring no edges over others, thus performing a random crossover.

1: In a greedy order, examining them according to decreasing profit p′(e).

2: Via a tournament with desired size heucrok, preferring edges with higher profit p′(e).

An example for a recombination where all common parental edges are included in the
offspring is illustrated in Figure 6.2.

Whereas it is guaranteed that a feasible solution can be found using exclusively the
merged edges of both parents (since both were feasible at least two feasible solutions can
be derived of the set), it is not assured that the method presented so far accomplishes
this. It may happen that the generated tree T3 is infeasible, i.e. it does not satisfy the
weight constraint, and thus w(T3) > c. If this is the case the solution is randomly repaired
like described for the initialization phase, but this time selecting the edges only of the set
(T1∪T2)−T3 at random. So it is ensured that the offspring consists only of parental edges,
yielding a strong heritability.

Mutation: Using the mutation operator should bring new information into a solution
and consequently into the whole population, thus diversifying the search to a certain degree.
We will only apply the insertion-before-deletion mutation, but with different selection-
schemes regarding the edge(s) to be included, given by the parameter heumut:
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(d) T3 = RST (T1 ∪ T2)(c) T1 ∩ T2 among T1 ∪ T2

(a) T1 (b) T2

Figure 6.2: Given the parent solutions (a) T1 and (b) T2, a offspring (d) T3 is generated of
the merged edges T1 ∪ T2 using the Kruskal-RST algorithm, thereby including
the common edges (c) T1 ∩ T2.

0: Choose them with a uniform probability favoring none of them.

1: Use a rank-based selection, by considering the edges in sorted order according to
decreasing profit p′(e), thus having a profit-based ranking, and sampling a random
variable

R = b|N (0, βn)|c mod m + 1 (6.2)

where N (0, βn) is a normally distributed random variable with mean 0 and standard
deviation βn. It holds that R ∈ [1, m] with m = |E|. This scheme’s bias towards
high-profit edges is adjustable via the parameter β, making the probability distribu-
tion more uniform with increasing size of β, which is set by the program parameter
heumutk.

When an edge e is selected for inclusion, another edge e′ from the induced cycle C must be
removed from the tree T . This edge is determined in the following way: examine the edges
of C − {e} in random order, thus using no heuristic, and check if the weight constraint
would still be satisfied after exchanging both edges, which is the case if

w(e′) ≥ w(T ) + w(e)− c. (6.3)
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If no such edge e′ is found, the mutation fails and T is left unchanged, otherwise replace
e′ with e, thereby using the first edge satisfying (6.3).

Local Search: Contrary to the mutation operator the local search leads to an intensi-
fication of KCMST-EA’s search. The local search applied is in general equal to KLS (Al-
gorithm 10 described in Section 4.4), it either chooses the edges randomly (klsTypeEA =
0) or greedily by examining them in the sequence according to decreasing profit p′(e)
(klsTypeEA = 1).

KCMST-EA implements the schema of the basic EA depicted in Algorithm 2 in Section
2.3 using the operators just described, in addition of probably applying a local search
operator after mutation.
If having no other information regarding an edge’s desirability, the often referred edge-
profits are determined by the ratio of profit to weight given by an instance:

∀e ∈ E : p′(e) = p(e)/w(e) (6.4)

as was already used for generating the initial feasible solution for the Lagrangian algo-
rithms.

6.2.1 Experimental Results of the KCMST-EA

We ran tests to investigate if the heuristics based on these straightforward profit values
presented above are of benefit. Thereby KCMST-EA was applied with a population of size
100 (popsize = 100) and run for 105 iterations (tgen = 100000) either without using any
profit-based heuristics, i.e. randomly permuting all edges for every generated tree when
initializing (heuinik = 0), using random-crossover (crotype = 0) and selecting the edges in
case of mutation at random (heumut = 0 and pmut = −1), or utilizing the profits wherever
applicable. In the latter case, denoted by KCMST-EAH we prefer profitable edges when
creating the initial population (heuinik = 1.5), determine the order of examined parental
edges via a binary tournament selection (crotype = 2 and heucrok = 2), select the edges
for mutation using the rank-based selection (heumut = 1 with heumutk = 1.5 and pmut =
−1) and apply the greedy variant of KLS (klsTypeEA = 1 with klsRetriesEA = 50) with
a probability of plocim = 0.2. These parameters, except of the population size and the
local search, were also used in [24]. Since the inclusion of common edges in the offspring
does not make use of any heuristic it is applied in both runs (prefib = 1).

The results on some plane and complete graphs are presented in Table 6.1. The fitness
(or objective value) of the best chromosome found, averaged over the 10 instances per
graph, is denoted by sol. The mean difference of sol between KCMST-EA and KCMST-
EAH is given by δsol. Further a paired t-test using a 95% confidence interval was made to
investigate if this difference is significant, giving the p-value which states the probability
that this specific difference occurred assuming the null hypothesis, i.e. both means are
equal, would be true. The results of KCMST-LD refer to those of KCMST-LDVA&KLS



6 Hybrid Lagrangian Evolutionary Algorithm for the KCMST Problem 75

Instance KCMST-LD KCMST-EA KCMST-EAH
δsol

t-Test
graphcorr LB t[s] sol t[s] sol t[s] p-value

P100,260u 7222.9 0.38 7216.4 14.71 7222.0 21.11 0.08% 2.29%
P100,260w 4167.9 0.36 4162.8 15.20 4165.5 21.91 0.06% 1.76%
P100,260s 4115.5 0.18 4113.2 18.18 4111.9 25.88 -0.03% 0.63%
P200,560u 14896.9 0.55 14851.7 28.77 14884.1 39.45 0.22% 2.07%
P200,560w 8432 0.36 8402.0 30.32 8409.0 41.24 0.08% 11.69%
P200,560s 8244.3 0.32 8236.2 37.25 8231.4 49.18 -0.06% 0.00%
P400,1120u 29735.1 1.15 29594.7 61.09 29671.3 78.37 0.26% 0.13%
P400,1120w 16794.9 0.77 16682.5 64.26 16718.7 81.23 0.22% 0.14%
P400,1120s 16500.3 0.58 16476.6 71.47 16469.1 98.19 -0.04% 0.74%
K100u 9680.0 1.07 9672.9 17.55 9508.3 21.55 -1.70% 0.00%
K100w 3421.4 1.02 3383.9 16.75 3179.2 22.05 -6.04% 0.00%
K100s 2771.9 2.05 2760.3 23.21 2707.4 25.52 -1.91% 0.00%
K200u 19739.4 5.55 19551.6 32.60 19302.2 46.89 -1.27% 0.00%
K200w 6928.0 5.49 6755.9 32.55 6328.7 43.01 -6.32% 0.00%
K200s 5572.0 12.86 5542.5 41.61 5431.7 49.99 -1.99% 0.00%
K300u 29770.6 19.20 29161.0 46.24 29114.4 76.78 -0.16% 14.27%
K300w 10734.0 20.86 10349.6 48.79 9778.4 68.08 -5.52% 0.00%
K300s 8372 48.64 8321.2 77.25 8153.6 78.89 -2.01% 0.00%

Table 6.1: Results of KCMST-EA with and w/o heuristics based on profits of (6.4).

presented earlier, except for uncorrelated complete graphs, where the results of KCMST-
LDVA are given.
The variant utilizing the profit-based heuristics produced only for uncorrelated and weakly

correlated plane graphs provably better solutions. For all other graphs it is better not to
use any heuristics based on these profits. This was especially apparent when generating the
initial population, where the average fitness for weakly and strongly correlated complete
graphs is doubled (or even more) when using no heuristic. Thus we can conclude that these
straightforward profit values determined by (6.4) are rather misleading and in generally not
to prefer. Unsurprisingly tests using the greedy edge selection in recombination (crotype =
1) showed consistently even worse results. After comparing the better solutions of either
KCMST-EA or KCMST-EAH with the optimal ones, it can be stated that the average
relative difference is mostly less than 1%, being in general even smaller for all plane graphs
and a bit higher for weakly correlated complete graphs (up to 3.58%). Although this might
be a satisfying result for some applications, the Lagrangian algorithm clearly generates
better solutions.
Finally when looking at the running time, it reveals the disadvantageous time consumption
of KCMST-EA, especially for plane graphs. This is because the algorithm’s performance
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highly depends on the size of the used edge-set. For this reason it is far more suitable for
complete graphs which have a relatively small edge-set contrary to plane or even maximal
plane graphs with several hundreds or thousands of nodes and accordingly huge spanning
trees.

6.3 Combining KCMST-LD and KCMST-EA to a Hybrid
Lagrangian EA

Having seen that KCMST-EA is inferior to KCMST-LD, we will now investigate if it is
beneficial to combine them. Thereby we will consider two collaborative combinations, run-
ning both algorithms either in sequential order starting with KCMST-LD or intertwined,
i.e. they are consecutively executed, each one for a specified amount of iterations. The
resulting algorithm is a Hybrid Lagrangian EA, which will be denoted by HLEA. Depend-
ing on the type of combination the algorithms exchange useful information. All possible
exchanges are illustrated in Figure 6.3 and will be described in the following:

KCMST-LD KCMST-EA

lower bound

upper bound

updated edge-profits and reduced edge list

Hybrid Lagrangian EA
best solution

Figure 6.3: Possible information exchange between Lagrangian and Evolutionary Algo-
rithms.

• Best solution: If KCMST-LD finds a solution with highest objective value so far,
i.e. a new best solution, it can be transferred to KCMST-EA by including it as a
chromosome using the edge-set representation. So the latter algorithm can use this
solution to recombine it with others.

• Upper bound: A derived (better) upper bound bUBc of KCMST-LD can be used
to update the objective value for termination tobj used by KCMST-EA, which ter-
minates as soon as the fitness of the best chromosome is equal to or greater than this
value. Provided that the upper bound is optimal enables KCMST-EA to stop if the
best solution is found, thus prevents unnecessary iterations.
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• Lower bound: If KCMST-EA generates a chromosome with highest fitness up to
now, this fitness value can be used to update the best known lower bound of KCMST-
LD. Like before this update can lead to an earlier termination. It can only be applied
in case of intertwined execution.

• Edge-profits: Since the profits determined by (6.4) were shown to be rather mis-
leading, especially for complete graphs, the edge-profits used by KCMST-EA are
updated on the basis of the Lagrangian multipliers:

p′i = pi − λi. (6.5)

These values were already successfully used for the local search KLS in case of com-
plete graphs.

• Reduced edge list: We build a set of edges EL while running KCMST-LD by
merging the edges of all derived feasible solutions:

EL =
⋃
e∈T

feasible solution T derived by KCMST-LD (6.6)

and subsequently restrict KCMST-EA to work on this reduced set. This might help
to intensify the search in the most promising regions of the search space, though
this depends on the quality of the merged solutions. At the best EL contains all
edges necessary to build an optimal solution. Using this procedure is restricted to
sequential execution.

This utilization of primal information produced by Lagrangian decomposition was
also presented in [21].

In the sequential execution KCMST-LD is run first, possibly followed by KCMST-
EA if the profit of the actual best solution does not match the latest upper bound. The
scheme of the sequential HLEA is shown in Algorithm 11. In case KCMST-EA is applied,
then prior to generating the initial population the edge-profits are set using the latest
Lagrangian multipliers, which should lead to a strengthening of all profit-based heuristics.
Further the set of edges which are considered is possibly reduced. Additionally tobj is set
to the best upper bound and the best solution of KCMST-LD is integrated as a chromo-
some into the population of KCMST-EA. After this KCMST-EA is run until it either finds
the optimal solution or terminates otherwise, e.g. because a maximal number of iterations
is reached.

Applying an intertwined execution is straightforward, too. The Intertwined HLEA
is depicted in Algorithm 12. As already mentioned before the two algorithms are run
consecutively and exchange information accordingly. This includes integrating a new best
solution of KCMST-LD into the population of KCMST-EA and updating tobj with the
actual best upper bound. Further the edge-profits of KCMST-EA are updated using the
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Algorithm 11: Sequential Hybrid Lagrangian EA
initialize KCMST-LD;
run KCMST-LD;
if LB = bUBc then // provably optimal solution found

return;
for i = 1 to m do

p′i = pi − λi; // set edge-profits of KCMST-EA

tobj = bUBc; // set objective value for termination of KCMST-EA
possibly reduce edge list E to EL;
initialize KCMST-EA;
integrate best solution of KCMST-LD as chromosome into population of KCMST-EA;
run KCMST-EA;

actual Lagrangian multipliers after each run of KCMST-LD. Every time KCMST-EA finds
a new best solution (i.e. chromosome), its objective value (i.e. fitness) is used to set the
best known lower bound utilized by KCMST-LD.

The intertwined HLEA is terminated if either of the two algorithms finds a provably
optimal solution. In case KCMST-LD terminates because its maximal amount of con-
secutively non-improving steps is reached, KCMST-EA is run one last time for iterEA
iterations.

Algorithm 12: Intertwined Hybrid Lagrangian EA
initialize KCMST-LD and KCMST-EA;
repeat

run KCMST-LD for iterLD iterations;
if LB = bUBc then // provably optimal solution found

break;
if KCMST-LD found new best solution then

integrate solution as chromosome into population of KCMST-EA;
if bUBc < tobj then

tobj = bUBc; // update objective value for termination of KCMST-EA

for i = 1 to m do
p′i = pi − λi; // update edge-profits of KCMST-EA

run KCMST-EA for iterEA iterations;
if KCMST-EA found new best solution then

update lower bound of KCMST-LD with fitness value;
until termination condition ;
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6.3.1 Experimental Results of the Sequential-HLEA

Since for nearly all complete graphs of test set 1 and 2, except of two instances, optimal
(though not always proven optimal) solutions were found by KCMST-LDVA&KLS (see pre-
vious chapter), we will not consider to run the Sequential-HLEA on them. Instead we focus
on the maximal plane graphs. A comparison of results obtained so far indicated that the
upper bounds are optimal contrary to some of the solutions. Further it was found that the
best solution of an instance (whether optimal or not) was in most cases exclusively built
of edges which occurred in previous solutions, thus the precondition for the application of
edge list reduction is given.

The parameters for KCMST-LD are those of KCMST-LDVA&KLS as in previous tests on
these graphs, i.e. maxSteps = 300 (only for P10000s setting maxSteps = 500), useLB-
fromKLS = 0, klsType = 0, klsRetries = 100, and klsMinGap = 0.995. KCMST-EA
will be run with all heuristics and KLS, thus setting heuinik = 1.5, crotype = 2, heucrok =
2, prefib = 1, pmut = −1, heumut = 1, heumutk = 1.5, plocim = 0.2, klsTypeEA = 0
and klsRetriesEA = 50. The population size is again 100 and as termination condition
we bound the maximal number of iterations to 5000 (tcgen = 5000) for graphs up to 8000
nodes and to 10000 (tcgen = 10000) for the two remaining larger graphs. Finally the
parameters of HLEA for sequential execution and reduced edge list for KCMST-EA are
execOrder = 0 and reducedEL = 1.

The amount of possible edge list reduction, i.e. (|E| − |EL|)/|E| ∗ 100%, is stated by
red. The number of KCMST-EA iterations, averaged only over those instances where it
was applied, is given by iterEA and OptEA denotes the number of optimal solutions (among
Opt) which were found by KCMST-EA. The remaining attributes were already introduced
in Table 5.1. The results are presented in Table 6.2. We will compare them with those of
KCMST-LDVA&KLS given in Table 5.9.

Applying the Sequential-HLEA instead of KCMST-LD improves most notably the results
on weakly correlated graphs, by now solving all instances to provable optimality. More-
over the highest possible edge list reduction, about 45%, can be noticed on these graphs,
seemingly intensifying the search of the algorithm as intended. The results on uncorrelated
graphs are only improved to a small degree, but they have already been very satisfying
before. The execution of KCMST-EA after KCMST-LD rather seems to effectively com-
pensate for the unsteady success of KLS applied in KCMST-LD. The uncorrelated graphs
can be reduced about 39%. Nearly no improvement is obtained on the strongly correlated
graphs, which is first of all because KCMST-LD with KLS applied solved almost all of
them to optimality. In the rare case when this was not possible, KCMST-EA found the
optimal solution of half of these instances (precisely for 3 out of 5). KCMST-EA does not
seem to be very succesful on strongly correlated maximal plane graphs, at least not when
it comes to the hard task of finding the optimal solution. This is probably mainly due to
the lowest possible edge list reduction, which is only about 23%.
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All in all the Sequential-HLEA clearly improves the results on maximal plane graphs
when compared to those of KCMST-LD, since it solves 177 of 180 instances provably op-
timal (by contrast KCMST-LDSO&KLS: 157 and KCMST-LDVA&KLS: 159). Furthermore it
accomplishes to derive superb solutions unregarded the type of correlation. The latter was
not so by solely using KCMST-LDVA&KLS. Another test run of the Sequential-HLEA with
applying the settings of KCMST-LDSO&KLS yielded notable worse results on the strongly
correlated graphs. This is because the latter variant was already shown to find fewer op-
timal solutions as the variant with VA as well because KCMST-EA is weakest on these
graphs, which leads to an unfavorable combination. Thus the Sequential-HLEA is better
applied with the Volume Algorithm, at least on these instances.

Though KCMST-EA is generally slowest on plane graphs having many nodes, the as-
signed edge-profits and the edge list reduction yield an intensified search, mostly leading
to (relatively) few necessary iterations until the optimal solution is found. This allows to
bind the maximal number of iterations by a reasonably small value, thereby also decreasing
the maximal time overhead in case no optimal solution can be found.

6.3.2 Experimental Results of the Intertwined-HLEA

The proposed Intertwined-HLEA will be applied on some complete and big complete
graphs. Although it is not very likely that there is an improvement over the results of
KCMST-LDVA&KLS, we will investigate the behavior and the effects of the hybrid algo-
rithm, especially the performance of KCMST-EA. The latter algorithm will once again be
used without and with the profit-based heuristics.

The settings of KCMST-LD are those of KCMST-LDVA&KLS as supplied before for (large)
complete graphs: maxSteps = 1000, useLBfromKLS = 1 and in case of weak or strong
correlation we set klsType = 2, klsMinGap = 0.99 and klsRetries = 100, whereas for
uncorrelated graphs KLS will not be used. The variant of KCMST-EA and KCMST-EAH

(now denoted as KCMST-EAH-TX because of the tournament crossover) without and with
applying profit-based heuristics, respectively, is equal to those described in Section 6.2.1.
The only exception is that due to the worse initial population (i.e. having a low average
fitness) created for weakly and strongly correlated graphs when using the straightforward
profits of (6.4), we always set heuinik = 0 for these two correlation types. Unlike to
uncorrelated graphs, where setting heuinik = 1.5 as suggested in [24] generally yields an
initial population with an average fitness value increased up to 50%. A third run over all
10 instances per graph will be made using the same settings as KCMST-EAH-TX but a
greedy crossover, i.e. setting crotype = 1, which will be denoted as KCMST-EAH-GX. The
intertwined execution is selected with execOrder = 0, and in each cycle KCMST-LD is
performed for 100 iterations (iterLD = 100) and KCMST-EA for 300 (iterEA = 300).

The results according to these settings are given in Table 6.3. In addition to former
attributes we state again iterEA, but this time it is the number of iterations of KCMST-
EA averaged over all 10 instances since it is obviously applied everytime, sol is the average
fitness of the best chromosomes generated by KCMST-EA, whereas solutions integrated
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from KCMST-LD do not count as being generated. If additionally a superscript number is
given, i.e. soln, then n states how many of the optimal solutions were found by KCMST-
EA. The information exchange is illustrated by stating the values sl,e and se,l, which are
the average number of solutions transferred from KCMST-LD to KCMST-EA and the
average number of solutions (chromosomes) generated by KCMST-EA that updated the
lower bound of KCMST-LD, respectively. Thus only one of the latter chromosomes can
be the best one generated.

Since the upper bounds were already given in Tables 5.10, 5.11 and 5.12 and all provably
optimal solutions were found (except for K100u4 because of the non-optimal upper bound)
we omit these values.

With increasing exploitation of the edge-profits in KCMST-EA via the heuristics, the
fitness of its average best solutions is increasing, too. At the same time sl,e decreases,
i.e. fewer solutions can be transferred from KCMST-LD to KCMST-EA since the latter
algorithm generates good solutions on its own. In fact these solutions are increasingly more
often than not better than those of KCMST-LD, which is seen by the notable increase of
se,l. The positive effect of the heuristic is also apparent when considering the number
of optimal solutions found by KCMST-EA: none when using no heuristic at all, 11 with
rank-based selection for mutation and tournament selection for recombination and 23 when
using greedy edge selection for recombination instead.

Whereas KCMST-EA clearly benefits from the intertwined execution by receiving better
solutions, and probably use them to generate even better ones, and by utilizing the updated
edge-profits, the only advantage for KCMST-LD would be to receive the optimal lower
bound from KCMST-EA before deriving it itself. Although this occurs for some instances,
the number of average iterations never decreased significantly. Furthermore the overall
running time is increasing on all graphs, at most about 20% to 30%. None the less
applying the Intertwined-HLEA has a positive effect, namely better solutions right from
the start for weakly and strongly correlated graphs and generally more updates of the
best lower bound for all graphs. Thus the lower bound is steadily higher when applying
the Intertwined-HLEA instead of solely KCMST-LD, which would clearly be an advantage
if a time limit were given. This effect is illustrated in Figure 6.4, again for three of
the largest complete graphs. Thereby showing the resulting lower bound of the applied
variants of the Intertwined-HLEA, using different settings for KCMST-EA, on the left side
and the comparison of the corresponding lower bound of KCMST-LD (using the settings
as described above) and those of the best performing Intertwined-HLEA run on the right
side (whereas e.g. Intertwined-HLEAH-GX means using KCMST-EAH-GX).



6 Hybrid Lagrangian Evolutionary Algorithm for the KCMST Problem 83

In
st

an
ce

In
te

rt
w

in
ed

-H
L

E
A

g
ra

p
h

co
r
r

L
B

u
si

n
g

K
C

M
S

T
-E

A
u

si
n

g
K

C
M

S
T

-E
A

H
-T

X
u

si
n

g
K

C
M

S
T

-E
A

H
-G

X

t[
s]

it
er

it
er

E
A

so
l

s l
,e

s e
,l

t[
s]

it
er

g
en

so
l

s l
,e

s e
,l

t[
s]

it
er

g
en

so
l

s l
,e

s e
,l

K
1
0
0
u

96
98

.0
1.

60
10

40
29

70
84

83
.6

8
2

1.
95

10
82

31
20

96
93

.3
1

3
8

2.
05

10
44

30
60

96
95

.4
3

2
8

K
1
0
0
w

34
21

.4
1.

56
76

5
21

30
32

66
.2

6
4

1.
78

75
8

21
60

33
91

.3
3

6
1.

70
74

8
21

00
34

01
.2

1
2

7

K
1
0
0
s

27
71

.9
2.

91
13

40
38

40
27

43
.3

5
7

3.
26

13
24

38
10

27
66

.8
4

9
3.

17
13

30
38

10
27

67
.9

2
11

K
2
0
0
u

19
73

9.
4

6.
97

15
33

44
40

17
80

0.
1

11
3

8.
43

15
28

44
10

19
73

5.
84

4
14

8.
18

14
44

41
73

19
73

7.
73

4
14

K
2
0
0
w

69
28

.0
7.

97
11

54
32

70
67

30
.4

8
5

8.
27

10
83

31
20

68
86

.6
3

8
8.

00
10

80
31

20
68

91
.8

2
9

K
2
0
0
s

55
72

.0
16

.0
4

22
97

67
20

55
24

.6
9

10
17

.9
2

23
28

68
40

55
63

.4
7

14
17

.9
1

23
56

69
30

55
64

.0
6

18

K
3
0
0
u

29
77

0.
6

23
.0

2
20

25
59

10
28

51
5.

2
13

5
25

.5
1

20
54

60
30

29
76

7.
51

4
17

25
.5

6
19

43
56

79
29

76
9.

15
4

19

K
3
0
0
w

10
73

4.
1

24
.1

1
14

46
41

70
10

47
9.

0
9

9
26

.0
8

14
70

42
60

10
68

0.
3

4
11

26
.0

8
14

62
42

30
10

68
1.

9
3

11

K
3
0
0
s

83
72

.0
57

.6
2

34
23

10
11

0
83

13
.1

11
18

62
.9

6
35

37
10

47
0

83
57

.1
9

16
62

.4
5

34
90

10
30

0
83

62
.0

3
7

27

K
4
0
0
u

39
81

8.
0

57
.6

8
26

15
77

10
38

97
0.

9
15

7
59

.0
2

25
23

74
40

39
81

5.
9

4
22

60
.1

3
25

46
75

00
39

81
6.

13
3

25

K
4
0
0
w

14
34

2.
2

57
.9

0
18

00
52

50
13

83
7.

7
13

9
60

.9
8

18
14

53
10

14
26

4.
8

5
14

60
.2

7
17

92
52

20
14

27
8.

2
4

14

K
4
0
0
s

11
17

2.
0

14
9.

22
47

38
14

07
0

11
08

1.
4

7
25

15
5.

59
47

35
14

09
5

11
14

2.
91

8
16

15
5.

85
47

53
14

07
8

11
15

1.
01

7
39

K
5
0
0
u

49
86

0.
1

11
7.

30
31

20
92

10
48

92
9.

1
15

10
12

2.
25

31
39

92
62

49
85

8.
04

5
27

12
7.

48
32

04
94

50
49

83
9.

11
5

29

K
5
0
0
w

17
95

0.
0

12
5.

75
23

30
68

40
17

54
8.

6
13

14
13

0.
53

23
21

68
10

17
83

4.
7

6
17

12
9.

44
22

78
66

60
17

87
3.

4
5

18

K
5
0
0
s

13
97

2.
0

31
4.

93
57

93
17

22
0

13
86

9.
3

11
28

32
2.

02
57

59
17

08
5

13
92

5.
4

8
19

32
0.

91
57

15
16

95
5

13
96

1.
83

7
43

T
ab

le
6.

3:
R

es
ul

ts
of

In
te

rt
w

in
ed

-H
LE

A
on

so
m

e
(l

ar
ge

)
co

m
pl

et
e

gr
ap

hs
.



6 Hybrid Lagrangian Evolutionary Algorithm for the KCMST Problem 84

0 500 1000 1500 2000 2500 3000

40
00

0
42

00
0

44
00

0
46

00
0

48
00

0
50

00
0

K500u1

iteration

ob
je

ct
iv

e 
va

lu
e

lower bound of Int.−HLEA
lower bound of Int.−HLEA_H−TX
lower bound of Int.−HLEA_H−GX

0 500 1000 1500 2000 2500 3000

40
00

0
42

00
0

44
00

0
46

00
0

48
00

0
50

00
0

K500u1

iteration
ob

je
ct

iv
e 

va
lu

e

lower bound of KCMST−LD
lower bound of Int.−HLEA_H−GX

0 500 1000 1500 2000

14
00

0
15

00
0

16
00

0
17

00
0

18
00

0

K500w1

iteration

ob
je

ct
iv

e 
va

lu
e

lower bound of Int.−HLEA
lower bound of Int.−HLEA_H−TX
lower bound of Int.−HLEA_H−GX

0 500 1000 1500 2000

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
K500w1

iteration

ob
je

ct
iv

e 
va

lu
e

lower bound of KCMST−LD
lower bound of Int.−HLEA_H−TX

0 1000 2000 3000 4000 5000 6000

13
75

0
13

80
0

13
85

0
13

90
0

13
95

0

K500s1

iteration

ob
je

ct
iv

e 
va

lu
e

lower bound of Int.−HLEA
lower bound of Int.−HLEA_H−TX
lower bound of Int.−HLEA_H−GX

0 1000 2000 3000 4000 5000

60
00

80
00

10
00

0
12

00
0

14
00

0

K500s1

iteration

ob
je

ct
iv

e 
va

lu
e

lower bound of KCMST−LD
lower bound of Int.−HLEA_H−GX

Figure 6.4: Lower bounds of Intertwined-HLEA using different variants of KCMST-EA
and comparison of best variant to KCMST-LD against iterations of the latter.
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Everything was implemented in C++ using the GCC 4.0.3 compiler on a Pentium M
1.6GHz with 1.25GB RAM.
LEDA [39], a C++ class library for efficient data types and algorithms, was used when-
ever possible. Further EAlib [38], a problem-independent C++ library suitable for the
development of efficient metaheuristics for COPs, was especially used to implement the
Evolutionary Algorithm (KCMST-EA), as well as for parameter handling and random
number generation.
A plane graph is represented by a 2-dimensional hash map and a complete graph by a
2-dimensional array, both holding for a pair of node indices the corresponding edge index.

7.1 Adapted COMBO Algorithm
The COMBO algorithm is available online1 provided by David Pisinger. Since the La-
grangian multipliers λi, i = 1, . . . ,m are double-values, but the algorithm only works with
integer values of profits and weights, the former values have to be transformed to a suitable
integer value. To obtain a certain degree of precision the double-values are multiplied by
106 for plane graphs and 108 for complete graphs and transformed to an integer-value.
These multiplier values are different because of the varying number of nodes of plane and
complete graphs, which corresponds to the number of items which will be chosen. Setting
them too small was shown to probably result in the inability to derive the optimal upper
bound, so we chose rather big values. Yet this conversion has the side effect of having high
profit values afterwards which can lead to an overflow in the course of the computation.
Due to this the COMBO algorithm must be adapted to handle bigger values by introducing
larger variable types for some macros and declarations. Another small change of the item
structure is necessary, to include the item number initialized with the index of the item,
because it is needed afterwards to set the variable vector y ∈ {0, 1}m corresponding to the
items. All these changes applied to the original file combo.c are shown in Listing 7.1, of
course the header file must be changed correspondingly, too.

7.2 Class Diagram
The class diagram of all classes involved is shown in Figure 7.1. For the sake of completeness
the classes of EAlib are included too, see [38] for further details. We give a short description
of the created classes:

1see http://www.diku.dk/~pisinger/codes.html (last checked on October 10, 2006)

http://www.diku.dk/~pisinger/codes.html
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. . .
/∗ s e c t i o n ’ macros’− l ong in s t ead o f i n t : ∗/
#define NO(a , p) ( ( long ) ( ( p) − ( a)−>f i tem + 1))
#define DIFF(a , b) ( ( long ) ( ( ( b)+1) − ( a ) ) )
. . .
/∗ s e c t i o n ’ type d e c l a r a t i o n s ’ − l ong long in s t ead o f long and

long doub le in s t ead o f doub le ∗/
typedef long long i t ype ; /∗ i tem p r o f i t s and we i gh t s ∗/
typedef long long stype ; /∗ sum of p r o f i t or we igh t ∗/
. . .
typedef long double prod ; /∗ product o f s t a t e , item ∗/
. . .
/∗ i tem record ∗/
/∗ i nc luded the item number ∗/
typedef struct {

i type p ; /∗ p r o f i t ∗/
i t ype w; /∗ weigh t ∗/
boolean x ; /∗ s o l u t i o n v a r i a b l e ∗/
int number ; /∗ number o f item ∗/

} item ;

Listing 7.1: Changes to the standard COMBO algorithm in file combo.c.

• kcmstLD: Consists of all algorithms presented in Chapter 4. Because all procedures
and functions are either problem specific or directly use problem specific data to
speed up the computation, and are thus not meant to be reused, they were not
decomposed into more classes.

• edgeListChrom: The base class of the chromosome used in [24] (i.e., the edge-set
representation), derived from the abstract class chromosome in EAlib and containing
general purpose methods like ranking the parental edges used in recombination or
selecting an edge for mutation, both according to a chosen method (i.e. with or
without any profit-based heuristic).

• kcEdgeListChrom: The chromosome class for the KCMST problem, with problem
specific methods for initialization, recombination, mutation, repair and local search,
see Section 6.2.

• kcmstSteadyStateEA: The class of an EA for the KCMST problem derived from
the EAlib class steadyStateEA. It consists of methods from steadyStateEA adapted
to our needs, like extending the method for performing a single generation by a local
search option, as well as methods to integrate solutions from and export to integer
arrays.
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EAlib 2.0

chromosome

edgeListChrom

kcEdgeListChrom

ea_base

ea_advbase

steadyStateEA
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population
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*

1 1
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Figure 7.1: UML class diagram.

• kcmstHLEA: The class of the algorithm presented in Section 6.3. It combines kcmstLD
and kcmstSteadyStateEA and is responsible for the appropriate information ex-
change in case of sequential or intertwined execution.

7.3 Program Parameters
Though all parameters were already mentioned at the appropriate place throughout the
work, they will be summarized in this section. Those of the program kcmstld, which
implements KCMST-LD, are given in Table 7.1. The additional parameters of the program
hlea, the implementation of the Hybrid Lagrangian EA (HLEA) using KCMST-EA, are
listed in Table 7.2 whereas the parameters of EAlib used for KCMST-EA are given in
Table 7.3. KCMST-EA is only used in combination with KCMST-LD in HLEA, since it
is not intended to be run solely. For other parameters, e.g. other possible termination
conditions, that apply to every class derived of steadyStateEA (contained in EAlib) and
thus to KCMST-EA implemented by kcmstSteadyStateEA, see [38].
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Parameter Description
ifile Name of instance file (with and w/o directory).
idir Base directory of instance file (not necessary if absolute posi-

tion of file is given in ifile).
isP lane Whether the graph is plane or not.
steps Number of consecutive non-improving steps before changing

the coefficient f .
multiply The coefficient f is multiplied by this value when altered.
maxSteps Number of maximal consecutive non-improving steps (i.e.

while LB ≥ bUBc) before terminating.
volAlg If Volume Algorithm is used instead of Subgradient Optimiza-

tion.
optimalAlpha Determine αopt in case volAlg = 1.
alphaStart The start value of α.
mstAlg Selects the algorithm to compute the MST, see Section 2.6.
klsType The edge selection scheme in KLS, see getNextEdge() in Sec-

tion 4.4.
klsRetries The number of retries of KLS.
klsMinGap The minimum gap when KLS starts, i.e. as soon as LB/UB ≥

klsMinGap.
useLBfromKLS If lower bounds derived by KLS are used for updating the

target value T .

Table 7.1: Program parameters of kcmstld (KCMST-LD).
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Parameter Description
heuinik Used factor for random initialization, see α in (6.1).
crotype The type of crossover (0:RX, 1:GX, 2:TX).
heucrok Tournament size in case crotype = 2.
prefib If edges occurring in both parents are preferred.
heumut Used mutation-heuristic (0:UNIF, 1:NORM).
heumutk Used factor for rank-based selection of an edge, see β in (6.2).
klsTypeEA The edge selection scheme of KLS in EA (0: random, 1:

greedy).
klsRetriesEA The number of retries of KLS used in EA.
execOrder The type of execution of LD and EA (0: sequential, 1: inter-

twined).
reducedEL If reduced edge list should be used for the EA in case

execOrder = 0.
iterLD The number of consecutive iterations of LD in case

execOrder = 1.
iterEA The number of consecutive iterations of the EA in case

execOrder = 1.

Table 7.2: Program parameters of hlea (HLEA using KCMST-EA) in addition to those
in Table 7.1.

Parameter Description
maxi Must be set to 1 since we are maximizing.
pmut Probability/rate of mutating a new chromosome.
plocim Probability with which locallyImprove (hence KLS) is called

for a new chromosome.
tgen The number of generations until termination.

Table 7.3: Additional program parameters of hlea from EAlib, used in KCMST-EA.
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Parameter Description
seed The seed value for the random number generator.
graphType The type of graph (0=plane, 1=complete).
corr The type of correlation (u, w or s).
nodes The number of nodes of the graph.

Table 7.4: Parameters of instance generator gengraph.

7.4 Instance Generators
The instance generator mstkp of Yamada et al. for plane and complete graphs was already
used in [33], thereby slightly modified to provide a more convenient interface and named
mstkp2. We will give the usage message (shown when run without a parameter):

Usage: ./mstkp2 seed graph-type graph correlation

seed: integer value
graph-type: 0=plane,1=complete
graph: p___x___ for plane graph or number of nodes in case of

complete graph
correlation: 0=uncorrelated, 1=weakly correlated and

2=strongly correlated

examples:
./mstkp2 2 0 p400x1120 1
./mstkp2 7 1 100 2

The parameter sequence is fixed, whereas the knapsack constraint is hardcoded into the
program for both graph types, using the formula presented in Section 5.1. The program
uses the random number generator of the C++ standard library. The generator mstkp2
was used to create the instances of test set 1. The 10 random instances per graph and
correlation type were generated by running mstkp2 with a seed value ranging from 1 to
10.

Our new instance generator gengraph, for maximal plane and complete graphs, uses
LEDA to create random maximal plane graphs, whereas the parameter handling routine
and the random number generator (being more reliable than that of the C++ standard
library) of EAlib is applied. The generator is configured by the parameters in Table 7.4.
It was used to generate the instances of test set 2, thereby proceeding as described before.
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This thesis proposed a Lagrangian decomposition (LD) approach, an Evolutionary Algo-
rithm (EA) and a Hybrid Lagrangian EA (HLEA) which combines both, for solving the
Knapsack Constrained Maximum Spanning Tree (KCMST) problem.

The LD divides the problem into the Maximum Spanning Tree (MST) problem and
the Knapsack Problem (KP). Suitable MST algorithms for the different graph types were
implemented and a slightly adapted version of the publicly available COMBO algorithm, an
enhanced Dynamic Programming algorithm, was used for the KP. To solve the Lagrangian
dual problem the Subgradient optimization method as well as the more extended Volume
Algorithm were applied. The solution of the MST subproblem, produced in every iteration,
turned out to be quite often feasible, with increasing profit towards the end of the process.
This can already be seen as a simple Lagrangian heuristic. To strengthen it, a problem
specific local search was devised, which can be applied in a random or greedy variant.

Instances with plane graphs up to 1000 nodes, maximal plane graphs up to 12000 nodes
and complete graphs up to 500 nodes were generated, thereby using three different cor-
relations between profit and weight of an edge. Experimental results showed that the
LD algorithm produces in almost all cases optimal upper bounds, only failed to do so for
some instances of the smaller graphs, whereas only the Volume Algorithm was suited for
all graph types. Although the generated lower bounds were generally good, the applica-
tion of the local search towards the end of the process led for some graphs to impressive
improvements. A comparison to previous results of exact methods showed that the LD
algorithm is superior on all strongly correlated graphs and mostly to prefer for the other
graphs as well, especially when taking the small running time into account. Due to the
latter the algorithm was also successfully applied on much larger graphs. The only problem
remained the few non-optimal upper bounds, making it impossible to prove the optimality
of actually optimal solutions. It was tried to alleviate this by strengthening the LD with
using the exact k-item KP (E-kKP) instead of the KP, but even then not all optimal upper
bounds could be derived, besides resulting in a much worse running time.

Further a suitable EA was developed using the edge-set coding scheme, offering strong
locality, and operators, including the same local search as the LD algorithm, working on
this representation. These operators were designed to produce only feasible solutions and
to possibly utilize heuristics based on edge-profits. It was also ensured that the mutation
operator exhibits strong heritability. Tests using this EA suggested that applying the
heuristics based on straightforward edge-profits, derived from the data given by an instance,
are not of benefit. Though the best produced solutions are quite good, the EA is inferior
to the LD algorithm, also in terms of run-time.
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In the end both methods were appropriately combined, resulting in the HLEA. Thereby
two possible collaborative combinations were considered, namely to run them either in se-
quential order or intertwined. In both cases the algorithms exchange as much information
as possible. The Sequential-HLEA was applied to maximal plane graphs, where the opti-
mal lower bound was sometimes missing. As it turned out, the algorithm was able to find
it for almost all instances, due to the EA utilizing the heuristics based on the Lagrangian
multiplier values. The effect of the Intertwined-HLEA was tested on complete graphs.
Its application resulted in better solutions at the beginning and throughout the solution
process, when compared to the LD algorithm. So if an additional time limit would be set,
the Intertwined-HLEA is to prefer.

It would be of interest to create instances with other correlation types, since those that
were generated were almost all solved to optimality, regardless of the size. Even better
would be real-world instances, allowing to investigate the practical applicability of the
devised algorithms.

Since the obtained bounds (both lower and upper) are very tight, in fact mostly optimal,
a B&B algorithm could be devised utilizing these bounds by applying the LD algorithm
instead of a Linear Programming relaxation. This would finally result in provably optimal
solutions for all instances. Though this would particularly be useful for those few rather
small graphs where it was not possible to derive the optimal upper bound, they were
already solved to optimality in short time by our former B&C algorithm [33]. Additionally
the running time of this B&B algorithm on large graphs might be worse than applying
the presented hybrid algorithm twice or more and thereby probably finding the optimal
solution.

Another potentially promising attempt would be to use a construction heuristic by
utilizing the Lagrangian multiplier values as was successfully done for the local search and
the EA. A suitable metaheuristic for this could be the Ant Colony Optimization (ACO)
framework [8].



Bibliography

[1] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Com-
putation. Institute of Physics Publishing and Oxford University Press, 1997.

[2] L. Bahiense, F. Barahona, and O. Porto. Solving steiner tree problems in graphs with
lagrangian relaxation. Journal of Combinatorial Optimization, 7(3):259–282, 2003.

[3] F. Barahona and R. Anbil. The volume algorithm: producing primal solutions with
a subgradient method. Mathematical Programming, 87(3):385–399, 2000.

[4] J. E. Beasley. Lagrangian relaxation. In C. R. Reeves, editor, Modern heuristic
techniques for combinatorial problems, pages 243–303. John Wiley & Sons, Inc., New
York, NY, USA, 1993.

[5] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

[6] A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger. Approximation algorithms
for knapsack problems with cardinality constraints. European Journal of Operational
Research, 123:333–345, 2000.

[7] R. Diestel. Graph Theory. Springer-Verlag, Heidelberg, 2005.

[8] M. Dorigo and T.Stützle. Ant Colony Optimization. MIT Press, 2004.

[9] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer, 2003.

[10] M. L. Fisher. The Lagrangian Relaxation Method for Solving Integer Programming
Problems. Management Science, 27(1):1–18, 1981.

[11] M. L. Fisher. An application oriented guide to Lagrangean Relaxation. Interfaces,
15:10–21, 1985.

[12] D.B. Fogel and Z. Michalewicz. How to Solve It: Modern Heuristics. Springer, 2000.

[13] A. Frangioni. About Lagrangian Methods in Integer Optimization. Annals of Opera-
tions Research, 139(1):163–193, 2005.

[14] M. L. Fredman. On the efficiency of pairing heaps and related data structures. J.
ACM, 46(4):473–501, 1999.



Bibliography 94

[15] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan. The pairing heap: a
new form of self-adjusting heap. Algorithmica, 1(1):111–129, 1986.

[16] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM, 34(3):596–615, 1987.

[17] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, San Fran-
cisco, 1979.

[18] M. Gendreau and J.-Y. Potvin. Metaheuristics in Combinatorial Optimization. Annals
of Operations Research, 140(1):189–213, 2005.

[19] F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 13:533–549, 1986.

[20] M. Guignard. Lagrangean Relaxation. Top, 11(2):151–228, 2003.

[21] M. Haouaria and J. C. Siala. A hybrid Lagrangian genetic algorithm for the prize
collecting Steiner tree problem. Computers & Operations Research, 33(5):1274–1288,
2006.

[22] M. Held and R. M. Karp. The travelling salesman problem and minimum spanning
trees. Operations Research, 18:1138–1162, 1970.

[23] M. Held and R. M. Karp. The travelling salesman problem and minimum spanning
trees: Part II. Mathematical Programming, 1(1):6–25, 1971.

[24] B. A. Julstrom and G. R. Raidl. Edge sets: an effective evolutionary coding of
spanning trees. IEEE Transactions on Evolutionary Computation, 7(3):225–239, 2003.

[25] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer Verlag, 2004.

[26] J. B. Kruskal. On the shortest spanning subtree of a graph and the travelling salesman
problem. In Proceedings of the American Mathematical Society, volume 7, pages 48–
50, 1956.

[27] C. Lemaréchal. Lagrangian Relaxation. In Computational Combinatorial Optimiza-
tion, pages 112–156, 2001.

[28] D. Lichtenberger. An extended local branching framework and its application to the
multidimensional knapsack problem. Master’s thesis, Vienna University of Technology,
Institute of Computer Graphics and Algorithms, March 2005.

[29] S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong bounds for
the 0-1 knapsack problem. Management Science, 45:414–424, 1999.



Bibliography 95

[30] B. M. E. Moret and H. D. Shapiro. An empirical analysis of algorithms for constructing
a minimum spanning tree. In Frank Dehne, Joerg-Ruediger Sack, and Nicola Santoro,
editors, Proceedings of Algoritms and Data Structures (WADS ’91), volume 519 of
LNCS, pages 400–411, Berlin, Germany, 1991. Springer.

[31] B. M. E. Moret and H. D. Shapiro. How to find a minimum spanning tree in practice.
In Hermann Maurer, editor, Proceedings of New Results and New Trends in Computer
Science, volume 555 of LNCS, pages 192–203, Berlin, Germany, 1991. Springer.

[32] P. Moscato. On evolution, search, optimization, genetic algorithms and martial arts:
Towards memetic algorithms. Technical Report C3P 826, Caltech Concurrent Com-
putation Program, California Institute of Technology, Pasadena, CA, 1989.

[33] S. Pirkwieser. Solving the Knapsack Constrained Maximum Spanning Tree Problem
within an Extended Local Branching Framework. Praktikum aus Intelligente Systeme,
Vienna University of Technology, Institute of Computer Graphics and Algorithms,
January 2006.

[34] D. Pisinger. A minimal algorithm for the 0-1 knapsack problem. Operations Research,
45:758–767, 1997.

[35] W. H. Press et al. Numerical recipes in C (second edition). Cambridge University
Press, 1992.

[36] R. C. Prim. Shortest connection networks and some generalizations. Bell Systems
Technology Journal, 36:1389–1401, 1957.

[37] J. Puchinger and G. R. Raidl. Combining metaheuristics and exact algorithms in
combinatorial optimization: A survey and classification. In Proceedings of the First
International Work-Conference on the Interplay Between Natural and Artificial Com-
putation, volume 3562 of Lecture Notes in Computer Science, pages 41–53. Springer,
2005.

[38] G.R. Raidl and D. Wagner. EAlib 2.0 - A Generic Library for Metaheuristics. Institute
of Computer Graphics and Algorithms, Vienna University of Technology, 2005.

[39] Algorithmic Solutions. The LEDA User Manual, 2005. http://www.
algorithmic-solutions.info/leda_manual/MANUAL.html (last checked on Octo-
ber 10, 2006).

[40] J. T. Stasko and J. S. Vitter. Pairing heaps: experiments and analysis. Commun.
ACM, 30(3):234–249, 1987.

[41] R. J. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer Academic
Publishers, Boston, 1996. Second Edition: 2001.

http://www.algorithmic-solutions.info/leda_manual/MANUAL.html
http://www.algorithmic-solutions.info/leda_manual/MANUAL.html


Bibliography 96

[42] T. Yamada, K. Watanabe, and S. Katakoa. Algorithms to solve the knapsack con-
strained maximum spanning tree problem. Int. Journal of Computer Mathematics,
82(1):23–34, 2005.

[43] Y. Yamamato and M. Kubo. Invitation to the Traveling Salesman’s Problem (in
Japanese). Asakura, Tokyo, 1997.


	Introduction
	Problem Description
	Applied Solution Methods
	Motivation
	Thesis Overview

	Preliminaries
	Combinatorial Optimization Problems
	Exact Algorithms
	Metaheuristics
	Basic Local Search
	Evolutionary Algorithms

	Combination of Exact Algorithms and Metaheuristics
	Graph Theory
	Maximum Spanning Tree Problem
	Knapsack Problem
	Linear Programming
	Relaxation

	Lagrangian Relaxation and Decomposition

	Previous Work
	Lagrangian Decomposition for the KCMST Problem
	Solving the Lagrangian Dual Problem
	Subgradient Optimization Method
	Volume Algorithm

	Problem 1 - MST
	Problem 2 - KP
	Lagrangian Heuristic and Local Search

	Experimental Results of Lagrangian Decomposition
	Used Test Instances
	Test Set 1
	Test Set 2

	Comparing the MST Algorithms
	Experimental Results of the Subgradient Optimization Method
	Experimental Results of the Volume Algorithm
	Effect of KLS
	KP vs. E-kKP

	Comparison to Previous Results

	Hybrid Lagrangian Evolutionary Algorithm for the KCMST Problem
	The Edge-Set Coding Scheme
	Evolutionary Algorithm for the KCMST Problem
	Experimental Results of the KCMST-EA

	Combining KCMST-LD and KCMST-EA to a Hybrid Lagrangian EA
	Experimental Results of the Sequential-HLEA
	Experimental Results of the Intertwined-HLEA


	Implementation Details
	Adapted COMBO Algorithm
	Class Diagram
	Program Parameters
	Instance Generators

	Conclusions
	Bibliography

