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Kurzfassung

Die vorliegende Arbeit ist in 3 nahezu unabhängige Teile gegliedert.
Der ersteTeil befasst sich mit Aspekten der Dispersionswechselwirkung, auch als Van der Waals

Wechselwirkung bekannt. Dabei werden nach einer ”unkonventionellen” Erklärung des Problems
der Van der Waals Wechselwirkung zwei Arbeiten präsentiert. Die erste Arbeit behandelt Kor-
rekturen zur Hamaker Formel mit Hilfe der Lifshitz Gleichung und der Clausius Mossotti Formel
für das lokale Feld. Die zweite die Dispersionswechselwirkung in kristallinen Polymeren, wo schon
ein einfaches Hamaker Modell viele wesentlichen Eigenschaften dieser anisotropen Materialien
erklären kann.
Der zweite Teil widmet sich der Theorie der KKR Methode für sogenannte volle Potentiale.

Vor allem ein numerisch effizientes Verfahren zur Berechnung des elektrostatischen Potentials
solcher Ladungsverteilungen, das notwendig ist innerhalb der Dichtefunktionaltheorie, wurde en-
twickelt und programmiert. Besonders für Systeme mit Fremdatomen, Oberflächen oder andere
ausgedehnte Störungen stellt dies eine wichtige Verbesserung der ASA Näherung da. In der Arbeit
wird auch auf niedrigdimensionale Modellsysteme eingegangen, um Analogien zu den wesentlichen
Begriffen zu finden.
Schlussendlich werden im dritten Teil einige Rechnungen mit der KKR-ASA Methode, die im

Zeitraum der Dissertation durchgeführt wurden, präsentiert. Dies betrifft 3 typische Oberflächensysteme,
nämlich:

Cu(111)/Co/V ac, bei dem die Magnetische Anisotropie Energie (MAE) berechnet wurde,
Cu(100)/Ni/Cu/Ni/Cu/V ac, als Prototyp eines Trilayer Systems, bei dem sowohl MAE als

auch die Zwischenlagenaustauschkopplung berechnet wurde, und
Cu(100)/Ni/H/V ac, hier wurde die Änderung in den magnetischen Eigenschaften durch die

H Adsorption untersucht.
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Abstract

This thesis contains three more or less independent parts:
The first part deals with aspects of the dispersion interactions, also known as Van der Waals

interactions. In there, after an ’unconventional’ approach to explain Van der Waals interactions is
given, there are two contributions presented. The first one deals with corrections to the Hamaker
formula for two interacting slabs by means of the Lifshitz formula and the Clausius Mossotti local
field correction. The second one studies the properties of crystalline organic polymers, for which a
simple model system is already able to explain characteristic properties of these anisotropic media.
The second main part deals with aspects of the theory of the KKR method using full potentials.

A numerical efficient way to solve the electrostatic problem, necessary to be solved with the
Density Functional Theory (DFT) approach, is developed, programmed and presented in this work.
Especially for systems with impurities, surfaces or other extended defects a full potential treatment
is a major improvement to the ASA approximation. Also comparisons to lower dimensional model
systems are given to clarify the main aspects.
In the third part typical calculations with the KKR ASA method, which have been performed

during the doctoral work, are presented. These are three typical surface systems:
Cu(111)/Co/V ac, where the magnetic anisotropy energy (MAE) was studied,
Cu(100)/Ni/Cu/Ni/Cu/V ac, as a prototype trilayer system, where the MAE as well as the

interlayer exchange coupling (IEC) was calculated,
Cu(100)/Ni/H/V ac, for which the change in the magnetic properties with the adsorption of

Hydrogen was studied.
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Chapter 1

Overview

This doctor thesis contains three parts, the first one resulted from an investigation of certain
properties of dispersion forces and was carried out under the guidance of Prof. W. Kohn at the
University of California, Santa Barbara (UCSB) during the months October 2000 - March 2001.
The second part is devoted to the KKR method. In particular to the problem of using a

full-potential multiple scattering approach for semi-infinite systems. Since this kind of electronic
structure calculation is based on Kohn’s density functional theory [26], the condition of selfconsis-
tency within DFT automatically leads to the problem of solving the Poisson equation in the most
general context. In this part of the thesis the necessary mathematical tools and relations for that
purpose are summarized, which in turn served as the basis for corresponding computer codes.
The third part of the thesis is devoted to the problem of interlayer exchange coupling and

magnetic properties in magnetic multilayer systems. It should be noted that this part of the
thesis not only was directed to the actual physical properties, but also served the purpose of
getting familiar with the screened KKR-code in order to be able to supply matching routines for
the numerical procedures developed in part 2.
I performed this thesis as a collegiate of the Science College ’Computational Material Science’,

(FWF W004), which facilitated also partially my stay at the UCSB with Prof. W. Kohn.
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Part I

Dispersion forces
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Chapter 2

An unconventional approach to Van der
Waals Interactions

This part was mainly done at the Department for Physics, UCSB, Santa Barbara under the
supervision of Prof. Dr. Walter Kohn.

2.1 An easy example

An He atom is a closed shell atom because its two 1s electrons have different spins. If we ignore
the spin degree of freedom of the electron a hydrogen atom with one electron would be a real gas
atom. Consider 2 such H atoms, then we have a 4 particle problem, namely 2 nuclei (here just
protons) and 2 electrons (2p+, 2e−). Using the Born-Oppenheimer approximation for the positions
of the nuclei R1,R2 the 2 electron problem is mathematically described in the Hilbert space
H2,− = (h⊗ h)− with h = L2 (R3). The Van der Waals interaction is not a result of the Born
Oppenheimer approximation. The Hamilton operator in the 2 particle space is given bybH = bT(e) + bV(pe) + bV(pp) + bV(ee) =

=
1

2m

¡bp21 + bp22¢− e2

|x1 −R1|
− e2

|x1 −R2|
− e2

|x2 −R1|
− e2

|x2 −R2|
+

e2

|R1 −R2|
+

e2

|x1 − x2|bH is a self adjoint Schroedinger operator in the Hilbert space H2,−. It only contains electrostatic
interactions. We consider R = |R1 −R2| only as a parameter and study the solutions of the
eigenvalue problem (EVP)

bH (R)Φ = EΦ, in the Hilbert space H2,− ,

Qualitatively the spectrum σ
³ bH´ has the following form (see Fig. 2.1):

σ
³ bH´ = σp

³ bH´ ∪ σp ³ bH´ ,
i.e. we have a point spectrum, representing bound states of the system and a continuous spectrum.
Notice that the point spectrum and the continuous spectrum are not disjunct because there are

15
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0
R

E E E E
E

Figure 2.1: Qualitative form of σ
³ bH´ : there is an equilibrium distance where Eo (R) has a

minimum; for smaller R there is repulsion, for larger R attraction.

also bound states with energies higher then the first ionization energy. The groundstate Φ0 (R)
with energy E0 (R) is not degenerated and E = 0 refers to the energy of four free particles (without
kinetic energy). We define the Van der Waals energy as the molecular binding energy

EV dW (R) =
D
Φ0 (R)

¯̄̄ bH (R)¯̄̄Φ0 (R)E− lim
R→∞

E0 (R) = E (R)−E (∞) .

Without further notice in the following we will use 3 different coordinate systems (see Fig. 2.2),
each one translated by a given vector from the other one. Strictly speaking the coordinates of x
in these coordinate systems should be denoted by

k
i xj, with k ∈ {1, 2} , i ∈

©
p+1 , cm, p+2

ª
, j ∈ {1, 2, 3} ,

x 1

x 3

x 1

x 3cm

x 1

x 3

Figure 2.2: Coordinate systems at the left nucleus, center of mass (cm) and right nucleus. They
only differ by a translation vector.
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x 1

x 3

x 3

1n (x)

p
2 1

p= -p
1

Figure 2.3: Qualitative form of the one particle density n1 (x) in the ground state. Because of the
mirror symmetry of n1 (x) , the resulting electric dipole moments are in a repulsive configuration,
but the dipole moment is exponentially small with increasing R.

where k specifies the electron, i the coordinate system and j is one of the 3 Cartesian coordinates.
The exact groundstate wavefunction shall be denoted by

Φ0 (x1,x2;R) ,

it exists but there is no closed form solution. The time evolution of the groundstate is given by

Φ0 (t) = e−i
E0(R)
~ tΦ0

and the 1- and 2-particle densities are given by

n2 (x1,x2;R) = |Φ0 (x1,x2;R)|2 ,
n1 (x;R) =

R
d3x2 n2 (x,x2;R) ,

both are time independent. If we choose R2 −R1 = Re3, a sketch of n1 would have the form as
shown in (Fig. 2.3).We have two small static electric dipole moments,

p1 = −e
Z
x3<0

(n1 (x)x) d
3x and p2 = −e

Z
x3>0

(n2 (x)x) d
3x ,
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leading to repulsion. Because of the mirror symmetry of the problem the groundstate one electron
density has a mirror symmetry and therefore the dipole moments are in a repulsive configuration,
but the magnitude of the dipole moment |p1| vanishes exponentially with increasing R.
Another main aspect is the overlap between the two electron wavefunctions: around the equi-

librium distance there is significant overlap and repulsive force, but we limit ourselves to the
attractive part only, which is the dominant one for large separations. In this regime the overlap
is negligible and the antisymmetrization of the electron WF not necessary. Attractive disper-
sion interactions are not a result of the fermionic nature of electrons (antisymmetrization of WF,
indistinguishability).

2.1.1 Correlation

To be able to explain the reason for the attractive interaction we take a look at

n2 (x1,x2;R) = n2 (x11, x12, x13, x21x22x23;R) ,

namely the 2 particle density. Although it is problematic to visualize this function the sketch in
(Fig. 2.4) serves as a qualitative explanation. All these configurations sketched there are present
at the same time if we follow the standard interpretation of time in quantum mechanics. However,

n2 (x1,x2)
R
d3x2→ n1 (x) =

R
d3x2 n2 (x1,x2)

n2 (x1,x2) 6= n1 (x1) n1 (x2) ,

which means that the two electrons are correlated:

1. There is no exchange present in this situation, therefore the word correlation is used in
physics and mathematics in the same way.

2. The Hohenberg-Kohn-Sham theorem claims that ’n1 (x) contains all information’

3. If we take a single determinant HF trial function (or here Hartree)Φ (x1,x2) = [ϕ1 (x1) , ϕ2 (x2)] ,
we always have n2 (x1,x2) = n1 (x1) n1 (x2) and therefore miss the effect completely

4. A classical (not QM) model could get the effect somehow, but the role of time is essentially
different.

2.2 Quantitative treatment

1. The standard quantitative treatment is always limited to the case of 2 objects, which are
small compared to their separation distance. It is based on the well known multipole expan-
sion

1

|R− x|
| xR |¿1≈ 1

|R| −
x ·R
|R|3

− R ·R x · x− 3x ·R x ·R
|R|5

+ . . . . (2.1)

We consider first 2 H atoms and briefly sketch afterwards (see subsection 2.2.2) the changes
for a multielectron atom or molecule.
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Figure 2.4: Qualitative sketch of the two particle density n2 (x1,x2;R) for a given R in certain
coordinate planes. The ellipses represent points of constant value.
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Figure 2.5: Conditions of small, compact systems for the multipole expansion.
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2.2.1 Two H atoms

For 2 H atoms the Hamiltonian can be split into an unperturbed Hamiltonian bH0 of two indepen-
dent H atoms and a perturbation bHI (R) in the following way.

bH =

µ
1

2m
bp21 − e2

|x11|

¶
+

µ
1

2m
bp22 − e2

|x22|

¶
+

+

µ
e2

R
− e2

|R+ x2|
− e2

|R− x1|
+

e2

|R+ x2 − x1|

¶
= bH0 + bHI (R) .

An expansion of the operator bHI (R) in powers of R
−1 leads to

bHI (R) = R−1 bA1 +R−2 bA2 +R−3 bA3 +R−4 bA4 + . . . ,

where the first terms are given by

bA1 6= 0 only if (N1 − Z1) ∗ (N2 − Z2) 6= 0 mon.-mon.bA2 6= 0 only if (N1 − Z1) 6= 0 ∨ (N2 − Z2) 6= 0 mon.-dip.bA3 = e2

R3
(bx11bx21 + bx12bx22 − 2bx13bx23) dip.-dip.bA4 = . . . higher order multipoles .

The perturbation series for bH0+ bHI (R) for the groundstate gives the result (we write
PR

dµ (n)
for the summation over the discrete and integration over the continuous spectrum, similar to the
notation used in mathematical measure theory)

bH0Φn = E(0)
n Φn (2.2)

Φ = Φ0 +
XZ

dµ (n)

D
Φn

¯̄̄ bHI

¯̄̄
Φ0
E

E
(0)
n −E

(0)
0

+ . . .

E = E0 +
D
Φ0

¯̄̄ bHI

¯̄̄
Φ0
E

| {z }
V1(R)

+
XZ

dµ (n)

¯̄̄D
Φn

¯̄̄ bHI

¯̄̄
Φ0
E¯̄̄2

E
(0)
0 −E

(0)
n| {z }

V2(R)

+ . . .

One of the problems in (2.2) is that we have to take the whole excitation spectrum of the unper-

turbed Hamiltonian into account, also σc

³ bH0

´
.

First order in Energy

In first order the integrals vanish:
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Φ0 → ρel = 2en1 = ρel,1 + ρel,2

ρ = ρp + ρel =
¡
ρp,1 + ρel,1

¢
+
¡
ρp,2 + ρel,2

¢
V1 (R) =

D
Φ0

¯̄̄ bHI

¯̄̄
Φ0
E
=

Z
V1

Z
V2
d3xd3x

0 ρ1 (x) ρ2 (x
0)

|x− x0| ≈|{z}
(=...no overlap)

0

Second order in Energy

In second order with Φ0 = {ϕ0, ϕ0} . . . ,both in the groundstate, we get

V2 (R) = −
6e4

R6

XZ
dµ (m) dµ (n)

hϕ0 |bx23|ϕmi hϕ0 |bx23|ϕni
(�0 − �m) + (�0 − �n)

.

For the evaluation of the integral one needs to take into account all parts of the spectrum of the
unperturbed Hamiltonian - also the continuous spectrum plays a significant role.

2.2.2 Two molecules - oscillator strength

To generalize the above ideas to the case of two small molecules (fulfilling Fig. 2.5) instead of
Hydrogen atoms, we denote the unperturbed eigenstates of the N electron molecule by Φn which
satisfy bH0Φn = EnΦn. The oscillator strengths (for polarization in z-direction) are given by:

fnl =
2m

~2
(El −En)

¯̄̄D
Φn

¯̄̄ bX3

¯̄̄
Φl

E¯̄̄2
and satisfy the important sum rule XZ

fnl dµ (n) = N

for one given state, i.e., the groundstate, f is a generalized function of the energy 4E, with
E = ~ω. We can consider f also as a function of the excitation frequency. Via the oscillator
strength the VdW energy can by written as

V (R) = − 3e4~
2m2R6

Z
dω1

Z
dω2

f1 (ω1) f2 (ω2)

ω1ω2 (ω1 + ω2)
. (2.3)

2.2.3 Dynamic atomic polarizability in the harmonic oscillator model
of an atom

We consider one atom with N ≥ 1 electrons (without spin degrees of freedom) and an infinitely
heavy nucleus without any other properties except an electric charge Z. The Hilbert space for the
electronic problem is given by

HN =
NO
i=1

H1 =
NO
i=1

3O
j=1

h ,
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E

f(E)

0

Figure 2.6: Plot of a typical oscillator strength f (ω) with point weights and a continuous density.
The first arrow is at the lowest excitation frequency.

where each Hilbert space of a single degree of freedom is (isomorphic to)

h = L2 (R) .

The electrons should interact with the nucleus over a sum of harmonic oscillator potentials which
are given in real space representation as

bh = − 1

2m
bp2 + mω2

2
bx2

and are of the form

bH =
NX
i=1

3X
j=1

bHij , (2.4)

where each bHij is one harmonic oscillator with frequency ωij (and the identity in the other spaces).
Because no explicit electron-electron interaction is taken into account, the spectral problem of (2.4)

is explicitly solvable. The spectrum of bH is a pure point spectrum and is given by

σ
³ bH´ = σp

³ bH´ = ©En = En1,...,nN = E(n11,n12,n13),...,(nN1,nN2,nN3) =

=
~
2

NX
i=1

3X
j=1

ωij (1 + 2nij) , with nij ∈ N0

)
,

and a general eigenstate is denoted by

Φn = Φn1,...,nN = Φ(n11,n12,n13),...,(nN1,nN2,nN3) =
¡
φn11, φn12 , φn13

¢
⊗ . . .⊗

¡
φnN1, φnN2, φnN3

¢
,
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where n is a 3N multiindex, n ∈ N3N0 . The (3 Cartesian) electric dipole moment operator are
given by

cDj = −ecXj = −e
NX
i=1

cXij, j ∈ {1, 2, 3} .

Therefore the only excited states which are connected via an electric single photon dipole transition
are of the type

(0, 0, 0)⊗ . . .⊗ (0, 0, 1)⊗ . . .⊗ (0, 0, 0)

with one excited state at position (i, j), i ∈ {1, . . . , N}. The oscillator strengths (of the ground-
state) are given by

fn =
2m

~2e2
En −E0

¯̄̄D
Φn

¯̄̄ bD¯̄̄Φ0E¯̄̄2 , ∞X
n=0

fn = N .

The (complex) dynamic polarizability of an atom (in electric dipole approximation) is given by

α :
C → C
ω 7→ e2

m

P
n

fn
ω2n−ω ,

where in general the sum has to be viewed as a sum over the point spectrum and an integration
over the continuous one. For our system the dynamic polarizability reduces to

α (ω) =
e2

3m

X
i,j

1

ω2ij − ω2
,

where N, e,m, ωij ∈ R+ are all real positive parameters. For the special case that all frequencies
are the same ω0 (isotropic oscillator) one gets

α (ω) =
Ne2

m

1

ω20 − ω2
.

The important mathematical features of α (ω) are

1. ∀ω ∈ C (α (−ω) = α (ω))

2. α (ω) is a meromorphic function everywhere in C with a finite number of poles of first order
at the frequencies ω = ±ωij on the real axis

3. on the imaginary axis the function is smooth and monotonically decreasing from α(0) to 0
for ω varying from 0 to +i∞.

This form of α, resulting from this harmonic oscillator model is of course only a rough approx-
imation for the dynamic atomic polarizability in a real atom.
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ωRe(  )

ωIm(  )

Figure 2.7: Domain in C for the dynamic polarisability α (ω) .

2.2.4 Dynamic polarizability and practical approximations

If we apply a harmonic electric field on a molecule we get an electric polarization

p (t) = p (ω)n0e
iωt = α (ω)

¡
E0e

iωt
¢
.

In first order time-dependent perturbation theory for a harmonic electric field in dipole approxi-
mation we get the result [6]

α :

½
C \ P → C
ω 7→ α(ω) = −e2

m

R
R dω

0 f(ω0)
ω2−ω02 .

The dynamic polarizability is defined everywhere in C except at some poles P (see Fig. 2.7), a
direct physical interpretation, however, is only possible at real frequencies ω. With the help of
the purely mathematical integral relation

2

π

Z ∞

0

dx
1

(x2 + a2) (x2 + b2)
=

1

ab (a+ b)
for a, b > 0 ,

we can change (2.3) to

V (R) = − 3~
πR6

Z ∞

0

α1 (iω)α2 (iω) dω = −
C

R6
, (2.5)

with dynamic polarizabilities at imaginary frequencies

α (iω) =
e2

m

Z
R
dω0

f (ω0)
ω2 + ω02

,
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f(  )ω
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ωeff

f(  )ω

ω

Figure 2.8: A model of an effective oscillator strength with only one possible transition at ωeff

with weight Neff .

which have the following properties

0 < α (iω) ≤ α (0) ,

ω2 > ω1 ⇒ α (iω2) < α (iω1) ,

α (iω) →
ω→∞

Ne2

m

1

ω2
.

Approximations for α (ω)

There are various approximations in use. A common one is to replace the rich structure of f (ω)
by a finite number of strong interactions, even the approximation

f (ω) = Neffδ (ω − ωeff )

is possible (see Fig. 2.8). Here we have the problem that the sum rule would lead to Neff = N .
It is much better to take

Neff ≈ Nval < N,ω ≈ ωeff ,

which is related to the fact that

1. in f (ω) all ω are of equal importance,Z
dωf (ω) =

Z
dωfp (ω) +

Z
dωfc (ω) = N = Np +Nc

2. since in α (iω) the transitions are weighted withZ
R
dω0

1

ω2 + ω02

and high frequencies (i.e., σc) have lower weights and therefore are not so important

3. α (ω) is measurable in experiment but not needed; α (iω) is not observable, only the static
value α (0) is available from experiment.
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α(ιω)

ω

exact

approx.

Figure 2.9: Approximation of thedynamical polarizability resulting from the effective oscillator
strength model.

With the above mentioned method of just one frequency ω with weight N we evaluate the C6
coefficient as

CX−Y
6 =

3~
π

Z ∞

0

αX (iω)αY (iω) dω =

=
3~e4

2m2

NXNY

ωXωY (ωX + ωY )
=
3~
2

ωXωY

ωX + ωY
αX(0)αY (0) ,

which is in the case of two identical atoms equal to
¡
CX−Y
6 → C12

¢
, and

C11 =
3~e4

4m2

N2
1

ω31
=
3

4
~ω1(α1(0))2, α1 (0) =

Ne2

mω21
. (2.6)

A practical method in using (2.6) is to choose ω1, N1 in order to reproduce the experimental
observables α1 (0) , C11, which in turn leads to

ω1 =
4

3~
C11

(α1 (0))
2 ,

N1 =
16m

9~2e
(C11)

2

(α1 (0))
3 .

The VdW coefficient C12 for two different atoms can be expressed as a function of the VdW
coefficients C11, C22 between two equal atoms as

C12 = 2
C11C22

α2(0)
α1(0)

C11 +
α1(0)
α2(0)

C22
(2.7)

= 2
C11C22

α2(0)2C11 + α1(0)2C22
α1(0)α2(0) . (2.8)
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Figure 2.10: One can see that the geometric mean is only a good approximation for ω1 ≈ ω2

otherwise F
³
ω1
ω2

´
is better suited.

From this equation we easily arrive at the important Cross-term formula

C12 =
2³

ω1
ω2

´ 1
2
+
³
ω1
ω2

´− 1
2

p
C11C22 = F

µ
ω1
ω2

¶p
C11C22 .

If we set γ = ln
³
ω1
ω2

´
we get (see Fig. 2.10)

C12 =
2

e
1
2
γ + e−

1
2
γ

p
C11C22 =

³
cosh

³γ
2

´´−1p
C11C22 = (2.9)

= sech
³γ
2

´p
C11C22 . (2.10)

We see that only for ω1
ω2
≈ 1 the geometric mean C12 =

√
C11C22 is a good approximation, otherwise

(2.9) is an improvement to the geometric mean.

2.2.5 Limits of the method

Here we want to summarize all the limits of the above method again:

1. the geometrical dimensions of the systems are small as compared to their distance, ’compact
system’ (see Fig. (2.5)).

2. the dipole approximation in first order time dependent perturbation theory for the dynamic
electric polarizability α (ω)

3. multipole expansion of electrostatic interaction Hamiltonian up to the dipole moments

4. for each single molecule one needs the oscillator strengths for the whole spectrum, also the
continuous one

5. it is only a theory for the attractive part of the intermolecular interaction and takes no
account of repulsion as a consequence of overlap for smaller R



28CHAPTER 2. ANUNCONVENTIONAL APPROACHTOVANDERWAALS INTERACTIONS

r 1
r 2

R

r 2 Rr 1 , <<

Figure 2.11: Two extended systems which are not small as compared to their distance, but do not
have significant overlap.

2.3 Methods for extended geometries

The main limitation above is the small size of the systems as compared to their separation,
d1, d2 ¿ R, while the physical situation only demands that there is no overlap r1, r2 ¿ R (see
Fig. 2.11)

2.3.1 Kohn-Mair formalism with a time dependent response function

For such extended systems without permanent dipole moments the VdW interaction is still the
leading term. A new formalism via dynamic response functions in the time domain was developed
by [24] and represents a conceptually new formalism with many computational advantages.

2.3.2 Pairwise summation technique (Hamaker method)

This simple method can yield approximate ideas about the Van der Waals interaction between
two extended systems. We define the Hamaker interaction energy between two rigid systems as
(see Fig. 2.12)

V (1,2) =
X
i∈I1

X
j∈I2

v (1i; 2j) ,

which treats the Van der Waals interaction as a sum of the interactions between the respective
constituents; it also ignores the fact that the dispersion forces are not strictly additive (Axilrod
-Teller) and the changed dispersion properties of the atoms depend on their bonding situation.
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(1) (2)

v(1i ; 2j)

Figure 2.12: Hamaker method of pairwise summation: it treats the subsystem (1) just as the sum
of its constituent molecules.
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Chapter 3

Corrections to the Hamaker formula for
dispersion interactions via
Clausius-Mossotti formula

This part was mainly done at the Department for Physics, UCSB, Santa Barbara under the
supervision of Prof. Dr. Walter Kohn. It presents a summary of results of a project dealing with
dispersion forces between macroscopic bodies consisting of polarizable atoms.
The main aim was to see the leading corrections to the results obtained with the ’Hamaker method
of pairwise summation’ for media which are not highly diluted.
Here different geometries of the bodies are studied and the corrections are essentially different
in character, while the condition for the applicability of the Hamaker method can always be
expressed as (ρα(0)) << 1 for all systems. This approach can be extended to other geometries
(e.g. cylinders) and later on to inhomogenous bodies with nonuniform density. Furthermore a
discrete model of local field corrections in a finite cluster can be given.

3.1 Geometries of model systems

In the following sections the dispersion interaction between two macroscopic bodies are calculated
with the help of the pairwise summation technique. In this chapter all the geometries considered
are summarized.

3.1.1 Two semi-infinite half spaces

We consider 2 macroscopic bodies, each of them with a plane surface, which are aligned parallel
to each other at a normal distance l. The linear dimensions of the 2 flat surface areas L = A1/2

should be large enough as compared to the distance between the two bodies. On the other side the
distance l should be large enough as compared to the intermolecular distances a of the constituent
atoms of the bodies,

a << l << L . (3.1)

31
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ε 2ε 1

l

Figure 3.1: 2 half spaces (thick slabs) with given dielectric constants �1, �2 at a distance d. The
dashed line shows the surface region of the slabs, where the dielectric properties are likely to be
different.

If these conditions are fulfilled one can in good approximation consider the two bodies to be
infinitely extended slabs separated by distance l. The total attractive dispersion energy will
therefore be infinite and one can only calculate the interaction energy per unit area for this
system.
More precisely the length a is given by the depth from the surface where the local electric field is
already bulk like and is considered to be of the order of some interatomic distances. (Dashed line
in Fig 3.1) Validity:
The form of the real macroscopic bodies has to be regular enough that this approximation with
two slabs is valid, especially the surface should not be too rough or facetted.
An application is the adhesion of two macroscopic bodies to each other

3.1.2 Point-particle and semi-infinite slab

We consider one macroscopic body in the idealized form of a semi-infinite slab and a point-particle
at a normal distance l from the surface. The linear dimension L = A1/2 of the plane surface part of
the condensed body should be large with respect to l such that this model becomes justified. On
the other side the distance l should be large enough as compared to the intermolecular distances
a of the constituent atoms of the bodies:

a < l < L (3.2)

Again the length a is given by the depth from the surface where the matter is already bulk like
and is known to be of the order of some interatomic distances. Application: This situation should
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be a good a proximation to the real situation of an atom adsorbed loosely (physisorption) to a
condensed body with such a plain surface. Validity: The form of the real macroscopic body has
to be regular enough such that an approximation with a slab is valid, especially the surface of the
condensed body should not be too rough or facetted.

3.1.3 Two convex bodies

We consider two macroscopic bodies in the form of enclosed, convex, not touching regions in R3.
Then there exist 2 points x0 ∈ δB1,y0 ∈ δB2 on the boundary of the bodies with minimal distance
l such that

l2 = (x0 − y0) · (x0 − y0) = min
x∈δB1,y∈δB2

((x− y) · (x− y)) .

Except for the case when the corresponding curvatures of the boundary at x0,y0 are zero, these
points are uniquely determined. Through a translation and rotation of the coordinate system one
can take the origin at one of these points, say at x0, the closest point of B1 , and let the z-axis go
through y0 = (0, 0, y0z) ∈ B2. Then there exists a local parametrization of the boundaries B1, B2
of the form

f1 :
U → R3
(x, y) 7→ (x, y, f1(x, y))

f2 :
U → R3
(x, y) 7→ (x, y, f2(x, y))

.

Because both bodies are assumed to be convex the second differentials of f1 and f2 are positive
semi-definite and negative semi-definite quadratic forms, respectively. As Hesse matrices they
are symmetric as well, and therefore are orthogonal similar to diagonal matrices. By choosing
the x, y axis of the coordinate system to make the first form diagonal one gets two curvature
radii κ1, κ2, the second one can be characterized by 2 other curvatures and one angle α between
two main axes. By replacing the actual form of the two macroscopic bodies by the two (non
necessarily rotational invariant) paraboloids one has a model geometry specified by 6 parameters,
e.g., l, κ1, κ2, κ

0
1, κ

0
2, α. This is a general model of two macroscopic bodies in long-range interaction

with each other, which contains as special case the system of two slabs for which the curvature
radii go to infinity. Validity of the approximation:

1. The real form of the condensed bodies should be close to paraboloids, especially there should
not be more than one point at which these bodies come close to each other (e.g. no ’double
tips in STM’)

2. the intersection of the surface region with the VdW interaction region is small as compared
to VdW interaction region.

Typical situations are Scanning Tunnelling Microscopy for far away tips, Atomic Force Mi-
croscopy in non-contact mode
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3.1.4 Two cylindrical bodies

We consider two macroscopic bodies in the form of rotational cylinders with circular cross-sections,
not touching each other. Then there exist 2 points x0 ∈ δB1,y0 ∈ δB2 on the boundary of the
bodies with minimal distance l such that

l2 = (x0−y0) · (x0−y0) = min
x∈B1,y∈B2

((x− y) · (x− y)) . (3.3)

Except for the case when the two cylinders are parallel to each other these points are uniquely
determined. Through a translation and rotation of the coordinate system one can shift the origin
to one of these points, say at x0 the closest point of B1, and let the z-axis go through y0 =
(0, 0, y0z) ∈ B2. By replacing the actual form of the two macroscopic bodies by the two cylinders
one has a model geometry specified by 2 parameters, e.g.

l, α , (3.4)

where l ∈ [0,∞[ is the normal distance between the two wires and α ∈ [0, π
2
] is the angle in the

(x, y) plane by which one is rotated against the other. The case with α = 0 where the two wires
are parallel to each other is obviously a special case in the sense that the total interaction energy
becomes infinite and only the interaction energy per unit length assumes a well defined value.
Validity of approximation:

1. The real form of condensed matter chains should be close to long linear cylinders. There
should not be any covalent bonding between the chains, the cylinders must be long as
compared to their thickness (e.g., long linear carbon chains Cn with n ≥ 10 )

2. here the surface region of the chain and the VdW interaction region are almost identical

Applications: Interaction energy between chains in condensed polymer chains

3.2 Definitions for the VdW interaction between two atoms

The VdW dispersion interaction between 2 atoms (or isotropic small molecules) is given by

W (R) = −Λ12
R6

= −C12
R6

, (3.5)

where the constant C12 has the dimension [C12] = energy ∗ length6 and is given by

C12 =
3~
π

Z ∞

0

α1(iζ)α2(iζ)dζ =
3~
2π

Z ∞

−∞
α1(iζ)α2(iζ)dζ , (3.6)

with α being the dynamic polarizability evaluated at the imaginary axis. With the previously
defined oscillator strength one can write

C12 =
3~e4

2m2

X
m,n

f
(1)
0mf

(2)
0n

ω
(2)
0nω

(1)
0m(ω

(2)
0n + ω

(1)
0m)

. (3.7)
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Figure 3.2: Local field corrections for different geometries. The local field corrections depend on
the geometrical form of the system, e.g., ’bulk like’ 6= ’1dimensional chain’

For two isotropic oscillators with just one frequency respectively, this can be simplified to

C12 =
3~e4

2m2

N1N2

ω1ω2(ω1 + ω2)
=
3

2
~

ω1ω2
ω1 + ω2

α1(0)α2(0) , (3.8)

which in the case of two identical atoms reduces to

C =
3~e4

4m2

N2

ω30
=
3

4
~ω0(α(0))2 . (3.9)

3.3 The Clausius-Mosotti local field correction

For the electric field in a bulk dielectric medium one has to distinguish between various fields:

Eloc, E = Eav, D, P (3.10)

The local field corrections are known as the Clausius-Mosotti formula: for either cubic symmetric
crystals or completely randomly amorphous condensed media it implies the following results:

Eloc =
3

3 + 8πρα
D =

3

3− 4πραE , (3.11)

E =
3− 4πρα
3 + 8πρα

D , (3.12)

P =
3ρα

3 + 8πρα
D =

3ρα

3− 4πραE . (3.13)
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The dielectric constant is therefore related to the atomic polarizability by

� =
3 + 8πρα

3− 4πρα , (3.14)

where the critical value ρα = 3
4π
leads to an infinite dielectric constant, but this is of no importance

in the following. The atomic polarizability of the oscillator model,

α(ω) =
Ne2

m

1

ω20 − ω2
,

leads to the dielectric constant

�(ω) =
ω2 − (ω20 + 4a2)
ω2 − (ω20 − 2a2)

, a2 =
2π

3

Ne2ρ

m
. (3.15)

An important function related to the dielectric constant is

d(ω) =
�(ω)− 1
�(ω) + 1

=
6πρα

3 + 2πρα
= − 3a2

(ω20 + a2)− ω2
. (3.16)

Notes:

1. The Clausius-Mosotti formula was derived for static electric fields, but was applied in this
context to electric fields which are spatially homogeneously but harmonically varying in
time.

2. The form of d(ω) has essentially the same properties as the atomic polarizability of a single
atom, except that the frequency of the pole is always shifted to higher frequencies, ω20 →
ω20 + a2, remaining, however, on the real axis for all values of ρ.

3.4 Results for the 2-slabs model

3.4.1 The Hamaker result

The result of applying a pairwise summation (replaced by integration in the continuum limit) to
the dispersion energy between two half spaces leads to the Hamaker result,

W (l)

A
= − 1

l2
π

12
ρ1ρ2C12 , (3.17)

where the form of the atomic polarizabilities is only contained in C12. For two isotropic oscillators
this leads to

W (l)

A
= − 1

l2
~e4π
8m2

N1ρ1N2ρ2
ω1ω2(ω1 + ω2)

= − 1
l2
π~
8
(α1(0)ρ1)(α2(0)ρ2)

ω1ω2
ω1 + ω2

, (3.18)

which can be simplified for two identical slabs (C12 = C11 = C22 = C) to

W (l)/A = − 1
l2
π~ω0
16

(α(0)ρ)2 = − 1
l2

π

12
ρ2C . (3.19)
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3.4.2 The Lifshitz-formula

The basic formula for the non-retarted regime as given by [8] and others for the interaction energy
per unit surface for two parallel semi-infinite slabs separated by a distance l is

W (l)

A
=
−1
l2

~
16π2

Z ∞

0

∞X
n=1

1

n3
(d1 (ıζ) d2 (iζ))

n = (3.20)

= − 1
l2

~
16π2

Z ∞

0

∞X
n=1

1

n3

µ
�1 (iζ)− 1
�1 (iζ) + 1

�2 (iζ)− 1
�2 (iζ) + 1

¶n

(3.21)

The above formula is equivalent to a formula with a double integral also given by Lifshitz. The
convergence of the sum can be seen from the quotient criterion, because ∀ζ ∈ R (d1 (iζ) , d2 (iζ) < 1) ,
for all imaginary frequencies.

The leading term, n = 1

Following Lifshitz we first consider the leading term in the formula (3.20). With the help of the
integral identity Z

R

µ
1

x2 + b21

¶µ
1

x2 + b22

¶
dx =

π

b1b2 (b1 + b2)
(3.22)

one gets the result

W (l)

A
= − 1

l2
9~
32π

a21a
2
2

b1b2(b1 + b2)
= (3.23)

= − 1
l2
9~
32π

a21a
2
2

(a21 + ω21)
1/2(a22 + ω22)

1/2((a21 + ω21)
1/2 + (a22 + ω22)

1/2)
(3.24)

where
a21 =

2π
3
N1e2ρ1

m
a22 =

2π
3
N2e2ρ2

m

b21 = a21 + ω21 b22 = a22 + ω22
a21
ω21
= 2π

3
ρ1α1(0)

a22
ω22
= 2π

3
ρ2α2(0)

Expressed in these parameters the result is

W (l)

A
= − 1

l2
~π
8

ρ1α1(0)

(1 + 2π
3
ρ1α1(0))

1/2

ρ2α2(0)

(1 + 2π
3
ρ2α2(0))

1/2
(3.25)

ω1ω2
ω1(1 +

2π
3
ρ1α1(0))

1/2 + ω2(1 +
2π
3
ρ2α2(0))

1/2
= (3.26)

= − 1
l2
π

6

ρ1α1(0)

(1 + 2π
3
ρ1α1(0))

1/2

ρ2α2(0)

(1 + 2π
3
ρ2α2(0))

1/2
(3.27)

C11C22
C11α22(1 +

2π
3
ρ1α1(0))

1/2 + C22(1 +
2π
3
ρ2α2(0))

1/2
, (3.28)

which reduces for two identical slabs to
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W (l)

A
= − 1

l2
π

16
~ω0

(ρα(0))2

(1 + 2π
3
ρα(0))3/2

= − 1
l2

π

12

ρ2C

(1 + 2π
3
ρα(0))3/2

. (3.29)

For two identical slabs one can easily see the asymptotic forms for large and small densities:

ρα→ 0 W (l)
A
→ − 1

l2
~ω0 π

16
(ρα(0))2 = − 1

l2
π
12
ρ2C ,

ρα→∞ W (l)
A
→ − 1

l2
~ω0 π

16
( 3
2π
)3/2(ρα(0))1/2 = − 1

l2

√
3

8
√
2π

ρ1/2C
α(0)3/2

.

For the case of different materials in the two slabs one has to compare all oscillator frequencies
with the frequencies a1, a2 to determine the asymptotic behavior.

3.4.3 The comparison between Hamaker and Lifshitz results

When both systems are dilute

(ρ1α1) , (ρ2α2)→ 0 ⇒ W (l)

A
→ − 1

l2
π

8
(ρ1α1(0)ρ2α2(0))~

ω1ω2
ω1 + ω2

= (3.30)

= − 1
l2
π

6

ρ1α1ρ2α2C11C22
C11α2(0)2 + C22α1(0)2

= − 1
l2
π

6
ρ1ρ2C12 (3.31)

the Lifshitz result reduces to the Hamaker result. In general the attraction energy is reduced by
the local field correction which can be interpreted as a partial shielding of the dipole moments in
the condensed medium by the other dipole moments.

3.5 Dispersion forces between one atom and a slab

3.5.1 The Hamaker result

In its leading power in l for l→∞ the Hamaker result for this geometry is

W (l) = − 1
l3
π

6
ρ1C12 , (3.32)

where the form of the atomic polarizabilities enters C12. For isotropic oscillator models for the
dynamic polarizability of the atoms in each system this leads to

W (l) = − 1
l3
π

4
(α1(0)ρ1)α2(0)~

ω1ω2
ω1 + ω2

, (3.33)

which can be simplified for two identical atoms to

W (l) = − 1
l3
π

6
ρ1C = −

1

l3
π~ω0
8

α(0)2ρ . (3.34)



3.5. DISPERSION FORCES BETWEEN ONE ATOM AND A SLAB 39

3.5.2 The Clausius-Mossotti correction

The basic formula for the non-retarted regime given by [10] and others for the interaction energy
for one atom separated by a distance l from a semi-infinite slab is given by

W (l) = − 1
l3
~
4π

Z ∞

0

dζ

µ
α(iζ)

�(iζ)− 1
�(iζ) + 1

¶
. (3.35)

For a more detailed analysis one has to specify the origin of the z coordinate with respect to the
surface plane. With the help of the integral identity,Z

R

µ
1

x2 + b21

¶µ
1

x2 + b22

¶
dx =

π

b1b2 (b1 + b2)
, (3.36)

one gets the result

W (l) = − 1
l3
3~N1e

2

8m

a22
ω1b2(ω1 + b2)

, (3.37)

where
a22 =

2π
3
N2e2ρ2

m
b22 = a22 + ω22

a22
ω22
= 2π

3
ρ2α2(0) .

Expressed in these parameters the result is

W (l) = − 1
l3
α1(0)

π

4

ρ2α2(0)

(1 + 2π
3
ρ2α2(0))

1/2
~

ω1ω2
ω1 + ω2(1 +

2π
3
ρ2α2(0))

1/2
= (3.38)

= − 1
l3
α1(0)

π

3

ρ2α2(0)

(1 + 2π
3
ρ2α2(0))

1/2

C11C22
C11α22(0) + C22α21(0)(1 +

2π
3
ρ2α2(0))

1/2
. (3.39)

which reduces for two identical atoms to

W (l) = − 1
l3
α(0)

π

4

ρ2α(0)

(1 + 2π
3
ρ2α(0))

1/2
~ ω0
1 + (1 + 2π

3
ρ2α(0))

1/2
= (3.40)

= − 1
l3
π

3

ρC

(1 + 2π
3
ρ2α(0))

1/2(1 + (1 + 2π
3
ρα(0))1/2)

. (3.41)

3.5.3 Comparison of the Hamaker result with the Clausius-Mossotti
correction

This can be seen at the asymptotic forms for large and small densities:

(ρα)→ 0 W (l) → − 1
l3
~πe4

4m2

N1N2ρ2
ω1ω2(ω1 + ω2)

= (3.42)

= − 1
l3
α1(0)ρ2α2(0)

~π
4

ω1ω2
ω1 + ω2

= − 1
l3
π

6
ρ1C12 (3.43)

(ρα)→∞ W (l) → − 1
l3
3~N1e

2

8πmω1
= − 1

l3
α1(0)

3

8
~ω1 = (3.44)

= − 1
l3

C11
2α1(0)

(3.45)
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An interesting feature is that for large densities in the condensed medium the result is independent
of the density and the atomic properties of the condensed medium.
The result for small densities is the same as the one obtained by the Hamaker method of using a
pairwise summation. Equivalent to the slab-slab model system the slab-atom model system shows
that the local field correction via the Clausius-Mossotti correction always decreases the attractive
dispersion energy between the systems.



Chapter 4

Universal Model of Crystalline Polymers

4.1 Introduction

This chapter presents a model of crystalline linear polymers. The main aim was to describe the
interchain dispersion interactions and the physical properties resulting from these interactions.

4.1.1 Organic polymers

We consider long, unbranched organic molecules. One such polymer is held together by typical
covalent bonds between C,H, .. atoms. The easiest (somehow really existing) example is polyyne
(Fig. 4.1). The next difficult polymer is polyacetylene (Fig. 4.2), which is a periodic arrangement
of C2H2 units.

The simplest saturated polymer is polyethylene (Fig. 4.3).

We will replace one polymer by a long, linear chain, where each unit (e.g. C2H4) is replaced
by a so called bead, which should be located at the center of the replaced unit and its properties

should mimic the replaced unit (e.g. Mbead =
X
j∈unit

Mj). One such chain we will also call a wire

and consider as rigid in our model.

C C CC CC C C C

d 1d 3

c

Figure 4.1: A polyyne polymer consists just of Carbon atoms which are arranged in a linear
molecule. The bond length are unequal and alternate between single and triple bonds.

41
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Figure 4.2: A polyacetylene polymer consists of an periodic arrangement of C2H2 units. The
C − C bond length alternates between single and double bonds.

C
C

H H

H H

C
C

H H

H H

C
C

H H

H H

C
C

H H

H H

c

Figure 4.3: A polyethylene polymer consists of C2H4 units which are arranged in a linear molecule.
All C − C bonds have equal length.
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Figure 4.4: Crystal structure of polyacetylene: an orthorhombic lattice with in plane constants
a, b and c along the chain axis, and the setting angle α.

4.1.2 Crystalline Polymers

In nature single polymer chains can form polymer crystals with a certain crystal structure. For
example we plot the crystal structure of polyacetylene in (Fig. 4.4).
Other polymers crystallize in similar structures. If we replace each polymer chain by a wire

we will loose some degrees of freedom of the real structure. The in-plane lattice constants will be
the same a, b→ a = b, and the setting angle α becomes irrelevant.

4.2 Models for a crystallized linear polymer

4.2.1 Description of models

1. One atom per unit cell (see Fig. 4.5)

We understand our model as a 3D crystal where one dimension is very different from the
other two. Therefore we consider our model more like a 2D quadratic lattice with one wire
per unit cell. For many purposes this model is already sufficient, but as we can see from the
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c

y

z

B

a

a

y

x

Figure 4.5: A model crystal of wires arranged in a 2D quadratic lattice with lattice constant a
and wire periodicity length c with 1 atom per unit cell.

real crystal structure of polyacetylene (Fig 4.4) a model with 2 atoms per unit cell would be
an improvement.

2. Two atoms per unit cell (see Fig. 4.6)

Here we take a 2D quadratic lattice with another wire at the center of the other 4. Because
one set of wires is shifted by c

2
along the chain axis, we have to describe it by using 2 atoms

per unit cell.

If the simplest model with 1 atom per unit cell is not sufficient, we will apply this model
with 2 atoms per unit cell.

3. More sophisticated models

An even more sophisticated model is sketched in (see Fig. 4.7), where each wire is not linear
anymore but has more than 1 atom per 1D unit. In this model we can describe coupled
rotations of the wires around their axis, which leads to the concept of librons. However this
model becomes more complicated and has much more parameters which must be related to
the experiment. Therefore we will not further examine it in this thesis.

4.2.2 Features

Our minimal models (1 and 2) for a crystal of linear polymers have the following features

1. The components are long, periodic, unbranched, rigid, linear polymers with periodicity c.
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c
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a

B

y

y

z

x

Figure 4.6: A model crystal of wires arranged in a 2D quadratic lattice with lattice constant a
and wire periodicity length c with 2 atoms per unit cell.

α j

α i

a

Figure 4.7: A chain is no longer linear but has itself more than 1 atom per 1D unit, which are
displaced perpendicular to the axis. As another degree of freedom we can describe rotations of
wires in this model.
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2. In the unperturbed ideal single crystal the individual polymers are perfectly aligned, say in
the z direction.

3. All chains are identical, just displaced by a set of two-dimensional displacement vectors in
the x− y plane forming a square lattice

τn = τn1,n2 = n1(a, 0, 0) + n2(0, a, 0) , (4.1)

with the possible addition of a vector in the z direction

τ 3 = (0, 0, c/2) . (4.2)

4. We assume the interactions between chains to consist of pairwise Van der Waals type at-
tractions due to correlated charge fluctuations in pairs of polymer chains, plus short ranged
repulsions due to electron overlap. We model these interactions phenomenologically by a
total interaction energy

V =
1

2

X
l 6=l0

X
m,m0

v(lm, l0m0) , (4.3)

where l = (l1, l2) labels the polymer chain and m the position of the monomer in a chain.
We represent the interaction v(lm, l0m0) between two monomers in two different chains by
a Lennard-Jones (6,12) potential,

v(r) = −4�
µ³σ

r

´6
−
³σ
r

´12¶
, (4.4)

whose well-depth is � and whose minimum is located at
³
2
1
6

´
σ.

Extension of models

Submonomer basic units An extension of the model for a crystal of linear polymers can be
constructed in the following way. One takes as a basic unit in one polymer not a monomer but
a C1Hn unit located between the respective C and H atom. Then one monomer consists of an
integer number of such units, which can not be obtained from one unit by a simple translation
but by a translation with a rotation.

1. For polyyne one such a unit is just one C atom and n = 0; two units build up one monomer
C2.

2. For polyacetylene one such unit is one C − H group and n = 1; two units build up one
monomer C2H2.

3. For polyethylene one such unit is one H − C −H group and n = 2; two units build up one
monomer C2H4.

For each basic unit one has a Lennard-Jones center, whose precise location needs to be dis-
cussed.
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Individual atoms as basic units A further refinement of the model is to consider each indi-
vidual atom as a Lennard Jones center. This has the advantage that the geometric structure is
mimiced in a more detailed way, but also the disadvantage that one needs different Lennard Jones
parameters for every different atom in the sample.

Discussion

Our term rigid includes strong bonds with effectively high excitation energies, both vibrational
and electronic, such that internal excitations can be neglected and the relative positions of the
atoms in a given chain can be considered as fixed.

4.2.3 Estimation of Lennard Jones parameters

The basic model (with 1 or 2 atoms/unit cell) has only one free bead-bead parameter σ which
can be adapted to the experimental crystal structure of the solid polymer. To guarantee that one
really works at the quadratic lattice constant a of the model, in the minimum of the energy in the
assumed crystal structure one should determine σ by the condition

d

da
V (a; c, σ, �)|a0 = 0→ σ = σ0(a0) . (4.5)

The other Lennard Jones parameter � only appears as a linear prefactor and therefore does not
change the results in an essential way. It can be determined if an experimental value of the C6
dispersion coefficient of the basic unit (bead) is known:

4�σ6 = C6 , � =
C6
4σ6

. (4.6)

4.2.4 Universality

Because of the scaling property of the Lennard Jones potential given by

v(r; �, σ) = v(sr; �, sσ) = �f(r/σ) , (4.7)

there is just one dimensionless parameter which specifies the basic model. This is the ratio x = σ
c

of the Lennard Jones length and the primitive periodicity constant of the chain and represents
somehow the difference between the covalent bond length to the VDW bond length.

4.2.5 Different energy scales in the model

There are 3 essentially different energy scales involved in our model of a crystalline linear polymer:

1. the intrachain covalent bonds and quantities depending on them

2. the change of interchain distance

3. the relative sliding of two different chains without change of interchain distance

In the remainder we will not consider quantities depending on intrachain properties.
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xc

R

z

Figure 4.8: A wire and a bead of another parallel wire at a normal distance R and a z-translation
z.

4.3 Results for the minimal model

In this section various physical properties of this model have been calculated.

4.3.1 Potential of one wire

Geometry: Infinitely long periodic mono-atomic chain (in z direction) with a primitive periodicity
c.
The 1D lattice is defined by

T = {nae3 : n ∈ Z} , (4.8)

T ∗ =

½
nbe3 = n

2π

a
e3 : n ∈ Z

¾
, (4.9)

where e3 is the unit vector in the z-direction and b = 2π
c
is the reciprocal lattice constant.

Let v be a single atom potential of an atom at the origin of the coordinate system:

v(x, y, z) = v(z;R) , (4.10)

then for R2 = x2 + y2 > 0 the 1-dimensional Fourier transform with respect to z is given by

ṽ(k;x, y) = ṽ(k;R) =
1

2π

Z
R

¡
v(z;R)e−ikz

¢
dz . (4.11)
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The Fourier transform of the sum of linear periodically arranged potentials is given by

Ṽ (k;x, y) = Ṽ (k;R) =
1

2π

Z
R

X
n∈Z

v(z − nc;R)e−ikzdx = (4.12)

=
1

2π

X
n∈Z

µZ
R
v(z;R)e−ikzdz

¶
e−ikna =

"
|b|
X
n∈Z

δ (k −Gn)

#
ṽ(k,R) = (4.13)

=

"
|b|
X
n∈Z

δ (k −Gn) ṽ(Gn, R)

#
. (4.14)

The inverse Fourier transform leads to

V (z,R) =

Z
R

eV (k;R)eikzdk = b
X
n∈Z

ṽ(nb,R)einbz = (4.15)

= bṽ(0, R) + 2b
X
n∈N

ṽ(nb,R) cos (nbz) . (4.16)

We now evaluate the above formula for just the attractive and the repulsive part of our atom-atom
potential. If v is a single purely attractive VdW potential then

v(z;x, y) = v(z;R) = −C(x2 + y2 + z2)−3 = −Cr−6 = −C(z2 +R2)−3 , (4.17)

where C is the VdW interaction constant between two atoms with the dimensions [energy ∗ length6].
Then for R2 = x2 + y2 > 0 the 1-dimensional Fourier transform with respect to z exists and is
given by

ṽ(k,R) =
1

2π

Z
R
−C(z2 +R2)−3e−ikzdz =

1

2

∂2

∂ (R2)2

µ
1

2π

Z
R
−C 1

z2 +R2
e−ikzdz

¶
= (4.18)

=
−C
4π

∂2

∂ (R2)2

µ
π
e−|k|R

R

¶
=
−C
16R5

¡
3 + 3|k|R+ k2R2

¢
e−|k|R . (4.19)

This leads to

V (z;R) = b
X
n∈Z

ṽ(nb,R)einbz = bṽ(0, R) + 2b
X
n∈N

ṽ(nb,R) cos (nbz) , (4.20)

where the first harmonic terms are the most important ones:.

V (x,R) = bṽ(0, R) + 2bṽ(b,R) cos(bz) + 2bṽ(2b,R) cos(2bz) + . . . (4.21)

The Hamaker sum (of the attractive interaction alone, without replacement of the summation by
an integration) of pairwise London interactions is therefore given by

V (x, y, z) = V (z,R) =

= −C
c6

"
3π

8

³ c

R

´5
+

π

4

∞X
n=1

·µ
3
³ c

R

´5
+ 6πn

³ c

R

´4
+ 4π2n2

³ c

R

´3¶
e−n2π

R
c cos

³
n2π

z

c

´¸#
=

= −C
"
3

16
bR−5 +

1

8
bR−5

∞X
n=1

£¡
3 + 3GnR+G2

nR
2
¢
e−GnR cos (Gnx)

¤#
. (4.22)
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The same procedure can be applied for possible present forms of the repulsive part of the inter-
atomic potential,

vrep(r) = +C12r
−12, v(r) = v0e

−κ(r−r0) = λe−κr, v(r) = +C9r−9. (4.23)

Then for R2 = x2+ y2 > 0 the 1-dimensional Fourier transform with respect to z exists. Only for
+C12r

−12 we can evaluate the integral analytically

ṽrep(k;x, y) = ṽrep(k;R) =
1

2π

Z
R

¡
C12(z

2 +R2)−6e−ikz
¢
dz = (4.24)

=
C12
7680

e−|k|R

R11
¡
945 + 945|k|R+ 420 (|k|R)2 + 105 (|k|R)3 + 15 (|k|R)4 + (|k|R)5

¢
(4.25)

This leads to a total potential energy (per bead unit) of two wires, parallel to each other, of

ṽ(k;R) =
−C6e−|k|R
16R5

¡
3 + 3|k|R+ k2R2

¢
+

+
C12
7680

e−|k|R

R11
¡
945 + 945|k|R+ 420 (|k|R)2 + 105 (|k|R)3 + 15 (|k|R)4 + (|k|R)5

¢
V (R, z) =

X
n∈Z

v
³p

R2 + (z − nc)2
´
=
X
n∈Z

(vatt + vrep)
³p

R2 + (z − nc)2
´

=
X
n∈Z

Vn(R)
³
ein

2π
c
z
´
= V0(R) + 2

∞X
n=1

Vn(R) cos

µ
n
2π

c
z

¶
=

=
2π

c
ev(R; k = 0) + 4π

c

∞X
n=1

evµR; k = n
2π

c

¶
cos

µ
n
2π

c
z

¶
.

with
V0(R) being a polynomial in R−1, and Vn(R), n ≥ 1 R→∞−→ e−

2π
c
R .

For many purposes it is enough to examine

V0(R) =
2π

c
ev(R; k = 0) = π�σ6

64c

¡
63σ6R−11 − 96R−5

¢
,

which is independent of z. For example the equilibrium distance is mainly determined by V0(R) :

d

dR
V0(R) = 0⇒ R0 =

µ
693

480

¶ 1
6

σ < (2)
1
6 σ .

and is therefore slightly smaller than the bead-bead equilibrium distance. The cohesive energy
(per bead unit) between two wires at the equilibrium is given by

V0(R0) = −�
48π

11

µ
5

77

¶ 5
6

6
1
6
σ

c
≈ −�

³
1.89

σ

c

´
,

which is confirmed by a rough approximation that all beads at the other wire with z ∈ [−σ,+σ]
contribute to the sum with −�. If the equilibrium position of the two wires is at z = 0 or z = c

2
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Figure 4.9: The function 4π
c
ev(R0; k = 2π

c
) plotted against σ

c
, therefore for σ

c
≈ 2 the equilibrium is

when the two wires are translated by c
2
in the z direction.

(and R0 normal distance) depends on the ratio of
σ
c
. Because e−n

2π
c
R becomes small rather quickly

with n growing we limit ourselves to the next term with n = 1,

4π

c
evµR; k = 2π

c

¶
cos

µ
2π

c
z

¶
,

such that

4π

c
evµR0; k = 2π

c

¶
> 0⇒ R0, zmin =

c

2
,

4π

c
evµR0; k = 2π

c

¶
< 0⇒ R0, zmin = 0 .

A plot (Fig. 4.9) of 4π
c
ev(R0; k = 2π

c
) versus σ

c
shows that for σ

c
≈ 2 the two wires are translated

by c
2
.

4.3.2 Cohesive energy

One can calculate the cohesive energy (sublimation energy) of the array of wires similar to the
well known case of FCC rare gas crystals, where the cohesive energy is given by:

V (a; �, σ) =
1

2

X
j 6=0

v (j) =
1

2

X
j 6=0
−4�

Ãµ
σ

rj

¶6
−
µ
σ

rj

¶12!
= �F (a/σ) ,

where F is a universal function for one lattice type (e.g. FCC) that depends only on the ratio of
the lattice constant and the atom-atom Lennard Jones value σ.
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For our array of wires we get

V (a; c, �, σ) =
1

2

X
j 6=0

vww (j) = �F (a/σ; c/σ) ,

where F is a universal function for one structure (e.g., 2D quadratic with 1 atom/cell) that depends
only on the ratio of the lattice constant and the unit-unit (bead-bead) interaction length value σ,
(and c/σ as further parameter of F ).

4.3.3 Elastic constants

Let σij be the usual stress (Cartesian stress tensor) applied to a (inner) plane with orientation i
in the direction j (a surface with normal vector ei, where stress vector points in the direction ej),
and �kl the resulting strain �kl =

4ak
al
, the ratio of displacement 4ak to the original size al. Linear

elasticity theory relies on the fact that

σij = cijkl�kl , �ij = sijklσkl , (4.26)

where the sijkl are so called compliance constants and the cijkl stiffness constants. Because not all
components are independent one can reduce the tensor equation (4.26) to a lower dimensionality.
Our crystals of linear polymers show highly anisotropic properties, because of different bond types
along and perpendicular to the chain axis. Since we don’t want to describe the covalent bond along
the wire axis, we consider one chain as infinitely rigid. Then there are 2 qualitatively different
types of stress possible, namely normal stress and shear stress as sketched in Fig. 4.10 and Fig.
4.11. For simplicity we limit ourselves to the case of only 1 wire per 2D unit cell.

Normal stress

In order to find the change in energy we need the energy per unit cell as a function of the lattice
parameters a1 = a0 + x, a2 = a0,

ΦUC (a0 + x, a0; c, σ, �) . (4.27)

If x is small we can approximate ΦUC by

ΦUC (x) = ΦUC (0) +
1

2

∂2ΦUC

∂x2

¯̄̄̄
0

x2 .

The work done by the stress is

(ac)σx = ΦUC (x)− ΦUC (0) =
1

2

∂2ΦUC

∂x2

¯̄̄̄
0

x2 ,

from which follows that

σ =
1

2ac

∂2ΦUC

∂x2

¯̄̄̄
0

x =
1

2c

∂2ΦUC

∂x2

¯̄̄̄
0

x

a
=
1

2c

∂2ΦUC

∂x2

¯̄̄̄
0

� ,
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σσ

x

Figure 4.10: Above: a macroscopic crystalline piece of matter under normal stress σ11 = σxx.
Below: while the lattice constants in y, z direction remain almost unchanged, the lattice constant
in x direction changes.

and the Young modulus is given by

σ
x
a

=
1

2c

∂2ΦUC

∂x2

¯̄̄̄
0

=
1

2a2c

µ
a2

∂2ΦUC

∂x2

¯̄̄̄
0

¶
.

For a numerical evaluation of ΦUC (x) we need to take into account the fact that the symmetry
of the lattice is reduced by the distortion sketched in Fig. 4.10.

Shear stress

In order to find the change in energy when shear stress is applied, we need the energy per unit cell
of a system where every wire is displaced by z with respect to its neighbor in x direction, while
the 2D x, y lattice positions are unchanged and determined by the lattice constant a1 = a2 = a0

ΦUC (z, a0; c, σ, �) . (4.28)

If z is small we can approximate ΦUC by

ΦUC (z) = ΦUC (0) +
1

2

∂2ΦUC

∂x2

¯̄̄̄
0

z2 .

The work done by the stress is

(ac)σz = ΦUC (z)− ΦUC (0) =
1

2

∂2ΦUC

∂x2

¯̄̄̄
0

z2 ,
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σσ

z

Figure 4.11: Above: a macroscopic crystalline piece of matter under shear stress σ13 = σxz
Below: while the lattice constants in the x, y direction remain almost unchanged, the chains are
displaced along the axis by z.

from which it follows that

σ =
1

2ac

∂2ΦUC

∂x2

¯̄̄̄
0

z =
1

2c

∂2ΦUC

∂x2

¯̄̄̄
0

z

a
=
1

2c

∂2ΦUC

∂x2

¯̄̄̄
0

� ,

and the Shear modulus is given by

σ
z
a

=
1

2c

∂2ΦUC

∂x2

¯̄̄̄
0

=
1

2c3

µ
c2

∂2ΦUC

∂x2

¯̄̄̄
0

¶
.

For a numerical evaluation of ΦUC (z) we need to take into account the fact that the symmetry
of the lattice is reduced by the distortion sketched in Fig. 4.11 (here the array of wires is not
periodic anymore for general z).

4.3.4 Vibrational spectrum:

One atom per unit cell

To start with an easy example we first consider just one atom per unit cell, so that the coordinates
of all wires are given by.

x =(. . . ,xj, . . .) = (. . . , xjm, . . .) with j = (j1, j2) ∈ Z2,m ∈ {1, 2, 3}

and the displacements from the equilibrium positions by

u = x− x0 = (. . . , ujm, . . .) with j = (j1, j2) ∈ Z2,m ∈ {1, 2, 3} ,
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where j = (j1, j2) labels the cell and m the 3 Cartesian coordinates. The potential energy for
small derivations from the equilibrium is then given by (in harmonic approximation)

V (x) = V (x0) +
1

2

X
jm

X
j0m0

∂2V

∂ujm∂uj0m0

¯̄̄̄
¯
x0

ujmuj0m0 .

The classical equation of motion,

Mα
··
u(t) = − d

du
V (u) ,

therefore reads as

Mα
··
ujm(t) = −

X
j0m0

∂2V

∂ujm∂uj0m0

¯̄̄̄
¯
0

uj0m0 .

For our potential the second derivatives depend only on the relative position between j and j0 ,

Dm,m0 (j − j0) =
∂2V

∂ujm∂uj0m0

¯̄̄̄
¯
0

=
∂2V

∂u
j−j0m∂u0m0

¯̄̄̄
¯
0

,

where Dm,m0 (j) is a 3× 3 matrix for every lattice translation tj and

Mα
··
ujm(t) = −

X
j0m0

Dm,m0 (j − j0)uj0m0 .

With the Ansatz u
jm
= e

i
³
k·u0

j
−ωt

´
am we arrive at

ω2 (k) am =
X
m0

Km,m0 (k) am0 , (4.29)

Km,m0 (k) =
1

M

ÃX
j

Dm,m0 (j) e−ik·Rj

!
.

Evaluation of ∂2

∂ujm∂u
j0m0

V Our potential of the array of wires is just the sum of pairwise wire-

wire (per unit in z direction) potentials

V (. . . ,xj, . . .) =
1

2

XX
j0 6=j00

vww (xj0 − xj00) .

Therefore,

∂V

∂ujm
=

X
j00, j00 6=j

∂

∂xm
vww (xj − xj00) ,

Dm,m0 (j − j0) =
∂2V

∂ujm∂uj0m0
=


j = j0

X
j00, j00 6=j

∂2

∂xm∂xm0
vww (xj − xj00)

j 6= j0 − ∂2

∂xm∂xm0
vww (xj − xj0)

.
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Figure 4.12: Dispersion relation for a quadratic array of wires in the symmetry direction k0 =
(1, 0), the different ωj(k) belong to physically different modes of the system.

Evaluating the Fourier transform we getX
j

Dm,m0 (j) e−ik·Rj =
X
j 6=0

∂2

∂xm∂xm0
vww (x0 − xj)

¡
1− e−ik·Rj

¢
.

Therefore it is enough to evaluate the derivatives of the wire-wire potential vww at the distance of
the first few j = (j1, j2) = (0, 0) neighboring wires.

Dispersion relation The 3 × 3 eigenvalue problem (4.29) with the 2D propagation vector
k =(k1, k2, 0) , restricted to the first reciprocal unit cell k =(k1, k2) ∈

£
−π

a
, π
a

¤
×
£
−π

a
, π
a

¤
, and the

polarization vector a = (ax, ay, az) reads in short matrix notation:

K (k)a =ω2 (k)a (4.30)

(4.30) has a 3 eigenvectors, written as pairs of (eigenvalues,eigenvectors),

(ω1 (k) , a1) , (ω2 (k) ,a2) , (ω3 (k) ,a3) . (4.31)

For a given direction k one can plot ωj (k(s)) ,k(s) = sk0 as a function of s. If we take the
symmetry direction k0 = (1, 0) , the results are plotted in (4.12). If we number the frequencies
according to ω1 (k) ≤ ω2 (k) ≤ ω3 (k) , then the polarization vector determines the type of elastic
wave in the crystal:

a1 = (0, 1, 0) normal distance between wires not changed (4.32)

a2 = (0, 0, 1) normal distance between wires not changed

a3 = (1, 0, 0) normal distance between wires changed

The different energies involved in these distortions (see (4.2.5)) explain the different frequencies
of the modes.
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More than one atom per unit cell

There are a few changes for more than one atom per unit cell that have to be taken into account.
The new index α ∈ {1, . . . , Natom} labels the nonequivalent atoms in one unit cell,

x =(. . . ,xjα, . . .) = (. . . , xjαm, . . .) with j = (j1, j2) ∈ Z2, α ∈ {1, . . . , Natom} ,m ∈ {1, 2, 3} ,

and the displacements from the equilibrium positions are determined by

u = x− x0 = (. . . , ujαm, . . .) with j = (j1, j2) ∈ Z2, α ∈ {1, . . . , Natom} ,m ∈ {1, 2, 3}

where j = (j1, j2) labels the cell, α the bead in the cell and m the 3 Cartesian coordinates. Then
the potential energy for small derivations from the equilibrium is given by

V (x) = V (x0) +
1

2

X
jαm

X
j0α0m0

∂2

∂ujαm∂uj0α0m0
V |x0 ujαmuj0α0m0 .

The classical equation of motion

Mα
··
u(t) = − d

du
V (u)

therefore reads with this notation

Mα
··
ujαm(t) = −

X
j0α0m0

∂2

∂ujαm∂uj0α0m0
V |0 uj0α0m0 .

For our potential the second derivatives depend only on the relative position between j and j0

Dαm,α0m0 (j − j0) =
∂2

∂ujαm∂uj0α0m0
V |0 =

∂2

∂u
j−j0αm∂u0α0m0

V |0 ,

and therefore
Mα

··
ujαm(t) = −

X
j0α0m0

Dαm,α0m0 (j − j0)uj0α0m0 .

With the Ansatz

u
jαm = e

i
³
k·u0

jα
−ωt

´
aαm = e

i
³
k·u0

jα
−ωt

´
1√
Mα

aαm ,

in order to keep the symmetry in α, α0 we have to scale the amplitude by the square root of the
mass Mα, we get:

ω2 (k) aαm =
X
α0m0

Kαm,α0m0 (k) aα0m0 , (4.33)

Kαm,α0m0 (k) =
1√

MαMα0

ÃÃX
j

Dαm,α0m0 (j) e−ik·Rj

!
e
−ik·

³
x0
α
−x0

α0
´!

.
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Evaluation of ∂2

∂ujαm∂u
j0α0m0

V

Our potential of an array of wires is just the sum of pairwise wire-wire (per unit in z direction)
potentials,

V (. . . ,xjα, . . .) =
1

2

X
j0α0 6=

X
j00α00

vww (xj0α0 − xj00α00) .

Therefore

∂V

∂ujαm
=

X
(j00,α00)6=(j,α)

∂

∂xm
vww (xjα − xj00α00) ,

∂2V

∂u
jαm

∂u
j0α0m0

=


(j, α) = (j0, α0)

X
(j00,α00)6=(j,α)

∂2

∂xm∂xm0
vww (xjα − xj00α00)

(j, α) 6= (j0, α0) − ∂2

∂xm∂xm0
vww (xjα − xj0α0)

.

Evaluating the Fourier transform we getX
j

Dαm,α0m0 (j) e−ik·Rj =

=


α = α0 :

X
j 6=0

∂2

∂xm∂xm0
vww (xjα − x0α)

¡
1− e−ik·Rj

¢
+
X
α00 6=α

X
j

∂2

∂xm∂xm0
vww (xjα00 − x0α)

α 6= α0 : −
X
j

∂2

∂xm∂xm0
vww (xjα0 − x0α) e−ik·Rj

.

Thus it is enough to evaluate the derivatives of the wire-wire potential vww. The solution of the
eigenvalue problem in (4.33) leads to the eigenvalues ω2 (k) and the corresponding polarization
vectors aαm.

Dispersion relation for two atoms per unit cell The 6×6 eigenvalue problem for a quadratic
lattice with 2 atoms per unit cell (with propagation vector k =(k1, k2, 0) , restricted to the first
reciprocal unit cell, k =(k1, k2) ∈

£
−π

a
, π
a

¤
×
£
−π

a
, π
a

¤
, the index for the two non-equivalent atom

types α ∈ {1, 2} and the polarization vector a = (a1,a2) = (a1x, a1y, a1z, a2x, a2y, a2z)), is written
as

ω2 (k) aαm =
X
α0m0

Kαm,α0m0 (k) aα0m0 ,

K (k)a = ω2 (k)a .

The 6 solutions, written as pairs of (eigenvalues,eigenvectors), are

(ω1 (k) ,a1) , . . . , (ω6 (k) ,a6) (4.34)

For a certain direction k0 one can plot ωj (k(s)) ,k(s) = sk0 as a function of s. For the symmetry
direction k0 = (1, 0) the dispersion relation is plotted in Fig.4.13. If we number the frequencies
according to ω1 (k) ≤ . . . ≤ ω6 (k) then we have 3 acoustic and 3 optical modes with different
physical meaning as explained before in (4.32).
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Figure 4.13: Dispersion relation for a quadratic lattice with 2 atoms per unit cell of wires in the
symmetry direction k0 = (1, 0) and the different ωj(k) belong to physically different modes of the
system.

Thermodynamics

The different energy regions of the elastic waves should be visible in a thermodynamical study of
the specific heat. But the situation is complicated by further degrees of freedom for the physical
system (e.g. rotations of chains around their axis) and the low stability of the organic crystal.

4.3.5 Large amplitude slipping and plastic flow

An interesting but theoretically difficult property to access is the reaction to normal stress applied
parallel to the chain axis. The dominant mechanism for the final break of the material is not the
breaking of the covalent intrachain bonds (which are very stable) but is related to the fact that all
chains are long (many beads) on atomic scales, but short compared to the macroscopic dimension
of the specimen. Wires will slip against each other when normal stress is applied, see Fig. 4.14,
the specimen tears without breaking of covalent bonds.
In order to estimate the stress necessary to tear the polymer crystal in this way we have the

situation displayed in (Fig. 4.15) in mind. One wire is attached (for example over other wires)
to a force which pulls it upwards, while its neighboring wires do not extent as far to the upper
boundary and are not influenced by this external force. If we calculate the energy as a function of
z for this situation, VUC , then the size of the energy barrier mainly determines the force necessary
to be applied:

VUC (zmax)− VUC (z0) = ∆V

F
c

2
≈ ∆V, σ ≈ 2

a2c
∆V

In order to obtain numerical values one only needs an estimation of the Lennard Jones parameter
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σ

σ

Figure 4.14: When normal stress parallel to the wire axis is applied, wires slip against each other
and the specimen tears without a break of covalent bonds.

∆ V

z

V(z)

z

F

Figure 4.15: One wire is attached to the upper force which pulls it up, while its neighboring wires
remain unchanged.
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and data of the crystal structure.

4.4 Concluding remarks and limits of the model

The model treats the dispersion interaction energy between two chains as the sum of pairwise
monomer-monomer interaction energies, which of course is only a rough estimate of the physi-
cal situation, since the dispersion interaction between two long molecules is not just the sum of
the dispersion interactions between its constituent monomers. The covalent bond between the
monomers inside a chain changes the electronic structure and therefore the dispersion interaction
completely. In this part detailed numerical numbers are not given, because one needs the respec-
tive bead-bead Lennard Jones parameters. But values for Polyacetylene show the right order of
magnitude of the results.
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Part II

The Full-potential
Korringa-Kohn-Rostoker (KKR)

method

63





Chapter 5

Shape functions in the KKR method

5.1 Lower dimensional examples

5.1.1 A 1D example

Although a 1D example can only contain rudiments of the situation in 3D we try to find as many
formal analogies as possible.
The most general cell in 1D is an interval [−a,+b] and the characteristic function of the cell

is (see Fig. 5.1)

σ :

 R → R

x 7→ σ (x) = Θ[−a,b](x) =
½
1 x ∈ [−a,+b]
0 x /∈ [−a,+b]

.

We define a radial coordinate and a (discrete) angle

x = |x| sgn (x) = r s with r ∈ R+0 , s ∈ {−1,+1}

The unit sphere in 1D is

S0 = {−1,+1}

σ (x)

-a 0
0

1

x
+b

Figure 5.1: The cell in 1D is an intervall [−a,+b], with positive real constants a, b.

65
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σ+ (x)

0
x

a b

2

1

0

σ- (x)

0
x

a b

1

0

Figure 5.2: Shape functions σ+ (r) , σ− (r) , times
√
2 for 0<a<b.

with the orthonormal system {Y+, Y−} on the sphere in 1D (the analogy of the spherical harmonics)

Y+ :

½
S0 → C
s 7→ 1√

2

, Y− :
½

S0 → C
s 7→ 1√

2
sgn(s)

.

To expand the characteristic function of the cell we get

σ (x) = σ (r, s) = σ+ (r)Y+ (s) + σ− (r)Y− (s)

with

σ+ (r) =

Z
S0

¡
σ (x)Y ∗+ (s)

¢
ds = σ (r, s = 1)Y+ (1) + σ (r, s = −1)Y+ (−1) =

=
1√
2

£
Θ[0,b] (r) +Θ[0,a] (r)

¤
=

1√
2

 2 r < min (a, b)
1 min (a, b) < r < max(a, b)
0 r > max (a, b)

and

σ− (r) =

Z
S0

¡
σ (x)Y ∗− (s)

¢
ds = σ (r, s = 1)Y− (1) + σ (r, s = −1)Y− (−1) =

=
1√
2

£
Θ[0,b] (r)−Θ[0,a] (r)

¤
=

1√
2

 0 r < min (a, b)
sgn(b− a) min (a, b) < r < max(a, b)
0 r > max (a, b)

Plots of σ+ (r) and σ− (r) are shown in Fig. 5.2. There are two critical radii rC1 = rMT = a and
rC2 = rBS = b, all other important concepts do not have an analogy in 1D.
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rMT

rBS

φ 0

r

x

y

Figure 5.3: A quadratic cell with inscribed MT radius rMT a general radius r and the bounding
sphere radius rBS .

5.1.2 A 2D example

Because a 1D model does not contain the essential features, we choose a 2D quadratic cell to
present the other main ideas. We try to find as many analogies as possible to the 3D case, in
which we are really interested later on (we fix the lattice parameter by a = 1). We define 2D polar
coordinates by

x = r

µ
cosϕ
sinϕ

¶
with r ∈ R+0 , ϕ ∈ [0, 2π[ .

The shape function σ (x) is 1 inside the quadratic unit cell, 0 outside. The orthonormal system
for the angular integration is chosen as

ym(ϕ) =
1√
2π

eimϕ, m ∈ Z .

If we consider σ as a function of the angle ϕ for given radius r we get a 2π periodic function
σ (ϕ; r), which is either 0 or 1. We have to define 2 critical radii where the ϕ-region of nonzero
shape function changes abruptly.

rC1 = rMT =
1

2
,

rC2 = rBS =
1√
2
.
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2 π

phi

Figure 5.4: The region in the (r, ϕ)−plane where the shape function fulfills σ(r, ϕ) = 1 and the
two critical radii rMT and rBS.

For 0 ≤ r ≤ rMT the ϕ-region is the full interval [0, 2π], while for r ≥ rBS the ϕ-region is the
empty set ∅, between rMT ≤ r ≤ rBS the ϕ-region is a union of disjunct intervalsh

ϕ0,
π

2
− ϕ0

i
∪
·
π

2
+ ϕ0,

2π

2
− ϕ0

¸
∪
·
2π

2
+ ϕ0,

3π

2
− ϕ0

¸
∪
·
3π

2
+ ϕ0,

4π

2
− ϕ0

¸
and σ (r;ϕ) is a discontinuous multiple step function, see (Fig. 5.5). The expansion in the {ym(ϕ)}
system is nothing else but the complex Fourier series of this periodic function,

σ (x) = σ (r, ϕ) ∼
X
m

σm (r) ym(ϕ) =
∞X

m=−∞
σm (r) ym(ϕ)

with the shape functions as expansion coefficients determined by

σm (r) =

2πZ
0

dϕ σ (r, ϕ) y∗m(ϕ) . (5.1)

This integration can be done analytically. Looking at (Fig. 5.3) we see that for rMT < r < rBS
there are 8 critical angles

ϕ = 0± ϕ0,
π

2
± ϕ0, π ± ϕ0,

3π

2
± ϕ0 with ϕ0 (r) = arccos

µ
1

2r

¶
,
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Figure 5.5: The exact shape function σ (r;ϕ) for r = (rMT + rBS) /2 as a periodic multiple step
function with respect to ϕ. For all rMT < r < rBS the form is principally the same.

and therefore (5.1) can be simplified to

σm (r) =
3X

j=0

π
2Z
0

dϕ

µ
σ (r, ϕ)

1√
2π

e−im(ϕ+j
π
2 )
¶
=

=
3X

j=0

¡
e−im

π
2

¢j π
2Z
0

dϕ

µ
σ (r, ϕ)

1√
2π

e−imϕ

¶
.

Hence we see that only for m ∈ 4Z the result can be different from zero,

σm (r) = 4

π
2Z
0

dϕ

µ
σ (r, ϕ)

1√
2π

e−imϕ

¶
=

4√
2π

π
2
−ϕ0Z

ϕ0

dϕ e−imϕ , (5.2)

while for

m /∈ 4Z σm (r) ≡ 0.

If we evaluate (5.2) we get the final result for m = 0

σ0 (r) =


√
2π r < rMT√

2π
¡
1− 4

π
ϕ0(r)

¢
rMT < r < rBS

0 r > rBS

(5.3)
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Figure 5.6: Shape functions σm (r) for a quadratic cell. The shape functions are continuous but
not smooth at the critical radii rMT , rBS.

and for m ∈ 4Z\ {0}

σm (r) =


0 r < rMT√

2π
¡ −4
mπ
sin (mϕ0(r))

¢
rMT < r < rBS

0 r > rBS

. (5.4)

Fig. 5.6 shows the shape functions for a quadratic cell. It is obvious that with higher m the σm (r)
have more radial nodes.

An important numerical question is the quality of the approximation of the exact shape func-
tion (Fig. 5.5) with only a finite number of σm (r). We define σ

M (r, ϕ) as the expansion up to
|m| ≤M.

σM (r, ϕ) =
MX

m=−M
σm (r) ym(ϕ)

In Fig. 5.7 we plot σM (r, ϕ) for a given r, with rMT < r = 0.6 < rBS for various M . We
see the slow convergence and the well known Gibbs phenomenon at the points of discontinuity.
These problems are inherent to the method because the shape function σ (x) = σ (r;ϕ) is not a
continuous function of ϕ. Even if we calculate the σm (r) with good precision we are limited by
the number of m’s |m| ≤ M , which is a serious limitation to the numerical precision also in the
3D case.
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Figure 5.7: The exact shape functions σ (ϕ; r) and the approximations σM (ϕ; r) for given r = 0.6.

5.2 3D Shape functions

5.2.1 The construction of shape functions in 3D

The construction of the shape functions is central to the full-potential method and therefore it is
summarized here. Our approach is based on the description published in ([45]).
Let V be the region of the convex polyhedron containing one atom at the origin of the coordi-

nates. Then the shape function of the region is defined as

σ (x) =

½
1 x ∈ V
0 x /∈ V

Let YL(bx) = Ylm(bx) = CLP
l
m(cos θ)e

imϕ be the usual complex spherical harmonics. For a fixed
chosen coordinate system one considers σ (x) as a function of spherical variables σ (r; θ, ϕ) then
for every fixed r the spherical function σ (r;Ω) can be expanded (therefore ∼ instead of =) into
spherical harmonics,

σ (r;Ω) ∼
X
L

σL (r)YL(Ω) =
∞X
l=0

lX
m=−l

σlm (r)Ylm(Ω) ,

with the shape functions as expansion coefficients determined by

σL (r) =

Z
Ω

dΩ (σ (r,Ω)Y ∗L (Ω)) . (5.5)
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For the construction of the Voronoy polyhedron (nearest neighbor cell) we have a set of potential
boundary planes, all given by their normal vector Ri with magnitude Ri equal to its normal
distance from the origin. The polyhedron can be precisely characterized as

x ∈ V ⇔ ∀i
¡
x ·Ri ≤ R2i

¢
. (5.6)

Interception of one boundary plane of the polyhedron and a sphere

Consider one potential boundary plane Ri and a sphere with given radius r, the normal vector
Ri can be split into Ri = Ri,k + Ziez. If Ri,k = 0 and Ri therefore points in z direction we have
a special case, to be considered separately. We can always rotate our coordinate system by an

angle φ0 = arccos

µ
Xi√
X2
i +Y

2
i

¶
around the z axis, so that Ri,k = Xiex (see right plot of Fig. 5.8).

A typical situation after rotation is shown in the left plot of Fig.5.8. Now we can easily see that
all points

x =
¡
x y z

¢
=
¡
r sin θ cosϕ r sin θ sinϕ r cos θ

¢
on the intersection circle (the ellipse in the left lower plot of Fig. 5.8) of the sphere and the plane
have a θ value fulfilling the condition¯̄̄̄

¯ R2i − Zir cos θp
X2

i + Y 2
i r sin θ

¯̄̄̄
¯ ≤ 1. (5.7)

If θ does not fulfill (5.7) there are no intersection points. For a given θ fulfilling (5.7) the plane
intercepts the sphere when ϕ is given by

new coord. system : ϕ
(±)
i = ±α, α = arccos

Ã
R2i − Zir cos θp
X2

i + Y 2
i r sin θ

!

old coord. system : ϕ
(±)
i = arccos

Ã
Xip

X2
i + Y 2

i

!
± arccos

Ã
R2i − Zir cos θp
X2

i + Y 2
i r sin θ

!
.

If the pair (r, θ) does not fulfill (5.7) then the plane Ri is not involved in the construction of
the polyhedron at these (r, θ) values and needs not to be considered.

Semi analytical evaluation of σL (r)

If one repeats the same procedure of subsection 5.2.1 for every possible boundary plane Ri, one

gets for every pair (r, θ) a set of
n
ϕ
(±)
i , i = 1, . . . , N

o
, which can be ordered such that 0 ≤ ϕ1 ≤

. . . ≤ ϕ2N ≤ 2π ≤ ϕ2N+1 = ϕ1 + 2π. This can be used to solve the ϕ integral analytically

σL (r) =

Z
Ω

dΩ σ (r,Ω)Y ∗L (Ω) = CL

πZ
0

dθ

sin θP l
m(cos θ)

 2πZ
0

dϕσ (r, θ;ϕ) e−imϕ

 .
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Figure 5.8: Right plot: The coordinate system is rotated around the z axis such that Ri,k points
in x direction.
Left plot: view from the top (below) and the side (above) of the plane intersecting the sphere.
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With the help of the above ordered list one can solve the ϕ integral

fm (r, cos θ) =

 2πZ
0

dϕσ (r, θ;ϕ) e−imϕ

 =

=



2NX
j=1

¡
ϕj+1 − ϕj

¢
σ
¡
r, θ, ϕM

j

¢
m = 0

i
m

2NX
j=1

¡
e−imϕj+1 − e−imϕj

¢
σ
¡
r, θ, ϕM

j

¢
m 6= 0

where σ
¡
r, θ, ϕM

j

¢
is 1 if, for ϕM

j =
¡
ϕj+1 − ϕj

¢
/2, the point represented by

xM =
¡
r sin θ cosϕM

j r sin θ sinϕM
j r cos θ

¢
is inside the polyhedron and 0 otherwise, which can be easily verified with (5.6). The remaining
θ integral has to be evaluated numerically

σL (r) = CL

πZ
0

dθ
¡
sin θP l

m(cos θ)fm (r; cos θ)
¢
= CL

1Z
1

du
£
P l
m(u)fm (r;u)

¤
.

The fm (r; cos θ) are not smooth functions of cos θ, they are only smooth between K irregular
points

{θk = θk (r) , k = 1, . . . ,K} ,
so that one splits the θ integration into several intervals

σL (r) = CL

K−1X
k=1

 θk+1Z
θk

dθ
¡
sin θP l

m(cos θ)fm (r; cos θ)
¢ . (5.8)

5.2.2 Shape functions of the FCC cell

As an example we discuss the construction of the shape functions for a simple FCC cell, with
cubic lattice constant a. In the FCC lattice we have 12 nearest neighbors, each one giving rise
to one boundary plane of the Wigner Seitz cell at a normal distance

√
2a
4
. These planes intercept

with each other in a total of 24 edges, each one is equivalent and at a normal distance a√
6
. The

edges intercept in total at 14 corners, where 8 are ’near corners’ at the distance
√
3a
4
and 6 are ’far

corners’ at the distance 2a
4
. Therefore we have the following critical radii:

0 <

Ã
rC1 = rMT =

√
2a

4

!
<

µ
rC2 =

a√
6

¶
<

Ã
rC3 =

√
3a

4

!
<

µ
rC4 = rBS =

2a

4

¶
(5.9)

Only at the critical radii the number K of irregular θ values, {θk, k = 1, . . . ,K} can change, while
for given r the number N of ϕ interception points,

n
ϕ
(±)
i , i = 1, . . . , N

o
, can only change at an



5.2. 3D SHAPE FUNCTIONS 75

irregular θk. While all the above features are independent of the orientation of the coordinate
system, many results depend on it. As an example for a property dependent on the coordinate
system we compare the neighborhood of θ = 0 between coordinate systems with ez k [100],
ez k [110] and ez k [111]. The respective z axis intersects the polyhedron at the following points:

[100] H at rBS =
1
2
a ’far corner’

[110] N at rMT =
√
2
4
a ’plane center’

[111] P at rC3 =
√
3
4
a ’near corner’

To examine the situation around θ = 0 we take a radius next to the corresponding critical radius.

The [100] case

For the [100] we choose a radius r2 a bit smaller then rBS (the situation for r ≥ rBS is trivial). At
this radius all points with a constant θ define a circle and we make a planar plot of the situation
in the plane of the circle (the plane given by z = r2 cos θ), for θ varying from 0 to small positive
values (right column of figure (5.9)). For θ = 0 the circle is reduced to a point and the plane
cuts a square out of the polyhedron (4 edges meet at the corner H), with θ increasing the circle
gets bigger until it touches the (also increasing) square from the inside at an irregular θ−value
θ2 then the circle intercepts with the square until the square touches the circle at an irregular
θ−value θ3, afterwards the circle is outside the polyhedron. For r2 → r

(−)
BS the irregular θ points

0 = θ1 ≤ θ2 ≤ θ3 all approach 0.

The [110] case

The situation is different in the case of the z axis pointing in the [110] direction. We choose a
radius r1 a bit bigger then rMT (the situation for r ≤ rMT is trivial), for this radius all points with
a constant θ value define a circle and we make a planar plot of the situation in the plane of the
circle (plane given by z = r1 cos θ), for θ varying from 0 to small positive values (left column of
figure (5.9)). For θ = 0 the circle is reduced to a point and this plane does not intersect with the
polyhedron (N is the MT-point of the boundary plane), with θ increasing the circle gets bigger but
is still completely outside the polyhedron until at an irregular θ−value θ2 the circle is in the plane
of the bounding plane, afterwards this bounding plane of the polyhedron is no longer involved in
the construction. For r1 → r

(+)
MT the irregular θ points 0 = θ1 ≤ θ2 all approach 0.

The [111] case

For the [111] the situation is more complicated since the z axis intercepts the polyhedron at a
’near corner’ P , where 3 edges meet, see figure (5.10). Therefore we have to examine the situation
for different radii r, namely r1 < r2 = rC3 < r3 smaller, equal to or bigger then the critical radius.
First we choose a radius r1 a bit smaller then rC3 (left column of figure (5.11)). For θ = 0 the
circle is reduced to a point and the plane cuts a triangle out of the polyhedrons (3 edges meet at
the ’near corner’ P), with θ increasing the circle gets bigger until it touches the (also increasing)
triangle from inside at an irregular θ−value θ2 then the circle intercepts with the triangle. For
r1 → r

(−)
C3 the irregular θ points 0 = θ1 ≤ θ2 all approach 0. If we choose a radius r2 equal to the
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θ =0

θ

>r MTr1

[110]
r2 <r BS

[100]

Figure 5.9: Right column: For θ = 0 the circle is reduced to a point and the plane cuts a square
out of the polyhedron, with θ increasing the circle gets bigger until it touches the (also increasing)
square from inside at an irregular θ−value θ2 then the circle intercepts with the square until the
square touches the circle at an irregular θ−value θ3, afterwards the circle is outside the polyhedron.
Left column: For θ = 0 the circle is reduced to a point and this plane does not intersect with the
polyhedron, with θ increasing the circle gets bigger but is still completely outside the polyhedron
until at an irregular θ−value θ2 the circle is in the plane of the bounding plane, afterwards this
bounding plane of the polyhedron is no longer involved in the construction.
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r 2 r 3r 1

P

O

z

Figure 5.10: The ’near corner P’ where 3 edges come together and spheres with radii smaller,
equal to or bigger than the critical radius r1 < r2 = rC3 < r3

rC3 (middle column of figure (5.11)) for θ = 0 the circle and the triangle is reduced to a point, with
θ increasing the circle and the triangle get bigger and intercept with each other, there is no other
irregular θ−value except θ1 = 0. Finally we choose a radius r3 a bit bigger then rC3 (right column
of figure (5.11)). For θ = 0 the circle is reduced to a point which is outside the polyhedron, with
θ increasing the triangle inside the circle gets bigger until it touches the (also increasing) circle

from inside at an irregular θ−value θ2, then the circle intercepts with the triangle. For r3 → r
(+)
C3

the irregular θ points 0 = θ1 ≤ θ2 all approach 0.
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rC3r  <1 rC3r  =2
rC3r  >3

θ 4

θ 3

θ 2

1
θ =0

θ

Figure 5.11: Left column: r1 < rC3 For θ = 0 the circle is reduced to a point and the plane cuts
a triangle out of the polyhedron, the sequence of θ increasing.
Middle column: r2 = rC3 For θ = 0 the circle and the triangle is reduced to a point, sequence for
θ increasing.
Right column: r3 > rC3 For θ = 0 the circle is reduced to a point which is outside the polyhedron,
sequence for θ increasing



Chapter 6

Electrostatic potential of a charge
density with 2D or 3D translational
symmetry - Madelung constants

6.1 Introduction

This chapter summarizes the theory behind the numerical programming of the electrostatic po-
tential in the SKKR software code. The idea was first developed by Laszlo Szunyogh by adapting
the Kambe papers of the Structure constants of LEED theory, major changes, corrections and
completions were part of these thesis. The implementation of the corresponding numerical proce-
dures for the ’simple lattice full-potential SKKR code’, mainly developed by Jan Zabloudil, was
done following this document by the author. The theory as well as all program routines also work
for the ’complex structure SKKR code’.

6.2 Basic definitions

Using atomic Rydberg units (me =
1
2
,~ = 1, e2 = 2) the (now dimensionless) Poisson equation

reads as
∆V (r) = −8πρ(r) . (6.1)

The corresponding Green function G(r, r0) is defined by

∆G(r, r0) = −4πδ(r, r0) , (6.2)

with the solution
G(r, r0) = G0(r, r

0) + F (r, r0) , (6.3)

where

G0(r, r
0) =

1

|r− r0| and ∆F (r, r0) = 0 . (6.4)

For a point in the neighborhood of a nucleus R its coordinates r are measured from this nucleus
position. The intercell contribution to the electrostatic potential around an atomic position R is

79
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given by

VR(r) = 2
P
R0

(R0 6=R)

Ã R
ΩR0

d3r0(G0(r+R, r
0 +R0)ρR0(r0))

!
(r ∈ΩR) (6.5)

The intracell contribution to the electrostatic potential at the atomic position R is given by

VR(r) = 2
R
ΩR

d3r0 (G0(r, r
0)ρR(r

0)) (r ∈ΩR) (6.6)

We write the angular momentum index as L = (l,m) = l(l + 1) +m+ 1 ∈ N.

6.3 Intracell contribution

First we treat the contribution coming from the central cell V, with

x ∈ V ⇒ |x| = r ≤ rBS .

Let ρ̄(x) be the (shape truncated) charge density of the central cell with an expansion in spherical
harmonics (Y ∗L in agreement with the common literature of KKR),

ρ̄(x) = ρ(x)σV(x) =
X
L

ρ̄L(r)Y
∗
L (bx) .

The potential of this charge distribution fulfills the equation

V (x) = 2

Z
V

1

|x− x0| ρ̄(x
0)d3x0

With the expansion (A.44) for 1
|x−x0| this can be written as

VIntra(x) =
X
L

8π

2l + 1

·
rl
µZ rBS

r

ρ̄L(r
0)

(r0)l−1
dr0
¶
+

1

rl+1

µZ r

0

(r0)l+2ρ̄L(r
0)dr0

¶¸
Y ∗L (bx) . (6.7)

Remark 1 Symmetries in L = (l,m):
For all real quantities X(x) (like ρ̄(x)) one only needs to evaluate the Xlm for m ≥ 0 and use the
relation

Xl−m = (−1)m (Xlm)
∗ . (6.8)

For a system with inversion symmetry with respect to the center R (e.g. all simple structures with
1 atom per unit cell) we have the selection rule

Xlm = 0 ∀l odd . (6.9)

If the z axis of the coordinate system is a n-fold rotational symmetry axis (of the whole system),
we have the selection rule

m = . . . ,−n, 0, n, . . . , (6.10)
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which e.g. leads only to the following nonvanishing contributions for the cubic systems (with 1
atom per unit cell) dependent on the choice of the coordinate system

z-axis 2D lattice inplane n

[100] quadratic lattice 4
[110] rectangular lattice 2
[111] hexagonal lattice 3

From (6.7) it is clear that VIntra has the same symmetry as ρ̄(x) and only the corresponding
(l,m) have to be calculated. The ρ̄L are the coefficients of the shape truncated charge density,
they are expressed with the shape functions σL00(r) and the untruncated ones as

ρ̄L(r) =
X
L0L00

CL0
L00LρL0(r)σL00(r) .

If one needs the expansion of VIntra(x) in YL then (6.7) reads as

VIntra(x) =
X
L

8π

2l + 1

rl
Z rBS

r

1

(r0)l−1

X
L0L00

CL0
L00LρL0(r

0)σL00(r0)

 dr0

+ (6.11)

+
1

rl+1

Z r

0

(r0)l+2

X
L0L00

CL0
L00LρL0(r

0)σL00(r0)

 dr0

∗ YL(bx)
The radial grid for the numerical evaluation of the integral is determined by the shape functions.
The numerics are performed best by first evaluating the sum and then perform the integration,
complex conjugation only done at the very end.

VIntra,L(r) =
8π

2l + 1

rl Z rBS

r

1

(r0)l−1

X
L0L00

CL0
L00LρL0(r

0)σL00(r0)

 dr0+ (6.12)

+
1

rl+1

Z r

0

(r0)l+2

X
L0L00

CL0
L00LρL0(r

0)σL00(r0)

 dr0

∗ . (6.13)

Because VIntra(x) is a real function, we immediately obtain the relation

VIntra,l−m(r) = (−1)m (VIntra,lm(r))∗ . (6.14)

Remark 2 Alternatively one could calculate the intracell contribution with the untruncated charge
density, in the hope of compensating the nearest neighbor error discussed later on in (6.20).

Before we discuss the intercell contribution some general considerations are necessary.
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6.4 Multipole expansion in real space

6.4.1 Charge density

In our problem the space is divided in non-overlapping, space-filling cells such that the total charge
density is the sum of localized densities centered around atomic positions Rα

ρ(x) =
X
α

ρ̄Rα
(x), ρ̄Rα

(x) = ρ(Rα + x)σα(Rα + x) . (6.15)

One such local charge density ρ̄Rα
(x) is only unequal zero in a neighborhood of x = 0. This charge

density can be expanded in spherical harmonics,

ρ̄Rα
(x) =

X
L

ρ̄Rα,L(r)Y
∗
L (bx) . (6.16)

Furthermore, the spherical multipole moments of the localized charge density are defined by

QL
R =

√
4π

2l + 1

Z
VR

rlρ̄Rα
(x)YL(bx)d3x (6.17)

and can be expressed in terms of the untruncated coefficients as

QL
R =

√
4π

2l + 1

Z rBS

0

rl+2ρ̄Rα,L(r)dr =

√
4π

2l + 1

X
L0L00

CL0
L00L

µZ ∞

0

rl+2ρRα,L0(r)σRα,L00(r)dr

¶
(6.18)

The multipole moments are defined such that Q00
R = QR and it is obvious that they fulfill the

same selection rules as ρ̄R(x), the charge distribution in the cell centered around the position R.
Because the charge density ρ̄(x) is real, we have the symmetry condition

Ql−m
R = (−1)m(Qlm

R )
∗ (6.19)

The set of atomic positions Rα with the corresponding spherical multipole moments Q
L
Rα
(for

all L) of its local charge density ρ̄Rα
are the input data for the Poisson problem. The intercell

potential depends only on the multipole moments of the other cells but not on their detailed
charge density distribution.

6.4.2 Lattice translational symmetry

In the following we will have two cases

1. 3D periodic (complex) crystal structure:

Rα = Rnµ = Tn + aµ

Tn,n ∈ Z3 a 3D lattice translation,
aµ,µ ∈ {1, .., natom} atomic position,

natom is this finite, rather small number of non equivalent atomic positions, (e.g. for FCC
Cu, natom = 1, for hcp Co natom = 2)
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2. 2D periodic (complex) crystal structure:

Rα = Rnp = Tn + cp

Tn,n ∈ Z2 a 2D lattice translation ,
cp,p ∈ {..., 0, 1, .., nintfc, nintfc + 1, .....},

cp is one non equivalent atomic position per layer, they are numbered in such a way that for
p ≤ q, cp⊥ ≤ cq⊥ and by definition the layer with p = 0 is the last layer of the semi-infinite
left region and p = nintfc is the last layer in the selfconsistent treated film. On the left and
right side might be either vacuum or a semi-infinite material (there is no other restriction).
Also for some layers p 6= q, cp⊥ = cq⊥ is possible, a 2D plane with more than 1 non equivalent
atom .

6.4.3 Relation between Green function and Madelung constants

Using the expansions (A.44) and (A.45), the Green function connecting just 2 different positions
G0(r+R, r

0 +R0) can be evaluated for

r < |r0 −R+R0| and r0 < |R−R0| (6.20)

as

G0(r+R, r
0 +R0) =

1

|r+R− r0 −R0| =
P
L

4π

2c+ 1
rcY ∗L (br)YL( \r0 −R+R0)

|r0 −R+R0|c+1 = (6.21)

=
P
L

P
L0
rcY ∗L (br)

(−1)c (4π)2[2(c+ c0)− 1]!!
(2c+ 1)!!(2c0 + 1)!!

Cc0m0
cm,(c+c0)(m0−m)

Y ∗(c+c0)(m0−m)(
\R−R0)

|R−R0|c+c0+1

 (r0)c0Yc0m0(br0) .
(6.22)

With the definition (6.17) of the spherical multipole moments of the charge density it makes
sense to recast the expansion (6.22) as follows

G0(r+R, r
0 +R0) =

P
L

P
L0

√
4π

2c+ 1
rcY ∗L (br)ALL0

RR0

√
4π

2c0 + 1
(r0)c

0
YL0(br0) , (6.23)

and define the real-space Madelung constants (for only 2 atomic positions as)

ALL0
RR0 = (−1)c 4π[2(c+ c0)− 1]!!

(2c− 1)!!(2c0 − 1)!!C
c0m0
cm,(c+c0)(m0−m)

Y ∗(c+c0)(m0−m)(
\R−R0)

|R−R0|c+c0+1 . (6.24)

This treatment is only valid if r < |r0 − R+R0| and r0 < |R−R0| which means that the
bounding spheres of the 2 cells must not overlap. By neglecting the near-field correction for these
neighboring cells, the intercell potential (6.5) can than be expressed as direct space sum of terms
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as above

VR(r) = 2
P

R0(6=R)

P
L

P
L0

√
4π

2c+ 1
rcY ∗L (br)ALL0

RR0 QL0
R0 = 2

X
L

√
4π

2c+ 1

X
L0

X
R0(6=R)

ALL0
RR0 QL0

R0

 rcY ∗L (br) =
=
X
L

4
√
π

2c+ 1

 X
R0(6=R)

X
L0

ALL0
RR0 QL0

R0

∗ rcYL(br) =X
L

VR,L(r)YL(br) (6.25)

VR,L(r) =
4
√
π

2c+ 1

 X
R0(6=R)

X
L0

ALL0
RR0 QL0

R0

∗ rc (6.26)

If one considers only (piecewise around each atomic position) spherically symmetric potentials,
namely, by taking only the c = 0 term above, this expression reduces to a constant value at the
origin of the cell, although all higher multipole moments of the charge densities have to be taken
into account.

V ASA
R = VR(0) = 2

P
R0(6=R)

P
L0

A00,L
0

RR0 Q
L0
R0 . (6.27)

6.4.4 Alternative relation between the Green function and the Madelung
constants → Reduced Madelung constants

Making use of the fact that G0(r+R, r
0+R0) directly depends only on the difference vector r− r0,

G0(r+R, r
0 +R0) = G0(r− r0 +R−R0) , (6.28)

at least for small r and r0, namely |r− r0| < |R−R0| it can be expanded as

G0(r+R, r
0 +R0) =

X
L

|r− r0|c YL(\r− r0)
4π

2c+ 1

Y ∗L (\R0−R)
|R−R0|c+1 = (6.29)

=
X
L

|r− r0|c YL(\r− r0)GL
RR0 . (6.30)

The GL
RR0 are usually termed as the reduced Madelung constants. Inserting expansion (A.49) for

|r− r0|c YL(\r− r0) into eq. (6.29) yields

G0(r+R, r
0 +R0) =

X
L,L0

rcY ∗L (br) 4π(−1)c0 [2(c+ c0) + 1]!!
(2c+ 1)!!(2c0 + 1)!!

Cc0m0
cm,(c+c0)(m0−m)G

(c+c0)(m0−m)
RR0 (r0)c

0
YL0(br0) .
(6.31)

Comparing eq. (6.23) with eq. (6.31) implies the following relationship between the Madelung
constants and the reduced ones

ALL0
RR0 = (−1)c0 [2(c+ c0) + 1]!!

(2c− 1)!!(2c0 − 1)!!C
c0m0
cm,(c+c0)(m0−m)G

(c+c0)(m0−m)
RR0 = (6.32)

= 2
√
π(−1)c0

Γ(c+ c0 + 3
2
)

Γ(c+ 1
2
)Γ(c0 + 1

2
)
Cc0m0
cm,(c+c0)(m0−m)G

(c+c0)(m0−m)
RR0 , (6.33)
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which also evidently follows from eq. (6.24) by observing that

GL
RR0 =

4π

2c+ 1

Y ∗L (\R0−R)
|R−R0|c+1 =

4π (−1)c

2c+ 1

Y ∗L (
\R−R0)

|R−R0|c+1 . (6.34)

Every reduced Madelung constant GL
RR0 leads with (6.33) to one or more Madelung constants

ALL0
RR0 , which themselves are determined by only one reduced one.

One straight forward possibility to calculate the Madelung constants for a periodic system is
the direct space summation of the Madelung constants as given in (6.34), by exploiting the fact
that the multipole moments do not depend on n ∈ Zd, (Rp,n = ap +Tn)

VRp,L(r) =
4
√
π

2c+ 1

X
q

X
n∈Zd

(p=q,n6=0)

X
L0

ALL0
RpRq,n

QL0
Rq


∗

rc = (6.35)

=
4
√
π

2c+ 1

X
q,L0

 X
n∈Zd

(p=q,n6=0)

ALL0
RpRq,n

 QL0
Rq


∗

rc (6.36)

Vp,L(r) =
4
√
π

2c+ 1

ÃX
q,L0

ALL0
pq QL0

q

!∗
rc , ALL0

pq calculated from GL
pq (6.37)

GL
pq =

4π (−1)c

2c+ 1

X
n∈Zd

(p=q,n6=0)

Y ∗L ( \Rp−Rq,n)

|Rp−Rq,n|c+1
(6.38)

Eq. (6.38) is a series which is (if at all) only slowly converging, absolute convergence is
guaranteed if c ≥ d, but also then the convergence is only polynomial, it becomes better with
large c. It can be used as a straightforward test of other methods. In the following, for systems
with 3D and 2D translational symmetry we proceed by taking the lattice Fourier transform of
G0(r+R, r

0 +R0) and we make use of the definition in (6.29) rather than to perform the direct
lattice sum of eq. (6.38). Because of numerical efficiency we express all formulas with the reduced
Madelung constants GL

RR0 instead of ALL0
pq .

6.5 Complex 3D lattice - bulk case

We have a structure with translational lattice vectors Tn ∈ L3 and non equivalent atomic positions
aµ /∈ L3 such that a general atomic position is given by

Rnµ = Tn + aµ (Tn ∈ L3,aµ /∈ L3), ρRnµ
(r) = ρµ(r) . (6.39)
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6.5.1 Evaluation of the Green function

Evidently, in this case the total electrostatic potential depends only on the index µ,

V (Rnµ + r) = V (aµ + r) = Vµ(r) = 2
X
nν

Z
Vν

d3r0G0(aµ + r, aν +Tn + r
0)ρν(r

0) , r ∈ Vµ

(6.40)
In order to separate the part independent of the charge density we perform the n ∈ Z3 summation
first,

Vµ(r) =
P
ν

2

Z
Ων

d3r0Gµν(r, r
0)ρν(r

0) (r ∈ Ωµ), (6.41)

where Gµν(r, r
0) is given by the following lattice sum

Gµν(r, r
0) =

X
n

(µ=ν,n6=0)

G0(r+ aµ, r
0 +Tn + aν) . (6.42)

Remark 3 The Gµν(r, r
0) depend only on the lattice and not on the charge density, therefore they

can not contain information about the necessity of an overall charge neutral system and must have
certain mathematical difficulties with respect to convergence.

Now we use 2 different methods to evaluate Gµν(r, r
0).

Method A

Let us split (6.42) into
Gµν(r, r

0) = Dµν(r, r
0)− δµνG0(r, r

0) , (6.43)

namely into a sum over all cells minus the part for the intracell contribution, where

Dµν(r, r
0) =

X
n

G0(r+ aµ, r
0 +Tn + aν) = D(r+ aµ − r0 − aν) , (6.44)

and

D(r) ≡
X
n

G0(r−Tn) =
X
n

1

|r−Tn|
. (6.45)

The above infinite sum (6.45) is trivially divergent to +∞ because of the long-range contribu-
tions, additionally it does not exist if r is equal to a lattice vector (r ∈ L3). But only the sum of the
contributions of all atoms make the Madelung potential finite in case of a neutral crystal. In order
to facilitate the calculation of the contributions of the individual sublattices, the divergencies will
be dropped systematically from all terms, such that the sum, i.e., the proper Madelung potential
is conserved. Furthermore there is a singularity of D(r) at all lattice translations Tn, but finally
we have to evaluate D only at (r+ aµ) − (r0 + aν) and therefore (r+ aµ) − (r0 + aν) = Tn, but
because (r+ aµ) ∈ Vµ, (r0+aν) ∈ Vν this can only happen for Tn = 0. Replacing the identity
(A.62) into eq. (6.45), D(r) can be split into two parts

D(r) = D1(r) +D2(r) , (6.46)
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where

D1(r) =
2√
π

X
n

Z 1/2σ

0

dx exp(− |r−Tn|2 x2) , (6.47)

D2(r) =
2√
π

X
n

Z ∞

1/2σ

dx exp(− |r−Tn|2 x2) , (6.48)

and σ is the so called Ewald parameter.
With exception of r = 0 (the case will be considered at the end of this section), eq. (6.48) can be
evaluated easily:

D2(r) =
X
n

1

|r−Tn|

½
2√
π

Z ∞

|r−Tn|/2σ
dx exp(−x2)

¾
=
X
n

1

|r−Tn|
erfc(|r−Tn| /2σ) , (6.49)

which, as limz→∞ erfc(z) = e−z
2
/(
√
πz), is rapidly convergent. Utilizing the identity (A.63), eq.

(6.47) can be rewritten as

D1(r) =
2π

V

X
j

exp(iGj · r)
Z 1/2σ

0

dx

x3
exp(−G2

j/4x
2) , (6.50)

where Gj denote vectors of the reciprocal lattice. The divergence mentioned above appears in the
term for Gj = 0. Therefore, from this term we keep only that part that depends on σ and drop
an infinite constant,

2π

V

Z 1/2σ

0

dx

x3
= − π

V

·
1

x2

¸1/2σ
0

= −4πσ
2

V
( +∞ ) ,

and instead of (6.50) we write

D1(r) =
2π

V

X
j

(Gj 6=0)

exp(iGj · r)
Z 1/2σ

0

dx

x3
exp(−G2

j/4x
2)− 4πσ

2

V
. (6.51)

The integral in eq. (6.51) can be easily performedZ 1/2σ

0

1

x3
exp(−G2

j/4x
2)dx =

2

G2
j

Z −G2
jσ

2

−∞
dy exp(y) =

2 exp(−G2
jσ
2)

G2
j

, (6.52)

therefore,

D1(r) =
4π

V

X
j

(Gj 6=0)

exp(iGjr)
exp(−G2

jσ
2)

G2
j

− 4πσ
2

V
. (6.53)

Setting r = r+ aµν (aµν = aµ − aν) in eqs. (6.49) and (6.51) yields

D1,µν(r) =
4π

V

X
j

(Gj 6=0)

exp(iGjr) exp(iGjaµν)
exp(−G2

jσ
2)

G2
j

− 4πσ
2

V
, (6.54)

D2,µν(r) =
X
n

(Tn−aµν 6=0)

1

|r+aµν−Tn|
erfc(|r+ aµν−Tn| /2σ) , (6.55)
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while the missing term in (6.55) and the last term in eq. (6.42) lead to a contribution,

D3,µν(r) = δµν
erfc(|r| /2σ)− 1

|r| = −δµν
erf(|r| /2σ)

|r| , (6.56)

such that

Gµυ(r, r
0) = D1,µυ(r− r0) +D2,µν(r− r0) +D3,µν(r− r0) . (6.57)

Note that D3,µν(r) is finite for r → 0

lim
r→0

D3,µν(r) = −δµν
1√
πσ

. (6.58)

Method B

From eq. (6.5) it is clear that the potential produced by the point charges

ρ(r) =
X
µ

X
n

Qµδ(r− aµ −Tn) , (6.59)

is given by

Vµ(r) = 2
X
ν

X
n

QνG0(r+ aµ,aν +Tn) = 2
X
ν

QνGµν(r) +
2Qµ

|r| . (6.60)

Thus, the problem of calculating Gµν(r) can be led back to one of calculating Vµ(r) by solving
the corresponding Poisson equation. As what follows, we require charge neutrality for the system,
i.e., X

µ

Qµ = 0 . (6.61)

Adding to and subtracting from the charge density a charge distribution of the form

ρI(r) =
X
µ

X
n

Qµ
1

8σ3π3/2
exp

¡
−(r− aµ −Tn)

2/4σ2
¢
, (6.62)

ÃZ
d3rρI(r) =

X
µ

X
n

Qµ = 0

!
the Poisson equation can be solved separately for

ρS(r) =
X
µ

X
n

Qµ

µ
δ(r− aµ −Tn)−

1

8σ3π3/2
exp

¡
−(r− aµ −Tn)

2/4σ2
¢¶

(6.63)

and ρI(r), since

ρ(r) = ρS(r) + ρI(r) . (6.64)
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It is easy to show that

VS(r) =
X
µ

X
n

2Qµ
erfc(|r− aµ −Tn| /2σ)

|r− aµ −Tn|
+ C . (6.65)

Namely,

∆

µ
erfc(r/2σ)

r

¶
= ∆

µ
1− erf(r/2σ)

r

¶
= −4πδ (r)− 1

r

d2

dr2

µ
r
erf(r/2σ)

r

¶
=

= −4πδ (r)− 1

2σ3π1/2
exp

¡
−r2/4σ2

¢
,

therefore,
∆VS(r) = −8πρS(r) . (6.66)

By expressing the potential VI(r) and the charge density ρI(r) in lattice Fourier series

VI(r) =
X
j

VI(Gj) exp (iGjr) (6.67)

ρI(r) =
X
j

ρI(Gj) exp (iGjr) , (6.68)

eq. (6.1) implies that

VI(Gj) = −
8π

G2
j

ρI(Gj) . (6.69)

The lattice Fourier transform of ρI(r) can be calculated as

ρI(Gj) =
1

NV

Z
d3r ρI(r) exp (−iGjr) = (6.70)

=
1

NV

X
µ

X
n

Qµ
1

8σ3π3/2

Z
d3r exp

¡
−(r− aµ −Tn)

2/4σ2
¢
exp (−iGjr) = (6.71)

=
1

V

X
µ

Qµ exp (−iGjaµ)
1

8σ3π3/2

Z
d3r exp

¡
−r2/4σ2

¢
exp (−iGjr)| {z } . (6.72)

=
1

π3/2

Z
d3u exp

¡
−u2

¢
exp (−i2σGju)

For Gj = 0 the above integral equals to 1, therefore, ρI (Gj = 0) = 0, while for Gj 6= 0

1

π3/2

Z
d3u exp

¡
−u2/4σ2

¢
exp (−i2σGju) =

=
2

π1/2

Z ∞

0

duu2 exp
¡
−u2

¢ Z 1

−1
dx exp (−i2σGjux) =

=
2

π1/2σGj

Z ∞

0

duu exp
¡
−u2

¢
sin(2σGju) = exp(−G2

jσ
2) ,
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thus,

ρI(Gj) =
1

V

X
µ

Qµ exp (−iGjaµ) exp(−G2
jσ
2) . (6.73)

Consequently,

VI(Gj) = −
8π

V

X
µ

Qµ

exp (−iGjaµ) exp(−G2
jσ
2)

G2
j

, (6.74)

and

VI(r) = −
4π

V

X
µ

2Qµ

X
j

(Gj 6=0)

exp (iGj · (r− aµ)) exp(−G2
jσ
2)

G2
j

. (6.75)

Therefore, we obtain

V (r) =
X
ν

2Qν

−
4π

V

X
j

(Gj 6=0)

exp (iGj(r− aν)) exp(−G2
jσ
2)

G2
j

+
X
n

erfc(|r− aν −Tn| /2σ)
|r− aν −Tn|

+ C

 ,

(6.76)
where, in order to ensure independence of the ν-like terms from the parameter σ, C = −4πσ2

V
has

to be chosen. Replacing r by r + aµ and comparing with eq. (6.60), the expression of Gµν(r) is
identical to the ones in the previous sections.

6.5.2 Derivation of the Madelung constants

According to (6.29), for small r, the Di,µν(r) (i = 1, 2, 3) have to be expanded as

Di,µν(r) =
X
L

DL
i,µνr

cYL(br) . (6.77)

(The expansion in r and r0 follows from the one of |r−r0|) Conveniently, this is done by performing
the following operation

DL
i,µν = lim

r→0

µ
1

rc

Z
dbrDi,µν(r)Y

∗
L (br)¶ . (6.78)

(The limit r → 0 is necessary because the relation is only strictly valid for small r).

Derivation of the reciprocal sum component DL
1,µν

Inserting the identity (A.50) into eq. (6.54) yieldsZ
dbrD1,µν(r)Y

∗
L (br) = (6.79)

=
(4π)2ic

V

X
j

(Gj 6=0)

jc(Gjr)Y
∗
L (bGj) exp(iGjaµν)

exp(−G2
jσ
2)

G2
j

− δL,00
(4π)3/2σ2

V
. (6.80)
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Recalling that

lim
z→0

jc(z) =
zc

(2c+ 1)!!
=

√
π

2c+1Γ(c+ 3
2
)
zc , (6.81)

one gets

DL
1,µν =

(4π)2
√
πic

V 2c+1Γ(c+ 3
2
)

X
j

(Gj 6=0)

Y ∗L (bGj) exp(iGjaµν)G
c−2
j exp(−G2

jσ
2)− δL,00

(4π)3/2σ2

V
. (6.82)

At the evaluation one should exploit the (l,m) symmetries.

Derivation of the direct sum component DL
2,µν

In order to evaluate DL
2,µν we return to the integral representation of the erfc function (see eq.

(6.49)),

D2,µν(r) =
2√
π

X
n

(Tn−aµν 6=0)

Z ∞

1/2σ

dx exp(− |r+ aµν−Tn|2 x2) , (6.83)

and expand the integrand as follows (with complex continuation of (A.50))

exp(− |r+ aµν−Tn|2 x2) = exp(−r2x2) exp(− |aµν−Tn|2 x2) exp(−2r(aµν−Tn)x
2)

= exp(−r2x2) exp(− |aµν−Tn|2 x2)×
4π
X
L

ic jc(i2r |aµν−Tn|x2)Y ∗L ( \aµν−Tn)YL(br) .
We then get (the dx integral is still convergent even that jl(ix) is exponentially increasing with x)Z

dbrD2,µν(r)Y
∗
L (br) = 8√πic X

|aµ−aν−Tn|6=0
Y ∗L ( \aµν−Tn)×

×
Z ∞

1/2σ

dx jc(i2r |aµν−Tn|x2) exp(−r2x2) exp(− |aµν−Tn|2 x2) , (6.84)

and, consequently, by taking limr→0 1
rc
we get

DL
2,µν =

4π(−1)c
Γ(c+ 3

2
)

X
|aµ−aν−Tn|6=0

Y ∗L ( \aµν−Tn) |aµν−Tn|c
Z ∞

1/2σ

dxx2c exp(− |aµν−Tn|2 x2) =

=
4π(−1)c
Γ(c+ 3

2
)

X
n

(Tn−aµν 6=0)

Y ∗L ( \aµν−Tn)

|aµν−Tn|c+1
Z ∞

|aµν−Tn|/2σ
dxx2c exp(−x2) , (6.85)

or, introducing the incomplete gamma function according to eq. (A.65)

DL
2,µν =

2π(−1)c
Γ(c+ 3

2
)

X
n

(Tn−aµν 6=0)

Y ∗L ( \aµν−Tn)
Γ(c+ 1

2
, |aµν−Tn|2 /4σ2)
|aµν−Tn|c+1

. (6.86)
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From eq. (6.56) one easily derives

DL
3,µν = −δµνδL,00

2

σ
. (6.87)

The 3D Madelung constants ALL0
µν are obtained from eq. (6.33) when replacing GL

RR0 by

GL
µν = DL

1,µν +DL
2,µν +DL

3,µν . (6.88)

With the reduced 3D Madelung constants GL
µν the potential can be written as

Vµ(x) =
X
L

4π

Γ(c+ 3
2
)

ÃX
L0

(−1)c0Γ(c+ c0 + 3
2
)

Γ(c0 + 1
2
)

Cc0m0
cm,(c+c0)(m0−m)

ÃX
ν

Gc+c0,m0−m
µν QL0

ν

!!∗
rcYL(x̂)

(6.89)
The expansion coefficients in spherical harmonics are therefore given by

Vµ,lm(r) =
4π

Γ(c+ 3
2
)

ÃX
L0

(−1)c0Γ(c+ c0 + 3
2
)

Γ(c0 + 1
2
)

Cc0m0
cm,(c+c0)(m0−m)

ÃX
ν

Gc+c0,m0−m
µν QL0

ν

!!∗
rc (6.90)

Since the intercell potential Vµ(x) is real, one only needs to evaluate (6.90) for m ≥ 0 and use the
relation

Vµ,l−m(r) = (−1)m (Vµ,l−m(r))∗ (6.91)

Because the multipole moments Qlm
ν and the reduced Madelung constants Glm

µν fulfill the selection
rules, also the intercell potential fulfills all the (lm) selection rules explained before in (1).
It should be noted that the Madelung constants GL

µ,ν depend (also in the bulk case) on the
choice of the coordinate system and have to be transformed for comparison between two different
coordinate systems. If one calculates the same bulk structure with two different choices of the
coordinate system one gets Madelung constants GL

µν, G̃
L
µν which have to fulfill the condition

lX
m=−l

¯̄
Glm
µν

¯̄2
=

lX
m=−l

¯̄̄
G̃lm
µν

¯̄̄2
(6.92)

G00
µν = G̃00

µν (6.93)

In case one is only interested in a ASA potential, we get

VASA,µ = Vµ(0) =
X
L0
(−1)c0 2c

0 + 1√
π

ÃX
ν

Gc0,m0
µν QL0

ν

!
(6.94)

Note that again also here we need all reduced Madelung constants and all multipole moments.
Increasing the number of considered multipole moments in an ASA calculation therefore already
improves the results.



6.6. COMPLEX 2D LATTICE - STRUCTURES WITH SURFACES 93

6.6 Complex 2D lattice - structures with surfaces

We have a structure with translational lattice vectors Tn ∈ L2 and non equivalent atomic positions
cp such that a general atomic position is given by

Rnp = Tn + cp, (Tn ∈ L2, cp /∈ L2), ρRnp
(r) = ρp(r)

Note that the lattice vectors Tn have no components perpendicular to the planes

Tn = Tnk +Tn⊥ = Tnk ,

whereas cp are, in general, 3D vectors also with components in plane

cp = cpk + cp⊥ .

Note that we do not demand that the atomic positions give rise to a 3D parent lattice. The case of
a 2D complex structure with more than 1 non equivalent atom in one plane is, however, obviously
included if one allows cp⊥ − cq⊥ = 0 for (p 6= q).

6.6.1 Evaluation of the Green function

The potential depends only on the layer index p,

Vp(r) = V (cp+r) = 2
P
q

Z
Ωq

d3r0Gpq(r, r
0)ρq(r

0) (r ∈ Ωp), (6.95)

where Gpq(r, r
0) is given by the following lattice sum (

P
n means now

P
n∈Z2)

Gpq(r, r
0) =

X
n

(Tn+cq−cp 6=0)

G0(r+ cp, r
0 +Tn + cq) = Dpq(r, r

0)− δpqG0(r, r
0) . (6.96)

Dpq(r, r
0) is then defined as

Dpq(r, r
0) =

X
n

G0(r+ cp, r
0 +Tn + cq) = D(r+ cp − r0 − cq) , (6.97)

where, by using the notation r = (rk, z), one can write

D(r) =
2√
π

X
n

Z ∞

0

dx exp(− |r−Tn|2 x2) = (6.98)

=
2√
π

Z ∞

0

dx exp(−z2x2)
X
n

exp(−
¯̄
rk−Tn

¯̄2
x2)| {z } (6.99)

=
π

Ax2

X
j

exp
¡
−G2

j/4x
2+iGjrk

¢
=
2
√
π

A

X
j

µ
exp

¡
iGjrk

¢ Z ∞

0

dx
1

x2
exp

¡
−z2x2 −G2

j/4x
2
¢¶

, (6.100)
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with the Gj being 2D reciprocal lattice vectors and A the area of the 2D unit cell (we used
again the identity (A.63)). For the case of Gj 6= 0 the integral in (6.100) can be performed (see
eq.(A.75)), while for Gj = 0 it is divergent. It will be shown, however, that this term corresponds
to a one-dimensional (normal to planes) Poisson equation and all other terms vanish for z → ±∞.
Thus, the Gj = 0 term has to be treated separately and used for imposing appropriate boundary
conditions for the potential in z → ±∞. Therefore, as what follows, we exclude the Gj = 0 term
from eq. (6.100),

D(r) =
2
√
π

A

X
j

(Gj 6=0)

exp (iGjrk)
Z ∞

0

dx
1

x2
exp(−z2x2 −G2

j/4x
2) = (6.101)

=
2π

A

X
j

(Gj 6=0)

1

Gj
exp (iGjrk) exp(−Gj |z|) . (6.102)

It is obvious that (6.102) converges very slowly for small z, especially for z = 0, therefore, similar
to the 3D case, we split the integral in (6.101) into,

D(r) = D1(r) +D2(r) , (6.103)

where

D1(r) =
2
√
π

A

X
j

(Gj 6=0)

exp (iGjrk)
Z 1/2σ

0

dx
1

x2
exp(−z2x2 −G2

j/4x
2) , (6.104)

D2(r) =
2
√
π

A

X
j

(Gj 6=0)

exp (iGjrk)
Z ∞

1/2σ

dx
1

x2
exp(−z2x2 −G2

j/4x
2) . (6.105)

It is easy to see that the infinite sum involved in D1(r) is well-converging,

|D1(r)| ≤
2
√
π

A

X
j

(Gj 6=0)

Z 1/2σ

0

dx
1

x2
exp(−G2

j/4x
2) =

2π

A

X
j

(Gj 6=0)

1

Gj
erfc(Gjσ) <∞ , (6.106)

in particular,

D1(rk, z = 0) =
2π

A

X
j

(Gj 6=0)

1

Gj
exp (iGjrk)erfc(Gjσ) . (6.107)

By changing the variable of integration in the integral (y = 1
x2
) on the right hand side of (6.104)

one can also write,

D1(r) =

√
2π

A

X
j

(Gj 6=0)

exp (iGjrk)
Z ∞

2σ2
y−

1
2 exp

µ
−1
2
(z2/y +G2

jy)

¶
dy . (6.108)
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In order to return to the real-lattice summation in (6.105) the Gj = 0 term has to be added and
subtracted,

D2(r) =
2
√
π

A

Z ∞

1/2σ

dx exp(−z2x2) 1
x2

X
j

exp (iGjrk −G2
j/4x

2)| {z }
=A

π

P
n exp(−|rk−Tn|2x2)

+ (6.109)

−2
√
π

A

Z ∞

1/2σ

dx
1

x2
exp(−z2x2),

therefore,

D2(r) =
X
n

1

|r−Tn|
erfc(|r−Tn| /2σ)−

2
√
π

A

Z ∞

1/2σ

dx
1

x2
exp(−z2x2) . (6.110)

Due to eq. (A.81) the second term on the right hand side proves to be

−2
√
π

A

Z ∞

1/2σ

dx
1

x2
exp(−z2x2) = −4

√
πσ

A
exp

µ
− z2

4σ2

¶
− 2π |z|

A
erf

µ
|z|
2σ

¶
+
2π |z|
A

. (6.111)

Without the Gj = 0 contribution, the Green function for a 2D translational invariant system can
then be written as

Gpq(r, r
0) = D1,pq(r− r0) +D2a,pq(r− r0) +D2b,pq(r− r0) +D3,pq(r− r0) , (6.112)

where

D1,pq(r) =

√
2π

A

X
j

(Gj 6=0)

exp
¡
iGjrk

¢
exp

¡
iGjcpqk

¢ Z ∞

2σ2
y−

1
2 exp

µ
−1
2

£
(z + cpq⊥)2/y +G2

jy
¤¶

dy ,

(6.113)

D2a,pq(r) =
X
n

(Tn−cpq 6=0)

1

|r+ cpq−Tn|
erfc(|r+ cpq−Tn| /2σ) (6.114)

D2b,pq(r) = −
¡
1− δcpq⊥,0

¢ 2√π
A

Z ∞

1/2σ

dx
1

x2
exp(− (z + cpq⊥)

2 x2) (6.115)

− δcpq⊥,0

µ
4
√
πσ

A
exp

µ
− z2

4σ2

¶
+
2π |z|
A

erf

µ
|z|
2σ

¶¶
(6.116)

D3,pq(r) = δpq
1

|r|

µ
erfc

µ
|r|
2σ

¶
− 1
¶
= −δpq

erf(|r| /2σ)
|r| , (6.117)

and we introduced the notation cpq = cp − cq. Note that the term δcpq⊥,0
2π|z|
A
in (6.116) has been

passed to the Gj = 0 contribution of the Green function to be discussed in the next section,
leading there to a new term D0.
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T1

T2

T '2

P 1

P 2

Atoms B

Atoms A

Figure 6.1: We have a structure with 2 non equivalent atoms per unit cell.
The lattice L = {n1T1 + n2T2 : n1, n2 ∈ Z} contains exactly all translational symmetries of the
system. All atomic positions are given by aµ +Tn, µ ∈ {1, 2} , n ∈ Z2
The parent lattice P = {n1P1 + n2P2 : n1, n2 ∈ Z} is only fictitious, it does not only contain trans-
lational symmetries of the system. It could be described as ’the lattice formed by all atomic
positions’. All atomic positions are given by Pn, n ∈ Z2.
The lattice L0= {n1T1 + n2T

0
2 : n1, n2 ∈ Z} is a sublattice (subgroup) of L, which contains

only (but not all) translational symmetries of the system. All atomic positions are given by
aµ,i +T

0
n, µ ∈ {1, 2} , i ∈ {0, 1} n ∈ Z2, aµ,i = aµ + i T2.
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The Gj = 0 contribution

Special Case of a 3D translational symmetry In principle we could have had a 3D trans-
lational symmetry but have only exploited the 2D symmetry so far.
This paragraph explains how we can regain the 3D symmetry in this special case. Note that

this formalism is only possible, if we have a system which indeed does have 3D lattice
translational symmetry, not only a 3D parent lattice in a system which only has 2D transla-
tional symmetry (see Fig. 6.1).
In a 3D symmetry system where the crystal structure is given by

aµ +Tn : n ∈ Z3, µ ∈ {1, . . . , natom} ,

with Tn ∈ L3 and aµ the non equivalent atomic positions in the unit cell, we can choose a
Bravais-matrix (T1,T2,T3) ,

L3 = {n1T1 + n2T2 + n3T3 : n1, n2, n3 ∈ Z} ,

such that T1,⊥ = T2,⊥ = 0 and T3 = T3,k + T3,⊥bz, T3,⊥ = d, where d is the minimum lattice
translational length in the z (normal) direction. The 2D lattice is formed by definition by (T1,T2)

L2 = {n1T1 + n2T2 : n1, n2 ∈ Z}

Suppose there exists a N ∈ N and a 2D lattice vector Tk such that N T3,k = Tk then

T03 = N T3 −Tk = N dbz.
Then by repeating N-times the unit cell and defining the new Bravais-matrix (T01,T

0
2,T

0
3) with

T01 = T1, T
0
2 = T2 and T

0
3 = N dbz we have a new lattice (a subgroup of L3)
L03 = {n1T01 + n2T

0
2 + n3T

0
3 : n1, n2, n3 ∈ Z} .

But we need a bigger basis of the crystal structure, namely natom ·N atoms, to describe the same
crystal structure, the basis vectors are given by

aiµ = aµ + iT3 (i = 0, 1, 2, . . . , N − 1) .

The corresponding reciprocal lattice vectors of L03 can be written as

G0 = Gj + (2πk/Nd)bz ¡
j ∈ Z2, k ∈ Z

¢
with Gj the 2D reciprocal lattice vectors. We then recall the expression of the 3D Greens function
(σ = 0)

G0
ij,µν(r, r

0) =
4π

NV

X
G0 6=0

exp (iG0 [r− r0+aµν+(i− j)T3])

G02 , (6.118)

which is related to the Greens function of the original lattice by

Gµν(r, r
0) =

NX
t=1

G0
0t,µν(r, r

0) =
4π

NV

NX
t=1

X
G0 6=0

exp (iG0 [r− r0+aµν−tT3])
G02 . (6.119)
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Figure 6.2: The periodic continuation of the function f (x) = 3x2−6πx+2π2
12

, x ∈ [0, 2π] .

Taking the Gj = 0 contribution yields

D0,µν(r) =
4π

NV

NX
t=1

X
k∈Z8{0}

exp (i (2πk/Nd) [z+aµν⊥ − td])

(2πk/Nd)2
=

=
Nd

Aπ

NX
t=1

X
k∈Z8{0}

exp (i (2πk/Nd) [z+aµν⊥ − td])

k2
=

=
2Nd

Aπ

NX
t=1

∞X
k=1

cos

µ
k
2π(td−|z+aµν⊥|)

Nd

¶
k2

. (6.120)

With ([16], formula 1.443.3.) for 0 ≤ x ≤ 2π (otherwise one needs the 2π periodic continuation of
the polynomial, see Fig.6.2)

∞X
k=1

cos (kx)

k2
=
3x2 − 6πx+ 2π2

12
, (6.121)
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D0,µν(r) =
Nd

6Aπ

NX
t=1

µ
12π2

N2d2
(td− |z+aµν⊥|)2 −

12π2

Nd
(td− |z+aµν⊥|) + 2π2

¶
=

=
Nd

6Aπ

NX
t=1

µ
12π2

N2d2
(z+aµν⊥)

2 +
12π2

N2
t2 − 24π

2

N2d
|z+aµν⊥| t−

12π2

N
t+

12π2

Nd
|z+aµν⊥|+ 2π2

¶
=

=
π

A

µ
2

d
(z+aµν⊥)

2 − 2 |z+aµν⊥|
¶
+
2dπ

NA

NX
t=1

µ
t2 −Nt+

N2

6

¶
| {z } =

2N3 + 3N2 +N

6
− N2 (N + 1)

2
+

N3

6

=
π

A

µ
2

d
(z+aµν⊥)

2 − 2 |z+aµν⊥|+
d

3

¶
. (6.122)

Taking into account also the term missing from eq. (6.116)

D0,µν(r) =
π

A

µ
2

d
(z+aµν⊥)

2 − 2 |z+aµν⊥| (1− δaµν⊥,0) +
d

3

¶
. (6.123)

The general case: No translational symmetry in z direction In general our system will
not have a further translational symmetry except the 2D lattice, because of e.g. an interface or
surface. If we could still define a parent lattice or not is of no importance here.
Inserting the 2D lattice Fourier representation of the potential

V (r) =
X
j

VGj(z) exp(iGjrk) , (6.124)

and the charge density

ρ(r) =
X
j

ρGj
(z) exp(iGjrk) , (6.125)

into eq. (6.1) one gets µ
d2

dz2
−G2

j

¶
VGj(z) = −8πρGj

(z) , (6.126)

which for Gj = 0 simply reads as

d2

dz2
V0(z) = −8πρ0(z) , (6.127)

with

ρ0(z) = ρ(00)(z) =
1

A

Z
Ω2D

d2rkρ(rk, z) , (6.128)

where Ω2D denotes the 2D Wigner-Seitz cell having the 2D volume (area) A. The Green function
of eq. (6.127) defined as

d2

dz2
bG0(z, z

0) = −4πδ(z − z0) , (6.129)
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is given by bG0(z, z
0) = −2π |z − z0| . (6.130)

V0(z) can then be written as

V(00)(z) = V0(z) = 2

Z ∞

−∞
dz0 bG0(z, z

0)ρ0(z
0) +A z + B (6.131)

= 2

Z ∞

−∞
dz0
Z
Ω2D

d2r0k
1

A
bG0(z, z

0)ρ(r0) +A z + B (6.132)

= 2
X
q

Z
Ωq

d3r0
1

A
bG0(z, z

0)ρq(r
0) +A z + B , (6.133)

where we made use of the 2D translational invariance of ρ(r) and an additional term, A z + B,
has been added to the potential which will be used to satisfy appropriate boundary conditions.
The expression above is for the global coordinate system, but we have at every atomic position a
center of the coordinate system, therefore in analogy to eq. (6.95), for r ∈ Ωp one can write (with
z measured from every cp)

V0,p(z) = V0(cp + z) = 2
X
q

Z
Ωq

d3r0G0,pq(z, z
0)ρq(r

0) +A (z + cp⊥) + B , (6.134)

where

G0,pq(z, z
0) = −2π

A
|z − z0 + cpq⊥| . (6.135)

Thus, by adding the term left out from eq. (6.115) one can define

D0,pq(z) = −
¡
1− δcpq⊥,0

¢ 2π
A
|z + cpq⊥| , (6.136)

from which the only Madelung constants non-vanishing for |cpq⊥| →∞ can be derived. (See the
section for imposing boundary conditions.)

6.6.2 Derivation of the Madelung constants

Again, the expansion coefficients of the function Di,µν(r) (i = 0, 1, 2a, 2b, 3) are called Madelung
constants and are calculated as

DL
i,pq = lim

r→0
(
1

rc

Z
dbrDi,pq(r)Y

∗
L (br) ). (6.137)

Derivation of the reciprocal sum component DL
1,pq

By inserting the following Taylor expansion,

exp

µ
−1
2
(z + cpq⊥)2/y

¶
= exp

µ
−1
2
c2pq⊥/y

¶
exp

µ
−1
2
(z2 + 2zcpq⊥)/y

¶
=

= exp

µ
−1
2
c2pq⊥/y

¶ ∞X
n=0

1

n!

µ
−1
2
(z2 + 2zcpq⊥)

¶n

y−n ,
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into eq. (6.113) yields

D1,pq(r) =

√
2π

A

X
j

(Gj 6=0)

exp
¡
iGjrk

¢
exp

¡
iGjcpqk

¢ ∞X
n=0

1

n!

µ
−1
2

¶n

(z2 + 2zcpq⊥)n ×

Z ∞

2σ2
y−

1
2
−n exp

µ
−1
2
(c2pq⊥/y +G

2
jy)

¶
dy . (6.138)

Using the notation rk = (r sin(Θ) cos(φ), r sin(Θ) sin(φ)), z = r cos(Θ),Gj = (Gj cos(φj), Gj sin(φj)),
thus, Gjrk = Gjr sin(Θ) cos(φj − φ), and also the Condon-Shortly phase convention (eq. (A.43))
in

DL
1,pq = lim

r→0
1

rc

Z
dbrD1,pq(r)Y

∗
L (br) = im+|m|

A

s
2c+ 1

2

(c− |m|)!
(c+ |m|)!

X
j

(Gj 6=0)

exp
¡
iGjcpqk

¢
×

×
∞X
n=0

1

n!

µ
−1
2

¶n½Z ∞

2σ2
y−

1
2
−n exp

µ
−1
2
(c2pq⊥/y +G

2
jy)

¶
dy

¾
(6.139)

× lim
r→0

1

rc

Z π

0

sin(Θ)dΘ

Z 2π

0

dφ exp
¡
iGjrk

¢
P
|m|
c (cos(Θ)) exp(−imφ)(z2 + 2zcpq⊥)n ,

the following integral with respect to φ occurs (see proof in the Appendix (A.4)),

Z 2π

0

exp(−imφ+ iGjr sin(Θ) cos(φj − φ))dφ = 2π i|m| exp(−imφj)J|m|(Gjr sin(Θ)) . (6.140)

Eq. (6.139) can then be written as

DL
1,pq =

2πi−m

A

s
2c+ 1

2

(c− |m|)!
(c+ |m|)!

X
j

(Gj 6=0)

exp(−imφj) exp
¡
iGjcpqk

¢
× (6.141)

×
∞X
n=0

1

n!

µ
−1
2

¶n½Z ∞

2σ2
y−

1
2
−n exp

µ
−1
2
(c2pq⊥/y +G

2
jy)

¶
dy

¾
lim
r→0

1

rc
In ,

where we denoted the integral with respect to Θ by

In =

Z π

0

dΘ sin(Θ)P
|m|
c (cos(Θ))J|m|(Gjr sin(Θ))(r

2 cos2(Θ) + 2rcpq⊥ cos(Θ))n . (6.142)
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Expanding the Bessel function into a power series, eq. (A.84), and using the binomial theorem,
eq. (A.85), results in

1

rc
In =

∞X
k=0

nX
s=0

(−1)k
k! (|m|+ k)!

µ
Gj

2

¶|m|+2k µ
n

s

¶
(2cpq⊥)n−s r|m|+2k+n+s−c× (6.143)

×
Z π

0

dΘ sinΘP
|m|
c (cos(Θ)) sin

|m|+2k
(Θ) cosn+s(Θ) =

=
∞X
k=0

nX
s=0

µ
n

s

¶
(−1)k2n−s−2k−|m|
k! (|m|+ k)!

G
|m|+2k
j cn−spq⊥ r|m|+2k+n+s−c

Z 1

−1
dx
¡
1− x2

¢ |m|+2k
2 xn+sP

|m|
c (x) .

(6.144)

From the above expression the lowest order of r only should be considered (which has to be zero,
otherwise we are in trouble in the limit r→ 0). But for that reason we have to keep not only the
k = 0 term, because for higher c − |m| also the higher k terms can contribute. In the Appendix
it is shown that the lowest value of n + s is c − |m| − 2k such that the integral does not vanish,
thus the lowest order term of r in eq.(6.144) is indeed zero. How many k have to be considered
depends on l − |m|. The contribution to the limits from the k terms are given by

lim
r→0

1

rc
In =

∞X
k=0

µ
n

c− |m|− n− 2k

¶ √
π22n−2c

k!(|m|+ k)!

Γ(c+ |m|+ 1)
Γ(c+ 3

2
)

G
|m|+2k
j c

2n−c+|m|+2k
pq⊥ (6.145)

(only if ( c−|m|
2
− k ≤ n ≤ c − |m| − 2k) is fulfilled they really occur in the n sum). (See also

Appendix, note that also different definitions for Pm
c are in use). By inserting (6.145) into eq.

(6.141) and taking into account all occurring terms gives

DL
1,pq =

π
3
2 i−m

22c−1A

p
(2c+ 1)Γ (c+ |m|+ 1)Γ (c− |m|+ 1)

Γ
¡
c+ 3

2

¢ X
j

(Gj 6=0)

exp(−imφj) exp
¡
iGjcpqk

¢
×

×
c−|m|
2X

k=0

c−|m|−2kX
n=

c−|m|
2
−k

Ã
(−1)n c2n−c+|m|+2kpq⊥ G

|m|+2k
j

Γ (2n− c+ |m|+ 2k + 1)Γ (c− |m|− n− 2k + 1)Γ(k + 1)Γ (|m|+ k + 1)
×

×
½Z ∞

2σ2
y−

1
2
−n exp

µ
−1
2
(c2pq⊥/y +G

2
jy)

¶
dy

¾¶
=

=
π
3
2 i−m

22c−1A

p
(2c+ 1)! (c+ |m|)! (c− |m|)!

Γ
¡
c+ 3

2

¢ X
j

(Gj 6=0)

exp(−imφj) exp
¡
iGjcpqk

¢
×

×
c−|m|
2X

k=0

c−|m|−2kX
n= c−|m|

2
−k

(−1)n c2n−c+|m|+2kpq⊥ G
2n+|m|+2k−1
j

(2n− c+ |m|+ 2k)! (c− |m|− n− 2k)!k! (|m|+ k)!
In

µ
Gjσ,

|cpq⊥|Gj

2

¶
.

(6.146)
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In the Appendix it is shown how to calculate the integral

In

µ
Gjσ,

|cpq⊥|Gj

2

¶
=

Z ∞

G2jσ
2

x−
1
2
−n exp

µ
−
c2pq⊥G

2
j

4x
− x

¶
dx ,

in a numerically efficient way in terms of recurrence relations and the error function.
For cpq⊥ = 0 only the term corresponding to n =

c−|m|
2
−k yields a nonzero contribution, which

is only the case for even c− |m|. In that case the above formula reduces to

DL
1,pq =

π
3
2 ic−m−|m|

22c−1A

p
(2c+ 1)Γ (c+ |m|+ 1)Γ (c− |m|+ 1)

Γ
¡
c+ 3

2

¢ ×

×
X
j

(Gj 6=0)

exp(−imφj) exp
¡
iGjcpqk

¢
Gc−1
j

c−|m|
2X

k=0

(−1)kΓ(1
2
− c−|m|

2
+ k,G2

jσ
2)

(|m|+ k)!k!( c−|m|
2
− k)!

. (6.147)

Derivation of the direct sum component DL
2a,pq

Eq. (6.114) is analogous to (6.55), therefore the result of (6.86) applies. One has to take care that
Tn is a 2D lattice vector, whereas cpq is in general a 3D vector.

DL
2a,pq =

2π(−1)c
Γ(c+ 3

2
)

X
n∈Z2

(Tn−cpq 6=0)

Y ∗L ( \cpq−Tn)
Γ(c+ 1

2
, |cpq−Tn|2 /4σ2)
|cpq−Tn|c+1

. (6.148)

Derivation of the components DL
0,pq,D

L
2b,pq

In order to evaluate DL
0,pq and D

L
2b,pq let us first consider the coefficients of a general function which

depends only on z = r cosΘ in a power series

f(z) =
∞X
n=0

fnz
n

fL =
∞X
n=0

fn lim
r→0

·
rn−c

Z
dbr cosn(Θ)Y ∗L (br)¸ . (6.149)

Integration with respect to φ immediately implies the selection rule m = 0:

fL = δm0
√
π
√
2c+ 1

∞X
n=0

fn lim
r→0

rn−c
µZ 1

−1
dxxnPc(x)

¶
. (6.150)

According to ([16], formula 7.222.1) the integral contained by the above formula vanishes for n < c.
Therefore, the lowest power of r, that corresponds to n = c, proves again to be zero. By using eq.
(A.91) one gets

fL = δm0
√
π
√
2c+ 1fc

Z 1

−1
dxxcPc(x) = δm0

π
√
2c+ 1

2c
Γ(c+ 1)

Γ(c+ 3
2
)
fc . (6.151)
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DL
0,µν for the 3D translational symmetry case of a bulk system If we indeed have a

system with 3D lattice symmetry we get (since for small z, |z+aµν⊥| = |aµν⊥|+ sign (aµν⊥) z ),

D0,µν (z) =
π

A

µ
2

d
z2 +

4aµν⊥
d

z +
2

d
a2µν⊥ − 2 |aµν⊥|− 2sign (aµν⊥) (1− δaµν⊥,0) z +

d

3

¶
(6.152)

and (note that there is also a quadrupole contribution)

DL
0,µν = 2

π
3
2

A
δm0

µ
δc0

µ
2

d
a2µν⊥ − 2 |aµν⊥|+

d

3

¶
+ (6.153)

+δc1
2
√
3

3

µ
2aµν⊥
d
− sign (aµν⊥) (1− δaµν⊥,0)

¶
+ δc2

Ã
4
√
5

15d

!!
. (6.154)

These terms can be used to compare the sum of the 2D Madelung constants with the 3D
Madelung constants. If there is a 3D translational invariant system with N atoms per 3D unit
cell, then the layers can be numbered so that every N th layer is equivalent, by choosing layer p = 1
to consist of µ = 1 atoms in the 3D system we get a mapping f(p) = pmodN

f : p ∈ Z→ µ ∈ {1, . . . N}

↓ p . . . 1 . . . N N + 1 . . .
µ . . . 1 . . . N 1 . . .

Now if we sum up the 2D Madelung constants, 2D−GL
pq, for fixed p with f(p) = µ over all

layers q with f(q) = ν we must get the following identity

3D−GL
µν =

 ∞X
q=−∞
f(q)=ν

¡
DL
1,pq +DL

2a,pq +DL
2b,pq +DL

3,pq

¢+DL
0,µν . (6.155)

Because the correction terms DL
0,µν are identical zero for c ≥ 3, then (6.155) reduces to

∀c ≥ 3, (f(p) = µ) 3D−GL
µν =

 ∞X
q=−∞
f(q)=ν

2D−GL
pq

 . (6.156)

DL
0,pq for the general only 2D translational invariant case Since for small z,

|z + cpq⊥| = |cpq⊥|+ sign(cpq⊥)z (cpq⊥ 6= 0),

one can immediately derive

DL
0,pq = −

¡
1− δcpq⊥,0

¢
δm0

4π

A

Ã
δc0
√
π |cpq⊥|+ δc1

√
3π

3
sign(cpq⊥)

!
. (6.157)
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Evaluation of DL
2,pq To evaluate DL

2b,pq for cpq⊥ 6= 0 we have to perform the expansion

exp(− (z + cpq⊥)
2 x2) = exp(−c2pq⊥x2) exp(−

¡
z2 + 2cpq⊥z

¢
x2)

= exp(−c2pq⊥x2)
∞X
n=0

(−1)n (z2 + 2cpq⊥z)n x2n
n!

= exp(−c2pq⊥x2)
∞X
n=0

(−1)n x2n
n!

2nX
c=n

µ
n

c− n

¶
22n−cc2n−cpq⊥ zc

=
∞X
c=0

exp(−c2pq⊥x2) X
c
2
≤n≤c

(−1)n 22n−cc2n−cpq⊥ x2n

Γ (c− n+ 1)Γ (2n− c+ 1)

 zc

from which we obtain (only for cpq⊥ 6= 0)

DL
2b,pq = − δm0 sign (cpq⊥)

2π

A

p
π (2c+ 1)

4ccc−1pq⊥

Γ(c+ 1)

Γ(c+ 3
2
)
×

×
X
c
2
≤n≤c

(−1)n 4n
Γ (c− n+ 1)Γ (2n− c+ 1)

Z ∞

|cpq⊥|/2σ
dxx2n−2 exp(−x2) =

= − δm0 sign (cpq⊥)
π

A

p
π (2c+ 1)

4ccc−1pq⊥

Γ(c+ 1)

Γ(c+ 3
2
)
×

×
X
c
2
≤n≤c

(−1)n 4n
Γ (c− n+ 1)Γ (2n− c+ 1)

Γ

µ
n− 1

2
, c2pq⊥/4σ

2

¶
. (6.158)

Manipulating the Taylor expansion

−4
√
πσ

A
exp(− z2

4σ2
)− 2π |z|

A
erf(

|z|
2σ
) =

= −4
√
πσ

A

∞X
n=0

(−1)n z2n
n!4nσ2n

− 4
√
πσ

A

∞X
n=0

(−1)n z2n+2
n!(2n+ 1)22n+1σ2n+2

=

= −4
√
πσ

A
− 4
√
πσ

A

∞X
n=1

(−1)n z2n
n!4nσ2n

µ
1− 2n!

(n− 1)!(2n− 1)

¶
=

=
4
√
πσ

A

∞X
n=0

(−1)n

n! (2n− 1) (2σ)2n
z2n ,

yields for cpq⊥ = 0 that for odd c DL
2b,pq = 0, while for even c (= 2n)

DL
2b,pq = δm0

4
√
πσ

A

π
√
4n+ 1

22n
Γ(2n+ 1)

Γ(2n+ 3
2
)

(−1)n

n! (2n− 1) (2σ)2n

= δm0
2π

A

(−1)n
√
4n+ 1

4nσ2n−1
Γ(n− 1

2
)

Γ(2n+ 3
2
)
. (6.159)
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Finally, similar to eq. (6.87)

DL
3,pq = −δpqδL,00

2

σ
. (6.160)

The 2D Madelung constants ALL0
pq can then be again obtained from eq. (6.33) if we replace GL

RR0

by

GL
pq =

X
i=0,1,2a,2b,3

DL
i,pq . (6.161)

With the reduced 2D Madelung constants GL
pq and the G = 0 terms the potential can be

written as

Vp(x) =
P

L
4π

Γ(c+ 3
2
)

µP
L0

(−1)c0Γ(c+c0+3
2
)

Γ(c0+1
2
)

Cc0m0
cm,(c+c0)(m0−m)

³P
qG

c+c0,m0−m
pq QL0

q

´¶∗
rcYL(x̂)+

+A
q

4π
3
rY10(x̂) + (Acp⊥ + B)

√
4πY00(x̂)

(6.162)
The expansion coefficients in spherical harmonics are therefore given by

Vp,lm(r) =
4π

Γ(c+ 3
2
)

µP
L0

(−1)c0Γ(c+c0+ 3
2
)

Γ(c0+ 1
2
)

Cc0m0
cm,(c+c0)(m0−m)

³P
qG

c+c0,m0−m
pq QL0

q

´¶∗
rc+

+A
q

4π
3
rδL,3 + (Acp⊥ + B)

√
4πδL,1

(6.163)

Since the intercell potential Vp(x) is real 1 applies.
In case one is only interested in the ASA potential, we get

VASA,p = Vp(0) =
X
L0

(−1)c0(2c0 + 1)√
π

ÃX
q

Gc0,m0
pq QL0

q

!
+ (Acp⊥ + B) (6.164)

Note that also for the ASA case all reduced Madelung constants and multipole moments enter.

The case of L = (c, 0)

Dc0
1,pq =

π
3
2

2c−1A
c!
√
2c+ 1

Γ
¡
c+ 3

2

¢ X
j

(Gj 6=0)

exp
¡
iGjcpqk

¢
×

×
X
c
2
≤n≤c

(−1)n c2n−cpq⊥ G
2n−1
j

Γ (2n− c+ 1)Γ (c− n+ 1)
In

µ
Gjσ,

|cpq⊥|Gj

2

¶
, (6.165)

In(Gjσ,
|cpq⊥|Gj

2
) =

Z ∞

G2jσ
2

x−
1
2
−n exp

µ
−
c2pq⊥G

2
j

4x
− x

¶
dx , (6.166)
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6.6.3 Determining the constants A and B
In the following we do not need the dependence of the potential inside the cell and therefore write

Vp = Vp(x = 0).

For given Madelung constants ALL0
pq the Madelung potentials of a layered system Vp can be deter-

mined via eq. (6.27) to which, however, according to eq. (6.134), the term Acp⊥ + B has to be
added. As what follows we split Vp into two parts

Vp = bVp + V⊥,p , (6.167)

where V⊥,p is the part remaining for p→∞

V⊥,p = 2
X
L

X
q

A00,L0,pqQ
L
q +Acp⊥ + B , (6.168)

and bVp = 2 X
i=1,2a,2b,3

X
L

X
q

A00,Li,pq Q
L
q , (6.169)

with

A00,Li,pq = (−1)
c c+

1
2√
π

DL
i,pq (i = 0, 1, 2a, 2b, 3) , (6.170)

the later is based on eq. (6.33).

V⊥,µ for the 3D translational invariant case In particular, from eq. (6.153) one obtains

A00,L0,µν =
2π

A
δm0

µ
δc0

µ
1

d
a2µν⊥ − |aµν⊥|+

d

6

¶
− δc1

√
3

µ
2aµν⊥
d
− sign (aµν⊥)

¶¶
(6.171)

and

V⊥,µ =
4π

A

X
ν

Q00
ν

µ
1

d
a2µν⊥ − |aµν⊥|

¶
− 4π

A

X
ν

√
3Q10

ν

µ
2aµν⊥
d
− sign (aµν⊥)

¶
, (6.172)

where we made use of the charge neutrality in a bulk unit cell and used the convention sign(0) = 0.

V⊥,µ for a general 2D translational invariant case In particular, by using eq. (6.157) yields

A00,L0,pq = −
¡
1− δcpq⊥,0

¢
δm0

2π

A

³
δc0 |cpq⊥|− δc1

√
3 sign(cpq⊥)

´
, (6.173)

and, consequently,

V⊥,p = −
4π

A

X
q

³
|cpq⊥|Q00

q − sign(cpq⊥)
√
3Q10

q

´
+Acp⊥ + B , (6.174)
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where in terms of the convention sign(0) = 0 the restriction for DL
0,pq, namely, |cpq⊥| 6= 0 is

automatically fulfilled.
Suppose that in a typical layered system for layers p ≤ 0 the local physical quantities (charges,

moments, potentials etc.) are identical to those of a complex 3D bulk system (left semi-infinite
region, L), while for p ≥ N + 1, to those of either a complex 3D bulk, or, to mimic vacuum, the
charge density is zero (right semi-infinite region, R). The layers 1 ≤ p ≤ N form the interface
(central) region I. Conveniently, we choose the layer indices such that

cp⊥ ≥ cq⊥ if p > q ,

c0⊥ < c1⊥ and cN⊥ < cN+1,⊥ .

As we require continuity for the Madelung potential between regions L and I as well as between
I and R, the constants A and B can be uniquely determined.

”Bulk” from the left

The properties of the material in the left region are not changed during the film calculation but
give rise to boundary conditions for the film layers. Suppose the material in the L region on its
one corresponds to a bulk 3D complex lattice with n nonequivalent atoms, then it can be decisive
which layer of the left bulk material is the one closest to the film layers, therefore we need the
following derivation.
The numbering of the layers of the 2D invariant system is as follows

Layer (p) atom type (µ)
0 1
-1 2
...

...
-n+1 n
-n 1
-n-1 2
...

...

.

The above table clearly defines a mapping µp for p ≤ 0. This means for the moments of the charge
density the following condition has to apply

Qcm
p = Qcm

L,µp
(p ≤ 0) , (6.175)

where the subscript L refers to the left bulk region and VLeft is the value of the Intercellpotential
(in the bulk calculation) of the uppermost bulk layer (which is layer p = 0). Continuity between
regions L and I implies for the Madelung potentials

VLeft = Vp=0(r = 0) = bV0 − 4π
A

X
q

³
|c0q⊥|Q00

q − sign(c0q⊥)
√
3Q10

q

´
+Ac0⊥ + B , (6.176)

from which the constant B can be expressed,

B = VLeft − 2
X
L

X
q

(−1)c (2c+ 1)√
π

GL
0qQ

L
q (6.177)
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and inserted into eq. (6.174) (p ≥ 0) yields

V⊥,p = −
4π

A

X
q

³
Q00

q (|cpq⊥|− |c0q⊥|)−
√
3Q10

q (sign(cpq⊥)− sign(c0q⊥))
´
+Acp0⊥ + VL,1 − bV0 .

(6.178)
For p ≥ 1

|cpq⊥|− |c0q⊥| =

 cp0⊥ if q ≤ 0
cpq⊥ − cq0⊥ = cp0⊥ − 2cq0⊥ if 1 ≤ q ≤ p
−cp0⊥ if p < q

(6.179)

sign(cpq⊥)− sign(c0q⊥) =


0 if cq⊥ < c0⊥
1 if cq⊥ = c0⊥
2 if q ≥ 1 and cq⊥ < cp⊥
1 if q ≥ 1 and cq⊥ = cp⊥
0 if q ≥ 1 and cq⊥ > cp⊥

, (6.180)

and because of the charge neutrality in L, one thus gets

V⊥,p = −
4π

A

X
q≥1

Q00
q (|cpq⊥|− cq0⊥) +

4π

A

X
q≤0

(cq0⊥=0)

√
3Q10

q +
8π

A

X
q≥1

(cq⊥<cp⊥)

√
3Q10

q +

+
4π

A

X
q≥1

(cq⊥=cp⊥)

√
3Q10

q +Acp0⊥ + VL,1 − bV0 . (6.181)

Vacuum from the right If there is vacuum in the right region of the film calculation it means
that for

∀p ≥ N + 1 ρp(r) = 0 , Vp(r) = const. (r ∈ Ω) ,

i.e. Vp = Vp(0) = const. ( p ≥ N +1), and therefore the following boundary condition is imposed

∀p ≥ N + 1
d

dcp⊥
V⊥,p = 0 . (6.182)

Remembering that cN+1,⊥ > cp⊥ (p ≤ N), eq. (6.181) implies for p > N

V⊥,p =

Ã
−4π
A

NX
q=1

Q00
q +A

!
cp0⊥ +

8π

A

NX
q=1

Q00
q cq0⊥ + (6.183)

+
4π

A

X
q≤0

(cq0⊥=0)

√
3Q10

q +
8π

A

NX
q=1

√
3Q10

q + VL,1 − bV0 , (6.184)

therefore, the Vacuum boundary condition (6.182) implies

A = 4π

A

NX
q=1

Q00
q , (6.185)
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and

Vvac ≡ V⊥,p>N =
8π

A

NX
q=1

³
Q00

q cq0⊥ +
√
3Q10

q

´
+
4π

A

X
q≤0

(cq0⊥=0)

√
3Q10

q + VL,1 − bV0 (6.186)

Vvac ≡
4π

A

X
q

³
Q00

q cq0⊥ +
√
3Q10

q

´
+ B. (6.187)

Furthermore, for 1 ≤ p ≤ N one gets

V⊥,p = VL,1 − bV0 + 8π
A

NX
q=1

Q00
q min(cp0⊥,cq0⊥) (6.188)

+
4π

A

X
q≤0

(cq0⊥=0)

√
3Q10

q +
8π

A

X
q≥1

(cq⊥<cp⊥)

√
3Q10

q +
4π

A

X
q≥1

(cq⊥=cp⊥)

√
3Q10

q .

”Bulk” from the right Suppose the material in the R region on its own corresponds again to
a bulk 3D complex lattice with m non equivalent atoms, forming layers of the 2D invariant system
numbered as follows,

Layer (p) atom type (µ)
N+1 1
N+2 2
...

...
N+m m
N+m+1 1
N+m+2 2

...
...

,

which defines a unique mapping µp for p ≥ N + 1. The multipole moments in these layers are
given by the multipole moments of the bulk calculation of this material

Qcm
p = Qcm

R,µp
(p ≥ N + 1) , (6.189)

continuity between regions I and R implies

VR,1 =VN+1 = bVN+1 − 4π
A

NX
q=1

Q00
q (cN+1,0⊥ − 2cq0⊥)

+
4π

A

X
q≤0

(cq0⊥=0)

√
3Q10

q +
8π

A

NX
q=1

√
3Q10

q +
4π

A

X
q≥N+1

(cq⊥=cN+1,⊥)

√
3Q10

q +AcN+1,0⊥ + VL,1 − bV0 ,
(6.190)
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where we made use of eq. (6.181) and the charge neutrality of the R bulk region. Thus, in that
case

A = 1

cN+1,0⊥

VR,1 − VL,1 + bV0 − bVN+1 + 4π
A

NX
q=1

Q00
q (cN+1,0⊥ − 2cq0⊥) +

−4π
A

X
q≤0

(cq0⊥=0)

√
3Q10

q −
8π

A

NX
q=1

√
3Q10

q −
4π

A

X
q≥N+1

(cq⊥=cN+1,⊥)

√
3Q10

q

 , (6.191)

which should be inserted into eq. (6.181),

A = 1

cN+1,0⊥

Ã
VRight − VLeft +

X
L

X
q

(−1)c(2c+ 1)√
π

¡
GL
0q −GL

N+1q

¢
QL

q

!
. (6.192)

Slab In electronic structure calculations, a slab is defined by a finite number of atomic layers
surrounded by vacuum on both sides, i.e.,

QL
p = 0 for p ≤ 0 and p > N , (6.193)

thus, from Eq. (6.174) we have

V⊥,p = −
4π

A

NX
q=1

³
|cpq⊥|Q00

q − sign(cpq⊥)
√
3Q10

q

´
+Acp⊥ + B . (6.194)

One boundary condition is again set by restriction that the potential becomes a constant in the
vacuum

∀p ≥ N + 1
d

dcp⊥
V⊥,p = 0 .

V⊥,p = −
4π

A

NX
q=1

³
cpq⊥Q00

q −
√
3Q10

q

´
+Acp⊥ + B =

=

Ã
−4π
A

NX
q=1

Q00
q +A

!
cp⊥ +

4π

A

NX
q=1

Q00
q cq⊥ +

4π

A

NX
q=1

√
3Q10

q + B , (6.195)

therefore,

A = 4π

A

NX
q=1

Q00
q , (6.196)

and, consequently, for 1 ≤ p ≤ N

Vp = −
4π

A

NX
q=1

³
(|cpq⊥|− cp⊥)Q00

q − sign(cpq⊥)
√
3Q10

q

´
+ B + bVp . (6.197)
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In the center of the slab, the bulk properties should pertain, hence we impose the corresponding
bulk value for the Madelung potential. Let p∗ denote the layer in the center of the slab which we
associate with the sublattice α∗ of the bulk. Then one can write

Vb,α∗ = −
4π

A

NX
q=1

³
(|cp∗q⊥|− cp∗⊥)Q00

q − sign(cp∗q⊥)
√
3Q10

q

´
+ B + bVp∗ , (6.198)

from which yields

B = Vb,α∗ +
4π

A

NX
q=1

³
(|cp∗q⊥|− cp∗⊥)Q00

q − sign(cp∗q⊥)
√
3Q10

q

´
− bVp∗ , (6.199)

and

Vp = −
4π

A

NX
q=1

³³
|cpq⊥|− |c|p∗q⊥ + cp∗p⊥

´
Q00
q − (sign(cpq⊥)− sign(cp∗q⊥))

√
3Q10

q

´
+

+bVp + Vb,α∗ − bVp∗ . (6.200)

B = Vcentral − 2
X
L

X
q

A00,Lp∗q Q
L
q −Acp∗⊥ (6.201)

VV ac = B + 2
X
L

X
q

A00,LN+1qQ
L
q (6.202)



Chapter 7

Single Site Scattering Green Function

The following chapter summarizes some important properties of the single site problem, where we
have a potential V (x) with just one attractive center at the origin. For the considerations here
it is not important whether the potential is spherically symmetric or not, therefore we restrict
ourselves in the beginning to the easier case of a spherically symmetric potential.

7.1 One dimensional examples

In order to demonstrate the principle ideas we start with an example in one dimension.

7.1.1 Free particle in one dimension

Spectrum and complete set of eigenfunctions

If the potential is identically zero

V (x) ≡ 0

the Schrödinger equation is given by

− d2

dx2
ψ(x) = Eψ(x) (7.1)

There is only a continuous spectrum

σ = σp ∪ σc = {} ∪ [0,+∞[ ⊂ R (7.2)

A complete, orthonormal set of generalized eigenfunctions is given by½
φk(x) =

1√
2π

eikx, k ∈ R
¾
, Ek = k2 (7.3)

Orthonormal: Z
R
φk(x)φ

∗
k0(x)dx =

1

2π

Z
R
ei(k−k

0)xdx = δ(k − k0) (7.4)

113
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Complete: Z
R
|φk >< φk|dk = 1̂ ,

1

2π

Z
R
eik(x−x

0)dk = δ(x− x0) (7.5)

Another complete, orthonormal set of generalized eigenfunctions is given by (note the k = 0
problem)

{φ+,k(x) = π−
1
2 cos(kx), k ∈]0,∞[}, Ek = k2 (7.6)

{φ−,k(x) = π−
1
2 sin(kx), k ∈]0,∞[}, Ek = k2 (7.7)

By denoting the symmetry with the two-valued variable L ∈ {+,−}:
Orthonormal: Z

R
φL,k(x)φ

∗
L0,k0(x)dx = δLL0δ(k − k0) (7.8)

Complete: X
L∈{+,−}

Z ∞

0

φL,k(x)φL,k(x
0)dk = δ(x− x0) (7.9)

Regular and Irregular solutions

Similar to the radial equation in the 3 dimensional case there exists a radial differential equation
also in the 1-dimensional case. We take

x = |x| sgn (x) = r s with r ∈ R+0 , s ∈ {−1,+1}

and define an orthonormal system {Y+, Y−} on the sphere in 1D (the analogy of the spherical
harmonics)

sphere in 1D: S0 = {−1,+1}

Y+ :

½
S0 → C
s 7→ 1√

2

, Y− :
½

S0 → C
s 7→ 1√

2
sgn (s)

Our Ansatz to solve the differential equation·
− d2

dx2
− z

¸
ψ(x) = 0 , (7.10)

for general z ∈ C, z = p2, Im p > 0 (see A.1) is

ψ(x) = f(|x|)YL(sgn (x)) = f(r)YL(s)

The radial differential equation is just the same for every L ∈ {+,−}·
− d2

dr2
− z

¸
f(r) = 0 . (7.11)
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z=p*p, Im p > 0 pz

A

B

B A
Re(z) Re(p)

Im(p)Im(z)

Figure 7.1: Spectrum of a free particle and the complex square root function.

Considered as linear homogenous second order differential equation there exists a 2 dimensional
solution space, which can be spanned by one regular and one irregular solution.
The regular solution is characterized by the fact that it fulfills the differential equation·

− d2

dx2
− z

¸
ψ(x) = 0 (7.12)

for all x ∈ R. An irregular solution does not fulfill the differential equation (7.12) at the origin
x = 0, where it is only fulfilled up to a δ like singularity. Different to the 3D case the ’irregular
solutions’ are not necessarily irregular at the origin, but only their derivatives might be. This is
simply related to the fact that

1D: d2

dx2

£
1
2
|x|
¤
= δ(x)

3D: 4
h
−1
4π

1
|x|
i
= δ(3)(x)

.

where δ(3)(x) = δ(x1)δ(x2)δ(x3) is the usual delta function in the 3D case.

Even functions, L = (+) For L = (+) we have a pair of solutions:

regular solution: Z+,p(x) =
1√
π
cos (pr) =

³
1√
2

´³q
2
π
cos (px)

´
irregular solution: I+,p (x) =

1√
π
sin (p |x|) =

³
1√
2

´³q
2
π
sin (pr)

´
outgoing waves: H+,p (x) = Z+,p (x) + iI+,p (x) =

1√
π
(cos (pr) + i sin (pr)) = 1√

π
eipr

Here the regular solution fulfills the differential equation for all x ∈ R, while the irregular has a δ
singularity at the origin. ·

− d2

dx2
− z

¸
I+,p(x) =

2p√
π
δ(x)



116 CHAPTER 7. SINGLE SITE SCATTERING GREEN FUNCTION

-10 -5 5 10

L=+,irregular

L=+,regular

Figure 7.2: Regular and irregular even solution for a free particle.

The Green function of the 1 dimensional free particle is given by

G(x, x0; z) = g(|x− x0|; z) = gp(|x− x0|) = sin (p|x− x0|)
2p

− i
cos (p|x− x0|)

2p
= (7.13)

=
eip|x−x

0|

2ip
=

√
π

2p
I+,p(x− x0)− i

√
π

2p
Z+,p(x− x0) (7.14)

and fulfills ·
− d2

dx2
− z

¸
gp(|x− x0|) = δ(x− x0) (7.15)

While for every constant c the function gp(|x − x0|) + cZ+,p (x− x0) fulfills the same differential
equation, the Green function is uniquely defined because of the boundary conditions for |x−x0|→
∞.

Odd functions, L = (−) For L = (−) we have a pair of solutions:

regular solution: Z−,p(x) = 1√
π
sin (px) =

³
1√
2
sgn (x)

´³q
2
π
sin (pr)

´
irregular solution: I−,p (x) = 1√

π
sgn (x) cos p|x| =

³
1√
2
sgn (x)

´³q
2
π
cos (pr)

´
=

outgoing waves: H−,p (x) = Z−,p (x)− iI−,p (x) = −i√
π
sgn (x) (cos (pr) + i sin (pr)) =

³
− i√

π
sgn (x)

´
eipr

Here the regular solution fulfills the differential equation everywhere, while the irregular has a
δ0 singularity at the origin. ·

− d2

dx2
− z

¸
I−,p(x) =

2√
π
δ
0
(x) (7.16)
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L=−,irregular

L=−,regular

Figure 7.3: Odd solutions for a free particle.

The derivative of the delta function is given byZ
R

³
δ
0
(x)f(x)

´
dx = −

Z
R

³
δ(x)f

0
(x)
´
dx = −f 0(0) (7.17)

Symmetry of the solutions in p

While L ∈ {+,−} determines the symmetry of the regular and irregular solution for x→ −x, we
also want to choose solutions with symmetry in p

Even solutions, L = (+) A regular solution is only given up to a multiplicative constant of
absolute value 1 if still normed properly. Therefore all normed regular, even (in x) solutions are
given by

eiβ(p)π−1/2 cos (px) (7.18)

with β(p) being a real function of p. One possibility is to choose β = 0 which leads to our function,
which is also even in p :

Z+,−p(x) = π−1/2 cos(−px) = Z+,p(x) (7.19)

For an irregular solution there are more degrees of freedom, because one can always add a regular
solution. The one given above is the only real, normed, even (in x) solution which is odd in p.

I+,−p(x) = π−1/2 sin(−p|x|) = −I+,p(x) (7.20)
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Odd solutions, L = (−) Once again a regular solution is only given up to a multiplicative
constant of absolute value 1 if normed properly. Therefore all normed regular, odd (in x) solutions
are given by

eiβ(p)π−1/2 sin (px) (7.21)

with β(p) being a real function of p. Now one possibility is to choose β = 0 which leads to our
function, which is also odd in p.

Z−,−p(x) = π−1/2 sin(−px) = −Z+,p(x) (7.22)

For the irregular solution there are again more degrees of freedom, because one can always add a
regular solution. The one given above is the only real, normed, odd (in x) solution which is even
in p

I−,−p(x) = π−1/2σ(x) cos(−p|x|) = I−,p(x) . (7.23)

Green function

With a complete, orthonormal (generalized) eigenbasis given, the Green function can always be
expressed in the spectral resolution

G(x, x0; z) =
XZ

dµ (λ)
1

z −E(λ)
φλ(x)φ

∗
λ(x

0) . (7.24)

where λ labels any complete set of eigenfunctions (and .
PR

dµ (λ) is the summation and integra-
tion over the spectrum)
One possibility (and the easiest here) is to take the plane waves (7.3)

G(x, x0; z) =

Z
R
dk

·
1

z − k2

µ
1

2π
eik(x−x

0)
¶¸

dk = (7.25)

=
1

2π

I
C+

µ
eik|x−x

0|

z − k2

¶
dk =

1

2π

I
C+

µ
−eik|x−x0|

(k − p) (k + p)

¶
dk = (7.26)

= 2πi

µ
1

2π

−eip|x−x0|
2p

¶
=

eip|x−x
0|

2ip
= (7.27)

g(|x− x0| ; z = p2) =
sin (p|x− x0|)

2p
− i
cos (p|x− x0|)

2p
(7.28)
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Because we will need a similar derivation later on, we also derive the Green function with the
other eigenbasis of even and odd functions defined in (7.6)

G(x, x0; z) =
X

L∈{+,−}

Z ∞

0

dk

·
1

z − k2
¡
ZL,k(x)Z

∗
L,k(x

0)
¢¸
=

=
X

L∈{+,−}

1

2

Z
R
dk

µ
1

z − k2
ZL,k(x)ZL,k(x

0)
¶
=

=
X

L∈{+,−}

1

2

Z
R
dk

µ
1

z − k2
ZL,k(r<) (ZL,k(r>) + cL,kIL,k(r>))

¶
=

=
X

L∈{+,−}

1

2

I
C+

dk

µ
1

z − k2
ZL,k(r<) (ZL,k(r>) + cL,kIL,k(r>))

¶
=

= . . . =
eip|x−x

0|

2ip
=

=
π

2ip

X
L∈{+,−}

ZL,p(r<)HL,p(r>) = G(x, x0; z = p2) (7.29a)

Where the constants cL,k are chosen such that one can close the arc in the complex plane by a
half circle with Im(k) > 0. The value of the integral is not changed because Z and I have always
different symmetry in p and therefore

R
R vanishes.

Here the constants cL,k are given by

L = (+) :
1√
π
eikr> =

1√
π
(cos(kr>) + i sin(kr>)), c+,k = +i (7.30)

L = (−) :
1√
π
σ(x>)(−ieikr>) =

1√
π
σ(x)(sin(kr)− i cos(kr)), c−,k = −i (7.31)

which are the irregular solutions named outgoing waves, which make the complex upper half circle
harmless.

7.1.2 Particle in 1D potential with bound states

Spectrum and complete set of eigenfunctions

If the potential is given by
V (x) = −2Bδ(x)

the Schrödinger equation can be written as·
− d2

dx2
+ V (x)

¸
ψ(x) = Eψ(x) (7.32)

By integrating the differential equation
R +�
−� for �→ 0, one gets the necessary condition

ψ0|0+0− = −2Bψ(0) (7.33)
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E 0 - B
2

=

-2B δ (x)

x0

V(x)

0

E

Figure 7.4: A potential with one attractive δ function at the origin gives rise to a spectrum
σ = σp ∪ σc = {−B2} ∪ [0,+∞].

for the discontinuity of the first derivative at x = 0.
There is a point spectrum as well as a continuous spectrum, see (Fig.7.4)

σ = σp ∪ σc = {−B2} ∪ [0,+∞] (7.34)

The one and only bound state is given by

φ0,+(x) =
√
Be−B|x|, E0 = −B2 (7.35)

where one can see that it is an even function of x.
For the continuous spectrum various different sets of complete, orthonormal generalized eigen-
functions can be given. We try to follow the line chosen for a free particle.

Regular and Irregular solutions

Similar to 3D there exists for every L ∈ {+,−} a 2 dimensional solution space, which can be
spanned by one regular and one irregular solution.
The regular solution is characterized by the fact that it fulfills the differential equation·

− d2

dx2
− 2Bδ(x)

¸
ψ(x) = Eψ(x) (7.36)

everywhere in R. All irregular solutions do not fulfill the differential equation at the origin x = 0,
where they have an additional δ like singularity. Because the potential itself has already a δ
singularity at the origin the situation is more complicated.
The radial differential equation is the same for every L (even and odd functions) but we see that
the odd functions are not affected by the δ singularity at the origin, because they vanish for x = 0.
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-10 -5 5 10

L=+,irregular

L=+,regular

Figure 7.5: Regular and irregular even solution for a particle under the influence of the δ potential
at the origin..

Even functions, L = (+) The even functions can be affected by the potential (see Fig. 7.5
compared to Fig. 7.2)

regular solution Z+,k(x) =
1√
π
cos(k|x|+ αk) =

1√
π
cos(kr + αk)

irregular solution I+,k(x) =
1√
π
sin (k |x|+ αk) =

1√
π
sin (kr + αk)

outgoing waves: I+,k(x) =
1√
π
ei(k|x|+αk) = 1√

π
ei(kr+αk)

The ’phase shifts’ αk fulfill the relation

tanαk =
B

k
(7.37)

which implies that they are an odd function of k with a step-singularity at k = 0., see (Fig.7.6)
Since for B = 0 the phase shifts should be identically zero, αk ≡ 0 for all k, we choose the branch
of the arctan with arctan (0) = 0. Furthermore, one gets the relations

cos2 αk =
k2

B2 + k2
(7.38)

sin2 αk =
B2

B2 + k2
(7.39)

sinαk cosαk =
Bk

B2 + k2
. (7.40)

Odd functions, L = (−) The odd solutions are not affected by the δ potential
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Figure 7.6: .

regular solution Z−,k(x) = 1√
π
sin kx = 1√

π
σ(x) sin kr

irregular solution I−,k(x) = 1√
π
σ(x) cos kr = 1√

π
σ(x) cos k|x|

H−,p (x) =
³
− i√

π
sgn (x)

´
eipr

Symmetry of the solutions in k

While L ∈ {+,−} determines the symmetry of the regular and irregular solution as a function of
x, we also chose solutions with symmetry in k.

Even solutions The regular solution fulfills

Z+,−k(x) = π−1/2 cos(−kr + α−k)) = Z+,+k(x) (7.41)

and is even in k, while for the irregular solutions we took an odd function in k

I+,−k(x) = π−1/2 sin(−k|x|) = −I+,+k(x) (7.42)

Odd solutions The regular solution is odd in k

Z−,−k(x) = π−1/2 sin(−kx) = −Z−,+k(x) (7.43)

The irregular solution is even in k

I−,−k(x) = π−1/2σ(x) cos(−k|x|) = I−,+k(x) (7.44)
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-B 2

+i Bz
p

z=p*p, Im p > 0

(2)
(1)

C

Figure 7.7: left plot: The complex energy z plane with the continuous spectrum at the positive
real axis and the eigenvalue at z = −B2

right plot: The complex p plane, after the bijective mapping z 7→ p on the upper complex halfplane.
The halfcircle C contains the point +iB and the point p.

Green function

Now we come to the most important part which illustrates what happens to the bound states in
the Green function. Given a complete, orthonormal (generalized) eigenbasis the Green function
can always be expressed in the spectral resolution

G(x, x0; z) =
XZ

dλ
1

z − E(λ)
φλ(x)φλ(x

0) , (7.45)

where λ labels any complete set of eigenfunctions.With a point spectrum and continuous spectrum
we have to write

G(x, x0; z) = Gp(x, x
0; z) +Gc(x, x

0; z) =

=
X
En∈σp

1

z −En

¡
φ0,n(x)φ

∗
0,n(x

0)
¢
+

X
L∈{+,−}

Z ∞

0

dk

µ
1

z − k2
ZL,k(x)Z

∗
L,k(x

0)
¶
=

=
B

z +B2
e−B(r+r

0) +
1

π

Z ∞

0

dk

·
1

z − k2
(cos(kr + αk) cos(kr

0 + αk) + sin (kx) sin (kx
0))
¸
(7.46)

If we add another function in order to be able to close the integral path in the complex plane
without changing the result of the integral we arrive at

G(x, x0; z) =
B

z +B2
e−B(r+r

0) +
1

2π

Z ∞

−∞
dk

µ
1

z − k2
(cos(kr< + αk)×

×(cos(kr> + αk) + i sin(kr> + αk)) + σ(x)σ(x0) sin kr<(sin kr> − i cos kr>))) =

=
B

z +B2
e−B(r+r

0) +
1

2π

I
C
dk

1

z − k2
(cos(kr< + αk)e

iαk − iσ(x)σ(x0) sin kr<)eikr> (7.47)
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Here the real integral could be transferred to a complex contour integral by adding specific
functions to the regular solutions which make

• the integrand vanish for the upper complex half circle

• the integrand a meromorphic function of k ∈ C

Now the integrand has 2 different kind of poles in the upper half plane,

• one pole of first order at k = p; p2 = z, Im(p) > 0 where the (z − k2)
−1
has a pole

• poles at all those k values where the functions of the phase shifts have a pole, which are
exactly the roots of the energy of the bound states

In this specific example we only have one bound state at E = −B2, k = iB, which leads to a
term which exactly cancels the first term from the bound states. What remains is to evaluate the
functions at k = p =

√
z, which leads to

G(x, x0; z) =
−i
2p

£
cos(pr< + αp)e

iαp − iσ(x)σ(x0) sin (pr<) eipr>
¤
=

=
−i
2p

·
eip|x−x

0| +
iB

p− iB
eip(r<+r>)

¸
=

eip|x−x
0|

2ip
+

B

2p(p− iB)
eip(r<+r>)

So we found an expression for the Green function.

7.2 Free particle in 3 dimensions

7.2.1 Spectrum and complete set of eigenfunctions

If the potential is identically zero
V (x) ≡ 0

the Schrödinger equation is written

−4ψ(x) = zψ(x) (7.48)

There is only a continuous spectrum

σ = σp ∪ σc = {} ∪ [0,+∞] (7.49)

A complete, orthonormal set of generalized eigenfunctions is given by(
φk(x) =

1p
(2π)3

eik·x,k ∈ R3
)
, Ek = k · k (7.50)

Orthonormal:Z
R3
(φk(x)φ

∗
k0(x)) d

3x =
1

(2π)3

Z
R3
ei(k−k

0)·xd3x = δ(3)(k− k0) = δ(k− k0) (7.51)
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Complete: Z
R3
|φk >< φk|d3k = 1̂ ,

1

(2π)3

Z
R3
eik·(x−x

0)d3k = δ(x− x0) (7.52)

To find another complete, orthonormal set of generalized eigenfunctions we apply the usual sepa-
ration

ψ(x) = f(r)Y (bx) (7.53)

and the solutions of the angular equations in the form of spherical harmonics

YL(bx) = Ylm(bx), l ∈ {0, 1, . . .},m ∈ {−l, . . . ,+l}

lead to the radial equation ·
− 1
r2

d

dr
(r2

d

dr
) +

l(l + 1)

r2
− z

¸
f(r) = 0 (7.54)

or with g(r) = rf(r) to ·
− d2

dr2
+

l(l + 1)

r2
− z

¸
g(r) = 0 (7.55)

A regular, normed solution is given by (z = E = k2 ∈ R+)

Zl,k(r) =

r
2

π
kjl(kr) (7.56)

Therefore a complete set of generalized eigenfunctions is given by(r
2

π
kjl(kr)YL(bx), L = (lm), k ∈ R+) (7.57)

which is orthonormalZ
R3

Ãr
2

π
kjl(kr)YL(bx)r2

π
k0jl0(k0r)Y ∗L0(bx)

!
d3x = δ (k − k0) δLL0 (7.58)

and complete

X
L

Z
R+

dk

Ãr
2

π
kjl(kr)YL(bx)r2

π
kjl(kr

0)Y ∗L0(bx0)
!
= δ(3) (x− x0) = δ (x− x0) (7.59)

7.2.2 Regular and Irregular solutions

For every L there exists a 2 dimensional solution space, which is spanned by one regular and one
irregular solution.
A regular solution is characterized by the fact that it fulfills the differential equation·

− d2

dr2
+

l(l + 1)

r2
− z

¸
(rf(r)) = 0 (7.60)
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everywhere in [0,∞]. All irregular solutions do not fulfill the differential equation at the origin
x = 0 (r = 0), where they have a δ like singularity.
Different to the 1D case the radial differential equation depends on L and only the ’irregular
solutions’ are really irregular at the origin.

L = (l,m) regular solution: Zl,k(r) =
q

2
π
kjl(kr)

irregular solution: Il,k(r) =
q

2
π
knl(kr)

Here the regular solution fulfills the differential equation everywhere, while e.g. the irregular for
l = 0

[−4− z] Il=0,p(r) = [−4− z]
1√
2π

cos(kr)

r
= 2
√
2δ(x) (7.61)

7.2.3 Symmetry of the solutions in p

While L determines the symmetry of the regular and irregular solution as a function of the angle
of x, we chose solutions with symmetry with respect to k →−k

Regular solutions

The symmetry of a regular solution is given by the symmetry of the spherical Bessel function:

Zl,−k(r) =

r
2

π
(−kjl(−kr)) = (−1)l+1Zl,k(r) (7.62)

Irregular solutions

For the irregular solutions there are more degrees of freedom, because one can always add a regular
solution. The one given above is the only real, normed solution which has symmetry in k.

Il,−k(r) =

r
2

π
(−knl(−kr)) = (−1)lIl,k(r) (7.63)

Therefore the product of this regular and irregular solutions is always odd in k ∈ R.

7.2.4 Green function

With a complete, orthonormal (generalized) eigenbasis the Green function can always be expressed
in the spectral resolution.

G(x, x0; z) =
X
λ

Z
dλ

1

z − E(λ)
φλ(x)φ

∗
λ(x

0) , (7.64)
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where λ labels any complete set of eigenfunctions.
One possibility and the easiest here is to take plane waves (with p2 = z)

G(x, x0; z) =

Z
R3
dk

1

z − k2
1

(2π)3
eik·(x−x

0)d3k = (7.65)

=
1

(2π)3

Z
S2

dbkZ ∞

0

dk
k2

z − k2
ei|k||x−x

0| cos θ = (7.66)

= . . . = (7.67)

= − eip|x−x
0|

4π|x− x0| (7.68)

Another expression is given by taking the basis defined in paragraph (7.2.2)

G(x, x0; z) =
X
L

Z ∞

0

dk
1

z − k2
ZL,k(x)Z

∗
L,k(x

0) = (7.69)

=
X
L

1

2

Z
R
dk

1

z − k2
ZL,k(x)ZL,k(x

0) = (7.70)

=
X
L

1

2

Z
R
dk

µ
1

z − k2
Zl,k(r<)(Zl,k(r>) + cl,kIl,k(r>))YL(bx)Y ∗L (bx0)¶ = (7.71)

= ip
X
L

jl(pr<)hl(pr>)YL(bx)Y ∗L (bx0) , (7.72)

where the constants cl,k are chosen such that one can close the arc in the complex plane by a half
circle with Im(k) > 0. The value of the integral is not changed because Z and I have always
different symmetry in k.
Here it would be the following function,

L : (jl(kr) + inl(kr)) (7.73)

which is the outgoing Hankel function that goes to 0 for k →∞, Im(k) > 0.

7.3 Constant shift of the potential, dependence on shift

parameter

In this section we deal with the consequences of the choice of the zero of energy for the KKR
method.

7.3.1 Fullcell geometry - theoretical independence of results

In a fullcell geometry description the lattice periodic potential V is a sum of localized potentials
Vµ,n

V (x) =
X
n∈Zd

X
µ

Vµ,n(x) =
X
n∈Zd

X
µ

σµ,n(x)V (x)
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Figure 7.8: In a full-cell geometry the union of all cells covers the space without overlap or
uncovered regions.

Where each Vµ,n is a localized potential and identical zero outside the corresponding cell Vµ,n,
which is given by the Wigner-Seitz construction. The theory of KKR demands that these cells
must not overlap, then the multiple scattering problem can be separated in a single center problem
and the geometrical structure constants (see Fig. 7.8).
This is fulfilled by our nearest neighbor cell construction. In principle one is free to add

a constant to the periodic potential, which should leave the results unchanged. V (x) →
V (x) +W , because

∀x ∈ Rd

ÃX
n∈Zd

X
µ

σµ,n(x) = 1

!
,

this constant can be transferred into each single center potential

[Vµ,n(x) +W ]σµ,n(x)

which might be advantageous so that one can shift the potential to a certain energy region

V (x) +W =

ÃX
n∈Zd

X
µ

Vµ,n(x)

!
+W =

X
n∈Zd

X
µ

[Vµ,n(x) +W ]σµ,n(x)

7.3.2 Fullcelll geometry - practical dependence on shift parameter

While a fullcell geometry description theoretically leads to results independent of the shift param-
eter W in practice one is limited to a certain lmax in the expansion of the shape functions

σ[lmax](x) =
lmaxX

L=(l,m)

σL(r)YL(bx)
Therefore the identity

1 =
X
n∈Zd

X
µ

σµ,n(x)
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s
b

0

1

rMT
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a
1

0
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rBS

a

b

Figure 7.9: Ideal form of σ (x(r)) in a quadratic unit cell for a given direction x0 as a function of
the radial distance x(r) = r x0. The discontinuous jump is not reproduced by σ

[lmax](x(r)).

is not exactly fulfilled anymore, which can be seen by plotting the shape function along specific
directions out of the cell centre. Let r be the parameter along the path x(r) then σ(x(r)) should
be a step function changing from 1 to the value 0 at the cell boundary (see Fig 7.9), in practice this
is not fulfilled and σ[lmax](x(r)) will deviate from the theoretical curve, due to the mathematical
Gibbs Phenomenon (see Fig 7.10 in MT direction and Fig 7.11 in BS direction) this effect would
also be present for lmax →∞ and is a serious limitation to the method.
The Gibbs Phenomenon has smallest disturbing influence, if the potential is shifted by a

constant

V 0 (x) = V (x) +W =

ÃX
L

V 0
L(r)YL(bx)

!
so that the L = (0, 0) = 1 (with L = l(l + 1) +m+ 1) component fulfills

V 0
L=(00)(rMT ) = VL=(00)(rMT ) +W = 0 .

7.3.3 ASA geometry - theoretical dependence of results on shift pa-
rameter

In the case of a spherical cell geometry (MT, ASA,..) every single center potential is limited to a
ball (sphere) Bµ,n centered around the atomic position Rµ,n. These balls overlap Bµ,n ∩Bν,m 6= ∅
and/or leave some space which is not covered by any cell,

∃x ∈ Rd : ∀µ, n (x /∈ Bµ,n) .

If we still denote the characteristic function of the set Bµ,n with σµ,n(x) = σBµ,n(x), then

X
n∈Zd

X
µ

σµ,n(x) =


0 x /∈ Bµ,n

1 x ∈ 1 Bµ,n

2 x ∈ 2 Bµ,n

. . . . . .
n x ∈ n Balls
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Figure 7.10: The exact shape function σ(x(r)) and approximations σ[lmax](x(r)) for various lmax
in a MT direction of the 2D quadratic unit cell.
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Figure 7.11: The exact shape function σ(x(r)) and approximations σ[lmax](x(r)) for various lmax
in a BS direction of the 2D quadratic unit cell.
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Vo
2Vo

a

a

Figure 7.12: Unit cell and ASA spheres: if put together there are overlap regions and uncovered
regions. The sum of the potentials is not only shifted by a constant.

is not identically 1 anymore, but has an integer value equal to the number of balls which contain
x (see Fig. 7.12). For a MT-geometry only the values 0 and 1 arise, while for an ASA geometry
0,1 and 2 arise. Therefore in all sphere geometry cases one can not transfer the shift constant W
to the single site problems

V (x) +W =

ÃX
n∈Zd

X
µ

Vµ,n(x)

!
+W 6=

X
n∈Zd

X
µ

(Vµ,n(x) +W ) σµ,n(x)

and the results will have a dependence on the value of W. Especially at the boundary of the balls
the relevant periodic potential is not continuous anymore (see Fig. 7.14). These jumps can be
minimized by shifting the single site potential to 0 at rASA (see Fig. 7.13).
Note that also in a MT-description this problem still occurs as long as one does not further

describe the interstitial region.
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Figure 7.13: A single center potential V (r), unshifted and shifted such that V (rASA) = 0.
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Figure 7.14: Dashed lines are single site potentials, full lines are total, periodic potentials, the
lower potential is not shifted to zero at rASA and therefore the total potential has a discontinuity
(lower full line).



Chapter 8

Structural Green function for
m-dimensional lattices in n dimensional
space

A general expression for the structural Green function for a system exhibiting lattice translational
symmetry in m dimensions and natural boundary conditions in the remaining n−m dimensions
is developed and mathematically rigorously proofed.

For the case of m = n = 3 an expression has been given by [25], for m = 2, n = 3 by [23],
and for m = 2, n = 2 by [14]. Future applications contain Quantum wires for m = 1, n = 3
and quasicrystals for n ≥ 4. Both, a direct lattice summation and a reciprocal lattice summation
technique are given and an Ewald-technique is applicable for a combined summation.

8.1 Overview:

We find an expression for the structural Green function form-dimensional lattices in n-dimensional
real space. The expansion of the structural Green function leads to the structure constants.

Both are given either in terms of a reciprocal lattice sum or a direct lattice sum. In general the
expression for the structural Green function is the sum of a product of a free particle Green function
times an exponential function. Using the Ewald technique the reciprocal and direct lattice sums
can be combined for numerical evaluation. Applications to the special cases of (m = 1, n = 2),
(m = 1, n = 3), and (m = 2, n = 3), are finally discussed.

8.2 Free Particle Green Function:

The free particle Hamiltonian in n dimensions is defined as (b.c. means boundary conditions)

Â
(n)
0 =

½
−∆ inH = L2(Rn;C)

+ natural b.c.
(8.1)

133
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Im

Re

z

Figure 8.1: The spectrum of the free particle Hamiltonian σ
³
Â
(n)
0

´
= [0,∞[ independent of the

dimension n.

8.2.1 Spectrum of the operator:

The spectrum is a purely continuous one:

σ
³
Â
(n)
0

´
= [0,+∞[

Resolvent:

The resolvent operator is defined only for z /∈ σ
³
Â
(n)
0

´
as

Ĝ
(n)
0 (z) =

³
z − Â

(n)
0

´−1
In the real space representation a state is described by a wavefunction (Φ(x),x ∈ Rn) and the
Green function by h

Ĝ
(n)
0 (z)Φ

i
(x) =

Z
Rn

dx0
³
G
(n)
0 (x,x

0; z)Φ(x0)
´
.

If the wavefunction is a proper element of the Hilbert space, Φ ∈ H , then also
h
Ĝ
(n)
0 (z)Φ

i
∈ H,

which is guaranteed by a basic mathematical theorem. A similar one is valid for generalized
eigenfunctions.
The resolvent in the real space representation is given by the integral kernel G

(n)
0 (x,x

0; z),
which only depends on the absolute value of the difference vector r = |x − x0| . Further we
define a bijective mapping between z ∈ ρ

³
Â
(n)
0

´
and u in the upper complex halfplane H(i,+) (see

appendix A.1). The energy is always considered just as a parameter of the Green function.

z = u2 , Imu > 0
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We distinguish between these two functions to emphasize their importance:

G
(n)
0 :

½
Rn ×Rn → C
(x,x0; z) 7→ G

(n)
0 (x,x

0; z) = G
(n)
0 (x,x

0;u)

g
(n)
0 :

½
R+0 → C
(r; z) 7→ g

(n)
0 (r; z) = g

(n)
0 (r;u)

although there is the relation G
(n)
0 (x,x

0; z) = g
(n)
0 (|x− x0|; z)

8.2.2 Expression for the free space Green function

The following table summarizes the free particle Green function in n = 1, 2, 3, . . . dimensions,

dimension free particle Green function

n = 1 g
(1)
0 (r;u) =

eiur

2iu

n = 2 g
(2)
0 (r;u) = − i

4
H
(+)
0 (ur)

n = 3 g
(3)
0 (r;u) = −eiur

4πr

n ≥ 4 g
(n)
0 (r;u)

in which H
(+)
0 (ur) is the Hankel function of zero order of the first kind. All functions have the

property that

lim
r→∞

g
(n)
0 (r;u)→ eiur → 0, because Im (u) > 0 .

g
(n)
0 (r;u) is uniquely defined because of the boundary conditions for r →∞, otherwise one could
as well take e.g., for n = 3 : −cosur

4πr
, which is often done in the literature. Furthermore we want

to emphasize that the Green function for all z = E ∈ R+0 is ’a priori’ not defined. It can only be
defined as a limiting value.

8.3 A m dimensional lattice in n dimensional space

We use the term lattice for the set of translation vectors, not necessarily to be asso-
ciated with the atomic positions.
We consider the vector space Rn and m linear independent vectors

a1, . . . , am ∈ Rn,

then we define a m-dimensional lattice in Rn by all integer linear combinations of the lattice
basis vectors

L(m,n) = {tk =k1a1 + · · ·+ kmam : kj ∈ Z} .

These m vectors define also a m-dimensional subspace U of the Rn

U = {s1a1 + · · ·+ smam : sj ∈ R}
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Figure 8.2: The unit cell UC(m,n) of a m dimensional lattice in Rn : The m dimensional lattice
defines a unit cell UC(m) in Rm and UC(m,n) = UC(m) ×Rn−m

and we can choose a coordinate system in Rn such that all u ∈ U are of the form

u =(u1, . . . , um, 0, . . . , 0) ,

where only the first m components are unequal from zero, while the last n−m ones are identically
zero. Then essentially U = Rm and we can consider the lattice of a1, . . . , am in U = Rm, a
m-dimensional lattice in Rm

L(m) = L(m,m) = {k1a1 + · · ·+ kmam : kj ∈ Z} .

For every m dimensional lattice in Rm a unit cell can be defined, which is denoted by UC(m) and
is a subset of Rm. For our purpose we always choose a simply connected region containing the
lattice point 0, e.g. the Wigner-Seitz construction of a unit cell. The natural definition of the
unit cell of a m-dimensional lattice in Rn is (see Fig. 8.2)

UC(m,n) = UC(m) × R(n−m) .

The reciprocal lattice of L(m) we denote by L0(m) = {Kν : ν ∈ Zm} and is constructed in the
usual way. The unit cell of the reciprocal lattice is called Brillioun zone and we denote it by
BZ(m).

8.4 Laplace Operator with m-dimensional periodic bound-

ary conditions

First we consider the Laplace operator in m dimensional space Rm with k-periodic boundary
conditions from a m dimensional lattice L(m), (only functions fulfilling ψk (x+ tn) = eiktnψk (x)
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Figure 8.3: The spectrum of the m-dim. Laplacian with k ∈ BZ(m) periodic boundary condition.
It is an only discrete but unbounded spectrum.

are allowed)

for k ∈ BZ(m) : Â
(m)
k =

½
−∆ in H = L2(UC

(m);C)
+k . periodic b.c.

(8.2)

If we consider the boundary conditions as part of the operator, Â
(m)
k is an essentially

different operator than Â
(m)
0 .

8.4.1 Spectrum of the operator:

The spectrum of Â
(m)
k is a pure point spectrum

σ
³
Â
(m)
k

´
= σp

³
Â
(m)
k

´
=
©
(k+Kν)

2 : ν ∈ Zm
ª
. (8.3)

8.4.2 Resolvent operator:

Following (8.2.1) the resolvent operator is defined only for z /∈ σ
³
Â
(m)
k

´
as

Ĝ
(m)
k (z) =

³
z − Â

(m)
k

´−1
In the real space representation a state is described by a wavefunction

³
Φ(x),x ∈ UC(m)

´
h
Ĝ
(m)
k (z)Φ

i
(x) =

Z
UC(m)

dx0
³
G
(m)
k (x,x0; z)Φ(x0)

´
The resolvent in real space representation is given by the integral kernel G

(m)
k (x,x0; z), which

only depends on the difference vector y = x − x0. Once again we also use u instead of z for the
energy parameter (see (A.1)) of the Green function.

z = u2 , Imu > 0
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Reciprocal and direct lattice sums:

In order to find an expression for the integral kernel G
(m)
k (x,x0; z), we have two straightforward

methods.

Reciprocal lattice sum: In general if an operator bA, with spectrum
σ
³
Â
´
= σp

³
Â
´
= {λj, j ∈ I}

and corresponding eigenvectors Φjis given, then the resolvent can be expressed by

Ĝ(z) =
³
z − Â

´−1
=
X
j∈I

1

z − λj
|Φji hΦj|

Applying this general result to the operator Â
(m)
k from definition (8.2) we have the reciprocal

lattice sum

G
(m)
k (x,x0; z) =

1

|UC(m)|
X
ν∈Zm

1

z − (k+Kν)2
ei(k+Kν )·(x−x0) =

=
1

|UC(m)|
X
ν∈Zm

1

z − (k+Kν)2
ei(k+Kν )·y

Direct lattice sum: The direct lattice sum expression exploits the fact that the k periodic
Laplacian Â

(m)
k is related to the free Laplacian Â

(n)
0 defined in (8.1). Both of their integral kernels

fulfill the same differential equation

[z +∆]G(x,x0; z) = δ (x− x0)

but the boundary conditions for G
(m)
k (x,x0; z) are different from the ones for G

(n)
0 (x,x

0; z). If we
take a proper sum of translated free space solutions we can obtain a function fulfilling the k
periodic b.c.

G
(m)
k (x,x0; z) =

X
ν∈Zm

G
(m)
0 (x−Rν ,x

0; z) eik·Rν =

=
X
ν∈Zm

g
(n)
0 (|x− x0−Rν |; z) eik·Rν =

X
ν∈Zm

g
(n)
0 (|y−Rν |; z) eik·Rν

If summed up to infinity we should get the same functions, numerically there are of course differ-
ences.

Mixed direct and reciprocal lattice sums: The direct and reciprocal lattice sum can be
combined for quicker numerical convergence using an Ewald-technique [9]:

G
(m)
k (x,x0; z) = G1(z) +G2(z)

G1(z) =
X

reciprocal
lattice

. . . , G2(z) =
X
direct
lattice

. . .
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Figure 8.4: The purely continuous spectrum of Â
(m,n)
k , the points are at the eigenvalues of Â

(m)
k .

8.5 n-dimensional Laplace Operator with periodicity in m-

dimensions

Now we deal with an operator defined in a n dimensional space with periodic boundary conditions
in m dimensions and natural boundary conditions in the remaining n−m dimensions.

k ∈ BZ(m) : Â
(m,n)
k =

½
−∆ inH = L2(UC

(m,n);C)
k− periodic b.c. in first m dimensions

(8.4)

Because the Laplace operator does not mix the dimensions

∆ =
d2

dx21
+ . . .

d2

dx2m
+

d2

dx2m+1
+ . . .

d2

dx2n
,

we can write

Â
(m,n)
k = Â

(m)
k ⊗ 1̂(n−m) + 1̂(m) ⊗ Â

(n−m)
0

as the sum of a k periodic Laplace operator as studied in (8.4) and a free operator as studied in
(8.2).

8.5.1 Spectrum of the operator:

The spectrum of this operator Â
(m,n)
k is a purely continuous spectrum, starting at k extending to

infinity, see (Fig. 8.4)

σ
³
Â
(m,n)
k

´
=
£
k2,+∞

£
One can view the spectrum as the union of spectra of the form

[
ν∈Zm

£
(k+Kν)

2 ,+∞
£
, namely

(k+Kν)
2 as the possible eigenvalues of Â

(m)
k plus an arbitrary positive number s from the con-

tinuous spectrum of Â
(n−m)
0 .
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8.5.2 Resolvent:

For z /∈ σ
³
Â
(m,n)
k

´
the resolvent is given by

Ĝ
(m,n)
k (z) =

³
z − Â

(m,n)
k

´−1
,

which in real space representation is again an integral kernelh
Ĝ
(m,n)
k (z)Φ

i
(x) =

Z
UC(m,n)

d3x0
³
G
(m,n)
k (x,x0; z)Φ(x0)

´

G
(m,n)
k can be again expressed in the form of direct or reciprocal lattice sums.

Reciprocal lattice sum: If we introduce for every ν ∈ Zm, zν = z − (k+Kν)
2 we can write

the Green function as

G
(m,n)
k (x, x0; z) =

1

|UC(m)|
X
ν∈Zm

³
G
(n−m)
0 (x⊥, x0⊥; zν) e

i(k+Kν )·(xk−x0k)
´
,

which is a reciprocal lattice sum using the free Green function in n−m dimensionsG(n−m)
0 (x⊥,x0⊥; zν).

Direct lattice sum: For the direct lattice sum we use again a proper summation of free particle
Green function

G
(m,n)
k (x,x0; z) =

X
ν∈Zm

³
G
(n)
0 (x−Rν ,x

0; z) eik·Rν

´
Note that here we have to use the n dimensional free space Green function G

(n)
0 (x−Rν ,x

0; z).

Combined direct and reciprocal lattice sums using Ewald-technique: Once again we
can apply an Ewald technique to have a mixed reciprocal and direct space summation

G
(m,n)
k (x, x0; z) = G1(z) +G2(z)

G1(z) =
X

reciprocal
lattice

. . . , G2(z) =
X
direct
lattice

. . .

8.6 Examples and References for specific (m,n) cases:

The following table should summarize the cases already dealt within the literature.
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(n,m) physical examples references
(1,1) 1D bulk crystal
(2,1) wire in 2D system
(2,2) 2D bulk crystal [14]
(3,1) wire in 3D system
(3,2) surface of crystal [23]
(3,3) 3D bulk crystal [25]
n≥4 Quasicrystals

8.6.1 The case (m,n)=(1,2)

If we have a 2 dimensional space with a 1 dimensional lattice, we write

x = (x1, x2) = (xk, x⊥)

and a 1 dimensional Brillioun zone with k ∈ BZ1. We define

uν ↔ z with zν = u2ν = z − (k +Kν)
2

and the 1 dimensional free space Green function

g
(1)
0 (r, u) =

eiur

2iu

we then get the result

G
(1,2)
k (x,x0; z) =

1

|UC(1)|
X
ν∈Z

1

2iuν
eiuν|x2−x02|ei(k+Kν)(x2−x02)

Typical applications are surfaces/interfaces of samples with 1 dimensional periodic structures in
a 2 dimensional world

8.6.2 The case (m,n)=(1,3)

If we have a 2 dimensional space with a 1 dimensional lattice, we write

x = (x1, x2, x3) = (xk,x⊥)

and a 1 dimensional Brillioun zone with k ∈ BZ1. We define uν ↔ z with zν = u2ν = z− (k+Kν)
2

and the 2 dimensional free Green function

g
(2)
0 (r, u) =

−i
4
H
(+)
0 (ur) ,

then G
(1,3)
k (x,x0; z) is given by

G
(1,3)
k (x,x0; z)=

1

|UC(1)|
X
ν∈Z

−i
4
H
(+)
0 (uν |x⊥ − x0⊥|)e

i(k+Kν)(xk−x0k)

Applications: samples with 1 dimensional periodic structures in 3 dimensional space, quantum
wires
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8.6.3 The case (m,n)=(2,3)

If we have a 3 dimensional space with a 2 dimensional lattice, we write

x = (x1, x2, x3) = (xk, x⊥)

and a 2 dimensional Brillioun zone with k ∈ BZ2. We define uν ↔ z with zν = u2ν = z−(k+Kν)
2

and the 1 dimensional free space Green function

g
(1)
0 (r, u) =

eiur

2iu

G
(2,3)
k (x,x0; z) =

1

|UC(2)|
X
ν∈Z2

1

2iuν
eiuν|x3−x03|ei(k+Kν)·(xk−xk0)

Applications: surfaces/interfaces of samples with 2 dimensional periodic structures in 3 dimen-
sional space
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Chapter 9

Magnetic anisotropy of thin films of Co
on Cu(111)1

9.1 Introduction.

Growth, morphology and magnetic structure of ultrathin films of Co on Cu(111) have been a
matter of intensive experimental investigations in the near past. Prepared by molecular beam
epitaxy (thermal deposition, TD) Co films (ML) grow in a face centered cubic (fcc) structure
below a thickness of 2 monolayers by forming mostly 2 or 3 ML high islands [7]; above this
thickness they undergo a gradual fcc→hcp transformation [41] aided by hexagonal closed packed
(hcp) stacking faults. By using Pb as surfactant on Cu(111) the quality of growth of Co films has
been greatly improved, however, this leads to a substantial change in the magnetic properties of
the system, namely induced by a Pb overlayer [4]. A novel experimental method using pulsed layer
deposition (PLD) [22] made it possible to reduce significantly the number of stacking faults during
the initial growth of Co films on Cu(111) and thus to delay the fcc→hcp structural transition to
about 6 ML of Co [52]: in contrast to perpendicularly magnetized thermally deposited hcp films
[51] these films show an overall in-plane magnetization.

As the practically perfect layer-by-layer growth of the PLD films represents an ideal situation
for theoretical investigations, the purpose of the present report is to calculate and discuss the
magnetic anisotropy properties of epitaxial CoN/Cu(111) (1 ≤ N ≤ 7) films. To our knowledge,
ab initio calculations of the magnetic anisotropy energy (MAE) have been reported so far only for
Co1/Cu(111) (in fact also as capped by additional Cu overlayers) by [53]. In there a MAE of -0.31
meV per unit cell (in-plane) was found for a Co ML occupying positions of a perfect fcc Cu parent
lattice, while for a selfconsistently relaxed Co monolayer (∼ 7.6% inward relaxation) a MAE of
-0.30 meV per unit cell was reported. In many cases the effect of layer relaxations is known to be
decisive for the MAE , most prominently for Ni/Cu(100) film systems, where it gives rise to an
inverse reorientation transition with increasing film thickness [42].

1The results of these calculation are published in an article [17]
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9.2 Theoretical approach.

The following theoretical study of the MAE of thin films of Co on Cu(111) is performed by
using the fully relativistic spin polarized screened Korringa-Kohn-Rostoker (KKR) method [47]
in the context of the spin-polarized local density functional as parametrized by Vosko et al [44].
Various uniform relaxations R with respect to the interlayer distance in the substrate (fcc Cu),
−4% ≤ R ≤ +3%, have been considered by extending this method to systems of layers sharing only
the same in-plane translational symmetry but otherwise can differ in respective interlayer distances
[42]. It should be noted that the same in-plane translational symmetry is a necessary requirement
for making use of two-dimensional lattice Fourier transformations. For each system, i.e., for
each uniform relaxation R and number of Co layers N , the electronic and magnetic structure is
calculated selfconsistently for a ferromagnetic configuration corresponding to an orientation of the
magnetization perpendicular to the planes of atoms. In all systems investigated, an additional
buffer of three substrate Cu layers is treated selfconsistently. It was found that within the atomic
sphere approximation 30 kk points in the hexagonal irreducible surface Brillouin zone (ISBZ)
guarantees necessary numerical accuracy for the effective potentials and effective exchange fields
treated .
The magnetic anisotropy energy (MAE) Ea,

Ea = E(k)−E(⊥) , (9.1)

defined as the energy difference between a uniform in-plane and a uniform perpendicular orienta-
tion of the magnetization, is obtained by making use of the Magnetic Force Theorem [21], namely
as a sum over the respective band energy difference ∆Eb and the magnetic dipole-dipole energy
contribution ∆Edd,

Ea = ∆Eb +∆Edd . (9.2)

It is worthwhile to mention that ∆Eb, evaluated here with 690 kk points in the ISBZ in order
to guarantee a relative accuracy of below 5%, can be identified as the contribution to the MAE
induced by the spin-orbit interaction, while ∆Edd is a purely classical term denoted usually as the
shape anisotropy.
Denoting the magnetic moment in the cell centered around the atomic position R by mR the

(classical) magnetic dipole-dipole interaction energy is given (in atomic Rydberg units) by

Edd =
1

c2

X
R,R0

0
½
mR ·mR0

|R−R0|3 − 3
[mR · (R−R0)] [mR0 · (R−R0)]

|R−R0|5
¾
. (9.3)

This expression can be evaluated very efficiently by making use of the underlying two-dimensional
translational symmetry; for further theoretical and computational details, see [40],[47]. Note that
due to the definition in Eq. (1), positive/negative values of Ea imply a perpendicular/in-plane
orientation of the magnetization.

9.3 Results

In Fig. 9.1 the MAE is displayed together with the corresponding band energy and magnetic
dipole-dipole energy contribution for CoN films (1 ≤ N ≤ 7) on Cu(111) as a function of the
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Figure 9.1: Calculated total magnetic anisotropy energies Ea, band energy anisotropies ∆Eb and
magnetic dipole-dipole energy differences ∆Edd for CoN/Cu(111) (1 ≤ N ≤ 7) as a function of a
uniform relaxation R.
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Figure 9.2: Band energy anisotropies∆Eb (squares), dipole-dipole energy differences∆Edd (circles)
and magnetic anisotropy energies Ea (diamonds) as a function of the number of Co layers for the
experimentally given relaxation of R = −1%.

uniform relaxation rate R of the cobalt interlayer distance. The results show that for N = 1 an
in-plane orientation is clearly favored, while for N = 2, 3 the MAE is around zero; for increasing
contractions a small perpendicular magnetic anisotropy occurs. For N ≥ 4, however, an in-plane
anisotropy develops with increasing film thickness. The two contributions to the MAE, namely,
the band energy and the magnetic dipole dipole energy, have significantly different properties:
∆Edd, favoring always an in-plane magnetization, is essentially independent of relaxations, at
least in the regime investigated, and increases in good approximation linearly with the number
of film layers. This simple behavior of ∆Edd results from the dominating spin-only Co magnetic
moments, which are fairly insensitive to both relaxations and the thickness of the film. In contrast
to ∆Edd the band energy difference ∆Eb does depend on both the thickness of the film and the
relaxation. In agreement with the theoretical investigations of Zhong et al. [53] ∆Eb is negative
for N = 1, however, it seems to show a more pronounced dependence on R as compared to the
one that can be deduced from Ref.[53]. For not too large values of R the band energy ∆Eb favors
a perpendicular magnetization for N ≥ 2.
For the specific case of R = −1% (closest to the experiment, see Ref.[52] ), the variation of

the MAE and its contributions with respect to N is visualized in Fig. 9.2.
After an abrupt jump from about -0.5 meV atN = 1 to nearly 0.2 meV atN = 2,∆Eb oscillates

for N ≥ 3 around about 0.3 meV with an amplitude that reduces by increasing the number of
cobalt layers. The fact that for N ≥ 3 the band energy difference is not significantly changing



9.3. RESULTS 149

Figure 9.3: Layer-resolved band energy anisotropies ∆Ej
b for a film of 7 cobalt layers with a

uniform relaxation of R = −1%.

with the film thickness can be deduced from Fig. 9.3, showing the layer-resolved contributions
of ∆Eb for the thickest system under consideration, Co7/Cu(111). As can be seen ∆Eb is mainly
located in the cobalt layers second closest to the interface and to the surface; the corresponding
contributions from the 3 most interior cobalt layers alternate in sign, but are remarkably smaller
in magnitude. Therefore, the interior of the Co film does not contribute significantly to ∆Eb. It
should be noted that a similar oscillating behavior of the MAE was found for Co films on Cu(100)
[39]. Obviously, however, ∆Edd increases in magnitude with N , and thus results in an in-plane
magnetization for N ≥ 4.
Changes in physical quantities such as charges or magnetic moments with respect to the

magnetic orientation are usually very small as compared to their absolute values. In the first row
of Fig. 9.4 the layer resolved total (orbital and spin) magnetic moments for the in-plane and the
perpendicular orientation are shown for three (first column) and seven (second column) layers of
Cobalt. In the second and third row of this figure the corresponding layer resolved orbital and spin
magnetic moment differences are displayed for the same systems. One can see in Fig. 9.4 that the
absolute value of the difference in the orbital magnetic moments is one order of magnitude larger
than the corresponding difference in the spin magnetic moments. It should be noted, however,
that considering the actual size of the anisotropy energy, see Fig. 9.2, the minute differences to
be read off from Fig. 9.4, are not surprising at all.

PLD grown Cu(111)/CoN films show an in-plane easy axis of magnetization for all thicknesses
investigated (N = 2, . . . , 15) [51] in good agreement with our theoretical results. When comparing
experimental and theoretical results, one should keep in mind, however, that for very thin films
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Figure 9.4: Layer resolved total magnetic moments (top; circles correspond to the perpendicular
orientation of the magnetization, squares to the in-plane orientation) and differences in the orbital
(middle) and spin (bottom) magnetic moments with respect to the orientation of magnetization.
The left column refers to three layers thick Co film, the right column to a film with seven Cobalt
layers. Only the Cobalt layers are shown.
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the Curie temperature drops significantly. This means that the measurement temperature of
230 K is no longer far below Tc, see Ref. [51]. Usually, when approaching Tc from below the
anisotropy falls more rapidly with increasing temperature than the magnetization. Therefore in
the experiment the magnetic dipole-dipole contribution can overwhelm the tiny perpendicular
band energy anisotropy, pulling the magnetization in-plane. In contrast to this behavior TD films
do also show a perpendicular easy axis of magnetization for various film thicknesses, in addition to
a more 3D—like growth mode of the films. These facts and the present results prove once again the
strong dependence of the magnetic properties of thin films on the experimental growth technique.
Unfortunately, in ab-initio like descriptions at best the electronic temperature (via the Fermi-Dirac
distribution function) for the band energy part can be taken into account. This implies that for a
rigorous study of temperature effects in these systems a Heisenberg-like model with ab-initio-like
parameters is needed in order to calculate corresponding free energies and to attempt to evaluate
critical temperatures. Evaluation schemes for such ab-initio parameters, however, are still under
discussion and at present not available.

9.4 Conclusion

We have investigated ab initio the magnetic anisotropy energy of the system CoN/Cu(111) using
the fully relativistic spin-polarized screened KKRmethod by taking into account uniform interlayer
relaxations in the Co film between R = −4% and +3%. It was shown that the calculations predict
an in-plane easy axis of magnetization for essentially all thicknesses and relaxations. Furthermore,
the results prove that the main contributions to the magnetic anisotropy arise from the Cu/Co
interface and the Co/V ac surface: relaxations therefore do not influence the anisotropy energy
in a very sensitive way. This in turn justifies the simplified model of uniform relaxations used in
here instead of specific relaxation profiles. The obtained results are in good agreement with the
experimental findings on PLD ultrathin films of the same system. [51]
Financial support was provided by the Fonds zur Förderung der wissenschaftlichen Forschung

(Project number W004), the Austrian Ministry of Science (Project number GZ 45.504) and the
Hungarian National Science Foundation (OTKA T030240, T037856). The collaboration between
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Chapter 10

Interlayer exchange coupling and
magnetic anisotropy in prototype
trilayers: Ab initio theory versus
experiment1

The magnetic anisotropy energy (MAE) and the interlayer exchange coupling (IEC) of prototype
Cu4Ni8CuNNi9/Cu(001) trilayers are calculated using an ab initio approach based on the exper-
imental lattice spacings. The results thereof are compared to ferromagnetic resonance (FMR)
experiments, which allow for the quantitative determination of the MAE as well as the IEC. The
tetragonal distortion of the Ni films due to the pseudomorphic growth leads to a positive MAE of
the inner Ni layers favoring an out-of-plane easy axis. At the Cu/Ni interfaces a negative surface
anisotropy is present which is, however, reduced compared to a Ni/vacuum interface. The MAE
is clearly determined by the Ni layers only, whereas the IEC is shown to result from Ni and Cu
layers at the inner Cu/Ni interfaces.

Nowadays it is well known that ultrathin ferromagnetic layers separated by a non-magnetic
spacer layer may interact via the so-called interlayer exchange coupling (IEC). This interaction
was found to oscillate between ferromagnetic (FM) and antiferromagnetic (AFM) alignment as
function of the spacer thickness. The IEC defined as the difference between the free energy for
FM and AFM coupling has been the subject of many studies. The theoretical understanding of
the phenomenon nowadays mostly relies on model calculations. The most frequently used picture
is probably the RKKY [38], [3] model which explains the observed oscillation periods to arise from
extremal spanning vectors of the Fermi surface (the so-called calipers) of the spacer material. The
magneto-optical Kerr effect (MOKE) most widely used and other static magnetometries usually
yield values of the coupling only for AFM coupled layers, whereas for FM coupling in most cases
no results can be obtained. A method which is capable of such a determination and sensitive
enough to measure down to the monolayer(ML)-limit is the ferromagnetic resonance (FMR) [11],
[29]
In this communication we present simultaneously a theoretical and an experimental study on

1The results of these calculation are published in an article [19]
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Figure 10.1: a) Hard sphere model of the Cu4Ni8CuNNi9/Cu(001) trilayers. b) I/V-LEED spectra
taken from the specular reflected (00) beam for (from bottom to top) Cu(001), Ni9, Cu6Ni9 and
Ni8Cu6Ni9.

prototype Cu4Ni8CuNNi9/Cu(001) trilayers with the focus on the behavior for small spacer thick-
nesses in the range N = 2−10 ML. The Ni/Cu(001) system can be viewed as a prototype system,
since it implements both, structural as well as magnetic homogeneity. Details concerning the film
preparation under ultrahigh vacuum conditions have been discussed elsewhere [29], [27], [31], [28]
. A hard-sphere model of the trilayers is shown in Fig. 10.1(a). In order to have a limited set of
parameters, only N was varied between the different trilayer systems, whereas the thicknesses of
the Ni films were kept constant (8 and 9 ML, respectively). Ni films grow pseudomorphically up
to at least 15 ML adopting the Cu in-plane lattice constant. In the vertical growth direction this
leads to a contraction of the Ni film. A quantitative I/V-low energy electron diffraction (LEED)
study [34] revealed values of 2.53(2) Å for the in-plane nearest neighbor distance and 1.70(2) Å
for the interlayer separation. Relative to the Cu-bulk interlayer distance of 1.805 Å this means a
contraction of about -5.5 % (if referred to the Ni-bulk value of 1.76 Å its value amounts to -3.2 %).
The question whether the pseudomorphic growth continues upon capping the Ni film with the Cu
spacer and, moreover, when the second Ni film is deposited on top of the spacer, has not been
discussed in [34]. Since the structure is an important input for theory, this question is — in the
present work — addressed via I/V-LEED experiments carried out after each evaporation step. The
I/V-LEED spectra recorded for the specular reflected (00) beam during the stepwise preparation
of a Ni8Cu6Ni9/Cu(001) trilayer is shown in Fig. 10.1(b). From the position of the Bragg peaks
one can extract the averaged vertical interlayer distance. If, on the other hand, the interlayer
distance is known — as in the case of the Cu(001) substrate — relative shifts of the Bragg peaks
can be translated directly into changes of the vertical layer separation. A shift to higher (lower)
energy values indicates a contraction (expansion) of the interlayer distance. Clearly such a shift
of the intensity maxima towards higher energies can be observed after the Ni9 film is deposited.
This shift shows the vertical contraction of the Ni film discussed already in [34]. No changes in
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the maxima are found after the evaporation of the Cu spacer and the topmost Ni film. Thus, one
can conclude that the contraction of -5.5 % is present within the whole trilayer.
The magnetic anisotropy of the trilayers can phenomenologically be described by the part of the
free energy E per unit area being anisotropic with respect to the directions of the magnetizations
�M1 and �M2 in the two films

E =
2X

i=1

¡
2πM2

i −K2⊥,i
¢
di cos

2 θi − Jinter
�M1 · �M2

M1M2
, (10.1)

Here the di are the thicknesses of the individual Ni slabs, 2πM
2
i is the shape anisotropy due to

dipole-dipole interaction, and K2⊥,i = KV
2⊥,i + (K

S1
2⊥,i + KS2

2⊥,i)/di denotes the intrinsic uniaxial
anisotropy which can be split into a part arising from the film volume (KV

2⊥,i) and a contribution
from the two surfaces (KS1

2⊥,i upper surface, K
S2
2⊥,i lower surface). In the following we set S1 =

S2 = S as our Ni films face Cu on both sides. The angles θi measure the magnetization directions
with respect to the film normal. For 2πM2

i − K2⊥,i > 0 (< 0) the easy axis of magnetization
lies in (out of) the film plane. Within the framework of Eq. (10.1) The IEC corresponds to
the macroscopic coupling constant Jinter [3]. The magnetic anisotropy energy is defined as the
energy difference between in- and out-of-plane orientation of the magnetization, i.e. MAE =
E (θi = π/2)− E (θi = 0). Ultrathin Ni films on Cu(001) present a reorientation of the easy axis
of the magnetization from in to out-of-plane [2] which at room temperature occurs at about 10-11
ML [30]. Upon capping the Ni film with Cu the reorientation thickness is reduced to about 7-8
ML [30]. Consequently, both Ni films in our trilayers exhibit an out-of-plane easy axis [28]. This
configuration was chosen because of enabling one to carry out additional MOKE measurements in
the most sensitive polar geometry [28]. The magnetic anisotropy energies as well as the coupling
between the two films were determined by means of in situ FMR at a microwave frequency of
9 GHz and external magnetic fields up to 15 kOe. Using in situ FMR the trilyer can be grown
and measured within a step-by-step experiment: First, the bottom Ni9 film capped with the CuN
spacer layer is evaporated and investigated while in a second step, the topmost Cu4Ni8 layers are
deposited. This approach allows to ’switch on’ the IEC within the second step and monitor its
influence on the FMR signal of the bottom Ni9 film. Via angular dependent FMR measurements,
i.e. by varying the θi angles of the two magnetizations �Mi, before and after the deposition of the
topmost layers, one can separate the magnetic anisotropies being proportional to cos2 θi (first term
in Eq.(10.1)) from Jinter which scales with cos (θ1 − θ2) (second term in Eq.(10.1)). A detailed
description of this procedure yielding absolute values for Jinter was described previously [27]. The
measurements were performed in a temperature range of 50-400 K which covers almost the whole
range from the low temperature regime up to the Curie-temperature.
In using the relativistic spin-polarized screened Korringa-Kohn-Rostoker method for layered sys-
tems, the theoretical aspects of which are discussed in detail in Ref. [47], the calculations were
carried out for the same type of trilayers on which the FMR experiments have been done, namely
those shown in Fig. 10.1(a). For the calculations shown in Fig. 10.2 different (uniform) vertical
relaxations of 0 % (circles), -3.5 % (squares) and -5.5 % (diamonds) of the trilayers with respect
to the Cu(001) substrate were assumed, the lattice spacing within the layers always being the one
of Cu bulk. Three buffer layers of Cu were found to be sufficient to guarantee reliable matching to
the semi-infinite Cu(001) substrate; at least two vacuum layers were used to join up to the semi-
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Figure 10.2: Layer-resolved band energy difference ∆EB for a trilayer with a) N = 3 and b)
N = 9. c) MAE as function of the spacer layer thickness N for the different vertical relaxations.
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infinite vacuum. The MAE is calculated as the sum of differences in the magnetic dipole-dipole
energy ∆Edd and in the band energy ∆EB (intrinsic contribution) between a uniform in-plane
and a uniform out-of-plane orientation of the magnetization. The layer-resolved band energy dif-
ferences for trilayers with N = 3 and N = 9 are presented in Fig. 10.2(a) and (b). The layer
numbering starts at the three Cu buffer layers and comprises the trilayer itself, the 4 Cu cap-
ping layers and three vacuum layers (the different films within the slab are separated by dotted
lines in Fig. 10.2(a) and (b)). One obtains the following results: (i) A sizeable anisotropy energy
only arises from the Ni layers. (ii) The Ni layers facing Cu layers show a negative contribution,
thus favoring an in-plane easy axis. (iii) Only the volume part of the Ni film presents a positive
anisotropy contribution for the case that the experimentally derived distortion of -5.5 % in the
film is assumed. From this it follows that in order to explain the experimentally observed positive
overall MAE [28] the lattice relaxation has to be taken into account. In Fig. 10.2(c) the MAE
is plotted as function of N for the three different distortions. Note that each data point in (c)
corresponds to the sum of ∆EB over all layers including the dipole-dipole energy ∆Edd shown in
this figure as triangles. As can be seen a positive MAE is only revealed for the distorted systems.
Furthermore, the MAE shows no dependence on the spacer thickness N . Unlike for many other
systems the shape anisotropy given by ∆Edd in the investigated system is too small to lead to a
negative overall MAE and thus ∆EB dominates resulting in a MAE > 0. Dividing the theoretical
value of ∆Edd by the number of Ni layers yields an energy per atom, which amounts to a value of
12.7 µeV/atom for 2πM2. As compared to the experimental value for Ni bulk at T = 0 K, namely
12.1 µeV/atom, this indicates that the Ni moments and thus the magnetization are on the average
bulk-like. This behavior was experimentally verified via an in situ SQUID investigation which
showed that only for Ni thicknesses smaller than 5 ML a decrease of the T = 0 K magnetization
with respect to the bulk value occurs [33].

Experiment Theory
KV
2,⊥,i 70(20)[12] 80(20)

K
Ni/Cu
2,⊥,i −60(10)[30] −20(10)

KNiV ac
2,⊥,i −100(20)[30] −100(20)[12]

Volume and surface anisotropy constants (µeV/atom) for Ni/Cu(001) at T = 0 K.

In order to compare the theoretical results to the experimentally determined second order constants
given by Eq. (10.1) one has to identify the energy of the interface Ni layers with the surface
anisotropy KS

2⊥ and the sum of the energy of the interior Ni layers divided by their number with
the volume contribution KV

2⊥. As can be seen from Tab. 10 very good agreement between theory

and experiment concerning KV
2⊥ applies. The experimental value for K

Ni/Cu
2⊥ , however, is by about

a factor of 2 - 3 larger than found theoretically. This discrepancy most likely results from surface
roughness and/or interface mixing which was not taken into account in the calculations. The
driving force for the perpendicular orientation of the Ni films is therefore the positive volume
contribution due to the tetragonal distortion. The surface anisotropy of the Ni/Cu interface —
though still being negative — is reduced with respect to Ni/vacuum which explains the smaller
reorientation thicknesses found for Cu capped Ni films [30].
Now we turn to the IEC. In Fig. 10.3(a) and (b) the calculated layer-resolved IEC for the ex-

perimental lattice relaxation of -5.5 % is plotted for two spacer thicknesses of N = 3 and N = 9,
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the layer numbering being the same as in Fig. 10.2. The main contribution to the IEC stems from
Ni and Cu layers at or close to the Ni/Cu interface. For N = 3 (N = 9) the overall IEC energy
is < 0 (> 0) indicating AFM (FM) coupling. Figure 10.3(c) shows the results of the experimental
determination of the IEC for the Cu4Ni8CuNNi9/Cu(001) trilayers (open squares) with N ranging
from 2-10. The experimental values for the Cu4Ni8CuNNi9/Cu(001) system ranging from Jinter = 0
to about 60 µeV/atom were extrapolated to T = 0 K in order to compare them to the theoretical

calculations. This extrapolation was done using a 1 − (T/TC)3/2 functional dependence of the
IEC which was shown to correctly describe the temperature dependence of the IEC for various
systems [31]. In addition to the Cu4Ni8CuNNi9/Cu(001) trilayers results for Ni7CuNCo2/Cu(001)
trilayers (open circles) are added. Note, that the experimentally determined values for the IEC
are by about a factor of three larger for the Ni7CuNCo2/Cu(001) systems (right y-axis compared
to the left one). For a detailed discussion of the Ni7CuNCo2/Cu(001) systems, see [31]. An oscil-
latory behavior is clearly seen for both systems, indicating that — except the strength — the overall
behavior is not influenced upon substituting one Ni film with Co. The oscillations are also found
in the ab initio calculation shown as crosses. However, in order to obtain the best agreement with
the experiment the theoretical curve has to be upshifted by 0.7 ML, which in turn indicates that
the effective experimental thickness seems to be by 0.7 ML smaller than the nominal evaporation
rate. This can easily be understood considering a small amount of interdiffusion occuring during
the film growth, a fact that is well known to happen for Ni as well as Co/Cu(001) [13]. In
principle interdiffusion effects can theoretically be taken into account in terms of the inhomoge-
nous Coherent Potential Approximation, see e.g. [20]. The profile, however, can only serve as
a parametric, qualitative description as long as no reliable experimental data to compare with
are available.Although the principal behavior of the IEC found experimentally is reproduced by
the theory, the absolute strength of the coupling calculated [47] for the Cu4Ni8CuNNi9/Cu(001)
trilayers has to be scaled by a factor of 1/10 to match the experimental values. It should be noted,
however, that experimentally one makes use of Eq. (10.1), i.e., of a ’macroscopical’ Heisenberg
ansatz. The fact that the calculated values are larger than those obtained from this procedure
indicates that the ’experimental’ Jinter displayed in Fig. 3 not necessarily is identical with the
microscopical IEC. Only a thermodynamically averaged Heisenberg model would eventually lead
to an expression as the one introduced in Eq. (10.1):

hEi =
*P

i,j

Jij

→
mi ·

→
mj

mimj

+
∼
*
J
P
i,j

→
mi ·

→
mj

mimj

+

∼ hJi
*P

i,j

→
mi ·

→
mj

mimj

+
→ Jinter

�M1 · �M2

M1M2
(10.2)

In Eq. (10.2) the
→
mi refer to magnetic moments at sites i, and Jij is the coupling energy be-

tween two such moments. Clearly enough also interface roughness not included in the theoretical
description adds to the discrepancy in amplitudes between theory and experiment. This becomes
evident by considering the fact shown in Fig. 10.3 that the IEC mainly arises from the interfaces
of the films. The phases of the oscillations, however, can be expected to be in good agreement
since in both cases the switching between two macroscopic magnetic configurations is mapped.
In summary we have shown for the case of prototype Cu4Ni8CuNNi9/Cu(001) trilayers that a
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Figure 10.3: Layer-resolved IEC for a trilayer with a) N = 3 and N = 9. In c) the experimental
results for both trilayer systems, indicated by the open squares and circles, are plotted as function
of the numbers of spacer layers N.The theoretical IEC values (crosses) have been upshifted on the
x-axis by 0.7 ML (see text).
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combination of experiment and ab initio theory yields a better understanding of fundamental
magnetic properties like the MAE and the IEC. Due to the included tetragonal distortion the
results show a quantitative agreement for the volume contribution of the Ni films and thus lead
to the experimentally observed easy axis perpendicular to the film plane. The surface anisotropy
is negative and strongly reduced if the Ni films are capped by a Cu overlayer. Unlike the MAE
which is determined by the Ni layers only and independent of the coupling between the Ni films,
the IEC is strongly influenced by the Ni and Cu interface layers. The calculations reproduce the
oscillatory behavior and the very strong dependence of the number of atomic spacer layers. As
discussed above, namely because of inherent conceptual differences, the theoretical IEC will not be
identical to the experimental Jinter (projected on a Heisenberg Hamiltonian, influence of interface
roughness and/or interface mixing); nevertheless the numerical agreement can be expected to be
very good.
This work was supported by the Fonds zur Förderung der wissenschaftlichen Forschung (Project

Number W004), the Austrian Ministry of Science (Project number GZ 45.490) and by the DFG
Sfb290, TP A2. K. Lenz is acknowledged for helpful discussions.



Chapter 11

On the reorientation transition in
Cu(100)/NiN/H

1

11.1 Abstract

Using also results of a previous study in terms of the scalar-relativistic full potential linearized
augmented plane wave method (FLAPW) the fully relativistic screened Korringa-Kohn-Rostoker
approach (SKKR) is applied in order to describe the shift in the critical thickness for the so-
called inverse reorientation transition from in-plane to perpendicular in Ni films on Cu(100) upon
loading with hydrogen. It is argued that on the average by loading with H the interlayer distances
in the Ni films would have to be reduced by about 3%, or, expressed in absolute distances by
about 0.05 Å, as compared to the bare systems, to cause the critical thickness to decrease from
about 10 monolayers (ML) for the bare systems to about 8 ML for completely H covered Ni films.
Calculations with statistically partial coverages with H and for a complete diffusion of H in the
first Ni layer convincingly support this view.

11.2 Introduction

In general in thin magnetic films the orientation of the magnetization is either in-plane or perpen-
dicular to the planes of atoms. The former is favored mostly by the shape anisotropy (magnetic
dipole-dipole interaction), the latter by the so-called band energy contribution to the magne-
tocrystalline anisotropy (MAE). With increasing film thickness very often a shape anisotropy
driven reorientation transition (RT) from perpendicular to in-plane is observed; the critical thick-
ness typically is of the order of half a dozen monolayers. An exceptional case is a ‘reverse RT’, i.e.,
a RT from in-plane to perpendicular. Due an in-plane misfit strain of +2.6 % between Ni (lattice
constant 3.52 Å) and Cu (3.61 Å) causing a uniform out-of-plane strain of -3.2 % for the Ni film
[34] the most well-known example for this kind of behavior is the system Ni on Cu(001) [35]. Only
very recently the influence of hydrogen on the direction of the spontaneous magnetization in Ni
films on Cu(001) was discovered in the presence or absence of H in the atmosphere around the
sample the magnetization seems to switch reversibly at about 8 ML Ni between the two types of

1The results of these calculation are published in an article [18]
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orientation. For a bare Ni film on Cu(100) this RT occurs at a thickness of 10—11 ML [43]: a
submonolayer coverage with H obviously shifts the RT to a lower thickness.
Because of this rather strange behavior and also since older experimental measurements most

likely were carried out in the presence of a residual H atmosphere, in this paper the fully relativistic
screened Korringa-Kohn-Rostoker method [47] is applied to describe the RT for H covered Ni
films on Cu(100) films making use of the structure study [32] of this system in terms of the full
potential linearized augmented plane wave method (FLAPW) [50]. It should be noted that each of
these two theoretical methods has special features, none of them, however, is presently capable of
providing completely satisfying simultaneous ab-initio answers to both lattice distortion and the
critical thickness of the RT. Since the results of the FLAPW calculations were already published
elsewhere [32], in here we concentrate on the main aspect of the problem, namely the critical
thickness of the reorientation transition. It does seem necessary, however, to recall shortly some
of the inherent methodological aspects of the two mentioned methods used in order to facilitate a
correct assessment of respective theoretical results.

11.3 Methodological aspects

11.3.1 Shape approximations

Up-to-now only the FLAPW method [50] is capable to provide accurate enough ab-initio total
energies suitable for predicting equilibrium geometrical structures, because no shape corrections
for the potentials and the charge densities are assumed. The SKKR method on the contrary
is restricted by the atomic sphere approximation (ASA) implying that total energies should not
be used to perform geometrical mimizations; layer relaxations can therefore only be included
parametrically [42], i.e., cannot be determined in an ab-initio like manner.

11.3.2 Magnetic moments

Since magnetic moments are per definition spherically averaged quantities within the FLAPW
method they are confined to the so-called “muffin-tin” sphere, namely the radius of a sphere
inscribed in a Wigner-Seitz cell, whereas in the SKKR approach they are defined with respect
to the Wigner-Seitz radius, i.e., a radius of a sphere of the same volume as the Wigner-Seitz cell
(ASA). Magnetic moments obtained within the FLAPW approach are therefore usually slightly
smaller than those using the ASA.

11.3.3 Free standing thin films versus semi-infinite systems

By definition free standing films of the type AnBmAn as used in the FLAPW method are char-
acterized by two surfaces (interfaces to vacuum). The Fermi energy therefore does not refer to a
constant (This feature is due to the vacuum boundary conditions for the one-dimensional Poisson
equation (along the surface normal)) that has to be solved in order to achieve charge selfcon-
sistency for all m and n but is a function of the number of different atomic layers in the film,
�F (n,m). If �F (A) and �F (B) denote the Fermi energies of the “bulk” systems A and B, then
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quite clearly
lim
n→N

�F (n,m) = �F (A) , lim
m→N

�F (n,m) = �F (B) , (11.1)

where N is a large enough integer number. This behavior has to be recalled when calculating
properties as functions of n or m. Increasing for a given number m of Cu layers the number of Ni
layers in films of the type H/Nin/Cum/Nin/H necessarily implies therefore that the Fermi energy
is successively less Cu-like, i.e., refers less and less to those layers meant to serve as substrate.
In a semi-infinite system the Fermi energy is always that of the substrate. In systems such as

fcc-Cu(100)/Cum/Nin/H there is only one surface. Usually m layers of the substrate material are
used to take into account Friedel-like oscillations into the ”bulk”, matched on by means of surface
Green’s function techniques.

11.3.4 Relativistic levels

In FLAPW calculations a pseudo-relativistic (“Pauli-Schrödinger”) version [36] of the FLAPW
method is applied using a ”second variation step” to include spin-orbit coupling. The fully rela-
tivistic spin-polarized SKKR approach [47] is based on the Kohn-Sham-Dirac Hamiltonian, i.e.,
relativistic corrections are taken into account to all orders of the speed of light.

11.4 Results

11.4.1 Computational details

In the following we only refer to results obtained by the screened Korringa-Kohn-Rostoker (SKKR-
) method for layered systems. The effective potentials and effective exchange fields were deter-
mined selfconsistently within the local density approximation (LDA) [44] using a minimum of 45
k points in the ISBZ. In using the magnetic force theorem [21] the magnetic anisotropy energy
(MAE) Ea,

Ea = ∆Eb +∆Edd , (11.2)

is given in terms of the so-called band energy contribution,

∆Eb = Eb(k)−Eb(⊥) , (11.3)

and the corresponding difference in the magnetic dipole-dipole energy (shape anisotropy),

∆Edd = Edd(k)− Edd(⊥) , (11.4)

where k and ⊥ denote uniform in-plane and perpendicular orientations of the magnetization,
respectively, and E(k) and E(⊥) refer to grand-potentials at T = 0. If cpα denotes the respective
concentrations of the constituents A and B of an inhomogeneous binary substitutional alloy in
layer p then in terms of the (inhomogeneous) CPA for layered systems [46] ∆Eb is given by

∆Eb =
NX
p=1

∆Ep
b =

NX
p=1

X
α=A,B

cpα∆Ep
b,α , (11.5)
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Ep
b,α(n̂) =

Z �F

�b

npα(�; n̂)(�− �F )d� , (11.6)

where N is the total number of layers considered and the npα(�; n̂) are component and layer
projected DOS corresponding to the (uniform) magnetic orientation n̂ of the magnetization. In
eqn. (11.6) �b denotes the bottom of the valence band and �F is now the Fermi energy of the
semi-infinite substrate.
All energy differences in Eq. (11.5) are evaluated via an integration in the upper half of the

complex energy plane along a contour which starts at a real energy (�b) well below the valence
band and ends at �F . For this type of calculations [47] a total of 990 kq points in the ISBZ is used,
which guarantees well converged results.
The shape anisotropy ∆Edd in eqn. (11.3),

∆Edd = Edd(k)− Edd(⊥) , (11.7)

is calculated in this case directly in terms of the classical magnetic dipole-dipole interaction.
Denoting for a chosen (uniform) orientation n̂ of the magnetization the magnetic moment in a cell
centered around an atomic position R by mR(n̂) the (classical) magnetic dipole-dipole interaction
energy is given (in atomic Rydberg units) by

Edd(n̂) =
1

c2

X
R,R0;R6=R0

½
mR(n̂) ·mR0(n̂)

|R−R0|3 − 3[mR(n̂) · (R−R0)] [mR0(n̂) · (R−R0)]
|R−R0|5

¾
. (11.8)

This expression can be evaluated very efficiently by making use of the underlying two-dimensional
translational symmetry; for further theoretical and computational details, in particular with re-
spect to disordered systems, see [48].
All cases listed in Table 11.1 are investigated by taking into account uniform contractions [42]

of the interlayer spacing (with respect to the lattice spacing of fcc Cu) in the Ni film and for
the H layer [37]. Using the (inhomogeneous) coherent potential approximation [46] also the effect
of diffusion of H into the first Ni layer and of incomplete H layers is considered such as, e.g., a
statistically half-filled H layer (c = 0.5). In all these cases the thickness of the Ni film is varied from
1 to 12 layers. It should be noted that a contraction of 5.5% with respect to fcc Cu corresponds
to about 3.5% with respect to fcc Ni. The maximum contraction of the H ML is limited to
approximately 40% due to technical reasons in connection with the ASA implementation. By
comparing the uncovered and the completely covered system it was found, e.g., that in qualitative
agreement with results for Ni(100) [49], [5] the workfunction for the covered system is by about 1
eV larger than the uncovered one.

11.4.2 Magnetic moments

In Fig. 11.1 the magnetic moments are displayed for

Cu(100)|Ni(5.5%)n and Cu(100)|Ni(5.5%)n|H(40%) , n=6, 9 and 12.
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Table 11.1: Investigated systems using a semi-infinite substrate. The uniform contractions, x and
y, are given in percent with respect to interlayer distance in fcc-Cu (substrate), the concentration
is denoted by c

system x [%] y [%] c
Cu(100)/Ni(x%)n 1.5 ≤ x ≤ 5.5
Cu(100)/Ni(x%)n/H(y%) 1.5 ≤ x ≤ 5.5 y ≤ 40
Cu(100)/Ni(x%)n−1/(HcNi1−c)(x%) 1.5 ≤ x ≤ 5.5 0.2, 0.5
Cu(100)/Ni(x%)n/(HcVac1−c)(y%) 1.5 ≤ x ≤ 5.5 y ≤ 40 0.2, 0.5

Table 11.2: Layer-resolved (spin-only) magnetic moments for a bare and a H covered Ni film on a
semi-infinite Cu(100) substrate

layer Cu(100)/Ni6 Cu(100)/Ni6H
[µB] [µB]

Ni1 0.503 0.492
Ni2 0.682 0.668
Ni3 0.696 0.707
Ni4 0.701 0.714
Ni5 0.695 0.531
Ni6 0.740 0.377

In this figure the first three layers correspond to Cu layers used as buffer to the semi-infinite
substrate, the last few ones to vacuum layers. As can also be seen from Table 11.2 adsorbing H on
Ni changes the magnetic moments in the top two Ni layers in a very characteristic manner that
seems to be independent of the actual Ni film thickness. These results are in excellent agreement
with the FLAPW calculation.

11.4.3 Magnetic anisotropy calculations

Bare and completely H covered systems

Inspecting the MAE in Fig. 11.2 it is evident that for bare Ni films on Cu(100) only a uniform
contraction of about 2% (with respect to the interlayer spacing in fcc Cu) leads to a critical
thickness for RT of about 10 ML Ni, whereas for the H covered films the experimentally proposed
contraction of 5.5% yields a critical thickness of about 8 ML Ni. Obvious differences between
the bare and the H covered systems can be read off from Fig. 11.2, since for ≤ 2 ML of Ni (in
agreement with experiment in the case of H coverage the Ni film turns out to be non-magnetic (m
≈ 0µB, therefor also zero MAE).

Interdiffusion and partial coverage

In the top part of Fig. 11.3 the effect of diffusion of H into the first Ni layer, Cu(100)/Nin−1(Ni1−cHc),
and cases of incomplete coverages of the Ni film with H, Cu(100)/Nin(Vac1−cHc), see also Ta-
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Figure 11.1: Layer-resolved magnetic moments in µB for uncovered (open circles) and H covered
Ni films (squares) on Cu(100) of 6 (top), 9 (middle) and 12 (bottom) ML thickness.
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Figure 11.2: MAE for uncovered (top) and 1 ML H-covered (bottom) Ni films on Cu(100). The
uniform contractions are given with respect to the interlayer spacing in fcc Cu (substrate). 1.5%
(circles), 3.5% (squares),5.5% (diamonds)
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Figure 11.3: Effect of H diffusion into the first Ni layer and of incomplete H layers (top): MAE for
Cu(100)/Ni(5.5%)n−1/(HcNi1−c)(5.5%) (open diamonds), Cu(100)/Ni(5.5%)n/(H0.2Vac0.8)(5.5%)
(spheres) and Cu(100)/Ni(5.5%)n/(H0.5Vac0.5)(5.5%) (squares). Effect of the interlayer distance
profile (bottom): uniform contraction with 5.5% (squares), interlayer distances as given in Ta-
ble 11.1.

ble 11.1, are shown. It should be noted that for these calculations the inhomogeneous coherent
potential approximation (CPA) [46] is used; Cu(100)/Nin(Vac1−cHc) refers to a statistical cover-
age of the Ni surface with c percent H. As can be seen at a given (uniform) contraction of the Ni
interlayer distance both types of effects do not change significantly the critical thickness for the
SR: it is mainly the contraction of the Ni interlayer spacing that determines the critical thickness.
In all three cases shown a uniform contraction of 5.5% leads to a critical thickness of about 8 ML.

In the lower part of this figure the MAE corresponding to a uniform contraction of 5.5% is
compared to a calculation using the interlayer distances as obtained from the FLAPW study
(Table 1 of ref.[32]). As can be seen the assumption of a uniform contraction is quite good: both
curves have very similar shapes; with the ab-initio determined interlayer distances the critical
thickness for the RT occurs between 8 and 9 ML.
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Table 11.3: Critical thickness for the reorientation transition
system contraction [%] critical thickness [ML]

Cu(100)/Nin 1.5 >11
2.0 10 - 11
2.5 9 - 10
3.5 8
5.5 6 - 7

Cu(100)/NinH 1.5 11
3.5 9
5.5 7 - 8

Layer-resolved band energy contributions

In order to illustrate the difference between the bare and the H covered systems in Fig. 11.4 layer-
resolved band energies (the sum over these values is the band energy) are displayed. Obviously
as compared to the bare systems changes occur strongest at the surface but also throughout the
whole Ni film: with adsorption of H (i) the strong (but in the two outermost layers alternating)
contribution at the surface is substantially reduced and (ii) the contributions from the interior of
the films are slightly decreased. One would like to apply the first feature for an easy explanation
for the shift of the critical thickness: the reduced size of the surface contribution to the MAE
would have caused this shift. However, since the contributions from the two outermost layers of
the Ni film almost cancel each other the sum is almost unchanged by adsorption with H and the
whole effect is more subtle.

Conclusion

In Table 11.3 finally the results of the calculated critical thicknesses are summarized with respect
to a uniform contraction of the interlayer distance in the Ni film. This table suggests that in order
to reproduce the experimentally observed critical thickness for the bare systems a contraction of
about 2 - 2.5% applies, while for the H covered systems this contraction would amount to 5.0 -
5.5%. In the H covered systems the Ni films would then be by about 3% less contracted than in
the bare systems: a very subtle effect indeed that most likely cannot be recorded experimentally
in terms of LEED measurements, since in absolute values these 3% correspond to a change in the
interlayer distance of only to about 0.05 Å. Since further experimental investigations are presently
carried out, it remains to be seen whether covering Ni films on Cu(100) with hydrogen indeed
reduces the critical thickness of the reorientation transition.
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Figure 11.4: Layer-resolved band energy contributions for uncovered (open circles) and H covered
Ni films (squares) on Cu(100) of 6 (top), 9 (middle) and 12 (bottom) ML thickness.
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Appendix

A.1 The complex square function

If we take the complex function

f0:

½
C → C
z 7→ z2

(A.1)

we have an analytic, surjective but not injective and therefore not bijective function. Our aim
is to find a bijective form. There are always two principally different ways

• change of source set

• change of target set

A.1.1 Change of source set

If we take

HI,+ = {z ∈ C : Im z > 0}
SR,+ = C \ R+0

and define the complex function

f1:

½
HI,+ → SR,+

z 7→ z2
(A.2)

we have an analytic, bijective function.

A.1.2 Change of target set

If we change the target set from C to the Riemann surface

R2 =
©¡
z, z2

¢
: z ∈ C

ª
and define the complex function

f2:

½
C → R2
z 7→ (z, z2)

(A.3)
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we have an analytic, bijective function.These construction can be viewed as if we glue 2 versions
of the complex plane together, as shown in (A.2).

A.2 The Delta Function

The delta function of a variable x is commonly denoted as δ(x). It has the property of being zero
for all values of x except at x = 0. There it is infinite in such a manner that its integral that
contains the point x = 0 is equal to 1:

∞Z
−∞

δ(x) dx = 1 . (A.4)

An important property of the delta function is that if it is multiplied by any continuous function
F (x) and the resulting product is integrated it results in

∞Z
−∞

F (x) δ(x− a) dx = F (a) . (A.5)

F (x) may be any kind of continuous function and can be a scalar, a vector, or a tensor. The
usefulness of the delta function is not its value for a specific argument, but the evaluation of the
product of a function with the delta function by an integral. In this sense the delta function is a
generalized function.
The delta function can also be represented as a limit of an analytical function such as

δ(x) = lim
L→∞

sin(xL)

πx
, (A.6)

where for x = 0, sin(xk)/πx = L/π. This function has the same properties as the delta function.
Using expression (A.6), the proof of the equation

(2π)−1
∞Z

−∞

eikx dk = δ(x) (A.7)

is simple:

(2π)−1
∞Z

−∞

eikx dk = lim
L→∞

(2π)−1
LZ

−L

eikx dk = lim
L→∞

sin(xL)

πx
= δ(x) . (A.8)

The delta function can be extended to three dimensions where it is defined as:

δ(r) = δ(x) δ(y) δ(z) = (2π)−3
Z
eikrd3k (A.9)

As in the one dimensional case, when multiplied with a function and after integration the following
relation results: Z

δ(r)F (r) d3r = F (0) , (A.10)
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if r= 0 is contained in the integration region. Finally there are some useful relations:

δ(r) =
δ(r)

2πr2
, δ(r0 − r) = 2

r2
δ(n0 − n) δ(r0 − r) , (A.11)

where n and n0 are unit vectors in the direction of r and r0.

A.3 The Green Function for Free Electrons

In this section the expressions for the free particle Green function in 3D will be derived in detail.
The starting point is:

G0(r, r0;E) = (2π)−3
Z
exp [iq(r − r0)]

k2 − q2
d3q . (A.12)

Changing to spherical coordinates

d3q = q2 dq dΩ

dΩ = sin θ dθ dϕ ,

with 0 ≤ q <∞, 0 ≤ ϕ ≤ 2π, and 0 ≤ θ ≤ π, the integral transforms to

G0(r, r0;E) = (2π)−3
∞Z
0

dq
q2

k2 − q2

Z
dΩ exp(iq|r − r0| cos θ) , (A.13)

where q·r= qr cos θ has been used. Next the integration over dΩ is performed:Z
dΩ exp(iq|r − r0| cos θ) =

2πZ
0

dϕ

πZ
0

dθ sin θ exp(iq|r − r0| cos θ)

= (−2π)(iq|r − r0|)−1 [exp(−iq|r − r0|)− exp(iq|r − r0|)]

After substitution and rearrangement in (A.13), only the one dimensional radial integral is left:

G0(r, r0;E) =
1

4π2i|r − r0|

∞Z
0

q [exp(iq|r − r0|)− exp(−iq|r − r0|)]
k2 − q2

dq (A.14)

= − 1

4π2i|r − r0|

∞Z
−∞

q exp(iq|r − r0|)
q2 − k2

dq . (A.15)

The last expression contains a complex function of the variable q in the integral, which has two
simple poles at q = k and q = −k. For the evaluation of the integral a proper integration path in
the upper half of the complex plane has to be chosen, which includes either one of the two poles.
According to standard complex analysis an integral of the type (A.15) is evaluated as

∞Z
−∞

f(z) dz = 2πi
nX

k=0

Resz=zk f(z) , Im(zk) > 0 , (A.16)
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where z is a complex variable, zk are the poles of f(z), and Resf(z) refers to the residuum of the
function f(z), which can be evaluated from

Resz=zk f(z) = lim
z→zk

(z − zk)f(z) . (A.17)

With

Resq=k

½
q exp(iq|r − r0|)

q2 − k2

¾
=
1

2
exp(ik|r − r0|) , (A.18)

evaluation of the integral in (A.15) yields

G0(r, r0;E) = −exp(ik|r − r
0|)

4π|r − r0| . (A.19)

A.3.1 Partial Wave Expansion of the Free Particle Green Function

A commonly used description of the free particle Green’s function is its expansion in terms of
solutions of the free space Schrödinger equation and its partial wave components. We start off by
rewriting equation (A.12)

G0(r, r0;E) = (2π)−3
Z
exp (iqr)

1

k2 − q2
exp (−iqr0) d3q . (A.20)

Using the expansion (A.50), which is also known as Bauer’s identity, we have

G0(r, r0;E) = (2π)−3
Z
d3q

"X
L

4πic jc(qr)Y
∗
L (q̂)YL(r̂)

#

× 1

k2 − q2

"X
L0
4π(−ic0) jc0(qr0)Y ∗L0(q̂)YL0(r̂0)

#
. (A.21)

Transformation to spherical coordinates and some rearrangement yields

G0(r, r0;E) =
2

π

∞Z
0

q2 dq

k2 − q2

X
LL0
ic(−ic0) jc(qr)jc0(qr0)YL(r̂)Y ∗L0(r̂0)

×
Z
dΩYL(q̂)Y

∗
L0(q̂) . (A.22)

Now the orthogonality of the complex spherical harmonics can be usedZ
dΩYL(q̂)Y

∗
L0(q̂) = δLL0 , (A.23)

and with ic · (−ic) = 1, one can write

G0(r, r0;E) =
2

π

∞Z
0

q2 dq

k2 − q2

X
L

jc(qr)jc(qr
0)YL(r̂)Y ∗L (r̂0) . (A.24)
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Following from the fact that the integrand is even in q, this formula can be rewritten to yield the
equation

G0(r, r0;E) = π−1
X
L

YL(r̂)Y
∗
L (r̂

0)

∞Z
−∞

jc(qr) jc(qr
0)

k2 − q2
q2dq . (A.25)

Hence we can define

G0
c(r, r

0;E) = π−1
∞Z

−∞

jc(qr) jc(qr
0)

k2 − q2
q2dq . (A.26)

The evaluation of the integral has to be done by contour integration in the complex q plane.
However, because the product jc(qr) jc(qr

0) does not vanish along the semicircle in the upper half
plane [Mertig] some care has to be taken. Following [15] for r0 > r the relation

jc(qr
0) =

1

2
[hc(qr

0) + h∗c(qr
0)] , (A.27)

where hc(qr
0) is a spherical Hankel function of the first kind, helps out. After substitution in

(A.25) the solutions to two integrals have to be found:

I1 =
1

2

∞Z
−∞

q2 jc(qr)hc(qr
0)

k2 − q2
dq , (A.28)

I2 =
1

2

∞Z
−∞

q2 jc(qr)h
∗
c(qr

0)
k2 − q2

dq . (A.29)

The integral I1 can be solved by using the pole at q = +k from

I1 = 1
2
2πi Resq=+k

·
q2 jc(qr)hc(qr

0)
k2 − q2

¸
= (A.30)

= πi

·
−1
2
k jc(kr)hc(kr

0)
¸
= (A.31)

= −1
2
iπk jc(kr)hc(kr

0) , r0 > r . (A.32)

The second integral can be evaluated by closing the contour in the lower half plane and thereby
including the second pole q = −k. One then gets

I2 = 1
2
2πi Resq=−k

·
q2 jc(qr)h

∗
c(qr

0)
k2 − q2

¸
= (A.33)

= −1
2
iπk jc(−kr)h∗c(−kr0) . (A.34)

With the identities jc(−kr) = (−1)c+1jc(kr) and h∗c(−kr) = (−1)c hc(kr), I2 finally yields a
contribution identical to I1:

I2 = −12 iπk jc(kr)hc(kr
0) , r0 > r . (A.35)
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In total we have
I1 + I2 = −iπk jc(kr)hc(kr0) , r0 > r . (A.36)

The same procedure has to be used for r > r0 which gives the identical result, and in summary
we can write

I1 + I2 = −iπk jc(kr<)hc(kr>) , (A.37)

and therefore
G0
c(r, r

0;E) = −ik jc(kr<)hc(kr>) , (A.38)

where r< := min{r, r0} and r> := max{r, r0}. With this result the partial wave expansion of the
free particle Green’s function is given by

G0(r, r0;E) = −ik
X
L

jc(kr<)hc(kr>)Y
∗
L (r̂)YL(r̂

0) , (A.39)

and with the definitions:

jL(kr<) = jc(kr<)YL(r̂) (A.40)

hL(kr>) = hc(kr>)YL(r̂) , (A.41)

we can finally write

G0(r, r0;E) = −ik
X
L

jL(kr<)hL(kr>) , (A.42)

which is the partial wave expansion of the Green function.

A.4 Mathematical Relations for Madelung constants

Remark 4 Condon-Shortly phase convention for spherical harmonics, defintion of P
|m|
c differs

from ([16]):

Ycm(br) = im+|m|
s
2c+ 1

4π

(c− |m|)!
(c+ |m|)!P

|m|
c (cos(Θ)) exp(imφ) (A.43)

Lemma 5
1

|r− r0| =
P
L

4π

2c+ 1

rc

(r0)c+1
Y ∗L (br)YL(br0) (r < r0) (A.44)

Lemma 6

1

|r− r0|c+1YL(
\r− r0) =

P
L0
(−1)c 4π[2(c+ c0)− 1]!!

(2c− 1)!!(2c0 + 1)!!C
c0m0
cm,(c+c0)(m0−m)× (A.45)

× rc
0

(r0)c+c0+1
Yc0m0(br)Y ∗(c+c0)(m0−m)(br0) (r < r0) ,

with the Gaunt coefficients
CL0L,L” =

R
dΩYL(Ω)Y

∗
L0(Ω)YL”(Ω) . (A.46)
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Lemma 7

|r− r0|c YL(\r− r0) = (A.47)

=
X
c0,m0

4π(−1)c−c0(2c+ 1)!!
(2c0 + 1)!![2(c− c0) + 1]!!

C(c−c
0),(m+m0)

c0m0,cm rc
0
(r0)(c−c

0)Y ∗c0,m0(br)Y(c−c0),(m+m0)(br0) (A.48)

=
X
L0,L00

δc,c0+c00δm,m00−m0 rc
0
Y ∗L0(br) 4π(−1)c00 [2(c0 + c00) + 1]!!

(2c0 + 1)!!(2c00 + 1)!!
Cc00m00
c0m0,cm (r

0)c
00
YL00(br0) (A.49)

Proof.

exp(ikr) =4π
X
L

icjc(kr)YL(bk)Y ∗L (br) = 4πX
L

icjc(kr)Y
∗
L (
bk)YL(br) (A.50)

exp(ik(r− r0)) = 4π
X
L

icjc(k |r− r0|)Y ∗L (bk)YL(\r− r0) (A.51)

exp(ikr) exp(−ikr0) = (4π)2
X
L0,L00

ic
0−c00jc0(kr)jc00(kr0)YL0(bk)Y ∗L00(bk)Y ∗L0(br)YL00(br0) (A.52)

Thus,

jc(k |r− r0|)YL(\r− r0) = 4π
X
L0,L00

ic
0−c00−cjc0(kr)Y ∗L0(br)Cc00m00

c0m0,cm jc00(kr
0)YL00(br0) . (A.53)

Recalling that

lim
z→0

jc(z) =
zc

(2c+ 1)!!
, (A.54)

yields

|r− r0|c YL(\r− r0) = (A.55)

=
X
L0,L00

h
lim
k→0

kc
0+c00−c

i
rc

0
Y ∗L0(br) 4πic0−c00−c(2c+ 1)!!(2c0 + 1)!!(2c00 + 1)!!

Cc00m00
c0m0,cm (r

0)c
00
YL00(br0) = (A.56)

=
X
L0,L00

δc,c0+c00δm,m00−m0 rc
0
Y ∗L0(br) 4π(−1)c00 [2(c0 + c00) + 1]!!

(2c0 + 1)!!(2c00 + 1)!!
Cc00m00
c0m0,cm (r

0)c
00
YL00(br0) . (A.57)

Remark 8

Γ(z + 1) = zΓ(z) (A.58)

Γ(1) = 1 Γ(n) = (n− 1)Γ(n− 1) = (n− 1)! (A.59)

Γ(
1

2
) =
√
π Γ(n+

1

2
) =

2n− 1
2

Γ(n− 1
2
) =
√
π
(2n− 1)!!

2n
(A.60)

Γ(
1

2
+
1

2
n)Γ(1 +

1

2
n) =

√
π

2n
Γ (n+ 1) (A.61)
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Lemma 9
1

A
=

2√
π

Z ∞

0

dx exp(−A2x2) (A > 0) (A.62)

Lemma 10 The following identity, stemming from the Poisson summation formula,X
n

exp(− |r−Tn|2 x2) =
πd/2

V xd

X
j

exp(−G2
j/4x

2 + iGjr) , (A.63)

is valid for arbitrary dimension d. V is the volume of the d-dimensional unit cell in configurational
space, while Tn and Gj are vectors of the corresponding real and reciprocal lattices, respectively.

Remark 11 Lemma 12 Proof. For the Gaussian function u(r, t) = 1

(4πt)d/2
e−

r2

4t it holds true

∂u(r, t)

∂t
−∆u(r, t) = 0 .

Namely,
∂u(r, t)

∂t
=

1

4t2 (4πt)d/2
¡
r2 − 2td

¢
e−

r2

4t

and

∂f (r)

∂xi
=

∂r

∂xi

df (r)

dr
=

xi
r

df (r)

dr
,

∂2f (r)

∂x2i
=
1

r

df (r)

dr
+

x2i
r

d
³
1
r
df(r)
dr

´
dr

=
1

r

df (r)

dr
− x2i

r3
df (r)

dr
+

x2i
r2

d2f (r)

dr2
,

∆f (r) =
dX
i=1

∂2f (r)

∂x2i
=

d− 1
r

df (r)

dr
+

d2f (r)

dr2
,

therefore,

∆u(r, t) =
1

(4πt)d/2

µ
−d− 1

r

r

2t
− 1

2t
+

r2

4t2

¶
e−

r2

4t =
1

4t2 (4πt)d/2
¡
r2 − 2td

¢
e−

r2

4t .

Let us define the function

U(r, t) =
1

(4πt)d/2

X
n

exp

Ã
−(r−Tn)

2

4t

!
,

for which the following properties are valid:

U(r, t) = U(r+Tn, t) for any Tn ,Z
ddrU(r, t) = N , lim

t→0
U(r, t) =

X
n

δ (r−Tn) ,

and
∂U(r, t)

∂t
−∆U(r, t) = 0 .
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Thus U(r, t) can be written as

U(r, t) =
X
j

Aj (t) exp (iGjr) ,

where
∂Aj(t)

∂t
−G2

jAj(t) = 0 =⇒ Aj(t) =
1

V
exp

¡
−G2

j t
¢
.

since the boundary condition Aj(0) = 1/V has to be fulfilled. Substituting x2 = 1/4t one gets

X
n

exp
¡
− (r−Tn)

2 x2
¢
=

πd/2

xdV

X
j

exp
¡
−Gj

2/4x2 + iGjr
¢

which is the required formula for k = 0. Since

− (r−Tn)
2 x2 − ik (r−Tn) = −

¡
r−Tn + ik/2x2

¢2
x2 − k2/4x2

one can apply the above formula for r+ ik/2x2, which leads to

X
n

exp
¡
− (r−Tn)

2 x2 − ik (r−Tn)
¢
=

πd/2

xdV
exp

¡
−k2/4x2

¢X
j

exp
¡
−Gj

2/4x2 + iGjr−Gjk/2x
2
¢

=
πd/2

xdV

X
j

exp
¡
− (k+Gj)

2/4x2 + iGjr
¢
.

QED!

Lemma 13 ([16], formula 3.381.3):Z ∞

u

xν−1 exp(−µx)dx = µ−νΓ(ν, µu) [u > 0, Reµ > 0] . (A.64)

Therefore, Z ∞

|aµν−Tn|/2σ
dxx2c exp(−x2) = (A.65)

=
1

2

Z ∞

|aµν−Tn|2/4σ2
dy yc−

1
2 exp(−y) = 1

2
Γ(c+

1

2
, |aµν−Tn|2 /4σ2) . (A.66)

Remark 14 Lemma 15 A few words about the error and incomplete Γ-functions:

erf (x) =
2√
π

Z x

0

e−t
2

dx (A.67)

erfc (x) =
2√
π

Z ∞

x

e−t
2

dx = 1− erf (x) (A.68)
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erf (x) =
2√
π

∞X
n=0

(−1)n x2n+1

n! (2n+ 1)
=

2√
π
e−x

2
∞X
n=0

2n x2n+1

(2n+ 1)!!
(A.69)

γ (a, x) =

Z x

0

e−t ta−1dx (A.70)

Γ (a, x) =

Z ∞

x

e−t ta−1dx = Γ (a)− γ (a, x) (A.71)

γ

µ
1

2
, x2
¶
=
√
π erf (x) , Γ

µ
1

2
, x2
¶
=
√
πerfc (x) (A.72)

γ(a+ 1, x) = aγ (a, x)− xae−x (A.73)

Lemma 16 ([16], formula 3.472.3):Z ∞

0

exp
³
− a

x2
− µx2

´ dx

x2
=
1

2

r
π

a
exp(−2√aµ) [Reµ > 0, a > 0] (A.74)

By choosing a = G2
j/4 and µ = z2 yieldsZ ∞

0

dx
1

x2
exp(−z2x2 −G2

j/4x
2) =

√
π

Gj
exp (−Gj |z|) , (A.75)

which is valid also for z = 0.

Lemma 17 ([16], formula 3.461.5):Z ∞

u

exp(−µx2)dx
x2
=
1

u
exp(−µu2)−√µπerfc(√µu) [|argµ| < π

2
, u > 0] (A.76)

Proof. Z ∞

u

exp(−µx2) 1
x2
dx = −

Z ∞

u

exp(−µx2) d
dx

µ
1

x

¶
dx = (A.77)

= −
·
exp(−µx2)1

x

¸∞
u

+

Z ∞

u

d

dx

©
exp(−µx2)

ª 1
x
dx = (A.78)

=
1

u
exp(−µu2)− 2µ

Z ∞

u

exp(−µx2)dx (A.79)

By choosing u = 1/2σ and µ = z2 yieldsZ ∞

1/2σ

dx
1

x2
exp(−z2x2) = 2σ exp(− z2

4σ2
)− 2z2

Z ∞

1/2σ

exp(−z2x2)dx = (A.80)

= 2σ exp(− z2

4σ2
)− |z|

√
πerfc

µ
|z|
2σ

¶
. (A.81)
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Remark 18 Recursive evaluation of the Integrals In(a, b) where a, b > 0 (namely a = Gjσ, b =
|cpq⊥|Gj/2, during the lattice summations the Gj become large)

In(a, b) ≡
Z ∞

a2
x−

1
2
−n exp

µ
−b

2

x
− x

¶
dx (a, b > 0)

Integrating by parts yieldsµ
n− 1

2

¶
In(a, b) =

exp
³
− b2

a2
− a2

´
a2n−1

+ b2In+1(a, b)− In−1(a, b) ,

from which the recursion relation

In+2(a, b) =
1

b2

·µ
n+

1

2

¶
In+1(a, b) + In(a, b)

¸
−
exp

³
− b2

a2
− a2

´
a2n+1b2

, (A.82)

can be obtained.

I0(a, b) =

Z ∞

a2
x−

1
2 exp

µ
−b

2

x
− x

¶
dx = 2

Z ∞

a

exp

µ
− b2

y2
− y2

¶
dy

According to ([16], formula 3.325), ([1] formula 7.4.3)

I0(0, b) = 2

Z ∞

0

exp

µ
− b2

y2
− y2

¶
dy =

√
π exp (−2b)

I0(a, b) =
√
π exp (−2b)− 2

Z a

0

exp

µ
− b2

y2
− y2

¶
dy =

=
√
π exp (−2b)+

−
Z a

0

·
exp (2b) exp

µ
−( b

y
+ y)2

¶
(1− b

y2
) + exp (−2b) exp

µ
−( b

y
− y)2

¶
(1 +

b

y2
)

¸
dy =

=
√
π exp (−2b) +

√
π

2

·
exp (2b)

µ
1− erf

µ
b

a
+ a

¶¶
+ exp (−2b)

µ
erf

µ
b

a
− a

¶
− 1
¶¸

=

=

√
π

2

·
exp (−2b)

µ
erf

µ
b

a
− a

¶
+ 1

¶
− exp (2b)

µ
erf

µ
b

a
+ a

¶
− 1
¶¸

(A.83)

I1(a, b) =

Z ∞

a2
x−

3
2 exp

µ
−b

2

x
− x

¶
dx = 2

Z ∞

a

1

y2
exp

µ
− b2

y2
− y2

¶
dy =

= 2

Z 1
a

0

exp

µ
−b2t2 − 1

t2

¶
dt

= |substitution t→ bt and above formula|

=

√
π

2b

·
exp (−2b)

µ
erf

µ
b

a
− a

¶
+ 1

¶
+ exp (2b)

µ
erf

µ
b

a
+ a

¶
− 1
¶¸
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In the numerical evaluation one has the problem of multiplying the large term exp(2b) with the
small term (erf( b

a
+a)−1) which leads to numerical problems, use inequality ([1] formula 7.1.13.)

as help

Proof. of eq. (6.140): ([16], formula 3.915.2):Z π

0

exp(iβ cos(φ)) cos(mφ)dφ = π im Jm(β) = π i−m Jm(−β) ,Z π

0

exp(iβ cos(φ+ π)) cos(m(φ+ π))dφ =

= (−1)m
Z π

0

exp(−iβ cos(φ)) cos(mφ)dφ = π i−m Jm(−β) ,Z 2π

0

exp(iβ cos(φ)) cos(mφ)dφ =

Z 2π

0

exp(iβ cos(φ)) exp(−imφ)dφ = 2π im Jm(β) ,

exp(imφj)

Z 2π

0

exp(iβ cos(φ− φj)) exp(−imφ)dφ =

=

Z 2π

0

exp(iβ cos(φ− φj)) exp(−im(φ− φj))dφ = 2π i
m Jm(β) .

Remark 19 Because of the Taylor-expansion of the Bessel functions ([16], formula 8.440):

Jν(z) =
∞X
k=0

(−1)k
k!Γ(ν + k + 1)

³z
2

´2k+ν
,

one can write,

J|m|(Gjr sin(Θ)) =
∞X
k=0

(−1)k
k!(k + |m|)!

µ
Gjr sin(Θ)

2

¶2k+|m|
=

=
∞X
k=0

(−1)k
22k+|m|k!(k + |m|)!

G
2k+|m|
j sin

2k+|m|
(Θ) r2k+|m| =

=
∞X

k=|m|,|m|+2,...

(−1)k−|m|2

2k
³
k−|m|
2

´
!
³
k+|m|
2

´
!
G

k

j sin
k

(Θ) rk . (A.84)

Remark 20 The binomial theorem implies¡
r2 cos2(Θ) + 2rcpq⊥ cos(Θ)

¢n
=

nX
s=0

µ
n

s

¶
r2s cos2s(Θ)2n−srn−scn−spq⊥ cos

n−s(Θ) =

=
nX

s=0

µ
n

s

¶
2n−scn−spq⊥ cos

n+s(Θ) rn+s =

=
2nX
s=n

µ
n

s− n

¶
22n−sc2n−spq⊥ coss(Θ) rs . (A.85)
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Lemma 21 ([16], formula 7.132.5) (but other definition of Pm
c ):Z 1

0

dxxs
¡
1− x2

¢ |m|
2 P

|m|
c (x) = (A.86)

=
2−|m|−1Γ(1

2
+ 1

2
s)Γ(1 + 1

2
s)Γ(1 + c+ |m|)

Γ(1 + c− |m|)Γ(1 + 1
2
s+ 1

2
|m|− 1

2
c)Γ(3

2
+ 1

2
s+ 1

2
|m|+ 1

2
c)

. (A.87)

Since the parity of P
|m|
c (x) is c+ |m|, extending the range of the above integral to [−1, 1], will give

a nonzero value only for even value of c + |m| + s. Therefore, 1 + 1
2
(s + |m| − c) has always to

be an integer number. As furthermore 1
Γ(z)

has simple zeros at the points z = 0,−1,−2, . . ., the
above integral is nonzero only for 1 + 1

2
(s+ |m|− c) = 1, 2, . . .⇒ s = c− |m| , c− |m|+ 2, . . .

Remark 22 (Easier from ([16], formula 7.126.1) From ([16], formula 8.922.1-2.) we learn that
zn can be expanded in terms of Legendre polynomials,

zn =
nX
i=0

c
(n)
i Pi(z) , (A.88)

and the expansion coefficients are

c
(2n)
2k =

1

2n+ 1
δk0 + (4k + 1)

2n(2n− 2) . . . (2n− 2k + 2)
(2n+ 1)(2n+ 3) . . . (2n+ 2k + 1)

(1− δk0) and c
(2n)
2k+1 = 0 ,

(A.89)

c
(2n+1)
2k+1 =

3

2n+ 3
δk0 + (4k + 3)

2n(2n− 2) . . . (2n− 2k + 2)
(2n+ 3)(2n+ 5) . . . (2n+ 2k + 3)

(1− δk0) and c
(2n)
2k = 0 .

(A.90)

Because of the orthogonality of the Legendre polynomials,Z 1

−1
dxxcPc(x) = c

(c)
c =

2

2c+ 1

(
δc0 +

c(c−2)...4·2
(c+1)(c+3)...(2c−1)(1− δc0) if c is even

δc1 +
(c−1)(c−3)...4·2

(c+2)(c+4)...(2c−1)(1− δc1) if c is odd

= 2
c!

(2c+ 1)!!
=

√
πΓ(c+ 1)

2cΓ(c+ 3
2
)
, (A.91)

with the definitions 0! = 1! = (−1)!! = 1!! = 1. Examples:Z 1

−1
dxP0(x) =

Z 1

−1
dx = 2Z 1

−1
dxxP1(x) =

Z 1

−1
dx x2 =

2

3Z 1

−1
dxx2P2(x) =

1

2

Z 1

−1
dx (3x4 − x2) =

4

15Z 1

−1
dxx3P3(x) =

1

2

Z 1

−1
dx (5x6 − 3x4) = 4

35
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