
DISSERTATION

A Systematic Approach to the
Development of Event-Based

Applications

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

o.Univ.-Prof. Dipl.-Ing. Dr.techn. Mehdi Jazayeri
Institut für Informationssysteme
Abteilung für Verteilte Systeme

eingereicht an der

Technischen Universität Wien
Fakultät für Technische Naturwissenschaften und Informatik

von

Dipl.-Ing. Pascal Fenkam
pfenkamOinfosys.tuwien.ac.at

Matrikelnummer: 9730024
Schönbrunnerstrasse 223/11

A-1120 Wien, Österreich

Wien, im Oktober 2003

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Software bestimmt heute wesentliche Dienste der Informationsgesellschaft: Banken, Ge-
schäftswelt oder Transportwesen sind Beispiele von Applikationen, die auf Software ange-
wiesen sind. Solche Software wird immer mehr auf geographisch getrennte Rechner verteilt
und von Benutzern mit einer wachsenden Anzahl von differenzierten Endgeräten verwendet
(von leistungsstarken Desktop-Rechnern bis hin zu Mobiltelefonen). Software Technologie
wird damit herausgefordert, die komplexen Anforderungen an solche Applikationen zu
erfüllen.

Aber die heutige Software Technologie wurde für Applikationen entworfen, um von relativ
wenigen homogenen Endgeräten verwendet zu werden. Derzeitige Applikationen behandeln
damit keine Tausenden, in der Zukunft vielleicht Millionen von heterogenen Endgeräten.
Daher befasst sich ein Teil der Forschung im Bereich verteilter Systeme aktiv mit dem
Entwurf von Software Methodologien für Kommunikationstechnologie, Werkzeuge, Mech-
anismen und Techniken, um die Einschränkungen heutiger Sprachen und Techniken zu
überwinden und somit die Anforderungen neu entstehender Rechnerumgebungen und Ap-
plikationen zu erfüllen.

Eine der viel versprechenden Techniken dafür ist das Ereignisgesteuerte Paradigma. Wesent-
licher Vorteil dieses Paradigmas ist die Unterstützung von lose gekoppelten Komponenten,
die gemeinsam eine Applikation definieren und daher für eine große Anzahl von heteroge-
nen Komponenten skaliert. Die Anwendung des Ereignisgesteuerten, architekturellen Stils
wurde bereits erfolgreich zur Entwicklung von komplexen Systemen in großem Umfang
gezeigt. Es wurde rasch in Forschungsprototypen und auch kommerziellen Produkten und
Werkzeugen eingebaut. Die Praxis der Applikationsentwicklung ist jedoch noch immer
ad-hoc und informell. Es ist daher schwierig, über die Korrektheit solcher Applikatio-
nen zu schlussfolgern. Der Mangel an Systematik und rigoroser Basis für die Entwick-
lung Ereignisgesteuerter Systeme ist zu einem ernsten Problem geworden, speziell da das
Ereignisgesteuerte Paradigma in bedeutenden Anwendungsbereichen wie Flugsicherung, E-
Commerce, Fahrzeugtechnik oder Haushaltselektronik Einzug gehalten hat. Existierende
Theorien können derzeit aber noch nicht für die Entwicklung solcher komplexen und kor-
rekten Systeme eingesetzt werden.

Diese Dissertation entwickelt einen neuen Ansatz (LECAP) für die Erstellung korrekter,
komplexer Ereignisgesteuerter Applikationen. Das LECAP Framework schafft dafür eine
Methodologie für die Spezifikation, die schrittweise Entwicklung und die Verifikation von

Ereignisgesteuerten Systemen. Diese Methodologie soll dann eine praktische Anwend-
barkeit in allen neu entstehenden Anwendungsbereichen haben.

ACKNOWLEDGMENTS

I would like to express my deep gratitude to all people who have supported me throughout
my research.

In particular, I offer my sincerest gratitude to my supervisor, Mehdi Jazayeri. You intro-
duced me to research and kept me on the right track with your advice while giving me the
freedom and the possibility to pursue my research ideas.

It is a pleasure to acknowledge the great collaboration with the MOTION team at the
Distributed Systems Group of TU Vienna: Harald Gall (our Dad!), Engin Kirda, and
Gerald Reif. The nights in the train to Milano as well as the debugging session in the
Zefiro hotel (disregarding our dinner with Georgio Armani) and the demos at the European
commission headquarter are unforgettable events. The Distributed Systems Group deserves
my gratitude for the enjoyable working environment. This thesis would not have been
possible without your technical and administrative support: organizing trips, ordering new
books, fixing IMAP problems, installing new security patches, troubleshooting the NFS
server, etc.

Many thanks are due to Ketil St0len for the valuable discussions concerning the adaption
of his work to my work. My external committee member Cliff Jones deserves thanks for
carefully reading my thesis and providing valuable insights and feedback.

This project thesis was supported by the European Commission in the Framework of the
1ST Program, projects MOTION (MObile Teamwork Infrastructure for Organizations Net-
working) and EASYCOMP (Easy Composition in Future Generation Component Systems).

I am indebted to my girl-friend Irmtraud Hutfless who accompanied me on the long way
leading to this dissertation, accepting me working (too) long hours.

Finally, I would like to thank my family and friends for the perfect study environment
and the unfailing and great support of all my endeavors regardless of the destination, the
duration, or the sacrifices involved.

vn

CONTENTS

1 Introduction 1
1.1 Background 1
1.2 The Event Based Architectural Style 2
1.3 General Motivation 3
1.4 Problem Statement 6
1.5 Requirements for a Methodology 7
1.6 Contribution 8
1.7 Roadmap 11

2 A Service Architecture for Mobile Teamwork 13
2.1 Introduction 13
2.2 MOTION Service Architecture 14
2.3 Teamwork Services Components 16
2.4 Achieving Reliability in the MOTION Platform 20
2.5 Reliability Challenges in the MOTION Platform 21
2.6 Summary 22

3 Related Work 23
3.1 Scope and Mapping in Event-Based Applications 23
3.2 Broadcasting Systems 25
3.3 Formalizing Architectural Styles 27
3.4 Correctness of Event-Based Applications 31
3.5 Model Checking Event-Based Applications 34
3.6 Development of Interfering Programs 36
3.7 Summary 37

4 Mathematical Introduction 39
4.1 Motivation 39
4.2 Many-Sorted Language 40
4.3 Operations on Assertions 46
4.4 Algebraic Properties 47
4.5 Summary 49

ix

5 The Core Programming Language 51
5.1 Motivation 51
5.2 Abstract Model for Event-Based Systems 51
5.3 Syntax of the LECAP Language 53
5.4 Labeled Transition System 54
5.5 Semantics of the LECAP Language 55
5.6 Summary 61

6 Specification of Event-Based Applications 63
6.1 Motivation 63
6.2 Structure of Specifications 64
6.3 Behavioral Specifications 65
6.4 Extended Behavioral specifications 69
6.5 Structural Specifications 71
6.6 Summary 74

7 Construction of Systems 75
7.1 Overview 75
7.2 Construction of Components 76
7.3 Components Integration 82
7.4 System Behavior Analysis 83
7.5 a symbolic Example 88
7.6 Summary 91

8 Synchronization and Mutual Exclusion 93
8.1 Motivation 93
8.2 Mutual Exclusion 94
8.3 Specification of Deadlock Free Programs 95
8.4 Construction of Systems 99
8.5 Auxiliary Variables 102
8.6 Summary 105

9 Stack-Counter Example 107
9.1 Component Specification 107
9.2 Verification of Local Properties 109
9.3 Application Composition I l l
9.4 Verification of Global Properties 115
9.5 Component Implementation 116
9.6 Summary 117

10 Mutual Exclusion in the Stack-Counter Example 119
10.1 Component Specification 119
10.2 Verification of Local Properties 120

Abstract

Today's software technology was created for applications that used a relatively small num-
ber of homogeneous devices. Current applications need to deal with thousands, and in the
future perhaps millions, of highly heterogeneous devices. As a result, an active area of
research in distributed systems is currently trying to invent software methodologies con-
sisting of communication paradigms, tools, mechanisms, and techniques that overcome the
limitations of current languages and techniques. One of the promising techniques for this
purpose is the event-based communication paradigm (also called implicit invocation or
publish/subscribe)

The primary benefit of the event-based paradigm is that it supports the loose coupling of
components that compose an application and therefore scales to large numbers of hetero-
geneous components. The use of the event-based architectural style has been successfully
demonstrated in the development of large-scale and complex systems. It has therefore
been rapidly incorporated in not only research prototypes but also commercial products
and toolkits and even in software communication standards. The practice of application
development based on this paradigm is, however, ad hoc and informal. As a result, it is
often difficult to reason about the correctness of the resulting applications. The lack of a
systematic and rigorous basis for the development of event-based systems has become a
serious problem as the event-based paradigm is being used increasingly in important do-
mains such as flight-control, e-commerce, automotive, and home applications. The existing
theory of specifying and verifying such applications cannot be applied for the development
of large-scale and complex systems.

This thesis proposes a novel approach (LECAP) for the construction of correct event-based
applications. The LECAP framework includes a methodology for the specification, step-
wise development, and verification of event-based applications. The approach is composi-
tional, hence, intrisically oriented towards the construction of complex software systems.
The methodology will have practical application in all emerging application domains that
exploit the event-based paradigm. Such domains include pervasive computing, telecom-
munications, electronic commerce, and Internet-based applications.

10.3 Application Composition 121
10.4 Global System Behavior 123
10.5 Component Implementation 124
10.6 Summary 125

11 Sequential Event-Based Applications 127
11.1 Overview 127
11.2 Specification of SEATY programs 128
11.3 Construction of Components 129
11.4 System Behavior Analysis 134
11.5 a symbolic Example 136
11.6 Summary 138

12 Method Invocation 141
12.1 Motivation 141
12.2 Extending the LECAP Language 141
12.3 Specification of Methods 144
12.4 Method Invocation Rules 148
12.5 Summary 149

13 A Stock Quote Service for Mobile Users 151
13.1 Architectural Overview 152
13.2 Components Specification 154
13.3 Verification of Local Properties 159
13.4 Application Composition 160
13.5 Verification of Global Properties 165
13.6 Summary 172

14 Redesigning the MOTION Platform 175
14.1 Background 175
14.2 Component Specification 176
14.3 Verification of Local Properties 183
14.4 Application Composition 185
14.5 Global System Behavior 188
14.6 Summary 194

15 Soundness 195
15.1 Composition of Computations 195
15.2 Structural Rules 196
15.3 Behavioral Rules 205
15.4 SEATY Rules 211
15.5 Summary 215

16 Future Work 217

16.1 Improvements 217
16.2 Practical Issues 219
16.3 Extensions 221
16.4 Simplifications 223
16.5 Related Approaches 224
16.6 Summary 224

17 Discussion and Conclusion 225
17.1 Research Result 225
17.2 Expressiveness 226
17.3 Alternate Solutions 227
17.4 Epilogue 230

LIST OF FIGURES

1.1 A Distributed Event Based Architecture 3
1.2 Software Development Process in the Context of Event-Based System . . . 9

2.1 Overview of the MOTION Architecture 14
2.2 A Conceptual View of the MOTION Platform 15
2.3 The MOTION Messaging Architecture 17
2.4 The TWS Layer Publish/Subscribe Architecture 17
2.5 Visual Requirement Validation Process 20
2.6 Architecture of a CORBA Oracle 21

3.1 A Scoped Event-Based Application 24
3.2 A Component 28
3.3 A Connector 29
3.4 A Configuration 29
3.5 Structure of an Event-Based System Model for Model Checking 35

6.1 Specifications in Abstract Event-Based Systems 65

7.1 Specifications Development Process in Event-Based Systems 76

13.1 The SMU Sequential Diagram 153

14.1 The MOTION Architecture 176

xin

CHAPTER 1

INTRODUCTION

This thesis develops a novel formal methodology called LECAP for the construction of an
important class of software systems, namely event based ones. The approach includes
techniques for the formal specification of event-based components, for the composition of
these specifications and for the stepwise development of components. LECAP is based
on Jones's rely/guarantee technique for the stepwise development of concurrent systems.
In this chapter, we introduce the event-based paradigm, motivate its importance in the
development of emerging applications and summarize our approach.

1.1 BACKGROUND

The dependability of software systems is increasingly required as they are used for con-
trolling a substantial part of the machinery surrounding us. This machinery can be found
in many domains: household appliances (e.g. refrigerators, washing machines), mobile
phones, traffic control (including air and railway), automotive, aeronautic, electronic com-
merce, and medical equipment.

Most of these applications are constructed using today's software technology [61, 32] which
was proposed for building applications that have a relatively small number of homogeneous
devices. In this methodology, when developing an application, the developer has (or is
supposed to have) a relatively complete knowledge of the components of his application.
Applications constructed using this methodology are typically strongly coupled, that is,
their parts heavily depend on each other; modifying one component results in non trivial
modifications in the remainder of the system. Further, these components are homogeneous
in the sense that they must be written in the same language. In some cases, it is even
required that the same compiler be used for the components of an application. Although
the dependability of such systems is easier to ensure (compared to loosely coupled systems),
they have some shortcomings that hinder from applying them to emerging applications.

Emerging applications need to deal with thousands, and in the future perhaps millions, of
highly heterogeneous devices. Such applications must, not only scale to this huge amount of

1

devices, but they must also foresee the evolution of these devices as well as the integration
of completely new devices. As a result, an active area of research in distributed systems is
currently trying to invent software methodologies consisting of communication paradigms,
tools, mechanisms, and techniques that overcome the limitations of current practices. The
development of such complex software systems requires well established approaches that
guarantee robustness of the product, economy of the development process, and rapid time
to market [24]. One of the promising techniques for this purpose is the event-based commu-
nication paradigm (also called implicit invocation or publish/subscribe) whose adequacy
was already demonstrated in the development of large and complex systems.

1.2 THE EVENT BASED ARCHITECTURAL STYLE

The event-based architectural style is a communication paradigm where components talk
to each other by publishing and consuming events.

At the abstract level, the event-based paradigm includes publishers, subscribers, events,
subscriptions, and an event-based infrastructure. The system allows publishers to an-
nounce information that are dispatched to interested components. A piece of information
announced by a publisher is called an event. On the other hand, a subscriber is a compo-
nent that is interested in receiving some events. The interest in receiving some information
is formulated by means of subscriptions. The event-based infrastructure is responsible for
matching subscriptions to events and for informing subscribed components on the occur-
rence of the matched events.

At the concrete level, event-based systems may vary depending on their architectures
and their uses. Architectures of event-based systems vary from client/server to peer-to-
peer. Similarly, there exist different uses of the event-based-paradigm e.g. middleware
[23, 97, 125, 21, 4, 31, 83] integration frameworks [17, 111, 123, 131], programming lan-
guages, and operating systems [6]. In each of these systems, the event-based paradigm
takes a different connotation and its abstract concepts (subscriptions, events, subscribers,
publishers, event-based infrastructure) also take different names such as dispatchers, noti-
fications, publications, broadcasters, receivers, etc. Figure 1.1 shows an example of event-
based system in which the matching task is distributed among three computers. The many
faces of the the event-based paradigm are discussed in [40].

The main advantage of the event-based paradigm is the loose coupling of components.
A component that announces an event does not need to know which components will
receive this information. It does not even need to know if there is a component that is
interested in the event it announces. Finally, it does not need to be connected to the
communication network, or even be active, at the same time as the subscribers or other
publishers. The different components of a system can thus work independently of each

Figure 1.1: A Distributed Event Based Architecture

other. In particular, replacing a component does not require changing other components.
This implies that applications can, for instance, be monitored without need for modifying
their behaviors. Also, from a theoretical point of view, other communicating mechanisms
such as broadcasting, multicasting and point-to-point communication can be encoded in
the event-based paradigm, while this is not true in the other direction. This loose coupling
of components makes this paradigm an intriguing candidate for many areas of distributed
computing: mobile computing, pervasive computing, collaborative applications, peer-to-
peer systems, distributed workflow systems, etc.

1.3 GENERAL MOTIVATION

The importance of the event-based paradigm is witnessed by the increasing number of do-
mains and tools in which it is deployed. Examples of such domains/tools are programming
environments (e.g. Smalltalk), operating systems (e.g. AppleEvents [6]), communication
middleware (e.g. Corba [97], Siena [23], JEDI [31], Gryphon [4], Spear [21], Elvin [125],
PeerWare [101]), integration frameworks (e.g. OLE [17], JavaBeans [111], FIELD [110],
SunSoft [124], Polylith [108], ISIS [15], Yeast [83]), and message oriented middleware (e.g.
TIB/Rendezvous [131]). In this section, we overview five emerging application areas for
the event-based architectural style. The intend of this description is to give a flavor of the
diversity of this style.

1.3.1 EVENT BASED SYSTEMS FOR WIRELESS AD HOC NETWORKS

It has been exhaustively argued that the event-based architectural style is the most preva-
lent concept for the development of middleware for mobile computing [30, 24]. STEAM
(Scalable Timed Events and Mobility) [88] is one of the middleware that explicitly take
the notion of mobility in event-based middleware into consideration. Other middleware
assume an existing communication infrastructure which does not always exist in wireless
ad hoc network. It is argued by [88] that the event-based architectural style is particularly
well suited to wireless ad hoc networking environments where communication relationships
among application components are established very dynamically during the lifetime of the
components.

The main issues addressed by STEAM is the dynamic nature of the network. Components
establish direct communication relationship with any other application component without
having to channel the transmission through an access point. This allows these components
to communicate in a spontaneous manner in the absence of conventional fixed networks.

STEAM addresses this issue for the special case of systems where subscribers are only
interested in events announced by components in their vicinity. The solution adopted is
to limit event forwarding to the area surrounding the producers. This solution reduces the
susceptibility of an event system to radio frequency interference.

1.3.2 INTERNET BASED DISTRIBUTED APPLICATION

OPELIX [48](OPen ELectronic Information Commerce System) is an Internet based plat-
form for information commerce that was constructed in the European project with the
same name. The aim of the project was to develop an open and scalable architecture for
eCommerce on the Internet. The event-based architectural style is the core of the OPELIX
prototype whose architecture includes two kinds of computing devices: broadcasters and
receivers. The push system has a broadcaster that can be fed via a flexible information
source interface. The broadcaster is in charge of controlling and scheduling the information
dissemination process. To make the broadcasting process scalable, the system uses a hybrid
protocol that is realized by the transport system implemented by the JEDI event-based
middleware [31]. A receiver has two main components: channel access and user interface.
It provides an interface that facilitates the interaction between users and channels. The
event-based infrastructure promotes the extensibility and scalability of the system.

1.3.3 EVENT BASED DISTRIBUTED WORKFLOW

A key requirement for enterprise business process optimization is the capability to encode
these business processes as workflow specifications. For the purpose of defining such spec-
ifications and implementing their functionalities, workflow management systems (WFMS)
are required. Such WFMS need to support the integration of various information sources
to be useful to enterprises. One of the key problems that developers of WFMS must,
hence, face is to develop them such that third party heterogeneous information producers
can be integrated trivially. Other issues for emerging WFMS include an effective solution
to problems related to the representation, control, and coordination of process entities that
are geographically distributed across organizational entities.

As the event-based architectural style is the most prevalent approach to loose coupling,
more and more distributed WFMS are developed based on it. Examples of such WFMS are
described in [69, 20, 22]. These approaches are however based on a client/server oriented
approach that renders distribution, openness, and scalability hard to achieve [58]. The
use of highly distributed event-based middleware helps addressing these issues in EVE
[58, 132].

1.3.4 PERVASIVE AND UBIQUITOUS COMPUTING

Ubiquitous computing is the method of enhancing computer uses by making many comput-
ers available throughout the physical environment, but making them effectively invisible
to the users [133]. Computers may be interconnected and embedded in a wide range of
appliances ranging in size from door locks to vehicle controllers performing tasks, such as
automatically opening doors and routing vehicles to their human users [88]. An increas-
ing number of research prototypes are being developed in this area. An example of such
applications is the RFID Chef [84] whose intent is to facilitate the task of supply keeping
and cooking.

In the RFID Chef project, various kitchen objects are tagged with RFID tags that, hence,
allow tracing their movements and those of the cooks. A tagged element in RFID Chef
is called a smart thing. The event-based architectural style is of prime importance to the
RFID Chef system which proposes a model for supporting the large variety of interaction
styles that are possible among the multitude of artifacts in a kitchen. A layered event
infrastructure is used to provide the expected level of flexibility and efficiency.

These examples illustrate the various application possibilities of the event-based paradigm.
In fact, there exists countless software systems that are based on this concept. This should
be motivating enough for the development of a methodology for supporting the construction
of such applications. Yet, ones own experiences seem to be more relevant, more motivating,
and more instructive. We have attempted to construct a reliable non-trivial event-based

application for mobile computing called MOTION.

1.3.5 MOBILE COLLABORATION

The MOTION project [79, 80, 81, 82, 109] (MObile Teamwork Infrastructure for Organi-
zations Networking) was supported by the European Commission in the Framework V of
the 1ST Program. The aim of the project was to develop a highly scalable and distributed
service platform that supports organizations whose employees are distributed across the
globe and are frequently traveling. In fact, these nomadic and mobile employees use a wide
range of computing devices such as PDAs, notebooks, and desktop computers. We have
developed a service architecture that supports mobile teamwork by providing multi-device
service access, metadata for information sharing and locating, and a query language (XQL)
for distributed searches and event subscription.

The event-based paradigm is at the heart of the prototype we have developed. Distributed
searches, peer-to-peer file sharing, loose coupling of components, user awareness, were
all shown to be supported by the event-based paradigm. To ensure the dependability of
our system, the key components of the MOTION platform were formally specified, the
specifications validated, and the Java implementation systematically tested against the
formal specification. Despite this, there are still some important deficiencies. In fact,
the components were validated and verified in a client/server architecture where they
were shown to be robust. In a loosely coupled environment (based on the event-based
paradigm), the components were not robust anymore. The investigation of their deficiencies
revealed serious challenges in the construction of event-based applications: there is neither a
methodology for building such applications, nor suitable techniques for verifying or testing
them. We give a detailed description of the MOTION prototype in Chapter 2.

1.4 PROBLEM STATEMENT

The use of the event-based architectural style has been successfully demonstrated in the
development of large-scale and complex systems. It has, therefore, been rapidly incorpo-
rated in not only research prototypes but also commercial products and toolkits and even
in software communication standards. The practice of application development based on
this paradigm is, however, ad hoc and informal. As a result, it is often difficult to reason
about the correctness of the resulting applications. The lack of a systematic and rigorous
basis for the development of applications based on the event-based paradigm has become
a serious problem as the event-based paradigm is being used increasingly in important do-
mains such as flight-control, e-commerce, automotive, and home applications. The existing
theory of specifying and verifying such applications cannot be applied for the development

of large-scale and complex systems. The development of complex systems is demanding
well founded methodologies that guarantee robustness of products and economy of the
development process [24].

1.5 REQUIREMENTS FOR A METHODOLOGY

We present the requirements for a methodology for developing correct event-based appli-
cations. To elicit our requirements for a software engineering methodology for emerging
systems, we agree with Pankaj Jalote [73] that a software engineering methodology must
allow development of software systems that "scale up for large systems and that can be
used to consistently produce high-quality software at low cost and with a small cycle time".
This requirement exhibits at least three issues:

1. Scalability Issue. The development of large software systems does not obey the
same rules as the development of small applications. In particular, methods used
for developing small applications can not be applied to the development of large
applications. Small applications can typically be controlled by a few persons while
large applications are typically constructed by different teams. Various criteria come
into consideration for the development of large scale systems that cannot be solved
without proper methodologies.

2. Quality Issue. There is no doubt anymore that software systems need to be depend-
able. For building dependable applications, engineers, however, need methodologies
that indeed allow developing such applications. There is increasing evidences about
the poor quality of software systems. Neumann [93] reports about a multitude of such
cases; for instance, DC Metro system incapable of labeling rerouted trains; comput-
ers shutting down aircraft engines in flight, collapse of air traffic control computers,
bank web sites hacked, etc.

3. Cost and Schedule Issue. Anecdotal evidences also abound about software projects
costs and schedule over-runs. The U.S. Air Force command-and-control software
project initial cost estimate was $400, 000. Subsequently, the cost was renegotiated
to $700,000, to $2, 500,000 and finally to $3, 200,000. A case is also reported about
a product that needed to be developed in 9 months at the cost of $250, 000. Two
years later after spending $2, 500, 000 the job was still not done, and it was estimated
that another $3, 6 milions would be needed. The project was canceled. Many such
disaster examples are given [112].

An emerging software engineering methodology that promises to adequately address many
of these issues is component-based software engineering where components are intended to

7

[18, 126, 65]:

• be off-the shelf that come either from commercial sources or from another system,

• have non trivial number of functionalities,

• be of non trivial functionality,

• be self contained and possibly execute independently,

• be used as is,

• be integrated with other components to achieve required system functionality.

The composition of applications starting from their components is called software inte-
gration. The event-based architectural style is currently the most used communication
paradigm for composing applications. Therefore, it is required that a methodology that
supports the development of event-based applications fully supports the development of com-
ponent based systems. This means that such an approach must be compositional, both at
the conceptual level as well as the implementation level. At the abstract level, it must be
possible to compose specifications of components as well as it must be possible to com-
pose proofs about properties of the components. In particular, the methodology must
allow building models and specifications, with a clearly defined and intuitive meaning.
This clarity makes reuse and learning easier, because one can understand the whole by
understanding the parts and then recombine them in a predictable way [37].

On the other hand, any approach that supports the development of event-based applications
must be oriented towards stepwise development of systems. In particular, it should not be
required that a complete application be developed before proof of correctness or testing
be achieved. Such approaches have been recognized as unacceptable program development
methodologies; erroneous design decisions are propagated until the system is implemented
and attempted to be proven correct.

1.6 CONTRIBUTION

This dissertation proposes a novel formal approach for building correct applications us-
ing the the event-based paradigm. This approach is called LECAP: Logic of Event
Consumption And Publication. This logic is compositional; hence, intrinsically oriented
towards construction of complex systems. LECAP is based on Jones's rely/guarantee
[77, 121, 136] program derivation technique which is extended in two respects. First, we
extend the specification of a program z to include assumptions about the behavior of fu-
ture subscribers. These assumptions need only be fulfilled when verifying properties of the

8

whole system. Second, we provide a rule for composing separately developed specifications
into one large specification. Let us assume that we want to build a software system that
satisfies the requirements (j>i, ..., </>„. Our methodology consists of four steps (depicted in
Figure 1.2):

Achitectural Design

Specification

Proof of local Properties

Specificati

Proof of con

on Federation

tposition POs

Proof of global properties

Component

Implementation

Component

Implementation

Component Integration

Figure 1.2: Software Development Process in the Context of Event-Based System

1. Architectural design of the system (identification of components).

2. Developing the formal specifications Si, • • • , Sm of these components and verification
of some local properties.

3. Composing the specification 5 of the whole application starting with the specifica-
tions Si, • • • , Sm of the components.

4. Independent refinement of the specifications Si, • • • , Sm to some implementations
h, • • • , Im-

It is important to stress that the development of I\, • • • , Im can be performed by different
teams that know nothing about each other. Each of them receives some specification Si and

is required to deliver some code that satisfies this specification. In other words, /i, • • • , Im

might be off-the-shelf components that satisfy the specifications Si, • • • , Sm. Indeed, this
is one of the expected benefits of the loose coupling of components.

The approach we propose is a combination of bottom-up and top-down approaches. It is
bottom-up in the sense that we start with some components that we specify (or that exist),
build the specification of the application starting from that of the components and verify
the properties of the system. The approach is top-down in the sense that the specified
components can be developed following the usual top-down development process. This
combination was shown to be suitable for the development of component based systems
[12]. In particular, this is the way the EB paradigm is used to be applied, namely, for the
integration of components [10].

The LECAP methodology consists of:

1. a core programming language with a clearly defined semantics for the development
of programs that announce and consume events,

2. a technique for the specification of programs that announce events,

3. rules for the top-down development of components of an application,

4. a process and rules for the composition of specifications,

5. rules for tackling deadlock freedom in event based applications.

Intermediate results of this work have been previously published in the literature:

• The MOTION prototype was constructed and the different issues related to its
architecture, its requirements, its design, and its implementation are described in
[79, 80, 81, 82, 109].

• The reliability of the MOTION platform has been discussed in [43, 42].

• The fail attempt to ensure reliability in the MOTION platform led to the first steps
towards a methodology for constructing correct event-based applications which are
documented in [46].

• The systematic approach at the heart of this thesis is described in the papers [45, 47].

• The redesign of the MOTION platform is discussed in [48].

10

1.7 ROADMAP

The remainder of this thesis is organized as follows. The next chapter presents the MO-
TION platform that we further use in this thesis as case-study. Chapter 3 discusses related
works. Chapter 4 introduces the different mathematical concepts needed for understanding
this thesis. Chapter 5 presents the LECAP programming language, a core programming
language that allows developing programs that announce events. Chapter 6 presents tech-
niques for the specification of event based applications. Chapter 7 is concerned with the top
down development of event-based components. Chapter 8 discusses the issue of synchro-
nization and mutual exclusion in event-based applications. The chapters 9 and 10 present
some simple examples for illustrating the approach. In chapter 11, a simplification of the
event-based architectural style is proposed and the set of rules for constructing related
applications are presented. The notion of method invocation is added to our programming
language in Chapter 12 while Chapter 13 and Chapterl4 present the design and analysis
of two non trivial case studies. Chapter 15 proofs that the proof system in this dissertation
is sound. Future work are discussed in Chapter 16 and chapter 17 concludes the thesis.

11

12

CHAPTER 2

A SERVICE ARCHITECTURE FOR MOBILE

TEAMWORK

This thesis results from failed attempts to achieve dependability in the MOTION platform
that we present in this chapter1. In effect, this platform was developed following a rigorous
development process: the critical components were formally specified, the specification val-
idated against the informal requirements, test cases derived from the specification, and the
implementation tested against the formal specification. Despite this development process,
the MOTION platform revealed some severe misbehaviors when put in the context of an
event-based middleware.

2.1 INTRODUCTION

Mobile teamwork has become an emerging requirement in the daily business of large en-
terprises. Employees collaborate across locations and need support while they are on the
move. Business documents (artifacts) and expertise need to be shared independently of
the actual location or connectivity (e.g., access through a mobile phone, laptop, Personal
Digital Assistant, etc.) of employees. Although many collaboration tools and systems ex-
ist, most do not deal with new requirements such as locating artifacts and experts through
distributed searches, advanced information subscription and notification, and mobile in-
formation sharing and access. The MOTION service architecture that we have developed
supports mobile teamwork by taking into account the different connectivity modes of users,
provides access support for various devices such as laptop computers and mobile phones,
and uses XML meta-data and the XML Query Language (XQL) for distributed searches
and subscriptions. In this chapter, we describe the architecture and the components of our
generic MOTION service platform for building collaborative applications. The MOTION
Teamwork Services Components are currently being evaluated in two industry case-studies.
The remainder of the chapter is structured as follows. Section 2.2 gives an overview of the

1This chapter is based on the MOTION paper published in the Proceedings of the International Con-
ference on Software Engineering Knowledge Engineering SEKE 2002.

13

layered architecture. Section 2.3 discusses the main components of the MOTION'S archi-
tecture. Section 2.5 gives an overview of the challenges for reliability that we encountered
during the development of the MOTION platform.

TWSAPI

TWS
Layer

Presentation Layer

Team Work Services
Business Specific Services

Access
Control

DUMAS

I Community |[
Repository Messaging Publish/

Subscribe
Distributed

Search
Artifact

Management

Communication Middleware

Event based System Peer-to-Peer File Sharing

Figure 2.1: Overview of the MOTION Architecture

TERMINOLOGY

We first define some basic terms that will be used in relation to this case study.

Artifact: Any document or file in the MOTION system (e.g., a text-processing
document, a picture, a sound file, etc.)

Peer: Any computing device connected to the MOTION system (e.g., notebook,
Web browser, Personal Digital Assistant (PDA), etc.)

Community: A collection of users in the MOTION system that are interested in a
topic or that have a common property (e.g., "researchers", "paper writing","review",
etc.)

2.2 MOTION SERVICE ARCHITECTURE

In this section, we give a brief overview of the layered architecture of the MOTION system
and provide details about the main components in the following sections. Figure 2.1 depicts
the MOTION architecture.

14

A conceptual view of the MOTION platform is presented in Figure 2.2. The MOTION
system is composed of peers. Some act as host to services and some only act as clients. Any
peer that is able to run the MOTION libraries can act as a service host. A typical MOTION
configuration consists of desktop computers, laptops (i.e., notebooks and sub-notebooks)
and PDAs that host services and clients such as Web browsers and WAP-enabled mobile
phones that do not host services, but can only be used to remotely access them.

Legend

MDE: Morion Mobile Device Entity

MWK: Motion Web Access Kntity

MFE: Motion Full Entity

MFE/ Observer : MFE in the role of Observer

MWE

MDEs
MFBObserver

Figure 2.2: A Conceptual View of the MOTION Platform

The lowest layer of the architecture is the communication middleware. It offers basic com-
munication services such as peer-to-peer file sharing through distributed searches and pub-
lish/subscribe (i.e., event-based system) mechanisms to the layers above. In the prototype
implementation of the MOTION platform, this functionality is provided by PeerWare[101].
The communication layer, however, can be replaced by any other suitable middleware that
provides distributed search and publish/subscribe support (e.g., distributed searches with
JTella[87] and publish/subscribe with JEDI[31]).

The Teamwork Services (TWS) layer is situated directly above the communication mid-
dleware. This layer integrates the basic system components such as the repository and
DUMAS (see next section) and provides an Application Programming Interface (API) to
the teamwork services. This is a Java API in our prototype.

The TWS API offers services such as (1) storing artifacts and their meta-data (profilé)
in the local repository, (2) managing resources (artifacts, users, and communities), (3)
sharing artifacts with other users in communities, (4) subscription to specific events in the
MOTION system, (5) sending and receiving messages from other users or from the system,
(6) managing access rights on resources, (7) and searching for resources based on their

15

profile information.

An application programmer can build business specific services (BSS) on top of the TWS
API. By using the functionality provided by the API, the programmer can implement
new functionalities according to the end-users's business requirements. Hence, the basic
set of services provided by the TWS API can be customized and extended by businesses
and organizations. For example, a company might be interested in integrating workflow
support for transistor design into the platform whereas another might be interested in
having document versioning support for artifacts.

The top layer of the architecture is the presentation layer. It provides a user interface
to the services provided by the MOTION system. The presentation layer is built using
the TWS API. Because of the need for mobility, a typical configuration has a number of
user interfaces for different devices such as desktop computers, laptops, Personal Digital
Assistants (PDAs), Web Browsers and WAP. In the current prototype, we have a native
Java user interface that provides full functionality and an experimental lightweight Java
PDA interface.

2.3 TEAMWORK SERVICES COMPONENTS

In this section, we describe the components of the MOTION Teamwork services layer.

2.3.1 T H E DYNAMIC USER MANAGEMENT AND ACCESS CONTROL COM-

PONENT

Confidentiality, security and privacy are important in many distributed multi-user appli-
cations. This has motivated the design and implementation of a number of access control
models (e.g., [49, 113]). In most cases, the access control model is chosen by the soft-
ware/security engineer and is hard-coded into the application. Hence, users of these appli-
cations have little or no support at all for customizing and adapting the security settings
to requirements that may change over time.

The Dynamic User Management and Access Control Component [41] (DUMAS) is an ac-
cess control component that is formally specified, verified, and implemented. Its goal was
the creation of a generic, customizable component that satisfies different security require-
ments. This access control component provides support for managing users and roles (e.g.,
by creating, deleting, etc.) and assigning users to roles. The functionalities of DUMAS
are grouped in three sub-components: a user management component, a community man-
agement component and an authorization component. These sub-components are strongly

16

connected in the sense that each of them is necessary for the two other sub-components to
operate.

Presentation Layer + Business Specific

Services

Figure 2.3: The MOTION Messaging Architecture

2.3.2 MOTION MESSAGING COMPONENT

MOTION Messaging is an integrated messaging service that enables users to communicate
and exchange information. Notifications based on subscriptions are also delivered by this
messaging service. MOTION messages are sent to users using technologies such event-based
notifications, email (i.e., SMTP), GSM short messages (SMS), and wireless application
protocol service indication (WAP SI) [52].

MOTION Messaging enables customers to stay in direct and constant contact no matter
what devices they are using and where they are.

Presentation Layer + Business Specific Services

Subscription Front End

Publish/Subscribe
(Middleware)

Subscription Gateway

Messaging System

User Specialized Callback.

Repository

Figure 2.4: The TWS Layer Publish/Subscribe Architecture

The MOTION Messaging component in our prototype consists of five main components.
These components are the SMS gateway, the SMTP (email) gateway, the standard messages
gateway, the WAP gateway, and the MOTION front end component (see Figure 2.3). The

17

MOTION front end component is the interface between the business specific services and
the MOTION Messaging component. It provides transparency to the business specific
services by simple primitives for sending messages. These messages are transformed into
XML events that are published through the underlying event-based middleware. Once a
message is sent to a specific user, the configured gateway receives the corresponding XML
event, transforms it and forwards it using the appropriate protocol (e.g., WAP gateways
transform XML events to WAP Sis and SMS gateways to SMS messages). In case a
MOTION gateway is unable to send a message for some reason, it can queue it in the
repository that is available on the peer (host) the gateway is running on.

2.3.3 T H E TEAMWORK SERVICES LAYER PUBLISH/SUBSCRIBE COM-

PONENT

The teamwork services layer's publish/subscribe component bridges the gap between the
underlying middleware and the business-specific services and gives a uniform and consistent
view of the event concept to the application layer.

Event-based middleware such as Peerware[101] and JEDI[31] allow components to sub-
scribe and react to events by specifying a method that is invoked once an event occurs
that matches a query. There are different realizations of this concept. In Peer Ware, for
example, the subscriber specifies a callback. The callback is an object of a class implement-
ing the interface peerware. EventCallback. In JEDI, on the other hand, the subscriber
directly specifies the name of the method to be invoked. In both cases, however, there is es-
sentially no direct mapping between component-level (system) subscriptions and user-level
(application) subscriptions.

To bridge this gap, we use subscription gateways and user specialized callbacks (see Figure
2.4). A user specialized callback is a component that handles subscriptions of a specific
user. Whenever the user wishes to perform a subscription, she informs her specialized
callback. This callback mediates between the underlying event-based system and the user.
It receives the user's subscriptions and subscribes on her behalf. Once an event occurs
that satisfies one of the user's subscription criteria, the corresponding callback is informed
and it transforms the received event into a message. This message is sent to the messaging
system and the user is informed based on her availability criteria.

The set of callback components running on a particular peer is referred to as the sub-
scription gateway. A subscription gateway has to be configured for each user. Choosing
a peer that can function as a subscription gateway is a configuration issue. Every peer in
the MOTION system can be used as a subscription gateway and the configuration can be
decided by organizations depending on deployment policies.

18

2.3.4 T H E MOTION REPOSITORY

Every peer in the MOTION system that runs MOTION services contains a repository that
is used to store artifacts and profile information about users, communities and artifacts.
This repository component is composed of two parts: an XML and an artifact repository.
The XML repository is used to store XML profile information. The artifact repository is
used to store artifacts that belong to a user. For example, when a user Dr. Jaza wishes
to enter a document she is writing for the SEKE conference into the MOTION system,
he would first enter meta-data about it such as the description of the document and its
purpose. The meta-data would then be inserted into the XML repository and the document
would be physically copied into the artifact repository. The repository component provides
method calls for inserting, deleting, editing and querying meta-data that it manages.

2.3.5 ARTIFACT MANAGER

The artifact manager component is composed of the MOTION repository component and
the repository manager which is responsible for mapping remote transfer requests to com-
mands in the repository. It retrieves, inserts, deletes or queries the information in the
repository and provides the communication infrastructure between artifact exchanging
peers. The artifact transfer protocol is HTTP. For example, when Dr. Jaza issues a
distributed XQL request and sees that Dr. Marco has related work on information shar-
ing, he can download that article from Dr. Marco's repository. The repository manager
component takes care of transferring the article (i.e., artifact) from the remote repository
into Dr. Jazds local repository.

The Artifact Manager component acts as a wrapper to the MOTION Repository (i.e., XML
and artifact repositories) and the Repository Manager. It provides artifact management
API calls in the TWS API (e.g., insert an artifact, download an artifact, etc.).

2.3.6 DISTRIBUTED SEARCHES

One of the distinguishing features of the services provided by the MOTION platform is
its support for distributed searches. A key requirement in the MOTION industrial case-
studies was the ability to locate information in a loosely coupled, distributed setting. Large
organizations often have employees that do not personally know each other and in most
cases cannot benefit from the work others are doing. For example, a group working on
transistor design in Austria might have a problem that a group in the company located in
South Africa branch has already solved. The ability to query artifacts, hence, is beneficial
and in some cases success critical.

19

The TWS API provides querying mechanisms to search the artifacts that are in the MO-
TION system. The user can define XQL queries that are propagated through the system.
The concept of distributed searches in the system is similar to searching provided by peer
to peer systems such as Gnutella[60], Morpheus [91] and Napster [92]. Whereas these sys-
tems only provide search support for document file names, searching in the TWS API is
more advanced and has a finer granularity.

2.4 ACHIEVING RELIABILITY IN THE MOTION PLATFORM

The MOTION'S dynamic user management and access control component was developed
based on a lightweight formal method approach.

In a first step the component was formally specified using the VDM formal specification
language (Vienna Development Method [130]). The IFAD VDM Toolbox [128] was used for
this purpose. The formal specification of DUMAS was an extended explicit specification
with about 700 lines of code. The main functionalities specified here are operations for
managing users, groups and permissions.

GUI

Conrad
interpreter

Spedfiation

Specification
interpreter

Middleware(CORBA)

S o t a t Engineer

Figure 2.5: Visual Requirement Validation Process

The next step consisted of validating the specification against the informal specification
of the intended component. The process was successfully carried on by applying a novel
approach combining VDM-SL, CORBA, and Java. The process is illustrated in Figure 2.5
and detailed in [44]. The approach is a formal, visually-supported, approach to require-
ments validation. Given the formal requirements specification for a software component
or system, we develop a graphical user-interface to be invoked by the user as a proxy for
the system. User commands are mapped to the formal specification. Thus, the user's in-
vocations of the commands exercise the formal specification. By validating the operations
of the graphical user-interface, the user indirectly validates the formal specification.

The final step in this process was to verify the implementation of DUMAS. Formal testing
was chosen for this purpose. Test cases were derived from the formal specification and the
specification used for constructing a black box oracle. The architecture of the black-box

20

oracle was borrowed from the CORBA visual model used for the validation. The approach
used for testing the DUMAS component consists of:

• executing the implementation,

• transforming its results by means of retrieve functions,

• and finally verifying whether the transformed results satisfy the specification.

This approach is detailed in [43] and provides the following benefits:

• the same specification used for generating test cases is used for constructing the test
oracle,

• the post-conditions don't need to be translated to a high-level programming language,

• the approach can be applied to all CORBA-compliant programming languages,

• the approach can handle programs with non-deterministic results.

The architecture of this test oracle is presented in Figure 2.6

Implementation

Figure 2.6: Architecture of a CORBA Oracle.

2.5 RELIABILITY CHALLENGES IN THE MOTION PLAT-

FORM

The validation and verification processes described in the above section were performed in a
client/server environment. In the validation process, the server was the formal specification

21

that was interpreted by the VDM toolbox's interpreter which therefore played the role of
a server. The client in this case was a graphical user interface that gave the end-users the
illusion of manipulating a real application.

In the case of the verification process, the Java implementation of the component is exer-
cised against the result of the interpretation (by the VDM Toolbox) of the specification.
The DUMAS's component was shown to be robust in this client/server setting.

This robustness, however, was revealed to be architecture dependent. In fact, the compo-
nent revealed some severe misbehaviors when put in the event-based peer-to-peer archi-
tecture described in section 2.2. Further investigations revealed some serious challenges in
the construction of event-based applications: there is neither a methodology for building
such applications, nor suitable techniques for verifying or testing them. This led to the
investigation of the methodology proposed in this thesis.

2.6 SUMMARY

The importance of the event-based paradigm is now widely accepted. A continuously
increasing number of applications are constructed based on this paradigm. This reality
should be sufficient for motivating the development of an adequate software development
methodology that can deliver robust products in a relatively rapid time to market. Yet,
one's own experience is more motivating and instructive.

This chapter presented a detailed description of the MOTION platform. One of the main
components of this platform was formally specified, the verification validated and the
implementation verified. Despite this, some severe misbehaviors were observed that led to
the development of the methodology presented in this dissertation. A part of this platform
will be used as a case study later in this thesis.

22

CHAPTER 3

RELATED WORK

Although the event-based architectural style is at the heart of countless software systems,
research and products that leverage this paradigm have focused so far on efficiency issues
and have neglected methodologies for constructing such systems. The aim of this chapter is
to support this claim; a survey of methodologies for constructing event-based applications
is given.

The remainder of the chapter presents different contributions to the improvement of the
quality of event-based applications. They are presented from the less to the most formal
ones. The first of these sections presents the concept of scope in event-based systems. The
goal is to achieve the same effect as in object-oriented programming languages: informa-
tion hiding. In Section 3.2, a concept that in some respects resembles the event-based
paradigm is presented, namely broadcasting. Directly related to our work are the issues of
formal specification of event-based applications (discussed in Section 3.3), the issue of the
verification of the properties of such applications (see Section 3.4), and the issue of model
checking them (presented in Section 3.5).

The approach proposed in this thesis is strongly based on techniques for constructing
parallel programs. Jones's rely /guarantee technique [77] (extended e.g. by St0len [120,
121, 122] and Xu [136]) and the work of Owicki and Gries [98] are among the approaches
that influenced the construction of parallel programs. In fact, it is argued that Jones's
technique is the first and most fundamental compositional method for the correctness
proof of state-based parallel programs [94]. We review these approaches in Section 3.6.
Section 3.7 summarizes the chapter.

3.1 SCOPE AND MAPPING IN EVENT-BASED APPLICATIONS

Information hiding and abstraction have been recognized as useful concepts for structuring
software systems [99, 100]. They led to techniques such as encapsulation [117], modular-
ization [100], classes, and objects [16]. It is, therefore, legitimate to envision that they
may bring the same benefits in event-based systems. Fiege, Mezini, Miihl, and Buchmann

23

[50, 51] introduced scoping and mapping to achieve information hiding and abstraction
into event-based systems. In particular, they intend to contribute to four issues: bundling
of components, heterogeneity, flexible configurations, and support of activities.

Bundling consists of tying a set of components together; this is done both at the syntax
and at the semantics levels. At the syntax level, a bundle is a collection of components
delimiting the visibility of events they announce. A bundle is also a component that has a
semantics and, as such, may announce and consume events.

The event-based architectural style is recognized as a suitable communication paradigm
for highly heterogeneous environments. The development of applications in these environ-
ments must, hence, be based on concepts that are oriented towards the support of this
heterogeneity. An example of heterogeneity factor is the potential variety in the semantics
of notifications in large distributed environments [50]. Event-based systems must, there-
fore, support various event models. Consequently, bundling must also delimit common
syntax and semantics areas.

The third motivation for bundling components is that event-based applications seem to re-
quire that sessions of independent activities be separated from each other. Such a grouping
of components may help in controlling interference.

To solve the above issues the concept of scope is proposed as an abstraction that bundles a
set of producers and consumers in groups characterized by some criteria defined either se-
mantically or syntactically [50]. A scoped event-based system is defined as an acyclic graph
whose nodes are components and scopes and whose edges are binary relations over the set
of edges. A scoped event-based system, hence, defines a superscope/subscope relationship
over components of an application. Figure 3.1 shows an example of scoped event-based
system.

O O- ' Scope

Component

Figure 3.1: A Scoped Event-Based Application

The concept of scope studied by Fiege, Mezini, Mühl, and Buchmann [50, 51] seems to be a
promising technique for controlling interference in large scale and distributed applications.
Nevertheless, the issue of how to build a correct application is completely open. The au-
thors argue that the development of event-based applications do not need other design and
engineering approaches than those already known in software engineering. This position

24

is questionable for three reasons. First, we are not aware of a single real-life event-based
application whose correctness is claimed to have been tackled successfully. This may in-
dicate that there are problems in applying conventional development approaches. Next,
our experience in designing the MOTION platform revealed that traditional techniques
for ensuring dependability are not (at least not straightforwardly) applicable to event-
based applications. Finally, other researchers have investigated new methodologies for
designing event-based applications [10, 35, 36, 56] and they indeed claim that event-based
applications are hard to reason about and to test [56]. This is a clear sign that existing
methodologies are not well-suited for the development of event-based applications.

3.2 BROADCASTING SYSTEMS

Broadcasting is a communication paradigm where one process speaks at a time and is heard
instantaneously by all others [103]. A significant amount of work [39, 66, 103, 104, 105, 106]
has been done on this topic that led to an important number of theories. This section
overviews two of these theories: the calculus of broadcasting systems (CBS) [103], and the
bn calculus [39]. Essentially, the issue in such works is the notification of all the components
in the system.

3.2.1 CBS: A CALCULUS OF BROADCASTING SYSTEMS

CBS is a calculus resembling Milner's CCS (calculus of communicating systems) [89] where
the handshake communication concept is replaced with broadcasting; processes speak one
at time and all processes are interested in all messages. CBS is mainly a formal model for
packets broadcast in Ethernet-like communication media as provided in hardware for local
area networks, as well as radio and mobile telephony networks. CBS models an idealized
local area network using concepts from process calculi.

As in CCS [89], the behavior of a system consists of communicating actions. A process p

may send a message w and evolve as p' (denoted as p - ^ p') while q may receive a message

and become q' (denoted as q -̂ > q'). The processes can be combined using the parallel

operator: p | q - ^ p' | q'. This composition is captured by the inference rule:

v I q —> P I g

which claims that if its premises hold, then so does its conclusion. One-to-many com-

25

munication is obtained by naturally applying the above rule incrementally. We, for in-

stance, apply the rule twice to derive that if p - ^ p\ q - ^ q\ and r - ^ r' hold, then

p \ q\r •—* V' \ Q1 \r' fo l lows .

w
p —

p

1

q

i

—»

q • — *

q'

/
q

P\Q\r-+p' \q' \r

Clearly, the parallel composition operator ' | ' is commutative and associative. The calculus
supports the Nil process which says nothing and is a neutral element for the parallel
composition operator. Other constructs are the if-construct, the choice-construct and
scoping. Communication is visible to the environment per-default. With static scoping,
the communication is hidden to the environment. The calculus defines weak and strong
bisimulations which are equivalence relations on processes that group processes with the
same behaviors.

3.2.2 T H E bir CALCULUS

The 67r-calculus is another calculus of broadcasting systems which is based on CBS [103]
and the 7r-calculus [90]. Unlike CBS which does not allow modelling reconfigurable finer
topologies of network of processes which communicate by broadcast [39], the Ô7r-calculus
was developed with the explicit requirement of solving this issue. The &7r-calculus can be
seen as a 7r-calculus where the message-passing primitive is replaced with the broadcast
communication primitive.

As the &7T-calculus is based on the 7r-calculus it is superior to CBS because channels can also
be messages (hence, support for mobility). The concept of dynamic scoping is based on this
feature by combining it with static scoping which is the ability to keep a communication
session separated so that the risk of interference is limited.

Calculi of broadcasting systems are different from event-based systems in many respects.

• In event-based systems, each component specifies the kind of messages it is interested
in while in broadcasting systems, all components receive the broadcasted message.
The event-based infrastructure is responsible for invoking the subscribers when events
occur that match their subscriptions.

• The event-based communication mechanism is intended for asynchronous systems
while broadcasting is an unbuffered communication mechanism. In event-based sys-

26

terns, components don't need to be ready when events occur that satisfy their sub-
scriptions. This makes this communication paradigm suitable for supporting discon-
nectedness.

• Arbitrarily many components may announce an event in event-based systems while
in broadcasting systems, only one process can talk at a time.

• Another difference (and, perhaps the most important one) is that components inter-
ested in an event e announced by the program p are not running from the beginning
of the execution of p, but are invoked following the announcement of e. The exe-
cution of such subscribers may, therefore, start at the beginning of the execution of
p (in which case they will be executed in parallel with p), at the end of the execu-
tion of p (in which case we have a sequential composition), or more generally at any
point of the execution of p; which makes things at least as complicated as parallel
composition.

The requirements of event-based systems are, therefore, very different from that of broad-
casting systems.

3.3 FORMALIZING ARCHITECTURAL STYLES

Several researchers have attempted to provide formal techniques that can support the
treatment of event-based applications. Although the ultimate goal of such works is relia-
bility of these applications, the developed approaches have not been successful. Examples
of such approaches are that of Garlan and Notkin [55], as well as that of Abowd, Allen,
and Garlan [1, 2] who propose frameworks for formalizing architectural styles in general
and implicit invocation in particular. Dingel, Garlan, Jha and Notkin argue in [36, 35]
that these approaches primarily focused on taxonomic issues, and do not provide an ex-
plicit computational model that permits compositional reasoning about the behavior of
event-based systems. Let us clarify this statement in the light of Abowd/Allen/Garlan
framework for formalizing styles [1, 2, 71].

Software architectures and architectural styles have mainly been defined by means of boxes
and lines. This makes it difficult to argue on the reliability of applications. This is partic-
ularly unfortunate since the cost of specifying and analyzing a style is amortized across all
instances [71]. To remedy this situation, a framework for formalizing architectural styles
is proposed [55] in which they are described in terms of mappings from their syntactic do-
mains to their semantic domains. By providing a formal vocabulary for the description of
styles, the framework allows new styles to be defined in a way such that they are uniform
with existing ones. Essentially, the framework proposes a function for giving meanings
to architectures and styles which are defined syntactically using components, connectors,

27

ports, configurations, attachments, and roles.

A component is the computational part of an architecture. Components may communicate
with each other by means of connectors. The component's connection point is called a port.
Formally, a component is modeled as a collection of ports and a description of the behavior
of the component. This is denoted in VDM as:

PORT = token;

COMPONENT-DESC = token;

COMPONENT : :

ports : PORT-set
description : COMPONENT-DESC;

where PORT and COMPONENT-DESC are two types that we do not need to further
define (declared as token). A graphical representation of this concept is presented in Figure
3.2 which shows a connector capable of connecting three components.

Port

Figure 3.2: A Component

A connector embodies the communication mechanism between components. Instead of
being pre-determined between two components, a connector provides placeholders called
roles that permit the connections to ports of components. A graphical representation of a
connector is depicted on Figure 3.3. Formally, a connector is represented as a set of roles
and the description of its behavior:

ROLE = token;

CONNECTOR-DESC = token;

CONNECTOR::

roles : ROLE-set
description : CONNECTOR-DESC;

28

Role

Figure 3.3: A Connector

A configuration represents a set of component instances that communicate with each other
by means of some connector instances. This is depicted in Figure 3.4. The formal speci-
fication on the other hand has some invariants that require that any association role-port
in the attachment be such that the role is that of one of the defined connectors and the
port is that of one of the defined components.

CONFIGURATION ::
components : ROLE-set
connectors : CONNECTOR-DESC;
attachment : ROLE i—» Port

inv cf A let
invO = Vr G dorn cf .attachment • 3c G cf .connectors, r € croies,
invl = Vp € rng cf. attachment • 3c e cf .components, r G c.ports in

invO A invl;

Computation Computation

Figure 3.4: A Configuration

Based on these concepts the formal specifications of the event-based paradigm can be given.
A component is represented as an object with a private set of variables that represents its
internal state and a collection of methods that can be invoked externally. The behavior

29

of such an object is modeled as a state machine with a transition function that relates a
method invocation to a tuple consisting of a state and a set of events.

Event = token;

METHOD = token;

STATE = token;

Object : :

methods : METHOD-set
events : EVENT-set
states : STATE-set
start : STATE
transitions : (METHOD x STATE) ^ (STATE x EVENT-set)

inv cf A let
invO = cf .start G cf .states,
invl = dom cf .transitions = {(m, s), m G cf .methods A s £ cf .states},
inv2 = rng cf .transitions = {s,m G cf .methods A s G cf .states} in

invO A invl;

In the context of the event-based paradigm, a connector becomes a distributor which
takes an announced event and invokes the set of methods subscribed to that event. The
description of a distributor is therefore:

DISTRIBUTOR::
methods : METHOD-set
events : EVENT-set;

A configuration is now known in the event-based context as a set of objects that interact
by means of distributors. The overall binding of methods to events is derived from the
individual distributors. The formal specification is:

InteractingObjectSet : :
objects : Object-set
distributor : DISTRIBUTOR-set;
binding : EVENT ^U METHOD;

30

inv io A let
invO = Voi, 02 G io.objects • 0\ ^ 02 ==> 01.methods fl O2.me£/iods{},
mwl = io.binding = Udeio.<feiri6Utor-s d.events x d.methods,
inv2 = Ve G dom io.binding • 3o G io.objects, e G 0.events,
inv3 = Vm G rng io.binding • 3o G io.objects, e G 0.methods in

A mul A mi>2 A mi>3;

At this level of detail, we can justify the claim that this work mainly discusses taxonomic
issues. In the first place, one can note that the concept of method has no precise meaning
(defined with token). This means that it is not possible to reason about the behavior of the
method (at least not without extending the framework). It is not said how a method must
be specified. For instance, a key question in formally specifying event-based applications
is how does a designer specify that a method m announces an event e whenever the state
satisfies the condition Q? The next issue in such approaches is that there is no indication
of whether the specifications are realizable or not. Given such a specification, what is the
next step in building an application? How does a designer show that a given application
satisfies such a specification?

This is not to say that no property can be verified in this framework. For instance, in [71],
Daniel Jackson presents a framework for automatically analyzing architectural styles where
the event-based architectural style is taken as case study; general properties related to the
style are checked. Such properties are for instance showing that the chain of causality in the
event-based system is acyclic. Nevertheless, the issue of constructing correct event-based
applications remains largely open.

3.4 CORRECTNESS OF EVENT-BASED APPLICATIONS

The only approach that directly tackles the issues of building correct event-based applica-
tions is by Dingel, Garlan, and Notkin [35, 36]. A method for reasoning about event-based
applications is proposed. This approach, which we call Dingel's approach is also based on
Jones's rely/guarantee paradigm. The framework includes a formal computational model
for the event-based paradigm, techniques for specification of systems and an approach for
reasoning about the correctness of programs.

The proposed formal model is based on a programming language which is essentially a
while-language extended with the announce and the consume constructs. The announce
construct is intended for publication of events while the consume construct allows methods
to declare the kind of events they are interested in. The syntax of this language is given
as follows:

31

P : : = x: = exp | Pi; P2 | if b then Pi else Pi fi | while b do P od| announce(e)
I consume (e).

The execution of such a program and therefore its semantics is given relatively to an event-
based system which is modeled as a tuple (M, V, EM, Ex) composed of a set of programs
M, a set of variables V accessible to programs in M, a set of external events Ex and a
binding of methods to events. The set of methods M represents the set of methods to
be invoked when events are matched by the event-based infrastructure. The binding EM
determines the set of events that a method m in M is interested in. The set of external
events is the set of events announced by programs not in M. The semantics of the announce
construct is that when the event e is announced, an entry (e, m) is added to the set of
active events for any method m G M that is interested in this event (specified by the
binding EM). On the other hand, the execution of the consume statements corresponds
to the removal of the entry (e, m) from the set of active events. The other imperative
constructs have the standard semantics.

In addition to the computational model briefly described above, Dingel's framework pro-
poses a way of specifying the behavior of an event-based system. A specification consists of
a pre-condition, a rely-condition, a guar-condition, and a post-condition. Let us consider
an event-based system S and a specification (P,R, G, Q). S satisfies the specification
(P, R, G, Q) iff any computation of S that starts in a state satisfying the pre-condition P
and is executed in an environment whose transitions satisfy R will terminate in a state
satisfying Q and any of its transitions will satisfy G. Based on this, the process of proving
that an event-based system satisfies a specification is given.

Let <S = (M, V, EM, Ex) denote an event-based system. To show that the system <S
satisfies some partial correctness property T, 4 steps are required:

1. Define the pre-, rely-, and post-conditions of the system: P, R, Q.

2. For each method m 6 M, define the guarantee conditions Gm and GM\{m} such that
(m, V, EM, Ex) satisfies (P,RV GM\{m}, Gm, Q) and (M\{m}, V, EM, Ex) satisfies
(P,RVGm, GM\{m},Q)

3. Conclude using rely/guarantee soundness that (M, V, EM, Ex) satisfies (P, R, \J'meM Gm, Q)

4. Show that any system that satisfies (P, R, \J'meM Gm, Q) also satisfies T.

This approach has a number of shortcomings.

1. It assumes a programming language with a consume construct. Each method must
start with this statement that specifies which events the method is interested in.

32

Dingel et al. use the consume construct to model invocation of methods by the
event-based system and to trace changes in the pending event infrastructure. They,
however, recognize that this construct "introduces an unnecessary dependency be-
tween the event-method binding and the program of a method [36, 35]." Further, no
real programming language or event-based system needs such a construct.

2. The underlying specification technique is based on a pending event infrastructure.
The primary intent of an event-based system is not to queue events, but to dispatch
them to subscribers. Queuing events results from the fact that an event-based sys-
tem might not be able to forward events at the speed at which they are received.
Hence, we suggest that, although it may be important to take it into consideration at
the implementation level, a mechanism for queuing events should only influence the
abstract model in such a way that it does not complicate the reasoning too much.

3. Dingel et al. [36, 35] assume in their work that when a program is running it cannot
be triggered anymore. No mechanism is however given for achieving this. On the
other hand, there are applications where such a limitation is not acceptable.

4. The approach does not take the definition of new subscriptions into consideration.
A static binding EM is assumed. In this sense, the approach seems to miss a fun-
damental aspect of the event-based paradigm which is (because of loose coupling) to
ease the integration of new components.

5. Dingel's approach is intended for a-posteriori verification of systems instead of step-
wise construction of systems: components of the completed programs are verified in
isolation and then put together where general properties are proved. Jones [77] argues
that such approaches are unacceptable as program development methods: erroneous
design decisions taken in early steps are propagated until the system is implemented
and attempted to be proven correct.

Although Dingel et al. [36, 35] do not claim to propose a method for the stepwise construe-
tion of systems, the fact that their approach is based on Jones's rely/guarantee might lead
one to expect that it can also be used for such a purpose. To see why this is difficult, let
us consider the following development method naively derived from the above reasoning
technique:

To construct a system S that satisfies some partial correctness property T, 6 steps must
be followed:

1. Define the pre-, rely, and post-conditions P, R, Q of the system.

2. Identify the set of methods M of the system.

3. For each method m G M (not yet implemented), define the guarantee conditions Gm

and GM\{m} such that (m, V,EM,Ex) satisfies (P, R V GM\{m}, Gm, Q) and (M \

33

{m}, V, EM, Ex) satisfies
(P,R\/ Gm,GM\{m},Q)

4. Conclude that (M, V, EM, Ex) satisfies (P, R, MmeM Gm, Q)

5. Show that any system that satisfies (P, R, \Jm&M Gm, Q) also satisfies T.

6. Now, refine each method m to some implementation.

This approach, however, does not work since there is nothing that relates the specifications
(P, R V GM\{T7I}, Gm, Q) of the different methods to each other. This relation should be
provided by the event-based system. The methods should communicate with each other
through the event-based system by announcing and consuming events. This notion of
announcement and consumption of events is, however, absent from the specification, hence
the insufficiency of the specification and the inadequacy of the approach.

3.5 MODEL CHECKING EVENT-BASED APPLICATIONS

Model checking [27] which is a formal technique based on inspection of the state space of a
system is an intriguing alternative to the formal proof of software systems as a substantial
part of the process is carried out automatically. The approach is particularly well-suited
when the state space of the system is small enough. Garlan and Khersonsky [56, 57] have
tried to develop a framework for model checking event-based applications.

In fact, one of the issues in model checking a system is the construction of an abstract
finite state model of the system under analysis without eliminating the class of errors that
one wants to detect. In addition, a suitable structure for the abstract state model must be
developed. The function relating this structure to the concrete system must be such that
it eases the mapping of errors found in the abstract model to the real system.

A way of alleviating the difficulties in the model checking process is to find a generic
structure for each class of applications such that they can simply be reused when verifying
an application that falls into one of these classes. The intent of Garlan's work is to create
such a generic structure for event-based applications by identifying the main structural
elements of an event-based system that are suitable for model checking. For this purpose,
six main constituents are identified in event-based systems: publishers and consumers,
event types, shared variables, event bindings, event delivery policy, and the concurrency
model. From this, two stumbling blocks are identified for creating a state model for event-
based systems:

• the construction of finite-state approximations for each consumer/publisher and

34

• the construction of a run-time mechanism that models the event-based infrastructure.

A set of restrictions are recommended for achieving the first step: all data has a finite
range, the event alphabet and the set of consumers and bindings are fixed at runtime,
there exists a specified limit on the size of the event queue, there is a limit on the size of
invocation queues.

Environment (External event source)

Delive

i

ry policy Dispatcher

i i

Consumer

i

I

Consumer

Event Delivery

Data exchange

Event Announcement

Shared Space

Figure 3.5: Structure of an Event-Based System Model for Model Checking

The second issue is addressed by providing pluggable state modules that allow modelers
to choose from one of the possible run-time models. The problem is factored as depicted
in Figure 3.5 adapted from [56]. The user provides:

• a model of the consumers and publishers,

• a set of variables accessed by the consumers and publishers,

• a finite list of events,

• the event-method binding,

• a model that specifies the interference of the environment,

• a concurrency model (chosen from a list of given concurrency models),

• a dispatch policy (chosen from a list of models).

These parts are translated into a set of interacting state machine descriptions that can be
executed by a model-checker such as NUSMV [26].

A close look at this approach reveals that in fact, the authors only propose a model for the
event-based infrastructure which is typically a middleware, or an integration framework

35

(e.g. PeerWare [101], Spear [21], OLE [17], Yeast [83], TIB/Rendezvous [131]). The
support for the verification of the application constructed on top of such middleware is
limited to some recommendations such as restricting the range of data and restricting the
event alphabet. This is a very limited contribution to helping the developer in ensuring
the reliability of his application. On the other hand, as Dingel's approach, this approach
is an a-posteriori verification process: the properties of a completely developed application
are checked. Fixing an erroneous design decision detected after the implementation of an
application may require re-designing the whole application. This approach, however, is
inferior to Dingel's approach as it is not compositional.

3.6 DEVELOPMENT OF INTERFERING PROGRAMS

Our methodology for the stepwise construction of correct event-based applications is based
on Jones's rely/guarantee technique for the development of interfering programs. This
directly results from our interpretation of the announce construct: the set of subscribers
to an event are invoked and executed in parallel with the remainder of the announcing
program. More precisely, we base our work on that of St0len [120, 121, 122] and partly
on that of Xu [135, 136], which are extensions of Jones's work to support the development
of deadlock free concurrent systems. St0len's approach also supports the use of auxil-
iary variables both as a verification tool and as a specification tool. It can be seen as a
compositional reformulation of Owicki/Gries [98] method of verifying parallel programs.

Formal methods based on model-oriented specifications like VDM or B are applicable to
the development of sequential operations. In such approaches, state components can be
common to several operations but only one operation is executed at a time. A sequential
operation can then be interpreted as a binary relation on the state space and specified
with pre- and post- conditions. The additional complexity of concurrent versus sequential
operations is due to the presence of interference: operations access state components that
can be modified by the execution of the other operations during their own execution.

The usual way of mastering interference in parallel programs is to specify processes in
terms of assumptions and commitments. This approach was first proposed by Francez and
Pnueli [53]. The basic idea is: if the environment, by which is meant the set of processes
running in parallel with the one in question, fulfills the assumptions, then the actual process
is required to fulfill the commitments. Jones employs rely- and guar- (antee) conditions
[77] in a similar way. However, while earlier approaches essentially focus on program
verification, the goal of the rely/guarantee method is top-down program development.

In fact, pre/post-conditions specifications for sequential programs are examples of assump-
tion/commitment specifications, in which the pre-condition expresses the conditions on
the program variables that the program relies on when it starts its execution, and the

36

post-condition expresses the condition that the program guarantees when it terminates
its execution. Termination of an interfering program in an acceptable state also requires
assumption about the initial state, but this is not sufficient, one needs assumptions about
the interference of other operations.

The specification of a program in interfering environments is, therefore, given by a formula
of the form z sat (P, R, G, Q) where z is the program in question and the specification
(P, /?, G, Q) consists of the pre-condition P, the rely-condition R, the guar-condition G,
and the post-condition Q. The program z satisfies its specification if when executed in a
state satisfying the pre-condition P and in an environment whose interference satisfy R,
it will terminate in a state satisfying Q and is such that each of its steps that changes the
state satisfies the guar-condition G.

Other methods (e.g. [98, 7, 78, 25]) have been proposed for tackling the correctness of
interfering programs. They are, however, characterized by proving the components of the
completed programs in isolation and then proving that the proofs do not interfere. It is
argued [77, 120, 121, 122] that such approaches are unacceptable as program development
methods. The rely/guarantee method is superior since it allows erroneous decisions to be
stopped and corrected at the level where they are taken.

3.7 SUMMARY

We have given an overview of the current status in constructing event-based applications.
Prom this, it is obvious that there is a clear need for a sound, applicable and useful
methodology for developing event-based applications. Other researchers have tried to fill
this gap, but many issues remain open.

Essentially, a methodology for the development of event-based applications must allow
leveraging its key concept: loose coupling of components. All the approaches we de-
scribed above fail in this respect since they don't address the issue of adding new compo-
nents/methods in an existing system. Even the work of Garlan and Notkin [55] which is
just a framework for describing the taxonomy of a system fails in this respect: they assume
that the subscribers to an event are known when designing the various components. Also,
Dingel's work is based on the same assumption that the binding is pre-defined.

One of the most advocated works in this area is in fact the framework for specifying
architectural styles proposed by Garlan and Notkin [55]. This framework, however, is
silent about how to specify the methods (publishers and consumers) of an event-based
application. Worst, there is no bridge between specifications and implementations; there
is no way to verify that a program satisfies its specification.

A more recent work is that of Dingel, Garlan, Jha, and Notkin [36, 35] which proposes

37

a framework for verifying event-based applications. In addition to being based on the
assumption that there is a fixed set of subscriptions, the approach is inadequate for the
verification of large scale and complex software systems as it is an a-posteriori approach.

We propose an approach, LECAP which is intended to overcome these limitations. In this
framework, programs are specified by means of their pre-, rely-, guar-, and post-conditions.
In our approach, the components are specified independently from each other. One does
not need to know which components are subscribed to which events. Subsequently, the
development of a system can be decomposed into the development of small parts. In addi-
tion to this, our approach is a top-down development approach, which therefore supports
the stepwise development of software systems. The next chapter gives an overview of the
theoretical background needed for understanding this thesis.

38

CHAPTER 4

MATHEMATICAL INTRODUCTION

4.1 MOTIVATION

The chapter introduces the symbols, the basic concepts, and the notation used in this
thesis. Our framework for constructing correct event-based applications is built in a many-
sorted logic. This has four advantages. On one hand, many-sorted logic exhibit many of the
properties that first-order logic are interesting for (e.g. strong completeness, compactness,
Löwenheim-Skolem properties). Second, it is well known that many-sorted logic reduces
elegantly to first-order logic. The reduction is composed of two steps. At the syntax
level many-sorted formulas are translated to first-order formulas. At the semantics level,
many-sorted structures are translated into one-sorted structures. Third, although the
many-sorted language can be reduced to a one-sorted language, any one-sorted language
can trivially be included in a many-sorted language. Fourth, the many-sorted nature of
the many-sorted logic makes it a very expressive logic that is viewed as a unifier logic; a
logic into which other logic such as higher-order logic, modal logic, or dynamic logic can
be translated. The many-sorted logic presented in this chapter and assumed throughout
this thesis has a higher-order logic look which will allow us to quantify over states.

To read this thesis, the intuitive everyday knowledge of first-order logic, set theory, program
specification and verification is needed. In effect, most readers may already be familiar
with the theoretic apparatus presented in this chapter. Nonetheless, for the sake of a
self-contained thesis, we recall these notions. In case, however, the introductory notions
presented in this chapter are not sufficient, readers may refer to [19, 38, 61, 86].

The remainder of the chapter is organized in the following manner. In Section 4.2, we
introduce the concept of many-sorted language and its constituents. Section 4.3 introduces
operators for composing and manipulating assertions. Section 4.4 discusses the algebraic
properties of the operators on assertions. Section 4.5 concludes the chapter.

39

4.2 MANY-SORTED LANGUAGE

We introduce the basic concepts underlying a many-sorted language. Many-sorted logic
which is an extension of first-order logic plays an important role in many branches of
computer science in general and in program specification and verification in particular. The
important paradigms sustaining this logic include its signature, its alphabet, its structures,
formulas, and terms.

4.2.1 SIGNATURE

A many-sorted signature is a 3-tuple (J\f, J7, ar) consisting of:

• a non-empty set of sorts J\f.

• A set T of operation symbols. For each n > 0 and each n-tuple (ii, • • • , in) of sorts,
there exists a possible empty set of n-ary predicate symbols, each of which is said to
b e of sort (ii, • • • , in).

• an arity function ar defined from T to the set of positive integers N.

The arity of an operation symbol / is ar(f). If ar(f) = n, / is called an n-ary operation
symbol. We use the words nullary, unary, binary, and ternary for 0-ary, l-ary, 2-ary,
and 3-ary respectively. The sort i G M is a composed sort if it can be written in the
form (i\, • • • ,in) where ii, • • • ,in are some non-composed sorts in J\f. A sort that is not
composed is also called an individual sort.

We allow operation symbols to have multiple sorts, called many-sorted operation symbols.
This may be compared to operation overloading in object-oriented programming languages.
For any operation symbol / of sorts ii and iq, (ii ^ i^), two operation symbols /i and ji (of
sort %i and ii respectively) must be assumed; / is, therefore, understood as behaving as /i
given an element of sort i\ and fa given an element of sort i^.

It is required that:

• any two of the above sets be disjoint if they are different from each other;

• no symbol is a sequence of other symbols;

• the sort B be a sort in Af,

• the set of operation symbols includes at least the four symbols ->, V, =, and G
which are for negation, disjunction, equality, and membership respectively. The

40

first is a binary operation symbol while the others are ternary operation symbols.
The operation symbols -> and V are of sorts (B, B) and (B, B, B) respectively. The
operation symbol = is a many-sorted operation symbol defined on any sort; if i is
a sort in A/", (B, z, i) is a sort of =. The operators V, =, and G are infix operators.
That is, instead of writing V a b, we will write a V b.

The membership operation symbol G is also a many-sorted operation symbol such
that if ii, • • • in are individual sorts in M and (B, i1? • • • , in) is a composed sort in J\f
then (B, ii, • • • , in, (h, • • • , in)) is a sort of e.

4.2.2 VARIABLE

Given a many-sorted signature (A/", J-, ar), we define a set of variables V such that each
of them has its own sort i G M. We write x : E or x G E to stipulate that the variable x
is of sort E since the sort of x is also its type. The set of variables of sort i is denoted Vj.

In particular, there exist variables of individual sorts and variables of composed sorts. A
variable is not allowed to have two different sorts; that is, if x\ is of sort E\, x% oi sort E%,
and E\ is different from E2, then, it must be the case that x\ is different from x?.

In the style of VDM [75, 130, 102], we admit some special variables called hooked variables.
For any unhooked variable a; G V, there exists a hooked variable x G V. We anticipate
and intuitively justify the use of hooked variables as a means for comparing the results of
operations at different states. Some use dynamic logic for this purpose [54].

4.2.3 ALPHABET

The alphabet of a many-sorted language with signature (N, T, ar), consists of:

1. The elements of T; in particular, V, ->, G, and = are in the alphabet.

2. The quantifiers: V, 3.

3. Punctuation symbols: the opening parenthesis (, the closing parenthesis), and the
comma.

4. Variables as defined in the previous subsection. This includes variables of individual
sorts, variables of composed sorts, hooked variables, and unhooked variables.

41

4.2.4 EXPRESSIONS: TERMS AND FORMULAS

We consider the alphabet A of a many-sorted language and the set A* of finite strings over
A. The set of well-formed terms (wft) (or simply terms) is the smallest subset T of A*
such that:

1. if a; is a variable, then x G T,

2. if c is a nullary operation symbol then c eT,

3. if / is an n-ary operation symbol of sort (io, i\, • • • , in) and t\, • • • , tn G T are terms
of sorts ii, • • •, in respectively, then f(ti, • • • ,tn) G T and is of sort io.

The set W of well-formed formulas (wff) over the many-sorted alphabet A is the smallest
subset of A* such that:

1. if a is an expression of sort B, then a G W,

2. If a G W, £ is a variable of sort E, then Va; • a and 3x • a are well-formed formulas.

3. We further require that a variable can not be both quantified and unquantified in a
formula. That is, we do not support formulas of the form x = a A Vrr • x > y.

4.2.5 HOOKED FORMULAS

A hooked formula a denotes the formula obtain from a by replacing any occurrence of a
free variable v with its hooked version v .

4.2.6 OCCURRENCE

A particular variable x may appear several times in the string of symbols which constitute
a formula; each of these is called an occurrence of x.

4.2.7 BASIC SORTS AND OPERATIONS

In addition to the sort B, the many-sorted languages in this thesis are supposed to include
the sort of events Event that we do not further define. The many-sorted logic used in this
thesis will also include other operation symbols such as |, ;, ||. Similarly to other sorts,
these operation symbols will be presented progressively.

42

4.2.8 SCOPE OF A QUANTIFIER

If (QX)F is a formula where Q is a quantifier, then F is the scope of Q.

4.2.9 FREE AND BOUND VARIABLES

A variable x is free in the formula Q if x is not in the scope of a quantifier. A variable
that is not free in Q is said to be bound.

A variable is not allowed to be bound and free in the same formula.

4.2.10 CLOSED FORMULA

A formula is closed if it does not contain free occurrences of variables.

4.2.11 STRUCTURE

To assign meaning to formulas of a many-sorted language, we need to know in which set
to interpret the variables and how to assign meanings to operation symbols. This is done
by means of a structure.

Definition 1 A structure ix of a many-sorted language 2, is a function that maps

• any sort t in £ to a nonempty set of values n(t) called the carrier of t;

• any operation symbol f of sort (to, • • • tn) to a total function n(f) called the interpre-
tation of f such that:

TT(/) : TT(*I) x • • • x n(tn) ->

In particular, it is required that the carrier of B be the set of truth values {true, false}.

4.2.12 VALUATION

While a structure determines how to interpret sorts, and operation symbols, a valuation
assigns values to variables.

43

Formally, a valuation fin in a structure IT is a mapping of all variables to values in the
structure. Any variable v of sort t is mapped to an element of n(t). It is clear that
valuations are structure dependent. We will, however, simply write Q when the structure
is obvious from the context.

4.2.13 STATE

A state is a one-to-one mapping of all unhooked variables to values. For any state, it is
required that each variable be mapped to a value of the same sort. Given the state 5 and
the variable v, the value of v in this state will be denoted s(v).

If X is a set of variables and Si and 52 are two states, then si = 52 means that for any
x

variable x € X, si(x) = S2(x) and s\ 7̂ 52 means that there exists x 6 X such that
si(x) ^ s2(x).

4.2.14 INTERPRETATION

We have seen how to interpret sorts, operation symbols, and variables; the issue of inter-
preting expressions is still open. This is done by a recursive application of valuations. Fix
a structure TV and a valuation Qn. We define an interpretation f2n of expressions as follows:

• For each variable x, Q^x) = f2n(x),

• For any n-ary function symbol / of sort («i, • • • , in+i) and n terms ti, • • • ,tn of sort
iu--- , i n r e s p e c t i v e l y , O * (f (t i , ••• , t n)) = i r (f) (O n (t i) , •

In particular:

• If A is a wff, we write Q [=w A to say that Q^A) = true

• For any term t, fl \=n (ti = £2) iff ^n{h) = fi

• If ii, • • • , tn are terms of sort i\,- • • ,in and X is a variable of sort (zi, • • • , in), then

n K (t, • • • ,tn) G x holds iff (ßw(*i) , • • • ,nv(tn)) e n^x) holds;

• If P is an n-ary predicate of sort (i\, • • • ,in) and ii, • • • , tn are terms of sorts ii, • • • , in

respectively, then Q K P{tx, • • • ,tn) iff 7r(P)(ß7 r(i i) , • • • ,T2«(tn)) = true;

• For any wff <p, Q \=n (-></>) iff Q \=n (f> does not hold;

• For any two wffs 4>\ and <f>2, & \=% (4>i A ^2) iff ^ \=n 4>\ a n d ß \=n 4>i hold;

44

For any two wffs fa and fa, Q [=„. (fa V fa) iff either i? \=n fa or ß [=„. fa or both
hold.

As usual, fa => fa is introduced as a shortcut for (-'fa) V (^2) and (<?!>i ^=>- 02) is a
shortcut for ((fa =>• fa) A (fa =>

4.2.15 VALIDITY

We now discuss the validity of wffs.

The wff A is valid in the structure TT (denoted as [=„. ̂ 4) iff for any valuation Qn defined in
7T, Q \=w A holds. The wff A is valid (denoted as |= A) iff it is valid in any structure and
for any valuation.

Similarly, if s\ and s<i are two states and A is a formula, then, (51,52) \=n A is valid iff
Q \=TT A is valid when Q^ represents the valuation constructed such that for any unhooked
variable v, Qn(v) = S2(v) and for any hooked variable v , f2n(v) = S\(v).

We may also write 5 \=n A if A has no occurrence of hooked variable.

4.2.16 UNARY AND BINARY ASSERTIONS

In the remainder of the thesis, we will use the term assertion to denote any wff formula.
That is, an expression that evaluates to a boolean value is an assertion. The justification
for this denomination is that such formulas will be used to assert that they should be true
when the control flow of a program reaches a given point [61].

An assertion can be viewed as a relation on states since it defines the set of pairs (si, 52)
such that (si, 52) \=-n A is valid.

If A has no occurrence of hooked variable, A may be thought of as the set of states s such
that 5 (=„. A is valid. Such assertions are, therefore, called unary assertions. If A has
occurrences of hooked variables, A is said to be a binary assertion. Note, however, that
a unary assertion can be transformed to a binary assertion by, e.g. conjoining it with an
assertion such as x = x for any variable x. It will, therefore not be surprising that we
sometimes use unary assertions as binary assertions.

45

4.3 OPERATIONS ON ASSERTIONS

We introduce some operations for manipulating assertions.

4.3.1 SUBSTITUTION

Given the wff A, the set of expressions (î"»)i6[ln], the set of variables (vi)ie,ln] such that
any Vi is of the same sort as the corresponding r,, the expression A(v\/ri,- • • ,vn/rn)
denotes the expression obtained from A by simultaneously replacing any free occurrence
of Vi (1 < i < n) with the corresponding rj.

4.3.2 SKOLEMIZATION

Skolemization is a technique for elimination of existential quantifiers in formulas. A formula
3x • (j) is replaced with the formula 4>[x/c] if the c does not occur in (f). The term c is called
skolem constant.

4.3.3 IDENTITY ASSERTION

Given a set of variables V, Iy denotes the binary assertion such that (51,52) G Iy iff

5i = 52. That is, the variables in V are kept unchanged from the state Si to the state S2.

4.3.4 COMPOSING ASSERTIONS

We discuss the composition of tuples and assertions. The operator used for this purpose
is denoted |.

The composition of two tuples (ti, • • • ,tn) and (si, • • • , sm) (denoted (ti, • • • ,tn) | (si, • • • , sm))
is defined iff in = s\ and is constructed by catenating the two tuples obtained by removing
tn and 5i, from {t\, • • • ,tn) and (si, • • • , sm) respectively. That is,

(*1, • • • ,tn) I (Si, • • • , Sm) = (ti, • • • , tn_i, 52, • • • , Sm).

The composition of two assertions A and B (denoted A \ B) is the assertion constructed
by composing each tuple of A with each tuple of B if possible. There is no constrain on
the arity of these two assertions.

46

In other terms, given two binary assertions A and B, the tuple (si, S2) is in A | B iff there
exists some s such that (si,s) is in A and (s, 52) is in 5 .

4.3.5 TRANSITIVE CLOSURE

The transitive closure of an assertion R (denoted R+) is defined as the least binary relation
on the set of states such that if S\, 52, and 53 are states:

(«1, 52) K R => («1, «2) K

(si, 52) f=7r -R+ and (s2, s3) f=7r # + => (si, S3)

4.3.6 REFLEXIVITY AND TRANSITIVITY

A binary assertion A is reflexive iff any state 5 is such that (s, 5) \=n A holds.

On the other hand, the assertion A is transitive iff for any three states S\, s?, and S3,
(«ii sa) K A a n d (S2, S3) K A results in (su s3) \=v A.

4.3.7 REFLEXIVE TRANSITIVE CLOSURE

The reflexive transitive closure of an assertion, is obtained from its transitive closure by
allowing not only a positive number of steps, but also zero step R* = (1$ V R)+.

4.4 ALGEBRAIC PROPERTIES

We now give some algebraic properties of the composition operator | discussed in the
previous section.

4.4.1 ASSOCIATIVITY

The associativity criterion claims that it does not matter in which order the composition
operator is applied. Formally, for any three binary assertions E\, £2, Ü3, the following
claim hold:

47

£i I (£2 I £3) <=> (Ei I E2) I £3-

4.4.2 IDEMPOTENCE

The idempotence law claims that if composing a binary assertion R with itself results in
nothing else than R, then R is equal to its transitive closure. Formally, for any assertion
R, the following assertions hold:

R I R <=> R iff R+ <^> R and

R I R «==> Ä iff R* <s=^ (fl u /*).

4 . 4 . 3 DlSTRIBUTIVITY WITH O R

The sequential composition operator distributes left and right with V. That is, for any
binary assertions E\, £2, and £3,

Ei I (£2 V £3) <̂ => (£1 I £2) V (£x I £3) and

(Eh V £2) I £3 ^ ^ (£1 I £3) V (£2 I £3).

4.4.4 NON DISTRIBUTIVITY WITH AND

Unlike with V, the sequential composition operator does not distribute with A. The im-
plication holds only in one direction. Assume three binary assertions Eh, £2, and £3,
then,

Eh I (£2 A £3) => (Ei I £2) A (Eh I £3) and

(Eh A £2) I £3 => (Ei I £3) A (£2 I £3).

4.4.5 STABILITY OF ASSERTIONS

We introduce the notion of stability as in [136] and extend it to binary assertions. Let R
be a binary assertion and Q be a binary or a unary assertion.

48

The assertion Q is stable when R iff one of the following formulas hold:

• R <=$• false,

• Q | R => Q.

The stability of unary assertion can also be defined as follows.

The unary assertion Q is stable when R iff one of the following formulas hold:

• R ^=> false,

• t? AR =• Q.

Intuitively, the concept of stability allows characterizing assertions that are not affected
by some transformation. We will simply write Q stable when R.

4 . 4 . 6 MONOTONICITY OF THE TRANSITIVE CLOSURE

For any two binary assertions Ei and E2, if E2 follows from E\ then so does the transitive
closure of E2 from that of E\. Formally,

if Ei =>• E2 holds then E{ =• E% and Ef =» £2
+ also holds.

4.5 SUMMARY

The chapter presented the symbols, the basic concepts, and the notation that we will use
in the remainder of the thesis. We gave a brief introduction to the many-sorted logic in
general. In particular, we did this such that the logic has a higher-order logic look. This
allows us to introduce some constructs that would otherwise be higher-order constructs.
We, hence, directly exploit the expressiveness of the many-sorted logic. The next chapter
continues the construction of our logic. We add the sort of programs and operations for
composing them.

49

50

CHAPTER 5

THE CORE PROGRAMMING LANGUAGE

5.1 MOTIVATION

We define the LECAP programming language, a core programming language for construct-
ing event-based applications. The LECAP language is a traditional while-parallel language
extended with an event-announcement construct and later with method invocation. De-
spite its simplicity, the LECAP language is flexible enough to support many other methods
of synchronization and communication such as semaphores, synchronous and asynchronous
communications, and static and dynamic bindings. We give a detailed discussion about
the expressiveness of the LECAP language in Chapter 17.

The definition of the LECAP language includes 3 main parts: 1) the definition of an event-
based system, 2) the definition of the syntax of the language, and 3) the definition of the
operational semantics of the language. The first part is discussed in the next section, the
second part in discussed in Section 5.3. Section 5.4 introduces labeled transition systems
that we use in Section 5.5 for defining the operational semantics of the LECAP programming
language. Section 5.6 concludes the chapter.

5.2 ABSTRACT MODEL FOR EVENT-BASED SYSTEMS

Event-based systems take a variety of forms in practice. Their architectures vary from
client/server to peer-to-peer styles. Consequently, the constituents of an event-based sys-
tem exhibit different names and forms; for instance, a set of interacting entities may be
called modules, components, programs, tasks, processes, objects, or actors [40]. At the ab-
stract level, however, not all of these concepts are needed. This is reasonable and justified
since the aim of a model is to abstract from unnecessary details and retain those concepts
that determine the view that we want to have from the real system. An abstract model
must, therefore, simultaneously be rich, flexible and simple. We have identified five con-
cepts for an abstract event-based system: events, subscriptions, bindings, shared variables,
interacting programs (consumers and producers).

51

A program—called producer—announces an event by sending it to the event-based in-
frastructure. Based on the binding which records what programs are interested in which
events, the event-based infrastructure is responsible in invoking—also said triggering—the
interested subscribers—also called consumers.

An event is a piece of data that may be published by a program (producer). The set of
events that may be announced by the producers is defined by a sort E in our logic. Note
that various typing techniques may be adopted at the concrete level. In Java for instance,
the type event may be defined by means of an interface, an abstract class, a final class, or
a simple normal class. In these cases, the concept of subtyping is directly supported. In
the C programming language on the other side, an event may just be a struct construct.
Our abstract model gives no properties and structures to events. The only operation we
need on events is the matching of events to subscriptions that is done by the event-based
infrastructure based on the binding.

The way for a subscriber to define its interest in receiving some kind of events is to specify
a subscription which is a template categorizing a set of events.

The producers and consumers in an event-based system may not only interact through the
event-announcement paradigm, but they may also share some variables. In practice such
variables may be printers, database entries, or even real variables encapsulated inside a
Java object.

5.2.1 SUBSCRIPTION

Definition 2 A subscription is a unary relation over events.

Given a subscription 5 and an event e we naturally write e G s to say that the event e is
matched by the subscription s. The notation e G s is justified by the view of a subscription
as a unary relation.

5.2.2 BINDING

Definition 3 A binding is a map of some set of programs to some set of subscriptions.

A binding states which events a program is interested in. If B is a binding and z is a
program in the domain of B (denoted dom B), then B(z) defines the subscription of z.
Subscribing and unsubscribing are done by redefining this subscription.

We define subscribersß{e) = {z E dom B | e € B(z)} as the set of programs that are

52

subscribed to e. Note that subscriberSß(e) indeed depends upon the binding B. We
will simply write subscribers(e) when the binding is obvious from the context. A precise
definition of the concept of program is given in the next sections.

Definition 4 An event-based system is a tuple ($, B) consisting of a binding B and a set
of variables that programs in the domain in B share. Any variable accessed by a program
in the binding B is required to be ind.

5.3 SYNTAX OF THE LECAP LANGUAGE

The LECAP language is a while-language augmented with the parallel, the synchronization,
and the event publication constructs. Its syntax is defined as follows:

p : : = x: = e | Pi; P2 | if b then Pi else P2 fi | while b do P od
| {Pi||P2} | announce(e) | skip | await b do P od.

Many of the constructs in this language are well-known traditional constructs: the assign-
ment, the sequential composition of programs, the if construct, the while construct, and
the skip construct.

In the assignment statement, x represents a variable in the set of variables of the cur-
rent event-based system. This variable is assigned the value of the expression e which is
supposed to be of the same type as x.

Although not obvious, the parallel and synchronization constructs are also well studied.
The first models nonderministic interleaving of the atomic actions of Pi and P2. Synchro-
nization and mutual exclusion are achieved by means of the await construct. We extend
the semantics of the await construct to support the announcement of events.

The announce construct allows announcement of events. It is intended for the notification
of the event-based system which in turn triggers some subscribers. In this construct, e
represents an expression of type Event whose free variables are all in the set of variables
of the current event-based system. We will use the term application to denote a set of
programs tied by means of some subscription-event announcement relationship.

5.3.1 RESTRICTIONS

To simplify the deduction rules, it is required that:

53

1. any assignment is such that the expression on the right side is of the same type as
the variable on the left side;

Note that there is no restriction on programs that occur in an await statement. In partic-
ular, an await statement may include another await statement or an event announcement.

Definition 5 In the remainder of this thesis, we will assume that for any binding B and
for any event e, the program skip is subscribed to e, i.e. skip G subscribersß(e). The
binding that has only the program skip subscribed to any event is called empty binding and
denoted Bo-

This restriction on bindings allows us to present uniform rules without need to distinguish
the cases of events with no subscribed method.

5.3.2 SUBPROGRAM

We say that a program ZQ is a subprogram of another program z iff the latter can be written
in one of the following forms:

• if b then z\ else 22 fi , with ZQ a subprogram of z\ or z2,

• while 6 do z\ od, with ZQ a subprogram of z\,

• {̂ 111Z2}, with 20 a subprogram of zi OT Z2,

• await b do zi od, where ZQ is a subsprogram of z\

We denote this as ZQ Ç 2; we write zo ^ z is 20 is not a subset of z.

5.4 LABELED TRANSITION SYSTEM

The operational semantics of programs is commonly given in terms of a labeled transition
system. We, therefore, recall the definition of this concept in this section.

A labeled transition system is a structure (S, So, Act, —•) where:

• S is the set of configurations,

54

• So is the set of initial configurations,

• Act is a set of action labels, and

• —>• is a transition relation such that —>Ç S x Act x S. Given a configuration and
a label, the transition relation says what should be the next configuration to evolve
into.

The execution of a program is modelled by capturing its behavior through configurations
that include the program to be executed and the current assignment of values to variables.
Transitions are either program transitions or environment transitions.

5.5 SEMANTICS OF THE LECAP LANGUAGE

We give the operational semantics of the LECAP programming language in the style of
[3]. This style has been increasingly used for the definition of operational semantics (see
[11, 119, 135, 120]). The semantics of the LECAP programming language is given relative to
an event-based system ($, B) and is centered around 3 concepts: transitions, configurations,
computations.

5.5.1 CONFIGURATIONS

A configuration is a pair {z, s) composed of a program z and a state 5. The program z
may also be the empty program e.

5.5.2 TRANSITIONS

Environment transition

An environment transition A is the least binary relation on configurations such that the
following rule holds.

(z, si) -* (z, s2).

55

Environment transitions are allowed to modify only the state of the event-based system.
They may, however, do so only for variables that do not occur in the test of if, while, and
await instructions.

Program transition

A program transition —> is the least binary relation on configurations such that one of the
following holds.

SEMANTICS OF SKIP

The program does nothing but terminates. The state is kept unchanged.

(skip, s) A (e, s)

SEMANTICS OF ASSIGNMENTS

The value of the expression r is assigned to the variable u. s[r/u] denotes the state
obtained from s by mapping the variable u to the value of r and leaving all other state
variables unchanged.

{u: = r, s) -^ (e, s[r/u\)

SEMANTICS OF EVENT ANNOUNCEMENT

The set of programs that subscribed to the event e are invoked (triggered) and executed
in parallel. The first case presents the case where the announcement is the last construct
in the program.

s(x) = e subscribers(e) = {zi, • • • , zn}

(announce(z), 5) A {{zx\\ • • • \\zn}, s)

56

If however, the announcement construct is not the last construct, the subscribers are exe-
cuted in parallel with the remainder of the announcing program. The programs triggered
by an event announced by the running program are part of this program and their transi-
tions are internal transitions.

s(x) = e, m, n > 0, subscribers(e) = {21, • • • , zn}
({"announce(i);2}m, s) À

s(x) = e, m, n > 1, subscribers(e) = {21, • • • , zn}
({"announce(i)\\z}m, s) À ({{Zl|| • • • ||^}||{n2}m}, 5)

In this formula, {" denotes a sequence of n left braces {. Similarly }m denotes a sequence of
m right braces. It is important that the number of braces be taken into consideration since
omitting some of them results in a malformed program. Let us take for instance the pro-
gram {announce(x); .ziH^}. The rule says that it evolves into {{^i(e)|| • • • H-ZnCeJIIK
Ignoring the first brace would however result in the following malformed program

SEMANTICS OF SEQUENCES

If the program z\ terminates after one internal transition, the sequence composed of Z\ and
22 evolves into ZQ, after one internal transition.

i, si) A (e, 52)

(z1;z2, Si) -> (z2, s2)

If z\ instead evolves into a program zj, different from the empty program and z\ does not
start with an event announcement, then z\\ z% evolves into 23; 22•

(zi, 5i) A (23, 52) 23 7̂ e z\ 0 {announce(x);2, announce(i)}

(21; 22, S\) A (23; 22, S2)

Note that it is necessary that z\ does not start with an event announcement for the pro-
gram to evolve this way. In fact, as shown by the semantics of the announce construct,
announce(ï); 2; ZQ, instead evolves into {{zei || • • • ||26n} || 2; 22}.

57

SEMANTICS OF IF

The semantics of the if construct is not difficult to understand. If the test holds, then z\
is executed, otherwise, ZQ, is executed.

s(b) = true
(if b then z\ else z% fi, s) A (z1? 5)

s(->b) = true

(if b then z\ else 22 fi, s) A (22, s)

SEMANTICS OF WHILE

If the expression b evaluates to true in the current state, then, the body of the while
construct is executed and the while construct is re-executed. If the expression b evaluates
to false the execution of the loop terminates.

s(b) = true
(while b do 2 od, s) A (2; while b do 2 od, 5)

s(-'b) = true
(while b do 2 od, 5) A (e, 5)

SEMANTICS OF CONCURRENCY

In the first case, the program z<i terminates and the parallel composition of 22 and z\ evolves
into z\. Note that 22 can not be an event announcement construct since we have assumed
that at least the program skip is subscribed to any event.

(22, si) - ^ (e, s2)

({21 || 22}, 5i) A (zu S2) ({22 || Zi}, 5i) A (21, 52)

58

On the other hand, if z\ evolves into z[, then, {^i||^} evolves into

, si)—> (z[, s2) z{ y£ e z3 z\ 0 {announce(rr);,2, announce(rr)}

I **}, 5i> A {{z[|| 22}, s2) ({z2 || 21}, si) A ({22 || z[}, s2)

SEMANTICS OF AWAIT

The meaning of an await statement is not very clear when its body does not terminate [135].
When it, however, terminates the final state is required to satisfy the post-condition or to
deadlock. Given that we are not interested (in this work) in non-terminating programs we
can stipulate that any computation of an await-statement has a finite length.

The semantics of the await construct distinguishes two cases. In the first case, the program
is executed in an atomic step and terminates; its internal transitions are not visible to the
environment. This justifies the existence of the finite number of internal transitions that
transform {zi, Si) into (e, sn).

Si(b) = true zn = e

3(zi, si), • • • , (zn, sn) • VI < k < n • (zk.u sk.i) -^ (zk, sk)

(await b do z\ od, Si) A (e, sn)

In the second case, however, the program does not terminate, but deadlocks. The execution
of the program enters the await-construct but never exits; there is no configuration the
last configuration can evolve into.

Si(b) = true

, s2), • • • , (zn, sn) • VI < k < n • (zk.i, sjfe-i) A {Zk, sk)A

->{Zn, Sn) A {Zn+i, 5 n + i)

(await b do z\ od, si) A (await b do Z\ od, s\)

There is no restriction on the body of the await-construct. In particular, it may contain
an event announcement. The await-construct, therefore, limits the scope [51] of the state
variables to those programs that are executed following the announcement of the event.

59

5.5.3 COMPUTATION

In addition to the state of the system that programs may read and update, they may also
have local variables that are hidden such that environment transitions are not allowed to
access them. We do not model this concept yet.

Definition 6 A configuration C\ is disabled if there is no ci such that c\ -^ c^.

Definition 7 A computation is a possibly infinite sequence of environment and program

transitions (z\,s\) -^ • • • -^ (zk,Sk) -^ • • • such that the final configuration is disabled if
the sequence is finite. A computation a is blocked if it is finite and the program of the last
configuration is not e. A computation terminates iff it is finite and the program of the last
configuration is e.

The above operational semantics does not explicitly (but implicitly) discuss the case of
events announced by the environment (including external events). The programs trig-
gered by these events are part of the environment and their transitions are environment
transitions.

5.5.4 NOTATION

Given a computation a, then Z(a), S(a) and L(a) are the projections of a to sequences

of programs, states and transition labels. For instance, if a = (zi, Si) -+ (22, 52) -^ (23, 53),
then:

• Z(a) - [zi, 22,23],

• Sip) = [si,52)53],

Z(o~k), S(ak), L(ak), and ak respectively denote the k'th program, the k'th state, the k'th
transition label and the k'th configuration. The number of configurations in a is denoted
len(o~). If a is infinite, then len(a) = 00.

The operational semantics given above shows that the behavior of a program depends upon
the binding of the underlying event-based system. Consequently, the set of computations
of a program that announces some event only has a meaning iff a binding is assumed. We,
therefore, give the following definition:

60

Definition 8 Let (i9, B) be an event-based system and z a program. The set of compu-
tations of z in the binding B (denoted cp[z, B]) is the set of computations a such that
Z(ai) — z and obtained by executing z in the context of the event-based system (û,B).

5.6 SUMMARY

The chapter presented a formal definition of the LECAP programming language, a core
programming language for programs that announce events.

The definition of this language includes three main concepts: the event-based system, the
syntax of the language and its operational semantics. An event-based system was defined
as a tuple of a set of variables shared by programs in the event-based system and the
binding that binds programs to subscriptions. In addition to well-known constructs such
as assignment, iteration, and the parallel constructs, the syntax of the LECAP programming
language includes a construct for the announcement of events. The semantics of the LECAP
programming language is also given. In particular, the execution of the announcement
construct consists of triggering the set of subscribers and executing them concurrently
with the remainder of the announcing program.

Other researchers denned a formal semantics for languages that announce events [36, 35]. In
these semantics, the event-based system includes a set of events. We have rather included a
sort of events in the language of the logic. This solves the issue of whether the set of events
must be a finite set, a static set, or a dynamic set. In particular, typing and subtyping can
be applied on this sort as on any type. These semantics are also different from ours; the
semantics of the announce construct is given in terms of an event infrastructure. Finally,
these semantics include neither the parallel construct nor the synchronization and mutual
exclusion constructs.

61

62

CHAPTER 6

SPECIFICATION OF EVENT-BASED

APPLICATIONS

6.1 MOTIVATION

A key requirement for the verification and analysis of software systems properties is the for-
mulation of their behaviors in a precise manner. Formal specifications are the current mean
for expressing software requirements precisely. They can be unequivocally understood and
acted upon by all software engineers involved in the production of a software system [5].
In fact, formal specifications are not only used for the verification of software properties
but may also serve as documentation tools, as contracts, as communication means among
stakeholders (e.g. clients, customers, designers, testers, implementers, maintenance engi-
neers), as oracles for black box testing, or as basis for the derivation of test cases [134].
A formal framework for the design of software systems such as LECAP must, therefore,
include a formal notation that permits the specification of these systems. The aim of this
chapter is to fulfill this requirement.

A formal specification technique must include three building blocks: a syntax, a semantics,
and a satisfaction relation. The latter expresses the relation between the first and the sec-
ond which are called specification and specificand respectively. We discuss these concepts
for event-based systems; we provide an answer to each of the following questions:

• How to specify an event-based application? In other terms, what are the constituents
of the specification of an event-based application?

• Given the formal specification of an event-based application, what is its semantics,
what does a specification mean?

• What are the expected uses of such specifications? In particular, can they be used
for the verification of software systems properties? can they be used for the different
uses that are generally recognized for formal specifications? e.g. can they be used
for the top-down development of systems?

63

• Is the specification of event-announcement adequately supported?

These questions are justified since, as shown in Chapter 3, techniques for the formal speci-
fication of event-based applications have been proposed where many of these questions are
open.

Though the aim of this chapter is to answer these questions, we do not provide a specifi-
cation language such as VDM [130], Z [33], B [74], Alloy [70], or RSL [129], but merely an
abstract specification language consisting of assertions that can be defined in any many-
sorted language that extends the one presented in Chapter 4 by defining more sorts. For
instance, one may extend this language with the sort of characters, the sort of strings, the
sort of reals, or the sort of naturals. Such extensions, however, have no impact on our
logic; we can, therefore, say that our framework is notation independent.

The remainder of the chapter is organized as follows. The next section explains the struc-
ture of specifications in event-based systems. Section 6.3 defines the concept of behavioral
specification and discusses the related satisfaction relation. This concept is extended in
Chapter 6.4 to include more kinds of behavioral specifications. Section 6.5 introduces
structural specifications that are used for the specification of components in event-based
applications. Section 6.6 summarizes the chapter and discusses the answer to the above
questions.

6.2 STRUCTURE OF SPECIFICATIONS

The aim of this section is to informally introduce behavioral and structural specifications
and justify their need. This is done in the light of the software development process that we
envision and that we already presented in Chapter 1. If we want to construct an application
that satisfies the requirements <f>\, • • • , <f>n, we must follow the following steps (depicted
on Figure 1.2):

1. Designing an architecture that identifies the components necessary for constructing
the application.

2. Developing the formal specifications Si, • • • , Sm of these components and verifying
some local properties about these specifications.

3. Composing the specification of the whole application starting with the specification
of the components and verifying some global properties.

4. Refining the specifications Si, • • • , Sm to some implementations / i , • • • , Im.

64

The process clearly distinguishes the specifications of the components from those of the
whole application. The first are based on an undefined binding and the second are based
on bindings that reflect the desired application architecture.

LECAP is an approach in which the development of a system is done starting from that
of the parts. Ideally, such parts must be independent from each other. In this case, when
developing the parts (components) of a software system, the developers are not aware of
the existence of other parts with which their components will interact. In the event-based
terminology, this means that when announcing an event, the publisher is not aware of the
existence of the subscriber. The binding of methods to events is therefore undefined when
the components are developed.

Complete Specification Incomplete Specification!

£3
o Ö o

*• Abstract Event

Announcement

•"* Abstract Subscription

() Abstract Event Based

Infrastructure

Figure 6.1: Specifications in Abstract Event-Based Systems

These concepts are captured in Figure 6.1; the specification of an application is composed
of that of its components, the binding, and the abstract event-based infrastructure. On
the other hand, the binding is represented in the figure through the subscription and the
event-announcement arrows.

This structuring brings the compositionahty and the loose coupling of the event-based
architectural style to the abstract level: specifications of components may be developed
individually and put together by means of the abstract binding.

6.3 BEHAVIORAL SPECIFICATIONS

This kind of specification is used for capturing the requirements of an event-based applica-
tion. A behavioral specification is recognized by the binding which embodies the architec-
ture of the application. Such a specification is not intended to be used for the top-down
development of the application, but only for the verification of its global properties.

65

6.3.1 DEFINITION

Definition 9 A behavioral specification is a formula ($, &) : :(P, R, G, E), where:

• the pre-condition P is a unary assertion while the rely-condition R, the guar-
condition G and the post-condition E are binary assertions,

• (•$, B) is an event-based system,

• any free variable occurring in P, R, G, or E is an element of d,

• P is stable when R,

• E is stable when R.

A behavioral specification is essentially composed of three parts: the event-based system,
the assumptions, and the commitments.

A program is not intended to work in all environments, but in those which satisfy its
assumptions: the pre-condition P and the rely-condition R. By the pre-condition, it is
required that any program which satisfies this specification should only be started in states
satisfying P. On the other hand, the rely-condition characterizes the transitions that may
be done by the environment. A rely-condition is a binary assertion as it compares the
current state with the previous state.

Our logic requires that any behavioral specification be such that P and E are stable when
R. This simplifies the construction rules without reducing the expressiveness of the logic.

A program must guarantee something; this is captured by its commitments which are the
guarantee and the post-conditions. By the guarantee condition, a program commits to
perform only transitions that satisfy a certain assertion, namely its guar-condition. The
program also commits to terminate in a state where the post-condition holds.

This way of specifying the behavior of systems is not new. In fact, pre- and post-conditions
which are some kinds of assumption/commitment specifications were already used by Hoare
[67]. Assumption/commitments for the verification of concurrent systems were also used
by Francez and Pnuelli [53] and many other researchers. Jones [77] was the first to use
this technique for the stepwise construction of software systems. We extend his approach
to the stepwise construction of event-based applications.

We recall that this thesis is only concerned with partial correctness. That is, we want to
construct programs that satisfy their post-conditions when they terminate.

66

6.3.2 EXTERNAL

Definition 10 Given a specification ($,8) : :(P,R, G,E), then, ext^tf, B), P, R] denotes
the set of computations a such that the following conditions hold:

• Sfa) h P,

• for all 1 < j < len(cr), if L(o~j) = v and S(o~j) ̂ S(GJ+\) then (S(o~j), S(crj+i)) \= R.

The definition characterizes external computations which are computations of programs
executed in environments that respect the assumptions P and R. That is, computations
such that the initial state satisfies the pre-condition and any environment transition that
changes a state variable satisfies the rely-condition R.

Note that the environment may also announce some events that will result in the invocation
of some other programs. The set of programs triggered by such events are part of the
environment; their transitions are, therefore, also environment transitions, and hence, are
also required to satisfy the rely-condition. On the other hand, the triggered programs are
also part of the environment of each other. They are consequently also required to satisfy
the rely-condition of each other.

6.3.3 INTERNAL

Definition 11 Given a specification (i9, B) : :(P, R, G, E), then, int[(ß, B), G, E] denotes
the set of computations a such that the following conditions hold:

• len(a) ^ oo,

• if Z(aien{a)) = e then (5(o"i), S(aiença))) (= E,

ê

• for all 1 < j < len(a), if L(o~j) — i and S(o~j) ̂ 5(cr,-+i) then (S(CTJ), S(O~J+I)) (= G.

An internal computation is a finite computation that terminates in a state satisfying the
post-condition E and is such that any of its program transition (transition labelled with
i) changing some state variable satisfies the guar-condition G.

Definition 12 A behavioral judgment is a formula z sat (•$, B) : :(P, R, G, E) where:

• z is a program,

67

(•d, B) : :(P, R, G, E) is a behavioral specification,

any variable accessed by z is in the set of variables •# of the event-based system.

Remember that we already required that for any specification (•#, B) : :(P, R, G, E) any free
variable occurring in the definition of P, R, G, or E must be an element of d.

6.3.4 SATISFACTION

Definition 13 A behavioral judgment z sat ($, B) : :(P, R, G, E) is valid iff

cp[z, B] n ext[(â, S), P, R] ç mt[(tf, B), G, E}.

This is denoted as \=n z sat (i?, B) : :(P, R, G, E). We also say that the program z satisfies
the specification {d,B) : :(P, R, G, E).

Informally, to show that a judgment z sat ($, B) : :(P, P, G, E) is valid, one proves that
any terminating computation of z that starts in a state satisfying P and is executed in
an environment whose interference satisfies R has a final state satisfying E and any of its
program transitions changing the state variables satisfies G. A program that satisfies its
specification satisfies its commitments if the environment satisfies the assumptions.

Definition 14 The program z announces no event (denoted as events(z) = {}) iff announce
is not a subprogram of z.

This definition is, in fact, too strong. A program such as

if false then announce(e) else skip fi

announces no event, but is excluded by our definition. This definition is, however, simple
and easy to verify. The most important is that no program exists that really announces
an event and that is not ruled out by our definition. If z announces an event, then z must
have a subprogram of the form announce (x).

68

6.4 EXTENDED BEHAVIORAL SPECIFICATIONS

We have found it indispensable to support specifications in the style of process algebra
languages such as CSP and CCS. That is, we allow specifications of the form (•#, B) :
:{Si||S2}, (#,ß)::if b then Si else S2 fi, and (t?, ß)::Si; S2 where (tf, B)::Si and (tf,B)::S2

are also behavioral specifications.

6.4.1 DEFINITIONS

Definition 15 Extended behavioral specifications are defined recursively. If we assume
that the formulas ($, B)::S\ and (•$, B)::S2 are behavioral specifications (including extended
ones) on the same event-based system ($, B) and any variable occurring free in b is in d,
then, the formulas (i9, B) : :5i; S2, ($, B) : :{Si||S2}, and (•#, B) : :if b then Si else S2 fi are
extended behavioral specifications.

A specification of the form (t?, B) : :if b then S\ else S2 fi is called an extended behavioral
conditional specification. A specification of the form ($,#) : :Si; S2 is called an extended
behavioral sequential specification and a specification of the form ($, B) : :Si||S2 is called
an extended behavioral parallel specification.

Definition 16 An extended behavioral judgment is a formula z sat yd,B) : :S consisting
in a program z and an extended behavioral specification ($,#) : :S such that any variable
accessed by z is an element offî.

Definition 17 The program z\ behaves as the program z2 in the event-based system (-à, B)
(denoted as z\ behaves as 22 i n ($)ß)) iff for anV behavioral specification of the form
yd,B) : :(P, R, G, E), if za sat (fî,B) : :(P, R, G, E) is a valid judgment, then,
z\ sat (I9,JB) : :(P, R, G, E) is also a valid judgment.

The definition is quiet clear. A program z\ behaves as the other one zq, in the binding
(1?, B) if the first satisfies any behavioral specification that the second satisfies.

6.4.2 SATISFACTION

We now give meanings to extended behavioral specifications.

Definition 18 A program z satisfies the extended behavioral specification (fl, B)::Si;S2 iff
three programs z\, Za and zj, exist such that the following hold:

69

• z\ sat (lö,ßo) : :<Si is a valid judgment,

• 22 sat_ (•$, BQ) '• '-S2 is a valid judgment,

• Z3 = ZÙZ2,

• events(zs) = {}, and

• z behaves as 23 in (•â, B).

The simplest example of a program that satisfies the specification ($, B) : S\;S2 is the
program 23 that is the sequential composition of the programs z\ and 22 satisfying (•#, B) : S\
and ($, B)::S2 respectively. Any other program that behaves as 23 in the event-based system
(•a, B) also satisfies ($, B) : :5i; 52. For instance, 21; skip; 22, z\\v\ — v\ z; skip.

Definition 19 A program z satisfies the extended behavioral specification (ti,B
iff three programs z\, z^, and 23 exist such that:

• z\ sat (i9, Bo) : :Si is a valid judgment,

• 22 sat (iâ,Bo) : :^2 is a valid judgment,

• zz = {2J22},

• events(zs) = {}, and

• 2 behaves as 23 in (1?, B).

Definition 20 A program z satisfies the extended behavioral specification
(tfyB) '• :if b then Si else S2 fi iff three programs z\, Z2, and 23 exist such that:

• z\ sat (i9, Bo) '• :Si is a valid judgment,

• 22 sat (•#, Bo) : :<% is a valid judgment,

• Z3 = if b then z\ else 22 fi,

• events(z3) = {}, and

• 2 behaves as 23 in (~d,B).

70

6.5 STRUCTURAL SPECIFICATIONS

The previous concept of behavioral specification does not support announcement of events.
And, in fact, announcement of events is not required when verifying the properties of an
application. Instead, the announcement of events is replaced with triggered subscribers.
For the development of components, however, event announcements must indeed be taken
into consideration. We introduce a new kind of specification called structural specification.
Such specifications are characterized by the missing binding. One does not know yet with
which other components a component will communicate.

Similarly to process algebra languages such as CSP [68] and CCS [89], we allow specifica-
tions to take the forms (tf,B) : :{5i||52}, (ti,B) : :if b then 5X else S2 fi, (•d,B)S1; S2. As
extended behavioral specifications, this kind of specifications allows specifying not only the
behaviors of the specified program, but also make obvious which components this program
may be composed of.

6.5.1 DEFINITIONS

We introduce the abstract announcement construct which allows specification of event
announcements at the abstract level.

Definition 21 We assume a set of variables d. A structural specification is defined recur-
sively.

• If exp is an expression that evaluates to an event, then, d : : announce {exp) is a
structural specification iff any variable occurring free in the definition of exp is in d.

• -d : :{P, R, G, E) is a structural specification iff:

— P is a unary assertion and R, G, and E are binary assertions whose free vari-
ables are in "d, and

— P and E are stable when R.

• If "d : :«Si and d : :S2 are structural specifications on the same set of variables d
and any variable occurring free in b is in d, then, d : :Si;S2, $: :{Si||S2}, and
•d : :if b then Si else S2 fi are also structural specifications.

Definition 22 A structural judgment is a formula z sat d : :S consisting in a program z
and a structural specification 'd-.-.S such that any variable accessed by z is an element of d.

71

Definition 23 The program z\ behaves as the program z^ (denoted as z\ behaves as z-z)
iff for any event-based system ("d-,B), z\ behaves as z^ in (•#,#).

That is, z\ behaves as 22 in ($, #) for any event-based system (i9, B).

The definition is also clear. The behavior similarity is now extended to any event-based
system.

6.5.2 SATISFACTION

We now give some meanings to structural specifications. As one may guess from the name,
this satisfaction relation constrains the structure of a program. We distinguish four cases
of structural specification.

Definition 24 The program z satisfies the specification d : :(P, R, G, E) iff:

• z sat (•#, Bo) : :(P, R, G, E) is a valid judgment and

• events(z) — {} .

In the absence of synchronization, the definition is equivalent to requiring that the program
satisfies the given specification if the binding is replaced with any other binding.

Note that in general, z sat d : :(P, R, G, E) can not be derived from the behavioral
judgment z sat (•#, B) : :(P, R, G, E). In the latter judgment z may announce an event
and let the behavior (P, R, G, E) achieved by a subscriber while in the first case, z
announces no event, hence, achieves the behavior itself.

Definition 25 The program 2;announce(expi) satisfies the structural specification
•d : :(P, R, G, E); announce(exp2) iff z ML $ '• :(-P> R, G, E A exp\ = exp-i) is a valid
judgment.

The post-condition of the program z determines the state in which the announce construct
is invoked and, hence, the set of events that may be announced in this state.

Definition 26 A program z satisfies the structural specification d:\ Si; S2 iff three programs
Z\, Z2 and Z3 exist such that the following hold:

• z\ sai_ $: :S\ is a valid judgment,

72

• z% sat d : :S2 is a valid judgment,

• z3 = z\\ Zfi, and

• z behaves as z3.

The simplest example of a program that satisfies the specification ê : Si; S2 is the program
Z3 that is the sequential composition of the programs z\ and 22 satisfying d : :Si and Û : -.Sz
respectively. Any other program that behaves as 23 also satisfies d : :Si; S2.

Definition 27 A program z satisfies the structural specification û : :{5i||52} iff three pro-
grams z\, Z2, and z$ exist such that:

• z\ sat "d : : Si is a valid judgment,

• zq. sat -d : :S2 is a valid judgment,

• z3 = {zi\\z2}, and

• z behaves as z3.

Definition 28 A program z satisfies the structural specification ûrÀf b then 5i else S2 fi
iff three programs z\, Z2, and Z3 exist such that:

• z\ sat $: :Si is a valid judgment,

• Z2 sat d ::S2 is a valid judgment,

• Z3 = if b then Zi else ZQ, fi, and

• z behaves as zj,-

These definitions justify that the satisfaction is indeed structural; not only the behavior of
the specified program is constrained, but to some extends, also its structure. For instance,
a program that satisfies id::Si; announce(exp) needs to be written as the sequential compo-
sition of a program satisfying -d::Si and some event announcement. In general, the concepts
of structural and extended behavioral specifications have the following advantages.

1. It might be argued that by including specifications of the forms if b then Si else S2 fi,
{«Sill^}? or {«Si;«^}, the concepts of structural specifications and extended behav-
ioral specifications are not abstract enough. We, however, argue that this is not the
case; structural specifications and (extended) behavioral specifications include tra-
ditional specifications that are of the form (P, R, G, E). Any program specified by
means of the concepts of structural and behavioral specifications can, therefore, be
specified at the same level of abstraction as when using the 4-tuple (P, R, G, E).

73

2. Structural and behavioral specifications are more intelligible than traditional specifi-
cations; they are easier to read and to understand. The reader can easily capture the
(possible) structural constitution of such specifications. The parts are still existing
in the whole.

3. Announcement of events is supported in structural specifications. Traditional speci-
fications do not lend themselves to easy formulation of properties such as announce-
ment of events.

In general, structural specifications allow designers to express their requirements at the level
of abstraction they find adequate. Despite these advantages, structural specifications have
the problem that they do not allow verifying properties of systems. For instance, what does
it means to say that the program a program satisfying $: :(P, R, G, E); announce(exp)
terminates in a state satisfying Q. Therefore, a means must be found to convert such
specifications into behavioral and extended specifications.

6.6 SUMMARY

Any framework for the formal construction of software systems must:

• indicate how to formally describe these systems,

• define a set of specificand for assigning meaning to specifications, and

• show how to relate a specification to its semantics.

We have shown in this chapter how this can be done for event-based applications. We
distinguished two kinds of specification, namely behavioral and structural specifications.
We claimed that structural specifications are more intelligible while they do not allow
verifying properties of systems. This lead us to the argument that a way must be proposed
for converting specifications from structural to behavioral ones.

Yet, there is a number of questions that are still open. How do we know that these spec-
ifications are well-suited for the announcement of events? how to specify that a program
announces an event after the fulfillment of the condition Q? The remainder of the thesis
answers these questions. So, please hold on!

74

CHAPTER 7

CONSTRUCTION OF SYSTEMS

7.1 OVERVIEW

The development process of an event-based application (depicted in Figure 1.2) is composed
of four main steps that we listed in the previous chapters. Given that we now know what
specifications are involved in this development process, we can give more information on
it.

The first step of the process is concerned with the architectural design where the different
components of the applications are identified. This step is clearly out of the scope of this
thesis.

The second step is concerned with constructing structural specifications of components
which are specifications that do not depend on any binding. In fact, structural specifica-
tions, allow announcement of events to be specified in such conditions where the binding
is undefined. This step also includes the verification of local properties related to specifi-
cations of components. Given a structural specification of a component, say ê : :{Si||52}>
there is a-priori no indication that the programs which satisfy ê : :S\ and d : :Sz do not
interfere with each other. Such requirements can, and need to, be discharged in isolation.
For this, the empty binding can be assumed and the behavioral specifications derived.

Once the local properties concerning the specifications of components are verified, these
specifications can be composed to construct the complete behavioral specification of the
application. This process includes adding new subscriptions to the binding and discharging
the global properties of the application. If a subscription relating the program z to the
event e is added to the binding, the behavior of any program that announces e must be
reviewed for interference freedom. Finally, some global properties may be checked.

Figure 7.1 depicts this process and shows that iterations may be done between the various
steps. For instance, if the global property ip does not hold, it may be because the binding
is not adequately constructed, in which case we go back and adjust it.

The aim of this chapter is twofold. First, to present a set of rules for the decomposition
of programs. These rules are the basis for the top-down development of components.

75

Achitectural Design

Component Specification

Specificali

cat Properties

MI Federation

[position POs

obal properties

)

Figure 7.1: Specifications Development Process in Event-Based Systems

Next, we show how to integrate new components into an event-based application. That
is, we show how the (behavioral or extended behavioral) specification of an application
is composed starting with the specifications of the components. In addition, Section 7.5
discusses a symbolic example whose purpose is to clarify the complete development process
of an event-based application. Section 7.6 summarizes the chapter.

7.2 CONSTRUCTION OF COMPONENTS

This section presents the rules for the top-down construction of programs (components).
The rules are extensions and adoptions of those investigated in [77, 120, 136] and show
how a specification can successively be decomposed, hence are called decomposition rules.
They are of one of the following forms:

premise 1
premise 2

premise n
conclusion.

76

The rule means that if each of its premises holds in the structure TT, then the conclusion
follows in the same structure.

The symbol O is used in some of the following rules as a generic operator that can be
replaced with the parallel composition operator || or with the sequential composition op-
erator ;. This replacement must, however, be the same in the same rule. That is, O can
not be replaced with || at one place of a rule and with ; at another place of the same rule.

7.2.1 CONSEQUENCE RULE

The consequence rule allows strengthening the assumptions while weakening the commit-
ments in a specification. It is the basis for the refinement of specifications.

Gi =»
R2 =>
P2 =»
z sat i

E2,
G2,
Ri,

Pu
9::(Pu Ru Ei).

zsatti::(P2, R2, G2, E2).

If z is executed in an environment satisfying the assumptions P2 and R2, since Pi and Ri
follow from P2, and R2, z is in fact executed in an environment satisfying Pi and Ri and,
therefore, guarantees Gi and Ei which however imply G2 and E2 respectively.

7.2.2 COMPOSED CONSEQUENCE RULE

z\ sat d : :S =>• Z\ sat -d : :S'
z sat-d: :SiOSOS2

z satd: :SiOS'OS2.

Let us investigate the case where O is replaced with the sequential composition operator.
If z can be written as the sequence of three programs satisfying d:\Si, d:: (Pi, PLI, G\, E\),
and (Pi, PLI, GI, EI)::S2, then, since the second program also satisfies "d::P2, R2, G2, E2)
the consequence of the rule follows.

77

7.2.3 PARALLEL RULES

The parallel rule justifies the decomposition of {^i||^} into z\ and 22. If the programs
z\ and 22 c a n coexist, then their parallel composition is a program that ends in a state
that satisfies the post-condition of each of these programs. Coexistence means that the
rely-condition of each follows from the guar-condition of the other.

7.2.4 BASIC PARALLEL RULE

G2 => ft
Gi = • R2

Zlsat#::(P, Ru Gu Ex) (7.1)
Z2satiï::(P, R2, G2, E2)
{zx\\z2} ML # : :(P, Rx A A2, Gi V G2, Ex A £2).

7.2.5 COMPOSED PARALLEL RULE

G2 => Äi
Gi = • R2

events(z) = {} (7.2)
^ 2 , G2,

sat -d : :(P, Äi A R2, d V G2, Ex A

If 2 can be written as the parallel composition of two programs satisfying i?::(P, R\, G\, E\)
and ~d : :(P2, R2, G2, E2) respectively, then by application of the basic parallel rule one
deduces the conclusion of the composed parallel rule.

7.2.6 SEQUENTIAL RULE

The rule permits the sequential composition of programs.

78

7.2.7 BASIC SEQUENTIAL RULE

The sequential composition is permitted if whenever started in a state satisfying its pre-
condition, the first program guarantees to terminate in a state satisfying the pre-condition
of the second program. In these conditions, the result of the composition terminates in a
state satisfying E\ | E2 which is the composition of the assertions E\ and E2.

Z! sat # : : (P i , Ri, Gu Ei A P2)
22 sat # : : (P 2 , Ä2, G2, E2) (7 3)

: :(Pi, Äi A R2, d V G2, £1 \ E2).

Obviously, any program transition of the composition z\ ; 22 is either a transition of Z\ or
22, and therefore satisfies G\ or G2. The environment must ensures the rely-condition of
each of the programs zx and z2, i.e. R\ A R2.

7.2.8 COMPOSED SEQUENTIAL RULE

events(z) = {}
z sat fl::(Pi, Ru <?i, ElAP2);(P2, R2, G2, E2) (7.4)
z satd: -.{P^ Rx A A2, Gi V C2, £?i | E2).

If 2 can be written as the sequential composition of two programs satisfying Î9 : : (P , R\, G\, E
and 'd::(P2, R2, G2, E2) respectively, then by application of the sequential rule one deduces
the conclusion of the rule.

7.2.9 CONDITIONAL RULE

The conditional rule is probably one of the simplest rule if we take into consideration that
the environment is not allowed to interfere on variables used in the boolean test.

79

7.2.10 BASIC CONDITIONAL RULE

zi satd: :(P A b, R, G, E)
zg sat ^: :(PA-ife, R, G, E) (7.5)
if b then z1 else z^ n sat •& • :(P, R, G, E).

7.2.11 COMPOSED CONDITIONAL RULE

z sat ê : :if b then S\ else 52 fi; 53 ._ „.
(7.6)z sat d : :if b then 5i; S3 else S^; S3 fi.

If the program z does either S\ or 52 and subsequently performs 53, then the program z
does either 5i followed by .S3 or ^2 followed by S3.

7.2.12 GLOBAL RULE

The global rule allows introduction of new shared variables in the specifications of pro-
grams. Since the new variable is assumed not to occur in z, z does not change its value.

zsatd\{v}::{P, R, G, E)
z sat t?U{«}: : (P, R, G A I{v}, E).

7.2.13 PRE RULE

The pre- rule is straightforward. It allows adding more information in the post-condition of
a program. If a program must end in a state satisfying E when started in a state satisfying
P, then, it ends in a state that satisfied P and which was transformed such that it now
satisfies E.

z satti::(P, R, G, E)
(7.8)

z satd::{P, R, G, P A E)

80

7.2.14 POST RULE

The post-rule is as straightforward as the pre-rule. It allows adding more information in
the post-condition and claims that if the final state of a program satisfies E, then, it was
reached by a finite number of guar- and rely-transitions.

zsatti::(P, R, G, E)
zsatd::{P, R, G, EA(RVG)+).

7.2.15 SKIP RULE

The skip statement tolerates any interference that conserves the validity of P. Its unique
program transition does nothing but terminates. Thanks to the stability of the pre-
condition P, the program terminates in a state satisfying P.

P stable when R , .
skip sat d::(P, R, false, P).

7.2.16 ASSIGNMENT RULE

A single program transition is performed, namely the assignment of the value of r to
the variable v while all other variables are kept unchanged. The assignment is done in
a state that satisfied P. If from these conditions we can derive that the guar- and the
post-conditions will be satisfied, then the conclusion of the rule follows.

P, E stable when R

p" A v = V A k\{v} => (GVI^AE (7.11)
v: = r sat d : :(P, R, G, E).

The fact that the environment may interfere before and after the assignment is rendered
obsolete by the stability requirement.

81

7.2.17 ITERATION RULE

In this rule, the pre-condition P is an invariant of the loop; each iteration must ensure not
only its post-condition, but also the pre-condition of the next iteration.

b stable when R
zsat-d: :(P A b, R, G, E A P) (7.12)
while b do z od satti::(P, R, G, {E+ V R*) A -.&).

7.3 COMPONENTS INTEGRATION

A clear way of integrating components is a crucial requirement for any methodology that
supports the development of event-based applications. This section discusses this issue.
Integrating a component in an event-based system is trivial if this component is not sub-
scribed to some event. Any program conserves its behavior. The formula B\J {z\ i—> {}}
represents the binding obtained from B by additionally mapping the program z\ to the
empty set of events.

INTEGRATION RULE

z\ £ dorn B

z sat (fl, B) : :(P, R, G, E) ^ ^
z soi (tf, Bi) : :(P, R, G, E)

Things are instead more interesting when subscribing a component of the event-based
system to an event. There is no additional rule that tackles this issue. The process of
transforming a structural specification to a behavioral specification is used for this purpose.
Informally, the following steps must be followed:

• Subscription of the program z\ to the event e by adding the corresponding entry to
the binding,

• Identification of any program z% that possibly announces the event e,

• Transformation of the structural specification of z2 into a behavioral specification
while discharging the related proof obligations.

82

When transforming the structural specification of z^ to a behavioral specification, it is
important to reuse proofs that were already discharged. For instance, it is very likely that
the specification of \\subscribers(e) will be computed. The general requirement for this
is that any two distinct subscribers to e be such that the rely-condition of one follows
from the guar-condition of the other. Since this requirement was already fulfilled in the
binding before the subscription, it is sufficient to prove that the rely-condition of the newly
subscribed program follows from the guar- condition of any other subscribed program while
the guar-condition of the newly subscribed program implies the rely-condition of any other
subscribed program.

7.4 SYSTEM BEHAVIOR ANALYSIS

The integration of a component in the event-based system requires verifying interference
freedom and validity of some global properties. This verification is based on behavioral
specifications which are specifications of the composed application obtained by defining a
binding that reflects the architecture of the application.

This section shows how to compose the specification of the application on the basis of the
specifications of the components. Further, the section presents some rules for manipulating
behavioral specifications. In fact, most of the rules presented for structural specifications
are easily extended to behavioral specifications.

In particular, the consequence rule, the parallel rule, conditional rule, the global rule,
the pre rule, the post rule, the skip rule, and the assignment rule are simply obtained
by replacing the set of variables $ with the event-based system ($, B). For instance, the
behavioral consequence rule is given below. Other rules are omitted as they are trivially
derived form the structural versions.

7.4.1 CONSEQUENCE RULES

The consequence rule allows strengthening the assumptions while weakening the commit-
ments in a specification. It is the basis for the refinement of specifications.

83

7.4.2 BASIC CONSEQUENCE RULE

•r 2 => -» 1 >

2 sa* (tf,8) : :(Pi, iZi, gx, Eh)
z sat\d,B)::{P2, R2, G2, E2).

7.4.3 SEQUENTIAL RULE

The sequential rule is one of the rules (besides the iteration rule) whose behavioral ver-
sion is not derived trivially from the structural version. The rule permits the sequential
composition of programs. We consider two programs z\ and 22 such that z\ announces no
events, i.e. events(z) = {}. The sequential composition is possible if the pre-condition of
the second program follows from the post-condition of the first.

7.4.4 BASIC SEQUENTIAL RULE

sat tf::(Pi, Ru Gu Ex A P2)
sat (#,ß)::(P2 , #2, G2, Eh) (7.14)

; 22 sat (-a, B) : :(Plt £1 A R2y Gx V G2, Ex \ E2).

The requirement that the first program announces no event is included in the structural
specification z\ sat d : :(Pi, R\, G\, E\ A P2) and is important for the rule to hold.

7.4.5 COMPOSED SEQUENTIAL RULE

z sat Q9,ß)::(Pi, Ru Gu £iAf2) ;(P2 , ^2, G2, E2)
z sat (t?,ß) : :(Pi, Ri A R2, Gx V G2, Eh \ E2).

The composed sequential rule requires no modification as the meaning of z sat ('d, B)::S\; S2

requires that the first program announces no event.

84

7.4.6 COMPOSITION OF SPECIFICATIONS: ANNOUNCE RULE

The announce rule allows generating behavioral specifications based on a binding and some
structural specifications. It results from the parallel rule and from the semantics of the
announce construct. If e is an event and {zi, • • • , zn} is the set of subscribers to e, then
the following rule holds.

subscribers(e) = {z±, • • • zn}

{z1\\---\\zn\\z}sat (tf,B)::(P, R, G, E) (7.16)

announce(e);z sat (ß,B) : :(P, R, G, E).

This rule is, however, applicable only to cases where e is a constant event value and the
set of subscribers well defined. In practice, however, an expression exp may be used whose
value depends upon the state variables. In this case, subscribers (exp) can not unequivocally
be defined.

Let us take for instance the case where exp is the variable count which is a state variable.
Further, a program z\ may be subscribed to events satisfying count > 10 while another
program zq, may be subscribed to events that satisfy count > 0. The set of subscribers
to the event count is {22} when count < 10 A count > 0 while it takes the value {zi, z^\
if count > 10 holds. We need to split the range of count such that in each interval,
subscriber(e) is defined unequivocally.

events(z) = Xi l±l X<i

{zii\\---\\zni\\zn+1} sat(ti,B)::Si

Me G Xi • subscribers(e) = {zu, • • • zni) (7-17)

z sab_ fi : :(P, R, G, E); announce (exp)

z\ z»4.i sat (û,B) : :(P, R, G, E);if exy G X^ then fl else & fi.

The range of the expression exp in the specification •â : :(P, R, G, E); announce(exp) is
the set of values that it may take. This set is defined as

events(z) = {e : Event • 3si, s2 : State • (s\, S2) |= E A exp = e}

85

which is the set of events e such that there exists two states that validate the assertion
E A e = exp.

In this rule, it is assumed that this set can be split into two disjoint subsets X\ and X2 such
that all events in X\ have the same set of subscribers and all events in Xi have the same
set of subscribers. The rule can easily be extended to cases where more Xi are required.
The result of the rule is a behavioral specification that reflects the architecture of the
application.

7.4.7 CONDITIONAL RULE

The conditional rule in the context of behavioral specifications is slightly different from
that of structural specifications. The specification of the program if b then Z\ else 22 fi; z
is given instead of simply giving that of if b then z\ else 22 fi. In this way, announcement
of events is supported within if constructs.

7.4.8 BASIC CONDITIONAL RULE

z1;zsat('d,B)::(PAb, R, G, E)
Z2-z sat('a,ß)::{PA^b, R, G, E) (7.18)
if b then zx else 22 fi; 2 sat (tf, B) : :(P, R, G, E).

7.4.9 COMPOSED CONDITIONAL RULE

z sot (-â, B) : :if b then £x else £2 fi; £3
z sot (#, B) : :if b then £l5 £3 else £2; £3 fi.

The composed conditional rules is similar to the case of structural specifications.

7.4.10 ITERATION RULE

The iteration rule is the second rule whose behavioral formulation differs from the sequen-
tial one. This is understandable as the semantics of the iteration construct is given in
terms of the sequential composition.

86

In fact, we have not yet found a general enough and elegant formulation for the support
of event announcement in the while construct.

To touch at the difficulties in the formulation of this rule, let us consider the programs

z sat_ •d : :(P, R, G, E). and zw = while b do z; announce(e) od where e is a constant
value (without occurence of variables). If the loop is executed three times, zw can be
expanded into:

z; announce(e); z; announce(e); z; announce(e)

Let us also assume a binding where the only program subscribed to the event e is

In case there is no interference, the result of the above iteration would be:

E\E\E A E\Ei A E\E\E1 A E \ E \ E \ Ei

This result is unfortunately not easily generalized to cases, for instance where the event
e is an expression that depends upon some global variables or where the announcement
construct appears within the body of some if constructs.

Note: The set of behavioral rules is sufficient for developing event-based applications when
the binding is static; no structural specifications are required. An adequate methodology
for the development of event-based applications must, however, foresee the integration of
new components into the application. In this respect, this set of rules is insufficient. A naive
way of supporting the addition of new components into the application is to restart the
verification of all components from scratch after each modification of the binding. Clearly,
such a method does not scale to applications with a non trivial number of components;
compositionality is required, which is provided by the announce rule.

7.4.11 PRACTICAL CONSIDERATIONS

The following extension of the skip rule was shown to be useful in practice.

zsgt(ti,B)::{P, R, G, E)
z;skip sat ($,B)::(P, R, G, E) , .

skip; z sat ($,&)••--(P, R, G, E) K '
z||skip sat (0,13): :{P, R, G, E)

87

The behavior of the program z is not affected by any parallel execution with skip. This
rule also holds for structural specifications.

7.4.12 NON REFINEMENT OF MATCHING FUNCTIONS

This section forbids the refinement of matching functions. A matching function is a func-
tion that takes a subscription and an event and decides whether the event matches the
subscription. When a subscription is modeled as a unary assertion, the matching function
is simply the membership operator (i.e. a boolean function).

As a function, one may be tempted to refine a matching function, we urge to resist this
temptation.

Let us illustrate what happens to a refined matching function. For this, we consider a
matching function mi that is required to satisfy the specification (P, Q V Q\). By the
traditional consequence rule, a program m-2 that satisfies (P, Q) also satisfies (P, Q V Q\)
and can be used instead of m\. This implies that we can have a tuple (e, s) (where e is an
event and s a subscription) such that mi(e, 5) holds while ^ (e , 5) does not hold. In other
terms, we could have a situation where at the abstract level a program Z\ is subscribed to
the event e announced by some z while at the concrete level the implementation of z\ is
not subscribed to e. The implementation of z would subsequently not be a refinement of
z.

7.5 A SYMBOLIC EXAMPLE

This section presents a symbolic example whose intend is to illustrate the application of
the proposed development methodology in a succinct and condensed manner. By symbolic
example, we mean an example in which the assertions are not further defined.

7.5.1 SPECIFICATION OF COMPONENTS

We assume two components z\ and z^ with the following structural specifications where

n, Gn, En)\\(Pl2, R12, G12, £i2)};announce(e); (P13, R13, G13l

R21, G2i, E21).

88

VERIFICATION OF LOCAL PROPERTIES

We want to show that the assertion Q holds in any final state of Z\. This property is local
as it is a property of z\ and does not require a binding to be constructed. It is independent
of the application in which the component z\ will be integrated. To discharge this property
we must transform the specification z\ into a behavioral specification.

DERIVATION OF THE BEHAVIORAL SPECIFICATION

By application of the announce rule, followed by the skip rule, we derive that:

zi sat(ti,B0)::{{Pn, Rn, G1U En)\\(P12, R12, G12, E12)};(P13, Ris, G13, E13).

The behavioral specification of 22 is obtained by simply replacing d with the event-based
system (•$, BQ) because 22 announces no event.

The following proof obligation must be discharged for the program Z\ to have a predictable
result. The first is required by the parallel rule and the second is required by the sequential
rule.

Proof Obligation 1 (Gxx => R12) and (Gn =>• Rn).

Proof Obligation 2 En A E13 => P13

We assume in the remainder that these proof obligations are discharged. We can now
formulate the proof obligation of interest.

Proof Obligation 3 (En A E12) \ E13 => Q.

The left part of the implication is the post-condition of the behavioral specification of z
obtained by applying the parallel rule first and the sequential rule next.

Note that due to the clarity of the specification, there is no need to explicitly write each
step of the derivation of this proof obligation.

INTEGRATION OF COMPONENTS

We now compose the application, i.e. the binding is constructed. We subscribe the program
22 to the event e. Our intention is to obtain an application such that £21 holds in the final
state of 2. The binding now looks as follows:

89

ßi = { (zi) •-> {}, <z2> •-> {e}, (skip) .-> {z

and is such that subscribers(e) = {z%, skip}.

DERIVATION OF THE BEHAVIORAL SPECIFICATION

As above, we must apply the announce rule followed by the skip rule to derive the following
behavioral specification.

z1sat(d,B0)::{(Pn, Ru, Gn, £n)||(Pi2, Ä12, G12, E12)};{(P21, R21, G21, E21)\\(P13, Ä13, G13, En}).

In addition to the proof obligations discharged above, the following proof obligation must
be discharged to ensure interference freedom. The first proof obligation is required by the
parallel rule while the second is required by the sequential rule.

Proof Obligation 4 (G21 => Ri3)A(Gi3 => R2l).

Proof Obligation 5 (En A E12) => P2\.

The proof obligation for the property of interest is therefore:

Proof Obligation 6 (En A E12) | (£21 A E13) => £21-

If this property holds, the components z\ and 22 can now be developed independently
by stepwise refinement of their structural specifications. The program z\ for instance,
will be developed by stepwise development of the components zn, z\i, and Z\% that satisfy
tf::(Pn, An, G11, £n),tf::(Pi2, Ä12, G12, ^12), and i?::(Pi3, Ä13, G13, ^13) respectively.
Obviously, COTS components can also be used instead.

A general problem that one must be aware of when using such COTS components is
that they are already implemented and nothing (except refinements) can be modified on
their specifications to make them fulfill the requirements that one would like to achieve.
In this example, if the composition of the application reveals that the property E21 is
not satisfied, we can modify the specification of ZQ, to make it fit our requirements. The
implementation of ZQ, is only ordered when we are sure that its specification describes the
expected behavior. If, however, 22 is an "off-the-shelf component and its specification
does not allow the fulfillment of the property of interest, we must change the component
and investigate another one.

90

7.6 SUMMARY

This chapter presented a set of rules for the stepwise construction of event-based applica-
tions. In the introductory section, we gave more details on the development process, the
steps involved in this process, and we elicited the use of the various kinds of specifications
that are involved in this process. Next, we provided some rules for the decomposition of
specifications. These rules are intended for the top-down development of programs on the
one hand, and for the transformation of structural specifications into behavioral specifica-
tions on the other hand. The details and the necessity of this process were also discussed.
Finally, this chapter presented a symbolic example that illustrates in a succinct manner
the different steps in the development process of an event-based application.

91

92

CHAPTER 8

SYNCHRONIZATION AND MUTUAL

EXCLUSION

8.1 MOTIVATION

We have shown the similarity between event-based systems and concurrent systems. On
the other hand, synchronization and mutual exclusion are two techniques without which
the development of a large class of concurrent systems would be difficult —if possible at all.
Mutual exclusion is the assurance that only one process is given access to a shared resource
at any one time. We show in this chapter how synchronizing event-based programs can be
constructed. Mutual exclusion is not sufficient to provide fair access to resources; deadlock
may arise. To prevent this, we must be aware of methods and techniques which allow us
to control the allocation of resources to processes. St0len [120] and Xu [135] have shown
how to ensure deadlock freedom in the stepwise development of state based concurrent
systems. We adapt these techniques to allow the stepwise development of synchornizing
deadlock-free event-based programs. In the style of St0len [120], we extend specifications
to include a new component called wait-condition which is a unary assertion. A program
is allowed either to terminate or to block. However, the program may only block in a state
satisfying the wait-condition. Further, it is required that no program blocks within the
body of an await-statement.

The remainder of the chapter is organized as follows. The next section elaborates on the
construction of synchronizing event-based applications. In particular, the impact of the
await construct is discussed. We extend behavioral and structural specifications with
wait-conditions in Section 8.3. Section 8.4 adapts the rules for the construction of event-
based components to leverage the concepts of synchronization and mutual exclusion while
Section 8.5 introduces auxiliary variables for the specification and verification of complex
systems. Section 8.6 concludes the chapter.

93

8.2 MUTUAL EXCLUSION

The previous chapter ignored the await construct. This section shows how to construct
programs that support mutual exclusion which is the assurance that no two programs
access a shared resource simultaneously. The requirement in such concurrent systems is
to let processes access the resources without causing data conflicts. The LECAP language
provides an await construct that serves this purpose. In a program such as

await b do z od,

the body of the await construct will be executed atomically without any interference. The
specification of this program is given by the await-rule.

8.2.1 AWAIT RULE

The await-rule specifies the behavior of a program in an await construct. Let us assume
that the program is executed in an environment whose transitions satisfy the rely-condition
R. The execution of this construct is described as follows. Its body will not be executed
until the blocking condition b holds. During this blockage, the environment is allowed to
interfere in a way that R is satisfied. Therefore, the body of the await construct must have
a pre-condition that is not affected by the interference of the environment. In other terms,
this body will start in a state that is reached from a state satisfying P by a finite number
of R transitions. This justifies the requirement on the stability of P. Similarly, after the
execution of the construct, the environment can still perform a transition that satisfies R.
To terminate in a state satisfying E, it is, therefore, important that E be stable when R.

There are many other factors that influence the result of an await construct:

1. each program transition changing the state must do so in a way that the guarantee
condition holds,

2. the body of the await-construct may be a skip, resulting in 1$,

3. due to the atomicity of the execution, the await construct only performs one program
transition that is visible to the environment,

4. the final state must satisfy the post-condition E.

The first two of these factors imply that each program transition of the await construct
which changes the state must satisfy the guar-condition. There is, however only one such

94

transition. This means that the body of the await construct must also satisfy the guar-
condition if the state is changed, i.e. (1$ V G) must hold.

P stable when R
E stable when R
z sat{ß,B): : (PA b, false, true, (G V I*) A E) ^8 '
await b do z od sat (tf, B) : :(P, R, G, E)

Announcement of events within the body of an await construct is not forbidden. If the
body z satisfies its specification the fact that it announces an event is not relevant. There
is however a crucial difference between events announced inside await-constructs and other
events. Any program that is subscribed to an event announced inside an await construct
will be completely executed before the end of the construct. This has a direct impact on
the sequential rule.

8.2.2 SEQUENTIAL-AWAIT RULE

The sequential-await-rule illustrates the fact that an event that is announced in an await
construct has no effect on programs that are sequentially composed with this await con-
struct. Note the absence of the requirement that the first program announces no event.

Z2sat(-d,B)::(P2, R, G, E2)
await b do zx od sat (i?,g) : :(PU R, G, Ex A P2) (8.2)
await b do zx od; 22 sat (d,B) : :(PU R, G, Ex \ E2)

8.3 SPECIFICATION OF DEADLOCK FREE PROGRAMS

The previous section showed how to specify programs that depend on synchronization
and mutual exclusion. It, however, ignored the issue of deadlock that may arise when
more than one program wait for a condition to hold. This section shows an extension
of the specification technique presented in Chapter 6, that supports developing deadlock
free applications. In the style of St0len [121], we extend specifications to include a new
component called wait-condition which is a unary assertion. A program is allowed either
to terminate or to block in a state satisfying the wait-condition. Further, it is required
that no program blocks within the body of an await-statement.

95

8.3.1 SPECIFICATION

As in Chapter 6, we distinguish structural and behavioral specifications. The concept of
event-based system remains the same.

8.3.2 DEFINITION

Definition 29 A behavioral specification is a formula (•#, B) : :(P, R, W, G, E), where:

• ($,13) is a an event-based system,

• the pre-condition P, and the wait-condition W are unary assertions,

• the rely-condition R, the guar-condition G and the post-condition E are binary
assertions,

• any variable occurring free in P, R, W, G, or E is an element offi,

• P is stable when R,

• E is stable when R.

The set ext[(d, B), P, R] constrains the environment and is composed of computations that
are such that the first state satisfies the unary assertion P while any transition labelled
with v is either such that the binary assertion R holds or the state is kept unchanged.

Definition 30 Given the event-based system (û, B), a unary assertion P, and a binary
assertion R, then ext[(i!), B), P, R] denotes the set of computations a such that the following
conditions hold:

S(*i) h P,

for all 1 < j < len(a), if L(CTJ) = v and S(CTJ) ^ S(aj+i) then (S(aj), S(aj+i)) (= R.

On the other hand, configurations that characterize an adequate behavior of the running
program are finite configurations with final states satisfying either the post-condition or
the wait-condition and with program transitions that satisfy the guar-condition if they
change any of the state variables.

96

Definition 31 Assuming an event-based system (û^B), a unary assertion W, and two
binary assertions G, and E, then int[("ô,B), W, G,E] denotes the set of computations a
such that the following conditions hold:

• len(a) ^ oo,

• if Z(o-len{a)) = e then (Sfa), S{aien{(j))) (= E,

• if Z(alen{a)) ^ e then S(aten{a)) \= W,

• for all 1 < j < len(a), if L(OJ) = i and S{UJ) ^ S(aj+i) then (5 (ÖJ) , S(aj+i)) \= G.

These definitions implicitly take into consideration the case of a program ze triggered by an
event e announced by z; the subscriber ze is part of the running program which becomes
ze\\zi where z\ is the remainder of z. In the parallel composition ze\\zi, ze and z\ are in the
environment of each other and are, therefore, required to coexist.

8.3.3 EXTENDED BEHAVIORAL SPECIFICATIONS

We introduce extended behavioral specifications as in the Chapter 6.

If we assume that the formulas ("d,B) : :5i and (#, B) : :S2 are either behavioral specifi-
cations (including extended ones) the same event-based system (#, B), then, the formulas
(•d, B) : :5i; S2, (û, B) : :S1\\S2, and (ti, B) : :if b then Si else S2 fi are extended behavioral
specifications.

In addition to these, (•$, £?)await b do S od is also a extended behavioral specification
whose satisfaction is defined as follows.

Definition 32 A program z satisfies the extended behavioral specification
(•#, B) : :await b do S od iff two programs z\ and z2 exist such that the following hold:

• z\ sat ("diBo) '• 'S is a valid judgment,

• Z2 = await b do z\ od,

• events(zi) = {}, and

• z behaves as 22 i n (i?,ß)-

The simplest example of a program that satisfies this specification is of course

await b do z\ od.

97

8.3.4 STRUCTURAL SPECIFICATIONS

Structural specifications are now introduced as of one the forms Si||52, if b then Si else 52 fi,
Si; S2, or await b do S od. These kinds of specifications allow specifying not only the be-
haviors of the specified program, but also make obvious which components this program
is composed of.

Definition 33 We assume a set of variables ti. A structural specification is defined recur-
sively.

• If exp is an expression that evaluates to an event, the formula d : : announce (exp) is
a structural specification iff any variable occurring free in exp is ind.

• fi : :(P, R, W, G, E) is a structural specification iff:

— P, and W are unary assertions and R, G, and E are binary assertions whose
free variables are in -d, and

— P and E are stable when R.

• If'd: :Si and d : :^2 are structural specifications on the same set of variables d, then,
ê : :S\; S2, "d '• :5'i||52, and "d : :if b then Si else S2 fi, "d : :await b do S od are also
structural specifications.

8.3.5 SATISFACTION

The satisfaction relation relates a specification to a specificand. In other terms, we assign
meanings to specifications.

Definition 34 The program z satisfies S = ($,B) : :(P,R, W, G,E) (denoted as (=
z sat S) iff cp[z, B] n ext[(û, B), P, R] C int[(d, B), W, G, E) holds.

To show that z sat ($, B) : :(P, R, W, G, E) is valid, one proves that any computation of z
started in a state satisfying P and executed in an environment whose interference satisfies
R has a final state satisfying E if it terminates and W if it blocks while any program
transition changing the state variables satisfies G.

Definition 35 We say that ($, B) : :(P, R, W, G, E) is valid iff for any program z G
z sat (tf, B) : :(P, R, W, G, E) is valid.

98

Definition 36 A program z satisfies the specification d : :(P, R, W, G, E) iff:

• z sat ({skip},tf,Bb) : :(P, R, W, G, E) holds and

• events(z) = {}.

Definition 37 A program z satisfies the specification "a : :await b do 5 od iff two pro-
grams z\ and 22 exist such that:

• z\ sat -d : :S holds,

• z>2 = await b do z\ od, and

• z behaves as z2-

Other cases of structural specifications are given semantics as in the previous chapter.

8.4 CONSTRUCTION OF SYSTEMS

The construction of deadlock free applications includes the same steps presented in the pre-
vious chapter. In particular decomposition of programs must be elicited for synchronizing
event-based applications.

8.4.1 CONSTRUCTION OF PROGRAMS

This section presents the rules for the top-down construction of programs (components).

8.4.2 Parallel rule

We investigate the rule proposed by St0len [121] first. A similar rule is proposed by Xu
[135].

-.(Wi A W2) A -.(W2 A Ex) A -•(Wi A E2)
--iP,RVG1,WVW1,G1,E1)
: :(P, RV G2,WV W2, G2, E2)

Zl\\z2 sat d : :(P, R, W, d V G2, Ex A E2)

99

We concentrate on the wait-conditions. The rule says that if we establish that ->(W\ A
W2) A -*(W2 A E\) A ->(Wi A E2) is true, then the parallel composition of z\ and ZQ, is a
program that may block when W holds. The intuition behind this rule is better grasped
if we consider its following simplification where W is false.

-•(W1 A W2) A -•(W2 A Ei) A -.(Wx A £2)

2!||22 sof # : :(P, R, false, d V G2, Ex A

The programs Z\ and 22 niay block in states satisfying W\ and W2 respectively. Their
parallel composition blocks if either one of them blocks while the other is terminated or
both block. It is thus understandable that the composition of both programs does not block
if we prove that neither of them blocks when the other is terminated and both programs
do not simultaneously block. We reformulate these rules in a more direct and intuitive
way:

satd: :(P, R V Gu Wu Gu Eh)

sat 1? : :(P, R, W, d V G2, Eh. A E2) (8.5)

where W d= (Wx A W2) V (W2 A Ex) V (Wx A E2)

Independently of any assumption on the wait-conditions of z\ and 22, the rule describes
the behavior of 2i||z2- Any state in which Zi\\z2 blocks is such that either both programs
z\ and z>2 are blocked or one of them is blocked and the other terminated. The rule is a
generalization of that proposed in [121, 136]. Showing that the composition of z\ and ZQ,
does not deadlock consists of proving that Z^ZQ, never blocks.

Gx => R2

G2 =ï Rx
Zxsat(ti,B)::{P, Rx, Wu Gx, Ex)
z2sat{-d,B)::{P, R2, W2, G2, Eh) (8.6)
{z1\\z2}sat('d,B)::(P, Rx A R2, W, Gx V G2, Ex A E2)

where W d= (Wx A W2) V (W2 A Eh) V (Wx A E2).

The rule is also applicable if zx and 22 satisfy the two structural specifications
tf::(P, Ru Wx, Gx, Ex) and d : :(P, R2, W2, G2, Eh).

100

8.4.3 ANNOUNCE RULE

events (z) = Xj (±lj2

Ve 6 Xi • subscribers(e) = {zu, • • • zni}

{zii\\ • • • \\zni\\zn+1} sat (-d,B) : : $ (8.7)

z sat d : :(P', R, W, G, E); announce(exp)

z\ z„+1 sat (d,B) : :(P, R, W, G, EYM exp g X^ then S^ else & fi.

The domain of the expression exp in the specification d : :(P, R, G, E); announce (exp)
is the set of values that it may take. This set is defined as

events(z) = {e : Event • 3s\, S2 : State • (si, S2) \= E A exp = e}

which is the set of events e such that there exists two states that validate the assertion
E A e = exp.

8.4.4 AWAIT RULE

The await rule is intended for synchronization and mutual exclusion. The await statement
blocks until b holds. During this blockage, the environment may interfere, yielding to the
requirement that P is stable when R. In addition to satisfying the post-condition, the final
state of z must satisfy the guar-condition if the state is changed (expressed as G V 1$).

P stable when R
E stable when R , .
zsat(ê,B)::(PA b, false, true, (G V h) A E) l '
await b d o z o d sat (t?, B) ::(P,R, PA ->b, G, E)

8.4.5 SEQUENTIAL RULE

The rule permits the sequential composition of programs. We consider two programs z\
and 22 such that z\ announces no event. The resulting program blocks if either of the
composing programs blocks.

101

zisatd::{Pu Ru Wu Gu

z2sat('d,B)::(P2, R2, W2, G2, E2) (8.9)
zx\ 22 sat (tf, B) : :(Pi, Ri A R2, Wx V W2, d V G2, Ex \ E2).

8.4.6 SEQUENTIAL-AWAIT RULE

Unlike the previous rule that relies on the first program not announcing an event, this
rule claims that the sequential composition may be done if the first program that possibly
announces some events is embedded in an await construct.

&B)::^, R, Wu G, E2)
await b do zx od sat (#,g) : :(PU R, W2, G, Ex A P2) (8.10)
await b do zy od; zo sat (tf.fi) : :(PU R, Wi V W->, G, E^ \ B>)

8.4.7 CONSEQUENCE RULE

The consequence rule allows strengthening the assumptions while weakening the commit-
ments. It is the basis for the refinement of specifications. If z blocks in states satisfying
W\, then z blocks in states satisfying W2 if W2 follows from W\.

Cil ^ " *-J21

Wi => W2, (8.11)

zsat(-â,B)::(Pi, Ri, Wi, d , E\)
#,B)::(P2, R2, W2, G2, E2)

Other rules can be derived in a straightforward manner from the rules in Chapter 7.

8.5 AUXILIARY VARIABLES

Auxiliary variables have been used as a tool not only for the verification of systems [136,
118], but also for their specification [121]. We extend Stolen's auxiliary variables rules

102

[121] and apply it to the event-based paradigm.

We extend the definition of an event-based system to include a set of auxiliary variables
a. The event-based system S is now defined as ($, a, B) where a H fi = {}. An auxiliary
variable is a variable that may be used for the specification of programs although it does
not belong to ê.

There are some further restrictions on auxiliary variables:

• Auxiliary variables are not allowed to occur in tests of if, while and await state-
ments. This restriction ensures that such variables have no influence on the imple-
mented algorithm and correspondingly on the result of this implementation.

• Auxiliary variables are not allowed to appear on the right hand side of assignments
unless the variable on the left hand side is also an auxiliary variable.

• Auxiliary variables should not depend on each other. In this way, it is possible
to remove some auxiliary variables from the program without need of removing all
auxiliary variables.

8.5.1 SPECIFICATION

The basic structural specification is now a formula of the form (i9, a) : :(P, R, G, W, E)
where d is the set of state variables and a is the set of auxiliary variables such that
i) f l a = {}. As in the previous chapters, any variable occurring free in P, W, R, G, or
E must be in fi U a. The behavioral specification ($, a, B) : :(P,R, G, W, E) is defined
similarly. Other kinds of structural specifications are defined as in the previous chapters.

8.5.2 SATISFACTION

Based on these assumptions, any assignment a: = u where a is an auxiliary variable and
u is an expression is such that any variable occurring in u is an element of d U {a}. Such
an assignment is called a well defined assignment to an auxiliary variable. A sequence of
well defined assignments to auxiliary variables is denoted l^,a)- We define the concept of
program augmentation.

Definition 38 Given the event-based system (id,a,B), a program z^ is an augmentation
of the program Z\ (denoted Z\ -̂> %i) iff z^ can be obtained from z\ by the following substi-
tutions:

103

any assignment v: — r with await true do v: = r; l($ia) od, where v: = r does
not occur in an await statement and l(#^a) is a sequence of well defined assignments
to auxiliary variables;

any statement of the form await i ido z od with await b do z'; /^Q) od,
where z <—> z' holds and Z(#ia) is a sequence of well defined assignments to auxiliary
variables.

Definition 39 The formula z\ sat (rd,a,B) : :(P, R, W, G, E) is valid iff there exists a
program zq, such that z\ '—* 22 and cp[z2, B] D ext[{rd, a, B), P, R] => int[(-d, a, B), W, G, E\.

Definition 40 The formula z\ sat (fl, a) : :(P, R, W, G, E) is valid iff:

• z\ sat^ ({skip}, i9, a, Bo) : :(P, R, W, G, E) is valid and

• events(zi) = {} .

To show that a program z\ satisfies a specification, one constructs an augmentation of z\
that satisfies this specification.

8.5.3 DEDUCTION RULES

ASSIGNMENT RULE.

The rule expresses the ability to replace an assignment v: = r with the sequence of assign-
ments v: = r; a: = u without changing the results of the program. One can notice that
the conclusion of the rule remains the same as for the assignment rule without auxiliary
variables.

P stable when R

E stable when R
- _ _ (8.12)
PAv=rAa=uA I^Ua)\{v,a} => (GV /DUQ) A E

v: = r sat (ti, a) : :{P, R, false. G, E).

104

AWAIT RULE

The rule is obtained by a combination of the first await rule, the sequential rule, and the
above assignment rule. By the sequential rule one deduces the validity of

{z; a: = u} sat (P A b, false, false, true, E | (Idua\{a} A a = u)).

By the await-rule this program is embedded in an await-construct.

P stable when R

E2 stable when R

Ei I (kua\{a} A a = IT) =• (GV /AJQ) A E2

2 soi (#,<*,#) ::(P A b, false, true, (G V/*) A

await 6 do z od soi (1?, a, B) ::(P,R,P A -16, G, £2)

ELIMINATION RULE

The elimination rule allows removing some auxiliary variables from a specification. The
variable to be eliminated should occur neither in W, G, nor in E.

z sat(-d,a,B)::(P,R, W,G,E)

z sat(ê,a\ {x}, B) : :(3x :P,Vx:3x: R, W, G, E) (8.14)

8.6 SUMMARY

Due to the similarities between event-based systems and concurrent systems, we experi-
enced the necessity of eliciting the development process of deadlock free event-based ap-
plications. This chapter started by illustrating the use of the await construct in a context
where deadlock is not likely to occur; only mutual exclusion is required and specified. Next,
the chapter showed how to specify a component that possibly blocks. The specification

105

of a program is extended with a fifth component called wait-condition which characterizes
the state in which a program is allowed to block.

Auxiliary variables were shown to be necessary for the specification of some concurrent
systems. This chapter also discussed the combination of auxiliary variables and event-
based systems.

We are convinced that many developers are not aware of the concurrency implied by
the event-based paradigm. We suspect that most event-based applications do not really
need strong concurrency. Some kind of coarse grained concurrency may be accepted by
developers if the effort for developing such applications is less than it would be otherwise the
case. Chapter 11 alleviates the difficulties in the development of event-based applications
by imposing the constraint that for any two distinct subscribers to an event e, none of
them modifies a variable that the other writes to or reads. The rely- and guar-conditions
disappear under such a requirement giving rise to a specification technique that resembles
the specification of sequential programs.

106

CHAPTER 9

STACK-COUNTER EXAMPLE

We consider an example resembling that of Dingel et al. [35, 36]. The goal is to develop a
system including a stack and a counter. Whenever an element is pushed on the stack, the
counter must be incremented. Similarly, the counter must be decremented whenever an
element is removed from the (top of the) stack. Although this seems to be a very simple
example, it represents an important class of applications. A program executes its body and
announces an e.vent at the end of this execution as a means to notifying other components
of this successful execution.

To make the development process resemble that of real event-based applications we start
with a system that includes only a stack and the related operations. The counter is added
as an evolution of the system.

In this example, and in most examples in this thesis, we do not perform the top-down
development of components. It does not differ much from the traditional top-down devel-
opment of rely/guarantee programs. We rather concentrate on illustrating how event-based
applications can be composed at the abstract level, which is new. Specifications of compo-
nents are constructed, local properties are checked in isolation, then the specifications are
put together, and the global properties are checked.

9.1 COMPONENT SPECIFICATION

9.1.1 DATA MODELING

We define the datatypes needed for the construction of our application.

107

Element = token;
Stack = Element*;
Event :: name : EventName, elt : Element;
Subscription = Event-set;
Prog = {impl-increment) \ (impl-push) \ {impl-decrement) \ (impl-pop) \ (skip);
EventName = (pushaction) \ (popaction);
Binding = Prog -̂ > Subscription-set;

An event is defined as a VDM composite type (record) which includes the name of the
event and an element which is not further defined (declared as token). We introduce the
enumeration type Prog for referring to operations defined in this specification and that
may be elements of the EB system's set of programs. Further, a subscription is a set
of events that a subscriber is interested in. Finally, a binding associates each program
(element of type Prog) to its set of subscriptions. The state of the EB system is composed
of the variables stack, count, and elt. The binding is not yet defined since the structural
specifications of the components are constructed separately.

System

stack : Stack;
counter : N;
elt : Element;

9.1.2 SPECIFICATION OF COMPONENTS

Next, we propose the specifications push and pop for the operations impl-push and impl-pop
for adding and removing elements to and from the stack. Two points indicate that they
are structural specifications. First the binding is not constructed. Next, the specification
of push is composed of that of simple-push and an announcement construct.

simple-pushQ A

pre true

rely stack = stack A elt = elt

guar stack = [elt] ̂ stack A /^\{stacfc}

post stack = [elt] ̂ stack A elt = elt

push() A
simple-pushQ;
announce (mk- Event ((pushaction) ,elt));

These specifications are not difficult to understand. Push for instance, does simple-push
followed by the announcement of an event whose name is {pushaction) and whose payload is

108

the pushed element. On the other hand, simple-push specifies the addition of an element
to the stack. The post-condition ensures that the new stack consists of the old stack
augmented with a new element. The rely-condition requires that the stack is not changed
by the environment.

Analogously, pop does simple-pop and subsequently announces an event named (popaction)
with the removed element as payload.

simple-pop() A
pre stack ^ []

rely stack — stack A elt = elt

guar stack = tl stack A I^\{stack,ett} A elt = hd stack

post stack = tl stack A elt = hd stack

pop() A
simple-pop;
SLnnounce(mk-Event((popaction), elt));

9.2 VERIFICATION OF LOCAL PROPERTIES

As local property, we would like to show for instance that impl-pop reverses impl-push.
That is, if we add an element to the stack and apply impl-pop next, the resulting stack is
equal to the initial stack.

9.2.1 DERIVATION OF BEHAVIORAL SPECIFICATIONS

We saw that structural specifications are not suitable for checking properties of systems.
For instance it is not obvious what is the post-condition of impl-push. The specifications,
therefore, need to be transformed to behavioral specifications. For the purpose of verifying
local properties, we assume the empty binding Bo, i.e. the binding that maps any program
different from skip to the empty set of events but skip to all events. Formally,

Bo A {(impl-push) H-> {}, (impl-pop) \-* {}, (skip) H-» {X : Event}}

From this binding, it is clear that for any event e,

subscribers(e) = {skip}.

109

And, applying the announce rule followed by the skip rule, the following specifications are
derived:

behavioral-push() A simple-pushQ; behavioral-pop() £̂ . simple-pop();

Our goal is, therefore, to show that the program impl-pushpop is the identity operation.

impl-pushpop A impl-pushÇ);impl-popÇ)

We call pushpop the specification of impl-pushpop. By the definition of structural specifi-
cations, is it clear that impl-pushpop satisfies the following structural specification:

pushpop £^ behavioral-pushQ; behavioral-pop()

which we naturally expand to:

pushpop A simple-pushQ; simple-popQ

The sequential rule requires discharging the following proof obligation which trivially holds
due to the validity of its conclusion.

Proof Obligation 7 post-simple-push => pre-simple-pop

The proof obligation of interest is, therefore, formulated as:

Proof Obligation 8 post-simple-pushQ \ post-simple-popQ => stack = stack.

To discharge this proof obligation, we first simplify it and transform it to:

Proof Obligation 9 stack = [elt] ^ stack \ stack = tl stack =>• stack = stack

Which trivially results from the application of the definition of the assertion composition
operator |.

To summarize, we extracted the local properties of the components impl-push and impl-pop.
We showed that in the empty binding, impl-pop reverses impl-push.

110

9.3 APPLICATION COMPOSITION

This step consists of subscribing components to events. Such components may be newly
developed and inserted in the system or existing and already subscribed to other events.
In the first case, this may be viewed as an evolution/maintenance operation. This also
corresponds to the composition of the system by the integration of the developed compo-
nents. In the second case this can be either the reconfiguration of an existing application or
simply the construction of an application starting with some "off-the-shelf components.

All these cases are captured in our development process through the subscription of com-
ponents to events. We want to include the operations for incrementing and decrementing
the counter into our event-based application.

9.3.1 SPECIFICATION OF NEW COMPONENTS

We propose the following specifications for the operations impl-increment and impl-decrement
for incrementing and decremeting the counter.

decrement () A

pre counter > 0

rely counter = counter

guar counter = counter-1 A I$\{COUnter}

post counter = counter-1

increment () A

pre true

rely counter = counter

guar counter = counter + 1 A I&\{counter}

post counter = counter + 1

Fortunately, these specifications are so trivial that there is no local properties to be checked
about them. We would have assumed the empty binding again, transformed the specifica-
tions into behavioral specifications, and discharged these properties.

By the integration rule we can insert these operations into the binding which becomes:

ßi — {(impl-push) i—*{}, (impl-decrement) *—*•{}, (impl-increment) *—>{},
(impl-pop) H-» {} , (skip) H-> {X : Event | true}}

111

Following Section 7.3 that defines the process of integrating and subscribing a component,
three points must be investigated next:

• subscribing the component to the event of interest,

• identifying programs that possibly announce this event,

• transforming the structural specifications of these components into behavioral spec-
ifications while discharging the required interference freedom POs.

9.3.2 SUBSCRIPTION OF NEW COMPONENTS

We want to achieve the effect of counting the elements of the stack using the counter.
For this, we subscribe the component impl-increment to events named {pushaction). The
expected effect is the increment of the counter whenever an element is pushed on the stack.
Similarly, we want to achieve the decrement of the stack whenever an element is removed
from the stack. We, therefore, subscribe the program impl-decrement to the events with
name (popaction).

The binding now looks as follows:

02 ^ { (impl-push) H-> {}, (impl-decrement) H-> {e : Event • e.name = (popaction)},
(impl-increment) i—> {e : Event • e.name = {pushaction)},
(impl-pop) H-» {}, (skip) i—> {x : Event}}

It results that for any events e\ and e% such that e\.name = {pushaction) and e2-name =
(popaction), the function subscribers that defines the subscribers of an event is defined as
follows:

subscribers(ei) = {(impl-increment), (skip)}
subscribers(e2) = {(impl-decrement), (skip)}

Since, however, by the skip rule, sÄi/?||z behaves as z we can reduce the above definition
to:

subscribers(ei) = {(impl-increment)}
subscribers^) = {(impl-decrement)}

112

9.3.3 IDENTIFICATION OF AFFECTED COMPONENTS

We identify the components whose behaviors may be affected by the subscription of
the programs impl-increment and impl-decrement to the events named (pushaction) and
(popaction).

Trivially, the program impl-push is affected by the subscription of impl-increment while
impl-pop is affected by subscription of impl-decrement.

Although this step is easy in the case of this application, this is not the case in general.
Consider a component with the structural specification T9U{Ü}::(P, R, G, £);announce(v).
The events announced by this program are determined by the first part which satisfies
$U {v} : :(P, R, G, E). The set of events possibly announced by this program is, therefore,
the values that the variable v may take in states satisfying the post-condition E (see
Chapter 13 for instance).

9.3.4 DERIVATION OF BEHAVIORAL SPECIFICATIONS

New subscriptions were added to the binding. We, therefore, need to show that this
does not result in interference. In particular, the behavior of components that may be
affected by these subscriptions must be revised. This is done by transforming the structural
specifications of these components into behavioral specifications.

We consider the case of push first. For any event e\ such that e\.name = {pushaction) , it
was shown in the previous section that

subscribers(ei) = {(impl-increment)}

By the announce rule one deduces the following behavioral specification of impl-push:

behavioral-push() A simple-pushÇ); incrementQ;

The sequential rule requires discharging the proof obligation:

Proof Obligation 10 post-simple-push => pre-increment

which indeed holds since pre-increment is true.

Next, we revise the behavior of impl-pop; we determine its behavioral specification first.
For any event ei such that e^.name = {popaction), the following equality holds.

113

subscribers (e^) = {(impl-decrement)}

By the announce rule one deduces the following behavioral specification:

behavioral-pop() A simple-pop(); decrement^)

The sequential rule, however requires that the pre-condition of decrement follows from the
post-condition of simple-pop which we formulate as:

Proof Obligation 11 post-simple-pop() =>• pre-decrement()

It is, however, easy to see that this proof obligation does not hold. If a program satisfying
simple-pop is started in a state where counter < 0, it also terminates in such a state (if
the environment does not modify counter) which does not result in the pre-condition of
impl-decrement. We, therefore, need to refine the specification of simple-pop. Further,
we add more information into the post-condition by means of the pre- and post- rules as
follows:

simple-popl() ^

pre stack ^ [] A counter > 0

rely stack = stack A elt = elt Acounter > 0

guar stack = tl stack A I^\{stack,eit} A e ^ = hd stack

post stack = tl stack A elt = hd stack A (rely V guar)"1" A pre

and the behavioral specification of impl-pop correspondingly evolves into:

popl() £f simple-popl; decrementÇ);

And the proof obligation becomes:

Proof Obligation 12 stack = tl stack A elt = hd stack A (rely V guar)+ A pre => counter > 0

in which pre-simple-poplQ, rely-simple-poplQ, and guar-simple-poplQ are abbreviated
as pre, rely, and guar respectively.

To discharge this proof obligation, we simplify it by

114

• removing any conjunct that does not concern the counter (using the fact that
A => C results into A AB =>• C).

• observing that counter = counter V counter > 0 follows from (rely V guar)+

The proof obligation is now given as:

Proof Obligation 13 counter > 0 A (counter = counter V counter > 0) => counter > 0.

which also trivially holds.

9.4 VERIFICATION OF GLOBAL PROPERTIES

We have completed the specification of the application in a way that interference freedom
is ensured. We now want to check some global properties; those properties that motivated
the subscription of some components to some events. In our case, we wanted to ensure the
counting of the elements of the stack.

The property of interest can be divided into two requirements:

• pushing an element results in a situation where the counter reflects the length of the
stack,

• removing an element results in a situation where the counter reflects the length of
the stack,

These requirements are formulated as:

Proof Obligation 14 pre-push A post-push =>• counter = len (stack).

Proof Obligation 15 pre-pop A post-pop => counter = len (stack).

Let us investigate the first of these POs that we attempt to discharge based on the be-
havioral spécification behavioral-push. It is, however, easy to see that this PO does not
hold; the program may be started in a state where the value of the counter is different
from the size of the stack. We, therefore, need to further strengthen the assumptions on
the environment by refining simple-push. We also apply the pre- and post- rules to add
more information into the post-conditions. The specification now looks as follows:

115

behavioral-push()
pre len (stack) = counter

rely stack = stack A counter = counter
guar G v G'

post stack = [elt] ^ stack A (1$ V G)+ \ counter = counter + 1 A (1$ V G')+

To discharge the PO, we observe that:

• counter = counter + 1 A (4 V G')+ results in counter = counter + 1 A U{counter}

• stack = [elt] ^ stack A (1$ V G)+ results in stack = [elt] n stack A I^ytack}

This observation leads to rewriting the PO as:

Proof Obligation 16 (counter = len (stack) A stack = [elt] ^ stack A counter = counter) \

counter = counter + 1 A stack = stack =£> counter = len (stack)

The validity of the PO is obtained by applying the definition of the composition operator
| and observing that adding an element to the stack results in increasing its length by 1.

The proof of the second PO follows the same steps and is omitted.

9.5 COMPONENT IMPLEMENTATION

We propose the following implementations for the above programs. We assume that each
assignment is atomic.

impl-simple-push ^ stack:=[elt] ^ stack

impl-push £^ impl-simple-push; announce(mk-Event((pMs/iac£ion),elt))

impl-increment ^ counter:= counter+1

impl-simple-pop ^ elt:=hd stack; stack:=tl stack

impl-pop £f impl-simple-pop; announce(mk-Event((popac£2on),elt))

impl-decrement ^ counter:= counter-1

116

We need to show that impl-push satisfies the specification push, that impl-increment sat-
isfies increment, that impl-pop satisfies pop and that impl-decrement satisfies decrement.

The proof that impl-increment satisfies increment is done as in traditional rely/guarantee
approaches [34, 77, 94, 121, 136]. Similar are the proofs that impl-decrement satisfies
decrement, that impl-simple-pop satisfies simple-pop and that impl-simple-push satisfies
simple-push. We omit them.

By application of the definition of z soi ê : :Si; S2 it results that impl-push satisfies push
and that impl-pop satisfies pop.

9.6 SUMMARY

This chapter presented a first basic example in the design, analysis and implementation of
a correct event-based application. Although this is a simple example many argue that it
represents an important class of systems in event-based applications [56]. In particular, it
represents the class of applications where a component modifies its state and subsequently
notifies interested subscribers of the successful completion of the operation. The structural
specification of such components is typically of the form d : :(P, R, G, E); announce(e).
The steps required for developing such applications are the same that we followed in this
chapter.

We showed how to discharge the local properties of components by assuming an empty
binding. Then, we showed how to add new components in the event-based system, hence,
composing the specification of the application starting from those of the components. The
subscription of such components may lead to interference in the system. We discussed
how to detect the required proof obligations and how to discharge them. The subscription
of a component to some event is often certainly motivated by some effect that must be
achieved. This effect is captured as global property of the system; we showed how to
tackle such issues. Finally, we showed that the stepwise development of components that
announce events is not very different from that of traditional rely/guarantee components.

Although it is based on rely/guarantee conditions, the example presented in this chapter
allows no program to run concurrently. This may be seen as abusing rely-/guarantee
conditions. In the next chapter, we discuss a variation of this system that is more tolerant
in the sense that it allows more applications to be executed concurrently.

117

118

CHAPTER 10

MUTUAL EXCLUSION IN THE

STACK-COUNTER EXAMPLE

The version of the stack-counter example presented in the previous chapter requires that
any program running concurrently should modify neither the stack, the element, nor the
counter. This restriction may be unacceptable for some settings. This chapter shows how
this requirement can be alleviated through the use of the await construct. Programs are
now executed atomically such that internal transitions are not visible to the environment
which may interfere either after or before the execution of some program.

10.1 COMPONENT SPECIFICATION

The goal remains that of designing a system composed of a stack and a counter. The
program impl-push is intended to add an element to the stack while impl-pop removes the
element on the top of the stack. Unlike in the previous model, we want to increase the
number of applications that may be executed in parallel with impl-push and impl-pop.
The above requirement that no other application should concurrently write to the stack
is too strong. The solution proposal consists of embedding the specifications presented in
the last chapter in some await-constructs. We propose the following specifications:

simple-push() A
pre true
rely false
guar true

post stack = [elt] ̂ stack A elt = elt

push() A
await true do

simple-pushQ;
announce(mfc-Event((pushaction), elt))

od

119

simple-popQ A
pre stack ^ []
rely false
guar true

post stack = tl stack A elt = hd stack

Pop() A
await true do

simple-pop;
announce(mfc-Event((popaction), elt))

od

The specifications are still easy to understand; any program that implements push performs
simple-push and announces the event mk-Event((pushaction), elt); however, all in an
atomic step. Any implementation of simple-push adds an element to the stack provided
there is no interference; and, the await construct indeed ensures that there will be no
interference.

Analogously, we can change the specification of impl-increment and impl-decrement such
that they rely on nothing to be done in parallel. Since the execution of the await construct
includes those of subscribers, impl-increment and impl-decrement will be executed as part
of the execution of the announcement constructs of impl-push and impl-pop respectively.
It is, therefore, realistic to assume false from the environment and to guarantee true.

decrement () A_ increment () A_
pre counter > 0 pre true

rely false rely false

guar true guar true

post counter = counter-! post counter = counter + 1

10.2 VERIFICATION OF LOCAL PROPERTIES

Our local property of interest remains checking that impl-pop indeed reverses impl-push.
Verifying local properties is done by assuming the empty binding that relates the program
skip to all events and any event to the unique program skip.

For any event e, subscribers(e) = {skip}, therefore, holds; resulting by the skip rule in
reducing the behavior of simple-push; announce(mk-Event((pushaction), elt)) to that of
simple-push. Similarly, simple-pop; a.nnounce(mk-Event({popaction), elt)) is reduced to
simple-pop.

120

The behavioral specifications of push and pop are, therefore:

behavioral-push() A behavioral-pop() ^
await true do await true do

simple-push; simple-pop;
od od

An application of the definition of await structural specifications followed by the application
of the await rule with the parameters given below allows rewriting this specification as:

behavioral-push() A behavioral-pop() ^
pre true pre stack ^ []

rely 1$ rely 1$

guar true guar true

post stack = [elt] ^ stack A elt = elt post stack = tl stack A elt = hd stack

. R * h,

n def
• G = true,

• 6 = true,

• P = true for the case of £ms/i and P == stacA; ^ [] for the case of pop.

The proof obligation, therefore, consists of showing that the following requirement holds:

Proof Obligation 17 stack = [elt] ^ stack \ stack = tl stack A elt = hd stack => stack = stack.

This, however, directly results from the application of the definition of | and tl .

10.3 APPLICATION COMPOSITION

The step consists of subscribing programs to events, deriving behavioral specifications, and
discharging the required proof obligations.

121

10.3.1 SUBSCRIPTIONS

As in the previous chapter, we subscribe the program impl-increment to events named
(pushaction) and impl-decerement to events named {popaction). The resulting binding is
the following:

B2 A { (impl-push) H-> {}, (impl-decrement) i-> {e : Event • e.name = (popaction)},
(impl-increment) i-> {e : £Wn£ • e.name = (pushaction)},
(impl-pop) t-> {}, (skip) >-> {a; : Äveni | true}}

leading to the following equalities where e\ is an event such that e\.name = (pushaction)
and e% is an event such that e-i.name = (popaction).

subscribers(ei) = {(increment)}
subscribers^) = {(decrement)}

Intuitively, the program impl-increment is interested in events announced by impl-push
while impl-decrement is interested in events announced by impl-pop. The resulting behav-
ior should be the increment of the counter whenever an element is added on the stack and
its decrement whenever an element is removed from the stack.

10.3.2 IDENTIFICATION OF AFFECTED COMPONENTS

Subscribing impl-increment and impl-decrement to events with names {pushaction) and
(popaction) leads to a modification of the behavior of impl-push and impl-pop which pos-
sibly announce these events.

Their behaviors must, therefore, be revised and the necessary proof obligations discharged.

10.3.3 DERIVATION OF BEHAVIORAL SPECIFICATIONS

Let us investigate the changes on the behavior of impl-push. Since the set of subscribers
to the event it announces can be reduced to increment, the announce rule can be applied
to yield the following behavioral specification.

behavioral-push() ^
await true do

simple-pushQ; increment();
od

122

By application of the definition of structural sequential specifications, the sequential rule,
the definition of structural await specifications, and the await rule (with the parameters
P, R, G, and b given below), we derive the following behavioral specifications:

behavioral-pushQ A
pre len (stack) = counter
rely len (stack) = counter

guar stack = [elt] ̂ stack A I^\{stack} I counter = counter + 1 A I^\{COunter}

post pre A rely+ | stack = [elt] ̂ stack A I^\{stack} I counter = counter + 1 A I$\{counter} I r e l y +

• R = len (stack) = counter,

def
• G = stack = [elt] ̂ stack A U\{stack} \ Acounter = counter + 1 A h\{coUnter}-,

• b = true,

def

• P = len (stack) = counter.

The proof obligation for the application of the sequential rule was ignored since; it holds
because of the validity of pre-increment.

A similar process leads the following behavioral specification of impl-pop:

behavioral-pop() ^
pre len (stack) = counter A counter > 0 A stack ^ []
rely len (stack) = counter A counter > 0 A stack / []

guar stack = tl stack A I&\{stack,eit} A elt = hd stack \ counter = counter-1 A I^\{Counter}

post pre A rely+ | stack = tl stack A elt = hd stack A /,j\{stacfcie(t} I

counter = counter + 1 A U\{COunter} I rely+

Concerning the parallel execution of these programs, any number of programs satisfying
push can indeed be executed in parallel: guar-push => reiy-push holds. Further, any
program satisfying pop can also be executed in parallel with any number of programs
satisfying push. However, only one program satisfying pop can be executed at any one
time. The rely-condition of pop does not follow from its guarantee condition.

10.4 GLOBAL SYSTEM BEHAVIOR

Having completed the specification of our application, we can now verify some of its prop-
erties. In particular, we want to show that the counter indicates the size of the stack.

123

This requirement is, however, easily verified as resulting from the post-condition of the
above behavioral specifications. The proof is done by observing that:

• rely | rely =>• rely,

• applying the definition of |, and

• observing that:

— adding an element on the stack results in increasing its length by 1, i.e.

stack = [elt] ^ stack =>• len (stack) = len (stack) + 1;

— removing an element from the stack results in decreasing its length by 1, i.e.

stack = tl stack =>• len (stack) = len (stack)-l;

Although this specification satisfies our global property of interest, there is, however, a
subtlety. The element added on the stack may not be the intended element. Let us
consider the following specification:

malicious()
pre true
rely true
guar elt — Elemento A stack = [] A counter = 0

post true

that characterizes a component supposed to assign the value Elemento to elt, empty the
stack, and set the counter to 0. If a program satisfying this specification, say impl-malicious,
is executed concurrently with the program impl-push, it is possible that impl-malicious
may be executed before impl-push; leading to the addition of Elemento to the stack. This
is to support the argument that one has to be careful about the intended behavior of a
component, its real behavior, and the behavior of the environment.

10.5 COMPONENT IMPLEMENTATION

We propose the following implementations for the above programs.

124

impl-simple-push A stack:=[elt] ^ stack

impl-push A await true do impl-simple-push; announce(mk-Event((pws/iaciion),elt)) od

impl-increment ^ counter: = counter+1

impl-simple-pop ^ elt:=hd stack; stack:=tl stack

impl-pop ^ await true do impl-simple-pop; announce(mk-Event((popacttcm),elt))od

impl-decrement A counter := counter-1

By successively applying the definition of the validity of z sat await b do Si od and
that of z sat Si; 5*2 the proof that impl-push satisfies push is done by showing that
impl-simple-push satisfies the specification push. This is, however, done in the traditional
rely/guarantee manner and can be omitted.

10.6 SUMMARY

This chapter presented an improvement of the stack-counter example designed in the last
chapter. The await construct was used to allow the atomic execution of push (respectively
pop) and its subscribers, resulting in programs that allow more programs to be executed
concurrently.

The chapter also contributed to arguing on the systematic nature of the methodology. The
same steps that were applied for the last version of the example were also applied:

• independent specification of components,

• verification of local properties,

• composition of the application; including transformation of structural specifications
into behavioral specifications and verification of related requirements,

• verification of global properties,

• implementation/refinement of the components.

The example presented in this chapter suffers from an important limitation. As we have
shown through the malicious example, a program running is parallel could satisfy the
rely-condition while modifying the intention of the specified program. In this particular
example, this was possible because programs satisfying malicious have access to the global

125

variable elt used as input variable. This directly touches the issue of method that is crucial
for event-based systems.

In fact, a subscriber must be a method that is invoked by the event-based system. The
subscriber may, therefore, specify in which variable (called formal parameter) it wants the
passed value to be stored. Such a variable may be a local variable (call-by-value) on which
only the invoked method has access.

Chapter 12 presents a basic solution to the issue of method invocation in LECAP in general
and in SEATY in particular.

126

CHAPTER 11

SEQUENTIAL EVENT-BASED

APPLICATIONS

11.1 OVERVIEW

The operational semantics of the LECAP programming language presented in Chapter 5
shows that event-based systems share some substantial properties with concurrent systems.
It is, therefore, not surprising that constructing event-based applications is not a trivial
task. To alleviate these difficulties, we propose to simplify the construction of event-
based applications by identifying relevant architectural types. An architectural type [13]
is obtained from an architectural style by fixing some of its parameters which may be
components, connectors, or behaviors. An architectural type is at an intermediary level of
abstraction between the architectural style and an architecture.

In this chapter we introduce an architectural type called S EAT Y (Sequential Event-based
Architectural TYpe), which is obtained from the event-based architectural style by re-
quiring that no two distinct subscribers share some variable. This is a coarse interference
freedom requirement that allows designing applications without explicit need for the rely
and guarantee conditions. We believe that this architectural type includes an important
class of event-based applications. As one may expect, the development of this kind of
applications is fairly simpler than pure rely/guarantee applications.

The name sequential event-based architectural type should not mislead, the SEATY type
does exclude neither concurrency nor distribution. The set of variables that two programs
access may be distributed on different computers as well as two programs may run in
parallel, but accessing different set of variables. We refer to this type as sequential simply
because of the similarities between the specification techniques of SEATY programs and
that of sequential programs.

In fact, concurrent systems with such restrictions have been widely studied under the
designation of action systems [115, 8, 9, 116]. "An action system is a parallel or distributed
program where parallel activity is described in terms of events, so called actions. The
actions are atomic: if an action is chosen for execution, it is executed to completion without

127

any interference from the other actions in the system. Several actions can be executed in
parallel, as long as the actions do not share any variables [8]". The argument for such
systems is that their use permits the design of systems to be separated from the issue of
how the systems is to be implemented; using shared variables or not.

The remainder of the chapter is organized as follows. The next section describes the
differences between S E A T Y specifications and pure LECAP specifications. In section 11.3,
we present the rules for the top-down development of S E A T Y components. These rules are
simplifications of general LECAP rules. Section 11.4 discusses the composition of S E A T Y

structural specifications and the manipulation of behavioral specifications while Section
11.5 illustrates the S E A T Y development process by means of a symbolic example. Finally,
11.6 summarizes and concludes the chapter.

11.2 SPECIFICATION OF SEATY PROGRAMS

Informally, specifications of S E A T Y programs differ from that of pure LECAP programs by
the missing rely- and guar-conditions. In particular, we still have structural and behavioral
specifications.

11.2.1 BEHAVIORAL SEATY SPECIFICATIONS

Definition 41 A behavioral S E A T Y specification is a formula ($,13) : :(P, E) where:

• P is a unary assertion and E is a binary assertion,

• any variable occurring free in P or E is in d.

The set d represents the set of variables that programs satisfying this specification are
allowed to access.

An event-based system remains defined as a tuple ($, B) where d is a set of variables
that programs access, and B is a binding of programs to events. In the definition of a
S E A T Y specification, the tuple (êi,B) implicitly defines any event-based system of the
form (# U #i, B) where the set of variables accessed by programs in B is a subset of d U d\ ;
that is, U t?zÇt?Ut?i.

zedom B

Definition 42 We say that the set of variables d covers the binding B iff for any subscriber
z in B, the set of variables that it accesses is a subset of-d. That is, [J dz Ç û.

zedom B

128

A S E A T Y specification such as (ß\,B) : :(P, E) is a reformulation of the pure LECAP

specification (Ui,<B) : :(P, I#1, T ^ , E) iff tfUtfi covers B and tffl^i = {}. Similarly,
$1 : :(P, E) is a reformulation of the pure LECAP specification i9 U $1 : :(P, 7,^, I^\^, E)
ifi?ni9i = {}. A program that satisfies this specification is a program that relies on that
the environment will not change the variables that it has access to. On the other hand,
such a program guarantees to change none of the variable it is not allowed to access.

11.2.2 EXTENDED BEHAVIORAL SPECIFICATIONS

A extended behavioral S E A T Y specification may be of one of the forms (i9,£) : :5i||<S2,
(tf, B) : :5i; S2, (•&, B) : :await b do 3i od, and (•&, B) : :if b then Si else S2 fi if (-Ô, B) : :5i
and ("d, B) : :S2 are behavioral (including extended ones) S E A T Y specifications.

Semantics is given to behavioral S E A T Y specifications by converting them to LECAP

specifications.

11.2.3 STRUCTURAL SPECIFICATION

A structural S E A T Y specification may be of the forms T? : : announce (exp) or d : :(P, E)
if any variable occurring free in exp, P, or E is an element of i?.

Further, if fi : :Si and •d : :S2 are two structural S E A T Y specifications and b is boolean
formula whose free variables are all in i9, then, $: :await b do Si od, -d: :{Si\\S2}, flr.Si; S2,
and û : :if b t hen Si else 52 fi are also structural S E A T Y specifications.

Structural S E A T Y specifications are also given semantics by converting them to LECAP

specifications.

11.3 CONSTRUCTION OF COMPONENTS

We provide a set of rules for the top-down development of S E A T Y programs. The sound-
ness of these rules can be justified by making rely-/ and guar-conditions explicit. The rules
for the construction of S EAT Y programs are interesting because they are based on the
well-known pre- and post-condition style of specifying software systems.

129

11.3.1 CONSEQUENCE RULE

The consequence rule allows strengthening the assumptions while weakening the commit-
ments.

Ex => E2,
Pi =• Pi,
zsatd: :(PU

z sat

11.3.2 CONDITIONAL RULE

BASIC CONDITIONAL RULE

The requirement made in LECAP specifications that the environment is not allowed to
interfere with variables used in the boolean test becomes obsolete since it is a general
requirement in the context of the SEATY type.

z1 sattf: :(P Ab, E)
z2 sat •â::(P A-16, E) (11.1)
if b then z\ else 22 fi sat d : :(P, E).

COMPOSED CONDITIONAL RULE

z sat d : :if b then Si else S2 fi; £3 ,1 0,
(11.2)z sat ti : :if b then 5i; S3 else S2; S3 fi.

11.3.3 PARALLEL RULE

Two SEATY programs are composed in parallel. The traditional requirement for non-
interference is expressed in terms of the set of variables that each of these programs accesses.

130

11.3.4 BASIC PARALLEL RULE

ntf22 = {}
sat Ü!-.-.(Pu Ex)

^ (P E2)
A P2, Ex A E2).

The general requirement in S E A T Y is that two programs running in parallel be such that
none of them modifies a variable that the other has access to. This requirement may be
too strong in situations were concurrency is needed. We provide the following rule that
allows paralleling two programs even if they share some variables. Each of the programs
is executed atomically. The parallel execution of Z\ and z2 will, therefore, be either Z\\%i
or z2;z1 (see [9, 115, 8, 116]).

Pi, A stable when E2I\B
P2, B stable when E\ A A
zi sat d : :await true do (Pi, Ex A A) od (H-4)
z2 sat d : :await true do (P2, E2 A B) od

sat d : :(PX A P2, A A B).

COMPOSED PARALLEL RULE

PI , A stable when E2 A B
P2, B stable when Ei A A , .
z said: :(PU Ei A A)\\(P2, E2 A B) ^ '
z sa£tf ::(Pi A P2, A A B).

If z can be written as two programs z\ and ZQ, that coexist with each other, then the result
of z results from the application of the basic parallel to Zi and z2.

11.3.5 ITERATION RULE

In this rule, the pre-condition P is an invariant of the loop; each iteration must ensure
that its post-condition implies the pre-condition of the next iteration. The final state is

131

such that either the body of the loop was executed a finite number of time or it was not
executed at all. In the first case the state satisfies E+. In the second case, the identity
assertion I# holds.

z sot û : : (P Ab, E A P) _
while b do z od said: :(P, (E+ V h) A -.è).

11.3.6 SEQUENTIAL RULE

The rule permits the sequential composition of programs.

BASIC SEQUENTIAL RULE

The composition is similar to the traditional sequential rule due to the missing announce-
ment of events.

zi sat t?::(Pi, Ex A P2)
z2 sat tf::(P2, #2) (11.7)

COMPOSED SEQUENTIAL RULE

z sat tf::(P1; E1AP2);(P2, E2) (

z said: :{PU Ex \ È2).

If 2 can be written as the sequential composition of two programs satisfying 7?:: (Pi, E\f\P2)
and i9 : :(P2, £2) respectively, then the conclusion of the rule is obtained by application of
the basic sequential rule.

11.3.7 SKIP RULE

The skip statement does nothing but terminates. The set of variables that the program
is allowed to change is kept unchanged.

132

skip sat û : :(P, /*). (11.9)

11.3.8 ASSIGNMENT RULE

A single program transition is performed, namely the assignment of the value of r to the
variable v while all other variables are kept unchanged.

p A v = V A k\{v] => E
v: = r satûU{v}::(P, E).

11.3.9 PRE RULE

The pre-rule is straightforward; If a program terminates in a state satisfying E when
started in a state satisfying P, then, it does so relatively to the initial state (which satisfies
the pre-condition P).

z sat û::(P, E)
- ^ = ~^± (11.11)
z satd::{P, P A E).

11.3.10 GLOBAL RULE

The global rule allows introduction of a new variable in the specification of a program.
The program terminates in a state where the value of the new variable is the same as in
the initial state.

z sat {-â\{v}, B)::(P, E)
z sat \d U {v}, B) : :(P. E A 7{,,}).

133

11.4 SYSTEM BEHAVIOR ANALYSIS

After the specification of the components, the development of an event-based application
recommends composing the specifications of this application starting with those of the
components. This composition is done by means of the announce rule that we present
below.

In addition to composing the specification of the application, proof obligations must be
discharged that ensure that there is no interference in the system. Further, required global
properties need to be checked. Such verifications are done on behavioral specifications that
result from the announce rule.

The manipulation of behavioral specifications is done by means of some rules that resemble
those for the decomposition of software systems. The consequence rule, the parallel rule,
the pre rule, the assignment rule, the global rule, and the skip rule are obtained from those
of the previous section by replacing d with the event-based system (•d, B). For instance,
the consequence rule for behavioral specifications is formulated as follows.

11.4.1 CONSEQUENCE RULE

The consequence rule allows strengthening the assumptions while weakening the commit-
ments.

Eh. => E2,
Pi => Pi,
z sat (•d,ß)::{P1, Eh)
zsat(û,B)::(P2,

The program z may now announce an event. The behavior of the subscribers to these events
is included in the behavior of z captured by the behavioral specification ($, B) : :(P\, E\).

11.4.2 COMPOSITION OF APPLICATIONS: ANNOUNCE RULE

Event-based applications are composed by subscribing programs to events. The resulting
specifications are given by the announce rule which is based on the parallel rule and the
semantics of the announce construct.

134

subscribers(e) = {z\, • • • zn}
{zi\\---\\zn\\z}sat(ti, B)::(P, E) (11.13)
announce(e); z sat d : :(P, E).

The following rule is more general and allows announcing an event specified by means of
an expression exp.

events(z) = X\ l±) X2

Ve G Xi • subscribers (e) = {zu, • • • , zni}

{zu\\ • • • ||^i||2„+i} sat (i?,ß) : :Si (11.14)

z sat fl : :(P, E)\ announce(exp)

z\ zn+\ sat ($, B) : :(P, E);if exp 6 X\ then S\ else 52 fi.

The set events(z) determines the set of events that may be announced by the program
zand is defined as

events(z) = {e : Event • 3si, s2 : State • (si, s2) (= E A exp = e)

The rule results in extended behavioral specifications on which other rules can be applied
for the verification of global properties.

11.4.3 CONDITIONAL RULE

The conditional rule in the context of behavioral specifications is slightly different from
that of structural specifications. The specification of the program if b then z\ else z^ fi; z
is given instead of simply giving that of if b then z\ else zq, fi. In this way, announcement
of events is supported within if constructs.

11.4.4 BASIC CONDITIONAL RULE

sat (# ,ß) : : (.PA&, E)
ti,B)---(P^-ib, E) (11.15)

if b then z\ else 22 fi; z sat ($, B) : :(P, E).

135

11.4.5 COMPOSED CONDITIONAL RULE

z sat (•#, B) : :if b then S\ else 52 fi; S3 , „,
z sat (-d, B) : :if b then S, ; & else &; & fi. ^ " '

The composed conditional rules is similar to the case of structural specifications.

11.4.6 SEQUENTIAL RULE

The rule permits the sequential composition of programs. We consider two programs z\
and 22 such that z\ announces no event, i.e. events(z) = {}. The sequential composition is
possible if the pre-condition of the second program follows from the post-condition of the
first.

sat t?::(Pi, Ex A P2)
sat (79, B) : :(P2, Ek) (11.17)

sat (i9 B) : :(PU E1

11.4.7 SEQUENTIAL-AWAIT RULE

The requirement that the first program announces no event can be removed if the first
program is embedded in an await construct.

22 sat (tf, B) : :(P2, E2)
await 6 do zx od sa£ (tf, g) : :(P1; ^i A P2) (11.18)
await b do zi od; 22 sat (ti, B) : :(Pi, E\\ E2).

11.5 A SYMBOLIC EXAMPLE

We present a symbolic example that illustrates the development process of S E A T Y appli-
cations. The example is similar to that of the previous chapter, except that the rely- and
guar-conditions are replaced with the set of variables that a program accesses.

136

11.5.1 SPECIFICATION OF COMPONENTS

The system includes two components z\ and 22 satisfying the following structural specifi-
cations.

, En)\\(Pu, £12)};announce(e); (P13, En).

11.5.2 VERIFICATION OF LOCAL PROPERTIES

The local property of interest is the satisfaction of Q in the final states of z\. The empty
binding is assumed for the verification of local properties.

By application of the announce rule followed by the skip rule, we deduce:

z1sat('d1,B0)::{(P11, En)\\(P12, E12)};(P13, En).

ti2,B0)::(P2i, E21).

The behavioral specification of 22 only differs from its structural specification by the pres-
ence of the binding Bo-

To determine the post-condition of the program z\ we must discharge the following prop-
erties that are required by the parallel rule and the sequential rule respectively.

Proof Obligation 18 P\\, E\\ stable when E\2 and Pi2, E\2 stable when Eu

Proof Obligation 19 En A E12 => P13

After discharging these proof obligations, the requirement of interest can be formulated as:

Proof Obligation 20 (Eu A Eï2) | £13 => Q.

Assuming these requirements hold, we can now define a binding that reflects the architec-
ture of our application.

11.5.3 COMPOSITION OF THE APPLICATION

The next step in the development process is to construct the behavioral specification of
our application starting with the specifications of the components Z\ and 22. For this, we

137

construct a binding by subscribing z% to the event e. The expected effect is the satisfaction
of the assertion Q in the final states of Z\. The resulting binding looks as follows:

B =' { (Zl> -> {}, (z2) -> {e}, (skip) -> {z:£toen*}}.

Given this binding, we re-deduce the behavioral specification of z\ which is the basis for
the verification of the global properties.

DERIVATION OF THE BEHAVIORAL SPECIFICATION

By the announce rule followed by the skip rule, we have:

The requirement for a well-behaved applications are given by the parallel rule and by the
sequential rule:

Proof Obligation 21 P21, £21 stable when E\3 and P13, £13 stable when £2!

Proof Obligation 22 En A £ i 2 => P21

The proof obligation for the property of interest is therefore:

Proof Obligation 23 (En A E12) \ (£21 A El3) ^ En.

If this property holds, the components Z\ and zi can now be developed independently by
stepwise refinement of their structural specifications.

11.6 SUMMARY

Due to the concurrent execution of subscribers, event-based systems indeed share some
properties with concurrent systems among which are the hardness in ensuring their reli-
ability. This chapter introduced an architectural type called SEATY (Sequential Event-
Based Architectural Type). Applications in this family are such that any two distinct
subscribers to the same event are constrained not to change the value of any variable that
the other writes to or reads. By this constraint, the interference freedom is restricted to
checking the set of variables that applications write to and read. The effort in constructing

138

SEATY applications is, therefore, expected to be less than for constructing pure LECAP
applications.

The constraint on SEATY applications may be too strong for some applications. We,
therefore, weakened this requirement by allowing programs executed concurrently to do so
in atomic steps.

The chapter also presented a symbolic example intended to present the development of
process of SEATY applications in a succinct manner.

139

140

CHAPTER 12

METHOD INVOCATION

12.1 MOTIVATION

Methods (also called procedures or subroutines) are the basic and most accepted means
for ensuring modularity in software systems. And, in fact, event-based systems rely on
the concept of methods. The subscribers are not only invoked and executed in parallel,
but the announced event is also passed to them. This chapter discusses the notion of
value passing in method invocation. That is, we apply the notions of method declaration,
method specification and method invocation to event-based systems.

The chapter is organized as follows. The next chapter presents an extension of the LECAP
language that takes the notion of method into consideration. The extensions are both
syntactic and semantic. In Section 12.3, we define the concept of method specifications
such that it brings to specifications the kind of modularity that methods bring to programs.
Section 12.4 discusses method proof rules; in particular, we investigate the specification of
a method invocation. Section 12.5 concludes the chapter.

12.2 EXTENDING THE LECAP LANGUAGE

We extend the syntax and the semantics of the LECAP programming language to include
methods declaration and invocation.

12.2.1 SYNTAX

The syntax of the L E C A P core programming language is now defined in the following
manner. The program p{e\, • • • , en) is added to denote the invocation of the method p
with the actual parameters e\, • • •, en where e\, • • • en are some expressions.

141

P:: = x: = e \ Pi\P2 \ if b then Pi else P2 fi | while b do P od
| {P1HP2} I announce(i) | skip | await b do P od

proc p(val vi, • • • vn) & P \ p() A P.

A method declaration proc is assumed where each method invoked in a program is de-
clared. In the method declaration p(val vi, • • • ,vn) A P, the left hand side of the definition
is called the header of the method p and the right hand side is called the body of the method.
The variables Vi are called formal parameters.

We assume two functions header and body on method declarations defined in the follow-
ing natural manner:

header(p(val v) & P) = p(val v)

body(p(val v) A p) dM p .

The parameter passing mechanism supported is call-by-value. The keyword val is used
for the declaration of these parameters. In a method invocation such as p(e\, • • • , en),
the value of any call-by-value actual parameter ê is computed and assigned to the formal
parameter Vi before execution of the body P [8, 61, 62, 116]. Parameters are not mandatory
in the definition of a method.

12.2.2 RESTRICTIONS

To simplify the deduction rules, it is required that:

1. each invoked method is declared once and only once;

2. for any method invocation p(e\, • • • , en) of a method declared as p(val v\, • • • ,vn) A P ;

the types of any actual parameter e; must be the same as that of the corresponding
formal parameter Wjj

3. we assume that methods are not recursive;

4. there is no assignment to formal parameters in the body of methods;

5. any declaration p(val v\, • • • , vn) A p is such that the Vi are distinct identifiers;

6. any method m in the domain of the binding (i.e. any subscriber) has a declaration of
the form p(val x : Event) A Pj j . e . each subscriber has one and only one parameter
and this parameter is of the event type.

142

In the practice of event-based systems, there is no explicit requirement that the parameter
of the subscribers be a call-by-value parameter. However, if we consider a programming
language such as Java, most middleware (e.g. JEDI [31], Siena [23], PeerWare [101]) do
accept a call-by-reference parameter, that they, internally clone such that copies are sent
to subscribers; which indeed corresponds to our restriction.

Definition 43 Let us consider the method mskip (a; : Event) A skip that takes an event
and does skip. In the remainder, we will assume that for any binding B and for any event
e, the method mskip is subscribed to e, i.e. mskip £ subscribersß(e). The binding that
has only the method mskip subscribed to any event is called empty binding and denoted Bo
(this replaces Definition 5).

This restriction on bindings allows us to present uniform rules without need to distinguish
the cases of events with no subscribed method.

12.2.3 SEMANTICS

SEMANTICS OF EVENT ANNOUNCEMENT

The set of programs that subscribe to the event e are invoked (triggered) and executed in
parallel. The first case presents the case where the announcement is the last construct in
the program. The announced event is passed to the subscribers.

s(x) = e, subscribers(e) = {zi, • • • , zn}

(announce(ï), s) A ({zi(z)|| • • • ||zn(a;)}, s)

If however, the announcement construct is not the last construct, the subscribers are
executed in parallel with the remainder of the announcing program.

s(x) = e, m, n > 0, subscribers (e) = {z\, • • • , zn}

({«announce(x); z}m, s) À {{{Zl(x)\\ • • • \\zn(x)}\\{nz}m}, s)

s(x) = e, m, n > 1, subscribers(e) = {zi, • • • , zn}

({"announce(x)||4-, s) A ({{^(x)|| • • • \\zn(x)}\\{nz}™}, s)

143

In this formula, {n denotes a sequence of n left braces {. Similarly } m denotes a sequence
of m right braces. It is important that the number of braces be taken into consideration
since omitting some of them results in a malformed program.

SEMANTICS OF METHODS INVOCATION

Call-by-value formal parameters are assigned the values of the corresponding actual pa-
rameters before the body P of the method is executed.

p (v a l vi, • • • , vn) A P

(p(eu ••• , e n) , s) A {Vl: = ex\ • • • ; « „ : = en; P, s)

It is also possible to write methods without parameters.

<p(), 5) A (P, s)

12.3 SPECIFICATION OF METHODS

This section defines the concept of specification of methods and investigates what it means
for a method to satisfy a specification. We only consider SEATY specifications. General
LECAP specifications and resulting construction rules are still to be formulated.

12.3.1 SPECIFICATION

Some arguments in this investigation are motivated by current practices in modelling soft-
ware systems. For instance, considering a method declaration of the form m(val x) ̂ M,
it is clear that the header m(val x) is not a program. It is, therefore, not well-formed to
say that it satisfies a specification. Since this is widely done it practice, we legalize this
statement by giving it a precise meaning. We introduce the concept of method specifica-
tion.

Definition 44 A method specification is a formula of one of the forms

144

()
s() A {-0,6) ::S
s (v a l vu--- ,vn)
s (v a l m , - . . , u n)

suc/i

• fl-.-.S, and ($, B) : :S are structural and behavioral program specifications respectively;
and

• any variable that occurs free in S is in {vi, • • • , vn} U $.

The left hand side of a method specification is called the header of the specification while
its right hand side is called its body.

A method specification is structural (respectively behavioral) iff its body is a structural
(respectively behavioral) specification.

Method specifications bring to specifications the kind of modularity that methods bring to
programs. The functions header and body are naturally extended to method specifica-
tions. Method specification is for instance possible in VDM [75, 128]; an example is given
below.

push : Event A ()

push (evt)

pre true

post stack — evt.elt1^ stack

Definition 45 Two headers p and s are compatible iff they differ only by their names.
That is, any variable in one header occurs in the other header at the same position and with
the same type. We extend this definition and say that a method declaration is compatible
to a method specification if their headers are compatible.

Next, we introduce method judgments.

Definition 46 Let m(val vi, • • • , vn) A M and s(val vi, • • • , vn) A <§ : :£ be a method
declaration and a method specification respectively such that they are compatible. The
formula m sat s is a method judgment iff any variable accessed by M is in i9U{wi, • • • ,vn}.

145

This means that before talking about a method declaration satisfying a method specifica-
tion, one must make sure that their headers are compatible. Next, we investigate what it
means for a method to satisfy its specification.

Definition 47 Let ra(val v\, • • • , vn) A M and s(val vi, • • • , vn) A û : -S be a method
declaration and a method specification respectively such that they are compatible. The
following statements are equivalent:

• m(val vi, • • • , vn) ^ M sat s(val vi, • • • , vn) A "a : :S

• m(val ui, • • • , vn) sat $: :s(val v\-, • • • , vn),

• M sat {üi,--- ,wn}U?9::5,

• m sat d : :s.

Informally, writing that a method declaration satisfies a method specification must be
interpreted as saying that their headers are compatible and the body of the method decla-
ration satisfies the body of the method specification. Obviously, a method judgment may
be structural or behavioral depending on whether the body of the method specfication is
structural or behavioral.

12.3.2 COMPOSITION

To take advantage of the modularity that method specifications bring, it must be possible
to compose these specifications. The composition operators for this purpose are the same
as those presented for program specification.

Note that composing specifications is also possible in other specification techniques. In the
example of (IFAD) VDM, one would formulate the following composition.

pushcount : Event x N A ()

pushcount (e, count) A
push(e);
increment (count) ;

Although this looks more like a program, this is indeed a specification since push and
increment are specifications.

146

Definition 48 Given a method specification 5(val vi,---vn)&tf::g (respectively
s(val vi, • • • , vn) A (•#, B) : :S), and a sequence of expressions e*, • • • , en such that ê has
the same type as Vi, then, i9::s(ei, • • • , en) (respectively (•#, B)::s(ei, • • • , en)) is a structural
specification (respectively behavioral specification) iff the set of variables occuring free in
ei, • • • , en are all inû. t? : :s(ei, • • • , en) and ($, B) : :s(e\, • • • , en) are called an invocations
of the specification s.

Given that an invocation of a method specification is a program specification, it is clear that
if si and 52 are two specification invocations then, d : :if b then S\ else S2 fi, $: :{Si 11S2}•,
and 1? : :si; S2 are program specifications. In particular, it is possible to define a method
specification based on some specification invocation. This is what happens in the above
VDM example; push(e) and increment(couni) are two specification invocations that are
sequentially composed.

To be complete we need to say what it means for a program to satisfy a specification
invocation!

Definition 49 Let 5(val vi, • • • vn) ^ fi : :S be a method specification, z be a program, and
d : :s(ei, • • - , en) be an invocation of s where the set of free variables in e\, • • • , en are all
in d.

The judgment z sat d : :s(e\, • • • , e„) is valid iff there exists a method declartion
zi(val vi,---vn) A Z\ such that:

• Z\ sat "d U {vi, • • • , vn} : :S is a valid judgment and

• z behaves as Z\(e\, • • • , en);

The judgment z sat (^^B) : :s(ei,--- , en) is valid iff there exists a method declartion
2i(val vi,---vn) A Z\ such that:

• Z\ sat (•$ U {vi, • • • , vn}, B) : :S is a valid judgment and

• z behaves as Zi(e\, • • • , en) in (t9, B);

Informally, we can distinguish two cases for a program satisfying a specification invocation:

In the first case, the invocation of a method with the same actual parameters as that of
the specification invocation satisfies this specification invocation if the body of the invoked
method satisfies that of the invoked specification.

In the second case, a program satisfies a specification invocation if it behaves as a method
invocation that satisfies this specification invocation.

147

12.4 METHOD INVOCATION RULES

The invocation of a method is indeed a program whose specification we give in this section.
The rule is a simplistic application of Gries's rules for procedure call [61, 62].

To facilitate the rule for the invocation of methods, we impose the following restrictions:

• Only names are accepted in the construction of actual arguments; in particular,
references to array elements, and record fields are not accepted in actual arguments.

• The actual parameters should not be affected by assignments to global variables.
That is, the variables occurring in the actual parameters should not be modified by
the body of the method.

An invocation that satisfies these criteria is called a valid SEATY invocation.

If these assumptions hold, then, a specification of a method invocation ra(a1; • • • , an) is the
formula rd::S[ai/vi, • • • , an/vn] obtained by simultaneously replacing the formal parameters
v\, • • • ,vn with the actual parameters ai, • • • , an in the specification •$: :S of the body of
the method m.

m sot s
m (val v\,
s (val v\, •

• • • , t>n) —

•• , un) — *

M

m(a1, • • • , an) sat d : :S[a,i/vi, • • • , an/vn]

Prior replacement of bound variables can be applied to avoid conflicts. The rule is not
valid for LECAP in general, but for SEATY specifications.

It is important not to confuse the header m (val v\, • • • ,vn) and the program m(ei, • • • , en).
Saying that the first satisfies a specification means that the body of m satisfies this spec-
ification while saying that the second satisfies a specification means that the program
v\. = e\\ • • • ; vn: = en; M satisfies this specification. Both concepts coincide when the
method is declared without parameters.

Gries's rules [61, 62] are more general in that they additionally take call-by-result, call-by-
reference, and aliasing into consideration. These paradigms are not directly needed in this
framework; ignoring them allows concentrating on those aspects that are specific to event
announcements.

148

12.4.1 ANNOUNCE RULE

We now update the announcement rule to take method invocation into consideration.

events(z) = Xi*S X2

z sat $: :(P, E); announce (exp)

Ve G Xi • subscribers(e) = {zu, • • • , zni} (12.2)

{zu(exp)\\ •••||zni(e:cp)||.zn+i} sat ($,&) • -Si

z\ 2„+i sat (&,B) : :(P. E):if exp E X-i then Si else So fi.

The execution of the announce construct results in the parallel execution of subscribers
with the remainder of the announcing program z. The announced event is passed to the
invoked method ma be defined by an expression exp whose value depends upon the state
and input variables. In this case, the behavior of the announcing program also depends
upon the input variable and upon the state variables Sk in the point of announcement
where exp is evaluated.

The set events(z) determines the set of events that may be announced by the program z
and is defined as

events(z) = {e : Event • 3s\, S2 : State • (si, S2) (= E A exp = e}

The rule results in a behavioral specification on which other rules can be applied to to
allow the verification of global properties.

12.5 SUMMARY

Methods are not only the basic means for modularization of software systems, but are
also essential in the event-based paradigm. This chapter discussed how to support method
invocation with call-by-value parameters in the LECAP language. In addition, the chapter
discussed the notion of method specification in the sequential event-based architectural
type; an architectural type where any two subscribers are constrained not to share variables.
Gries's proof-rule for method invocation was also adapted for the S E A T Y type.

149

150

CHAPTER 13

A STOCK QUOTE SERVICE FOR MOBILE

USERS

Notification and User Awareness have been recognized as important values for collaborative
environments and are now standard application domains for the event-based paradigm.
Khronika [85], Interlocus [95], Awareness@work [114], Nessie [107], MOTION [80, 109],
OPELIX [63, 64], the IBM stock service [14] are examples of applications that enable
various levels of awareness based on the event-based paradigm. Typically, a user subscribes
for some information and wants to be notified whenever some data are available in the
system that match her subscription criteria. A multitude of applications and devices can
be used by such end-users for receiving their messages: mobile phones, pagers, e-mail
clients, fax, printers, etc.

On the other hand, event-based systems allow subscription of components but not of end-
users. That is, an end-user can, for instance, not say to an event-based middleware: "this
is my mobile phone number, please notify me whenever a new expert in formal software
design logs in". A common problem is, therefore, to bridge the gap between user-level
subscriptions and component-level subscriptions. In the light of a stock service, we show
how to solve this problem at the abstract level where the behavioral and architectural
properties of the application can be investigated as proposed by the LECAP methodology.
This stock service also serves the purpose of illustrating the application of LECAP in a
real life standard case-study. The model provided in this chapter is inspired both by the
MOTION messaging system [80] and the IBM stock web service [14].

The remainder of the chapter is organized as follows. The next section gives an overview of
the architecture of our stock service for mobile users (SMU). In Section 13.2, we provide a
formal specification of the components of our stock service. Section 13.3 discusses the ver-
ification of local properties of these components while Section 13.4 shows how to compose
a stock service starting with the proposed set of components. Section 13.5 investigates the
verification of some global properties while Section 15.5 concludes the chapter.

151

13.1 ARCHITECTURAL OVERVIEW

The architecture of our stock quote service is presented by presenting a use case scenario
first that justifies the need of each component. In the second step, the we informally discuss
each of component.

13.1.1 USE CASE SCENARIOS

The stock service we want to construct is intended to give users the possibility to subscribe
to some stock information and be notified when this information is available. To support
mobility, the system takes advantage of the various devices that users may have. When a
user is in his office, it is indeed comfortable for her to receive her notifications as e-mails.
When, however, she is on the road, receiving her notifications as GMS short messages
(SMS) may be better. Five basic usage scenarios are targeted by the SMU system.

1. Define the kind of information one is interested in;

2. specify one's reachability criteria, (e.g. SMS, E-mail, Fax, etc.);

3. publish some information;

4. add/remove a notification medium;

5. add/remove an information producer.

While the requirement for the first three usage scenarios is obvious, the two last scenarios
probably need some justification. The system is intended to be flexible such that possible
notification mechanisms and information producers can be integrated or simply replaced
in the future.

13.1.2 ARCHITECTURE

SMU is intended to be a highly flexible system. It is, therefore, not surprising that the
proposed architecture is based on the event-based paradigm. We distinguish four kinds
of components: publishers (also called producers or brokers), communication components
that embody notification media, user callbacks, and a subscription manager. The sequence
diagram in Figure 13.1 shows how these components collaborate to achieve the intended
functionalities.

152

Administrator

Subscribe End-user

Producer

.SeDdEmaiL.

Figure 13.1: The SMU Sequential Diagram

The administrator is responsible for adding new communication components in the system
(e.g. an SMTP Server as in the case of Figure 13.1). On the other hand, the end-user, is
allowed to subscribe for information. The first time she subscribes, a user callback (called
User CB in the figure) is subscribed for handling her subscriptions and notifications. Next,
producers can publish information. If such an information matches the subscription of
an end-user, her callback is invoked. The latter extends the event it received with the
reachability criteria of the users and publishes it. Interested communication components
are subsequently invoked by the middleware and they can deliver the message to the end-
user.

A user callback is a component that handles subscriptions of a specific user. Whenever the
user wishes to perform a subscription, she informs her callback. This callback mediates
between the underlying event-based system and the user. It receives the user's subscrip-
tions and subscribes on her behalf. Once an event occurs that satisfies one of the user's
subscription criteria, the corresponding callback is informed.

Let us take an example. The end-user is called Alice, the producer is the Wall Street
Stock Info Service. Alice wants to be informed by e-mail when the stock DAX reaches 100.
The first time Alice subscribes, her user callback is created and subscribed on her behave
(remember that event-based middleware do not know the concept of user subscription).

The Wall Street Stock Info Service publishes stock information whenever there is a change;
and, it happens that on June 24th at 12 PM, the DAX reaches 100. The subscription of
Alice is matched (in fact, the subscription of her callback). Alice's callback is subsequently
invoked. Note that the SMTP server could not be directly invoked since the event pub-
lished by the Wall Street Stock Info Service does not contain the address of Alice. Alice's
callback which knows this address now adds it to the received event and publishes a mes-
sage intended to the corresponding communication medium. This new publication matches

153

the subscription of the SMTP server, which is invoked by the event-based middleware. The
e-mail is subsequently sent to Alice.

13.2 COMPONENTS SPECIFICATION

13.2.1 DATA MODELING

We define the datatypes needed for the construction of our application.

Medium = (Email) | (Pager) \ (SMS) \ (Fax);
Address = token;
StockName = token;

We admit four communication media in the current system. The data types Address and
StockName are declared as token because there is no need to give them a detailed structure
at this level of abstraction.

StockEvent ::
name : StockName,
price : N;

A StockEvent represents the kind of event that info brokers (or producers) can publish. It
is obvious that this data type would contain more fields (e.g. date, broker's name) at the
concrete level. We ignore them at this level.

Message : :
medium : Medium,
body : StockEvent,
receiver : Address;

A message represents the kind of information that may be sent to end-users.

Event = StockEvent \ Message;

An event is either a stock event or a message. Messages are also events because they are
a communication means between user callbacks and communication media.

154

Subscription = Event-set;
Callback — (impl-uscallbacki) | ••• | (impl-uscallbackn);
Prog = Callback | (impl-smtpserver) \ (impl-smsserver) | (impl-pagerserver) \

(impl-faxserver) \ (mskip);
Binding = Prog —> Subscription-set;

A subscription is a set of events. We use the data type Prog to list methods defined in this
specification and that are parts of the event-based system. We assume a finite number of
users in our system such that each of them is associated to a user callback (uscallback).
Next, a method is defined that represents each communication medium; the method that
this communication medium uses for delivering messages.

User ::
id:N,
callback : Callback,
reachability : Medium,
addresses : Medium -̂ > Address,
mailboxes : Medium —> Message*

inv A
invl = Vmed £ dom mailboxes, mge S elems mailboxes (med)-

mge.medium = med A mge.address = addresses (med),
inv2 = reachability € dom addresses,
inv3 = Vul, u2 : User • ul.id = ui.id <$=> ul.callback = u2.callback
inv4 = Vul, u2 : User • ul.id ^ u2.id => mg ul.addresses D rng u2.addresses = {}

in invl A inv2 A inv3 A inv4;

A user has a set of addresses; one address corresponding to each medium. The model can
easily be extended to support more than one (or zero) addresses per medium. A mailbox
is a sequence of messages; and, a user has a mailbox corresponding to each medium.

The first invariant requires that any message be put in the corresponding mailbox. That
is, there should for instance be no e-mail in the SMS box. It also requires that the address
of any received message corresponds to the user's address. The second invariant requires
that a user must always be reachable; an address must be specified for the reachability
medium. The third invariant requires that two users with different identifiers have two
different callbacks. Finally, the fourth invariant requires that no two different users share
the same address.

System

musers : N —> user,
v\ : StockEvent,
V2 : Message,
B : Binding
inv A

invl = V id S dom users • users(id).id — id,
inv2 = V u £ rng users • \nv-User(u)

in invl A inv2;

155

The state of our system consists of a sequence of users interested in being notified and two
variables v\ and v-i used as actual argument for the announcement of events. For instance,
instead of writing announce(mk-StokEvent(name, price)) we will write
mkStockEvent(name, price); announce(v2). The method mkStokEvent is responsible in
creating an appropriate event and storing it in the variable v2. In this way, invocation of
methods with record fields as arguments is avoided; this is one of the restrictions imposed
in Chapter 12. The invariant ensures that each identifier id is mapped to a user with the
same identifier. It is required that the number of users is equal to the number of user
callbacks.

13.2.2 SPECIFICATION OF COMPONENTS

We specified the methods (components) of our application. We distinguish information
producers, user callbacks, a subscription manager, and communication media.

INFORMATION PRODUCER

An information producer includes a single method impl-broker that satisfies broker for
publishing stock information. The method constructs and announces an event with the
given stock name and price. We omit the pre-conditions when they are true.

hToker(name:StockName, price:N) & mkStockEvent(name, price); announce (vi);

mkStockEvent(name : StockName, price : N)
wr vi
post v\.name = name A v\.price = price

USER CALLBACK

Each specification uscallbacki corresponds to the method impl-uscallbacki. It constructs a
message and subsequently announces it.

mkMessage(set;£ : StockEvent, i : N) EL
wr V2, users
post V2.medium = users(i).reachability A v2.body = sevt A

V2-address = users(i).addresses(users(i).reachability) A users = users

uscallbacki (sent : StockEvent) ^ mkMessage(sevt, 1); announce(^);

156

uscallbackn(sevt : StockEvent) & mkMessage(sevt, n); announce^);

A number, n, of callbacks are defined for representing each user. Given an element
(impl-uscallbacki) of type Callback the event-based system is responsible for invoking the
corresponding callback. Note how user identifiers are used as constants in the definition of
these callbacks.

An ideal way of modeling such dynamic systems would be to use an object-oriented lan-
guage. In this context, we would define a class user that includes the fields specified in the
composite structure user defined above. The method impl-us callback would be an instance
method such that each instantiation of the class user would have its own callback method.
A subscriber would, hence, be of the form u.impl-callback where u is an instance of user.
Neither our logic nor the LECAP language allows using such concepts.

COMMUNICATION MEDIA

The specification of the communication media is provided. The method impl-smtpserver
that is supposed to satisfy smtpserver for instance is used by the SMTP server for notifying

users.

simple-smtpserver(m : Message) A
wr users
pre m.medium = (Email)
post (Vid S dom users • m.address £ rng users(id).addresses => users(id) = users(id))A

(Vu € rng users • u.addresses((Email)) = m.address =>
{m} U rng users(u.id).mailboxes{(Email)) = users(u.id).mailboxes((Email))) A
(Vm : Medium • m ^ (Email) =>• users(u.id).mailboxes(m) = u.mailboxes(m))

smtpserver(mge : Message) A
await true do simple-smtpserver (mge) od

simple-smsserver(m : Message) ^
wr users
pre m.medium = (SMS)
post (Vid s dom • m.address £ rng users(id).addresses => users(id) = users(id))A

(Vu € rng users • u.addresses((SMS)) = m.address =>
{m} U rng users(u.id).mailboxes((SMS)) = users(u.id).mailboxes((SMS))) A
(Vm : Medium • m ^ (SMS) => users(u.id).mailboxes(m) = u.mailboxes(m))

157

smsserver(mge : Message) A
await true do simple-smsserver(mge) od

A method is defined that embodies the behavior of each communication medium. In the
case of the SMTP server, this behavior consists of adding the received message in the Email
mailbox of all the user whose address is specified in this message. This is an simplified
view of the simple mail transfer protocol.

SUBSCRIPTION MANAGER

subscribeUser(user : User, subscription : Subscription) t±
wr B, users
post user.id € dom users ==> B(user.callback) = B (user.callback) U subscription A

user.id $ dom users =$• B(user.callback) = subscription A
Vra 6 dom B \ {user.callback} • B(m) = B (m) A users(user.id) = user
\/id S dom users \ {user.id} • users(id) = users(id).

The method impl-subscribeUser (satisfying subscribeUser) is a method of the subscription
manager that allows the end-user to specify the kind of messages she is interested in. If
the user to subscribe is already registered in the map users of all known users, then the
set of events she is interested in is simply updated. If this is, however, not the case, then,
the user is added to the map first.

Two methods implementing subscribeUser can not be executed concurrently. Since the
formula post-subscriberUser stable when post-subscriberUser does not hold, the con-
current execution of two such methods is not guaranteed to terminate in a state satis-
fying post-subscriberUser. In fact, there is no urgent need for the concurrent execution
of methods implementing subscribeUser. We can live with a "sequential" execution of
impl-subscribeUser as this is not an activity that happens very frequently (like delivering
of messages to users).

Next, we construct the specification setReliability of the method impl-setRechability that
allows end-users to configure their reliability status.

setReliability(zd : N, m : Medium) A
wr users
pre id s dom users A m £ dom users (id), addresses
post users(id) = fj,(users(id), reachability i—» m)A

yuid £ dom users \ {id} • users(uid) = users(uid)

A reachability criteria can be set only if an address is defined for this medium. In this
case, the corresponding user is updated while all other users are kept unchanged.

158

13.3 VERIFICATION OF LOCAL PROPERTIES

13.3.1 PROPERTY I

The first local property we investigate is whether subscribing a user results in a system
whose invariant holds. In the tradition of LECAP, to discharge some local properties,
one must transform the structural specifications into behavioral specifications first. In the
case of subscribeUser, there is nothing that needs to be done; the structural specification
coincide with the behavioral specification in any binding. We can, therefore, directly
formulate our proof obligation.

Proof Obligation 24 Vu: User, s : Subscription • post-subscribeUser(u, s) => inv-System

It is not difficult to see that this invariant does not hold. The invariant of the user to
subscribe and that of the system must hold before invoking this method. We, therefore,
strengthen the pre-condition of subscribeUser and subsequently apply the pre-rule to add
more information in the post-condition, resulting in the following specification.

subscribeUser (user : User, subscription : Subscription) ^
pre inv- User(user) A \nv-System

post user.id € dom users =>• B(user. callback) — B (user.callback) U subscription A
user.id £ dom «sers =$• B(user.callback) = subscription A

Vm G dom B \ {user.callback} • B(m) = B (m) A users\user.id] = user
Vid S dom users \ {user.id) • users(id) = users(id) A

inv- User(user) A \nv-System

To show that the invariant of the system holds after the execution of a method which
satisfies this specification, one must show that:

• the invariant of any user in the range of users is valid,

• any identifier in the domain of the users is mapped to an element with the same
identifier.

The proof is simple. Let us take a user u that is to be subscribed to some information
using the subscription 5. The map users is transformed such that users(u.id) = u and
any other entry is kept unchanged. That is, the identifier u.id is indeed mapped to an
element with the same identifier and such that its invariant holds. On the other hand,
since the invariant of the system was satisfied in the initial state and any other entry is
kept unchanged, the invariant of the system follows.

159

13.3.2 PROPERTY II

Next, we want to prove that users will always be reachable. In other terms, an address must
be specified for the reachability medium of any user. The method impl-setReachability is
used for modifying the reachability of a user. We show that it terminates in a state where
this property holds.

The proof obligation is formulated as follows:

Proof Obligation 25 ^ : ^, m : Medium- pre-setReliabilty A post-setReliabilty =>
us er s (i). reachability £ dom users(i). addresses

To discharge this proof obligation, we must also require that the invariant of the system
holds in the initial state.

setReliability(zrf : N, m : Medium) ^
wr users
pre id £ dom users A m £ dom users (id), addresses A inv- System
post users(id) = n(users(id), reachability i—> m)A

Vu £ dom users \ {id} • users(id) = users(id)

The proof is straightforward; one observes that the pre-condition requires that the given
medium be already mapped to some address before invoking the method. The result follows
from the application of the definition of // and the fact that all other entries in users are
kept unchanged from a state where \n\i-System held.

13.4 APPLICATION COMPOSITION

This step consists of subscribing components to events. We construct a specification of
the SMU application starting with the specification of the components that we presented
in the previous sections.

In particular, we attach some communication media to the system, show how users can
subscribe to stock information, show how to set reachability criteria, and verify some global
properties of the application.

13.4.1 ATTACHING BROKERS

A broker is an information source capable of publishing stock information in the system.
Brokers interact with the SMU system by invoking the operation impl-brocker. The internal

160

structure of such brokers is not of interest to us. In particular, they can come and leave as
they will.

In practice, however, it is necessary to be able to identify brokers that are allowed to
publish information such that authorization can be checked and accuracy of information
guaranteed.

13.4.2 ATTACHING COMMUNICATION MEDIA

We show how a communication medium can be attached to the system. We consider the
case of an SMTP server as shown in Figure 13.1. Starting with an empty binding, we
apply the integration rule to insert the method impl-smtpserver in the binding. Next, we
subscribe this method to events of type Message where medium has the value (Email).
The resulting effect should be the invocation of the SMTP server whenever a message is
published in the system with medium set to (Email).

The binding subsequently looks as follows:

B\ A { (impl-smtpserver) \-> {e : Message • e.medium — (Email)},
(mskip) H-> {x : Event}}

Other communication media can be inserted in the same way by subscribing them to the
corresponding type of message. Note that there is nothing that prevents the administrator
from subscribing the SMTP server to messages intended to the SMS server (i.e. with
m.medium = (SMS)). The pre-condition of this method will, however, not be satisfied and
this will result in the violation of the first invariant of the data type user which requires
that messages of type Email be indeed inserted only in the corresponding mailbox. An
adequate integration of an SMS server yields the following binding:

B\ — { (impl-smtpserver) i—» {e : Message • e.medium = (Email)},
(impl-smsserver) f—> {e : Message • e.medium = (SMS)},
(mskip) i—> {x : Event}}

13.4.3 SUBSCRIBING END-USERS

Since we provide the primitive impl-broker for publishing information, we can assume that
some broker exists. We have also already integrated some communication media in the
system. We proceed to subscribing end-users such that they can receive stock information.

By the integration rule, we insert a callback called impl-uscallbacka into the binding of the
event-based system. The binding now looks as follows:

161

^ { (impl-smtpserver)
(impl-smsserver)
(impl-uscallbacka)
(mskip)

{e : Message • e.medium = (Email)},
{e : Message • e.medium = (SMS)},
{}:
{x : Event}}

The second invariant of the user type requires that any user in the database is always
reachable. Inserting the callbacks into the event-based system does not violate this re-
quirement as no user is inserted to, removed from, or updated in the map of all known
users.

Given this binding, we can subscribe the user with identifier a to some stock information.
In particular, we subscribe her to any stock information where price is in the interval
[mina, maxQ]. The corresponding subscription is:

subscription = {e : StockEvent • e.price < maxa A e.price > mina}.

We also need to construct the user u that we want to subscribe to these events. For this,
we assume the existence of a value {Addressa) of type Address. We choose u to be such
that

u.id = a
u. callback = (uscallbacka)
u. reachability = (Email)
u.addresses = {(Email) H->
u.mailboxes = {(Email) K-»

(Addressa)}
{ } , (SMS) HH

It can easily be shown that the invariant of this user holds and we can, therefore, apply
impl-subscribe User resulting in the following binding

#2 — { (impl-smtpserver)
(impl-smsserver)
(impl-uscallbacka)
(mskip)

{e : Message • e.medium = (Email)},
{e : Message • e.medium = (SMS)},
{e : StockEvent • e.price S [mina, maxa]},
{x : Event}}

and the following users configuration: users = [Q H U] .

13.4.4 SCENARIO EXECUTION

To illustrate the behavior of the application, let us investigate two typical scenarios. In the
first scenario, a stock event is published with some price 6 < mina. In the second scenario,
the price 6 is such that 6 6 [mina, maxp].

162

SCENARIO I

1. The method impl-broker is invoked with some stock name and the natural 9 < mina.

2. A stock event is constructed by this method and announced.

3. The matching is performed by the event-based infrastructure which, however, notices
based on the binding that nobody is interested in this event. The scenario terminates.

SCENARIO II

1. The method impl-broker is invoked with some stock name and the natural 6 G
[mina,

2. A stock event se is constructed by this method and announced.

3. The matching is performed by the event-based infrastructure which notices based on
the binding that impl-uscallbacka is interested in this event.

4. The method impl-uscallbacka is invoked by the event-based infrastructure with the
corresponding event se.

5. The method impl-uscallbacka reads the reachability medium med and the address
adr of the user at the position a of the map users. A message m is constructed such
that m.medium = med, m.address = adr, and m.body = se.

6. The message m is announced with m.medium = med, m.address = adr, and m.body =
se.

7. The event-based infrastructure detects based on the binding that impl-smtpserver is
interested in events with medium equal to {Email) (since med = (Email)).

8. The method impl-smtpserver is invoked with the argument m.

9. The message m is inserted in the SMTP mailbox of the user with address adr.

13.4.5 IDENTIFICATION OF AFFECTED COMPONENTS

We identify the components whose behaviors may be affected by the subscription of end-
users.

The first program affected by these subscriptions is impl-broker: a user subscription is
followed by the subscription of a method of the form impl-us callback which is subscribed
to some stock events announced by impl-broker. The execution of the latter, therefore,
results in the execution of the first.

163

13.4.6 DERIVATION OF BEHAVIORAL SPECIFICATIONS

We proceed with the derivation of the behavioral specifications of the methods impl-uscallbacki
and impl-broker. We assume the binding B3 and discuss the definition of the function
subscriber.

The value of this function, in fact depends on the values of mina, and maxa.

• Ve € {e : StockEvent • e.price € [mina, maxa\] • subscribers(e) = {impl-uscallbacka, mskip}

• Ve S {e : StockEvent • e.price $ \mina, maxQ]} • subscribers(e) = {mskip}

On the other hand, for events of type Message, the function subscribers is defined as
follows.

• Ve S {e : Message • e.medium = (Email)} • subscribers(e) = {impl-smtpserver, mskip}

• Ve S {e : Message • e.medium = {SMS}} • subscribers(e) = {impl-smsserver, mskip}

• Ve G {e : Message • e.medium £ {(Email), (SMS)}} • subscribers(e) = {mskip}

By the announce rule, one derives the following behavioral specifications of impl-uscallbacka

and impl-broker respectively.

behavioral-uscallbacka(sevt : StockEvent) £f
mkMessage(sevt, a);
if v^.medium = (Email) then smtpserver(v2)\\mskip(v2)
else if V2-medium = (SMS) then smsserver(v2)\\ mskip(v2)
else mskip(v2) fi fi

behavioral-broker (name : StockName, price : N) ^
mkStockEvent(name, price);
if v\.price € [mina, maxa] then uscallbacka(vi)\\mskip(vi)
else mskip(vi) fi fi

By the application of the skip rule we simplify these specifications into the following for-
mulas.

behavioral-uscallbacka(sevt : StockEvent) £^
mkMessage(sevt, a);
if V2.medium = (Email) then smtp server (V2)
else if i>2.medium = (SMS) then smsserver(v2)
else mskip(v2) fi fi

behavioral-broker (name : StockName, price : N) ^
mkStockEvent(name, price);
if vi.price £ [mina,maxa] then uscallbacka(v{)
else mskip(v\) fi fi

164

The proof obligation to be discharged for a well-defined behavior of impl-broker and
impl-uscallbacka are respectively:

Proof Obligation 26
Vs : StockEvent, i : N • post-mkMessage(s, i) A v^.tnedium = (Email) =>• pre-smtpserverfa)

Proof Obligation 27
Vs : StockEvent, i : N • post-mkMessage(s, i) A vi.medium = (SMS) => pre-smsserverfa)

Proof Obligation 28
Vn : StockName,p :N • post-mkStockEvent(n,p) A v\.price € [mmaimaiQ] => pre-«scaZZ6acfca(?;i)

These proof obligations are trivially discharged by replacing the various assertion names
with their definitions: pre-smtpserverfa) with V2-medium = (Email), pre-smsserverfa)
with i)2.medium = (SMS), and pre-uscallbacka with true.

13.5 VERIFICATION OF GLOBAL PROPERTIES

We have completed the specification of the application such that interference freedom is
ensured. We proceed to checking some global properties, namely that:

• users indeed receive the messages of interest,

• messages are sent to users using the desired communication medium.

13.5.1 PROPERTY I

A user receives a message iff this message is stored in one of her mailboxes. The messages
in which a user is interested is the set of messages to which her callback is subscribed to.
The requirement is formulated as:

Proof Obligation 29 Vn : StockName,p G [mina, maxa] • post-broker(n, p) =>
3m £ users(a).mailboxes(users{a).reachability) • m.body.name = n A m.body.price = p.

The proof is by natural deduction. In the first case, it is assumed that the user is reachable
through email.

165

from post-broker(n,p) Ap £ \mina, maxa] A users(a).reachability = (Email)

from p G [mina, maxa] A post-mkStockEvent(n, p)
infer vi.price G [mina,maxa]

post-mkStockEvent(n, p) | post-uscallbacka(v\)

from post-uscallbacka(sevt) A us er s (a), reachability = (Email)
infer mkMessage(sevt,a) | post-smtpserver (1)2)

from post-mkStockEvent(n, p) A p G [mina, maxa]
infer v\.name = n A vi.price = p A V\.price G \mina, maxa\

vi.name = n A vi.price = p | post-uscallbacka(vi)
Vi.name = n A vi.price = p A post-uscallbacka(v{)

from post-mkMessage(vi,a) A users (a), reachability = (Email)
infer «2.body.name = n A v^.body.price — p A V2.reachability = (Email)A

V2.address = users(a).adresses((Email))

from post-smtpserver(v2) A v?.body.name = n A v^.price = pA
users(a).addresses((Email)) = v?.address

infer V2 G users(a).maiboxes((Email))

infer 3m £ users(a).maiboxes((Email)) • m.body.name = n A m.body.price = p

In the second case, the user is reachable through the SMS communication medium.

from post-broker (n, p) Ap £ [mina, maxa] A users (a), reachability = (SMS)

from p G \mina, maxa) A post-mkStockEvent(n, p)
infer v\.price £ [mina,maxa]

post-mkStockEvent(n,p) \ post-uscallbacka(v\)

from post-uscallbacka(sevt) A users (a). reachability = (SMS)
infer mkMessage(sevt,a) \ post-smsserver(v2)

from post-mkStockEvent(n, p) A p € [mina, maxa]
infer vi.name = n A v\. price = p A v\. price G [mina, maxa]

Vi.name = n A v\.price = p \ post-uscallbacka(v{)
vi.name = n A vi.price = p A post-uscallbacka(vi)

from post-mkMessage(vi, a) A users(a).reachability = (SMS)
infer V2.b0dy.name = n A V2.body.price = p A V2.reachability = (SMS)A

V2-address = users(a).adresses((SMS))

166

from post-smsserver{1*2) A v^-body.name = n A V2-price = p/\
users (a) .addresses((SMS)) = v?. address

infer v? G users(a).maiboxes((SMS))

infer 3m G users(a).maiboxes((SMS)) • m.body.name = n A m.body.price = p

This proves the validity of the first property for the case where there is only one user in
the system. Thanks to the composabihty supported in our framework, the case, with more
users is easily derived. Let us assusme another user u\ with the identifier ß ^ a such that:

ui.id = ß,
u\. reachability = (Email),
«1.mailboxes = {{Email) 1—» {}, (SMS) t—> {}},
«1.adresses = {(Email) 1—> Addressßi: (SMS) 1—» AddresSß2},
ui. callback = (uscallbackß).

It can also be checked that this user's invariant holds. We subscribe this user to the same
set of events as the previous user, resulting in the following binding:

Bz — { (impl-smtpserver) i—> {e : Message • e.medium = (Email)},
(impl-smsserver) H-> {e : Message • e.medium = (SMS)},
(impl-uscallbackß) 1—> {e : StockEvent • e.price < maxa A e.price > mina},
(impl-uscallbacka) 1—» {e : StockEvent • e.price < maxa A e.price > mina},
(mskip) H-> {2: : Event}}

The behavioral specification of impl-broker becomes:

behavioral-broker (name : StockName, price : N) £^
mkStockEvent(name, price);
if «i.price S [mmQ]mara] then uscallbacka(v\)\\uscallbackß(vi)
else mskip(vi) fi fi

The requirement for non-interference is formulated as:

Proof Obligation 30 pre-uscallbacka, post-uscallbacka stable when post-uscallbackß

Proof Obligation 31 pre-uscallbackß, post-uscallbackß stable when post-uscallbacka

To discharge these proof obligations, we write uscallbacka and uscallbackß in a form where
their pre- and post-conditions are obvious. This is done by successively applying the
definition of structural specifications, the conditional rule and the sequential rule, resulting
in the following behavioral specifications:

167

behavioral-uscallbacka (sevt : StockEvent) A
wr users, v?
post y?.body = sevt A v^.medium = users (a) .reachability A

V2-address = users (a), addresses (v2 .medium) \
(v2.medium = (Email) A post-smtpserverfa)) V
(v2.medium = (SMS) A posi-smse7-yer(i>2)) V
(v^.medium g {(Email), (SMS)} A post-mskip(v2))

behavioral-uscallbacklg(se?;i : StockEvent) A
wr users, V2
post v^.body = sevt A v^.medium = users (ß). reachability A

V2-address = users(ß).addresses(v2.medium) \
(v2.medium = (Email) A post-smtpserver(v2)) V
(vz.medium — (SMS) A post-smserver(v2)) V
(v-i-medium g {(Email), (SMS)} A post-mskipiv^))

The pre-conditions pre-uscallbacka and pre-uscallbackß are true and, therefore, stable when
<5 for any assertion Q. On the other hand,

post-uscallbacka stable when post-uscallbackß

is not valid. To see why, assume that us ers(ß). reachability and users (a), reachability have
the values (SMS) and (Email) respectively. Prom this, it results that the following assertion
holds:

post-uscallbacka(vi) | post-uscallbackß(vi) =>• ^.medium = (SMS)

and V2-medium = (SMS) can not result in the validity of post-uscallbacka.

It turns out that our non-interference requirement is too strong. We refine the above
behavioral specification by weakening the post-conditions:

behavioral-uscallbacka (sevt : StockEvent) A
wr users, V2
post A A Ei

behavioral-uscallback/3(sevi : StockEvent)
wr users, V2
post B A Ei

where:

168

• A = 3m £ rng users(a).mailboxes(users(a).reachability) • m.body = sevtA
rng users(a).mailboxes(m.medium) Ç rng users(a).mailboxes(m.medium)

• E\ = Via1 € dom users • id ̂ a =£> users(id) = users(id)

• B = 3m G rng users(ß).mailboxes(users(ß).reachability) • m.body = sevtA
rng users(ß).mailboxes(m.medium) Ç rng users(ß).mailboxes(m.medium)

E-2 = Vid € dom users • id ̂ ß => users{id) = users(id)

The proof obligations for these refinements are:

Proof Obligation 32 post-uscallbacka(sevt) => A A

Proof Obligation 33 post-uscallbackß(sevt) => B

These proof obligations are discharged by natural deduction as above. We distinguish the
case where the value of users (a), reachability is (Email) from the case where it is (SMS).

169

from post-uscallbacka(sevt) A us er s (a), reachability = (Email) A inv-System

\)2.body = sevt A ̂ .medium = {Email) A V2-address = users(a).addresses((Email)) |
v^.medium — (Email) A post-smtpserverfa) A t>2 = «2

from post-smtpserver (1)2) A users(a).addresses((Email)) = v^.address A V2.body = sevt
V2 € users(a).mailboxes((Email)))

infer 3ra G rng users(a).mailboxes(users(a).reachability) • m.body = sevt

from post-smtpserver (V2) A users(a).addresses((Email)) = v^..address A x^.body = sevt
infer Vm : Medium • m ^ (Email) => users(a).mailboxes(m) = users(a).mailboxes(m)

from \r\\i-System A post-smtpserver(v2)
infer inv- System

from inv-System A post-mkMessage(sevt)
infer \x\\i-System

mv-System
Vui, W2 S rng wsers • u\ ^ «2 =>• rng u\.addresses n rng VQ.addresses = {}
Vi<f 6 dom users • id ^ a =̂> users(a).addresses((Email)) £ rng users(id).addresses

from post-smtpserver(v2) A «2.address = users(a).addresses((Email))

from id ^= a Aid £ dom «sers A «2. address $ rng users (id), addresses
infer users(id) = users(id)

Wid 6 dom «sers • v^.address £ rng users(id).addresses =>• users(id) = users(id)
infer Vid s dom wsers • id ^ o. => users(id) = users(id)

infer J4 A i?i

The second part of the proof is obtained by simply replacing (Email) with (SMS) and
post-smtpserver with post-smsserver. The proof that B A E2 follows from post-uscallbackß
is also done very similarly.

We now proceed to showing that yl is stable when B A E2, that is 4̂ | J5 A £2 =>• A. The
proof is also by natural deduction.

from A I B A £2
4 I £2

from Ev!\a.±ß
infer users (a) = users (a)
J4 I users(d) = users(a)

infer 4̂

170

The stability of B when A A E\ is constructed similarly.

We have, hence, shown that the reception of messages by one user is not affected if another
user subscribes to the same messages.

Let us now suppose that the user ß is rather interested in some messages that the user a
is not interested in. A subscription of the user ß would be such that:

subscription = {x : StockEvent • s.price € [minß, maxß]} where maxß < mina.

Prom this, a new binding is derived:

_ { (impl-smtpserver) H-* {e : Message • e.medium = (Email)},
(impl-smsserver) i—> {e : Message • e.medium = (SMS)},
(impl-uscallback^) H-» {e : StockEvent • e.price < maxß A e.price > minß},
(impl-uscallbacka) >—> {e : StockEvent • e.price < maxa A e.price > mina},
(mskip) I—» {x : Event}}

The behavioral specification of impl-broker becomes:

behavioral-broker (name : StockName, price : N) ^
mkStockEvent(name, price);
if vi.price S [mina, maxa] then uscallbacka(vi)
else if vi.price £ [minß,maxß] then uscallbackß(vi)
else mskip(vi) fl fi

and the proof developed for discharging proof obligation 32 remains valid. Subsequently,
the user with identifier a still receives all messages she is interested in.

We, therefore, conclude that the reception of messages by one user is not affected by the
reception of messages by the other user; we can subscribe as many users as we want, each
of them will receive all messages she is interested in.

Note, however, that the case of the parallel announcement of two messages by brokers (i.e.
the concurrent execution of two brokers) have not been investigated. In fact, executing for
instance impl-broker (a, b) concurrently with impl-broker (d, e) results in interference on
the variable v\. To solve this issue the body of the method impl-broker can be embedded
in an await-construct.

171

13.5.2 PROPERTY II

This property requires showing that users always receive messages through the medium
that they specify. This property is important because otherwise users would not be able
to rely on such a system.

In fact, the proof of the first property also includes the proof of this property. It is enough
to observe in the proofs that:

• if the communication medium is (Email) in the hypothesis, then, the conclusion
ensures the existence of the indicated message in the Email mailbox;

• if the communication medium is (SMS) in the hypothesis, then, the conclusion en-
sures the existence of the indicated message in the SMS mailbox.

Obviously, many other global properties can be investigated, some of them requiring no
modification of the specifications, others requiring either refinement or complete modifica-
tion of some specifications. After the verification of these properties based on the behavioral
specifications, the implementation of the components can be carried out starting with the
structural specifications and following a stepwise development process, that does not differ
much from the traditional top-down development processes. We omit this step.

13.6 SUMMARY

This chapter presented a first real life case study in the design and analysis of correct event-
based applications, a stock service for mobile users (SMU). This case study is motivated by
the increasing requirement for supporting user awareness in distributed multi-user appli-
cations. More precisely, SMU is inspired by the MOTION messaging system and the IBM
stock service application. The design presented in this chapter is superior to that of these
systems because it supports many communication media, allowing end-users to specify the
medium through which they would like to be notified. This system takes advantage of the
loose coupling facility provided by the event-based paradigm such that new communication
media can be added to the system by simply performing a corresponding subscription.

The design process of the application presented in this chapter follows the standard steps
in the development of a LECAP applications: designing the architecture of the application,
specifying the components involved in the construction of the application, verifying some
local properties about these specifications, composing the specification of the intended
application starting with the specifications of the components, verification of the global
properties of the application. The final step in this process concerns the stepwise top-
down development of the component based on their structural specifications. We have

172

not performed this step as it resembles the traditional stepwise development processes.
Moreover, performing such a top-down development process for the SMU application would
clearly be out of the scope this thesis.

The next chapter discusses the redesign of the MOTION platform that motivated the
construction of the LECAP methodology. Like SMU, the analysis of the MOTION platform
is done within the S E A T Y framework where rely- and guarantee conditions are replaced
with the implicit requirement that any two processes running in parallel access two different
sets of variables.

173

174

CHAPTER 14

REDESIGNING THE MOTION PLATFORM

MOTION (MObile Teamwork Infrastructure for Organizations Networking) is a platform
we designed and prototyped in the MOTION European project [80]. This platform ad-
dresses the needs of two well known organizations. The first is a manufacturer of mobile
phones and the second is a producer of white goods (e.g. refrigerators, washing machines).
The platform has a service architecture that supports mobile teamworking by taking into
account different connectivity modes of users, provides access support for various devices,
supports distributed search of users and artifacts, offers user management facilities in a
way where users can be grouped in communities.

14.1 BACKGROUND

14.1.1 THE MOTION ARCHITECTURE

The MOTION system was constructed by assembling different components: DUMAS (Dy-
namic User Management and Access Control System) [43], an XQL engine [59], a repository
(comparable to a file system), an artifact manager (comparable to a shell that provides
primitives for accessing the file system), etc. These components are integrated into the
platform by means of the event-based architectural style. A layered view of the MOTION
platform is presented in Figure 14.1. The bottom layer of the architecture provides the
communication infrastructure (realized by Peer Ware [101]). The services made available
by this middleware include: peer-to-peer file sharing and an event-based system.

On top of this layer, we constructed the teamwork services layer (TWS layer). This TWS
layer is composed of DUMAS, a repository, a messaging system, a user oriented publish-
subscribe system (TWS P/S), a component for distributed search, and an artifact manage-
ment component. The functionalities of DUMAS include user management, community
management, and access control. The repository is a component responsible for storing
different MOTION data such as files, profiles, and access control lists. A conceptual view
of the MOTION platform is shown on Figure 2.2. A detailed description of MOTION is
presented in Chapter 2 as well as in [79, 80, 81, 82, 109].

175

Presentation Layer

TWS Layer

Team Work Services
«Busness Specific-Services-

Repository Messaging
Managment

Communication Middleware

Event Based system Peer—to—Peer File Sharing

Figure 14.1: The MOTION Architecture

14.1.2 THE PEER-TO-PEER SIDE OF MOTION

This section elaborates on the meaning of peer-to-peer (p2p) for the MOTION platform.
The choice of this architecture is justified in [80]. The p2p concept has two facets in the
MOTION platform. First, file sharing is performed in a p2p manner; each device has
complete control of the files it makes available to the remainder of the system.
The next facet of the p2p architectural style in the MOTION platform is service orientation.
Each device may host and manage a service independently of the behavior of other devices.
Such a device uses the EB paradigm for notifying other devices of the changes concerning
the service it provides. In fact, this facet of p2p may be viewed as a generalization of p2p
file-sharing. We, however, separate the two concerns since file-sharing is one of the most
advocated services in p2p systems. We call each device in this p2p architecture a peer.
This chapter is concerned about the second facet of p2p in MOTION. In particular, we
address user management in a p2p environment.

14.2 COMPONENT SPECIFICATION

The user management functionality has gained increasing attention and importance in
distributed environments. The responsibilities of a user management component have been
integrated in many implementations so far-be it as part of an operating system (such as
Unix) or as pieces of (vendor-specific) software. Our dynamic user management component
(DUMAS) includes functionalities such as access control, user and group creation and
deletion, as well as user and profiles manipulation. The initial version of DUMAS was
formally specified [43, 44], the specification validated against the informal requirements
[43] and used for the construction of an automated oracle [44]. DUMAS was shown to be
robust in client-server settings. In the MOTION'S event-based peer-to-peer environment,
however, there were some severe malfunctions that were mainly due to interference that

176

could not be observed in client- server settings.

The MOTION platform (see Figure 2.2) supports various kinds of devices that have dif-
ferent capabilities and that cannot, therefore, be equally used for storing data such as
user profiles and access control lists. To support this heterogeneity of devices we give the
end-users the possibility to specify which profiles they would like to store on their devices.
For instance, an end-user, say Joe, may configure his system such that only profiles of col-
leagues in his department are stored on his desktop computer while only profiles of those
in the projects he works on are stored on his PDA. In terms of services, we may say that
each device hosts a user management service. Although the implementation of this service
is the same for all peers, the content of the repository is not the same; Joe's profile may
be stored on peers 123, 124, and 125 but not on peers 234, 235, and 236. One of the main
challenges in such an architecture is to keep the profiles of all users consistent. Any change
to Joe's profile performed on Peer 123 needs to be taken into consideration on (perhaps
propagated to) the peers 124 and 125.

Although this may resemble the traditional data-consistency requirement in distributed
systems, there are, however, some subtle differences. First, the peer 124 may suddenly
decide not to be interested in Joe's profile anymore (depending on the interest of the
owner of the peer). Next, the user management service on peer 123 has no knowledge
about peers interested in events it announces. Third, each peer stores only profiles it is
subscribed to. Finally, a peer interested in Joe's profile may be offline when some changes
are made to this profile.

As in Chapters 9 and 10, we use a notation that resembles the VDM-SL [102] notation.
VDM (Vienna Development Method) is an environment for developing correct model-
oriented applications. The method is composed of a formalism for specification (VDM-SL)
and techniques for stepwise refinements. This systematic development approach makes it
suitable for the development of complex software systems. The language can be used for
abstract specification as well as for low-level specification. VDM-SL supports representa-
tional and operational abstractions. Representational abstraction describes the modeling
primitives necessary to specify a software program. A complete description of the language
can be found in [130].

14.2.1 DATA MODELING

We present some of the types defined in our specification and useful for understanding
this chapter. Access control models are based on three notions: principals, subjects and
access rights. Informally, a principal is anything capable of possessing access rights. In
our model, we identify two types of principals: users and groups. Each user/group has
an identifier. An identifier is a type which is not further defined (declared with token).

177

ID = token;
UserlD = ID;
GroupID = (default) \ ID;
RightID = ID;

User, group, and access right identifiers are some kind of identifiers. A principal is either
a user or a group. This can be expressed using the union operator:

PrincipallD = UserlD \ GroupID;

A basic subject is anything (other than an access right or a principal) on which an access
right may be owned (e.g. files). The only requirement on these elements is to have an
identifier. Basic subjects are not registered in the repository (defined below); we have no
control over when they are created and destroyed. They are mentioned because users and
groups may own access rights on them.

BasicSubjectID = token;
Profile = token;

A profile is a set of user specific information such as her expertise, her languages, her time-
zone, her gender, her location and her names. Such profiles may have complex structures
that we do not want to specify at this level, hence, giving developers more possibilities in
the choice of the concrete data structure.

A user is modeled with a set of data related to it: its parents, its access rights, its identifier,
and its profile. Each user has at least one parent: its main parent. It can be linked to other
groups called parents of this user. The set of parents contains at least the main parent of
the user.

User

inv

parents
mainparent
permissions
name
profile

us A

: GroupID-set
: GroupID
: (RightID x SubjectID)-set
: UserlD
: Profile

us .mainparent G us.parents;

A group is a set of users sharing some permissions. A group does not need to have a parent;
if it, however, has some parents, then, one of them must be its main parent. If it has no
parent (i.e. the main parent is nil), then this group must be the group named (default).

178

Group ::
members
parents
mainparent
permissions
name
profile

UserlD-set
GroupID-set
[GroupID]
(RightID x £
GroupID
Profile

inv us A
us.mainparent ^ nil =>• us.mainparent G us.parents;
us.mainparent = nil <*=> us.name — (default) A us.parents = {};

The type Principal is the union of the types User and Group. It combines these two types
into a single one.

Principal = Group \ User;

In addition to these basic types, the type Right whose definition is omitted is also defined.
A subject is the union of the types access rights and principals.

SubjectID = PrincipallD \ RightID;
Subject = Principal \ Right;

We introduce the enumeration type Prog for referring to operations defined in this speci-
fication and that are elements of the event-based system's set of methods. We assume a
system with a finite number of peers; each operation opération corresponds to the opera-
tion operation running on peer i.

Prog = (impl-ebsimpleMui) | ••• | (impl-ebsimpleMun) | (mskip);

We also introduce a type EventName that introduces a classification over events. The only
event name needed in the extract presented in this thesis is (UserProfileUpdate).

EventName = {UserProfileUpdate};

An event is a composite type including the identifier of the announcing peer, a tag for
identifying the changes performed on the state, and a payload.

Event ::
peerid : N
action : EventName
payload : Subject;

179

Subscription = Event-set;

A subscription represents the set of events a peer is interested in.

A binding associates each program (element of type Prog) to a subscription, i.e. the set of
events the program is subscribed to.

Binding = Prog —> Subscription;

We define the key model of our specification, the repository. It is a map of subjects to
their identifiers. The first invariant requires that any identifier be mapped to an element
with the same identifier. The second and third invariants require that the invariants of any
user and group in the repository be satisfied. There are other invariants that are omitted.

DB = SubjectID <^> Subject

inv db A
let

invO = Vi G dom db • x = db(x).name,
invl = V i € rng db • is- User (x) => inv- User (x),
inv2 = V i € rng db • \s-Group (x) => mv-Group (x) in

invOAinvl A inv2

We have advocated that the different devices in the MOTION platform may cache a part
of the whole set of information available in the system. Each of these peers, hence, hosts
a local repository. The state of the MOTION platform is, thus, composed of a sequence of
repositories, each corresponding to a different device.

state System of
db:DB*,
B : Binding

inv mk-System (db, binding) A
Vz G [l,len db]-\n\/-DB(db[i\)

init sys A
Vz G [1, len db] • dbt = {>->}

end

The invariant of the state requires that each peer has a local repository whose invariant
holds. The binding is currently undefined as we do not know yet which program must be
subscribed to which events.

180

14.2.2 SPECIFICATION OF COMPONENTS

A number of operations are specified in our model. As an example, we show the structural
specification of the operation for updating user profiles. This operation replaces the profile
of the given user with the provided profile. This operation is indexed with the identifier of
the peer on which it is running. We, therefore, have a number of len db such operations in
the system. Each such operation only accesses the repository with the same index. The
letter i is used in the following specifications as the name of the current peer and dbi is a
shortcut for db[i\. Note that although these operations could be defined as higher order
functions that take the identifier of the peer and return the corresponding operation, we
prefer indexing operations since it is simpler and more intuitive. An alternate solution
would have been to use objects in which we could encapsulate the identifier of the peer, its
repository and the operations running on this peer. Objects are, however, not yet suppoted
by our framework.

The operation impl-muProfilei (the name muProfile is an abbreviation of updateProfile;
mu is used in analogy to the VDM operation ß for updating composite types) satisfying
the specification muProfilei is intended to replace the local profile of the user with the
given identifier with the provided profile. The structural specification of this operation is
the sequential composition of simpleMui and an event announcement.

muProfilei(id : UserlD, prof : Profile) A
await true do simpleMui(id, prof) od;
announce (

The operation impl-simpleMui (satisfying the specification simpleMui) is the basis for
updating user profiles. The post-condition ensures that after execution of the operation,
the local repository maps the given user identifier to a user with the given profile while
keeping other information in the repository unchanged. In addition, this method prepares
the event to be announced through the announce construct of muProfihi.

simpleMui(id : UserlD, pr : Profile) A
wr db
pre id e dom dbi

post dbi(id) = \i (dbi (id), profile t—» pr) A dbi <3 {id} — dbi < {id}A
v.peerid = i A v.action = (UserProfileUpdate) A v.payload = dbi(id) A

Wt e [1, len db]-t^i => dbt = db~t.

The operation ß is the VDM operator for updating composite types such as User and
Group. In the above specification, the composite element db(us) is updated by replacing
the value of the field profile with pr and keeping other fields unchanged. For instance,

181

if US2 = fJ,(usi, profile H
then

uS2-parents = us\. parents
us^.mainparent = us\.mainparent
US2. permissions = us\ .permissions
uS2-name = us\.name
uS2-profile = pr2

The operation <$ (domain restricted by) restricts the domain of a map to those elements
that are not in the given set. For instance,

{id\ 1—> us\, ia\ 1—> us2 , idz >—* US3} -^ {id^} = {idi 1—> usi, ids *-* US3}.

The method impl-muProfilei is provided to be invoked either by end-user or by other meth-
ods. It can, however, not be invoked by the event-based infrastructure for two reasons.
First, since it announces an event, it is not suitable for being invoked for replicating ac-
tions performed on other peers. Next, the event-based infrastructure requires that any
subscriber has a header of the form op(x : Event). We, therefore, propose another method
impl-ebsimpleMu (the name is an abbreviation of event-based update profile), that ba-
sically does the same thing as impl-simpleMui but requires an event as input value. Its
specification ebsimpleMu is given as follows:

ebsimpleMui(e : Event) A await true do simpleMui(e.body.name, e.body.profile) od

Due to the different capabilities that peers have, not every peer can store information on
all users. The end-users are, therefore, given an operation impl-userSubscription satisfying
userSubscription for defining the kind of information they would like to store on their
peers. The input element of this operation is a subscription that characterizes some users.
The pre-condition prevents this subscription to match events announced by the current
peer as this would result into loops where operations would be subscribed to events they
announce. The post-condition is a corresponding update of the binding.

userSubscriptionj(s : Subscription) £f
pre Ve S s • e.peerid ^ i A e.action = (UserProfileUpdate)

post B = B f {impl-ebsimpleMui 1—» s U B (impl-ebsimpleMui)}

An operation impl-us er Unsubscribe satisfying userUnsubscribe is also provided for remov-
ing subscriptions. This operation not only removes the given subscription from the binding,
but also deletes the entries that match this subscription from the local repository; other-
wise, this repository will be inconsistent with the remainder of the system.

182

userUnsubscribe(e : Event) A
wr dbi
post let

m = (impl-ebsimpleMui)
! = { » £ rng dbi \ 3 e G s • e.payload = u)

in dbi <$ {e.body.name} = dbi <t {e.body.name}A

B = 1B t {mH "ß(m) \ {s}} A rng 4 n l = 0

The specifications are currently structural since we have not defined the binding. The set
of global variables is composed of the repositories of peers.

14.3 VERIFICATION OF LOCAL PROPERTIES

Before defining the binding of the event-based system, we want to prove some local prop-
erties, namely that any operation that satisfies one of the above specifications conserves
the invariants of the repository. For this, we assume the empty binding and derive the
behavioral specifications based on which we can discharge the proof obligations.

The emptiness of the binding results for any event e in:

subscribers(e) = {mskip}

By the the skip rule we deduce the following behavioral specification that shows that
muProfilei coincides with simpleMui when the binding is empty.

behavioral-muProfilei(id : UserlD, prof : Profile) A_
await true do simpleMui(id, prof) od

Since, however, the operation impl-muProfilei is currently considered in an interference
free environment, we deduce:

behavioral-muProfilei (id : UserlD, prof : Profile) A simpleMui(id, prof)

The proof obligation is subsequently formulated as:

Proof Obligation 34 V u : UserlD, p : Profile • post-simpleMui(u, p) =$> inv-DB

183

Any attempt to discharge this proof obligation, however, fails; the initial state may be such
that its invariant is not satisfied. We, therefore, need to strengthen our assumptions on the
environment. We also apply the pre-rule to add this information into the post-condition,
resulting in:

simpleMui(id : UserlD, pr : Profile) A
wr db
pre id e dom dbt A \nv-System

post dbj(id) = /i (dbi (id), profile H-> pr) A dbi <3 {id} = dbi <3 {id}A
v.peerid = i A v. action = (UserProfile Update) A v.payload = dbi(id)A

\nv-System A Vi e [1, len db] • t ^ i => dbt = dbt.

The argumentation on the validity of the proof obligation is now straightforward. One
must show that:

• for any entry x in the domain of dbi, the invariant of dbi(x) is satisfied and

• for any x in the domain of dbi, dbi(x).name = x.

The proof is by natural deduction:

from post-muProfilei(id,pr) Aid £ dom dbi
simpleMui(id, pr)

\nv-System

\nv-DB(dbi)
dbi(id) = /i (dbi (id), profile >-> pr)

dbi >3 {id} = dbi <5 {id}

from dbi <{id} = dbi <{id}f\ \nv-DB(dbi)

Vi € dom dbi- x ^ id => db{(x) = dbi(x)

from \m-DB(dbi) A x : GroupID A x e dom dbi

inv- Group(dbi(x))
x ^ id

dbi(x) = dbi(x)
\nv-Group(dbi(x))

infer Vz : GroupID • \nv-Group(dbi(x))

from mv-DB(dbi) A x : UserlD Ax ^ id

\nv-User(dbi(x))

dbi(x) = dbi(x)
\nv-User(dbi(x))

infer Vi : UserlD • x ^ id =$• \nv-User(dbi(x))
infer Vi : UserlD • x ^ id => \nv-User(dbi(x)) A Vi : GroupID • \n\/-Group(dbi(x))

184

from dbi(id) = fi (dbi (id), profile H-> pr) A 'mv-DB(dbi)

\nv-User(dbi(x)
infer \x\M-User(dbi(x)

from dbi <3 {id} = dbi < {«0 A inv-D5(<f6j)

Va; S dom dbi • x ^ id => dbi(x) = do, (2)

Vz G dom dbi • dbi(x).name = x

from dbi(id) = \i (dbi (id), profile i—> pr) A dbi(id).name = id

infer dbi(id).name = id

infer Va; £ dom dbi • dbi(x).name = x
infer \i\M-DB(dbi)

The second proof obligation is that the operation impl-ebsimpleMui also conserves the
invariant of the local repository. The proof is by adequately refining this operation (as in
the previous case) and is obtained from the above proof by some minor modifications such
as replacing id with e.body.id, and pr with e. body, pro file.

14.4 APPLICATION COMPOSITION

The composition of application specifications is done by subscribing specification of com-
ponents to to events in a way that reflects the architecture of the desired application.

14.4.1 SUBSCRIPTION OF COMPONENTS

In most event-based applications, the developer/designer is responsible for specifying what
components are interested in what events and she indeed performs the integration by
means of an integration framework. The verification of the system can, hence, be realized
statically. The MOTION platform, however, is different; end-users are allowed to subscribe
components to events in an existing application. The verification of the properties of
this application is consequently performed under some assumptions. In particular, the
specification userSubscriptiorii of the operation impl-userSubscriptiorii requires that the
subscription submitted by the end-user excludes events announced by the current peer (in
this case the peer i).

Let us assume that the owner of the peer i is interested in caching profiles of users whose
data satisfy the subscription s which further satisfies the pre-condition of userSubscriptiorii.
After expressing this need (using an operation satisfying userSubscriptiorii), the binding is
such that:

185

B = B] {impl-ebsimpleMiii >—» s U B (impl-ebsimpleMui)}

which requires the event-based infrastructure to invoke the operation impl-ebsimpleMiii
when an event matches the subscription 5. If, for instance, we start the system with an
empty binding, then, if the owner of the peer i is interested in all user profile updates, the
binding will be following:

B\ = { impl-ebsimpleMui i—> {x : Event • x.action = (UserProfileUpdate) A x.peerid ^ i}},
impl-ebsimpleMuj •—>{},
impl-ebsimpleMuk |-» {},
mskip \—>{x: Event}}

Some could argue that including the tag (UserProfileUpdate), which may be an operation
name, in the event contradicts the spirit of the event-based paradigm which is loose cou-
pling of components. First, this is a requirement of this specific application, not of the
LECAP methodology which does not even define the meaning of an event. Second, there
is a substantial difference with strongly coupled systems, such as those based on method
invocation. Here, the subscriber defines the publishers it wants to receive events from
(which is legitimate), while in strongly coupled systems based on method invocation, the
caller needs to know the name of the callee; this is clearly not the case in our example.

14.4.2 IDENTIFICATION OF AFFECTED COMPONENTS

The next step in the composition of an event-based application is the identification of
components whose behaviors may be affected by a subscription. Since the operations
impl-ebsimpleMui announce no event, subscribing them to an event e only impacts their
predecessors; by which we mean operations such that impl-ebsimpleMui is invoked in some
of their computations.

Starting with the empty binding, we subscribe the method impl-ebsimpleMui to an event e
such that e.name = (UserProfileUpdate) and e.peerid ^ i (as required by the pre-condition
of userSubscriptiorii). An example of the resulting bindings is B\ defined above. The
identifier e.peerid of the subscribing peer may take any value different from i. Therefore,
the set of announcers of the event e is

announcers(e) = {impl-muProfilej • j ^ i}

and, therefore,

186

predecessors(impl-ebsimpleMui) = {impl-muProfilej • j ^ i}.

The reader must be aware that in general, predecessor(z) defines the set of programs
such that the program z is triggered in some of their computations. It, therefore, de-
pends upon the binding. Although we have not defined a concrete binding for computing
predecessor•s(impl-ebsimpleMui) (since the binding are constructed dynamically by the end-
users), the assumption that any subscription must be performed with a method satisfying
userSubscriptiorii gives us an upper bound on the set of events that impl-ebsimpleMui may
be subscribed to; and, hence, an upper bound of predecessors (impl-ebsimpleMui).

14.4.3 DERIVING THE BEHAVIORAL SPECIFICATIONS

We proceed to deriving the behavioral specifications of affected components. This process
which is accompanied by the derivation and the discharge of some proof obligations results
in specifications that are used for the verification of global properties of the application.

We need to derive the behavioral specification of each z in predecessors (impl-ebsimpleMui).
Since, however, each method in predecessors (impl-ebsimpleMui) satisfies a specification of
the form muProfilej (where j ^ i), it is enough to take an arbitrary impl-muProfilej and
derive its behavioral specification.

By the announce rule, we need to determine the set of events of impl-muProfilej first.

events(impl-muProfilej) = {e : Event • 3pr : Profile, id : UserlD, s ,s : System-
(s , s) \= post-muProfilej (id, pr)}

= {e : Event • e.peerid = j A e.action = {UserProfilellpdate}}

And, assuming the binding Bi, we derive that

Ve : Event • e.action = (UserProfileUpdate) => subscribers(e) = {impl-ebsimpleMui,mskip}

which results in

Ve G events(impl-muProfilej) • subscribers(e) = {impl-ebsimpleMui, mskip}

and the behavioral specification of impl-muProfilej is therefore:

187

muProfilej(id : UserlD, prof : Profile) A
await true do simpleMuj(id, prof) od;
{impl-ebsimpleMui(v)\\mskip(v)}

which by the skip rule can be simplified into:

muProfilei(id:UserID, prof : Profile) A
await true do simpleMuj(id, prof) od;
impl-ebsimpleMui (v)

The proof obligation for the appropriate behavior of this operation is given by the sequential
rule:

Proof Obligation 35 post-simpleMuj(id, pr) => pre-ebsimpleMui(v)

This proof obligation, however does not necessarily hold. We strengthen the pre-condition
of impl-muProfilej with pre-simpleMui and subsequently derive the following specification:

muProfilej(id : UserlD, pr : Profile) A
pre pre-sirnpleMui A pre- simpleMuj
post post-simpleMui | post-simpleMuj

14.5 GLOBAL SYSTEM BEHAVIOR

Based on the behavioral specifications computed in the previous section, we now want to
check the behavior of the whole system.

14.5.1 PROPERTY I: CONSISTENCY

Scalability can be a serious problem in peer-to-peer systems. Among others, one of the
obstacles to achieving this scalability in the MOTION platform is the requirement of
replica consistency. We propose to analyze our system with respect to this property. In
particular, we want to show that all user entries replicated in the system will be consistent
with each other. That is, for any user identifier id and any two peers p and q such that
x G dom dbp D dom dbq it is the case that dbp(x).profile = dbj(x). pro file.

Formally, the property is formulated as:

Proof Obligation 36 C\ == Vp, q € [1, ten db], x € dom dbp n dom dbq • dbp(x). profile = dbj(x). pro file.

188

Ci is an invariant that must also be ensured before execution of methods, which means
that the pre-conditions of methods must be strengthened with this assertion resulting in:

muProfilej(id : UserlD, pr : Profile) A
pre pre-simpleMui A pre- simpleMuj A C\
post post-simpleMui | post-simpleMuj

Despite this refinement, any attempt to discharge C\ fails. To see why, let us assume that
the peers 124 and 125 have each an entry corresponding to the user identifier id in their
respective local repositories. We also assume that the peer 124 is subscribed to updates
concerning the user id while the peer 125 is not. If a peer 123 now updates the profile
of the user id (and subsequently announces an event), the peer 124 will receive the event
while the peer 125 will not, leading to an inconsistency between the peers 124 and 125.
To avoid such situations, we need to add an invariant to the repositories. We require that
if there is an entry with identifier id in the local repository dbi of peer i, then, this peer
must be subscribed to updates related to this identifier. The invariant is formulated as:

= V i € [1, len db], id : UserlD, e : Event •
(id S dom dbi A id = e. pay load, name) => e G Bi((ebsimpleMui))

We further strengthen the pre-condition of the above specification (by the consequence
rule) and add more information in the post-condition by the post-rule:

muProfllej(id: UserlD, pr: Profile) A
wr db
pre pre-simpleMui A pre-simpleMuj A C\ A \n\i-System

post post-simpleMui | post-simpleMuj A pre-muProfilej

We discharge this proof obligation by distinguishing five main cases:

• p=q; this case is trivial as for any x G dom dbp, dbp(x) = dbq(x).

• P ¥" Qi V — h Q = h x=id. In this case, dbi(id) = dbj(id) results from the application
of simpleMuj(id, pr) followed by

• P ¥" Ç) V — h Q = h x ¥" id; dbp(x) = dbq{id) results from that the applica-
tion of simpleMuj(id, pr) followed by ebsimpleMui(vi) keeps any entry other than id
unchanged. And, by the validity of C\ in the initial state, the result is ensured.

• P¥zQiP=h(l — h x ¥" ̂ , the argumentation is the same as above.

189

V ¥" Ç> P = h q = i, x = id is rendered impossible by the above invariant.

from post-muProfilej(id,pr) Ax £ dom dbp ndom dbq

post-simpleMuj (id, pr) | post-ebsimpleMui

C\ A pre-simpleMuj(id,pr) Apre-ebsimpleMui(id,pr)

from pre-simpleMuj (id, pr) A pre-ebsimpleMui (id, pr)

infer id € dom dbi n dom dbj

from p — q
infer dbp(x).profile = dbq(x).profile

from p^=qAp=jAq = iAx = idA post-simpleMuj (id, pr) \ post- ebsimpleMui(id, pr)
from post-simpleMuj (id, pr)
infer dbj (id).profile = pr
from post- ebsimpleMui(id,pr)

infer dbj = dbj A dbi(id).profile = pr

dbj (id), pro file = pr \ (dbj =• dbj A dbi(id) .profile = pr)
dbi(id).profile = dbj (id), pro file

infer dbp(x).profile = dbq(x).profile

190

from

infer

from

infer
infer C\

p^qAp=jAq = iAx^idA post-simpleMuj (id, pr) | post- ebsimpleMui(id, pr)

from C\

infer dbj(x).profile = dbi(x).profile
from post-simpleMuj(id,pr) Ax ^ id

infer dbj(x).profile = dbj(x).profile
from post-ebsimpleMui(id,pr) Ax ^ id

infer dbi(x).profile = dbi(x).profile A dbj = dbj
dbj (x).profile = dbi(x). profile
dbp(x).profile = dbq(x).profile

p^qAp=jAq^iA post-simpleMuj (id, pr) | post- ebsimpleMui (id, pr)
from post-simpleMuj (id, pr)
infer v\.payload.name = id A v\.action = (UserProfileUpdate)

Bi A vi.payload.name = id A Vi.action = (UserProfileUpdate) A
subscribers(vi) = {ebsimpleMui, mskip}
ebsimpleMuq $ subscribers(v\)

Vx.payload.name 0 dbq

id g dom dbq

dom dbq

x ^ id
post- simpleMuj (id, pr) Ax ^ id

dbj(x).profile = dbj(x).profile A dbq(x) = dbq(x)
post- ebsimpleMuj (id, pr)

dbj = dbj A dbq(x) = dbq(x)
dbj (x). profile = dbq(x).profile
dbp(x).profile = dbq(x).profile

from

infer

x G dom dbq Aid

from

infer
from

infer

The property has been shown for the case where impl-ebsimpleMui is the only operation
interested to event named {UserProfileUpdate). In this case, there is no concurrency. Let
us now assume another operation impl-ebsimpleMuk subscribed to these events, resulting
into concurrency.

The binding is now defined as:

#2 = { impl-ebsimpleMui i—» {x : Event • x.action = (UserProfileUpdate) A x.peerid ^ i}},
impl-ebsimpleMuj >—>{},
impl-ebsimpleMuk •—• {x : Event • x.action = (UserProfileUpdate) A x.peerid ^ k},
mskip t-> {x : Event}}

which results in the following definition of subscribers:

191

Ve : Event-
e.action = (UserProfileUpdate) A e.peerid = i => subscribers(e) = {impl-ebsimpleMuk, mskip}
e.action = {UserProfileUpdate) A e.peerid = k =>• subscribers(e) = {impl-ebsimpleMui, mskip}
e.action = {UserProfileUpdate) A e.peerid $ [i, k) =>

subscribers(e) = {impl-ebsimpleMuk,impl-ebsimpleMui, mskip}

Since, however, any event announced by muProfilej is such that e.peerid = j 0 [i, k], the
following specification is derived by application of the announce rule followed by the skip
rule.

behavioral-muProfilej (id : User ID, prof : Profile) ^
await true do simpleMitj(id, prof) od;
{ ebsimpleMui (v) || ebsimpleMuk (v)}

We need to find A and B such that:

• Ai | post-ebsimpleMuk(v) => Ai ,

• Ak | post-ebsimpleMui(v) => j4fc,

• post-ebsimpleMui(v) => J4J,

• post-ebsimpleMuk(v) => Ak,

• post-ebsimpleMuj(v) \ {Ai A >!*) => C\.

We choose J4J and Ak defined as:

• Ai d= dbi{id) =prA dbt <j {id} = db~i<i {id} A Vt € [1, len dt] \ {i, k}-dbt = dbt ,

• Xfc =7 dbk{id) =prA dbk <i {id} = dTk<i {id} A Vf e [1, len db] \ {t, k}-dbt = dbt .

A proof by natural deduction borrowing many of the arguments of the previous proof can
be constructed to discharge the proof obligation. We omit this proof.

14.5.2 PROPERTY II: NON-VOLATILITY OF USER DATA

A basic property that can be checked is indeed that the peer i always has the current
version of any user profile in the system. This property ensures that user data is not
volatile and can always be recovered in case of problem.

This proof obligation is formulated as:

Proof Obligation 37 C2 =7 Vi G [I, len db], x : UserlD • dbi{x).profile = dbt{x).profile

192

This is a global invariant of the platform that must hold after the execution of each
impl-muProfilej. Our proof is based on the validity of

post-muProfilej(id, pr) => C\

which is discharged above. The proof is by distinguishing two cases:

• x ^ id; in this case, the entry dbt(x) is kept unchanged for any t and from the
validity of Ci in the initial state, one derives that dbj(x) = dbt(x) holds.

• x — id; the validity of C\ after the execution of impl-muProfilej is applied to infer
that dbi(x).profile = dbt(x).profile for any peer t such that x G dorn dbt.

from post-muProfilej(id,pr) Ax £ dom dbi A C2
Cx ^_

from x = id A C\ Ax £ dom dbi
from post-muProfilej (id, pr)
infer x £ dom dbi A dbi(x) = pr
from C\
infer Vi G [1, len db] • id s dom dbt => dbt(x) = pr

infer W G [1, len d6] • id G dom dt t => d6»(x) = d6 t(x)

from x ^ id A C2 A x £ dom d6j A post-muProfilej(id, pr)
from post-muProfilej(id, pr) A x ^ id

infer W G [l,len db} • x £ dom dbt => d6 t(i) = rf6t(a;)

dbi(x) = dfci(i)

from C2

infer V£ G [l,len db}- x £ dom dbt => rf6i(x) = dbt(x)
infer Vt G [1, len cf6] • x £ dom <#>t => dbi(x) = dbt(x)

infer C2

The properties Ci and C<i about the MOTION platform presented in this chapter are
examples of those requirements that could not be checked in the original formal design that
were oriented towards client/server applications. Discharging the related proof obligations
was possible only after some change to the specification of our components. For instance,
the mutual exclusion construct was inserted in the specification of impl-muProfilej that
was not part of our original specification. As another example, discharging C\ required the
formulation of the invariant inv^.

The analysis of the MOTION platform in the LECAP framework is, thus, a successful
exercise in that it allows discovering and correcting design flaws of the original proposal.

193

In addition, this shows that the SE AT Y style is indeed applicable to non-trivial case
studies. In fact, we claim that the MOTION case study and the SMU system are complex
case studies in that components can be subscribed and unsubscribed dynamically. We
have intentionally chosen such case studies to excercise our approach. The stack-counter
example presented in other chapters are typical example of cases with static components.

14.6 SUMMARY

The increasing use of the event-based paradigm in applications and systems motivates
the need for methodologies to support not only the construction of such systems but also
reasoning about their correctness and reliability. Due to the loose coupling of components
in such systems, one would expect that both construction and reasoning should be easier to
support than in conventional more tightly-coupled systems. Yet our attempt in developing
the MOTION (MObile Teamwork Infrastructure for Organizations Networking) platform
according to conventional formal methods revealed the lack of any formal support for event-
based applications. This experience motivated the development of the LECAP methodology
to support the design, construction, and verification of event-based systems.

In this chapter we have reported the results of a case study in applying the LECAP method-
ology in the redesign of a component of the MOTION platform. We have shown how rea-
soning and validation about properties of the system can be carried out both about local
properties and global properties. Although our experience is promising, the case study also
identified some deficiencies that point the way to needed future work.

194

CHAPTER 15

SOUNDNESS

This chapter aims at showing that the proof system presented in this thesis is sound. That
is, if we derive a formula using the set of rules we presented, then the validity of this
formula also holds at the semantics level. More precisely, if we deduce that the program
z satisfies the specification "d : :S (respectively (•#, B) : :S) in the system, then this is also
true semantically.

The proof is by showing that each rule of the system is sound; by which is meant that if
the premises of the rule hold, so does its conclusion. The soundness of the proof system
follows by induction on the number of times that these rules are applied for the derivation
of judgments. Our proof system is based on rely/guarantee reasoning; it is therefore not
surprising that the soundness proofs of LECAP rules are similar to that of rely/guarantee
rules. We show the similarity between these proofs by providing the proofs for some of the
rules in the LECAP framework. The announce rule that is typical to event announcement
is proven from scratch.

The chapter is organized in the following manner. To proof the soundness of the parallel
rules, it is necessary to be able to decompose and compose computations. The next section
shows how this is done. In Section 15.2, the set of rules for the decomposition and for the
top-down development of components are proven sound. The results of this section are
adapted in Section 15.3 to the soundness of the rules for the composition of specifications
and for the manipulation of resulting behavioral specifications. The SEATY framework is
proven sound in Section 15.4 by transforming its formulas into pure LECAP formulas and
applying the related soundness results. Finally, 15.5 concludes the chapter.

15.1 COMPOSITION OF COMPUTATIONS

We illustrate how to decompose a computation of a program into computations of its
subprograms and how to compose a computation starting with the computations of two
subprograms.

195

Definition 50 The computations a1 G cp[zi] and a2 G cp[z^\ compose the computation
o~ G cp[z\1122] (denoted a oc cr1 ||cr2^ iff:

• len (a1) = len (a2) = len (cr),

• Sia1) = S(a2) = S (a),

• for any 1 < i < len (a), one of the following hold:

- L{a\) = v, L(a2) = v, L(ai) = v,

- L(aj) = i, L(a2) = v, L(at) = i,

- L(a\) = v, L(a2) = %, L(at) = i.

• for any 1 < i < len (a), one of the following hold:

- Z(a}) = e, Z(a2) = e, Z{at) = e,

- Z(a\) = e, Z(a2) ? e, Z(a{) = Z(a2),

- Z{a\) ± e, Z(a2) = e, Z{a,) = Z(aj),

- Z{a\) * e, Z(a2) ? e, Z(at) = {Z(a})\\Z(a2)}.

The intuition behind this decomposition of a computation a of {^i||^} is that, any of its
transitions is either a transition of the environment or a transition of z\ or za- If a transition
is a program transition of z\ or of 22, then it is a program transition of their composition.
Further, the decomposition of a computation into two computations is possible iff the two
subcomputations have the same length and the same sequence of states.

Lemma 1 It results from the semantics of the parallel composition that

cp[zi\\z2] = {cr I there exists a1 G cp[z\], a2 € cpfa], such that a1 and a2 compose cr}.

15.2 STRUCTURAL RULES

15.2.1 BASIC PARALLEL RULE

We discuss the soundness of the basic parallel rule. By assumption, the following formulas
hold:

196

Hi:

H2:
H3:

K
| = 7 T

h*-

Gi =>• i2 2

G 2 = • Ä !

z i sat d : :(F

Z2 sat •â : :(F
\ Ri,
\ Ä2,

G i ,

G2, £2)

we need to deduce that

K {ziIIM sat 0 : :(P, /?! A #2, d V G2, Er A E2)

also holds.

Lemma 2 For any computations a G cp^iH^] fl ex£[$, P, i?i A R^], o1 G exi[î9, P, Ri], and
a2 G ext[d, P, R2], such that a oc ^{{a2, any program transition of a1 satisfies G\ and any
program transition of a2 satisfies G^.

Proof.
Take any finite subcomputation o"i[l, • • • ,k] of a\ that starts with the same first config-
uration as o\. This subcompuation is in ext[d, P, i?i]; and, since it is finite, any of its
program transitions satisfies G\ (by Hypothesis H3). Therefore, any program transition of
a1 satisfies G\.

Lemma 3 Any computation a G q?[zi||22] H ext[d, P, Ri A R2], is such that any of its
program transitions satisfies G\ V (?2-

Proof.
From Lemma 1, there exists a1 G cp[z\\ and a2 G cp\z^\ such that a oc cr1^2 . From Lemma
2, any program transition of a1 satisfies G\ and any program transition of a2 satisfies Gi-
And, by Definition 50, any program transition of a is either a program transition of a1 or
of a2, hence satisfies G\ V Gi-

Lemma 4 For any computations a G cp\zx ||^] D ext[d, P, Ri A R2], o~l G ext[d, P, Ri], and
a2 G ext[ô, P, R2}, such that a oc cr1 ||cr2, any environment transition of a1 satisfies Ri and
any program transition of a2 satisfies R^.

Proof.
Any environment transition of a1 is either a program transition of a2 (in which case it
satisfies G2, and from H2, it also satisfies i?i), or it is an environment transition in a, in
which case it satisfies Ri A R2.

197

Lemma 5 For any computation a G cp[zi||2>2] Pi ext[ô, P, R\ A R2] such that len (a) < 00,
and £{o~jen (CT)) = e, the formula (S(ai), S(a/en (CT))) \=n E\ A E2 holds.

Proof.
Prom Lemma 1, there exists a1 G cp[z\] and a2 G cp[z^ such that a oc o^Hc2. From

Lemma 5 , it follows that a 1 G ext[d, P, Ri] and a2 G e:r£[$, P , R2]. By construction of cr1

and a2 (Definition 50) it follows from len (a) < 00 and i^(cr|en (CT)) = e that len (cr1) < 00,

len (cr2) < 00, £((r(en ((jl)) = e, and E{&\en / 2 J = e hold. This, clearly results in a1 G

int[û, Gu Ex] and a2 G ext[&, G2, E2], and, hence, (S(ai), S(a\en {a))) f=w ^ A ̂ 2 holds.

The validity of the basic parallel rule is now derived from Lemmas 3 and 5.

15.2.2 COMPOSED PARALLEL RULE

The composed parallel rule is investigated; in particular, we derive it soundness from that
of the basic parallel rule. By assumtpion, the following formulas hold:

Hi'- \=ir G2 =>• R\

H3: \=„zsatd::(P, Ru Gu Ei)\\(P, R2, G2, E2)

we need to deduce that

\=„ z sat d : :(P, Rx A R2, Gx V G2, Er A E2)

also holds.

Proof.
By Definition 27, there exists z\, z% such that:

H4: \=«zisgt#----(P, Ri, Glt Ei)

H5: ^zzsatd: :(P, R2, G2, Eh), and

H7 : z behaves as zi; z2.

By the soundness of the basic parallel rule, Hi, H2, H4, and H5 it however, follows that:

K zi; z2 sat d : :(P, Ri A R2, Gi V G2, Ex A Ek)

198

From HT, it follows that for any binding B,

K z sat (ß,B) : :(P, Ri A R2, Gj V G2, Ex A E2)

holds, hence the validity of

\=n z sat ê : :(P, Rx A R2, d V G2, Ei A E2).

15.2.3 BASIC CONSEQUENCE RULE

We show that

)r=*zsgtâ: :(P2, #2, G2, E2).

follows from the assumptions:

Hu K-P2 => Pi

tl2. \=n lt2 => tt\

Hz'. |=7r Gi => G2

-"4- \=ir &\ ^ &2

i/5: \=n z sat d : :(P2, R2, G2, E2).

In other terms, we need to deduce that

ext[0t P2, R2) n cp[z] C int[d, G2, E2}.

For this, we show the following inclusions from which the result follows.

ext[&, P2, R2] C ext[d, Pu Ri]

int[d, Ci, Ei] C int[d, G2, E2].

Let us assume a computation a G ext[ô, P2, R2]. Its initial S(ai) is such that S(ai) \=n P2

holds. From H\, it follows that S(ai) \=v Pi also holds. On the other hand, if (zk, s*) -̂ >
(zk,Sk+i) is an environment transition of a then (sfc,Sfc+i) \=n R2 holds. And from H2 it
follows (sfc, Sfc+i) (=TT R\ a l s o holds, hence the first inclusion.

Next, we consider a € int[d, G\, E{\. Any of its program transitions satisfies G\ and from
H3, it also satisfies G2. If a is a finite computation, then its final state satisfies E\ which,
however, results in E2\ hence the soundness of the rule.

199

15.2.4 COMPOSED CONSEQUENCE RULE

We divide the consequence rule in two cases. The first case consists in replacing O with
the sequential composition operator ; while the second case consists in the replacement of
the generic operator O with the parallel composition operator.

Sequential Consequence Rule.

We assume that the formulas Hi and H2 hold and deduce that H3 holds.

Hi: \=n t sat ß : :S =̂ t sat d : :S'

H2: K z satd::S1;S;S2

H3: K z sat-d::Si;S';S2.

By the definition of structural specifications, there exists three programs z\, y, and z^ such
that

Hi- f=7r z\ sat d : :Si;

H5: \=Tt z2 sat d : :S2

H6: \=nysatti-- -S

H7 : z behaves as z\\ y; z2

The vailidy of H3 follows by observing that z\, y, and zq are such that \=n zi sat $: :Si
holds (H4), \=„Z2satd::Sz holds (H5), and K y sat t? : :S' holds (H6 and Hi). By H7, z
satisfies any specification d : :(P, R, G, E) that z\\ y\ 22 satisfies.

Parallel Consequence Rule.

We assume that the formulas H\ and Hi hold and deduce that H3 holds.

Hi: \=ntsgtti::S => t sat â : :S'

H2: t=nzsatâ::{Si\\S\\S2}

H3: \=TrZsat#::{Si\\S'\\S2}.

By the definition of structural specifications, there exists three programs z\, y, and 22 such
that

200

Hi'. \=n z\ sat $: :5j.;

H5: K 22 sat i? : :S2

fie»: K 3/ M 0 : : 5

#7 : 2: behaves as

The vailidy of Hz follows by observing that z\, y, and 22 are such that \=n z\ soi d : :Si
holds (H4), \=n z2 satti: :S2 holds (#5), imd \=n y sat tf : :S' holds (#6 and Hx). By #7 , 2
satisfies any specification d : :(P, i?, G, E1) that {21II2/H22} satisfies.

15.2.5 BASIC SEQUENTIAL RULE

Suppose the premises of the basic sequential rule hold, namely:

Hi: \=nzisatê::{P, R, G, Ex A P2)

H2: K 22 sat ê : :(P, Ä, G, E2)

Since events(z\) = {} , any computa t ion a of zi; 22 is of one of t h e two forms:

• zi blocks before 22 is executed, t h a t is <r = (zi; 22, si) -^ •••—>• (2™; 22, sn)

• z\ terminates, but 22 blocks or deadlocks, that is: o = (zi; 22, S\) -^ • • • —> (zg, sn)

where (21, si) -^ • • • -^ (e, Sfe+i) and (22, s^+i) ^V • • • —> (22", sn) holds and 22™ is
possibly e.

The computations (21, si) -^ • • • A (e, s^+i) and (22, Sjt+i) ^> • • • —> (22
n, sn) are called a'

and a" respectively.

Suppose a e ext[d, P, R] D cp[z\\ zj[; if 2^22 deadlocks then, cr G m^[^, G, Ei | £"2]. If,
however, cr terminates, then, since a" G m£[$, G, £̂ 2] and a' G mf [̂ , G, E\], it results that
HT (5I> sk+i) §at Ei and \=n (sjt+i, 5n) 5oi £̂ 2, hence \=n (si, s„) sa^ Ei \ E2 holds. Further,
since any transition of a is either a transition of a' or of a", it results that any program
transition in a satisfies G, hence the rule.

15.2.6 COMPOSED SEQUENTIAL RULE

Assume:

201

Hi : events(z) = {}

H2: \=„zsatti::(P, R, G, E1AP2);(P, R, G, £,)

By Definition 32, there exists Z\ and 22 such that:

H3: K *i sgt ti : :(P, R, G, Ei A P2)

H4: \=7,z2 satd: :(P, ß, G, E2)

z behaves as zi; z2.

By the basic sequential rule, it follows that:

#5: K z\\ z2satd: :{P, R, G, Ei | E,)

And for any binding B,

H6: K z sat (0,B) : :(P, Ä, G, £1 | ^)

Combining this with Hi, it follows that:

H6: K 2 sat'd: :(P, R, G, Ex \ £2)

15.2.7 BASIC CONDITIONAL RULE

The assumptions of this rule are:

H2: \=rr zx sat •d : :(P A b, R, G, E)

H3: K 22 soi tf ::(PA-.6, Ä, G, E)

Any computation of cr G exf [if 6 then zi else z% fi, P, Ä] is of the form:

a = (z, si) -> > (2 , sn> -> a '

where

202

a' G ext[ê, P A b, R] n cp[z{\ U ext{d, P A -.6, Ä] D cp[z2]

Since, however, P A b and P A -16 are stable when i?,

U ext[ê,PA->b,R]ncp[z2]

also holds.

And, by the assumptions H2 and A3, it results that a G int[d, G, E] holds.

15.2.8 PRE RULE

The premises of this rule is formulated as:

#1 : z sat d : :(P, #, G, £)

By definition, int[ti, G, *P A E] = {a e int[d, G, E] • S(ai) HTT P}

However, for any a £ int[d, G, E]n ext[â, P, R], S(a1) \=n P, hence, a G int[â, G, P A E}.

15.2.9 POST RULE

Assume a program z such that:

Hx : z satê: :(P, R, G, E)

and a computation a G ext[â, P, R] n cp[z]. Any transition in a is either a environment
transition or a program transition. In the first case, it satisfies R while in the second
case it ensures G if a state variable is changed. Any transition in a, therefore satisfies
R V G V 1$. And, because the final state is reached by a finite number of environment and
program transitions, it satisfies not only E, but also (i? V G V 1$)* which is equivalent to
(G V R)+. The computation a is, therefore, also in int[d, G, (R V G)+ A E].

203

15.2.10 ASSIGNMENT RULE

Given the validity of the formulas:

Hx : P | R =• P

H2: E\R =» E

we intend to derive the validity of the formula:

v. = r sat •d::(P,R,G,E).

Any computation a € ext[â, P, R] D cp[v: = r] of the program v: = r is of the form:

a = (v: = r, s{) -> > (v: = r, sk) -> (e, s f e + i) -> > (e, s f c + n)

The environment may perform a finite number of transitions before the execution of the
program v: = r which consists in a unique program transition. After this program transi-
tion, the environment may also perform a finite number of transitions.

If the program v: = r is started in a state satisfying P, thanks to the stability of P with
respect to R (Hi), the program v: = r is indeed executed in a state satisfying P. After the

internal transition, the state Sk+\ is such that \=n P A v = r A /#\{,;} holds. That is, it is
such that the assertion P held in the previous state (which is true, P holds in Sk), and v
now has the value that the expression r had in the previous state (which is also ensured
by the semantics of the assignment construct), and any other variable is unchanged (also
ensured by the semantics of the assignment construct).

By hypothesis H3, it results that (G V 1$) A E holds which means that a[l, • • • , k + 1], the
subcomputation starting with the first configuration a\ and ending with the configuration
(Jk+\ is in int[d, G, E]. Thanks to the stability of E with respect to R, any state after
also satisfies E, and, hence a G int[d, G, E] also holds.

15.2.11 GLOBAL RULE

Let us assume a program z, a set of variable d, and a variable v such that:

204

Hi. K-z satd\{v}::{P, R, G, E)

Since the program z accesses only variables in -d \ {v}, for any computation a G ext\ß \
{v}, P, R] n cp[z], any of its program transition satisfies v = V . And, since a G int[d \
{v}, G, E], a is also in int[d U {v}, G A Ü = V , £ ?] .

15.3 BEHAVIORAL RULES

We show that our rules on the manipulation and the derivation of behavioral specifications
are sound. Some of these rules are obtained from their structural counterparts by simply
replacing d with an event-based system. For these rules, it is clear that the proofs are
essentially based on the same arguments. These rules are the pre-rule, the post-rule,
the iteration rule (under the assumption that no event is announced within the body of
while constructs), the consequence rule, and the parallel rule. To support our argument, we
proof the soundness of the behavioral consequence rule below. On the other hand, although
the behavioral conditional rule and the behavioral sequential rule are different from their
structural counterparts, their proofs are also similar to that of their counterparts. The
third class of behavioral rules includes the announce rule which is typical to behavioral
specifications.

15.3.1 BEHAVIORAL CONSEQUENCE RULE

We show the soundness of the behavioral consequence rule which is obtained from the
structural version by a replacement of the set of variables d with the event-based system
(•#, B). Although the proof is based on the same arguments as the proof of the counterpart
rule, the two rules have two distinct roles.

A structural judgment of the form z soi $: :{Pi, Ri, G2, E2) means that the program
z satisfies the given specification in the event-based system with the empty binding and
announces no event while a specification of the form z sat (•$, B) : :(i-2, -R2, G2, E^) means
that the program z satisfies the given specification in the event-based system ("a,B). In
particular, in the later formulation the program z is allowed to announce an event. The
given specification characterizes its behavior and that of all its successors, that is, all
programs that are eventually triggered following the announcement of an event by z.

We assume that the following formulas hold:

205

Hi: K ^ 2 => Pi

H2: K Ä S => Äi

3^ | = 7 T

A4: K ^ l => #2

H5: K soi(^ß)::(P2 , Ä2,

We need to show that:

K^É(i»,B)::(ft, Ä2, G2

In other terms, we need to deduce that

ext[(d, B),P2, R2] n cp[z] Ç m*[(tf, B), G2, E2}.

For this, we show the following inclusions.

B), P2, R2] Ç ext[(0, B), P

, B), Gu E,} Ç int[(-â, B), G2, E2}.

Let us assume a computation a E ext[{fi, B),P2, R2]. Its initial S(ai) is such that 5(ai) \=n

P2 holds. From ifi, it follows that S(ai) \=n Pi also holds. On the other hand, if {zk, Sk) -^
(zk,Sk+i) is an environment transition of a then (sfc,5i+i) 1=̂ R2 holds. And from H2 it
follows (sk, Sk+i) \=n Ri also holds, hence the first inclusion.

Next, we consider a G int[{d, B), G\, Ei]. Any of its program transition satisfies G\ and
from H3, they also satisfy G2. If a is a finite computation, then its final state satisfies E\
which, however, results in E2\ hence the soundness of the rule.

15.3.2 CONDITIONAL RULE

We show the soundness of the conditional rule when the binding is defined. Although
a sound conditional rule could be derived as for the consequence rule in which no event
announcement is allowed, the proposed behavioral conditional rule is superior in that it
supports event announcement. Let us assume that the following formulas hold:

206

Hi- \=„z1;zsat(ti,B)::(PAb, R, G, E)

H2: ^z2;zsat(d,B)::(PA^b, R, G, E).

We need to deduce that

K if b then zx else z2 fi; z sat (tf, B) : :(P, R, G, E)

Let us assume a computation a G ext[("d, B), P, R] (1 cp[if b then z\ else 22 fi; z\. This
computation is of the form:

v vv 1 \ i 1

> (z, sn) -* a'

where

a'£ ext[d,PAb,R]ncp[z1;z] U eit[i?, P A -.&, R] n cp[22; 2]

Since, however, P A b and P A->b are stable when Ä,

cr 6 exi[i?, P Ab,R]n cp[zi;z] U eii[i9, P A -.6, R] n

also holds.

And, by the assumptions H2 and i/3, it results that a G int\&, G, E] holds.

15.3.3 SEQUENTIAL RULE

The proof of the soundness of the behavioral sequential rule is also similar to that of the
sequential counterpart. This is due to the requirement that the first program announces
no event. In effect, considering the assumption:

#1: K zi sat 0 : :(P, R, G, Ex A P2)

H2: \=,z2sat{d,B)::{P, R, G, E2)

The requirement events (zi) = {} still holds and any computation a of z\\ 22 remains of one
of the two forms:

207

>blocks before ZQ, is executed, that is a — {zi; z2, s\) -^ • • • —> (2"; 22, sn)

z\ terminates, but 22 blocks or deadlocks, that is: a = {z\\ z%, s\) -^ • • • —* {z£, sn)

where (21,
possibly t.
where {zx, s\) - ^ • • • - ^ (e, Sfc+i) a n d (22, sjt+i) ^ • • • —> (23", 5n) hold a n d 22™ is

In the remainder (zi, si) -^ • • • -^ (e, s^+i) and (22, Sjt+i) ^> • • • —> (2^, sn) are called
a' and a" respectively. Since events(zi) = {}, z\ satisfies its specification in any binding
where the assumptions hold. That is,

Hz: K «I sat (t?,B) : :(P, Ä, G, £1 A P2).

From this, not only a' € exi[i9, P, Ä] Pi cp[2i] holds, but also a' € ez£[(#, ß), P, R] D cp[zi]
holds.

Suppose a G exi[(#, ß) , P, R] holds. If 21522 deadlocks then, a G int[(d, B), G,E\ \ E2].
If, however, a terminates, then, since a" G int[{d, B), G,E2] and a' G int[{d,B), G,Ei], it
results that \=n (si,sjt+i) 50^ ^1 and |=w (sfc+i,sn) soi E2, hence !=„. (si, sn) soi E\ \ E2

holds. Further, since any transition of a is either a transition of a' or of a", it results that
any program transition in a satisfies G, hence the rule.

15.3.4 ANNOUNCE RULE

We show that the announce rule for the composition of specifications is sound. This is
the rule for the derivation of behavioral specifications from structural specifications. The
assumptions are the following:

Hi: (=TT {zii | | - -- | |zn i | |z„+ i} sat (•û,B)::S1

#2: h * {zi2||---||zn2||zn+i} sat (â,B)::S2

Hz- |=,r Ve € Xi • subscribersB(e) = {z\i, • • • zni)

HA'. \=n Ve € X2 • subscribersB(e) = {2:12, • • • Zra\

H5: \=TT z sat $: :(P, R, G, £) ;announce(e)

H6 : events(z) = {e : Event • 3si, S2 : State • (si, s2) \=n E A e = e} = Xi Ö X2-

From which we must derive that the following formula holds:

C\: (=TT z;zn+i sat {ß,B) : :(P, R, G, E);if e S Xi then Si else S2 fi.

208

which means that we must proof the existence of three programs z^, ztl, zt2, such that

C2: \=*ZtoS2lß: :{P, R, G, E)

C3: K * i SSL {#, B) : :Si

C4: \=nZt,sat(d,B)::S2

C5: \=K z; zn+i behaves as z^; if b then ztx else zt2 fi

We denote the program z^; if b t hen ztl else zt2 fi as zt. Applying Definition 25 to H5 it
results that there exists a program, that we call zto such that

C6 : z = ztg-,announce(e)

C7: K ho sat d : :(P, R, G, E).

The existence of z^ as required by C<i is, hence satisfied. Next we choose ztl and zt2 such
that:

C6 : ^t! =

C 7 : Zt2 =

By the assumptions Hi and H% it is clear that these programs satisfy the requirements C3
and C4.

Next, we now need to discharge C5. That is, we show that for any behavioral specification
(tf, B) : :(Pi, Äi, d , ^1), the following holds:

K

which means that:

ext[(6, B), Pi, Äi] n cp[zt] ç tn*[(i?, ß), d , ^ J =» crf[(i?, ß), Pi, Äi] n cp[z; zn+1] C i

This is done by proving that any computation of z; zn+\ can be transformed into a com-
putation of Zt with the same sequence of states and the same sequence of transition
labels between the states. Considering Ce, the program 2; 2n+1 can also be written as
z^; announce(e); zn+\

First, we consider a computation a G ext[(d, B), Pi, Ri] D cp[2fo;announce(e); zn+i] that
has no environment transition. By hypothesis He, any event announced by zt is either in Xi
or in X2. And, the function subscriberss is uniform in each of these sets. This computation
is, therefore, of one of the forms:

209

-, announce(e); zn+i, si) —>• > (z^announce(e); zn+1, s[)

where (z^, s\) —*•••—> (z1^, s[); z^ deadlocks before the announcement of the event.

crtl = (zfe; announce(e); zn+1, si) —• • • • —> (announce(e); zn+i, s[) A {zh,s') —>• a"

where (z^, Si) —>•••—> (e, s[); z^ terminates in the state s[such that s[(e) G X\.

<*t2 = (ztg-, announce(e); zn+1, si) —• > (announce(e); 2n+i, s() A (2t2, 5') -> a"

where {z^, si) —» • • • —» (e, Sj); 2^ terminates in the state s[such that s((e) G X2.

These computations are in int[(fl,B), G\, E\\ if one of the following holds:

• Zfo deadlocks before the event announcement,

• Ztç terminates but s[(e) G X\ and one of the programs zn, • • • , z\n, zn+i deadlocks,

• z^ terminates but s[(e) G X2 and one of the programs 221, • • • , % , zn+\ deadlocks.

Let us now assume that this is not the case and all these programs terminate.

The computations atl and at2 are transformed into the following computations:

a'tl = (z^; i f e e Xi t h e n ztl e l s e zt2 fi, s i) —>•••—> (if e € Xi t h e n ztl e l s e zt2 fi, s ') -^ {ztl,s') —» cr"

<7j2 = (-2«o; i f e e l i t h e n ztl e l s e z t 2 fl, s i) —»•••—» (if e e A"i t h e n ztl e l s e z t 2 fi, s') A (zÉ2, s ') —* a"

where the program announce(e); zn+\ is replaced with if e 6 Xi then ztl else zt2 fi. And
in fact, following the semantics of the conditional construct, the latter computations are
indeed valid computations of the program z^; if e G X\ then ztl else zt2 fi

In particular, the projections of the computation a'tx to its set of states is equal to the
projection of atl to its set of states while any label transition in atl is a label transition in
atl. It follows that if a'ti G int[{d, B), G,E] holds, then atl G m^[(i9, B), G,E] also does.
Respectively, if a't2 G int[{d, B), G,E] holds, then at2 G int[{ß, B), G,E] also does.

On the other hand, if ah G ext[(-d, B), P, R] holds, then a'h G ext[('d,B), P, R] also does.
Respectively, if at2 G ex^[(i9, B), P,R] holds, then at2 G int[("d, B), P, R] also does.

It, therefore, follows that a'h and a't2 are in ext[($, ß) , Pi, i?i] and by the assumption that
\=TT %t sat (i9, ß) : :(Pi, i?i, Gi, ^ I) holds, it results that a'tl and a't2 are in m^[(^, B), G\, Ei],
hence crtl G int[('ô,B), Gu Ei], and at2 G mi[(t?,ß), Ci, £"i] also hold.

210

15.3.5 INTEGRATION RULE

The integration rule is simple and its proof is indeed straightforward. Assume the following:

H\ : z\ g dorn B

H2: fix = B U {zx H- {}}

H3: K z sat (tf, B) : :(P, Ä, G, E)

Any computation cr € ext[{ß, ßi), P, R] D cp[z] is such that either it contains some event
announcement or not.

If it contains no event announcement, then its behavior is not impacted by the binding B
and inserting a new method into it is not relevant. It follows that a 6 ext[{d, B), P, R] n
cp[z] also holds. And by hypothesis H2, <r G int[{ß, B), G, E] follows. That is, any program
transition in a that alters the state satisfies G while the final state satisfies E. Since a is,
however, independent on the binding, a € int[{ß,B), G, E].

Let us now assume that a contains some event announcement and is, hence of one the
forms:

a' ± ({"announce(e)| |z}m,5) -U ({\\subscribersBl(e)\\{nz}m+1, s) ± a"

a' -+ ({"announce(e);z}m ,s) -U ({\\subscribersBl(e)\\{nz}m+1, s) -^ a"

a' —* (announce(e), s) —> (Wsubscribersß^e), s) —> a"

Since, however, subscribersß1(e) = subscribersB(e) for any event e (by Hi and H2) and
a e [(#, B), G,E] (by H3), it follows that a G int[(d, Bi), G,E] holds and subsequently

z sat (#, B) : :(P, R, G, E) also holds.K

15.4 SEATY RULES

S E A T Y specifications have been defined relative to LECAP specifications. In particular,
a LECAP specification is regained from a S E A T Y specification by making its rely- and
guar-conditions explicit. A S E A T Y specification such as {fl\, B)::(P, E) is a reformulation
of the pure LECAP specification {ß U ld\,B) : :(P, 7^, U\^, E) iff -a U -di covers B and
1? H #1 = {}. Similarly, $1 : :(P, E) is a reformulation of the pure LECAP specification
d U Î?I : :(P, 7^j, / ^ D -ß) if "â D i?i = {}. A program that satisfies this specification is
a program that relies on that the environment will not change the variables that it has

211

access to. On the other hand, such a program guarantees to change none of the variables
it is not allowed to access.

To prove the soundness of SEATY rules, we, therefore, convert them to LECAP specifica-
tions. The process is straightforward and we illustrate it for some few rules.

15.4.1 SEQUENTIAL RULE

We need to show that

follows from

Hi-.^zisatti-.-.iP!, £iAP2)

H3:\=n z2sat'd::(Pu E?)

Let us consider a set of variables i?i such that fl Ç -d\.

The above formulas are written as the following LECAP specifications:

Hi: K 2 i^2 sat â : :(Pi, h, ^ .y» B* | E2)

H2: K zisattii- -(Pi, h, hx\i, &i A P2)

H3: \=n z2satê1: :(Pi, U,

And, the rule results from a direct application of the basic structural sequential rule.

15.4.2 PARALLEL RULE

Two parallel rules were proposed whose soundness we prove in this subsection. In the first
case, two programs running concurrently are required not to share variables. In the other
case, each program is executed atomically.

First Parallel Rule.
We consider the three following valid formulas:

212

H2: \=7Iz1saté1::(P1, R)

H3:\=n^satd2::{P2, E2).

Let also -d be a set of variables such that $1 U $2 Q $• #2 and Hz are rewritten as the
following LECAP formulas:

H2: K zi sot i?::(Pi,/ t f l ,7ö \ t f l , £1)

773: 1=̂ 22 sa£ i9 : :(P2, U2,Iä\42, £2)-

From ??2 H $1 = {}, one derives that $2 ^ $ \ $1 and t?i Ç i9 \ i92 which results in 1^^
=> 7 2̂ and /^\^2 => 7^j. The two programs zx and 22, therefore coexist and their parallel
composition is given by the L E C A P rule:

K Ui\M Sat d : -.(Pi A P2, U, A U2,Iê\él V 7 ^ , El A £2)

which we refine into:

K {zill^} sait9::(P! A P2,7tflUtf2,7tf\(tflUtf2), E4 A fy)

And, rewriting this in the SEATY style we obtain:

M 01 U i?2 : :(Pi A P2 , ^ A 7^).

Second Parallel Rule.

Given the assumptions:

Hi- K^PiK^AP.) =» Pj

772 : K^I(£2AP.) => ^

773: K Pi I (£1 A A) => P 2

774: K^I(^iAi4) =• B

H5: \=TT z\ sat $i : :await true do (Pi, E\ A .4) od

He- \=n Z2 aßt fli : :await true do (P2, E-2 A B) od

213

we must derive the validity of the following judgment:

H7: K UM sat ê : :(Pi A P2, A A B).

We make explicit the rely- and guarantee conditions of z\, 22, and {21II22}. 1? is a set of
variables such that d\ C û.

H&: \=n zi sat -û : :await true do (Pi, 1^,1$^, E\ A 4) od

#9: \=n z2 sat â : :await true do (P2 , , /<>,, h^, £2 A 5) od

we must derive the validity of the following judgment:

#10: K {^lll^} satd::(P1AP2,l01Jo\i>1, A/\B).

Prom the definition of await structural specifications, z\ and 22 are two programs of the
form:

z\ = await true do z[od

z2 = await true do z^ od

where

K 4 sat (P j , Ißl, I^\^, Ex A A)

\=„ zî sat (P 2 , , I-&!, 1$^, E2 A B)

w
Any computation of {21II22} is of one of the following forms:

< r = ({z1\\z2},si) -^ ••• -^ ({z1\\z2},sk) A (zi,sk+i) A . . . -Ü» (zi,sn) -^ (e,sn+1) A ^ (e, sm)

-^ ^ (z2, S„) A (e, Sn+i) A ^ (e, Sm)

In the first case, the environment, performs a finite number k of transitions before the
control is given to the program {21II22} which performs its first program transition consist-
ing in the atomic execution of Z\. After, this, a finite number of environment transition

214

is also performed followed by the atomic execution of 22 and a further finite number of
environment transitions.

The second case, differs in that the execution of {ziH^} is done by executing 22 first and
Z\ next.

The environment is not allowed to change a variable used by {-ZiH^}, that is, a variable
in "d\. Therefore, the pre-conditions P\ and P^ indeed hold after the first sequence of
environment transitions. Next, the program z\ is executed such that (si, Sk) (=„• E\ A A
holds. Since, however, P<i is stable with respect to E\ A A, the pre-condition P2 also holds
in the state s* and in the state sn. The execution of 22 m the state sn therefore terminates
in the state sn+i with E2 A B. And, since A is stable with respect to E2 A B, A also holds.

15.5 SUMMARY

This chapter discussed the soundness of the LECAP proof system. In particular, this was
done in analogy to the verifcation of the soundness of the rely-/guarantee proof systems of
St0len [121] and Xu [135]. This similarity justifies the omission of the soundness proof of
some other rules.

215

216

CHAPTER 16

FUTURE WORK

The event-based style is a communication paradigm that is increasingly deployed in the
development of emerging software systems ranging from desktop applications to large scale
distributed and critical systems. Suitable methodologies that allow constructing reliable
and dependable event-based applications are, therefore, required.

In this chapter we identify the next steps in establishing such a methodology in general
and in the further elaboration of LECAP in particular. We categorize future works in
five sections. Section 16.1 discusses some possible improvements to the LECAP theory
while Section 16.2 discusses some issues related to its applicability. In Section 16.3, we
discuss extending LECAP to support e.g. data reification, testing, and model-checking.
We motivate the need for the identification of further architectural types in Section 16.4
while Section 16.5 discusses the design of event-based applications using other techniques.
Section 16.6 summarizes the chapter.

16.1 IMPROVEMENTS

The LECAP methodology can be improved in many respects.

16.1.1 LOCAL VARIABLES

Local variables are necessary for the practical construction of software systems. The LECAP
approach still misses this paradigm. Although the work of St0len [121] and Xu [136] on
which our approach is based illustrate how to tackle the issue of local variables in rely-
/guarantee reasoning, they do not support method invocation and event announcement
that introduce some difficulties in the manipulation of such variables. Short term future
work includes solving this issue.

217

16.1.2 ANNOUNCING EVENTS IN LOOPS

The work presented in this thesis does not support the announcement of events in the
while construct. Although such uses are not common in practice, some cases exist where
announcing events in a loop may be required.

Consider for instance the stack-counter example that we presented. It is possible that
impl-push be used in a loop for the addition of a finite set of elements on the stack. A
typical program that may be used for this purpose is following:

impl-while-push() A
while i > 0 do

e\t:=Elementi\
i:=i-l;
impl-push;
if i/4 > 5 then announce(mk-Event((pushaction), elt)) else skip fl

od

The issue is how to formulate the specification of such a program. Of course we could allow
a structural specification of the form

•d : :while b do

The specification of the above program would then be written as:

while-push() A ß : :while i > 0 do Si;
if i/4 > 5 then announce(mfc-Event((pushaction), elt)) else S2 nod

provided that

• elt: = Element^ i: = i-1; impl-push sat_ d ::S\, and

• skip sat d : :Sr2-

are valid.

This is, however, simply postponing the problem. How would we transform such a struc-
tural specification into a behavioral specification? The issue needs to be further investi-
gated.

218

16.2 PRACTICAL ISSUES

From a practical viewpoint there are also some points that need to be investigated.

16.2.1 AWAIT CONSTRUCT IN PRACTICE

To the best of our knowledge we are the first to propose the use of distributed synchroniza-
tion and mutual exclusion in the context of the event-based paradigm. Although many
possible semantics could be defined, we adopted what we think may be more useful in
practice. Alternate semantics are discussed in the next chapter.

Our semantics of the await construct is the atomic execution of a program including all
programs that are eventually triggered following its execution. That is, if a program z
announces an event e\ which triggers the program z% and zq, announces the event e% which
triggers Z3, any execution of z in an await construct includes the execution of Z\, z%, and
Z3. Such a construct is clearly indispensable for the implementation of distributed atomic
transactions as is often the case in bank and business to business workflow systems.

The requirement in future work would be to provide a prototype implementation of this
construct. None of the existing middleware or integration frameworks that we are aware
of provides such a construct. Coulouris et al. [29] indeed recognize that today's message
oriented middleware lack this construct and can, therefore, be used only for a restricted
number of scenarios.

16.2.2 CASE STUDIES

We have proposed a methodology for the construction of a class of software systems that
is increasingly important. Although we believe that this methodology is promising, more
substantial and non-trivial case studies are needed for further experimenting the approach
since the event-based paradigm itself is very pervasive [40]. In general, while methodologies
show how to tackle a problem, case studies are the measure that a proposed solution can
indeed be used in practice; they represent a valuable informal way for illustrating how to use
the methodology. Therefore, developing more case studies is one of our short term goals. In
particular, the MOTION platform is an important case since the application of traditional
lightweight formal methods was shown to be insufficient for ensuring its reliability. We
have presented one of its facets in this thesis. Other aspects of this platform are being
analyzed.

219

16.2.3 TOOL SUPPORT

Tool support is widely recognized as an important factor for the success of any software
engineering methodology in general and of formal approaches in particular. Various crite-
ria exist for evaluating such tools: early payback, incremental use for incremental effort,
multiple use, ease of use, ease of learning, evolutionary development [28].

The examples presented in this thesis indeed confirm these requirements which range from
very simple features (such as syntax highlighting and automatic text completion) to proof
obligations generation and automatic verification of properties.

As the examples show, the development of an event-based application follows a a clear
development process with clearly defined steps. Ideally, an integrated tool should provide
support for each of these steps. At the abstract level, construction of structural specifica-
tions should be supported. Next, construction of bindings must also be easily done in the
development environment. An important point to tackle is the derivation of behavioral
specifications starting with structural specifications. In this derivation process, the tool
will need to generate the proof obligations and display them for verification. Such proof
obligations can subsequently be discharged using either a theorem prover or an automatic
analyzer. Ideally, all these tools should be integrated in the same environment.

Although building such a tool is a real challenge, from a more practical point of view we
have started investigating the use of Alloy [70] in the Eclipse [127] development environ-
ment to solve some of these requirements. It is a declarative first order language that
can be viewed as a subset of Z [33]. Alloy is a declarative language similar to the formal
specification languages Z [33] and VDM [102]. Unlike other declarative specification lan-
guages such as VDM [102, 75] and Z [33] Alloy is automatically analyzable in the style of
model checking giving to designers the kind of immediate feedback that testing gives to
programmers.

On the other hand, Eclipse is an open source software development project that aims at
providing a robust, full-featured, commercial-quality, industry platform for the develop-
ment of highly integrated tools.

16.2.4 DOMAIN SPECIFIC APPLICATION

As discussed in the introduction of this thesis, the event-based paradigm is exploited in var-
ious application domains: graphical user interface construction, mobile computing, perva-
sive and ubiquitous computing, component based software engineering, distributed loosely
coupled workflow systems, etc.

It is therefore important to investigate how the methodology that we propose can be applied

220

to meet the specific requirements of such application domains. For instance, distributed
workflow systems require to be able to correlate events such that the matching function
becomes time dependent. We believe that our model of event-based system can be applied
here since we gave no precise semantics to the matching function. Nonetheless, deep
research must be undertaken to answer such questions unequivocally.

16.3 EXTENSIONS

16.3.1 DATA REIFICATION

A stepwise development process is normally divide into 1) operation decomposition (or
refinement) and 2) data reification (see [75]).

A part of the rules we proposed in this thesis serves the purpose of decomposing opera-
tions. That is, the formal specification of a program is successively decomposed until an
implementation is reached. In addition to this, we proposed a process of composing specifi-
cations that consists in transforming structural specifications into behavioral specifications
and discharging the related proof obligations.

What is missing in our treatment is data reification also called data refinement. Usually, as
operations are decomposed, data need also to be successively transformed to eventually be-
come data structures at the implementation level. For instance, for designing a dictionary,
one may start with a simple VDM map and successively refine it such that it eventually
becomes a Java hashtable.

Date reification (at least for the SEATY type), can be adapted from existing techniques.
In [75], a retrieve function retr is defined that regains the abstraction from the implemen-
tation details. That is, it maps elements from the concrete domain Dc to the abstract
domain. Two criteria are defined for constraining such functions: adequacy and totality.
By the totality criterion retrieve functions are required to be total, i.e. each element of
the concrete domain must be mapped to at least one element of the abstract domain (see
Proof Obligation 38).

Proof Obligation 38 Vc e Dc, retr(c) G Da

Conversely, the adequacy requirement (see Proof Obligation 39) ensures that each element
of the abstract domain must be the image of some element of the concrete domain.

Proof Obligation 39 Va £ Da, 3c 6 Dc, retr(c) = a

221

Retrieve functions may, hence be one-to-many; although many-to-one functions may also
arise in practice, Jones [75] rule them out by arguing that "If different abstract values
correspond to one concrete value, it is intuitively obvious that such values could have
been merged in the abstraction." In the case of event-based systems, the requirement for
excluding such situations is more serious. If two programs z\ and ZQ, subscribe to two events
e\ and e<i that are different from each other at the abstract level, there is no apparent reason
why they may be required to coexist (at the abstract level). At the concrete level, however,
a many-to-one (many abstract values to one concrete value) retrieve function could map
them to the same value, leading to the simultaneous invocation of the two programs at the
concrete level, hence to interference.

On the other hand, Jones allows one-to-many (one abstract value to many concrete val-
ues) retrieve functions in his adequacy requirement. It must be investigated how well this
requirement can be accepted in event-based system. We suspect that events and subscrip-
tions must be subject to one-to-one retrieve functions (as required in Section 7.4.12). This
must further be investigated.

16.3.2 TESTING EVENT-BASED APPLICATIONS

The combination of formal specification and software testing have resulted in an alternate
verification technique called formal testing. A program is formally specified and imple-
mented in the light of the formal specification which is further used for the derivation of
test cases and for the construction of test oracles.

Independently of the question of whether testing is a valuable solution to ensuring software
correctness or not, we argue that a testing process must be developed for event-based
applications. Since testing is the most used verification technique, we need to supplement
it with the knowledge that was gained in the construction of LECAP .

We envision extending our previous work [43] to event-based applications. This extension
must include defining what is a test suite in the context of event-based applications. Next,
we must identify what are the parts of the system that need to be tested and finally
how to construct a test oracle. Intuitively, we suggest that the testing process should be
compositional and be used in the form of a refinement. That is the formal specifications of
components are developed, the specification of the application composed as shown in this
thesis, the local properties and the global properties of specifications discharged, and the
testing process used for ensuring that an implemented component indeed satisfies a given
structural specification.

222

16.3.3 MODEL-CHECKING EVENT-BASED APPLICATIONS

Model checking EB applications is an intriguing alternative to the formal proof of software
systems as a significant part of the process is carried out automatically. In [56], an attempt
to apply model checking to the verification of EB applications is discussed. The authors try
to provide a generic framework that can be reused by modelers in the process of defining
the abstract structure related to their systems. Indeed, the authors succeeded in factoring
the work such that, for instance, the event delivery policy is now a pluggable element
with various packaged policies (prepared by the authors) that can be used off-the-shelf.
They, however, concentrate on the run-time apparatus, i.e. the middleware. Not much is
provided for tackling the correctness of the application (consumers and publishers) built on
top of this middleware. This shows that naive approaches to model-checking event-based
applications do not work.

We believe that our framework provides a good and realistic starting point for model-
checking event-based applications. A compositional approach can be constructed that
consists of model-checking the structural specification of components, model-checking the
behavioral specifications for discharging global properties and possibly model-checking the
component implementations against their structural specifications.

16.4 SIMPLIFICATIONS

The LECAP framework is a general framework that can be applied to a wide range of
software systems. Because of this generality, however, some may find it difficult to apply
since most software systems often require only a small subset of theories. For instance, do
all applications really need the rely/guarantee conditions? Does the proof system become
simpler if any two subscribers are constrained not to share variables? Yes, the SEATY
type presented in Chapter 11 is an answer to this question. Other such simplifications can,
and perhaps need to, be investigated.

Although we have not yet investigated some of these questions, we claim that the stack-
counter example discussed in this thesis for instance, represents an important class of
systems, namely those which announce events only at the end of the execution of methods.
It follows that for all such cases, there is no need for the proof system to support the
announcement of events at any arbitrary point in a program. We believe, therefore, that
event-based architectural types must be identified and the LECAP framework refined to
these architectural types with the purpose of simplifying the construction techniques of
such systems. An architectural type [13] is obtained from an architectural style by fixing
some of its parameters. An architectural type is at an intermediary level of abstraction
between the architectural style and an architecture. This may be compared to the concept
of problem frame [72] where a frame is defined for handling the requirements of a specific

223

category of applications.

16.5 RELATED APPROACHES

We have shown in this thesis (in particular through the operational semantics presented
in Chapter 5) that event-based systems share some substantial properties with concurrent
systems. For this reason, instead of basing our work on the rely/guarantee paradigm, other
frameworks for reasoning about concurrent systems could also have been investigated. In
particular, the 7r-calculus could be an intriguing alternative since it is intrinsically targeted
at designing systems where value passing is important. Note, however, that event-based
systems do not only include value passing mechanisms, but also shared variables. And,
although reasoning about and writing assertions over communication histories (as in the
7r-calculus) may seem to be easier than writing and reasoning about those over state evolu-
tions, the issue of interference clearly remains in the 7r-calculus; interference affects liveness
arguments as well as safety reasoning [76].

16.6 SUMMARY

The chapter presented possible improvements, extensions, and simplifications that can be
applied to the LECAP framework for constructing event-based applications that we have
proposed.

224

CHAPTER 17

DISCUSSION AND CONCLUSION

17.1 RESEARCH RESULT

We have presented a framework called LECAP for the development of correct event-based
applications. The development of this methodology is driven by a set of key requirements
for the development of emerging applications presented in Chapter 1. In particular, LECAP
is targeted at bringing the intrinsic compositionality of the event-based paradigm to the
abstract level such that specifications of components can be composed by constructing
bindings that reflect the architecture of the desired applications.

Constructing an application using the LECAP methodology includes the following steps:

1. Designing the architecture of the intended application (identification of components),

2. Constructing the formal structural specifications of the different components which
are independent of any binding,

3. Verifying the local properties of the specifications of the components,

4. Transforming the structural specifications of the components into behavioral specifi-
cations,

5. Verification of the global properties of the applications based on the behavioral spec-
ifications,

6. Top-down refinement of the components.

Our framework for constructing correct event-based applications includes:

1. a core programming language for developing applications. This language is a while
parallel language augmented with constructs for supporting 1) synchronization and
mutual exclusion, 2) announcement of events, and 3) method invocation.

225

2. a technique for the specification of event-based applications. Two kinds of specifica-
tions are supported: structural specifications for components and behavioral specifi-
cations for applications;

3. a set of rules for the stepwise construction of components,

4. a set of rules for the composition of specifications of applications using the specifica-
tions of components, and

5. a set of rules for the manipulation of specifications of components.

This thesis also presented some examples for illustrating the approach. Although these
examples are neither exhaustive nor canonical, we think that they represent to some degree
the essence of the development process of an event-based application.

17.2 EXPRESSIVENESS

Many criteria have been proposed for classifying event-based systems (see [56, 57, 96]). In
this thesis, we argue that the combination of the LECAP programming language with the
definition of event-based systems that we have proposed is, although simple, expressive
and flexible enough to encompass many of these criteria. We, therefore, argue that our
framework identifies the right abstractions for the event-based paradigm. Many other
abstractions have been proposed that were limited on the kind of analysis that they allow
on event-based applications [35, 36, 55, 71].

Let us discuss some of these criteria: announcement completion, event-method binding,
delivery policy, concurrency, event passing technique, event definition.

• the announcement completion criterion defines when an announcement can be said
to be completed. Two important types of completion are distinguished: synchronous
and asynchronous. In the first style, the announcement is completed after the com-
plete execution of the subscribers. In the second case, the announcement is com-
pleted after the reception of the event by the event-based infrastructure. The default
completion mechanism in the LECAP programming language is asynchronous. Syn-
chronous completion can, however, be achieved by embedding an announcement in
an await statement.

• the event-method binding criterion determines if a new subscription can be defined
at runtime in the system or not. There are static and dynamic bindings. Our system
was intentionally designed to support dynamic binding which is more powerful than
static binding and is a key requirement for any methodology for constructing event-
based applications.

226

Four types of delivery policies are distinguished. In full delivery, the announcement
of an event results in the invocation of all subscribers. In single delivery, only one
subscriber is chosen. In parameter based selection, the invoked subscribers are se-
lected based on the parameters carried by the event. In state based policy finally, a
policy is assigned to each event that determines the effect of this event. The LECAP
semantics of the announcement construct is based on full delivery. We conjecture
that all other delivery mechanisms can easily be adapted from or built on top of
LECAP.

As in programming languages, different techniques may be adopted for passing the
announced event to subscribers. The " All parameter" passing mechanism consists of
passing exactly the same parameters as are specified by the event. In the "selectable
parameters" passing style, the publisher can specify which parameters of the event are
passed in the invocation. Finally in "parameter expressions", the invocation passes
the results of the passed expressions. Our approach is based on the latter parameter
passing technique that corresponds to value passing in programming languages. We
believe that this is more suitable to distributed computing.

The event definition criteria discusses whether an event-based system allows imple-
menters to extend the vocabulary of events or not. Event vocabularies can be con-
structed by adopting static declaration, dynamic declaration, or no event declaration
techniques. This criterion is in fact, obsolete in the LECAP framework; we have not
specified the kind of event that we assume, giving developers the possibility to define
the kind of vocabulary that better suits their needs. Note that this is different from
the "no event declaration" technique as our language is supposed to be typed. Our
approach is more related to dynamic declaration.

17.3 ALTERNATE SOLUTIONS

Many other solutions have been investigated in the Ph.D. project that resulted in this
thesis. We discuss why the solution presented in this thesis is superior.

17.3.1 ALTERNATE ANNOUNCEMENT SEMANTICS

The announcement of events can be defined in different ways, resulting in completely
different rules.

227

ALTERNATE SEMANTICS I

The essence of this approach is to reduce the announcement of an event to writing to a
shared variable while another program continuously reads this variable and invokes in-
terested subscribers. This approach requires 1) shared variables for storing events, 2) a
program ir in the form of an await statement whose body is responsible for doing the
matching and invoking interested subscribers.

An event-announcement consists of writing to the shared variable(s). After such an an-
nouncement, each interested subscriber is invoked and all of them are executed in parallel
with each other and with the program IT.

An attempt to formalize this semantics reveals that three non-trivial paradigms are required
for giving a semantics to the announce construct: 1) shared variable, 2) synchronization
and mutual exclusion, 3) non-termination. This results in very heavy formulas.

Our semantics is derived from this semantics by observing that the shared variables for
storing events can be ignored and the invocation of subscribers directly performed by the
announce construct. The await-construct, the shared variable, and the requirement for the
non-termination of ir become obsolete, making our semantics simple and natural.

ALTERNATE SEMANTICS II

The next possible semantics to the announce construct requires a fifth component in the
specification of components called announcement condition [46]. Each time this condition
is satisfied, a corresponding event is announced and the interested subscribers invoked.

In this approach, a helper program, say observer, is needed that runs in parallel with the
helped program and waits for announcement conditions to hold. Once an announcement
condition holds, the observer invokes the corresponding subscribers.

The advantage of this modeling approach is that it may free the designer from explicitly
specifying points of announcement in the code of the program. The definition of such
announcement conditions can, hence, be done at the same time as the definition of sub-
scriptions.

The disadvantage of such a semantics is that either 1) it significantly restricts the set of
announcement conditions that can be defined or 2) it allows non-deterministic announce-
ment of events. The first disadvantage is illustrated in [46] through the restriction that
any two programs running in parallel are not allowed to announce the same event.

We avoid both this non-determinism and these restrictions by allowing the explicit use
of the announce construct. Note, however, that this alternate approach can still be con-

228

structed on top of our language. We believe that our semantics is a reasonable compromise
considering the complexity of the semantics, complexity of the derived logic, expressiveness,
and applicability.

17.3.2 ALTERNATE SPECIFICATION TECHNIQUES

Components that are based on some sort of event-based paradigm may also be specified in
various manners. We illustrate two of the approaches that we have investigated.

ANNOUNCEMENT CONDITIONS

The announcement of events is done by means of a fifth assertion called an ann-(ouncement)
condition. A specification is now of the form (P, R, G, E, Q) where P is a unary assertion
representing the pre-condition, R, G, and E are binary assertions representing the rely,
guar, and post-conditions respectively. Q is a set of formulas of the form Qi -< e* meaning
that whenever the state satisfies the condition Qi the event e* must be announced.

In addition to the problem presented in the previous section, this approach introduces a
fifth component in the specification of programs making them and the related formulas
heavy and difficult to manipulate.

SYMBOLIC VARIABLES

A paradigm that we also investigated for specifying event-based applications is that of
symbolic variables which are higher-order variables ranging over assertions and used for
specifying the behavior of future subscribers. The parallel execution of subscribers to an
event e is denoted ze and specified by means of a symbolic specification (Pe, Re, Ge, Ee)
where Pe is a unary symbolic variable (a variable ranging over unary assertions), while Re,
Ge, and Ee are binary symbolic variables.

Using such symbolic variables, we can specify the behavior of a program even if the binding
is undefined, said to be incomplete. In such an approach, the rules for the decomposition
of applications requires postponing the proof obligations until the binding is defined. A
fifth component is added to specifications called composition proof obligation that serves
as a place holder for proof obligations that we can not yet discharge. A specification was,
hence, of the form: i? : :(P, R, G, E) given 0 where 0 is this composition proof obligation.
The semantics of such a specification is that a program satisfies it iff for any event-based
system (•#, B) where the composition proof obligation 0 holds, the program z satisfies the
related (complete) specification (•#, B) : :(P, R, G, E). In such a context, the parallel rule
is e.g. formulated as:

229

sat d : :(Pi, Ri, G\, E{) given Oi
sat &: :(P2, R2, G2l E2) given 02

II2} sat 1? : :(Pi A P2, Äx A fl2, Gx V G2, £1 A E2) g iven 0

where 0 =7

The requirement for coexistence is postponed since due to symbolic variables, we can not
ensure it yet.

Although this technique was shown to be interesting, it resulted in specifications on which
some operations such as refinement were difficult to apply. A second kind of specification
was needed that we called canonical specifications. The framework required four kinds of
specifications: complete specifications, incomplete specifications, canonical specifications,
non-canonical specifications. In addition, the paradigms of composition proof obligation
and symbolic variables were needed. The theory was clearly very heavy. The framework
presented in this thesis results from simplifying this approach by eliminating the concepts
complete and incomplete specifications and symbolic variables by observing that composi-
tion proof obligations could be derived from canonical specifications (now called structural
specifications).

17.4 EPILOGUE

It has been argued that the event-based paradigm is troublesome and that developing
correct event-based applications is hard [56]. Yet, we argue that although designing correct
event-based applications may be a non-trivial task, the difficulties mainly result from the
fact that the computational behavior of applications based on this paradigm was not well-
understood.

Based on the work in this thesis, we claim that if we put as much effort in the research on
the development of correct event-based applications as it was done for shared-variables, pro-
cedure invocation, parallel systems, and message passing systems, then developing event-
based applications will not be more difficult than building other applications. And, in fact,
we showed that an important class of event-based applications can be developed based on
the traditional concepts of pre- and post-conditions.

The event-based paradigm differs from many paradigms in the theory of software engi-
neering in that it is strongly motivated by practical, non-trivial, and successful uses. We,
therefore, believe that it has some potential in solving many issues in the development of
software systems. Although the LECAP framework and its applicability leave us convinced
that this work presents a promising first step towards a viable, formal development method-

230

ology for event-based applications, we plead that the event-based paradigm deserves more
attention from theorists.

231

232

BIBLIOGRAPHY

[1] G. D. Abowd, R. Allen, and D. Garlan. Using style to understand descriptions of
software architectures. A CM Software Engineering Notes, 18(5):9-20, 1993.

[2] G. D. Abowd, R. Allen, and D. Garlan. Formalizing styles to understand descriptions
of software architecture. ACM Transactions on Software Engineering and Methodol-
ogy, 4(4):319-364, 1995.

[3] P. Aczel. An inference rule for parallel composition. Technical report, University of
Manchester, February 1983.

[4] M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley, and T.D. Chandra. Matching
events in a content-based subscription system. In Proceedings of the A CM Symposium
on Principles of Distributed Computing (PODC 99), pages 53-61, 1999.

[5] V. S. Alagar and K. Periyasamy. Specification of Software Systems. Springer Verlag,
1998.

[6] Apple Computer. Inside Macintosh, volume 6. Addison Wesley, 1991.

[7] K. R. Apt, N. Francez, and W. P. de Roever. A proof system for communicating
sequential processes. ACM Transactions on Programming Languages and Systems
(TOPLAS), 2(3):359-385, 1980.

[8] R. J. Back and K. Sere. Action systems with synchronous communication. In Pro-
ceedings of PROCOMET'94 (Programming Concepts, Methods and Calculi), pages
107-126, June 1994.

[9] R. J. Back and J. von Wright. Trace refinement of action systems. In Proceedings
of CONCUR '94 (International Conference on Concurrency Theory), pages 367-384,
August 1994.

[10] D. J. Barret, L. A. Clarke, P. L. Tarr, and A. E. Wise. A framework for event based
software integration. ACM Transactions on Software Engineering and Methodology,
5(4):378-421, 1996.

233

[11] Howard Barringer, Ruurd Kuiper, and Amir Pnueli. Now you may compose tempo-
ral logic specifications. In Proceedings of the sixteenth annual ACM symposium, on
Theory of computing, pages 51-63, 1984.

[12] Klaus Bergner, Andreas Rausch, and Marc Sihling. A componentware development
methodology based on process patterns. In Proceedings of 5th Annual Conference on
Pattern Languages of Programs (PLOP98), 1998.

[13] Marco Bernardo, Paolo Ciancarini, and Lorenzo Donatiello. On the formalization of
architectural types with process algebras. In Proceedings of the 8th ACM SIGSOFT
international symposium on Foundations of software engineering, pages 140-148.
ACM Press, 2000.

[14] Katherine Betz. A scalable stock web service. In Proceddigns of IEEE International
Workshop on Parallel Processing, pages 145-150, 2000.

[15] K.P. Birman. The progress group approach to reliable distributed computing. Com-
munications of the ACM, 12:37-53, December 1993.

[16] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language
User Guide. Object Technology Series. Addison Wesley, 1999.

[17] K. Brockschmidt. Inside OLE. Microsoft Press, Redmond, 1995.

[18] A. W. Brown and K. C. Wallnau. Engineering of component-based systems. In
Proceedings of the Second IEEE International Conference on Engineering of Complex
Computer Systems, Montreal, Canada, pages 414-422, October 1996.

[19] S. N. Burris and H.P. Sankappanavar. A Course in Universal Algebra, The Millen-
nium Edition. Springer Verlag, January 1981.

[20] C. Bussler and S. Jablonski. Implementing agent coordination for workflow manage-
ment systems using active database systems. In Proceedings of RIDE-ADS'94, the
4th International Workshop on Research Issues in Data Engineering, Houston, pages
53-59, February 1994.

[21] Alexis Campailla, Sagar Chaki, Edmund Clarke, Somesh Jha, and Helmuth Veith.
Efficient Filtering in Publish/Subscribe Systems using Binary Decision Diagrams.
In Proceedings of the 21st International Soßware Engineering Conference (ICSE),
Toronto, Canada, pages 443-452, May 2001.

[22] Michael J. Carey, David J. DeWitt, Michael J. Franklin, Nancy E. Hall, Mark L.
McAuliffe, Jeffrey F. Naughton, Daniel T. Schuh, Marvin H. Solomon, C. K. Tan,
Odysseas G. Tsatalos, Seth J. White, and Michael J. Zwilling. Shoring up persistent
applications. In ACM-SIGMOD 1994 International Conference on Management of
Data, Minneapolis, Minnesota, pages 383-394, 1994.

234

[23] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems, 3(19):332-383,
August 2001.

[24] Antonio Carzaniga, Elisabetta Di Nitto, David S. Rosenblum, and Alexander L. Wolf.
Issues in supporting event-based architectural styles. In Proceedings of 3rd Interna-
tional Software Architecture Workshop, Orlando FL, USA, pages 17-20, November
1998.

[25] Z. Chen and C. Hoare. Partial correctness of communicating sequential processes. In
Proceedings of the Second IEEE International Conference on Distributed Computer
Systems, April 1981.

[26] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.
NUSMV: A new symbolic model checker. International Journal on Software Tools
for Technology Transfer, 2(4):410-425, 2000.

[27] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, 1999.

[28] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the art and
future directions. ACM Computing Surveys, 28(4):626-643, July 1996. Report by the
Working Group on Formal Methods for the ACM Workshop on Strategic Directions
in Computing Research.

[29] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems, Concepts
and Design. Addison-Wesley, 1994. Second Edition.

[30] G. Cugola and E. Di Nitto. Using a Publish/Subscribe Middleware to Support Mobile
Computing. In Proceedings of the Workshop on Middleware for Mobile Computing,
in association with IFIP/ACM Middleware 2001 Conference, Heidelberg, Germany,
November 2001.

[31] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI Event-Based Infrastructure and
its Application to the Development of the OPSS WFMS. Transaction of Software
Engineering (TSE), 27(9):827-850, September 2001.

[32] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[33] Antoni Diller. Z:An Introduction to Formal Methods. Oreilly, Mai 1996.

[34] J. Dingel. Systematic parallel programming. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, December 1999.

[35] J. Dingel, D. Garlan, S. Jha, and D. Notkin. Reasonning about Implicit Invocation.
In Proceedings of the 6th International Symposium on the Foundations of Software
Engineering, FSE-6, Lake Buena Vista, FL, pages 209-221. ACM, November 1998.

235

[36] J. Dingel, D. Garlan, S. Jha, and D. Notkin. Towards a formal treatment of implicit
invocation using rely/guarantee reasoning. Formal Aspects of Computing, 10:193-
213, 1998.

[37] Desmond Francis D'Souza and Alan Cameron Wills. Objects, Components, and
Frameworks with UML, The Catalysis Approach. Addison Wesley Longman, Inc.,
1998.

[38] Herbert B. Enderton. A mathematical introduction to logic. Hardcourt/Academic
Press, 2nd edition, 2001.

[39] C. Ene and Traian Muntean. A broadcast-based calculus for communicating systems.
Technical report, Laboratoire d'Informatique de Marseille, 2000.

[40] P.Th. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of
publish/subscribe. ACM Computing Surveys (CSUR), 35(2):114-131, 2003.

[41] Pascal Fenkam. Visual Validation of VDM-SL Based Specification. Technical re-
port, 1ST Technical University Graz, June 2000. Available from http://www.ist.tu-
graz.ac.at.

[42] Pascal Fenkam, Schahram Dustdar, Engin Kirda, Harald Gall, and Gerald Reif. To-
wards an access control system for mobile peer-to-peer collaborative environments.
In IEEE 11th International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE 2002), pages 95-100, Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania, USA, Jun. 10-12 2002. IEEE Computer Society Press.

[43] Pascal Fenkam, Harald Gall, and Mehdi Jazayeri. Constructing CORBA Supported
Oracles: A Case Study in Automated Software Testing. In Proceedings of the 17th
IEEE Automated Software Engineering Conference, Edinburgh, Scotland, pages 129-
138, September 2002.

[44] Pascal Fenkam, Harald Gall, and Mehdi Jazayeri. Visual Requirements Validation:
Case Study in a Corba-supported environment. In Proceedings of the 10th IEEE
Joint International Requirements Engineering Conference, Essen, Germany, pages
81-90, September 2002.

[45] Pascal Fenkam, Harald Gall, and Mehdi Jazayeri. A Systematic Approach to the
Development of Event-Based Applications. In Proceedings of the 22nd IEEE Sympo-
sium on Reliable Distributed Systems (SRDS 2003), Florence, Italy. IEEE Computer
Press, October 2003.

[46] Pascal Fenkam, Harald Gall, and Mehdi Jazayeri. Composing Specifications of Event
Based Applications. In Proceedings of FASE 2003 (Fundamental Approaches to Soft-
ware Engineering 2003), Warsaw, Poland, LNCS, pages 67-86. Springer Verlag, April
2003.

236

[47] Pascal Fenkam, Harald Gall, and Mehdi Jazayeri. Constructing Deadlock Free Event-
Based Applications: A Rely/Guarantee Approach. In Proceedings of FM 2003: the
12th International FME Symposium, Pisa, Italy, LNCS, pages 632-657. Springer
Verlag, September 2003.

[48] Pascal Fenkam, Harald Gall, and Mehdi Jazayeri. Designing an event-based peer-
to-peer application for mobile collaboration (submitted for publication). Technical
report, DSG, Technical University of Vienna, March 2003.

[49] D. Ferraiolo and R. Kuhn. Role-Based Access Controls. In Proceedings of 15th
NIST-NCSC National Computer Security Conference, pages 554-563, October 1992.

[50] L. Fiege, G. Muhl, and F. Gartner. A modular approach to building structured event-
based systems. In Proceedings of the 2002 ACM Symposium on Applied Computing
(SAC'02), pages 385-392, Madrid, Spain, 2002. ACM Press.

[51] Ludger Fiege, Mira Mezini, Gero Muhl, and Alejandro P. Buchmann. Engineering
event-based systems with scopes. In Proceedings of the 16th European Conference on
Object-Oriented Programming (ECOOP 2002), volume 2374, pages 309-333. LNCS,
2002.

[52] Wireless Application Protocol Forum. Wireless Application Protocol Service Indica-
tion Specification. Technical report, Wireless Application Protocol Forum, November
1999. Available at http://www.wapforum.org/.

[53] N. Francez and A. Pnueli. A proof method for cyclic programs. Ada Informatica,
9:133-157, 1978.

[54] Marcelo F. Prias, Gabriel A. Baum, and Thomas S.E. Maibaum. Interpretability of
first-order dynamic logic in an extension of fork algebras. In Harrie C. M. de Swart,
editor, Proceedings of the 6th International Conference in Relational Methods in
Computer Science(RelMICS 2001), volume 2561 of LNCS, pages 66-80. Springer
Verlag, 2002.

[55] D. Garlan and D. Notkin. Formalizing design spaces: Implicit invocation mecha-
nisms. In Proceedings of Fourth International Symposium of VDM Europe: Formal
Soßware Development Methods, Noordwijkerhout, Netherlands, October 1991. LNCS
551.

[56] David Garlan and Serge Khersonsky. Model checking implicit-invocation systems. In
Proceedings of the 10th International Workshop on Software Specification and Design,
San Diego, CA, pages 23-30, November 2000.

[57] David Garlan, Serge Khersonsky, and Jung Soo Kim. Model checking publish-
subscribe systems. In Proceedings of the 10th International SPIN Workshop on Model
Checking of Software (SPIN 03), Portland, Oregon, pages 166-180, May 2003.

237

[58] Andreas Geppert and Dimitrios Tombros. Event-based distributed workflow execu-
tion with EVE. Technical Report IFI-96.05, University of Zurich, 20, 1996.

[59] GMD. Xql ipsi, http://xml.darmstadt.gmd.de/xql/, 2002.

[60] gnutella.com. Gnutella, http://www.gnutella.com, 2002.

[61] David Gries. The Science of Programming. Springer Verlag, 1981.

[62] David Gries and Gary Levin. Assignment and procedure call proof rules. ACM
Transactions on Programming Languages and Systems, 2(4):564-579, October 1980.

[63] M. Hauswirth. Internet-S cale Push Systems for Information Distribution—
Architecture, Components, and Communication,. PhD thesis, Distributed Systems
Group, Technical University of Vienna, October 1999.

[64] M. Hauswirth and M. Jazayeri. A component and communication model for push
systems. In Proceedings of the ESEC/FSE 99 - Joint 1th European Software Engi-
neering Conference (ESEC) and 7th ACM SIGSOFT International Symposium on
the Foundations of Software Engineering (FSE-7), pages 20-38, September 1999.

[65] George T. Heineman and Wiliam T. Councill. Component-Based Software Engineer-
ing, Putting the Pieces Together. Addison Wesley, 1999.

[66] Matthew Hennessy and Julian Rathke. Bisimulations for a calculus of broadcasting
systems. In International Conference on Concurrency Theory, pages 486-500, 1995.

[67] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576-583, 1969.

[68] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[69] M. Hsu and C.Kleissner. ObjectFlow: Towards a Distributed Process Manage-
ment Infrastructure. Distributed and Parallel Databases. Distributed and Parallel
Databases, 4:2, February 1996.

[70] Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Transactions
on Software Engineering Methododlogy, ll(2):256-290, April 2002.

[71] Daniel Jackson. Automatic analysis of architectural styles. Technical report, MIT
Laboratory for Computer Sciences, Software Design Group, Unpublished Manuscript.
Available at http://sdg.lcs.mit.edu/ dnj/publications.html.

[72] Michael Jackson. Software Requirements & Specifications: A Lexicon of Practice,
Principles and Prejudices. Addison-Wesley, 1995.

[73] Pankaj Jalote. An Integrated Approach to Software Engineering. Springer Verlag,
1997.

238

[74] Jean Raymond Abrial. The B-Book; Assigning Programs to Meanings. Cambridge
University Press, 1996.

[75] C. B. Jones. Systematic software development using VDM. Prentice-Hall Interna-
tional, 1990. 2nd edition.

[76] C. B. Jones. Wanted: a compositional approach to concurrency. In Programming
Methodology, pages 1-15. Springer Verlag, 2000.

[77] C.B. Jones. Tentative steps towards a development method for interfering programs.
Transactions on Programming Languages and Systems, 5(4), October 1983.

[78] G. Kahn. A Preliminary Theory of Parallel Programs . Technical Report TR-98-04,
Laboria n 6, IRIA, Le Chesnay, France, 1973.

[79] Engin Kirda, Pascal Fenkam, Gerald Reif, and Harald Gall. A service architecture for
mobile teamwork. In Proceedings of the lJ^th International Conference on Software
Engineering Conference and Knowledge Engineering Ischia, ITALY, July 2002.

[80] Engin Kirda, Harald Gall, Pascal Fenkam, and Gerald Reif. MOTION: A Peer-to-
Peer Platform for Mobile Teamwork Support. In Cooperative Support for Distributed
Software Engineering Processes Workshop, 26th COMPSAC Conference, Oxford,
England, pages 1115-1117. IEEE Computer Society Press, August 2002.

[81] Engin Kirda, Harald Gall, Gerald Reif, Pascal Fenkam, and Clemens Kerer. Sup-
porting mobile users and distributed teamwork. In Proceedings of ConTEL 2001 -
6th International Conference on Telecommunications, Zagreb, Croatia, June 13-15
2001, Jun. 2001.

[82] Engin Kirda, Gerald Reif, Harald Gall, and Pascal Fenkam. TWSAPI: A Generic
Teamwork Services Application Programming Interface. In International Workshop
on Mobile Teamwork 2002 (Vienna, Austria), 22nd International Conference on Dis-
tributed Computing Systems. IEEE Computer Society Press, July 2002.

[83] B. Krishnamurthy and N.S. Barghouti. Provence: A process visualization and enact-
ment environment. In Proceedings of 4th European Software Engineering Conference,
pages 451-465, 1993.

[84] Marc Langheinrich, Friedemann Mattern, Kay Rmer, and Harald Vogt. First Steps
Towards an Event-Based Infrastructure for Smart Things. In Ubiquitous Computing
Workshop (PACT 2000), October 2000.

[85] Lennart Lövstrand. Being selectively aware with the khronika system. In Pro-
ceedings of the 6th European Conference on Computer Supported Cooperative Work-
ECSCW'91, pages 17-31, September 1991.

[86] Maria Manzano. Extensions of First Order Logic. Cambridge University Press, 1996.

239

[87] Ken McCrary. Jtella homepage, http://www.kenmccrary.com/jtella/, 2002.

[88] Rene Meier and Vinny Cahill. Steam: Event-based middleware for wireless ad
hoc networks. In 22nd International Conference on Distributed Computing Systems
Workshops (ICDCSW '02), Vienna, Austria, pages 639-644, July 2002.

[89] R. Milner. The Calculus of Communicating Systems. Prentice Hall, 1993.

[90] R. Milner. Communicating and Mobile Systems: the pi-Calculus. Cambridge Uni-
versity Press, May 1999.

[91] MusicCity. Morpheus, http://www.musiccity.com, 2002.

[92] Napster. Napster homepage, http://www.napster.com, 2002.

[93] Peter G. Neumann. Risks to the public in computers and related systems. A CM
SIGSOFT Software Engineering Notes, 26(l):14-38, 2001.

[94] Leonor Prensa Nieto. The rely-guarantee method in isabelle/hol. In Proceedings of
ESOP 2003, volume 2618, pages 348-362. Springer Verlag, 2003.

[95] Takahiko Nomura, Koichi Hayashi, Tan Hazama, and Stefan Gudmundson. Inter-
locus: Workspace configuration mechanisms for activity awareness. In Proceedings of
the 1998 ACM Conference on Computer Supported Cooperative Work, Seattle, pages
19-28, November 1998.

[96] David Notkin, David Garlan, William G. Griswold, and Kevin Sullivan. Adding
implicit invocation to languages: Three aproaches. In Proceedings of JSSST Symp.
Object Technologies for Advanced Software, volume 742, pages 227-233. Springer
Verlag, November 1993.

[97] Object Management Group. OMG Formal Documentation. Technical report, OMG,
December 1999.

[98] S. Owicki and D. Gries. Verifying properties of parallel programs: an axiomatic
approach. Communications of the ACM, 19(5):279-285, May 1976.

[99] D. L. Parnas. A Technique for Software Module Specification With Examples. Com-
munication of the ACM, 15(5):330-336, May 1972.

[100] D. L. Parnas. On the Criteria To Be Used in Decomposing Systems Into Modules.
Communication of the ACM, 5(12):1053-1058, December 1972.

[101] Gian Pietro Picco and Gianpaolo Cugola. PeerWare: Core Middleware Support for
Peer-To-Peer and Mobile Systems. Technical report, Dipartimento di Electronica e
Informazione, Politecnico di Milano, 2001.

240

[102] Nico Plat and Peter Gorm Larsen. An Overview of the ISO/VDM-SL Standard. In
ACM SIGPLAN Notices, pages 76-82. ACM SIGPLAN, September 1992.

[103] K. Prasad. A Calculus of Broadcasting Systems. In S. Abramski and T. Maibaum,
editors, Proceedings of TAPSOFT'91, volume 493, pages 338-358, Brighton, UK,
1991. Springer-Verlag, Berlin.

[104] K. Prasad. A calculus of value broadcasts. In Parallel Architectures and Languages
Europe, pages 391-402, 1993.

[105] K. Prasad. Programming with broadcasts. In International Conference on Concur-
rency Theory, pages 173-187, 1993.

[106] K. Prasad. Broadcasting with priority. In European Symposium on Programming,
pages 469-484, 1994.

[107] Wolfgang Prinz. Nessie: An awareness environment for collaborative settings. In Pro-
ceedings of the 6th European Conference on Computer Supported Cooperative Work-
ECSCW'99, pages 391-410, September 1999.

[108] J. M. Purtilo. The polylith software bus. A CM Transactions on Programming Lan-
guages and Systems, 16(1):151—174, 1994.

[109] Gerald Reif, Engin Kirda, Harald Gall, Gian Pietro Picco, Gianpaola Cugola, and
Pascal Fenkam. A web-based peer-to-peer architecture for collaborative nomadic
working. In 10th IEEE Workshops on Enabling Technologies: Infrastructures for Col-
laborative Enterprises (WETICE), Boston, MA, USA, pages 334-339. IEEE Com-
puter Society Press, June 2001.

[110] S. P. Reiss. Connecting tools using message passing in the field program development
environment. IEEE Software, 19(5):57-66, July 1990.

[Ill] Ed Roman, Scott W. Ambler, and Tyler Jewell. Mastering Enterprise JavaBeans.
John Wiley & Sons, second edition, 2002.

[112] J. Rothfeder. It's late, costly, incompetent, but try firing a computer system. Business
Week, pages 164-165, November 1998.

[113] R. S. Sandhu. The schematic protection model: Its definition and analysis for acyclic
attenuating schemes. Journal of the ACM, 35(2):404-432, April 1988.

[114] K. 0 . Sandor and A. Schmer. Supporting social awareness @ work, design and
experience. In Proceedings of the 1996 ACM Conference on Computer Supported
Cooperative Work, Boston, 1996.

[115] K. Sere and R. J. R. Back. From action systems to modular systems. In Proceddings
ofFME'94-' Industrial Benefit of Formal Methods, pages 1-25. Springer-Verlag, 1994.

241

[116] Kaisa Sere. Procedures and atomicity refinement. Information Processing Letters,
60(2):67-74, 1996.

[117] D. N. Smith. Concepts of Object-Oriented Programming. McGraw-Hill, 1991.

[118] N. Soundararajan. A proof technique for parallel programs. Theoretical Computer
Science, 31:13-29, 1984.

[119] C. Stirling. A generalization of owicki-gries's hoare logic for a concurrent while
language. Theoretical Computer Science, 58(l-3):347-359, 1988.

[120] Ketil St0len. Development of Parallel Programs on. Shared Data-Structures. PhD
thesis, Department of Computer Science, University of Manchester, 1990.

[121] Ketil St0len. A Method for the Development of Totally Correct Shared-State Parallel
Programs. In Proceedings of CONCUR'91, pages 510-525. Springer Verlag, 1991.

[122] Ketil St0len. An Attempt to Reason about Shared-State Concurrency in the Style
of VDM. In Proceedings of VDM'91, pages 510-525. Springer Verlag, 1991.

[123] Sun Microsystem Inc. The Java Message Service 1.0.2, November 1999. Available
from http://www.javasoft.com.

[124] SunSoft. The ToolTalk Service: An Inter-operability Solution. Prentice-Hall, 1993.

[125] Peter Sutton, Rhys Arkins, and Bill Segall. Supporting disconnectedness-transparent
information delivery for mobile and invisible computing. In Proceedings of 2001 IEEE
International symposium on Cluster Computing and the Grid, page 277, May 2001.

[126] Clemens Szyperski. Component Software, Beyond Object-Oriented Programming.
Addison Wesley, 1999.

[127] The Eclipse Consortium. The eclipse project. URL: http://www.eclipse.org.

[128] The Institute for Apply Computer Science, IFAD. The IFAD VDM Toolbox. IFAD
Danemark, 1999. Available from www.ifad.dk.

[129] The RAISE Language Group. The RAISE Specification Language. Prentice Hall,
1992. ISBN: 0-13-752833-7.

[130] The VDM Tool Group and The Institute of Applied Computer Science. The IFAD
VDM-SL Language. IFAD, December 1996. Available from http://www.ifad.dk.

[131] TIBCO Software Inc. TIB/Rendezvous TX Concepts Release 1.1. Technical report,
TIBCO Software Inc.,Palo Alto, CA, November 2002. http://www.tibco.com.

[132] Dimitris Tombros, Andreas Geppert, and Klaus R. Dittrich. Semantics of reactive
components in event-driven workflow execution. In Proceedings of the Conference on
Advanced Information Systems Engineering, pages 409-422, 1997.

242

[133] Mark Weiser. Some computer science issues in ubiquitous computing. In Proceedings
of CACM, pages 74-84, July 1993.

[134] J. M. Wing. A specifiers Introduction to Formal Methods. Prentice-Hall International,
1990.

[135] Q. Xu, W.-P. de Roever, and J. He. The rely guarantee method for verifying shared
variable concurrent programs. Formal Aspects of Computing, 9:149-174, 1997.

[136] Q. Xu and J. He. A theory of state-based parallel programming by refinement: part
1. In J. Morris and R. Shaw, editors, Proceedings of the 4th BCS-FACS Refinement
Workshop, pages 326-359. Springer Verlag, 1991.

243

