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Abstract

Steadily increasing clock speeds and miniaturization in microelectronics are leading to

increasing power densities. Accordingly, there is a demand for new, advanced materials

in electronic package design that allow to engineer higher density systems. Certain metal

matrix composites are promising candidate materials for electronic packaging applications

due to the possibility of tailoring their properties. The latter, however, requires deep

understanding and a thorough insight into the mechanisms of interaction between the

constituents on the microlevel and of their effect on the overall behavior.

The present study aims to improve the understanding of heat conduction in composite

materials, special attention is paid to the effects of imperfectly bonded constituents, i.e. the

presence of interfacial thermal resistances.

An overview of selected analytical and numerical methods for describing the overall

behavior of composite materials is provided. Subsequently, an introduction into hot pressed

carbon–copper composites is given, which have high potential for electronic packaging

applications.

Mori–Tanaka mean field approaches, among them newly developed methods, and a

periodic microfield approach form the backbone of computational methods, which are em-

ployed in this work to estimate the effective conductivity of composites. These methods are

discussed in detail in Chapter 4, where also the topic of heat conduction in homogeneous

solids is addressed and the limits and assumptions underlying the employed micromechan-

ical approaches are critically reviewed.

Single inclusion problems (i.e. solitary, imperfectly bonded inclusions embedded in an

isotropic, unbounded matrix), are studied. For the case of ellipsoidal inclusion geometries

an analytical method is developed which enables replacement of the original imperfectly

bonded inclusion by a less conductive but perfectly bonded inclusion. The replacement

formalism is extended to arbitrary inclusion shapes, the solution technique involving “di-
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lute” unit cells. This numerical replacement procedure in combination with the Mori–

Tanaka scheme forms a very versatile, “hybrid” micromechanical tool.

Results are presented primarily for carbon–copper composites. Different microgeomet-

ries are investigated and Mori–Tanaka predictions are compared with unit cell predictions,

as well as with experimental results.



Kurzfassung

Höhere Taktraten und Miniaturisierung erzeugen immer größere Leistungsdichten in mik-

roelektronischen Bauteilen. Um eine Überhitzung zu vermeiden ist ein effizienter Wärmeab-

tansport nötig. Gewisse Metallmatrix Verbundwerkstoffe sind dafür vielversprechende Ma-

terialien, da sie es dem Ingenieur erlauben, spezielle Eigenschaften gezielt “maßzuschneidern”.

Letzteres erfordert jedoch ein sehr gutes Verständnis der Wechselwirkungen der unter-

schiedlichen Konstituenten eines Verbundwerkstoffes untereinander und deren Auswirkun-

gen auf die effektiven Eigenschaften des Verbundwerkstoffes.

Die vorliegende Arbeit untersucht die Wärmeleitung in Verbundwerkstoffen, wobei ein

spezielles Augenmerk auf den Einfluß von thermischen Widerständen auf die effektive

Wärmeleitfähigkeit gelegt wird.

In der Arbeit wird zunächst ein Überblick über ausgewählte analytische und numerische

mikromechanische Methoden gegeben, welchem eine kurze Beschreibung der untersuchten

Kohlefaser–Kupfer Verbundwerkstoffe folgt, die großes Potential für die Anwendung in

Wärmesenken besitzen.

Um die effektive Wärmeleitfähigkeit von Verbundwerkstoffen zu berechnen werden in

dieser Arbeit hauptsächlich die Mori–Tanaka Methode und die Einheitszellen Methode

verwendet. Diese Verfahren werden ausführlich in Kapitel 4 diskutiert. In diesem Kapitel

wird auch ein kurzer Überblick zur Wärmeleitung in homogenen Festkörpern gegeben und

es werden die den Methoden zugrundeliegenden Annahmen und Einschränkungen kritisch

betrachtet.

Konfigurationen bestehend aus einzelnen Inklusionen, welche in einer unendlich grossen

isotropen Matrix eingebettet sind, werden unter Berücksichtigung thermischer Kontakt-

widerstände am Interface untersucht. Für den Fall ellipsoidaler Inklusionsgeometrien

wird eine analytische Methode hergeleitet, welche es erlaubt, die Inklusion mit Kontakt-

widerstand durch eine schlechter leitende zu ersetzen, welche perfekt mit der umgebenden
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Matrix verbunden ist (d.h. ohne thermischen Kontaktwiderstand). Weiters wird eine ver-

allgemeinerte Variante dieser Austauschoperation basierend auf Einheitszellen für beliebige

Inklusionsgeometrien hergeleitet. Gemeinsam mit der Mori–Tanaka Methode formt diese

numerische Austauschoperation ein mächtiges, “hybrides” mikromechanisches Werkzeug.

Resultate werden primär für Kohlefaser–Kupfer Verbundwerkstoffe berechnet. Ver-

schiedene Mikrogeometrien werden untersucht und die Ergebnisse der Mori–Tanaka–Methode

werden mit denen von Einheitszellen verglichen, sowie mit Experimenten.



Notation

Tensors up to the second rank are used in this work. The rank equals the number of

subscripts.

• Tensors of rank zero (“scalars”) are not connected with any direction and therefore

unrelated to any axis of reference. They are completely specified by a single number.

Examples: Temperature T and density γ.

• Tensors of rank one (“vectors”) are given by three scalar components for a given set

of linearly independent reference axes. Examples: Temperature gradient T ,i and heat

flux qi.

• Tensors of rank two are given by nine numbers and relate two vectors. Examples:

Thermal conductivity K ij.

Dummy Suffix Notation

The Einstein summation convention is used in this work: Unless stated otherwise, if a

subscript occurs twice in any term, summation from 1 to 3 with respect to that suffix is

automatically understood. Dummy suffixes must occur as pairs in a term. If a suffix occurs

once in a term, it is called a “free suffix”. The same free suffixes must be present in all

terms on both sides of an equation.

A suffix i following a comma denotes differentiation with respect to xi.

Some Remarks to First Rank Tensors

Note that xi can refer to a direction of a principal axis as well as to the coordinates of a

point. The latter is also denoted by ~x.
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Some Remarks to Second Rank Tensors

Kronecker Delta The Kronecker delta, δij, is defined as

δij =

{

0 for i 6= j

1 for i = j .

The Kronecker delta can also be given in terms of the derivatives of the direction vectors

xi:

δij =
∂xi

∂xj

= xi,j

Note that δii = 3.

Principal Components, Principal Axes An important property of symmetric second

rank tensors is their possession of principal axes which are three directions at right angles

defining a coordinate system. With respect to this coordinate system the second rank tensor

takes the form of a diagonal tensor, i.e. off diagonal terms are zeros. The diagonal terms

are referred to as principal components and are indicated by capital roman subscripts, I,

II, and III, where I and III stand for the maximum and minimum principal components,

respectively.

Commonly used Superscripts

(∗) overall effective, uniform far field
(i) inclusion phase
(m) matrix phase
(r) any phase
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Chapter 1

Introduction

Composite materials consist of two or more different prefabricated constituents. If the

latter are uniformly distributed the material can be treated as a homogeneous continuum

at a sufficiently large length scale. Composites are found in nature as well as in engineered

materials. They have proven highly attractive for a broad spectrum of engineering applic-

ations due their inherent capability at being designed with overall properties that meet

certain demands.

Introductions to modeling of the thermo–physical behavior of composites may be found in

e.g. ????, with extensive lists of references given therein.

1.1 Motivation

1.1.1 Outline of the Problem

In the 1960’s Moore made the prediction that the performance of microprocessors would

double every 18 months ?. Now, some 35 years later developments still supports Moore’s

prediction (commonly known as “Moore’s law”). However, steadily increasing clock speeds

which goes in hand with miniaturization (i.e. increasing numbers of gates per unit area of

the silicon) in microelectronics has been creating problems of heat dissipation. For example,

the die size of a Pentium 4 is 12.5 mm square and dissipates up to 80 W ?, corresponding

to an average energy density of 0.5×106 W/m2. Note that the on–die power distribution is

typically not uniform and at spots of local power concentrations (“hot spots”) the energy

densities are much higher. The same trend can be observed in the field of power electronics
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CHAPTER 1. INTRODUCTION 2

where transistors can generate up to 3 × 106 W/m2 ?.

So far there is no indication that the power dissipation is reaching a plateau and it is

apparent that for the near future power dissipation will be a major bottleneck across the

microelectronics industry ?, defining the limits of performance and reliability of electronic

systems. Accordingly, efficient thermal management which can maintain low operating

temperatures (i.e. ensure consequent electrical performance) is essential, for the full poten-

tial of future technologies to be realized.

1.1.2 Thermal Management Issues

Electronic package design is a sophisticated electrical, thermal, and mechanical task. Over-

views and recent developements as well as references may be found in ????. In the following

a brief introduction which is geared towards heat spreaders and thermal issues is given.

On the left hand side of Fig. 1.1 a schematic set up of an electronic package is depicted.

The package can be thought of as a series connection of thermal resistances. The overall

thermal resistance not only depends on the conductive properties of the components and

their dimension in the direction of the heat flow but also on the thermal contact resistances

between the interface material, the heat sink, and the die. In order to dissipate heat to the

surrounding environment a temperature mismatch between the surface of the heat sink and

the ambient temperature is necessary. The latter can be interpreted in terms of another

∆T

∆T
low conductivity
interface material

silicon

heatsink

Figure 1.1: Schematic setup of an electronics package (left) and a typical standard PC
application (right, from http://bonez.net/pictures/pages/heatsink.htm).



CHAPTER 1. INTRODUCTION 3

thermal resistance, and forced convection is usually employed to keep this contribution

small, compare Fig. 1.1, right.

The temperature of the silicon is then determined by the heat it is generating, the overall

thermal resistance of the package, and the ambient temperature.

From Fig.1.1, left, several key criteria for a heat sink can be readily derived from a

“materials point of view”, which are

• adapted coefficients of thermal expansion (CTE) of the components

• stability during thermal cycling

• high thermal conductivity

• low specific weight

The latter point is especially relevant in the aerospace and automotive industry where

weightsaving is optimistically correlated to saving costs of 500–5000 e/kg and 2–50 e/kg,

respectively ?.

Today’s competitive environment has increased the role of advanced materials in elec-

tronics package design. Optimization has spurred the developement of new materials that

allow to design higher density systems. Certain metal matrix composites (MMCs) are ideal

for electronic packaging applications, because of the possibility of tailoring their thermo-

mechanical and thermophysical properties. The coefficient of thermal expansion (CTE) and

the thermal conductivity are the two most important design parameters for heat spreader

materials.

In industry copper and copper–based composites have been mainly used where high

electrical and high thermal conductivities are required. Pure copper, however, has a much

higher CTE than semiconductors and their substrates. The high thermal conductivity, low

mass density, and negative axial CTE of carbon fibers make carbon–copper composites

potential candidates for use in thermal management applications.



Chapter 2

Micromechanics: Some Basic

Definitions

2.1 Length Scales, Homogenization, Localization

The description of the properties of composite materials has to account for two length

scales at least. On the macroscale a composite may be viewed as a material with smeared

out or homogenized properties while on some small length scale (the microscale) different

constituents can be distinguished:

• Macroscale: the length scale of the structure, component, or sample

• Microscale: the length scale of the reinforcement diameters or distances

Below the microscale a number of “sub microscales” can typically be identified, ac-

counting for e.g. polycrystalline or porous constituents of a composite material.

In this work the constituent materials are approximated to be homogeneous on the

microscale. The framework of continuum mechanics is chosen for studying the conduction

of heat in heterogeneous solids, the behavior of the constituents is described by constitutive

laws. In analogy to studies of the thermomechanical behavior of inhomogeneous materials

this approach is referred to as continuum micromechanics.

The central aim of micromechanical descriptions of composites is the bridging of the

length scales. One main effort of theoretical studies of composite materials is to deduce

overall or effective properties from the known material properties of the constituents, their

4



CHAPTER 2. MICROMECHANICS: SOME BASIC DEFINITIONS 5

arrangement on the microscale, and the properties of the interfaces between the constitu-

ents. This scale transition from the micro to the macro scale is referred to as homogenization

and is usually carried out by volume averaging of the microfields. The transition from the

macro scale to the micro scale is referred to as localization. It allows to “zoom in” on the

local microfields due to macroscopic loading.

In micromechanical approaches the microfields (heat flux and temperature gradient in

the case of heat conduction problems) in an inhomogeneous material are typically split into

contributions corresponding to the different length scales, which may be termed “fast” and

“slow” variables. It is assumed that the length scales are sufficiently different so that

• variations of the temperature gradient and flux fields on the microscale (fast vari-

ables) influence the macroscale behavior only by their average values (i.e. from

the point of view of the macroscale the composite acts as a bulk material)

• variations of the temperature gradients or fluxes on the macroscale (slow vari-

ables) are not significant at the microscale, where these fields appear to be locally

constant and act as “applied” homogeneous far field temperature gradients or

fluxes.

If the macrofield fluctuates rapidly the situation drastically changes and goes beyond

the scope of this work, for details and references see ??.

2.1.1 Basic Notation

Homogenized temperature gradients, T
(∗)
,i , and fluxes, q

(∗)
i , take the form

T
(∗)
,i =

1

V

∫

V

T ,i(~x) dV =
1

V

∫

Γ

T |Γ ni dΓ , (2.1)

q
(∗)
i =

1

V

∫

V

qi(~x) dV =
1

V

∫

Γ

qjnj xi dΓ . (2.2)

Here, Γ is the surface of the control volume V , ni stands for the associated surface normal

unit vector, and T |Γ are the temperatures on the external surface of volume V . In Eqs. (2.1)

and (2.2) the divergence theorem (“Gauss theorem”) is utilized to express a volume integral

with a surface integral. Note that this equivalence holds for perfectly bonded constituents

and the absence of cracks only. If the latter conditions are not fulfilled, either appropriate

corrections terms must be introduced into the volume integral formulations ?? or imper-

fectly bonded constituents must be replaced by perfectly bonded constituents of reduced
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conductivity. The latter approach is pursued in this work. Note that the same funda-

mental relations hold in the context of elasticity as well, where volume averaged strains

and stresses are replaced by boundary displacements and tractions, respectively ?, provided

the constituents are perfectly bonded.

The local temperature gradient fields, T ,i(~x), and flux fields, qi(~x), at the micro scale

in relation to macroscopic fields are of considerable interest. The localization relations can

be formally denoted as

T ,i (~x) =Dij (~x) T
(∗)
,j , (2.3)

qi (~x) = F ij (~x) q
(∗)
j , (2.4)

where Dij (~x) and F ij (~x) are known as the temperature gradient concentration tensor and

flux concentration tensor (or localization tensors), respectively.

The microtopology of real composites is, at least to a certain extent, stochastic and

highly complex. Exact expressions for the localization tensors cannot realistically be

provided and approximations have to be introduced.

Typically, these approximations are based on the ergodic hypothesis, i.e. it is assumed

that the heterogeneous material is statistically homogeneous. This implies that randomly

selected and sufficiently large subvolumes within a sample give rise to the same effective

material properties. The subvolume investigated for the purpose of homogenization is re-

ferred to as the representative volume element (RVE). The dimensions of a RVE define the

miniscale. Ideally, it should be sufficiently large so that ensemble averages and RVE aver-

ages are the same (i.e. allowing for a meaningful sampling of the microfields). On the other

hand, the RVE must be sufficiently small from a macroscopic view and for an analysis of

the microfields to be computationally feasible. These conditions may be symbolically writ-

ten as MICRO<<MINI<<MACRO ?, with the miniscale being some intermediate length

scale that is characteristic of the size of the volume elements used for averaging.

For a more thorough discussion of RVEs see ????.

2.2 Basic Micromechanical Strategies

Homogenization methods aim to find an RVE’s response to prescribed loads. In the case of

heat conduction the loads typically take the form of uniform far field temperature gradient

fields or flux fields. The homogenization procedures described in this section can all be

employed as micromechanically based constitutive material models at higher length scales,
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i.e. they can link the homogenized fluxes to the homogenized temperature gradients1.

Localization procedures are used for finding the local response of the phases for given

macroscopic loads. With the exception of bounding methods, all discussed micromechanical

strategies can be utilized as localization procedures as well.

In the following overview micromechanical homogenization techniques are categorized

into two main groups, models based on averaged microfields and models based on resolved

microfields.

This division is not strict as in this work a “hybrid” approach, i.e. combination of both

methods is used to advantage.

2.2.1 Models Based on Averaged Microfields

Methods based on averaged microfields describe the microgeometry of inhomogeneous ma-

terials on the basis of statistical information. These methods typically hinge upon idealized

ellipsoidal inclusion geometries and the underlying mathematics is tractable by means of

tensor analysis. Therefore these methods are sometimes referred to as ”analytical meth-

ods”, a term which is not necessarily applicable in the strict sense.

Mean Field Approaches

Mean Field Approaches (MFAs) in micromechanics aim to obtain the overall properties of

inhomogeneous materials, such as their overall conductivity and resistivity tensors, K
(∗)
ij

and R
(∗)
ij , respectively, in terms of appropriate phase properties. The descriptions being

based on phase averaged temperature gradient fields T̄
(r)
,i and phase averaged flux fields

q̄
(r)
i . Such descriptions use information on the microtopology, such as the inclusion shape

and orientation, and (to some extent) the statistics of the microgeometry. The localization

relations take the form

T̄
(r)
,i = D̄

(r)
ij T

(∗)
,j , (2.5)

q̄
(r)
i = F̄

(r)
ij q

(∗)
j , (2.6)

and the effective fields become

T
(∗)
,i =

∑

r

ξ(r) T̄
(r)
,i , (2.7)

1With the exception of bounding methods where two sets of homogenized properties are obtainable,

corresponding to an upper and lower bound.
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q
(∗)
i =

∑

r

ξ(r) q̄
(r)
i , (2.8)

where (r) stands for a phase of the composite and ξ(r) is its corresponding volume frac-

tion. Note that for MFAs the averaged phase concentration tensors D̄
(r)
ij and F̄

(r)
ij are not

functions of the spatial coordinates within the RVE (contrary to Eqs. (2.3) and (2.4)).

Mean field equations tend to be formulated in terms of the phase concentration tensors.

They have a clear physical background and an inherent capability for ”zooming in” on the

micro fields. MFAs have proven highly successful for describing the linear and nonlinear

thermomechanical behavior of inhomogeneous materials as well as any type of transport

problem obeying the Laplace equation (e.g. thermal and electrical conductivity, dielectric

and magnetic permeability).

From a practical point of view some important mean field approaches are Mori–Tanaka

methods ???, self–consistent schemes ??, and differential schemes ?? which provide estim-

ates for the overall behavior of inhomogeneous materials with different microstructures. In

Section 4.2 the Mori–Tanaka method is discussed in detail as it is used in a substantial

part of the present work.

Bounding Methods

If only limited information about the microgeometry of a composite is available, it is

good practice to find an interval to which the effective properties of the composite must

be limited based on energetical considerations. This interval is bounded by the upper

and lower bounds. The more information on the phase arrangement of the composite is

available, the tighter the bounds.

The results presented in this section apply to perfect thermal interfaces.

Wiener Bounds The simplest bounding expression is given by the Wiener bounds ?

which in their tensorial form read as

[

∑

r

ξ(r) R
(r)
ij

]−1

≤K
(∗)
ij ≤

∑

r

ξ(r) K
(r)
ij . (2.9)

The effective conductivity of a composite material must always lie in between the Wiener

bounds, independent of its microstructure. These bounds are universal and very simple but

they are usually too slack for practical use. The Wiener bounds have their equivalent in

elasticity with the Hill bounds ?. If the Poisson numbers of the constituents fulfil special
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conditions, the upper and lower Hill bound coincide with the Voigt bounds and Reuss

bounds, respectively.

Note that the upper Wiener bound is sharp for uniform temperature gradient fields and

the lower Wiener bound is sharp for uniform flux fields. Accordingly, the effective axial

conductivity of microgeometries of unidirectional, continuous fibers embedded in a matrix

material can be computed with the right hand side of Eq. (2.9). The Wiener bounds are

also strictly fulfilled for control volumes that are too small to be RVEs.

Hashin–Shtrikman Bounds The Hashin–Shtrikman bounds (HS bounds) apply to in-

homogeneous materials with statistically isotropic overall symmetry and are much tighter

than the Wiener bounds. Hashin and Shtrikman ? established variational theorems and

subsequently derived bounds on the effective magnetic permeability of macroscopically ho-

mogeneous and isotropic multiphase materials which can be utilized for heat conduction

as well. For a two phase heterogeneous material with isotropic phases (K (1) > K(2)) and

isotropic overall conductivity the HS lower bound is given by

K l.b.
HS = ξ(1)K(1) + ξ(2)K(2) −

ξ(1)ξ(2)[K(2) −K(1)]2

3K (2) − ξ(2)[K(2) −K(1)]
, (2.10)

and the HS upper bound is given by

Ku.b.
HS = ξ(1)K(1) + ξ(2)K(2) −

ξ(1)ξ(2)[K(2) −K(1)]2

3K(1) + ξ(1)[K(2) −K(1)]
. (2.11)

The effective conductivity of any macroscopically isotropic composite must satisfy

K l.b.
HS ≤K(∗) ≤Ku.b.

HS . (2.12)

If K(1) < K (2), Eqs. (2.10) and (2.11) still hold but with exchanged values of the upper

and lower bounds.

Composites with randomly oriented anisotropic inclusions exhibit macroscopically iso-

tropic effective conductivities and therefore satisfy Eq. (2.12). For anisotropic effective

conductivities the HS bounds do not apply. The formalism employed by Hashin and

Shtrikman is generalized to anisotropic composites by Kohn and Milton ? and Milton

?, where an extensive list of references is provided. For the case of oriented anisotropic

inclusions of arbitrary shape, Walpole ? derived bounds on the effective elastic moduli.

Eduljee and McCullough ? provide HS–type bounds on the effective elastic properties of

discontinuous fiber reinforced composites. Solutions for the elastic case can immediately

be transformed and applied to heat conduction problems.
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Improved Bounds and Bounds for Imperfectly Bonded Phases Tighter bounds

can be obtained when more detailed information on the microstructure than phase volume

fractions and overall symmetries are considered, such as statistical information in the form

of n–point correlation functions on the phase arrangement. Details relating to spherical

inclusion geometries can be found in ???.

The bounding methods presented up to this section apply for perfect interfaces only.

For the case of imperfectly bonded constituents Lipton and Vernescu ? derived lower

bounds in terms of the interfacial surface area, constituents’ volume fractions, constituents’

conductivities, and the interfacial thermal properties.

2.2.2 Models Based on Resolved Microfields

Another group of strategies employs simplified microgeometries for which the microfields

are resolved to a high degree at the cost of restrictions to the generality of the micro-

structure. Appropriately reconstructed microstructures can be viewed as realizations of

the underlying phase arrangement statistics. Accordingly, results from sets of simulations

of different model geometries may be evaluated in terms of ensemble averages. For al-

gorithms reconstructing matrix–inclusion microgeometries to approximate predefined stat-

istical descriptors see e.g. ?.

Typical applications of models based on resolved microstructures comprise non–linear ma-

terial behavior, non–ellipsoidal inclusion shapes, and detailed investigations of inclusion–

inclusion interaction effects.

Models based on resolved microgeometries typically employ standard numerical engineering

methods for resolving the microfields such as the Finite Difference Method, the Boundary

Element Method, and the Finite Element Method.

Periodic Microfield Approach

Periodic microfield approaches aim at describing the macroscale and microscale behavior of

heterogeneous media by investigating model composites with periodic phase arrangements.

The corresponding periodic microfields are typically obtained by analyzing a unit cell

by analytical or numerical methods. Together with the Mori–Tanaka method periodic

microfield approaches form the backbone of computational tools employed in this work

and a detailed discussion is given in Section 4.3.
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Windowing Methods

Windowing methods are based on placing test windows at random positions in an in-

homogeneous material and subjecting them to homogeneous temperature gradient and

flux boundary conditions, respectively. Provided sufficiently large windows are chosen,

predictions of this type give rise to lower and upper estimates, respectively ?. Ensemble

averages of such estimates in turn provide upper and lower bounds on the overall effective

conductivity of the material. While for small window sizes boundary perturbations may

give rise to slack bounds, for sufficiently large window sizes (i.e. RVEs) the bounds coincide.

Effects of boundary conditions for various two–dimensional arrangements in the context of

heat conduction are studied by Jian et al. ?.

Embedding Methods

The real composite is approximated by a model consisting of a core containing a discrete

phase arrangement that is surrounded by an outer region with smeared–out material prop-

erties to which the boundary conditions and loads are applied. The material properties of

the outer region may be assigned a priori, they can be determined self–consistently, or the

outer region is modelled as a heterogeneous material with a very coarse phase arrangement

to reduce computational cost.

Embedding methods are especially useful for studying regions where homogenization con-

ditions are not met, e.g. due to high macroscopic gradients.



Chapter 3

The investigated MMC system:

Carbon–Copper Composites

Because most investigations in the present study relate to hot pressed short fiber carbon–

copper composites a short overview of several aspects of this composite material is given

in this chapter.

3.1 Production Routes

Bundles of continuous carbon fibers are chopped to lengths ranging from 400 µm to 700

µm. Subsequently the fibers are desized, i.e. they are subjected to heat treatment at

temperatures around 300◦C–400◦C which removes/burns the resin binders that were added

on the fibers during production. Due to the poor wettability of carbon by copper the

carbon fibers must be precoated before hot pressing. Two different coating technologies

of practical importance are considered, an electrochemical coating process and sputter

deposition. Both technologies influence the fiber–matrix adhesion and thermal interface

properties significantly ??. Coated fibers (and copper powder) are mixed in order to ensure

a homogeneous distribution, and are then consolidated and evacuated. Finally, a defined

hot pressing sequence follows.

Electrochemical Fiber Coatings Carbon fibers are electrochemically precoated with

copper, the thickness reaching up to an equivalent of 50% copper and more, ξ(Cu) = 0.5. As

the copper–coatings form the entire matrix after hot pressing, no additional copper powder

12
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Figure 3.1: Copper coatings applied electrochemically suffer from weak adhesion with the
carbon fibers. Fracture surfaces typically show pulled out fibers (right). ?

is required. The coated fibers are consolidated and then the precompacted composite is

hot pressed, for details see ??. One disadvantage of this production route is the relatively

weak adhesion between the copper matrix and the fiber (Fig. 3.1).

Sputter Deposition If copper is deposited on the fiber via sputter deposition ?, the

fiber–matrix adhesion can be improved by a factor of up to 10 in terms of pull–off tests

when compared to coatings deposited electrochemically ?, with a concomitant improvement

of the thermal interfacial conductances. The sputter deposition process also allows for

depositing adhesion promoters such as Cr, Ti, and Mo in thin layers of 1 nm to 5 nm

thickness 1. During sputter deposition the fibers are kept in a rotating cage in order to

avoid shadowing and to obtain uniform coatings. As the thickness of the sputtered copper

layer is less than 1 µm, copper powder must be added for the copper matrix to be free of

pores after hot pressing.

1The tradeoff for improved interface properties due to adhesion promoters is a possible reduction of

matrix conductivity.
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Figure 3.2: Two sets of corresponding metallographical sections of carbon–copper com-
posites with differently sized aggregates. Sections normal to the direction of compression
(left) and sections parallel to the direction of compression (right). ?

3.2 Fiber Arrangements, Aggregates, Aspect Ratio

Distributions

Due to the unidirectional compression mode the fibers show planar random orientation

distributions with little out–of–plane deviation (Fig. 3.2). As a consequence transversally

isotropic material symmetries of the composite result.

The investigated composites have fiber volume fractions of up to 50%. Having in mind

that the precoated fibers have an aspect ratio of around 40–70 one must realize that

tightly packed arrangements of planar randomly distributed fibers cannot exist. Two main

mechanisms can be elaborated which govern the emergence of the microstructures of the

composites.

The first mechanism is that fibers tend to align in course of compression, forming aggregates
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Figure 3.3: Fiber length distributions of electrochemically coated fibers and a hot pressed
carbon pitch fiber–copper composite with a fiber volume fraction of 39%. The average
fiber length before hot pressing is 600 µm, after hot pressing it is 67 µm ?.

? of locally aligned fibers of very high local fiber volume fractions. Figure 3.2 shows

the metallographical sections of two Cu–C composites. The sections in the upper row

show homogeneously distributed fibers as desired, even though some tendencies to form

aggregates can be spotted. For the composite depicted in the bottom row of Fig. 3.2 large

aggregates can be observed, which may lead to poor effective conductivities.

The second mechanism is that fibers break in the course of compression. Multi–modal

fiber lengths allow for much higher volume fractions than can be attained with fibers of

fixed size. Fibers of small aspect ratio are able to squeeze in and fill matrix “pockets”.

In Fig. 3.3 the aspect ratio distributions of the fibers before hot pressing and after hot

pressing are shown. Buchgraber ? states that the fiber aspect ratio distribution in the

actual composite is independent of the aspect ratio distribution of the chopped fibers.

Note that the investigated hot pressed carbon–copper composite shows inclusion–matrix

topology, i.e. fibers do not touch each other due to the copper coatings.
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3.3 Material Properties

All material data is given with respect to room temperature. No temperature dependence

of the conductivities and interfacial resistances is taken into account.

3.3.1 The Carbon Fibers

The numerical investigations relate to pitch–based carbon fibers which exhibit excellent

axial thermal conductivities (up to 1100 W/mK) and low CTEs. From this point of view

these fibers are ideal for heat sink applications. Their main disadvantage is the high cost

of production due to the high temperatures needed for graphitization (3000◦C).

The reason for the high thermal conductivities in fiber direction of pitch fibers is the

ordered structure of graphite. A well defined hexagonal network is created during melt

spinning as the graphite orients under tension and is further refined during carbonization

and graphitization ?. The highly ordered graphite forms planar networks which are stacked

on top of each other (Fig. 3.4, left). These planes are wrinkled and oriented parallel to

the fiber axis forming different microstructures such as radial or onion layer arrangements

(Fig. 3.4, right) which influence the transversal conductivity of the fibers. According to

Klett et al. ? the transversal conductivity of fibers with onion–like layer arrangement is

smaller than that of fibers with radially arranged layers.

The conductivity in the transverse direction of pitch carbon fibers is usually much lower

than the axial conductivity. Reported data for the transverse conductivities range from

1/100–1/10 of the axial conductivity.

Two sets of transversally isotropic material data for the carbon fibers are employed as

reference data for the present study (Table 3.1).

Table 3.1: Heat conduction properties of the carbon pitch fibers at room temperature

(transversal isotropic data).

T K
(C)
11 K

(C)
22 =K

(C)
33

[◦C] [W/mK] [W/mK]

20 1000 10

20 1000 100
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Figure 3.4: Densely packed graphite layers (left). Different morphologies of carbon pitch
fibers. From the top left, clockwise: radial, random, quasi–onion–skin, onion ? (right).

3.3.2 The Copper Matrix

Copper is well suited for heat sink applications due to its high conductivity. A few aspects

of this metal are discussed with respect to its application in MMCs in general and carbon

reinforcements in particular. For more details and extensive lists of references see ?.

Copper is a rather noble metal and it does not suffer from corrosion which plagues alu-

minum. Another advantage of copper over aluminum (and magnesium) in MMC applica-

tions is its non–reactivity with carbon, i.e. possible composite microstructural degradation

by interfacial reactions (aluminum carbide in the case of Al/C) is prevented. However, the

wetting of liquid metals on carbon substrates is typically poor ? and considerable effort is

required for a good interfacial bonding between carbon fibers and copper (see Production

Routes, Section 3.1).

Due to the relatively high melting point of copper (1083◦C) the fabrication of copper mat-

rix composites is commonly done by powder metallurgy.

Compared to other metals, pure copper has a very high conductivity of around 400 W/mK.

However, the conductivity of copper is significantly reduced by impurities such as oxygen

and other contaminants ?. Almost all numerical investigations in the present work are

based on a matrix conductivity of 360 W/mK (Table 3.2). Supplementary studies are

carried out where variations of the matrix conductivity and its influence on the effective

overall conductivity are investigated (see Section 8.3 ).
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Table 3.2: Heat conduction properties of copper at room temperature (isotropic data).

T K(Cu)

[◦C] [W/mK]

20 360

3.4 Interfacial Thermal Barriers

The presence of interfacial thermal resistances can severely reduce the effective heat flow

passing through the interface. In the context of heat sink materials this mechanism takes

effect on a microscopic level, as the heat interchange between matrix and fibers is impeded

and full advantage cannot be taken of high fiber conductivities. On a macroscopic level,

the heat transfer between components is reduced too, by these effects, which, however is

not covered in the present work.

An interfacial thermal resistance is characterized by the skin constant or interface para-

meter β which is given in the units of W/m2K. One contribution can be thought of as a

thermal contact resistance βc due to poor mechanical and chemical bonding, due to the

presence of impurities at the interface, or due to debonded regions. But even if materials

with different conduction mechanisms are in perfect mechanical contact, some scattering of

phonons, which are the principal carriers of heat, takes place and thus results in a thermal

interface barrier ?. The latter contribution is referred to as a thermal boundary resistance

βb, also known as Kapitza resistance. In the present work the interface parameter, β,

refers to the combined effects of both thermal contact resistance and thermal boundary

resistances, i.e. β = βc + βb. In the literature the thermal interface resistance is referred

to as LC type interface (low conductivity) ?. It is beyond the scope of this work to detail

the physical background of thermal resistances. For more details and an extensive list of

references the reader is referred to Swartz and Pohl ?. The mathematical implementation

and description of interfacial thermal resistances is deferred to subsequent chapters.

3.4.1 The Carbon–Copper Interface

Copper and carbon are very different with respect to their heat conduction mechanisms.

In copper heat is transported by electrons, while in carbon in the form of graphite, the

main conduction mechanism are lattice vibrations (phonons) with conduction by electrons
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Table 3.3: Measured interfacial resistances for electrochemically deposited copper coatings,

βec, and sputtered copper with an Ti adhesion promoter, βsp ??.

T βec βsp

[◦C] [W/m2K] [W/m2K]

20 0.13 ×106 1.33 ×106

playing a secondary role 2.

A photothermal method ? was employed by Neubauer et al. ? to estimate the thermal

contact resistance between carbon and copper. The actual measurements were carried out

on flat, copper coated carbon substrates. Amorphous, isotropic glassy carbon was chosen

due to its smooth surface in order to decrease surface roughness effects. In Table 3.3 the

results are listed for electrochemically deposited copper coatings, βec, as well as sputtered

copper coatings, that use a thin Ti layer as an adhesion promoter, βsp ??.

Note that the measured thermal resistances apply to amorphous carbon, and not ne-

cessarily to pitch carbon fibers.

Due to different morphologies of the end faces and the cylindrical surfaces (side faces) of

carbon fibers there may be different β–values there. Additionally fibers may show locally

differing values of β. Furthermore, variations may be caused by the breaking of carbon

fibers during hot pressing of the precoated fibers, which leaves coated side faces and non–

coated end faces, so that high risk and low risk regions of potential interface degradation

are present. At such regions the actual interfacial resistances differ from the measured

interfacial resistances (Table 3.3). It is one aim of the present work to determine effects

of different interfacial configurations on the effective conductivity of carbon–copper com-

posites. Accordingly, based on the assumption of either perfect interfaces or imperfect

interfaces, the latter being characterized by βsp and βec, in combination with a possible

failure of the end faces interface due to breaking of the carbon fibers, six combinations of

different interfacial resistances at fiber ends and side faces are obtained, which are listed

in Table 3.4 and each of which is considered in the present work.

2Carbon in the form of diamond has no free electrons and therefore is an electrical insulator. Heat is

transported entirely by phonons.
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Table 3.4: Investigated scenarios of non–ideal interfacial conduction.

case βend βside

[W/m2K] [W/m2K]

C1 ∞ ∞

C2 0 ∞

C3 0.13 × 106 0.13 × 106

C4 0 0.13 × 106

C5 1.33 × 106 1.33 × 106

C6 0 1.33 × 106



Chapter 4

Micromechanical Methods

In this chapter the Mori–Tanaka method and the unit cell approach, the two modeling tools

mainly utilized in this work, are discussed. Beforehand the basic laws and definitions of

heat conduction are recalled and the range of applicability of the presented homogenization

tools is discussed.

4.1 Heat Conduction in Homogeneous Solids

The mathematical description of heat flow at the continuum level is based on two funda-

mental sets of equations.

The first of them describes the conservation of energy. The enthalpy density balance

for a control volume dV of a homogeneous solid can be given as

γ cpT ,t = −qi,i + g . (4.1)

The left hand side of Eq. (4.1) is the rate of change of the energy density stored within the

control volume dV , with γ being the density and cp the specific heat, both of which are

assumed to be independent of time t and temperature T in the following. The right hand

side of Eq. (4.1) describes the rate of heat entering V through its bounding surfaces, qi,i,

and the rate of heat generation g in V . The divergence of the heat flux field, qi,i, indicates

wether heat flows into the volume, qi,i < 0, or out of the volume, qi,i > 0. The term g is

given in W/m3 and may be due to nuclear, electrical, chemical, or magnetic sources.

The second governing equation is an empirical constitutive law which relates the flux

21
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field qi in a homogeneous solid to the temperature gradient field T ,i according to

qi = −K ij T ,j , (4.2)

where K ij is the second rank symmetric conductivity tensor of a homogeneous solid. Note

that unless stated otherwise, summation is taken from 1 to 3 if a suffix occurs twice in

any term. A suffix following a comma denotes differentiation with respect to xi. Equation

(4.2) is known as Fourier’s law of heat conduction (analogous to Fick’s law of diffusion).

Rearranging Eq. (4.2) gives

T ,i = −Rij qj , (4.3)

with Rij being the second rank, symmetric resistivity tensor of a homogeneous solid. The

conductivity tensor and resistivity tensor are each others’ inverses,

Kik Rkj = δij , (4.4)

where δij is the Kronecker Delta (δij = 0 for i 6= j and δij = 1 for i = j). Note that

in general for the tensor components K ij 6= 1/Rij holds. Note also that in the case of

anisotropic conductivities the flux and the gradient do not have the same direction in

general.

Substituting qi,i in Eq. (4.1) by Eq. (4.2) yields

γ cpT ,t =
[

Kij T ,j

]

,i
+ g , (4.5)

the differential equation of heat conduction for a stationary, homogeneous solid with heat

generation within the solid.

From Eq. (4.5) a few special cases can be derived. In the absence of heat sources Eq. (4.5)

reduces to

T ,t =
[

αij T ,j

]

,i
, (4.6)

where αij is the thermal diffusivity tensor of the homogeneous solid which is defined as

αij =Kij/(γ cp). Note that in the case of uniform conductivities1 Eq. (4.7) reduces to the

Fourier equation,

T ,t = αij

[

T ,j

]

,i
. (4.7)

For steady state conditions the time dependent term vanishes and two important cases

1A uniform conductivity implies Kij 6= Kij(~x) and Kij 6= Kij(T ).



CHAPTER 4. MICROMECHANICAL METHODS 23

can be obtained from Eq. (4.5), again assuming uniform conductivities. Allowing heat

generation within the homogeneous solid yields

Kij

[

T ,j

]

,i
+ g = 0 , (4.8)

which is Poisson’s equation. Assuming that there is no heat generation, g = 0, the Laplace

equation is obtained,
[

T ,i

]

,i
= 0 , (4.9)

which is equivalent to qi,i = 0.

4.1.1 Applicability of the Utilized Methods

The micromechanical methods as employed in this work are used under the assumption

that the Laplace equation is satisfied in each constituent of the investigated heterogen-

eous medium, implying steady state conditions, no source term, and locally uniform phase

conductivities 2. For every point ~x of the investigated heterogeneous material the equations

qi,i(~x) = 0 and qi(~x) = −K ij(~x) T ,j(~x) (4.10)

hold, governing the temperature field T (~x). Under these premises within the framework of

the presented methods the fluctuating conductivity tensors K ij(~x) and resistivity tensors

Rij(~x) of a composite material can be replaced by position independent, energetically equi-

valent effective conductivities K
(∗)
ij and resistivities R

(∗)
ij , respectively. The effective prop-

erties link the homogenized temperature gradient field, T
(∗)
,i , and flux field, q

(∗)
i , Eqs. (2.1)

and (2.2), respectively, according to Fourier’s law (Eqs. (4.2) and (4.3)),

q
(∗)
i = −K

(∗)
ij T

(∗)
,j and T

(∗)
,i = −R

(∗)
ij q

(∗)
j . (4.11)

The homogenized temperature field, T (∗), satisfies Laplace equation (Eq. (4.9)).

4.1.2 Some Remarks

For steady state conditions and the absence of a source term but temperature dependent

conductivities Eq. (4.5) can be rewritten as
[

Kij T ,j

]

,i
=Kij,i T ,j +Kij

[

T ,j

]

,i
= 0 , (4.12)

2Note that the periodic microfield approach can account for the presence of source terms as well as

inhomogeneous phase conductivities, provided the distribution of the latter complies to the periodicity of

the geometry and is temperature independent. Such conditions, however, are not accounted for in the

present work.
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Figure 4.1: The effective conductivity of a composite, K (∗)(T ), consisting of constituents

with temperature dependent conductivities (K (m)(T ) and K(i)(T )) can be estimated by a
e.g. piecewise linear approximations of the conductivities.

which shows that temperature dependencies of the conductivity automatically introduce

a position dependence via Eq. (4.12), which can have restrictions on the applicability of

homogenization schemes as discussed in Section 2.2.

While temperature dependent conductivities can be accounted for without difficulties

within the framework of embedding methods they cannot be captured exactly with the

micromechanical approaches employed in this work, i.e. the Mori–Tanaka approach and

the periodic microfield approach (compare also Section 4.3). However, it is good practice

to evaluate effective conductivities for appropriate discrete temperatures based on fixed

values of the constituents’ conductivities that conform to these temperatures (Fig. 4.1).

One must be aware that such a procedure is an approximation. The RVE must satisfy

the MICRO<<MINI<<MACRO principle, but its size must be such that accumulated

variations of the conductivity due to macroscopic temperature gradients are small enough

on the miniscale to be reasonably approximated as constant. Estimates of temperature

dependent conductivities can then be used for steady state thermal analyses.
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In the same way homogenized temperature dependent diffusivities, α
(∗)
ij , can be used

for transient thermal analyses. In the context of microelectronic packaging applications

transient analyses are necessary to assess the impact of peak loads or possible breakdowns

of cooling. Again, the suggested homogenization approach is only applicable, if the micro-

scale is sufficiently smaller than the miniscale being modeled3.

It shall further be pointed out that a piecewise linear approximation of the effective con-

ductivity or diffusivity represents another source of inaccuracy. The latter, however, can

be tuned as small as desired by increasing the number of discrete temperatures for which

an estimate of the effective conductivity is obtained. Piecewise linear approximations and

polynomial fits are typical standard applications for the FEM.

The outlined approach is related to some descriptions of the thermo–mechanical beha-

vior of functionally graded materials (FGMs) which use layer–type approximations, with

each layer being treated as a composite on its own ?.

3Transient investigations of unidirectionally reinforced composites in fiber direction could potentially

yield unprecise estimates when homogenized behavior is used.
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4.2 The Mori–Tanaka–Method

The Mori–Tanaka approximation is based on Eshelby’s equivalent inclusion formalism ?

and dates back to the works of Brown and Stobbs ? and Mori and Tanaka ?. Since then

it has been used to advantage for solving various thermo–mechanical problems related to

composite material.

In this work the Mori–Tanaka interpretation as introduced by Benveniste ? is used. Ben-

venistes “direct” approach was originally proposed in the context of elasticity but is ap-

plicable to the case of conductivity ?? as well.

4.2.1 Approach and Assumptions

A Mori–Tanaka formalism for perfectly bonded constituents is derived. For the case of

imperfect thermal interfaces a replacement operation must be invoked first, see Chapter 5,

which allows to replace imperfectly bonded inclusions by perfectly bonded “replacement

inclusions” of lower conductivity. The following derivation is based on averaged dilute

concentration tensors. Accordingly, a procedure that allows to derive dilute concentration

tensors for inclusions of arbitrary shapes will be detailed in Chapter 5. Note that the

resulting formulas are not restricted to spheroidal inclusion geometries but apply to any

type of inclusion the averaged dilute concentration tensor of which is known.

The derived formulas apply to N +1–phase composite materials, only perfectly bonded

phases being considered. While the inclusion phases (r = 1, 2, ..., N) may be transversally

isotropic, the matrix phase (r = 0) is restricted to isotropic behavior. At this point the term

phase must be defined. In this work an inclusion phase comprises inclusions of identical

material properties and identical shape (i.e. identical dilute concentration tensors) but

different orientations (in ? the term “inclusion family” is used). The statistical description

of the orientation distribution of an inclusion phase is given by its orientation distribution

function (ODF), ρ(r). The volume fraction of the rth phase is ξ(r), the sum over all phases

equalling
N

∑

r=0

ξ(r) = 1 . (4.13)

Due to its dual structure the Mori–Tanaka method can be developed based on either

applied uniform temperature gradients T
(∗)
,i or uniform flux fields q

(∗)
i . Therefore separate

equations are derived and given in a two–column style – the left hand side relating to the

“temperature–gradient” domain yielding the effective conductivity and the right hand side
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Figure 4.2: a) Within the framework of mean field approaches the temperature gradi-
ents and flux fields of the phases are approximated to be constant. b) Dilutely dispersed

inclusions subjected to an effective matrix field, T̄
(m)
,i , which differs from T̄

(∗)
,i are modeled.

relating to the “flux” domain yielding the effective resistivity.

4.2.2 Effective Properties – Concentration Tensors

Mean Field Assumption

The Mori–Tanaka method hinges upon the mean field assumption. Within the framework

of mean–field approaches only the phase averaged flux and temperature gradient fields are

considered (Fig. 4.2a) in the case of heat conduction problems. Phase averaged gradient

fields and flux fields with respect to the global coordinate system can be defined by means

of orientational averaging as T̄
(r)
,i =

〈

6
T

(r)

,i

〉

and q̄
(r)
i =

〈

6
q
(r)

i

〉

, respectively. The angular

brackets designate orientational averaging, where the ODF is normalized to give
〈

ρ(r)
〉

= 1,

and the additional superscript 6 indicates that the tensors are given with respect to the
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global coordinate system (Appendix A). The ODF, ρ(r), must not be a smooth function.

In the case of discrete inclusion orientations the integral 〈·〉 degenerates to a sum over the

inclusion orientations. The corresponding ODF is then given by a set of Dirac–deltas.

The integral expression 〈·〉 actually involves two steps of averaging carried out on two

different levels. The phase averaged fields, T̄
(r)
,i and q̄

(r)
i , are obtained by orientational

averaging of single inclusion fields,
6
T

(r)

,i and
6
q
(r)

i , which in turn are constant only in special

cases and are approximated to be constant otherwise. Averaging of the dilute inclusion

fields is necessary, if the inclusion shape is non–ellipsoidal or if interfacial resistances are

present (compare chapter 5). The bars indicating the averaging process at the dilute

level are omitted in the following, so there is no confusion with the level of averaging.

Furthermore it must be noted that inclusion interaction effects and non–uniform matrix

fields cause fluctuations within the fields of individual inclusions. These effects and their

consideration are discussed in course of the derivation when appropriate.

From the definition of volume averaging one immediately obtains the following relations

between the effective fields of the composite and the phase averaged fields

T
(∗)
,i =

N
∑

r=0

ξ(r)T̄
(r)
,i q

(∗)
i =

N
∑

r=0

ξ(r)q̄
(r)
i (4.14)

= ξ(m)T̄
(m)
,i +

N
∑

r=1

ξ(r)T̄
(r)
,i = ξ(m)q̄

(m)
i +

N
∑

r=1

ξ(r)q̄
(r)
i (4.15)

adopting the notation (m) for the matrix phase (0). Note again that the averaged temper-

ature gradient and flux field are given with respect to the global coordinate system.

Fourier’s law is employed to recast Eqs. (4.14) and (4.15) into the following form

K
(∗)
ij T

(∗)
,j =

N
∑

r=0

ξ(r)

〈

6
K

(r)

ij
6
T

(r)

,j

〉

R
(∗)
ij q

(∗)
j =

N
∑

r=0

ξ(r)

〈

6
R

(r)

ij
6
q
(r)

j

〉

(4.16)

= ξ(m)K
(m)
ij T̄

(m)
,j +

N
∑

r=1

ξ(r)

〈

6
K

(r)

ij
6
T

(r)

,j

〉

= ξ(m)R
(m)
ij q̄

(m)
j +

N
∑

r=1

ξ(r)

〈

6
R

(r)

ij
6
q
(r)

j

〉

(4.17)

If the inclusion conductivities/resistivities are isotropic,
6
K

(r)

ij and
6
R

(r)

ij are independent

of the orientation and can be moved from in between the angular brackets, simplifying

Eqs. (4.16) and (4.17) considerably.

The local averaged temperature gradient and averaged flux of inclusions of a given

orientation and associated with the rth phase can be formally linked to the corresponding
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effective field by concentration tensors,

6
T

(r)

,i =
6
D

(r)

ij T
(∗)
,j

6
q
(r)

i =
6
F

(r)

ij q
(∗)
j (4.18)

By means of orientational averaging phase averaged temperature gradient concentration

tensors, D̄
(r)
ij =

〈

6
D

(r)

ij

〉

, and flux concentration tensors, F̄
(r)
ij =

〈

6
F

(r)

ij

〉

, are introduced

which are defined such that they relate the phase averaged fields to macroscopic fields

giving

T̄
(r)
,i = D̄

(r)
ij T

(∗)
,j q̄

(r)
i = F̄

(r)
ij q

(∗)
j (4.19)

with r = 0, 1, ..., N . The concentration tensors must fulfill certain conditions, see e.g. ??

where a number of identities for the elastic case are listed. Volume weighted sums of the

concentration tensors must equal the unit tensor, a fact used to advantage in the following

derivations,

N
∑

r=0

ξ(r)D̄
(r)
ij = δij

N
∑

r=0

ξ(r)F̄
(r)
ij = δij (4.20)

ξ(m)D̄
(m)
ij +

N
∑

r=1

ξ(r)D̄
(r)
ij = δij ξ(m)F̄

(m)
ij +

N
∑

r=1

ξ(r)F̄
(r)
ij = δij (4.21)

Using the identity in Eq. (4.21) together with the definition of the concentration tensors

as given in Eq. (4.19) allows to rearrange Eqs. (4.16) and (4.17) so that the effective

conductivity tensor and resistivity tensor is given in the following forms,

K
(∗)
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〈

6
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ik
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(4.22)

= ξ(m)K
(m)
ik D̄

(m)
kj +
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∑
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〈
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ik
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D

(r)

kj

〉

= ξ(m)R
(m)
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ik
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(4.23)

=K
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N
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〉
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kj
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(4.24)

with Eq. (4.21) being used for transforming Eq. (4.23) to Eq. (4.24).

At this stage it is convenient to introduce “orientationally averaged conductivities”, K̂
(r)

ij ,

and “orientationally averaged resistivities”, R̂
(r)

ij , such that

K̂
(r)

ik D̄
(r)
kj =

〈

6
K

(r)

ik
6
D

(r)

kj

〉

R̂
(r)

ik F̄
(r)
kj =

〈

6
R

(r)

ik
6
F

(r)

kj

〉

(4.25)
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is fulfilled. For the case of isotropic conductive properties obviously K̂
(r)

ij = K
(r)
ij and

R̂
(r)

ij = R
(r)
ij holds, because in that case the conductivity tensor and the resistivity tensor

are orientation independent and can be moved out of the integrals on the right hand

side of Eq. (4.25). For anisotropic materials it can be shown that K̂
(r)

ij and R̂
(r)

ij are each

others inverses, i.e. K̂
(r)

ik R̂
(r)

kj = δij. As can be seen from Eq. (4.25) the orientationally

averaged material properties that are assigned to each inclusion family are chosen such

that Eqs. (4.22)–(4.24) are considerably simplified and they formally coincide with the

equations as given in ? for isotropic constituents,

K
(∗)
ij =

N
∑

r=0

ξ(r)K̂
(r)

ik D̄
(r)
kj R

(∗)
ij =

N
∑

r=0

ξ(r)R̂
(r)

ik F̄
(r)
kj (4.26)

Equations (4.22)–(4.24) have been derived by consistently applying the mean field idea

and by introducing averaged phase concentration tensors (Eq. (4.19)). They allow for

calculating the effective conductivities and resistivities of a composite if the corresponding

concentration tensors are known. It is worth noting that if imperfect thermal interfaces

are not treated on the dilute level the right hand sides of Eqs. (4.14) and (4.15) need to

be extended ??.

Taking advantage of the identity in Eq. (4.20) the left hand side of Eqs. (4.22) can be

multiplied with the volume weighted sum of the concentration tensors, which allows to

recast Eqs. (4.22)–(4.24) into an equivalent but more symmetric form

N
∑

r=0

ξ(r)

〈(

K
(∗)
ik −

6
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(r)

ik

)

6
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kj

〉

= 0
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(∗)
ik −

6
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ik

)

6
F

(r)

kj

〉

= 0 (4.27)

Combining Eq. (4.19) and Fourier’s law allows to link the temperature gradient and

flux concentration tensors to the effective properties according to

D̄
(m)
ij =R

(m)
ik F̄

(m)
kl K

(∗)
lj F̄

(m)
ij =K

(m)
ik D̄

(m)
kl R

(∗)
lj (4.28)
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〈
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(r)

ik
6
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(r)

kl

〉

K
(∗)
lj F̄

(r)
ij =

〈

6
K

(r)

ik
6
D

(r)

kl

〉

R
(∗)
lj (4.29)

These expressions hold for any type of mean field based concentration tensors. Equation

(4.29) can be used to determine averaged dilute flux concentration tensors based on dilute

averaged temperature gradient concentration tensors by replacing R̄
(∗)
ij with R

(m)
ij .

The problem of finding effective properties has been shifted to that of finding appro-

priate concentration tensors.
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Idea of the Effective Field

For inclusion volume fractions of less than a few percent where neighboring inclusions

do not “feel each other” the concentration tensors may be obtained from single inclusion

problems, see Chapter 5. Corresponding to each phase a representative solitary inclusion

embedded in a matrix material of infinite extent is considered and its dilute temperature

gradient concentration tensor, 0D
(i)
ij , or dilute flux concentration tensor, 0F

(i)
ij , are evaluated.

The superscript 0 denotes the dilute volume fractions. Note that the dilute concentration

tensors refer to inclusion fields which are inhomogeneous in general4. Bars indicating

the volume averaging process of the inclusion temperature gradient field and flux field on

the dilute level are omitted in this chapter in order to avoid confusion with orientational

averaged quantities.

For volume fractions of more than a few percent inclusion interaction must explicitly be

accounted for. One way for achieving this consists of approximating the temperature

gradient or flux field acting on an inclusion by an appropriate averaged matrix temperature

gradient or flux field. This may be viewed as a perturbation field superimposed on the

applied far field temperature gradient or flux. In the context of elasticity this idea of

combining the concept of an average matrix stress with Eshelby–type equivalent inclusion

approaches goes back to Brown and Stobbs ? and Mori and Tanaka ?.

Based on ? the determination of the concentration tensors is based on the solution

of an auxiliary problem. The core assumption is that the inclusions are not subjected to

the applied external field but to an appropriate matrix field, the effective field, which is

initially unknown. The effective matrix field differs from that of the composite due to the

presence of all inclusions (Fig. 4.2b). This core assumption can be written as

T̄
(r)
,i = 0D̄

(r)
ij T̄

(m)
,j q̄

(r)
i = 0F̄

(r)
ij q̄

(m)
j (4.30)

with r = 1, 2, ..., N for each inclusion phase. In Eq. (4.30) averaged dilute temperature

gradient concentration tensors 0D̄
(r)
ij and the dilute flux concentration tensors 0F̄

(r)
ij have

been introduced which are evaluated by means of orientational averaging as

0D̄
(r)
ij =

〈

6 0D
(r)

ij

〉

0F̄
(r)
ij =

〈

6 0F
(r)

ij

〉

(4.31)

for each inclusion phase. Naturally the dilute matrix concentration tensors 0D
(m)
ij and

0F
(m)
ij approach the unit tensor which can also be seen directly from Eq. (4.21) with ξ(r) → 0

4Only for the special case of perfectly bonded dilute ellipsoids will the inclusion fields be uniform for

uniform far field gradients, see Chapter 5
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(r = 1, 2, ..., N) and D̄
(m)
ij and F̄

(m)
ij degenerating to 0D

(m)
ij = δij and 0F

(m)
ij = δij, respectively,

due to the absence of inclusions.

The phase averaged inclusion fields in Eq. (4.15) can be replaced by the relations given in

Eq. (4.30), yielding

T
(∗)
,i = ξ(m) T̄

(m)
,i +

N
∑
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ξ(r) 0D̄
(r)
ij T̄
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ξ(r) 0F
(r)
ij q̄

(m)
j (4.32)

=

[

ξ(m) δij +

N
∑
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ξ(r) 0D̄
(r)
ij

]

T̄
(m)
,j =

[

ξ(m) δij +

N
∑

r=1

ξ(r) 0F̄
(r)
ij

]

q̄
(m)
j (4.33)

From comparing Eq. (4.33) with the definition of the concentration tensors Eq. (4.19) one

immediately obtains the Mori–Tanaka concentration tensors as

MTD̄
(m)
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[

ξ(m)δij +
N

∑

r=1

ξ(r) 0D̄
(r)
ij

]−1

MTF̄
(m)

ij =

[

ξ(m)δij +
N

∑

r=1

ξ(r) 0F̄
(r)
ij

]−1

(4.34)

for the matrix phase, by using Eq. (4.30) and Eq. (4.34) the concentration tensors for the

rth inclusion phase then follows as

MTD̄
(r)

ij = 0D̄
(r)
ik

MTD̄
(m)

kj
MTF̄

(r)

ij = 0F̄
(r)
ik

MTF̄
(m)

kj (4.35)

Note that in case of isotropic inclusion materials the effective conductivity and resistivity

can be readily determined with Eqs. (4.22)–(4.24) and the phase averaged concentration

tensors (Eqs. (4.34)–(4.35)). In the case of inclusion families with nonaligned inclusions

the only integral remaining to be solved is the one given in Eq. (4.31). Inclusion families

of aligned inclusions do not require orientational averaging, the respective concentration

tensors must only be transformed to the global coordinate system. In case of orthotropic

phases, however, either K̂
(r)

ij and R̂
(r)

ij need to be evaluated or the concentration tensor for

a given orientation with respect to the global coordinate system

6 MTD
(r)

ij =
6 0D

(r)

ik
MTD̄

(m)

kj
6 MTF

(r)

ij =
6 0F

(r)

ik
MTF̄

(m)

kj (4.36)

must be evaluated for each possible orientation as demanded in Eqs. (4.22)–(4.24).

Finally, it can be proven that within the presented framework the effective conductivity

and resistivity are the inverses of each other. First Eq. (4.23) is multiplied with inverses

of MTD̄
(m)
ij and MTF̄

(m)
ij , respectively. For the left hand sides the Mori–Tanaka matrix

concentration tensors are expressed by Eq. (4.34). For the right hand sides, Eq. (4.35) is
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used to introduce dilute inclusion phase concentration tensors, 0D̄
(r)
ij and 0F̄

(r)
ij . Following

relationships are then obtained
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Now Eq. (4.29) is applied for the dilute case, i.e. R̄
(∗)
ij → Rm

ij , and substituted for 0F
(r)
ij in

Eq. (4.38). The isotropic matrix resistivity can be moved out of the integral giving an

equivalent to Eq. (4.38) in the following form
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and multiplying Eq. (4.39) with the matrix conductivity finally yields

R
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(4.40)

By comparing Eq. (4.40) with Eq. (4.37) one immediately realizes that the effective con-

ductivity and resistivity are indeed each others inverse.

4.2.3 Some Remarks

Localization

Phase averaged concentration tensors as given in Eqs. (4.34) and (4.35) can be used to

advantage for estimating the effective conductivity and resistivity of composites with non-

aligned inclusions (Eqs. (4.22–4.24)). From Eq. (4.19) the capability of “zooming in” on

the phase averaged fields is evident, allowing to determine the averaged local response of

the phases due to some known macroscopic thermal load. For composites with inclusion

families conforming to some non–aligned ODF the phase averaged values, however, are of

limited practical value for assessing the local fields of single individual inclusions. More

insight can be obtained by evaluating the temperature gradient and flux field of a given

inclusion by using an equivalent to Eq. (4.30) which can be written in the form

6
T

(r)

,i =
6 0D

(r)

ij T̄
(m)
,j

6
q
(r)

i =
6 0F

(r)

ij q̄
(m)
j (4.41)
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Note again that dilute concentration tensors are determined from single inclusion problems

and hence they might represent averaged quantities.

Equation (4.41) also provides the capability for estimating the temperature gradients and

flux fields of inclusions that do not conform to the shape, orientation or conductive prop-

erties of any of the inclusion families which “build up” the averaged matrix fields due to

applied thermal loads. Such inclusions can be thought of as “measuring instruments” and

can be used to estimate the micro–field response of an inclusion for a given matrix field as

a function of the shape, material properties and orientation. Due to their extremely small

volume fractions (“ghost inclusions”) they do not contribute to the average matrix field.

All that has to be done for evaluating their microfield response is to insert appropriate

dilute concentration tensors 0D
(r) 6

ij and 0F
(r) 6

ij into Eq. (4.41) once the averaged matrix

temperature gradient field, T̄
(m)
,i , and averaged matrix flux field, q̄

(m)
i , have been evaluated.

The concept of ghost inclusions can also be utilized in the case of elasticity ?. The result-

ing stress and strain fields in individual inclusions due to applied thermomechanical loads

are of great practical value for assessing the load states of reinforcements with respect to

fiber–fracture.

Limitations

Diagonal Symmetry It was shown by Benveniste, Dvorak and Chen ? that the Mori–

Tanaka method yields unsymmetric elasticity tensors for many multiphase systems in-

volving aligned inclusions of different shape and material properties. The derived Mori–

Tanaka multiphase formulation for heat conduction as developed above, however, will al-

ways give symmetric effective conductivities and resistivities for aligned inclusions as only

diagonal tensors are involved.

However, unsymmetric effective conductivities/resistivities are obtained for composites

consisting of three or more phases, if at least two differently oriented inclusion phases

are present which have different dilute concentration tensors 0D̄
(r)
ij

5.

Microgeometry For all volume fractions the Mori–Tanaka theory can be related to a

distinct matrix–inclusion topology which may be viewed as a generalization of the micro–

geometry derived from Hashin’s composite sphere assemblage ? and composite cylinder

assemblage ? as shown by Ponte Castañeda and Willis ?. In the case of “standard” Mori–

5Note that both inclusion concentration tensors must be “transversally isotropic”, i.e. in case of spherical

inclusions, the respective conductivity must be transversally isotropic.
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Figure 4.3: Ellipsoidal inclusions in ellipsoidally distributed spatial arrangement (a2/a1 =
2) as described by standard Mori–Tanaka–type approaches; after ?, figure modified from
?.

Tanaka methods which describe aligned inclusions, space is tightly packed with composite

ellipsoids of constant aspect ratio but different size. The core of these ellipsoids consists

of the inclusion material on which a layer of matrix material is placed to meet the volume

fraction requirement (Fig. 4.3). The two ellipsoids which bound the matrix are aligned and

have the same aspect ratio. Note that for the case of nonaligned inclusions the generalized

Hashin–Shtrikman framework is violated by Mori–Tanaka estimates which then take on a

more approximative character ?. A microstructure based on randomly distributed inclu-

sions has recently been discussed by Hu and Weng ?.

As in other micromechanical methods there is no intrinsic length scale in Mori–Tanaka

methods, i.e. inclusion size effects can not be captured.

As each inclusion is completely surrounded by matrix material they cannot touch each

other. Therefore the model fails to predict the physical properties of a composite around

the percolation threshold inclusion volume fraction ??, where there exists a sudden change

in the physical properties of e.g. the electrical conductivity of a conductor–insulator com-

posite.

As is evident from the derivation of the concentration tensors inclusion interaction effects

are accounted for only via the effective field with each inclusion “feeling all other inclusions

in an averaged way”. Intra–inclusion fluctuations of the fields, by definition, cannot be

handled by MFAs.
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The Mori–Tanaka Method in Relation to other MFAs

Mori–Tanaka estimates for a composite containing spherical isotropic inclusions will always

coincide with the HS upper bound (Eqs. (2.11)) if the matrix is the most resistive phase

and with the HS lower bound (Eqs. (2.10)) if the matrix is the most conductive phase.

If the matrix is neither the most resistive nor the most conductive phase, Mori–Tanaka

conductivities with aligned spherical inclusions (not necessarily isotropic ) will always lie

within the HS bounds ?. It is also pointed out in ? that multiphase Mori–Tanaka estimates

of aligned thin discs and aligned circular continuous fibers coincide with the appropriate

HS bounds. Otherwise the effective conductivity will lie within the HS bounds.

Mori–Tanaka schemes are explicit schemes, i.e. in contrast to self consistent schemes

no iterations are necessary for obtaining estimates of the effective conductivities. Another

computational disadvantage of self consistent schemes compared to Mori–Tanaka schemes

are possibly anisotropic effective conductivities, which require special treatment of the di-

lute inclusion concentration tensors (see Withers ? and Gavazzi and Lagoudas ? for specific

analytical and general numerical solutions in the context of elasticity, respectively). As a

tradeoff for high computational cost compared to Mori–Tanaka estimates self consistent

schemes do not yield unsymmetric effective properties ?.

Further discussion of the Mori–Tanaka method can be found in ?? in the context of

elastic two–phase materials, fundamental observations can be immediately transferred to

the case of conductivity.

Methods Related to Mori–Tanaka Schemes

Analogous to Eshelby’s idea in elasticity an equivalent inclusion method for steady state

heat conduction was introduced by Hatta and Taya ?? for aligned fibers as well as misor-

iented short fiber composites. In analogy to Eshelby’s eigenstrains they introduced “eigen

thermal gradients” via uniform doublet distributions inside spheroidal inclusions. Inclu-

sion interaction is accounted for by means of an averaged disturbance of the temperature

gradient field, their assumptions being equivalent to those in ? in the context of elasticity.

Their equivalent inclusion approach also proved to be highly successful for describing the

effective conductivity of coated fiber composites ?.

The concept of introducing an average disturbance of the temperature gradient field is very
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much akin to the concept of “back–stresses”, which is applied to the computation of the

effective conductivity in ?.

Nomenclature

The equations derived in this section give a general framework for Mori–Tanaka methods

for perfectly bonded constituents. It is shown that imperfect thermal interfaces can be

accounted for by replacing single inclusions with interfacial thermal resistances with less

conductive but perfectly bonded replacement inclusions (see Chapter 5).

This procedure, which can be combined with Mori–Tanaka methods or other mean field

approaches, constitutes a major advance in the modeling of the thermophysical behavior

of composite materials.

In addition to the idea of merging inclusion conductivities and interfacial resistances into

reduced conductivities, the Mori–Tanaka theory is used in a more generalized sense in this

work from the viewpoint of ODFs and inclusion shapes, as well.

In the literature on the thermophysical and thermomechanical behavior of composite

materials the most frequent use of Mori–Tanaka methods have been studies of microgeo-

metries of aligned spheroidal inclusions as shown in Fig. 4.3. Such applications are referred

to as “standard MTM” in the following. There is also a considerable number of reports on

the use of Mori–Tanaka approaches for composites with nonaligned spheroidal reinforce-

ments, the orientations of which are described by ODFs, a number of schemes being used to

carry out the orientational averaging ?. Such extended Mori–Tanaka schemes are subject

to a number of limitations as discussed above. Both standard and extended Mori–Tanaka

methods use thermal Eshelby tensors and are denoted as E–MT in this work.

In the present work a hybrid approach is introduced that uses numerically evaluated

dilute temperature gradient concentration tensors, 0D
(i)
ij , and does not restrict the Mori–

Tanaka method to ellipsoidal inclusion shapes. Such descriptions are referred to as a hybrid

Mori–Tanaka method, H–MT, and are used with cylindrical fibers in Chapters 7 and 8.

In general ODFs, ρ(i) (see Appendix A), can be split in two groups. On the one hand

ρ(i) can relate to discrete fiber orientations (i.e. Dirac–deltas in the Ψ1–Ψ2–domain), and

on the other hand ρ(i) can be given by smooth functions in Ψ1 and Ψ2.

Multiple discrete fiber orientations (MT/m) are used in part of this work. Note, that for the

special case of aligned inclusions (MT/a) the corresponding ODF degenerates to a single

Dirac–delta. The development and implementation of multiple discrete fiber orientations
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Table 4.1: Nomenclature for the employed Mori–Tanaka methods.

ODF inclusion shape

cylindrical spheroidal

aligned inclusions H–MT/a E–MT/a

multiple discrete orientations H–MT/m E–MT/m

planar random H–MT/2Dr E–MT/2Dr

three dimensional random H–MT/3Dr E–MT/3Dr

allows for a direct comparison of Mori–Tanaka results and the predictions from multi–

inclusion unit cell studies, in which a finite number of inclusions are used to describe

periodic model composites. The main difference between unit cell models and such multiple

discrete extended Mori–Tanaka approaches (MT/m) is that the latter are not constrained

to periodic microgeometries but cannot handle fiber–fiber interaction effects as well as

intraphase fluctuations of the microfields in the inclusions and the matrix.

With respect to “smooth” ODFs, planar random fiber arrangements with no out–of–plane

deviation (MT/2Dr) and randomly oriented fibers (MT/3Dr) are mainly employed in this

work.
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4.3 Periodic Microfield Approach

In contrast to the Mori–Tanaka modeling approach discussed in the previous section where

homogenization and localization are based on phase averaged temperature gradient and

flux fields, one can employ simplified microgeometries for which the local microfields are

resolved to a high degree. Periodic microfield approaches describe the macro scale and

micro scale behavior of inhomogeneous materials by studying idealized periodic micro-

structures. These microstructures are partitioned into periodically repeating unit cells to

which the investigations are limited without loss of information or generality. Thus, the

volume modeled with an unit cell is an appropriate representative volume element of an

idealized composite microgeometry.

Unit cells have proven to be highly flexible numerical tools, but they are subject to some in-

trinsic limitations. Temperature dependent conductivities cannot realistically be modelled

as temperatures are accumulated from cell to cell, i.e. conduction properties of cells tiling

the computational space are different from the modeled unit cell6. Note that this type of

problem typically does not occur in the context of mechanics where material non–linearities

typically are described in terms of stresses and strains (which corresponds to heat fluxes

and temperature gradients) and not displacements (temperatures), the brackets showing

the thermal “counterparts”.

The literature on periodic mircrofield approaches is extensive but focuses mainly on

elasticity and plasticity problems. Rolfes and Hammerschmidt ? studied the transverse

conductivity of unidirectional continuous fiber reinforced plastic laminates. Islam and

Pramila ? investigated continuous fiber reinforced composites, where fibers with square

and circular cross–section in square arrangements were considered. The interfacial thermal

barrier was modeled as a layer of small (but finite) thickness and poor conductivity, i.e. by

introducing a third phase (“interphase”). The same modeling procedure of the imperfect

thermal interface was chosen in ?, for investigating the effective conductivity of particle

reinforced composites by means of two–dimensional finite element (FEM) models. Two–

dimensional problems of heat conduction in porous media (the voids being positioned

randomly) were studied by Cruz and Patera ?. Klett et al. ? studied cross sections of

randomly positioned continuous carbon fibers embedded in a carbon matrix, their model

incorporated different fiber morphologies (onion–, radial layer structure) and interfacial

debonding.

6Temperature dependent behavior of a composite may be approximated by a series of linear unit cell

investigations spanning a certain temperature range (see Section 4.1).
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4.3.1 Geometries, Mesh, and Application of Loads

In this work two dimensional and three dimensional model geometries are employed, the

unit cells being rectangles and cuboids, respectively. The orientation of the unit cell de-

termines a global Cartesian reference coordinate system. The dimensions of a unit cell

are L1 ×L2 ×L3 (Fig. 4.4). Fiber positions and orientations are generated with different

techniques, which are discussed together with the investigated microtopologies in the cor-

responding results sections.

The microfields of all investigated microgeometries are evaluated with the Finite Element

method ???. Due to its geometrical flexibility and its capability of implementing imper-

fect thermal contacts the FEM represents an efficient numerical engineering tool for the

purpose of unit cell analyses. The phase arrangements are meshed with standard con-

tinuum elements – six node triangular elements and ten node tetrahedral elements for two

dimensional and three dimensional unit cells, respectively. Element boundaries are posi-
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Figure 4.4: A cuboid unit cell with the dimensions Li and corresponding master nodes M i
containing a spheroidal and a cylindrical inclusion (dotted lines) with the characteristic
dimensions ai. The orientation of the unit cell determines a global Cartesian reference
coordinate system.



CHAPTER 4. MICROMECHANICAL METHODS 41

tioned at all constituent interfaces. The thermal interface is modelled with appropriate

contact/target surface elements, which are overlaid on the interfaces, allowing for non–

conformal meshes at the interfaces. The interface compatibility conditions (Eq. (5.20)) are

enforced by means of contact elements, which requires non linear FEM solution procedures.

The advantage of the chosen approach is that almost any microgeometry can be handled.

However, complex meshing operations, small discretisation lengths, and therefore large

numbers of DOFs are potential drawbacks of the chosen approach. Note that smaller num-

bers of DOFs have been obtained for thermomechanical problems by using special elements

(e.g. Voronoi FEM ?) or multiphase elements ??, but such approaches are presently re-

stricted to perfectly bonded constituents. All FEM meshes are generated with ANSYS 5.7

and ANSYS 6.1 (ANSYS, Inc., Canonsburg, PA).

The unit cell can either be loaded by using the mathematical framework known as

asymptotic homogenization ? or by prescribing nodal temperatures at the master nodes.

The latter approach which is referred to as the method of “macroscopic degrees of freedom”

in the literature ? is chosen in this work by assigning appropriate temperatures to the

master nodes M i (Fig. 4.4). The nodal temperature is fixed in M 0(0/0/0) to be T 0. The

temperature difference between a master nodeM i andM 0 is denoted as ∆T i and together

with the respective length of the unit cell,Li, the macroscopic far field temperature gradient

forced upon the unit cell is then given as T
(∗)
,i = ∆T i/Li.

4.3.2 Boundary Conditions

Appropriate boundary conditions (BCs) must ensure that compatible temperature profiles

on the unit cell’s faces result for all possible temperature gradients forced upon the unit

cell. The two types of BCs employed in this work, symmetry BCs and periodic BCs, are

discussed in the following for planar geometries, the extension to three–dimensional cases

being trivial. The BCs are incorporated in the models by using multipoint constraints

(MPCs) between degrees of freedom.

Symmetry Boundary Conditions

If some microgeometry shows a set of parallel symmetry planes these planes have special

properties. For applied far field gradients oriented perpendicular to a symmetry plane the

resulting temperature distribution is constant within the symmetry plane under steady
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Figure 4.5: Sketch of a symmetric unit cell and two mirror symmetric unit cells for applied
far field gradient parallel to thex1 axis; heat flux at arbitrary point and its two counterparts,
located in mirror symmetric unit cells

state conditions, i.e. symmetry planes are isothermal planes. For applied far field gradients

acting parallel to a symmetry plane the resulting flux and gradient vectors at points on the

plane will have zero out–of–plane components, i.e. no heat flow through the plane occurs,

compare Fig. 4.5. The term symmetry can be misleading with respect to BCs of unit cells

in thermal analyses and it has to be used with care. Considering both orientations of

symmetry planes (parallel or perpendicular to the applied far field gradient) the norms of

the vector field quantities (heat flux and temperature gradient) and of course the micro

topology and material properties are arranged in a symmetric pattern with respect to the

planes. The temperature field as well as the vectors of the gradient and flux field, however,

are repeated antimetrically with respect to symmetry planes oriented perpendicularly to
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an applied far field gradient, and symmetrically with respect to symmetry planes oriented

parallel to an applied far field gradient, see Fig. 4.5.

Symmetry BCs take a very simple form for uniform far field gradients along a principal

axis, xi, and can be applied by assigning constant nodal temperatures on the faces oriented

perpendicular to xi according to

T xi=Li
= T 0 + ∆Ti = const. and T xi=0 = T 0 = const. , (4.42)

forcing a far field gradient of the magnitude |T
(∗)
,i | = ∆Ti/Li upon the unit cell. The

subscript xi=0 addresses all nodes whose xi-coordinates are equal to zero. The heat flux

across faces parallel to the applied far field gradient is set to zero (Fig. 4.5), which is

essentially a BC of the second kind. Only one component of the far field gradient can be

applied at one time to avoid temperature incompatibilities in the temperature fields arising

from the symmetry BCs.

Symmetry BCs are very useful for describing simple, regular microgeometries, but they are

less suitable to model random phase arrangements. On the one hand a random arrangement

suitable for symmetry BCs is rather restricted as the fibers may either not touch a face

or must be bisected by one or more faces, and on the other hand it is assumed that the

heat flux orthogonal to the applied gradient is zero which automatically sets the effective

conductivity K
(∗)
12 to zero. This applies only for sufficiently large random unit cells with

isotropic effective conductivities.

Periodic Boundary Conditions

The most general type of BCs for unit cells are periodic BCs, which can handle any possible

applied homogeneous temperature gradient. Periodic BCs are applied by coupling nodal

temperatures on opposite faces of the unit cell according to

T xi=Li
−T xi=0 = ∆T i , (4.43)

which enforces compatible temperature variations on opposing faces (Fig. 4.6). The tem-

perature variations can be thought of as the fluctuating contributions to the temperatures,

T̃ i (dotted lines in Fig. 4.6), around the prescribed linear temperature variation as given

by T 0 and the applied temperatures differences ∆T i . Note that the fluctuations T̃ i are

initially unknown and that opposite faces have identical distributions of T̃ i. It shall also be

mentioned that Eq. (4.43) couples the temperatures of node pairs, i.e. nodes on opposing

faces with the same “in face” coordinates. Nodes on edges of a three dimensional unit cell,
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Figure 4.6: Sketch of a unit cell with periodic BCs, forcing identical temperature fluc-
tuations, T̃ i on opposite faces (left). The nodal solutions of elements on faces are not
evaluated in the sense of periodicity, because corresponding elements on the opposite face
cannot contribute (right).

which belong to two faces, must be considered in two sets of MPCs and accordingly the

right hand side of Eq. (4.43) must be modified by the sum of the temperature differences

applied, respectively.

4.3.3 Effective Conductivities

The effective conductivity tensor of the composite as described by the unit cell is evaluated

by means of Fourier’s law, Eq. (4.11), applied for the homogenized medium. The effective

flux, q
(∗)
i , as induced by the far field gradient forced upon the unit cell is given as

q
(∗)
i = Q̄i/Ai , (4.44)

where Ai is the area of an appropriate unit cell face and Q̄i is the average heat flow across

two opposing faces, which is evaluated as

Q̄i =
∑

(e)

1

2

(

q
(e)
i

∣

∣

∣

xi=0
+ q

(e)
i

∣

∣

∣

xi=Li

)

A
(e)
⊥ . (4.45)

Here A
(e)
⊥ stands for the area of element (e) belonging to a unit cell face and q

(e)
i is the

respective flux through this area (Fig. 4.6). The flux through an element’s face, q
(e)
i , is

approximated by an area–weighted sum of the nodal fluxes of the corner nodes of each
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element. Note that only element faces contribute, that lie within a unit cell face (i.e. in

the case of tetrahedral elements, three corner nodes must be in the unit cell’s face).

Due to the assumption of periodicity, nodes on a unit cell’s face always must be thought

of as node halves (“twins”), which are cut by the unit cell. Such twins belong to related

elements on opposite faces, eleft and eright (see Fig. 4.6, right). Twins should have identical

temperature gradients and fluxes, but they are on different temperature levels. However,

as twins are separated by the unit cell, different nodal temperature gradients (and consist-

ently nodal fluxes) are obtained as only the elements of one face are used for averaging of

the nodal results. Accordingly, Eq. (4.45) can be thought to supplementary account for

this averaging error.

Note that the effective heat flow Qi is independent of xi and any deviation is due approx-

imations within the FEM. For the investigated cases and mesh size the error turned out to

be very small, being less than 2% for the diagonal terms (i.e.Qi due to T
(∗)
,i ) of the effective

conductivity tensor K
(∗)
ii (no sum over i).

The right hand side of Eq.(4.11) is formed by the unknown conductivity tensor of the

effective medium, K
(∗)
ij , and by the far field gradient T

(∗)
,i = ∆T i/Li which is forced upon

the unit cell. Three different far field gradient vectors must be applied sequentially to

determine the nine unknown coefficients ofK
(∗)
ij . These far field gradients must be linearly

independent. Arranging them in the matrix H ij =
(

T
(∗)
,i

)

j
with j = 1, 2, 3 denoting the

jth applied far field gradient vector, the rank ofH ij must equal 3 to successfully determine

all components of the effective conductivity tensor. Choosing H ij as δij is of advantage as

each run simply gives the respective column of K
(∗)
ij .

It is found that effective conductivities obtained this way tend to slightly violate diag-

onal symmetry. The latter is enforced afterwards by means of averaging, i.e. K̄
(∗)
ij =

(K
(∗)
ij +K

(∗)
ji )/2. The bar indicating the “diagonalizing” process is omitted in what follows.

Enforcing diagonal symmetry only affects the off–diagonal terms which are very small

compared to the diagonal terms for the investigated case of randomly oriented inclusions

(Chapter 8).

It shall also be mentioned that a far field gradient along xi also induces global heat flows

across faces parallel to xi, i.e. Q̄j 6= 0, as the periodic unit cell in general is not aligned with

the principal material directions of K
(∗)
ij . Note that the latter always exist for symmetric

second rank tensors ?.



Chapter 5

Single Inclusion Problems

Mean field methods are based on the solution of the boundary value problem of single

inhomogeneities embedded in infinitely large matrix materials. This chapter is concerned

with single inclusion problems. Solutions are derived for spheroidal inclusions and a general

numerical solution procedure is proposed for inclusions of arbitrary shape. Both perfect

thermal interfaces and interfacial thermal resistances are considered. Furthermore, sym-

metry relations are provided.

46
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5.1 Spheroidal Inhomogeneities

In this section an analytical approach is presented for solving the steady state thermal

conductivity problem of the following configuration. An infinite matrix material contains

a single inhomogeneous spheroidal inclusion and a thermal resistance is present at the

pertinent interface. The matrix shows isotropic conductivity while the inclusion is trans-

versally isotropic, the principal material axes being aligned with the spheroid.

Analytical expressions are derived for the local gradient fields in the matrix and in the in-

clusion as well as for the temperature mismatch along the interface. An analytical method

is developed which allows replacing the original imperfectly bonded inclusion by a less

conductive but perfectly bonded inclusion. For the specific case of confocal distributions of

the interface resistance the present approach yields the exact solution, i.e. the replacement

operation leaves the matrix fields unchanged. For general spatial distributions of the in-

terface properties (meeting the spheroidal symmetry properties) an approximate solution

strategy is introduced that provides estimates.

The further application of the present method for investigations of non–dilute composites

is discussed in terms of homogenization and localization. The effect of the inclusion size in

combination with an interface resistance on the conductivity of non–homogeneous systems

is addressed, as are critical inclusion dimensions.

The proposed method is compared with existing approaches from the literature. Addition-

ally, cross links to established models of coated inclusions are provided. As an example the

material system of diamond inclusions in zinc sulfide matrix is considered. Predictions are

compared with results from analytical approaches as well as numerical results from finite

element analyses.

5.1.1 Literature Overview

Whereas a range of approaches is available for estimating the effective thermal conductiv-

ity of heterogeneous media with perfectly bonded constituents, works taking into account

imperfect thermal interfaces are less numerous. Problems of the latter type have received

attention recently since highly conducting composite materials have started to be employed

in e.g. heat sink applications in microelectronics.

Hasselman and Johnson ? considered imperfectly bonded spherical particles and cylinders

of circular cross section (oriented perpendicularly to the heat flow) at dilute volume frac-

tions. Chen ? investigated a single cylinder of circular cross section embedded in an infinite
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matrix, adopting the idea of an imperfect thermal interface with a variable interface para-

meter. Chiew and Glandt ? as well as Benveniste ? studied particle reinforced composites

at nondilute volume fractions, accounting for a thermal barrier between the constituents.

While particle interaction was modeled by means of a second order approximation in ?,

a Mori–Tanaka method (effective field approach) and a self-consistent scheme (effective

medium approach, EMA) were employed in ?. For the case of spheroidal inclusions the

problem is more difficult compared to the special cases of spherical or cylindrical inclusions.

Benveniste and Miloh ? outlined fundamental concepts in the theory of heat conduction in

the presence of imperfect thermal interfaces. A procedure involving spheroidal harmonics

was developed and applied to the case of spheroidal inclusions at dilute volume fractions.

Lu ? estimated the effective conductivities of composites reinforced by aligned spheroidal

inclusions having the same shape, size and constant interface parameter β using an equi-

valent inclusion method.

An alternative approach to implementing interfacial thermal resistances is that of appro-

priately modifying models for coated inclusions so that the effect of the interfacial thermal

barrier is obtained by a thin coating of very low conductivity. Nan et al. ? provided

estimates based on coatings of constant thickness and subsequently employed an EMA for

predicting the overall conductivity of two–phase composite materials with an interfacial

thermal resistance between the constituents. Dunn and Taya ? introduced a variable in-

terface parameter β as their considerations are based on coatings defined by two confocal

spheroids, the interaction between inclusions being accounted for by means of a Mori–

Tanaka scheme. Benveniste and Miloh ? investigated coated ellipsoidal inclusions, the

coating being represented by two confocal ellipsoids. As no restriction is placed on the

coating’s thickness, their results can be applied to the case of interfacial thermal resist-

ances in a straightforward way.

5.1.2 Perfectly Bonded Inclusions

In this section a single spheroidal inclusion of isotropic conductivity K
(i)
ij embedded in an

infinite, isotropic matrix material of conductivity K
(m)
ij is considered, inclusion and matrix

being treated as perfectly bonded. The interface Γ is the set of all points belonging to the

second degree surface (quadric)

Gijxixj = 1 . (5.1)

The inverses of the square roots of the eigenvalues ofGij are the semi–axes ai of an ellipsoid.

The axes of the global Cartesian coordinate system are taken to coincide with the principal
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axes of the quadric. The present work refers to the special case of spheroids that are

considered to be aligned with x1, i.e. a2 = a3.

For a uniform far field temperature gradient solutions for the temperature distribution

inside the spheroid, T (i), and outside the spheroid, T (m), are given e.g. in ?, where also

expressions for the more general case of ellipsoids are provided. Introducing the tensors
0Dij and λDij, the temperature distribution inside the spheroid can be expressed in the

form

T (i) = 0Dij T
(∗)
,j xi + T 0 , (5.2)

and the temperature field outside the spheroid is given by

T (m) = λDik
0Dkj T

(∗)
,j xi + T 0 . (5.3)

Without loss of universality the temperature at the origin, T 0, is set to zero from now on.

Temperature gradients ∂T (∗)/∂xi, are denoted as T ,i, and the superscript (∗) refers to the

matrix phase at infinity, where the influence of the spheroid is not felt. 0Dij and λDij can

be expressed as

0Dij =
[

δij + 0SikR
(m)
kl

(

K
(i)
lj −K

(m)
lj

)]−1

(5.4)

λDij =
[

δij −
(

λSik −
0Sik

)

R
(m)
kl

(

K
(i)
lj −K

(m)
lj

)]

, (5.5)

where δij is the Kronecker Delta (δij = 0 for i 6= j and δij = 1 for i = j), Rij stands for the

resistivity tensor that is the reciprocal of the conductivity tensor K ij, and Sij accounts for

the influence of the aspect ratio of the spheroid. Following ? the components of S ij can

be evaluated for spheroidal inclusions from the integral functions

λS11 =
a1a

2
2

2

∫ ∞

λ

1

(a2
1 + s)

3
2 (a2

2 + s)
ds (5.6)

λS22 = λS33 =
a1a

2
2

2

∫ ∞

λ

1

(a2
1 + s)

1
2 (a2

2 + s)2
ds , (5.7)

all other components being zero. The lower integration boundary λ is the solution of

[

G−1
ij + λδij

]−1
xixj = 1 , (5.8)

the loci of λ = const. being confocal spheroids. For points on Γ or inside the spheroid λ

is set to zero, and 0Sij coincides with the thermal equivalent of the interior field Eshelby

tensor ???. For points outside the spheroid λ is taken to be the positive solution of Eq. (5.8)

and the square root of λ can be thought of as a generalized distance from the interface Γ.
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For λ → ∞ the components of the exterior field Eshelby tensor ∞Sij tend to zero, ∞Dij

becomes the inverse of 0Dij, and Eq. (5.3) is reduced to T (m) = T
(∗)
,i xi, i.e. the influence of

the spheroid vanishes.

The integral expressions for λSii, Eqs. (5.6) and (5.7), can be solved analytically. The

results can be presented as functions of the lower integration limit λ.

λS11 =
a1a

2
2

2









2

(a2
2 − a2

1)(a
2
1 + λ)

1
2

+

2 atanh

(

(

a2
1+λ

a2
1−a2

2

)
1
2

)

(a2
1 − a2

2)
3
2









. (5.9)

λS22 = λS33 =
a1a

2
2

2









(a2
1 + λ)

1
2

(a2
1 − a2

2)(a
2
2 + λ)

−

atanh

(

(

a2
1+λ

a2
1−a2

2

)
1
2

)

(a2
1 − a2

2)
3
2









. (5.10)

Unlike in ??? a closed-form solution for inclusions of arbitrary aspect ratio is provided with

the exception of spheres (a1 = a2). For that case the solutions of the integral expressions,

Eqs. (5.6) and (5.7), reduce to

λS11 = λS22 = λS33 =
a3

1

3(a2
1 + λ)

3
2

, (5.11)

yielding 0Sii = 1
3

(no sum over i) for spheres. Note that the identity 0Sii = 1 is valid for

all inclusion geometries ?.

All solutions provided above apply to a perfect thermal interface denoted by Γ. The

compatibility conditions on Γ state that the normal component of the heat flux and the

temperature field are continuous across the interface, i.e. for points on Γ the conditions

q
(i)
i ni

∣

∣

∣

Γ
= q

(m)
i ni

∣

∣

∣

Γ
and T (i)

∣

∣

Γ
= T (m)

∣

∣

Γ
, (5.12)

respectively, must be satisfied. Hereni is the dimensionless unit normal vector on Γ pointing

into the matrix phase and q
(r)
i is the heat flux that is generated by the temperature gradient

field T
(r)
,i according to Fourier’s law, Eq. (4.2), the superscript r standing for the matrix

and inclusion phases, respectively.

Taking the derivative of Eq. (5.2) with respect to xi yields

T
(i)
,i = 0DijT

(∗)
,j , (5.13)

so that 0D
(i)
ij can be identified with the dilute concentration tensor as introduced in Eq. (4.30)

for a single inclusion. Equation 5.13 shows that the temperature gradient field (and the
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corresponding flux field) due to a uniform far field gradient is homogeneous within a spher-

oidal inclusion in correspondence with the well-known Eshelby property of ellipsoids. The

gradient field in the matrix is not constant and approaches the far field gradient field only

at large distances from the inclusion. Computing the local temperature gradients in the

matrix phase, T
(m)
,i , from Eq. (5.3) requires the derivatives of λDii with respect to xj,

λDii,j.

(Note that only the derivatives of the diagonal terms, λDii,j, need to be computed, the

off–diagonal terms and their derivatives being zero). As can be seen from Eq. (5.5) the

derivatives λDii,j are proportional to the derivatives λSii,j. Analytical solutions of the tem-

perature gradient field in the matrix T
(m)
,i can obtained either by numerical differentiation

? or analytically, which is exact and, once implemented, computationally more efficient.

Taking the derivative of the matrix temperature field, Eq. (5.3), with respect to xj in-

troduces the derivatives λDii,j. Equation (5.5) shows that the problem of evaluating the

derivatives λDii,j reduces to finding the derivatives of the integral functions, λSii,j. The

latter can be calculated as

λSii,j = λSii,λ λ,j . (5.14)

Equation (5.14) introduces two sub–problems, namely evaluating the derivatives λSii,λ and

the derivatives λ,i, each of which allows for an analytical solution.

First the derivatives of λSii with respect to λ are calculated, yielding

λS11,λ = −
a1a2

2

2
1

(a2
1+λ)

3
2 (a2

2+λ)
, (5.15)

λS22,λ = λS33,λ = −
a1a2

2

2
1

(a2
1+λ)

1
2 (a2

2+λ)2
. (5.16)

For points on the interface Γ (λ = 0) the terms simplify to 0S11,λ = − 1
2a2

1
and 0S22,λ =

0S33,λ = − 1
2a2

2
.

Secondly the derivatives of λ with respect to xi are needed. Differentiating Eq. (5.8)

with respect to xi yields

λ,1 = 2x1

(a2
1+λ)

[

x2
1

(a2
1+λ)2

+
x2
2+x2

3

(a2
2+λ)2

]−1

, (5.17)

λ,2 = 2x2

(a2
2+λ)

[

x2
1

(a2
1+λ)2

+
x2
2+x2

3

(a2
2+λ)2

]−1

, (5.18)

λ,3 = 2x3

(a2
2+λ)

[

x2
1

(a2
1+λ)2

+
x2
2+x2

3

(a2
2+λ)2

]−1

. (5.19)

In the present section, all tensors are given with respect to the global Cartesian coordinate

system. As the orientation of the spheroid is chosen such that its principal axes coincide
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with the global axes all second rank tensors are diagonal tensors. As a consequence T
(∗)
,i

causes only a temperature gradient T
(i)
,i in the inclusion and no normal temperature gradi-

ents. All of the above expressions can be immediately applied to the case of orthotropic

inclusion conductivities, provided the axes of orthotropy coincide with the principal axes of

the spheroid ?. The conductivity of the matrix phase, however, is restricted to be isotropic.

It may be noted that the Eshelby property also holds for anisotropic matrix conductivities

?, but more complicated formulae must be used to handle such cases.

5.1.3 Imperfectly Bonded Inclusions

In this section it is shown that a spheroidal inclusion of transversally isotropic conductivity

(the plane of isotropy being perpendicular to x1), which is bonded imperfectly to the

isotropic matrix, can be replaced by a less conductive, but perfectly bonded inclusion,

referred to as replacement inclusion, such that the matrix field is left unchanged.

If an interfacial thermal resistance exists, then the interface is referred to as Γβ, the

subscript β indicating the presence of a thermal resistance on Γ. The variation of the

interface parameter on Γβ is restricted to functions that are axisymmetric with respect to

x1 and which, in addition, show mirror symmetry with respect to the x2–x3–plane.

The temperature field is discontinuous at the imperfect interface, while the continuity of the

heat fluxes across the interface is maintained. The temperature jump across the interface

is linked to the heat flux across the interface via the interface parameter β according to

q
(i)
i ni

∣

∣

∣

Γβ

= q
(m)
i ni

∣

∣

∣

Γβ

= β
(

T (i)
∣

∣

Γβ
− T (m)

∣

∣

Γβ

)

= β∆T |Γβ
. (5.20)

Two limiting cases can be readily obtained, on the one hand a perfectly insulating interface,

Γ0, and, on the other hand, a perfectly ”conducting” interface, Γ, the subscript ∞ being

omitted.

The derivation of the proposed method is carried out in two steps. First investigations

are carried out on the thermal fields along the principal axes xi due to a uniform far

field gradient T
(∗)
,i . The problem is reduced to two independent one-dimensional ones

on account of the symmetry assumptions prescribed to the interface parameter. At this

stage the thermal resistance is solely defined in terms of principal interface parameters

at the spheroid’s poles, pβi, the latter being defined as the intersection points between

the principal axes of the spheroid and its surface. For the cases considered here the one-

dimensional problems can be treated as decoupled scalar equations, because all tensors



CHAPTER 5. SINGLE INCLUSION PROBLEMS 53

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������

������������������������������������������������������������������������������

������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������
������������������������������������������������������������������������������

������������������������������������������������������������������������������

	�	�	�	�	�	�	�		�	�	�	�	�	�	�		�	�	�	�	�	�	�		�	�	�	�	�	�	�		�	�	�	�	�	�	�		�	�	�	�	�	�	�	


�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

������������������������������������������������������������������������������

������������������������������������������������������������������������������


�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�


������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�

��� � �

� �

� �

��� ��� ��� ��� ��� ����� �!��� ������ � ���� � ���� � � �"�#��� � �

�%$

�'&

�)( &+* �)(-, * .0/ 13245
6 . / 7 2 45 .+8 9;: <=

6 . 8?> : <=
.+8 9;: <=

6 . 8 > : <=

@BA � �

Figure 5.1: Sketch of the actual set–up of matrix K (m), inclusion K(i) and imperfect inter-
face (center) and of the two auxiliary configurations (left and right) with perfect interfaces.
The effects of the interfacial thermal resistance are modeled by introducing reduced phase
conductivities (K(mr) orK (ir)), the normal component of the flux across the interface being
the same in all three configurations.

involved are diagonal.

In the second step the heat flux across the interface is used to link the principal interface

parameters pβi and pβj. Specific spatial distributions of β at the interface are identified for

which the non–ideal thermal compatibility conditions, Eq. (5.20), are satisfied on Γβ.

One-Dimensional Problems

The basic idea of the proposed method consists in accounting for the presence of a thermal

barrier by either reducing the conductivity of the inclusion phase or that of the matrix

phase, while treating the thermal interface as perfect. This way two auxiliary configurations

incorporating perfectly bonded constituents are introduced, compare Fig. 5.1, for each of

which Eqs. (5.2) to (5.13) are applicable. The two fictitious conductivities associated with

this approach are referred to as the reduced inclusion conductivity, K
(ir)
ij , and the reduced

matrix conductivity, K
(mr)
ij . They are chosen such that the (constant) heat flux in the

inclusion is the same in the original and the two auxiliary configurations, giving rise to the

conditions

qi = −K
(i)
ik

0D
(mr,i)
kj T

(∗)
,j ,

= −K
(ir)
ik

0D
(m,ir)
kj T

(∗)
,j . (5.21)

As the dilute concentration tensors 0Dij depend on the conductivities of both matrix and

inclusion, they are annotated with additional superscripts in order to avoid any confusion
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with respect to the configurations they refer to.

The two auxiliary configurations, of course, give rise to different temperature distributions

for a given uniform far field gradient T
(∗)
,i . The temperature mismatch between the two

auxiliary configurations at the poles is set to equal the temperature jump of the imperfectly

bonded configuration, p∆T i, there, giving

p∆T i =
[

0D
(m,ir)
ij − 0D

(mr,i)
ij

]

T
(∗)
,j

pxi no sum over i , (5.22)

where pxi = ±ai are the semi–axes of the spheroid. Because from Eq. (5.20) the temperat-

ure jump at the i-th pole is known to be qini = pβi
p∆T i (no sum over i), Eqs. (5.21) and

(5.22) can be used to solve for the two unknown components of the reduced conductivity

tensors which, after some algebra, can be obtained as

K
(ir)
ii =

[

1 + (pβiai)
−1K

(i)
ii

]−1

K
(i)
ii no sum over i , (5.23)

and

K
(mr)
ii =

[

1 + (pβiai)
−1

(

0S
−1
ii − 1

)

K
(m)
ii

]−1

K
(m)
ii no sum over i . (5.24)

Considerations of the thermal fields along the principal axes thus provide the compon-

ents of the reduced conductivity tensors, with the relations between the principal com-

ponents remaining to be studied. Before doing this, however, Eqs. (5.23) and (5.24) are

briefly discussed. Each of the reduced conductivities can be seen to be independent of the

material properties of the other phase, the reduction of the conductivity being ultimately

determined by the product of the interface parameter and a characteristic length ai which

is referred to as interface conductance.

In Fig. 5.2 the dependence of the reduced inclusion conductivity, K (ir), on the interface

conductance βa is plotted for a number of inclusion conductivities with the characteristic

length a being chosen as the radius of spherical inclusions. A typical S–shape can be

observed ???. When considering inclusion conductivities of up to 103 W/mK a marked

variability of the reduced inclusion conductivity K (ir) is found for an intermediate range

of the interface conductances [101 − 104 W/mK]. In the top left corner of Fig. 5.2 the

dependence of K(ir) on the interface parameter is plotted for K (i) = 250 W/mK. While

the solid curve corresponds to a characteristic length a, the dashed curves correspond to

lengths that are ten times smaller (a/10) and ten times larger (10a). Evidently a size

effect (and thus an absolute length scale) has been introduced with Eq. (5.23), causing

large inclusions to give rise to higher reduced conductivities than do small ones — a fact

validated by experiments ??. Dunn and Taya ? suggested that this effect is due to the fact

that the ratio of inclusion surface area to volume increases as the inclusion size decreases.
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Figure 5.2: Reduced conductivities of spherical inclusions as functions of the interface
conductance for inclusion conductivities of 50, 100, 250, 500, and 1000 W/mK. At the top

left the reduced conductivity of a spherical inclusion (K (i) = 250 W/mK) of unit radius
is plotted over the interface parameter β (solid curve). The dashed lines correspond to
spherical inclusions of the same conductivity but having ten times smaller and ten times
larger radii.

For the case of spherical inclusions with an isotropic conductivity exceeding that of the

matrix phase and a given interface parameter a critical particle radius, rcr, can be defined,

for which the reduced inclusion conductivity equals the matrix conductivity. Substituting

K(ir) by K(m) in Eq. (5.23) and solving for the characteristic length yields

rcr =
1

β

K(i)K(m)

K(i) −K (m)
, (5.25)

the subscripts being omitted on account of the isotropic phase conductivities. The concept

of a critical particle radius was also pointed out by Torquato and Rintoul ? and by Lipton

and Vernescu ??. The latter emphasized that Eq. (5.25) is not restricted to the dilute case

but also holds for suspensions of spheres at nondilute volume fractions. The knowledge of

the critical particle radius is of considerable practical interest, as a minimum reinforcement

size can be determined which must be exceeded in order to achieve an effective conductivity

of a composite material that surpasses that of the actual matrix material for a given

interface parameter. Equation (5.25) can be applied to the case of cylindrical inclusions as
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well, rcr then playing the role of a critical cylinder radius.

As a by-product of the above procedure a fictitious reduced and (in general) orthotropic

matrix conductivity,K
(mr)
ij , is obtained, compare Eq. (5.24). This reduced conductivity and

the associated auxiliary configuration must be viewed with considerable care, because the

corresponding dilute composite in general has a different overall conductivity than the

actual configuration (note that Eq. (5.21) constrains the heat fluxes in the inclusions to be

identical, but those in the surrounding matrix may differ). On account of the orthotropy

of K
(mr)
ij Eqs. (5.4) to (5.7) do not hold.

Furthermore it must be mentioned that the investigations pertinent to each principal axis

are based on one pair of auxiliary configurations, hence a total of two pairs of auxiliary

configurations are introduced in the case of spheroids. Accordingly, two reduced isotropic

matrix conductivity tensors, K
(mr)
11 δij and K

(mr)
22 δij = K

(mr)
33 δij, and two reduced isotropic

inclusion conductivity tensors, K
(ir)
11 δij and K

(ir)
22 δij = K

(ir)
33 δij, are obtained. Each of the

reduced conductivities is isotropic because Eqs. (5.21) and (5.22) are based on isotropic

constituent conductivities. As only diagonal tensors are involved, so that equations in xi

are decoupled, the two reduced matrix and inclusion conductivities can be condensed to

give the (in general) orthotropic ”tensors” K
(mr)
ij and K

(ir)
ij .

Accordingly, the dilute concentration tensor 0D
(mr,i)
ij does not relate to a matrix phase

of orthotropic conductivity but relates to two of the original spheroidal inclusions (K
(i)
ij )

each of which is embedded in an isotropic matrix material, respectively. Therefore the

use of 0D
(mr,i)
ij is restricted to determining inclusion gradient fields of one inclusion which

is considered to be embedded in ”two” isotropic matrix materials at the same time, once

again taking advantage of the fact that only diagonal tensors are involved.

The concentration tensor 0D
(m,ir)
ij , however, relates to an orthotropic inclusion embedded

in an isotropic matrix material and therefore Eqs. (5.2) to (5.13) are applicable.

Confocal Interface Parameters

Comparing the temperature distributions in the spheroids obtained from the two auxili-

ary configurations, the temperature mismatch ∆T i on Γβ due to an applied temperature

gradient T
(∗)
,i can be seen to depend linearly on xi,

∆T i =
[

0D
(m,ir)
ij − 0D

(mr,i)
ij

]

T
(∗)
,j xi , no sum over i . (5.26)
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As the gradient field T
(i)
,i within the spheroid is constant, the corresponding heat flux across

the interface, qini, can be evaluated by expressing ni as

ni =Gijxj

1
√

GkmGmlxkxl

, (5.27)

which shows that qini depends nonlinearly on xi.

As the heat flux across the interface, Eq. (5.21) and (5.27), and the temperature mismatch

on Γβ, Eq. (5.26), are known, the non–ideal thermal coupling conditions, Eq. (5.20), can

be employed, giving β(xi) = qini ∆T
−1
i (no sum over i). Introducing the known state at a

pole, Eq. (5.22), and some lengthy algebra yield

β =
pβi

ai

1
√

GkmGmlxkxl

, (5.28)

the variation of the interface parameter depending on the spheroid’s geometry, the polar

principal interface parameters and the position on Γ only. Such a variation of the interface

parameter fulfills the non–ideal thermal coupling conditions at any point on the interface

for the given normal components of the heat flux and the temperature mismatch. Be-

cause Eq. (5.28) must be fulfilled for all one-dimensional contributions, pβi unambiguously

determines pβj and vice versa as

pβiaj = pβj ai . (5.29)

If the interface parameter β varies on Γβ according to Eq. (5.28), the non–ideal thermal

compatibility conditions are satisfied at any point on the interface for any applied far field

gradient. In that case – and only in that case – the perfectly bonded replacement inclusion

of conductivity K
(ir)
ij gives rise to the same temperature distribution in the matrix phase

on the interface, T (m)
∣

∣

∣

Γ
, as does an imperfectly bonded inclusion of conductivity K

(i)
ij .

Accordingly, the temperature field and the corresponding gradient fields throughout the

whole matrix domain are not affected by the replacement operation provided Eq. (5.28) is

fulfilled.

Models Based on Coatings A thermal interfacial resistance can be thought of as a very

thin isotropic layer (“interphase”) of thickness t and very low isotropic conductivity K (s)

that is spread over the surface of the spheroidal inclusion. Within the framework of such

a model a variable interface parameter β(θ) corresponds to a coating of variable thickness

t(θ) =K(s)/β(θ) , where both K(s) and t tend towards zero, compare Fig. 5.3. Neglecting

terms in t2 it can be shown that Eq. (5.28) can be approximated by a coating of variable
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Figure 5.3: Sketch of an inclusion with an interfacial thermal resistance β(θ) described

by a thin interfacial layer of thickness t(θ) of low conductivity K (s). A dependence of β
satisfying the confocality condition is given by a variable coating thickness defined by two
confocal spheroids.

thickness t(θ) defined by two confocal spheroids with semi–axes (a1, a2) and (a1 + t1,

a2 + t2), respectively, where t1 = K(s)/pβ1 and t2 = K(s)/pβ2. Accordingly, Eq. (5.28)

is referred to as the confocality condition. Analytical micromechanical models employing

confocal coatings have been used in ?? to study the effects of interfacial thermal resistances.

Results from numerical evaluations in ? agree with those obtained by Eq. (5.23), but the

present method is much simpler, involving only algebraic tensor operations.

Homogenization and Localization If the effective conductivity of a heterogeneous

material with imperfectly bonded constituents is estimated by means of effective field or

effective medium theories (e.g. Mori–Tanaka or self-consistent approaches), the thermal

conduction behavior of the material can be modeled via the perfectly bonded replacement

inclusions of reduced conductivityK
(ir)
ij as defined by the present approach. The respective

non-dilute phase concentration tensors must be based on 0D
(m,ir)
ij evaluated from Eqs. (5.4)

and (5.23). Zooming in on the local temperature gradient field of the actual inclusion

(localization), however, must be carried out by means of the concentration tensor 0D
(m,i)
ij ,

which can be evaluated as

0D
(m,i)
ij =R

(i)
ik K

(ir)
kl

0D
(m,ir)
lj , (5.30)
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Figure 5.4: Sketch of the proposed averaging procedure for non–confocal thermal resist-
ances β(θ) showing the volumes dV1 and dV2 associated with the annular area dA on Γβ. At
position θ̄ the actual resistance β(θ = θ̄) is approximated by the local confocal resistance
βloc(θ̄) which is associated with the polar principal resistances pβ1,loc(θ̄) and pβ2,loc(θ̄).

using the equality of inclusion heat fluxes of the original configuration and the two auxiliary

configurations. Note that evaluating the temperature gradient field of the actual inclusion

directly with 0D
(mr,i)
ij is a potentially inconsistent shortcut within the framework of the

present approach.

5.1.4 Approximate Solutions for Non-Confocal Cases

If the spatial variation of the interface parameter does not satisfy the confocality condition,

Eq. (5.28), the gradient fields will not be constant in ellipsoidal inclusions. An approx-

imate solution procedure for obtaining estimates for the reduced inclusion conductivity is

proposed for such cases.

Let the interface parameter β(θ) vary on Γβ according to some function of θ which is

axisymmetric with respect to x1 and shows mirror symmetry with respect to the x2–x3–

plane, i.e. β(θ) = β(π−θ), but violates the confocality condition. Under these conditions it

is sufficient to analyze the meridional cross section in the x1–x2–plane sketched in Fig. 5.4.

As a first step, the actual non–confocally distributed interface parameter β(θ) is approx-

imated by a set of confocal interface parameters βloc(θ). These local approximations are
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chosen such that βloc(θ = θ̄) = β(θ̄) holds for each location θ̄ on the interface Γβ. The

principal interface parameters at the poles corresponding to such a local approximation,
pβi,loc(θ̄), can be obtained as

pβi,loc(θ̄) = ai

√

GkmGmlxkxl β(θ̄) . (5.31)

by rearranging Eq. (5.28).

Next, the principal interface parameters obtained from Eq. (5.31) are plugged into Eq. (5.23)

to obtain local estimates for the principal components of the reduced inclusion conductivit-

ies K
(ir)
ii,loc(θ̄). Each of these local estimates is associated with an infinitesimal annular area

dA(θ̄) on Γβ and with two infinitesimal axisymmetric volumes in the inclusion, dV1(θ̄) and

dV2(θ̄), which are arranged such that their projections to the interface along the respective

principal axis coincide with dA, compare Fig. 5.4.

Finally, the principal components of the averaged reduced conductivities of inclusions with

non–confocally distributed interface parameters, K̄
(ir)
ii , are obtained as volume weighted

averages over K
(ir)
ii,loc in the form

K̄
(ir)
ii =

1

V (i)

∫

V
(i)
i

K
(ir)
ii,loc dVi no sum over i , (5.32)

where V (i) is the volume of the spheroid. Corresponding averaged concentration tensors,
0D̄

(ir)
ij as well as averaged gradient fields, T̄

(ir)
,i , and flux fields, q̄

(ir)
i , can now be obtained

from Eq. (5.4) and Eq. (4.2). If β(θ) satisfies the confocality condition, pβi,loc, of course, is

constant, no integration needs to be carried out, and the exact solution is obtained.

It is worth noting that local dilute concentration tensors,D
(ir)
ii,loc andD

(i)
ii,loc, can be obtained

from the reduced local conductivities, K
(ir)
ii,loc, by using Eq. (5.30). D

(ir)
ii,loc and D

(i)
ii,loc can

provide valuable information on the fluctuations of the temperature gradient within the

inclusion, such as the locations and magnitudes of the maximum and minimum temperature

gradients.

Degenerate Spheroids The above averaging scheme simplifies considerably for inclu-

sions that are cylinders (a1/a2 → ∞) or infinitely thin discs (a1/a2 → 0). In these cases

the integration in Eq. (5.32) must be carried out only over dV2 or dV1, respectively, and

the conductivities in the other directions are not reduced by the thermal barriers. For the

special case of a constant interface parameter, β = const., no averaging is required for the

above geometries as well as for spheres, as the confocality condition is fulfilled.
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5.1.5 Results and Discussion

Results are presented for diamond (D) inclusions in a zinc sulfide (ZnS) matrix. A single

spherical inclusion of radius a = 2 µm is studied first. Subsequently investigations are ex-

tended to spheroids, the dimensions of which are chosen such that the smallest semi–axis

measures 2 µm. By doing so the same length scale is maintained for prolate and oblate

spheroids. The interface parameter β is assumed to be constant on Γβ corresponding to

the case of a coating of constant thickness. Material properties are taken from ? and listed

in Table 5.1. Spheroids with aspect ratios varying from 10−3 to 103 as well as cylinders

Table 5.1: Material properties of diamond inclusions (D) and of zinc sulfide matrix (ZnS)

taken from ?.

Properties D/ZnS

K(i) 600 W/mK

K(m) 17.4 W/mK

β 1
6
× 108 W/m2K

amin 2 µm

and discs are studied. Reduced conductivities, K̄
(ir)
ij , are estimated, and the associated

inclusion gradient fields are evaluated. Results are compared with those obtained from FE

analyses as well as with Nan’s EMA ?.

The FE models are built and solved with ANSYS 6.1 (ANSYS, Inc., Canonsburg, PA).

Due to symmetry only one eighth of the inclusion volume and associated matrix volume

needs to be modeled. The inclusion and the surrounding matrix material are meshed with

10-node tetrahedral elements, and at the outer perimeter the matrix block is extended

with 15-node prisms, the resulting inclusion volume fraction being less than 0.5% in each

case. The element edge length of the inclusion elements varies from approx. 1/7 a2 at the

inclusion core to some 1/30 a2 at the interface as mesh refinement is carried out at the

inclusion–matrix interface. The thermal interface is modeled with contact/target surface

elements allowing for non–conformal meshes at the interfaces. Temperature boundary con-

ditions corresponding to a uniform far field gradient of unit value are applied.

The FE results are evaluated in terms of standard deviations, σ
(i)
i , of the inclusion temper-
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ature gradient field T
(i)
,i , which are given as

σ
(i)
i =

√

1
∑

(e) V
(e)

∑

(e)

(

T̄
(i)
,i −T

(e)
,i

)2

V (e) , (5.33)

where T̄
(i)
,i is the average of the temperature gradient in the inclusion and T

(e)
,i stands for

the temperature gradient in element (e) of the inclusion, which has a volume of V (e). For

cases where the confocality condition is violated, the standard deviations provide valuable

information on the local fluctuations of the temperature gradient field within the inclusion.

Spherical Inclusions (a1 = a2)

For the case of spherical inclusions and a constant interface parameter β the confocality

condition is satisfied, i.e. no averaging is required and the exact solution is obtained.

The reduced inclusion conductivity is evaluated as K (ir) = 31.58 W/mK and the reduced

matrix conductivity is obtained as K (mr) = 8.51 W/mK from Eqs. (5.23) and (5.24),

respectively, for the material properties given in Table 5.1. Both reduced conductivity

tensors remain isotropic. For the given material properties the critical particle radius

equals rcr = 1.075 µm, which is smaller the actual particle size, hence K (ir) > K (m). In

Fig. 5.5 the resulting temperature fields and associated temperature gradient fields of both

the perfectly bonded configuration and the imperfectly bonded configuration are compared

for the case of a uniform unit far field temperature gradient along the principal axes. The

gradient fluctuations in the matrix material are much higher for the perfectly bonded

case than for the imperfectly bonded case, due to the fact that the ratio of inclusion

conductivity over matrix conductivity is much smaller for the latter case. In Fig. 5.6

the resulting temperature fields and associated temperature gradient fields of the two

underlying auxiliary configurations are plotted.

Figure 5.7 shows the temperature distributions inside the inclusions, T (i) and T (ir)

(x1 ≤ 2µm), and in the matrix, T (m) and T (mr) (x1 ≥ 2µm), along the x1–axis due to a

uniform far field temperature gradient T
(∗)
,1 = 1 K/m. The solid line corresponds to the

auxiliary configuration based on K (ir) and K(m), which leaves the matrix field unchanged,

and the dashed line corresponds to the auxiliary configuration usingK (i) andK(mr), which

leaves the inclusion field unchanged. By restricting the results from the two configurations

to their respective regions of validity the actual temperature fields inside and outside

the inclusion are obtained. The temperature distribution along x1 as predicted with the

FE model (bullets) coincides with the analytical results. In Fig. 5.8 the behavior of the
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Figure 5.5: Temperature distributions (a) and the associated temperature gradients T ,1

(b) and T ,2 (c) in the x1–x2–plane for the investigated D/Zn–system for the case of a
perfect thermal interface (left) and imperfect thermal interface (right) for a uniform far
field gradient in x1–direction of unit value.

temperature gradients along x1 is shown, their values being normalized with respect to

the far field temperature gradient T
(∗)
,1 . In analogy to Fig. 5.7, T

(m)
,1 is indicated by a

solid line and T
(mr)
,1 by a dashed line in the matrix region. Both T

(ir)
,1 (solid line) and

T
(i)
,1 (dashed line) can be seen to be constant within the inclusion and their normalized

magnitudes correspond to the concentration factors 0D
(m,ir)
11 and 0D

(mr,i)
11 , respectively. The

dilute concentration tensor for the replacement inclusion embedded in the original matrix

material is 0D
(m,ir)
ii = 0.786 (no sum over i), which is about 20 times higher than that for the
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Figure 5.6: Temperature distributions (a) and the associated temperature gradients T ,1 (b)
and T ,2 (c) in the x1–x2–plane for the investigated D/Zn–system for the case of auxiliary

configuration K(mr,i) (left) and the auxiliary configuration K (m,ir) (right) for a uniform far
field gradient in x1–direction of unit value.

actual inclusion. The nonzero components of the dilute concentration tensor for the actual

inclusion are evaluated as 0D
(m,i)
ii = 0.0414 (no sum over i) from Eq. (5.30). Simulations

with the FE model give a volume averaged gradient of 0.0414T
(∗)
,1 . The standard deviations

of the temperature gradients in the aligned and normal directions are both of the order of

10−6 × T
(∗)
,1 , i.e. numerical zeros.
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Figure 5.7: Temperature distributions along the x1–axis due to an applied far field gradient

T
(∗)
,1 = 1 K/m in a single spherical diamond particle of radius 2 µm and the surrounding

infinite zinc sulfide matrix in the presence of an interfacial thermal barrier of β = 1
6
×108

W/m2K. The solid and dashed lines show the temperature distributions corresponding to
the two auxiliary configurations used by the proposed procedure and the bullets indicate
the predictions of the FE model, which accounts for the interface resistance directly.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3  3.5  4

[-
]

x1 [µm]

 
 
 

����
� �
 !" ��

#�$ %
&('�#)$ *,+-&
# $ %�+�& '
# $ *�&

.�/�0

Figure 5.8: Normalized temperature gradients T
(r)
,1 /T

(∗)
,1 in a single diamond particle of

radius 2 µm and in the surrounding infinite zinc–sulfide matrix in the presence of an in-
terfacial thermal barrier of β = 1

6
×108 W/m2K. The solid and dashed lines show the

temperature gradients corresponding to the two auxiliary configurations used by the pro-
posed procedure and the bullets indicate the predictions of the FE model, which accounts
for the interface resistance directly.
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Spheroidal Inclusions (a1 6= a2)

Figure 5.9(a) shows the influence of the aspect ratio on the reduced averaged conductivities

of the replacement inclusions, K̄
(ir)
ij , for a uniform interface parameter β and the material

parameters given in Table 5.1. The solid line corresponds to the longitudinal conductivities,

K̄
(ir)
11 , which increase as the aspect ratio increases (increasing interface conductance βa1).

For aspect ratios larger than 100 the reduced longitudinal conductivities almost equal the

original inclusion conductivity of K(i) = 600 W/mK. The dashed line shows the averaged

transverse conductivities, K̄
(ir)
22 , which increase as the aspect ratio decreases (increasing

interface conductance βa2) and approach K
(i)
ij for infinitely thin discs.

Uniform far field temperature gradients T
(∗)
,i of 1 K/m are applied and the resulting aver-

aged temperature gradients in the perfectly bonded replacement inclusion are evaluated.

In Fig. 5.9(b) the dependence on the aspect ratio is depicted for the normalized averaged

thermal gradients T̄
(ir)
,1 (bold solid line) and T̄

(ir)
,2 (bold dashed line) under loading by unit

temperature gradients in the x1– and x2–direction, respectively. For infinitely long cyl-

indrical inclusions T̄
(ir)
,1 tends towards T

(∗)
,1 , and T̄

(ir)
,2 tends towards T

(∗)
,2 for thin discs. The

gradients in the actual inclusion, T̄
(i)
,i , can be evaluated from Eq. (5.13) and are also plotted

in Fig. 5.9(b) as thin lines. Both curves show mirror symmetric tendencies with respect to

an aspect ratio of 1 which are also present for K̄
(ir)
ij and 0Sij. The difference of the tem-

perature gradients in the actual and the replacement inclusions (indicated by two arrows

in Fig. 5.9(b)) together with the inclusions’ dimensions is a measure for the temperature

mismatch ∆T along the interface. The associated averaged fluxes, q̄1 and q̄2, of both the

actual inclusion and the replacement inclusion are shown in Fig. 5.9(c). Using Fourier’s

law the associated averaged inclusion flux fields can be reconstructed by the information

given in Fig. 5.9(a) and Fig. 5.9(b) in two ways, q̄
(ir)
i = K̄

(ir)
ii T̄

(ir)
,i = K̄

(i)
ii T̄

(i)
,i = q̄

(i)
i (no

sum on i). Accordingly, as K̄
(i)
ii is constant the averaged fluxes shown in Fig. 5.9(c) are

obtained by simply scaling T̄
(i)
,i in Fig. 5.9(b) by 600 W/mK.

When comparing geometrically identical inclusions, high inclusion conductivities generally

give rise to small inclusion temperature gradients and vice versa. In contrast, with increas-

ing averaged reduced conductivities, K̄
(ir)
ii , the associated inclusion temperature gradients,

T̄
(i)
,i , increase as well. This is due to the influence of the aspect ratio on 0Sij which coun-

teracts the influence of K̄
(ir)
ii as given in Eq. (5.23).

The components of dilute concentration tensors evaluated with Nan’s EMA ?, from the

FE model, and from the present method are compared in Table 5.2 for a number of as-

pect ratios. In addition the underlying reduced inclusion conductivities are given for the

analytical methods and the standard deviations of the inclusion temperature field, σ
(i)
i , are
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Figure 5.9: (a) Dependence of the reduced conductivities on the aspect ration of spher-
oidal diamond inclusions (small semi–axis 2 µm, uniform interface parameter β = 1

6
×108

W/m2K) embedded in a zinc sulfide matrix. The solid line shows the reduced longitudinal
conductivity and the dashed line the reduced transverse conductivity. (b) Corresponding

gradient fields in the actual inclusions, (T̄
(i)
,i ), and the replacement inclusions, (T̄

(ir)
,i ), for

a uniform far-field temperature gradient of unit value. (c) Corresponding inclusion flux
fields, which are equal in the actual and the replacement inclusions.
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Table 5.2: Comparison of the results obtained by the present method, by the FE mod-

els, and by Nan’s EMA ? for a D/ZnS system with the material properties given in

Table 5.1.

present method FE EMA
a1

a2
i

0D̄
(i)
ii K̄

(ir)
ii

0D̄
(i)
ii σ

(i)
i

0D̄
(i)
ii K̄

(ir)
ii

[—] [W/mK] [—] [—] [—] [W/mK]

1 0.029 31.6 – – 0.029 31.6
0

2 1 600 – – 1 600

1 0.0312 24.4 0.0310 0.0027 0.0324 30.11
5

2 0.1486 216.4 0.1472 0.0077 0.1261 144.8

1 0.0346 26.3 0.0344 0.0018 0.0362 30.01
2

2 0.0691 72.5 0.0688 0.0021 0.0649 63.1

1 1 0.0414 31.6 0.0414 2.9×10−6 0.0414 31.6

1 0.0838 83.4 0.0835 0.0039 0.0754 68.1
2

2 0.0379 29.1 0.0379 0.0015 0.0388 30.6

1 0.2480 268.9 0.2467 0.0168 0.2018 186.9
5

2 0.0364 28.2 0.0362 0.0026 0.0375 30.5

1 0.4954 445.7 0.4960 0.0302 0.4114 339.6
10

2 0.0360 28.1 0.0358 0.0027 0.0373 30.7

1 1 600 1 0.02×10−6 1 600
∞

2 0.0374 31.6 0.0374 2.5×10−6 0.0374 31.6

listed for the FE results. Excellent agreement is found between the results of the proposed

method and the predictions of the FE model. In contrast Nan’s EMA underestimates the

temperature gradients induced by a uniform far field gradient parallel to the direction of

the longer semi–axis and overestimates the induced gradients when T
(∗)
,i is applied along

the direction of the shorter semi–axis. Marked differences are found for the corresponding

reduced inclusion conductivities as well. Only for the special cases of spheres, discs, and

cylinders do the results of the EMA agree with those of the present method and the FE

model.

For spheres and cylinders, where the gradient field within the inclusion is uniform for con-

stant interface parameters, the standard deviations, Eq. (5.33), are less than 5 × 10−6 in

terms of the applied far field thermal gradient, again indicating the satisfactory quality
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Figure 5.10: Contour plots of the temperature gradients within a spheroidal diamond
inclusion (K(i) = 600 W/mK, aspect ratio 5) embedded in an infinite zinc sulfide matrix
(K(m) = 17.4 W/mK) with an interfacial thermal resistance of β = 1

6
× 108 W/m2K. (a)

Axial temperature gradient T
(i)
,1 due to a unit far field gradient along x1, (b) Transverse

temperature gradient T
(i)
,2 due to a unit far field gradient along x2.

of the FE mesh. For general spheroids where a constant interface parameter violates the

confocality condition, the standard deviations σ
(i)
i listed in Table 5.2 reach up to a few

percent of the corresponding mean value of T
(i)
,i .

Figure 5.10(a) shows a contour plot of the inclusion gradient field T
(i)
,1 due to a unit far

field temperature gradient T
(∗)
,1 as calculated with the FE model and a corresponding result

for a transverse unit far field gradient T
(∗)
,2 is presented in Fig. 5.10(b). The aspect ratio of

the spheroid shown is 5. A marked dependence of the inclusion temperature gradient fields

on x1 can be observed. It is noteworthy that both plots show variations of the respective

temperature gradients along x1, the longer semi–axis. The gradients T
(i)
,1 due to T

(∗)
,1 of unit
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value, Fig. 5.10(a), are about an order of magnitude larger than the transverse gradients

T
(i)
,2 due to T

(∗)
,2 of unit value, Fig. 5.10(b).

In general the temperature gradients will always show variations along the longer semi–

axis for constant interface parameters, with the minima located at the corresponding poles.

Note that for confocal configurations the interface parameter is largest at the poles of the

long semi–axis (pβmax) and smallest at the poles of the short semi–axis (pβmin) for both

prolate and oblate inclusion shapes. Assuming pβmin < β < pβmax a constant interface

parameter β will accordingly reduce the heat flux in the regions of the poles of the longer

semi–axis when compared to the heat flux which would result from the confocal variation

and therefore cause a local gradient minimum there. Similar reasoning can be used to show

that a local gradient maximum will be present in the regions of the poles of the shorter

semi–axis for the case of a constant interface parameter.

As the proposed method allows for estimating minimum and maximum gradients and their

location just inside Γ, a comparison with the FE results is carried out for an inclusion of

aspect ratio of 5 as shown in Fig. 5.10. Employing the averaging scheme, Eq. (5.32), it is

found that when evaluating K̄
(ir)
11 the local principal interface parameters vary from β at

(a1,0) to a1

a2
β at (0,a2) and when evaluating K̄

(ir)
22 the local principal interface parameters

range between β at (0,a2) and a2

a1
β at (a1,0). In Table 5.3 these minimum and max-

imum local principal interface parameters and their respective coordinates on Γβ are given

together with the corresponding reduced conductivities and dilute concentration tensors

obtained with the present method. The proposed scheme correctly predicts the locations

Table 5.3: Comparison of minimum and maximum gradients as obtained with the proposed

theory and the FE model for a spheroidal diamond inclusion of aspect ratio 5 with a

constant interface parameter β for a unit temperature gradient T
(∗)
,i .

present method FE

i
pβi,loc for (x1, x2) K

(ir)
ii,loc

0D
(i)
ii,loc

0D
(i)
ii

[W/m2K] ([m],[m]) [W/mK] [—] [—]

β (a1, 0) 130.5 0.1595 0.1227
1

5 × β (0, a2) 348.8 0.2818 0.2594

1
5
× β (a1, 0) 6.59 0.0156 0.0186

2

β (0, a2) 31.58 0.038 0.0383
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of minimum and maximum temperature gradients. While good agreement is found for the

estimated values of minimum and maximum temperature gradients in the transverse dir-

ection, the present theory somewhat overestimates the minimum and maximum gradients

in longitudinal direction. This is due to larger variations of pβi,loc (or the thickness of the

corresponding coating) at the poles at ±a1 which violates the confocality condition more

strongly than is the case at the poles at ±a2.

If the interface conductance is increased for a given inclusion size (which is equivalent

to increasing the absolute inclusion size while not changing β) the reduced conductivities

increase as well. The gain in K
(ir)
11 is most pronounced for small aspect ratios and reduces

to zero as the aspect ratio is increased (K
(ir)
11 approaches K

(i)
11). Similar observations hold

for the gain of K
(ir)
22 which is very small for small aspect ratios but grows as the aspect

ratio increases.
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5.2 Non–ellipsoidal Inhomogeneities

In this section a numerical technique is proposed which allows to replace imperfectly bonded

inclusions of arbitrary shape by perfectly bonded, but less conductive inclusions. The

procedure is very much in the spirit of the analytical replacement operation for imperfectly

bonded spheroids as outlined in the previous section (see also ?).

5.2.1 Introduction

In general, no analytical solutions are available for single inclusion problems, if the in-

clusion geometries are non–ellipsoidal, the conductivities are temperature dependent, or

if imperfect thermal interfaces are present. In such cases numerical techniques must be

employed for solving the underlying boundary value problems.

Work relating to this type of problem can be found in literature for the mechanical

behavior of matrix inclusion systems. Adley and Taggart ? investigated solitary spher-

oidal inclusions in an elasto–plastic matrix material, introducing dilute incremental strain

concentration tensors. Gilormini and Michel ? evaluated concentration tensors for the

deviatoric stress of dilutely dispersed spheres embedded in a viscous power–law matrix.

Bradshaw, Fisher and Brinson ? computed dilute elastic strain concentration tensors of

single infinitely long sinusoidal fibers and subsequently employed a Mori–Tanaka scheme

for non dilute estimates. To the author’s knowledge no corresponding work has been

published for problems obeying the Laplace Equation, i.e. heat conduction, electrical con-

duction, magnetic permeability, and dielectric permeability.

5.2.2 Imperfectly Bonded Inclusions

An imperfectly bonded inclusion embedded in an infinite matrix material of isotropic con-

ductivity is considered. The temperature field is taken to satisfy the Laplace equation in

the whole domain, implying steady state conditions, temperature–independent conductiv-

ities as well as the absence of heat sources (see Section 4.1).

An interfacial thermal resistance may be present between matrix and inclusion, see Fig. 5.11.

The temperature discontinuity at the interface Γβ is tied to the flux across the interface

according to Eq. (5.20), the continuity of the flux being maintained.
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Figure 5.11: Sketch of an imperfectly bonded inclusion (conductivityK
(i)
ij ) embedded in an

infinite isotropic matrix material (conductivity K (m)δij) and of the replacement operation

that introduces a perfectly bonded inclusion (reduced conductivity K̄
(ir)
ij ) which attracts the

same averaged flux field as the imperfectly bonded inclusion (left). The temperature along
a path of heatflow is depicted showing characteristic temperature jumps at the interface
Γβ (right).

The phase averaged temperature gradient of the inclusion as defined by Eq. (2.1) reads

T̄
(i)
,i =

1

V (i)

∫

V (i)

T
(i)
,i (~x) dV =

1

V (i)

∫

Γ

T (i)
∣

∣

∣

Γ
ni dΓ , (5.34)

where V (i) is the volume of the inclusion and the bar indicates a volume averaged quantity.

Furthermore in Eq. (5.34) the divergence theorem is used to express the volume averaged

temperature gradient in terms of the temperature distribution T |Γ at the interface Γ, with

ni being the unit normal vector on Γ pointing into the matrix phase.

The phase average of the heat flux in the inclusion, q̄
(i)
i , can be expressed in analogy to

Eq. (2.2) as

q̄
(i)
i =

1

V (i)

∫

V (i)

q
(i)
i (~x) dV =

1

V (i)

∫

Γ

qj nj xi dΓ , (5.35)

and it is linked to the phase averaged temperature gradient by the inclusion conductivity

K
(i)
ij according to Fourier’s law, Eq. (4.2).

Due to the temperature jump ∆T at the interface the volume averaged temperature

gradient, T̄
(i)
,i , is different from the “apparent” averaged temperature gradient, T̄

(ir)
,i , which
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accounts for the interfacial temperature discontinuities and is given as

T̄
(ir)
,i = T̄

(i)
,i +

1

V (i)

∫

Γ

(

T (m)
∣

∣

Γβ
− T (i)

∣

∣

Γβ

)

ni dΓ . (5.36)

Equation (5.36) is equivalent to the expression derived by Benveniste and Miloh ? for

the apparent temperature gradient of a composite body with imperfectly bonded constitu-

ents. Comparing Eq. (5.36) with Eq. (5.34) shows that the apparent averaged temperature

gradient of the replacement inclusion is fully determined by the interfacial temperatures

of the matrix, T (m)
∣

∣

Γβ
, i.e.

T̄
(ir)
,i =

1

V (i)

∫

Γ

T (m)
∣

∣

Γβ
ni dΓ . (5.37)

Note that q̄
(ir)
i equals q̄

(i)
i , as the continuity of the fluxes across the interface is maintained

and therefore their averages remain the same.

Once averaged temperature gradients T̄
(i)
,i and T̄

(ir)
,i due to uniform far fields T

(∗)
,j are

evaluated, dilute concentration tensors 0D̄
(i)
ij and 0D̄

(ir)
ij can be introduced, linking the in-

clusion fields to the far fields, Eq. (4.30).

5.2.3 Apparent Conductivities

It is instructive to consider the temperature distribution along a “trajectory” of the heat

flux, as schematically depicted in Fig. 5.11 by a dashed–dotted line. The dashed line in

the generic temperature vs. position diagram indicates the actual temperature variation

along s in the presence of imperfect interfaces. At large distances from the inclusion

the local temperature gradient in the matrix approaches the far field gradient, T
(∗)
,i . The

temperature gaps at the interface Γβ are clearly evident; according to Eq. (5.20) they

are proportional to the flux across the interface. Within the inclusion, the temperature

distribution that corresponds to the apparent gradient and accordingly includes the effects

of the temperature jumps at the interfaces, is shown as a solid line. Figure 5.11 also

provides a qualitative picture for the size effect mentioned in Section 5.1: With decreasing

size of the inclusion the effects of interfacial temperature jumps on the apparent thermal

gradient, T̄
(ir)
,i , increase until they totally overwhelm the inclusion’s contribution T̄

(i)
,i .

The replacement operation is motivated by Eq. (5.20), which states that the heat flux

is continuous across the interface. Accordingly, the volume averaged flux of the original

inclusion and that of the replacement inclusion equal, q̄
(i)
i = q̄

(ir)
i . This flux balance can be
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recast by using Eqs. (4.2) and (5.13) to give

K
(i)
ik

0D̄
(i)
kj = K̄

(ir)
ik

0D̄
(ir)
kj , (5.38)

compare also Eq. (5.21). The reduced conductivity can be treated like a phase averaged

quantity and can be determined once 0D̄
(i)
ij and 0D̄

(ir)
ij have been evaluated. Note that

Eq. (5.38) is based on volume averages, so that the perfectly bonded replacement inclusion

usually does not give rise to exactly the same matrix temperatures at and close to the

interface as does the imperfectly bonded inclusion.

5.2.4 Some Remarks

Approximations of the dilute concentration tensors, 0D̄
(i)
ij and 0D̄

(ir)
ij , can be obtained by

means of any method that provides estimates of the interfacial temperatures T (m)|Γβ
and

T (i)|Γβ
and allows for modeling sufficiently large matrix volumes so the set up can be

treated as “dilute” for practical purposes. Choices that fulfill the two requirements are

typical engineering methods such as the FEM or Boundary Element Methods.

Note that the conductivity of the replacement inclusion can be unsymmetric in cases

where the inclusion shape, the distribution of the interface parameter, and the (anisotropic)

material behavior do not share the same axes of symmetry. Because physically meaningful

conductivity tensors must be symmetric ?, the interpretation and role of the apparent

conductivity of inhomogeneities with imperfect interfaces require some comment.

The root of the violation of the symmetry of K
(ir)
ij lies in Eq. (5.38), where the averaged

flux in the actual inclusion, q̄
(i)
i , is related to a possibly incompatible averaged gradient

field T̄
(ir)
,i to give

q̄
(i)
i = −K̄

(ir)
ij T̄

(ir)
,j . (5.39)

For Eq. (5.39) to be satisfied, an unsymmetric K̄
(ir)
ij may be required.

This behavior, however, does not contradict physically reasonable behavior because K̄
(ir)
ij

is shorthand for the expression K
(i)
ik

0D̄
(i)
kl

0D̄
(ir)
lj

−1
, compare Eq. (5.38), and describes heat

transport processes that may be more complex than heat diffusion through a homogeneous

solid. Note that — even though K̄
(ir)
ij in general is not symmetric — symmetry relations

of general nature, which are discussed in the following section, still are satisfied.



CHAPTER 5. SINGLE INCLUSION PROBLEMS 76

5.3 Symmetry Relations

Phase averaged temperature gradient concentration tensors are not necessarily symmetric,

i.e. D̄ij 6= D̄ji in general. By arguing along the same lines as in ? it can be proven, however,

that the expressions (K
(i)
ij −K

(m)
ij )0D̄

(i)
jk for perfectly bonded inclusions and (K

(ir)
ij −K

(m)
ij )0D̄

(ir)
jk

for perfectly bonded replacement inclusions must always be symmetric, provided the cor-

responding dilute concentration tensors are exact.

For the proof a heterogeneous body of volume V of conductivityK ij(xi) and imperfectly

bonded constituents which is sequentially subjected to two different temperature fields

on its external surface Γ denoted by T (∗)
∣

∣

Γ
and T́ (∗)

∣

∣

∣

Γ
, respectively, is considered. The

exact temperature distributions within the body are denoted by T (xi) and T́ (xi), and the

associated local fields are denoted by T ,i(xi), T́ ,i(xi) and qi(xi), q́i(xi).

The reciprocal theorem (see ? for elasticity) states that

∫

V

qi(~x) T́ ,i(~x) dV =

∫

V

q́i(~x) T ,i(~x) dV , (5.40)

and by using Fourier’s law (Eq. (4.2)) can be recast into

∫

V

Kij(~x) T ,j(~x) T́ ,i(~x) dV =

∫

V

Kij(~x) T́ ,j(~x) T ,i(~x) dV . (5.41)

Equation (5.41) shows that the reciprocal theorem only holds for symmetric conductivities1

i.e. Kij (~x) =Kji (~x).

If, and only if, the boundary conditions are homogeneous Eq. (5.40) can be expressed

in terms of phase averaged quantities ?, yielding

q
(∗)
i T́

(∗)

,i = q́
(∗)
i T

(∗)
,i . (5.42)

The volume averaged fluxes and the total averaged temperature gradients (including contri-

butions due to interfacial temperature gaps) can be split into phase averaged contributions

?

q
(∗)
i = (1 − ξ) q̄

(m)
i + ξ q̄

(i)
i , (5.43)

T
(∗)
,i = (1 − ξ) T̄

(m)
,i + ξ T̄

(i)
,i +

1

V

∫

Γ

∆T |Γβ
ni dΓ , (5.44)

= (1 − ξ) T̄
(m)
,i + ξ T̄

(ir)
,i , (5.45)

1If ai and bi are two first rank tensors, then Kij ai bj = Kij aj bi is only fulfilled, if Kij = Kji.
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Equation (5.43) allows to recast Eq. (5.42) into the following form

[

(1 − ξ) q̄
(m)
i + ξ q̄

(i)
i

]

T́
(∗)

,i =
[

(1 − ξ) ´̄q
(m)
i + ξ ´̄q

(i)
i

]

T
(∗)
,i , (5.46)

and expressing the phase averaged fluxes by the respective conductivities and gradients

(Fourier’s law) gives

−
[

(1 − ξ)K
(m)
ij T̄

(m)
,j + ξK

(i)
ij T̄

(i)
,j

]

T́
(∗)

,i = −

[

(1 − ξ)K
(m)
ij

´̄T
(m)

,j + ξK
(i)
ij

´̄T
(i)

,j

]

T
(∗)
,i (5.47)

Finally, the mean field relations (Eq. (5.45))are used again, by replacing (1 − ξ)T̄
(m)
,i with

T
(∗)
,i −ξT̄

(ir)
,i . Additionally T̄

(i)
,i and T̄

(ir)
,i are replaced by 0D̄

(i)
ij T

(∗)
,j and 0D̄

(ir)
ij T

(∗)
,j , respectively.

The following relation is then obtained for the left hand side of Eq. (5.47)

−K
(m)
ij T́

(∗)

,i T
(∗)
,j − ξ

(

K
(i)
ij

0D̄
(i)
jk −K

(m)
ij

0D̄
(ir)
jk

)

T
(∗)
,k T́

(∗)

,i (5.48)

and for the right hand side of Eq. (5.47)

−K
(m)
ij T

(∗)
,i T́

(∗)

,j − ξ
(

K
(i)
ij

0D̄
(i)
jk −K

(m)
ij

0D̄
(ir)
jk

)

T́
(∗)

,k T
(∗)
,i (5.49)

Comparing the right hand terms of Eqs. (5.48) and (5.49) reveals that the tensorial

expression (K
(i)
ik

0D̄
(i)
kj −K

(m)
ik

0D̄
(ir)
kj ) must be diagonally symmetric. For the case of perfectly

bonded constituents 0D̄
(ir)
ij equals 0D̄

(i)
ij and the symmetry condition reduces to (K

(i)
ik −

K
(m)
ik ) 0D̄

(i)
kj , which for the elastic case is derived in ?. For the case of imperfectly bonded

constituents the symmetry condition can be reduced to (K̄
(ir)
ik −K

(m)
ik ) 0D̄

(ir)
kj , using Eq. (5.38).



Chapter 6

Some Results for Single Inclusion

Problems

Even though the ellipsoid is a versatile geometry, covering the range from thin discs to

long cylinders, for many configurations the approximation of actual inclusions by means

of ellipsoidal inclusion shapes is not satisfactory. For the investigated carbon–copper com-

posite a typical fiber has a circular cross–section of constant size and is perfectly straight

and chopping as well as fiber breaking during the hot pressing process leaves end faces

at right angles to the fiber axis (Figs. 3.1 and 3.4). Because of the moderate fiber aspect

ratios (Fig. 3.3) cylinders describe the actual fiber shape much better than spheroids of

the same aspect ratio.

In this chapter single, transversally isotropic cylinders embedded in an isotropic mat-

rix material of infinite extent are considered. Averaged dilute concentration tensors are

evaluated for the case of perfectly bonded cylinders. A parametric study is carried out

on the influence of the cylinders’ aspect ratios and the conductivities of the configuration.

The results are provided in terms of shape factor functions, indicating the deviation of the

averaged concentration tensor of a cylinder from the concentration tensor of a spheroidal

inclusion that has the same aspect ratio (a1/a2), volume, and conductive properties. The

latter is referred to as the “corresponding spheroid”. For the case of imperfectly bonded

cylinders, averaged reduced conductivities and the corresponding averaged dilute concen-

tration tensors (see Section 5.2) are estimated for the specific case of carbon fibers in a

copper matrix (see Chapter 3 for material data).

78
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6.1 Perfectly Bonded Cylinders

A single cylinder in an infinite matrix subjected to homogeneous far field gradients is

considered. Finding the local temperature fields, T (i)(xi) and T (m)(xi), and the associated

microfields poses a sophisticated boundary value problem. It requires solving three second

order differential equations of coupled non constant coefficients ?, for which Bessel functions

are needed. No exact analytical solutions have been given yet. Approximate solutions are

derived in ? for a far field gradient applied along the cylinder axis. That solution applies

only for the specific case of isotropic cylinders embedded in matrix materials of lower

conductivity, furthermore a fit parameter is required.

In the following the FEM is used to solve the three dimensional boundary value problem

from above and a parametric study is carried out. Cylinder with aspect ratios of 1, 2, 5, 10,

and 15 are investigated. The studied ratios of axial fiber conductivity over matrix conduct-

ivity, K
(i)
11/K

(m), range from 0.01 to 100. Three different ratios of axial fiber conductivity

over transverse fiber conductivity are studied, isotropic fibers (K
(i)
11 =K

(i)
22),K

(i)
11/K

(i)
22 = 10,

and K
(i)
11/K

(i)
22 = 100. The chosen parameters cover a wide range of technically relevant

composite materials. If results are desired of a configuration that does not match any of

the investigated set of parameters, interpolation can be used.

6.1.1 Shape Factor Tensor

The results are given in terms of a cylinder–spheroid shape factor tensor, ēc
ij, which is

defined as

T̄
(ic)
,i = ēc

ijT
(is)
,j , (6.1)

where T̄
(ic)
,i and T̄

(is)
,i are the phase averaged temperature gradient fields due to an applied

far field gradient T
(∗)
,i in cylinders and corresponding spheroids, respectively. The off–

diagonal terms of this shape factor tensor are zero, i.e. ēc
ij = 0 for i 6= j. From Eq. (6.1)

the relationship between the averaged dilute concentration tensor of a cylindrical inclusion,
0D̄

(ic)
ij , and that of a corresponding spheroid, 0D

(is)
ij , can be written as

0D̄
(ic)
ij = ēc

ik
0D

(is)
kj , (6.2)

where 0D
(is)
ij is given by Eq. (5.4). For the case of a perfect thermal interface the inclusion

size does not influence the concentration tensors and the fiber geometry enters ēc
ii only via

the fiber aspect ratio. Note also that only the ”contrast” between the conductivities of
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inclusion and matrix, K
(i)
ij /K

(m)
ij (no sum on i and j), influences the concentration tensors,

but the absolute values of the conductivities do not.

6.1.2 Results and Discussion

The studied configurations are axisymmetric and therefore the shape factor tensors have

transversally isotropic symmetry, i.e. ēc
11 6= ēc

22 = ēc
33. The evaluated entries of the shape

factor tensors are presented graphically in Fig. 6.1. The three graphs on the left column

of Fig. 6.1 show the axial shape factors, ēc
11, for the three investigated cases of transversal

isotropy of the inclusion material. The graphs on the right hand side in Fig. 6.1 pertain to

the corresponding radial shape factors, ēc
22.

Axial Shape Factor

The behavior of the axial shape factor, ēc
11, when plotted as functions of the conduction

contrast K
(i)
11/K

(m) can be divided in two distinctive regions (left column, Fig. 6.1). If the

axial conductivity of the inclusionK
(i)
11 is smaller than the matrix conductivity the averaged

temperature gradients of cylinders are larger than those of the corresponding spheroids,

T̄
(ic)
,1 > T

(is)
,1 . The shape factors in this range are less than 1.1 for all investigated cases

and only a minor dependence of the shape factors on the fiber’s anisotropy described by

K
(i)
11/K

(i)
22 is observed. It is worth noting that the largest deviation of the axial temperature

gradient of cylinder and corresponding spheroid is observed for an aspect ratio of approx-

imately a1/a2 = 2.

If the axial conductivity of the fiber exceeds the matrix conductivity, K
(i)
11 > K(m), a pro-

nounced dependence of the axial shape factor on the aspect ratio a1/a2, on the anisotropy

of the inclusion, K
(i)
11/K

(i)
22 , and on the conductive contrast is evident. This behavior of

the axial shape factor can be interpreted in terms of two counteracting effects (Fig. 6.2).

The end faces of the cylinder are oriented perpendicularly to the applied far field gradient,

T
(∗)
,1 , and therefore capture a larger heat flux than do corresponding spheroids. Especially

for small aspect ratios this end face effect dominates and the axial temperature gradients

in the cylinders are larger than those of in the corresponding spheroids. With increasing

aspect ratio the relative area of the end face (in terms of total surface area) decreases.

Accordingly the importance of the end face effect decreases, too, while at the same time

the heat exchange via the side faces becomes more important. In the case of cylinders

the heat which is entering/leaving via the side faces must be transported radially towards
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Figure 6.1: Axial shape factor ēc
11 (left) and radial shape factor ēc

22 (right) for cylindrical

fibers of conduction anisotropies K
(i)
11/K

(i)
22 = 1, 10, and 100 plotted over the conductive

contrast K
(i)
11/K

(m). The curves are parameterized with respect to the fiber aspect ratio
a1/a2, which takes the values of 1, 2, 5, and 10.
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x1

x2

x1

x2

x1

x2

K
(i)
22 < K(m)K

(i)
11 > K(m)

T
(∗)
,1

T
(∗)
,2

Figure 6.2: Sketch of two cylinders withK
(i)
11 >K(m) subjected to an axial far field gradient

indicating that their end faces capture a larger heat flux than the ends of a spheroids of
equal volume, aspect ratio, and conduction properties (left). Sketch of a cylinder with

K
(i)
22 <K(m) subjected to a transverse far field gradient indicating that heat can leave the

resistive cylinder through the end face (right).

the inclusion core/side face in order to exploit the whole axial cross section for flowing

axially inside the fiber (Fig. 6.2). Accordingly, small transverse inclusion conductivities

yield small averaged axial gradients when compared to corresponding spheroids. Note that

for spheroidal inclusion geometries the transversal conductivity has no influence on axial

temperature gradients ? as the Eshelby property holds.

Radial Shape Factors

The deviations between averaged temperature fields of cylinders and those of corresponding

spheroids for applied far field gradients in transverse direction, T
(∗)
,2 , are less pronounced

compared to the axial case (right column, Fig. 6.1). If the transverse conductivity of a

cylinder,K
(i)
22 , is lower than that of the matrix material there is almost no dependence of the
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radial shape factors, ēc
22, on the aspect ratio for aspect ratios greater than five. However for

smaller aspect ratios, a marked dependence is observed. Once again, two mechanisms can

be invoked for an explanation. Heat entering the transversely poorly conducting cylinders

through the side face can leave the cylinder through the end face to reach the less resistive

matrix material. The influence of this effect, again, goes in hand with the fraction of the

end face of the total surface. Due to this mechanism composites reinforced by cylindrical

discs will exhibit superior conductive performance when compared to a composite made up

of corresponding spheroids. For intermediate aspect ratios larger gradients are induced in

resistive cylinders than in corresponding spheroids. This is due to a shape driven end face

effect as the needle–like end face regions of spheroids lead to lower resistivities compared

to cylinders. If the aspect ratio is increased further, end face effects become less dominant

and the radial shape factors function approaches unity from below.

Some Remarks on the Shape Factor Tensor

Shape factors greater than unity indicate that cylinders “attract more heat” than corres-

ponding spheroids, i.e. T̄
(ic)
,i > T

(is)
,i , and accordingly cylinders show better conductive per-

formance than corresponding spheroids. However, comparing two geometrically identical

inclusions of different conductivity, K
(i1)
ij > K

(i2)
ij , shows that larger gradients are induced

in the inclusion of lower conductivity, i.e. T̄
(i2)
,i > T̄

(i1)
,i . Nevertheless, inclusion i1 performs

better than inclusion i2.

This apparent paradox can be easily resolved by noting that for assessing and comparing

various inclusions with respect to heat conduction the concentration tensors and conduct-

ivities may not be studied isolated. The product D
(i)
ik K

(i)
kj determines the conductive

properties of inclusions with respect to each other (compare also Eq. (4.22)).

Finite Element Results

In Figs. 6.3 to 6.5 the results pertaining to K
(i)
11/K

(i)
22 = 1, 10, and 100 are collected. The

plots give insight into how spheroids behave (compare Eq. (5.4)) for the chosen range of

parameters. Additionally the results of the unit cell calculations and the shape factors are

provided. The results are organized in three sets corresponding to the three investigated

ratios ofK
(i)
11/K

(i)
22 (top left of each diagram) and each set consists of five diagrams relating

to the five discrete aspect ratios (top right of each diagram). The horizontal axis shows the

conductive contrast K
(i)
11/K

(m). The vertical axis on the left relates to averaged inclusion
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gradients due to far field gradients of unit value and the vertical axis on the right relates

to the shape factors.
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Figure 6.5: Collected results of averaged inclusion gradients of cylinders and corresponding
spheroids due applied far field gradients of unit value along x1 and x2 (bold lines and
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6.2 Imperfectly Bonded Cylinders

In this section single, imperfectly bonded fibers of cylindrical shape embedded in an iso-

tropic matrix of (practically) infinite extent are studied. Different cases of interfacial

degradation are accounted for, see Table 3.4. Additionally, results pertaining to dilute

spheroids as obtained with the analytical replacement operation (Section 5.1) are provided.

6.2.1 “Dilute” Unit Cell Model

As the principal axes of the fiber material and of the distributions of the interface parameter

coincide with the rotational axis of the cylinders the modeling expense reduces significantly

because symmetry planes with special properties can be identified, see Section 4.3. Only

one eighth of the inclusion volume and associated matrix volume needs to be modeled.

Due to the transversal isotropy of the modeled carbon fibers it is sufficient to investigate

the resulting temperature distributions along the axial direction, x1, and one transverse

direction, x2 or x3. The size of the unit cell is chosen such that Li> 15 × ai, the cylinder

volume fraction being less than 0.2%. The inclusion material and the surrounding matrix

material are meshed with ten node tetrahedral elements. In the interfacial area mesh

refinement is carried out so the element edge length is approximately 1/12 × a2, further

mesh refinement is carried out where end face and side face meet, the element length there

is approximately 1/20 ×a2. The mesh of the matrix block is coarsened towards the outer

perimeter. Along the interface the mesh is non–conformal, appropriate contact/target

elements are used to capture the effects of the imperfect thermal interface as described in

Eq. (5.20).

The numerical evaluation of the interfacial surface temperatures for obtaining the phase

averaged inclusion temperature gradient, T̄
(i)
,i , and the apparent temperature gradient, T̄

(ir)
,i ,

according to Eqs. (5.34) and (5.37), respectively, turns out to be fairly simple for the case of

cylinders. For uniform far fields along the axial direction, x1, the problem is axisymmetric,

(Fig. 6.6b, left row). The temperatures on the side faces (Fig. 6.6b, bottom left) do not

contribute to T̄
(i)
,1 and T̄

(ir)
,1 . Note that ∆T 2 approaches zero as x1 → 0, because there is

no radial heat flux in the symmetry plane, i.e. no heat passes through the side faces. The

temperatures at the top face can be integrated directly as the normal vector is aligned

with the far field gradient. Note that ∆T 1 is greatest on the symmetry axis x1 (Fig. 6.6b,

top left). For a uniform far field along the transverse direction, x2, the temperatures at

the end face and the midplane need not be considered as these faces are parallel to the
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Figure 6.6: (a) Sketch of the employed symmetric unit cell with the interfacial temperatures
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temperature gaps along the top face due to applied far field gradients along x1 (top, left)
and x2 (top, right) and the side face due to applied far field gradients along x1 (bottom,
left) and x2 (bottom, right).

far field gradient1. Note that ∆T 1 approaches zero as x2 → 0 due to symmetry (Fig. 6.6b,

top right). For the evaluation of T̄
(i)
,2 and T̄

(ir)
,2 a cosine variation of the temperatures is

assumed, i.e.

T (r)
∣

∣

∣

Γβ

= pT (r)
∣

∣

∣

Γβ

n2 , (6.3)

with pT (r)
∣

∣

∣

Γβ

being the temperatures at (0 ≤ x1 ≤ a1,a2, 0), see Fig. 6.6, bottom right. Dir-

ect evaluation of the averaged inclusion gradient field, T̄
(i)
,2 , by means of volume averaging

showed no significant discrepancies from the above surface based evaluation procedure.

The temperature profile is approximated to be constant between two nodes, the con-

stant temperature in between equalling the average of the two nodal temperatures. Due

1Employing the divergence theorem for the top and bottom face yields T̄
(ir)
,1 6= 0 and T̄

(i)
,1 6= 0. This is

due to the employed model geometry which misses the “second” half of the fiber with mirror–symmetrical

gradient fields, that cancel the overall averages T̄
(i)
,1 and T̄

(ir)
,1 .
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to the relatively fine mesh in the end face–side face region this piecewise constant approx-

imation of the temperature field gives sufficient accuracy, as was shown by a comparison

of T̄
(i)
,1 evaluated by means of volume averaging and the divergence theorem.

6.2.2 Results

Results are provided for carbon fibers embedded in copper. The corresponding material

properties for carbon and copper are given in Chapter 3, Table 3.1 and Table 3.2, respect-

ively. Six cases of different interfacial scenarios, C1 to C6, are accounted for; these are

defined in Table 3.4, Chapter 3. Cylinders with discrete aspect ratios of a1/a2 = 2, 5, 10,

and 15 are investigated. Corresponding results for spheroidal inclusions are provided for

a1/a2 = 5 and 10, as these aspect ratios are employed in unit cell investigations pertain-

ing to non–dilute volume fractions (Chapter 8). Note that “pseudo” end faces have been

allocated to the spheroids in order to model selective failure of the “end face” interface.

They are chosen such that the ratio of end face area over side face area of both cylinders

and spheroids are the same.
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Table 6.1: Reduced conductivities, K̄
(ir)
ii , and corresponding dilute concentration tensors,

0D̄
(m,ir)
ii , of a carbon fiber (a1/a2 = 2) embedded in a copper matrix (see Tables 3.1 and 3.2

for material data) for different interfacial scenarios (Table 3.4).

K
(i)
22 = 10 K

(i)
22 = 100

case 0D̄
(m,ir)
11

0D̄
(m,ir)
22 K̄

(ir)
11 K̄

(ir)
22

0D̄
(m,ir)
11

0D̄
(m,ir)
22 K̄

(ir)
11 K̄

(ir)
22

C1 0.7219 1.6693 1000 10 0.7473 1.4142 1000 100

C2 1.2483 1.6920 161.7 10 1.1735 1.4310 385.9 100

C3 1.3035 1.7320 2.7 0.7 1.3035 1.7319 2.7 0.7

cy
li
n
d
er

s

C4 1.3050 1.7320 1.4 0.6 1.3035 1.7319 1.4 0.6

C5 1.2873 1.7202 25.8 4.1 1.2872 1.7122 26.4 6.6

C6 1.3013 1.7202 13.2 3.9 1.3010 1.7127 13.9 6.1

Table 6.2: Reduced conductivities, K̄
(ir)
ii , and corresponding dilute concentration tensors,

0D̄
(m,ir)
ii , of a carbon fiber (a1/a2 = 5) embedded in a copper matrix (see Tables 3.1 and 3.2

for material data) for different interfacial scenarios (Table 3.4).

K
(i)
22 = 10 K

(i)
22 = 100

case 0D̄
(m,ir)
11

0D̄
(m,ir)
22 K̄

(ir)
11 K̄

(ir)
22

0D̄
(m,ir)
11

0D̄
(m,ir)
22 K̄

(ir)
11 K̄

(ir)
22

C1 0.8502 1.8139 1000 10 0.8757 1.4959 1000 100

C2 1.0855 1.8274 397.8 10 1.0494 1.5034 693.9 100

C3 1.1253 1.8733 12.8 0.6 1.1253 1.8731 12.9 0.7

cy
li
n
d
er

s

C4 1.1265 1.8733 9.6 0.6 1.1266 1.8732 9.7 0.6

C5 1.1092 1.8582 105.6 4.0 1.1088 1.8483 112.2 6.3

C6 1.1205 1.8581 78.4 3.9 1.1199 1.8484 85.3 6.1

C1 0.9097 1.8484 1000 10 0.9097 1.5173 1000 100

C2 0.9131 1.8484 973.4 10 0.9131 1.5174 973.4 99.9

C3 1.0572 1.8914 11.4 0.6 1.0572 1.8912 11.4 0.7

sp
h
er

oi
d
s

C4 1.0572 1.8914 11.2 0.6 1.0572 1.8912 11.2 0.7

C5 1.0413 1.8756 104.1 4.0 1.0413 1.8650 104.1 6.3

C6 1.0415 1.8756 103 4.0 1.0415 1.8650 103 6.3



CHAPTER 6. SOME RESULTS FOR SINGLE INCLUSION PROBLEMS 92

Table 6.3: Reduced conductivities, K̄
(ir)
ii , and corresponding dilute concentration tensors,

0D̄
(m,ir)
ii , of a carbon fiber (a1/a2 = 10) embedded in a copper matrix (see Tables 3.1 and

3.2 for material data) for different interfacial scenarios (Table 3.4).

K
(i)
22 = 10 K

(i)
22 = 100

case 0D̄
(m,ir)
11

0D̄
(m,ir)
22 K̄

(ir)
11 K̄

(ir)
22

0D̄
(m,ir)
11

0D̄
(m,ir)
22 K̄

(ir)
11 K̄

(ir)
22

C1 0.9189 1.8770 1000 10 0.9350 1.5295 1000 100

C2 1.0376 1.8842 639.0 10 1.0214 1.5333 841.3 100

C3 1.0622 1.9324 44.5 0.6 1.0622 1.9322 45.0 0.7

cy
li
n
d
er

s

C4 1.0634 1.9324 38.5 0.6 1.0633 1.9322 39.0 0.7

C5 1.0482 1.9157 281.5 4.0 1.0479 1.9050 300.2 6.2

C6 1.0567 1.9157 245.0 4.0 1.0561 1.9051 265.6 6.2

C1 0.9652 1.9093 1000 10 0.9652 1.5475 1000 100

C2 0.9654 1.9093 995.7 10 0.9654 1.5475 995.7 100

C3 1.0182 1.9570 42.3 0.6 1.0182 1.9568 42.3 0.7

sp
h
er

oi
d
s

C4 1.0182 1.9570 42.3 0.6 1.0182 1.9568 42.3 0.7

C5 1.0033 1.9356 302.6 4.0 1.0033 1.9278 302.6 6.3

C6 1.0033 1.9356 302.6 4.0 1.0033 1.9278 302.2 6.3

Table 6.4: Reduced conductivities, K̄
(ir)
ii , and corresponding dilute concentration tensors,

0D̄
(m,ir)
ii , of a carbon fiber (a1/a2 = 15) embedded in a copper matrix (see Tables 3.1 and

3.2 for material data) for different interfacial scenarios (Table 3.4).

K
(i)
22 = 10 K

(i)
22 = 100

case 0D̄
(m,ir)
11

0D̄
(m,ir)
22 K̄

(ir)
11 K̄

(ir)
22

0D̄
(m,ir)
11

0D̄
(m,ir)
22 K̄

(ir)
11 K̄

(ir)
22

C1 0.9450 1.8994 1000 10 0.956 1.5411 1000 100

C2 1.0240 1.9041 752.3 10 1.0136 1.5437 893.2 100

C3 1.0408 1.9531 91.0 0.6 1.0408 1.9529 92.1 0.7

cy
li
n
d
er

s

C4 1.0419 1.9531 82.9 0.6 1.0419 1.9529 83.9 0.7

C5 1.0297 1.9359 438.0 4.0 1.0296 1.9249 460.0 6.2

C6 1.0361 1.9359 403.7 4.0 1.0357 1.9249 429.4 6.2
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In Fig. 6.7 temperature profiles due to applied far field gradients along x1 (left) and x2

(right) for a cylindrical carbon fiber (a1/a2 = 5, K
(i)
11 = 1000 W/mK, K

(i)
22 = 100 W/mK)

embedded in a copper matrix (K(m) = 360 W/mK) for scenarios C1, C2, C5 and C6 are

plotted. Based on these curves the corresponding inclusion gradients T̄
(i)
,i and T̄

(ir)
,i as well

as the reduced conductivities are obtained (compare, Table 6.2). Note that for scenario C1

the interfacial matrix and inclusion temperatures coincide. For scenario C2 the side face

temperatures coincide, while the end face temperatures gap apart, see Fig. 6.7 left and

right, respectively.

In Fig. 6.8 contour plots of the inclusion gradients, T
(i)
,1 , due to an applied far field

gradient of unit value along x1 are collected for a carbon fibers (a1/a2 = 5, K
(i)
11 = 1000

W/mK, K
(i)
22 = 100 W/mK) embedded in a copper matrix (K (m) = 360 W/mK), that

pertain to all six investigated scenarios of interfacial degradation. With increasing interface

resistance (decreasing interface parameter β) the inclusion gradients, T
(i)
,1 , decrease, as the
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Figure 6.7: Temperature profiles on the end face (left) and side face (right) due to applied
far field gradients of unit value along x1 and x2, respectively, for a carbon fiber (a1/a2 = 5,

K
(i)
11 = 1000 W/mK,K

(i)
22 = 100 W/mK) embedded in a copper matrix (K (m) = 360 W/mK)

for scenarios C1, C2, C5, and C6.
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Figure 6.8: Inclusion temperature gradients, T
(i)
,1 , due to an applied unit far field gradient

T
(∗)
,1 predicted for a carbon fiber (a1/a2 = 5, K

(i)
11 = 1000 W/mK, K

(i)
22 = 100 W/mK)

embedded in a copper matrix (K (m) = 360 W/mK) for the six investigated scenarios of
interfacial degradation (Table 3.4).

flux passing through the interface is reduced. The corresponding gradients of the perfectly

bonded replacement inclusion, T
(ir)
,1 , increase (compare Table 6.2) at the same time.



Chapter 7

Results for Aligned Carbon Fibers

In this chapter numerical unit cell studies are presented which focus on aligned continuously

reinforced carbon–copper composites and aligned short fiber reinforced carbon–copper com-

posites.

In the case of aligned continuous fibers regular fiber arrangements as well as random

fiber arrangements are investigated. Arrangements of aligned short fibers are studied

with respect to the influence of the axial fiber offset and the degree of axial staggering

on the effective conductivity. For both, continuous fibers and staggered short fibers, the

influence of thermal barriers at the fiber–matrix interfaces on the effective conductivity is

investigated by means of appropriate thermal interface elements.

For the special case of perfect thermal interfaces, variational techniques are available

for predicting the effective transverse conductivity of continuously reinforced composites.

HS bounds ? are classical variational bounds which can be linked to microgeometries

that can be thought of as tightly packed, randomly placed composite cylinders of varying

diameters (the cores of the composite cylinders consist of the reinforcement, and the matrix

is placed in a concentric shell of the appropriate thickness to give the desired volume

fraction). When the matrix conductivity is larger than the transverse fiber conductivity

for two–phase materials the Mori–Tanaka predictions coincide with the upper HS bounds.

Tighter bounds on the effective conductivity of composites reinforced with continuous

aligned fibers can be given in terms of three point (3P) bounds ??. Those used in the

present study apply to materials in which the reinforcements take the form of randomly

positioned aligned non–overlapping circular cylinders of equal radius.

All calculations are carried out for carbon–copper composites (see Chapter 3 for ma-

95
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terial properties) with a fiber volume fraction ξ(i) = 0.4. The short fibers are modelled as

cylinders with an aspect ratio of 10. The unit cell calculations were carried out with the

finite element program ANSYS 5.7 (ANSYS, Inc., Canonsburg, PA). The matrix mesh is

chosen to be finer than the fiber mesh taking into account the fact that the temperature

gradients in the matrix are higher than those in the fibers. The global element length of

of the matrix mesh is one sixth of the fiber radius, while the fiber mesh size is one fifth of

the fiber radius.

The fibers are assumed to be aligned with x1.
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7.1 Aligned Continuous Fibers

The investigated microgeometries of unidirectional, continuous fibers embedded in a matrix

comprise square, hexagonal and rectangular arrangements and are referred to as regular

arrangements, see Fig. 7.1. Clearly these regular arrangements do not fully represent ”real”

composites. Improved models can be obtained with multi–fiber unit cells in which fiber

positions are selected randomly or taken from micrographs. In the present study a unit cell

with pseudo–random fiber positions is used (Fig. 7.2) which is based on the arrangement

used in ? but with a slightly reduced fiber radius to meet the volume fraction requirement.

The unit cell models for continuously fiber reinforced carbon–copper composites focus on

the transverse behavior as the axial conductivity coincides with the upper Wiener bound,

Eq. (2.9). Accordingly, for a two phase composite with continuous, aligned orthotropic

fibers in an isotropic matrix material the effective axial thermal conductivity takes the

form

K
(∗)
11 = (1 − ξ(i))K(m) + ξ(i)K

(i)
11 . (7.1)

In order to determine the effective transverse conductivity of composites reinforced with

aligned continuous fibers it is sufficient to model a representative cross–section with two

dimensional unit cells.

���

���
����� ��	
�

Figure 7.1: Two dimensional unit cell geometries of aligned continuously reinforced com-
posites for hexagonal (a) and rectangular (b) arrangements.
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Effective axial conductivity (K
(i)
11 >K(m))

The effective axial conductivity is neither influenced by the interface parameter β nor by

the fiber arrangement and can be calculated analytically with Eq. (7.1), yielding a con-

ductivity of K
(∗)
11 = 616 W/mK in axial direction.

The resulting temperature gradients in the constituents are uniform (coupling of temper-

ature gradients) and only the x1–component is nonzero, equaling the far field temperature

gradient applied along the x1–axis, T
(∗)
,1 = ∆T 1/L1. The heat flux is different in matrix and

fibers, but uniform within each constituent phase and linearly coupled to the temperature

gradient by the respective phase conductivity.

Effective transverse conductivity (K
(i)
22 ,K

(i)
33 <K(m))

Perfect Interface In a first step the effective transverse conductivity is studied for

perfect thermal contact (Table 7.1). The random arrangement of 60 fibers obeys the

3P–bounds, which are violated by the square and hexagonal arrangements, which lack

”randomness”. However, the hexagonal and square arrangements obey the HS bounds

and as the mesh is refined they approach the upper HS bound. The Wiener bounds are

provided as well, with the upper and lower bound differing by more than 400 W/mK.

The hexagonal and the square arrangements show transversely isotropic effective conduct-

ivities1 while the random arrangement shows an orthotropic behavior that differs minimally

from transverse isotropy.

The hexagonal arrangement has a more balanced temperature gradient distribution than

the square arrangement. The ratio of maximum local temperature gradient over the ap-

plied far field gradient of the square arrangement is approximately 5% higher than the

corresponding ratio of the hexagonal arrangement.

The rectangular arrangements show orthotropic effective conductivities, the deviation from

transverse isotropy increases as the in–plane aspect ratio of the unit cell model increases.

As fibers move closer to each other with respect to the x3–direction, the effective con-

ductivity in x2–direction K
(∗)
22 is severely reduced because of the ever decreasing width of

the “bridges” of highly conducting matrix material, which forces increasing parts of the

overall heat flow to flow through poorly conducting fiber material. ”Bridges” of matrix

material which are aligned to the far field gradient are spots of local gradient (and flux)

concentration (Fig. 7.2).

1Note that the square arrangement exhibits orthotropic elastic behavior.
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x3

x2

Figure 7.2: Predicted distribution of temperature gradients T ,2 for random arrangement
of aligned continuous carbon fibers embedded in copper matrix under an applied far field

gradient of T
(∗)
,2 = 0.0562 K/m and symmetry BCs.

Thermal Barrier Interface The influence of the thermal interface is studied for the

square and a rectangular (L3/L2 = 0.6) arrangement. The interface conductance (β rfiber,

rfiber being the fiber radius) is varied from 10−3 W/mK to 107 W/mK, covering the range

of thermal interfaces from perfectly insulating interfaces to perfectly conducting interfaces.

Figure 7.3 shows the effective transverse conductivities predicted by the unit cell approach

as well as by a Mori–Tanaka theory for coated inclusions ?.

For small interface conductances the fibers are excluded from conducting heat. An in-

crease of the thermal interface conductance increases the effective transverse conductivity

of the composite because the fibers get more involved in the heat transfer. Only in the

intermediate range of interface conductance from 101 W/mK to 104 W/mK can significant

improvements in the effective conductivity be gained by improving the thermal interface.
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Table 7.1: Analytical and numerical predictions for the effective transverse conductivities

of aligned, continuously reinforced carbon–copper composites with perfect thermal contact

method arrangement K
(∗)
22 [W/mK] K

(∗)
33 [W/mK]

Wiener upper bound 616 616

Wiener lower bound 176.47 176.47

HS upper bound 227.23 227.23

HS lower bound 202.63 202.63

3P upper bound 225.49 225.49

3P lower bound 221.93 221.93

Unit cell hexagonal 227.22 227.22

square L3/L2=1 226.96 226.96

random (60 fibers) 225.46 225.44

rectangular L3/L2=0.9 223.47 230.25

rectangular L3/L2=0.8 219.1 233.79

rectangular L3/L2=0.7 213.22 237.8

rectangular L3/L2=0.6 204.43 242.52

For all interface conductances the unit cell predictions for the effective transverse conduct-

ivity of the square arrangement are slightly below the analytical Mori–Tanaka predictions,

which keep the character of an upper bound independently of the interface conductance.

The existence of a thermal interface has different impacts on the effective principal con-

ductivities of the investigated rectangular arrangement. For rectangles that are narrower

in x3–direction than in the x2–direction, the effective conductivity in x3–direction, K
(∗)
33 , is

less sensitive to the interface conductance than the effective conductivity in x2–direction,

K
(∗)
22 . A further reduction of the aspect ratio of the rectangle would further reduce the

width of the bridges of matrix material in between the cylinders. In combination with an

ideally insulating interface the effective conductivity in x2–direction would tend to zero as

the bridges of matrix material disappear.
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Figure 7.3: Predictions for the effective transverse conductivities of aligned continuously
reinforced carbon–copper composites versus the effective interface conductance based on
analytical and various unit cell approaches.

7.1.1 Summary – Aligned Continuous Fibers

For carbon–copper composites reinforced with aligned continuous fibers and ideal interfaces

it was shown for the transverse effective conductivities, that the unit cell results for regular

arrangements obey the HS bounds. A random unit cell consisting of 60 fibers was employed

additionally and was shown to obey the tighter 3P–bounds. The Wiener bounds were

provided as well, showing that they are too slack for practical use. A thermal interface

barrier has a severe impact on the effective transverse conductivity while the effective axial

conductivity is not affected. The investigation covered the range from perfectly insulating

interfaces to perfectly conducting interfaces.
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7.2 Aligned Staggered Short Fibers

7.2.1 Micro Arrangements

In addition to continuous fiber reinforced composites, periodic arrays of aligned short fibers

in a matrix are investigated.

Fiber aspect ratio, fiber volume fraction and two geometry parameters are sufficient to set

up the periodic micro topologies of staggered aligned short fibers ? which are investigated

(Fig. 7.4). The fiber aspect ratio (a1/a2 = 10) and the fiber volume fraction (ξ(i) = 0.4) are

kept constant, leaving two dimensionless parameters, α and δ, to describe the considered

periodic arrangements. The ratio of fiber–to–fiber offset in axial direction over fiber length,

a1 is denoted by α,

α =
L1 −a1

a1

, (7.2)

where L1 is the unit cell length in axial direction. As α decreases the fibers move axially

closer together. The limiting case of α = 0 represents continuous fibers.

The second geometry parameter δ defines the degree of stagger, which gives the axial

offset of one fiber compared to its four closest neighbors in radial direction (sshift).

δ =
2 sshift

L1

(7.3)

A nonstaggered arrangement is referred to as δ = 0.

All unit cells show mirror–symmetries with regard to reflections along the x2– and x3–axis

(transverse direction), while they tile the space by translation along the x1–axis (the axial

direction), see Fig. 7.4. Accordingly mixed BCs are used, i.e. periodic BCs for the faces

at x1 = 0 and x1 = L1 (periodic faces) and symmetry BCs for the remaining four faces

(symmetric faces).

Microtopolgies using δ = 0 and δ = 1, exhibit mirror symmetry with regards to reflection

along the x3 axis as well.

The investigated microgeometries (excluding the special arrangements of δ equaling

either zero or one and thus introducing a third set of symmetry–planes at z = 0, z =
1
2
L1, and z = L1) behave in such a way that under applied far field gradients along trans-

verse directions a heat flux in axial direction is induced in the unit cell due to constraining

the temperatures on the periodic faces. However, globally this heat flux is cancelled as a

mirror–symmetric unit cell (obviously containing the same information on the microgeo-

metry) under the same loading conditions would trigger off the same axial heat flux but
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Figure 7.4: Different staggered and nonstaggered arrangements of aligned short fibers
(a1/a2 =10) for an axial fiber offset of α = 0.25 (left). The geometry parameters δ and α,
which can be chosen to meet a prescribed degree of staggering and axial fiber offset (right).

in opposite direction.

7.2.2 Results for Aligned Short Fiber Reinforced Carbon Copper

Composites

Perfect interfaces The case of perfect thermal contact is investigated first. As an

estimate a standard and a hybrid standard Mori–Tanaka model for aligned spheroidal (E–
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Table 7.2: Analytical and numerical predictions for the effective conductivities of aligned,

short fiber reinforced carbon–copper composites

perfect thermal failure of end face

interface, C1 interface, C2

geometry– axial transv. axial transv.

parameters [W/mK] [W/mK] [W/mK] [W/mK]

E–MT/a 610.58 227.97 608.93 227.97

H–MT/a 605.75 228.73 554.97 228.57

α = 0.01; δ = 1 612.21 226.98 562.74 226.96

α = 0.8; δ = 1 603.24 228.62 563.95 228.37

α = 0.01; δ = 0 612.08 227.02 549.80 227.00

α = 0.8; δ = 0 522.44 242.09 474.46 241.98

MT/a) and aligned cylindrical fibers (H–MT/a), respectively, are used. The aspect ratio

of the fibers is 10. Corresponding dilute concentration tensors are listed in Section 6.2,

Table 6.3. The resulting overall conductivity tensors are transversally isotropic, with an

effective axial conductivity of 610.58 W/mK and 605.75 W/mK and an effective transverse

conductivity of 227.97 W/mK and 228.57 W/mK for spheroidal and cylindrical inclusions,

respectively (Table 7.2). Note that contrary to the unit cell method the Mori–Tanaka

predictions can only account for inclusion orientations but not for specific positions of

inclusions to each other. The predictions for spheroidal fibers are very close to those of

aligned continuous carbon fibers (α = 0), and the predictions for cylindrical fibers are only

slightly below those of spheroidal inclusions of the same aspect ratio.

A non–staggered arrangement (δ = 0) and a staggered arrangement (δ = 1) are invest-

igated as the fiber offset in axial direction is varied from α = 0.01 to α = 0.8.

For very small fiber offsets the effective axial conductivity for both investigated arrange-

ments is highest and approaches to the upper Wiener bound that pertains to continuously

reinforced fibers, while the effective transverse conductivity is the lowest. As the fiber off-

set is increased the two sets of arrangements exhibit different behavior (Table 7.2, Fig. 7.5

and Fig. 7.6).

The effective axial conductivities of micro arrangements described by δ = 0 decrease

steadily as the fiber offset is increased due to the increasing regions of relatively poorly
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Figure 7.5: Predicted effective axial conductivities for non staggered (δ = 0) and maximum

staggered (δ = 1) arrangements of aligned short fibers (ξ(i) = 0.4, a1/a2 = 10) for different
axial fiber offsets α; perfect thermal contact and failure of the end face interface (perfectly
insulating).

conductive matrix material (compared to the axial conductivity of the fibers) in between

the blocks of fibers. The staggered microgeometries (δ = 1) are much less affected by the

axial fiber offset α and maintain a higher effective axial conductivity than microgeometries

with δ = 0. This better axial ”performance” of staggered arrangements is due to the fact

that relatively poorly conducting matrix regions are bridged by highly conducting fibers.

A minimum of the effective axial conductivity is reached at α = 0.4. For larger axial fiber

offsets the effective axial conductivity increases again as the fibers move closer to each

other in radial direction to meet the volume fraction requirement, simultaneously reducing

the resistance for heat flowing through the fiber side faces into the next fiber.

Similar mechanisms govern the transverse effective behavior (note again that in the trans-

verse direction the matrix is the highly conductivity material), but the differences between

the effective conductivities of the two investigated microgeometries pertaining to δ = 0

and δ = 1 is less pronounced (Fig. 7.6).

Failed End Face Interfaces The influence of decohesion or lack of contact of the in-

terfaces at the fibers’ end faces, i.e. perfectly insulating interfaces, is also investigated.

The effective axial conductivity is reduced severely while the effective transverse conduct-
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Figure 7.6: Predicted effective transverse conductivities for non-staggered (δ = 0, dashed
line) and maximum staggered (δ = 1, solid line) arrangements of aligned short fibers

(ξ(i) = 0.4, a1/a2 = 10) for different axial fiber offsets α; perfect thermal contact.

ivity is less affected (Table 7.2, Fig. 7.5). Considering the effective axial conductivity the

staggered arrangement again exhibits a much better performance than the nonstaggered

arrangement. While failed end face interfaces reduce the effective axial conductivity by

around 30 W/mK for staggered arrangements (δ = 1), for the non staggered arrangements

(δ = 0) the reduction amounts to approximately 50 W/mK (Fig. 7.5). The Mori–Tanaka

estimates predict a reduction of the effective axial conductivity of approximately 15 W/mK

and 50 W/mK for spheroidal and cylindrical inclusions, respectively (Table 7.2). While the

hybrid modeling approach based on cylindrical inclusions provides excellent predictions,

the model based on spheroids underestimates the impact of the end face failure.

The effective transverse conductivity is reduced only slightly by the presence of the

thermal barrier at the end faces (for all arrangements the reduction is less than 0.1%).

The Mori–Tanaka results for the transverse behavior agree very well with the unit cell

predictions.
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Dependence on the Degree of Staggering The influence of the degree of staggering

on the effective conductivities is investigated for the case of axial fiber offsets of α = 0.25

for perfect thermal interfaces as well as for failure of the cylindrical interfaces and the end

face interfaces, respectively. Figure 7.7 shows the results for the effective axial conductivity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

520

540

560

580

600

620

ax
ia

l c
on

du
ct

iv
ity

 [
W

/m
K

] perfect interface
end face failure
side face failure

Figure 7.7: Predicted effective axial conductivity of aligned short fiber composites (ξ(i) =
0.4, a1/a2 = 10) with an axial fiber offset of (α = 0.25) as function of the degree of
staggering and thermal interfaces. The curves correspond to perfect interfaces (solid line),
failed end faces (dashed line), and failed side faces (dotted line), respectively.

Considering perfect thermal interfaces the dependence of the axial effective conductivity

on the degree of staggering δ is larger in the range of small δ–values (δ < 0.4). As the

overlap between neighboring fibers is increased further (δ > 0.5) no significant increase of

effective conductivity is gained from further increasing the degree of staggering.

In general the failure of the end face interfaces (perfectly insulating end face interface)

reduces the effective axial conductivity more severely than failure of the side face interfaces.

Nonstaggered arrangements (δ = 0) are almost independent of the interface conductance of

the side face interface. The more staggered an arrangement is, the greater is the dependence

of the effective axial conductivity on the side face interface conductance because heat flow

through the fibers side faces into the next fiber is the basic mechanism that is responsible for
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the better performance of staggered arrangements compared to nonstaggered arrangements.

Due to this very mechanism a failure of the end face interface is better compensated by

staggered arrangements.

7.2.3 Summary – Aligned Staggered Short Fibers

For carbon–copper composites reinforced with aligned staggered short fibers the effect of

micro topology and of selective thermal failure of the end face and side face interfaces on

the effective conductivities was studied. It was shown that there is a strong dependence of

the micro topology on the effective conductivities. Staggered arrangements perform better

in axial direction than do nonstaggered arrangements. For the transverse direction non-

staggered arrangements provide higher overall conductivities than staggered arrangements,

but the differences are less pronounced than in the axial direction.

Highly idealized periodic micro arrangements were used that are not fully realistic.

Nevertheless useful insight and information on the interdependence of the topological input

parameters was gained. Note that the obtained estimates on the effective conductivity can

be used as input for determining the effective conductivity of aggregated systems via self

consistent methods ??.

When compared to three dimensional unit cells with randomly oriented fibers, the

employed unit cells for aligned fibers can be set up relatively easy to meet requirements for

high fiber volume fractions and they are not very demanding with regards to computational

requirements. The present approach can easily be applied to other micro topologies.



Chapter 8

Results for Randomly Oriented

Carbon Fibers

In this chapter carbon–copper composites are investigated that show spatially (three di-

mensional) random or (approximately) planar random fiber orientations. The main focus

is on planar random fiber arrangements. The influence of microgeometrical descriptors on

the effective conductivities is comprehensively studied. A unit cell approach as well as a hy-

brid Mori–Tanaka scheme are employed to obtain estimates on the effective conductivities.

Results are compared with measurements.

109
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8.1 Three Dimensional Random Fiber Arrangements

In this section carbon–copper composites with randomly oriented short fibers are invest-

igated. Three types of methods are employed to obtain estimates on the effective con-

ductivity. A multi–inclusion unit cell approach (UC) and an extended multiple discrete

orientation Mori–Tanaka approach (MT/m) are used. The latter samples the same dis-

crete fiber orientations as given by the unit cell. Additionally, an extended Mori–Tanaka

approach conforming to an ideally random ODF is utilized, MT/3Dr.

Spheroidal and cylindrical fibers are considered in order to allow for studying the influence

of fiber shape on the effective conductivity. Perfectly bonded as well as imperfectly bonded

constituents are considered.

8.1.1 Generic Unit Cells

Generation of the Unit Cells

The arrangements are taken ?. They were generated with by Random Sequential Adsorp-

tion (RSA) algorithm, see e.g. ??. The basic idea of RSA schemes is to sequentially add

inclusions to the unit cell volume by generating candidate inclusions at random positions

and of random orientation. A candidate inclusion is accepted, if it does not overlap with

any previously accepted inclusion. The RSA scheme used for setting up the unit cells has

been modified in order to account for user defined minimum distances between neighboring

inclusions as well as to account for periodicity of the volume elements. Note that check-

ing against violations of a specified minimum distance is a complex task for nonaligned

spheroids and cylinders which can require considerable computational resources. More

information on RSA algorithms can be found in ?.

Microgeometry and FE Meshes

Periodic arrangements of 15 fibers of spheroidal and cylindrical shape with an aspect ratio

of five and an inclusion volume fraction of ξ(i) = 0.15 are employed. In order to allow

a direct assessment of fiber shape effects the spheroidal and cylindrical fibers occupy the

same positions and have the same orientations. In Fig. 8.1 a matching pair of unit cells

is shown. Note that these unit cells have been comprehensively studied in the mechanical

context, see ?.
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x2

x1x3

x2

x1x3

Figure 8.1: Periodic unit cells with randomly positioned and oriented inclusions of cyl-
indrical shape (left) and spheroidal shape (right), both inclusion geometries conforming to
an aspect ratio of a1/a2 = 5. The inclusion volume fraction is ξ(i) = 0.15 in both cases.

The model geometry was meshed, and solved with ANSYS 7.0 (ANSYS, Inc., Can-

onsburg, PA). The matrix volume and inclusion volumes are meshed with approximately

300,000 and 40,000 ten–node tetrahedral elements, respectively, corresponding to an ele-

ment edge length of approximately 0.35 a2, a2 being the inclusion radius. Some 19,000

constraint equations are employed for constraining nodes on opposite faces of the cells

such that compatible temperature profiles are enforced on opposing faces.
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8.1.2 Results

The results presented pertain to carbon–copper composites. The heat conduction proper-

ties of the constituents are given in Chapter 3, transverse fiber conductivities of 100 W/mK

being assumed. The studied cases of interfacial degradation comprise the scenarios C1 and

C2 as well as C5 and C6, see Table 3.4. The corresponding reduced conductivities and

dilute concentration tensors as given in Table 6.2 are used in the Mori–Tanaka evaluations.

Inclusions of Cylindrical Shape

Homogenization Estimates on the effective conductivity of the investigated carbon–

copper composite are listed in the top half of Table 8.1. The results are given in terms of

principal conductivities, withK
(∗)
I andK

(∗)
III denoting the maximum and minimum principal

conductivities, respectively.

Excellent agreement is found between the FE based unit cell predictions (UC) and the

hybrid Mori–Tanaka results with corresponding discrete orientations, (H–MT/m). Note

that this also holds true for the off–diagonal terms of the conductivity tensors as given in

the “unit cell” coordinate system, i.e. the agreement of the orientation of K (∗) is excellent

as well.

This shows that the effective field approximation gives excellent results for moderate fiber

volume fractions. Additionally, the results clearly support the concept of replacement

operations as introduced in Section 5.2 for non–spheroidal fibers with imperfect interfaces.

Orthotropic effective conductive behavior is observed, for the case C1 the maximum and

minimum principal conductivity differ by approximately 15%, and for case C3 by some

5%. Considering cylinders with perfectly bonded side faces in combination with either

perfectly conducting (C1) or perfectly insulating (C2) end faces, the latter gives rise to

approximately 5% lower maximum principal conductivities. Comparing the scenarios C5

and C6 shows that the reduction of the effective conductivity due to end face failure is

less than 1%. Debonding of the cylinders’ side faces reduces the effective conductivities by

approximately 20%, which is significantly higher than the reduction due to debonded end

faces.

The Mori–Tanaka predictions of the effective conductivities for perfectly randomly ori-

ented cylindrical fibers (H–MT/3Dr, Table 8.1, right row) are always in between K
(∗)
I and

K
(∗)
III and slightly belowK

(∗)
II as predicted for the studied microgeometry with discrete fiber

orientations. Note that the matrix conductivity of 360 W/mK is never exceeded, i.e. the
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Table 8.1: Unit cell predictions (UC) and Mori–Tanaka estimates (MT/m, MT/3Dr) on

the effective principal conductivities of a carbon–copper composite with randomly oriented

cylindrical and spheroidal short fibers (a1/a2 = 5, ξ = 0.15) for the cases C1, C2, C5, and

C6 of interfacial degradation.

UC MT/m MT/3Dr

case K
(∗)
I K

(∗)
II K

(∗)
III K

(∗)
I K

(∗)
II K

(∗)
III K(∗)

[W/mK] [W/mK] [W/mK] [W/mK] [W/mK] [W/mK] [W/mK]

C1 374.1 352.2 323.3 374.9 352.9 321.8 349.6

C2 359.3 342.8 319.4 358.9 342.1 318.1 339.5

C5 296.4 288.1 278.7 295.8 288.5 278.3 287.4

cy
li
n
d
er

s

C6 294.0 286.5 278.0 293.5 286.9 277.7 285.9

C1 374.8 352.8 323.0 376.1 353.5 321.7 350.1

C2 – – – 374.5 352.4 321.3 349.1

C5 296.4 287.7 278.6 295.8 288.3 277.8 287.2

sp
h
er

oi
d
s

C6 – – – 295.7 288.2 277.8 287.1

poor transverse conductivity of the fibers plays a dominant role.

Localization In Fig. 8.2 normalized averaged temperature gradients of the matrix phase,

T̄
(m)
,i /T

(∗)
,i (no sum over i), (as obtained with the UC and H–MT/m approaches) due to

applied far fields along xi are plotted. The ratio of T̄
(m)
,i /T̄

(∗)
,i (no sum over i) can be

immediately identified as a diagonal component of the Mori–Tanaka concentration tensor

of the matrix phase, D̄
(m)
ii (no sum over i), as defined in Eq. (4.34), Section 4.2.

The Mori–Tanaka scheme (Fig. 8.2, bars) approximates the temperature gradient field

of the matrix phase as constant. The magnitudes of the normalized matrix temperature

gradient fields vary by less than 5% between the studied cases of interfacial degradation.

For perfectly randomly oriented cylinders (H–MT/3Dr) the averaged matrix gradients are

T̄
(m)
,i /T

(∗)
,i = 0.958 and T̄

(m)
,i /T

(∗)
,i = 0.917 for scenarios C1 and C5, respectively. Failure of

the end face interfaces reduces the matrix gradients insignificantly. The circles in Fig. 8.2

show the averaged temperature gradient of the matrix phase as obtained from the unit

cell analyses. The vertical bars indicate the corresponding standard deviation. Excellent

agreement between the Mori–Tanaka method and the unit cell approach is found for the

averaged matrix temperature gradients. The standard deviation is noticeably higher for

C5 and C6 than for C1 and C2.
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Figure 8.2: Normalized matrix temperature gradients due to applied far field gradients
along xi as predicted with the unit cell method (UC, circles with bars) and a hybrid
Mori–Tanaka method with multiple discrete fiber orientation (H–MT/m, bars) for different
scenarios of interfacial degradation for an C/Cu composite with randomly oriented short

fibers (ξ(i) = 0.15, a1/a2 = 5).

The magnitude of the matrix gradients decreases as the conductivity of the replacement

inclusion phase is decreased (i.e. increasing interfacial thermal resistances). Note also that

the diagonal terms of the matrix concentration tensor, D̄
(m)
ii (no sum over i) do not exceed

unity, typically indicating that the inclusions are more resistive than the matrix. It is

found that the maximum principal conductivityK
(∗)
I points in the direction of x3, this fact

is also reflected in the matrix concentration tensor, D̄
(m)
33 being the largest entry.

The averaged temperature gradients of individual cylindrical inclusions are studied for

the case C1 and C5 for applied far field gradients along each unit cell axis. The angle θ

subtended between the gradient forced upon the unit cell and the fibers’ axes of rotation

is sufficient to uniquely characterize the orientations of the fibers with respect to T
(∗)
,i

1.

The solid circles in Fig. 8.3 show the estimates of the averaged inclusion fields as predicted

with the hybrid multiple discrete orientations Mori–Tanaka scheme (H–MT/m) for case

C1, the circles corresponding to the mean values obtained from the unit cell predictions

1Each fiber is represented three times with its characteristic response to each of the three applied far

field gradients.
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Figure 8.3: Hybrid, multiple discrete orientation Mori–Tanaka results (H–MT/m, solid
circles) as well as unit cell results (UC, circles with bars) for the orientation dependence of
the temperature gradients in fibers of an C/Cu composite with ideal interfaces subjected to
far field temperature gradients of unit value. Mori–Tanaka results for perfectly randomly
oriented fibers are shown as the solid line (H–MT/3Dr).

(UC) and the bars indicate the corresponding standard deviations. Good agreement is

observed. For small angles θ the unit cell approach (UC) predicts slightly higher inclusion

gradients than does the hybrid Mori–Tanaka approach (H–MT/m), and for θ > 50◦ the

unit cell predictions are slightly below the hybrid Mori–Tanaka predictions. The standard

deviations of the temperature gradients within the individual fibers reach up to approxim-

ately 10% percent of the respective mean values.

Additionally the averaged inclusion gradients for perfectly randomly oriented cylindrical

inclusions are plotted (solid line, H–MT/3Dr). The inclusion gradients associated with

the latter microgeometry agree very well with those associated with the studied “pseudo–

random” arrangement modelled with 15 discrete orientations (H–MT/m). This is due to

the good agreement of the matrix concentration tensors associated with the two microgeo-

metries.

Also a marked variation of T̄
(i)
,i with the fiber orientation is evident. Inclusions oriented

with the applied far field gradient exhibit small temperature gradients due to the high

conductivity in axial direction and high inclusion gradients are induced in those which are
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Figure 8.4: Hybrid, multiple discrete orientation Mori–Tanaka results (H–MT/m, solid
circles) as well as unit cell results (UC, circles with bars) for the orientation dependence of
the temperature gradients in fibers of an C/Cu composite with imperfect interfaces and the
corresponding gradients in perfectly bonded replacement inclusions (squares) subjected to
far field temperature gradients of unit value. Mori–Tanaka results for perfectly randomly
oriented fibers are shown as a solid line (H–MT/3Dr).

oriented perpendicularly to the applied far field due to the low transverse conductivity

compared to the matrix conductivity.

For scenario C5 of interfacial degradation the corresponding inclusion averages are de-

picted in Figs. 8.4. The squares in the top half of Fig. 8.4 show the apparent inclusion

gradients which are induced in the weakly conductive replacement cylinders. The dashed

line shows the averaged gradients for perfectly randomly distributed cylinders. Good agree-

ment is observed again. However, these results cannot be compared with predictions from

the unit cell analysis. Equation (5.30) must be used to zoom in on the actual inclusion
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fields. The solid circles in Fig. 8.4, top and bottom show the gradients in the imperfectly

bonded inclusions. Again good agreement between the unit cell predictions (UC) and the

hybrid multiple discrete orientation Mori–Tanaka predictions (H–MT/m) is observed.

The solid line in the bottom half of Fig.8.4 shows the actual temperature gradients for

randomly oriented inclusions, H–MT/3Dr. The variation of the inclusion gradients with

θ is much smaller for the imperfectly bonded cylinders, because the reduction of the tem-

perature gradients due to imperfect interfaces is about 9 for fibers oriented parallel to the

far field (θ = 0◦) and approximately 15 for fibers oriented perpendicular to the applied far

field (θ = 90◦).

Plots of the temperature gradient for the scenarios C1 and C5 due to applied far field

gradients of unit value along x1 are shown in Fig. 8.5 and Fig. 8.6.

For the case of perfectly bonded constituents (C1, Fig. 8.5) the temperature gradients in

the inclusions are of comparable magnitude to the matrix temperature gradients. Marked

intra–inclusion fluctuations of the inclusion temperature gradients can be observed due to

interaction of neighboring inclusions. With increasing misalignment of a given inclusion

with respect to the applied far field gradient T
(∗)
,1 the inclusion temperature gradients T

(i)
,1

increase.

For the case of imperfectly bonded constituents (C5, Fig. 8.6) the temperature gradients

in the inclusions are about an order of magnitude smaller than the matrix temperature

gradients. This is due to the presence of the interfacial thermal resistances which effectively

“excludes” fibers from heat conduction and thus gives rise to small inclusion temperature

gradients.
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Figure 8.5: Predicted distribution of the temperature gradients in the matrix phase, T
(m)
,1

(top), and inclusion phase, T
(i)
,1 (top and bottom), due to an applied far field gradient

T
(∗)
,1 = 1 K/m of a C/Cu composite (ξ(i) = 0.15, a1/a2 = 5) with perfect thermal interfaces

(β → ∞).
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Figure 8.6: Predicted distribution of the temperature gradients in the matrix phase, T
(m)
,1

(top), and inclusion phase, T
(i)
,1 (top and bottom), due to an applied far field gradient

T
(∗)
,1 = 1 K/m of a C/Cu composite (ξ(i) = 0.15, a1/a2 = 5) with imperfect thermal

interfaces (β = 1.33 × 106, a2 = 5µm).
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Figure 8.7: Vector plots of the flux field (top left) and temperature gradient field (bottom
left) in the end face–side face region of a carbon fiber embedded in a copper matrix with
oblique orientation to the applied far field gradient of unit value as predicted by a unit
cell model. The temperature gradient vector and flux vector in the point P (located next
to the interface in the transversally isotropic carbon fiber) in the global coordinate system
and the local inclusion coordinate system are depicted with solid thick lines and dashed
thick lines, respectively (right).

The existence of negative inclusion gradients T
(i)
,1 < 0 (pointing in the opposite direction

of the applied far field gradient) in the end face areas of fibers with oblique orientations

with respect to the far field gradient is noteworthy. The left hand side of Fig. 8.7 shows

two vector plots of a corresponding pair of temperature gradient and flux fields predicted

for a fiber which is misaligned around 35◦ to T
(∗)
,1 and is oriented parallel to the x1–x2–

plane. On account of the latter characteristic x3–components can be neglected and for

the analysis the problem can be treated in a two–dimensional context. While the flux
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field satisfies q
(i)
1 < 0 the related temperature gradient field T

(i)
,1 changes its sign. This

apparent paradoxon can be resolved by taking into account the transversal isotropy of the

inclusions. On the right hand side of Fig. 8.7 the state of the point P on the matrix–

inclusion interface is plotted. The thick solid lines represent the components of the flux

and temperature gradient with respect to the global coordinate system, whereas the thick

dashed lines depict the corresponding flux and temperature gradient in the local inclusion

coordinate system, lq
(i)
i and lT

(i)
,i . The flux and temperature gradient can be easily correlated

in the local inclusion coordinate system by employing Fourier’s law, revealing that for the

studied case (lK
(i)
11/

lK
(i)
22 = 1000/100) negative inclusion gradients along x1 may indeed

occur, while the inclusion flux field does not change its sign at any point. Note that an

additional thermal failure of the end face interface can cause fluxes of inverted (positive)

direction in the end face region of cylindrical fibers as well.

Inclusions of Spheroidal Shape

For the scenarios C1 and C5 unit cell estimates (UC) as well as multiple discrete orientation

Mori–Tanaka estimates (E–MT/m) on the effective conductivity are obtained for spheroidal

inclusions. In addition, the Mori–Tanaka procedure is utilized to estimate the effective

conductivity for the scenarios C2 and C6 and spheroidal fibers. For that purpose “artificial”

or “pseudo” end faces allocated to the spheroids. They are chosen such that the ratio of

end face area over side face area of both cylinders and spheroids are the same. The

averaging procedure as proposed in Section 5.1 is employed to obtain estimates on the

reduced conductivities of the replacement inclusions.

Homogenization Excellent agreement between the unit cell predictions (UC) and the

Mori–Tanaka predictions (E–MT/m) for the effective conductivity for scenarios C1 and C5

is observed, Table 8.1. It is also evident that for the above scenarios, which pertain to a

uniform interface parameter, the influence of the inclusion shape (cylindrical or spheroidal)

has no significant influence on the effective conductivities for the chosen material properties

and aspect ratio.

The Mori–Tanaka predictions (E–MT/m) for the effective conductivity pertaining to the

scenarios C2 and C6 are noticeably above the corresponding conductivities as obtained

with cylinders (H–MT/m).

While spheroids capture the behavior of cylinders very well for the studied conductive

properties of the constituents in combination with either perfect thermal interfaces or
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uniform distribution of the interfacial thermal resistance, it turns out that spheroids with

pseudo end faces are a poor model for the simulation of cylinders when a selective failure

of the end face interfaces is to be modelled.

Localization The averaged matrix temperature gradient fields, T
(m)
,i , and standard de-

viation as resulting from spheroids and cylinders are almost identical, the difference being

less than 1%.
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8.2 Planar Random Fiber Arrangements

In this section carbon–copper composites with fibers that show random orientation in the

x2–x3–plane plus some out–of–plane misalignment are investigated (“planar random fiber

arrangements”). For this purpose two periodic unit cells of appropriate microstructure are

studied.

For the case of perfect thermal interfaces the unit cell predictions (UC) for the effective

conductivity are compared with estimates obtained with a hybrid multiple discrete orient-

ation Mori–Tanaka scheme (H–MT/m). Inclusion gradient fields of individual inclusions

are investigated with both approaches. Additionally, predictions from hybrid Mori–Tanaka

schemes are provided for carbon–copper composites with perfectly planar randomly dis-

tributed fibers (H–MT/2Dr). For that specific fiber microarrangement six different cases

of interfacial degradation (Table 3.4) as well as the influence of the transverse fiber con-

ductivity are studied.

8.2.1 Generic Unit Cells

Generation of Unit Cells

The periodic fiber arrangements were generated with the simulation software PALMYRA

(Materials Simulation GmbH, Zürich, Switzerland). A predefined number of fibers con-

forming to a chosen range of allowable orientations is initially arranged in a cuboidal

base cell. The size of the latter is chosen sufficiently large in the beginning such that

non–interpenetrating fiber arrangements can be set up by random insertion algorithms ?.

Subsequently, by “shaking” the fibers and compressing the base cell the fiber volume frac-

tion is steadily increased – a Monte Carlo algorithm ?? randomly moves the fibers within

the cell as the latter’s size is decreased while checking for fulfilling a predefined minimum

distance between neighboring fibers. Periodicity of the microstructure is maintained auto-

matically as the volume fraction is increased steadily.

For generating planar random fiber arrangements, the base cell is compressed in one dir-

ection only, in an attempt to approximate the compaction process during hot pressing

as realistically as possible within the limits of the chosen simulation tool. Simulations of

breaking of the fibers during compaction are out of the scope of the present work. Accord-

ingly, specific aspect ratio distributions must be defined before compressing the base cell.

The maximum attainable volume fractions are moderate due to two key issues. On the
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one hand a minimum fiber to fiber distance must be maintained so the element counts of

the meshed microgeometry stay within reasonable limits. On the other hand aggregates of

aligned fibers are typically required for attaining high volume fractions. Such arrangements

are not used in the present study due to limitations in the number of fibers per unit cell

that can be handled computationally. Some increase in the fiber volume fractions can be

achieved with fibers of variable length compared to fibers of constant size. The closer the

fiber aspect ratio is to unity the higher are the maximum attainable volume fractions for

non aligned fibers. Note that in Palmyra “capped cylinders” (cylinders with hemispher-

ical end caps) are used. For the present study, however, only the cylinder “bodies” are

employed, which further reduces the attainable volume fractions.

Microgeometrical Characteristics

Two periodic unit cells with similar microgeometries were generated. They are referred to

as CELL 1 and CELL 2, respectively. Both unit cells pertain to inclusion volume fractions

of approximately 21%. The inclusions are cylinders of the same size with an aspect ratio

a1/a2 = 10. CELL 1 and CELL 2 contain 48 fibers and 40 fibers, respectively.

In Table 8.2 the final dimensions of the unit cell cuboids of CELL 1 and CELL 2 are

compared in terms of the fiber radii. The relative height (L2/L1) of CELL 2 is approxim-

ately 1.5 times that of CELL 1. The fiber volume fractions of CELL 1 and CELL 2 differ

by less than one percent.

For assessment and comparison of the fiber orientation statistics the angles Ψ1 and Ψ2

(Appendix A) are assessed in a first step. Due to the symmetry properties of the fibers the

in–plane angle Ψ2 can be condensed into in–plane orientations ψ2, ranging from 0◦ to 180◦.

Out–of–plane deviations are described by ψ1 = |90◦ −Ψ1|. Both in–plane orientations,

ψ2, and out–of–plane deviations, ψ1, can be visualized in terms of histograms. For that

Table 8.2: Comparison of CELL 1 and CELL 2 with respect to the number of inclusion

cylinders, the total inclusion volume fraction and the unit cell cuboid dimensions.

CELL 1 CELL 2

number of fibers 48 40

1 − ξ(m) 0.209 0.207

L1 ×L2 ×L3 11.70 a2 × 35.11 a2 × 35.11 a2 14.50 a2 × 29.04 a2 × 28.99 a2
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geometries CELL 1 (left) and CELL 2 (right).

purpose the angles ψi are partitioned into segments, ∆ψi and the percentage of the number

of fibers being oriented within a segment in relation to the total amount of fibers is used

to approximate the probability density.

Figure 8.8 shows the dependence of the fiber orientation probability densities on the

in–plane orientation ψ2, the sampling width of the in–plane angle being ∆ψ2 = 5◦. The

probability density distributions for the out–of–plane angles ψ1 for both investigated mi-

crogeometries are displayed in Fig. 8.9, the sampling width being ∆ψ1 = 2◦.
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Finite Element Meshes

The positions and orientations of the fibers were extracted from Palmyra and subsequently

the unit cells were set up and meshed with 10 node tetrahedral elements using ANSYS 7.0

(ANSYS, Inc., Canonsburg, PA), the element counts for both unit cells reaching more than

1,000,000. CELL 1 and CELL 2 account for around 1,300,000 and 1,200,000 degrees of

freedom, respectively, and more than 40,000 constraint equations are employed.

Figures 8.10 and 8.11 show element plots of both matrix and inclusion elements (top)

and fiber elements only (bottom) for CELL 1 and CELL 2, respectively.
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x1

x3

x2

Figure 8.10: Periodic unit cell CELL 1 with a planar random fiber arrangement of 48
cylindrical short fibers (a1/a2 = 10). The fiber volume fraction is ξ = 0.209.
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Figure 8.11: Periodic unit cell CELL 2 with a planar random fiber arrangement of 40
cylindrical short fibers (a1/a2 = 10). The fiber volume fraction is ξ = 0.207.
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8.2.2 Results for Perfect Thermal Interfaces

The effective conductivities of the microgeometries CELL 1 and CELL 2 are estimated

with a unit cell approach (UC) and a hybrid multiple discrete orientation Mori–Tanaka

approach (H–MT/m) for the case of perfect thermal interfaces. The tensors of the effective

conductivities are given with respect to the global Cartesian coordinate system as defined

by the unit cell cuboids.

For CELL 1 the unit cell predictions and Mori–Tanaka predictions are evaluated as

UCK
(∗)

=







289.8 1.4 −1.4

1.4 370.8 0.2

−1.4 0.2 378.9







MT/mK
(∗)

=







288.7 1.7 −1.3

1.7 374.6 2.1

−1.3 2.1 381.5






(8.1)

and for CELL 2 as

UCK
(∗)

=







289.1 −3.2 −0.2

−3.2 378.8 2.2

−0.2 2.2 375.1







MT/mK
(∗)

=







288.3 −3.3 −0.1

−3.3 379.9 1.0

−0.1 1.0 377.0






(8.2)

respectively. Excellent agreement is found between the unit cell results and the results

obtained with the hybrid multiple discrete orientation Mori–Tanaka method both of which

sample the same fiber orientations as the unit cell. The unit cell predictions (UC) for

the effective out–of–plane conductivities, K
(∗)
11 , are slightly higher than the predictions of

the hybrid Mori–Tanaka method (H–MT/m) for both microgeometries. The in–plane con-

ductivities, K
(∗)
22 and K

(∗)
33 , differ by less than 2.5% and 1% for CELL 1 and CELL 2,

respectively, indicating satisfactory approximations of planar random fiber orientation dis-

tributions. The fact that K
(∗)
33 > K

(∗)
22 for CELL 1 and K

(∗)
33 < K

(∗)
22 for CELL 2 can be

directly understood in terms of the in–plane fiber orientation probability density histo-

grams, Fig. 8.8, which indicate weak fiber populations around ψ2 = 90◦ and ψ2 = 0◦/180◦

for CELL 1 and CELL 2, respectively.

In Table 8.3 the principal components of the effective conductivities (the suffixes I

and III correspond to the maximum and minimum principal conductivity, respectively) as

given in Eqs. (8.1) and (8.2) are listed. Additionally, effective conductivities of a composite

with a perfect planar random distribution of fibers (i.e. the orientation distribution in ψ1

is a Dirac–delta) with the corresponding aspect ratio and volume fraction (ξ = 0.208)

are provided, the predictions being obtained with a hybrid Mori–Tanaka approach (H–

MT/2Dr). The latter case gives rise to the lowest effective out–of–plane conductivity,
MT/2DrK

(∗)

11 , as the high axial fiber conductivity is not available in the out–of–plane direction.
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Table 8.3: Unit cell results (UC) and hybrid Mori–Tanaka estimates (H–MT/m) for the

effective principal conductivities of a carbon copper composite with microtopologies as

given by CELL 1 and CELL 2, respectively (see Fig. 8.10 and Fig. 8.11). Hybrid Mori–

Tanaka predictions (H–MT/2Dr) for a planar random distribution of fibers (ξ = 0.208) are

given for comparison. For the material data see Tables 3.1 and 3.2, K
(i)
22 = 100 W/mK.

method, topology K
(∗)
11 =K

(∗)
III K

(∗)
I K

(∗)
II

[W/mK] [W/mK] [W/mK]

UC, CELL 1 289.8 378.9 370.8

H–MT/m, CELL 1 288.6 382.1 374.0

UC, CELL 2 289.0 379.9 374.1

H–MT/m, CELL 2 288.2 380.3 376.7

H–MT/2Dr 285.5 379.9 379.9

The isotropic in–plane conductivity, on the other hand, is very high, almost reaching the

maximum in–plane conductivity of the orthotropic “comparison–topologies” as described

by CELL 1 and CELL 2.

The averaged temperature gradients of individual cylindrical fibers due to far field

gradients along the unit cells’ axes are investigated as well. The angle θ subtended between

the gradient forced upon the unit cell and the fiber axis is sufficient to uniquely characterize

the orientation of a given fiber with respect to the applied far field gradient, T
(∗)
,i . The

circles in Figs. 8.12 and 8.13 show the estimates of the averaged inclusion fields T̄
(i)
,i due

to T
(∗)
,i as obtained from the unit cell analyses, the bars indicating the respective standard

deviations.

The dashed and solid lines correspond to the hybrid Mori–Tanaka estimates. The solid

line relates to fibers with perfect planar random orientation distribution, H–MT/2Dr. Note

that the corresponding results on the gradients induced in fibers with some out–of–plane

deviation (Fig. 8.13) are typical “ghost–inclusion” gradients, as these fibers do not conform

to the ODF of the inclusion phase. The dashed line shows induced inclusion gradients

corresponding to the microgeometries CELL 1 and CELL 2, H–MT/m. Note that, while for

a perfect planar random fiber ODF the inclusion gradients T
(i)
,1 are independent of Ψ2, they

do depend on the in–plane angle Ψ2 for orthotropic in–plane conductivities (K
(∗)
22 6=K

(∗)
33 )2.

2For the plot of T
(i)
,1 in Fig. 8.13 a constant in–plane angle of Ψ2 = 0◦ is chosen.
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Figure 8.12: Unit cell predictions (circles) and corresponding hybrid Mori–Tanaka predic-
tions (dashed line, H–MT/m) for CELL 1 (left) and CELL 2 (right) as well as hybrid Mori–
Tanaka predictions for perfect planar random fiber arrangements (solid line, H–MT/2Dr)

for the dependence of the normalized thermal gradients in the fibers, T̄
(i)
,2 /T

(∗)
,2 and T̄

(i)
,3 /T

(∗)
,3 ,

on the in–plane orientation of the fibers.

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 0  5  10  15  20

 

 

FE     
MT    
MT2D

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 1.45
 1.5

 1.55
 1.6

 1.65

 0  5  10  15  20

 

 

FE     
MT    
MT2D

CELL 1 CELL 2

T̄
(i

)
,1

/T
(∗

)
,1

[−
]

T̄
(i

)
,1

/T
(∗

)
,1

[−
]

90−θ [ ◦ ]90−θ [ ◦ ]

UC
H–MT/m

H–MT/2Dr

UC
H–MT/m

H–MT/2Dr

Figure 8.13: Unit cell predictions (circles) and corresponding hybrid Mori–Tanaka pre-
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Mori–Tanaka predictions for in–plane perfect random distributed fiber arrangements (solid
line, H–MT/2Dr) for the dependence of the normalized thermal gradients in the fibers,
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,1 /T

(∗)
,1 , on the out–of–plane orientation of the fibers.

For CELL 1 and CELL 2, however, this dependence is negligible due to the near isotropy

of the in-plane conductivities.
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Figure 8.14: Unit cell predictions for the distributions of the temperature gradient field,

T
(i)
,2 of the carbon fibers due to an applied far field gradient of T

(∗)
,2 = 1.0 K/m. (CELL 1,

ξ = 0.209, 48 cylindrical short fibers, a1/a2 = 10)

Figure 8.14 shows the distribution of the temperature gradients in the fibers, T
(i)
,2 , due to

an applied far field gradient of T
(∗)
,2 = 1.0 K/m as predicted by the unit cell method for the

arrangement CELL 1 and Fig. 8.15 shows the distributions of inclusion gradients T
(i)
,3 due

to an applied far field gradient ofT
(∗)
,3 = 1.0 K/m as predicted for the arrangement CELL 2.

In both figures temperature gradient concentrations can be identified at locations where

the ends of fibers that are (nearly) aligned with the far field gradient closely approach the

side faces of fibers that are oriented (approximately) perpendicularly to the applied far

field gradient. The reason for this effect is the transversal isotropy of the fibers. For the

chosen conduction properties of carbon a given heat flux is tied to gradients that are ten

times larger in the radial than in the axial fiber direction.
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Figure 8.15: Unit cell predictions for the distributions of the temperature gradient field,

T
(i)
,3 of the carbon fibers due to an applied far field gradient of T

(∗)
,3 = 1.0 K/m. (CELL 2,

ξ = 0.207, 40 cylindrical short fibers, a1/a2 = 10)
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8.2.3 Results for Imperfect Thermal Interfaces and Different Ma-

terial Data for the Carbon Fibers

In this section investigations are extended to imperfect thermal interfaces. Additionally,

the influence of the transverse fiber conductivity on the effective conductivity is studied.

All calculations are carried out with the Mori–Tanaka approach and relate to carbon–

copper composites with cylindrical fibers (a1/a2 = 10) that are assumed to be distributed

perfectly randomly in the x2–x3–plane with no out–of–plane deviation (H–MT/2Dr). All

calculations pertain to fiber volume fractions of ξ = 0.208. Transverse fiber conductivities

of 10 W/mK and 100 W/mK are investigated.

The six investigated scenarios of interfacial degradation are referred to as C1–C6, the

corresponding values of the interface parameter for the end faces and side faces being listed

in Table 3.4. The reduced conductivities, K̄
(ir)
ij , and the corresponding dilute concentration

tensors, 0D̄
(ir)
ij , are given in Table 6.3 for transverse fiber conductivities of 10 W/mK and

100 W/mK, respectively.

The predicted effective out–of–plane conductivities, K
(∗)
11 , and effective in–plane con-

ductivities, K
(∗)
22 and K

(∗)
33 , are listed in Table 8.4. Additionally the difference in the ef-

Table 8.4: Mori–Tanaka predictions (H–MT/2Dr) for the effective conductivities of C/Cu

composites (cylindrical fibers, a1/a2 = 10, ξ = 0.208) with a perfect planar random fiber

arrangements for different interfacial degradation scenarios and different transversal fiber

conductivities. The two columns on the right hand side indicate the relative error Rii of

corresponding K
(∗)
ii ’s (based on either K

(i)
22 = 10 or 100 W/mK), normalized with K

(∗)
ii as

given by K
(i)
22 = 10 W/mK.

K
(i)
22 = 10 W/mK K

(i)
22 = 100 W/mK R

scenario K
(∗)
11 K

(∗)
22 =K

(∗)
33 K

(∗)
11 K

(∗)
22 =K

(∗)
33 R11 R22,R33

[W/mK] [W/mK] [W/mK] [W/mK] [–] [–]

C1 244.4 353.4 285.5 379.9 16.8% 7.5%

C2 244.1 324.9 285.4 369.1 16.9% 13.6%

C3 239.0 263.0 239.1 263.0 0.04% 0%

C4 239.0 262.3 239.1 262.4 0.04% 0.04%

C5 240.8 287.8 242.0 290.3 0.5% 0.9%

C6 240.8 284.1 242.0 286.9 0.5% 1.0%
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Figure 8.16: Predicted effective conductivities for a carbon–copper composite (cylindrical
fibers, a1/a2 = 10, ξ = 0.208) with a perfect in–plane random fiber orientation distribution
(no out–of–plane deviation) for different interfacial degradation scenarios and different
transversal fiber conductivities. Out–of–plane conductivities are shown on the left, in–
plane conductivities on the right.

fective conductivities arising from transversal inclusion conductivities of 100 W/mK and

10 W/mK with respect to the latter are provided. In Fig. 8.16 the effective conductivities

are presented graphically in the form of bar diagrams.

A significant influence of the transversal fiber conductivity on the effective conductivity

is only observed for the scenarios of perfectly bonded side faces, i.e. C1 and C2. For the

remaining four scenarios the transversal fiber conductivity has little influence as the pres-

ence of the interfacial thermal resistance “hides” the fibers and no advantage can be gained

from high transversal conductivities of the fibers. Selective debonding of the end face has

essentially no influence on the effective out–of–plane conductivity.

Contrary, debonding of the end face is found to have some small, but noticeable influence

on the effective in–plane conductivities, especially for the case of perfectly bonded side

faces and low transversal fiber conductivities (K
(i)
22 = 10 W/mK). The effective in–plane

conductivities increase by some 10% when comparing scenarios C3, C4 and C5, C6, which

relate to interface parameters as estimated for the electrochemical and the sputter coating

technique, respectively.
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8.3 The Influence of Microtopological Descriptors

In this section a sensitivity analysis of microtopological descriptors such as aspect ratio

distribution, out–of plane misalignment, and fiber volume fraction on the effective con-

ductivities of carbon–copper composites is carried out. The influence of interfacial thermal

barriers and constituent conductivities is investigated as well and estimates on the effective

conductivity are compared with measurements from literature.

Because the Mori–Tanaka estimates for randomly oriented short fibers with perfect and

imperfect thermal interfaces could be shown to agree closely with unit cell predictions (see

Sections 8.1 and 8.2) for moderate volume fractions, the Mori–Tanaka scheme is chosen for

exploratory investigations pertaining to higher fiber volume fractions.

The bulk of the calculations is based on cylindrical fiber geometries, the cylinders having

variable aspect ratios. Mainly, a hybrid multi phase Mori–Tanaka approach in combination

with smooth ODFs pertaining to planar random fiber arrangements with no out–of–plane

deviation (H–MT/2Dr) is employed. The studies on the effect of interfacial thermal res-

istance are based on spheroidal inclusion geometries, E–MT/2Dr.

8.3.1 Influence of Aspect Ratio Distributions

The fiber aspect ratio dependence of the effective conductivity of hot pressed carbon–

copper composites is investigated for in–plane randomly oriented fibers, all fibers lying in

the x2–x3–plane. The effective conductivities are transversally isotropic, K
(∗)
11 denoting the

out–of–plane effective conductivity andK
(∗)
22 as well asK

(∗)
33 the two in–plane effective con-

ductivities, which are equal. The fiber volume fraction is set to ξ(i) = 0.5. Cylindrical fiber

shapes are assumed. Corresponding dilute concentration tensors and reduced conductivit-

ies are provided in Section 6.2 for the considered scenarios of interfacial degradation C1–C6

(Table 3.4). The conduction properties of the constituents are given in Chapter 3.

For each scenario of interfacial degradation three different composites are studied which

differ only by their aspect ratio distributions. Fiber populations with constant aspect ratio

of five and ten as well as one with an approximated Gaussian–like distribution of fiber

aspect ratios are considered. For the latter a typical aspect ratio distribution is extracted

from the experimental results shown in Fig. 3.3, Chapter 3, and approximated by five

discrete aspect ratios which are given in Table 8.5. The relative volume fraction pertaining

to each discrete aspect ratio is given by scaling the overall volume fraction ξ(i) = 0.5

with the corresponding probabilities, the resulting aspect ratio distribution being listed in
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Table 8.5: Aspect ratios and corresponding probabilities which approximate the aspect

ratio distributions of the studied hot pressed carbon–copper composites.

a1/a2 [–] 2 5 7.5 10 15

probability [%] 3 30 35 27 5

Table 8.5.

In Fig. 8.17 the predicted effective out–of–plane conductivities, K
(∗)
11 , are plotted for

transversal fiber conductivities of K
(i)
22=10 W/mK (left) and K

(i)
22=100 W/mK (right), re-

spectively. The fiber aspect ratio distribution does not strongly influence the effective

out–of–plane conductivity for the investigated cases, but some decrease of the effective

out–of–plane conductivity with increasing fiber aspect ratio can be discerned. The predic-

tions for the assumed Gauss–type distribution of aspect ratios lie between those obtained

for the fixed aspect ratios of 5 and 10. Additional studies on planar randomly distributed

cylindrical inclusions of a constant fiber aspect ratio of 7.5 showed that the corresponding

effective out–of–plane conductivities differ by less than 1% from those obtained with the

Gauss–type distribution. Note that small thermal interfacial resistances are required in

order to take advantage of high transversal conductivities of carbon fibers. For the in-
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Figure 8.17: Influence of the fiber aspect ratio on the effective out–of–plane conductivity of
a carbon–copper composite (ξ(i) = 0.5 as predicted with a hybrid Mori–Tanaka method (H–
MT/2Dr); planar random fiber arrangement with no out–of–plane deviation, conduction
properties from Chapter 3) for transverse fiber conductivities of 10 W/mK (left) and 100
W/mK (right) and for different scenarios of interfacial degradation (Table 3.4).
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Figure 8.18: Influence of the fiber aspect ratio on the effective in–plane conductivity of a
carbon–copper composite (ξ(i) = 0.5 as predicted with a hybrid Mori–Tanaka method (H–
MT/2Dr); planar random fiber arrangement with no out–of–plane deviation, conduction
properties from Chapter 3) for transverse fiber conductivities of 10 W/mK (left) and 100
W/mK (right) and for different scenarios of interfacial degradation (Table 3.4).

vestigated interfacial configurations C3–C6 the interface conductance is so small that the

fibers are effectively “hidden” and no advantage can be gained from using carbon fibers of

superior conduction properties.

In Fig. 8.18 the effective in–plane conductivities, K
(∗)
22 and K

(∗)
33 , are plotted for trans-

versal fiber conductivities of K
(i)
22=10 W/mK (left) and K

(i)
22=100 W/mK (right), respect-

ively. With increasing fiber aspect ratio the effective in–plane conductivity increases. For

the case of perfect thermal interfaces (C1) the estimates on the effective in–plane con-

ductivities for reinforcement geometries of constant aspect ratio of 5 and 10 differ by

approximately 5 W/mK. However, in case of failure of the end face interfaces (C2) the

predictions differ by some 50 W/mK and 30 W/mK for transverse fiber conductivities of

10 W/mK and 100 W/mK, respectively. Also, for the configurations C5 and C6 signific-

ant differences in the in–plane conductivities are observed for reinforcements of constant

aspect ratios of 5 and 10. This effect is “conductivity driven” – the greater the aspect ra-

tio is, the larger the corresponding reduced conductivities are. Especially, thermal failure

of the end face interfaces can be compensated much better by fibers of increased aspect

ratios. The effective conductivities as predicted for reinforcements conforming to the stud-

ied Gauss–type distribution of aspect ratios are in between the conductivities as obtained

for reinforcements of constant aspect ratios 5 and 10. Additional studies on planar ran-

domly distributed cylindrical inclusions of a constant aspect ratio of 7.5 showed that the
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corresponding effective in–plane conductivities exceed those obtained for the Gauss–type

distribution by less than 2%. Note that the matrix conductivity of 360 W/mK is only

exceeded for perfectly bonded side faces, C1 and C2, in combination with high transverse

inclusion conductivities of 100 W/mK.

8.3.2 Influence of Out–of–Plane Misalignment

The investigated hot pressed carbon–copper composites typically contain fibers that are

randomly oriented in the in–plane direction (the plane normal to the pressing direction)

with some out–of–plane misalignment. The effects of this out–of–plane misalignment on

the effective conductivities are studied in the following. Cylindrical fiber geometries and a

Gauss–type distribution of the aspect ratios following Table 8.5 are assumed. The estimates

pertain to fiber volume fractions of ξ(i) = 0.5 and are obtained with a hybrid Mori–Tanaka

scheme the ODF being smooth, H–MT. Conduction properties of the constituents are given

in Chapter 3, corresponding dilute concentration tensors and reduced conductivities are

given in Section 6.2.

Figure 8.19 shows the effect of out–of–plane deviations of the fiber orientations on

both the effective in–plane conductivities, K
(∗)
22 and K

(∗)
33 (solid lines), and the effective

out–of–plane conductivities, K
(∗)
11 (dashed lines), where φ denotes the truncation angle of

a uniform probability density function, ρ(Ψ1). Out–of–plane misalignment influences the

effective in–plane conductivities more than the effective out–of–plane conductivities. As

the reduced conductivities decrease, i.e. the interfacial thermal resistances increase, the

dependence of K
(∗)
ij on φ decreases significantly. Note that for φ = 0◦ all fibers contain

within the x2–x3–plane and the results for K
(∗)
11 and K

(∗)
22 , K

(∗)
33 coincide with the white

bars as shown in Fig. 8.18 and Fig. 8.17, respectively (H–MT/2Dr). For φ = 90◦ the

out–of–plane and in–plane conductivities coincide and a three dimensional random fiber

arrangement of isotropic overall conductivity is obtained (H–MT/3Dr).

The bulk of reinforcements of the investigated hot pressed carbon–copper composites

does not exceed out–of–plane deviations of more than φ = 10◦ ?, which leads to minor

effects only. Accordingly, in the following all results presented pertain to perfectly planar

random arrangements.
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Figure 8.19: The dependence of the effective conductivity of a carbon copper composite
(ξ(i) = 0.5; Gauss–type aspect ratio distribution following Table 8.5; predicted with a
hybrid Mori–Tanaka scheme (H–MT), cylindrical fibers, conduction properties of the con-
stituents see Chapter 3) on the out–of–plane deviation φ of the fiber orientation angles for
transverse fiber conductivities of 10 W/mK (left) and 100 W/mK (right).

8.3.3 Influence of Interfacial Thermal Resistance

The influence of the interfacial thermal resistance on the effective conductivity of a planar

random fiber arrangement without out–of–plane deviation is studied. The interfacial

thermal resistance is varied from perfectly insulating, β → 0, to perfectly conducting,

β → ∞, and assumed to be distributed evenly on the surface of the inclusions (corres-

ponding to a LC–type coating of constant thickness). Because for uniformly distributed

thermal resistances the reduced conductivities and dilute concentration tensors for spher-

oidal and cylindrical inclusions agree closely (Section 5.2), inclusions of spheroidal shape

are considered for now. This has the advantage that the analytical replacement operation

as discussed in Section 5.1 can be invoked, which is less time consuming than the numer-

ical, unit cell based replacement operation for cylinders.

The imperfectly bonded spheroids are assumed to have a constant aspect ratio a1/a2 = 7.5

and their “equatorial” radius equals 5µm. The inclusion volume fraction is fixed at ξ = 0.5.

Axial inclusion conductivities of 1000 W/mK and 100 W/mK in combination with trans-

verse inclusion conductivities of 100 W/mK and 10 W/mK are considered, giving rise to



CHAPTER 8. RESULTS FOR RANDOMLY ORIENTED CARBON FIBERS 141

 120

 135

 150

 165

 180

 195

 210

10-2 100 102 104 106

  

 

 
 
 
 
 
 

K
(i)
11/K

(i)
22

K
(∗

)
11

[W
/m

K
]

Interface Conductance [W/mK]

C1,C3,C5

1000/100

100/10
1000/10

100/100

from Fig. 8.18

C1

C1
C5

C3
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conductivity of a carbon–copper composite (ξ(i) = 0.5; planar randomly oriented spheroidal

fibers with no out–of–plane deviation, a2 = 5µm, a1/a2 = 7.5,K(m) = 360 W/mK) for axial
fiber conductivities of 100 W/mK and 1000 W/mK and transverse fiber conductivities of
10 W/mK and 100 W/mK predicted with an extended Mori–Tanaka method (E–MT/2Dr).
The solid circles correspond to predictions based on cylindrical fibers (H–MT/2Dr), see
Fig. 8.18.

four different inclusion conduction types, each of which is considered. The matrix conduct-

ivity equals 360 W/mK.

The predicted effective out–of–plane conductivities,K
(∗)
11 , are plotted in Fig. 8.20 versus

the interface conductance, βa2, as introduced in Eq. (5.23). The curves relating to the same

transverse inclusion conductivities, 10 W/mK and 100 W/mK, coincide. The latter effect

is due to two characteristics associated with the employed averaging procedure to obtain

reduced conductivities and with orthotropic ellipsoidal inclusions in general. As explained

in Section 5.1 the estimates on the reduced conductivity K̄
(ir)
ii (no sum over i) in a given

direction i are only influenced by the size of the inclusion and its conductivity K
(i)
ii (no

sum over i) but is independent of the conductivities in the normal directions, K
(i)
jj (no sum

over j). Accordingly, equally sized inclusions with the same transverse conductivity and
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Figure 8.21: The influence of the interface conductance (βa2) on the effective in–plane
conductivity of a carbon–copper composite (ξ(i) = 0.5; planar randomly oriented spheroidal

fibers with no out–of–plane deviation, a2 = 5µm, a1/a2 = 7.5,K(m) = 360 W/mK) for axial
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10 W/mK and 100 W/mK predicted with extended Mori–Tanaka method (E–MT/2Dr).
The solid circles correspond to predictions based on cylindrical fibers (H–MT/2Dr), see
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distribution of the interface parameter will have the same reduced transverse conductivities,

independent of their axial conductivities. Secondly, due the perfect in–plane distribution

of the spheroids (no out–of–plane deviation) and the Eshelby property of spheroids the

effective out–of–plane conductivity, K
(∗)
11 , depends on the transverse conductivity of the

replacement inclusion only.

A typical S–shape is observed ????. The measured values of the interface parameter βec

and βsp (see Section 3), together with a characteristic length of a2 = 5µm yield interface

conductances of 0.65 W/mK and 6.5 W/mK, respectively (corresponding to the scenarios

C3 and C5 of interfacial degradation, see Table 3.4). A great potential for gaining higher

effective out–of–plane conductivities via improving the interfacial thermal barriers is evid-

ent for transverse inclusion conductivities of 100 W/mK. The gain reduces as the transverse
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inclusion conductivities decrease. The solid circles in Fig. 8.20 show the effective out–of–

plane conductivities as predicted with a Gauss–type aspect ratio distribution (Table 8.5)

of cylinders for the cases C1, C3, and C5. It shows that for the case of constant interface

parameters a spheroidal approximation of cylindrical fibers provides excellent results.

The predicted effective in–plane conductivities, K
(∗)
22 and K

(∗)
33 , are plotted in Fig. 8.21

versus the interface conductance. Again, a typical S–shape is observed. The reduced

axial inclusion conductivity dominates the effective in–plane behavior of the composite,

the transverse conductivity playing a secondary role, especially for small and intermediate

interface conductances. Good agreement between the estimates based on spheroids and

cylinders is found (bullets, Fig. 8.21). Reducing the thermal resistance of the carbon–

copper interface can significantly increase the effective in–plane conductivity, especially for

high axial inclusion conductivities.

8.3.4 Influence of Inclusion Volume Fraction

For planar randomly distributed cylindrical fibers (no out–of–plane deviation) and a Gauss–

type distribution of the aspect ratios following Table 8.5 the influence of the fiber volume

fraction on the effective out–of–plane conductivity K
(∗)
11 (Fig. 8.22) and on the effective

in–plane conductivities K
(∗)
22 and K

(∗)
33 (Fig. 8.23) is studied with a hybrid Mori–Tanaka

method, H–MT/2Dr. The conduction properties of the constituents are given in Chapter

3. All six scenarios of interfacial degradation, C1–C6 (Table 3.4), are considered.

The out–of–plane conductivity is practically independent of a possible failure of the

end face interface, so that the curves for C1 and C2, C3 and C4, as well as for C5 and C6,

coincide (see Fig. 8.22). For the case of thermal perfect side faces (scenarios C1 and C2)

transverse inclusion conductivities of 10 W/mK (Fig. 8.22, left) and 100 W/mK (Fig. 8.22,

right) give rise to significantly different predictions. For the considered values of β corres-

ponding to scenarios C3–C6 the out–of–plane conductivities are practically independent of

the transversal inclusion conductivity, i.e. no advantage can be drawn from high transversal

inclusion conductivities in the presence of high interfacial resistances.

Similar observations hold for the effective in–plane conductivities. Except for scenarios

C1 and C2 the transverse inclusion conductivity has no influence on the effective con-

ductivities for the studied interface parameters β and inclusion dimensions. A significant

reduction of the effective in–plane conductivities due to selective failure of the end face in-

terfaces is only observed for the case of perfectly bonded side faces. Some slight reduction



CHAPTER 8. RESULTS FOR RANDOMLY ORIENTED CARBON FIBERS 144

 0

 50

 100

 150

 200

 250

 300

 350

 0  0.2  0.4  0.6  0.8  1

  

 

 
 
 

 0

 50

 100

 150

 200

 250

 300

 350

 0  0.2  0.4  0.6  0.8  1

  

 

 
 
 

C1,2

C3,4
C5,6

C1,2

C3,4
C5,6

ξ(i) ξ(i)

K
(∗

)
11

[W
/m

K
]

K
(∗

)
11

[W
/m

K
]

K
(i)
22 = 10 [W/mK] K

(i)
22 = 100 [W/mK]
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Figure 8.23: The dependence of the effective in–plane conductivity of a carbon–copper
composite (cylindrical fibers, Gauss–type aspect ratio distribution following Table 8.5,
planar random arrangement with no out–of–plane deviation, conductivities of constituents
are given in Chapter 3) on the fiber volume fraction for transverse fiber conductivities of
10 W/mK (left) and 100 W/mK (right) predicted with a hybrid Mori–Tanaka method,
(H–MT/2Dr).

is present for the scenarios relating to βsp, i.e. C5 and C6.
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8.3.5 Comparison with Experiments

In Fig. 8.24 hybrid Mori–Tanaka predictions of the effective conductivity of carbon–copper

composites are compared with measurements. The effective conductivities of planar ran-

domly oriented cylindrical fibers, which conform to a Gauss–type distribution of aspect ra-

tios according to Table 8.5, are predicted with a hybrid Mori–Tanaka scheme, H–MT/2Dr.

Six different scenarios of interfacial degradation (Table 3.4) in combination with trans-

verse fiber conductivities of K
(i)
22 = 100 W/mK are accounted for. In addition, results are

provided for transverse fiber conductivities of K
(i)
22 = 10 W/mK for perfectly bonded side

faces, i.e. scenario C1 and C2. Note that the corresponding results for the remaining four

scenarios, C3–C6, almost coincide with those pertaining to fibers of the higher transverse

conductivity of K
(i)
22 = 100 W/mK.

The experimental results correspond to measurements reported by Neubauer ? (squares),

from Korb et al. ? (circles), and from Buchgraber ? (triangles pointing upwards). Tri-

angles pointing downwards (Buchgraber∗) pertain to a carbon–copper composite with a

non–uniform fiber distribution. All measurements pertain to carbon fibers which have been

copper coated via the electrochemical route.

All measured values lie below the predictions for fiber with perfect side face interfaces,

indicating the presence of reduced interfacial conductances. Experimental data results on
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Figure 8.24: The lines show the effective out–of–plane (left) and in–plane (right) con-
ductivities (cylindrical fibers, Gauss–type aspect ratio distribution) for C/Cu composites
(material data is given in Chapter 3) as predicted with a hybrid Mori–Tanaka method (H–
MT/2Dr). The symbols show measurements and are taken from Neubauer ? (squares),
Korb et al. ? (circles), and Buchgraber ? (triangles).
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the in–plane behavior suggest, however, that the interface conductances may be somewhat

better than the values used for the present study. As the in–plane conductivity is consider-

ably more sensitive to interfacial thermal resistances than is the out–of–plane conductivity,

a increase of the interface parameter β would result in a better agreement between the nu-

merical predictions for the in–plane conductivity and the measurements, while at the same

time the predictions for the out–of–plane conductivity would not “drift away”, maintaining

the excellent agreement with the measurements.

This effect can also be observed when comparing the behavior of the effective out–of–plane

and in–plane conductivities on the interface conductance as displayed in Figs. 8.20 and

8.21, respectively. Considering interface conductances as determined by an interface para-

meter βec (i.e. electrochemical coating, marked as C3), it shows that both, the effective

in–plane and out–of–plane conductivities, are almost independent of the conductivities of

the fibers as the interfacial resistance is “hiding” them. For an interface conductance re-

lating to βsp (i.e. sputter technique, marked as C5), the situation has not changed much

for the out–of–plane conductivities (Fig. 8.20) and some minor dependence on the fiber

conductivities is showing. The corresponding in–plane conductivities (Fig. 8.21), however,

are gaping apart more than 30 W/mK for the chosen fiber conductivities and interface

conductance.



Chapter 9

Conclusions

In this work the effective thermal conductivity of carbon–copper composites was studied,

special attention being paid to the effects of imperfect thermal interfaces. A unit cell

approach solved with the FEM and an extended Mori–Tanaka mean field approach were

employed. The localization capabilities of the latter method were improved significantly.

Both micromechanical methods for obtaining estimates on the effective conductivity were

subjected to thorough and critical discussion.

An analytical method was developed that enables studies of the effects of imperfect

thermal interfaces between matrix and ellipsoidal inclusions. It is based on the idea of

replacing the inclusion and the thermal barrier by a perfectly bonded but less conduct-

ive inhomogeneity. For “confocal” interfacial resistances a solution for interphases of fi-

nite thickness known from the literature was recovered. For more general distributions of

interfacial resistances a straightforward and accurate approximation was developed. Sub-

sequently, this idea of a replacement operation was applied to imperfectly bonded inclusions

of arbitrary shape, numerical unit cell methods being used to evaluate the corresponding

dilute concentration tensors and reduced conductivities.

For the case of imperfect thermal interfaces size effects that are known from the literature

could be identified. They can be interpreted such that for inclusions of greater size the

impact of an interfacial thermal resistance on the overall response is less severe than for

small ones. The above solutions, in turn, could be used within Mori–Tanaka methods

to provide a versatile, hybrid micromechanical tool for studying the thermal conduction

behavior of nondilute composites with nonideal interfaces.

The “dilute” unit cell approach was also used to study and compare the averaged tem-
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perature gradient fields and flux fields in spheroidal and cylindrical inclusions. A wide

range of technical relevant sets of conductivities and aspect ratios was investigated for the

case of perfect thermal interfaces. If the axial inclusion conductivities exceed the matrix

conductivity, the averaged temperature gradient fields and flux fields of spheroids and cyl-

inders were found to differ significantly for applied far fields in axial direction. For applied

far fields in the transverse direction smaller discrepancies were observed between the aver-

aged temperature gradient and flux fields of spheroids and cylinders. Dilute spheroidal and

cylindrical carbon fibers that are bonded imperfectly to the copper matrix were investig-

ated. It was found that especially for selective failure of the end face interface predictions

based on spheroids and cylinders can differ significantly.

On the basis of the above results the thermal conductivity of carbon–copper composites

of technically relevant fiber volume fractions was investigated. Different fiber arrangements,

different configurations of interfacial thermal resistances as well as different conductivities

of the carbon fibers were taken into account. Cylindrical and spheroidal inclusion shapes

and their influence on the effective behavior were compared.

It was predicted that the thermal interfacial resistances typically associated with car-

bon fibers in a copper matrix severely reduce the effective conductivities of the resulting

composites. Consequently, the overall conductivity of such MMCs can be significantly

increased, if the interfacial thermal resistance between carbon and copper is decreased.

Selective debonding of the end faces was found to reduce the effective conductivities to

a significant degree only for the case of perfectly bonded side faces. In the presence of

imperfectly bonded side faces, additional failure of the end faces was found to reduce the

effective conductivity only insignificantly.

Microgeometries with aligned continuous fibers and staggered short fibers as well as three

dimensional random and planar random arrangements of short fibers were studied. Except

for the case of staggered short fibers the Mori–Tanaka predictions and unit cell predictions

were found to agree very well, independent of the spatial variation of the interface para-

meter. The influence of various microgeometrical descriptors on the effective conductivity

was studied comprehensively with a hybrid Mori–Tanaka approach. Good agreement with

experiments was found.



Appendix A

Appendix: Transformation Tensor

and Orientational Averaging

Transformation Tensor

The elements of vectors ui and second rank tensors U ij which are defined in different

coordinate systems, e.g. a global coordinate system xi and a local coordinate system lxi,

can be related to each other via the second rank transformation tensor T ij in the following

way

6
ui = T ij

luj

6
U ij = T ikT jl

lUkl , (A.1)

here the superscript 6 refers to tensors given with respect to the global coordinate system.

The elements of the transformation tensor are given as

T ij = cos
(

<) xi
lxj

)

, (A.2)

see e.g. ??, where <) denotes the angle between two orientations.

Misaligned Inclusion

In the following inclusions of axisymmetric shape are considered, the axis of rotational

symmetry of which coincides with lx1 (Fig. A.1). Additionally, for the equations to hold, the

material symmetry of the inclusions is restricted to transversal isotropy, the axis of isotropy
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Figure A.1: Two inclusions of axisymmetric geometry of a given orientation, definition of
the angles Ψ1,Ψ2, and Ψ3.

being aligned with lx1. Two angles, Ψ1 and Ψ2, are sufficient for describing the orientation

of the inclusion with respect to a global coordinate system. For the configuration as

depicted in Fig. A.1 the transformation tensor T ij can be provided as a function of Ψ1 and

Ψ2 and reads

T ij =







cos (Ψ1) 0 sin (Ψ1)

sin (Ψ1) sin (Ψ2) cos (Ψ2) −cos (Ψ1) sin (Ψ2)

−sin (Ψ1) cos (Ψ2) sin (Ψ2) cos (Ψ1) cos (Ψ2)






. (A.3)

The transposed transformation tensor equals its inverse, i.e. T−1
ij = T ji. If the inclusion is

aligned with the global coordinate system then T ij equals δij.

The above description implies that the local lx2–axis is oriented such that it is in the global

x2–x3–plane, note that T 12 equals zero. The diagonal terms of the transformation tensors

contain the angles between corresponding local and global principal axes (Eq. (A.2)), im-

plying the angle subtended between x3 and lx3, Ψ3, is tied to Ψ1 and Ψ2 such that

cos (Ψ3) = cos (Ψ1) cos (Ψ2) (A.4)
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holds. Descriptions based on three independent angles (lx2 has “out–of–plane” orientations)

result in complicated trigonometrical functions for each element of T ij and Eq. (A.4) loses

validity.

Orientational Averaging

Inclusion families are composed of similar inclusions which are distributed according to

the ODF of each family, ρ(r) (r = 1, 2, ..., N). Orientational averaging of the respective

local vectors lu
(r)
i and local second rank tensors lU

(r)
ij of the rth–inclusion phase must be

performed in one coordinate system. The global coordinate system is chosen for averaging

for all inclusions.

For vectors weighted averaging as prescribed by the ODF can be expressed as

ū
(r)
i =

〈

6
u

(r)

i

〉

=
1

ρ̄(r)

∫ π/2

Ψ1=0

∫ 2π

Ψ2=0

T ij (Ψ1,Ψ2)
lu

(r)

j ρ(r) sin (Ψ1) dΨ1dΨ2 (A.5)

and for second rank tensors as

Ū
(r)
ij =

〈

6
U

(r)

ij

〉

=
1

ρ̄(r)

∫ π/2

Ψ1=0

∫ 2π

Ψ2=0

T ik (Ψ1,Ψ2)
lU

(r)

kl T
−1
lj (Ψ1,Ψ2) ρ

(r) sin (Ψ1) dΨ1dΨ2 (A.6)

where ρ̄(r) is defined as

ρ̄(r) =

∫ π/2

Ψ1=0

∫ 2π

Ψ2=0

ρ(r)sin (Ψ1) dΨ1dΨ2 (A.7)

for each inclusion phase respectively.

Within the framework of the proposed Mori–Tanaka theory only Eq. (A.6) needs to

be employed a maximum of two times for each inclusion family – on the one hand av-

eraged inclusion conductivities and resistivities for determining the effective conductivity

(Eqs. (4.22–4.24)) and on the other hand averaged dilute temperature gradient concen-

tration tensors, 0D̄
(r)
ij , and averaged dilute flux concentration tensors, 0F̄

(r)
ij (Eq. (4.30)).

Orientational averaging of the conductivities and resistivities is not necessary for isotropic

material properties. Note that the above integrals are evaluated numerically, the integral

being replaced by a sum.



APPENDIX A. ORIENTATIONAL AVERAGING 152

For perfectly bonded spheroidal inclusion families the above integrals are integrals over

constant properties within the framework of the proposed theory due to the Eshelby–

properties, i.e. no bar on top of the “u’s” and “U ’s” in Eq. (A.5) and Eq. (A.6) is required.

However, one must keep in mind that for imperfectly bonded spheroidal inclusions or

cylindrical inclusions the above integrals are integrals over ”quasi–constant” properties,

i.e. the fluctuating microfields have been replaced on a dilute level by averaged microfields.
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