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Ballistischer Quantentransport
bei hohen Energien
und starken Magnetfeldern

Abstract in German - Deutsche Kurzfassung

Der Elektronentransport durch zweidimensionale ballistische MikroStrukturen zeigt
Quantenphänomene, die durch die Phasenkohärenz dieses Streuproblems bedingt
sind. Es ist mittlerweile technisch machbar, Halbleiterstrukturen zu fertigen, deren
Größe kleiner ist als die mittlere freie Weglänge. Dies ermöglicht das experimentelle
Studium des Elektronentransports durch Leitfähigkeitsmessungen. Von besonderem
Interesse ist dabei der Bereich von hoher Elektronenenergie und hohem Magnetfeld,
das senkrecht auf die Ebene der Mikrostruktur angebracht wird. Der Übergang zu
höhen EnergiefTspielt in der Quantenmechanik deswegen eine ganz besondere Rolle,
da man in diesem Fall eine Einmündung der Quantenphysik in die klassische Physik
beobachten kann. Im Falle des hohen Magnetfelds ergeben sich bei kohärentem
Transport eine Vielzahl von interessanten Phänomenen, wie z.B. der Quanten-Hall-

-Effekfrr — —
Wie sich zeigt, stößt eine theoretische Beschreibung dieser Effekte mit konven-
tionellen Methoden sehr bald an ihre Grenzen. Der Grund dafür ist der, dass diese
Parameterbereiche bei den gängigen numerischen Verfahren zu schwer kontrollier-
baren Instabilitäten führen oder eines nicht bewältigbaren Aufwandes an Rechenzeit
bedürfen um Konvergenz zu erzielen. Es stellt daher eine große Herausforderung dar,
verbesserte Methoden zu erarbeiten, die diese Probleme in den Griff bekommen und
dadurch theoretische Vorhersagen in bisher nicht erreichbaren Gebieten des ballis-
tischen Transports erlauben.
In dieser Arbeit wird ein Verfahren vorgestellt, das speziell für hohe Elektronenen-
ergien und hohe Magnetfelder geeignet ist. Es handelt sich dabei um eine Er-
weiterung der rekursiven Methode der Greenschen Funktionen. In der bisherigen
Form dieses numerischen Modells wird die Greensche Funktion (i.e. der Propagator)
des Streuproblems durch rekursive Lösung eines Systems von gekoppelten "Gitter-
bändern" berechnet. In der vorliegenden Arbeit zeigen wir, dass die Effizienz dieser
Herangehensweise massiv gesteigert wird, wenn man die Symmetrien der Streuge-



11

ometrie in die Berechnung der Greenschen Funktion miteinbezieht. Dies ist speziell
dann möglich, wenn sich die Geometrie der zu berechnenden MikroStruktur aus sep-
arablen Modulen zusammensetzen lässt. Diese "Gittermodule" können mit unserer
Methode direkt berechnet werden und müssen nicht - so wie bisher - in eine Vielzahl
von "Gitterbändern" zerlegt werden. Wir bezeichnen daher unser Verfahren als mod-
ulare rekursive Methode der Greenschen Funktionen.
Als erste Anwendung benutzen wir unser Verfahren zur Berechnung von Elektro-
nentransport durch Strukturen mit regulärer bzw. chaotischer klassischer Dynamik.
Wie wir durch Auswertung der Streuwellenfunktion und der Streumatrix zeigen
können, ergeben sich - speziell für hohe Elektronenenergie - auch in der Quan-
tenmechanik spezifische Unterschiede zwischen diesen beiden Klassen von Syste-
men. Im weiteren verwenden wir unsere Methode zur numerischen Berechnung von
spezifischen Effekten in der ballistischen Transporttheorie. Dazu zählen in dieser
Arbeit der Fano-Resonanzeffekt, Aharonov-Bohm-Oszillationen, der Quanten-Hall-
Effekt, de Haas-van Alphen-Oszillationen, elektronisches Schrotrauschen und der Ef-
fekt der schwachen Lokalisierung. Unsere Berechnungen zum Fano-Resonanzeffekt
führten auch zu einer experimentellen Realisierung an der Philipps-Universität in
Marburg/Deutschland. Im Rahmen dieses Experiments konnten unsere Vorhersagen
mit den an einem Mikrowellenbilliard gemessenen Daten verglichen werden. Dabei
wurde eine erstaunlich genaue Übereinstimmung zwischen Theorie und Experiment
erzielt, die unter anderem auf den Einbau von dissipativen Mechanismen in unsere
Methode zurückzuführen ist.
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Chapter 1

Introduction

Due to technical advances in semiconductor science, the fabrication of phase coher-
ent scattering devices has recently become possible [1-5]. A major aim in ballistic
transport theory is to simulate and stimulate experiments in this field with the help
of accurate calculations. In spite of the conceptional simplicity of the problem, the
numerical Simulation of ballistic electron transport through quantum dots has re-
mained ia computational challenge. This is partly due to the fact, that many of the
most interesting phenomena occur in a parameter regime of either high magnetic
field B or high Fermi energy EF- Under the influence of a high magnetic field,
one can study the Quantum Hall effect [6], de Haas-van Alphen oscillations [7], the
"Hofstadter butterfly" [8] and Aharonov-Bohm oscillations of transport coefficients
[9]. In the high energy domain, it is mainly the transition from quantum to classical
dynamics [10] and all related topics such as "quantum chaos" [11] and localization
pKenomehä [12]; ön"which particular interest is focused.
However interesting they may be, these parameter ranges are difficult to handle
from a computational point of view. In the regime of high Fermi energy Ep the de
Broglie-wavelength of the electrons, Ap = y/2Ep, is much smaller than the linear

~dimensiöns~of therscattering device^A/r*^' D~ To-properly-describe-the-continuum-
limit of the transport process, a large number of basis functions is necessary. At
some point, this requirement renders all the respective methods computationally
unfeasible or numerically instable. The case of high magnetic fields is reached when
the magnetic length, Iß = \fc/B (in a.u.), is considerably smaller than the System
dimensiöns, Iß «C D. Under these circumstances methods based on the expansion
in plane or spherical waves become invalid since diamagnetic contributions are gen-
erally neglected [13]. Methods employing a discretization on a grid do not allow
the flux per unit cell to exceed a certain maximum value and therefore suffer from
the same computational unfeasibility as for high energies [14-16]. As a result, the
theoretical modeis which are presently being employed reach their limits of appli-
cability already below the semiclassical domain. It is therefore desirable to have a
new approach at hand, which can bypass the limitations of conventional techniques.
In this thesis we present such an approach and demonstrate that thereby very high
energies and magnetic fields can be attained. The present work constitutes an exten-
sion of an idea previously introduced by Sols et al. [17] and consists of a modification
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2 CHAPTER 1. INTRODUCTION

of the widely used Recursive Green 's Function Method (RGM) [14-16,18]. In the
Standard RGM the Green's function is propagated through the scattering region
from one transverse strip to the next through repeated Solutions of a matrix Dyson
equation. We will show that the efficiency of this "conventional" discretization can
be increased considerably by taking the symmetries of a scattering problem into
account. Especially if the two-dimensional nonseparable open quantum dot can be
built up out of simpler separable substructures (modules), one gains tremendously in
computational speed by calculating the Green's functions for each of these modules
individually. This idea is the essential ingredient of our method. It is put into prac-
tice by discretizing each individual module in a symmetry-adapted tight-binding grid
which leads to a separability of the eigenfunctions and allows to appropriately incor-
porate the boundary conditions of the module. By this procedure also the Green's
functions are set up faster than in the conventional way. As a consequence, it is
possible to include a much higher number of grid points, which is the prerequisite
for reaching shorter wavelengths and higher magnetic fields. We will demonstrate
that, in order to take advantage of this approach, the condition of separability in the
modules is not a strict one. Even if the geometry of a module can be "completed"
or "folded" to a separable boundary, our method is applicable.
The efficiency of the MRGM is demonstrated by applying it to transport through a
rectangular, circular and a Stadium shaped quantum dot. These Systems are known
as prototype structures for regulär and chaotic dynamics and have been studied
thoroughly in the literature [1,2,10,11]. Considerable attention has been dedicated
to reach high energies [19-23] and high magnetic fields [22,24-29]. Especially for the
study of transport through open Stadium billiards, several different methods have
been employed [13, 21, 30-33]. In the following chapters we will present numerical
results-obtained by the MRGM which attain a parameter ränge, to our knowledge,
not yet explored by other approaches. For small XD we investigate the localization
of the scattering wavefunction near classical scattering trajectories. Characteris-
tic differences in the dynamics of generically regulär and chaotic Systems will be

--highlighted— In-the-high-magnetic -field-regime,.. which Js. governe.d_by,_edge_states,_
differences between the dynamics in different geometries gradually disappear.
The present thesis is divided into two parts. The first one is dedicated to the in-
troduction of the MRGM and to a presentation of results on wavefunctions for the
circle and Stadium billiards. We further analyze the accuracy of the method. In the
second part of the thesis the MRGM is applied to simulate specific ballistic quan-
tum transport phenomena which have received much attention recently. Amongst
these we will consider the Aharonov-Bohm [9] and the Fano resonance effect [34]
in transport through mesoscopic Systems, the integer quantum Hall effect [35], de
Haas-van Alphen oscillations [36], the suppression of shot noise [37] and the weak
localization effect [38] in transport through quantum dots. All of these phenomena
have in common that for their numerical Simulation a very efficient and accurate
calculation scheme is required. Since with the MRGM we have such a tool at hand,
we investigate these specific phenomena. As will be demonstrated, several new and
partly unexpected findings could be uncovered. We will put them into the context
of the present State of knowledge in the respective fields of research.



The first topic we address is the emergence of regulär oscillations and isolated reso-
nances in the transport coefficients of our scattering geometries. In the case of high
magnetic fields we identify quasi-periodic Aharonov-Bohm oscillations which, at a
critical magnetic field, break off and transport terminates entirely. In the regime
where more than one edge State is excited in the dot, we find interference fluctua-
tions which we analyze in terms of a multi-channel Fano interference model [39,40].
The key to the understanding of the observed fluctuations is that inter-channel scat-
tering between different edge states takes place only by diffractive scattering at the
lead junctions.
To investigate Fano resonances experimentally we present a scattering set-up, mean-
while realized by Kühl and Stöckmann in Marburg, Germany [41]. This device con-
sists of a quasi two-dimensional (2D) metal cavity through which microwaves with
variable frequency are transported. Due to the equivalence of the electromagnetic
Helmholtz equation and the Schrödinger equation for the Single free electron in two
dimensions [11], these microwave experiments are formally equivalent to ballistic
electron transport measurements. In such a way we manage to demonstrate experi-
mentally the emergence of Fano resonances in ballistic transport through quantum
dots. One of the specific features of our set-up is that individual resonances can be
tuned and particular classes of resonances can be identified that display a distinct
Variation of their Fano parameter. Moreover, our experiment is the first quantum
dot experiment we are aware of, in which the Fano lineshapes could be quantitatively
accounted for by theory rather than just being fitted. To optimize the correspon-
dence between the measured and the calculated data we further include a damping
mechanism in the MRGM which accounts for the dissipated part of the microwave
flux absorbed by the cavity walls.
In the field of the integer quantum Hall effect, traces of the many.-particle Hall quan-
tization on a single-electron transport experiment are investigated. The high-field
capability of the MRGM is essential for the Performance of these calculations since
only in the regime of high 5-fields plateau values in the Hall voltage emerge [42].
We-also-eonsider-the-effeet-of de -Haas-van-Alphen-oscillations_which,_in.a_closed_
quantum dot, are only observed under the condition that Iß < D.
Last, but not least, we focus our attention on the phenomenon of "shot noise" and
the "weak localization effect". The MRGM turns out to be very useful in this context
since the evaluation of the transport coefficients at many different parameter values
is required. This is because the predictions for both effects concern the average
values of a statistical ensemble of data. Due to the efficiency of the MRGM we are
capable of evaluating very large ensembles, which, in turn, allows for an excellent
comparison between the predictions and the numerical results. In such a way we
uncover that the sensitivity of shot noise to the regularity or chaoticity of the un-
derlying classical dynamics involved in a transport process is much less pronounced
than was expected [43,44]. We also perform a numerical Simulation of a recent ex-
periment on shot noise [45], which was so far beyond the reach of Standard numerical
methods in ballistic transport theory [46]. In the context of the weak localization
effect we verify the prediction that weak localization peaks in transport through cir-
cular billiards take on a triangulär line shape. We further demonstrate that this line
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shape turns into a Lorentzian form in case that a decohering mechanism suppresses
the contributions from long electron trajectories.



Part I

Presentation of the method
and first numerical results



Chapter 2

Scattering theory for ballistic
microstructures

In this chapter we formulate the quantum scattering problem for conductance through
microstructures. We assume inelastic scattering sources to be absent, for which rea-
son the electron motion throughout the device region is ballistic. Inside the hard-wall
boundary of the microstructure we assume a constant potential set to be equal zero
in the following, while being infinitely high outside. Due to phase coherence the
conductance through these devices is determihed by the shape of the chosen cöfi-
fining potentials. Some of the boundary geometries considered here are depicted in
Fig. 2.1. Note that these geometries represent prototype Systems for regulär and
chaotic classical dynamics, respectively. Two semi-infinite waveguides of width d
at different ele^troch^micäl^ötentiäls^iUx- a n d ßR are
ometries in different orientations. If not stated otherwise, the aperture of the leads
is chosen to be very small, d/D = d/VAdot = 0.0935, where Adot = 4 + TT is the
scaled area of the cavities studied and D is a characteristic linear dimension of the
cavity. The energy at which the scattering process takes place is the Fermi energy
Ep — h2kjp/2meff. Furthermore a constant magnetic field B is assumed to be ori-
ented perpendicular to the scattering plane.
In the asymptotic region, i.e. far away from the scattering domain, the electron prop-
agates like in a perfect wave guide which we assume to be linear. The wave function
can be factorized into a longitudinal, propagating part (plane wave motion) and a
transverse part (standing wave). The latter is a simple sine wave in the field-free
case and a combination of Kummer functions when the magnetic field is turned on
[47,48]. In our local coordinate System the longitudinal (transverse) direction in the
ith lead is always denoted by xt (yi). The wavefunctions in the waveguides are thus
always fixed to zero at y* = ±d/2. Atomic units (h = |e| = meff = 1) will be used
from now on, unless explicitly stated otherwise.



2.1. THE STANDARD RECURSIVE GREEN'S FUNCTION METHOD

2.1 The Standard recursive Green's function method
In order to highlight the technical difficulties in setting up the modular recursive
Green's function technique (MRGM), we start by briefly reviewing the Standard
recursive Green's function method (RGM) for the case of zero magnetic field [14-
16, 18]. This Standard approach is widely used in various fields of computational
physics and consists in a discretization of the scattering geometry on a Cartesian
grid. Setting up a tight-binding (tb) Hamiltonian on this grid,

(2-1)

the hopping potentials Vy and the site energies e» a r e chosen such that the Hamilton
equation Htb\ipm) = Em\ipm) converges towards the continuum Schrödinger equation
for many grid points,

2 \dx2 + dy2 (2.2)

The hopping potentials are non-zero only for the nearest neighbour coupling of grid-
points and result directly from a three point difference approximation of the kinetic
energy term in the free-particle Hamiltonian (2.2),

1 1

Ax2 Ay2 v* - W =
2Ay ,2 ' (2-3)

(b)

u
d

(C)

Figure 2.1: Quantum billiards investigated in this work: (a) circle, (b) rectangle
and (c) Stadium billiards each with parallel and perpendicular orientation of leads.
Entrance and exit leads are chosen to have the same width. If not stated otherwise,
the area of the billiards Adot = 4 + n and the lead with d = 0.25. The billiards (a)
and (b) exhibit regulär classical dynamics and the Stadium billiard (c) shows chaotic
behaviour.
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With the help of the eigenvectors \ipm) and the eigenvalues Em of the Hamiltonian
Htb the Green's functions of one-dimensional tb strips are calculated, each of which
takes the form

*±0 E±ie-

The different signs (±) denote the retarded and advanced Green's functions respec-
tively. The eigenfunctions appearing in Eq. (2.4) are orthonormalized on each strip
(V'nl̂ m) = $mn- The disconnected transverse strips are placed next to each other
such that their bottom and top ends follow the specific boundary conditions as ac-
curately as possible (see Fig. 2.2). To connect all the strips with each other the
Green's function is calculated by successively adding transverse strips through re-
cursive Solutions of a Dyson equation. The complete scattering structure can thus
be assembled from the individual strips much like knotting a carpet.

Figure 2.2: Illustration of the discretization procedure employed in the Standard
RGM: Cartesian tight-binding strips are recursively connected to each other. The

-hard-wall-boundary-conditions-Mt-the-sites..on-the..bozder...ofJ;fo
represented by empty circles (accessible space by füll circles). Smooth boundaries can
only be inadequately approximated by the Cartesian grid.

Mathematically speaking each recursion amounts to solving a matrix Dyson equation
of the form

G = G° + G°VG, (2.5)

where G° and G denote the retarded Green's functions of the disconnected and
the connected tb strips, respectively. The matrix V denotes the hopping potential
V multiplied by the size of the unit cell V = VAR, which in a Cartesian grid is
AR = AxAy. The number of necessary recursions [i.e. Solutions of (2.5)] is equal to
the number of transverse strips. The shorter the electron wavelength, the higher the
number of recursions (i.e. number of matrix inversions). This requirement renders
transport calculations for very small wavelengths eventually impractical.
Finally, the Green's functions for (a) the scattering region and for (b) the in- and
outgoing leads are connected with each other. Note that the expressions for (b)
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can be calculated analytically [49,50]. Once the Green's function Gtot for the total
scattering geometry is assembled, the transmission amplitudes tnm from entrance
lead mode m into exit lead mode n can be calculated by projecting Gtot onto the
transverse wavefunctions in the leads Xn(Vi),

rd/2 rd/2

tnm{EF) = -i\/kX2tnkXl!m / dy2 dyx x*(y2) G
tot(y2,yi, EF)xm{y\) (2.6)

J-d/2 J-d/2

rd/2 rd/2

rnm(EF) = Snm -iy/kXunkXltTn / dyi dyiXn(yi')Gtot(yi',yi,EF)xm(yi),
J-d/2 J-d/2

(2.7)

where kXun denotes the corresponding longitudinal wave numbers,

(2.8)

The indices n,m run over all possible transverse modes (sine waves), which are
determined by the hard wall boundary conditions at y = ±d/2 . The wave numbers
kXun are real for nn/d < kF (open Channel). For nir/d > kF, we have a kXitTl which
is purely imaginary (closed Channel). Current conservation is expressed through
the unitarity of the S matrix, which consists of the transmission and refiection
amplitudes,

M

VV|tn m |2 + |rnm|2) = 1. (2.9)
n=l

The integer M denotes the number of open Channels in the leads. According to the
Landauer formula [51], the total conductance g through the quantum dot is given
by

IT £—' nm 7T
m,n=l

2.2 The modular recursive Green's function method
To calculate the Green's function for an arbitrarily shaped scattering structure with
the RGM can be a very time consuming procedure. This is because the number of
large matrices which have to be inverted in the strip-by-strip recursion process can
itself be very large. In addition, the RGM suffers from a slow convergence towards
the continuum solution as a function of the grid density. This is in particular the
case when the boundary does not have the same Cartesian shape the grid structure
itself has, but is a smoothly varying curve which can only be crudely approximated
by the tight-binding grid (as illustrated in Fig. 2.2).
The remedy which we propose to overcome such difficulties goes back to Sols et al.
[17] and consists of an extension of the RGM. Starting point is the observation that
many prototypical non-separable quantum dot geometries are built up out of simpler
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Figure 2.3: Schematic illustration of the modular recursive Green's function method
as applied to the Stadium with opposite leads.

separable structures. This is e.g. the case for all the scattering geometries displayed
in Fig. 2.1: the circle, rectangle and Stadium shaped quantum dot. These scattering
devices can all be assembled from rectangular and spherical substructures, in the
following referred to as modules. The example of a Stadium billiard with parallel
leads is illustrated in Fig. 2.3.
Because of the separability of the continuum Helmholtz equation in each of these
modules, the wave function and hence the Green's function can be calculated either
analytically or by one-dimensional quadrature essentially exactly. This Statement
remains true for the discretized Green's functions of these modules provided that
a symmetry-adapted discretization is employed. For the spherical modules this re-
quirement demands e.g. a discretization on a polar tb lattice as displayed in Fig. 2.4.
For joining modules with each other we employ the technique of the RGM where
the coupling between Green's functions is facilitated in terms of the corresponding
hopping matrix elements of the tight-binding Hamiltonian. A matrix Dyson equa-
tion has to be solved only once at each junction between the modules. The complete
scattering structure can thus be assembled from the individual modules much like
a Jigsaw puzzle. In comparison with the strip-by-strip recursion the number of nec-
essary recursions is thereby drastically reduced. Furthermore the sections of the
boundary with any other than a rectangular shape are optimally approximated by
the symmetry adapted tight-binding grid of the corresponding module in contrast
to .th_e_Cartesian_grid usedj_n the conventional RGM.
Our modular method can be applied to all geometries consisting of modules the
boundaries of which follow the nodal lines of Cartesian, polar, elliptic, or hyperbolic
coordinates. The most straightfoward examples of Cartesian and polar grids will be
illustrated in the following.

2.3 Non-Cartesian tight-binding grids

Starting point for any symmetry-adapted grid is the structure of its tight-binding
Hamiltonian. For the case of a module with rectangular boundary the tb Hamil-
tonian and the corresponding hopping potentials of its Cartesian grid are identical
to those of the RGM discussed above [see Eqs. (2.1,2.3)]. On a polar grid the dis-
cretization of the Schrödinger equation is somewhat more involved. This is because
a straightforward approach to the discretization on a polar grid fails: A replace-
ment of the derivatives in the polar coordinate representation of the free-particle
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Figure 2.4: Polar discretization on a circular module with Nv angular and Ne radial
grid points.

Hamiltonian
1

"2

di/j

QTQ \6~dQ~
ijjm = (2.11)

by finite difFerence Operators leads to serious discretization errors especially around
the origin (g = 0). To remedy this matter we derive the discretization formulae
based on a variational principle which involves the Lagrangian L and its density C,

L = fd2xC= frdrfdcpC (2.12)

C = (2.13)

In the continuum case the Schrödinger equation is obtained from the Lagrangian by
applying the functional derivative,

dC dC
Sip*

(2.14)

Let ip depend on a parameter £. A small Variation of ip corresponds to a dijj/d£ that
is zero everywhere, except in a small region R, of volume AR, around some point x.
In that sense, the functional derivative can by defined by the following limit,1

SL v 1 dL/di
y— = hm -— —^ (2.15)

xFor details check [52], chapter 9.
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If we first discretize the Lagrangian and then solve Eq. (2.15) in a discrete way, we
can be sure to obtain Symmetrie (or Hermitian) difference equations [53]. In the
field-free case this discretization procedure takes the following form:

(2.16)

In the discrete case AR is the volume of the unit cell in the polar grid (A# =
QiAgAip). The parameter that we vary is the wave funetion iptj &t the radial grid-
point Qi = \i — 1/2\AQ and the angular site ipj = jA(p . Note that we place the
first grid point in radial direction at the position Q\ = 0.5 Ag, which is essential to
properly discretize the center of the circular module. A straightforward discretiza-
tion with gridpoints at Qi = iAg would lead to errors in the convergence towards
the continuum solution around g = 0.
Approximating the functional derivative by

5L 1 dLdis

Q (

leads us from Eq. (2.17) to the following Schrödinger equation

(2-19)

Comparing Eq. (2.19) with the general form of a tb Hamiltonian (2.1) we can directly
read off the hopping matrix elements Vei (V^) for hopping from one site to its nearest
neighbour in g (<p) direction,

The different signs (±) in Eq. (2.20) depend on whether we hop from gi to &+1 —> (+)
or to ft_i -»• ( - ) .

2.4 Inclusion of a magnetic field

In the previous section we illustrated how the separability of the continuum Schröd-
inger equation can be maintained also in its discretized form if the correct grid
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Figure 2.5: Joining and disconnecting ofmodules by application of a Dyson equation
for the example of two semi-infinite leads. The gray shaded areas P and Q are those
grid slices at which the Green's functions are evaluated (see text).

structure is employed. Since we also include a magnetic field in our method not
only the specific form of the grid, but also the field gauge must be incorporated such
that the separability persists within a given module.
The field B — (0,0, B) enters the tb Hamiltonian (2.1) by means of a Peierls phase
factor [18,54],

exp
f

i/c / A(x)dx
JT

(2.21)

with which the field-free hopping potential K.r' is multiplied. The vector potential
A(r) satisfies V x A(r) = B. The Peierls phase will, of course, in most cases destroy
the separability of the eigenfunctions of Htb. The resulting difficulties can be, in
part, circumvented by exploiting the gauge freedom of the vector potential, i.e.,

A' = A + VA, (2.22)

where A(r) is a scalar function. By an appropriate choice of A the wavefunction
remains separable on a given symmetry adapted grid. Specifically, to preserve sep-

i"gäüge~for~ä"Cäf"tesiairgricl

(2.23a)A=(-By,0,0),

and the "Symmetrie" or circular gauge for a polar grid

= B/2(-y,x,0) = (2.23b)

The scalar gauge potential generating the gauge transformation from (2.23a) to
(2.23b) is X(x,y) = Bxy/2.
A major complication results from the fact that in the presence of the magnetic
field the separability on an unrestricted grid of a given symmetry does not imply
the separability in the presence of boundary conditions of the same symmetry. We
illustrate this problem with the help of one typical example, the semi-infinite quan-
tum wire with lead width d (Fig. 2.5). We impose hard-wall boundary conditions
ip(x,y — ±d/2) = 0 and consider first the infinite quantum wire along the x direc-
tion. Because of the Cartesian boundary conditions, the symmetry adapted gauge is
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the Landau gauge A = —Byk. Consider, for notational simplicity, the Schrödinger
equation in the continuum limit,

1 / 1 V
H<j>(y,x) = - p + - A <f>(x,y) = (2.24)

i2B d B2y2\ lt . . .
a2 x2 y~ä~ + —2~ <P\x>y) = EF(p{x,y).
dx2 ayl c öx c2 )

Since the longitudinal momentum px = —id/dx commutes with H, the separabil-
ity of the wavefunction persists in the presence of the magnetic field: (f>(x, y) =
fk(x)x(y) with fk(x) = elkx. If, however, one introduces an additional Cartesian
boundary condition along the y-axis [i.e. ip(x = 0, y) = 0 for a semi-infinite lead] the
Situation changes. In the absence of the magnetic field, B = 0, the linear term in
Px vanishes and thus the choice f(x) = sin(A:a;) [i.e. a linear combination of f±k(x)]
satisfies the boundary condition and preserves the separability, even though px is no
longer conserved in the semi-infinite lead. However, for B ^ 0 and the same bound-
ary condition ip(x = 0, y) = 0, the term linear in B and px destroys the separability.
The wavefunction takes now the general form

<f>(x,y) = ^ e i f c m l j ] c m n x m n ( 2 / ) . (2.25)

The breakdown of separability by the introduction of an additional boundary con-
dition indicates that the Green's function of confined modules will be more complex
than for extended Systems for the same symmetry adapted grid and the same gauge.
Therefore, the program of the modular method of building-up extended complex
structufes by" "weldiiig" tögether" smaller modules of higher symmetry will be exe-
cuted in reverse: non-separable confined modules will be generated by "cutting in
pieces" larger separable modules. Confining boundary conditions will be introduced
rather than removed by the matrix Dyson equation. In the example above, the semi-

thereby imposing the additional boundary condition. Just as connecting modules,
so is disconnecting a given module equivalent to the application of a matrix Dyson
equation,

GE = GC + GCVGE. (2.26)

In this context GE (Gc) is the Green's function of the extended (confined) module
and V is the hopping potential that connects the modules. Solving (2.26) in reversed
mode (i.e. for Gc rather than for GE) amounts to dissecting the larger module.

2.5 Calculation of modules
This section is dedicated to the evaluation of the Green's functions for those modules,
which we need to assemble the circle, the rectangle, and the Stadium billiard (see
Fig. 2.1): the half-infinite lead, the rectangle, the circle, and the half-circle. The
straightforward procedure to obtain module Green's functions is to work with their



2.5. CALCULATION OF MODULES 15

spectral representation in the separable energy eigenstates of the modules \Em) =
\Ek) <E> |-Efc,n)- With further simplification of Eq. (2.4) we have in this case,

r', B, EF) = ̂ £{a\Eh){Ek\<J) £ ^ ^ f j , (2-27)

where (a,ß) either stand for the coordinates (x, y) or (Q,<P). The indices (k,n) rep-
resent the quantum numbers of the separable eigenfunctions \Ek), \Ek,m) associated
with the degrees of freedom a and ß respectively.
With the exception of the circular module, Eq. (2.27) can however not be used
without further modifications. This is due to the non-separability for confined ge-
ometries as discussed above. Moreover the spectrum in open structures such as the
semi-infinite lead is continuous rather than discrete. Unlike in the field-free case [49],
the resulting integrals cannot be calculated analytically. As will be shown in the
following, both problems can be overcome by applying the matrix Dyson equation
in a non-standard way.
To connect modules of different grid structure additional link modules are required.
In Fig. 2.8 we illustrate how for assembling a Stadium billiard such a link module
is plugged in between a half-circle and a rectangle. The key property of these link
modules is their adaption to two grid symmetries [50, 55]. In such a way we avoid
spurious reflections that would arise at the junction between different modules. The
details for calculating the Green's functions for all the modules mentioned above are
given in the following.

2.5.1 Rectangular module

For the semi-infinite wave guide the Dirichlet boundary condition for the confined
structure of a rectangle with magnetic field is not separable, no matter which gauge

-is-chosenT-T-he-separability-ean-however-be-restored-by-imposing-per-iodiG-boundar-y-
conditions on two opposing sides of the rectangle. Topologically, this corresponds
to folding the rectangle to the surface of a cylinder (Fig. 2.6). In this case we
connect the first (P) and the last (Q) transverse grid slice of a rectangular grid by
a hopping potential |Vpg| = |VQP | = j ^ - The Green's function of this "cylinder
surface" (es) will be denoted by Gcs in the following. The rectangle Green's function
Gr will be obtained out of Gcs by a Dyson equation used here in "reversed" mode,
i.e. for disconnecting tb grids. This method for calculating the rectangular module
may seem like a detour, but it is numerically more efficient than a strip-by-strip
recursion. For completeness we mention that an alternative way to calculate GT was
proposed in Ref. [56].
The Green's function for the cylinder surface Gcs can be construeted from separable
eigenfunctions, \Em) = \E%) ® \Ey

kn), aecording to Eq. (2.27). Solving the tight-
binding Schrödinger equation for the cylinder surface, we obtain for the longitudinal
eigenstates

(Xj\Ei) = (NxAx)-1/2 exV(i2nkj/Nx), (2.28)
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Figure 2.6: Applying a Dyson equation in "reversed mode" to construct Green's
functions for a rectangle out of a cylinder surface. By this procedure the periodic
boundary conditions are transformed into hard wall boundary conditions. The gray
shaded areas P, Q and X are those grid slices at which the Green's functions are
evaluated (see text).

which results in a tridiagonal, Symmetrie matrix-eigenproblem of size Ny x Ny for
the transverse modes [57],

- l] x (yi\Eln)

(2.29)

By "cutting the cylinder surface open" along a line of constant x, we obtain from
Gcs the desired Green's funetion Gr for the rectangle (Fig. 2.6). We demonstrate

~t"hliTföTt"heTe^t"angre~Gree^
other slice X. To determine GT

PX we solve the following system of Dyson equations,

GPX =

Gcs
PQ =

/^fCS /~1T

Upp \J T.

+
- <^PPVPQLrQX

+ GP

pp pP

(2.30)

(2-31)

(2.32)

where the first line is the "reversed" Dyson equation. The three unknowns in the
above equations are the Green's functions connecting the slices (P,X), (P,Q) and
(P,P), are: GpX,GPQ,Gpp. By solving these three equations, the unknowns can
be uniquely determined.

2.5.2 Circle and half-circle
In Symmetrie gauge, A = B/2(—y,x,0), the Dirichlet boundary value problem for
the circle with magnetic field is separable, \Em) = \E%) <g> \EQ

kn). On a discrete tb
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lattice this Statement remains true, provided that a circular grid is employed (see
section 2.3). With the eigenstates for the azimuthal degree of freedom,

and radial eigenstates,

9kn(Qi) =

(2.33)

(2.34)

the finite difference equation for the gkn(Qi) results in a tridiagonal Symmetrie eigen-
problem,

r
[cos

- Ij gkn{Ql) (2.35)

Qi-l/2 Qi+1/2 , x
fffcn(gi+l)

y/Qiy/Qi+1

The Green's function for the circular module is then calculated by a straight-forward
application of Eq. (2.27).

P-Q

Figure 2.7: The Green's function for the half-circular module is obtained by Splitting
a circular module into two halves. For details see text.

For the Green's function of the half-circle we employ an analogous procedure as
in the previous section: we dissect the circle Green's function into half-circles by
means of a "reversed" Dyson equation. We demonstrate this by way of the example
depicted in Fig. 2.7, where the "füll circle" (fc) is split up into two "half-circles"
(hc). The resulting two halves are almost identical, with the exception of the two
additional radial grid slices, by which the right half-circle is larger. For assembling
the Stadium billiard we have to make sure that the tb grid of the half-circle module
can be linked directly to a vertical grid (see Fig. 2.8). For this reason, only the left
one of the two half-circles in Fig. 2.7 can be used for this purpose.
Consider as example the Green's function G)?x describing the propagation from the
grid slice P at the junction of the two half-circles to any radial grid slice X situated
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Figure 2.8: Applying a Dyson equation to construct Green's functions for a Stadium
billiard out of "modules". An additional link module is added to join the half-circle
and the rectangle module.

on the "left half-circle" (see Fig. 2.7). GP
C

X is determined by the following System of
Dyson equations

TPX

Tpp

z^fc
— U p v —

Gfc /-̂ ihc
p p — L*

PX
hc
PP

-.fc

(2.36)

(2.37)

which yields a unique solution for GP
C

X.

2.5.3 Link module

When trying to cohnect a rectangülar with a circular module (as required for as-
sembling the Stadium billiard) the problem occurs of how to link the two different
grid structures with each other. To keep the tb Hamiltonian at the junction of the
two modules Hermitian, the absolute value of the potential for hopping from one

"'möliür^t7rt"hiröT;heinii^
requirement is difficult to fulfill since Vv is dependent on the radial position in the
module and Vx is not. To overcome this problem we insert an additional link module
at the junction between the rectangle and the half-circle (see Fig. 2.8 for a graphical
illustration). These link modules are essentially one-dimensional tb strips the site
energies of which contain contributions from both adjacent grid structures. In this
sense the link module is half a polar wedge and half a Cartesian strip (see Fig. 2.9).
This property is reflected in its Lagrangian from which we Start out,

L

R ±TT/2

= IQ dg j dy
2 \dg dg

R Ax/2

+ dy dx

-R o

(2.38)
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Figure 2.9: The link module for the connection between a half-circle and a rectangle,
as required to assemble a Stadium billiard.

We now discretize this equation on three neighbouring chains, one being of polar
origin, the other Cartesian and in the middle we have a "hybrid" strip. On these
chains we approximate the first derivatives of Eq. (2.38) after which the wave func-
tion is-set to zero on the two outer chains. The resulting Lagrangian only contains
elements of the wave function fa on the sites of the middle strip,

x = 0, Vi = {i- 1/2) Ay
_7T

T2739)

With the identity Ay = Â> we have,

(2.40)

For approximating the functional derivative of the Lagrangian on the grid, we employ
Eq. (2.15) and insert for A# the volume of the unit cell on the middle strip of the
link module AR — Ag(giAip + Arc)/2. We then obtain

0 =
5L
S(j>*

dLdis

Ax) d<j>*
(2.41)
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Evaluating the above equation yields the eigen-equation of the tb Hamiltonian,

f Qj 1 \ AgAx / 1 1 \

1 [AgAy? fgi+i/2\ AgAx ( 1

(2.42)

For a link module attached on a half-circle we have i G [—Ne + 1, Ng] and a wave-
function which is zero on the boundary,

<t>-Ne = <t>Ne+i = 0 . (2.43)

Writing Eq. (2.42) in matrix notation results in a generalized eigenproblem of the
form A \4>) — E B \<f>) . The matrix A is Symmetrie and B is a diagonal matrix with
elements

+ Az), ie{-Ne + l,...,Ne} . (2.44)

The generalized eigenvectors of A are orthonormalized aecording to (0|Z?|0) = I.
This condition eventually yields the appropriate orthonormalization condition for
the eigenstates in the double wedge,

N" A
öm,m> = Yl ^H.* ̂ Kl.* "^(ftAy? + Az) • (2.45)

i=-Ne+l

We note parenthetically that we could have derived the above scalar product also
just based on the argument that each site in the link module has to be weighted
with the corresponding size of its unit cell.
The Green's function for the link module Glm is assembled from the eigenfunctions
of the tb Hamiltonian in Eq. (2.42) by the help of Eq. (2.27). To link Glm to the
semi-circle Green's function, the hopping potential for the polar grid is used,

Jh (2-46)
To assemble a Stadium billiard, the semi-circle with the link module attached to it
is then connected to the rectangle Green's function,Gr with

As will be shown below, the magnetic field dependence of the link module can be
easily incorporated by multiplying Glm with a corresponding gauge phase factor
[see Eq. (2.55)]. Due to the "1D nature" of Glm, problems with the breaking of
separability by the magnetic field do not oeeur here.



2.5. CALCULATION OF MODULES 21

2.5.4 Semi-infinite lead
Because of its continuous spectrum, the Green's function for the semi-infinite lead
poses an additional challenge beyond that of the non-separability of the wavefunction
discussed above. We therefore apply one further "trick" to bypass this problem. Our
approach is based on the observation that adding a slice to a semi-infinite quantum
wire leaves this wire (up to irrelevant phases) invariant (see Fig. 2.10).

p Q PQ
o o o o o o o o

o o o o o o o

•O

<H

,Ö

9 Q O Q Q Q O

O Ö Ö Ö O O Ö

Figure 2.10: Applying a Dyson equation to construct Green's functions for a semi-
infinite lead. Joining a transverse slice with a semi-infinite lead leaves the Green's
function of the lead invariant.

We assume a semi-infinite lead with x E [Ax, oo) and hard-wall boundary conditions
at x = Ax and y = ±d/2. To this object we add a slice consisting of just one
transverse chain of tb grid points which we place at x = 0. The System of Green's
functions for the propagation from the transverse chain at x = 0 (P) back to itself
(P) or to the first transverse slice of the semi-infinite lead (Q) at Ax reads

GPP = GPP GPPVPQGQP,

GQP =
(2.48)

(2.49)

Each multiplication irivolves a matrix product with a dimension equal to the number
of transverse grid points. The key point is now that the System of Eqs. (2.48,2.49)
can be closed through the invariance condition (Fig. 2.10) for the semi-infinite lead,
i.e. Gpp — G*QQ. In Landau gauge A = (—By, 0,0) the latter relation does not
even involve additional gauge phases since these are already contained in the hop-
ping matrix element. We further note that an equivalent point of departure for the
derivation of Gpp is the Bloch condition for states in the lead [22,58].
Setting Z = GPPVQP and using the hermiticity condition VQP — VpQ = V*,
Eqs. (2.48,2.49) can be converted to a quadratic matrix equation

ZZ - V-l(GPp)-xZ + V~lV* = 0. (2.50)

Solvents Z of a quadratic matrix equation, Q(Z) = 0 , can be constructed from the
eigenpairs ($, Xi) of the corresponding quadratic eigenvalue equation Q(ßi) Xi =

0, i e [ 1 , . . . , 2./V] in the diagonal form [59],

= MBM~l with (2.51)
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The quadratic eigenvalue equation is equivalent to a generalized eigenvalue problem
Ax = ßCx of twice the original dimension [57]. Its 27V dimensional eigenvectors
X = (x> ßx) a r e Solutions of the Symmetrie eigenproblem

-(GV)-1 V \f X
V C

where (GPpy
l = Ep — Hin and Hfy is the Hamiltionian of the one-dimensional

transverse tb strip at x = 0. The Fermi energy Ep and the magnetic field B enter
(2.52) as independent parameters at which the eigenstates Xm and eigenvalues ßm are
evaluated. The longitudinal momenta of the lead states ^m(x,y) = Xm{y)e%kmX/VKü
are related to the eigenvalues by the relation ß = exp(ikAx). The orthonormal-
ization of the 2N eigenvectors Xm can be formulated in terms of matrix relations,
which, for the generalized eigenproblem, read

1 ^ . (2.53)
IM

Similarly we have for the completeness relation,

ZN i , ,

\^LXmxl = 2iC-1. (2.54)

With this speeifie choiee of normalization the norm factors 9m are determined such
that every propagating State carries unit flux. We note parenthetically that the
quadratic eigenvalue equation Eq. (2.50) could also be applied to the semi-infinite
lead at zero B field. However, in that case, the Green's funetion for quantum wires
can be calculated analytically [49,50] by complex contour integration.

2.6 Assembling all the modules

Provided that the Green's funetions of all the necessary modules are available, we
have to link them among each other to assemble the entire scattering geometry.
However, in the presence of a magnetic field, we have to take into aecount that
the different modules are calculated in different symmetry-adapted gauges. Joining
modules requires, therefore, in general a gauge transformation A —>• A' = A + VA.
For the Green's funetion on the grid, G(ri,r^), this transformation is simplified by
the fact that the matrix of gauge transformations,

[A^OJ.^expHA^O/c]^ , (2.55)

is diagonal in the grid representation. Correspondingly, the transformation of both
the hopping potential V" and the Green's funetion is local, i.e.

V{rit r;) - V'(TU rj) = A(rO V(rit Wty (2.56)

G(ru r;.) -» C(TU rj) = A(r4) G(vu rJ)A*(^).
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It is thus not necessary to transform the gauges of different modules to one global
gauge. Instead, it is sufficient to perform a local gauge transformation at the points
of the junctions {rj}, such that the gauges of the two modules to be joined agree at
these points. Note, however, that gauge transformations are required not only when
changing the gauge itself, but also when modules are shifted in space. Nevertheless,
the number of gauge transformation required to assemble the total Green's function
Gtot can be kept quite small. This is illustrated in the following with the help of the
example of the Stadium with parallel lead orientation (see Fig. 2.3). Starting point is
the link module, which we line up along the y-axis, symmetrically around the origin.
For "attaching" to it the half-circle no gauge transformation is required, since along
the y-axis the link module is identical to its field-free form, no matter which gauge
is chosen. Transforming the connected object (half-circle plus link module) from the
Symmetrie to the Landau gauge allows to (a) shift it along the x-axis and (b) "attach"
the rectangle to it, both without any further gauge transformation. For the second
half-circle the procedure is similar. In the case of 180° lead orientation, the fully
assembled Stadium and the leads are already in the same gauge and can be directly
connected. In the case of 90° lead orientation one additional gauge transformation
at the junetion of the rectangle with the exit lead is necessary.
To illustrate in detail how different modules are joined by solving a Dyson equation,
we will focus on the connection of two adjacent modules: the semi-infinite lead and
the half-circle (see Fig. 2.11). Consider e.g. the Green's function2 describing the
propagation from the radial slice L to the Cartesian slice J,

GL,J = GLJ + GLQ VQ,P Gp^j (2-57)

=o

with
VQ,P = VQtPAR = V£Q = V£QAÄ. (2.58)

In Eq. (2.57), G°L 3 Stands for the Green's function of the disconnected modules while
GL,J is the Green's function of the connected, enlarged System. The indices P and

öf"grid~pöirit's"on
be connected. Note that the hopping matrix is weighted with the area of the unit
cell of the tight-binding grid. Each multiplication in Eq. (2.57) Stands for a matrix
multiplication where the dimension is given by the number of sites within the slice.
In order to close the System of matrix equations, two more Dyson equations are
needed (see Fig. 2.11b)

Gptj = Gpj + GPP VPiQ GQtJ, (2.59)

and finally
GQ,J = G°QtJ + G°Q,Q VQ,P GP,j. (2.60)

=o
From the coupled equations above and the boundary conditions at the borders we
obtain

GLJ = G% VQtP (1 - G%P VPtQ G°Q,Q VQ^)-1 G°P<J . (2.61)

2In the following paragraphs we assume that all Green's funetions are in the same gauge.
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Figure 2.11: (a) Ilustration of the joining of modules by recursions. As an example
we show the connection of a lead to a half-circle. For these two modules no additional
link module is required, provided that the lead width is small compared to the radius
of the circle. (b) Diagrammatic Illustration of the corresponding Dyson equations.

._Thg_recursio.n_method outlined above has the advantage that it involyes_ only one
matrix inversion for connecting two entire modules. Furthermore, for connections
performed at lead mouths, the dimension of the matrices involved along the border
is small due to the small number of grid points required.
In the case of attaching a lead to a cylindrical module we can employ a very simple
approximation such that the use of an additional link module can be avoided: Under
the assumption that the opening of the lead is small compared to the radius of the
module, we can approximate the arc of the circle at the lead mouth to be a straight
line (see Fig. 2.11a). This approximation is valid as long as the wavelength of the
electron is large compared to the mismatch between the grids. However, for keeping
the Hamiltonian at this junction Hermitian, we have to make sure that the Cartesian
hopping potential in propagating direction is equal to the radial component of the
cylindrical hopping potential,

Vx — —
2Ax2 (2.62)
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We must also demand that the Cartesian and the cylindrical unit cells at the junction
have the same size,

AxAy = gNeAgAip. (2.63)

These two conditions imply the following relations for the spacings in the Cartesian
and the polar grid,

Ax = .—^—Ag and Ay = JQNBQNB+I/2 A</> . (2.64)
V QNe+l/2

2.7 Transport coefficients
Once the Green's function for the total scattering problem Gtot is assembled, the
transport coefficients tnm and rnm can be calculated. At zero magnetic field this
evaluation proceeds just as described above [see Eqs. (2.6, 2.7)]. However, as soon
as a magnetic field is also present in the leads, this procedure has to be modified to
take into account the generalized orthogonality relation Eq. (2.53) for the transverse
lead states Xm at B ^ 0. In other words: To extract the S-matrix, the matrix
elements of the current Operator must be of gauge-invariant form. This requirement
can be fulfilled by employing a double-sided gradient Operator which is defined as
[60]

fDg = /(x)Ds(x) - 3 ( x ) D 7 ( x ) = -gBf with D = V - - A ( x ) . (2.65)
c

With its help the transmission amplitudes can be evaluated as [22,58,60]

rd/2

(EF,B) = —7-ÖTT \ dyj dy[X*n(y2)e-ik^(B-k2y
Qy/Vnt/jn J-d/2 J-d/2

Gtot(x2, xi, EF, B) (D' • ±[)Xm(y[)eik^ . (2.66)

Primed and unprimed coordinates are situated in the entrance and exit lead respec-
tively. The unit vectors xn are assumed to be pointing in outward direction of the
n-th lead and 9m denotes the outgoing particle flux carried by Xm{y'\)zlkmX'x through
the lead cross section.
The Operator D can be expressed in discretized space by a finite difference approx-

imation of its derivative term. In this discretized form the Operator D d l s allows to
rewrite the orthogonalization condition of the lead states (2.53) in the more compact
notation

^ k ß d d ^ (2.67)

In the above equation we employed the previously introduced lead states £m(x,y) =
Xm(y) eikmX/y/6^ and fix the variable x at an arbitrary transverse strip in the lead
(x — XQ). Equation (2.67) allows a very efficient evaluation of the transport coeffi-
cients in Eq. (2.66). We illustrate now the details for this procedure with the help
of the example of two semi-infinite leads (depicted in Fig. 2.5). In this case the
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Green's function which we need for the evaluation of Eq. (2.66) is Gtot = GXqp. This
retarded (+) Green's function from the strip Q to the strip P in the infinite (i) lead
consists of the Green's functions of two semi-infinite (si) leads (see Fig. 2.5),

&QP = GQQ9^1 ~ CQpVCfäV)-1^ • (2-68)

With the help of the advanced (—) Green's function GP'p~ = [(GP'p )*]T, the above
equation can be written as,

(2.69)

In such a way we can identify in Eq. (2.69) the term A as the retarded solvent Z
and the term B as the advanced solvent of Eq. (2.50). In these solvent matrices
the transverse lead states Xm appear in a way described by Eq. (2.51). Note that
the Green's function Gtot = G1QP obviously contains the same states Xm as the ones
it is projected on in Eq. (2.66). On closer inspection it can be verified that the
Operators D and D ' in Eq. (2.66) always project the states Xm which are implicitly
contained in the Green's function Gtot onto the states Xn which explicitly appear in
Eq. (2.66). The action of these Operators can therefore be evaluated conveniently by
the orthonormalization condition in Eq. (2.67). Note that such an evaluation relies
on the fact that the terms A and B appear on the very left and very right hand side
of the expression in Eq. (2.69).
For an arbitrary scattering geometry with leads (see e.g. Fig. 2.1) the Situation is
quite similar to the above example of the infinite lead. This is because also in
the general case the Green's function Gtot entering Eq. (2.66) will have the same
structüreas in Eq. (2.69),

[(GSp>pV)*}T . (2.70)

B

Only the middle term (C) will, of course, be different from Eq. (2.69), because it
contains the specific information about the scattering geometry in between the leads.
This difference does however not prevent an evaluation of Eq. (2.66) according to
the procedure we introduced for the example of the infinite lead, since also here the
solvent terms (A and B) appear conveniently one on each side of Eq. (2.70).
For the reflection amplitudes the procedure is somewhat more involved. Although
the defining formula is identical to the one for the transmission amplitudes [60],

1{EF,B) = - / dy2 dy[xn(y2)e-iknX2(B-^2y
^y"n"m J-d/2 J-d/2

• x.'i)Xm{y'i)eikmX* , (2.71)

it is more complicated to evaluate, since the variables x and x' are now both situated
in the entrance lead. The two projections (i.e. derivatives) in Eq. (2.71) are therefore
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not independent of each other. Translating this Situation into the matrix notation
of the discretized problem we find that the projections in Eq. (2.71) cannot be
evaluated with the help of the orthogonalization condition (2.67) as conveniently as
for the transmission amplitudes. This is because in the expression for rnm the solvent
terms A and B do not arrange as they did for tnm. Going back to the example of the
infinite lead, Fig. 2.5, we see that this dilemma occurs because the Green's function
entering Eq. (2.71), Gtot = GP

+
P, consists of the following terms,

(2.72)
Whereas the second term (E) again contains on its left and right hand side solvents
(A and B) of Eq. (2.50), the first term (D) does not. This Situation prevents us from
employing the same procedure as for the evaluation of the transmission amplitudes.
We tackle this problem by considering now the general case of an arbitrary scattering
geometry with leads. For this general scenario the structure of the total Green's
function Gtot entering Eq. (2.71) will be the same as in Eq. (2.72),

(2.73)

again with the exception of the middle term F. We replace now the "problem-
atic" term in Eq. (2.73), GspP, by the expression induced by Eq. (2.72). With this
replacement Eq. (2.73) takes the form

B
. -* s

ppV (1 - UQQV GppV) GQQV\V ) \ [(Gpp V ) J

(2-74)

H

In this form the projection of the Green's function Gtot in Eq. (2.71) can again be
evaluated with the help of the orthogonalization condition (2.67) as conveniently as
for the transmission amplitudes. This is because the first term (G) in Eq. (2.74)
does not contribute to rnm, since there is zero reflection in an infinite lead. Further-
more the projection of the second and third term (E + H) can be evaluated by the
orthonormalization conditions Eq. (2.67) because in these terms the solvents A and
B appear on the left and right hand side.
The resulting transport coefficients tmn and rmn can finally be checked numerically
to form a unitary S matrix. The conductance through the scattering device is eval-
uated using the Landauer formula as in the field-free case [see Eqs. (2.9,2.10)].
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2.8 Scattering wave functions
The scattering wavefunction ^(x) c a n be obtained at any point x by projecting the
retarded Green's function (by means of the Operator D) on the incoming wave (in
mode m) [22,60],

/
J-

dy[Gtot(x, x', EFt B) (D' • *i) xMiVkmX^ • (2.75)
-d/2

The term Gtot contains the solution of the Dyson equations for all modules linked.
For the evaluation of the scattering wavefunction ^(x) the Green's function Gtot has
to be evaluated at a large number of points x throughout the entire scattering region.
For a reasonably smooth wavefunction plot this number of points may be smaller
than the entire number of gridpoints in the tb grid. However, the numerical effort
for plotting the scattering wavefunction is still much higher than for the evaluation
of the transport coefficients since the Green's function is then required only at
the junctions between the modules. Nevertheless, also for wavefunctions plots the
MRGM is more efficient than the Standard RGM, as will be explained below.

2.9 Efficiency of the MRGM
The efficiency of the MRGM results from the following properties: First the number
of recursions (i.e., of matrix inversions) needed to obtain the Green's function of
the total scattering problem Gtot is given by the fixed number of modules required
to build up the scattering structure. This number is independent of the de Broglie
wavelength. "The" lät"tef~enters'only in terrris of the size of the matrices involved iri
the recursion since with increasing Ep (decreasing \D) more grid points are required
to represent the continuum limit. By comparison, in the Standard RGM the Green's
function is calculated recursively at every new slice in propagating direction. This
amouritsTto a~läüfge~nürnrJer~öf"recursions, of~t"hlTöTdef~öf gfM~p̂ int""̂ iiTlOiigitTKiinäl""
direction n\\ ̂ > 1. Each of these recursions requires the inversion of a matrix, the
size of which is determined by the number of grid points in transverse direction
n± » 1. Therefore, for high mode numbers and short wavelengths, a large number
of gridpoints and of inversions are needed which renders the Standard RGM eventu-
ally very time consuming. In the MRGM described above, the number of inversions
is given by the number of modules needed to build the structure, independent of the
wavelength. Moreover, the size of the matrices involved in joining the leads with the
structure is modest, such that the number of inversions of large matrices e.g. in the
case of the Stadium is reduced to four. In the regulär structures such as the circle,
no inversion of large matrices is required at all.
One feature of the MRGM is particularly convenient for the calculation of the trans-
port coefficients as a function of the Fermi wavenumber kF (or Fermi energy Ep).
These calculations are simplified by the fact that the solution of the eigenvalue
problem (\Em),Em) entering the Green's function for each module [Eq. (2.27)] is
independent of Ep. For the evaluation of the Green's function at different values
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of EF the eigenproblem Hth\Em) = Em\Em) therefore has to be solved only once.
Unfortunately, this feature does not extend to the Variation of the magnetic field
since both \Em) and Em are dependent on B. Because of this property a new solu-
tion of the tb eigenproblem is required for each value of the field. The most severe
restriction of the MRGM is, however, that its applicability is limited to those scat-
tering structures which can be assembled from or cut out of separable modules. Also
random potentials and soft walls can only be included as long as they preserve the
separability of each module. We mention at this point, that a "hybrid RGM" for
dealing with arbitrary boundary geometries was presented in the literature [22].
Finally we remark that with the MRGM changes in position and direction of the
leads can be done without any major effort.



Chapter 3

Numerical results for high magnetic
fields and high energies

In this chapter we present first magnetoconductance results which were calculated
within the MRGM at high magnetic fields B and large Fermi wavenumbers kp*.
As prototype cavity geometries we use the circular and Stadium shaped quantum
dots depicted in Fig. 2.1 and consider different geometries for the attached quantum
wires.

3.1 Accuracy checks

Several checks for the accuracy of the numerical results have been performed. Exact
reläti~öMhips~föT~trä^
sager relations are fulfilled with an accuracy of better than 10~10. The grid density
is chosen such that the magnetic flux per unit cell is BAR/C < 0.01 (as in Ref. [61]).
Moreover, the typical number of grid points per Fermi half-wavelength is greater
than 30. Only for very high energies (Fig. 3.2) the relative grid density is lower.
For low magnetic fields, we can compare our results for |£nm(fcp)|2 with previous
methods. As an example we show in Fig. 3.1 a comparison for |in(A;F)|2 with the
calculation by Yang et al. [13], which is based on a wave function expansion in spher-
ical waves. The agreement for the circle is very good although diamagnetic terms
are neglected in the approach of Ref. [13]. For the Stadium, the differences between
the two methods are somewhat larger. This is due to the fact that the expansion
of the Stadium wave functions in spherical waves leads to a unitarity deficiency (see
Fig. 3.1). We can also reproduce previous results of Ref. [13] concerning statistical
magnetoconductance properties in chaotic and regulär cavities. These will not be
treated again. Our focus will be on the high magnetic field and high energy regime
where other methods failed.

30
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Figure 3.1: Comparison between the present MRGM (solid line) and the wavefunc-
tion matching technique [13] (dotted line) for the first-mode transmission probability
\t\\ ( ^F) | 2 o,t B/c = 1 in a small window of kp: (a) circle with perpendicular leads,
(b) Stadium with perpendicular leads (d — 0.35, Adot = 4 + ix). In both cases also
|£II(&F)|2 + kn(^F) |2 is shown. Contrary to the MRGM (solid line), the wave func-
tion matching technique (dotted line) deviates from the unitarity limit in (b).

3.2 Wavefunctions

jrhe.starting_ppintioxthe^analysis pfthe scattering s^a^es_^(x) fqrjmlli^ijcjransport
through quantum dots is Eq. (2.75). Figures 3.2 and 3.3 display the resulting electron
density oc ^ ( r ) ! 2 in the scattering region. In Fig. 3.2 we consider the wavefunctions
at very high kp for both the circle and the Stadium billiards which are prototypical
structures for regulär and chaotic dynamics respectively. Large kF corresponds to
the regime where the convergence towards classical scattering trajectories is expected
to emerge. Figures 3.2a and 3.2b illustrate the different dynamics for an injection
at high (m = 20) and at low mode numbers (m = 1), respectively. Since high
mode numbers correspond classically to a large injection angle, the wavefunction
condenses around a pentagon-shaped whispering gallery trajectory. For low-mode
injection, a small circle representing the centrifugal barrier (or caustic) is seen, as
well as rays representing the asterisk orbits [62]. Figures 3.2c-h display scattering
states for the Stadium [63, 64]. At low magnetic fields, the dynamics is chaotic
and a typical wavefunction features a quasi-random pattern with a modest density
enhancement near classically unstable periodic orbits (see Figs. 3.2g-h). For Special
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Figure 3.2: Absolute Square of the scattering wave functions \i/>(x,y)\2 at high kF

f(a): kF = 25ir/d, (b): kF = 12.5n/d, (c),(e): kF = 6.01ir/d, (d): kF = 8.447r/d,
(f): kF = 4A6ir/d, (g): kF = Q.53n/d, (h): kF = 8.28ir/d]. The four quantum dots
considered above are the circle and Stadium [64] with relative lead orientation of 90°
and 180°, area Adot = 4 + TT, and lead width d = 0.25. In (a)-(f) the localization
around classical trajectories is clearly visible (see insets for comparison). In the cases
of (d)-(f), the wavefunction localizes around unstahle periodic orbits ("scars"). Note
the surprising fact that in contrast to the cases (a)-(c), these orbits are classically
decoupled from the leads. The magnetic field is zero in all displayed figures, with
the only exception of (c), where the field B/c = 30.5 allows for a whole bündle of
equivalent trajectories with cyclotron radius rc = kFc/B ~ 2.48 to contribute to
transport.
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configurations of kp and B "scars" emerge in the scattering wavefunctions (Fig. 3.2d-
f). By contrast, for high magnetic fields the classical motion in the Stadium becomes
regulär. In the present example (Fig. 3.2c) the wavefunction condenses around a
"bündle" of cyclotron orbits executing three bounces at the cavity wall before exiting
by the entrance lead. There has been an extensive discussion in the literature as
to the existence of scars in open quantum billiards [21,65,66]. Our present results
clearly underscore that scars, defined as the condensation of the wavefunction near
classical unstable trajectories, clearly exist for large kp.
At high fields and low values of kp, the formation of "edge states" can be observed
(see Fig. 3.3). These states correspond to the classical "skipping orbits", which are
restricted to a region very close to the boundary. With increasing B fewer edge
states can be excited in the cavity. In Fig. 3.3c (B = 68.5) three transverse edge
states are present while in Fig. 3.3d (B = 125) only a Single edge State remains [64].
For two edge states carrying flux across the quantum dot, interferences give rise to a
stationary nodal pattern with a fixed number of antinodes along the boundary (see

Figure 3.3: Absolute Square of the scattering wave functions \ip(x, y)\2 in the edge
state regime. The area of all geometries Adot — 4 + ir, lead width d = 0.25, and
kp = 1.57r/d. The four plots correspond to the points in the transmission spectra
(Fig. 4-%)> indicated by the letters (a)-(d). The numbers along the longitudinal
direction of the edge states count the number of antinodes between entrance and
exit lead (see corresponding numbers in Fig. 4-2). Note that edge states at different
magnetic fields have up to n transverse nodes: (a) circle, 180°, n = 2, (b) circle,
90°, n = 2, (c) Stadium, 180°, n = 3, and (d) Stadium, 90°, n = 1.
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Fig. 3.3a,b). We are not aware of any other method that has so far been capable of
investigating scattering states of open structures in this high-magnetic field regime.



Part II

Applications
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Chapter 4

Oscillations and resonances in
transmission

In this chapter we investigate the specific signatures imprinted on the transport
coefficients by the scattering process. A Special focus will be put on the high energy
and high magnetic field regime, where regulär oscillations and resonances appear
in the transmission/reflection as a function of the Fermi wavenumber kp and the
magnetic field B.

4.1 Transport at high energies

When exploring the high energy domain of transport through quantum dots, we ob-
servear transitiön öf the quantum mechanical dynamics towards the~classical picture
of electron motion. Classically the trajectories of the electron follow circle arcs with
a cyclotron radius rc = ckF/B. With increasing energy not only a transitiön towards
these trajectories is expected, but also the diffraction patterns of the electron at the

~twö~leald~möütfrs^önve^
eventually lead to a localization of the scattering wave function around classical
bouncing orbits. The "classical injection" of electrons can also give rise to a com-
paratively low number of topologically different semiclassical bouncing orbits that
contribute to transport. Moreover, if only a few types of trajectories interfere at the
lead mouths, also the transmission (reflection) amplitudes will be determined by a
few-path rather than by a multi-path interference. For Special configurations, where
only two to three different trajectories are involved in the transport process, peri-
odic transmission patterns will therefore arise. However, as a precondition for this
behaviour to appear in a certain ränge of kp (or B), the specific bouncing pattern of
the contributing trajectories has to stay the same throughout this entire ränge. This
stability requirement makes Systems with regulär classical dynamics more inclined
to show periodic transmission fluctuations at high energies than chaotic Systems.
Note however that also classical Systems which are fully chaotic for zero magnetic
field can acquire regulär components for non-zerofield [68].
In Fig. 4.1a we show a part of a typical spectrum of the transmission amplitude
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Figure 4.1:-(a) First mode transmission probability ^,m=i \tm,i(n)\2 for transport -
through the circular dot with 90° lead orientation. In the semiclassical regime shown
here (27 < n < 30,) regulär patterns with period An appear in the data and can be
explained by the interference of the trajectories in (b). The constant length difference

-]y~=-Z/2—Lx~is-related-to-An~and~the-lead-width-d-by-the-relaUon-An-=-d~/-AL-.—

|*ii(kF)\2 for the circle with 90° lead orientation. Periodic patterns as a function
of kp are clearly visible. The corresponding scattering wave function which is re-
peatedly reappearing around every maximum of this pattern is always similar to
the wavefunction shown in Fig. 3.2b. We note that the period in the oscillations
of the transmission probability (A/c^) corresponds very well to the difference in
path lengths (AL = L2 — Li) between the two contributing trajectories depicted in
Fig. 4.1b, AkF = TT/AL.

A particularly advantageous property of these oscillations is the fact that they in-
dicate in which ränge of kF (or B) the scattering wave function is well localized.
This is because both the oscillations and the localization phenomena are often only
visible when the number of trajectories participating in the transport process is very
low. Since MRGM calculations for transport coefficients are faster than for wave-
functions, this feature allows to scan different parameter intervals for an oscillatory
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behaviour and to pin down localization effects by plotting the wavefunctions at those
parameter configurations where oscillations appear.

4.2 Transport at high magnetic fields

Also in the high magnetic field regime characteristic oscillations are observable,
which are caused by an interference between different edge states. Figure 4.2 shows
the high magnetic field regime of the transmission probability in the first mode
m = n = 1 for both circle and Stadium. Different orientations of the exiting quan-
tum wire were chosen (oriented 90° and 180° relative to the incoming lead). A few
universal trends are easily discernible: above a certain critical value of the magnetic
field (denoted by 5*), the strongly fluctuating transmission probability gives way to
very regulär oscillations in all four cases [see insets of Fig. 4.2 for magnification]. The
threshold value B]. and the magnetic field, at which transport is terminated (sepa-
rately displayed in Fig. 4.3) are identical for all Systems investigated. Below B], the
transport signal displays "beats", i.e. the Fourier transform of the signal is character-
ized by several frequencies. The "universality" (i.e. geometry independence) of these
features is related to the fact that in the high magnetic field regime transport is con-
trolled by edge states (as depicted in Fig. 3.3). These states play a very prominent
role in the Quantum Hall effect and have been studied extensively [6,18,69-71]. At
magnetic fields, where the magnetic length is smaller than the System dimensions,
lB <C D, they are the only states coupling to the quantum wire since bulk Landau
states cannot be accessed through the leads. The edge states shown in Figs. 3.3a to
3.3d correspond to the points in the transmission spectrum also labeled by (a) to (d)
in Fig. 4.2. By compänsön with the scattering wavefunctions (as in Fig. 3.3), wefob-
serve that in the magnetic field region B™ < B < B™~1 edge states have up to n — 1
transverse nodes in the direction perpendicular to the boundary. Furthermore, the
number of longitudinal antinodes from entrance to exit lead (see the corresponding

Tnimbers~iirFigr3:3ä7b) can be~directly mappedonto successive maxlmä~nTFig7~472~
(see numbers there). The ränge of B depicted in Fig. 4.2 corresponds to B > B2

C

at kF = l.bn/d. The transmission spectrum becomes increasingly complex as B is
reduced or equivalently kp is increased (not shown).
To determine the positions of the values B™ we consider the energy shift of Landau
levels near the boundary. Bulk Landau levels are degenerate since their quantized
energy En = (n + l/2)B/c is independent of their positition in space. This degen-
eracy is lifted if a Landau State is placed in the vicinity of the cavity wall: with
decreasing distance to this boundary the energy of the State increases. Therefore
the energies of edge states associated with the quantum number n lie above the
asymptotic bulk value En. When the incoming electron is diffracted at the mouth
of the entrance lead, only those edge states whose energy is below the Fermi energy
can carry flux. Due to the sharp edges at the junction between lead and quantum
dot, all energetically accessible edge Channels are populated. The magnification of
the scattering wavefunction near the lead mouth (Fig. 4.4) highlights the diffractive
edge scattering. This is in contrast to smooth edges where states in the lead could
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Figure 4.2: Transmission probabilities \tn(B/c)\2 in the high magnetic field limit
for circle and Stadium billiard with 180° or 90° lead orientation. (kp = l.5n/d,d =
0.25/ Bl and B\ are the threshold magnetic fields B™/c — k'p/(2n+l) (vertical dash-
dotted lines). Above B], regulär oscillations appear (see insets for magnification).
For B"l < B < B\ irregulär fluctuations set in. Their large-scale structure can be
explained by the number of interference maxima the two edge states form along the
boundary between entrance and exit lead (see indicated numbers). The points (a)-(d)
correspond to the wavefunctions shown in sections (a)-(d) of Fig. 3.3.
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Figure 4.3: Transmission probabilities \tn(B/c)\2 in the high-field limit, near the
point where transport terminates. The dashed line Stands for the Stadium billiard
(190° lead geometry) and the dotted line for the circle (we show the case of 90° and
180° lead orientation which give rise to identical transmission probabilities). The
two dash-dotted vertical lines mark the point where transport breaks off and the
analytically determined threshold value B® ~ 355.3 (see text for details). The inset
shows that the transmission probabilities for the circle reach the maximum value 1
which is only approximately true for the Stadium with 90°-lead geometry.

cross the lead junction adiabatically, i.e. without changing their State of quantiza-
tion [72]. With sharp lead junctions however all edge states with quantum number

~n'~3;~n~wiir päfticipätelnTränspoTt ~üp>"To"äHm7igrietic "field""whe^
Fermi energy, En = EF, i.e. at the critical magnetic fields B™/c = EF/(n + 1/2).
These threshold values are indicated by the dot-dashed vertical bars in Figs. 4.2
and 4.3 for B2

C « 71.1, Bl
c « 118.4 and B°c « 355.3 for a lead width d = 0.25 and

kF = 1.5-n/d. In our numerical data, both the position of these threshold values
as well as their independence of the geometry are in excellent agreement with this
prediction. The only exception is the critical magnetic field B°. Its value (355.3) lies
slightly above the point where the transmission spectrum ceases (at B « 351.8) (see
Fig. 4.3). The reason for this deviation is the fact that the termination point of the
spectrum is not determined by the magnetic field of the lowest bulk Landau level
in the cavity (i.e. v3°), but by the highest field at which the leads still carry flux.
In the leads, however, the magnetic length does not satisfy the condition Iß <C d
(at kF = l.bn/d : lB ~ d/4.7). Contrary to the cavity, the wavefunctions still "feel"
the constriction by the opposing wall in the lead. For this reason, the threshold
magnetic field values of the transverse lead states lie slightly below those of the bulk
Landau levels, leading to a termination already below B®.
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Figure 4.4: Electron density \ip(x, y)\2 for the circle billiard with diffractive scattering
highlighted. (Adot = 4+TT, lead width d = 0.25 and kp = 1.5ir/d.) The magneticfield
B — 118.7 is just above the threshold to the single-edge State regime B\ = 118.44.

4.3 Multi-channel interferences

The regulär oscillations above B\ as well as the complex fluctuating pattern below
TBg~~c!in~b ê~xpräinM~by^̂
viewed as a generalization [39,40,73,74] of a single-channel picture [69,75,76]. For
this description to be applicable, the cavity of the dot has to have smooth boundaries
and disorder must be absent. Under these circumstances the fiux transported by
edge states is conserved in the interior and changed only by diffractive scattering at
lead junctions: A fraction of the flux will exit through the lead while the remaining
portion of the flux will continue to propagate along the boundary. The stationary
scattering State can be viewed as a coherent superposition of wavepackets repeatingly
encircling the billiard. In order to translate this picture into an analytic expression
we define amplitudes for transmission and reflection at the two lead junctions. We
denote the amplitudes for transmission from transverse mode m in the entrance lead
to the edge State in the dot with quantum number i by imi. The amplitudes i'in stand
for transmission from edge State i in the dot to the transverse mode n in the exit
lead. The amplitudes ry(f^) describe edge State reflection at the entrance (exit)
lead from mode i to mode j . (The tilde signs serve to distinguish these amplitudes
from the transport coefficients for the whole geometry tnm and rnm.) We further
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define the following matrices

, [ 2 % = ^ (4.1)

y 0 , [R]ij = fije
ik^-iBA^c, (4.2)

where Lj, Aj (L'j, A'j) denote the lengths L and areas A the edge State j Covers from
entrance to exit (from exit to entrance) of the dot. The areas A can be determined in
gauge-invariant form although the corresponding classical orbits are not necessarily
closed [77]. The transmission through the whole cavity t^ = [T]y is then written as
a geometric series of matrices,

T =

= f(JT(R'Ry)r (4.3)
\i=0 /

= f (1 - R'R)-lrf"X

Equation (4.3) serves as a convenient starting point for the analysis of the transmis-
sion fluctuations. Consider first the regime B > B^, where only the lowest transverse
edge State is excited. In this case Eq. (4.3) reduces to its scalar version [69,75,76]

2-tot = î  |2 = \ni\ | t i i i , . . ,

with 7 = ki(Li + L\) — B(A\ + A[)/c. As expected, the fluctuations of \tu(B/c)\2

are determined by an Aharonov-Bohm type phase 7 [9]. At fixed kp, the oscillation
periöd is AB — 2Trc/A\ot. By A\ot = Ax+ A[ we denote the areaTwhich the edge
State acquires in one revolution around the dot. Taking into account that the dy-
namically accessible area of the edge State is somewhat smaller than the geometric
area, A^1 < Adot = 4 + n (see Fig. 3.3), the prediction for the oscillation period is in

"excellent agreement~with our numeTicarfinding¥.""Equat"ion '('4T4')~älso expläins wKy~
the oscillation period is increasing with increasing B (see Fig. 4.3). This explana-
tion makes use of the fact, that for increasing magnetic field skipping orbits with
fixed quantum number n have an increasing mean distance from the boundary [76].
Note, however, that the distance of edge states from the boundary increases with
the quantum number n. Since higher n die out earlier for increasing magnetic field,
the overall effect shows the anticipated decreasing mean distance from the boundary
for increasing magnetic field. However, for fixed quantum number n a larger B field
implies a smaller enclosed area A^ and therefore a higher oscillation period AB.
Furthermore Eq. (4.4) accounts for the fact that for most structures the successive
maxima of Ttot reach unity [75]. (The small deviation from this rule of the Sta-
dium with 90° lead orientaion will be explained below). In addition to unitarity,
[KiI2 + l^ii|2 = 1] w e n a v e f°r identical lead junctions Fn = F'11. (We call two junc-
tions identical if the local environment of their lead mouths is the same and their
respective distance is larger than a few wavelenths.) Above Bl

c scattering of an edge
state at a junction is essentially a one-dimensional process, for which the probability
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Figure 4.5: Transmission probability \tn{B/c)\2 at kp = l.lir/d for transport through
the circular billiard in the single-edge Channel regime, B > B\. As long as the en-
trance and exit lead mouths have a mutual distance of more than a few wavelengths,
\tn\2 stays invariant with respect to rotations of the leads around the circle boundary
(see dashed line for 90° and 180° lead orientation). Only when the leads are dose to
each other (dotted line) \t\\\2 changes significantly. The maxima of the oscillations
remain invariant (see inset for magnification).

for transmission from left to right has the same magnitude as vice versa. Identical
lead junctions therefore also imply i'n = in, provided that the two corners of the
lead junction have the same shape. If and only if all of the three above conditions

~are~fulfillecl~Eqr~(~474)^ields~^
Since for the two circle geometries and for the 180°-stadium the two lead junctions
are identical, we indeed find in these cases that | i n (ß ) | 2 periodically reaches unity.
On the other hand, when the leads are attached to the Stadium at an angle of 90°,
one lead is attached to the straight section while the other is attached to the semi-
circle. The local environment of the two lead mouths is in this case different (i.e. the
lead junctions are not identical), for which reason our numerical results do not quite
reach \tn\2 = 1, when the resonance condition is fulfilled for this geometry (see inset
of Fig. 4.2dand Fig. 4.3).
One interesting feature of the transmission fluctuations in the single-channel regime
of the circular dot (B > B\) is their invariance with respect to the lead orienta-
tion (see Fig. 4.5). The numerical results for the transmission probabilities of the
circle with 180° and 90° lead orientation differ only at the tenth decimal digit (!).
This fact, as well as the observation that in the case of the Stadium billard the two
lead orientations give different results, can again be explained by Eq. (4.4). The
important point to note is that the interference phase (7 = kiL^ — BA\ot/c) does
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not change when changing the positions of the leads around the circle. Due to the
rotational symmetry also the coefficients in,i'u,fu and f'n are the same for dif-
ferent angles between the leads. The same is thus true for the total transmission
T to t through the circular dot. The only exception to this rule occurs when the two
leads are in close proximity to each other of only a few wavelengths. In this case the
transmission probability changes as compared to the results for the 180° and 90°
lead orientation. However, due to the mirror symmetry of the two lead junctions,
the maxima of the oscillations stay unchanged in position and height (|£n|max = 1)>
even when the leads are placed very close to each other (see Fig. 4.5).
The fluctuations in the regime B < B\ displayed in Fig. 4.2 can be analyzed with
the help of a multi-channel scattering description. In the interval B2 < B < B\ two
Channels corresponding to two edge states are open in the cavity and one Channel in
each of the leads. From the entrance to the exit lead mouth the two edge Channels
acquire the phases e^\^-^MIc a n d eik2L2-iBA2/c reSpectively. At fixed kF, their in-
terference at the exit lead will therefore give an oscillatory contribution to the total
transmission Ttot(B) — | in |2 of the form

(B) oc cos2[JB(A1 - A2)/(2c)}. (4.5)Ttot

For closer analysis we need to evaluate Eq. (4.3) which involves the inversion of 2 x 2
matrices. In the case of parallel lead orientation the corresponding expressions are
simplified due to the fact that the phases acquired from entrance to exit lead and
vice versa are the same (An — A'n and Ln = L'n), leading to

tu = [e^Hni'u + eiva*12?21 + ei{2^+^\hiii2 - fi2*n)(f21?n - KÄi) (4-6)

- ei2^r22r'22

'22)} ,^ a - 1 - f'nr

with the abbreviated notation (pn = knLn — BAn/c. In Fig. 4.6 we show one half-
period of the beats in Ttot{B) = \tu(B)\2 for [im < B(A1 - A2)/(2c) < n(n + 1)],
as calculated with Eq. (4.6). The absolute Square of the numerator (dashed line,
N) and denominator (dotted line D) of Eq. (4.6) display very similar oscillations,
both in frequency and amplitude. However, since T to t = N/D, a series of dips
are superimposed on the term cos2[B(Ai — A2)/(2c)] at the points where N and
D have their common minima. To classify these dips (i.e. antiresonances) we make
use of the fact [39, 40, 73] that the unitarity of Eq. (4.6) allows the mapping of the
transport coefficients at the lead junctions (which are assumed to be identical) onto
six independent parameters: the four phases (<j), i9,0i, (f>2) and the two moduli (s,p)
with absolute values \s\, \p\ restricted to the interval [0,1]. The latter two parameters
are (1) the modulus, s, of the reflection amplitude of the wave incoming in mode 1
and reflected into mode 1 at the entrance lead junction,

f'{x = se^+V , (4.7)

and (2) the modulus, p, of the partial injection amplitude of the incoming wave into
the lowest edge State in the cavity, corrected for the partially reflected flux,

tu = i'u = Py/[\ - s2) eWi+*>/2+*] . (4.8)
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Figure 4.6: One half-period of the beating im < B(A\ — A2)/(2c) < ir(n + 1) in the
transmission probability \tn(B/c)\2 (solid line), as calculated with our interference
model fsee Eq. (4-11)]. The numerator (dashed line, N) and denominator (dotted
line, D) of \tn(B/c)\2 show very similar oscillations (with a small offset). (N/D)
features sharp "dips", at the points where N and D have their common minima.
These dips are window resonances (also called Breit-Wigner antiresonances) and
represent a Symmetrie limit of the Fano resonance lineshape. See text for details.

Because of the symmetries of the set-up, the injeetion (ejeetion) amplitude at the
entrance (exit) lead junetion are equal. Accordingly, the injeetion amplitude into
the ser.nnrl eHfffi State in thp r.a.vitv is mvpn hv

(4.9)

entrance (exit) lead junetion are equal. Accor
the second edge State in the cavity is given by

Analogous expressions can be deduced for the other partial ämplitudes entering
Eq. (4.6),

= r'n = -[(1 - (4.10)

f'12 = f21 = f21 =

We omit a detailed analysis of the phases in Eqs. (4.7)-(4.10) since they do not
explicitly enter our analysis in the following. With the above parametrization the
absolute Square of tn [Eq. (4.6)] can be simplified to [39,40,73]

rptOt H*nl2 = sin2(r//2
(4.11)

with <f> = ((p2 + fa) - (v>i +
p2ei<t>/2,ö = arg(r ') , ^0 =

+
a =

+ (<pi + 4>i), r> = (1 - p2) e'^2 +
ß = l+se~2iS, and A = arg(/?/a)
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The linewidth Fo is given by

ro =
1 - \r'ß/a\

(4.12)
2r'ß/a

In the generic case of s ^ 0, resonances occuring in Eq. (4.11) show a typical Fano
profile of the form [34]

rptOt (B/c - Bn/cf

with ths being the coefficient for background scattering [78]. The Fano resonances at
B/c = Bn/c — A will have an asymmetric lineshape unless A = 0 (i.e. s = 0). This
is however the case for the billiard Systems we consider, since almost no reflection
of incoming lead states takes place at the lead mouths, f'd « 0, and therefore s « 0.
Under this assumption Eq. (4.11) simplifies to

r to t Ä ™ yif - • "UJ (4 1 4 )
sin2(W2 -I- fln) 4- F 2

with linewidth Fo = (1 — |r' |2)/(2|r' |). This equation describes Symmetrie resonance
lineshapes which can be identified as window resonances (also called Breit-Wigner
dips/antiresonances) of the form

^ (B/c - Bjc)2

T ~ (B/c - 5 n / c ) 2 + F2 • ( 4 1 5 )

The physical picture resulting from this analysis is the following: In the magnetic
field region B\ < B < B\, where two edge states are present in the interior of
the dot and one in each of the leads, the transmission probability shows large-scale
oscillätiöns ihtersected by sharp window resbnancesr The large-scale envelöpe func-
tion is given by 1/(1 + F2,). Its maxima perfectly match with the roughly estimated
term cos2[B(Ai — A2)/(2c)] from Eq. (4.5) and can therefore be identified with the
numbered points in Fig. 4.2, each of which corresponds to an integer number of

wavefünetion älorlg"the~bbundary (see~FigT373)7~The~
antiresonances superimposed on these oscillätiöns oeeur at magnetic fields B = Bn

(where rj/2 + i9o = nn, n G Z) and their linewidth is given by Fo- As a result,
resonances which are situated on maxima of the term 1/(1 + FQ) are sharper than
at its mimima [see numerical data in Fig. 4.2 and Fig. 4.6 for confirmation]. For an
increasing number of edge states populated in the cavity (B < B%) our numerical
results show that the density of antiresonances is rapidly growing. This behaviour
finally leads to a resonance overlap for a large number of edge states which is prereq-
uisite for the onset of Ericson fluetuations (i.e. universal conduetance fluetuations).
For completeness we remark that the above analysis for the ß-dependence of T tot

can likewise be carried out with kp instead of B as the variable parameter. We can
similarly identify threshold values fc" in the wavenumber kp, below which a num-
ber of n edge states survive. As an example we show some numerical results for
the transmission probablility Ttot(kp) in the case of one, two, and three partieipat-
ing edge states in Fig. 4.7. The occuring Ahararonov-Bohm oscillätiöns and sharp
resonances can again be described by Eq. (4.4) or Eq. (4.11) respectively.
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Figure 4.7: First mode transmission probability through the circular billiard with 180°
lead orientation and magnetic field strength B/c = 93.6 as a function of the electron
wavenumber kp. Above the critical wavenumbers kl (k2

c) the second (third) edge
state in the circle can be accessed. Note that depending on the number of accessible
edge states Aharonov-Bohm oscillations and Fano resonances are observable here as
a function ofkp, similar to the case of varying the magnetic field B (see Fig. 4.2).

4.4 Comparison with experiments

A series öf"experiments [1,2,76,79,80] have been performed where Äharönov-Böhm
oscillations (ABOs) similar to the ones discussed here have been observed in bal-
listic transport measurements. The origin of the ABOs in these experiments is
however twofold: In Refs. [1, 2, 76], it is the presence of edge states in a quantum
dot which gives rise to the observed oscillations. In Refs. [79, 80] on the contrary,
the investigated scattering devices have the form of a ring, to which the scattering
wave function is confined. The latter set-up thus gives rise to ABOs already at
low magnetic fields and has therefore been more readily accessible to a theoretical
description [81]. However, to our knowledge, no quantitative description for magne-
totransport through a quantum dot in the regime of only one or two participating
edge states has yet become available. We therefore discuss in the following similari-
ties and differences between our calculations and the experimental data from [1,2].
One important observation is that the magnetic fields where these quasi-regular
transmission fluctuations appear in the experiment are lower than in the present
calculation. For example, in the experiment for circle and Stadium shaped quantum
dots in a (7ayls//M(ja/ls-heterostructure [1, 2], the threshold magnetic field values
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would be (in Sl-units)

With a sheet density of ns = 3.6 x 10ucm~2 in the interior of the dot, the threshold
magnetic fields are given by B\ ~ 3 Tesla and B\ ~ 5 Tesla. However, in the exper-
iment regulär oscillations were already observed below 2 Tesla. At those field values
we find highly irregulär transmission fluctuations corresponding to a threshold mag-
netic field B™ with n S> 1, indicative of a high density of resonances and Ericson
fluctuations. We expect the origin of this discrepancy to lie in the absence of sharp
edges in the experiment and, hence, of diffractive edge scattering. In the experi-
mental quantum dot, the edges should be fairly smooth, leading to near-adiabatic
transitions to edge states at the entrance to the quantum dot. Therefore fewer edge
Channels are excited than by diffractive edge scattering, where all energetically acces-
sible Channels up to n are populated. Our present results suggest that the observed
transmission fluctuations are a direct measure of the sharpness of the edges at the
lead mouth. Therefore, investigations of quantum dots with varying sharpness of
edges would be desirable. Since these are, however, difficult to fabricate we consider
a different experimental approach which is based on the analogy between transport
in the edge State regime and field-free transport through a rectangle. Such structures
are accessible for microwave experiments [11,82] and will be considered in the next
chapter. The measured transmission through such a microwave device provides a
stringent test for the multi-channel interference model presented above. For a truly
quantitative comparison between the experiment and the numerical data, also the
residual decoherence present in the transport process has to be accounted for by the
MRGM. As will be shown, such a decohering mechanism can indeed be incorporated
in the MRGM. As a result we obtain excellent agreement between the measurement
and our calculations.



Chapter 5

Fano resonances

In the previous chapter we encountered so-called window resonances in transport
through quantum dots at very high magnetic fields. In the presented multi-channel
interference model the Symmetrie lineshape of these resonances naturally oecured as
the limiting case of the more general asymmetric Fano lineshapes. Our aim in the
following is to learn more about these asymmetric resonances in quantum transport
processes.
Generally speaking, Fano resonances can be seen as a scattering feature which oc-
curs when (at least) one resonant and one non-resonant pathway connecting the
entrance with the exit Channel interfere. Fano resonances have been observed in a
wide array of different subfields of physics starting with photoabsorption in atoms
[34, 83, 84], electron and neutron scattering [85, 86], Raman scattering [87], pho-
toabsorption in quantum well struetures [88], scanning tunnel microscopy [89], and
ballis.ticL transport through quantum dots ("artificial atoms") [78,90-92], Interest
in observing and analyzing Fano profiles is driven by their high sensitivity to the
details of the scattering process. For example, since Fano parameters reveal the
presence and the nature of different (non) resonant pathways, they can be used to
determine the degree of coherence in the scattering device. This is due to the fact
that decoherence converts Fano resonances into the more familiär limiting case of a
Breit-Wigner resonance [93]. Furthermore, they provide detailed information on the
interaction between nearby resonances leading to "avoided crossings" in the complex
plane [94, 95], and to stabilization of discrete states in the continuum ("resonance
trapping" [96,97]).

5.1 Transport through a microwave cavity

For a closer investigation of Fano resonances in the field of ballistic quantum trans-
port we make use of the following three observations:

1. The multi-channel interference model discussed above not only describes trans-
port through quantum dots in the edge-state regime, but also other field-free
transport processes like through carbon nanotubes [39,40] or through reetan-
gular quantum dots with parallel lead orientation as in Fig. 2.1b [74].

49
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diaphragms

Figure 5.1: (a) Schematic sketch of the microwave scattering device consisting of
a rectangular cavity with leads attached symmetrically on opposite sides. Tunable
diaphragms at the lead junctions allow to control the coupling between the cavity and
the leads. Note the fourfold symmetry of the complete set-up. The open even trans-
verse cavity states are indicated. (b) Photograph of the experimental set-up. The
diaphragm-openings are cut into interchangeable thin metal plates screwed between
the waveguides and the cavity (not visible).

2. In the multi-channel interference model we encountered the parameters s and
p on which the lineshape of the resonances is strongly dependent. Varying
these parameter should allow to tune resonances through the whole spectrum
of Fano lineshapes.

3. Two-dimensional coherent single-electron transport at zero magnetic field can
be experimentally simulated by microwave billiards [11]. In particular, mea-
surements on rectangular microwave cavities which can be described with
the multi-channel interference model are conveniehtly realized and show good
agreement between experiment and theory [82].

Combining all of the three above observations, we arrive at the design of a scat-
' tering "devic"e~whichnis particularly suitable for thennvestigation oftunable Fano
resonances (see Fig. 5.1). In its experimental realization, our scattering facility con-
sists of two commercially available waveguides (height h=7.8 mm, width d=15.8 mm,
length 1—200 mm) which were attached both to the entrance and the exit side of a
rectangular resonator (height i/=7.8mm, width D = 39mm, length L = 176mm).
At the junctions to the cavity metallic diaphragms of different openings were in-
serted. The microwaves are injected with frequencies between 12.3 and 18 GHz,
where two even transverse modes are excited in the cavity and one transverse mode
in each of the leads. To ensure strong coupling, the injection of microwaves is me-
diated by an adaptor.
We further note that the design of the set-up incorporates the following practical fea-
tures: Transport across this rectangular cavity with parallel leads can be described
very conveniently by the multi-channel interference model. Except for the magnetic
field dependence and effects going beyond the Single particle picture (e.g. electron-
electron interaction), the dynamics of microwaves and electrons is equivalent. For
this reason our device also simulates ballistic electron motion through a quantum
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= ü) + (2)

Figure 5.2: Decomposition of the scattering device into three separate substructures:
(1) a junction with diaphragm from a narrow to a wide constriction, (2) a wide
constriction of length L, and (3) a junction from a wide to a narrow constriction
with diagphragm.

dot. Furthermore, the amplitude s, which plays the role of the tuning parameter, can
be varied by the additional diaphragms inserted between the leads and the cavity. In
contrast to recent investigations on mesoscopic dots and single-electron transistors
[90, 92, 93], where comparison between theory and experiment has remained on a
mostly qualitative level, our model System allows for a detailed quantitative analysis
of all features of tunable resonances, since decoherence is kept at a low level. By
comparison with numerical results obtained by the MRGM, the parametric Variation
of Fano resonances and the degree of decoherence can be quantitatively accounted
for.

5.2 Comparison between experiment and theory

In the following we will present a detailed comparison between the experiment and
the predictions of the MRGM: The measurements on the microwave scattering ex-
periment were performed by Kühl and Stöckmann at the Philipps University in
Marburg, Germany. We solve the S matrix for the Single particle Schrödinger equa-
tion for this quantum dot by assuming hard-wall boundaries and imposing scattering

"bwn~däryicönditions~ät~asympt^^^
of length L is varied by changing the width of two symmetrically placed diaphragms
in the interval w G [0, d] (see Fig. 5.1). The lead width d and the width of the
rectangular cavity D determine how many flux-carrying modes are open at a cer-
tain energy E in each of the three scattering regions (lead-cavity-lead). We consider
in the following the ränge of wavenumbers where one flux-carrying mode is open
in each of the leads, while the first and second even transverse modes are open in-
side the cavity, thus providing two alternative pathways of quantum transport. In
order to explain how transport across the cavity can be rewritten in terms of the
multi-channel interference model, we decompose this process into a multiple scat-
tering series. This decomposition is equivalent to the model we discussed previously
for transport by edge states (see section 4.3). It involves three pieces [74], each of
which is characterized by a mode-to-mode transmission (reflection) amplitude or a
propagator (see Fig. 5.2): (1) the transmission of the incoming flux from the left
lead State m into the transverse mode i in the cavity, £mj, or reflection back into the
lead, f'^k, (2) the propagation inside the cavity from the left to the right, G(LR), or
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from the right to the left, G^RL\ and (3) the transmission from the cavity State i
to the State n of the right lead, iin , or internal reflection at each of the two vertical
cavity walls with amplitude fjj. We note that all of these quantities (l)-(3) can be
obtained independently of each other by the MRGM. The transport coefficients in
(1) and (3) are evaluated by numerically calculating the transmission amplitudes for
transport from a narrow lead of width d to a wide lead of width D and vice versa
(see Fig. 5.2). The lead Green's functions are, however, connected to each other by
Dyson equations only at those tb grid points, which lie within the opening w of the
diaphragms. For the evaluation of the Green's functions for propagation inside the
cavity (2), we make use of the absence of mode mixing in the rectangular cavity.
This feature is equivalent to the case of edge State transport and permits to write
Q(LR) ancj Q{RL) ag a Spectral sum over transverse modes,

&LR)(xR,xL) = G(RL\xLyxR) = ^2 \n) exp(i/cn|xÄ - xL\)(n\. (5.1)

The variables i ^ ^ are the x-coordinates of the right (left) lead junction with \XR —
XL\ = L. The longitudinal momentum for each Channel n in the cavity is given
by kn = y/k2 — (k%)2, with the momentum k = y/2e and the threshold /c-values
k^ = nn/D. In perfect analogy to Eqs. (4.1,4.2) we further define the following
matrices

« % = ?y and [R]tj = f ^ L . (5.2)

The transmission through the whole cavity tß — [T]y can then be conveniently
formulated in terms of a geometric series of matrices,

1 ( K) = 1 1 1 + riri I 1 + -ft-ri 1 1 + . . . ) I i

l r . (5.3)
i=0

The above formulation of the transport process has the following convenient features:

1. Rewriting Eq. (5.3) in terms of six independent parameters as in section 4.3
describes analytically howFano resonances emerge in the transmission proba-
bilities.

2. The identification of the resonant and non-resonant pathways relevant for the
formation of Fano resonances is straightforward with the help of Eq. (5.3):
Due to the absence of inter-channel mixing in the rectangular cavity, the non-
resonant contribution corresponds to the n = 0 term of the sum describing
direct transmission while the resonant contribution is made up by all multiple-
bounce contributions (n > 1) in Eq. (5.3).

3. Decoherence effects due to dissipation of the microwave power in the cavity
walls can be easily incorporated by analytically continuing kn into the complex
plane, kn = ^Jk2 — (k%)2 + iK. With this extension the quantitative analysis of
Fano resonances can be used to accurately determine the degree of dissipation
present in microwave cavities.
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To demonstrate the emergence of Fano resonances in transmission, we go back to
section 4.3, where all the features of the multi-channel interference model were
introduced. We now make use of the explicit dependence of the transmission on the
two parameters s and p. In the present context s is the modulus of the reflection
amplitude of the incoming wave in mode 1 and reflected into mode 1 at the left
diaphragm [see Eq. (4.7)]. This parameter p is the partial injection amplitude of the
incoming wave into the lowest mode of the cavity, corrected for the partially reflected
flux [see Eq. (4.8)]. The key observation in the present context is that the Square
module s2 is monotonically decreasing in between the limiting values s2 = 1 for zero
diaphragm opening (w = 0) and s2 « 0 for fully open diaphragms (w = d). The
parameter s plays a crucial role in the expression for the transmission probability
\T(e, s)\ as a function of the energy e. Close to a given resonance ef this expression
can be approximated by the Fano form as in Eq. (4.13) [34,39,40,73],

me,S)\^lS-S'is)+
2

q'(s)r'(s)/f, (5.4)
[B- 4 (s)]2 + [rf(s)/2]2

where ef(s) is the position of the z-th resonance, Fj(s) its width, and qi(s) the
complex Fano asymmetry parameter, all of which depend on s. Window resonances
appear in the limit ^ —> 0 while the Breit-Wigner limit is reached for |^| 3> 1.
It should be noted that, in general, q cannot be simply identified with the ratio
of resonant to non-resonant coupling strength [98, 99]. Fig. 5.3 presents both the
experimental and theoretical dependence of the transmission probability \T\2 on k
(or e). In the measurement, the diaphragms were successively closed in steps of
1 mm. The data sets of Fig. 5.3a,b,c represent the transmission probability for three
different values of the opening of the diaphragms w = 5.8, 8.8, and 15.8 mm, re-
spectively. Note the remarkable degree of agreement between the measured and the
calculated data without any adjustable parameter. In Fig. 5.3a where w/d « 0.37,
transport is suppressed and mediated only by resonance scattering with narrow
Breit-Wigner shapes centered at the eigenenergies of the closed billiard as indicated
by "t'he~ti'cmarks7 "With" increasing diaphragnropening (Fig. '5r3b)~transport acquires"
a significant non-resonant contribution, leading to the widening and the overlap of
resonances. Finally, for fully open leads (Fig. 5.3c) w/d = 1 (or s ~ 0), resonances
appear as narrow window resonances in a non-resonant continuum. The trajectory
of the resonance parameter as a function of s can be both experimentally and the-
oretically mapped out in considerable detail. Different types of resonances can be
identified by their characteristically different resonance parameters. The evolution
of the Fano parameter as a function of w/d (or s) for one resonance is highlighted
in Fig. 5.4. The transition from a narrow Breit-Wigner resonance via a somewhat
wider asymmetric Fano profile to a window resonance is clearly observable. The
good agreement with theory allows to accurately determine the degree of decoher-
ence present in the experiment. As the Fano profile, in particular near its minimum,
is very sensitive to any non-interfering incoherent background, we can determine
an upper bound for the damping by comparison between experiment and theory to
be K < 10~4. As illustrated in Fig. 5.4, even a slightly larger value of K = 10~3

would drastically deteriorate the agreement between experiment and theory. In line
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Figure 5.3: Total transmission probability, Ttot(y/2sd/'n', w/d), for transport through
the rectangular cavity with three different openings of the diaphragms: Ja) w/d —
37%, (b) w/d — 56% and (c) w/d = 100%. For better comparison, the experimental
(calculated) results are shown as mirror images. The positions of all eigenstates in
the closed cavity are indicated by the gray ticmarks (for explanantion of long vs. short
ticmarks see text).

with the value K = 10 4, we obtain an imaginary part of the complex Fano parame-
ter for Systems without time-reversal symmetry [93] out of our fitting procedure as
Imq<0.1.
We note that decoherence in an open quantum System can be caused by different
mechanisms: dephasing and dissipation. In Ref. [93] the decohering process con-
sidered was dephasing. Our results for the Variation of a Fano resonance clearly
demonstrate that dissipation has the same interference-reducing (i.e. decohering)
effect on a Fano resonance as dephasing does: in both cases the Fano resonance
acquires a complex asymmetry paramter q. This is one of the interesting highlights
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Figure 5.4: Fano resonance near the second even excited transverse mode ai kdf-n « '
1.5095. Experimental and theoretical result for four different cavity openings (w/d)
are shown. Curves with equal w/d-ratio are displayed in the same line style (solid,
dashed, dotted, dash-dotted). For all calculated curves a damping factor K = 10~4

was used, except for the additional gray dashed curve shown for which"K =T0=3'~ancT
w/d = 0.68.

of our experiment, which, to our knowledge, has not been demonstrated before. We
note that by using supercondueting cavities K could still be further reduced [100],
however with little influence on the result, since we have already nearly reached the
fully coherent limit.
Following the parametric evolution of a large number of resonances yields a char-
acteristic pattern of Fano resonance parameters (Fig. 5.5). Obviously, two distinet
subsets of resonances appear in the reetangular billiards: one set is characterized by
a strictly monotonic increase of F with increasing opening of the cavity and a large
and only weakly dependent asymmetry parameter q. A second set of resonances fea-
tures a strongly varying q (on the log-scale!) from large values near the Breit-Wigner
limit to values close to q ~ 0 for wide opening, yielding a window resonance. At
the same time, the width F first increases with w/d increasing from close to 0, then
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Figure 5.5: (a) Resonance width F and (b) real pari, of the asymmetry parameter
|Re(g)| 05 a function of the diaphragm opening w/d. The data are obtained by fits to
experimental results. Solid circles • (empty triangles A) correspond to resonances
originating from the first (second) even cavity eigenstate. Typical wavefunetions
\tjj(x,y)\2 for these two classes of resonances are shown in (c) [101]. In (a) the
width F of the •-resonances is monotonically growing until resonances disappear in
the background ofthe measured spectra (see gray horizontal bar). For A-resonances T
reaches a local maximum and slightly decreases for w/d —• 1. In (b) the »-resonances
always have a \Ke(q)\ > 10, above which the Fano resonances are very dose to the
Breit-Wigner lineshqpe[K^(g) = oo].Fo£ the A-resqnances q shows ajdrong w/d-
dependence: resonances undergo a complete evolution from Breit- Wigner to window
type as w/d varies between 0 and 1.

reaches a local maximum and finally decreases slightly when w/d —* 1. A similar
non-monotonic behavior of T was recently observed in a single-electron transistor
experiment [90]. Such features can be understood in terms of avoided crossings in
the complex plane [94,95] between interacting resonances. While the von Neumann-
Wigner theorem [102] for bound states predicts avoided crossings between states of
the same symmetry and thus a non-monotonic Variation of the eigenenergy, inter-
acting resonances can also display avoided crossings on the imaginary axis [94,95],
i.e. exchange of the width of resonances and thus leading to a non-monotonic be-
havior of one of the T involved. The two resonance poles approach each other in the
complex energy plane and undergo an avoided crossing as a function of the coupling
parameter s. As a result, for increasing s the resonance with large F gets even larger
and will form a background, on top of which the narrow resonance is situated. This
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somewhat counterintuitive stabilization or even narrowing of the width of one reso-
nance despite an increased opening, i.e. an increased coupling to the environment,
is sometimes referred to as "resonance trapping" [96, 97] and in the limit of F « 0
as the "formation of bound states in the continuum". This could possibly provide
an alternative explanation for the results of Ref. [90], where such a non-monotonic
behavior was observed and has been previously explained in terms of increased im-
purity scattering [93].
A very interesting feature of the interacting resonances is the fact that they can
be completely characterized in terms of scattering wavefunctions (see Fig. 5.5c).
Resonances that undergo a complete evolution from Breit-Wigner resonances to a
window resonance are all associated with the second even excited State in the cav-
ity, while resonances that display a strictly monotonic increase of the width with
increasing cavity opening are connected to transport through the transverse ground
state of the cavity. This mapping is controlled by the amplitude p for transmission
through the first transverse mode [see Eqs. (4.7,4.8)]. In the case that p2 > 1/2 all
resonances associated with the first mode are broader than the resonances associ-
ated with the excited State and vice versa for p2 < 1/2. For geometric reasons the
scattering device studied here (Fig. 5.1) always favors transport through the first
cavity mode and therefore p2 > 1/2. In this way we arrive at the remarkably simple
result that all resonances associated with a first mode feature a strictly monotonic
F and a large, but weakly varying q, while all resonances associated with the sec-
ond mode feature a smaller and not strictly monotonic F with q undergoing the
complete evolution from the Breit-Wigner to the window limit. This one-to-one
mapping is also indicated in Fig. 5.3, where only second-mode resonances (indicated
by the dotted ticmarks) "survive" the transition of w/d —> 1 while all first-mode
resonances (short ticmarks) vanish in the background of the transmission speetrum.
This knowledge could be very useful for the investigation of electron dynamics in
mesoscopic scattering Systems where the parametric evolution of Fano resonances
could yield information about the interaction of internal states and their coupling
to-the-environment.
The resonance poles in the complex plane can also be investigated explicitly with the
help of the multi-channel interference model. Using analytical expressions for the
transmission probability, we can evaluate these expressions also at complex values
of the wavenumer k. In such a way the dynamics of poles in the complex fc-plane
can be analyzed as a function of the diaphragm opening. Inspired by the work in
[103,104] we calculated contour plots of the transmission probability (displayed in
Fig. 5.6). For füll opening of the diaphragms (s = 0) the complex poles and the
"zeros" in the transmission probability on the real fc-axis occur at the same Re(fc),
thus giving rise to Symmetrie resonances (see Fig. 5.6a). When gradually closing the
diaphragms, the poles are situated at a Re(fc) which is different from the position of
the zero on the real axis. Such a constellation gives rise to asymmetric Fano reso-
nances (see Fig. 5.6b,c). If the diaphragms are almost shut (s ~ 1), we are left with
a number of poles, which are situated very close to the real fc-axis (see Fig. 5.6d).
The resulting resonances are thus very narrow and isolated from each other.
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Figure 5.6: The kp-dependence of transmission through the rectangular cavity, cal-
culated with the multi-channel interference model. The diaphragms are successively
closed: (a) s = 0, (b) s = 0.29, (c) s = 0.68, and (d) s = 0.97. The upper half
of each figure shows the transmission probability on the real k-axis. The lower half
depicts contour plots of the transmission probability in the complex k-plane. Poles
and zeros in transmission move in the k-plane as a function of the opening of the
diaphragms. Two of the zeros and four of the poles in (a) are marked by green
arrows.



Chapter 6

Edge states and the integer quantum
Hall effect

An important phenomenon in transport theory and Condensed matter physics is the
Hall effect. As Edwin Hall discovered in 1879, electrons flowing through a conducting
bar give rise to a voltage perpendicular to their flux direction if a magnetic field B
is present orthogonal to the surface of the bar. This effect can be explained by
the Lorentz force the electrons are subject to. The voltage measured perpendicular
to the electron current is called Hall voltage VH and is linearly proportional to the
magnitude of the magnetic field B. In 1980 Klaus von Klitzing fqund that the value
of the Hall voltage in Special semiconductor samples is quantized at low temperatures
and very high magnetic fields [35]. When the quantization occurs at integer values
of some unit voltage value we speak of the integer quantum Hall effect (as opposed
to the fractional quantum Hall effect discovered soon thereafter) [6].
For the emergence of the quantum Hall effect the presence of edge states plays a
crucial role [69]. Since the Systems discussed in this thesis also give rise to edge
states at high magnetic fields, we investigate in the following which traces of the

_quant.um.HalLeffect_are_obser_vable_in_our_idealized-scattering-systems._With-respect-
to the experimental conditions of the quantum Hall measurements the most drastic
idealizations in the MRGM are the following:

1. The studied devices in the experiments are multi-electron Systems. In our
theory we make a single-electron approximation.

2. In a real Hall bar the potential landscape is most likely similar to a random
surface with non-zero spatial correlation. In our calculations so far, we fixed
the potential inside the dot to be constant.

The approximation (1) is a severe restriction which cannot be overcome within the
present MRGM. For this reason we are not able to calculate the fractional Hall
effect, since it is essentially a multi-electron phenomenon. Limitation (2) can be
overcome by including random site energies in the tight-binding Hamiltonian. The
challenge here is the inclusion of a random potential which is compatible with the
separability requirements in the modules.

59
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6.1 The Hall voltage

To obtain the Hall voltage VH in our open quantum dots, we make use of an approach
put forward in Ref. [105]. The idea presented there consists of determining the Hall
voltage as the difference between two local chemical potentials at the points a and
b,

VH = ßa~ V-b- (6-1)

These two points are positioned as depicted in Fig. 6.1, i.e., perpendicular to the
electron flux from the entrance to the exit lead. The density of states in both leads is
given by UQ. AS will be shown in Eq. (6.3), VH is also proportional to the difference
between the chemical potentials at the entrance and exit lead ((II and ßn). To derive
this result, we calculate the chemical potential at point a by connecting this point to
a measurement reservoir (denoted by "r") with a density of states nr and a chemical
potential ßa. The reservoir interacts with scattering states injected from the left
or right lead by a coupling matrix element a \ipa'R\2- The parameter a describes
the coupling between the measurement reservoir and the dot and ip%'R denotes the
scattering wave function at point a for states Coming from the left or right lead,
respectively. Consider now the current Coming to the reservoir from the left lead.
There are (HL — ßa)no fully occupied states that may decay into an empty reservoir
State. By Fermi's golden rule, the rate of this interaction is: a \ip^\2nr. The current
from the left lead into the reservoir is therefore: (///, — ßa) UQ a |t/^|2 nr. Similarly,

Figure 6.1: Circular quantum dot connected to the chemical potentials /J,L and HR
by two leads attached on opposite sides. The Hall voltage is given as the difference
between the chemical potentials at point a and b, VH — ßa — ßb- To each of these
two points a reservoir with a density of states nr and a chemical potential ßa and
ßb is attached.
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the current resulting from states Coming from the right lead into the reservoir is:
(/AR — ßa)no<J\/4'^\2 nr- Since the chemical potential at a is equal to the chemical
Potential of the reservoir connected with a, the net current between a and the
reservoir must be zero. We therefore set the sum of the two above terms equal to
zero and get

The same argument can be applied to the chemical potential at point b. For the
difference between the chemical potentials at a and b we then have

VH = ß a - ßb =
+ +

(6.3)

The above formula allows to calculate the Hall voltage VH from the scattering wave
functions ij}L and ißR. In practice, the Green's function has to be evaluated twice at
both points a and b (once for left and once for right injection). The wavefunctions
are obtained according to Eq. (2.75) and inserted into Eq. (6.3). Note that in the
Special case of fourfold Symmetrie scattering geometries like in Fig. 6.1, ipR is just
a mirror image of i\)L. For all practical purposes it is advisable to evaluate the
wavefunctions not just at the two grid points a and b: In order to avoid any local
effects we average the wave functions over areas large compared to the grid spacing
(indicated by the red areas in Fig. 6.1 and Fig. 6.2) and check whether varying the
size of the areas does not alter the results drastically. If more than one lead State
£m is injeeted into the cavity, the total Hall voltage VH is a sum of all the voltage

Figure 6.2: Absolute square of a scattering wave function in the Single edge state
regime of a circular quantum dot. The leads are attached on opposite sides, lead
width d = 0.25, circle radius R = 1.5, wavenumber kp = 1.2-K/d and magnetic field
B/c = 100.



62 CHAPTER6. QUANTUM HALL EFFECT

contributions Vfi1 originating each from a different State £m,

M

VH- (6-4)
m=l

From the Hall voltage we can then easily proceed to other transport quantities like
the Hall conductivity GH, which is defined as

GH = 2irVH ' ( 6-5 )

with T to t being the total transmission probability for transport from the left entrance
to the right exit lead.

6.2 Single edge state regime
To apply the above results we will now study one particular example numerically,
i.e. transport through the circular dot in the Single edge state regime [101]. A
typical wavefunction in this magnetic field regime (B > B\) is depicted in Fig. 6.2.
To investigate the 5-dependence of the Hall voltage V# and the Hall conductivity
GH, we evaluate Eqs. (6.3,6.5) analytically as well as numerically (thereby following
similar work in [75]).
As a starting point we reconsider the multi-channel interference model discussed in
section 4.4. From the unitarity requirement that has to be fulfilled for the total
scattering geometry and for each of the two lead junctions we obtain the following
useful relations for the wavefunctions entering-Eq. (6.3),

(6<6)

Inserting these relations into Eq. (6.3), the Hall voltage V# takes the form

äw- (6'7)

Tt
which, to first Order, is independent of the magnetic flux. With the expression for
rrtat [Eq. (4.4)] we derive for the Hall conductivity GH,

n _ 1 l - k i i | 2 | r ' u | 2

fu|
2 |f'2TT 1 -2Re[f11f'11e iT] + \rn

where 7 is the Aharonov-Bohm phase accumulated by the edge state within one
revolution around the dot. In the same way as the total transmission T to t, also
the Hall conductivity oscillates periodically as a function of the magnetic field. If,



6.2. SINGLE EDGE STATE REGIME 63

Circle-180

60

Figure 6.3: Hall voltage VH and Hall conductivity GH as a function of the magnetic
field B in the circle with 180° lead orientation [101]. Lead width d — 0.25, area
of the circle A = 4 + TT and electron wave number kp = l.lOOlTr/d In the Single
edge state regime {B>B],) the Hall conductivity shows Aharonov-Bohm oscillations
around the first Hall plateau at (27T)"1 with a period of AB/c « 2ir/A. The chemical
Potentials are set here as ßL ~ ßR =

 (^TT)"1; as a result of which the Hall voltage
coincides with the lower bound of GH (see text). In the regime where two edge states
are present (B<B\) their interference along the boundary (see Fig. 3.3a) gives rise
to strong fluctuations both in VH and

however, we average Eq.-(6.8) with respect to 7 (by integration), we obtain the
quantization condition of the lowest plateau value in the integer quantum Hall effect,

(GH) = ^ • (6-9)

We now consider the lower bound of GH by choosing the angle 7 such that the
denominator of GH in Eq. (6.8) becomes maximal. If the two lead junctions of the
quantum dot are identical, we further have tu = t'n and rn = r'n. Inserting these
relations into Eq. (6.8) we have,

^H =
l - | r u | s

2TT | f1 1 |2 | fn |2 (6.10)

Under the condition of identical lead junctions also Eq. (6.7) can be simplified,

U..I2 u . 12 u . 12

v„ = (6.11)

Comparing Eq. (6.10) with Eq. (6.11) we note that the lower bound of the Hall
conductivity, GH

W, is given by Vff/[27r(//L - ßR)].
Checking these results with the MRGM we find perfect agreement between the
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Figure 6.4: Hall bar geometry: Rectangular quantum dot connected to the chemical
Potentials ßL and HR by two symmetrically attached leads.

analytical predictions and the numerical Output. The data for VH and GH in the
Single edge State regime are shown in Fig. 6.3. We note that the mean value (GH) =
(27T)"1 and the results on the lower bound of GH can be clearly confirmed by our
numerical calculations.

6.3 Quantization in a Hall bar

To observe more than one plateau in the Hall voltage, we need to allow for more
electron fiux quanta to enter the scattering cavity. The most straight-forward way to
achieve this would be to widen the leads in our scattering devices. In the framework
of the MRGM additional link modules would be required to attach broad leads to

~a""circular-dot.-We-therefore-chooserfor-simplicity,-the-geometry-of-a-so-called-^aH-
bar, which is depicted in Fig. 6.4. Unlike the circular dot, it is no problem here
to increase the lead width d. Additionally, the Hall bar geometry offers the impor-
tant advantage of strongly reduced backscattering in the case of widely open leads
(d fa D). This absence of scattering between forward and backward propagating
edge states is a necessary condition for the quantum Hall effect to be observable
[42]. In the Single edge State regime of the circular dot this suppression of backscat-
tering is realized "accidentally", since most of the fiux carried by the edge State leaves
the cavity already after half a revolution (see Fig. 6.2). With two edge states excited
in the circular dot this condition is no longer satisfied. As a consequence, neither
VH nor GH stabilize around a Hall plateau below B\ in Fig. 6.3. Strong fluctuations
in VH and GH appear instead.
In the following we will study a System where backscattering is completely sup-
pressed: the Hall bar with fully open leads (d = D). With this parameter setting the
scattering geometry takes the form of an infinite lead, which should be the ideal sys-
tem to observe several Hall plateaus. Our numerical results depicted in Fig. 6.5 show
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Figure 6.5: Hall voltage VH and Hall conductivity GH as a function of the magnetic
field B in the infinite lead [101]. Lead width d = 2.67, chemical potentials HL~ ^R =
(27T)"1 and electron wave number kp = 10.100l7r/d. The steps in the plateaus of
VH and the corresponding peaks in GH occur each at a critical magnetic field B™
(the integers n = 0 , . . . , 7 are indicated at the corresponding steps). In the inset the
oscillatory behaviour of GH around B = B\ is magnified.

indeed excellent agreement with these theoretical predictions: the plateau values of
the Hall voltage stabilize at integer multiples of the first level, VH — n (//£, — //#)/27r.
In the present case these levels are clearly visible for magnetic fields B > 10. Below
this value, the transverse quantization in the lead is mostly determined by the two
confining walls and not so much by the magnetic field. The steps in the plateaus
of Vij-occur just-at-the critical magnetic fields-ß"-discussed earlier.-4n-additionrat~-
these points (B = B™) the Hall conductivity GH gives rise to peaks. In Fig. 6.5
these peaks are clearly visible. Note also the oscillatory behaviour just below the
main peaks (see inset of Fig. 6.5 for magnification).
Many of the above features correspond very well to the observations in Hall mea-
surements for real semiconductor samples. However, to allow for a quantitative
comparison of our results with the experiments, we have to keep in mind that multi-
electron effects as well as random potential scattering would have to be added to
our theory. In the next section we show how the latter of these two modifications
can be included in the MRGM.

6.4 Disorder potentials

To simulate scattering in a Hall bar more realistically, we include a disorder potential
with non-zero spatial correlation into the tight-binding Hamiltonian of our System
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Figure 6.6: Hall voltage in the Hall bar with disorder (VH, blue solid line) and with
flat potential (Vfj, red dashed line) [101]. Correlation strength constant C = 1, dis-
order amplitude A = 0.6. All other system parameters are equivalent to Fig. 6.5.
The Hall plateau values and positions of the steps are the same for both curves.
However, the disorder potential leaves sharp dips superimposed on the Hall volt-
age stepfunction (see inset for magnification). These dips are relatively stable with
respect to different realizations of the disorder potential (see Fig. 6.7).

[101]. Practically speaking, this amounts to the inclusion of a small random Variation
in each lattice site energy. In order for the MRGM still to work, this disorder
potential must however preserve the separability within the modules. In the case of
the rectangular module constituting a Hall bar geometry we therefore fix the random

- surface-to depend-only. onthe_yTCOordinate.__The_site„energy in _the. CartesianJ;b _
lattice [Eq. (2.3)] then takes the form

ej^ej + V'U). (6.12)

For the disorder potential Vd we use correlated random distributions. These are
calculated by an algorithm similar to the one presented in [106], adapted to our quasi
one-dimensional potential Vd. The correlated random numbers rq' are calculated
iteratively by

m _ 'Jj-i + (6.13)

where i is the iteration index, j the site index and 7J is a set of uniformly dis-
tributed random numbers [—1,1], calculated anew for every i. We start the itera-
tive procedure with ryp = 0, \/j. If in the iteration r̂ - falls outside of [—1,1], it

is backreflected by rff1 —> ±2 — rff. The parameter C controls the strength of the
correlation by exponentially suppressing the uncorrelated random numbers. Finally
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Figure 6.7: (a) Segment of three different realizations A, B, and C of a disorder
Potential V* as a function of the site index j in y-direction of the Hall bar [101]. The
data is shown in relation to the Fermi energy (Ep = kF/2 with kp = 3.1 n/d). The
lead width d is here equal to the cavity width D. (b) One antiresonance in the lowest
plateau value of the Hall voltage is shown for the three different disorder potentials
depicted in (a). The insets contain the corresponding wavefunction plots \ip(x,y)\2

in the region of disorder A. The black arrows indicate the position of the edge state
when entering the disorder region.

we multiply the resulting distribution with a coupling constant A in order to control
d\(i) _the strength of the disorder potential (Vd)y = Arf?'. The correlation between these

random numbers can be characterized by the autocorrelation function and the mean
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Square amplitude,

f = ^ ] [ X ^ n ) (6.14)

When including disorder into our numerical model for the Hall bar, we note that for
moderate disorder strength A the Hall voltage neither changes its plateau values nor
the positions of its Steps. This result gives already some indication of the stability of
the Hall voltage in real semiconductor samples [35]. However, within the Hall voltage
plateaus we observe strong dips, which seem to occur at well defined magnetic fields
(see Fig. 6.6). At low disorder strength these antiresonance features arise in rather
narrow Windows of the magnetic field. With increasing mean Square amplitude of
the disorder potential, these Windows do however become larger and more frequent.
Keeping the potential strength A fixed, but choosing for a different sampling of the
random potential, we note that the peak positions do not change significantly, as
long as the amplitude A is well below the Fermi energy. This behaviour is illustrated
in Fig. 6.7 where we show (a) three different samples of the random potential and
(b) one isolated antiresonance in the Hall voltage V#, corresponding to each of
the random potentials. We also observe that the correlation length of the disorder
potential does not seem to influence the shape of the dips very strongly, as long as it
stays below the electron wavelength A^ (not shown). Finally, to explain the origin
of the antiresonances we evaluate the scattering wave functions at the corresponding
magnetic fields (see insets of Fig. 6.7). It can then be seen that the antiresonances
are caused by a coupling of the incoming lead states to eigenstates which "live" in
the region of the random potential. Similar resonance behaviour stemming from
localized eigenstates are also reported in the literature [107,108].
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De Haas-van Alphen oscillations

The de Haas-van Alphen (dHvA) effect is a phenomenon which is observed in very
clean metal samples at very low temperatures and high magnetic fields [36]. Under
these conditions the magnetic moment fx of the metal oscillates as a function of
the magnetic field.1 These oscillations, which are periodic as a function of l/B,
are determined by the configuration by which the electrons of the System fill the N
lowest Landau levels in the metal. With growing field strength B the degeneracy of
these levels is increasing, as a result of which more electrons can fill the lower lying
Landau levels. With growing field B there are magnetic threshold values Bt, where
the quantum number of the highest lying level decreases by one. At these critical
magnetic fields a jump in the derivative of the total System energy Etot occurs. The
magnetic moment of the System [i = —dEtot/dB therefore shows discontinuous Steps
at these points Bi. Since the dHvA effect is due to the Landau quantization of a
freeelectron. gas, any thermal excitation blurs these. oscillations. . _ . . . . .
The dHvA effect does not only occur for free electrons, but also in confined Systems
like in two-dimensional quantum dots and rings. When such a confining boundary
is introduced, several additional phenomena do occur, as was studied in [109-112].

jrhese_additionaLc.ontrihutions_are_due_to_the..prjesence_o.f_ejige_states_in_syÄtejns_
with a boundary. In a non-confined electron gas these states are absent and all
energy eigenstates take the eigenvalues of the discrete bulk Landau levels, En =
(n + l/2)B/c. The edge State energies Ekn, however, He in between these values
and can therefore mediate transitions between bulk levels. When plotting e.g. the
energy eigenvalues of the tb Hamiltonian in a circular module as a function of the
magnetic field, these edge State transitions can be well observed (see Fig. 7.1).
In the following calculation we require the observable of the total System energy
Etot for a number of TV electrons in a given module (like the circle). It is calculated
as the sum over the N minimum energy eigenvalues of the tb Hamiltonian for this
module, Etot(B) = J^k n ^k^n(^)- *n these considerations spin effects due to Zeeman
Splitting are not included. The magnetic moment ß is then derived as ß{B) =
-dEtot/dB. In Fig. 7.2 both observables (£ t o t , / i) are plotted as a function of
the magnetic field B. Regarding //, we first note that in the dHvA oscillations

1Similar oscillatory behaviour as in the dHvA effect is not only observed in the susceptibility,
but also in the coriductivity and is then termed Shubnikov-de Haas effect.
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energy eigenstates .

weak field states

bulk states

2000

Figure 7.1: Energy Ekn{B) of eigenstates in a circular tb module fsee Fig. 2.4 and
Eq. (2.35)] as a function of the magnetic field B. Only some states belonging to
the lowest five Landau levels n G [1,...,5] are displayed (see indicated numbers).
Note the linearly increasing energy dependence of the bulk states and the transitions
between them (mediated by edge states). At low magnetic fields the energy of the
states is mainly determined by the finite size of the quantum dot.

the discontinuous Steps at the threshold magnetic fields B = Bi are smoothed out
dueJo the edge State transitions.2 .However,..the. period of the oscillations, Ai =
B~l — B~+x, stays constant over a very large ränge of B, as for the unbounded
Systems. We further point out that the breaking of the bulk state degeneracy by
the edge states leads also to additional fluctuations with high frequency and small
amplitude, superimposed_on the.signatures_of jthe.dHvA effec]L_The origin of these
contributions can be subdivided into two classes. The first class of oscillations is
reminiscent of the Aharonov-Bohm (AB) effect, where each period A2 corresponds
to one edge State per occupied Landau level crossing the Fermi energy. Since the
contribution of edge states to the total magnetization is considerably larger than that
of bulk states, these transitions lead also to oscillations in the total magnetization ß
[109,112]. Due to the confinement of edge states to the region close to the boundary,
their dependence on the magnetic field is approximately AB type. Since the AB
effect is periodic in B and the dHvA effect is periodic in l/B the number of AB
oscillations superimposed on one period of the dHvA oscillations is growing rapidly
with increasing field strength (see Fig. 7.2b). The second class of oscillations (with
period A3) was first discussed in [109] and is related to correlations between different
Landau levels. Consider that close to a boundary the degenerate bulk states split
into a ladder of equally spaced edge states E^n (with spacing AE). By increasing the

2We note parenthetically, that the threshold fields
duced critical magnetic fields B\.

i are different from the previously intro-
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Figure 7.2: fa,) 7b£a/ electron energy of the 3000 lowest lying energy eigenstates
in the circular module, Etot(B) = Y^kn^^ni^)- To underline the periodicity of
the"öscillatiöns~irrEtot~'t}ie ddta are ~plötted~h~efe ~a~s~~a~fundiön"öf c/Br'Nöte the ~
dips in Etot at the threshold fields Bi. (b) Magnetic moment of the circular module
ß = — dEtot/dB. The dHvA oscillations as a function of B~x possess a constant
period Ai = B~l — B^. The presence of edge states in confined Systems causes the
discontinuous steps at Bi to be smoothed out and gives rise two additional types of
fluctuations (see insets). These are superimposed on the large-scale dHvA oscilla-
tions with periods A2 , A3. Details are given in the text.

magnetic field B, all different ladders, belonging to different Landau levels n, are
moving up in energy and change their spacing constant A#. Whenever an edge State
belonging to the bulk level n crosses the bulk level n + 1, it thereby also crosses the
minimum of the ladder n + 1. Summing over the ladders for the calculation of the
total energy Etot(B) therefore yields similar results at every one of these crossings.
As a result we observe oscillations in Etot(B) and ntot(B), the period of which (A3)
is given by the difference between two adjacent crossings. It is important to note
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however, that these oscillations are very much dependent on the particular boundary
conditions chosen. In the case of hard wall boundaries discussed here, the edge State
spectrum is very regulär and so are the corresponding oscillations in the magnetic
moment ß. In the case of smooth, non-harmonic boundaries a quite "noisy" signal is
expected instead [109]. For completeness we mention that we are not aware of any
experimental confirmation of this effect.



Chapter 8

Shot noise

In experiments dealing with quantum transport through microstructures, the elec-
tron conductance not only fluctuates as a function of parameters like the energy
or the magnetic field, but also as a function of time. Apart from thermal effects,
the origin of time-dependent fluctuations is related to the fact that an electric cur-
rent corresponds to the flow of discrete electron charges (as opposed to a smooth
fluidlike flow). In other words: the discrete number of electrons detected in the
measurement apparatus shows statistical fluctuations around the average value of
the electron current. These noise fluctuations, which are Gaussian and white, are
called shot noise and were first theoretically analyzed by Walter Schottky in 1918
[113]. Schottky drew an analogy to the metal pellets in the Charge of a hunting rifle,
which gave the "shot effect" its name. Since the magnitude of fluctuations depends
on the size of the pellets, this size can be determined by a measurement of the shot
noise (provided that all pellets have the same size). In analogy, the quantum of the
electron Charge e can be derived from the mean Square fluctuation in the electron
current / at a frequency u> [113],

= 2ej/(w)) Aw (in a.u. e = 1 ) . ( 8 . 1 )

The quantity Aw is the noise frequency bandwidth and the brackets denote aver-
age values. The factor 2 comes from the positive and negative frequencies, which
contribute identically. This formula also contains the quite intuitive result, that
the relative fluctuations will be larger for smaller currents. From the mean Square
fluctuations (A/ (CJ) 2 ) we can easily calculate the spectral density of the noise,

S(CO) = {AI(UJ)2)/AU. (8.2)

Indeed this spectral density has e.g. been used in the experiment to measure the
non-integer charge vahaes implied by Laughlin's theory of the fractional Hall effect
[114,115]. However, S(u>) not only carries information about the Charge quantum,
but also on the "particle" versus "wave" nature of a transport process [116]. In
ballistic quantum transport experiments related phenomena have been investigated
theoretically as well as experimentally [45,117]. Furthermore it was discussed in the
literature, whether shot noise also depends on the chaoticity of the dynamics inside
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a scattering cavity [37,44,116,118]. The present chapter is dedicated to the analysis
of the above features.1

8.1 Shot noise suppression

To explain the origin of shot noise, we consider a Single particle which is scattered
at a barrier (see also [37]). Let us assume that the particle arrives at the barrier
with unit probability (i.e. the occupation number of the initial incident State is
equal to 1). The particle is transmitted with probability T and it is reflected with
probability R = 1 — T. We denote the occupation numbers of the transmitted and
the reflected State by n? and UR respectively. Due to the quantization of charge,
UR and nT can only be equal to 0 or 1 in each of the measurement processes. If the
experiment is repeated a number of times, the average of the occupation numbers
as well as deviations from the average value will follow binomial statistics. We use
the notation 5n :— (n) — n and the relation (n>r) = 1 — (^R) , which implies

{nT)2 = (nT)-{nR)(nT). (8.3)

Knowing that for n = 0,1 we have n2 = n, the mean Square of the deviation from
the occupation number n? can easily be calculated,

((5nT)2) = (n2
T) - (nT)2 = (nR)(nT) = (1-T)T = RT. (8.4)

Such fluctuations, which are called partition noise, are proportional to both the
transmission as well as the reflection amplitude. For the particular cases of T = 0,1
the partition noise vanishes.
Instead of a barrier, let us now consider a quantum dot with an arbitrary num-
ber of leads. For the current in a narrow energy interval dE we have: dl =
(2n)~1 n(E) dE. If we again denote the deviations of the average value by 51 :=
(/) — / , the correlation function of the current I(t) in the leads a and b reads

If the current is defined as a quantum mechanical Operator /(£), one uses a sym-
metrized definition [37],

Sab(t - t') := l- (6Ia(t) 8?b(t') + 5h{t') 8Ia(t)). (8.6)

Unless there are time-dependent external fields, the correlation function is a function
of At := t - t' only.
The current I(t) is determined by the difference in the occupation numbers n+ and
n~ of left- and right moving carriers in Channel n [37],

/(*) oc J2 IdE {<(E,t)-n-(E,t)),

) (8.7)

1 For an introduction and overview of the field of shot noise we refer to [119] and [37], respectively.
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Instead of the variable E' we can use u : = (E — E'). The Fourier-transform of the
current-current correlation function S(LU) is referred to as the power spectrum.
In a real experiment, part of the measured noise is always due to thermal fluctua-
tions, but even in the zero-temperature limit some noise remains, although the Fermi
distribution in each reservoir is then a Step function. This remaining part of noise,
which is due to the discreteness of the electron charge, is called shot noise. It isjjsu-
ally evaluated as the zero frequency limit of the power spectrum 5 = lim^^o S(u).
In the case of a two-terminal conductor (one incoming and one outgoing lead) the
shot noise is [120-122]

S=^Tr (rVtH) = fflTr [(1 - tH)tH] , (8.8)

where V is the voltage applied between the incoming and the outgoing lead. The
above equation can be conveniently transformed into the basis of eigen-channels,
since the matrices rV and tH are diagonalized by the same transformation matrix.
With the help of the eigenvalues Tn (Rn) of the product tH (rV) we have,

lnTn. (8.9)

The above formula reflects the result obtained for partition noise in Eq. (8.4): each
eigenchannel contributes to noise in the same way as a Single particle scattered
at a barrier. Due to the independence of fiuctuations in different Channels, their
contributions can simply be summed up. Note that the shot noise 5, just like in the
very simple model presented at the beginning of this section, vanishes in the cases
of füll transmission or full-refiection. The upper limit of the shot noise 5 is reached
for the Poisson value, discussed by Schottky [see Eq. (8.1)],

C J I TV /Vt+\ J ' \ T1 O / T\ /o i n \
Dp — i T It II — / l n — Z \1 ) . ( o . lU)

n = l

This limiting value is expected for a Poissonian process of uncorrelated electrons.
However, due to the Pauli principle, electrons in thermal equilibrium are correlated
according to Fermi statistics and noise is strongly suppressed. This suppression is
described by the term (1 — Tn) in Eq. (8.9), since without it we would have 5 = 5p.
The ratio of 5 to 5p is called "shot noise suppression factor" or Fano factor,2 usually
denoted by F and given by

F =
Tr(tH) £nT„ •

The largest contribution to shot noise comes from eigenvalues around 1/2. In the
limit of low transmission Tn <C 1 in all eigenchannels n, the Fano factor F goes

2The term Fano factor (i.e. the shot noise suppression factor) goes back to a work by Ugo Fano
on the statistics on ionization [123], but should not be confused with any of the terms used in the
context of Fano resonances, going back to the same author.
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to 1. Using random matrix theory (RMT), it is possible to calculate the expected
eigenvalue distribution function for cavities with chaotic classical dynamics. If a
cavity is chaotic and the transmission is Symmetrie in the sense that (T) = \, then
RMT yields the following distribution function of eigenvalues T [37],

1 . (8.12)
T )

With the help of this function, one can calculate the expeetation value of the trans-
mission probability,

JL \ r1 N
V r n «JV / dTPRMT{T)T=-. (8.13)

\n=l / Jo 2

For the expeetation value of the Fano factor we have,

The above equation can be easily evaluated,

This value is known as the characteristic Fano factor for chaotic cavities. The value
of 1/4 is, however, not always realized. Moreover, the deviation from 1/4 contains
important information about the specific circumstances under which transport takes
place. Interestingly enough the Fano factor depends on how "quantum" or "classical"
the transport process-through a scattering cavity is. Take e.g. the example of a
classical particle, which is either fully transmitted or fully reflected when transported
through a System. It has been claimed [116] that in the "classical limit" of the
quantum transport problem, each of the N eigen-channels shows the same behaviour

-as-the-classicaUpar-ticle-and-is-either-full-y-reflected-(-Trj-=-0)-or-full-y-transmitted-
(Tn = 1). If additionally the total transmission is equal to the total reflection
(R) = (T) = N/2, we have an eigenvalue distribution function of the form

Pcl (T) = I [6(T) + 5(T - 1)] . (8.16)

As is easily checked with Eq. (8.15) this "classical" eigenvalue distribution function
implies a vanishing Fano factor (F = 0) and therefore a complete suppression of
shot noise (5 = 0).
In the following section the above predictions will be compared with numerical
results for transport through the Stadium, circle and rectangle billiard. The cal-
culations were performed using the MRGM. To study the chaotic versus regulär
behaviour of the Fano factor these prototype geometries are very suitable. How-
ever, to study the "classical limit" of shot noise suppression, a tunable scattering
geometry is introduced, which allows to vary the particle dwell time in the cavity.
"Classical" and "quantum" transport are then realized for short and long dwell times
respectively.



8.2. NUMERICAL RESULTS 77

8.2 Numerical results
For a test of the RMT predictions we evaluated the transmission and reflection
matrices of the Stadium, circle and rectangular billiards (see Fig. 2.1) at a large
number of different Fermi wavenumbers kp (at zero magnetic field) [55,124]. In each
mode-interval (i.e. in kp G [n, n + l]?r/rf) the reflection and transmission matrices
have been calculated at 200 equidistant points. Transport through the circular and
rectangle billiard with both lead orientations has been analyzed in a momentum
ränge of kp G [1,30]TT/CL Due to the larger numerical effort, the fc^-range for the
Stadium billiards is more limited, kp G [l,15]7r/d. The total transmission and
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Figure 8.1: The total transmission probability T*04 = Z \tnm\2 (blue line) and
reflection probability Rtot = as a function of the wave vector kp in (a)
the Stadium with opposite leads and (b) with perpendicular leads. The upper staircase
function, T101 + Ä tot = N (solid line) represents the quantum current conservation
condition and indicates the number of open lead modes N. The lower staircase
function at N/2 (dotted line) represents the value where transmission and reflection
are equal, 7™ = Rtot = N/2.
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reflection through these devices is depicted in Figs. 8.1, 8.2 and 8.3. We note that
the fluctuations as a function of kp are larger for regulär dynamics in a cavity (for
details see [55]). Accordingly, the Stadium with perpendicular lead orientation shows
the smallest amplitude in the fluctuations since there the contribution from non-
universal paths is smallest. We further note that the condition of equality between
transmission and reflection (T*01) = (Ätot) = N/2 is only approximately realized
in all of the Systems considered. For the "chaotic" Stadium billiards the fulfillment
is somewhat better than in the "regulär" cavities. The mismatch between total
transmission and reflection is largest for the rectangular billiard with perpendicular
leads. There the right cavity wall directly reflects a large fraction of the incoming
flux back into the entrance lead, as a consequence of which i?tot > T1*0*.
Let us consider next the Fano factor averaged over 200 points in each mode-interval

10 15 20 25 30

kFd/7r

Figure 8.2: As in Fig. 8.1 but for (a) the circle with opposite leads and (b) with
perpendicular leads.
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n according to
(n+l)7T n

j —

(TI+1)T
d

(8.17)

dk

This function (F(n)) is plotted in Fig. 8.4 for all three geometries and both lead
orientations. Surprisingly, all the six presented cases give Fano factors close to
the RMT prediction of 1/4. The most pronounced deviations from this value are
discernible at low mode numbers. The explanation for this is that for low mode
numbers the relative mismatch between Rtot and T10* is largest. Particularly for
the cases of the 90°-stadium and 90°-rectangle, this deviation at low mode numbers
is most pronounced (see Figs. 8.1b and 8.3b respectively). In the case of the reg-
ulär cavities, the Fano factor can be observed to deviate slightly from 1/4 in the

10 15 20

kFd/7T
25 30

Figure 8.3: As in Fig. 8.3 but for (a) the circle with opposite leads and (b) with
perpendicular leads.
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high mode limit. This feature will be discussed below. For mode numbers around
n 6 [10,15] the averaged Fano factor {F(n)) is very similar for all the six geometries
studied. From this observation we might conclude that the Fano factor is inde-
pendent of whether chaotic or regulär dynamics is governing the transport process.
However, it has been claimed that billiard Systems with regulär classical dynamics
show a shot noise suppression which is considerbly stronger than for chaotic bil-
liards [43,44,118]. This prediction is based on a reduced amount of diffraction due
to the enhanced stability of trajectories in regulär billiards. Without this diffraction
the transport process could be expected to be more "deterministic" or "classical",
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(c) Rectangle

^ ^ ^

0 5 10 15 20 25 30
mode number n

Figure 8.4: Fano factor F(n) averaged over one-mode intervals for (a) the Stadium,
(b) the circle and (c) the rectangle billiards [124]- Green (red) circles (triangles)
stand for 90° (180° j lead orientation respectively. Geometries and dimensions are
as indicated in Fig. 2.1. In all the three figure parts the black solid line depicts the
value from RMT (1/4) and the dotted line shows the predicted dependence of the
Fano factor on the characteristic scattering times, F = 0.25 x exp (—TE/TD). Note
that for the evaluation of the dotted curve, the characteristic scattering times of the
Stadium were used [also in (b) and (c)]. We do not yet have an estimate for the
dependence of F for the regulär cavities.
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with an eigenvalue distribution P(T) shifted from the "quantum" value pRMT(T) in
Eq. (8.12) towards the "classical" distribution Pcl(T) given in Eq. (8.16). Along this
quantum-classical transition the Fano Factor F should be reduced from 1/4 towards
0. In our data shown in Fig. 8.4 such a characteristic difference between chaotic and
regulär dynamics is not visible in the Fano factor. Our Interpretation of this result
is, that the suppression of shot noise is not due to the chaoticity or regularity of the
classical dynamics in these billiards. The Fano factor rather depends on the spread
of the electronic wavepacket. Since "spreading" not only occurs in chaotic billiards
but is due to the diffraction at the two lead mouths [74], also regulär billiards like the
circle or the rectangle can give rise to a Fano factor close to 1/4. This consideration
agrees with the observation in [118] that the Fano factor in the Stadium billiard is
drastically reduced if the electron is transmitted via a few whispering gallery states
instead of exploring the whole chaotic phase space via many cavity states. Since in
[74] was shown how to systematically include diffractive contributions into a semi-
classical theory for quantum transport, the dependence of the Fano factor on these
diffractive terms should be accessible for closer investigation. Further work along
these lines is in progress [124].
An important feature of shot noise is that it is sensitive to the dwell time TD, which
measures the time during which the electron stays inside the cavity. For a chaotic
cavity with area Adot and two leads of width d attached to it, TQ is given by the
following expression,

(8.18)

This formula can be derived by assuming that in a chaotic cavity all points at the
boundary are, on average, hit with equal probability by a trajectory [125,126].
The shot noise power is expected to depend on whether TD is long or short compared
to the Ehrenfest time TE (also called: quantum break time). The quantity TE is given
by the time during which a wave packet of minimal size spreads over the whole
scattering cavity. For a chaotic cavity this translates into

TE = a~l In (yÄ^/Xp) . (8.19)

with a being the Lyapunov exponent of the classical dynamics in the cavity. For
the Stadium billiards the exponent a ~ 0.45 x vp [127,128]. In terms of these two
time scales, the Fano factor is predicted to show an exponential suppression [116]
according to,

F=- exp{-TE/TD). (8.20)

In the "quantum limit" of long dwell times (rD > TE) the RMT-value of 1/4 is real-
ized. In the case of many open lead modes - i.e. in the "classical" limit of short dwell
times (TD < TE) - the Fano factor is exponentially reduced. In a recent experiment
[45,117] a behaviour which agrees qualitatively with Eq. (8.20) was indeed observed.
To check whether the predicted shot noise suppression is also visible in the Systems
considered here, we reconsider Fig. 8.4a where the numerical data is cömpared to
Eq. (8.20) (plotted as a black dotted curve). In view of the predicted slow decrease
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of the Fano factor as a function of the wavenumber kp, the limited ränge of our
calculations (up to 15 open modes) prevents a quantitative comparison in the high-
mode limit. On the other hand, the ränge of the data for the regulär billiards in
Fig. 8.4b,c is larger (up to 30 open modes) and a decrease of F for higher mode-
numbers can indeed be observed there. Surprisingly, for n > 10 the data for the
circle and the rectangle with both lead orientations give rise to Fano factors which
are quite similar to each other. This fact might be a hint to a system-independent
mechanism that suppresses shot noise also in regulär quantum billiards. However, in
these particular Systems of circle and rectangle billiards neither the above definition
for the dwell time Eq. (8.18) nor for the Ehrenfest time Eq. (8.19) can be applied.
This is because in regulär quantum billiards TD and TE are clearly dependent on the
specific scattering dynamics. Only for long trajectories the spreading due to scat-
tering at the lead mouths washes out the System specific details [74]. A formula for
the /c/r-dependence of this mechanism would therefore be very desirable and could
provide an explanation for the decrease of F in Fig. 8.4b,c.
In this direction we performed a classical trajectory Monte-Carlo Simulation for
the rectangular and circular billiards. We find that the classical dwell time T£> in
these regulär Systems stays between 50-90% of the value of the dwell time in the
Stadium billiards [see Eq. (8.18)]. Since the Fano factor for our regulär Systems is
not more strongly suppressed than in the case of the Stadium, this result would
point to the conclusion that the Ehrenfest-time T^ for regulär Systems is also lower
than for chaotic Systems. Otherwise the suppression law Eq. (8.20) would give a
much steeper decrease of the Fano factor for regulär Systems. It would however be
quite suprising and counterintuitive if the Ehrenfest time turns out to be shorter for
regulär billiards than for chaotic ones. It will therefore be a topic for future inves-
tigation whether Eq. (8.20) is applieable at all for Systems with regulär dynamics.
Work along these lines is in progress [124,129,130].

8T3—^Distribution oftransmission eigenvalues

In this section we try to gain further insight into the question why the Fano factors
of regulär and chaotic cavities are similar. Our starting point is to investigate the
distribution function of the transmission eigenvalues Tn. As the Stadium shaped bil-
liards show chaotic classical dynamics, their distribution function P(T) is predicted
to be pR M T(T) as given in Eq. (8.12) in the limit TQ 3> rg. Due to non-universal
contributions the eigenvalue distribution function of regulär billiards like the circle
or the rectangle is usually expected to deviate from PRMT(T). However, since these
billiards exhibit Fano factors which are similar to those of the Stadium billiards, it is
interesting to compare their eigenvalue distribution function with p R M T ( r ) as well.
To obtain P(T) we diagonalize the matrices tH and calculate their eigenvalues Tn.
The ränge of eigenvalues [0,1] is split up into 50 equidistant intervals in order to
bin the eigenvalues. For the Stadium billiard a total number of 14 x 200 = 2800
eigenvalues has been evaluated in the fcp-interval kp € [1,lb\n/d. In the case of the
circle and rectangle 29 x 200 = 5800 eigenvalues in the interval ^ 6 [1,30]7r/d were
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calculated. Resulting distributions are shown in Fig. 8.5. Note that in all six cases,
the eigenvalue distribution is quite close to PRMT(T). Since the distribution P(T)
determines the Fano factor by way of Eq. (8.15), the similarity between the Fano
factors for all studied geometries obviously originates in the similar distribution of
eigenvalues.

8.4 Tunable cavities
As mentioned above, the Fano factor F is predicted to show a strong dependence
on the dwell time r/j and the Ehrenfest time TE inherent in the scattering process.
These two quantities do however change only very slowly as a function of the Fermi
wavenumber kp. As a consequence, only a slight shot noise suppression is observable
in Fig. 8.4. To go beyond this numerical limit we turn to a setup that has recently
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Figure 8.5: Eigenvalue distribution P(T) for (a) the Stadium, (b) the circle and (c)
the rectangle billiards [124]- Green (red) drcles (triangles) stand for 90° fl80°j lead
orientation respectively. Geometries and dimensions are the same as indicated in
Fig. 2.1. The RMT prediction for chaotic dynamics pRMT(T) is shown as a black
solid line for all three geometries.
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been realized experimentally [45, 117]. The studied scattering device consists of
a chaotic scattering cavity connected to two electron reservoirs via two tunable
diaphragms. Although the cavity itself has rectangular shape in the experiment,
the electron dynamics is chaotic due to random potential scattering. By changing
the opening of the diaphragms the electron dwell time in the cavity T£> can be tuned
without changing the injection energy. This allows to study the ro-dependence of
shot noise in detail.
To simulate the above experiment we consider here the scattering System depicted
in Fig. 8.6. It consists of a cavity to which two leads are attached via tunable
diaphragms. The cavity itself has the same height d as the leads and the distance
between the two diaphragms is 2d. Their openings are situated on top and bottom
of the geometry to reduce direct scattering from one to the other. Between the
diaphragms two quadratic modules with a y-dependent correlated disorder potential
are attached to each other. In each module the randomness depends only on y, since
an additional z-dependence would prevent us from directly using the MRGM. We
note, however, that this limitation can be overcome [124]. On the other hand,
separability within the cavity has to be destroyed to obtain truly chaotic dynamics.
This is done by linking two modules with different disorder potentials. An efficient
method to accomplish this goal is to to calculate one module with disorder, to rotate
it by 180° and to link the original module with the rotated one (see also Fig. 8.6).
In this way the numerical effort is strongly reduced since only one module has to be
computed.
The random disorder potential Vd is calculated as described in section 6.4. The

Figure 8.6: Scattering device with tunable diaphragms and cavity area Adot = 2d2 =
4 + 7T. By changing the openings w € [0,d], the electron dwell time in the cavity
can be tuned without changing the electron energy Ep- The cavity region consists
of two modules with a correlated disorder potential (see gray-shaded area). To save
Computing time, the second module contains the same random potential as the first
one, but turned by 180°. In such a way the non-separability requirement for the
combined modules is met, even though the disorder potential is only y-dependent in
each module.
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amplitude A of the disorder is determined by the following considerations: (1) If ̂ 4.
is too large, the electron mainly stays inside the longitudinal "trenches" formed by
our particular disorder potential and most of the electron flux will be reflected. (2)
If A is not large enough, the electron will not be randomized sufficiently. Our aim is
therefore to find an intermediate parameter regime where both objections (1) and
(2) are removed. We are guided by the idea that the total transmission T to t across
two identical diaphragms must be

rptot 7 2 , (8.21)

in case that the cavity between the two diaphgrams gives rise to chaotic dynamies
and each diagphragm for itself allows for transmission Tdia [45,117]. This is because
the electron that enters into the cavity (with probability Tdia) has equal probability
to exit either by the first or the second diaphragm due to the randomization. If we
renormalize Eq. (8.21) by the total number of open lead modes N, we have

- T d l a ~W (R 22)
- 2 i V ~ 2 d ' ( 8- 2 2 )

After simulating different potentials and different opening ratios w/d, a potential
strength A = 0.1 x Ep was chosen such that Eq. (8.22) is fulfilled (see also Fig. 8.7,
where the corresponding data is shown).
When the diagphragms are strongly closed (w < d/2) the total transmission J2 Tn

is lower than the total reflection 52(1 — Tn), as a considerable part of the flux is
already reflected back by the first diaphragm. Only a fraction of approximately w/d
of the total flux passes through the first diaphragm. For this reason, the eigenvalue

jdistribution P(T) in our scattering device does not follow the Symmetrie distribution
PRMT(T) shown in Eq. (8.12). A rather asymmetric distribution P(T) is realized,
especially in the case of w >C d, where many eigenvalues T ~ 0 (not shown). Even
though these large numbers of very low eigenvalues do not eontribute substantially to

.jthe_Fano_factpx_as givenin EqL „(8JLl.)_,jthey__havethe potentialto^altexjhe Standard
RMT result of a Fano factor F = 1/4, in spite of chaotic cavity dynamies. The
decrease of F in the classical limit should however be unaltered by the asymmetry
of P(T). For the classical limit of P(T) we have,

P(L)(T) = aS(T) + (1 - a) 6(1 - T), with a G (0,1). (8.23)

Note the difference to Pc l , defined in Eq. (8.16). Replacing P™T(T) in Eq. (8.15)
by P(ls)(T) in Eq. (8.23), we obtain a complete shot noise suppression, i.e. a Fano
factor F = 0, regardless of the value of the parameter a [see Eq. (8.15)]. For a rough
estimate of the expected decrease of the Fano factor we use the previously discussed
relation,

F = J eM-rE/rD). (8.24)

The dwell time TQ can again be estimated by Eq. (8.18), with the only difference
that the diaphgragm opening w has to be inserted instead of the lead with d. For
the Ehrenfest time Eq. (8.19) could in principle be used. Unfortunately we do



86 CHAPTER8. SHOTNOISE

0.0 0.05 0.1 0.15 0.2 0.25 0.3
random potential strength A/EF

Figure 8.7: Renormalized average transmission probability (T)/N for different values
ofthe random potential strength A [124]- The dimensionless correlation parameter C
in Eq. (6.13) is set to 3 and the openings ofthe diaphragms are (a) w/d = 0.025 and
(b)w/d = 0.1. The expected valuefor the optimal potential strength {T)/N_ = w/(2d)
is indicated as a black dashed line. For very large values of A reflection dominates.
Since at A « 0.1 x Ep a rather good agreement with the randomization condition is
found, this value will be used in the following.

however not have a precise value for the Lyapunov exponent a available in our
cavity. As a first order approximation we estimate that a for our tunable cavity
is similar to the value in the Stadium billiard: a ~ 0.45 x vp. Inserting this value
into Eq. (8.24), we get a rough estimate for the dependence on the Fano factor on
the diaphragm openings w. In Fig. 8.8 this prediction is compared with numerical
data and shows surprisingly good agreement. Fitting the numerical data with the
function in Eq. (8.24) and a as the fitting parameter yields the best correspondence
for a « 0.75 x vp. Note that small openings (corresponding to large dwell times)
lead to a relatively high Fano factor. Even though we have a quite asymmetric
eigenvalue distribution function P(T), the Fano factor for small diaphragm opening
w is F « 1/4. For larger openings (smaller dwell times), the Fano factor decreases
and follows the predicted exponential suppression.
Our results are also in close correspondence to experimental studies [45,117]. This
fact is particularly useful, since in contrast to the experiment, effects like impurity
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Figure 8.8: The Fano factor F as a function of the diaphragm opening w/d (red
triangles), averaged over 30 different kp values in the ränge kp € [40,41]n/d at
a disorder potential strength A « O.lEp [124J- The dashed black curve shows the
decay due to the change in TD, F = 0.25 x exp(—TE/TD), estimated with a Lyapunov
exponent as in the Stadium billiards, a « 0.45 xvp. Fitting the numerical data yields
a value of a « 0.75 x vp, indicated by the dotted black curve.

scattering etc. can be excluded a priori in our theory. So far, the large computational
effort involved in the numerical Simulation of the quantum-to-classical crossover of
shot noise has prevented a numerical test of the experiment. The results presented
here should therefore be, to our knowledge, the first test of its kind. For completeness
we mention that a dynamical model ("map") has been introduced recently, which
uses the kicked rotator to simulate chaotic scattering in a ballistic quantum dot [46].
This model also shows the predicted suppression of the Fano factor.

8.5 Future work

Future work on the subject of shot noise suppression will comprise a close investiga-
tion of the way in which the exponential shot noise suppression Eq. (8.24) changes
in case of an asymmetric eigenvalue distribution P(T). Another aim is to calcu-
late more data points in Fig. 8.8, since it might then be possible to detect and, if
confirmed, explain deviations from the exponential decay law in Eq. (8.24). As men-
tioned above, a formula is strongly desired for the fcir-dependence of the wavepacket
spreading due to scattering at the open lead mouth [74]. A better approximation for
the Ehrenfest time for regulär billiards would thus become available. This would be
particulary useful to describe shot noise suppression in quantum dots with regulär
classical dynamics.



Chapter 9

Weak localization

Transport through a classical resistor is well described by Ohm's law, according to
which the resistance scales linearly with the length of the resistor. However, at low
temperatures, where the coherence length of the electrons can be much larger than
the mean free path, this linear scaling law breaks down. This is because in contrast
to the behaviour predicted by classical transport theory, transmission in the regime
of quantum diffusion is governed by elastic and inelastic scattering processes. If the
electron coherence length is smaller than the whole sample size, we are in the regime
of strong localization, first described by Anderson [131]. The quantum interference
between many scatteres leads to a strong localization of the electrons (also called
Anderson localization), where conductance through the sample is very much sup-
pressed. If, on the other hand, the sample size is smaller than the coherence length,
we are in what is called the weak localization (WL) regime. Here the transport
process is governed by coherent (i.e. ballistic) electron mption and can be described
with the Landauer-Büttiker formalism [51], as we did throughout this thesis.
A very prominent feature occuring in this regime is the so-called weak localization
effect.1 This phenomenon consists in a reduction of the mean value of conductance
below the classical value. Among the first experimental investigations of this effect
was the work published in [133], where conductance across thin wires was probed. A
theoretical explanation for the weak localization effect is the following: In the Feyn-
man picture of quantum theory transport is described by a sum over all possible
paths which a particle can take from the initial to the final State. Each of these
paths comes with an amplitude and a phase, both of which can be derived from the
classical action along the path. Quantum transmission (reflection) is then calculated
as the interference of all transmitted (reflected) paths. In contrast to the transmit-
ted trajectories, all reflected paths interfere with their time-reversed partner. Since
a trajectory and its time-reversed mirror image always come with the same phase
(provided that no magnetic field is present), their interference will always be con-
structive, thus increasing the resistance as compared to the classical value. However,
with a magnetic field in the sample, this enhancement of the resistance is reduced.
That is because the magnetic field breaks the time-reversal symmetry by way of an
Aharonov-Bohm phase, the sign of which is opposite for a trajectory and its time-

xFor an overview over the topic of weak localization see e.g. [18, 71,132].
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reversed partner. Consequently, the conductance increases with increasing B or
equivalently the resistance decreases. This resistance peak around B = 0 has been
subject to numerous investigations, both theoretical [13,134-138] and experimental
[1, 2, 38,139]. Not only the height and width of the peak, but also its specific form
was studied in detail. A very interesting feature in this context is the fact, that the
WL peak line shape is predicted to be different for dynamical Systems with either
regulär or chaotic dynamics. For chaotic cavities like the Stadium [see Fig. 2.1c]
theoretical investigations predict the peak to have a Lorentzian shape [135]. This
result is determined by the rather randomly distributed trajectories in the Stadium
and the Aharonov-Bohm phases they acquire. In the experiment, the Lorentzian
shape could indeed be found [38]. Furthermore, the measurement also showed that
the line shape for a regulär billiard like the circle [see Fig. 2.1a] follows a linearly de-
creasing triangulär shape. This difference to the chaotic cavity can be explained by
the conservation of angular momentum in the circle billiard. Due to this additional
constant of motion, the trajectories in the circle acquire very large Aharonov-Bohm
phases, leading to the triangulär WL peak shape.

9.1 Numerical results and discussion
We now try to reproduce these experimental results for the circular quantum dot
numerically. We calculate the total transmission T to t and reflection i? tot at 600
equidistant kp values in the interval kp = [2.2, 2.8] x n/d and at fixed magnetic field
B. An average over the 600 data points is done to smooth out non-universal con-
tributions which blur the WL effect. Plotting the average values as a function of B
around B — 0, we can expect to find the WL peak. The results obtained for the cir-
cle with 90° lead orientation are displayed by the solid line curves in Fig. 9.1 (other
curves in the figure will be explained below). In parts (a) and (b) of Fig. 9.1 the WL
peaks in the reflection and transmission are displayed. Figure (c) demonstrates the
fulfillment of the unitarity requirement. Note that in Fig. 9.1a the expected linear
decrease around B = 0 is indeed observable. Due to unitarity the WL effect leaves
exactly the inverse peak in the total transmission as compared to the reflection.
Implicitly included in our calculations is the assumption of an infinite electron coher-
ence length L^. This is because no dissipative or dephasing mechanism is present
in our computation. In the experiment, however, these quantities play a crucial
role, since they strongly affect the observability of the WL peak. As was shown in
[38] a decrease of L^ turns the triangulär WL peak shape of the circle into a more
Lorentzian shape, typical for chaotic cavities. This behaviour was demonstrated by
repeating the WL measurements at different temperatures: The higher the tempera-
ture, the shorter the coherence length L<p. As a consequence, the temperature allows
to tune L<£, above which length the trajectories involved in the transport process
are suppressed. Since the area A and the magnetic field B enter the phase of the
Feynman paths as conjugate variables (the classical action S = kL — BA/c), it is
the long trajectories (i.e. those which acquire a large area A), which give rise to the
steep incline at small magnetic fields B. By increasing the temperature, the longest
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Figure 9.1: Weak localization peaks in the average of (a) total reflection (Rtot(B))
and (b) total transmission probabilüy (Ttot(B)) as a function of the magnetic field
B. To test the unüarity of the procedure we show in (c) the sum of the corresponding
curves from (a) and (b). The gray vertical line marks the field free case (B = 0).
In each of the three figure parts, the curves from top to bottom stand for the data
(1) without any length cut off (Lmax = oo,), (2) Lmax = 85, (3) Lmax = 45, (4)
Lmax = 25, and (5) Lmax = 15. The average was taken over 600 equidistant values
in the interval kp = [2.2, 2.8] xn/d. In (a) the triangulär peak shape in the resistance
becomes gradually visible for increasing Lmax. In (b) the dip in the transmission lies
off the center for a finite cut off length Lmax (see indicated arrow). Note the B-
dependent unüarity deficiency in (c).
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trajectories are most strongly damped. In such a way a non-zero temperature can
modify the steep triangulär WL peak shape into a smoother and broader Lorentzian
lineshape. Above a critical temperature, the WL peak is suppressed entirely.
To reproduce this transition to higher temperatures numerically, we introduce a
cut off length Lmax into our averaging procedure for the WL curves. So far we
calculated the tmn(kF) and the rmn{kF) at 600 equidistant points in a A^-interval
&F = [&min, &max] and took the average for the whole interval at a fixed magnetic field
B. In the following, this data set will be subject to an additional transformation:
Instead of evaluating its average value, we first perform a Fast Fourier Transform
(FFT) [57] of the transport coefficients tmn(kF),

imn{L) = -±= f ^ dk e-ikLtmn(k). (9.1)

After that we set to zero all those values of imn(L) for which L > Lmax and obtain
thereby the reduced Fourier transform i'^(L). Transforming this quantity back to
A;-space,

« ( * ) = 4 = / dk e+ikL CTW , (9-2)
v 2TT Jkmin

we get t'^(k), which is a data set for the fc-dependent transmission amplitudes,
where all contributions from trajectories longer than L — Lmax are filtered out.
Taking the average value of this new data set at a fixed magnetic field B, allows
us to study the dependence on the WL line shape on Lmax. For completeness we
mention that the procedure for the refiection amplitudes rmn(A;^) is the same as
shown here explicitly for the tmn{kF).
The numerical resülts we öbtäined in this way are displäyed by the däshed and
dotted lines in Fig. 9.1. A transition from triangulär to Lorentzian line shape is
strikingly evident for decreasing Lmax. In Fig. 9.2 the two curves for total refiection
with Lmax = oo and Lmax = 25 are directly compared with each other. Note also

"Th^t~t'hlTWEliip~in~t'fie~äVe^
(see the arrow in Fig. 9.1b). Since the WL peak in the total refiection keeps its
maximum at B — 0, we have direct evidence for a B-dependent unitarity deficiency
(see Fig. 9.1c). The total shift by which the WL peaks are vertically displaced
in dependence of Lmax, originates in the values of imn(L) which are set to zero in
our procedure. Since their contribution is suppressed, also the average value of the
back-transformed quantity t™^(k) is lowered.
In the experiment [38] the lithographic dimension of the diameter of the circular
dot is 1.08/im. The coherence length at a temperature below 400mK is estimated
to exceed 15//m. With these estimates the electron can go about 15/1.08 « 14
times back and forth in the circular dot before losing its coherence. We take this
value as an order-of-magnitude estimate for the amount of phase coherence required
to observe the triangulär WL peak shape. In our calculations the circle diameter
is 2 x -y/(4 + 7r)/7r ~ 3. Considering Fig. 9.1a,b we note that the critical cut off
length, where the WL peak shape changes from triangulär to Lorentzian shape, lies
approximately between 45 and 85, i.e. at about Lmax m 60. The number of bounces
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0.16

-0.04

Figure 9.2: Weak localization peak in the total reflection probability ofthe circular dot
with 90° lead orientation. The dotted curve contains no cut off length (Lmax = ooj
and reproduces the predicted linear decrease around B = 0 (see straight gray lines).
The dashed curve was evaluated with a cut off at Lmax = 25 and shows a Lorentzian
profile. The curves are the same as in Fig. 9.1, but are shifted to zero at B/c = ±0.38
for better comparison.

across the cavity in this regime is therefore approximately 60/3 « 20. This estimate
agrees quite wellwith the 14~bounces that were found in the experiment.

9.2 Future work

As the WL effect is often explained by the interference of trajectories with their
time-reversed partner, one might think that the phenomenon of WL is well under-
stood semiclassically. However, attempts to perform ab initio numerical simulations
using Standard semiclassical approaches failed to be in quantitative agreement with
the quantum mechanical simulations [137,138]. Within the framework of semiclassi-
cal approximations this long-standing problem was often addressed by the so-called
diagonal approximation. This concept is based on the consideration that only pairs
of paths, which are built up from orbits with identical incident and exit angle, con-
tribute to the WL peak. However also other paths which are not included in this
approximation play a non-negligible role (see e.g. [140]). Even when going beyond
the diagonal approximation by numerically shooting a large number of different
semiclassical trajectories, the strong unitarity deficiency of the Standard semiclassi-
cal approximations hinders these theories to quantitatively account for the correct
WL peaks [77,141]. Recently, modifications to the Standard semiclassical approaches
have been proposed for which the fulfillment of the unitarity requirement is signif-
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icantly improved [67, 74, 141,142]. The challenge for these improved semiclassical
approximations will be to represent the WL peaks accurately. Work along these
lines is in progress.



Chapter 10

Summary

A new technique for calculating ballistic magnetotransport through open quantum
dots was presented. The Modular Recursive Green's Function Method (MRGM) is
an extension of the widely used Standard recursive Green's function technique and
is based on the decomposition of nonseparable scattering geometries into separa-
ble substructures (modules). Thereby an unprecedented energy and magnetic field
ränge can be explored with high accuracy. This was demonstrated by the calculation
of transport coefficients and scattering wavefunctions in the two extreme cases of
high magnetic fields and short wavelengths. For very small cyclotron radii we found
strictly periodic oscillations in the transmission spectrum and beating phenomena
above well defined threshold values (as a function of B and kp). These features were
explained by the presence of edge states, travelling along the boundary of the cav-
ity. For these states scattering only takes place at the lead junctions, whose sharp
edges play a cfücial role for the dynamics of the System. For a detailed^änalysis a
multi-channel interference model was employed. This model allows to classify the
observed transmission fluctuations within the framework of Fano resonances. Sev-
eral surprising phenomena could thereby be explained. It is shown why transport

threshold value, given that the lead mouths are equal and separated from each other.
Periodic transmission fluctuations are also observed for very high energies, where
localization of the scattering wave functions along classical orbits takes place.
Moreover, the MRGM has been applied to simulate basic phenomena in the field
of ballistic transport theory. One of these are Fano resonances, a phenomenon
which we discussed by comparing numerical data with the measured results of a
microwave experiment. The design of the measurement was conceived such that
Fano resonances arise in the transmission of microwaves through a metal cavity. We
analyzed the resulting resonances and could thereby study the interplay between
resonant and non-resonant transport in unprecented detail. By controlled change
of the cavity opening, tuning a Fano resonance from the Breit-Wigner limit to the
window resonance limit has become possible. As was shown, Fano resonances can
be used to accurately determine the degree of decoherence present in the scattering
device. Non-monotonic behavior of resonance parameters can be related to avoided
crossings between interacting resonances which can be unambiguously associated
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with different resonant modes of the cavity.
We also employed the MRGM to simulate the integer quantum Hall effect. Calcula-
tions for the Hall voltage were performed by deriving its values from the scattering
wave functions in the high magnetic field regime. The Hall voltage shows plateau
values with steps at those magnetic field strengths, where a Landau level crosses
the Fermi energy Ep of the scattering electron. By inclusion of a disorder potential
we observe antiresonances superimposed on the quantum Hall plateaus, which orig-
inate from the eigenstates "living" in the disordered region. Most interestingly, the
Position of the steps and the values of the plateaus are not changed by the inclusion
of the disorder potential provided that it is not too strong.
The de Haas-van Alphen (dHvA) effect was briefly discussed in this thesis. The
magnetic field dependence of the energy eigenstates in a closed circular quantum dot
gives rise to characteristic oscillations in the magnetization of this module. Among
these we identify dHvA oscillations and Aharonov-Bohm oscillations, related to the
flux enclosed by the edge states in the circle.
Another topic addressed in this thesis is the effect of "shot noise". We performed
extensive calculations on transport through the rectangular, circular and Stadium
shaped billiards. One very surprising result we found is that the suppression of shot
noise is only very slightly different for those quantum dots with underlying regulär
and chaotic classical dynamics respectively. We find results on the quantum-to-
classical crossover of shot noise which are in very close agreement with recent exper-
iments. To our knowledge, our Simulation constitutes the first numerical realization
of this crossover in transport through quantum dots.
Finally, an analysis of the weak localization (WL) effect in transport through the
circular billiard was presented. By the numerical evaluation of a very large sample
of data, we confirm the prediction of a triangulär WL peakline shape in transport
through the circle. By filtering out the long electron trajectories in the Fourier
transform of the fc-dependent transport coefncients, we demonstrate how this tri-
angulär shape is changed into a Lorentzian WL peak line shape. In such a way

-we can-simulate-effeets of decoherenceand their-influence- on.the WL-peak-in.the_
experiment.



Chapter 11

Outlook

In this last chapter we present possible future applications of the MRGM and discuss
results which we expect to be attainable by our method. Work in two specific areas
is presently in progress [63,143] and some preliminary findings shall be summarized
in the following.
In one of these two topics we are concerned with ballistic transport through quan-
tum billiards with a mixed classical phase space. Since such billiards constitute the
generic case of a dynamical System (as opposed to the fully regulär or fully chaotic
case), it is very interesting to study the quantum signatures of their mixed phase
space. A convenient way to realize such Systems is to choose the potential profiles
of the billiard walls smooth1 rather than discontinuous (see Fig. 11.1a). Only very
recently it was shown [144] that the hierarchichal phase space of these mixed Systems
gives rise to isolated resonances in the transport coefficients. These resonances arise
from the coupling of the lead states to those cavity states which live behind partial
transport barriers ("cantori") and which can therefore only be accessed by tunneling
through the barriers. For this reason the resonances in transmission are very sharp
and occur very near to those energies where these eigenstates live. In Fig. 11.1c we

__shpw_thejicattenng wayefunction wich^couples to such_a State behind a partial trans-
port barrier. Note the clearly visible localization around the corresponding classical
periodic orbit. What happens classically, is that an incoming trajectory is "trapped"
for very long times in the hierarchichal phase space in the vicinity of the periodic
orbit (see Fig. 11.1b). Accordingly, the calculations employing the MRGM for the
scattering device shown in Fig. 11.1a clearly confirm the presence of the isolated
transmission resonances in the high-energy regime [63]. Work on the evaluation of
the resonance line shapes according to the Fano resonance parametrization Eq. (5.4)
is in progress.
The phenomenon of trapped trajectories in a mixed phase space inspired the pre-
diction of "fractal conductance fluctuations" [145], on which field considerable at-
tention was focussed recently [146-149]. Although it was claimed that these fractal
fluctuations were observed in transport experiments [147-149], present numerical
techniques appear not to be efficient enough to reproduce this phenomenon [146].

xAs long as these smooth walls do not destroy the separability in a module, the MRGM is
capable of incorporating such features.
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(a)

(c)

Figure 11.1: (a) Potential landscape for the softwall büliard which gives rise to a
mixed classical phase Space. As shown in (b), classical trajectories in this potential
landscape can get trapped in the vicinity of periodic orbits. Solving the quantum

Jransport problen^for thisgeometry, we find a pronounced enhancement around such
classical orbits. In (c) the MRGM-result for the absolute Square of such a particular
scattering wavefunction \ip(x,y)\2 is shown.

Although the MRGM reaches beyond techniques previously employed, it seems that
fractal fluctuations are, if at all existent, beyond the energy which can currently be
attained by the MRGM. This results again implies the intriguing question whether
the measured fractality is indeed a signature of mixed classical dynamics or rather
of some noise-like mechanism.
The second topic to which the MRGM is about to be applied, is the electron dy-
namics in billiards with a boundary that contains normal-conducting (N) and super-
conducting (S) walls. Such Systems are referred to as "Andreev billiards" since the
low-energy density of states g(e) with e inside the gap A of the superconductor,
e < A, is profoundly afFected by retroreflections first analyzed by Andreev [150].
An electronic quasi-particle excitation with energy e = E — Ep just above the Fermi
energy Ep approaching the S — N interface is reflected as a hole with energy — e
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y Electron Hole

x x
Figure 11.2: Electron and hole density \ift(x,y)\2 in the N-region of a rectangular
Andreev billiard at zero magnetic field B. The calculations were performed for an
excitation gap A = 0.02 x Ep, an excitation energy e = 0.6478 x A and identical
effective masses for the electron and the hole, both in the N- and the S-region. We
display the electron density on the left and the hole density as a mirror image on
the right half of the picture. The red strip in the center marks the position of the
superconductor.

and approximately the same momentum but opposite velocity. The trajectory thus
retraces itself rather than being specularly reflected. Only in the limit £ —• 0 be-
comes the retroreflection exact. One consequence of retroreflections is the existence
of a class öf periodic orbits absent in iV-quantum dots: any classical trajectory
visiting the S — N interface twice becomes periodic. As periodic orbits constitute
the "skeleton" of semiclassical quantization [10], significant changes in the spectral
properties of quantum dots are to be expected. The ensuing classical, semiclassical
and quäntumdynamics of Andreevbilliards hasbecomethe topic of-intense-research
[151-154]. Remarkably, there have been up to now only few fully quantum mechan-
ical simulations of Andreev billiards. The present Status of research in this field
is succinctly summarized in a recent paper by Silvestrov et al. (March 2003) [154]
"one important challenge for future research is the test of the adiabatic quantization
of Andreev billiards numerically by solving the Bogolubov-De Gennes equation [for
a chaotic billiard] on a Computer". By applying the MRGM to the solution of this
problem considerable progress in this direction should become possible. In Fig. 11.2
we present a first example of an electron-hole wavefunction in a rectangular Andreev
billiard at zero magnetic field and in the limiting case that the penetration depth
into the S'-junction is small compared to the wavelength A of the quasi-particle [143].
The differences between the wavefunction for electrons and holes may be taken as
an indication for contributions of non-retracing electron-hole trajectories.
A subject, on which we want focus closer attention in the near future, is the shot-
noise suppression in billiards with regulär, chaotic and mixed classical dynamics,
respectively (see section 8.5). Also a quantitatively compatible Simulation of the
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WL peaks with the improved semiclassical techniques presented in Ref. [74] shall
be further pursued. Other envisioned applications of the MRGM include the in-
vestigation of quantum Hamiltonian ratchets [155] and of the Hofstadter butterfly
[8,11,56].
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