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Abstract

In this thesis we investigate in detail the theory and practice of weight learning in
LPMLN for collective classification problems. We test different weight learning methods
on a practical collective classification problem, namely object labeling in images using
relational context constraints, based on an exposition of the theory of weight learning in
LPMLN. In our experiments we consider the applicability of different systems for weight
learning in LPMLN and evaluate the performance of different weight learning methods in
different scenarios. As we show, the best learning method depends very much on the
input program and the specific dataset, and no single method noticeably outperforms
other methods in our tests, with very simple learning methods performing very well. The
performance of different methods can be very hard to predict, as some of our results are
very unexpected. Nonetheless, from our experiments we conclude that weight learning
noticeably improves the performance of a LPMLN-program in a collective classification
setup and that effective weight learning methods and systems exist for LPMLN.
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CHAPTER 1
Introduction

In many classification and statistical learning tasks, there is a clear logical and relational
structure underlying the dataset from which we are trying to learn a model. Taking
this structure into consideration can make modeling the data easier and more effective
than only considering local features of individual objects. In classification problems,
knowing that one object has a certain spatial relation to another object is important
information in classifying both objects: if one object is spatially contained in another, the
former is unlikely to be an elephant if the latter is a mouse, and vice versa. Therefore,
getting the logical and relational structure right is frequently important to learn a model
that represents the dataset properly, or can be expected to improve the quality of a
model. In standard classification methods, only local or “low-level” features are taken
into consideration; standard methods in image classification might consist of functions of
pixel intensity or of image gradients, whereas global or relational features might consist
of spatial relations between objects.

Recently efforts have been made to take such a relational and logical structure of
data into account in statistical learning tasks, in the area of research called Statistical
Relational Learning (SRL) (Getoor and Taskar 2007). SRL combines a logical or relational
understanding of some problem with a probabilistic one, in order to learn statistical
models in domains with rich logical structure. The effort to take the local structure
of objects into account in classification, so as to jointly determine the correct label
assignments of all objects, is called collective classification (Sen et al. 2010a). One
new formalism in SRL is the LPMLN formalism (Lee, Meng, and Y. Wang 2015; Lee
and Y. Wang 2016a), which extends the semantics of Answer Set Programming (ASP)
in a probabilistic way. This is done by extending the stable model semantics of ASP
with a probabilistic semantics, which allows to reason purely quantitatively in terms of
probabilities over stable models. This allows, for example, LPMLN to express that worlds
where computer mice are found next to keyboards have a higher probability to be true,
than worlds where they are not. As such, LPMLN is able to express that mice are likely
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1. Introduction

to be found near keyboards, without stipulating that this is always the case. It is also a
very flexible formalism, which makes it well suited for many SRL tasks; in particular, it
is well-suited for collective classification in a object-labeling in images setup, where it has
noticeably improved the accuracy of purely local models (Eiter and T. Kaminski 2016).

Central to the probabilistic semantics of LPMLN are the weights given to rules in a
program, which taken together represent a probability distribution over interpretations
(stable models) of an LPMLN program. In order for LPMLN to perform well as a SRL
formalism and for prediction tasks, it is of central importance that these weights properly
represent the real distribution underlying the dataset. For example, we want the weights
to represent the real probability that a weight is found next to a keyboard, and to give a
higher probability of being close to a keyboard than being close to a refrigerator, say.
Barring the possibility of hand-coding the weights by using expert knowledge — something
that gets increasingly more complex as the size of the LPMLN program increases, and can
take multiple weeks to complete — it is desirable to be able to learn the weights from a
set of examples generated from a distribution we wish to model.

So far, weight learning in LPMLN has not been extensively studied. Recently, in (Lee
and Y. Wang 2018), a native formalism was proposed in the form of the LPMLN-learn
system (LPMLN learning system 2019), and translations to MLN-learning systems exist
due to (Lee, Talsania, and Y. Wang 2017b; Lee, Talsania, and Y. Wang 2019), but
to our knowledge no detailed account and overview of both the theory and practice of
weight learning in LPMLN exists. What is required is an exposition of the theoretical
aspects of weight learning in LPMLN, systems available for supervised weight learning
which can be used on LPMLN programs, and practical tests on efficacy of methods and
systems in different weight learning scenarios. Furthermore, practical tests can give
insight into practical issues encountered in weight learning in LPMLN. Specifically for
SRL, no investigation has yet been performed into the accuracy of models learned using
different methods, although accuracy is one of the most informative measures on the
quality of a weight learning method in prediction tasks.

In this thesis we intend to close this gap and investigate supervised weight learning for
LPMLN in a collective classification setting. The work done here is meant to both give an
overview of the theory of weight learning in the LPMLN formalism, as well as investigate
weight learning on a real-life application. In this work we attempt to answer the following
questions:

• What algorithms can be used for weight learning in LPMLN, and how do algorithms
perform under specific conditions (e.g. missing data)?

• What systems exist for weight learning in LPMLN and how do they perform and
differ in terms of speed and accuracy?

• What are practical difficulties encountered when learning weights of an LPMLN

program?
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• How does the structure of an LPMLN program affect the effectiveness of weight
learning methods?

As a test application we will take the object-labeling in images setup of (Eiter and T.
Kaminski 2016), and compare different methods for weight learning on the two datasets
used in this classification problem. This classification setup is a collective classification
problem, where the aim is to take spatial relations between objects into account in
assigning labels to objects. We will investigate and test existing systems which can be
used for weight learning, to test whether certain implementations perform better than
others on our program. To investigate the performance of methods in different scenarios,
we will also perform different experiments; most notably learning of the weight of each
constraint in the LPMLN program independently from the others, and learning on missing
data.

From our experiments we conclude that the most effective learning method depends
on the LPMLN program whose weights are to be learned, as we find that a very simple
log-odds calculation performs very well on our datasets and input programs. In our
experiments, we did generally notice a strong improvement in the quality of the LPMLN

program when learning the weights, compared to a uniform weight attribution to the
rules, although some learning methods also failed to produce a meaningful model in some
of our experiments. In some tests, such as learning on missing data, we surprisingly found
the learning methods to be very stable. We also encountered problems with learning in
some systems, which made the number of systems available smaller than anticipated.
Overall, the effectiveness of specific methods for learning is hard to predict, and seems to
depend very much on the specific LPMLN program and dataset.

This work is structured as follows. In Chapter 2 we will introduce the LPMLN formalism
and compare this to related formalisms. In Chapter 3 the theory behind weight learning
for LPMLN is studied, where we will compare and investigate different algorithms for
weight learning, along with different scenarios which we expect to have an impact on
the efficacy of some methods. This chapter will also motivate some hypotheses about
weight learning. In Chapter 4 we perform experiments on a classification setup using
LPMLN, based around hypotheses motivated by Chapter 3. Lastly, in Chapter 5 we will
summarize our findings and discuss further avenues of research related to this work.
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CHAPTER 2
LPMLN

2.1 Answer Set Programming

Answer Set Programming (ASP) is a declarative problem-solving approach, based on the
stable model or answer set semantics. The ASP formalism is a powerful reasoning and
knowledge representation framework with large expressive power: it extends first-order
logic in multiple ways, most notably the power of expressing incomplete information and
the possibility of expressing transitivity, but borrows the clearness and conciseness of
first-order logic.1

Both the syntax and semantics of ASP are similar to those of standard first-order logic,
but involves noticeable differences. In this work we will, following (Lee and Y. Wang
2016a), restrict ourselves to a first-order signature σ that contains no function symbols of
positive arity, and follow the semantics as described in (Gelfond and Lifschitz 1988). As
is standard, a first-order interpretation consists of a domain D, a mapping from constant
symbols in σ to elements of D, a mapping from relation symbols to tuples over D, and a
mapping from function symbols to functions (of the same arity) over D.

In the ASP formalism a disjunctive normal logic program Π is a finite set of rules of the
form

Head← B1, ..., Bk, not Bk+1, ..., not Bn (2.1)

where Head is a disjunction of first-order atoms, all Bi are first-order atoms, and not
is default negation corresponding to negation as failure. In a rule of a program Π, the
B1, ..., Bk make up the body, Head is called the “head”, and Bk+1, ..., Bn make up the
negative body. We will occasionally in this work refer to the combined body with Body.
As is usual in the literature, the comma is used for conjunction, and semicolon for
disjunction (in Head). If a logic program contains no variables, it is ground; a grounding

1See (Brewka, Eiter, and Truszczyński 2011) for a good introduction to ASP and logic programming.
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2. LP
MLN

of a logic program Π with respect to a signature σ, denoted grσ(Π), corresponds to
replacing every variable with every ground term of σ. If Head is empty in a rule R (or,
equivalently, ⊥), R is called a constraint. If the body of a rule equals true (or ⊤) (and
Head is not empty), R is called a fact.

Disjunctive normal logic programs can be extended by adding strict negation ¬ in
addition to the default negation not ; such programs are called extended logic programs.
As such, in extended logic programs the syntax uses first-order literals possibly preceded
by not , whereas normal logic programs use first-order atoms possibly preceded by not .
The stable models are called answer sets in this case. However by introducing positive
predicates P ′ (fresh predicates) for every negative literal P and leaving the rest as is, any
extended logic program Π can be translated to an equivalent normal logic program Π+

obtained by substituting any negative literal by fresh positive literals. Denoting I+ as
the interpretation obtained by replacing negative literals as just described, any consistent
interpretation I is an answer set if and only if I+ is a stable model to the corresponding
positive normal logic program (Gelfond and Lifschitz 1991). As such, we will frequently
restrict ourselves without loss of generality to normal logic programs in this work.

As an example of a normal logic program, social network influences can be easily modeled
as done in the following program:

Program 2.1

Friends(a, b)

Friends(b, c)

Influences(x, y)← Friends(x, y), not distant_Friends(x, y)

Influences(x, z)← Influences(x, y), Influences(y, z)

This states that the Influences relation is transitive. The third rule, with default
negation, here expresses that if there is no information (it cannot be proven) that, for
any two friends x, y, they are distant friends, then they influence each other. The not
here allows the expression of incomplete information, and is different from the explicit
negative information contained in classical negation ¬. As is well known2, transitive
closure cannot be expressed within first-order logic, but can be easily expressed in ASP.
If we consider a social network as a graph, with persons as nodes in the graph and edges
between two nodes if and only if they are friends, and express reachability in that graph
using the predicate Reach, then the following example easily expresses the transitive
closure of the Friends relation:

Program 2.2

Reach(x, x)← Person(x)

Reach(x, z)← Friends(x, y), Reach(y, z) .

2For the case of infinite structures, this follows from the compactness theorem. The result also holds
for finite structures, which can be proven using the theorem of Ehrenfeucht-Fraïssé.
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2.1. Answer Set Programming

This defines the transitive closure of the Friends relation: pairs of people x, y such that
y is reachable in the graph from x using the Friends relation by any non-negative number
of steps (that is, following zero or more edges of nodes that are in the Friends relation).

We can rewrite a rule R as a first-order formula FR by replacing not with standard
negation ¬, replacing commas by conjunction ∧, semicolons by disjunction ∨, and
treating Head← Body as implication in the other direction, Body → Head. Constraints,
← Body should be translated into ¬(Body). Any variables in R should be universally
quantified. For example, the second rule of the above example corresponds to the formula:

∀x∀y∀z((Friends(x, y) ∧Reach(y, z))→ Reach(x, z))

A ground program Π is then identified with the conjunction of the formulas corresponding
to all rules R ∈ Π, denoted FΠ.

The Gelfond-Lifschitz Reduct (or simply reduct) of Π relative to an interpretation I,
denoted ΠI , corresponds to the program obtained by deleting:

1. Every rule R that has a negative literal not B in its body, such that B ∈ I;

2. All negative bodies of remaining rules in Π.

The semantics of ASP programs can be given in terms of Herbrand interpretations:
interpretations where every constant is interpreted as itself, and every function symbol is
interpreted as the corresponding function. If we restrict σ to be finite, this yields only
finitely many Herbrand interpretations. A Herbrand interpretation I is a stable model of
a ground program Π if I |= ΠI , and if I is minimal with respect to set inclusion. Here
I |= ΠI is short for I |= FΠI as defined above. I is thus a stable model of Π if it is
a minimal Herbrand model of the reduct ΠI . For a non-ground program Π, I can be
defined to be a stable model of Π if and only if it is a stable model of the grounding
grσ(Π) of Π.3

To illustrate this semantics with respect to our social network example 2.1, over the
Herbrand Universe {a, b}, we obtain four possible groundings of the third rule, by
replacing x, y by the four possible combinations of a, b. The third rule then corresponds
to the first-order formula:

(Friends(x, y) ∧ ¬distant_Friends(x, y))→ Influences(x, y).

Corresponding to the minimal model or stable model semantics, we look for the minimal
model that satisfies the groundings of this formula: this will be a minimal Herbrand
interpretation I where, for any constants a, b in the language, if Friends(a, b) ∈ I and

3The stable model semantics has also been defined for first-order sentences, see (Ferraris, Lee, and
Lifschitz 2011). This semantics in terms of first-order sentences can prevent us from having to first
construct all the groundings of a formula or rule, which might make it computationally much more
efficient. See also Section 3.3.4.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2. LP
MLN

distant_Friends(a, b) 6∈ I (corresponding to the reduct), then Influences(a, b) ∈ I;
this is different from an interpretation that satisfies ¬distant_Friends(a, b).

For practical usage and inference using ASP solvers, it is important that any logic
program has only finitely many ground instances, such that for any logic program, an
equivalent ground logic program can be computed. For this the requirement of a variable
being safe is introduced (Eiter, Mehuljic, et al. 2015, p. 40)4:

Definition 1. Safety
A variable x occurring in a rule R is called safe if x occurs in an atomic formula or
strongly negated standard literal (not involving default negation) in R. A rule is called
safe if all variables occurring in the rule are safe.

For instance, the following program is not safe

Program 2.3

Friend(x, y)← not Strangers(x, y)

Whereas the following program is:

Program 2.4

Friend(x, y)← not Strangers(x, y), P erson(x), P erson(y)

Extensions within ASP

The formalism as described can be extended in numerous ways. An extension of ASP is
to extend the syntax with double default negation, not not A. This is allowed in the input
language of gringo(Gebser et al. 2017). Terms such as not not A are satisfied whenever
their positive counterparts are; absorption, as in double classical negation, does not hold,
however. To see this, consider the two following programs:

Program 2.5

B ← A

A← B

which only has the empty set ∅ as a stable model, and

Program 2.6

B ← not not A

A← not not B

which has the empty set ∅, but also {A, B} as a stable model. This is because both
A and B under double default negation do not need acyclic derivations, unlike in the
absorbed case. Here not not A is equivalent to not¬A.

4The definition given here does not cover arithmetic predicates and aggregates.
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2.1. Answer Set Programming

Further constructs are “choice rules” {A}ch ← B, which are shorthand for two rules

Program 2.7

A← B, not A

A← B, not A

where A represents the classical negation of A (as described above), and neither A nor A
occur in the head of any other rule in Π. This choice construct has the effect that exactly
one of A and A is included in any answer set, if B is satisfied.

In addition more constructs are possible — e.g. counting constructs and aggregates —
but these will not be discussed further in this work; the probabilistic formalism LPMLN

introduced later in this chapter can be extended to incorporate these as well (Lee, Meng,
and Y. Wang 2015, p. 3).

Weak Constraints

As with traditional logic, ASP as presented above suffers from the limitation that the
knowledge represented in the programs is strict: it does not allow to incorporate degrees
of belief or considerations of likelihood over propositions. The extension to ASP of weak
constraints tries to incorporate degrees of belief in the semantics of ASP. Weak constraints
are rules (more precisely, constraints) of the form:

:∼ B1, ..., Bk, not Bk+1, ..., not Bn[w@l]

where w, a positive integer, is the weight of the constraint, and l is a non-negative integer,
which stands for the l-th level of the constraint (Calimeri et al. 2012). The levels encode
which weak constraints are to be minimized (with respect to w) first in computing the
stable models: the idea is that weak constraints are optimized in a stepwise manner,
starting at the highest level.5

The stable models of a program with weak constraints Π = Π1 ∪ Π2, where Π1 does
not contain weak constraints and Π2 is a set of weak constraints, are defined as the
stable models of Π1. In addition, we seek stable models that are optimal; i.e., those
stable models with minimum penalty. The penalty PenΠ(I, l) at the l-th level of an
interpretation I is given as:

PenΠ(I, l) =
∑

:∼Body [w@l]∈Π2,

I|=Body

w,

where Body [w@l] is used for the entire positive and negative body of the weak constraint,
with weight w at level l.

These weak constraints therefore encode rules whose body it is desirable not to satisfy.
We then say that an interpretation I is dominated by another I ′ if:

5As shown in (Buccafurri, Leone, and Rullo 2000), the levels can be incorporated into the weights.
However, because the normal translation of LPMLN to ASP with weak constraints uses the levels, it is
useful to keep these in the formalism.
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2. LP
MLN

• there is some nonnegative integer l such that PenΠ(I ′, l) < PenΠ(I, l) and

• for all k > l, PenΠ(I ′, k) = PenΠ(I, k).

A stable model is then said to be optimal if it is not dominated. In solving ASP with
weak constraints, we seek for optimal stable models, intuitively meaning we minimize the
penalty of the weak constraints.

Here it is important to note that neither the weights nor penalties of the weak constraints
do not correspond to probabilities. The benefit of the formalism is that it allows to
encode degrees of uncertainty in logic programming.

2.2 Markov Logic

An influential attempt to introduce a probabilistic semantics for first-order logic is Markov
Logic (Richardson and Domingos 2006). In first-order logic, if an interpretation violates
some formula in a knowledge base (a set of formulas that hold in some dataset), that
interpretation is impossible. This is parallel to ASP, where an interpretation that does
not satisfy some atom of a knowledge base cannot be an answer set. As we have seen,
weak constraints do allow for some leeway here, but the weights cannot be interpreted as
probabilities: the axioms of probability are not guaranteed to be satisfied by assignments
of weights to weak constraints.

Markov Logic builds upon classical first-order logic in a probabilistic way by assigning
weights to first-order formulas. Under specific conditions, these weights then define a
probability distribution over interpretations satisfying the Markov Logic Network (MLN).

Definition 2. Markov Logic Network
A Markov Logic Network (MLN) is a set of pairs (Fi, wi), where Fi is a first-order formula,
and wi is a real-valued weight.

As a simple example, one can have the following MLN:

∀x∀yFriends(x, y)→ Influences(x, y) 2.5

∀x∀y(Smokes(x) ∧ Influences(x, y))→ Smokes(y) 1.5

This MLN encodes that friends are quite likely to influence one another, and that smokers
might influence other people to smoke, too. This second statement is however encoded
as less likely or less important—it has lower weight—than the sentence that says that
friends influence one another. The weight of a formula F can here be interpreted as
the log odds between a world where F is true and one where F is false (Richardson
and Domingos 2006, p. 115). Alternatively, these weights can be seen as penalties on
interpretations for failure to satisfy a formula.
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2.2. Markov Logic

2.2.1 Markov Networks

Markov Logic differs from the approach of weak constraints in ASP by specifying weights
for all formulas, and in ascribing a probabilistic semantics to these weighted formulas.
It derives this probabilistic semantics from Markov Networks. A Markov Network,
also known as a Markov Random Field, is a graphical probabilistic model for a joint
distribution of a set of random variables X = {X1, X2, ..., Xn}, where every random
variable Xi in this set is a function over some sample space or domain Si. Markov
Networks can conveniently be represented as undirected graphs G = (V, E), where the
random variables are nodes V , and the edges E in the graph are such that every random
variable Xi is independent of other random variables, given its neighbors NG(Xi) in
the graph G: P (Xi|X\{Xi}) = P (Xi|NG(Xi)). The power of Markov Networks in
probabilistic modeling lies in that it can represent a joint distribution compactly, and
allows to factorize the joint distribution in an efficient though general way.

The reason for this is that there is a strong relation between probability distributions
that satisfy the local independence property P (Xi|X\{Xi}) = P (Xi|NG(Xi)) for a graph
G, and probability distributions that factorize over a Markov Network M . A factor φ
is simply a real-valued function over the possible values of a subset of X. We say that
a probability distribution P factorizes over a Markov Network M , if the distribution
factorizes into factors over complete subgraphs of M :

P (X) =
1

Z

k
∏

j=1

φj(Dj [x]), (2.2)

for a set of factor functions Φ = {φ1, ..., φk} over k complete subgraphs D1, ..., Dk of M ,
and a normalizing constant function Z that corresponds to summing over all n possible
values of X:

Z =
∑

X1,..,Xn

∏

m

φm(Dm).

The Dj [x] stands for the state of the j-th subgraph, given X = x.6

As a clique is a maximal connected subgraph, it is sufficient if PH factorizes over the
cliques of H, but other (more efficient) completely connected subgraphs can also be used.
In the case of the factors φ being functions of cliques, the factors are also called clique
potentials.

It is important to note that factors are generally not (marginal) probabilities, and are
only an unnormalized local measure of odds; the behavior of a factor can be completely
in contrast with the overall (combined) joint distribution. This is in contrast to Bayesian
networks where factors correspond to marginal probabilities, and this also makes inference
and learning of Markov Networks a hard problem: the total joint distribution must be
calculated, which involves calculating the partition function Z. This fact will be important
later, when we consider learning in LPMLN.

6For a proof of the result and elaborate explanation, see (Koller and Friedman 2009, pp. 114–121).
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2. LP
MLN

2.2.2 Markov Logic Networks

A Markov Logic program or Markov Logic Network L can be seen as a template for a
class of Markov Networks. It defines a probability distribution over Herbrand Interpreta-
tions, also called possible worlds in this context (Richardson and Domingos 2006), by
constructing, given a finite set of constant symbols C, a unique corresponding Markov
Network ML,C :

• For every possible grounding of every predicate P in L, there is a binary node in
ML,C , whose value is 1 if the ground atom is true, and 0 otherwise.

• For every possible grounding of every formula F in L, there is one feature function
fi in ML,C , whose value is 1 if the ground formula is true, and 0 otherwise. The
weight wi in ML,C is the weight of the formula in the Markov Logic Network.

Such a Herbrand interpretation or possible world assigns a truth value to each possible
ground atom. Here grounding an MLN is exactly the same as in first-order logic or as
in ASP, as explained earlier. The probability distribution has the same form as that in
Markov Networks, but is defined here over the set of Herbrand interpretations (finite
because of the restriction on σ), denoted I. The probability of a Herbrand interpretation
I ∈ I is then given by:

PML,C
(I) =

1

Z
exp

[

m
∑

i=1

wini(I)

]

=
1

Z

m
∏

i=1

φi(Di[I])ni(I), (2.3)

where:

• ni(I) is the number of times the formula Fi is true in I, or equivalently the number
of true groundings of Fi in I;

• Di[I] is the state of the atoms in Fi, given I;

• Z is the partition function, given by
∑

J∈I exp [
∑n

i=1 wini(J )], respectively
∑

J∈I

∏n
i=1 φi(Di[J ])ni(J );

• m is the number of ground formulas.

Any interpretation I is called a model if PML,C
(I) 6= 0.

Given the construction of ML,C from a MLN L and a set of constants C, the graphical
structure of ML,C is such that there is an edge between two nodes if and only if the
corresponding ground atoms appear together in at least one grounding of a formula in L

(Richardson and Domingos 2006, p. 112). These atoms in a ground formula therefore
form a clique (completely connected subgraph); the φi are therefore frequently called
clique potentials. In the case of MLN, φi(Di[I]) is given by exp[wi].
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2.2. Markov Logic

The partition function Z normalizes the exponential weighted sum so that PML,C
is really

a probability distribution, by summing over the other possible Herbrand interpretations
or possible worlds. To this end, PML,C

can be written in a slightly more straightforward
form by decoupling the unnormalized function from the partition function. For this, first
define LI as the set of ground formulas in a ground MLN that are satisfied by I. Then
we can define the unnormalized weight WML,C

(I) as:

WML,C
(I) = exp









∑

w:F∈L
F∈LI

w









.

The probability PML,C
(I) is then given by:

PML,C
(I) =

WL(I)
∑

J∈IWL(J )
.

This follows immediately from the definition of ni(I) as the number of true groundings
of Fi, given I. As we shall see in the next chapter, the partition function complicates
inference and learning in MLN (and Markov Networks) quite a bit.

Any first-order theory, or knowledge base, can be easily encoded as a MLN, by setting
the weights to arbitrarily high values. As w goes to infinity, the probability given by the
corresponding MLN represents a uniform distribution over the Herbrand interpretations
that satisfy the knowledge base. Because the probability of a formula in MLN is given
by the sum over the interpretations that satisfy the formula, any formula that is true in
the knowledge base obtains probability 1 as w goes to infinity.

Proposition 1. (Richardson and Domingos 2006, p. 115)
Let KB be a satisfiable first-order knowledge base, L be the MLN obtained by assigning
weight w to every formula in KB, C be the constants appearing in KB, IKB be the set of
interpretations I ∈ I that satisfy KB, and F be an arbitrary first-order formula. Then:

1. ∀I ∈ IKB lim
w→inf

P (I) = |IKB|
−1

∀I 6∈ IKB lim
w→inf

P (I) = 0

2. ∀F, KB |= F if and only if lim
w→inf

P (F ) = 1.

Proof.

• If I ∈ IKB then P (I) = exp(kw)
Z

.
If I 6∈ IKB then at least one formula in KB is not satisfied under I, so P (I) ≤
exp((k−1)w)

Z
. Therefore all I ∈ IKB are equiprobable, with P (IKB) ≤ |IKB|

−1.
From this we have, as lim

w→inf
:

P (I \ IKB)

P (IKB)
≤

∑

I6∈IKB
P (I)

∑

I∈IKB
P (I)

≤
(exp [(k − 1) ∗ w] /Z) ∗ |I \ IKB|

(exp [k ∗ w] /Z) ∗ |IKB|
= 0
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2. LP
MLN

where the second inequality comes from the fact that every I 6∈ IKB does not
satisfy at least one formula in KB (of weight w). This proves 1.

• Let IF denote the set of interpretations that satisfy F , for any F . If KB |= F ,
then IKB |= F and so P (F ) =

∑

I∈IF
P (I) ≥ P (IF ) ≥ P (IKB); so by part

1 if KB |= F then lim
w→inf

P (F ) = 1. For the converse, if lim
w→inf

P (F ) = 1, then

∀I((PI) > 0→ I |= F ). Since we have from part 1, that ∀I 6∈ IKB lim
w→inf

P (I) = 0,

IKB ⊆ IF , so we have KB |= F .

Even if the weights are set to finite values, for any set of constants C, the satisfying
assignments of formulas in a KB are the maximum values (the modes) of the distribution
of ML,C (as given by Eq. (2.3)). This can be seen by taking the logarithm:

ln(PML,C
(I)) =

m
∑

i=1

wini(I)− ln(Z).

This value is maximal for those I with highest ni (number of times Fi is true in I) for
every F ∈ KB, which are those I s.t. I |= KB.

To illustrate how MLN extends first-order logic, consider the simple MLN consisting
of only the formula ∀x∀ySmokes(x) → hasCancer(x)) with arbitrary weight w, with
C = {Alice}. This leads to the following possible worlds or Herbrand interpretations:

{¬Smokes(Alice),¬hasCancer(Alice)}

{Smokes(Alice), hasCancer(Alice)}

{Smokes(Alice),¬hasCancer(Alice)}

{¬Smokes(Alice), hasCancer(Alice)}

As given by Eq. (2.3), the first, second, and fourth interpretation all have probability
ew

3ew+1 , while the third has probability 1
3ew+1 . Depending on the choice of w the third

interpretation is not necessarily impossible, although generally significantly less likely
than the other interpretations.

2.3 LPMLN

Markov Logic extends first-order logic in a probabilistic way, but it lacks some of the
expressive power and ease of representation of ASP. This is because it inherits the
semantics of first-order logic, and can thus not express transitive closure correctly.

A probabilistic semantics has been constructed for logic programs in the LPMLN formalism,
which builds upon MLN by using the logic programming formalism, and extends ASP
by using the MLN semantics. LPMLN is a relatively new extension of Answer Set
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2.3. LPMLN

Programming proposed in (Lee and Y. Wang 2016a), where all rules of a program are
given weights. Formally, an LPMLN program is a finite set of weighted rules R : w, where
R is a rule of a disjunctive normal logic program as described in the previous section,
and w is either a real number or α, denoting “infinite weight”. In the case that w is a
real number, R : w is called a soft rule; in the case of α a hard rule. As in the case of
ASP, a program without variables is called ground; here any grounding of a non-ground
rule receives the same weight as the corresponding non-ground rule. Also, an LPMLN

program Π is called safe if and only if the unweighted program Π is safe.

Following notation of Lee and Y. Wang, we will use Π to denote the set {R | w : R ∈ Π},
which corresponds to disregarding the weights of an LPMLN program. To denote the
subset w : R of Π such that I |= R we use ΠI , and SM [Π] denotes the set of stable
models of subsets of Π: SM [Π] := {I | I is a stable model of ΠI}. Here it is important
that the models in SM [Π] need not satisfy all the rules in the program: every element
I of SM [Π] must only be a stable model of ΠI . That is, a stable model of the rules
satisfied by I.

The weights in a program can either be interpreted as rewards for satisfying rules, or as
penalties for failure to satisfy rules (Lee, Talsania, and Y. Wang 2017b). In the reward
interpretation, we can define the unnormalized weight WΠ(I)7 of an interpretation I
with respect to an LPMLN program Π as:

WΠ(I) =











exp

(

∑

w:R∈ΠI

w

)

if I ∈ SM [Π]

0 otherwise

(2.4)

where ΠI denotes the set of weighted rules (w : R) such that I |= R. The normalized
weight PΠ(I) under an interpretation is defined as:

PΠ(I) = lim
α→∞

WΠ(I)
∑

J∈SM [Π] WΠ(J )
. (2.5)

As we will see in Section 2.3.1, these normalized weights satisfy the Kolmogorov axioms
of probability and define a (finite) probability structure. Intuitively, PΠ(I) indicates the
likelihood of I as a stable model; the weights can be seen as rewards for satisfying rules.

As mentioned, another interpretation of the weights, put forward in (Lee, Talsania, and
Y. Wang 2017b), is to view them as penalties for not satisfying rules in Π. That is:

W P en
Π (I) =











exp

(

−
∑

w:R∈Π and I6|=R

w

)

if I ∈ SM [Π]

0 otherwise

.

7As discussed in Section 2.3.1, interpretations are the basic elements of S in (S,A, PΠ); as such,
writing WΠ(I) is a slight abuse of notation. Correct would be WΠ({I}) and for the normalized weights
PΠ({I}).
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2. LP
MLN

The normalized weights of an interpretation I is given in the same way as in the reward
definition:

P P en
Π (I) = lim

α→∞

W P en
Π (I)

∑

J∈SM [Π] W P en
Π (J )

.

These two definitions are proportional to one another and the probabilities of the two
approaches are identical:

Proposition 2. (Lee, Talsania, and Y. Wang 2017b, pp. 19–20) For any interpretation
I:

WΠ(I) ∝W P en
Π (I) and P P en

Π (I) = PΠ(I).

This can be seen by rewriting WΠ(I) as

exp





∑

w:R∈Π

w −
∑

w:R∈Π and I6|=R

w



 = exp





∑

w:R∈Π

w



 · exp



−
∑

w:R∈Π and I6|=R

w



 .

Here the first term of the product corresponds to the weights of all rules in Π, and the
second is exactly the weight of I under the penalty interpretation. For PΠ(I), the first
term cancels out through the normalization factor Z, and so PΠ(I) = P P en

Π (I). As
discussed in Section 2.3.3, the penalty approach has the benefit of easier translation into
ASP with weak constraints.

PΠ can also be defined over propositions, by summing over interpretations that satisfy
that proposition:

PΠ(A) =
∑

I:I|=A

PΠ(I).

As in Section 2.2.2, if we assign the same weights to all rules in an LPMLN-program,
the highest probability is obtained by any interpretation that satisfies the most number
of rules. This corresponds then to MAXSAT , or maximum satisfiability problem: the
problem of satisfying the highest number of clauses (or determining the maximum number
that can be satisfied).

2.3.1 Weights as Probabilities

Given a signature σ, the set of all interpretations S over σ together with the normalized
weight-measure PΠ and an algebra8 A over S defines a probability space (S,A, PΠ). For
simplicity we will here take A to be the powerset of the interpretations S. Note that in
this section we divert from the rest of this work in notation, according to usage in the
literature.

8Since we restrict ourselves here to a signature σ with no function symbols of positive arity, there
are only finitely many Herbrand interpretations. We therefore need not consider countable unions over
interpretations, and do not need a Sigma-algebra.
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2.3. LPMLN

The normalized weights PΠ are thus measures over sets of interpretations, and satisfy
the Kolmogorov axioms of probability (over finite A):

Proposition 3.

• For any set of interpretations A ∈ A, PΠ(A) ≥ 0

• PΠ(S) = 1

• For two A, B ∈ A such that A ∩B = ∅, PΠ(A ∪B) = PΠ(A) + PΠ(B)

Proof.

1. Immediate from the definition of WΠ(A) = exp

(

∑

w:R∈ΠI

)

w and the fact that the

exponential function is non-negative.

2. Immediate: PΠ(S) = PΠ(
∑

J∈SM [Π]
WΠ(J )) =

∑

J ∈SM [Π]
WΠ(J )

∑

J ∈SM [Π]
WΠ(J )

= 1

3. Suppose A, B are of the form {I}, {J } for some I,J . Then WΠ({I} ∪ {J }) =
WΠ({I}) + WΠ({J }), so that PΠ({I} ∪ {J }) = PΠ({I}) + PΠ({J }). The case
where A, B are general sets follows by simple induction.

The probability distribution here is over stable models of maximal subsets of Π, and
PΠ({I}) indicates how likely it is to “draw” some interpretation, given a program Π.
Intuitively, the interpretations can be seen as (complete descriptions of) possible worlds,
and the probability distribution is over sets of these possible worlds.9

In the following we will again use PΠ(I) instead of the more proper PΠ({I}) for conve-
nience.

9For a simple fragment of LPMLN, where the uncertainty is restricted to “probabilistic constants”,
which are random variables that describe a distribution over the value of a constant symbol, probability
can be represented in a more natural way. Namely, the probability of an interpretation (that is a consistent
stable model) here corresponds directly to the product of the probability of the constant declarations in
the interpretation. The probability can therefore be calculated on the basis of the probabilistic constant
declarations in the program alone. This is very similar to the way probability in Problog is defined; see
(Lee and Y. Wang 2016a, p. 150) for details and also Section 2.4.
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2. LP
MLN

2.3.2 Modelling in LPMLN

As defined above, the interpretations in SM [Π] might still violate some rules with infinite
weights in Π. To see this, consider the following example (adapted from (Lee and Y.
Wang 2016a, p. 147)):

Program 2.8

Bird(x)← ResidentBird(x) : 1.5

Bird(x)←MigratoryBird(x) : 2.5

← ResidentBird(x), MigratoryBird(x) : α

ResidentBird(Tweety) : α

MigratoryBird(Tweety) : α

Here the Herbrand universe is {Tweety}. There can be no interpretation that satisfies
all rules of this program, because of the constraint (3rd rule) together with the 4th and
5th rule. Instead, some of the interpretations with weights are:

{R(Tweety)}e2α (2.6)

{R(Tweety), B(Tweety)}e2α+1.5 (2.7)

{M(Tweety), B(Tweety)}e2α+2.5 (2.8)

{R(Tweety), M(Tweety), B(Tweety)}e2α+2.5+1.5 (2.9)

As we can see, the inconsistent interpretation that violates the third rule is actually the
most probable interpretation. This might be considered undesirable, given that these
hard rules can be seen as encoding definite knowledge. Let us denote the set of hard rules
of Π as Πhard, and the set of soft rules as Πsoft. To avoid violations of definite knowledge
in LPMLN programs, we can define:

SM ′[Π] =
{

I | I is a stable model of ΠI that satisfy Πhard
}

,

and define the weights as follows:

W ′
Π(I) =











exp

(

∑

w:R∈(Πsoft)I

w

)

if I ∈ SM ′[Π]

0 otherwise

,

P ′Π(I) =
W ′

Π(I)
∑

J∈SM ′[Π] W ′
Π(J )

.

Here the weights, and therefore the probabilities, of interpretations can be calculated
by looking at the weights of the soft rules only, if SM ′[Π] is not empty. The hard rules
can then be interpreted as definite knowledge. The following proposition relates P ′Π and
PΠ(I):
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2.3. LPMLN

Proposition 4. (Lee and Y. Wang 2016b, pp. 12–13) If SM ′[Π] is not empty, P ′Π(I)
coincides with PΠ(I).

However, in the case where there is no interpretation that is a stable model of Πhard,
so that SM ′[Π] is empty, P ′Π(I) is undefined. This is then a choice of how to model a
situation; whether the hard rules can be violated or not.

LPMLN and MLN

The flexible way LPMLN can deal with inconsistent knowledge bases makes it easy to
combine different knowledge bases: even if the resulting knowledge base is inconsistent,
the LPMLN formalism and corresponding computations will still yield interpretations with
positive probabilities. So, even if the hard rules taken together are inconsistent—as in the
example above—under the initial unnormalized weight function WΠ (and corresponding
probability function) inconsistencies can be easily handled. Under the second proposed
semantics using the W ′

Π function, this is only the case if Πhard is consistent.

LPMLN extends ASP in a probabilistic way, as MLN extends first-order logic in a
probabilistic way. To see how LPMLN provides an easier and more compact representation
than MLN, let us reconsider our previous toy-example of how smoking influences other
people:

Smokes(y)← Smokes(x) ∧ Influences(x, y) : w

Smokes(Alice) : α

Influences(Alice, Bob) : α

Influences(Bob, Carol) : α

for any positive number w.

Restricting ourselves to interpretations that satisfy all hard rules and without considering
the interpretation of the Influences relation (which is satisfied by all interpretations),
the following are four interpretations of interest, along with their weights:

{Smokes(Alice),¬Smokes(Bob),¬Smokes(Carol)} e3α · e8w

{Smokes(Alice), Smokes(Bob),¬Smokes(Carol)} e3α · e8w

{Smokes(Alice), Smokes(Bob), Smokes(Carol)} e3α · e9w

{¬Smokes(Alice), Smokes(Bob), Smokes(Carol)} 0

The 8 and 9 are obtained by going through all groundings of the soft rule. The fourth
interpretation is not a stable model of ΠI : the stable model of ΠI corresponds to letting
none of Alice, Bob and Carol smoke in the interpretation. As such, it has weight 0. The
third interpretation obtains a higher weight by the recursion: after the rule is satisfied
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2. LP
MLN

with Bob substituted for y and Alice for x, it is then also applied to Carol for y and Bob
for x. As a result we obtain the following probabilities:

PΠ(Smokes(Bob)) =
e3α+8w + e3α+9w

e3α+9w + e2∗(3α+8w)

PΠ(Smokes(Carol)) =
e3α+9w

e3α+9w + e2∗(3α+8w)

In the Markov Logic semantics the situation is different. Here the recursion cannot easily
be taken into account because of the semantics derived from first-order logic. As a result,
interpretations that satisfy Smokes(Alice) do not also necessarily satisfy Smokes(Bob).
We obtain the following situation, according to Eq. (2.3):

PL(Smokes(Bob)) =
e8w + e9w

3e8w + e9w
= PL(Smokes(Carol)).

Because of this, Smokes(Carol) has two interpretations of which one does not satisfy
Smokes(Bob), and so has the same unnormalized weight and probability as Smokes(Bob).
MLN therefore fails to capture the meaning of the first formula properly. This meaning
and the correct probability can be captured as we shall see later, but at the expense of
possibly having to introduce exponentially many formulas.

However, the result does hold in a straightforward manner in the opposite direction. Let
w : F be any weighted formula in a MLN program L. If the signature σ is finite, we can
eliminate any existential quantification in F by replacing it with a disjunction of all of
its groundings. Alternatively, existentially quantified predicates can be replaced by fresh
auxiliary predicates (Cabalar 2009). It can then be translated to an equivalent clausal
form; without loss of generality, assume F therefore to be already in clausal form. Then
we can turn w : F in L into the weighted rule:

Program 2.9

⊥ ← ¬F : w

{A}ch : w′

for every ground atom A of the signature σ. Here the weighted choice rules all have the
same arbitrary weight w′; this choice rule (see. Program 2.7) has the effect that any
ground atom A cannot be minimized under the stable model semantics described above
(Lee and Y. Wang 2016a, p. 148). We then have the following result.

Proposition 5. (Lee and Y. Wang 2016b, p. 15)

Any Markov Logic Network L and its LPMLN representation ΠL, as described in Pro-
gram 2.9, have the same probability distribution over all interpretations I.
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2.3. LPMLN

Proof. For the proof we will assume F to be a ground formula. For convenience of
representation we will consider any arbitrary (finite) signature σ as given and simply
write PL as shorthand for PML,C

. Similar to ΠI , we use LI to denote the set of formulas
in L that are satisfied by I. We write w : F ∈ LI for the weighted formulas w : F such
that F ∈ LI . Assume, as in Proposition 1, that some formulas can be given weights that
go to infinity; denote the infinite weight with α. Denote with At(σ) the set of all ground
atoms that can be constructed using symbols from σ. We have:

PL(I) = lim
α→inf

exp
[

∑

w:F∈LI
w
]

∑

J∈I exp
[

∑

w:F∈LJ
w
] = lim

α→inf

exp [|At(σ)| · w′] exp
[

∑

w:F∈LI
w
]

exp [|At(σ)| · w′]
∑

J∈I exp
[

∑

w:F∈LJ
w
]

This corresponds to the set of atoms of the choice formulas and the translation formulas
in LPMLN, meaning that the nominator can be written as

exp





∑

w:F∈LI∪Choice(At(σ))

w





and similar for the denominator, where Choice(At(σ)) stands for the set of weighted
choice rules over At(σ), which is a set of tautologies. This corresponds then simply to
those atoms that are true in I. In this way, ΠL satisfies the same atoms according to
the second rule of Program 2.9, and ΠL corresponds to LI ∪ Choice(At(σ)) for any I by
definition of Program 2.9. So we have:

PL(I) = lim
α→inf

exp
[

∑

w:F∈(ΠL)I
w
]

∑

J∈I exp
[

∑

w:F∈(ΠL)J
w
] .

It then still needs to be shown is that the stable models of (ΠL)I are the models of
LI . We will not prove this here, but this can be seen by the fact that any Herbrand
interpretation of LI assigns a truth value to every possible ground atom over σ, and
that the choice rules in ΠL also have this effect. Since any I is itself a model of LI , and
therefore also of (ΠL)I , we have that PL(I) = PΠL

(I) for any I.

Contrary to what might appear to be the case from the previous example, given our
restriction to σ, every LPMLN program does in fact have a corresponding Markov Logic
network. To show this, we need a few more notions.

Let us denote by posat(R) all the atoms A in a rule R such that at least one occurrence
of A is not within the scope of default negation not . Then for any logic program Π, the
positive dependency graph GΠ is the directed graph constructed as follows:

• For any atom A in Π there is a node vA;

• For every rule Head ← Body in Π, there is an edge ea1,a2 from vA2 to vA1 iff
vA2 ∈ H and vA1 ∈ posat(Body). Thus, there is an edge from every atom in Head
to every positive atom in Body.
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2. LP
MLN

Here vA is the vertex in the graph corresponding to atom A.

Then a logic program is called absolutely tight if its positive dependency graph has no
cycles.

For example, the positive dependency graph of our smoking example, not showing the
Influences relations for easier presentation, looks like this:

Smokes Carol Smokes Bob Smokes Alice

and clearly contains cycles. It is therefore not absolutely tight.

Absolutely tight LPMLN programs have a rather straightforward translation to equivalent
Markov Logic Networks (Lee and Y. Wang 2016a, p. 149). For this we define the
completion formulas of Π, Comp(Π).

Let Π be any logic program with rules of the form

Head← B1, ..., Bk, not Bk+1, not Bn

Then the Comp(Π) is defined as the set of formulas:

• Body → Head;

• A→
∨

(Head←Body)∈Π
A∈Head

(Body ∧
∧

A′∈Head\{A}
¬A′), for every atom A.

An important result for classical logic programs is that for any absolutely tight logic
program Π, a set of atoms {A1, ..., An} satisfies Π if and only if {A1, ..., An} satisfies
the completion of Π, Comp(Π) (Lee and Lifschitz 2003). This result extends to LPMLN

programs:

Proposition 6. (Lee and Y. Wang 2016a, p. 149) For any tight absolutely tight LPMLN

program Π, if SM [Π] is not empty, Π under the LPMLN semantics and Comp(Π) under
the MLN semantics have the same probability distribution over all interpretations.

This notion of program completion can be generalized by introducing loop formulas.
Define a loop in a program Π, denoted L, as a non-empty set of atoms such that for any
pair of atoms A1, A2 ∈ L, there exists a path of non-zero length from vA1 to vA2 in the
positive dependency graph of Π using only edges connecting elements of L.
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2.3. LPMLN

By this definition, our previous example contains four loops:

L1 = {Smokes(Carol), Smokes(Bob)},

L2 = {Smokes(Bob), Smokes(Alice)},

L3 = {Smokes(Carol), Smokes(Alice)},

L4 = {Smokes(Carol), Smokes(Bob), Smokes(Alice)}.

Then for any loop L, denote by R(L) the set of formulas:

B ∧
∧

p∈H\L

¬p

for all rules in Π such that Head ∩ L 6= ∅ and posat(Body) ∩ L = ∅. Then denote by
CLF (L) the Conjunctive loop formula of L:

CLF (L) =
∧

L→
∨

R(L).

Denote the set of all CLF formulas of a program Π with CLF (Π). The important result
from Lee and Lifschitz is then:

Proposition 7. (Lee and Lifschitz 2003, p. 457) For any Logic Program Π of the form
Eq. (2.1) and any set X of atoms, the following are equivalent:

• X is an answer set of Π,

• X is a model of Comp(Π) ∪ CLF (Π).

For our previous example, adding the loop formula

(Smokes(Alice) ∧ Smokes(Carol))→ (Influences(Alice, Carol)

∨ Influences(Carol, Alice) ∨ Smokes(Bob))

(the other loop formulas are trivially satisfied due to the hard facts given), we obtain an
equivalent Markov Logic Network. These results are important for the topic of weight
learning, as will be seen in the next chapter.

The benefit of LPMLN over MLN is not just the easier representation of these recursive
programs, but also the number of formulas needed for the representation and the
computation. The problem with the loop formulas translation is that a program can
have exponentially many loops and therefore exponentially many loop formulas might be
needed (Lin and Zhao 2004; Lee and Lifschitz 2003).

Essential for this translation is the requirement that we have no function symbols of
positive arity. As already remarked, ASP is more expressive than first-order logic; the
construction of loop formulas is not restricted to LPMLN but applies to ASP in general,
and not every rule of a logic program can be rewritten to an equivalent (under standard
first-order semantics) first-order formula (Lee and Meng 2011). In the case that the
signature is restricted as in this thesis, the result does hold.
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2. LP
MLN

2.3.3 LPMLN and ASP

Many solvers for ASP also support weak constraints; if there was a translation of LPMLN

programs to ASP programs with weak constraints, inference in LPMLN could be done by
a translation to the input language of these solvers. It turns out that rather easy and
efficient translations exist. Translations to and from ASP with weak constraints can be
done for both the reward and penalty interpretations of LPMLN, as described above in
Section 2.3. We will consider both ways in turn, after considering first the translation
from weak constraints to LPMLN.

A translation from ASP with weak constraints to LPMLN is straightforward. Any hard
rule or constraint is simply given the weight α. Take any constraint of the following form:

Program 2.10

:∼ B1, ..., Bk, not Bk+1, ..., not Bn : w

Then this can be translated into the LPMLN rule as:

Program 2.11

← not B1; ...; not Bk; not not Bk+1, ..., not not Bn : −w

The idea here is that weak constraints provide penalties and are most naturally interpreted
as minimization problems: the answer set with minimal overall penalties is optimal. For
LPMLN we capture this by a negative translation, whose rules are satisfied exactly when
the body (of the weak constraint) can be assumed to be false; in this case a negative
weight is added corresponding to a negative reward, which is essentially a penalty.

Reward interpretations

For the purpose of computing LPMLN, the translation the other way is very important:
this allows for the usage of ASP solvers for computing LPMLN queries. This translation
is more involved. For this, introduce for the i-th rule, with weight wi and global variables
x, the auxiliary atom sat(i, wi, x), whose value is True if the corresponding ground atom
from the LPMLN program is true. Then, letting again Body denote the entire (negative
or positive) body of an LPMLN rule, and Head the entire head, we rewrite any LPMLN

rule of the form:

Head(x)← Body(x) : wi
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2.3. LPMLN

whose index is i with occuring global variables x, into the following set of ASP rules:

Program 2.12

sat(i, wi, x)← Head(x)

sat(i, wi, x)← not Body(x)

Head(x)← Body(x), not not sat(i, wi, x)

:∼ sat(i, wi, x). [−w′i@l]

Where w′i = 1 and l = 1 if wi is α; and w′i = wi and l = 0 otherwise.

This has the effect that sat(i, wi, x) is true if either Head is true, or Body is not true
in the interpretation (can be assumed to be false). For non-hard rules, the sat(i, wi, x)
atom then receives the negative weight −w′i as a penalty at level 0, which is essentially a
reward. For hard rules (with weight α), w′i is set to −1 at level 1 (Lee, Talsania, and
Y. Wang 2017b, p. 4). (Recall that higher levels are optimized first.)

The problem with the translation just described is that it does not necessarily give an
acceptable ASP program for an ASP solver. First, Head(x) might involve disjunction,
which might not be allowed in the body of rules, depending on the ASP solver. In
addition, not Body(x) will have to be rewritten to be allowed in the input language.
More importantly, the first and second rule of the translation can be unsafe according to
Definition 1, so that grounding the problem might not be possible in ASP solvers (Lee,
Talsania, and Y. Wang 2017b, p. 5).

Penalty translation

It turns out that a less problematic translation is possible using the (equivalent) penalty
interpretation of weights as given in Section 2.3. For any rule R:

Head(x)← Body(x) : wi

we can translate R according to the penalty semantics into the following ASP rules with
weak constraints:

Program 2.13

unsat(i, wi, x)← Body(x), not Head(x)

Head(x)← Body(x), not unsat(i, wi, x)

:∼ unsat(i, wi, x). [w′i@l]

where w′i is as before in the reward interpretation.

In the case Head(x) is a disjunction A1; ..., Am, not Head(x) stands for not A1, ..., not Am.
It is clear that all rules of this translation are safe. Furthermore, the resulting set of
rules belongs to the input language of standard ASP solvers.
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2. LP
MLN

In this translation, unsat is true when the i-th rule is not satisfied. If unsat(i, wi, x)
is true, wi is imposed as the penalty on the stable model. If the i-th rule is satisfied,
unsat(i, wi, x) is false.

We refer to this translation as lpmln2asppnt. We then have the following result:

Proposition 8. (Lee, Talsania, and Y. Wang 2017b, p. 6)
For any LPMLN program Π, there is a 1-1 correspondence Φ between SM [Π] and the
set of stable models corresponding to lpmln2asppnt(Π). Furthermore, Φ is a 1-1 corre-
spondence between the most probable stable models of Π and the optimal stable models of
lpmln2asppnt(Π).

This provides a way to compute LPMLN using ASP solvers that allow weak constraints
in the input, while also ensuring that the translated program is part of the input syntax
of ASP solvers (such as Clingo).

2.4 Related Formalisms

There are multiple formalisms in the ASP paradigm that are related to LPMLN and also
allow to express uncertainty in some way. These formalisms are of interest by themselves;
however, because of space constraints, we will here mostly restrict ourselves to a formalism
that is related to weight learning in LPMLN, the topic of this thesis: ProbLog. Other
important related formalisms that should be mentioned here are P-Log (Baral, Gelfond,
and Rushton 2009), and the already discussed ASP with weak constraints.

As we have seen in Section 2.3.3, any program of ASP with weak constraints can be
turned into an equivalent LPMLN program, and any LPMLN program can be encoded in
ASP with weak constraints. Furthermore, from Proposition 8 and as is discussed in detail
in (Lee and Yang 2017), there is a 1-1 correpondence between the most probable stable
models and the optimal stable models in the translated program with weak constraints.
The benefit of LPMLN is the ease of modelling and representation, plus the intuitive
probabilistic semantics.

Before looking in slightly more detail into the relationship of LPMLN with ProbLog, we
will now give a broad overview of P-Log.

2.4.1 P-Log

P-Log also provides a probabilistic semantics for ASP. It does this by adding probabilistic
syntactic constructs to a P-Log program definition, where the probabilies can loosely be
understood as a measure on an agent’s degree of belief on an atom (Baral, Gelfond, and
Rushton 2009). A P-Log program can be divided clearly into a logical and a probabilistic
part: the logical part represents knowledge and consists of standard ASP rules along
with declarations of random attributes, while the probabilistic part contains “pr-atoms”,
or causal probability statements (Balai and Gelfond 2016, p. 4), which determine the
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2.4. Related Formalisms

probability of possible worlds (corresponding to answer sets in the above sections) (Baral,
Gelfond, and Rushton 2009, pp. 3–4).

Describing the syntax and semantics of P-Log in detail is beyond the scope of this thesis;
of importance here is a broad understanding of the probabilistic semantics. A P-Log
program consists of six parts10: (i) a sorted signature, (ii) a declaration, (iii) a regular
part, (iv) a set of random selection rules, (v) a probabilistic information part, and (vi) a
set of observations and actions (Baral, Gelfond, and Rushton 2009, p. 6). The uncertainty
in P-Log lies in the set of random selection rules (iv) and the probabilistic atoms (v). A
random selection rule is of the form:

[r] random(f(t̄) : {x : p(x)})← Body.

Here t̄ is a vector of terms. This intuitively says that if Body holds, then the value of f(t̄)
is chosen at random from {x : p(x)} ∩ range(f) by experiment r, unless f(t̄) is specified
already by some action (in (vi)). A probabilistic atom is of the form:

prr(f(t̄) = a |c Body) = p.

Here r is the name of some random selection rule, p ∈ [0, 1], and Body is a set of literals
of (i), the signature. This says that if the value of f(t̄) is fixed by experiment r and
Body holds, then the probability that r causes f(t̄) = a is p.

In a P-Log program, due to the random selection rules and probabilistic atoms, given
two conditions called the unique random selection rule and unique probability assignment,
possible worlds can be assigned measures which are probabilities (Lee and Yang 2017,
p. 1174; Baral, Gelfond, and Rushton 2009, pp. 11, 15–16).

As shown in (Lee and Yang 2017), P-Log can be translated to LPMLN and in that way
(through our connection with ASP with weak constraints) inference can be done using
ASP solvers. Conversely, as shown in (Balai and Gelfond 2016), LPMLN can be encoded
in P-Log in linear time (in the size of the LPMLN program). The difference between the
two formalisms lies in the highly structured semantics and syntax of P-Log. In P-Log,
probabilities are assigned to atoms only, which is intuitive from a specific modeling
perspective but more complex from the general situation where rules are given a ranking
based on importance, or weights, as opposed to specifying the probabilities of atoms.
The weights in LPMLN are more complex to assign because of the looser structure, but
the language is less involved and provides an easier probabilistic expansion upon ASP.
From a weight learning perspective, it is also simpler to analyze. Because of the higher
conceptual complexity of the relation between LPMLN and P-Log, P-Log will not be
further discussed in this thesis.

10Because we do not discuss the syntax in detail, we gloss over the explanation of some terms in this
section to keep the explanation short. See (Balai and Gelfond 2016; Lee and Yang 2017; Baral, Gelfond,
and Rushton 2009) for a complete account.
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2. LP
MLN

2.4.2 ProbLog

A ProbLog program11 〈PF, Π〉 consists of a set of ground probabilistic facts PF , and
a set of rules and non-probabilistic facts Π (a normal logic program, as introduced
in Section 2.112). As the non-probabilistic parts have already been explained, we will
only focus on the probabilistic facts. A probabilistic fact is a ground fact f annotated
with a probability p, written p :: f . An atom that corresponds to a grounding of some
probabilistic fact is called a probabilistic atom.13 Here the set of probabilistic atoms must
be disjoint from the set of derived atoms (i.e., atoms in the head of some rule of Π).

ProbLog provides a probabilistic semantics for ASP using Sato’s distribution semantics
(Sato 1995). We will restrict ourselves to a finite Herbrand base. Each ground probabilistic
fact in ProbLog allows an atomic choice, such that we can either choose to include f with
probability p, or to not include it with probability 1− p. A total choice consists of an
atomic choice of all probabilistic atoms (probabilistic ground facts). Then the probability
of a total choice is straightforwardly defined as the product of all the atomic choices,
which follows because all the atomic choices correspond to independent events.

The general semantics of ProbLog differs from that of LPMLN and ASP, and is based
on the well-founded semantics (Van Gelder, Ross, and Schlipf 1991), which will not be
discussed here. Roughly, a well-founded model is defined as the fixed-point of an operator
that (iteratively) only includes well-founded literals. In the case of a well-founded total
model of a logic program it holds that this model corresponds to the unique stable model
of the program (Van Gelder, Ross, and Schlipf 1991, p. 633). However, there can be
unique stable models without there being a total well-founded model of some progam.

A Herbrand interpretation I is said to be a model for a ProbLog program if there
exists a total choice C, such that for the well-founded model WFM of C ∪Π, denoted
WFM(C ∪ Π), it it is the case the WFM(C ∪ Π) = I, where Π denotes the (non-
probabilistic) normal logic program of the ProbLog program. It is important here that
the ProbLog semantics is only defined for programs that are sound: programs for which
each possible total choice leads to a unique well-founded Herbrand interpretation that
satisfies all ground rules of the ProbLog program (is total)(Fierens et al. 2015, p. 364).
The probability of a Herbrand interpretation is then said to be the probability of its total
choice if it is a model of the ProbLog program, otherwise it has probability 0.

This highlights the important difference with LPMLN: whereas ProbLog is only well
defined if every total choice leads to a unique well-founded model, LPMLN can handle
multiple stable models. This makes LPMLN into a proper generalization of ProbLog (Lee
and Y. Wang 2016a, p. 149).

11In this section we follow the explanation of (Fierens et al. 2015).
12ProbLog does not allow disjunction in the head, nor double default negation in the body.
13ProbLog also allows probabilities assigned to head of rules, as in 0.9 :: alarm← burglary. These are

however equivalent via a suitable translation to only allowing probabilities assigned to probabilistic facts,
and for brevity we will ignore this extra construct. See (ProbLog 2.1 documentation 2014) for details.
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2.4. Related Formalisms

The translation from ProbLog to LPMLN is straightforward (Lee and Y. Wang 2016a,
p. 149). Namely, given any ProbLog program 〈PF, Π〉, construct for every probabilistic
fact p :: A in PF , the LPMLN rule:

Program 2.14

r =











ln(p) : A and ln(1− p) :← A if 0 < p < 1
α : A if p = 1
α :← A if p = 0

In addition, every rule from Π can be straightforwardly given the weight α in the LPMLN

program.

In addition, if all soft rules in an LPMLN program are of the form w : A, where A is a
first-order atom which does not occur in the head of any rules with weight α, and if for
any assignment of values to soft rules there is exactly 1 probabilistic stable model that
satisfies this truth assignment, there is a corresponding ProbLog program. Call such an
LPMLN program 1-coherent. Then, the probabilistic fact corresponding to any such a
soft rule corresponds to:

p :: A, where p =
exp(w)

1 + exp(w)
.

This allows to perform weight learning on some restricted LPMLN programs in ProbLog,
by learning the probabilities in ProbLog, and translating the learned probabilities back
using the inverse procedure. Further details on the relation and translation can be found
in (Lee and Y. Wang 2018).

To sum up, we have the following results:

Proposition 9. (Lee and Y. Wang 2018, p. 6)

• Any well-defined ProbLog program ProbLog and the corresponding LPMLN program
ΠP robLog as described in Program 2.14 have the same probability distribution over
all interpretations.

• For any 1-coherent LPMLN program Π and any interpretation I, we have

w = argmaxwPΠ(I)

if and only if

pr = argmaxprPP robLog(I).
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2. LP
MLN

2.5 Applications

As LPMLN can be seen as both an extension of MLN and of traditional ASP, it can be used
for many purposes. It lends itself well for statistical relational learning (SRL)14, which it
has in common with MLN, in addition to being able to model and solve complex search
and optimization problems, a strong application of standard ASP. Decision problems are
also a good application of LPMLN because of the possibility of representing degrees of
belief of an agent (Baral, Gelfond, and Rushton 2009), as well as knowledge representation
(Brewka, Eiter, and Truszczyński 2011).

One particular subject to which the formalism has been successfully applied is collective
classification (Sen et al. 2010b). Rather than try to classify objects or entities based
only on so-called local features, collective classification makes the predicted value of the
i-th instance dependent on the predicted value of related instances. By focusing only
on local features of the instance itself, not in its relation to other objects, traditional
classification fails to take relations among objects in the data into account. Modeling
data as a collective classification problem can improve the quality of a model where this
structure is important for representing the data. A few examples of this are text tagging
and chunking, where knowing the value of nearby words is very useful for classification
of a word, or object labeling in images. Since LPMLN has been applied by Eiter and
T. Kaminski for the latter (Eiter and T. Kaminski 2016), this is the application for which
we will test weight learning in Chapter 4. This particular application is also well-suited
for comparing different weight learning algorithms, as the prediction accuracy is a good
measure of the quality of a learned model in this setting. Modelling the object-labelling
problem using LPMLN allows to easily take spatial relations among objects into account,
which we will do in our example encoding.

14See (Getoor and Taskar 2007) for an extensive introduction.
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CHAPTER 3
Weight Learning in LPMLN

As a probabilistic reasoning formalism, it is vital that the weights of formulas in an
LPMLN program accurately capture real probabilities of a dataset, so that the normalized
weights of interpretations (“possible worlds”) correspond to as good a representation of
the actual data distribution as possible. Unless the weights are given by expert knowledge,
the quality of the program as a model depends directly on the method used for learning
the weights. Given a large enough and representative dataset (whose instances are
independent and identically distributed), a model of the distribution can be learned; the
goal of learning is to choose that learned model which best captures the distribution of
our data.1

Given a “structure” of an LPMLN program — a set of rules — the problem of obtaining
the most accurate settings of the weights in an LPMLN program can be described in
terms of parameterized LPMLN programs: programs Π where the weights of soft rules are
replaced with distinct parameters w ; we denote parameterized models by PΠw

, or by Pw

if Π is clear from context. What is the most accurate or best model is of course dependent
on the choice of a performance metric: what “best” means is not immediately clear and
depends on the purpose of our learning task and on the specific problem specification.
This will be important with respect to the different applications of LPMLN that will be
considered later on.

One popular method of evaluating the performance of a model is to consider how well it
predicts the data we have. This means that we are looking for the parameter settings ŵ,
such that Pŵ gives the highest probability of observing the data we have, over all settings
of w. This is called Maximum Likelihood Estimation (MLE): of all the possible worlds

1A separate part of learning LPMLN programs is learning the rules, or structure, of the LPMLN

program or Markov Logic Network. This problem is generally an even harder problem than learning the
weights, and also requires very different techniques. In this thesis we will restrict ourselves to the weight
learning task and assume the rules of any LPMLN program to be given.
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3. Weight Learning in LP
MLN

consistent with the LPMLN program, we assume our data is representative enough such
that it captures the actual world. The parameter settings must then make the actual
dataset we have the most likely of all possibilities. The likelihood function L(w | D) we
seek to maximize is given by:

L(w | D) =
m
∏

j

Pw(I[j]|w)

for a dataset D of m instances, where I[j] denotes the interpretation given by the j-th
data instance. Such a data instance, or database, is essentially a vector of atomic formulas
Dj = (d1, ..., dk, ..., dz) where dk is the value of the k-th atom: 1 if dk ∈ Dj (the j-th
data instance), and 0 otherwise. Every such (complete)2 data instance characterizes a
Herbrand interpretation, denoted I[j]. The maximum likelihood optimization problem
can be phrased as choosing that weight setting w such that:

L(ŵ | D) = max
w∈Θ

L(w | D)

which is in the case of LPMLN equal to:

L(ŵ | D) = max
w∈Θ

m
∏

j

1

Z(w)
exp





∑

w:R∈ΠI[j]

w



 . (3.1)

As we shall see, optimizing the Maximum likelihood estimate is too expensive in general
for LPMLN programs, and approximate optimization methods, or optimization of an
approximation of the likelihood function, is usually required. We will discuss maximum
likelihood based learning in Section 3.1, along with different ways to make the optimization
(more) tractable, or ways to make the learning more successful. Frequently, we know in
advance which predicates in a program are evidence and which are going to be queried,
and this knowledge can sometimes be used to learn with higher efficiency or higher
effectiveness; this is called discriminative learning, as opposed to generative learning,
which we shall discuss in Section 3.1.1. Alternatively, specific knowledge about the uses
of a model (e.g., classification tasks) can be used to optimize the learning with respect to
a specific penalty function. We will discuss alternative objectives (or approximations of
the standard objective), which frequently involve assumptions about the data or about
uses of the LPMLN program, in Section 3.2.

Other important topics within weight learning involve general topics such as overfitting
(Section 3.1.2), or specific data scenarios such as missing data and noisy data (Section 3.3).
Overfitting is of course a general supervised learning topic, which we will not discuss in
general here but only touch upon. In Section 3.1 we will also briefly visit some specific
issues with overfitting. Lastly, in Section 4.3.2 we will consider an example dataset for
learning in LPMLN.

2We will consider incomplete databases later on in Section 3.3.3.
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3.1. Maximum Likelihood Based learning

3.1 Maximum Likelihood Based learning

Let us consider the logarithm of the likelihood expression for LPMLN as given by Eq. (3.1):

ln PΠ(I) = l(w : D) =
n
∑

i

wini(I)− ln(Z(w)) (3.2)

for a single data instance. Here Z(w) is the partition function, which involves summing
over all posssible interpretations:

Z(w) =
∑

J∈I

exp

[

n
∑

i=1

wini(J )

]

.

A primary source of complexity is this partition function, which couples all the different
interpretations satisfying a program. Since learning requires multiple inference steps, this
partition function must be calculated multiple times in a learning procedure. This means
all possible interpretations must be computed at every step of the learning procedure,
which is an NP-hard problem. Furthermore computing the number of true groundings
ni(I) of a rule Ri is already #P-complete in the length of the rule (Richardson and
Domingos 2006, p. 118). We therefore have multiple sources of complexity which have to
be dealt with to make learning a feasible procedure.

As we have seen in Section 2.3.2, there is a one-to-one correspondence between LPMLN

and Markov Logic Networks. Although the translation from LPMLN to MLN might
introduce exponentially many new formulas (due to the loop formulas) and is therefore
frequently unfeasible, the translation from Markov Logic to LPMLN consists of one rule
per formula, plus a choice rule for every atom; this translation can clearly be done in
polynomial time or in logspace. It follows that weight learning in LPMLN is at least
as hard as weight learning in Markov Logic. In MLN exactly the same complexity as
described in the previous paragraph holds; however, for Markov Logic Networks (and
standard Markov Networks) weight learning has been quite extensively studied, so that
efficient algorithms or efficient approximations exist. Furthermore, as we have seen
in Section 2.3, the equation for PΠ for any LPMLN program Π is similar to Eq. (2.3).
Considering weight learning in Markov Logic is therefore useful for understanding the
problem for LPMLN.

Let us focus more closely on the likelihood function. Because we are interested in finding
the parameter settings such that the likelihood function is maximal, and since the natural
logarithm is a strictly increasing function, we can optimize the log-likelihood instead:
its maximal will be the same as the maximal of the likelihood function. Since the
probability function for Markov Logic (and LPMLN) is a log-linear function, optimizing
the log-likelihood is much easier. The log-likelihood has the form:

l(w : D) =
m
∑

j

n
∑

i

(wini(I[j]))−m · ln(Z(w)) (3.3)
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3. Weight Learning in LP
MLN

for m data instances and n rules or formulas. Dividing both sides by the size of our
dataset, m, gives the expression:

1

m
l(w : D) =

n
∑

i

wi

∑m
j (ni(I[j]))

m
− ln(Z(w)) =

n
∑

i

wiED[ni]− ln(Z(w)), (3.4)

where ED[ni] = 1
m

∑m
j=1[ni(I[j])] is the empirical expectation of ni: the average number

of times the i-th formula is true in the dataset. When trying to maximize this expression,
we are trying to increase the difference between the log-measure of the data and the
log-measure of all instances. This is a contrastive objective, where the second term (the
partition function) is the more complex to evaluate, since it requires summing over all
possible values in I.

An important property of the partition function Z(w) is that it is a convex function of the
parameters (Koller and Friedman 2009, pp. 947–48). As such, the log-likelihood function
is concave (involving the negative of Zw) and has no local optima. However, because
of a possible redundant parameterization in the Markov Network—such that there are
multiple parameterizations of a Network that lead to the same distribution3—there might
be multiple solutions for the maximum (log-)likelihood estimation problem. It follows
that there is a unique global optimum, with (many) different solutions.

Because of the convexity, we can obtain the maximum as the zeros of the derivative w.r.t.
w of the log-likelihood:

∂

∂wi

1

m
l(w : D) = ED[ni]−Ew [ni] (3.5)

This minimum, and with that the maximum likelihood estimate, is therefore obtained by
minimizing the difference between the empirical expectation (ED[ni]) and the expected
sufficient statistics of the likelihood function:

Ew [ni] =
1

Z(w)
exp

[

∑

i′

wini(I[i′])

]

· ni(I[i′]) (3.6)

which is the expected value of ni relative to Pw. Here the outer summation is over all
possible interpretations i′. Thus, we are searching for the parameter setting such that
the expected value of ni is equal to the empirical expectation in the data.

Unfortunately, there is no analytical solution for this maximum likelihood estimate.
Resorting to iterative methods (e.g., gradient ascent) is a standard method to perform
the optimization in this case. For a single dataset, this means that at every iteration a
step is taken in the direction of the gradient with respect to the i-th weight (of the i-th
soft rule):

∂ ln PΠI

∂wi
= −ni(I) +

∑

J∈SM [Π]

PΠw
(J ) · ni(J ). (3.7)

3In general, for Markov Networks, or Markov random fields, there can be infinitely many parameteri-
zations that give describe the same distribution (Koller and Friedman 2009, pp. 128–133).
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3.1. Maximum Likelihood Based learning

The problem is that at every iteration t, PΠt(I) (the probability distribution at the t-th
learning iteration) would have to be calculated, which means performing inference at
every step. To perform inference, the partition function has to be calculated, meaning
computing all possible interpretations or stable models, which can be very costly even
for very small Networks. In addition, Markov Logic Networks and LPMLN introduce
the extra complexity of counting the number of true groundings of a formula in an
interpretation, as mentioned above.

Given that the problem of the inference steps has been tackled, or if the complexity of
inference on a specific Network or program is manageable, standard gradient ascent might
also be too slow to converge because of the dependency on the parameter settings. In this
case a popular algorithm is the L-BFGS algorithm, which performs gradient ascent by
using line search instead of computing the Hessian4(Koller and Friedman 2009, p. 950).

Despite the complexity of counting the number of true groundings, which might become
an issue in larger datasets, this is normally acceptable to count exactly and will not be
discussed further here. A possibility would be to use sampling methods to approximate
this term; in all our experiments, we count the exact number.

It is the second source of complexity of inference, computing the partition function Z(w)
at every iteration, which can be seen as the most problematic. One option which might
make learning more feasible is to learn the model in situations where we can partition
the predicates into query and evidence predicates: conditional or discriminative learning.
We will consider this before moving on to methods which use approximative methods.

3.1.1 Conditional Likelihood Maximization

As already mentioned, we frequently know a priori which predicates will be observed
and which predicates will be queried. In the case of such a particular inference task, it
can be more efficient to focus on the conditional distribution. It can, because whether
this is indeed the case depends on the particular learning task and LPMLN program we
want to learn the weights of. Usually, discriminative methods perform better on larger
datasets, where there are only few query atoms.

In the case of discriminative learning, we partition the ground atoms into two sets A, B,
a set of evidence atoms A and a set of query atoms B (Singla and Domingos 2005,
p. 3). This also partitions rules according to rules involving query predicates q (at least
one grounding of the rule contains a query atom), and other rules which are considered
evidence (whose groundings do not contain a single query atom). Evidence predicate
symbols p are predicates of which no grounding contains a query atom. We then also
partition the interpretation function I into a part that specifies the truth value of the
evidence atoms IA and a part that specifies the query atoms IB. Restricting again to a

4The square matrix of second-order partial derivatives, which gives information of the optima of a
function.
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3. Weight Learning in LP
MLN

single dataset m = 1, the conditional likelihood LIB |IA
objective corresponds to:

LIB |IA
(w|D) = P (IB | IA : w) =

1

Z(IA | w)
exp





∑

i∈FIB

wini(IB, IA)





where Z(IA | w) =
∑

IB
P̃w(IB, IA), ni is the number of true groundings of the i-th rule

or clause involving query atoms, and RIB
is the set of rules with at least one grounding

involving a query atom.

In this formula the summation is restricted to formulas involving query atoms, and the
partition function only involves summing over the different interpretations IB, which are
the settings over the query atoms. In this setting, we do not try to generate the entire
distribution, but only the conditional distribution given values to the evidence atoms.

As we have discussed, learning Markov Logic Networks can be done by computing all
groundings, and learning on the ground Markov Networks. Learning a Markov Net-
work in this discriminative setting means to train the Markov Network as a conditional
random field (CRF). Maximizing the log-conditional-likelihood involves maximizing
∑k

j=1 ln P (IB[j] | IA[j], w) which involves many different log-likelihood functions, corre-
sponding to the different observations. Optimizing this objective is done by the same
methods as above, and involves using the gradient of the log-conditional-likelihood:

∂

∂wi
lIB |IA

(w : D) = ni(IA, IB)−
∑

JB∈SM [Π]

Pw(J | IA)(ni(IA,JB)) (3.8)

for a single dataset, where we have used ni(IA, IB) to emphasize that the counts are
computed over the combined data. In words, the difference lies in computing the expected
feature counts given w, which is done given the values of the evidence variables A. The
second term computes (given w) the counts of all stable models over the query variables,
given the evidence variables.

Unlike performing gradient ascent over Eq. (3.5), where at every step of the optimization
procedure we only need to compute these expected counts once, in the conditional case
we need to compute this for every data instance, as this is conditioned on, at every
iteration(Koller and Friedman 2009, p. 951). An advantage of this objective however,
is that all the inference passes are usually easier to perform, because the size of the
model is reduced and consists only of the query variables. This is especially the case
if the evidence variables can take on many different values: having these fixed in the
learning scenario might reduce the size of the Network significantly, cutting down the
computational cost drastically.

The upshot is that conditional likelihood can be more advantageous to optimize, if the
domain of the evidence variables is very large. In this case the size of the models would
be reduced significantly by conditioning on these, making for faster optimization despite
the higher number of required inference passes.

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3.1. Maximum Likelihood Based learning

3.1.2 Bias and Overfitting

The structure of the Network in terms of the query and evidence variables is not the
only thing that indicates which of the two general methods described will perform best
on a specific dataset. One of the most important factors is the bias of the model: the
assumptions a learning method makes on the form of a distribution. A generative model
can be decomposed as follows:

PΠ(IB, IA) = PΠ(IB | IA) · PΠ(IA).

From this we can easily see that generative learning involves getting a good fit on the
conditional likelihood of B given A, in addition to getting a good model for PΠ(IA). This
second part involves computing the likelihood of the (assumed independent) evidence
variables A or IA; discriminative learning does not do this.

This extra objective inherent in generative learning constrains the model further in terms
of assumptions on the probability distribution. Doing so can have the effect of providing
regularization on the learned model, which can help overfitting on the data. This is
because generative learning methods have more bias than discriminative learning methods.
This can be especially helpful in the case of small training data, where discriminative
methods have the risk of overfitting on the data.

For learning tasks with more data, the bias is less useful for learning and can start
to dominate the error of a learned model (Koller and Friedman 2009, pp. 709–711).
Here discriminative learning is usually a better choice; it can also perform quicker than
generative learning depending on the structure of the LPMLN-program.

3.1.3 Choice of Algorithm for Optimization

Having chosen an objective to optimize, one still has to choose a particular optimization
algorithm that optimizes the weights with respect to this objective. As shown in (Lowd
and Domingos 2007), the particular optimization algorithm can have huge effects on the
effectiveness of weight learning. Discussing all possible ways to perform (gradient based)
optimization in this setting is beyond the scope of this thesis; we will here limit ourselves
to a few that are useful in practice.

Standard gradient ascent requires stipulating the step size, which is a hard parameter
to get right: the algorithm can move in the wrong direction easily. In addition it can
converge very slowly, even if moving in the right direction, due to overshooting the
optimum (too big a step size) or going too slowly in the direction of the optimum. Hence
it can be beneficial to use, or approximate, the second-order partial derivatives with
respect to feature functions (the Hessian). We will here list some possible gradient
ascent methods which have been used and studied for Markov Logic Networks (Lowd
and Domingos 2007):

• Line search, which, at every iteration, determines the direction in which to go
in addition to determining the step size. It normally does this (depending on the
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3. Weight Learning in LP
MLN

specific algorithm) by computing the function at specific points in the direction of
the gradient, to take the maximum as the optimal step size at that iteration.

• Conjugate Gradient Ascent, which stipulates at every iteration that the gradient
along an already taken direction remains zero. This avoids “zig-zag” behaviour of
normal gradient ascent, which can make convergence much faster to attain. This
method can be made efficient for MLN’s by using the Hessian matrix to choose a
step size (called scaled conjugate gradient descent).

• Diagonal Newton which uses the diagonalized Hessian multiplied with the gradi-
ent to determine the next step. It approximates the objective function locally with
a quadratic function, and determines the optimal value in that local area using an
approximation of the Hessian matrix.

In LPMLN and MLN, the Hessian is the negative covariance matrix. In general, computing
this matrix is infeasible, and for larger datasets or larger programs this has to be
approximated using a sampling algorithm (Section 3.2.3). In addition, there is the
possibility to determine step sizes per weight, which helps when the learning rates for the
different weights differ significantly (making standard gradient descent extremely slow
and less effective).

3.2 Approximate Methods

As mentioned, for LPMLN, Markov Logic, and even Markov Networks, computing Z(w)
can be too costly to compute, making it necessary to have to use approximative methods
to learn the weights. Here we can either use a different, approximate, learning objective,
or approximate the original objective by using approximative inference methods at every
iteration. We will consider the two options in turn.

3.2.1 Pseudo-log-likelihood Objective

One approach, which was also initially used for weight learning in Markov Logic Networks
in (Richardson and Domingos 2006), is to maximize the pseudo-log-likelihood, denoted
LP L. Here we replace the likelihood objective with a more tractable variant, restricting
for convenience to the case of one database (m=1):

LP L(w : D) =
∏

k

P (Ik|I−k, w) (3.9)

where I−k = {I1, ..., Ik−1, Ik+1, ..., Iz} for the z atoms in the data. That is, we calculate
the conditional probability of every k-th atom on the values of all the other atoms.
Because of the structure of Markov Networks, this is equal to

LP L(w : D) =
∏

k

P (Ik|N (Ik), w), (3.10)
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3.2. Approximate Methods

that is, conditioning only on the Markov blanket of (the node corresponding to) Ik.
Calculating this objective is much easier, as follows from the following equation:

P (Ik|N (Ik)) =
P (Ik,N (Ik))

P (N (Ik))
=

P̃ (Ik,N (Ik))
∑

I′
k

P̃ (I ′k,N (Ik))

Here P̃ is the unnormalized measure, and thus the global partition function Z(w) has
canceled out, and instead we only have to sum over the possible values of Ik, denoted
I ′k. In the case of Markov Networks and LPMLN, this consists of considering only both
values of all the atoms in I conditioned on atoms that occur in the same formulas (all of
its neighbours), which can generally be performed very efficiently.

The gradient of the pseudo-log-likelihood for Markov Logic Networks is:

∂

∂wi
lP L(w : D) =

z
∑

k=1

ni(I)− Pw(Ik = 0|N (Ik)) · ni(IIk=0)

−PΠw
(Ik = 1|N (Ik)) · ni(IIk=1)

(3.11)

where ni(IIk=1) is the number of true groundings of the i-th formula in I, given that
the k-th atom is set to 1 (or 0). This does not require inference over the model, and
therefore optimizing lP L is very efficient.

The important question with this approximate objective is of course how well it approxi-
mates the true log-likelihood objective. Under a very specific scenario, namely where
the size of the training set approaches infinity, the probability that the parameter ŵ,
according to which the data is distributed, is a global optimum of the pseudo-likelihood
objective, approaches 1 (Koller and Friedman 2009, p. 972). Thus, as m approaches
infinity, the maximum pseudo-(log)-likelihood w̃P L is almost certainly equal to ŵ. So
under this (theoretical) scenario, it is a sound approximation.

The problem here is the (impossible) assumption. It can be understood loosely as
consisting of two criteria. First, the rules of the LPMLN program—here the model
being learned—needs to be expressive enough so that it can represent the generating
distribution; second, the training data needs to be large enough to properly express
this generating distrbution. This second criteria can only be ensured at the infinitely
large sample limit, and although it is likely to hold for sufficiently largre datasets, it
is frequently problematic in practice due to too small training sets. In addition, if the
model is not sufficiently expressive, training with respect to the log-likelihood and the
pseudo-log-likelihood can give very different results.

In practice, pseudo-likelihood learned models can perform very well. However, in the
case of dependencies between variables that are not neighbors of one another in the
graph corresponding to the Network (Section 2.2.1) —long-range dependencies—pseudo-
likelihood based models can fail to capture the dependencies properly. This is the case
if the data does not contain certain values of neighboring variables; the assumption is
that all values of the neighboring variables are fully observed and present in the training
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3. Weight Learning in LP
MLN

data. This can be seen by considering that it conditions on values of the neighboring
variables; if not all values of these are fully observed, dependencies with other variables
can be lost entirely in the PLL-model (Koller and Friedman 2009, p. 973). The quality
of pseudo-likelihood based models therefore depends very much on the model and data.

3.2.2 Contrastive Divergence

Another possible approximate objective can best be motivated by considering both the
likelihood and pseudo-likelihood learning method as attempting to contrast the actually
observed data (the training set) with other possible interpretations. This can be seen
by considering Eq. (3.3), where we try to increase the distance between the expectation
over the data, and the sum of all other instances or interpretations. The pseudo-log-
likelihood attempts to make this easier, by contrasting the dataset with log-measures
of interpretations where precisely one variable is flipped, as can be seen by considering
Eq. (3.11).

The problem with the (contrastive) task in normal likelihood learning, is that the second
term is very expensive to compute. The hope of a method called contrastive divergence is
that we can provide other interpretations or instances relatively quickly, which still allow
to move the learning procedure in the right direction. Here it has been found that using
only a small number of MCMC-samples frequently already indicates the right direction
for gradient ascent (Koller and Friedman 2009, p. 975; Lowd and Domingos 2007, p. 4),
and provides enough of a contrastive term. This allows the gradient search to be much
quicker than running the sampling algorithm until it approximates the posterior properly
(which it does in the limit as the number of samples goes to infinity).

3.2.3 Learning by approximate inference

Alternatively, one can try to approximately optimize the exact likelihood objective, using
an approximate inference procedure. There are multiple methods available to perform
approximate inference in Markov (Logic) Networks.5 A popular approach to perform
approximate inference in Markov Networks is to generate instantiations of a Network,
which are assignments to a subset of the random variables in a Network. This is a Monte
Carlo approach, where instantiations of the random variables are drawn with the hope
that they approximate the posterior distribution of the Network in reasonable time.

A particularly useful and popular class of sampling methods for Markov Networks are
Markov Chain Monte-Carlo (MCMC) sampling methods, where a sequence of samples
are taken from the data that provably get closer and closer to the posterior distribution.
A popular example of a MCMC-sampling algorithm is the Gibbs-sampling algorithm.
Generally, MCMC-methods work by using a Transition model T to create samples, that
specifies the probability T (I → I ′) of going from state I to I ′ in one step. If this

5See again (Koller and Friedman 2009); examples are different sampling methods, belief propogation,
and variable elimination. We will here limit ourselves to the sampling methods which have been used for
weight learning in either LPMLN or Markov Logic.
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3.2. Approximate Methods

transition model is properly chosen or designed, it is the case that the sampling algorithm
gets closer to the posterior distribution. For example, in Gibbs-sampling, this is done by
stipulating the transition probability for some atom to be the probability of that atom,
given the values of all other atoms.

The difficulty for using MCMC methods with success lies in designing this transition
model. Briefly, the Markov chain has to be regular and satisfy the detailed balance
equation relative to the posterior distribution PΠ. Here the former means that for any k
number of steps, and any two interpretations, there is a non-zero probability that one of
the interpretations can be reached from the other in exactly k steps; detailed balance
asserts that, given PΠ, PΠ(I)T (I → I ′) = PΠ(I ′)T (I ′ → I). In LPMLN and Markov
Logic, because of the stable model-based semantics and the first-order based semantics,
deterministic dependencies are frequently present. In case of deterministic dependencies
or just strong correlations, convergence time can be very slow or can even fail entirely for
classical sampling methods such as Gibbs sampling (Koller and Friedman 2009, p. 515;
Poon and Domingos 2006).

Because of this the specific MC-SAT algorithm has been created as an efficient approximate
inference method that is able to handle such deterministic dependencies between variables.
Recall that hard rules in LPMLN are encoded with the weight α, denoting the infinite
weight. Optimizing the weights of rules in LPMLN is therefore analogous to weighted-
MAXSAT over Boolean formulas. As already discussed, inference in LPMLN is at
least as hard as first-order logic, and because it involves maximization of rules, at least
FP NP-hard. Although weighted-MAXSAT is an untractable problem (finding the
maximum weight that can be simultaneously satisfied is in FP NP), efficient heuristics
and approximation methods exist for SAT related problems, which can usually find
solutions very quickly: in particular, the MaxWalkSAT algorithm (Kautz, Selman, and
Jiang 1996) for the weighted-MAXSAT optimization problem.

This MaxWalkSAT algorithm has been combined with simulated annealing to produce
an algorithm that near-uniformly samples satisfying assignments for a set of clauses in
reasonable time (Wei, Erenrich, and Selman 2004). Simulated annealing is very good for
sampling uniformly, but very slow for finding the assignments, while MaxWalkSAT does
not sample uniformly; the combination provides a near-uniform and efficient sampling
method. This (near-) uniform sampling is required for sampling in Markov Networks, and
so the combination of MaxWalkSAT and simulated annealing therefore also allows for an
efficient sampling procedure in Markov Logic: Poon and Domingos have implemented
this in the MC-SAT algorithm (Poon and Domingos 2006).

The MC-SAT algorithm is described in pseudo-code below. In the algorithm, M is a
subset of currently satisfied clauses that must also be satisfied in the next step of the
algorithm. At every iteration, a state is randomly sampled from USAT (M), the uniform
distribution over the set SAT (M) (the set of states that satisfy M). At the next iteration,
clauses satisfied by our taken sample can be, with probability 1 − e−wk , added to M ,
which continues for the specified number of iterations.
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3. Weight Learning in LP
MLN

MC-SAT Algorithm

I(0)← Satisfy(hard clauses)
for i = 1 to numsamples do

M ← ∅
for all ck ∈clauses satisfied by I(i−1) do

With probability 1− e−wk add ck to M
end for
Sample I(i) ∼ USAT (M)

end for

This MC-SAT algorithm has been adapted to work for LPMLN (Lee and Y. Wang
2018). It adapts the MC-SAT algorithm slightly to accord with the penalty formulation
(Section 2.3.3), so that ground instances of rules that are false in I(j−1) are added to M
with probability 1− ewk , and probabilistic stable models of I(j) that satisfy no rules in
M are chosen at every iteration.

Both MC-SAT (for MLN) and MC-ASP (for LPMLN) are regular and satisfy the detailed
balance with respect to PL Eq. (2.3) resp. PΠ (Lee and Y. Wang 2018). This sampling
method therefore works even for (near) deterministic dependencies, and is therefore a
useful sampling algorithm for these formalisms.

MAP-Based Learning

An alternative inference method which approximates the expected counts Ew(ni) of all
rules or formulas, which constitutes the partition function, is to compute the counts in the
single Maximum A-Posteriori assignment (MAP-assignment) (Koller and Friedman 2009,
p. 967). The Maximum-a-Posteriori query, also called the Most Probable Explanation
of the distribution, is the most probable assignment to all the (non-evidence) random
variables, and is generally much easier to compute. Thus, given a parameter setting w ,
non-evidence (query) atoms B and (possibly empty) evidence atoms A, the aim here is
to find:

MAP (IB | IA) = argmaxIB
Pw(IB, IA)

where IB is the set of all interpretations over the query atoms. This means that we are
looking for the most probable joint assignment given the current weight settings w.

To use this in learning, rather than contrast the counts of our data with the expected
counts, we contrast it with the MAP-assignment, which is usually easier to compute. To
calculate the gradient at every iterations (given a parameter setting w of that iteration),
we compute:

ED[ni]− ni[I
MAP (w)]

where IMAP (w) is the MAP-interpretation (assignment).
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3.3. Other issues in learning

Using this gradient in learning means we effectively try to optimize the following approx-
imate objective (for a single data instance):

l(w : D)− ln P (IMAP (w) | w). (3.12)

In optimizing for this objective, the partition function does not need to be computed,
because it cancels out over the two terms.

However, this objective has noticeable problems: Eq. (3.12) has its maximum either
when the counts over the data match the counts in the MAP -setting, or when all weight
settings w are set to zero (Koller and Friedman 2009, pp. 967–968). Furthermore, for
Markov Logic and LPMLN, the MAP-assignment might not be unique.

However, it was successfully used in (Singla and Domingos 2005) using MaxWalkSat,
where they used the average over the weights to counteract the effect of overfitting on
the dataset, at every iteration; furthermore, they initialized the weights at the log-odds
of the weights with the goal of making learning faster.

Log-Odds calculation

As described in (Richardson and Domingos 2006), an intuitive understanding of a weight
of a formula in an LPMLN-program or a Markov Logic Network, is as the logarithm of the
odds ratio, other things being equal. This follows immediately from Eq. (2.4), where the
unnormalized weight corresponds to the exponent of the sum of weights of rules. Thus,
the log-odds of a rule R in an interpretation I, corresponds to:

log

(

nR

|{r : r ∈ gr(R), I 6|=}r|

)

. (3.13)

Here nR refers to the number of times rule R is satisfied under I (i.e., number of true
groundings), and the denominator counts the number of groundings of R which are
violated under I.

This interpretation of the weight of a rule is only correct if the rules are independent: in
general, changing the truth value of one rule influences the number of times another rule
is violated or satisfied. This is simply because variables are shared among rules; again,
the edges between predicates in the graph corresponding to an LPMLN Network represent
these dependencies.

In (Eiter and T. Kaminski 2016), the log-odds was the only used learning method, which
was adopted as an approximation of the real distribution. This learning method only
involves a single calculation per rule, and can be seen as assuming independence between
constraints. This is generally a false assumption to make, but can sometimes work well;
it performed well as a learning method in (Eiter and T. Kaminski 2016).

3.3 Other issues in learning

The previous sections have dealt with the theoretical or mathematical properties of weight
learning, and how to efficiently perform weight learning with respect to the possible
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3. Weight Learning in LP
MLN

objectives. In doing so we have stepped over some related issues that might occur,
depending on the nature of the dataset.

3.3.1 Multiple interpretations

In many of the equations described above we have provided the equation for multiple
interpretations or stable models provided as training data. Equation (3.7) can easily be
extended to learn over multiple data instances (stable models I1, ..., Im) in the training
set:

∂ ln PΠw
(I1, ..., Im)

∂wi
=

∑

j∈{1...m}



−ni(Ij) +
∑

J∈SM [Π]

PΠw
(J ) · ni(J )



 . (3.14)

The only difference then lies in computing the counts ni for every iteration, as the second
term of the summation is the same.

For the conditional likelihood (as in Eq. (3.8)), this is slightly different, where the
following equation describes the gradient over multiple stable models:

∂ ln PΠw
(I1, ..., Im)

∂wi
=

∑

j∈{1...m}



−ni(IA,j , IB,j) +
∑

JB∈SM [Π]

PΠw
(JB | IA,j) · ni(J , IA,j)



 .

(3.15)
where the right term involves summing over the probabilities of all stable models JB

involving a query predicate, given the values to atoms A (groundings of evidence
predicates) as given by the j-th stable model (1 ≤ j ≤ m).

Alternatively, learning from multiple stable models can be reduced to learning from a
single stable model, as shown in in (Lee and Y. Wang 2018). Lee and Y. Wang describe a
method that does this by introducing an extra argument to every predicate, indexing the
stable model; an alternative method, used in Chapter 4, is to encode the dataset in every
element of the domain (e.g. “Alice-j”,“Alice-k”). Intuitively, this makes all the datasets
disjoint and separates all information, so that the groundings of rules over different
datasets are distinct.6 By exactly the same reasoning as Theorem 3 of (Lee and Y. Wang
2018, p. 15), combining datasets is then equivalent in terms of the probability distribution,
to learning on the separate datasets and using the product of the probabilities.

3.3.2 Ill-conditioned data

For general gradient-descent algorithms, especially those using a simple update procedure
as standard gradient-descent, ill-conditioning of the data is frequently an issue. Ill-
conditioned data means, roughly, that a small difference in the output variable can have
a very big effect on the variable to be optimized. If the condition number—a measure

6The groundings of any two ground programs, obtained by two datasets with such an encoding in
their constant-names, is then independently divisible so that their programs are independent (B. Wang
et al. 2018).
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3.3. Other issues in learning

on the effect a change has in input variables, on the output variables—is very large, the
learning problem is said to be ill-conditioned, otherwise well-conditioned.

In general, the condition number is given by:

lim
ǫ→∞

sup
‖δx‖≤ǫ

‖δf‖

‖δx‖

where ‖ · ‖ is a norm function, for example euclidean norm. In the specific case of our
learning problem using gradient descent, the condition number is the ratio of the largest
and smallest eigenvalues of the Hessian matrix.

In ill-conditioned problems, because of the corresponding large difference between counts
of rules, no learning weight is appropriate for all weights, which can significantly decrease
or slow down the effectiveness of gradient descent. Per-weight learning rates are reported
by Lowd and Domingos as being especially successful if some rules (clauses, formulas)
have significantly higher counts (or violations, depending on the implementation) than
other rules, so that the learning rate is dominated by those former rules.

3.3.3 Missing data

In normal scenarios, and for all learning methods explained above, it is assumed that
all data is complete: for any atom the data says whether it is true or false. In many
cases, this does not hold of the data: not all values are witnessed and so the truth-value
of some atoms is unknown from the data. This scenario of missing data, or incomplete
interpretations, brings with it a number of new issues.

Unlike the case of fully observed data (investigated in the rest of this chapter), in the
case of missing data we cannot simply maximize the likelihood of the observed data. This
is because the distribution underlying the observed data decomposes into two, possibly
connected, distributions: the distribution underlying the random variables (in our case,
relations), and the observation mechanism. We are here not interested in learning the
distribution of only the observed relations, but of all occurring values, including the
missing ones.

A simple case of when the observation mechanism is of importance in learning weights, is
when certain values of a random variable (atoms) are purposely deleted. As an example,
we might do a simple coin-flip a number of times, except that the experimenter who
gives us the values does not like “heads” (does not like the picture displayed) and so
frequently will not note these values.(Koller and Friedman 2009, p. 849) Our observed
data would then be heavily biased towards tails, which would not adequately represent
the true distribution. However, if we sometimes miss data because the coin landed on
the floor — assuming a perfect coin, or one where landing on the floor is independent on
the value — our observed data would adequately represent the true distribution.

The theory of learning in the case of missing data is involved and we will here only be able
to discuss certain aspects. Generally, if there is missing data, the data is generated first
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3. Weight Learning in LP
MLN

according to the data distribution or model, and secondly according to the observability
model (Koller and Friedman 2009, p. 851). This means that there are, in general, two
sets of parameters that have to be learned to understand the process that generated
the dataset: in addition to the normal weights, we have the parameters that define the
observability model. Since these could be combined (as in the first coin-toss example),
learning the real model can be highly difficult in the case of missing data, even if we are
only interested in the model that describes the data distribution.

Of particular interest therefore are situations with missing data satisfying some properties.
For this, we will phrase the theory in terms of general random variables: in the case of
LPMLN, these random variables are the truth values of relations. Define for any random
variable X the observability variable OX , the value of which (written oX) says whether
the value of X is observed. The first is as the second coin-toss example, where whether
a value is observed or not is completely random: this is called Missing Completely At
Random data (MCAR). More formally:

Definition 3. A missing data model Pmissing is MCAR if Pmissing |= (X⊥OX) for all
random variables X.

where X⊥Y means (as is common) that X and Y are independent events. This means
that the observation mechanism is independent of the distribution underlying X: whether
we observe an atom or not is independent of its value.

The second situation is when data is said to be Missing At Random (MAR). To introduce
this, let z be a tuple of observations: values of (some of) the random variables. We
partition the random variables X, into observed Xz

obs and hidden Xz
hidden ones, such

that the value of Xi in the observed set Xz
obs is known in an observation z, and unknown

in Xz
hidden. Then we can define MAR as follows:

Definition 4. (Koller and Friedman 2009, p. 854) A model Pmissing is MAR if, for all
observations z with non-zero probability and for all possible values of the hidden random
variables, xz

hidden, we have Pmissing |= (oX⊥xz
hidden | x

z
obs).

In words, given the values in an observation z of observed variables xz
obs, the values of

the observability variables OX of X are independent of xz
hidden. This is a somewhat

contrived definition, but it says, intuitively, that the values of the observed variables
fully account for the hidden variables: the observability mechanism will not provide new
information on the hidden variables. Note that MCAR ⊂ MAR (taking both as sets of
models).

By contrast, data is not missing at random when the value of a variable that is missing,
is related to the reason it is missing.

MCAR and MAR are important situations, because the likelihood function of the missing
data can be written as the product of two likelihood functions: one for the observability
model, and one for the data model (Koller and Friedman 2009, p. 855). Thus, we can
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3.4. Learning example – Virus dataset

ignore the observability model (which is generally unknown) in optimizing the weights;
this is generally not the case for situations that are not M(C)AR.

Learning on missing data

Even though the optimal weights can be optimized using standard gradient ascent in
the case of data missing at random, there are normally multiple interpretations or stable
models that satisfy the partial evidence.

In this case, if we consider the data as a single ground formula F , the probability of the
data which is used in the optimization algorithm with respect to LPMLN program Π (Lee
and Y. Wang 2018, p. 5), is:

PΠ(F ) =

∑

I|=F,I∈SM [Π] WΠ(I)
∑

J∈SM [(]Π) WΠ(J)
. (3.16)

Here there are multiple further possibilities to optimize the likelihood function (Koller
and Friedman 2009). For our experiments in Chapter 4, the Expectation Maximization
(EM) algorithm (Bishop 2006) is used. This attempts to fill in, or complete, the missing
data optimally using the current parameter settings at every iteration.

3.3.4 Lifted Learning

Before turning to a learning example, the method of lifted learning methods deserves
attention. LPMLN and MLN are first-order logic based formalisms, but all methods
described in this chapter involve computing all the groundings, and learning weights
on the grounded Markov Network. Computing all groundings can create an immense
number of random variables, making learning and inference very complicated. Lately,
efforts have been made to perform inference and learning on lifted MLN’s, which use
symmetries in the structure of the lifted (first-order) model to significantly speed up
inference (Kimmig, Mihalkova, and Getoor 2015; Van Haaren et al. 2016). These efforts
have shown lifted inference and learning methods can be very efficient, while also giving
very accurate results. However, because of the extra time needed to study these topics in
detail and because we have not been able to get these methods to work in Chapter 4, we
will not pursue these methods and implementations further in this work.

3.4 Learning example – Virus dataset

To illustrate some of the concepts and methods illustrated in this chapter, we will here
consider a simple dataset and train the weights on this dataset. We use the artificial
toy "Virus" dataset from (Lee and Y. Wang 2018), which serves to illustrate some of the
aspects of learning and of the LPMLN formalism. The goal is to predict the probability
that someone carries a virus, given certain relations between people. This is a collective
classification problem, where a good prediction should take into account the relations
between the people in the domain.
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3. Weight Learning in LP
MLN

The LPMLN program under consideration consists only of the following two rules:

Program 3.1

Hasdisease(x)← Carriesvirus(x) : w

Carriesvirus(y)← Contact(x, y), Carriesvirus(x) : w

A version of the dataset is available at (LPMLN learning system 2019), although we
will use the adapted version described in (Lee and Y. Wang 2018, p. 6). This adapted
version can be represented (with respect to the “Contact” relation and the “Carriesvirus”
predicate) in the following graph (Lee and Y. Wang 2018, p. 6):

a

b c

d

f

ge

Where the edges represent the contact relation, triangles represent people that carry
the virus, and rectangles represent people that do not carry the virus. The edges are
undirected since the “Contact” relation is symmetric. We state that “a” and “b” have
the disease.

Using the LPMLN-learn system, learned weights differ rather strongly between algorithms.
See table. Pseudo-log-likelihood is clearly the fastest with only 5 seconds, while MC-ASP
takes 15 minutes and Gibbs sampling takes 10 minutes. Metropolis-Hastings sampling,
theoretically better, also performs much faster than Gibbs with one-and-a-half minutes.
For MC-ASP we used 100 max iterations with 100 samples each iteration, and a learning
rate of 0.1. Results did not change significantly when changing these parameter settings.
Noticeable in the results is that different weights do not significantly alter the predictions,
and all manage to capture the structure of the Network and the influence that has on
the “Carriesvirus” predicate.

Using Alchemy, MCSAT learning with 100 iterations and max 100 MCSAT samples at
each iteration, learning is extremely fast at under a second. Letting Alchemy choose the
size of the sample (it chooses around 10000) learning takes 1 minute and 5 seconds. This
makes it significantly faster than the LPMLN learning algorithm. This is partly due to the
implementation, but presumably also since the LPMLN-learn system does not distinguish
in query and evidence predicates so does not clearly perform discrimative learning, as
Alchemy does. Indeed, training only on the “Carriesvirus” predicate in Alchemy makes
learning slower by half a minute, because there are more predicates to be conditioned on.
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3.4. Learning example – Virus dataset

Table 3.1: LPMLN-learn virus dataset

PLL Gibbs MC-ASP

Weights
Rule 1: 0.67
Rule 2: 0.65

Rule 1: 0.69
Rule 2: 0.28

Rule 1: 0.923
Rule 2: 0.233

Predictions

Carriesvirus(c) 0.74
Carriesvirus(d) 0.74
Carriesvirus(a) 1.0
Carriesvirus(b) 0.74
Hasdisease(c) 0.49
Hasdisease(d) 0.49
Hasdisease(a) 0.66
Hasdisease(b) 0.49

Carriesvirus(c) 0.66
Carriesvirus(d) 0.66
Carriesvirus(a) 1.0
Carriesvirus(b) 0.66
Hasdisease(c) 0.44
Hasdisease(d) 0.44
Hasdisease(a) 0.66
Hasdisease(b) 0.44

Carriesvirus(c) 0.63
Carriesvirus(d) 0.63
Carriesvirus(a) 1.0
Carriesvirus(b) 0.63
Hasdisease(c) 0.45
Hasdisease(d) 0.45
Hasdisease(a) 0.71
Hasdisease(b) 0.45

Table 3.2: Translated Alchemy learn virus dataset

PLL MC-SAT LPMLN-Learn

Weights
Rule 1: -1.49073
Rule 2: 0

Rule 1: 0.42
Rule 2: -4

Rule 1: 0.923
Rule 2: 0.233

Predictions

Carriesvirus(a) 0.99
Carriesvirus(b) 0.99
Carriesvirus(c) 0.99
Carriesvirus(d) 0.99
Carriesvirus(e) 0.99
Carriesvirus(f) 0.99
Carriesvirus(g) 0.99
Hasdisease(a) 0.64
Hasdisease(b) 0.59
Hasdisease(c) 0.61
Hasdisease(d) 0.70
Hasdisease(e) 0.68
Hasdisease(f) 0.58
Hasdisease(g) 0.58

Carriesvirus(a) 0.99
Carriesvirus(b) 0.02
Carriesvirus(c) 0.01
Carriesvirus(d) 0.02
Carriesvirus(e) 4.99e-05
Carriesvirus(f) 0.99
Carriesvirus(g) 0.99
Hasdisease(a) 0.63
Hasdisease(b) 0.01
Hasdisease(c) 0.01
Hasdisease(d) 0.02
Hasdisease(e) 4.99e-05
Hasdisease(f) 0.60
Hasdisease(g) 0.64

Carriesvirus(a) 0.99
Carriesvirus(b) 0.61
Carriesvirus(c) 0.64
Carriesvirus(d) 0.58
Carriesvirus(e) 0.57
Carriesvirus(f) 0.58
Carriesvirus(g) 0.56
Hasdisease(a) 0.74
Hasdisease(b) 0.47
Hasdisease(c) 0.498
Hasdisease(d) 0.44
Hasdisease(e) 0.43
Hasdisease(f) 0.43
Hasdisease(g) 0.40

We have here tried also a different gradient ascent procedure, which gives exactly the
same results as the standard gradient ascent.

The results of Alchemy based learning on the translated input are in Table 3.2. As
already reported in (Lee and Y. Wang 2018, p. 7), learning under the MLN semantics
fails to capture the relation between the persons in the domain. The structure given
by the contact relation under this interpretation is not visible in the results at all. An
explanation for this is that the LPMLN2MLN system only gives an equivalent Markov
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3. Weight Learning in LP
MLN

Logic Network for absolutely tight programs as described in Section 2.3.2. Since the
positive dependency graph of the virus program has cycles, the program resulting from
the LPMLN2MLN translation is not equivalent. This also explains why stipulating the
weights (using those learned with MC-ASP under LPMLN-learn) does not give equivalent
results, when using Alchemy for the inference. However, given the weights as calculated
in LPMLN-learn but using Alchemy for inference, the result is slightly better, as we can
see in Table 3.2, third column.

This learning example on the virus dataset already illustrates that the different methods
are not equivalent: the weights learned using different methods (PLL or MC-ASP
sampling) are different. Also, we see here that the translation to MLN does not always
work; this depends on the structure of the LPMLN program. However, from this we do
not have a good notion of accuracy of the learning methods. In the next chapter we
will consider a learning problem where we can properly measure the quality of learned
models.
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CHAPTER 4
Experiments

4.1 Problem specification and LPMLN program

In this chapter we perform multiple experiments related to weight learning in LPMLN.
For all experiments, we use the image classification dataset from the LabelMe dataset
(Russell et al. 2008), where LPMLN was used by (Eiter and T. Kaminski 2016). This
dataset contains 120 indoor and 120 outdoor images, which we shall split (following Eiter
and T. Kaminski) in 30 training, 30 validation and 60 test images both. This makes it
a relatively small dataset, which might have an impact on the effectiveness of learning
methods.

Our experiments involve the following topics:

• Differences between learning methods and effectiveness on our dataset;

• Differences in parameter settings in learning methods;

• Relations between the rules and the corresponding weights;

• Learning on data involving missing data.

From Chapter 3 and while performing experiments, we obtained the following hypotheses
that we consider in this chapter:

H1. MC-ASP/MC-SAT sampling methods outperform pseudo-likelihood based learning
and the log-odds calculation.

H2. Different parameter settings influence prediction results of learning methods notably.
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4. Experiments

H3. The constraints of our dataset are mostly independent, such that learning the
weights of the rules independently of one another is equally effective as combined
learning.

H4. Using Expectation-Maximization (EM) outperforms standard MC-ASP/MC-SAT
learning methods in the case of missing data, on identical parameter settings.

These hypotheses are tested with the goal of highlighting specific topics within weight
learning in LPMLN. In addition, general observations regarding weight learning on our
dataset are surveyed. As a measure on the effectiveness of learned models, we test
primarily on prediction accuracy. Prediction accuracy is measured here using the Jaccard
similarity coefficient score J (Pedregosa et al. 2011). This compares the predicted labels
with the true labels, according to the following formula:

J(ypred, ytrue) =
|ypred ∩ ytrue|

|ypred ∪ ytrue|
(4.1)

In addition to this metric, we consider whether specific classes are represented in predic-
tions, based on confusion matrices of predicted classes vs true classes.

The first hypothesis stems from results from experiments done on weight learning Markov
Logic Networks (Singla and Domingos 2005; Lowd and Domingos 2007). In addition, the
log-odds model is based on very strong assumptions on the distribution; we expected
models with less assumptions to work better. The second hypothesis stems from (Lowd
and Domingos 2007), where methods based on line search outperform standard gradient
ascent methods. The third hypothesis arose from experiments done, where the log-
odds computation performed very well in our tests; our hypothesis would explain this
result. Finally, the fourth hypothesis arises from the theory of missing data scenarios, as
explained in Section 3.3.3.

4.1.1 Data description

For both the indoor and outdoor set, we use the 12 labels that have been defined and
used in (Eiter and T. Kaminski 2016):

• indoor: “chair” (c), “monitor” (mn), “keyboard” (k), “mouse” (ms), “table” (t),
“book” (bk), “shelf” (s), “wall” (wl), “board” (br), “person” (p), “door” (d) and
“window” (wi)

• outdoor: “sign” (sg), “person” (p), “tree” (tr), “window” (wi), “door” (d), “street”
(st), “car” (c), “sky” (sk), “building” (b), “sidewalk” (si), “wheel” (wh) and “trunk”
(trn).

.
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4.1. Problem specification and LPMLN program

The number of objects in a scene varies between 7 to 23 for the indoor, and 7 to 28 for
the outdoor scenes. The goal of the classification is to assign the labels to (manually
segmented) objects. In addition to these labels, the relations “contains”, “close to”,
“above”, “under”, “overlaps”, “contains in bottom part” and “higher”. Using these
relations, this becomes a collective classification problem, where the relations between
objects should be taken into account for the classification.

The rules to be learned are all constraints, also as in (Eiter and T. Kaminski 2016). As
an example rule of the encoding:

Program 4.1← assignedlabel(x, s), not containsBook(x) : w.

containsBook(x1)← contains(x1, x2), assignedlabel(x2, bk) : α.

Here s stands for “shelf”; the weak constraint intuitively says that shelves usually contain
books.

In total there are 20 rules to be learned both for the indoor dataset and for the outdoor
dataset. In (Eiter and T. Kaminski 2016) only the log odds were learned, assuming
independence of the constraints:

wi =
∑

I∈IKB

log

(

numunsati(I)

numsati(I)

)

where numunsati is the number of times the i-th constraint is violated in I, and numsati

is the number of times it is satisfied. This method for learning the weights makes very
strong assumptions on the distribution—independence of the constraints—but performed
well in practice for the hybrid classification, almost consistently improving the result of
the local classifier.

For the prediction, on the validation and test set, the “local” classifier (we use logistic
regression as in (Eiter and T. Kaminski 2016)) is combined with the LPMLN program
into a hybrid classifier. Here the LPMLN program that represents this hybrid encoding is
given by Program 4.1 along with:

Program 4.2a_label(x, C)← not not_a_label(x, C), object(x), label(C) : α.

not_a_label(x, C)← not a_label(x, C), object(x), label(C) : α.

← 1 6= #count{C : a_labelProb(x, C, P )}, object(x) : α.

← not a_labelProb(x, C, P ), cl(x, C, P ) : P.

a_labelProb(x, C, P )← a_label(x, C), cl(x, C, P ) : α.

Here the cl(x, C, P ) is the probability P assigned by the local classifier to x belonging
to C. a_label is short for assigned_label. Testing of the learned weights (both on
validation and on the test set) is done by comparing with the non-hybrid classification
model based only a local classifier as in (Eiter and T. Kaminski 2016).
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4. Experiments

For learning, it is only the weights in Program 4.1 that are to be learned, as the P -values
in Program 4.2 are given by the local classifier. Our learning setup therefore separates the
LPMLN program from the local classifier and does not involve Program 4.2. We include
the following rules instead to create all possible interpretations, which constitute the
learning LPMLN program together with the context constraints of form Program 4.1:

Program 4.3

not_a_label(x, C)← not a_label(x, C), object(x), label(C). : w.

a_label(x, C)← not¬a_label(x, C), object(x), label(C). : w.

← 1! = #count{C : a_label(x, C)}, object(x) : α.

These rules are required to create all possible answer sets of the LPMLN program, to
contrast the data against. All relational facts such as objects being above or left of
another, or objects containing another, are given as facts in the input LPMLN program
so that the answer sets differ only with respect to the rules (constraints) to be learned.

For the native LPMLN-learn system, only one datafile can be given as input, so we encode
the relevant dataset to every constants, e.g. “object1-000000”. This is done as explained
in Section 3.3.1, and equivalent in the learned weights to learning on every dataset
separately (at each iteration).

Since all weights only relate to constraints in this setup, we perform inference using
standard ASP with weak constraints directly, and no inference in LPMLN through a
transformation to ASP is necessary. This can be seen by considering Section 2.3.3: the
translation to ASP would include an atom unsat with weight equal to the constraint,
which is a unnecessary step if all weighted rules are constraints. For learning, because of
the differing semantics of the weights, the body B of every weak constraint is negated
to give ¬B, and the weight of the learned LPMLN rule is flipped in sign. As ¬B is only
allowed syntax for clingo if B is a literal, we further translated this to equivalent rules in
clingo syntax by introducing an auxiliary predicate violated. For the weak constraint of
Program 4.1 we used:

Program 4.4

violated(i, x)← assignedlabel(x, s), not containsBook(x) : α.

← not violated(i, x) : −w.

where i is the number of the constraint, and −w indicates that the learned weight is the
negative of the weight used in the hybrid-classification encoding. This translation can
not be used for LPMLN2MLN learning, as here Alchemy memory usage quickly exploded
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4.2. Systems and setup

and within seconds Alchemy loaded 15 gb’s in memory. However, in first-order logic the
negative translation is easily encoded, since first-order formulas can easily be negated.1

Unlike in (Eiter and T. Kaminski 2016), we do not perform constraint selection, since
this is not part of the weight-learning problem per se, but rather a part of learning the
structure of the LPMLN program: it concerns learning the ideal combinations of rules,
not learning the weights of those rules. In addition, the weight-learning method would
ideally make weights of non-influential rules go to zero.

We also consider an interpretation of a rule as a Markov Logic formula, where a rule
A ← B is directly interpreted as the first-order formula B → A. Here the weights are
kept the same. This interpretation is not semantically equivalent — as explained in
previous chapters, the LPMLN semantics extends the MLN semantics — and provides
a simplified interpretation. However, this can still work or yield interesting practical
results. We will refer to such an interpretation as a direct MLN interpretation.

We included the relational “facts” of every scene in the input program for the LPMLN-learn
except where mentioned otherwise. For example, “above(object1,object2)” and “con-
tains(object2,object4)” are considered as facts. In this way, the learning method becomes
discriminative, which makes sense in this setup since all such facts are given, and the
prediction of labels of objects is queried.

4.2 Systems and setup

All tests were performed on a Dell XPS 9550 with Intel R© CoreTM i7-6700HQ CPU @
2.60GHz 8 core processor running Ubuntu 18.10, although the learning methods are not
setup for multiple core usage. It has 16 gb of RAM memory, and although the system
has additional swap space, this turned out to be too slow for learning.

For native LPMLN learning the LPMLN-learn system (LPMLN learning system 2019) is the
only available system, featuring MC-ASP sampling-based learning algorithms, along with
Pseudo-likelihood learning, Gibbs-sampling and MH-sampling. MC-ASP is a sampling
algorithm based on MC-SAT, adapted for ASP. The methods based upon the MC-ASP
are gradient ascent based learning methods, which differ in the sampling implementation
used. The implementation using the near-uniform Xorro sampler (Everardo, R. Kaminski,
and Lindauer 2019) is used in the "MC-ASP-EM" (expectation maximization) algorithm,
while the standard MC-ASP uses an internal clingo "XOR-count" sampler. Internally, the
LPMLNlearn system uses, LPMLN2ASP (Lee, Talsania, and Y. Wang 2019) to compute
LPMLN using Clingo. The system uses both clingo versions 4 and 5: 5 for the MC-ASP
methods, 4 for the other methods.

For the translation to Markov Logic, LPMLN2MLN is used, which is included in the
LPMLN2ASP program. This allows using both Alchemy (Alchemy: Open Source AI

1Formulas cannot easily be negated in LPMLN2MLN input, so the negative translation is applied to
the resulting MLN program.
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4. Experiments

2019) and Tuffy (Niu et al. 2011) for learning and inference. Alchemy-2 also allows
lifted learning and extended inference mechanisms, although Alchemy version 1 already
provides many learning algorithms: log-likelihood based generative learning, and voted
perceptron, diagonalized Newton’s method, and rescaled conjugate gradient ascent for
discriminative learning. In addition, it allows Expectation Maximization to fill in missing
data. In our experiments we frequently encountered problems using Alchemy 2 (thrown
exceptions) which did not arise in the original version of Alchemy. Unless mentioned, we
therefore used the original version 1 of Alchemy in our training.

We split the data into an equally sized training and test set, both containing 60 scenes
(for both indoor and outdoor). We then subdivided the training set into equal training
and validation sets; the validation set is meant for tuning the learning methods and to
test (and possibly reject) hypotheses about settings.

The hybrid classification program Program 4.2 uses dlvhex for the ASP (with weak
constraints) computation, to input the results of the local classifier in the program.
dlvhex (Eiter, Mehuljic, et al. 2015) is a logic-programming reasoner used for HEX-
programs, which are an extension of answer set programs which allow for external
computation sources. In the hybrid classification program, this allows for injecting
classifier weights and inferring atoms using Python libraries.

As the weights resulting from both LPMLN-learn and Alchemy are decimal valued, and
both Clingo and dlvhex only support integer weights, we multiply the weights accordingly
so that the resulting weights are integer-valued, yet capture most of the precision of
the output weights of the learning methods. As an example, if this is not performed
all weights between zero and a half would obtain the same weight when using clingo;
essential precision would be lost. We generally scale to four decimal places (except when
mentioned explicitly in the results).

For the accuracy scoring we use scikit-learn (Pedregosa et al. 2011). However, since these
scores also involve the influence of the “local” (feature-based) classifier in the hybrid
classification setup, these accuracy scores are not absolute measures of the effectiveness
of the learning methods, but always relative to the performance of the local classifier.
However, since this model is fixed in all tests, the performance of different learning
methods can be properly assessed based on this score.

In order to be able to assess the effect of weight learning mostly independently of the
local classifier, we also include in our tests an LPMLN-program with all equal weights, for
both the indoor and outdoor dataset. As explained in Section 2.2.2 and Section 2.3, this
corresponds to looking for the interpretations that satisfy the maximum number of rules
and can be interpreted as a “qualitative” weight-assignment. Including this provides a
benchmark for any learning method.
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4.3. General training

4.3 General training

In this section we test the first and second hypotheses introduced in the beginning of
this chapter. For this, we needed to test multiple models; we therefore first describe
initial observations with respect to training, including the time it takes to learn models
using specific methods, and then proceed to discuss general observations related to the
accuracy performance of trained models.

4.3.1 Training time

Indoor Training times are listed in Table 4.1. The log-odds calculation as used in (Eiter
and T. Kaminski 2016) calculates the weight in 12 seconds over the indoor dataset, but
makes very strong independence assumptions on the weights and involves no optimization
procedure.

Table 4.1: Training times, indoor dataset

PLL-LPMLN MCASP-LPMLN PLL-Alchemy

Iterations 50 50 (50 samples) 336
Time 1 h 4 h 32 m 10 m

MCSAT-Alchemy MAP-Alchemy Log-Odds

Iterations 100 (344 samples) 100 (344 samples) n.a.
Time 6h. 28 m. 40 m. 12 sec.

Learning with the pseudo-likelihood objective for 50 iterations, training took 60 minutes.
To determine the proper settings for gradient ascent, we trained several models over 20
iterations on only four scenes, with different parameter settings; learning these models
takes only a few minutes to compute. For pseudo-likelihood learning with Alchemy after
converting through LPMLN2MLN, 10 minutes and 17 seconds were required for the
computation, consisting of 336 iterations of the L-BFGS algorithm. By far the biggest
amount of the computing time lies in computing the counts, however, as the L-BFGS
algorithms only takes a few seconds to complete all the iterations. Since the L-BFGS
algorithm avoids the problems of standard gradient ascent, such as the starting point
(which only influences convergence time, due to there being no local minima/maxima),
step size, and direction, different models are not necessary to consider here.

Learning using the sampling methods in LPMLN-learn was noticeably slower than pseudo-
log-likelihood, as expected. It took 272 minutes over 50 iterations with 50 samples each
iteration, or four-and-a-half hours.

Learning with any of the discriminative methods in Alchemy on the translated program
also shows the large increase in computing time over pseudo-(log-)likelihood: fifty
iterations of the MC-SAT learning algorithm takes 6 hours and 28 minutes. This is
noticeably longer than the method in LPMLN-learn, which can be explained by the larger
number of MC-SAT samples that are automatically determined in Alchemy: 344 samples.
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4. Experiments

Other gradient methods in Alchemy (Voted Perceptron, Scaled Conjugate Gradient) take
equally long on this dataset. That they take equally long indicates that they do not reach
the convergence criteria any quicker, and that all iterations are needed for computing the
weights.

We also performed ten iterations of every learning method, to test these against the
models learned using more iterations. Ten iterations normally take around 45 minutes to
finish.

The rules of Program 4.1 introduce cycles into the program, which makes learning using
ProbLog impossible: ProbLog does not accept the input program. Without these rules,
ProbLog does not have any models to learn against (compare the contrastive formulations
in Chapter 3); this is precisely the role of the (hard) guessing rules (which allow to
contrast the evidence with all stable models). Hence using ProbLog for learning these
weights is not an option.

Training on the direct interpretation as an MLN formula in Alchemy was much faster than
the LPMLN-learn method again, taking 62 iterations and stopping because of convergence,
in 26 minutes. When using Voted Perceptron for learning, 100 iterations were done
without converging, over 42 minutes.

From the result in Section 4.3.2, we implemented a learning method in LPMLN-learn
which learns separately on each dataset, on each iteration, using MC-ASP. Since Alchemy
performs the sampling and learning on every dataset separately each iteration, we
implemented and tested this in the LPMLN-learn program. Note that, as explained in
Section 3.3.1, both ways lead to the same probability distribution in theory, with the
difference that the number of samples is higher if performed on every scene separately.
The new learning method takes 100 minutes, versus the three to four hours of the other
method.

Outdoor For the outdoor dataset different problems arose with learning, under both
systems. For the combined training and validation data, the LPMLN-learn methods
could not learn on this dataset: the MC-ASP method had not finished a single iteration
overnight, and the Pseudo-log-likelihood did not finish a single iteration on even a smaller
dataset of only ten scenes. This seemed not to be purely an implementation-specific
problem, as Alchemy also failed to initialize the learning procedure: it could not load
all ground Markov Networks into memory. Alchemy actually used fifteen gigabytes of
swap space in addition to fifteen gigabytes of RAM. Pseudo-log-likelihood learning in
Alchemy posed no problems, and took 30 minutes to perform on the full training data.
The same problem arose in Tuffy, despite using PostgreSQL to save the groundings: it
required more memory than available to compute all groundings. Alchemy required 22
hours for 39 iterations with only 200 MC-SAT samples each iteration per dataset (for 25
datasets)—the maximal we were able to compute due to memory problems—which is a
lot less samples than the initial settings.
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4.3. General training

For this reason we use a much smaller number of scenes in the following experiments (10
or less), which we have found to not have a noticeable effect on the effectiveness of the
methods. In addition, this keeps computation time down for our experiments to around
an hour for 100 samples over 30 iterations.

Learning in LPMLN-learn under our separate database implementation, on all scenes,
posed no problems as encountered when learning on the combined data. This is the same
result as encountered with learning on the indoor dataset, to a greater extent; learning
was only possible when the stable models were not combined but learning was done
separately.

4.3.2 General accuracy observations

The average accuracy over the validation dataset for the log-odds model is 0.54, versus
0.48 without using constraints and 0.49 using uniformly weighted constraints. This
learning method is therefore a noticeable improvement over the local classifier and over
all-equal weights. We will use this as a reference learning result for the other methods
and learned models.

Pseudo-log-likelihood

As discussed in Section 3.2 and found in (Lowd and Domingos 2007) we expected
Pseudo-log-likelihood to perform less well than the sampling (discriminative) methods.

For PLL in LPMLN-learn, getting the step size right proved important for prediction
accuracy. At an initial learning rate of 10 (which is very big, and just used for testing
purposes), the model performed poorly at 0.2 accuracy; at a learning rate of 1 or 0.1,
performance is about 0.5 over 20 iterations. This decreased slightly over 30 iterations (to
0.49) which might be a case of overfitting. The predictions are also quite different for the
different step sizes, see Fig. 4.1a) and Fig. 4.1b).

We tried using a decay in the learning rate2, which after 10 iterations performed at only
0.32 average accuracy, which later improved to 0.43. Here the learning method first goes
too far and overshoots the step (and classifies everything to a few classes), which it later
tries to compensate; this is visible from the learned weights. However, because of the
decay, it seems to fail to compensate properly.

The sensitivity to the step size is the primary advantage and reason for using smarter
methods which try to approximate the appropriate step size (such as line search). This
also indicates that the step size is important to get right for LPMLN-learn.

The Alchemy PLL-learning method is based on the L-BFGS algorithm, which approx-
imates the Hessian to determine the search direction and uses line search for the step

2The idea of the learning rate decay is that the algorithm first makes big steps towards the right
settings, and tweaks this with smaller steps. Of course, this depends on not overshooting it in the first
step; it also introduces a new parameter, the decay factor, which complicates learning.
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4. Experiments

(a)) PLL LPMLN-learn, step size 1 (b)) PLL LPMLN-learn, step size 0.1

(c)) PLL Alchemy (d)) MC-ASP LPMLN-learn

(e)) MC-SAT Alchemy (f)) MAP Alchemy

Figure 4.1: First models Indoor, validation results
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4.3. General training

size. Using the weights as output by Alchemy after appropriate scaling, performance was
bad at 0.19. However, here the weights are centered around 0, with differing signs; after
adding 1 to every weight so as to make all weights positive, this model performed at 0.53
on the validation data. This can be explained by the scaling required for inference in
Clingo or dlvhex: scaling makes the difference in weights bigger because of the differing
signs, so shifting the weights before scaling prevents this. Alternatively, flipping the sign
of the weights (which is here contrary to the semantics) also improved the prediction
accuracy in the same way.

Some of the same classification patterns can be seen in the LPMLN-learn and Alchemy
learned pll models—too much classification to the “chair” and “monitor” classes—but
the Alchemy model performs better overall.

This is an important limitation of weight learning in LPMLN as it currently is, where
the precision of learned weights is difficult to take into account for inference. Here it is
also important to note that inference in every step of the LPMLN-program is currently
done by rounding of the weights, which drops important precision of the weights. In
general, we have found that the scaling can have a very big impact on the predictions
of learned models; issues arose especially when all weights were below zero (as was the
case by models learned using Alchemy), where flipping the sign was necessary for good
results. The predictions of the Alchemy model can be seen in Fig. 4.1c).

Besides the different gradient ascent algorithm used in Alchemy, there is another difference
between the models which could explain the difference in performance between the
Alchemy and LPMLN-Learn models. As described above in Section 4.1, the input LPMLN

program has a conditional or discriminative strucure, in that the facts of the scene
are input and only the weak constraints are learned. When performing the learning
as such a (discriminative) PLL model—learning only the weights of rules involving
“assigned_label” and “not_assigned_label” predicates—the model performed the same,
and the corresponding prediction (on the validation set) is almost exactly the same as the
PLL Alchemy model learned without specifying these predicates, at 0.53 average accuracy.
Therefore, the difference in performance of the two algorithms is best explained by the
different implementations (L-BFGS in Alchemy performing better) and not because of
the way we formulated the input data for LPMLN-learn.

MC-SAT/MC-ASP

For MC-ASP in LPMLN-learn, we again first performed multiple tests on a small training-
set of 4 scenes, to determine the optimal settings. We anticipate that the same results
as in pseudo-likelihood based learning in LPMLN-learn will occur, where differences in
step size were noticeable. Furthermore, for MC-ASP the number of samples has to be
established. Theoretically, if more samples are taken, the distribution sampled from is
closer to the posterior (c.f. Section 3.2.3). Here the payoff is the learning time; more
samples might not be necessary, if a few samples already gives enough information for
the right direction.

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4. Experiments

Table 4.2: LPMLN-learn MCASP, parameter tests

Val results MCASP settings

Settings
Iter; samples; learn rate 0.1; 20; 20 1; 20; 50 1; 50; 20

Avg. Acc. 0.48 0.42 0.54

Settings
Iter; samples; learn rate 5;20;20 0.1; 50; 20

Avg. Acc. 0.41 0.51

From table Table 4.2 we can see that taking 50 samples per iteration performs better
than performing more iterations, with the highest average accuracy (0.54) with a step
size of 1 at 50 samples per iteration.

Training a model on the complete training set with these settings performed badly after
20 iterations, at 0.38 average accuracy. This did not improve after 30 iterations (0.35
avg. accuracy). Training with more samples at a learning rate of 0.01, over 50 iterations,
performed poorly at 0.33 average accuracy; however, taking the average over all iterations
performs at 0.41 accuracy. Using training rate of 0.1 and 100 samples performed at 0.45
accuracy. Taking the average weights over all iterations obtains 0.48 accuracy: equal to
the local classifier (here scaling the weights too much made the results worse).

This bad performance of the MC-ASP method is not because of bad gradient ascent
settings, but because of sampling problems on the combined data. This we found out
after considering the difference with the following Alchemy learned models.

An initial model learned using Alchemy trained on the full training set with default
settings, performs at 0.52 average accuracy. When proceedings as with LPMLN-learn to
test different parameter settings on a small dataset of four scenes, there were actually only
little differences between models learned with learning rates of 0.01, 0.1, and 1, trained
using 50 samples. All converged and halted learning due to no noticeable difference in
weights after around 50 iterations; the only difference is how they reached this final joint
weight setting. The learning rate of 1 first overshot and went back, whereas the 0.01
model slowly went to the best obtained weight setting. All had an average accuracy of
0.5 on the complete validation set, which was reached in all three models after around
10 iterations. Exactly the same results were obtained after using 20 samples; the final
weights learned sometimes differ, but the end prediction results are equivalent. However,
some models performed better after 10 or 20 iterations than after convergence; this can
be explained by overfitting on the small training set.

When trying two different settings on the complete dataset, 0.1 and 1 for learning rates,
we did obtain noticeably different results. The 0.1 learned model attained 0.51 on the
validation set, whereas the model with learning rate of 1 attained 0.54. From these tests
on Alchemy we can conclude that the difference in parameter settings is more important
for bigger datasets, possibly because the learning method is not run to convergence. In
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4.3. General training

addition, it might converge faster with better parameter settings (or smarter methods
such as those in Section 4.3.2). The results of the Alchemy MC-SAT model on a learning
rate of 1 can be seen in Fig. 4.1e).

For completeness, although we will not discuss MAP-training further here in this chapter,
we have also included a model based on learning using MAP in Fig. 4.1f). This model
performed well, without tweaking the parameters, at 0.53 average accuracy.

From these initial tests we see that the LPMLN-learn and Alchemy methods are not
equivalent, or at least do not perform the same way on very similar learning methods
(the sampling methods are almost the same). As mentioned earlier in this chapter, this
led us to implement a weight learning method in LPMLN-learn that samples per dataset,
rather than on the combined data.

Training on our implementation that uses separate datasets for learning at every iteration,
we used 20 samples per dataset over maximum 50 iterations, with (as before) a learning
rate of 0.1. After about 20 iterations, the weights did not increase very much anymore,
and the predictions and weights are similar to the results obtained on the full dataset
using the combined data in LPMLN-learn. However, performance is better at 0.48 versus
0.44. The slightly higher average accuracy could be due to the higher sample size, as 20
samples per dataset are taken for every one of the training scenes. We did not notice that
taking bigger samples increased the accuracy noticeably in the standard method, however;
proper testing of this was impossible because of the memory issues in learning. An
important result also is that they are not equivalent in practice for learning, as learning
on the separate stable models is noticeably faster than learning on the combined stable
model by renaming of constants. This can be explained by the number of groundings
needed in the combined dataset, which is bigger than grounding per dataset.

When learning with the same method using a step size of 1 in the gradient descent, we
obtained slightly better results after 30 iterations, at 0.5 accuracy. At this stage, the
prediction and learned model is again very similar to the model on the combined data.
However, after 50 iterations, the result was worse at 0.42 accuracy. We could clearly see
the weights oscillate strongly over the iterations. This led us to conclude that learning
with a learning rate of 0.1 was more stable; the best result was still obtained training
only on the smaller training set, rather the including all the training scenes.

The best result in LPMLN-learn using MC-ASP sampling was obtained after training
using our implementation, with a learning rate of 1 over 30 iterations, taking the average
of weights over all iterations. This average prevents possible overfitting, or issues due to
too big a step size. This performed at 0.52 average accuracy on the validation set. The
results are visualized in Fig. 4.1d).

Different gradient ascent algorithms

As discussed in Section 3.1.3, the choice of algorithm for optimizing the gradient ascent
can have a big effect on the effectiveness of a learning method. The improvements of
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4. Experiments

gradient ascent are meant to tackle precisely the problems encountered in the previous
section with the step size of gradient ascent. We hypothesize that using these methods,
with the same number of samples and iterations, should perform at least as well as the
previous best MC-SAT method.

The methods in Alchemy that solve issues with standard gradient descent based on
MC-ASP/MC-SAT sampling, are Diagonal Newton (DN), Scaled Conjugate Gradient
(SCG) (possibly with a preconditioner, P-SCG), and using per-weight learning rates. DN
and (P-)SCG tackle the problem of determining the step size and oscillating behaviour
of standard gradient ascent, while per-weight learning rates are effective against ill-
conditioned problems. The DN and P-SCG implementations in Alchemy uses line
search to determine the step size (Lowd and Domingos 2007, p. 6), and the possible
preconditioning in SCG transforms the optimization problem to also solve against ill-
conditioning.

Our dataset did not seem very ill-conditioned, as the initial counts (with initial weights)
are very close to one another and actually almost exactly equal for the initial weight
setting. Taking the ratio of biggest versus smallest counts in the data in the first iteration
is a way to approximate the condition number, as also performed in (Lowd and Domingos
2007). (Note that after many iterations this condition number can change due to different
weight settings, so this is only an approximation.) For this reason we did not expect
per-weight learning to lead to better results; we tested this by also learning a model using
per-weight step sizes. This is only implemented in Alchemy for voted perceptron and
contrastive divergence. CD, as discussed in Section 3.2, is identical to normal MC-SAT
learning except for small sample sizes.

Using a preconditioner in P-SCG also has the purpose of reducing the condition number.
It does this by performing a linear operation on the data before learning; in Alchemy,
and as used by (Lowd and Domingos 2007) for MLN, this calculates the inverse diagonal
Hessian to approximate the inverse Hessian, which is then multiplied with the data to
reduce the condition number. Because of this, we also do not expect using a preconditioner
to improve the prediction by a lot.

SCG performed badly out of the box, at an average accuracy of only 0.26. However,
when flipping the sign of the weights the average accuracy went to 0.53. When using a
preconditioner it also performed at an average accuracy 0.53, here the weights were in
the right sign. Flipping the signs of the CD method also increased the accuracy to 0.53.

The need to change the signs of all the learned weights in this model is counterintuitive.
Alchemy learns the weights of the negated input, and outputs the weights corresponding
to the negated input. These weights are the negative of the weights of the input program,
and therefore correspond to the weights which should be input for ASP with weak
constraints. However, it seems Clingo only performs well if (most or) all input weights are
positive and correspond to penalties; according to the semantics this is not equivalent (cf.
Section 2.3.3). We also noticed that the factor used can significantly alter the predictions.
Scaling with a positive factor is natural from the LPMLN-semantics (Lee, Talsania, and
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4.3. General training

Y. Wang 2017a, p. 5) and using lower scaling factor decreases the difference in weights
slightly. We have not been able to find out the reason why this sensitivity to signs,
and the need to flip the signs, was necessary for some of the learned program: it is not
behavior we encountered in all our tests.

4.3.3 Indoor Test Results

On the separate test set of 60 scenes, we tested the models of the following methods,
with settings as determined in the previous section:

• Log-odds;

• Pll on initial and training + validation data in Alchemy;

• MC-ASP of LPMLN-learn (step size 1, 30 iterations, 20 samples per datasets)3;

• MC-SAT(step size 1, 20 iterations, 40 samples) of Alchemy;

• PSCG (20 iterations, 40 samples);

• Diagonal Newton(40 samples, 20 iterations).

The goal of these tests is to determine whether the discriminative, sampling based models
that we consider perform better than pseudo-likelihood based models (as was the case
in Alchemy for many datasets (Singla and Domingos 2005; Lowd and Domingos 2007))
and better than the log-odds calculation. We also include the test result of assigning the
same uniform weight to all rules, although this is of course not a learning method and
serves purely as a reference point.

Not included in Table 4.4 is the PLL as learned in LPMLN-Learn: the bigger model
performed rather poorly after training on the entire training set, at 0.41 average accuracy.
Here the smaller model of the previous sections performed better, at 0.53 accuracy on
the test set. We do not have a good explanation for the worse prediction of pseudo-
log-likelihood learning LPMLN-learn compared to Alchemy, but we conclude that the
Alchemy implementation performs smarter gradient ascent.

Table 4.3: Test results Image Classification–indoor

Test results

Method Uniform weights Log odds PLL PLL-Val set

Avg. Acc. 0.48 0.56 0.54 0.56

Method MC-ASP MC-SAT P-DCG DN

Avg. Acc. 0.51 0.55 0.53 0.54

3Taking the average of the weights, to combat possible overfitting
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4. Experiments

From the obtained results, we cannot say that learning on a bigger dataset consistently
improved the accuracy performance of a learned model. See also Section 4.4 and
Section 4.5 where learning on smaller datasets outperforms the model learned here.
Important is that the only model that performs as well as the log-odds calculation is
the pseudo-log-likelihood based model learned in Alchemy on the combined training and
validation set. The log-odds computation did not improve when including more data; the
small training set seems to already include all information for learning. A central result
for all models, though, is also that all weight learning methods outperform assigning the
same weight to all constraints.

The successfulness of pseudo-log-likelihood and, even more, log-odds, indicates that the
dependencies and influences between these results are presumably very small; if present,
ignoring these in learning seems not to have had any bad effect on the prediction result.

4.3.4 Outdoor Test Results

The model with all-equal-weight assignments performs at 0.58 average accuracy on the
test set. This is almost equivalent (only marginally worse) to not using the weights and
only the local classifier.

The log-odds calculation performs at 0.68 average accuracy in the hybrid classification
setup on the test set. After training on only six scenes, the performance is almost equal
at 0.674. This indicates that training on smaller datasets, as described earlier in this
section, should not harm the effectiveness of the other models.

Training pseudo-log-likelihood in Alchemy performed better, at 0.7 average accuracy on
the test set. As we could only train on smaller datasets for the sampling methods, we
trained these models on 10 datasets.

We have been unable to learn models that performed well when using LPMLN-learn,
trying many different parameter settings. The differences found in the indoor dataset
in using a smaller dataset, or different step sizes, all did not give good predictions for
MC-ASP; the best was up to 0.5 average accuracy, which is still far worse than using
just the local classifier (performing at 0.58).

The same holds for learning in Alchemy on the translated program, where the average
accuracy on the test set was only 0.53. However, as we found out through testing in
Section 4.4, learning on a direct interpretation of the LPMLN-program as a Markov Logic
Network significantly improves the performance at 0.71 average accuracy.

Confusion matrices of four models — log-odds, pll in Alchemy, MC-SAT on the MLN
interpretation, and LPMLN — are in Fig. 4.2, and test results of the different models
are in Table 4.4.

We conclude from these results that the sampling discriminative methods did not notice-
ably improve upon the pseudo-likelihood based method and the log-odds computation of

4Without scaling; scaling decreases the result.
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4.3. General training

Table 4.4: Test results Image Classification–outdoor

Test results

Method Log odds PLL-Alchemy MC-ASP4

Avg. Acc. 0.68 0.70 0.44

Method MC-SAT (Alch)4 P-DCG MC-SAT(MLN)

Avg. Acc. 0.53 0.5 0.71

(a)) Log odds (b)) PLL Alchemy

(c)) MCSAT - MLN interpretation (d)) MCASP - LPMLN-learn

Figure 4.2: Test predictions Outdoor dataset
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4. Experiments

the weights. In fact, on the outdoor dataset these latter models were the only ones that
performed well, with the exception of pseudo-likelihood in LPMLN-learn, which could
not be used for learning. We therefore conclude that the effectiveness of the learning
methods depends very much on the (structure of the) LPMLN-program; in our case, the
simpler objectives with stronger assumptions perform better. For reasons we have not
been able to establish, the models learned using the discriminative sampling methods
under the LPMLN-semantics performed badly.

For models that performed well, changing the parameter settings did not significantly
alter the predictions; for the models that didn’t perform, we could not improve the results
by changing parameter settings. What did significantly alter predictions was the scaling
factor used for the weights, which is necessary only when learning in our test setup using
ASP with weak constraints. If the scaling was too low, effects of the learned weights
were not noticeable; if too big, it could to worse predictions. This is important both for
weight learning and inference in LPMLN, and it is immediately related to ASP solvers
only allowing integer weights.

4.4 Independent constraints

As explained in Section 3.2.3, the log-odds computation can be seen as making a strong
assumption of independence between constraints. Although this clearly doesn’t hold
in general—whether one constraint is satisfied or not normally has influence on other
constraints—our results above indicate that for our dataset this property does, at least
approximately, seem to hold.

For the outdoor program, this property seems prima facie to hold less (be a worse
approximation) than for the indoor program. Consider the following constraint of the
outdoor LPMLN program:

← higher(x1, x2), assignedlabel(x1, C1), assignedlabel(x2, C2),

midsizedobject(C1), largeobject(C2), x1! = x2 : w.

This constraint contains two labels, whose values are intuitively also determined by
values of the other constraints (similar to those in the indoor LPMLN-program), and
co-determines those truth-values based on the relative position of the two objects. We
expect that another rule specifically there for assigning to the class trunk, for example,
has effect on, and is effected by, the weight of this rule.

To elaborate, suppose an object x2 is assigned the label “trunk”, due to its closeness to
an object x1 labeled as “car”. If the object x2 is big and above x1, the weight of the rule
would be expected to be higher, due to its importance in prediction. However, if more
are classified as windows by other rules (and supposing windows might or might not
be large), and if this prediction is correct, this rule might be less important and so the
weight less high. If this is true, the constraints of the outdoor LPMLN program are more

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.4. Independent constraints

interdependent, with the additional expected outcome that this will make the log-odds
computation less successful.

An efficient way of testing this would be to have a dataset where the rules are known to
be correlated in a certain way, and test the effectiveness of the log-odds computation on
such a dataset. Here “effectiveness” could both be taken as prediction accuracy as well
as being able to capture dependencies. Here, we go another route: we retrain a model
separately on all weights, by deleting all other soft constraints.

Note that learning this way does not just make the rules independent, such that a
rule cannot influence whether or not another rule is satisfied. This could be achieved
by renaming. It also has the effect of making the corresponding weights independent,
meaning that per-rule learning rates are used. The log-odds computation also satisfies
both independence properties. These tests, if the independence assumption is confirmed,
can therefore explain the good performance of the log-odds training method.

4.4.1 Outdoor

As mentioned above, we first failed to train a good model in LPMLN-learn. Contrary
to expectations, learning on the separate rules, the average accuracy increases to 0.66
on the validation set. The model is trained on 10 datasets with a step size of 0.1, 20
samples per dataset, over 20 iterations. Here again the weights were in the wrong sign;
we interpret these as good results nonetheless. On the test set, the average accuracy
was 0.69. The same model learned on the combined rules, performed at 0.25 average
accuracy with the same scaling factor.

Training in Alchemy on the separate rules, on ten datasets, took 6 hours to train with 20
samples per rule per dataset, over 20 iterations. This means that there is no difference in
learning time between learning all constraints together, and learning for one individual
constraint. This performed at 0.43 on the test set. Here we found out (by accident), that
a model trained on a direct interpretation of the LPMLN program as a Markov Logic
Network performed much better, at 0.69 average accuracy. The following results are of a
direct interpretation as an MLN program. Here we used a learning rate of 1, with 20
MC-SAT samples per dataset over 20 iterations, which performed stably when trained
on 10 datasets. Learning is also much faster than on the translated model: training the
rules separately, training takes only 15 seconds for the entire MC-sat optimization for
every rule, with the exception of the rules given in the previous example which involve
two first-order evidence atoms, here learning takes 7 minutes.

The learned weights from both the dependent and independent models are in Table 4.5.
From this table, one can see that the weights differ noticeably among the two models.
However, the average accuracy on the validation data of the independent model is almost
the same as that of the standard model, at 0.68 on the validation set.

On the test set, the average accuracy over all scenes of the model with independent
constraints is 0.72. With the model learning on the combined program, the average
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4. Experiments

Table 4.5: Dependency test weights– Outdoor dataset, MLN

Dependent weights Independent weights

9.74441 2.64852

8.73788 1.33428

9.74351 2.66882

9.74628 3.35119

9.74613 2.90921

9.74292 2.57161

8.99267 1.47502

9.74351 1.73687

9.74503 2.41325

9.74841 3.10189

9.74611 3.18317

9.74824 3.04824

9.74717 3.34722

9.74609 3.3889

9.74826 3.00206

0.246713 0.013945

0.241465 0.114842

0.206372 0.269905

9.74438 2.58067

5.84232 103.619
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4.4. Independent constraints

(a)) Independent constraints-MLN model (b)) Dependent constraints-MLN Model

(c)) Independent constraint-LPMLN

Figure 4.3: Independent constraints learning, outdoor test results

(a)) Independent constraints indoor-LPMLN (b)) Dependent constraints-indoor-LPMLN

Figure 4.4: Independent constraints learning, indoor test results, LPMLN
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4. Experiments

accuracy on the test set is 0.71. The confusion matrices are shown in Fig. 4.3. From these
we can see that, although the classifications of the independent constraints are more
spread out, the classifications into wrong classes are less extreme than when learning all
rules simultaneously, and thus allowing dependencies to be taken into account.

4.4.2 Indoor

Building on this result, we then also tried learning an independent model of the indoor
dataset, using the same settings. Here we used the translated program in Alchemy for
training, with settings as in Section 4.3.3, except using 30 samples each iteration per
dataset. To keep learning time manageable, we learned on 10 scenes per program.

After getting the right scaling factor on the validation set, we obtained 0.54 average
accuracy on the test set. This is only slightly worse than the full model. Because of
one negative weight for a rule (all others were positive), which could be because of the
bigger step size, we retrained another one with a step size of 0.1, using twenty scenes.
We did this to combat possible overshooting (overcompensation by step size in gradient
ascent) of weights and to see if the size made the standard method perform better. This
model performed almost equivalently, at a test average accuracy of 0.53, which means no
improvement.

The LPMLN-learn model, with a learning rate of 0.1 and 20 samples over 20 iterations,
per rule, performs at 0.52 average accuracy on the test set. This is a minor improvement
over the combined model. Looking at the predictions in the confusion matrices Fig. 4.4,
we can see the predictions are very similar (despite the difference in calculated weights).

We conclude that in both our datasets learning on constraints independently performed
as well or better than learning on the combined programs. In the indoor dataset, the
difference in prediction is only slight and the predictions are very similar. The more
noticeable result was found in the outdoor dataset, which we first expected to have more
dependencies among the constraints. Among the Alchemy learned models, although
the predictions were very similar, accuracy was higher in the independent model: the
model learned on independent constraints outperformed the standard model by a big
margin. This indicates that our input programs largely have an independent structure,
even though this was anticipated to not hold for the outdoor dataset. Moreover, this
could help explain the good performance of the log-odds learning method, as observed in
our previous tests.

4.5 Missing data

As mentioned in Section 3.3.3, there are multiple scenarios under which data can be
missing. In this section, we will create different datasets corresponding to the different
scenarios discussed, by adapting the data used throughout this chapter in a controlled
manner. That is, we consider MCAR, MAR, data that is not-MAR, and a dataset which
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4.5. Missing data

we constructed for the purpose of a sanity check, to consider the performance of learning
methods in the case of missing data.

Both Alchemy and LPMLN-learn allow for data imputation using EM; our hypothesis is
that these implemented algorithms will work better than the standard gradient ascent
implementations in the case of randomly missing data. To be more precise, if data is
missing completely at random, we hypothesize that this will severely alter the accuracy
of normal learning methods; if the observation model is more specifically setup so objects
belong to specific classes are missing, we hypothesize that imputing the missing data will
improve the accuracy.

Aside from testing on the accuracy, we also consider the per-class predictions by looking at
the confusion matrices to investigate whether predictions to specific classes are hindered
by deleting data. This will give more specific information about the predictions than can
be obtained from only the average accuracy over all classes (and over all scenes).

To test our hypothesis, we constructed multiple datasets from our initial data for both
indoor and outdoor. In the first we deleted 20% of the data per scene completely at
random (MCAR). In the second, for the indoor dataset we deleted 50% of objects that
are observed above walls randomly, and another 25% of objects that are contained in
walls randomly. (If an object is both above and contained in a wall, we only select it if is
not deleted by any of these rules.) Note that this deletes also any atoms containing any
objects, so there is a possibility that a lot of information is lost, depending on the specific
scene. This is meant to simulate camera shots where the camera is slightly pointed
downwards, so that higher objects are not observed. As one can see in Program 4.5,
objects contained in walls and above walls are present in a number of rules: we expect
learning these rules to be hindered by the missing data.

Program 4.5← assignedlabel(x, c), contained_in_wall(x) : w.

← assignedlabel(x, t), contained_in_wall(x) : w.

contained_in_wall(x2)← contains(x1, x2), assignedlabel(x1, wl) : α.

← assignedlabel(x, br), in_upper_part(x) : w.

← assignedlabel(x, wi), in_upper_part(x) : w.

← assignedlabel(x, s), in_upper_part(x) : w.

in_upper_part(x2)← under(x2, x1), assignedlabel(x1, wl) : α.

For the outdoor dataset, we deleted objects according to a similar method, deleting
objects that are below a car or below a building, with a 60% chance for both.

Note that by construction the value of the missing atoms is independent of the observation
value of these atoms, given the value of the observed atoms (namely, walls). Hence the
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4. Experiments

MAR criteria of Section 3.3.3 still holds. We use 10 datasets for both our tests, both
indoor and outdoor.

Furthermore, we constructed two missing-data datasets (for the indoor and outdoor
dataset) by deleting objects with a 90% chance. This is data not missing at random
(NMAR), as the class of the deleted object determines whether it is observed or not; this
can be interpreted as deleting data because you do not like the outcome. Here, knowing
the observability mechanism will give information on the value of the hidden variables.
For the indoor dataset we remove monitors, keyboards, mice and tables — all related to
the “ms” (mouse) label in the LPMLN program. From the outdoor dataset we deleted
cars and trees, as these are involved in many constraints.

As a sanity check, we deleted only certain atoms in the dataset: atoms saying that objects
are assigned the label “mouse” or “keyboard” for the indoor dataset, and “window” or
“building” for the outdoor dataset. As this keeps the facts intact but removes the evidence
required for learning these classes, this should have the effect of making predictions for
the mentioned classes noticeably worse.

Since we did not change the parameter settings — these tests have been performed in
Section 4.3.2 — we tested the learned models immediately on our test set.

4.5.1 Data MCAR

The average accuracy on the indoor for the missing completely at random data, was 0.55
for the non-EM method and 0.45 for the EM-model in Alchemy. In LPMLN-learn, it was
0.55 for the standard learning algorithm, with settings as in Section 4.3.3. Using the EM
algorithm, the average accuracy was the same at 0.55. Between these two LPMLN-learn
models, we can see only very little difference in the predictions.

For the outdoor dataset, In LPMLN-learn, the standard MC-ASP algorithm performed at
0.47, versus 0.45 for the Expecation Maximization algorithm. This is in line with the
results in Section 4.3.4; LPMLN-learn fails to learn good models on the outdoor dataset.
The same holds for the Alchemy sampling-based model, which underperforms at 0.54.
The resulting predictions are very similar to those in Section 4.3.4. This is also the case
for a learned model using pseudo-log-likelihood in Alchemy, performing at 0.7. From
this we conclude that in the case of data missing completely at random, normal gradient
ascent methods work as before.

4.5.2 Data MAR

Because of the selective nature of the observation mechanism in the constructed MAR
data, we anticipated that standard methods would fail here and EM would be required
for successful learning.

Indoor The average accuracy on the MAR-constructed indoor dataset was 0.49 in
LPMLN-learn, almost the same as the model learned using the complete scenes. This is

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.5. Missing data

:∼ assigned_label(x,c), contained_in_wall(x). [278,x]
contained_in_wall(x2) :- contains(x1,x2), assigned_label(x1,wl).
:∼ assigned_label(x,t), contained_in_wall(x). [270,x]
contained_in_wall(x2) :- contains(x1,x2), assigned_label(x1,wl).
:∼ assigned_label(x,br), not contained_in_wall(x). [257,x]
contained_in_wall(x2) :- contains(x1,x2), assigned_label(x1,wl).
:∼ assigned_label(x,wi), not contained_in_wall(x). [405,x]
contained_in_wall(x2) :- contains(x1,x2), assigned_label(x1,wl).
:∼ assigned_label(x,c), not in_lower_part(x). [445,x]
in_lower_part(x1) :- under(x2,x1), assigned_label(x2,wl).
:∼ assigned_label(x,br), not in_upper_part(x). [183,x]
in_upper_part(x2) :- under(x2,x1), assigned_label(x1,wl).
:∼ assigned_label(x,wi), not in_upper_part(x). [187,x]
in_upper_part(x2) :- under(x2,x1), assigned_label(x1,wl).
:∼ assigned_label(x,s), not in_upper_part(x). [-113,x]
in_upper_part(x2) :- under(x2,x1), assigned_label(x1,wl).

Figure 4.5: Learned weights, MAR data indoor

surprising, as the size of the data after deleting atoms is sometimes less than a half of
the original size. In Alchemy, the EM method performs at 0.55 average accuracy over the
test set, which is the same accuracy as the non-EM (standard) method. The Expectation
Maximization method performed much worse at 0.37 accuracy.

Because of this surprising stability and performance of non-EM methods, we removed
more objects and atoms with a 90% resp. 50% chance, the method as explained above.
In LPMLN-learn, the non-EM method performed at 0.47 average accuracy, where the
EM learning method performed almost equivalently at 0.46. In Alchemy, the average
accuracy of the standard algorithm was again high at 0.54. This means that the average
accuracy does not decrease significantly when a lot of data is missing from the scene.
Looking at the predictions as represented in the confusion matrices Fig. 4.6, we can also
see that there is no label that was failed to be learned properly, even if there is hardly
any evidence for a specific rule. In particular, according to our hypothesis, we would
expect classes present in Program 4.5 to be less well predicted. However, both matrices
in Fig. 4.6 show good results for these classes, and are largely the same as Fig. 4.1e).

This is also visible in Fig. 4.5 which is a part of the learned LPMLN program. As one can
see, the rules with deleted objects also have learned weights. In Fig. 4.5 the signs are
flipped to fit the semantics of ASP with weak constraints). The last rule does have a
negative resulting weight, but this does not severely affect the resulting predictions. This
negative weight also occurred in previous models for the indoor dataset in LPMLN-learn.

As a further test, we performed the same method for deleting with a 70% and 40% chance
of being deleted, for objects contained in or under both walls or tables, respectively. This
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4. Experiments

(a)) Mar indoor–Alchemy (b)) Mar indoor–LPMLN-learn

Figure 4.6: MAR missing tests, indoor results

(a)) Mar outdoor - 80% test (b)) Mar outdoor - full dataset

Figure 4.7: MAR missing tests, outdoor results
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4.5. Missing data

gave almost identical predictions to those in Fig. 4.6, indicating that this result is not
because of the specific classes we took into account when deleting the data.

One explanation for the effectiveness in the case of missing data, is that the LPMLN

program has multiple constraints that have the same effect on assigning labels. For
example, the following two constraints

← assigned_label(x, s), not contains_book(x) : w.

← assigned_label(x, s), not in_upper_part(x) : w.

both regulate the probability of assigning objects as shelves. It seems then, that deleting
objects that are high does not influence the effectiveness of learning in the indoor scenes;
the other constraints manage the predictions, making up completely for the constraints
which are affected by the missing data. If this explanation is correct, deleting rules based
on their class (not-MAR data) would have a noticeable effect.

Outdoor On the outdoor dataset, as in Section 4.4 and Section 4.3.4, we did not
manage to train well performing models in Alchemy (0.48 avg. acc.) on the translated
program and in LPMLN-learn (0.45 avg. acc.), as expected from those results. Because
of these bad models, it is especially difficult to interpret the performance in the case
of missing data (these did not improve). However, learning (as in Section 4.4) on the
direct-interpretation MLN in Alchemy, we obtained 0.72 average accuracy on the MAR
outdoor dataset. This was made worse by using EM at 0.64. This is therefore the same
result as on the indoor dataset.

In the same way as for the indoor dataset, we then proceeded to delete up to 80%
of objects below cars or buildings. This did again not have the expected effect; the
average accuracy remained at 0.72. Again, the predictions of all classes are largely
intact, as can be seen in Fig. 4.7. What we did notice though, is that learning time
increased significantly on this missing-data dataset. We explain this by there being more
assignments possible in the case of missing data, which is due to the rules in Program 4.3.

This high average accuracy over severely impaired scenes, is surprising. We would expect
here that “streets” could not be properly predicted; looking more closely at the predictions
per class shows otherwise, where streets are also very well predicted.

For both the outdoor and indoor dataset we found that deleting many objects based on
a Missing At Random observation mechanism did not influence the learning effectiveness.
Using the standard methods that performed well on the normal data, we obtained
almost equivalent prediction results after deleting a significant number of evidence atoms.
Furthermore, using EM actually made the learning methods perform significantly worse;
these methods seem to not be fit for our specific dataset.
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4. Experiments

4.5.3 Data NMAR

On this dataset, since there is hardly any information for two classes, we anticipate
learning to be severely affected. For the indoor dataset, we specifically chose the atoms
deleted such that the “ms” (mouse) class could not be learned properly. However, the
predictions using LPMLN-learn are only slightly worse at 0.48 average accuracy, and the
“ms” class was also well predicted. We obtained similar results when learning in Alchemy,
at again 0.54 accuracy; the “ms” class was very well predicted.

For the outdoor, the same result was obtained, where the Alchemy model performed at
0.73 average accuracy. Note that this is the highest performance of all our tests; we
expected that this model would perform noticeably worse. This result is then completely
against our expectations.

Our explanation of the good prediction of the MAR dataset—that multiple weak con-
straints manage predictions to the same classes—seems to be wrong, in light of these
results. If this explanation held, deleting rules specifically based on classes should make all
rules corresponding to that class perform badly in prediction, with the learning methods
unable to properly learn the corresponding weights. However, we obtained the opposite
result, and we therefore do not have a good explanation of the high effectiveness of our
results on missing data.

4.5.4 Sanity Check

In light of the results obtained in this section, performing the sanity check is necessary for a
better understanding; in the “sanity check” data certain label assignments are completely
missing in the evidence. On the indoor dataset, training using the LPMLN-learn system,
the average accuracy on the test set is 0.49. This is only slightly worse than the results in
Table 4.4. However, a more noticeable effect is visible in the per-class predictions, where
there are no assignments to the “mouse” class. The “keyboard” class is still reasonably
well predicted, although noticeably worse than the normal model. This is visible in
Fig. 4.8a). Note that the bad prediction to the “mouse” class is not because of few
predictions to this class from the local classifier: see Fig. 4.8b).

For the outdoor dataset we again trained using the direct MLN interpretation in Alchemy,
which performed at an average accuracy of 0.73 (0.727). This is again very high, and
we could not notice any clear effect on the “window” and “building” classes, where the
predictions of the LPMLN program improved upon those of the local classifier. To further
test this, we proceeded to remove entirely the two rules involved in the prediction of
the “window” class. Here the accuracy dropped to about equal to the local classifier
with 0.59 average accuracy, and a strong overclassification to the “window” class. These
predictions for this class are similar to that of the local classifier alone. Hence learning
without evidence seems to have improved the performance drastically.

This phenomenon was also present on the indoor data when removing the constraints
related to classifying objects belonging to the “ms” class. Here a lot of objects were
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4.5. Missing data

(a)) Sanity check indoor (b)) Indoor local classifier test result

Figure 4.8: Sanity check indoor results

(a)) Sanity check outdoor (b)) Not-MAR outdoor

Figure 4.9: Sanity check and NMAR outdoor result

classified as mice; noticeably more than the local classifier alone, too. This means learning
with no related evidence atoms does not have the same effect as not including relevant
rules.

We proceeded to delete the objects corresponding to the least represented classes (in
the test set): “door” and “person” instead of the classes of the previous paragraph.
Here the prediction accuracy dropped to 0.59; the “door” class especially is not well
predicted. However, it is important that it is not underrepresented but overrepresented
in the prediction. This is not noticeable for the “person” class. See Fig. 4.9 for the result.
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4. Experiments

We therefore have conflicting results for the indoor and outdoor dataset in these tests.
This result cannot be explained by few predictions to these classes from the local classifier,
as shown in the result on the indoor dataset. In the tests on the outdoor dataset, we
explain the over-classifications with all the other weights being penalties, whereas the
“window” class, say, does not have a penalty so an object is easily classified as such.
However, for the indoor test the “mouse” class was underrepresented, meaning that the
learned weight (as penalty) was too high.

Summary Against expectations, deleting a lot of data did not severely impair learning:
the predictions of the learned models in multiple missing-data scenarios were still quite
accurate, up to very accurate. We have been unable to find a good explanation of the
consistent performance, expecting that the performance would be bad on the N-MAR
and sanity check data, if nothing else. In the “sanity check” cases where we deliberately
tried to force a malfunctioning model, we did notice worse performance, but even here
this was unexpected and learning could still perform better than not learning the weights.

We expect these results to be very particular to our hybrid classification setup and we
do not expect these results to generalize. We only conclude that learning on data with
missing, or entirely without, evidence gives unpredictable behavior that we have not been
able to explain properly.

4.6 Overall results

Going back to the experiments and hypotheses listed in the beginning of this chapter, we
can summarize our results as follows:

H1. MC-ASP/MC-SAT sampling methods do not outperform pseudo-likelihood based
learning and the log-odds calculation on our LPMLN programs.

H2. Different parameter settings influence prediction results of learning methods some-
what, but not by a huge margin. It is difficult to draw strong conclusions here, as
the differences could only be tested on the indoor dataset.

H3. The constraints of our dataset are mostly independent; learning independently
significantly improved the quality of the LPMLN-learn model on the outdoor dataset.

H4. Using Expectation-Maximization (EM) does not outperform standard MC-ASP/MC-
SAT learning methods in the case of missing data. Nor do standard methods fail
to learn good models in the case of missing data.

Furthermore, we found that including more scenes does not consistently improve the
quality of the learned models. For the indoor dataset using MC-ASP in LPMLN-learn
for learning, learning on fewer scenes improved the quality of the model. This better
performance is surprising: in general, we conclude that for our input program and

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.7. Discussion

datasets, a few scenes already contain all the information needed for learning. This is also
reflected using log-odds, where calculating the weights from more scenes does nothing
for the performance of the model. Lastly, learning on the direct MLN interpretation
of the LPMLN program on the outdoor dataset significantly improved the quality of
the learned model. This interpretation leaves out some dependencies and constitutes a
simpler Markov Network, which makes learning easier and faster.

As regards the implementations, we encountered noticeable differences: LPMLN-learn
frequently produced poorer models than the once learned using Alchemy. Since the
optimization algorithms of Alchemy are more sophisticated and tackle problems with
standard gradient descent (e.g., l-BFGS, line search), we explain the better performance
to this aspect of the implementation.

Other important results concern learning on independent constraints, and learning using
a direct MLN interpretation. Learning on the independent constraints performed much
better in the outdoor dataset for LPMLN-learn, which we explain by the independence
between the constraints of our LPMLN-program. We also take this to explain the
effectiveness of the log-odds calculation, which is based on this independence assumption.

The high effectiveness in the direct Alchemy interpretation for the outdoor dataset is also
unexpected, seeing how bad learning in Alchemy on the translated program performed.
The direct interpretation removes some implications and has a simpler structure, which
made learning perform much better here. This is likely to be related to the result of the
previous paragraph.

Perhaps the most surprising result is the high effectiveness of learning in the case of
missing data. On the outdoor dataset, the best performing model was the one trained
on a dataset with a lot of data deleted, data which violated the MAR condition. In
this case, one would expect that the model could not be learned properly; let alone
perform the best of all tested models. On datasets where we completely deleted all
assignments to particular classes, the results did not clearly show a pattern. Here the
weights still influenced the results noticeably, and not generally in a bad way. In fact,
the best performing model on the outdoor dataset was learned on missing data, with an
accuracy of 0.73.

4.7 Discussion

We do not anticipate that these results are general for weight learning in LPMLN, rather
that they are specific to our input program and setup. This goes especially for the results
concerning learning on missing data, and results concerning the independence among the
constraints or rules.

A conclusion that can be drawn is that the structure of the program is of central impor-
tance for choosing the learning algorithm for an LPMLN-program. In our program, the
structure is such that there few dependencies between the rules—as indicated by the re-
sults on independent learning—and only few weights to be learned. If an LPMLN-program

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4. Experiments

has a different more complex structure, with more rules that are tightly dependent on
one another, we anticipate more data will be needed and taking account of dependencies
in learning is necessary for good prediction performance.

However, given that there is only one query predicate in both our programs, it is surprising
that the discriminative methods did not manage to learn better here. For future research,
it would be interesting to consider in further detail the impact of structure on learning
methods. The results of programs trained on missing data are also surprising. A possible
explanation for the performance here is the overparameterization in our programs (many
rules doing the same thing), but more research is needed to confirm this.

We expect that for similar programs—programs with few weights and few dependencies
among rules—the log-odds calculation is not a bad approximation for learning. Nor
is learning in the direct MLN interpretation overall a bad starting point, as seen from
the results in this chapter. However, a direct interpretation of an LPMLN-program as
a Markov logic formula, or even using a translation of a non-tight program as seen
in Section 4.3.2, the MLN interpretation of an LPMLN program can lose some vital
dependencies. This again depends very much on the input program.

Lastly, based on the theory of learning on missing data, we do not expect the results of
Section 4.5 to generalize to other datasets, and it is difficult to draw conclusions from
these results. However, it does show that the performance on missing data is difficult to
predict: again, our best performing model was learned on data Not Missing At Random
(NMAR). A more detailed study on missing data would have to be done for a good
account of the performance on missing data.
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CHAPTER 5
Conclusion

In this work we investigated supervised weight learning in LPMLN and compared different
learning methods in different scenarios. Although weight learning in LPMLN is a very
difficult problem—in general, at least as hard as inference in LPMLN, which is at least
FP NP-hard—many efficient approximations for weight learning exist. These approxi-
mations are either general approximations of weight learning on Markov Networks, or
specifically constructed for weight learning in LPMLN such as the MC-ASP sampling
method.

As we have seen in our experiments, even learning methods which make very strong
assumptions on the distribution represented by an input LPMLN program can work well
in practice. This was so even for a simple log-odds calculation on our example input
programs. From our experiments we conclude that no (class of) method(s) generally
outperform(s) other method(s). Therefore, the best choice of learning methods depends
on the particular structure and characteristics of the LPMLN-program. Whether methods
which make strong assumptions on the distribution will work properly depends on the
LPMLN-program whose weights are to be learned; we expect that some methods which
performed well for us, will be poor learning methods on input LPMLN-programs with a
different structure. Furthermore, we found that missing data does not necessarily impede
learning, and that the performance on datasets with missing data is hard to predict
beforehand.

Some of these results can be expected from the theory of weight learning, where the
structure and size of the dataset can explain the performance of the generative methods;
however, some results were very unexpected. For this reason, to get a good grasp of the
performance of learning methods in LPMLN, more experiments on different input programs
would have to be performed. We expect that some of our results, most notably those on
independent constraints and missing data, do not carry over to other LPMLN programs
with different structure and different characteristics. To draw stronger conclusions on
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5. Conclusion

general weight learning, more experiments on different LPMLN programs will have to be
performed.

As regards the specific systems available for learning, although we have not been able to
use ProbLog, Alchemy performed best in our tests, both in speed and resulting accuracy.
This is dependent on the possibility of a translation of the LPMLN-program to a Markov
Logic Network and so is very unlikely to hold in general. This was also seen in the
example dataset used in Section 4.3.2. However, we ran into difficulty in using Alchemy 2
and related systems which we could not resolve. For native learning and for programs that
do not allow a direct translation to a MLN, LPMLN-learn is a good option for learning;
improvements on the system, for example with smarter gradient ascent algorithms, are
likely to improve the result of learning using the system.

As LPMLN is a relatively new formalism, it has so far not been extensively used for
collective classification problems or related problems, nor has weight learning for these
applications been extensively studied. In this work we have not been able to test weight
learning on different LPMLN learning problems, also because creating meaningful LPMLN

programs for classification is a complicated and time-consuming process. It will be
interesting to see how weight learning in LPMLN behaves on different input programs.
Furthermore, many methods described in Chapter 3 have not been tested, where one of
the most interesting is probably lifted learning, which could make learning significantly
faster. In addition, other methods not discussed in this work still exist. Investigating
these methods is topic for further research. We hope the work done in this thesis is
fruitful for further research, and the initial results a good starting point for further
inquiry into weight learning in LPMLN.
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List of Main Symbols

Π Logic Program

Π Unweighted LPMLN Program
ΠI Rules R in Π s.t. I |= R
ΠI Gelfond-Lifschitz Reduct of Π w.r.t I
L Markov Logic Network
I Herbrand interpretation
IA Interpretation restricted to the values in A

I Set of Herbrand interpretations
D Dataset
w Weight parameter
w Vector of weight parameters (w1, ..., wk)
PΠ Probability function defined by Π
WΠ Unnormalized weight function defined by Π
Z, Z(w) Partition function (constant resp. function of w)
T Transition function over interpretations
X = {X1, X2, ..., Xn} Random Variables
X = {x1, x2, ..., xn} Outcomes of random variables
ED Empirical expectation over D
Ew Expected sufficient statistics
σ First-order signature
x, y, z Variables
p, q First-order predicate symbols
a, b, c, ... Constant symbols
f, f1, ... Function symbols
A, A1, ..., B, B1, ... First-order atoms
F, F1, ... First-order formula
R ASP rule
w Weight of ASP rule
A Classical Negation ¬ of atom A
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