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Kurzfassung

Diese Diplomarbeit behandelt die automatische Berechung der competitive ratio von
online Schedulung Algorithmen mit firmen Echtzeitanforderungen und nicht-praemptiven
Bereichen und Reihenfolgenbeschrénkungen. Zu diesem Zweck wurde ein existierendes
Framework [CPKS18] um diese Funktionalitét erweitert. Dabei mussten betréchtliche
theoretische und implementierungstechnische Herausforderungen bewéltigt werden. Zum
Einen impliziert das Vorliegen von Event- und/oder Zeit-basierten Reihenfolgenbeschréin-
kungen, dass der Online- und der Offline-Algorithmus bei der Berechnung der competitive
ratio nicht notwendigerweise dieselbe job sequence verarbeiten. Zum Anderen ist EDF
unter Reihenfolgenbeschrinkungen nicht mehr optimal, wodurch die urspriingliche Im-
plementierung des Offline-Algorithmus nicht mehr verwendbar war, sondern basierend
auf EDF* neu entwickelt werden musste. Schlussendlich wurden Teile des Algorithmus
parallelisiert und in CUDA implementiert. Mit der parallelen Rechenleistung einer GPU
resultiert daraus eine Performance-Verbesserung um mehrere Groflenordnungen, sodass
nunmehr auch groflere und komplexere task sets analysiert werden kénnen.
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Abstract

This thesis deals with automatically computing the competitive ratio of online real-time
scheduling algorithms for firm deadline task with non-preemptible sections and precedence
constraints. For this purpose, an existing framework for automatic competitive analysis
[CPKS18] is extended with the needed functionality. Several challenges, both theoretical
and implementation-wise, make this very difficult. First of all, event-based and time-based
precedences require online and offline algorithms to work on different job sequences when
computing the competitive ratio. Moreover, as EDF is no longer optimal in the presence
of precedences, we could not use the original implementation of the offline algorithm
but had to develop a new one based on EDF*. Finally, in order to be able to analyze
more complex task sets, parts of the algorithm are implemented in CUDA. Leveraging
the parallel processing power of a GPU, this increases the achieved performance of the
framework by several orders of magnitude.
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CHAPTER

Introduction

1.1 Real-time scheduling

The field of real-time scheduling deals with modeling and analysis of real-time scheduling
algorithms. A real-time scheduling algorithm operates on a set of real-time task instances
(also known as jobs), which are released by an adversary, and decides which task instances
are executed. In this thesis, we will only consider uniprocessor scheduling. In what
follows, we will briefly introduce the most important terminology; consult [SArt04] for a
comprehensive overview.

A task set {79, 71,...7n} is a set of tasks, and the jobs J;; with j > 1 that may be
released are instances of task 7;. A real-time task is characterized by various properties,
depending on the framework used to model them. In [CPKS18], the relevant properties
of a task 7; are its computation time C}, its relative deadline D; and its utility V;. The
computation time C; of a task is given as the number of "time-slots” this task needs to be
executed for in order to be completed. A time-slot is the smallest unit of time the model
considers. Therefore, all durations of time can be given as a number of time-slots, and all
points in time can be given as the number of time-slots after the start of the execution.
The release-time of a task instance is the first time-slot where this task instance can be
executed. This release-time plus the relative deadline is the first time-slot where this
task-instance can no longer be executed, also known as the (absolute) deadline of this
task instance.

There are various ways to categorize the type of tasks studied in real-time scheduling:
The deadline of a task can be hard, firm or soft. A hard deadline task must be finished by
its deadline, or the whole system will suffer a catastrophic failure. If a firm deadline task
is not finished by its deadline, then the result will be useless, but it is not a catastrophe.
The result of a soft deadline task might still be useful for some time even after the
deadline is passed, so it may continue execution even after the deadline.
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1.

INTRODUCTION

The scheduling environment of a task can be preemptive or non-preemptive. In preemptive
scheduling, a currently executed job can be suspended (preempted) in order to execute a
different job, while in non-preemptive scheduling a job cannot be suspended until it is
completed.

Multiple tasks might be independent or precedence-ordered. Independent task instances
can be executed in any order, while task instances with a precedence-order must be
executed in that order, so a task instance can only be scheduled when all task instances
it depends on are already completed. When multiple tasks need to access some resource,
but the resource can only be used by one task at a time, then these tasks are under a
mutual exclusion constraint. This means that once any task instance has entered the
section in its execution where the resource is needed, which is called the ”critical section”,
then no other task instance may enter its critical section until this first task instance has
finished its critical section and released the resource.

Overall, the real-time scheduling problem can be understood as a game between the
adversary, who generates task instances over time, and the scheduling algorithm, who
tries to schedule all released tasks in order to achieve certain goals. In hard real-time
scheduling, all instances must complete by the deadline. In firm-deadline scheduling, a
task instance that is not completed by its deadline does no harm, but also does not add
any utility to the system. A task instance that is completed by its deadline does add its
utility, and the analyzed scheduling algorithms are evaluated with respect to how good
they are at maximizing the collected utility.

Since it is impossible to feasibly schedule all jobs generated by an unpredictable adversary
over time, its behavior is typically severely constrained. In particular, the releases of a
task can be periodic, sporadic or aperiodic. For a periodically released task, the release
of a task instance always happens a fixed time after the previous task instance has been
released. For sporadic tasks, new task instances cannot be released for a certain time
after the last task instance has been released, but they do not have to be released when
they could be released for the first time. Instances of aperiodic tasks can be released at
any time, regardless of when the last instance was released.

Less standard examples of safety constraints would be a bounded load density or given
number of slots or some job release order constraints. Other types of constraints are
liveness constraints, which e.g. require the adversary to generate some task infinitely
often. Finally, there may be (limit) average constraints, like a bounded average load of
the generated jobs.

Some well known scheduling algorithms are EDF (earliest deadline first - always schedules
the job with the earliest absolute deadline), FIFO (first in, first out - always schedules
the job with the earliest release time), and SP (static priorities - always schedules the
job of the highest priority task, and task priorities are constant). Figure 1.1 provides an
illustration of an example EDF-schedule, used in [Butll].
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1.2.  Competitive analysis

Figure 1.1: Example of an EDF-schedule [Butll]. .J; means jobs of 7;, T means the
release of a job, | means the absolute deadline of a job.

1.2 Competitive analysis

In general, an algorithm makes better decisions if it has access to more information:
Algorithms operating with incomplete information can lead to less than optimal results,
especially if previous decisions cannot be undone as more information becomes available.
The field of competitive analysis [BEY98] deals with assessing the performance of these
algorithms operating on incomplete information (also called ”online algorithms”) by
comparing them with the performance of an optimal algorithm that has complete infor-
mation (also called an ”offline algorithm” or ”clairvoyant algorithm”). The performance
of these algorithms is usually measured in terms of some generated utility (also called
value). The competitive ratio of an online algorithm is the worst case of the online
algorithm’s collected utility divided by the offline algorithm’s collected utility, evaluated
over all possible inputs of the given problem. A large competitive ratio means that the
online algorithm is able to cope well with the limited information it is given, while a
small competitive ratio means the online algorithm performs badly due to its limited
information.

This comparison between the online algorithm and the offline algorithm can be analyzed
like a 2-player game, where player 1 is the online algorithm, and player 2 (also called
the adversary) controls the offline algorithm and also chooses the input on which both
algorithms operate. Each move of player 2 consists of choosing the input for a unit of
computation as well as how the offline algorithm responds to this input. Then, each
move of player 1 is the response of the online algorithm to the input chosen by player 2.
The objective of player 2 is to minimize the competitive ratio, which means that player 2
chooses the inputs in such a way that the collected utility of the online algorithm divided
by the collected utility of the offline algorithm becomes as small as possible. For this
purpose, player 2 is assumed to be clairvoyant, that is, player 2 knows what player 1 will
do in each possible situation. This framework allows the application of methods from the
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1. INTRODUCTION
field of game theory to the analysis of the performance of online algorithms.
Using competitive analysis to judge the performance of real-time scheduling algorithms is
a common technique since [BKM™92]. In the context of real-time scheduling, player 1 is
the scheduling algorithm, which has incomplete information about the future task releases
chosen by player 2. The automatic competitive analysis framework [CPKS18] computes
the competitive ratio of an online algorithm A on a given task set T of firm-deadline,
preemptive, independent, aperiodic tasks, with optional safety, liveness and limit-average
constraints.
1.3 Problem description
In this work, the automatic competitive analysis framework [CPKS18] for real-time
scheduling algorithms for firm-deadline tasks is expanded to include non-preemptible
sections and precedence constraints.

1. In particular, our extension also includes tasks that might be completely or partially
non-preemptible, or have complex precedence relations. A partially-preemptible
task has at least non-preemptible section, which means that while the currently
running job is in this non-preemptible section, it cannot be preempted. Note
that this allows to implement mutual exclusion constraints, albeit in a somewhat
simplistic way. A precedence relation means that an instance of a dependent
task can only be released after instances of a certain set of other tasks have been
completed. The framework presented in this thesis allows for both event-based
dependencies, where an instance of the dependent task must be released immediately
after the required task instances have been completed, as well as for time-based
dependencies, where the dependent task could also be released later on.

2. The goal remains to determine the competitive ratio of an online algorithm on a given
task set, now under these new conditions. Non-preemptible sections and precedence
constraints are relevant in various situations, like query scheduling [ZWL13] and
scheduling disk requests [PKBT08]. Existing models for applications like operator-
scheduling, stop-and-go network switching, interrupt-handling or network-on-chip
scheduling can also potentially be analyzed with this more expressive view on the
scheduling problem: [BBMDO03] [TBW94] [BIS10].

3. Finally, in order to speed up automatic competitive analysis in the new framework
developed in this thesis, it shall be implemented on a GPU-architecture with CUDA.

4
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CHAPTER

State of the Art

2.1 Competitive analysis of real-time scheduling

In the context of real-time scheduling, competitive analysis is a way to judge the
performance of an online real-time scheduling algorithm for firm-deadline tasks. An
online real-time scheduling algorithm does not know in advance which task instances are
going to be released, or when they are going to be released. Therefore, it has to make all
its scheduling decisions with limited information, specifically just with the task instances
that have already been released at the time-slot where the decision has to be made. By
contrast, an offline real-time scheduling algorithm knows all the released task instances
including their release times from the start, which means it can produce a schedule which
is optimal (with respect to collected utility) for the given sequence of task releases, also
known as a task sequence.

Clearly, comparing the collected utility of an online algorithm with the collected utility
of an optimal offline algorithm is a sound way to judge the performance of the online
algorithm. The competitive ratio of an online algorithm on a particular task set is the
worst case of the online algorithm’s collected utility divided by the offline algorithm’s
collected utility, evaluated over all possible task sequences of the studied task set.

Regarding game theory and competitive analysis of scheduling algorithms, we are not
aware of much work: [SBHP11] considered non-preemptive scheduling of periodic hard
deadline tasks, [BMS10] used graph games for feasibility analysis in a multiprocessor
environment, and [LMMW16] studies competitive synthesis with the goal of minimizing
completion times.

Regarding relevant optimization techniques, [BHK17] introduced some optimizations for
finding the minimum ratio cycle in a directed graph, and [BB15] might be an efficient way
to use the Bellman-Ford algorithm for negative cycle detection, which could potentially
be an alternative to Madani’s algorithm [Mad02] for finding the minimum mean cycle.

5
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2.

STATE OF THE ART

The framework presented in [CPKS18] has laid the groundwork for this thesis. We will
now describe some details of its internal workings:

Since the set of all possible task sequences of a given task set is generally infinite, some
additional assumptions were made in [CPKS18] to simplify the problem of finding the
worst case ratio of online utility to offline utility. If T is finite and only one instance of
each task can be released per time-slot, then the set of currently active task instances
must also be finite at all times during all executions of the scheduling algorithm, since it
is bounded by |7 |Dynaz, where Dyp,q, is the maximum relative deadline of all the tasks in
T. Therefore, the current state of the algorithm can be defined as the set of currently
active task instances together with the internal memory of the scheduling algorithm, and
if the internal memory of the algorithm is finite, then the state must also be finite.

With this, the algorithm can be represented as a labeled transition system, where each
node is labeled with a unique state of the algorithm, and each edge is labeled with a set
of task releases. Intuitively, every edge represents the passing of one time-slot, labeled
with the task instances that are released at this time-slot, and leads to the node labeled
with the state the algorithm is in after the scheduling decision given the newly released
task instances has been made. Also, if the scheduling algorithm collects some utility, the
edge is additionally labeled with the amount of utility collected. Each infinite path in
this labeled transition system corresponds to a task sequence of T .

Since the framework [CPKS18] only considers deterministic online algorithms, the LTS
of the online algorithm is always deterministic, which means that the task release labels
of the outgoing edges are unique for each state. Therefore, each task sequence of T
corresponds to precisely one infinite path in its LTS. By contrast, the LTS of the offline
algorithm is non-deterministic, which intuitively means that the offline algorithm might
make different scheduling decisions on the same (partial) input. This is unavoidable,
because the task sequence up to a particular time-slot (corresponding to a finite path
in the LTS) is not enough information for the offline algorithm to make its scheduling
decision.

The labeled transition systems (or graphs for short) generated by this method can be
further constrained: For example, a safety constraint might disallow task sequences
where too much workload is released in too short of a time. Parts of the graph that are
only reachable through paths where this constraint is violated are discarded in this case.
Additional constraints include liveness constraints and limit-average constraints.

When we calculate the synchronous graph product (as defined in [CPKS18]) of the online
graph, the offline graphs and the constraint graphs for all considered constraints, then we
get a graph where each infinite path corresponds to a task sequence of 7 that satisfies
all constraints. In this product graph, the edges are labeled with the task releases,
the collected utility for the online graph and the collected utility for the offline graph.
Therefore, for each finite path in the graph, we can calculate the total collected utility
for the online graph divided by the total collected utility for the offline graph. Since the
worst case for the limit of this ratio must be a equal to the minimum ratio cycle of online
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2.2. CUDA

utility to offline utility in this graph, we can compute the competitive ratio by running
an algorithm for finding the minimum ratio cycle.

To summarize, the framework takes a task set, an online scheduling algorithm and a set
of constraints as inputs, and then executes the following steps:

e Generate a graph representing possible executions of the online algorithm on the
given task set.

e Generate a graph representing possible executions of an offline algorithm on the
given task set.

e (Calculate the product graph of these two graphs and the constraint graphs.

e In this product graph, find the cycle with the minimum total utility for the online
algorithm divided by the total utility for the offline algorithm.

The total utility for the online algorithm divided by the total utility for the offline
algorithm in this cycle gives the competitive ratio of the analyzed online algorithm on
this task set.

Notable optimizations in this framework include:

e The offline scheduler schedules jobs to completion or not at all.

e Non-idle scheduling optimization: As long as there are some unfinished jobs in the
state of the offline scheduler, the currently executed slot must never be empty, that
is the offline scheduler cannot decline to schedule a job while there are still jobs it
has promised to schedule to completion.

e Admissible gap optimization: The offline scheduler will never leave a gap in the
execution of a job for which there is no multiset X of tasks from 7T such that
>-rex Ci =1, where [ is the length of the gap. We call a gap for which such a set
X exists an admissible gap.

Table 2.1 show some performance results of the framework in terms of execution time
depending on graph size, taken directly from [CPKS18].

2.2 CUDA

In order to speed up automatic competitive analysis in the new framework developed in
this thesis, it shall be implemented on a GPU-architecture with CUDA.

[Gui] describes the basic functionality of a GPU as an array of Streaming Multiprocessors
(SMs). A CUDA compute kernel is a function that is executed by many threads in
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2. STATE OF THE ART

size of the product graph (nodes) | average execution time (seconds)
823 0.04
1997 0.39
4918 10.02
1064 0.14
1653 0.66
7705 51.04
1711 2.13
3707 13.88
10040 131.83
2195 5.37
9105 142.55
16817 558.04
Table 2.1: Performance results of the framework [CPKS18|
Multithreaded CUDA Program
w w
GPU with 2 5Ms GPU with 4 5Ms
S5MD 5M1 5M1 5M 2 SM2

w

Figure 2.1:

Visualization of thread blocks and SMs used in [Gui], for two different
GPU-architectures (2 SMs and 4 SMs). The downward arrows represent the order of

execution on each SM, with blocks that are higher up being executed first.
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2.3. Graph algorithms

parallel, executing the same instructions but working on different data. These threads
are organized into thread blocks that are then executed by the SMs (see Figure 2.1).

Calls to these compute kernels are made from a serial program running on the CPU.
This serial code is called host code, while the code in the compute kernels is called
device code. The set of all thread blocks executing the same kernel started by the same
host command is called a "grid” of threads. Per default, host code can only access host
memory (RAM) and device code can only access device memory (GPU memory). This
means that data transfer between host and device is necessary every time some host
code wants to read memory written by device code and vice versa. Figure 2.2 illustrates
an example execution, where KernelO is called by host code, and once the entire grid
(Grid0) is finished, there is some additional host code that calls Kernell (corresponding
to Gridl).

2.3 Graph algorithms

Aside from standard graph algorithms like depth first search [Eve79], our framework
utilizes Madani’s algorithm for finding the minimum mean cycle [Mad02]. We use a
reduction of the minimum ratio cycle problem to the minimum mean cycle problem
utilizing guided binary search, as described in more detail in [CPKS18]. Therefore,
Madani’s algorithm for finding the minimum mean cycle can be used to compute the
competitive ratio, see section 7.1 for details.

Madani’s algorithm uses value iteration, which informally means that it heuristically
determines the value and the outgoing edge with the smallest value for each node in each
iteration. In each iteration, the value of each node is set to the minimum of edge-weight
plus old target-node value among all outgoing edges of each node. If this means that a
different edge now provides the minimum value for this node, then the outgoing edge with
the smallest value changes as well. [Mad02] provides a proof that after n iterations, where
n is the number of nodes in the graph, the history of paths in this graph consisting of only
the edges with the smallest outgoing value in each iteration must contain the minimum
mean cycle after at most another n iterations. The technique of searching history paths
for cycles is referred to as "super edges” in the paper. Our CUDA implementation of
this algorithm is described in more detail in section 7.1.
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CHAPTER

Specification of the Framework

3.1 Non-preemptible sections

A non-preemptible section of a task cannot be preempted until it is completed. This
means that the online algorithm does not make any scheduling decisions as long as a
non-preemptible section is executed. For the offline algorithm, it means that this section
can only be scheduled as a single block.

To specify a non-preemptible section, a start-timeslot and an end-timeslot within the task
are needed. These timeslots are given relative to the release time of the task instance.
Example: A task with a computation time of 5, and a non-preemptible section with
start-timeslot 2 and end-timeslot 4 can only be preempted after the first timeslot and
after the fourth timeslot. In the case of multiple non-preemptible sections within the same
task, multiple pairs of start- and end-timeslots are necessary. Should the non-preemptible
section span the entire rest of the task, the end-timeslot can be omitted.

3.2 Event-based precedence constraints

If Task B has an event-based dependency on Task A, then an instance of Task B is
released immediately every time an instance of Task A is completed, and the adversary
cannot release any instances of Task B in a different way. We will call Task A precursor
task and Task B dependent task.

As an example, consider Task A with computation time 1 and relative deadline 1, and
Task B with computation time 1 and relative deadline 2 (see Figure 3.2).

It is also possible to specify event-based dependencies where the dependent task is not
released immediately on the completion of the precursor task, but after a constant delay.

11
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3. SPECIFICATION OF THE FRAMEWORK

preemptible preemptible
Y Y
A
>
1 2 3 4 5 t
Example 1: computation time 5, start timeslot 2, end timeslot 4
preemptible preemptible  preemptible
Y Y Y
A
>
1 2 3 4 5 6 t
Example 2: computation time 6, start timeslot 2, end timeslot 3, start timeslot 5
Figure 3.1: Examples of non-preemptible sections
Al released Al completed A2 released A2 completed A3 completed
A3 released
~ A A
Y A 4 Y
L.
Ll
1 2 3 4 5 [ t
Bl released Bl completed B3 released B2 completed B3 completed
A A
Y Y Y

B2 released

Bl B2 B3

! .

I 1 2 3 | 4 5 6 t

Figure 3.2: Example of an event based precedence constraint

12


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.3. Time-based precedence constraints

3.3 Time-based precedence constraints

Unlike event-based dependencies, the release of time-based dependent task instances is
still controlled by the adversary. If Task B has a time-based dependency on Task A,
then the first released instance of Task B after an instance of Task A is completed is
paired with that instance of Task A. Instances of Task B released after a paired instance
of Task B and before the next instance of Task A is completed are unpaired instances.
Each B in paired instances can have different values for computation time C, relative
deadline D} and utility V/ than unpaired instances, which have computation time Cj,
relative deadline D; and utility V;. It is also possible to specify that unpaired instances
of B have C; = D; = V; = 0, in which case only paired instances of Task B are relevant
to the scheduling problem, and unpaired instances are suppressed (i.e. discarded).

Consider Task A with computation time 1 and relative deadline 1, and Task B with
computation time 2 and relative deadline 2. In Example 1, the computation time of Task
B is reduced to 1 for paired instances. In Example 2, only paired instances of Task B are
relevant, i.e. C; = D; = V; = 0 for unpaired instances of B (see Figure 3.3).

In the general case, there is no upper bound for the time between the completion of the
precursor task and the release of the paired dependent task instance. The adversary could
even delay this release indefinitely. Since the release times (but not the paired/unpaired
status) of time-based dependent task instances must be the same for both the online-
and offline-algorithm, it is not possible to specify admissibility constraints for the time
between the completion of the dependency and the release of the paired task instance.
Constraints about the release times themselves (without reference to the paired/unpaired
status) can be imposed normally.

3.4 Forks and joins

In a join, one dependent task has two or more precursor tasks. There are two kinds of
joins: In an OR-join, the dependency is fulfilled by the completion of any precursor task
instance. In an AND-join, the dependency is fulfilled by the completion of at least one
instance of each precursor task. A circular dependency occurs when some task ultimately
depends on itself. Unless some dependency in the dependency cycle is a time-based
dependency (that only modifies the properties of the released task instance), circular
dependencies need an OR-join in order to allow some task instance released by the
adversary to start the cycle.

Joins are a generalization of the precedence constraints described above, in the sense that
a simple precedence constraint can be thought of as a join with just one precursor task.

Forks are not explicitly modeled in our framework, but are instead created implicitly
when two or more different tasks have the same precursor task. Since dependencies
are only specified on the side of the dependent task, a single task can be the precursor
task for an arbitrary mixture of event-based or time-based dependencies with AND- or
OR-joins.

13
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Al released Al completed

A
Y
L
»~
1 2 3 4 5 t
Bl released, Bl completed B2 released, B2 completed
paired with Al not paired
A A
Y Y
Adversary
could also
release B2
B 1 earlier Bz Bz
L
»~
1 2 3 4 5 t

Example 1: The first instance of B after Al is completed has shorter computation time

Al released Al completed A2 released A2 completec

A A

Al A2

k.
»
1 2 3 4 5 6 t
Bl released, B1 completed
paired with A1
A
Y
Adversary
could also
release B1
earlier B 1 B 1
L.
»
1 2 3 4 5 6 t

a A
-« >
All Task B instances released here are suppressed

Example 2: Only paired instances of Task B are considered relevant

Figure 3.3: Examples of a time based precedence constraint
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3.4. Forks and joins

Consider Task A, B, C and D, all with computation time 1 and relative deadline 2. Task
B and C have a dependency on Task A, and Task D has an AND-join dependency on B
AND C. Both event-based and time-based dependencies are possible, but this example
uses event-based dependencies for simplicity (see Figure 3.4).

Al released Al completed

A
Y

>

1 2 I 3 4 I 5 t

Bl released Bl completed
A
Y

.
»

1 2 3 4 5 t

C1 completed
Y
C1 released Cl

! ,

1 | 2 3 4 5 t

D1 released D1 completed
A
Y

A
I 1 2 I 3 4 5 t’—

Example: B and C depend on A, D depends on B AND C

Figure 3.4: Examples of a fork followed by an AND-join
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CHAPTER

Competitive Ratio Computation

In [CPKS18], the competitive ratio of an online algorithm A on a given set of admissible
job sequences J was defined as

e . L V(79,E)
A) = inf 1 f
R = 30 B T V(e

(4.1)
with 79 being the schedule of the online algorithm A, and 7¢ being the schedule of a
clairvoyant offline algorithm C' working on the same job sequence o. The term V (7, k)
is the value achieved by schedule 7 up to step k. In our setting, both event-based and
time-based precedence constraints may result in different job sequences for A and C: A
precursor task instance may be completed by C but not by A (or vice versa), resulting
in an event-based dependent task instance being released for C but not for A, or a newly
released time-based dependent task instance being paired for C' but not for A. The
definition of CR;(A) given in equation (1) is therefore not directly applicable to our
model.

In order to account for this, we no longer demand that both the online and the offline
algorithm work on the same job sequence o. Instead, the online algorithm works on the
job sequence o4 and the offline algorithm works on a possibly different job sequence o¢.
Based on the notation used in [CPKS18], we define the following terms:

e The taskset 7 = {71, ..., 78 } = Teq U Ttq U Ty, where T4 is the set of event-based
dependent tasks (contains all dependent tasks in some event-based dependency),
Tiq is the set of time-based dependent tasks (contains all dependent tasks in
some time-based dependency), and 7, is the set of non-dependent tasks. Each
task 7; = (i,C;, D;, V) is still characterized by the 4-tuple of task id, worst-case
execution time, relative deadline and utility value. Each 7; € T4 has the values

17
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of the unpaired version of the task. Our model does not allow for tasks that are
dependent tasks of more than one dependency, which means that 7.4, T;q and 7,
are disjoint.

An alternative taskset 7., with 7/ = (i, C}, D}, V}/) of the paired version 7/ of the
task 7 € Tq. The bijective function paired : Tiq — T, returns the paired version of
each unpaired task: 7] = paired(r;). This alternative taskset is necessary because
different schedules might result in the same task release being a paired or unpaired
instance.

The set of possible non-dependent task releases per slot ©,, = {6,|0,, € 27}.

The set of all non-dependent task release sequences ¥,, = ©%, and the set of all
non-dependent task release sequence prefixes of length ¢, 3,,(t) = ©. For o,, € 3,
on(t) = (o}, 02,...,0l) is the t-prefix of o, with ¢! being the non-dependent task

releases in slot ¢.

The set of possible anonymous time-dependent task releases per slot ©, = {6,.|0, €
27t} Note that ”anonymous” in this context means that it is not yet decided
whether or not this task instance will be paired or unpaired. The unpaired instances
in this set might be converted to paired instances depending on context.

The set of all anonymous time-dependent task release sequences ¥, = 0%, and
the set of all anonymous time-dependent task release sequence prefixes of length ¢,
¥, (t) = 6L. For 0, € %, 0,(t) = (0,02, ...,0l) is the t-prefix of o, with ol being
the anonymous time-dependent task releases in slot ¢.

The set of all schedules IT = ({(T U T,,;) x {0, ..., Djaz — 1}} U {0})¥, and the set
of all schedule prefixes of length ¢, II(¢) = ({(T U T}) X {0, ..., Dimaz — 1}} U {0})".
For m € II, 7(t) = (n!, 7%, ..., wt) is the t-prefix of 7, with 7! being scheduled in slot
t with remaining relative deadline.

The set of admissible sequences of releases of non-dependent and anonymous
time-dependent tasks J = {o, U o,|o, € ¥,,0, € X}, where o, U 0, means
elementwise union. This set can be subjected to additional constraints, as described
in [CPKS18|.

Unfortunately, because of event- and time-based dependencies, just knowing o, U o, is
not sufficient for completely specifying the schedule 74 of the online-algorithm or the
schedule ¢ of the offline algorithm respectively, as they face two different task release
sequences o4 and o¢ for the very same o, U c,.. We therefore need additional definitions:

e The set of possible task releases per slot © = {0|0 € 2TV, with 7; € 0 =

paired(r;) ¢ 0} for all 7; € Tyg.
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e The set of all task release sequences > = 0%, and the set of all task release sequence
prefixes of length ¢, ¥(t) = ©%. For 0 € &, o(t) = (¢!, 02, ..., 0%) is the t-prefix of o,
with o being the task releases in slot t.

e 04 € X is the job sequence for algorithm A, and oo € ¥ is the job sequence for
algorithm C.

Given o4, 79" is the schedule for 04 produced by algorithm A. Note that 7% (¢) only
depends on o4(t), since A is an online algorithm. However: o4(t) also depends on
79 (t — 1), since o4 depends on it. This dependency is not circular, since 7%* (¢ — 1) only
depends on g 4(t — 1). In order to account for this, we introduce the concept of release
functions:

The event-based release function E! is a function parameterized by 7 € T4 and t € N,
and the signature is EL : TI(t — 1) — {0, 7}. For any event-based dependent task T € T¢q
and any schedule prefix 7(t — 1), E{(7(t — 1)) determines whether a job of task 7 is
released at time t or not, depending on the schedule prefix up to time ¢ — 1. Formally,

7, if 7(t — 1) demands an instance of 7 to be released at time ¢,

@, otherwise.

B (n(t - 1)) = {
(4.2)

Informally, this function returns 7 if 7(¢ — 1) completed the dependency of 7 at time
t — 1 and () otherwise. Note that the exact behavior of this function could potentially be
generalized to support arbitrary conditions on 7 (¢t — 1). Since the relative deadline and
worst case execution time of each scheduled task is encoded in 7(t — 1), it is sufficient to
determine the completion time of precursor task instances. Our framework defines the
exact interpretation of "demands an instance of 7 to be released” by a labeled transition
system, which is presented later. In order to get all the event-based dependent task
releases at time t, we simply look at the union of the release functions (recall that, in our
context, union notation on sequences just means the elementwise union):

Efm(t-1))= |J Ei=(t-1)). (4.3)
T€Ted

The time-based release function T! is a function parameterized by 7 € Tyq and t € N,
and the signature is 7% : ©,, (¢t — 1)7 II(t — 1) — {0, 7, paired(r)}. For any time-based
dependent task 7 € Tyy with an anonymous task release 7 € 6! at time ¢, any schedule
prefix m(t—1) and any job release prefix o (t—1), the release function T (%, o (t—1), w(t—1))
returns either (), 7 or paired(r), depending on whether 7 € 6. and on whether its
dependency is fulfilled or not. Formally,
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paired(t), if 7 € 0t and 7(t — 1) demands a paired instance,

T, o(t—1),7(t—1)) =< 7, if 7 € 0% and 7(t — 1) does not demand a paired instance,

0, if 7 ¢ 0L
(4.4)

Informally, this function converts the unpaired instance of 7 into a paired instance if
7(t — 1) contains the completion of its dependency after the last release of 7 in o (¢t — 1).
Again, the exact behavior of this function could be generalized to other conditions. In
order to get all time-based dependent task releases at time ¢, we again take the union of
release functions:

TGO ot — 1)t — 1) = | THE!, ot — 1),(t — 1)). (4.5)
T€T¢a

With this, we can define the job sequence 04 = 04,,U0 4 cqU0 4 14 for the online algorithm
A as the union of the following subsequences (except o4 ,, which is just used to construct

UA,td)i

® 04, The non-dependent task releases, a priori given.

e 04,: All anonymous task releases of time-based dependent tasks 7 € T4, a priori
given (but no distinction between paired or unpaired instances).

® 04.q: Event-based dependent task releases, defined inductively for ¢t > 1: 0%7 ea =10,
Uf4,ed = EY(ma(t — 1)), where ma(t — 1) is the schedule for o4(t — 1).

e 0444 Time-based dependent task releases, defined inductively for ¢ > 1: U}Ltd =
Tl(a}u, 0,0), 0y g =T (0%, 0a(t —1),ma(t —1)), where ma(t — 1) is the schedule
for o4(t —1).

Note that the adversary only has control over o4, Uoa,. 04ed and 04,4 are then
uniquely determined by this and the schedule produced by the algorithm.

For the offline algorithm C', the situation is slightly more complicated, since there is no
unique schedule prefix 7w (t) for each finite job sequence prefix oc(t). However, there
is still a finite set of possible schedule prefixes I (t) given a finite job sequence prefix
oc(t), and this set remains unchanged regardless of how o¢ is extended after timeslot t.

Therefore, if we treat oc, and oc, as a priori given, as we did for the online algorithm,

we can inductively define the set of possible schedules H(CU o)

job sequences 2(5 cmoc,r) together:

and the set of possible
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1. The set of possible job releases at t = 1 is E(gc’"uac”")(l) = O'é«’n U Tl(aar, 0,0),
i.e. just the non-dependent task releases and time-based dependent task releases
(that are guaranteed to be unpaired).

2. The set of possible schedules at t =1 is H(C?C’”UUC’T)(I) = E(C?C’”UUC’T)(I) U {0}, ie.,
the offline algorithm can schedule one of the tasks that have been released at time
t = 1 or nothing.

3. For each matching task release sequence prefix oo (t — 1) € E(g C’"UUC’T)(t —1) and

schedule prefix 7o (t — 1) € H(g C’"Ugc’r)(t — 1), the task release sequence prefix

oc(t), which is o¢(t — 1) extended by o, = Utc,n UEY(me(t—1))U Tt(atar, oc(t —
1),mc(t — 1)), must be in E(Cgc‘"ugc”")(t).

4. For each task release sequence prefix o¢(t) € E(g C’"UUC”)(t) generated in step 3 by

extending the matching task release sequence prefix oo (t — 1) € E(g C’"UUC’T)(t -1)

and schedule prefix 7o (t—1) € H(g ¢nJocr) (t—1), all schedule prefixes m¢(t), which

are o (t — 1) extended by the scheduling of an active job given o¢(t) and 7o (t — 1)

or no job, must be in ch’"UUC’T)(t).

This way, Z(gc’"uacﬂ“)(t) and H(UC,nUUc,r)

Therefore, we can take the limit to extend the prefixes to infinite sequences:

. (UC,nUO'C,r) _ (UC,nUUC,T)

Jim 58 () =5 (4.6)

lim TI5C"70) (1) = qrigentoes) (4.7)

t—o0 c ¢ '
For any job sequence o¢ € Z(g C’"UUC’T), there exists a schedule 7o € H(g cmoc,r) that
fulfills the constraints of event-based and time-based dependencies by construction. For
any given oc,, Uoc,, each possible schedule o¢ € Z(g cnlo,r) implicitly relies on unique
sequences o¢ ¢q and ocq. The offline algorithm can therefore just select the optimal
schedule ng OnloC,r) among all the possible schedules given o¢, and oc,, because

nU L ] 1
ﬂg Cnliocr) uniquely determines o¢ g and o¢ 4.

In order for the competitive ratio to make sense, we assume that both the online- and
the offline algorithm work on the same sequence of non-dependent and anonymous

time-dependent task releases o, U 0. Therefore, 04, = 0¢c = 0y and 04, = 0¢,; = 0.

ﬂff”ugr) refers to the schedule produced by the online algorithm A given o, U o,., with
event-based and time-based dependent task releases being incorporated into the job

sequence as described above. The same goes for Trg "U9r) and the offline algorithm C.

o (t) can be constructed for arbitrarily large .
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With this, given a certain taskset including its subsets, release functions and other
constraints, we can rewrite the definition of the competitive ratio as follows to fit our
model:

(onUor)
CR)(A)= inf Jim inf iV Ta" oK)

4.8
(onUor)ed k—o0 14+ V(ﬂ_gnUm«), k‘) ( )

where J is the set of admissible sequences of releases of non-dependent and anonymous
time-dependent tasks (o, U o, ). Note that in contrast to the original model, J is just a
subset of the full job sequences the online- and offline-algorithm work on, but as explained
above, J together with A or C uniquely determines both the schedule and the rest of the
job sequences (which may be different between A and C).

4.1 Release functions as labeled transition systems

Previously, we defined release functions for "demanding” the release of an event-based
dependent task, or a paired version of a time-based dependent task. In our framework,
this can be implemented by labeled transition systems, which fall into four categories
(see Figure 4.1 for an illustration):

e Event-based OR-dependencies: There is a state labeled "uncompleted” and a state
labeled "completed”. For each precursor task, there is an edge labeled with the
task completion from the uncompleted state to the completed state. There is a
single edge labeled with the dependent task release from the completed state to
the uncompleted state.

e Time-based OR-dependencies: The LTS is identical to the one for event-based
OR-dependencies, except that the uncompleted state has a self-loop labeled with
the unpaired version of the dependent task release, and the edge from the completed
state to the uncompleted state is labeled with the paired version of the dependent
task release.

e Event-based AND-dependencies: There are 2" states, where n is the number of
precursor tasks, and each state is labeled with a different subset of the set of
precursor tasks. If s; and so are states, and s; is labeled with a subset of the
label of sg such that exactly one precursor task in the so label is missing from the
s1 label, then there is an edge from s; to sg labeled with the completion of the
missing precursor task. Additionally, there is an edge labeled with the dependent
task release from the state labeled with the entire set of precursor tasks to the state
labeled with the empty set.

e Time-based AND-dependencies: The LTS is again identical to the one for event-
based AND-dependencies, except that the edge from the state labeled with the


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

4.1. Release functions as labeled transition systems

entire set of precursor tasks to the state labeled with the empty set is labeled with
the paired version of the dependent task release, and each state that is not labeled
with the entire set of precursor tasks has a self-loop labeled with the unpaired
version of the dependent task release.

As an example, consider the case where task C depends on the tasks A and B (see Figure
4.1).

Event-based OR-Dependency: Time-based OR-Dependency:

A completed C released A completed
unpaired

uncompleted completed

C released
paired

B completed B completed

Event-based AND-Dependency: Time-based AND-Dependency:

Creleased
unpaired

A completed & completed Creleased A completed B completed

unpaired

C released

C released paired

8 completed ' l A completed

C released
unpaired

B completed A completed

Figure 4.1: Examples of release function LTSs
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CHAPTER

Graph Generation

In the online graphs of our framework, nodes correspond to states of the scheduler and
edges correspond to possible task releases. The state of the scheduler includes currently
active task instances with their remaining workload and relative deadline, as well as
which tasks have currently been completed for each dependency. Certain algorithms
also require additional information to be saved in the state. Each node must have an
outgoing edge for each possible combination of non-dependent and anonymous time-based
dependent task releases. Event-based dependent task releases and the paired or unpaired
status of time-based dependent task releases are determined by the state.

The online graph is generated by starting with a node corresponding to the initial state,
and then recursively adding the required outgoing edges and the nodes they lead to
into the graph. The internal state of each newly added node is calculated by taking the
state of the previous node, updating the relative deadlines, adding all the released tasks
and then applying the scheduling decision of the online algorithm. For this purpose,
each online algorithm has a function for choosing the scheduled task instance and then
reducing the state, which are given in Appendix A. Should the state of the new node be
equal to the state of an already existing node, they are merged.

For the offline algorithm, nodes also correspond to states, but edges correspond not only
to task releases, but also to possible scheduling decisions of the offline algorithm. The
offline algorithm reserves future time-slots for task-instances it intends to complete ahead
of time, which means the state must contain information about which time-slots have
already been reserved in this way. The latest possible point at which a task instance can
be completed is its release time plus its relative deadline D;. Since scheduling decisions
are usually made at the release-time of the task, a bit-vector with length D, is usually
sufficient to represent the information of which future time-slots have already been
reserved. However, there is one exception: The scheduling decision for an event-based
dependent task with a non-zero release delay is not made at release time, i.e. the time
of the completion of the last required precursor task, but release delay slots later. This
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means that the required length of the bit-vector is the maximum of D4, and the largest
sum of relative deadline and release delay among event-based dependent tasks with
non-zero release delay. The information for the dependencies, which also includes task
instances that are already scheduled to be completed, is also stored in the state. Each
node must have an outgoing edge not only for each possible combination of non-dependent
and anonymous time-based dependent task releases, but also for each possible scheduling
decision given those releases, except the ones that cannot possibly be optimal. The offline
graph is then generated in the same manner as the online graph.

Once both the offline graph and the online graph are generated, their graph product
is calculated. In the resulting graph, each node corresponds to an online-state and
an offline-state, and each edge corresponds to a combination of non-dependent and
anonymous time-based dependent task releases and a scheduling-decision by the offline
algorithm. Each of these edges can be labeled with the utility that the online algorithm
and the offline algorithm would receive given the task releases determined by the edge.

5.1 Online algorithms

The following online algorithms are implemented in the framework:

e Earliest deadline first: Schedules the job with the earliest absolute deadline. Ties
are broken in favor of the job with the smallest task-index.

e First in, first out: Schedules the job with the earliest release time. Ties are broken
in favor of the job with the smallest task-index.

e Static priorities: Schedules the job with the highest static priority. Ties are broken
in favor of the job with the earliest release time.

e Smallest remaining time: Schedules the job with the smallest workload remaining.
Ties are broken in favor of the job with the earliest absolute deadline, and then in
favor of the job with the smallest task-index.

e Profit Density: This algorithm is based on [ZWL13|, and schedules the job with
the highest profit density, where profit density is defined as the utility of the
task divided by the remaining workload of the job. This algorithm has also been
made precedence-aware, in the sense that the profit density of a precursor task
is increased in case a dependent task with a currently unfulfilled dependency has
a higher profit density. Specifically, if vg is the value of the dependent task, v,
the value of the precursor task, cq the workload of the dependent task and ¢, the
remaining workload of the precursor task instance considered for scheduling, then
the profit density of this instance is max(%ﬁ, ZZTJFZZZ)' Ties are broken in favor of

the job with the earliest absolute deadline, and then in favor of the job with the
smallest task-index.
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5.2. Formal description of the offline algorithm

e Smallest slack time [SArt04]: Schedules the job with the smallest slack time (laxity),
where slack time is defined as relative deadline minus remaining workload. Ties are
broken in favor of the job with the smallest task-index, and then in favor of the job
with the earliest release time.

e Dover: This algorithm is described in [KS95]. It behaves like earliest deadline first
in underloaded conditions and has special logic for overload.

e Dstar: This algorithm is described in [BKM91]. Like Dover, it behaves like earliest
deadline first in underloaded conditions and has special logic for overload.

The implementation of these algorithms in C is included in Appendix A.

5.2 Formal description of the offline algorithm

The state s of the offline algorithm at a particular time-slot consists of the following
information:

e For the current time-slot as well as future time-slots, has the offline algorithm
already promised to schedule some task at this time-slot? This is expressed as a
function ps : N — {true, false}, where ps(n) is true if and only if in the state s,
the offline algorithm has already promised to schedule some task in the time-slot
that is n time-slots into the future (n = 0 means the current time-slot).

e What is the current state of each dependency LTS? For each dependent task T,
dsr is the set of precursor tasks of 7 that has been completed since the last release
of 7 in the state s. ers : 7 — {true, false} is a function that returns true if and
only if 7 has an event-based dependency and the LTS of d, is in a state where
an instance of 7 can be released. try : 7 — {true, false} is a function that returns
true if and only if 7 has a time-based dependency and the LTS of ds; is in a state
where a paired instance of 7 can be released.

e Which already released task instances will be completed in the future? This is
expressed as a function ¢g : N — {7, U T}, where c¢s(n) gives the task 7 of an
already released task instance that will be completed n time-slots in the future in
state s, or T,y if no already released task instance will be completed n time-slots
in the future in state s.

The initial state sg is defined as the state where ps,(n) = false, for all n € N, dg,r = )
for all 7 € T, and ¢s,(n) = Tpuy for all n € N.

Transitions from a state s; to another state so of the offline algorithm fall into three
categories:
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e The scheduling of an instance of task 7; by the offline algorithm (in short ¢;-

transition), where there is a set @ C {0,1,...,D;} with |Q| = C; and Vn € Q@ :
ps; (n) = false, ps,(n) = true. For non-preemptible sections, there is an additional
constraint that the corresponding numbers in () must be consecutive. Also, if
7; is a precursor task for any dependency in the studied task set, then for the
largest number n € @, it must be the case that cs,(n) = 7;. For tasks that are
not precursor tasks of any dependency, it is assumed that c,(n) = 7,y for n € @,
because information about when exactly these tasks will be completed has no further
impact on scheduling decisions or task releases, and is not necessary for computing
the competitive ratio. If 7; is an event-based dependent task with a non-zero release
delay e, then numbers n € ) must be in the range {e,e + 1,...,e + D;} instead of
{0,1,..., D;}.

Advancing one time-slot (in short a-transition), where ps,(n) = ps, (n+1), ¢s,(n) =
cs;(n+ 1), and if ¢,, (0) = 7; then 7; € ds,, for all dependent tasks 7 for which 7; is
a precursor task.

Releasing a dependent task 7; (in short d;-transition), where either erg, (7;) = true
or trs, (1;) = true and dg,,, = 0.

A single edge in the offline graph from a state s; to another state ss consists of the
following state-transitions:

e First, a number of d;-transitions in ascending order of i. Since the order of d;-

transitions does not matter, this choice of ordering them is arbitrary. If erg, (7;) =
true then every edge starting in s; must contain a d; transition for ;. This is to
ensure that tasks with an event-based dependency are actually released once their
dependency is fulfilled.

Second, a number of g;-transitions ordered by the priority of the associated tasks
7;, where the priority of a task usually corresponds inversely with its relative
deadline, and with higher priority tasks occuring before lower priority tasks. In
each edge there can be at most one g;-transitions for each task 7;, which ensures
that at most one job of each task is released in a single time-slot. ¢;-transitions
for event-based dependent tasks are only allowed to occur in an edge if the same
edge contains a d;-transition for the same task 7;. g;-transitions for time-based
dependent tasks represent the release of a paired instance of 7; if the same edge
contains a corresponding d;-transition, or an unpaired instance of 7; if it does not.
gi-transitions for time-based dependent tasks are not allowed if trg, (7;) = true
unless there was a d;-transition in the same edge, which forces time-based dependent
task releases to be paired if their dependencies are met.

Third, an a-transition, which is the final transitions of each edge and advances the
state of the offline algorithm to the next time-slot.
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5.2. Formal description of the offline algorithm

Since the structure of g;-transitions ensures that all jobs that are nondeterministically
chosen to be scheduled at all must be scheduled to completion, the offline algorithm will
never be overloaded. EDF* [CSB90] [Bla77] is optimal in underloaded conditions even in
the presence of precedence relations, so we can assign the priorities of tasks according to
EDF*:

The priority-order of tasks 7; corresponds to their relative deadline D;, with tasks with
lower D; having higher priority. Precursor-tasks have a place in the priority-order
determined by their own D;, just like every other task. However, if D; < D; for some
dependent task 7; that has a dependency on 7;, then 7; may also appear as if its own
relative deadline were equal to D;. For dependent tasks 7; that are themselves precursor
tasks, the value of D; can itself have multiple possibilities that might be optimal, and
each one of these possibilities must be accounted for when calculating the possible places
in the priority order for a task with transitive dependencies. This higher priority is only
warranted if the dependent task 7; is actually released and scheduled, though, so the
offline algorithm chooses nondeterministically between all the possible positions in the
priority list for each precursor-task, and generated a corresponding edge in the offline
graph, in order to cover all possibilities for future dependent task releases. Altough a
precursor-task 7; may thus occupy several different positions in the priority-list, it may
still only be released at most once each time-slot.

With EDF* being optimal in underloaded conditions, and all ¢;-transitions of each edge
ordered by their priority, we can impose an additional constraint on the g;-transitions in
each edge of the offline graph:

Lemma 1. The smallest number q € Q of each ¢q; transition must be larger than the
largest number ¢ € Q of the previous q;-transition in the same offline-edge.

This ensures that for jobs released at the same time, a job with lower priority cannot be
scheduled before a job with higher priority.

An execution path of the offline algorithm is a sequence edges of the offline graph, and
has the following properties:

e The non-dependent and anonymous time-based dependent task releases of each
edge are given by the set of non-dependent or time-based dependent tasks for which
a g;-transition took place in that edge. The sequence of these releases is a property
of the execution path.

e The utility of an execution path is given by the sum of the corresponding V; for
each g;-transition on the path. In the case where 7; has a time-based dependency, it
must be taken into account whether or not the g;-transition corresponds to a paired
or unpaired task release, which can be determined by looking at the d;-transitions
in the same edge.
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CHAPTER

Scheduling Anomalies

Non-preemptible sections and precedence constraints can result in some situations where
the optimizations for the offline algorithm used in [CPKS18] are no longer straightfor-
wardly valid. For example, previously it could never be optimal for the offline algorithm
to not schedule a job immediately if the current slot is still empty and the job is scheduled
at all. With the new model, the non-idling optimization is no longer optimal in some
situations. Here are some examples:

In the case of nonpreemptible sections, consider the release of a job with C; =2, D, =4
and a nonpreemptible section spanning the entire job. If the offline algorithm is currently
in a state where the first, third and fourth slots are free, and the second slot already
contains a nondeterministically scheduled block from a different job, then it is optimal to
schedule this job in the third and fourth slots and not schedule anything in the first slot,
since the nonpreemptible job does not fit in the first slot. Note that the offline algorithm
nondeterministically tries all possible ways to schedule a job, as long as they are not
guaranteed to be non-optimal, so this initial state is in fact reachable given the right
taskset.

In the case of event-based dependencies, consider a dependent task with C; = D; = 2
and a precursor task with C; = 1, D; = 3, and the same initial state as in the previous
example. If an instance of the precursor task is released, then it can only be scheduled in
the first slot or the third slot; If it was scheduled in the first slot, then a dependent task
instance is released immediately afterwards, but cannot be scheduled, since the second
slot is already occupied. If there are no other task releases in the meantime, it is therefore
optimal to schedule the precursor task instance in the third slot, since the fourth and
fifth slots are unoccupied and the dependent task instance can therefore be scheduled.

In the case of time-based dependencies, in cases where the unpaired task has more
advantageous (i.e., ones that make scheduling easier) properties than the paired task, it
can be optimal to delay the completion of the precursor task for similar reasons as in
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the event-based example. Assume again the same initial state as before, and between
the first and second slot, an instance of the time-based task is released, and we again
have a precursor task with C; = 1, D; = 3. Assuming no precursor task instance has
been completed since the last dependent task release, the time-based task instance will
be paired if the precursor task instance is scheduled in the first slot, or unpaired if it is
scheduled in the third slot. If the paired instance of the dependent task has C; = D; =1,
and the unpaired instance has C; = 1, D; = 3, then it is again optimal to schedule the
precursor task in the third slot instead of the first, since the paired version cannot be
scheduled but the unpaired version can be.

6.1 Preserving the optimizations

There is a certain set of tasks for which the non-idling optimization can be shown to
still be valid. We will call these tasks w-tasks, and all w-tasks 7; must conform to the
following constraints:

Definition 1. A w-task 7; must satisfy all the following properties:

1. T; 18 not a precursor-task for any dependency in the task-set. This means that
gi-transitions from state s to state sy always have the property that cs, = cs,.

1. 7; has no non-preemtible section between its first time-slot and its second time-slot.
This means that q;-transitions have no requirement that the smallest number and
the second-smallest number in () have to be consecutive.

i, If 7; is an event-based dependent task, then it has zero release delay.

Recall that the definition of the competitive ratio only considers the maximum achievable
utility for the offline algorithm on a given sequence of non-dependent and anonymous
time-based dependent task releases. This means that any path for which there exists
another path with at least the same utility and an identical sequence of non-dependent
and anonymous time-based dependent task releases is unnecessary for the computation
of the competitive ratio. If for all paths that contain a certain edge in the offline graph,
there exists another path with at least equal utility that does not contain this edge and
has an identical sequence of non-dependent and anonymous time-based dependent task
releases, then this edge can therefore be safely deleted from the offline graph.

This same logic also applies to the transitions that make up each edge: If a certain
transition can never under any circumstances be contained in any edge on an optimal
path, then it is safe to simply not consider this transition when constructing the offline
graph. With this in mind, the non-idling optimization states that:

Theorem 1. If 7; is a w-task, then any g;-transition witch leads to a state s with
ps(0) = false cannot be optimal.
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6.1. Preserving the optimizations

In order to prove this, some technical details are needed.

Theorem 2. If two states s, and s, have the property that cs, = cs,, ds, = ds,, and
for all n where ps,(n) = false, ps,(n) = false, then for each path starting in s,, there
must exist a path with an identical sequence of non-dependent and anonymous time-based
dependent task releases and identical utility starting in s,.

Proof. Each path starting in s, consists of a sequence of edges. Each edge consists of
three possible types of transitions, and for each of these three transition-types, we can
construct a transition in an edge starting from s, in the following way:

e For g¢;-transitions from s, to s/u, we construct a ¢;-transition from s, to sg by

using the same set () as in the original transition. By the assumption, for all n
where p,, (n) = false, it must be the case that ps,(n) = false, so this is always
possible. Since c¢s, = ¢5, by the assumption, and since the set () is identical for
both g;-transitions, it must be the case that cy = cy , and that for all n where
ps, (n) = false, it must be the case that py (n) = false.

e For a-transitions from s, to s}, we just insert an a-transition from s, to s,. Since
a-transitions just shift all values of p one step closer to zero, the value of p at
zero is discarded altogether, and the structure is otherwise left unchanged, it must
still remain the case that for all n where py (n) = false, it must be the case that

ps (n) = false.

e For d;-transistions from s, to s.,, we insert a d;-transition from s, to s/. This must
always be possible, since ds, = ds, by the assumption. Since d;-transition don’t
interact with the values of p at all, it must still remain the case that for all n where
ps (n) = false, it must be the case that py (n) = false.

In all three cases, ¢y = ¢y , dy = dg , and for all n where py (n) = false, it must be
the case that pg/ (n) = false. Since this property is preserved after each single transition,
we can construct an additional transition of the path starting from s, each time in the

same way, which means the property is preserved along the entire path starting from s,.

Also, since the path starting from s, has the same ¢;-transitions in the same order as the
path starting from s,, the two paths must have an identical sequence of non-dependent
and anonymous time-based dependent task releases and identical utility. O

Theorem 3. If there is a path starting from an arbitrary state s that leads to a state
So, and another path starting from s with the same utility and the same sequence of
non-dependent and anonymous time-based dependent task releases that leads to a state
Su, and s, and s, have the property that cs, = cs,, ds, = ds,, and for all n where
ps, (n) = false, ps,(n) = false, then for any execution path of the offline algorithm
containing a path from s to s,, we can construct another execution path of the offline
algorithm that contains a path form s to s, instead, and both paths will have identical
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utility and the same sequence of non-dependent and anonymous time-based dependent
task releases.

Proof. By Theorem 2, for any path that starts in s,, we can construct a path starting
in s, with the same utility and the same sequence of non-dependent and anonymous
time-based dependent task releases, and by assumption the paths from s to s, and from
s to s, have the same utility and sequence of non-dependent and anonymous time-based
dependent task releases. O

Theorem 4. An edge containting a q;-transition for a w-task 7; from an arbitrary
and possibly “intermediate” (sub-)state s with ps(0) = false to a (sub-)state s, with
ps, (0) = false can never be optimal for w-tasks ;.

Proof. By the definition of g;-transitions, ps,(0) = false if and only if 0 ¢ @ for the
¢;-transition from s to s,. From this transition, we construct a different ¢;-transition
where 0 € () to another state s, by removing the smallest number from the set ) of the
original transition, and adding 0 to it. Since 7; is a w-task, this is always possible: There
can be no non-preemptible section between the first and second slots of the task, and
there can be no non-zero release delay. Since 7; is not a precursor task, we also know
that cs(n) = ¢, (n) = ¢, (n) for all n. Since g;-transitions never modify ds, we also have
dsr = ds,r = ds,r for all tasks 7. There are exactly two differences between s,, and s,:
ps, (0) = false while pg,(0) = true, and ps,(q) = true while ps, (q) = false, where q is
the smallest number in the g;-transition from sy to s,.

There are two possibilities for the edge of the offline-algorithm containing the g;-transition
from s to s,: Either there is another ¢;-transition with 0 € @) before the next a-transition,
or there is not. The first case is impossible, since all g;-transitions must be ordered
descendingly by priority, so a lower priority job would have to be scheduled before a
higher priority job, which violates Lemma 1. In the second case, if we apply the same
lower priority ¢;-transitions and then the a-transition to both s, and s,, this will result
in states ), and s}, with ¢y = ¢y, dy = d , and for all n where py (n) = false,
ps (n) = false. Therefore, the transition from s to s, cannot be optimal by Theorem
3. O
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CHAPTER

Implementation

The valuation part of the framework computes the competitive ratio by finding the
minimum mean cycle in the generated graph, as in [CPKS18]. Since this is a computation-
heavy problem for larger graphs, the algorithm was parallelized and implemented in
CUDA on a GPU to improve performance.

7.1 Madani’s algorithm implemented in CUDA

For finding the minimum mean cycle, we use a parallel algorithm based on Madani’s
algorithm presented in [Mad02] that was developed specifically for this framework. It
consists of an initialization phase followed by two rounds of some number of sequential
iterations. For a flow chart of this algorithm, see Figure 7.1.

In the initialization phase, the self-loop with minimum weight is used as the upper bound
for the weight of the minimum mean cycle. Then all self-loops can be removed from the
graph, since it is impossible for a self-loop to be part of a larger minimum mean cycle.
The rest of the work is organized in CUDA compute kernels, which access two arrays of
node data: One array containing old data (that were written in the previous iteration),
and one array containing new data (that is written this iteration, based on the old data).
In these arrays, there are two variables stored for each node: The utility (or value) of the
node, and the optimal outgoing edge of the node.

At the end of the initialization phase, the old utility is set to zero for all nodes and the
old optimal edge is set to the outgoing edge with the smallest index. After that, there
are two rounds of value iteration, each consisting of n iterations, where n is the number
of nodes in the graph.

In the first round, each iteration starts with setting the utility of all nodes in the new
data array to the weight of the previously chosen edge plus the utility of that edge’s
target node in the old data array. This is done in a kernel with one thread per node.
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IMPLEMENTATION
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After that, there is another kernel with one thread per edge, which atomically sets the

utility of the source nodes in the new data array to min (un(s), ue(e)(t) + w(e)), where
ecout(s

un(s) is the previously stored utility of the source node in the new data array, u,(.)(t) is
the utility of the target node in the old data array, and w(e) is the weight of the edge.
In other words, the utility of each node in the new data array is set to the minimum of
all edge weights plus their target node utilities in the old data array. This kernel also
sets the optimal edge in the new data array in case the old value was overwritten. After
that, the pointers to the new data array and the old data array are switched, so that the
new data for this iteration is the old data for the next iteration.

The second round is the same as the first round, except that there is an additional
superedge-kernel with one thread per node before the pointers are switched. In this
kernel, each node sends a message to all the nodes with optimal edges pointing to it,
in other words messages are sent backwards along the optimal edges. Note that in the
context of this algorithm, “sending a message” just means that each node saves the origin
node, hop-count and collected utility of the message it received in the last iteration, in
order to pass it along to the nodes with optimal edges pointing to it in the next iteration,
while updating the hop-count and utility in the process. In practice, each node reads
the old values from the node its optimal edge points to, and updates its own new values
accordingly. This means that messages travel one hop per iteration, and once a node
receives a message originally sent by itself, a cycle is found. If it has a smaller mean
weight than the previously best cycle, it becomes the new best cycle. In [Mad02], these
backwards traveling messages are called superedges.

Each compute kernel has to be entirely completed before the next one can start.

no

niterations
complete?
niterations
complete?

no

Initialization:

——»| Evalutate Selfloop

Clear old data

Value iteration
1 thread per edge

Clear new data
1 thread per node

Swap pointers

Y
A 4
Y

v

Value iteration
1 thread per edge

Clear new data
1 thread per node

Superedge update
1 thread per node

Y
Y
Y

Swap pointers

A

Figure 7.1: Flow chart of the superedge algorithm [Mad02]
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Results

In order to demonstrate the utility of our framework, we deliver four different tasksets
that represent typical applications. Table 8.1 contains the exact specification of the
studied tasksets, and their representation in our framework can be found in the appendix.

8.1 Tasksets

The packet-switching taskset models the behavior of a switch, where each task corresponds
to a fragment of an incoming packet. The precursor-tasks represent the header part of
their respective packets, and since just sending the header and not the body of a packet
isn’t very useful, has a value of zero. The processing of the header-part is also assumed
to be non-preemptible. The taskset contains one low-value task and one high-value task,
and both of them are dependent tasks that represent the body of their respective packets.
The dependency is time-based, and the unpaired versions of the dependent tasks are
not represented to the taskset (¢; = d; = v; = 0). A taskset like this might be used to
analyze an environment like the one studied in [BIS10].

The sporadic-interrupt taskset models a normal workload task that occasionally has to
respond to an interrupt. The interrupt is represented by a short precursor task, and
the workload task is a time-based dependent task that has an unpaired version that
represents normal monitoring activity and a paired version that represents the response
to an interrupt. Similar problems are presented in [PKB108] and [TBW94].

The handshake-protocol taskset makes the assumption that after a message is sent, there
is a reliable response exactly one unit of time later. The task representing the response
is therefore modeled as an event-based dependency with a delay of one. This can model
situations where communication between two given components is highly reliable, but
external messages are not known ahead of time.
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taskset task

Q
>

properties

packet-switching T
time-based dependency on 7

nonpreemptible
time-based dependency on 73

sporadic-interrupt | 7
unpaired, time-based dependency on 71
paired, time-based dependency on 71

handshake-protocol | 7

—
(es)

event-based dependency on 71 OR 7. Release-delay 1.

[\

query-scheduling 51

S =

event-based dependency on 7.
event-based dependency on 71 AND (792 OR 73).

Sl
=N NDW R NWDND O N
=R WO W R R NN WD N

—_
o

Table 8.1: Studied Tasksets

The query-scheduling taskset represents a more complicated monitoring application, where
different dependencies between tasks might become relevant. There is one high-value
event-based dependent task, which represents successful evaluation of a query. Different
combinations of the various precursor tasks, which represent reading new data, processing
new requests or evaluating existing data, can be used to trigger the release of this
high-value task. This taskset is based on the problem studied in [ZWL13].

8.2 Performance

Table 8.2 shows the results of evaluating each online-algorithm implemented in the
framework (see Section 5.1) on each task set, under an unconstrained adversary. These
evaluations were run on a computer with INTEL Core i7-5820K, 32GB RAM, EVGA
GeForce GTX Titan X SuperClocked 12GB.

Due to the parallelization of the valuation-part of the framework in CUDA, the per-
formance is much better than in the original framework [CPKS18], which means larger
graphs like the ones for the packet-switching task set can be analyzed. Note that the only
online algorithm with positive competitive ratio for this task set is the precedence-aware
profit density algorithm, which achieves CR = 1. The profit density algorithm also
achieves relatively good results for the other tasksets. This suggests that the competi-
tiveness of online-algorithms under precedence constraints can be significantly improved
by making them precendence-aware.

Algorithms that use a latest start time interrupt like Dover and Dstar are particularly
harmed by the presence of non-preemptible sections, since the adversary can release jobs
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8.2. Performance

algorithm | task set nodes edges | CR | evaluation-time (seconds)
dover handshake-protocol 9805 65888 % 3.95
dover packet-switching 173049 | 1989068 % 182.66
dover query-scheduling 2691 16154 % 0.87
dover sporadic-interrupt 179 780 % 0.05
dstar handshake-protocol | 12878 89117 % 5.38
dstar packet-switching 364067 | 4617035 | 2 707.59
dstar query-scheduling 2677 13984 2% 0.90
dstar sporadic-interrupt 238 1077 % 0.07
edf handshake-protocol 8045 74476 % 4.05
edf packet-switching 77697 | 1388806 % 50.55
edf query-scheduling 2126 13683 % 0.78
edf sporadic-interrupt 146 768 24—1 0.04
fifo handshake-protocol 6890 50175 % 3.40
fifo packet-switching 66265 | 585085 | 2 27.47
fifo query-scheduling 1692 6095 23—5 0.81
fifo sporadic-interrupt 150 642 % 0.04
pd handshake-protocol 5077 39971 % 1.76
pd packet-switching 40401 | 349788 % 40.62
pd query-scheduling 1805 9144 % 0.58
pd sporadic-interrupt 88 357 % 0.03
sp handshake-protocol 4609 49668 % 1.70
sp packet-switching 69462 | 1363534 | 2 43.78
sp query-scheduling 1247 5719 | & 0.42
sp sporadic-interrupt 123 632 24—2 0.05
srt handshake-protocol 5993 67429 % 2.83
srt packet-switching 72284 | 1309364 % 46.64
srt query-scheduling 2095 13734 % 0.76
srt sporadic-interrupt 146 768 % 0.05
sst handshake-protocol | 12216 | 101343 8% 7.16
sst packet-switching 125294 | 2061334 % 107.76
sst query-scheduling 1897 9669 | o= 0.90
sst sporadic-interrupt 135 752 % 0.07

Table 8.2: Results table, including nodes and edges of the product graph, the ratio of
the minimum ratio cycle (which equals the CR), and the time in seconds it took to find
the minimum ratio cycle.
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8. REsuULTS
in such a way that the latest start time interrupt for high value jobs occurs while the
algorithm is in a non-preemptible section.
For a graphical representation of these results, see Figure 8.1.
Competitive ratio for single objective
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Figure 8.1: Results figure. Each of these four diagrams corresponds to one studied task
set, with each bar corresponding to an online algorithm. The fractions above the bars
are the competitive ratios that the algorithm achieved on the task set. The numbers
above the fractions show how many rounds of guided binary search were necessary to
find this competitive ratio.
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8.3. Impact of EDF*

8.3 Impact of EDF*

Only one of the four studied task sets (query-scheduling) includes a precursor task with
a larger relative deadline than its (transitive) dependent tasks. Compared to the offline
algorithm based on EDF used in [CPKS18], the algorithm based on EDF* used in this
work produces a graph with an equal number of nodes, but about twice as many edges
on this task set. However, for all of these additional edges, there exists an identical
edge which is also constructed by the EDF-version, which means the redundant edges
are discarded during the construction of the product graph. This redundancy is due to
the fact that the offline algorithm has to construct an edge for every possible dynamic
priority for every precursor task, and the scheduling decision for the released job will
often be the same regardless of priority.
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Conclusions and Future Work

The approach to automatically computing the competitive ratio of an online algorithm
for a given taskset was extended to include non-preemptible sections and precedence
constraints. Precedence constraints can be either event-based or time-based, and their
dependencies can be expressed as a combination of AND- and OR~joins. Scheduling
anomalies arising from this new model were discussed, including how they could impact
previous optimizations. Also, the precedence-aware profit-density algorithm was added
to the framework and used to evaluate some task sets. With the parallelization of the
valuation-part of the framework, performance was increased and larger task sets can be
analyzed.

The framework could be further extended by considering additional types of precedences,
implementing additional online-algorithms or further performance improvements. The
framework still uses Madani’s superedge-algorithm presented in [Mad02], but there may
be other ways for finding the minimum mean cycle or minimum ratio cycle that are better
suited to the GPU. The algorithms presented in [BB15] and [BHK17] may be worth a
try for this purpose.
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C code for online algorithms

EDF

unsigned int edf schedule_and_reduce(unsigned charx state)

{

Appendix

unsigned charx scheduled job = get_ generic_nonpreemptible_ job(state);
scheduled__slots = 0;

int

if (scheduled job != NULL)

scheduled slots += scheduled_ job [0];

for (int current _d = 0; current d < maxd; current d++)

{

for (int task = 0; task < total_ tasknumber (); task++)

if (current_d < d[task])

{

unsigned charx array = get_generic_subarray (state,
unsigned char remaining ¢ = array[current_d];
if (remaining_c > 0)

{

if (scheduled__slots == 0)

if (remaining ¢ > current_d + 1)

{ //This job already has negative lazity , so it
array [current_d] = 0;

}

else

{ //schedule this job.
scheduled__job = &array [current_d];
scheduled__slots 4= remaining_c;

}
}

else

if(&array [current_d] != scheduled_job)
{ //avoid overwriting a nonpreemptible job

task );

€s

deleted .

if (remaining ¢ 4+ scheduled_slots > current_d + 1)

{ //this job will have negative lazity before
array [current_d] = 0;

}

else

{ //schedule this job to completion.
scheduled__slots 4= remaining_c;

it

L]

scheduled ,

EXed

it

L]

deleted .

49


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

if (scheduled__job == NULL)
return (0);

else

{

int task = get_generic_tasknumber (state, scheduled_ job);
scheduled__job [0] — —;

if (scheduled_job [0] == 0)
{

update_dependencies (get__generic_dependencies(state), task);
return(v|task]);

else

return (0);

FIFO

unsigned int fifo_schedule and_reduce (unsigned charx state)

{

unsigned charx scheduled job = get generic_nonpreemptible job(state);
int scheduled__slots = 0;

if (scheduled job != NULL)

scheduled__slots 4= scheduled__job [0];

for(int newness = 0; newness < maxd; newness++)

{

for (int task = 0; task < total_ tasknumber (); task++)

{

int current _d = newness — maxd + d[task];

if (current_d >= 0 && current_d < d[task])

{
unsigned charx array = get_ generic_subarray (state, task);
unsigned char remaining ¢ = array[current_d];

if (remaining_c > 0)
if (scheduled_slots == 0)

if (remaining_ ¢ > current_d + 1)
{ //This job already has negative lazity , so it es deleted.
array [current_d] = 0;

else
{ //schedule this job.
scheduled_job = &array [current_d];
scheduled__slots 4= remaining_c;
}
}

else

if(&array [current_d] != scheduled_job)
{ //avoid overwriting a nonpreemptible job
if (remaining_ ¢ 4+ scheduled__slots > current_d + 1)
{ //this job will have negative lazity before it is scheduled,
array [current_d] = 0;

else
{ //schedule this job to completion.
scheduled__slots += remaining_c;
}
}
}
}
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}
}
}

if (scheduled__job == NULL)
return (0);

else

{

int task = get_generic_tasknumber (state, scheduled job);
scheduled__job [0] — —;

if (scheduled__job [0] == 0)

update dependencies(get_generic_dependencies(state), task);
return(v[task]);

}

else

return (0);

SP

unsigned int sp_schedule_and_reduce(unsigned charx state)

unsigned charx scheduled job = get generic_nonpreemptible job(state);
int scheduled__slots = 0;

if (scheduled_job != NULL)

scheduled_slots += scheduled_job [0];
}

for (int task = 0; task < total tasknumber (); task++)

{

unsigned charx array = get_ generic_subarray (state, task);

for (int current_d = 0; current_d < d[task]; current_d++)
{

unsigned char remaining ¢ = array[current_d];

if (remaining_c > 0)

if (scheduled slots == 0)
{
if (remaining_c > current_d + 1)
{ //This job already has negative lazity, so it es deleted.
array [current_d] = 0;

else

{ //schedule this job.
scheduled__job = &array [current_d];
scheduled slots 4= remaining c;

}

else

if(&array [current_d] != scheduled_job)
{ //avoid overwriting a nonpreemptible job
if (remaining ¢ + scheduled_slots > current_d + 1)
{ //this job will have negative lazity before it is scheduled, so it is
array [current_d] = 0;
}

else

{ //schedule this job to completion.
scheduled__slots 4= remaining_c;

}

}
}

deleted .
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}
}
}

if (scheduled__job == NULL)
return (0);
else

{

int task = get_generic_tasknumber(state, scheduled job);
scheduled__job [0] — —;

if (scheduled__job [0] == 0)

update_dependencies (get_generic_dependencies(state), task);
return(v[task]);

else

return (0);

SRT

unsigned charx srt_get_ minc_job_and_reduce(unsigned charx state, int scheduled_slots)
unsigned charx res = NULL;
for (int current_d = 0; current_d < maxd; current_d++)
for (int task = 0; task < total_ tasknumber (); task++)
if (current_d < d[task])

{

unsigned charx array = get_generic_subarray (state, task);
unsigned char remaining ¢ = array[current_d];
if (remaining_c > 0)

if (remaining ¢ + scheduled_ slots > current_d + 1)
{ //this job will have negative lazity before it is scheduled, so it is deleted.

array [current_d] = 0;
else
if(res == NULL || remaining ¢ < res[0])
{
res = &array [current_d];
}
}
}
}
}
¥
if (res != NULL)
{ //We have the job, now reduce.
int ¢ _tmp = res[0];
res [0] = 0;

srt__get__minc_job__and_reduce(state, scheduled_slots + c_tmp);

res [0] = c_tmp;

}

return(res);

}
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unsigned int srt_schedule_and_reduce(unsigned charx state)
{
unsigned charx scheduled job = get_ generic_nonpreemptible job(state);

if (scheduled__job != NULL)

int ¢ _tmp = scheduled_job [0];
scheduled__job [0] = 0;

srt__get__minc_job__and_reduce(state, c_tmp);

scheduled__job [0] = c_tmp;
}
else

scheduled job = srt_get_ minc_job_and_reduce(state, 0);
}

if (scheduled_ job == NULL)
return (0);
else
{
int task = get_generic_tasknumber(state, scheduled_ job);
scheduled_job[0] — —;
if (scheduled__job [0] == 0)

update dependencies(get_generic_dependencies(state), task);
return(v[task]);
}

else

return (0);

PD

double pd_get profit density (unsigned charx state, unsigned charx job)

{
int remaining ¢ = job [0];
int task = get_ generic_tasknumber(state, job);
double base_value = (double)v[task];
double base_workload = (double)remaining c;
double current_value = base_ value;
double current__workload = base__workload;
double current__pd = base_value/base_workload;

uintmax_t dep_bit = 1;
dep__bit = dep__bit << task;
uintmax_t+* dependency_state = get_ generic_dependencies(state);

for (int dep_task = 0; dep_task < total tasknumber (); dep_task++)

if (get_dependency_category (dep_task) == EVENTBASED ||
get__dependency_ category (dep_task) == TIMEBASED_ PAIRED)
{
int dep_index = get_dependency_index(dep_task);
if ((dep[dep_index][0] & dep_bit) != 0 && (dependency_state[dep_index] & dep_bit) == 0)
if ((base_value + (double)v[dep_task]) / (base_workload 4+ (double)c[dep_task]) > current_pd)
{
current__value = base_value 4+ (double)v[dep_task];
current__workload = base_workload + (double)c[dep_task];
current_ pd = current_value / current_workload;

}
}
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}
}

return (current_pd);

unsigned char* pd_get maxpd_job_and_reduce(unsigned charx state, int scheduled_slots)

{

unsigned charx res = NULL;
for (int current_d = 0; current_d < maxd; current_d++)

for (int task = 0; task < total_ tasknumber (); task++)
{
if (current_d < d[task])
{
unsigned charx array = get_generic_subarray (state, task);
unsigned char remaining ¢ = array[current_d];
if (remaining_c > 0)

if (remaining ¢ + scheduled_slots > current_d + 1)
{ //this job will have negative lazity before it is scheduled, so it is deleted.

array [current_d] = 0;
else
if(res == NULL || pd_get_ profit_density(state, &array [current_d]) >
pd__get_profit_density(state, res))
{
res = &array [current_d];
}
¥
}
}
}
}
if(res != NULL)
{ //We have the job, now reduce.
int c¢c_tmp = res [0];
res [0] = 0;

pd_get_maxpd_job_and_reduce(state, scheduled_slots + c_tmp);

res [0] = c_tmp;

}

return(res);

unsigned int pd_schedule_and_reduce(unsigned charx state)

{
unsigned charx scheduled job = get generic_nonpreemptible job (state);
if (scheduled_job != NULL)

int c¢_tmp = scheduled_job [0];
scheduled__job [0] = 0;

pd_get_maxpd_job_and_reduce(state, c_tmp);
scheduled__job [0] = c_tmp;
else

scheduled_job = pd_get maxpd_job_and_ reduce(state, 0);

}
if (scheduled__job == NULL)
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return (0);

else

{

int task = get_generic_tasknumber(state, scheduled_ job);
scheduled__job[0] — —;

if (scheduled__job [0] = 0)
{

update dependencies(get_generic_dependencies(state), task);
return(v[task]);
}

else

return (0);

SST

unsigned charx* sst_get smallest slack time_ job_ and_ discard_ negative laxity (unsigned charsx

{
unsigned charx res = NULL;

int current_smallest_slack_time = INT32 MAX;
for (int task = 0; task < total tasknumber (); task++)
unsigned charx array = get generic_subarray (state, task);

for (int current_d = 0; current_d < d[task]; current_d++)

unsigned char remaining ¢ = array[current_d];
if (remaining ¢ > 0)
{

if (remaining_c > current_d + 1)
{ //This job already has mnegative lazity , so it es deleted.

array [current_d] = 0;
else
{ //Compare with previous best
if (current_d 4+ 1 — remaining ¢ < current_smallest_slack_time)
current__smallest__slack_ time = current_d + 1 — remaining_c;
res = &array [current_d];

}
}
}
}
}

return(res);

}

bool sst_check_job_is_relevant (unsigned charx state, int task, int current_d)

{

if (current_d == 0)
return(false );

}

else

{

int frontiermultiplier = (1 << (numTasks_independent + numTasks_timebased));
for (unsigned int i = 0; i < frontiermultiplier; i++4)
unsigned charx newstate = advance_state(state, i);

unsigned charx scheduled_ job = get_generic_nonpreemptible job(newstate);
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if (scheduled__job == NULL)

scheduled__job = sst_get_smallest_slack_ time_job__and_discard negative_ laxity(newstate);

}
if (scheduled__job != NULL)

scheduled_job[0] — —;
if (scheduled__job [0] == 0)

int task = get_generic_tasknumber(state, scheduled_job);
update dependencies(get_ generic_dependencies(state), task);
}
}
unsigned charx newarray = get_generic_subarray (newstate, task);
if(&newarray [current_d —1] == scheduled__job)

free (newstate);
return(true);

if (newarray [current_d —1] != 0 && sst_check_ job_is_relevant(newstate, task, current_d—1))

free (newstate);
return(true);

}

free (newstate);

}

return(false);

}
}

void sst_reduce (unsigned charx state)

{

unsigned char original state[statesize];
memcpy (original_state , state, statesize);

for (int task = 0; task < total_ tasknumber (); task+4++)

{
unsigned charx array = get_ generic_subarray (state, task);
for (int current_d = 0; current_d < d[task]; current_d++)
unsigned char remaining ¢ = array[current_d];
if (remaining_c > 0 && !sst_check_job_is_relevant(original state, task, current_d))
array [current_d] = 0;
}
¥
¥

}

unsigned int sst_schedule and_ reduce(unsigned charx state)

{

unsigned charx scheduled__job = get__generic_nonpreemptible_ job (state);
if (scheduled_job == NULL)

scheduled job = sst_get_ smallest slack time_ job_ and_ discard negative_ laxity(state);
if (scheduled job == NULL)

sst_reduce(state);
return (0);

}
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else

{

int task = get_generic_tasknumber(state, scheduled_ job);
scheduled__job [0] — —;

if (scheduled__job [0] == 0)

update_dependencies(get_generic_dependencies(state), task);
sst_reduce(state);
return (v[task]);

}

else

{
sst_reduce(state);
return (0);

DOVER

unsigned charx dover_get Qrecent_array(unsigned charx state)

{

unsigned charx subarrays = &state [total dependencynumber ()*sizeof (uintmax_t)];

for (int task = 0; task < total tasknumber (); task++)

{

subarrays = &subarrays[generic_subarray_size(task)];

return(subarrays);

int dover_ get_ current_ availtime (unsigned charx state)

{
int res = INT32 MAX;

unsigned charx qrecent_ array = dover_get Qrecent_array(state);
for (int task = 0; task < total tasknumber (); task++)

if (qrecent__array[task] != 255)
unsigned charx array = get generic_subarray (state, task);
res = res — array[qrecent_array[task]];
int cmp = qrecent__array[task] — array[qrecent_array[task]] + 1;
res = (res > cmp) ? cmp : res;

}
}

return(res);

unsigned charx dover__get_first_qother_ task(unsigned charx state)
unsigned charx qrecent_ array = dover_get_ Qrecent_array(state);
for (int current_d = 0; current_d < maxd; current_d++)
{

for (int task = 0; task < total_ tasknumber (); task++)

if (current_d < d[task])
{

unsigned charx array = get_generic_subarray (state, task);
unsigned char remaining ¢ = array[current_d];
if (remaining ¢ > 0 && qrecent_array [task] != current_d)

return(&array [current_d]);
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}
}
}
}

return (NULL);

unsigned charx dover_ get first qrecent_ task(unsigned charx state)
{
unsigned charx qrecent_array = dover_get_ Qrecent_array(state);
for (int current_d = 0; current_d < maxd; current_d++)

for (int task = 0; task < total_ tasknumber (); task++)

if (current_d < d[task])
{

unsigned charx array = get_generic_subarray (state, task);
unsigned char remaining ¢ = array[current_d];
if (remaining_c > 0 && qrecent_array [task] == current_d)

return(&array [current_d]);

}
}
}
}

return (NULL);
}

void dover__decide_between__qrecent__and_qgother (unsigned charx state, unsigned charx qother_task)

if (qother_task != NULL)

{
unsigned charx first qrecent_ task = dover_get first qrecent_task(state);
int availtime = dover_get_ current_availtime(state);
if (first_qrecent_task == NULL ||

(get__generic__deadline (state, qother_ task) <
get__generic__deadline (state, first_qrecent_task) && qother_task [0] <= availtime))

{

unsigned charx qrecent_ array = dover_get Qrecent_array(state);

}

qrecent__array [get_generic_tasknumber (state, qother_ task)] = get_generic_deadline(state, qother_ t:

}
}

void dover_task_ completion interrupt (unsigned charx state)

{

unsigned charx first_qother_ task = dover_get_ first_qother_ task(state);
dover__decide__between_qrecent__and_qother(state, first_ qother_ task);

}

unsigned charx dover_advance_state(unsigned charx oldstate , unsigned int workload)

{

unsigned charx res = generic_advance_state(oldstate , workload);
unsigned charx Qrecent_old = dover_get_ Qrecent_array(oldstate);
unsigned charx Qrecent_new = dover_get Qrecent_array(res);

for(int i = 0; i < total tasknumber (); i++)

{
}

return(res);

Qrecent_new[i] = (Qrecent_old[i] == 0 || Qrecent_old[i] == 255) ? 255 : Qrecent_old[i] — 1;
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unsigned int dover_get_ qrecent_value sum (unsigned charx state)
unsigned int res = 0;

unsigned charx qrecent_array = dover_get_ Qrecent_array(state);
for (int task = 0; task < total tasknumber (); task++)

if (qrecent__array[task] != 255)
res += v[task];

}
}

return(res);

void dover_ latest_start_ time_interrupt(unsigned charx state)

unsigned charx qrecent_array = dover_get_ Qrecent_array(state);
double magicnumber = 2.0;
for (int current_d = 0; current_d < maxd; current_d++)

for (int task = 0; task < total_ tasknumber (); task++)

{
if (current_d < d[task])
{
unsigned charx array = get_ generic_subarray(state, task);
unsigned char remaining ¢ = array[current_d];
if (remaining ¢ == current_d+1 && qrecent_array[task] != current_d)
if ((double)v|[task] > magicnumber % (double)dover_get_ qrecent_value_sum(state))
for(int i = 0; i < total tasknumber (); i++)
{
qrecent__array[i] = 255;
}
qrecent__array [task] = current_d;
}
else
{
array [current_d] = 0;
}
}
}

void dover reduce_ simple(unsigned charx state)

{
unsigned charx qrecent_ array = dover_get Qrecent_array(state);
for (int current_d = 0; current_d < maxd; current_d++)

for (int task = 0; task < total tasknumber (); task++)

if (current_d < d[task])

unsigned charx array = get_generic_subarray (state, task);
unsigned char remaining ¢ = array[current_d];
if (remaining_c¢ > current_d && qrecent_array [task] != current_d)
{

array [current_d] = 0;
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bool dover_check_ job_is_relevant (unsigned charx state, int task, int current_d)

if (current_d == 0)
{
return(false);
¥
else
int frontiermultiplier = (1 << (numTasks_independent + numTasks_timebased));
for (unsigned int i = 0; i < frontiermultiplier; i++)
unsigned charx newstate = advance_state(state, i);
unsigned charx scheduled job = get_ generic_nonpreemptible job(newstate);
if (scheduled__job == NULL)
for (int task = 0; task < total tasknumber (); task+4++)
{
unsigned charx array = get_generic_subarray (newstate, task);
if (d[task] > 0 && array[d[task]—1] != 0)
dover__decide__between_qrecent__and_qother(newstate, &array [d[task] —1]);
¥
¥
dover_latest_start_time_interrupt(newstate);
scheduled job = dover_get_ first qrecent_task(newstate);
}
if (scheduled job != NULL)
scheduled__job[0] — —;
if (scheduled_job[0] == 0)
{
int task = get generic_tasknumber (newstate, scheduled_ job);
unsigned charx qrecent array = dover_get Qrecent_ array(newstate);
qrecent__array [task] = 255;
update_ dependencies(get_generic_dependencies (newstate), task);
dover__task completion_ interrupt(newstate);
¥
dover_reduce_simple (newstate );
}
unsigned charx newarray = get_generic_subarray (newstate, task);
if(&newarray [current_d —1] == scheduled_job)
free (newstate);
return(true);
}
if (newarray [current_d —1] != 0 && dover_check_job_is_relevant(newstate, task, current_d—1))
free (newstate);
return(true);
free (newstate);
}
return(false);
¥

}
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void dover_reduce (unsigned charx state)

{
unsigned char original_ state[statesize];
memcpy (original_state , state, statesize);
unsigned charx qrecent_array = dover_get_ Qrecent_array(state);
for (int task = 0; task < total tasknumber (); task++)
{
unsigned charx array = get_ generic_subarray (state, task);
for (int current_d = 0; current_d < d[task]; current_d++)
{
unsigned char remaining ¢ = array[current_d];
if (remaining_c > 0 && qrecent_array [task] != current_d)
if (remaining ¢ > current_d || !dover_check_ job_is_relevant(original state ,
array [current_d] = 0;
}
}
}
}

unsigned int dover_schedule_and_reduce(unsigned charx state)

{

unsigned charx scheduled job = get_ generic_nonpreemptible job(state);
if (scheduled job == NULL)
for (int task = 0; task < total_ tasknumber (); task++)

unsigned charx array = get_generic_subarray (state, task);
if (d[task] > 0 && array [d[task]—1] != 0)

dover__decide_between_qrecent__and_qother(state , &array [d[task]—1]);

}
}

dover_latest_start_time_ interrupt(state);

scheduled job = dover_get_ first qrecent_task(state);

}
if (scheduled__job == NULL)

return (0);

else

{

int task = get_generic_tasknumber(state, scheduled_ job);
scheduled__job [0] — —;

if (scheduled__job [0] == 0)

{
unsigned charx qrecent_ array = dover_get Qrecent_array(state);
qrecent__array [task] = 255;

update_dependencies(get_generic_dependencies(state), task);
dover_task_ completion_ interrupt(state);
dover_reduce(state);
return(v[task]);

}

else

{
dover_reduce(state);
return (0);

}

}

task ,
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unsigned charx dover__initial_state (void)

statesize = total dependencynumber ()*sizeof (uintmax_t);

for (int task = 0; task < total_ tasknumber ();

{

statesize += generic_subarray size(task);

}

task++)

statesize += total_ tasknumber (); //Qrecent—indices

unsigned charx res = (unsigned charx*)malloc(statesize);

memset (res, 0, statesize);

unsigned charx Qrecent = dover_get_ Qrecent_ array(res);
for(int i = 0; i < total tasknumber (); i++)

Qrecent [i] = 255;

return(res);

DSTAR

unsigned charx dstar get current task (unsigned charx state)

int* res = (intx)dover_get_ Qrecent_array(state); //This function also works here.
int task = res[0];
int current_d = res|[1];
if(task != —1 && current_d != —1)
{
unsigned charx array = get_ generic_subarray (state, task);
return(&array [current_d]);
}
else

return (NULL);

}
void dstar_set_current_task (unsigned charx state,
{
intx res = (intx)dover_get_ Qrecent_array(state);
if (job != NULL)
res [0] = get__generic_tasknumber (state, job);
res[1] = get_ generic_deadline(state, job);
else
res [0] = —1;
res[1] = —1;
}
int dstar_get_ preempt_value(unsigned charx state)
{
intx* res = (intx)dover_get_Qrecent_array(state);

return(res [2]);

}
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void dstar_set_preempt_value(unsigned charx state, int preempt_value)

{

intx res = (intx)dover_get Qrecent_array(state); //This function also works here.
res [2] = preempt_value;

unsigned charx dstar_advance_state (unsigned charx oldstate , unsigned int workload)

{

unsigned charx res = generic_advance_state(oldstate , workload);
dstar__set_preempt_value(res, dstar_get_ preempt_ value(oldstate));

unsigned charx old_current_task = dstar__get_ current_task(oldstate);
if (old_current_task == NULL)

dstar_set_current_task(res, NULL);

else

{

int oldtask = get_generic_tasknumber(oldstate, old_current_task);
int old d = get_ generic_deadline(oldstate , old_ current_ task);

if (old_d == 0)
{

}

else

{

dstar_set_current_task(res, NULL);

unsigned charx newarray = get_ generic_subarray(res, oldtask);
unsigned charx newjob = &newarray[old_d —1];

dstar__set_current_task(res, newjob);

}

return(res);

}

unsigned charx dstar__initial_state (void)
statesize = total dependencynumber ()*sizeof (uintmax_t);
for (int task = 0; task < total tasknumber (); task++)
{
statesize += generic_subarray_ size(task);
statesize += 3xsizeof(int); //special state.

unsigned charx res = (unsigned charx)malloc(statesize);
memset (res, 0, statesize);

dstar_set__current_task(res, NULL);
dstar__set__preempt__value(res, 0);

return(res);

void dstar_insert_new_ job(unsigned charx state, int task)

unsigned charx current_task = dstar_get_current_task(state);

unsigned charx array = get_generic_subarray (state, task);

if (current_task == NULL ||

(get__generic__deadline(state , current_task) >= d[task]—1 && dstar_get preempt_value(state) == 0))

dstar__set_current_task(state, &array[d[task] —1]);
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void dstar_latest_ start_time_ interrupt (unsigned charx state)

for (int task = 0; task < total tasknumber (); task++)

unsigned charx array = get_generic_subarray (state, task);

for (int current_d = 0; current_d < d[task]; current_d++)

{

unsigned char remaining ¢ = array [current_d];

unsigned charx current__task = dstar__

get__current_task(state);

unsigned charx new_job = &array [current_d];
if (remaining ¢ == current_d+1 && new_job != current_task)

if (current_task == NULL || current_task [0] < get_generic_deadline(state, current_task)+1)

{ //current task has slack time.

dstar__set_current_task(state, new_job);

else

{

int current_task_ value = v[get_generic_tasknumber(state, current_task)];
if (v[task] > dstar_get_ preempt_value(state) + current_task_value)
{ //preempt and drop current task, execute lst task.

current__task [0] = 0;
dstar__set_preempt_value(state
dstar__set_current_task(state,

}

else

{ //Drop lst task.
new__job[0] = 0;

dstar__get__preempt_value(state) + current_task_value);
new__job);

void dstar_task completion interrupt (unsigned charx state)

{

dstar_set_preempt_value(state, 0);

for (int current_d = 0; current_d < maxd;

current_ d++)

for (int task = 0; task < total tasknumber (); task++)

if (current_d < d[task])
{

unsigned charx array = get_generic_subarray (state, task);

unsigned char remaining ¢ = array|
if (remaining ¢ > 0)

current_d];

dstar_set_current_task(state, &array[current_d]);

return;
}
}
}
}

dstar_set_current_task(state, NULL);

void dstar_reduce_ simple (unsigned charx state)

for (int current_d = 0; current_d < maxd;
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for (int task = 0; task < total_ tasknumber (); task++)

if (current_d < d[task])

unsigned charx array = get_generic_subarray (state, task);

unsigned char remaining ¢ = array[current_d];

if (remaining ¢ > current_d && dstar_get_current_task(state) != &array[current_d])
array [current_d] = 0;

bool dstar_check_job_is_relevant (unsigned charx state, int task, int current_d)

if (current_d == 0)

return(false );

else
{
int frontiermultiplier = (1 << (numTasks_independent + numTasks_timebased));
for (unsigned int i = 0; i < frontiermultiplier; i++4)
unsigned charx newstate = advance_state(state, i);
unsigned charx scheduled job = get generic_nonpreemptible job(newstate);

if (scheduled__job == NULL)

for (int task = 0; task < total tasknumber (); task++)

unsigned charx array = get_generic_subarray (newstate, task);
if (d[task] > 0 && array[d[task]—1] != 0)
{

dstar__insert_new__job(newstate, task);

}
}

dstar_latest_start_ time_ interrupt(newstate);
scheduled__job = dstar_get_ current_task(newstate);
}
if (scheduled_job != NULL)

int task = get_generic_tasknumber (newstate, scheduled_ job);
scheduled__job[0] — —;

if (scheduled job [0] == 0)
{

dstar_task_ completion_ interrupt(newstate);
update dependencies(get_generic_dependencies(newstate), task);

dstar_reduce_simple(newstate );

}
unsigned char*x newarray = get_generic_subarray (newstate, task);
if(&newarray [current_d —1] == scheduled_job)
free (newstate);
return(true);
}
if (newarray [current_d —1] != 0 && dstar_check_job_is_relevant (newstate, task, current_d—1))

free (newstate);
return(true);
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}

free (newstate);

}

return(false);

void dstar_reduce(unsigned charx state)

{

unsigned char original_ state[statesize];
memcpy (original__state , state, statesize);

for (int task = 0; task < total tasknumber (); task++)
{

unsigned charx array = get_generic_subarray (state, task);

for (int current_d = 0; current_d < d[task]; current_d++)

unsigned char remaining ¢ = array [current_d];

if (remaining ¢ > 0 && dstar__get_current_task(state) != &array [current_d])

{ if (remaining_c¢ > current_d || !dstar_check_ job_ is_relevant(original state, task, current_d))
array [current_d] = 0;

}

unsigned int dstar_schedule_and_reduce(unsigned charx state)

unsigned charx scheduled_ _job = get__generic_nonpreemptible_ job (state);
if (scheduled__job == NULL)
for (int task = 0; task < total_ tasknumber (); task++)
{ unsigned charx array = get_ generic_subarray (state, task);
if(d[task] > 0 && array[d[task]—1] != 0)
dstar__insert_new_job(state, task);
¥

dstar_latest_start_time_ interrupt(state);

scheduled job = dstar_ get current_ task(state);

¥
if (scheduled job == NULL)

return (0);

else

{

int task = get_generic_tasknumber(state, scheduled job);
scheduled job[0] — —;

if (scheduled_job [0] == 0)

dstar__task_ completion_interrupt(state);

update dependencies(get_generic_dependencies(state), task);
dstar_reduce(state);

return(v[task]);

}

else
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dstar_reduce(state);
return (0);

Studied tasksets

{
"packet__switching ":
{Vlid":!lo", IVCW:17 Vl(j":27 "V":O}7
{"id":"1", "c':4, "d':6, "v':4, "time_dep':"0"},
{rid":"2". "c':2, *d':3, 'v':0, 'np':'0"},
{"id":"3". "c':5, "d':8, "v':8, "time_dep':"2"}
1,
"sporadic__interrupt "
[
{"id":"0", 'c":1, "d":2, "v':1},
{"id":“l", HC":37 Vl(i":47 "V":67 "timcidcp“:"O“7 "C2“:27 "d2":27 Hv2":l}
I,
"handshake_ protocol":
{"id":“o", HCW:27 Vl(i":47 "V":l},
{Vlid":vlln, "C":17 Il<i":37 VI‘1¥I:1}7
{"id":"2", "c¢":3, "d":5, "v":10, "event_dep":"0|1", "event_ delay":"1"}
I,
"query__scheduling ":
[
{"id":"0", "c':2, 'd':3, "v':2},
{rid":"1", "c':1, "d':1, "v':1},
{"id":"2", "c":2, "d':4, "v':0, "event_dep":'0"},
{"id":"3", "c":1, "d":1, "v":10, "event_ dep":"0&(1]2)"}
]
}

How to use the framework

After all the binaries have been built, the framework can be run with the following
commands:

Graph generation:

$ python main.py —-d [graphs—-directory] -s [schedulers] -t [taskset]

Valuation:

$ python main_single.py [graphs-directory] result.out

Example:

$ python main.py -d ../graphs -s edf,fifo,sp,srt,pd -t ../taskset.json
$ python main_single.py ../graphs result.out
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The file result.out will then contain the results of the evaluation, including the competitive
ratio and the cycle in the evaluated graph.

The schedulers for the graph generation are edf, fifo, sp, srt, pd, sst, dover, dstar. Multiple
schedulers can be specified simultaneously, separated by a comma, but without spaces.
Note that the content of the specified graphs-directory will be overwritten by the graph
generation call.
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