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Kurzfassung

Diese Diplomarbeit präsentiert ein Erweiterungs-Framework für die leistungsfähige episte-
mische Modellierungs- und Analyse-Umgebung für Multiagentensysteme mit byzantinisch
fehlerhaften Agenten, die 2019 von Kuznets el. al. publiziert wurde. Es erweitert die ursprüng-
lich nur für asynchrone Agenten und asynchrone Kommunikation formulierte Umgebung in
einer generischen Art und Weise, die die Formulierung und Kombination zusätzlicher Sys-
temannahmen in modularer Form erlaubt. Unter den spezifischen Erweiterungen, die in der
Arbeit enthalten sind, finden sich unter anderem zuverlässige Kommunikation, zeitbeschränkte
Kommunikation, Multicasting, synchrone und lockstep-synchrone Agenten und sogar koordi-
nierte Aktionen von Agenten, wie sie in der Modellierung und Analyse von fehlertoleranten
verteilten Systemen oftmals anzutreffen sind. Für die zentralen Erweiterungen der synchronen
und lockstep-synchronen Agenten werden auch elementare Eigenschaften des resultierenden
Gesamtmodells abgeleitet, wie etwa lokale und globale Fehlererkennungsmöglichkeiten und die
Existenz/Nichtexistenz eines “brain-in-the-vat”-Szenarios.

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Abstract

In this Master thesis, we provide an extension framework for the powerful epistemic reasoning
framework for multi-agent systems with byzantine faulty agents published by Kuznets et. al.
in 2019, which is currently restricted to asynchronous agents and asynchronous communication.
We enrich the existing framework by a generic way to add extensions, which allow to encode
and safely combine different system assumptions in a modular way. Among the particular
extensions provided in this thesis are reliable communication, time-bounded communication,
multicasting, synchronous and lock-step synchronous agents and even agents with coordinated
actions, which are commonly used in modeling and analysis of fault-tolerant distributed
systems. For the pivotal cases of synchronous and lock-step synchronous agents, we also
analyze the basic properties of the resulting model, such as local and global fault detection
abilities of the agents and the possibility of a “brain-in-a-vat” scenario.
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CHAPTER 1
Introduction

Distributed systems (DS) consist of networked processors without a central control that need to
achieve a common goal. Distributed algorithms allow the processors to exchange information
and reason about the evolving state of their local knowledge, in order to infer sufficient
knowledge of the global system state to achieve their common goal. However, various sources of
uncertainty like varying execution speeds, unpredictable transmission delays and partial failures
make it notoriously difficult to infer the global state of a distributed system. Consequently,
the literature on distributed algorithms is abundant, and many landmark results both on
solvability of distributed computing problems like consensus [LSP82] and on impossibility
results [FLP85] were established in the past. Almost all correctness proofs of distributed
algorithms are hand-crafted, however, with automatic or at least computer-assisted proofs
done from the start (not to speak of synthesis [LKWB18]) being a rare exception [DHJ+16].
Overall, it is fair to say that the design of fault-tolerant distributed algorithms is still more of
an art than solid engineering.

The situation is even worse in the case of fault-tolerant distributed systems, in particular,
those where processors can misbehave in an arbitrary (byzantine) [LSP82] way, e.g., by
sending inconsistent information to different respondents. The uncertainty added by byzantine
faulty processors creates another level of complexity in the design and analysis of distributed
algorithms, which severely complicates these tasks even for relatively simple problems like
clock synchronization [ST87, WL88] or byzantine agreement [LSP82].

Existing epistemic languages, such as the popular runs and systems framework [HM90], already
provide a protocol-independent formal high-level description of knowledge states, even for
agents that may lose messages and/or crash [DM90]. This led to very general results, e.g., the
correspondence between distributed agreement and common knowledge, which is the ulti-
mate cause of the impossibility to coordinate actions without reliable communication [Gra78].
One of the primary tools in such analyses is the causal cone based on Lamport’s happened-
before relation [Lam78], used, e.g., to prove the necessity of nested knowledge for ordered
responses [bM14] and the ability of a silent choir [GM18] to enable communication-by-time
in crash-prone systems.

However, existing epistemic reasoning frameworks cannot handle agents that are not simply al-
lowed to become mute but may also disseminate erroneous information, e.g., by lying about past

1
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1. Introduction

events. However, to the best of our knowledge, a comprehensive epistemic reasoning framework
that also allows byzantine agents did not exist before [KPS+19b, KPSF19a, KPSF19b, Fru19].

1.1 Epistemic logic

At least since the ground-breaking work by Halpern and Moses [HM90], the knowledge-based
approach [FHMV95a] is known as a powerful tool for analyzing distributed systems. In a
nutshell, it uses epistemic logic [Hin62] to reason about knowledge and belief in multi-agent
systems. Standard epistemic logic relies on a Kripke model M that describes the possible
global states (“possible worlds”) the agents can be in, where certain atomic propositions (facts
like “variable xi in the state of agent i is zero” or “external event e occurred on agent i”)
hold true or not, along with an indistinguishability relation s ∼i s′ that tells that agent i
cannot distinguish locally whether it is in global state s or s′. Knowledge of some fact ϕ about
the system in global state s is primarily captured by a modal knowledge operator Ki, used
in formal expressions like (M, s) |= Kiϕ. It captures the intuition that, being in the global
state s of model M , agent i knows ϕ iff ϕ holds in every global state s′ that is indistinguishable
from s for i.

In the interpreted runs and systems framework for reasoning about distributed and other
multi-agent systems [FHMV95a, HM90], the set of all possible runs r (executions) of a system I
determines the set of Kripke models, formed by the evolution of the global state r(t) in all
runs r ∈ I over time t ∈ N. Note that time is modeled as discrete for simplicity, without
necessarily being available to the agents. Two global states r(t) and r′(t′) are indistinguishable
for agent i iff i has the same local state in both, formally, ri(t) = r′

i(t
′). Therefore, i knows

some fact ϕ in run r ∈ I, formally, (I, r, t) |= Kiϕ, iff in every r′ ∈ I and for every t′

with ri(t) = r′
i(t

′) it holds that (I, r′, t′) |= ϕ. Note that ϕ can be a formula containing
arbitrary atomic propositions, as well as other knowledge operators and temporal modalities
like ♦ (eventually) and � (always), combined by standard logical operators negation ¬,
conjunction ∧, disjunction ∨, and implication ⇒. For example, (I, r, t) |= ♦Kioccurred (e)
states that there is some time t′ ≥ t when i will know that event e will have occurred somewhere.
Important additional modalities are mutual knowledge EGϕ ≡

∧
i∈G Kiϕ in a group G of

agents, and common knowledge CGϕ, which can usually be viewed as an infinite conjunction
of nested mutual knowledge of arbitrary depth CGϕ ≡ EGϕ ∧ EG(EGϕ) ∧ . . . ; informally, this
means that every agent in G knows that every agent in G knows that . . . every agent in G
knows ϕ.

The knowledge-based approach based on runs and systems has been used for studying several
distributed computing problems in systems with uncertainty but no failures. In [bM14], Ben-
Zvi and Moses considered the simple ordered response problem in distributed systems, where
the agents had to respond to an external START event by executing a special one-shot action
FIRE in a given order i1, i2, . . . . The authors showed that, in every correct solution, agent ik

has to establish the nested knowledge (I, r, t) |= Kik
Kik−1

. . . Ki1occurred (START) before it
can issue FIRE and that this nested knowledge is also sufficient. Moreover, they showed that
every correct solution in systems with known bounded message delays necessarily requires
a communication structure called a centipede in the agent-time graph.1 In the conference

1The standard agent-time graph consists of pairs (i, t) of agent i and time t and of directed edges that
represent Lamport’s happens-before relation [Lam78]: edges (i, t) → (i, t + 1) represent the local information
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1.1. Epistemic logic

version [BZM10] of [bM14], the authors also considered the simultaneous response problem,
where all agents had to issue FIRE at the same time. It requires the group G of firing agents
to establish common knowledge CGoccurred (START) [HM90]. This work was later extended
to responses that are not simultaneous but tightly coordinated in time [BZM13, GM13]. A
refined characterization of the causal cone in systems with communication delay bounds is
provided in [bM18].

The knowledge-based approach has also been successfully applied to fault-tolerant synchronous
distributed systems. Agents suffering from some restricted types of failures, such as crash or
omission failures, have already been studied in [MT88], primarily in the context of agreement
problems [DM90, HMW01], which require some form of common knowledge. An important
ingredient here are indexical sets of correct agents and a related belief operator Biϕ ≡
Ki(correcti ⇒ ϕ) [MS93], which states that agent i knows ϕ to be true in all runs where i is
correct. More recent results are unbeatable consensus algorithms in synchronous systems
with crash failures [CGM14], and the discovery of the importance of silent choirs [GM18] for
message-optimal protocols in crash-resilient systems.

Even though several of the above papers have “byzantine” in their title, it is nevertheless the
case that they solely consider benign faults, like crashes and message omissions. This is also
true for [GM19], where silent choirs are used for speeding up byzantine consensus in fault-free
runs. We are not aware of any attempt to extend epistemic reasoning to systems with truly
byzantine faults, except for the PhD thesis [Mic89], where faulty agents may deviate from their
protocols also by sending wrong messages etc. However, even faulty agents may not really
behave arbitrarily there, as they need to exhibit a behavior that could have been observed in
some correct execution as well.

Fault-tolerance has also been considered in the context of multi-agent systems (MAS), where
temporal-epistemic languages like CTLK [FHMV95a] and even symbolic (but not parametrized,
e.g., w.r.t. the number of agents n) model checkers like MCMAS [LQR09] exist. For a given
concrete interpreted systems model, it is hence possible to specify and automatically verify
arbitrary temporal-epistemic properties. For systems that may suffer from faults, replication-
based fault-tolerance techniques [FD02], diagnosis-based approaches [KK07], and even lying
agents [dD14b, dD14a] have been considered in the past, albeit in very specific settings. In
the more generic approach described in [EL17], automatic fault injection techniques [Iye95]
are used for mutating a given interpreted systems model of some application, in order to allow
agents to misbehave in some way, and to verify the properties of the resulting model using
MCMAS.

The first steps towards an epistemic reasoning framework for MAS with byzantine agents,
conducted in my supervisor’s Embedded Computing Systems Group at TU Wien, started out
from a Master’s thesis by Patrik Fimml [Fim18], which eventually led to the comprehensive
report [KPS+19b] that also forms the basis of this thesis. Part of [KPS+19b] has already been
published at FroCoS 2019, TARK 2019, and ESSLLI 2019: In [KPSF19b], it has been proved
that byzantine agents allow for a “brain-in-a-vat” scenario, which makes it impossible for a
faulty agent to perceive its correctness. In [KPSF19a], the byzantine analog of the causal
cone [bM14] has been developed. Multipedes were identified as the crucial communication
structure for reliably detecting the occurrence of certain events in the system, and a close

flow at agent i while edges (i, t) → (j, t′) correspond to information transfer from i to j by means of a message
sent at time t and received at time t′.
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1. Introduction

relation to a novel modality hope that is a promising candidate for replacing belief in byzantine
fault-tolerant systems [MS93] has been established. Finally, in [Fru19], a sound and complete
axiomatization of hope has been provided.

1.2 General methodological approach

The primary basis for this thesis is the epistemic framework for byzantine asynchronous
agents [KPS+19b, KPSF19a], which needs to be extended to cover synchronous agents,
coordinated actions, broad- and multicasts (hard- and software), etc. Moreover, the currently
very limited set of generic and protocol-specific lemmas and theorems need to be extended
appropriately.

This comprehensive undertaking is doable due to the fact that the existing framework
[KPS+19b] has been designed to be modular, e.g., by carefully separating the multiple
roles played by the environment (message delivery, inert physical medium, and adversary)
into disjoint phases. Thus, one phase can be modified independently from the others. The
second crucial design choice was giving the environment undivided control over byzantine
behavior. First results regarding the causal cone for byzantine asynchronous agents both prove
the potential of the framework and provide persuasive parallels with existing treatments of
knowledge of infallible agents: for example, the necessity to have a causal chain is strengthened
to a causal chain consisting of correct agents [KPSF19a]. At the same time, our preliminary
findings show that in byzantine settings it is necessary to relativize the notion of knowledge
modulo the agent’s correctness.

The remainder of this thesis is structured as follows:

• Chapter 2 copies the required parts of [KPS+19a] for convenience of the reader.

• Chapter 3 makes up the core of this thesis.

• Chapter 4 presents some conclusions and directions of further research.
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CHAPTER 2
The Byzantine Message-Passing

Framework [KPS+19a]

The content of this whole chapter in its entirety was copied from [KPS+19a] for easier reference.
The original content of this master thesis starts at Chapter 3.

2.1 Agents and States

We consider distributed multi-agent systems with agents viewed as abstract processes, which
can represent humans, computers, or more basic devices.

Definition 2.1.1 (Agents and nodes). We consider a non-empty finite set A of agents.
Without loss of generality, we assume that the agents are numbered: A = J1; nK for some
integer n > 1.1 (The case of a distributed system of only one agent is considered degenerate
as it does not exhibit typical properties of a distributed system.) Local timestamps, or
simply nodes, are identified by pairs (i, t) ∈ A × N of an agent i and a timestamp t. For a
set X ⊆ A × N of local timestamps, we define the set

A (X) := {i | (∃t ∈ N)(i, t) ∈ X}

of involved agents

In our distributed model, non-negative integer timestamps 0, 1, 2, . . . are used exclusively
for snapshots of the system’s state. All actions are performed during the open intervals in
between, called rounds: ]0; 1[, ]1; 2[, ]2; 3[, . . . 2 We use the abbreviation t.5 to denote the
round ]t; t + 1[. For instance, it is equivalent to discuss one agent initiating the sending of a
message at timestamp t and another agent receiving this message by timestamp t + 1, on the
one hand, or to discuss the message sent and received during the round t.5, on the other hand.

The system begins with each agent in one of its initial states.

1We use the notation Jk; mK to denote the set of integers from k to m, i.e., {i ∈ N | k ≤ i ≤ m}.
2We use the notation ]k; m[ to denote the set of real numbers strictly between k and m, i.e., {x ∈ R | k <

x < m}.
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2. The Byzantine Message-Passing Framework [KPS+19a]

Definition 2.1.2 (Initial states). Each agent i ∈ A has a set Σi of local initial states. A
joint initial state, or global initial state, is a tuple of local initial states from

G (0) :=
∏

i∈A

Σi.

An agent’s state can be modified due to internal actions of the agent itself and/or external
events triggered by the environment, represented as a designated agent ǫ, which is not
considered a member of A. Since we do not assume agents to be of the same type, their sets of
initial states, available internal actions, and observable external events may differ. An example
of a local internal action is incrementing a local counter. An example of a local external event
is receiving input from a motion-detection sensor.

Definition 2.1.3 (Local internal actions and events ). Inti denotes the set of all local
internal actions of agent i ∈ A. Exti denotes the set of all local external events it can
observe. We use

• a, a′, a′′, . . . , a1, a2, . . . , for local internal actions,

• e, e′, e′′, . . . , e1, e2, . . . , etc. for local external events, and

• o, o′, o′′, . . . , o1, o2, . . . , u, u′, u′′, . . . , u1, u2, . . . as a generic notation for both events and
actions.

We consider a message-passing system whereby agents communicate exclusively by messages.
Unlike other actions, which may be specific to an agent, messages should be understandable for
both the sender and receiver. Hence, we assume one uniform set of messages comprehensible
for all agents.

Definition 2.1.4 (Messages). We denote by Msgs the (possibly infinite) set of messages
that agents can send to each other. For any two agents i, j ∈ A, a message µ ∈ Msgs can be

• sent by agent i to agent j (possibly in multiple copies), which constitutes an internal
action of i and is recorded3 in agent i’s history as send(j, µk) for the kth copy of the
message; we consider send(j, µ0) to be the master copy and denote it simply by send(j, µ)
in protocols where multiple copies are not necessary;

• received by agent j from agent i, which constitutes an external event for j and is recorded
in agent j’s history as recv(i, µ) (note that j is not aware whether multiple copies of this
message have been sent by i to j and cannot tell which copy it has received).

Remark 2.1.5 (Channel implementation). We chose not to model communication channels
explicitly. The way messages are delivered from one agent to another is governed by the
environment ǫ but this process remains a black box with certain postulated guaranteed
properties, e.g., we will present tools capable of ensuring that successfully delivered messages
arrive in the same round they have been sent. The most important property of our message-
passing system is that it is incorruptible. Agents do not have access to it. In particular,

3The exception is the case when sending of the message was a Byzantine action. Then the record of sending
can be missing or corrupted, in particular, it can look like another action.
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2.1. Agents and States

Byzantine agents cannot in any way affect message delivery. The most they can do is to send
false information, but cannot pretend that this false information comes from a reliable source.

This might be viewed as a restriction on their Byzantine power. Fortunately, the model
is flexible enough to also implement agents impersonating other agents. The underlying
assumption of our model is that two communicating agents would necessarily recognize each
other (this is sometimes referred to as “oral messages”). Thus, in order to mask one’s identity,
one simply needs to transfer messages through a relay station. Thus, the unfalsifiable identity
of the last sender of the message will belong to such a relay station, whereas the identity of the
originator of the message would have to be part of the message content and, hence, malleable.
In cases where there is no obvious physical manifestation for such a relay station, e.g., for
wireless communication, we can still use a relay station to represent the medium that makes
the communication possible. Without going into the technical details, we also remark that
relay stations can be implemented without the increase in latency in message delivery.

Remark 2.1.6 (Global ids and global view). Allowing multiple copies of the same message
serves only one purpose: to enable sending several duplicates of the same message in the same
round. Generally, these copies need not be used and, conversely, their use does not have any
effect on the sender’s behavior. In particular, there is no obligation to use consecutive numbers
for copies nor to always use a fresh copy number in following rounds.4 Thus, despite having a
possibility to distinguish all sent messages, agents are under no obligation to do so.

Thus, the same copy k of the same message µ can be sent from i and received by j multiple
times with the sent messages send(j, µk) and received messages recv(i, µ) all looking the
same for agents i and j respectively. The environment ǫ, which also plays the role of the
delivery system, must, however, be able to distinguish among identical copies of messages with
identical contents but sent/received at different times. This is modelled by a global message
identifier id ∈ N, or simply GMI, which can be compared to a tracking number used by the
environment to uniquely identify each message. Agents never observe this GMI.

Further, while agent i only observes messages sent by itself and its own actions and events, the
environment should distinguish between a message µ sent to j from i and a message with the
same content µ sent to j by another agent i′, between action a by i and the same action a by j,
between event e observed by i and the same event e observed by j. Thus, the environment
represents

• copy k of a message µ sent from i to j and assigned GMI id in the format gsend(i, j, µ, id)
with the information of the copy number k transferred to the GMI id,

• the same copy of the same message when received by j in the format grecv(j, i, µ, id) ,

• action a by agent i in the format A = internal (i, a),

• event e observed by i in the format E = external (i, e).

We will refer to this as the global or environment’s view, as opposed to the local view send(j, µk)
and recv(i, µ) of the sending and receiving agents respectively, a of the acting agent, and e of
the observing agent. We denote

4However, within one round each new copy requires a fresh number. Otherwise, it will be conflated with
the same-numbered copy because messages form a set.
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2. The Byzantine Message-Passing Framework [KPS+19a]

Correct Byzantine

Observing the round go(i) sleep (i)

Not being aware of the round hibernate (i)

Table 2.1: Possibilities regarding agent’s actions in a round.

• globally presented actions by A, A′, A1, etc.,

• globally presented events by E, E′, E1, etc., and

• globally presented either by O, O′, O1, . . . , U, U ′, U1, . . . .

We assume that a′′ and A′′ or e13 and E13, etc. represent the same action/event presented
locally and globally respectively.

After we define protocols and the normative, by-the-protocol behavior for agents, we will
introduce agents with Byzantine behavior, i.e., behavior defying their protocols.

Remark 2.1.7 (Modelling asynchronous agents). Asynchronous agents do not have access
to the global clock of the system. In particular, they should not be able to count the rounds
passed from the beginning. This is implemented by letting agents skip one or more rounds
completely. For each round, the environment ǫ controls whether an agent is to be awoken to
implement its protocol and/or observe some external events or is to skip the round.

This choice for agent i is implemented by three system events: go(i), sleep (i), and hibernate (i).
None of these events are registered by the agents. The go(i) event, unless countermanded by
sleep (i) or hibernate (i) causes the agent to implement its protocol for this round. Even if the
protocol prescribes to stand by and do nothing, the agent would still record the passage of
time. Independently, the agent records the passage of time whenever it observes any event5

other than a Byzantine event perceived as the special no-op action Â.

Events sleep (i) and hibernate (i) model situations when the agent fails to act due to a
malfunction. They differ in whether, despite not acting, the agent is supposed to notice the
passing round or not. Note that we are distinguishing between the agent actively doing nothing
(observing the round passing without any action) and passively not doing anything (not being
aware of the passing round at all). For either option, we present a possible malfunction
resulting in it (in the absence of any actions or events).

Remark 2.1.8 (Sufficient conditions for message transfer). As can be seen from the preceding
remark, it may happen that despite an agent’s protocol prescribing it to send a message, this
action is thwarted by the environment not waking up the agent. Additionally, a properly
functioning agent should not be able to receive a message that was not yet sent (i.e., sent
no later than in the same round). This causally motivated restriction on the model will
be implemented by a special filter (see Def. 2.2.19) that uses the GMI of the message to
distinguish among multiple duplicate messages if need be. This filter can be viewed as part of
the environment.

5It might seem that waking up agents to receive messages interferes with asynchronicity. However, just like
go(i), the delivery of messages is controlled by the environment. In particular, the environment can make the
agent skip rounds by postponing all message deliveries.
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2.1. Agents and States

Because of the active role agents play in actions, there are more ways to violate rules while
performing them. We discuss Byzantine events and actions separately.

Remark 2.1.9 (Modelling Byzantine events). In the spirit of the distributed paradigm, i.e.,
in the absence of a global observer, we do not model global events. Even if one event is
observed by several agents, we model these observations independently and do not generally
postulate the event to be registered by all agents in the same round. In other words, the fact
that one agent failed to observe event e or observed it too late, despite another agent having
observed it (earlier) does not generally make the first agent’s behavior incorrect.6

Instead the faults are agent-centric. It is not an event itself that causes the fault, it is the
agent’s perception of the event (with the exception of system events). Consequently, the only
difference we model is between the agent recording an event e that happened to it vs. the agent
recording e even though e did not take place. Note that the two versions are incompatible.
Consequently, they never happen simultaneously. More precisely, the environment never
attempts simultaneously a correct and faulty event that leave the same trace in the agent’s
local history.

Remark 2.1.10 (Modelling Byzantine actions). Unlike events, which are not controlled by
the agent, actions depend on its will. Accordingly, apart from recording its own actions
incorrectly, the agent can also perform wrong actions, i.e., a set of actions not envisioned by
its protocol. It is also clear that whether the action is correct and whether it is correctly
recorded are independent of each other. Accordingly, there are four possibilities:

• a correct action is correctly recorded;

• a correct action is mistaken for another action or possibly not recorded at all;

• an incorrect action is correctly recorded;

• an incorrect action is mistaken for another (possibly correct) action or possibly not
recorded.

Clearly, all but the first case represent faulty agents. It is especially important to distinguish
which action took place and which action (if any) the agent thinks took place for the action of
sending a message. We assume that all messages actually sent, whether correctly or otherwise
and independent of whether the agent retains a record of sending it, are treated by the
environment in the same way. In particular, the environment always assigns a correct GMI
for all messages actually sent meaning that Byzantine agents are not able to deceive the
environment as to the identity of their messages or, indeed, as to the Byzantine nature of
these messages. However, agent i may, for instance, think that a message was sent to agent j,
whereas in fact it was sent to k. The GMI for such a message and all the delivery procedures
will correspond to the true state of affairs. In particular, the environment would not be allowed
to deliver this message to j in a correct manner. Similarly, the agent sending a message without
being aware of it is modeled by the send action being mistaken for the special Byzantine
no-op action Â. More generally, any action may remain unregistered by the agent when

6If it is absolutely necessary for correct agents to observe a particular event, it is still possible to model
agents guilty of not observing it by creating a special Byzantine event distracted.
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2. The Byzantine Message-Passing Framework [KPS+19a]

mistaken for Â. Conversely, the agent may believe to have acted despite not doing anything if
Â is mistaken for this action. The latter situation still falls under “actively doing nothing,”
at least from the agent’s point of view. Thus, Â is used as a Byzantine action that has no
consequences and leaves no record. In particular, if Â is the only action/event of agent i
during a round (independently of which actions it erroneously performed in reality), then the
local history of the agent remains unchanged, unless sleep (i) forces the agent to mark time.

Remark 2.1.11 (The culprit of Byzantaneity). Despite the Byzantine agents acting any way
they like, they should be able to reason about their actions the same way as uncorrupted
agents. This is especially crucial for agents who are corrupted due to malfunction rather
than malfeasance. This need is at the heart of our decision to shift the control of Byzantine
behavior from corrupted agents to the environment. Thus, formally, a Byzantine “action” of
an agent, including sending a Byzantine message, is not modelled as the agent’s action, but is
instead an external event imposed on the agent by the environment, an event specifying both
which action took place and which action the agent thinks took place. The agent is unable
to distinguish between itself performing some action a and the environment imposing some
action that looks like a to the agent. In particular, as will be shown later, the only way for
the agent to learn that it is corrupted is by observing the discrepancies between its actions
and those demanded by its protocol, more precisely, those discrepancies the agent is able to
perceive.

Remark 2.1.12 (How environment communicates). Our model does not provide for message
passing between an agent and the environment because such messages would be redundant. On
the one hand, the environment is considered to be omniscient and already knows everything
the agents might want to communicate to it. As for the information flow in the opposite
direction, the environment is not viewed as a conscious entity trying to communicate (though,
in principle, information can be delivered to an agent from the environment by means of
external events).

We now flesh out the formal definitions for the concepts just discussed:

Definition 2.1.13 (Global message identifier function). We fix a function for computing
GMIs to be any computable one-to-one total function id : A × A × Msgs × N × N → N.7

Note that the two functions retrieving the arguments t and k from id(i, j, µ, k, t) respectively
would always be computable due to the injectivity and totality of id(·). However, it is beneficial
to choose id(·) so as to additionally make these two functions computable efficiently.

Definition 2.1.14 (Internal actions). From the point of view of agent i ∈ A, its correct
internal actions, which can be prescribed by its protocol, consist of the send actions from
Def. 2.1.4 and local internal actions a ∈ Inti (Def. 2.1.3):

Actionsi := {send(j, µk) | j ∈ A, µ ∈ Msgs, k ∈ N} ⊔ Inti. (2.1)

The same actions from the point of view of the environment look like

GActionsi := {gsend(i, j, µ, id) | j ∈ A, µ ∈ Msgs, id ∈ N} ⊔ {internal (i, a) | a ∈ Inti} (2.2)

7A simple though not necessarily the most efficient possibility is to use 2i · 3j · 5⌈µ⌉ · 7k · 11t, where ⌈µ⌉
represents the numerical code of the message µ according to some arbitrary but fixed coding scheme.

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.1. Agents and States

We also define the sets of all (correct) internal actions that at least one of the agents can take:

Actions :=
⋃

i∈A

Actionsi (2.3)

GActions :=
⊔

i∈A

GActionsi (2.4)

Remark 2.1.15. Note that the union in (2.4) is disjoint because each action viewed globally
necessarily specifies the acting agent. Even if the same local internal action a ∈ Inti ∩ Intj

can be performed by several agents, the representations internal (i, a) 6= internal (j, a) of the
action for these agents i 6= j are distinct.

Definition 2.1.16 (External events). From the point of view of agent i ∈ A, correct
external events that it can observe consist of the recv actions from Def. 2.1.4 and local
external events e ∈ Exti (Def. 2.1.3):

Eventsi := {recv(j, µ) | j ∈ A, µ ∈ Msgs} ⊔ Exti (2.5)

The same events from the point of view of the environment look like

GEventsi := {grecv(i, j, µ, id) | j ∈ A, µ ∈ Msgs, id ∈ N} ⊔ {external (i, e) | e ∈ Exti} (2.6)

For each correct external event E ∈ GEventsi of agent i, there is a matching Byzantine
external event

fake (i, E)

representing the agent being mistaken about observing the (local version of the) event E. For
A, A′ ∈ {Â} ⊔ GActionsi, each of which is either a correct global action of agent i or no-op
Â, there is a matching Byzantine external event

fake
(
i, A 7→ A′)

representing the situation when the agent performs (the local version of) action A but thinks
that it performed (the local version of) action A′. When the agent faithfully records the
performed Byzantine action, we abbreviate

fake (i, A 7→ A) = fake (i, A).

Note that fake (i,Â) acts as a malfunction without any action or any trace in the local history.
Hence, we abbreviate it as

fake (i,Â) = fail (i).

Correct actions are always recorded faithfully. (It can, however, happen that one or several
faulty actions are merged with a correctly performed action in the local history.) We do not
impose any a priory restrictions on E, A, or A′, i.e., a Byzantine agent can mistakenly observe
any event, mistakenly perform any action, and mistake any performed action or inaction for
any other action or for inaction.

In particular, for received Byzantine messages, the environment creates the message “out
of thin air” as if it has been delivered. Such a message will be supplied with a GMI for
uniformity’s sake but such GMIs is not assumed to carry any information. Indeed, this GMI

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2. The Byzantine Message-Passing Framework [KPS+19a]

will play no role whatsoever as it will be stripped from the message upon delivery. It can even
violate the uniqueness of GMIs. Similarly, a Byzantine sent message A is created already with
a well-formed GMI, unlike the correctly sent messages, which are supplied with a GMI in a
separate step after creation. However, the delivery of messages A with GMI does not depend
on whether they originate as Byzantine or correct ones. At the same time, if the agent is
mistaken about having sent a message A′, its GMI is again immaterial as the agent will not
see it nor the environment will ever deliver this “message.”

We use fake (i, U) to denote an arbitrary fake event fake (i, E) or action fake (i, A 7→ A′) and
denote the set of all such Byzantine events of agent i by

BEventsi :=
{

fake (i, E) | E ∈ GEventsi

}
⊔
{

fake
(
i, A 7→ A′) | A, A′ ∈ {Â} ⊔ GActionsi

}

(2.7)

In addition to correct and Byzantine events, the environment uses system events to determine
which agents can act in each round:

• go(i) approves i’s actions prescribed by its protocol;

• sleep (i) instructs i to forfeit acting in this round but wakes it up anyways, marking it
Byzantine;

• hibernate (i) instructs i to forfeit acting in this round without waking it, marking it
Byzantine.

System events SysEventsi := {go(i), sleep (i), hibernate (i)} are not (directly8) observable by
agents and, hence, are not part of Eventsi.

9

The complete set of events affecting agent i that the environment can trigger is

GEventsi := GEventsi ⊔ BEventsi ⊔ SysEventsi (2.8)

We also define the sets of external events affecting all agents as

Events :=
⋃

i∈A

Eventsi, GEvents :=
⊔

i∈A

GEventsi,

GEvents :=
⊔

i∈A

GEventsi, BEvents :=
⊔

i∈A

BEventsi,

SysEvents :=
⊔

i∈A

SysEventsi.

Remark 2.1.17. Since action A′ in fake (i, A 7→ A′) is a complete fiction only existing in i’s
imagination, we could have written it in the format fake (i, A 7→ a′) for the action a′ already
presented from i’s local point of view. The only reason we do not do that is to preserve
uniformity and avoid mixing local and global points of view.

Remark 2.1.18 (Modelling Byzantine inaction). As can be seen from Table 2.1, these three
events governing actions have the following meanings:

8Events go(i) can, under certain circumstances, be detected by the acting agent based on the fact that it is
acting. However, mere acting does not generally imply go(i) by itself since the actions can also be Byzantine.

9Another group of events not observed by the agents are fake
(
i, A 7→ Â

)
.
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2.1. Agents and States

• the event hibernate (i) prevents the agent from acting or from waking up other than to
observe other events and makes the agent Byzantine;

• the event sleep (i) wakes the agent up but prevents it from acting and makes it Byzantine;

• the event go(i) wakes up the agent and prompts it to fulfill its protocol;

• finally, without any of the three events, the agent would not act, would not wake up
unless to observe other events and would not become Byzantine unless other events
cause it.

Since hibernate (i), sleep (i), and go(i) are generally pairwise incompatible, the environment
never issues more than one event from SysEventsi, much like she never attempts both a correct
event E ∈ GEventsi and its fake version fake (i, E).

Note that {hibernate (i)} is similar in its effect to {fail (i)} in the absence of go(i): namely, the
Byzantine inaction when the agent does not act, does not mark time (unless because of other
events), and becomes Byzantine. However, the similarity is not perfect: fail (i) is a generic
failure due to the lack of some action, whereas hibernate (i) signifies the specific failure to act
in the round altogether. Accordingly, fail (i) is compatible with go(i), whereas hibernate (i) is
not. Thus, having this separation makes sense for diagnostic purposes. We generally intend to
have a full taxonomy of possible failures: failures based on events, based on actions, based on
the absence of actions, and based on failure to follow system instruction go(i).

Remark 2.1.19. It is possible to define the correct version internal (i,Â) of fake (i,Â) but,
given that Â is not recorded in the local history, this would be a wholly redundant operation.

Remark 2.1.20. There can be two main causes for Byzantine behavior:

• the agent may want to subvert the correct procedures and actively engages in sabotage;

• the agent is malfunctioning, which can result in incorrect sensor data being recorded,
actions performed in reaction to this erroneous data, and/or actions in response to
correct data but not correctly implemented.

Our formal model is attuned to the latter case, where the malfunctions are imposed by the
environment. While the former case remains faithfully represented as the environment is
free to implement any malicious intent by the agent, the epistemic approach is primarily
relevant in the setting with malfunctioning agents. Indeed, if the agent has a complete
freedom to misbehave to achieve a goal different from the stated protocol, then its protocol
need not contain any self-diagnostic tools whereas for other agents its Byzantine actions are
indistinguishable from random actions. By contrast, a malfunctioning agent that is capable of
detecting its own faultiness can make necessary adjustments or shut down.

Remark 2.1.21 (Perfect recall). We consider agents capable of perfect recall. More precisely,
they do have perfect recall while acting correctly and their memory remains stable once
recorded. However, Byzantine agents may misremember some of their events/actions. In
particular, Byzantine agents may not remember any actions they performed. If perfect recall is
desired for all agents, then Byzantine actions of the type fake (i, A 7→ A′) with A 6= A′ should
be prohibited.
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2. The Byzantine Message-Passing Framework [KPS+19a]

Perfect recall imposes certain requirements on the memory available to the agent. The choice
between perfect recall and history-free agents is akin to the difference between Turing machines
and finite-state automata, i.e., the choice between expressivity and efficiency. In this report,
we concentrate on the formalism that is expressive. Hence, the state of an agent is defined as
its local history. In the string of following definitions as well as in the following statements
and proofs, we assume that a set A = J1; nK of agents, sets Σi of initial states, sets Inti of
local internal actions and sets Exti of local external events for each agent i ∈ A, as well as a
set Msgs of messages are arbitrary but fixed and we do not repeat this list every time.

Definition 2.1.22 (Agent’s history). A history hi of agent i ∈ A, or its local state, is a
non-empty sequence

hi = [λm, . . . , λ1, λ0]

for some m ≥ 0 such that λ0 ∈ Σi and ∀j ∈ J1; mK we have λj ⊂ Actionsi⊔Eventsi. In this case
m is called the length of history hi and denoted |hi|. We say that a set λ ⊂ Actionsi⊔Eventsi

is recorded in the history hi of agent i and write λ ⊂ hi iff λ = λj for some j ∈ J1; mK. We
say that o ∈ Actionsi ⊔ Eventsi is recorded in the history hi and write o ∈ hi iff o ∈ λ for
some set λ ⊂ hi.

Definition 2.1.23 (Environment’s history). A history h of the system with n agents, or
the global state, is a tuple

h := (hǫ, h1, . . . , hn)

where the history of the environment is a sequence

hǫ = [Λm, . . . , Λ1]

for some m ≥ 0 such that ∀j ∈ J1; mK we have Λj ⊆ GActions ⊔ GEvents and hi is a
local state of each agent i ∈ J1; nK. In this case m is called the length of history h and
denoted |h| := |hǫ|, i.e., the environment has the true global clock. We say that a set
Λ ⊂ GActions ⊔ GEvents happens in the environment’s history hǫ or in the system history
h and write Λ ⊂ hǫ iff Λ = Λj for some j ∈ J1; mK. We say that O ∈ GActions ⊔ GEvents
happens in the environment’s history hǫ or in the system history h and write O ∈ hǫ iff
O ∈ Λ for some set Λ ⊂ hǫ.

Definition 2.1.24 (Sets of local and global states). Li is the set of local states of agent i, i.e.,
the set of all histories of agent i. Lǫ is the set of histories of the environment. L :=

∏
i∈A Li

is the set of joint local states. G is the set of global states.

The global state of the system contains both the local states of all agents and the omniscient
view of the environment. It provides a complete snapshot of the system at a specific time,
including the real picture of events and how these events are perceived by agents.

The following is an exhaustive list of the notation we use to describe main stages in a lifecycle
of events and actions. For completeness purposes, this list also mentions protocols that will be
formally introduced later. In this list, i, j ∈ A are agents, µ ∈ Msgs is a message, and id ∈ N

is a GMI.
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2.1. Agents and States

Correct internal actions and their Byzantine copies:

• a ∈ Inti represents the following:

– in i’s protocol, this prescribes agent i to perform the local internal action a if it is
woken up for the round; this command by itself does not affect whether the agent
marks the passage of time: that depends on whether the agent is woken up;

– in i’s local history, this means that agent i marked the passage of time and thinks
it performed a, but does not necessarily know whether it was really performed and,
if so, whether it was performed according to the protocol or in a Byzantine fashion.

• internal (i, a) for a ∈ Inti represents the following:

– in the environment’s history, this means that i performed a according to i’s protocol
and marked the passage of time.

• fake (i, internal (i, a) 7→ A′) for a ∈ Inti and A′ ∈ GActionsi represents the following:

– in the environment’s protocol, this prescribes agent i to perform a in a Byzantine
fashion (i.e., irrespective of both the protocol and whether the agent is woken up)
but believe that the local version of A′ was performed instead; if approved, this
event causes the agent to mark the passage of time;

– in the environment’s history, this means that i performed a in a Byzantine fashion
but believed that the local version of A′ was performed instead and marked the
passage of time.

• fake (i, internal (i, a) 7→ Â) for a ∈ Inti represents the following:

– in the environment’s protocol, this prescribes agent i to perform a in a Byzantine
fashion but forget about it; this command does not affect whether the agent marks
the passage of time;

– in the environment’s history, this means that i performed a in a Byzantine fashion
without recording it in its local history; whether i marked the passage of time
depends exclusively on other actions/events of the round.

• fake (i, A′ 7→ internal (i, a)) for a ∈ Inti and A′ ∈ GActionsi represents the following:

– in the environment’s protocol, this prescribes agent i to perform the local version
of A′ but believe that a was performed instead while marking the passage of time;

– in the environment’s history, this means that i performed the local version of A′

in a Byzantine fashion but believed that a was performed instead and marked the
passage of time.

• fake (i,Â 7→ internal (i, a)) for a ∈ Inti represents the following:

– in the environment’s protocol, this prescribes agent i to mistake inaction for
performing a while marking the passage of time;

– in the environment’s history, this means that i did not do anything but believes to
have performed a and marked the passage of time.
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2. The Byzantine Message-Passing Framework [KPS+19a]

Sending messages, correctly or in a Byzantine way:

• send(j, µk) represents the following:

– in i’s protocol, this prescribes agent i to send kth copy of a message µ to j if it
is woken up for the round; in most cases, only one copy, the master copy is sent,
which is denoted µ0 or simply µ; this command by itself does not affect whether the
agent marks the passage of time: that depends on whether the agent is woken up;

– in i’s local history, this means that agent i marked the passage of time and thinks
it sent kth copy of a message µ to j, but does not necessarily know whether it
was really sent and, if so, whether it was sent according to the protocol or in a
Byzantine fashion.

• gsend(i, j, µ, id) represents the following:

– in the environment’s history, this means that i marked the passage of time, sent a
message µ to j according to i’s protocol, and the message was assigned the GMI id
(which contains information about the copy number).

• fake (i, gsend(i, j, µ, id) 7→ A′) for A′ ∈ GActionsi represents the following:

– in the environment’s protocol, this prescribes agent i to send a message µ to j in
a Byzantine fashion and the environment to assign the GMI id (which contains
information about the copy number) to the message and is computed correctly
with respect to the current timestamp;, but i would believe that the local version
of A′ was performed instead; if approved, this event causes the agent to mark the
passage of time;

– in the environment’s history, this means that i marked the passage of time, sent a
message µ to j in a Byzantine fashion and the message was assigned the GMI id,
but i believes that the local version of A′ was performed instead; notwithstanding
this belief, µ can be correctly received by j.

• fake (i, gsend(i, j, µ, id) 7→ Â) represents the following:

– in the environment’s protocol, this prescribes agent i to send a message µ to j in
a Byzantine fashion and the environment to assign the GMI id to the message
and forget about it; the GMI is computed correctly with respect to the current
timestamp; this command does not affect whether the agent marks the passage of
time;

– in the environment’s history, this means that i sent a message µ to j in a Byzantine
fashion and the message was assigned the GMI id, but forgot about it; whether
i marked the passage of time depends exclusively on other actions/events of the
round; notwithstanding, µ can be correctly received by j.

• fake (i, A 7→ gsend(i, j, µ, id)) for A ∈ GActionsi represents the following:

– in the environment’s protocol, this prescribes agent i to perform the local version
of A but mistakenly believe that it is sending a message µ to j (GMI id does not
play a role); if approved, this event causes the agent to mark the passage of time;
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2.1. Agents and States

– in the environment’s history, this means that i marked the passage of time and
performed the local version of A but mistakenly believes to have sent copy µ to j;
despite i’s belief, this event does not enable j to receive µ correctly.

• fake (i,Â 7→ gsend(i, j, µ, id)) represents the following:

– in the environment’s protocol, this prescribes agent i to mistakenly believe that it
is sending a message µ to j; if approved, this event causes the agent to mark the
passage of time;

– in the environment’s history, this means that i marked time and mistakenly believes
to have sent a message µ to j; despite i’s belief, this event does not enable j to
receive µ correctly.

Byzantine inaction

• fake (i,Â) represents the following:

– in the environment’s protocol, this prescribes agent i to not do anything in a
Byzantine fashion; this command does not affect whether the agent marks the
passage of time;

– in the environment’s history, this means that i became Byzantine if it wasn’t already;
whether i marked the passage of time depends exclusively on other actions/events
of the round.

Correct external events and their Byzantine copies:

• e ∈ Exti represents the following:

– in i’s local history, it means that i marked the passage of time and believes to have
observed e happened, but does not necessarily know whether it really happened;

• external (i, e) for e ∈ Exti represents the following:

– in the environment’s protocol, it prescribes the environment to impose e on agent
i; it is incompatible with fake (i, external (i, e)); if approved, this event causes the
agent to mark the passage of time;

– in the environment’s history, it means that i marked the passage of time and
observed e.

• fake (i, external (i, e)) for e ∈ Exti represents the following:

– in the environment’s protocol, it prescribes agent i to mistakenly believe to have
observed e; it is incompatible with external (i, e); if approved, this event causes the
agent to mark the passage of time;

– in the environment’s history, it means that i marked the passage of time and
mistakenly believes to have observed e.
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2. The Byzantine Message-Passing Framework [KPS+19a]

Receiving messages, correctly or in a Byzantine fashion:

• recv(j, µ) represents the following:

– in i’s local history, it means that i marked the passage of time and believes to
have received a message µ from agent j, but does not necessarily know whether the
receipt of the message really happened.

• grecv(i, j, µ, id) represents the following:

– in the environment’s protocol, it prescribes to deliver to i a message µ sent earlier
with GMI id by j; it is incompatible with fake (i, grecv(i, j, µ, id′)) even if the fake
id′ is different; if approved, this event causes the agent to mark the passage of time;

– in the environment’s history, it means that i marked the passage of time and
received a message µ sent earlier by j with GMI id.

• fake (i, grecv(i, j, µ, id)) represents the following:

– in the environment’s protocol, it prescribes agent i to falsely believe to have
received a message µ from j (GMI id does not play a role); it is incompatible with
grecv(i, j, µ, id′) even if the correct id′ is different; if approved, this event causes the
agent to mark the passage of time;

– in the environment’s history, it means that i marked the passage of time and falsely
believes to have received µ from j.

Environment controlling agents’ actions:

• go(i) represents the following:

– in the environment’s protocol, it prescribes agent i to wake up and perform some
set of actions prescribed by i’s protocol; it is incompatible with sleep (i) and
hibernate (i); if approved, this event causes the agent to mark the passage of time
(even if no actions are prescribed by the protocol);

– in the environment’s history, it means that i was woken up, marked the passage of
time, and performed some set of actions prescribed by i’s protocol.

• sleep (i) represents the following:

– in the environment’s protocol, it prescribes agent i to malfunction by marking
the passage of time but skipping whatever actions prescribed by i’s protocol; it is
incompatible with go(i) and hibernate (i); if approved, this event causes the agent
to mark the passage of time;

– in the environment’s history, it means that i malfunctioned, was woken up and
marked the passage of time but was not allowed to perform any actions prescribed
by i’s protocol.

• hibernate (i) represents the following:
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2.2. Transition Function

– in the environment’s protocol, it prescribes agent i to malfunction by skipping
whatever actions prescribed by i’s protocol; it is incompatible with go(i) and
sleep (i); if approved, this event prevents marking the passage of time due to actions;
however, the passage of time may be triggered by other events;

– in the environment’s history, it means that i malfunctioned, was not woken up and
did not perform any actions prescribed by i’s protocol; moreover, the passage of
time was not marked due to go(i) or sleep (i) but may have been marked due to
other events.

2.2 Transition Function

There are multiple consistency restrictions to be imposed on the histories to ensure that
information from a local history hi, incomplete as it might be, does not contradict what is
recorded by the environment objectively and omnisciently in hǫ. We now start introducing
these restrictions, dividing them into several types according to the parts of the framework
responsible for upholding them.

Our general ideology is that (correct) agents act to achieve a particular goal, for which the
agent’s protocol takes the responsibility. The environment plays a triple role. Firstly, it is an
impartial physical medium enforcing the consistency of histories and the laws of causality. In
particular the environment increments all histories, local and global, in a coherent way and
filters out events that are considered “physically” impossible, such as a (non-Byzantine) delivery
of a message that was never sent. Secondly, the environment is the source of external unbiased
indeterminacy: it simply records all possibilities the future can have in store. “Unbiased” here
means that possibilities should not be omitted in the interests of short-term expedience, such
as achieving the worst-case scenario. The latter is done using the third part of the environment
that performs the non-deterministic choice and is designated the adversary. In other words,
it should not be possible to guarantee avoiding good (or any other possible) choices but it
should be possible to avoid them by chance.

Since agents are assumed not to have the complete overview of the system, agent i’s protocol Pi

can only rely on i’s local view, i.e., its local state at the moment. In particular, it is crucial
for implementing asynchronous agents that Pi cannot use timestamp t as a parameter.

Conversely, the protocol Pǫ of the omniscient environment can use timestamp t, in fact using t
is necessary to correctly forge GMIs for sent Byzantine messages. At the same time, Pǫ should
not depend on the current (global) state to preserve the unbiased representation of the physical
laws and to facilitate proofs of properties of our framework.

For instance, a (synchronous-communication) receiver can be modeled by an environment
protocol that “listens on all frequencies”, i.e., attempts to deliver all messages at all times.
However, all messages that have not been sent are filtered out and not delivered. Thus, the
behavior of the system does depend on the global state, but the environment’s protocol does
not.

Definition 2.2.1 (Coherent events). Let t ∈ N be a timestamp. A set S ⊂ GEvents of events
is called t-coherent if it satisfies the following conditions:

1. for any fake (i, gsend(i, j, µ, id) 7→ A) ∈ S, the GMI id = id(i, j, µ, k, t) for some k ∈ N;
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2. The Byzantine Message-Passing Framework [KPS+19a]

2. for any i ∈ A at most one of go(i), sleep (i), and hibernate (i) is present in S;

3. for any i ∈ A and any e ∈ Exti at most one of external (i, e) and fake (i, external (i, e))
is present in S;

4. for any grecv(i, j, µ, id1) ∈ S, no event of the form fake (i, grecv(i, j, µ, id2)) belongs to
S for any id2 ∈ N;

5. for any fake (i, grecv(i, j, µ, id1)) ∈ S, no event of the form grecv(i, j, µ, id2) belongs to
S for any id2 ∈ N;

Remark 2.2.2. It is possible that two copies grecv(i, j, µ, id1) and grecv(i, j, µ, id2) of the
same message, possibly sent at different rounds, arrive simultaneously. While the receiving
agent i would only know that the message µ from j is received, without being aware of various
copies or their multiplicity, the ability to receive multiple copies is important, for instance,
when message delivery has to be reliable.

We also leave a possibility of fake (i, grecv(i, j, µ, id1)) and fake (i, grecv(i, j, µ, id2)) at the
same time making agent i falsely think that it received the message µ from j. While one such
error makes all further ones redundant, there is no material difference in the system’s behavior
when two or more of such errors are present. Hence, to avoid unnecessary technical work, we
leave this as a possibility. Needless to say, this possibility can always be precluded in specific
protocols.

Lemma 2.2.3. Any subset of a t-coherent set is itself t-coherent.

Definition 2.2.4 (Protocol).

1. A (non-deterministic) protocol for agent i ∈ A is any function

Pi : Li → 22Actionsi \ {∅} (2.9)

For a local state hi ∈ Li of agent i, each member S ∈ Pi (hi) is a subset of Actionsi and
represents one of non-deterministic choices prescribing a set of actions for i in this local
state. Note that Pi (hi) 6= ∅ means that an agent always has at least one such choice S,
which might be to perform no actions if S = ∅.

2. Given individual agents’ protocols P1, . . . , Pn, their joint protocol is a function of
global states that returns a tuple of action sets computed according to agent’s protocols,
one set per agent: for a global state h = (hǫ, h1, . . . , hn),

P (h) :=
(
P1 (h1), . . . , Pn (hn)

)
(2.10)

3. A (non-deterministic) protocol for the environment is any function

Pǫ : N −→ 22GEvents

\ {∅} (2.11)
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2.2. Transition Function

such that every S ∈ Pǫ (t) is t-coherent. In other words, for each t ∈ N, each member
S ∈ Pǫ (t) is a t-coherent subset of GEvents , i.e.,

S ⊂ {grecv(i, j, µ, id) | i, j ∈ A, µ ∈ Msgs, id ∈ N} ⊔ {go(i) | i ∈ A} ⊔

{external (i, e) | i ∈ A, e ∈ Exti} ⊔ {sleep (i) | i ∈ A} ⊔

{fake (i, E) | i ∈ A, E ∈ GEventsi} ⊔ {hibernate (i) | i ∈ A} ⊔
{

fake
(
i, A 7→ A′) | i ∈ A, A, A′ ∈ {Â} ⊔ GActionsi

}
,

and represents one of the non-deterministic possibilities for what can happen in the
system at time t.5. The two conditions mean that no correct event can be accompanied
by its faulty version and any faulty send has a correctly computed GMI. Note that
Pǫ (t) 6= ∅ means that the environment always has at least one such choice S, which
might be to impose no events if S = ∅.

Definition 2.2.5. For σ ∈ {0, 1} and a set X we define

Xσ :=

{
X if σ = 1,

∅ if σ = 0.

Notation 2.2.6. We denote by C the set of all joint protocols.

Notation 2.2.7. We denote by Cǫ the set of all environment protocols.

Remark 2.2.8. All sets produced by protocols in Cǫ at time t are t-coherent.

Remark 2.2.9. Depending on the intended strength and type of Byzantine agents, we may
further restrict the set of functions allowed as protocols of the environment.

Remark 2.2.10 (Time sensitive actions). The dependence of the environment’s protocol on
time enables modelling of time-sensitive actions. For instance, such a protocol can implement
a global prohibition on message delivery during designated quiet time.

Remark 2.2.11 (Life must go on). Both the environment and each of the agents always has
at least one (possibly empty) set of actions/events at its disposal (no-apocalypse clause). The
situation when the agents crash and cannot proceed further can still be represented, e.g., by
designating a special crash action.

As we saw, Byzantine send and receive events, as well as correct receive events, are both
initiated and performed by the environment, which is why we chose to represent these events
as fully formed, i.e., supplied with a GMI, from the very beginning. In fact, correct receive
events must contain a GMI to determine whether a message with such a GMI was sent earlier,
which is part of the definition of its correctness. The situation with correct send actions
is different: they are initiated by an agent, who must remain unaware of a GMI, but the
message is propagated to the recipient by the environment. Thus, when an active agent
sends a message, it must first be transformed from the local to the global view. This task is
performed by the labeling functions labeli for each i ∈ A. Similarly, when the message, correct
or fake, is delivered or a fake event occurs for an agent, the event must be transformed into its
local format before being recorded in the local history. This is done by the “reverse” function
label−1.
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2. The Byzantine Message-Passing Framework [KPS+19a]

Definition 2.2.12 (Labeling functions). For an agent i ∈ A, we define a function

labeli : Actionsi × N −→ GActionsi

converting the local representation of actions to the global format as follows:

labeli (a, t) :=

{
gsend(i, j, µ, id(i, j, µ, k, t)) if a = send(j, µk)

internal (i, a) if a ∈ Inti

We collect all these functions into one tuple label := (label1, . . . , labeln).

We also define a function converting actions and events from the global format into the
local ones. This function is applied after all fake events are already turned into their benign
counterparts and Â’s are removed by a separate function. Thus, this function does not deal
with fake events or no events.

label−1 : GActions ⊔ GEvents −→ Actions ⊔ Events

as follows:

label−1 (U) :=





send(j, µk) if U = gsend(i, j, µ, id(i, j, µ, k, t))

send(j, µ0) if U = gsend(i, j, µ, M) and M 6= id(i, j, µ, k, t) for any k, t ∈ N

recv(j, µ) if U = grecv(i, j, µ, id)

a if U = internal (i, a)

e if U = external (i, e)

Function label−1 extends to sets in the standard way: label−1(X) := {label−1(U) | U ∈ X}.
For the functions labeli, we distribute the timestamp parameter to all elements of the set:
labeli (X, t) := {labeli (a, t) | a ∈ X}.

Remark 2.2.13. The injectivity of the function id used in labeli ensures that each message
is unique from the point of view of the environment.

Remark 2.2.14. The second clause in the definition of label−1 (U) is mostly cosmetic: we
make GMIs id unforgeable, and, hence, this clause will never be used. It is added solely to
make the function label−1 (U) total, thus, avoiding irrelevant complications stemming from
the use of potentially partial functions.

Definition 2.2.15 (Non-deterministic choice for protocols). Given a global history h =
(hǫ, h1, . . . , hn) ∈ G and protocols Pǫ ∈ Cǫ for the environment and (P1, . . . , Pn) ∈ C for the
agents, we obtain, for agent i ∈ A and timestamp t ∈ N, the sets of global actions and events
to be attempted at the global state h at t, i.e., in the round t.5, as follows:

1. Events imposed by the environment are a t-coherent set

αt
ǫ = Xǫ (2.12)

for some set Xǫ ∈ Pǫ (t) non-deterministically chosen by the adversary.
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2.2. Transition Function

2. Actions agent i ∈ A would perform if woken up are a set

αh,t
i = labeli (Xi, t) (2.13)

for some set Xi ∈ Pi (hi) non-deterministically chosen by the adversary.

3. All these choices are combined in the joint attempted action

αh,t := (αt
ǫ , αh,t

1 , . . . , αh,t
n ).

Among the events αt
ǫ we distinguish the following subsets for each agent i ∈ A:

1. Regular events for i ∈ A

αt
ǫi

:= αt
ǫ ∩ GEventsi = {grecv(i, j, µ, id) ∈ αt

ǫ | j ∈ A, µ ∈ Msgs, id ∈ N}⊔

{external (i, e) ∈ αt
ǫ | e ∈ Exti} (2.14)

2. Instructions regarding waking up for i ∈ A

αt
gi

= αt
ǫ ∩ SysEventsi (2.15)

3. Fake events for agent i ∈ A, including those mimicking the agent’s actions:

αt
bi

:= αt
ǫ ∩ BEventsi =

{
fake

(
i, A 7→ A′) ∈ αt

ǫ | A, A′ ∈ {Â} ⊔ GActionsi

}
⊔{fake (i, E) ∈ αt

ǫ | E ∈ GEventsi}

(2.16)

4. Instructions making agent i Byzantine:

αt
fi

:= αt
bi

⊔
(
αt

ǫ ∩ {sleep (i), hibernate (i)}
)

(2.17)

Note that sleep (i) and hibernate (i) may be present in both αt
gi

and αt
fi

Finally, we define

αt
ǫ :=

⊔

i∈A

αt
ǫi

αt
g :=

⊔

i∈A

αt
gi

αt
b :=

⊔

i∈A

αt
bi

αt
f :=

⊔

i∈A

αt
fi

Lemma 2.2.16. Given a global history h ∈ G and protocols Pǫ for the environment and
P1, . . . , Pn for the agents, for agent i ∈ A and for timestamp t ∈ N, we have that

αt
ǫ ⊂ GEvents and αh,t

i ⊂ GActionsi.

The environment should not create impossible situations. Most of them are prohibited by
the definition of environment’s protocol. For instance, an event recorded by an agent cannot
both happen and not happen. Accordingly, the environment can only try one of these two
possibilities but not both at the same time.

There is, however, one common type of “causal” impossibility that is not restricted to
environment alone or a particular moment in time: a message cannot be delivered without
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2. The Byzantine Message-Passing Framework [KPS+19a]

being previously10 sent. Due to our necessity to make the environment’s protocol independent
of the global history, which is crucial for many proofs, the environment’s protocol cannot check
whether the message was actually sent in previous rounds (based on the global history) or in
the current round (based in part on the actions chosen by the adversary for the sending agent,
the presence of the go command for it, and other events imposed on this agent). But correctly
receiving an unsent message would break the laws of causality. Since these events cannot be
handled by the environment alone, we create a special filter that weeds them out.

To simplify notation we introduce the following abbreviation:

Definition 2.2.17 (Active/passive, aware/unaware). For a set X ⊆ GEvents we define

active(i, X) :=

{
t if X ∩ SysEventsi = {go(i)},

f otherwise.
(2.18)

aware(i, X) :=

{
t if ∅ 6= X ∩ SysEventsi ∈

{
{go(i)}, {sleep (i)}

}
,

f otherwise.
(2.19)

For readability’s sake we write active(i, X) instead of active(i, X) = t and passive(i, X) instead
of active(i, X) = f , as well as aware(i, X) instead of aware(i, X) = t and unaware(i, X) instead
of aware(i, X) = f .

Corollary 2.2.18. Given that for any S ∈ Pǫ (t), at most one of system actions can be present

passive(i, S) ⇐⇒ S ∩ SysEventsi ∈
{
∅, {sleep (i)}, {hibernate (i)}

}
, (2.20)

unaware(i, S) ⇐⇒ S ∩ SysEventsi ∈
{
∅, {hibernate (i)}

}
. (2.21)

active(i, X) =⇒ aware(i, X) (2.22)

unaware(i, S) =⇒ passive(i, S) (2.23)

Definition 2.2.19 (Event and action filter functions). We define an event filter function
for Byzantine agents

filterB
ǫ : G × 2GEvents × 2GActions1 × · · · × 2GActionsn −→ 2GEvents

as follows. Given a global history h, a set Xǫ of events attempted by the environment
(chosen by the adversary) and sets Xi of actions to be performed by the agents (also chosen
by the adversary), the function returns the set of all attempted events that are “causally”
possible as the set of events to be actually performed by the environment. Formally, for
a set Xǫ ⊂ GEvents, sets Xi ⊂ GActionsi for each agent i ∈ A, and a global history
h = (hǫ, h1, . . . , hn) ∈ G , we define

filterB
ǫ (h, Xǫ, X1, . . . , Xn) :=

Xǫ \
{

grecv(j, i, µ, id) | gsend(i, j, µ, id) /∈ hǫ ∧

(∀A ∈ {Â} ⊔ GActionsi) fake (i, gsend(i, j, µ, id) 7→ A) /∈ hǫ ∧

(gsend(i, j, µ, id) /∈ Xi ∨ passive(i, Xǫ)) ∧

(∀A ∈ {Â} ⊔ GActionsi) fake (i, gsend(i, j, µ, id) 7→ A) /∈ Xǫ

}
(2.24)

10Here previously sent means sent in one of the preceding rounds or in the same round, whether correctly or
in a Byzantine fashion. On the other hand, when an agent mistakenly thinks the message was sent, it is not
considered sent previously.
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2.2. Transition Function

In addition, we define action filter functions for Byzantine agents i ∈ A

filterB
i : 2GActions1 × · · · × 2GActionsn × 2GEvents −→ 2GActionsi

as follows. Given a set of actions Xj ⊂ GActionsj prescribed for each agent j ∈ A by its
protocol (as chosen by the adversary) and a set of events Xǫ ⊂ GEvents that are performed
by the environment, we define an all-or-nothing

filterB
i (X1, . . . , Xn, Xǫ) =

{
Xi if active(i, Xǫ)

∅ otherwise
(2.25)

It is obvious from these definitions that these are indeed filter functions on Xǫ and Xi

respectively:

filterB
ǫ (h, Xǫ, X1, . . . , Xn) ⊂ Xǫ (2.26)

filterB
i (X1, . . . , Xn, Xǫ) ⊂ Xi (2.27)

Thus, after protocols provided a range of possible event/action collections Pǫ (t) and Pi(hi)
and the adversary chose the collection αt

ǫ of events to be attempted by the environment and

collections αh,t
i of actions to be performed by each agent if it is awoken, the filter functions

determine which of these events and actions are to actually happen during the round. For this
second stage, the resulting sets are called β-sets by analogy with α-sets.

Remark 2.2.20. While it is clear that an agent observing an event that actually happens
cannot be mistaken about it, the situation with actions is more complex because the agent
may not be certain about the exact action it performs. We chose to leave the agent with the
widest variety of possibilities:

• several faulty actions can be mistaken for one (including the no-op action Â or some
action that actually was performed): fake (i, A1 7→ A), ..., fake (i, Am 7→ A) are generally
compatible;

• one faulty action can be mistaken for several actions: fake (i, A 7→ A1), ..., fake (i, A 7→ Am)
are generally compatible (this can also happen when A was actually performed or when
A is the no-op action Â).

In other words, agents can be confused not only regarding which actions they have performed
but also regarding how many have been performed. Further, the agent may think it has done a
lot without doing anything or vice versa may think it has done nothing despite frantic activity.

Remark 2.2.21. For the case of general Byzantine agents, we could directly define a local

version of the action filter function filterB
i : 2GActionsi × 2GEvents −→ 2GActionsi because

the choices of other agents do not affect the filtering for general Byzantine agents. But we will
need the definition of other variants of filteri to be (n + 1)-ary functions to refine the model
to implement, for example, rendez-vous communication.

Definition 2.2.22. For a global history h ∈ G , a timestamp t ∈ N, a tuple of requested
actions and events αh,t = (αt

ǫ , αh,t
1 , . . . , αh,t

n ), and agent i ∈ A,
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2. The Byzantine Message-Passing Framework [KPS+19a]

1. βh,αh,t

ǫ := filterB
ǫ

(
h, αt

ǫ , αh,t
1 , . . . , αh,t

n

)

2. βh,αh,t

i := filterB
i

(
αh,t

1 , . . . , αh,t
n , βh,αh,t

ǫ

)

3. βh,αh,t
:= (βh,αh,t

ǫ , βh,αh,t

1 , . . . , βh,αh,t

n )

As for αt
ǫ we also distinguish the following subsets of βh,αh,t

ǫ for each agent i ∈ A:

1. Regular events for agent i:

β
h,αh,t

ǫi
:= βh,αh,t

ǫ ∩ GEventsi =

{grecv(i, j, µ, id) ∈ βh,αh,t

ǫ | j ∈ A, µ ∈ Msgs, id ∈ N}⊔

{external (i, e) ∈ βh,αh,t

ǫ | e ∈ Exti} ⊂ αt
ǫi

(2.28)

2. Instructions regarding waking up agent i:

βh,αh,t

gi
:= βh,αh,t

ǫ ∩ SysEventsi ⊂ αt
gi

(2.29)

3. Fake events for agent i, including those mimicking the agent’s actions:

βh,αh,t

bi
:= βh,αh,t

ǫ ∩ BEventsi =
{

fake
(
i, A 7→ A′) ∈ βh,αh,t

ǫ | A, A′ ∈ {Â} ⊔ GActionsi

}
⊔

{fake (i, E) ∈ βh,αh,t

ǫ | E ∈ GEventsi} ⊂ αt
bi

(2.30)

4. Instructions making agent i Byzantine:

βh,αh,t

fi
:= βh,αh,t

bi
⊔
(
βh,αh,t

ǫ ∩ {sleep (i), hibernate (i)}
)

⊂ αt
fi

(2.31)

Finally, we define

β
h,αh,t

ǫ :=
⊔

i∈A

β
h,αh,t

ǫi
⊂ αt

ǫ βh,αh,t

g :=
⊔

i∈A

βh,αh,t

gi
⊂ αt

g

βh,αh,t

b
:=

⊔

i∈A

βh,αh,t

bi
⊂ αt

b βh,αh,t

f
:=

⊔

i∈A

βh,αh,t

fi
⊂ αt

f

βh,αh,t

ǫi
:= β

h,αh,t

ǫi
⊔ βh,αh,t

gi
⊔ βh,αh,t

bi

Remark 2.2.23. The filtering is split into two steps: first filtering events βh,αh,t

ǫ and then

filtering actions based on the results of event filtering βh,αh,t

i = filteri

(
αh,t

1 , . . . , αh,t
n , βh,αh,t

ǫ

)
.

Such two-step filtering enables us to represent communication scenarios that rely on coordina-
tion among agents by making it possible to filter out go events that violate the coordination
requirements.
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2.2. Transition Function

Remark 2.2.24. Consider a global history h ∈ G , a timestamp t ∈ N, and a tuple of requested
actions and events αh,t = (αt

ǫ , αh,t
1 , . . . , αh,t

n ). Then

βh,αh,t

ǫ = β
h,αh,t

ǫ ⊔ βh,αh,t

g ⊔ βh,αh,t

b .

Proposition 2.2.25. Consider a global history h ∈ G , a timestamp t ∈ N, a tuple of requested
actions and events αh,t = (αt

ǫ , αh,t
1 , . . . , αh,t

n ), and an agent i ∈ A. Then action filter function
filteri for agent i ensures that

βh,αh,t

i 6= ∅ =⇒ active(i, βh,αh,t

ǫ );

βh,αh,t

i 6= ∅ =⇒ aware(i, βh,αh,t

ǫ ).

Proof. The first statement follows directly from Def. 2.2.22(2) and equation (2.25). The second
statement follows from the first and (2.22).

Once again, it is easy to see that

Lemma 2.2.26. Given a global history h ∈ G , a timestamp t ∈ N, a tuple of requested actions
and events αh,t = (αt

ǫ , αh,t
1 , . . . , αh,t

n ), and agent i ∈ A

βh,αh,t

ǫ ⊂ GEvents and βh,αh,t

i ⊂ GActionsi

It is important to separate the complete knowledge required of the environment to perform the
transition from state to state from the limited local view that the agents have. In particular,
it is a central assumption of distributed systems in general and of the proposed framework in
particular that agents should not be able to tell the difference between an external event they
actually observed and a fake external event their sensors mistakenly registered, nor between
performing action A′ and thinking they have performed A′ when A was the actual action
performed, as represented by fake (i, A 7→ A′). In this respect, the agents can be viewed as
malfunctioning drones rather than scheming moles: They always mean well but are sometimes
prevented by the environment from behaving correctly. In such cases, they can juxtapose their
own intentions with their perception of the resulting actions and events but cannot directly
detect the environment’s meddling.

Formally, this means that the local histories must be purged of

(1) fake modifiers,

(2) GMIs,

(3) controlling commands go(i), sleep (i), and hibernate (i).

These tasks are performed by the localization function σ: both on the action/event level and
on the set level:
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2. The Byzantine Message-Passing Framework [KPS+19a]

Definition 2.2.27 (Localization function). The function

σ : 2GActions⊔GEvents −→ 2Actions⊔Events

is defined as follows

σ
(
X
)

:= label−1
((

X ∩ (GActions ⊔ GEvents)
)
∪

{E | (∃i) fake (i, E) ∈ X}∪

{A′ 6= Â | (∃i)(∃A) fake
(
i, A 7→ A′) ∈ X}

)
(2.32)

If U ∈ GActions ⊔ GEvents and σ
(
{U}

)
6= ∅, i.e., U is not one of go(i), sleep (i), hibernate (i),

nor is a fake (i, A 7→ Â) for some i and A, we also write σ
(
U
)

to denote the only element of
the set σ

(
{U}

)
, i.e., σ

(
{U}

)
= {σ(U)}.

The following lemma directly follows from the definitions of Pǫ (Def. 2.2.4(3) and of t-coherence
(Def. 2.2.1).

Lemma 2.2.28. Given a global history h ∈ G and protocols Pǫ ∈ Cǫ for the environment and
P1, . . . , Pn for the agents, for any agent i ∈ A and for timestamp t ∈ N,

σ
(
αt

bi

)
∩ label−1

(
αt

ǫi

)
= ∅ (2.33)

|αt
gi

| ≤ 1 (2.34)

fake (i, gsend(i, j, µ, id) 7→ A) ∈ αt
bi

=⇒ (∃k ∈ N) id = id(i, j, µ, k, t) (2.35)

The following properties are inherited from the α-sets because filtering does not add new
things. The next lemma follows from Lemma 2.2.3.

Lemma 2.2.29. Given a global history h ∈ G and protocols Pǫ ∈ Cǫ for the environment and

P1, . . . , Pn for the agents, for any agent i ∈ A and for timestamp t ∈ N, the set βh,αh,t

ǫ is
t-coherent, in particular,

σ
(
βh,αh,t

bi

)
∩ label−1

(
β

h,αh,t

ǫi

)
= ∅ (2.36)

|βh,αh,t

gi
| ≤ 1 (2.37)

fake (i, gsend(i, j, µ, id) 7→ A) ∈ βh,αh,t

bi
=⇒ (∃k ∈ N) id = id(i, j, µ, k, t) (2.38)

Remark 2.2.30. Since
∣∣∣βh,αh,t

gi

∣∣∣ ≤ 1 in all cases, we write go(i) ∈ βh,αh,t

gi
instead of the

equivalent statement βh,αh,t

gi
= {go(i)}.

The last piece of the puzzle is state update functions that record the events and actions
performed in a round into all the histories.

Definition 2.2.31 (State update functions). Given a global history h = (hǫ, h1, . . . , hn) ∈ G ,

a tuple of performed actions/events X = (Xǫ, X1, . . . , Xn) ∈ 2GEvents × 2GActions1 × · · · ×
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2.2. Transition Function

2GActionsn , we use the following abbreviation Xǫi
= Xǫ ∩ GEventsi for each i ∈ A. Agents i’s

update function

updatei : Li × 2GActionsi × 2GEvents → Li

outputs a new local history from Li based on i’s actions Xi and environment-controlled
events Xǫ as follows:

updatei (hi, Xi, Xǫ) :=





hi if σ(Xǫi
) = ∅ and unaware(i, Xǫ)[

σ
(
Xǫi

⊔ Xi

)]
: hi otherwise

(2.39)

where : represents sequence concatenation. Similarly, the environment’s state update function

updateǫ : Lǫ ×
(
2GEvents × 2GActions1 × · · · × 2GActionsn

)
→ Lǫ

outputs a new state of the environment based on Xǫ:

updateǫ (hǫ, X) := (Xǫ ⊔ X1 ⊔ · · · ⊔ Xn) : hǫ (2.40)

Thus, the global state is modified as follows:

update (h, X) :=
(
updateǫ (hǫ, X) , update1 (h1, X1, Xǫ) , . . . , updaten (hn, Xn, Xǫ)

)
(2.41)

Remark 2.2.32. The first clause in (2.39) corresponds to the situation when the agent is not
woken up by actions or events. In particular, unaware(i, Xǫ) states that i is denied both actions
in the round and even awareness of the round itself. Virtually always function updatei will be
applied to Xǫ = βh,αh,t

ǫ , which is a t-coherent set. Thus, the condition unaware(i, βh,αh,t

ǫ ) is

equivalent to βh,αh,t

ǫ ∩ SysEventsi ∈
{
∅, {hibernate (i)}

}
, in other words,

unaware(i, βh,αh,t

ǫ ) ⇐⇒ βh,αh,t

ǫ ∩ SysEventsi ⊂ {hibernate (i)}. (2.42)

Following [FHMV95b], we define transition functions as follows:

Definition 2.2.33 (Transition function). For agents’ protocols P = (P1, . . . , Pn) and a
protocol Pǫ of the environment, we define a Byzantine transition function

τB
Pǫ,P : 2GEvents × 2GActions1 × · · · × 2GActionsn → (G → G )

as a function that outputs a global state transformer function

τB
Pǫ,P (Y ) : G → G

from global states to global states given joint attempted actions/events

Y ∈ 2GEvents × 2GActions1 × · · · × 2GActionsn

defined as follows. For a global state h = (hǫ, h1, . . . , hn) ∈ G and such joint attempted
actions/events Y we consider two possibilities:
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2. The Byzantine Message-Passing Framework [KPS+19a]

• if Y = αh,|h| =
(
α

|h|
ǫ , α

h,|h|
1 , . . . , α

h,|h|
n

)
for some α

|h|
ǫ ∈ Pǫ (|h|) and some Xi ∈ Pi (hi) for

each i ∈ A such that α
h,|h|
i = labeli (Xi, |h|) then we define

τB
Pǫ,P (Y )(h) := update

(
h, βh,αh,|h|

)
(2.43)

where the β-sets are computed from αh,|h| by Def. 2.2.22 and the update function is
defined in (2.41);

• otherwise, we define τB
Pǫ,P (Y )(h) = h.11

Remark 2.2.34. By a slight abuse of notation, we write h′ ∈ τB
Pǫ,P (h) to mean that there is a

protocol-conformant set of joint actions αh,|h| satisfying the first clause of the above definition
such that τB

Pǫ,P (αh,|h|)(h) = h′.

2.3 Runs and Contexts

As already mentioned, integer timestamps are used exclusively to take snapshots of the local
and global states. A sequence of such snapshots as the time progresses is called a run. Our goal
is to model systems that are, in general, asynchronous, meaning that the agents can neither
know the global time nor count the number of rounds since the beginning of the run. Without
loss of generality, we consider runs that encompass the whole infinite set N of timestamps.

Definition 2.3.1 (Run). A run is a function that assigns a global state to each integer
timestamp.

r : N −→ G (2.44)

We denote the set of all runs by R. The part of the run that an agent i can see is called i’s
local view. It is a function that assigns i’s local state to each integer timestamp.

ri : N −→ Li (2.45)

It is clear that each local view ri is uniquely determined by the run r:

ri (t) := πi+1r (t)

where πj is the jth projection function for tuples/sequences. Similarly, we define the environ-
ment’s history

rǫ : N −→ Lǫ

to be

rǫ (t) := π1r (t)

Definition 2.3.2. For a set X ⊂ A × N of nodes we define the upper time bound T (X) to
be the largest T ∈ N such that (i, T ) ∈ X for some agent i ∈ A if such a T exists. T (∅) is
defined to be 0. A set X is called bounded if it has a time bound or unbounded otherwise.

11The latter case will never be used and is only provided to make the transition function total.
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2.3. Runs and Contexts

Each agent initially starts off in a correct state and may become Byzantine when its actions
stop being dictated by the protocol or its perception of events is compromised. Thus, it is more
precise to talk about Byzantine states of agents, i.e., about Byzantine nodes (i, t) ∈ A × N

instead of announcing the agents themselves to be universally Byzantine. Local timestamps
(nodes) directly resulting from a violation of the agent’s protocol or from a Byzantine event,
including a Byzantine system event, are called Bad. All nodes of an agent starting from the
first Bad local timestamp are called Failed. Recall that time in global histories h is represented
by |h|.

Definition 2.3.3. Consider a global history h = (hǫ, h1, . . . , hn) ∈ G of length |h|, so that
hǫ = [Λ|h|, . . . , Λ1]. We define the sets of Bad and Failed nodes

Bad (h) :=
{
(i, t) ∈ A × N | Λt ∩

(
BEventsi ⊔ {sleep (i), hibernate (i)}

)
6= ∅

}

Failed (h) :=
{
(i, t) ∈ A × N | (∃t′ ≤ t) (i, t′) ∈ Bad (h)

}

if |h| > 0 and Bad (h) = Failed (h) := ∅ otherwise.

Remark 2.3.4. For any global history h ∈ G , Bad (h) ⊂ Failed (h). Indeed, the former
represents nodes that experienced a malfunction in the immediately preceding round, whereas
the latter is comprised of nodes with some malfunction possibly further in the past.

Definition 2.3.5. For a run r ∈ R, timestamp t ∈ N, and bounded set X ⊂ A × N of nodes,
we define

Bad (r, t) := Bad (r (t)) BadX (r) := X ∩ Bad (r, T (X))

Failed (r, t) := Failed (r (t)) FailedX (r) := X ∩ Failed (r, T (X))

For an unbounded set X ⊂ A × N of nodes, we define

BadX (r) := X ∩

(
∞⋃

t=1

Bad (r, t)

)
FailedX (r) := X ∩

(
∞⋃

t=1

Failed (r, t)

)

Remark 2.3.6. The unions in the unbounded case begin from t = 1 because for any run r,
we have Bad (r, 0) = Failed (r, 0) = ∅.

Remark 2.3.7. The definition of BadX (r) and FailedX (r) for unbounded sets X is com-
patible with that for bounded sets, when applied to bounded sets X. The benefit of the latter
definition is that it is efficiently computable.

Remark 2.3.8. For agents’ protocols P and the environment’s protocol Pǫ, we are mostly
interested in runs r ∈ R that are built according to these protocols by some transition function.
For the time being, we use the Byzantine transition function τB

Pǫ,P , i.e., consider runs that
begin from a proper initial state and such that for each timestamp t ∈ N,

r (t + 1) ∈ τB
Pǫ,P (r (t)) (2.46)

Sometimes we call such runs τB
Pǫ,P -transitional, or simply transitional. For such a transi-

tional run r, we denote its initial state by r (0) and the global state after round (t − 1).5 is
r (t).

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2. The Byzantine Message-Passing Framework [KPS+19a]

It immediately follows from (2.43), (2.40), and Def. 2.3.2 that

Proposition 2.3.9. For any transitional run r,

Bad (r, t) ⊂ Bad (r, t + 1) and Failed (r, t) ⊂ Failed (r, t + 1).

In addition, for X ⊂ X ′,

BadX (r) ⊂ BadX′ (r) and FailedX (r) ⊂ FailedX′ (r),

independent of whether both sets are bounded, X is bounded while X ′ is not, or both sets are
unbounded.

Proof. The crucial observation is that, for transitional runs, r (t + 1) is either equal to r (t) or
obtained by prepending it. In either case, r (t + 1) contains r (t) without modifications.

Remark 2.3.10. In the interests of generality and modularity of concepts, we defined the
transition function in terms of arbitrary histories. For the case of histories comprising a
transitional run, the notation can be simplified. We will now provide a concise digest of one
step of transition for transitional runs (see also Fig. 2.1) with the dual purpose: to give a
compact summary of the procedure and introduce a simpler notation mostly used in the rest
of our work. This will also form a crucial part of the notion of (weak) consistency with a
context and a joint protocol in Def. 2.3.27 after we introduce all parts comprising a context.

In Def. 2.2.33, we defined the basic Byzantine transition function τB
Pǫ,P based on protocols P

of the agents and Pǫ of the environment. As already mentioned, we will sometimes need to
change the filtering phase of the transition function. Hence, we leave the exact details of the
transition as a parameter τ that converts protocols into a transition function.

Definition 2.3.11 (Transition template). A transition template

τ : Cǫ × C →
(
2GEvents × 2GActions1 × · · · × 2GActionsn → (G → G )

)
(2.47)

is a two-place function that takes a protocol Pǫ ∈ Cǫ of the environment and a joint agents’
protocol P ∈ C and outputs a transition function τ(Pǫ, P ), which we denote by τPǫ,P

τPǫ,P : 2GEvents × 2GActions1 × · · · × 2GActionsn → (G → G )

Thus τB
Pǫ,P is only one possible transition function, the Byzantine transition function, obtained

from protocols Pǫ and P : namely, the one resulting from using the Byzantine filter functions
filterB

i and filterB
ǫ .

Whichever filtering is used, one round of transition consists of the following phases:
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2.3. Runs and Contexts

r (t)

Pn (rn (t))

. . .

P1 (r1 (t))

Pǫ (t)

Pn

P1

Pǫ

Xn

. . .

X1

Xǫ

adversary

adversary

adversary

αt
n (r)

. . .

αt
1 (r)

αt
n (r)

. . .

αt
1 (r)

Xǫ =
αt

ǫ (r)

labeln

label1

βt
n (r)

. . .

βt
1 (r)

βt
ǫ (r) βt

ǫ (r)

filtern

filter1

filterǫ

rn (t + 1)

. . .

r1 (t + 1)

rǫ (t + 1)

updaten

update1

updateǫ

βt
ǫn

(r)

βt
ǫ1

(r)

r (t + 1)

|

t

| | | | |

t + 1

Protocol phase Adversary phase Labeling phase Filtering phase Updating phase

Figure 2.1: The evolution of states in round t.5 (from timestamp t ∈ N to t + 1) inside a run
r constructed according to the transition function τPǫ,P . Different communication models
require changes to the filtering functions filterǫ and filteri.

One step of τPǫ,P -transition for runs One transition made according to a transition
function τPǫ,P consists of five consecutive phases, which are visually represented in Fig. 2.1:

1. Protocol phase (protocols are explicit arguments to the transition template τ)
First, the protocol Pi for each agent i lays out a range Pi (ri (t)) of possible sets of i’s
actions in the round based on the local state ri (t) of the agent. Similarly, the protocol
Pǫ of the environment lays out a range Pǫ (t) of possible t-coherent sets of events in the
round based on time t.

2. Adversary phase (this phase is stable: it does not change from template to template or
from protocol to protocol)
From these ranges, the adversary non-deterministically picks one set

Xi ∈ Pi (ri (t)) (2.48)

of actions for each agent i and a set

Xǫ ∈ Pǫ (t) (2.49)

of events for the environment. These are actions the agents intend to perform and
events the environment intends to impose in the round. Note that Xi ⊂ Actionsi and
Xǫ ⊂ GEvents .

3. Labeling phase (this phase is stable: it does not change from template to template or
from protocol to protocol)
The environment processes the intended actions Xi of each agent i converting them into
the global format, in particular, assigning GMIs to message send requests from agents.
We denote the resulting sets

αt
i (r) := labeli (Xi, t) . (2.50)

The set of environmental events Xǫ is already in the global format and requires no
modifications:

αt
ǫ (r) := Xǫ. (2.51)

Note that αt
i (r) ⊂ GActionsi and αt

ǫ (r) ⊂ GEvents .
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2. The Byzantine Message-Passing Framework [KPS+19a]

4. Filtering phase (this phase depends on the filtering functions filterǫ and filteri, which
are considered to be part of the template)
In this phase, intended actions and events that are deemed “causally impossible” in the
underlying communication model are filtered out: though they may be requested by
the agents/environment, they are not performed and not recorded in histories. Thus,
the exact nature of filtering depends on the intended model, and different filtering
functions produce different transition functions. The following requirements are imposed
on filtering functions that can be used in any template:

passive(i, Xǫ) =⇒ filteri (X1, . . . , Xn, Xǫ) = ∅ (2.52)

filteri (X1, . . . , Xn, Xǫ) ⊂ Xi (2.53)

filterǫ (h, Xǫ, X1, . . . , Xn) ⊂ Xǫ (2.54)

In other words, no actions by agent i are allowed by the environment unless go(i) is issued
and filtering is a non-increasing function with respect to the relevant argument. Note
that some environment’s events may also be “causally impossible”, such as, e.g., receiving
a message that was never sent. The filtering phase is further divided into two subphases:

a) first impossible environment events are filtered out by the function filterǫ based
on the intended environment’s events Xǫ and intended actions αt

i (r) of all agents,
resulting in the set βt

ǫ (r) of performed environment’s events:

βt
ǫ (r) := filterǫ

(
r (t) , αt

ǫ (r), αt
1 (r), . . . , αt

n (r)
)

, (2.55)

b) then for each agent i, the filtering function filteri performs the same task on
the agents’ actions, but taking into account the already filtered events βt

ǫ (r) and
intended actions αt

j (r) of all agents j ∈ A. The resulting sets of actions actually
performed by agents are denoted βt

i (r):

βt
i (r) := filteri

(
αt

1 (r), . . . , αt
n (r), βt

ǫ (r)
)

(2.56)

Note that βt
i (r) ⊂ αt

i (r) ⊂ GActionsi and βt
ǫ (r) ⊂ αt

ǫ (r) ⊂ GEvents by (2.53) and
(2.54) and that the latter is always a t-coherent set.

5. Updating phase (this phase is stable: it does not change from template to template or
from protocol to protocol)
The events βt

ǫ (r) and actions βt
i (r) actually happening in the round are faithfully

recorded into the global history and are translated into the simplified local form for
being recorded into the local histories of each agent by the update functions. The crucial
point of this translation is stripping out the GMIs and any information that would allow
an agent to easily distinguish a correct event from a faulty one. Once again, the local
history of each agent i is only affected by the actions βt

i (r) it performs and environment’s
events βt

ǫi
(r) it observes, whereas the global history is modified based on the complete

information about all events and actions performed in the round.

ri (t + 1) := updatei

(
ri (t) , βt

i (r), βt
ǫ (r)

)
(2.57)

βt (r) :=
(
βt

ǫ (r), βt
1 (r), . . . , βt

n (r)
)

, (2.58)

rǫ (t + 1) := updateǫ

(
rǫ (t) , βt (r)

)
(2.59)
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2.3. Runs and Contexts

We will routinely use (2.48)–(2.59) to prove properties of transitional runs. However, it should
be noted that in this respect β sets have a different status from α sets and X sets. Indeed,
by (2.59), all β sets can be easily retrieved from a given transitional run. We do not even have
to assume the transitionality of a run to define the β sets, though this definition would make
sense mostly for transitional runs. In compliance with (2.40), for an arbitrary global history
h, we define

βi (h) := π1hǫ ∩ GActionsi (2.60)

βǫ (h) := π1hǫ ∩ GEvents (2.61)

For the case of runs

βt
i (r) = βi (r (t + 1)) = π1rǫ (t + 1) ∩ GActionsi (2.62)

βt
ǫ (r) = βǫ (r (t + 1)) = π1rǫ (t + 1) ∩ GEvents (2.63)

The latter set we further partition (we only show the notation for the case of runs, the case of
histories is processed analogously):

• correct external events: β
t
ǫ (r) observed by all agents and β

t
ǫi

(r) observed specifically by
agent i;

• system events (go, sleep, and hibernate): βt
g (r) imposed on all agents and βt

gi
(r) imposed

specifically on agent i;

• Byzantine events: βt
b (r) observed by all agents and βt

bi
(r) observed specifically by agent

i;

• all external events that make the agent Byzantine until the end of the run, including
faultily skipped rounds sleep (i) and hibernate (i): βt

f (r) imposed on all agents and

βt
fi

(r) imposed specifically on agent i.

On the other hand, parts of the X and α sets are filtered out and have no effect on the
transitions in the run. Hence, given a transitional run, it is not generally possible to retrieve the
exact X and α sets used in each transition. All that is required is that there exist a collection of
sets X1, . . . , Xn, Xǫ satisfying (2.48)–(2.49) that eventually generate βt

1 (r), . . . , βt
n (r), βt

ǫ (r)
from (2.62)–(2.63) according to (2.50)–(2.56). Despite this subtlety, we still use function-
like notation for α sets to keep the notation uniform with β sets. In particular, we use
this uniformity to identify the same parts of the α sets by the same subscripts, e.g., αt

ǫi
(r)

represents the set of correct internal events the environment is intending to impose on agent i,
which will be filtered and become β

t
ǫi

(r), the set of correct external events actually imposed
by the environment on agent i during round t.5 of the run r.

If we write βt (r) , βt
ǫ (r), βt

1 (r), . . . , βt
n (r), etc., it means that we assume the run r to be

transitional and use αt
ǫ (r), αt

1 (r), . . . , αt
n (r), etc. for one possible choice of sets that could

lead to such sets β according to a transition function τPǫ,P .

Transitional runs have several useful properties:
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2. The Byzantine Message-Passing Framework [KPS+19a]

Remark 2.3.12 (Global total recall). Not only βt (r) but also all βt′
(r) for t′ ≤ t can be

extracted from r(t + 1), or even from rǫ(t + 1) in a τPǫ,P -transitional run r: for instance,

βt′

ǫ (r) = π1rǫ

(
t′ + 1

)
∩ GEvents = πt−t′+1rǫ (t + 1) ∩ GEvents

Lemma 2.3.13 (Objective global time). For any τPǫ,P -transitional run r and any timestamp
t,

|r (t) | = t.

The following properties rely on the restrictions imposed on the environment’s protocol as well
as on the filtering functions implementing general Byzantine agents. In order to make this
and further results more general we define pointwise order on filtering functions and formulate
many of the statements for any filter up to the general Byzantine one.

Definition 2.3.14. We say that a filter filter1
ǫ is stricter than a filter filter2

ǫ or that filter2
ǫ

is more liberal than filter1
ǫ and we write filter1

ǫ ⊂ filter2
ǫ if the inclusion holds pointwise

filter1
ǫ (h, Xǫ, X1, . . . , Xn) ⊂ filter2

ǫ (h, Xǫ, X1, . . . , Xn)

for any global history h ∈ G , any Xǫ ⊂ GEvents, and arbitrary Xi ⊂ GActionsi for each
i ∈ A.

Lemma 2.3.15 (GMIs are correct). For any τPǫ,P -transitional run r for some Pǫ ∈ Cǫ, for

i, j ∈ A, µ ∈ Msgs, t ∈ N, A ∈ GActionsi ⊔ {Â}, and id ∈ N

gsend(i, j, µ, id) ∈ βt
i (r) =⇒ id = id(i, j, µ, k, t) for some k ∈ N

(2.64)

fake (i, gsend(i, j, µ, id) 7→ A) ∈ βt
bi

(r) =⇒ id = id(i, j, µ, k, t) for some k ∈ N

(2.65)

In addition, for any transition template τ with a filterǫ ⊂ filterB
ǫ and for any τPǫ,P -

transitional run r

grecv(i, j, µ, id) ∈ β
t
ǫi

(r) =⇒ id = id(j, i, µ, k, t′) for some k ∈ N and t′ ≤ t (2.66)

Proof. By (2.56), (2.53), (2.50), and Def. 2.2.12, the id for correct gsend instructions is supplied
by the function labeli, which guarantees the first statement.

Similarly, for the second statement, by (2.55), (2.51), Def. 2.2.4(3), the id’s for Byzantine
gsend instructions are created by the environment in a manner that guarantees the second
statement.

Finally, for the third statement, by the same (2.55) and (2.24), if a grecv command was not
filtered out by filterǫ, it was not filtered by the more liberal filterB

ǫ , hence, the matching
gsend command or its Byzantine version must have occurred at the latest by the same round.
In other words, taking into account (2.55)–(2.56), there are four possibilities:

1. gsend(j, i, µ, id) ∈ rǫ (t) =⇒ gsend(j, i, µ, id) ∈ βt′

j (r) for some t′ < t

2. gsend(j, i, µ, id) ∈ βt
j (r)
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2.3. Runs and Contexts

3. fake (j, gsend(j, i, µ, id) 7→ A) ∈ rǫ (t) for some A ∈ {Â} ⊔ GActionsj =⇒
fake (j, gsend(j, i, µ, id) 7→ A) ∈ βt′

bj
(r) for some t′ < t and A ∈ {Â} ⊔ GActionsj

4. fake (j, gsend(j, i, µ, id) 7→ A) ∈ βt
bj

(r) for some A ∈ {Â} ⊔ GActionsj

In other words,

gsend(j, i, µ, id) ∈ βt′

j (r) or fake (j, gsend(j, i, µ, id) 7→ A) ∈ βt′

bj
(r) for an A ∈ {Â} ⊔ GActionsj

for some t′ ≤ t. It remains to use the already proved (2.64) or (2.65) respectively.

Corollary 2.3.16. For any τPǫ,P -transitional run r with a filterǫ ⊂ filterB
ǫ , for i, j ∈ A,

µ ∈ Msgs, t ∈ N, and id ∈ N

grecv(i, j, µ, id) ∈ β
t
ǫi

(r) =⇒ (∃t′ ≤ t)
(
gsend(j, i, µ, id) ∈ βt′

j (r) or

(∃A ∈ {Â} ⊔ GActionsj) fake (j, gsend(j, i, µ, id) 7→ A) ∈ βt′

bj
(r)
)

(2.67)

Corollary 2.3.17 (GMIs are unique). For any transitional run r, for i, j, k, l ∈ A, µ, µ′ ∈
Msgs, t, t′ ∈ N, id ∈ N, A ∈ {Â} ⊔ GActionsi, and A′ ∈ {Â} ⊔ GActionsk:

{
gsend(i, j, µ, id) ∈ βt

i (r)

gsend(k, l, µ′, id) ∈ βt′

k (r)
=⇒





k = i

l = j

t′ = t

µ′ = µ

(2.68)

{
fake (i, gsend(i, j, µ, id) 7→ A) ∈ βt

bi
(r)

fake (k, gsend(k, l, µ′, id) 7→ A′) ∈ βt′

bk
(r)

=⇒





k = i

l = j

t′ = t

µ′ = µ

(2.69)

{
gsend(i, j, µ, id) ∈ βt

i (r)

fake (k, gsend(k, l, µ′, id) 7→ A′) ∈ βt′

bk
(r)

=⇒





k = i

l = j

t′ = t

µ′ = µ

(2.70)

In other words, the GMI id completely determines the sender, the recipient, the sent message
and the time of sending for both correct and Byzantine messages processed by the environment.

Proof. The statements follow from Lemma 2.3.15 (from (2.64) for the first statement, from
(2.65) for the second one, and from both (2.64) and (2.65) for the third one) and the injectivity
of id(·) from Def. 2.1.13.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2. The Byzantine Message-Passing Framework [KPS+19a]

Corollary 2.3.18 (Send–receive causality). For any τPǫ,P -transitional run r with a filterǫ ⊂

filterB
ǫ , for i, j, k, l ∈ A, µ, µ′ ∈ Msgs, t, t′ ∈ N, A ∈ {Â} ⊔ GActionsi, and id ∈ N:





gsend(i, j, µ, id) ∈ βt
i (r)

grecv(k, l, µ′, id) ∈ β
t′

ǫk
(r)

=⇒





k = j

l = i

t′ ≥ t

µ′ = µ

(2.71)





fake (i, gsend(i, j, µ, id) 7→ A) ∈ βt
bi

(r)

grecv(k, l, µ′, id) ∈ β
t′

ǫk
(r)

=⇒





k = j

l = i

t′ ≥ t

µ′ = µ

(2.72)

In other words, whether a message is sent correctly or faultily, the receipt of the message
cannot happen before it was sent and the senders/recipients/content at the time of receipt must
match those at the time of sending.

Proof. The statements follow from Lemma 2.3.15 and the injectivity of id(·) from Def. 2.1.13.

Remark 2.3.19. While GMIs for sent messages are unforgeable for all transition templates,
the correctness of GMIs for correctly received messages relies on the filtering performed by
the general Byzantine environment filter and any stricter filters. It could be argued that
Byzantine behavior can be strengthened and/or reliability of the communication channel can
be weakened to enable Byzantine agents to forge GMIs, but this is outside the scope of this
report, especially given that the man in the middle attack can be represented without forged
GMIs (see Remark 2.1.5 for details).

In order to discuss what it means to behave the same way at a node (i, t) ∈ A × N in two
distinct runs r and r′ we define the notion of agreement:

Definition 2.3.20 (Agreement on a node). For two runs r and r′ from R, we say that r and
r′ agree on a node (i, t) ∈ A × N iff

1. ri (t) = r′
i (t)

2. βt
ǫi

(r) = βt
ǫi

(r′)

3. βt
i (r) = βt

i (r′)

We extend this notion to sets of nodes X ⊂ A × N: runs r and r′ agree on X iff
(
∀(i, t) ∈ X

)
r and r′ agree on (i, t)

Remark 2.3.21. In the above definition, Requirement 1 states that the local states of i at t
are identical in both runs. Requirement 3 expresses that actions of i chosen by the adversary
based on the protocol for the upcoming round t.5 are identical in both runs. Requirement 2
ensures three properties: correct external events imposed on i in round t.5 are identical, there
is no difference as to whether i is awoken for round t.5 or not, faulty behavior of i in round t.5
is identical.

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.3. Runs and Contexts

Lemma 2.3.22. For two transitional runs r and r′ and a node (i, t) ∈ A × N

r and r′ agree on (i, t) implies ri (t + 1) = r′
i (t + 1)

Proof. By (2.57) and (2.39).

Remark 2.3.23. For two transitional runs r and r′ and a node (i, t) ∈ A × N,

r and r′ agreeing on (i, t) is strictly stronger than

{
ri (t) = r′

i (t)

ri (t + 1) = r′
i (t + 1)

The most important case when local states remain in sync between timestamps t and t + 1
despite different things happening during round t.5 is when a correct action/event in run r is
replaced with its Byzantine version in run r′.

While it is preferrable to directly build desired properties of runs into the transition functions,
in a manner of speech, to hardwire them, there are characteristics that cannot be implemented
on a round-by-round basis. The most familiar of them is the liveness condition that requires
that certain things happen eventually in a run. If no bound on the delay is given, this
requirement cannot be translated into local terms because this is the property of the whole
infinite run. Therefore, to enforce such properties we have to restrict the set of runs being
considered.

Definition 2.3.24 (Admissibility condition). An admissibility condition Ψ is any subset
of the set R of all runs.

Now we have all the ingredients to define sets of runs for particular communication models. A
context is essentially an extended environment where a joint protocol is executed.

Definition 2.3.25 (Context). A context

γ = (Pǫ, G (0), τ , Ψ) (2.73)

consists of an environment protocol Pǫ ∈ Cǫ, a set of global initial states G (0), a transition
template τ , and an admissibility condition Ψ.

Definition 2.3.26 (Agent-context). Given a context γ and joint protocol P , we can combine
them in an agent-context χ = (γ, P ).

Definition 2.3.27 (Consistency). For a context γ = (Pǫ, G (0), τ , Ψ) and a joint protocol
P , we define the set of runs weakly consistent with P in γ (or weakly consistent with
χ = (γ, P )), denoted Rwχ = Rw(γ,P ), to be the set of τPǫ,P -transitional runs that start at some
global initial state from G (0):

Rw(γ,P ) := {r ∈ R | r (0) ∈ G (0) and (∀t ∈ N) r (t + 1) ∈ τPǫ,P (r (t)) } (2.74)

A run r is called strongly consistent, or simply consistent, with P in γ (or with χ) if it is
weakly consistent with P in γ and, additionally, satisfies the admissibility condition: r ∈ Ψ.
We denote the system of all runs consistent with P in γ by

R(γ,P ) := Rw(γ,P ) ∩ Ψ. (2.75)
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2. The Byzantine Message-Passing Framework [KPS+19a]

We say that an agent-context χ = (γ, P ) is non-excluding if any prefix of a run weakly
consistent with P in γ can be extended to a run strongly consistent with P in γ.

Definition 2.3.28 (Non-excluding agent-context). For an agent-context χ, χ is non-excluding
iff

Rχ 6= ∅ and (∀r ∈ Rwχ)(∀t ∈ N)(∃r′ ∈ Rχ)(∀t′ ≤ t) r′ (t′) = r
(
t′)

The full formalism will be introduced in Sect. 2.4.

A local state of a run is called coherent if the agent could have arrived at the same local state
without exhibiting any Byzantine behavior.

Definition 2.3.29 (Coherence). For an agent-context χ, a run r ∈ Rχ, and a node (i, t) ∈
A × N, we say the local state ri (t) is χ-coherent with respect to i, or simply coherent
with respect to i, iff

(∃r′ ∈ Rχ)(∃t′ ∈ N)
(
r′

i(t
′) = ri(t) and i /∈ A

(
Failed

(
r′, t′))).

Definition 2.3.30 (Failure free). For an agent-context χ, a run r ∈ Rχ, and a node (i, t) ∈
A × N, we say the local state ri (t) is χ-failure free with respect to i, or simply failure
free with respect to i, iff

(∃r′ ∈ Rχ)(∃t′ ∈ N)
(
r′

i(t
′) = ri(t) and A

(
Failed

(
r′, t′)) = ∅

)
.

2.4 Syntax and Semantics

We define a formal language and its semantics in order to express knowledge of an agent
in distributed systems. We will be using the standard adaptation of Kripke models to the
run-based environment. Kripke models are based on abstract worlds or states supplied with
the indistinguishability relations for the agents. For a collection of runs, it is quite natural
to consider states to be various global states achievable during these runs and define the
indistinguishability relation for an agent based on its knowledge of the local state: global
states are indistinguishable for agent i ∈ A if and only if i’s local state in these states is the
same (i.e., the states are exactly the same from the point of view of agent i).

For multiple reasons, we consider the general set up in the form of agent-context to be common
knowledge among agents. In other words, for an agent-context χ, the only possibilities agents
consider are global states from various runs from Rχ. For instance, a synchronous agent who
determined that it had skipped a round should conclude that it is compromised rather than
imagining itself in an asynchronous context. By the same token, the same local state should
give rise to different epistemic states depending on the type of distributed system. This is the
reason why the Consensus problem with Byzantine failures can be solved in the synchronous
context but not in the asynchronous one.

Definition 2.4.1 (Atomic propositions). We consider an infinitely countable set Π of atomic
propositions.

Definition 2.4.2 (Interpretation function). An interpretation function π : G → {⊥, ⊤}Π

assigns, for a given global state h ∈ G , a propositional valuation function π(h) : Π → {⊥, ⊤}.
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2.4. Syntax and Semantics

Hence, for a global state h ∈ G the truth value π (h) (p) of an atomic proposition p ∈ Π is
either ⊥ (false) or ⊤ (true).

Definition 2.4.3 (Interpreted system). A set R′ ⊂ R of runs and an interpretation function
π yield an interpreted system I = (R′, π). For an agent-context χ = (γ, P ), an interpreted
system (R′, π) is called weakly χ-based if R′ = Rw(χ) and χ-based if R′ = Rχ.

Definition 2.4.4 (Indistinguishability relation). For agent i ∈ A = J1; nK, the indistin-
guishability relation ∼i⊂ G 2 is formally defined as follows:

∼i:=
{
(h, h′) | πi+1h = πi+1h′} (2.76)

In other words, agent i cannot distinguish between global histories h = (hǫ, h1, . . . , hn) and
h′ = (h′

ǫ, h′
1, . . . , h′

n) iff hi = h′
i, i.e., i sees exactly the same local history at h and h′.

Remark 2.4.5. Generally, for a particular R′, the interpretation functions π and the indis-
tinguishability relation ∼i are also defined for global states only appearing in the runs from
R \ R′. This creates no problems but makes the formalism simpler.

We define a language L to deal with the expression of knowledge in a system. For this we
extend the propositional logic with the following operators:

1. three modal operators:

• Ki for each agent i ∈ A. For a global state h = (hǫ, h1, . . . , hn) ∈ G , the formula
Kiϕ can be read as “agent i knows ϕ (based on its local state hi)”: this means
that, in every global state indistinguishable from h for i, the proposition ϕ holds;

• EG for each group G ⊂ A of agents. It means that “everyone in the group G of
agents knows ϕ (based on their respective local states).” EG is naturally defined
to be the conjunction of all operators Ki over i ∈ G. We generally assume G 6= ∅

unless stated otherwise;

• CG for each group G ⊂ A of agents. It means that “ϕ is common knowledge among
the agents of G,” i.e., everyone in G knows that everyone in G knows . . . that
everyone in G knows ϕ. We generally assume G 6= ∅ unless stated otherwise;

2. one temporal operator:

• � is the “always in the future” operator. It expresses statements like “the sender
will never forget that he has sent Hello.”12

Definition 2.4.6. For an agent i ∈ A, a group of agents ∅ 6= G ⊂ A and an atomic
proposition p ∈ Π, the language L is generated by the following BNF specification

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | CGϕ | �ϕ | Y ϕ

12In temporal logic, this operator is usually denoted G.
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2. The Byzantine Message-Passing Framework [KPS+19a]

We define the remaining Boolean connectives such as ∨, →, and ↔ in the standard way.13

Mutual knowledge EG and iterated mutual knowledge Em
G are defined by

EGϕ :=
∧

i∈G

Kiϕ E0
Gϕ := ϕ En+1

G ϕ := EGEn
Gϕ

In addition, each modal operator ♥ has its dual ¬♥¬. The duals of epistemic operators are
denoted by puttingˆover the operator, e.g., K̂iϕ = ¬Ki¬ϕ. The dual of � is traditionally
denoted by ♦.14 Note that E1

Gϕ = EGϕ is syntactically the same formula.

To simplify the definition of truth, we define the following binary relations on the set of global
states, using the standard notion of relation composition for binary relations ⋆ and ∗:

⋆ ◦ ∗ :=
{
(x, z) | (∃y)

(
x ⋆ y ∧ y ∗ z

)}

Definition 2.4.7. Other binary relations on G are defined as follows:

∼G :=
⋃

i∈G

∼i, ∼0
G := {(h, h) | h ∈ G },

∼m
G := ∼G ◦ · · · ◦ ∼G︸ ︷︷ ︸

m

(for m > 1), ∼C
G :=

∞⋃

m=1

∼m
G

With the language L we can express statements about the knowledge of an agent (or of a
group of agents) or about the temporal properties of a formula. The semantics with respect
to interpreted systems is as follows:

Definition 2.4.8. For an interpreted system I = (R′, π) with the set R′ ⊂ R of runs and the
interpretation function π, for an agent i ∈ A, a group of agents ∅ 6= G ⊂ A, a run r ∈ R′,
and a timestamp t ∈ N:

(I, r, t) |= p iff π(r(t))(p) = ⊤

(I, r, t) |= ¬ϕ iff (I, r, t) 6|= ϕ

(I, r, t) |= ϕ ∧ ϕ′ iff (I, r, t) |= ϕ and (I, r, t) |= ϕ′

(I, r, t) |= Kiϕ iff (∀r′ ∈ R′)(∀t′ ∈ N)
(
r′(t′) ∼i r(t) ⇒ (I, r′, t′) |= ϕ

)

(I, r, t) |= CGϕ iff (∀r′ ∈ R′)(∀t′ ∈ N)
(
r′(t′) ∼C

G r(t) ⇒ (I, r′, t′) |= ϕ
)

(I, r, t) |= �ϕ iff (∀t′ ≥ t) (I, r, t′) |= ϕ

(I, r, t) |= Y ϕ iff (t > 0) and (I, r, t − 1) |= ϕ

Note that the “yesterday” modality satisfies (I, r, 0) 6|= Y ϕ for any ϕ.

13We also use the common ranking of binding strength: ¬ and Y are the strongest, then ∨ and ∧ which
bind equally strong, then →, and the weakest is ↔.

14In temporal logic, it is usually denoted F .
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2.5. Atomic Propositions

It immediately follows from the definition, based on the meaning of the secondary connectives,
that

(I, r, t) |= ϕ ∨ ϕ′ iff (I, r, t) |= ϕ or (I, r, t) |= ϕ′

(I, r, t) |= ϕ → ϕ′ iff (I, r, t) 6|= ϕ or (I, r, t) |= ϕ′

(I, r, t) |= EGϕ iff (∀r′ ∈ R′)(∀t′ ∈ N)
(
r′(t′) ∼G r(t) ⇒ (I, r′, t′) |= ϕ

)

iff (∀r′ ∈ R′)(∀t′ ∈ N)(∀i ∈ G)
(
r′(t′) ∼i r(t) ⇒ (I, r′, t′) |= ϕ

)

(I, r, t) |= E0
Gϕ iff (I, r, t) |= ϕ

(I, r, t) |= Em
G ϕ iff (∀r′ ∈ R′)(∀t′ ∈ N)

(
r′(t′) ∼m

G r(t) ⇒ (I, r′, t′) |= ϕ
)

iff (∀r0, . . . , rm ∈ R′)(∀t0, . . . , tm ∈ N)
(
r0 = r ∧ t0 = t∧

(∀k < m)(∃ik ∈ G)rk(tk) ∼ik
rk+1(tk+1) ⇒ (I, rm, tm) |= ϕ

)

(I, r, t) |= CGϕ iff (∀m ∈ N \ {0})(I, r, t) |= Em
G ϕ

iff (∀m ∈ N \ {0})(∀r0, . . . , rm ∈ R′)(∀t0, . . . , tm ∈ N)
(
r0 = r ∧ t0 = t∧

(∀k < m)(∃ik ∈ G)rk(tk) ∼ik
rk+1(tk+1) ⇒ (I, rm, tm) |= ϕ

)

(I, r, t) |= ♦ϕ iff (∃t′ ≥ t) (I, r, t′) |= ϕ

It is also easy to see that truth is defined with respect to global histories rather than points in
a run, i.e., for any formula ϕ, we have

r(t) = r′(t) ⇒ (∀ϕ ∈ L)
(
(I, r, t) |= ϕ ⇔ (I, r′, t′) |= ϕ

)

even though r(t + 1) may differ from r′(t + 1). (Note that r(t) 6= r′(t′) for any t 6= t′ because
the length of the environment’s history is a function of time.)

2.5 Atomic Propositions

We have defined the language L as the syntax and the associated semantics to tell the truth
value of a formula for a given interpreted system I, run r ∈ R and timestamp t′ ∈ N. We
now designate some of the atomic propositions from Π as special and consider their truth
values to be fully determined by r(t′) rather than arbitrary. In other words, we will restrict
interpretations π so as to adhere to the following intended meanings for a given r(t′) with t ≤ t′

and i ∈ A. We also introduce useful abbreviations for negations of some atomic propositions.

• correct(i,t) states that by timestamp t ∈ N, i.e., in rounds 0.5, 1.5, . . . , (t − 1).5, agent
i ∈ A did not violate its protocol through improper action or improper inaction, i.e.,
did not exhibit any Byzantine actions or events and was not marked with sleep (i) or
hibernate (i) from timestamp 0 to timestamp t.

• correcti states that by the time of evaluation (t′ ∈ N, i.e., in rounds 0.5, 1.5, . . . , (t′ −1).5)
agent i ∈ A did not violate its protocol through improper action or improper inaction.
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2. The Byzantine Message-Passing Framework [KPS+19a]

• faulty(i,t) := ¬correct(i,t) states that by timestamp t ∈ N agent i ∈ A violated its
protocol through improper action or improper inaction.

• faultyi := ¬correcti states that by the time of evaluation agent i ∈ A violated its
protocol through improper action or improper inaction.

• fake(i,t) (o) states that agent i ∈ A thinks that o ∈ Actions ⊔ Events occurred in round

(t−1).5 but thinks so for a wrong reason, i.e., o ∈ σ
(
βt−1

bi
(r)
)
. Note that in the Byzantine

setting, if o is an action, it is still possible that agent i did perform o in round (t−1).5 but
mistook it for another action o′′, while at the same time mistaking some third action o′

for o, e.g., when fake (i, O′ 7→ O), fake (i, O 7→ O′′) ∈ βt−1
bi

(r). It is also possible that

action o was performed according to the protocol, e.g., when fake (i, O′ 7→ O) ∈ βt−1
bi

(r)

and O ∈ βt−1
i (r).

• occurred(i,t)(o) states that agent i thinks that o ∈ Actions ⊔ Events occurred in round

(t − 1).5 for a right reason, i.e., o ∈ label−1
(
βt−1

i (r) ⊔ β
t−1
ǫi

(r)
)
. Note that in the

Byzantine setting, if o is an action, it is possible that agent i has both a right and a
wrong reason to believe it performed o in round (t − 1).5, e.g., when both O ∈ βt−1

i (r)
and fake (i, O′ 7→ O) ∈ βt−1

bi
(r). In this case, agent i unwittingly piggybacks O′ onto the

action O. For instance, one might accidentally throw away a postcard with an unwanted
catalog, or a ticket-vending machine might accidentally print two tickets instead of one.

• occurredi(o) states that by the time t′ of evaluation, agent i correctly registered o ∈

Actions⊔Events occurring in some previous round, i.e., (∃t < t′) o ∈ label−1
(
βt

i (r) ⊔ β
t
ǫi

(r)
)
.

• occurredi(o) states that by the time of evaluation agent i believes that o ∈ Actions ⊔
Events occurred.

We now give formal definitions and discuss properties of these atomic propositions.

Definition 2.5.1. A (weakly) χ-based interpreted system I = (R′, π) and its interpretation
π are called proper if, for any run r ∈ R′, any agent i ∈ A, arbitrary two timestamps t ≤ t′,
and any o ∈ Actions ⊔ Events , the interpretation π satisfies the following properties:

π
(
r
(
t′)) (correct(i,t)

)
= ⊤ iff (i, t) /∈ Failed

(
r, t′) (2.77)

π
(
r
(
t′)) (correcti) = ⊤ iff (i, t′) /∈ Failed

(
r, t′) (2.78)

π
(
r
(
t′)) (fake(i,t) (o)

)
= ⊤ iff t ≥ 1 and o ∈ σ

(
βt−1

bi
(r)
)

(2.79)

π
(
r
(
t′)) (occurred(i,t)(o)

)
= ⊤ iff t ≥ 1 and o ∈ label−1

(
βt−1

i (r) ⊔ β
t−1
ǫi

(r)
)

(2.80)

π
(
r
(
t′)) (occurredi(o)

)
= ⊤ iff (∃t < t′) o ∈ label−1

(
βt

i (r) ⊔ β
t
ǫi

(r)
)

(2.81)

π
(
r
(
t′)) (occurredi(o)) = ⊤ iff o ∈ ri

(
t′) (2.82)
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2.5. Atomic Propositions

Proposition 2.5.2. The following truth values coincide in all weakly (strongly) χ-interpreted
systems:15

π
(
r
(
t′)) (correcti) = π

(
r
(
t′)) (correct(i,t′)

)

(I, r, t′) |= faultyi ⇔ (I, r, t′) |= faulty(i,t′)

(I, r, t′) |= faulty(i,t) ⇔ (i, t) ∈ Failed
(
r, t′)

(I, r, t′) |= faultyi ⇔ (i, t′) ∈ Failed
(
r, t′)

π
(
r
(
t′)) (occurredi(o)

)
=

t′∨

t=1

π
(
r
(
t′)) (occurred(i,t)(o)

)

π
(
r
(
t′)) (occurredi(o)) =

t′∨

t=1

(
π
(
r
(
t′)) (occurred(i,t)(o)

)
∨ π

(
r
(
t′)) (fake(i,t) (o)

))

Remark 2.5.3. Although these atomic propositions are objective properties, which are
typically imperceptible for agents, some of them are formulated for locally representated
actions/events o because they represent objective properties of agents’ subjective views.

Note that no conditions are postulated for such atomic propositions if t > t′. This is due to
the fact that π is defined on finite global histories rather than on infinite runs. The global
history r (t′) at timestamp t′ contains no information about later timestamps t > t′. Indeed,
there generally exist multiple τPǫ,P -transitional runs extending the global history r (t′), due
to the non-deterministic capabilities of the adversary. Since the run r cannot be singled out
based on r (t′) only, only the features of r already present in r (t′) can be relied upon.

Note also that, using (2.60)–(2.63), we could have easily given the same definitions in terms of
global histories h rather than considering them as prefixes r (t′) of a transitional run r. The
latter is simply what we are interested in.

Remark 2.5.4. Agents can only record their own actions and events: if an agent believes
something happened, it could happen to this agent in principle.

π
(
r
(
t′)) (fake(i,t) (o)

)
= ⊤ implies o ∈ Actionsi ⊔ Eventsi

π
(
r
(
t′)) (occurred(i,t)(o)

)
= ⊤ implies o ∈ Actionsi ⊔ Eventsi

π
(
r
(
t′)) (occurredi(o)

)
= ⊤ implies o ∈ Actionsi ⊔ Eventsi

π
(
r
(
t′)) (occurredi(o)) = ⊤ implies o ∈ Actionsi ⊔ Eventsi

The omniscient environment does not forget. Note that this is independent of whether agents
have perfect recall because βi (h) is defined in (2.60) based on the environment’s history.

Lemma 2.5.5. Consider an agent-context χ, a proper (weakly) χ-based interpreted system
I = (R′, π), some o ∈ Actions ⊔Events, a run r ∈ R′, a node θ = (i, t) ∈ A × N, a timestamp

15⊤ ∨ ⊤ = ⊤ ∨ ⊥ = ⊥ ∨ ⊤ = ⊤ and ⊥ ∨ ⊥ = ⊥.
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2. The Byzantine Message-Passing Framework [KPS+19a]

t′ ≥ t, and:

(I , r, t′) |= correctθ ↔ �correctθ

(I , r, t′) |= faultyθ ↔ �faultyθ

(I , r, t′) |= fakeθ (o) ↔ �fakeθ (o)

(I , r, t′) |= occurredθ(o) ↔ �occurredθ(o)

(I , r, t′) |= faultyi ↔ �faultyi

(I , r, t′) |= occurredi(o) ↔ �occurredi(o)

(I , r, t′) |= occurredi(o) ↔ �occurredi(o)

Proof. The direction from right to left is trivial in all cases because t′ ≥ t′, hence being true
at t′ is part of being true in all futures of t′.

From left to right, for the first four statements, the truth is based on a particular event/action,
correct or Byzantine, occurring in the global run at round (t − 1).5, at a specific past of t′,
whereas for the remaining three equivalences something must have happened at an unspecified
past of t′. Since all futures of t′ lie to the future of this event/action and the round enumeration
remains stable, the requisite event remains in the global run.

Remark 2.5.6. Note that, unlike the atomic propositions from Lemma 2.5.5, atoms correcti

are based on certain kinds of events/actions not having occurred yet. Thus, they may not be
preserved temporally.

Further, the first four equivalences from Lemma 2.5.5 are not universal validities as they rely
on t′ ≥ t. Indeed, for t > t′ the truth value of these atoms is not restricted, in particular, it
does not depend on the run and can change arbitrarily with time.

Agents cannot both observe an event and be mistaken about observing it. More formally,

Lemma 2.5.7. Consider a context γ = (Pǫ, G (0), τ , Ψ), a proper weakly (strongly) χ-based
interpreted system I = (R′, π), an agent-context χ = (γ, P ), an event e ∈ Events, a run
r ∈ R′, a node θ = (i, t) ∈ A × N, and a timestamp t′ ≥ t:

• (I , r, t′) |= occurredθ(e) → ¬fakeθ (e)

• (I , r, t′) |= fakeθ (e) → ¬occurredθ(e)

Proof. To prove the first implication, assume (I , r, t′) |= occurredθ(e). By the definition of

properness, this means that e ∈ label−1
(
βt−1

i (r) ⊔ β
t−1
ǫi

(r)
)
. Since e is an event, the only

option is e ∈ label−1
(
β

t−1
ǫi

(r)
)
, i.e., there must exist E ∈ β

t−1
ǫi

(r) ⊂ βt−1
ǫ (r) such that

e = label−1 (E). Our goal is to show that e /∈ σ
(
βt−1

bi
(r)
)
. The situation splits into two cases:

Case I: e ∈ Exti is an external event. Then E = external (i, e). By the (t − 1)-coherence of

βt−1
ǫ (r) ⊃ βt−1

bi
(r) we have fake (i, external (i, e)) /∈ βt−1

bi
(r). Hence, e /∈ σ

(
βt−1

bi
(r)
)
.
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2.5. Atomic Propositions

Case II: e = recv(j, µ) is a message delivery. Then E = grecv(i, j, µ, id) for some id ∈ N (this
id cannot be entirely arbitrary but this is irrelevant for the proof). By the (t − 1)-coherence
of βt−1

ǫ (r) ⊃ βt−1
bi

(r) we have fake (i, grecv(i, j, µ, id′)) /∈ βt−1
bi

(r) for any id′ ∈ N. Hence,

e /∈ σ
(
βt−1

bi
(r)
)
.

We have demonstrated that (I , r, t′) |= occurredθ(e) → ¬fakeθ (e). Now the second implication
(I , r, t′) |= fakeθ (e) → ¬occurredθ(e) follows by contraposition.

Remark 2.5.8. Needless to say, the absence of a correct (Byzantine) occurrence does not
mean that there was a Byzantine (correct) one.

Remark 2.5.9. The same statement does not apply to actions a. For instance, the correct in-
ternal action internal (i, a) is generally compatible with a Byzantine action fake (i, A′ 7→ internal (i, a))
the agent mistakes for a.

Using these atomic propositions with fixed evaluations, we can define derived concepts with
similarly fixed meanings. For instance, the absolute occurrence represents information
about local actions and events accessible only for the environment.

Definition 2.5.10 (Absolute occurrence). Consider any integer k ≥ 1 and any o ∈ Actions ⊔
Events ,

occurred
(k)

(o) :=
∨

S ⊂ A
|S| = k

∧

i∈S

occurredi(o) (2.83)

occurred (o) := occurred
(1)

(o) (2.84)

We now define several notions related to relative occurrence occurred(i,t)(o) that represents
agents’ information about the same events:

Definition 2.5.11 (Relative occurrence). Consider any agent i ∈ A, any timestamp t ∈ N,
and any integer k ≥ 1. For any o ∈ Actions ⊔ Events ,

occurred(i,t)(o) := occurred(i,t)(o) ∨ fake(i,t) (o) (2.85)

occurred(k)(o) :=
∨

S ⊂ A
|S| = k

∧

i∈S

occurredi(o) (2.86)

occurred (o) := occurred(1)(o) (2.87)

Informally speaking,

• occurred (o) says that some non-Byzantine version of o happened for at least one agent;

• occurred
(k)

(o) says that some non-Byzantine versions of o happened for at least k distinct
agents.

• occurred(i,t)(o) says that some version of event/action o was entered into agent i’s history
at local timestamp (i, t), i.e., during round (t − 1).5;

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2. The Byzantine Message-Passing Framework [KPS+19a]

• occurred (o) says that at least one agent believes some version of o happened;

• occurred(k)(o) says that at least k distinct agents believe some versions of o happened.

In all the three last cases agents are not aware of whether o was correct or Byzantine, and
whether it really happened or they imagine it did; in the case of k agents, a mixture of correct
and Byzantine entries also satisfies the conditions.

Remark 2.5.12. Note that occurred(k)(o) (resp occurred
(k)

(o)) requires the existence of some

k distinct agents. In particular, in order to fulfill Kioccurred(k)(o) (resp. Kioccurred
(k)

(o)), it
is not necessary that the same k agents observe o in all global states i considers possible. It is
sufficient that in each such possible state, there be a group of k agents who have observed o.

The following is a direct corollary of Lemma 2.5.5.

Remark 2.5.13. Consider an agent-context χ, a proper weakly (strongly) χ-based interpreted
system I = (R′, π), some o ∈ Actions ⊔ Events , a run r ∈ R′, a node θ = (i, t) ∈ A × N, and
a timestamp t′ ≥ t,

(I , r, t′) |= occurred (o) ↔ �occurred (o)

(I , r, t′) |= occurred
(k)

(o) ↔ �occurred
(k)

(o)

(I , r, t′) |= occurred(i,t)(o) ↔ �occurred(i,t)(o)

(I , r, t′) |= occurred (o) ↔ �occurred (o)

(I , r, t′) |= occurred(k)(o) ↔ �occurred(k)(o)

Lemma 2.5.14. Consider a context γ = (Pǫ, G (0), τ , Ψ), an agent-context χ = (γ, P ), a
proper weakly (strongly) χ-based interpreted system I = (R′, π), some o ∈ Actions ⊔ Events, a
run r ∈ R′, a node (i, t) ∈ A × N, and a timestamp t′ ≥ t.

(I , r, t′) |= occurred(i,t)(o) iff t ≥ 1 and (∃λ)
(
ri (t) = λ : ri (t − 1) and o ∈ λ

)

Proof. First we prove the direction from left to right. Assume (I , r, t′) |= occurred(i,t)(o),
which, according to Def. 2.5.11, means

(I , r, t′) |= occurred(i,t)(o) ∨ fake(i,t) (o)

It is clear that t ≥ 1.

Case I: (I , r, t′) |= occurred(i,t)(o). Then o ∈ label−1
(
βt−1

i (r) ⊔ β
t−1
ǫi

(r)
)
. Thus, o = label−1 (O)

for some O ∈ βt−1
i (r)⊔β

t−1
ǫi

(r) ⊂
(
βt−1

i (r) ⊔ βt−1
ǫi

(r)
)

∩
(
GActions ⊔ GEvents

)
. Additionally,

by Prop. 2.2.25, if O is an action from βt−1
i (r), then by Prop. 2.2.25,

aware(i, βt−1
ǫ (r)). (2.88)

So by (2.57), definition (2.39) of updatei, and definition (2.32) of σ we conclude that ri(t) =
λ : ri(t − 1) and o = label−1 (O) ∈ λ.
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2.5. Atomic Propositions

Case II: (I , r, t′) |= fake(i,t) (o). Then o ∈ σ
(
βt−1

bi
(r)
)
. It remains to note that σ

(
βt−1

bi
(r)
)

6=

∅ implies that

σ
(
βt−1

ǫi
(r)
)

6= ∅ (2.89)

and ri(t) = λ : ri(t − 1). Once again, the definition (2.39) of updatei implies o ∈ λ.

We proved that in either case ri (t) = λ : ri (t − 1) and o ∈ λ.

Now we demonstrate the opposite direction from right to left. Assume ri (t) = λ : ri (t − 1)
and o ∈ λ. By definition (2.39) of updatei it means that either (2.88) or (2.89) holds.

Case I: o ∈ label−1
(
βt−1

i (r) ⊔ β
t−1
ǫi

(r)
)
. We have (I , r, t′) |= occurred(i,t)(o), and, hence,

(I , r, t′) |= occurred(i,t)(o).

Case II: o ∈ σ
(
βt−1

bi
(r)
)
. We have (I , r, t′) |= fake(i,t) (o), and, hence, (I , r, t′) |= occurred(i,t)(o)

We proved that in either case (I , r, t′) |= occurred(i,t)(o).

Lemma 2.5.15. Consider a context γ = (Pǫ, G (0), τ , Ψ), an agent-context χ = (γ, P ), a
proper weakly (strongly) χ-based interpreted system I = (R′, π), some o ∈ Actions ⊔ Events, a
run r ∈ R′, an agent i ∈ A, and a timestamp t ∈ N.

(I , r, t) |= occurredi(o) ↔ Kioccurredi(o)

(I , r, t) |= ¬occurredi(o) ↔ Ki¬occurredi(o)

Proof. The directions from right to left are trivial because the indistinguishability relation ∼i

is reflexive. We prove the direction from left to right for the case of (I , r, t) |= occurredi(o) as
the other statement is completely analogous. For any (r′, t′) ∈ R′ × N such that r (t) ∼i r′ (t′),
i.e., ri(t) = r′

i (t′), we have

(I , r, t) |= occurredi(o) ⇐⇒ o ∈ ri (t) ⇐⇒ o ∈ r′
i

(
t′) ⇐⇒ (I , r′, t′) |= occurredi(o)

Formulas occurredi(o) and occurredi(o) represent events occurring in the system. As shown
in Lemma 2.5.15, the former event is detectable by agent i and, hence, can be used by its
protocol, whereas the latter may not be detectable by any agents but is fully determined
by the global state, i.e., “detectable” by the environment. Following [FHMV99], we define
conditions under which formulas can be treated as events:

Definition 2.5.16. A formula ϕ is called an i-internal event (within an agent-context
χ) iff

ri(t) = r′
i(t

′) =⇒
(
(I , r, t) |= ϕ ⇐⇒ (I , r′, t′) |= ϕ

)

for all χ-based interpreted systems I = (R′, π), arbitrary runs r, r′ ∈ R′, and arbitrary
timestamps t, t′ ∈ N.

A formula ϕ is called a state event (within an agent-context χ) iff

r(t) = r′(t) =⇒
(
(I , r, t) |= ϕ ⇐⇒ (I , r′, t) |= ϕ

)
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2. The Byzantine Message-Passing Framework [KPS+19a]

for all χ-based interpreted systems I = (R′, π), arbitrary runs r, r′ ∈ R′, and any timestamp
t ∈ N.

Lemma 2.5.17. For any i-internal event ϕ within an agent context χ and any χ-based
interpreted system I = (R′, π), any run r ∈ R′, and any timestamp t ∈ N.,

(I , r, t) |= ϕ ↔ Kiϕ,

(I , r, t) |= ¬ϕ ↔ Ki¬ϕ,

2.6 Fully Byzantine Asynchronous Agents

In the previous sections, we defined the general framework using transition templates and
introduced the Byzantine transition template. It covers a wide range of settings, from crash
failures to fully Byzantine agents and represents asynchronous agents with no additional
requirements on communication.

However, no task can be guaranteed if agents are never allowed to act. Thus, it is standard
to impose the Fair Schedule (FS) admissibility condition, which ensures that each correct
agent will eventually be given a possibility to follow its protocol.

Definition 2.6.1 (Fair schedule).

FS =
{

r ∈ R |
(
∀(i, t) ∈ A × N

)
(∃t′ ≥ t) βt′

gi
(r) 6= ∅

}
.

Remark 2.6.2. The condition βt′

gi
(r) 6= ∅ is equivalent to demanding that eventually go(i),

sleep (i), or hibernate (i) be present in βt′

ǫi
(r). In other words, the FS admissibility condition

demands that the environment either provide CPU time or wrongfully deny CPU time for
every processor infinitely many times. This means that correct processes will be treated
fairly, i.e., would always be given an opportunity to act, whereas faulty processes can stop
their by-the-protocol actions from some point onward. Note, however, that for this to
happen, the environment still has to deal with this agent acting infinitely often, via sleep (i)
and/or hibernate (i) commands. In other words, an agent malfunctioning only due to wrong
actions/events would still be regularly fulfilling its protocol.16 Avoiding the protocol altogether
constitutes a separate type of malfunction.

Thus, allowing all agents to go rogue may also result in the complete crash failure of the whole
system, which would preclude any guarantees of fulfilling the goal(s) of the joint protocol. It
is, therefore, common to restrict the maximal number f of agents that can become Byzantine.

In preventing the environment from failing too many agents within a round, several options
are a priori possible. The most general manifestation of this problem is when f − k agents
are already faulty and the environment’s protocol attempts to fail k + l + 1 more agents for
some k, l ≥ 0. In the situation when k is positive, i.e., some but not all agents can still be
failed, the choices are

16This might appear to be a restriction artificially making agents perform actions. However, an agent that
can stay in standby indefinitely would simply have the empty set of actions as an option in its protocol.
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2.6. Fully Byzantine Asynchronous Agents

1. to fail as many agents as possible, i.e., to fail some k of the proposed k + l + 1 agents
but filter out Byzantine events for the other l + 1 agents;

2. to fail nobody, i.e., to filter all Byzantine events while keeping all correct events intact;

3. to filter all events, Byzantine or correct alike.

We find that the first option is too arbitrary as it requires to randomly choose which l + 1
agents from k + l + 1 are to stay correct. The third option, on the contrary, is too invasive.
Given the general postulate that, unlike agents, the environment is not acting according to
any plan, it is more natural to consider each event attempted by the environment in isolation,
much like the inability to receive an unsent message does not preclude the environment from
implementing other events.

Thus, we choose the second option and implement it by adding an additional function filter≤f
ǫ

for the environment.

Definition 2.6.3 (Filtering for at most f Byzantine agents). For a set Xǫ ⊂ GEvents and
agent i ∈ A, we abbreviate

XB
ǫi

:= Xǫ ∩
(
BEventsi ⊔ {sleep (i), hibernate (i)}

)
(2.90)

and define

filter≤f
ǫ (h, Xǫ, X1, . . . , Xn) :=





Xǫ if
∣∣∣A(Failed (h)) ∪

{
i | XB

ǫi
6= ∅

}∣∣∣ ≤ f

Xǫ \
⋃

i∈A
XB

ǫi
otherwise,

(2.91)
which removes all Byzantine commands from Xǫ whenever they would have led to creating
more than f faulty agents.

Remark 2.6.4. It might seem that the filters filter≤f
ǫ and filterB

ǫ are completely independent,
i.e., they can be applied in any order. After all, by (2.91) one of them only removes Byzantine
events, while by (2.24) the other only removes grecv events, which are correct. Unfortunately,
this is not entirely accurate. It is possible that a grecv command is not filtered by filterB

ǫ

based on a Byzantine send from the same round. If filter≤f
ǫ is applied after that and happens

to filter this fake send out, the receipt of the message becomes causally problematic. Thus,
the only correct order of applying these two filters is

filterB
ǫ

(
h, filter≤f

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
.

Definition 2.6.5. Given filters filterZ1
ǫ and filterZ2

ǫ we write

filterZ2◦Z1
ǫ (h, Xǫ, X1, . . . , Xn) := filterZ2

ǫ

(
h, filterZ1

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
.

(2.92)

We also simplify this notation for the combination of the Byzantine and at most f faults filters

filter
Bf
ǫ (h, Xǫ, X1, . . . , Xn) := filterB◦≤f

ǫ (h, Xǫ, X1, . . . , Xn) . (2.93)
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2. The Byzantine Message-Passing Framework [KPS+19a]

Remark 2.6.6. Unlike FS, the upper bound on Byzantine agents cannot be formulated as
an admissibility condition if agent-contexts are to be non-excluding. Indeed, a run without
such an admissibility condition imposed may incur > f Byzantine agents already in a finite
prefix, in which case it would be impossible to extend such a prefix to a run satisfying the
upper bound.

This is a typical example of separation between properties determined by a finite prefix of a run
(safety properties) on the one hand and properties of the run as a whole (liveness properties)
on the other hand. The non-exclusion requirement precludes the former from being imposed
via admissibility conditions, which are non-constructive and, hence, should only be used as
the last resort.

Definition 2.6.7 (f -Byzantine transition template). For a bound f ≥ 0, the f-Byzantine
transition template τBf is obtained by replacing filterB

ǫ in the definition of τB with

filter
Bf
ǫ .

Definition 2.6.8 (f -Byzantine agent-context). For a bound f ≥ 0, we call an agent-context

χ =
(
(Pǫ, G (0), τBf , FS), P

)
(2.94)

f-Byzantine when it is based on the transition template τBf and has the admissibility
condition FS .

Remark 2.6.9. It is easy to see that for f ≥ |A|, we have filter
Bf
ǫ = filterB

ǫ . Indeed, if
all agents can become Byzantine simultaneously, the need to restrict their number never
materializes. Hence, we generally assume that f ≤ |A|. The case of f = |A| is useful for

uniform statements about both filter
Bf
ǫ and filterB

ǫ .

Lemma 2.6.10. If the set

{t | (∃Xǫ ∈ Pǫ (t)) go(i) ∈ Xǫ} (2.95)

is infinite for each i ∈ A, then the f-Byzantine agent-context (2.94) is non-excluding.

Proof. In order to extend a given finite prefix of a weakly χ-consistent run to a consistent
one, it is sufficient to make βt

gi
(r) non-empty infinitely many times. Since the filter function

filter
Bf
ǫ never removes go(i), it is sufficient that αt

gi
(r) contain it infinitely many times, which

can be achieved in the rest of the run by the adversary if (∃Xǫ ∈ Pǫ (t)) go(i) ∈ Xǫ holds for
infinitely many t’s.

Remark 2.6.11. Note that, despite its name, a non-excluding f -Byzantine agent-context χ
provides neither a guarantee that Byzantine events will happen in a particular run nor, indeed,
that they can happen in a transitional run at all. Thus, our model can represent both correct
runs and infallible systems. Indeed, Byzantine events will not occur in a run if the adversary
part of the environment never chooses them. But it chooses them out of the possibilities
afforded by the environment’s protocol Pǫ. If Pǫ contains no Byzantine events, the adversary
is powerless to effect them.

Lemma 2.6.12. filter
Bf
ǫ ⊂ filterB

ǫ .
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2.6. Fully Byzantine Asynchronous Agents

Proof. If E ∈ GEvents is any event other than a correct receive, then

E ∈ filter
Bf
ǫ (h, Xǫ, X1, . . . , Xn) ⇒ E ∈ Xǫ ⇒

E ∈ filterB
ǫ (h, Xǫ, X1, . . . , Xn) .

by (2.54) and the fact that filterB
ǫ only removes correct receives. If

E = grecv(i, j, µ, id) ∈ filter
Bf
ǫ (h, Xǫ, X1, . . . , Xn) =

filterB
ǫ

(
h, filter≤f

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)

then grecv(i, j, µ, id) ∈ filter≤f
ǫ (h, Xǫ, X1, . . . , Xn) ⊂ Xǫ and for it to remain, one of the

following options must be fulfilled

• gsend(j, i, µ, id) ∈ hǫ or fake (j, gsend(j, i, µ, id) 7→ A) ∈ hǫ for some A ∈ {Â}⊔GActionsj .

• gsend(j, i, µ, id) ∈ Xj and go(j) ∈ filter≤f
ǫ (h, Xǫ, X1, . . . , Xn) ⊂ Xǫ.

• fake (j, gsend(j, i, µ, id) 7→ A) ∈ filter≤f
ǫ (h, Xǫ, X1, . . . , Xn) = Xǫ for some A ∈ {Â}⊔

GActionsj (the equality in this case follows from the fact that there are Byzantine events
left after the filtering).

In each of the options, the same reasoning applies to filterB
ǫ (h, Xǫ, X1, . . . , Xn) equally well

because the same h and Xj are used whereas Xǫ can only become larger.

Corollary 2.6.13. All statements from Lemma 2.3.15, Cor. 2.3.16, Cor. 2.3.18, and Lemma ??
hold also for contexts γ = (Pǫ, G (0), τBf , Ψ).

So far we have not postulated that Byzantine events must be present in Pǫ. We will now
define several types of protocols that ensure the possibility of particular types of errors, up to
the case of fully Byzantine agents, i.e., agents that are in principle capable of any malfunction
imaginable.

Definition 2.6.14 (Types of agents). Given an agent-context

(
(Pǫ, G (0), τ , FS), P

)
, (2.96)

an agent i ∈ A in this agent-context is called

• fallible if for any X ∈ Pǫ (t),

X ∪ {fail (i)} ∈ Pǫ (t) . (2.97)

In other words, an agent is fallible if it can be branded Byzantine at any moment;

• infallible if for any X ∈ Pǫ (t),

X ∩
(
BEventsi ⊔ {sleep (i), hibernate (i)}

)
= ∅. (2.98)

An infallible agent cannot become Byzantine;
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2. The Byzantine Message-Passing Framework [KPS+19a]

• degradable if for any Y ⊂ BEventsi and any X ∈ Pǫ (t),

X ∪ Y ∈ Pǫ (t) whenever it is t-coherent; (2.99)

(X \ SysEventsi) ∪ Y ⊔ {sleep (i)} ∈ Pǫ (t) whenever it is t-coherent; (2.100)

(X \ SysEventsi) ∪ Y ⊔ {hibernate (i)} ∈ Pǫ (t) whenever it is t-coherent. (2.101)

In other words, an agent is degradable if it can always make more mistakes;

• correctable if for any X ∈ Pǫ (t),

X \
(
BEventsi ⊔ {sleep (i), hibernate (i)}

)
∈ Pǫ (t) . (2.102)

In other words, an agent is correctable if it can always refrain from all mistakes;

• error-prone if for any Y ⊂ BEventsi and any X ∈ Pǫ (t),

(
X \ (BEventsi ⊔ {sleep (i), hibernate (i)})

)
⊔ Y ∈ Pǫ (t) whenever it is t-coherent;

(2.103)
(
X \ (BEventsi ⊔ SysEventsi)

)
⊔ Y ⊔ {sleep (i)} ∈ Pǫ (t) whenever it is t-coherent;

(2.104)
(
X \ (BEventsi ⊔ SysEventsi)

)
⊔ Y ⊔ {hibernate (i)} ∈ Pǫ (t) whenever it is t-coherent.

(2.105)

In other words, an agent is error-prone if it can commit any combination of Byzantine
actions/events in any round;

• delayable if for any X ∈ Pǫ (t),

X \ GEventsi ∈ Pǫ (t) . (2.106)

In other words, an agent is delayable if all its activities can be correctly postponed in
any round, forcing its local state to remain unchanged after such a round (note that the
absence of go(i) also prevents the agent from acting on its own);

• gullible if for any Y ⊂ BEventsi and any X ∈ Pǫ (t),

(X \ GEventsi) ⊔ Y ∈ Pǫ (t) whenever it is t-coherent; (2.107)

(X \ GEventsi) ⊔ Y ⊔ {sleep (i)} ∈ Pǫ (t) whenever it is t-coherent; (2.108)

(X \ GEventsi) ⊔ Y ⊔ {hibernate (i)} ∈ Pǫ (t) whenever it is t-coherent. (2.109)

In other words, an agent is gullible if all its activities during a round can be replaced
with an arbitrary set of Byzantine events;

• isolatable if for any X ∈ Pǫ (t),

X \ {grecv(i, j, µ, id) | j ∈ A, µ ∈ Msgs, id ∈ N} ∈ Pǫ (t) . (2.110)

In other words, an agent is isolatable if all correct message deliveries to it can be
postponed at any round;

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.6. Fully Byzantine Asynchronous Agents

• distractible if for any X ∈ Pǫ (t),

X \ GEventsi ∈ Pǫ (t) . (2.111)

In other words, an agent is distractible if it can miss all external events, including all
incoming messages;

• impotent if for any X ∈ Pǫ (t),

X \ {go(i)} ∈ Pǫ (t) . (2.112)

In other words, an agent is impotent if it is always possible it does not try to act;

• fully Byzantine if it is error-prone and gullible. In other words, whatever combination
of correct and faulty events can happen to i, the same correct events are compatible
with any other collection of faulty events (error-proneness) and, at the same time, any
such collection of faulty events could happen without any correct events whatsoever
(gullibility).

In all cases where the new set is not explicitly required to be t-coherent, it can be shown to
be t-coherent whenever X is.

Remark 2.6.15. Note that error-proneness, degradability, gullibility, and full Byzanteneity
means that the agent can become Byzantine in some runs (for instance, adding fail (i) never
violates t-coherency); hence, such agents are not infallible. On the other hand, delayability,
isolatability, distractibility, and impotence do not necessarily imply any wrongdoing.

Corollary 2.6.16.

• Any agent that is degradable, error-prone, or gullible is fallible.

• Any agent that is error-prone is degradable and correctable.

• An agent that is both error-prone and delayable is also gullible.

• An agent that is gullible is delayable.

• An agent that is fallible, degradable, error-prone, or gullible cannot be infallible.

• A fully Byzantine agent is gullible, error-prone, fallible, degradable, correctable, and
delayable.

Definition 2.6.17. For an upper bound f ≥ 0, an agent-context (2.94) is called fully
f-Byzantine, or simply fully Byzantine, if all agents are fully Byzantine.

Lemma 2.6.18. All fully f-Byzantine agent-contexts are non-excluding.

Proof. It is sufficient to issue sleep (i) in every round.
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2. The Byzantine Message-Passing Framework [KPS+19a]

2.7 Run Modifications

Definition 2.7.1. An intervention for an agent i ∈ A, or i-intervention is a function

ρ : R −→ 2GActionsi × 2GEventsi .

The set of all i-interventions is denoted by

Intervs (i) :=
{

ρ | ρ : R −→ 2GActionsi × 2GEventsi

}
.

One intervention ρ(r) is intended to modify the behavior of one agent in one round of a given
run r in a desired way. Whether this modification relies on the agent’s original behavior in r
or is a complete departure from it, can be encoded in the function ρ. The output

(Xi, Xǫi
) = ρ(r)

is intended to represent a pair of sets βt
i (r′) = Xi of actions by i and βt

ǫi
(r′) = Xǫi

of events
imposed on i in the same round of a modified run r′. For ease of notation we also define

aρ(r) := π1ρ(r);

eρ(r) := π2ρ(r).

In other words, if ρ(r) = (Xi, Xǫi
), then aρ(r) = Xi and eρ(r) = Xǫi

.

Definition 2.7.2. A joint intervention is a collection of i-interventions for all agents i ∈ A.
We denote the set of all joint interventions

Intervs :=
∏

i∈A

Intervs (i). (2.113)

Now, let us define an adjustment of a run as a timewise list of joint interventions. Each joint
intervention is to be performed at the corresponding timestamp. It is defined as follows

Definition 2.7.3. An adjustment

[Bt; . . . ; B0]

is a sequence of joint interventions B0 . . . , Bt ∈ Intervs to be performed at successive times-
tamps from 0 to some t ∈ N, which is called the extent of the adjustment. We denote the set
of adjustments

Adjusts :=
⋃

t∈N

{[Bt; . . . ; B0] | B0 . . . , Bt ∈ Intervs} . (2.114)

Definition 2.7.4. Let adj ∈ Adjusts be an adjustment

adj = [Bt; . . . ; B0] (2.115)

of extent t ∈ N where

Bm = (ρm
1 , . . . , ρm

n ) (2.116)
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2.7. Run Modifications

for each 0 ≤ m ≤ t (recall that A = {1, . . . , n}), where each ρm
i is an i-intervention. Let a run

r be a τPǫ,P -transitional run. We say that a run r′ is obtained from r by adjustment adj,
or simply is adj-adjusted variant of r iff

r′ (0) = r (0) , (2.117)

(∀i ∈ A)(∀t′ ≤ t)
(
βt′

i

(
r′), βt′

ǫi

(
r′)) = ρt′

i (r), (2.118)

(∀i ∈ A)(∀t′ ≤ t) r′
i

(
t′ + 1

)
= updatei

(
r′

i

(
t′) , βt′

i

(
r′),

⋃

i∈A

βt′

ǫi

(
r′)
)

, (2.119)

(∀t′ ≤ t) r′
ǫ

(
t′ + 1

)
= updateǫ

(
r′

ǫ

(
t′) ,

(
⋃

i∈A

βt′

ǫi

(
r′), βt′

1

(
r′), . . . , βt′

n

(
r′)
))

, (2.120)

(∀t′ > t) r′ (t′ + 1
)

∈ τPǫ,P

(
r′ (t′)) . (2.121)

We denote by R (τPǫ,P , r, adj) the set of all adj-adjusted variants of the run r, computed under
the transition function τPǫ,P .

Remark 2.7.5. The first property ensures that both runs start from the same initial state.
The second one means that the β-sets of the new run for each agent i, i.e., the actions and
events affecting i in rounds 0.5 through t.5, are fully determined by the adjustment. In
the absence of global events, this means that everything happening during these rounds is
controlled by adj. The third and fourth ones faithfully implement the updating phase of the
round (see Figure 2.1) for local and environment states respectively for the extent of the
adjustment. Finally, the last property ensures that beyond the adjusted segment, the new run
extends in a τPǫ,P -transitional manner.

Remark 2.7.6. Though r is assumed to be τPǫ,P -transitional, a priori its adjusted variants
need not be. Indeed, as noted above, the local and global histories are always updated in a
consistent manner, i.e., in accordance with (2.57) and (2.59), but the artificial β-sets imposed
by the adjustment adj may not follow the rules of the protocol, adversary, labelling, and
filtering phases (see Figure 2.1).

Lemma 2.7.7. For any run r, any transition function τPǫ,P , and any adjustment adj

R (τPǫ,P , r, adj) 6= ∅.

Proof. The initial t-prefix of the desired adjusted run, more precisely the behavior up till and
including the round t.5, is fully determined by adj and properties (2.117)–(2.120) and exists
due to the totality of all the functions involved. The intended behavior starting from the
round (t + 1).5 is governed by (2.121). Since both Pǫ and P satisfy the no-apocalypse clause
(see Remark 2.2.11), there is always at least one option for continuing the run in every round.
Once again, the existence of adjusted runs does not generally imply that they are strongly
consistent or even transitional.

The primary method we use to show that an agent does not/cannot know some fact ϕ is
taking a(n) existing/arbitrary run and adjusting it in a way that is imperceptible for this
agent but makes ϕ false. Note that it is generally not sufficient to intervene with the behavior
of only this agent because its local state might be affected by correct messages received from
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2. The Byzantine Message-Passing Framework [KPS+19a]

other agents. Thus, the behavior of other agents generally needs to be modified too. There
are several types of interventions useful to achieve the needed adjustments.

The interventions needed for the agent who should not distinguish the original and adjusted
runs replace each correct action or event it experienced in the original run with a Byzantine
event that looks the same to the agent. Given that the agent’s perception can deviate from the
real actions/events, there is a range of choices regarding what really happens in the adjusted
run. We present two straightforward options representing passive and active interventions
PFakei and AFakei for agent i respectively.

Definition 2.7.8. For an agent i ∈ A and a run r ∈ R, we define i-interventions

PFaket
i , AFaket

i : R → 2GActionsi × 2GEventsi

as follows:

PFaket
i (r) :=

(
∅,

βt
bi

(r) ∪
{

fake (i, E) | E ∈ β
t
ǫi

(r)
}

∪
{

fake (i,Â 7→ A) | A ∈ βt
i (r)

}
⊔

{sleep (i) | aware(i, βt
ǫi

(r))} ⊔ {hibernate (i) | unaware(i, βt
ǫi

(r))}
)

(2.122)

AFaket
i (r) :=

(
∅,

βt
bi

(r) ∪
{

fake (i, E) | E ∈ β
t
ǫi

(r)
}

∪
{

fake (i, A 7→ A) | A ∈ βt
i (r)

}
⊔

{sleep (i) | aware(i, βt
ǫi

(r))} ⊔ {hibernate (i) | unaware(i, βt
ǫi

(r))}
)

(2.123)

Remark 2.7.9. The only difference between these two i-interventions lies in what the agent
actually does while erroneously thinking that it did an action A. In case of the passive version
PFakei, agent i does not do anything, whereas in the active version AFakei, agent i does
perform action A, albeit in a Byzantine fashion. The two i-interventions coincide on Byzantine
events.

Lemma 2.7.10. Let ρ ∈ {PFaket
i, AFaket

i | t ∈ N} be an intervention and r and r′ be arbitrary
runs. Then

1. aρ(r) = ∅, i.e., these interventions always produce the empty set of actions.

2. go(i) /∈ eρ(r), i.e., these interventions never let agent i act.

3. |eρ(r) ∩ {sleep (i), hibernate (i)}| = 1, i.e., these interventions always intend to make
agent i Byzantine by means of exactly one of commands sleep (i) or hibernate (i).

4. σ
(
aρ(r) ∪ eρ(r)

)
= σ

(
eρ(r)

)
= σ

(
βt

i (r) ∪ βt
ǫi

(r)
)
, where ρ ∈ {PFaket

i, AFaket
i}, i.e.,

events and actions intended to be appended to the local history of agent i as a result of
round t.5 after the intervention PFaket

i or AFaket
i are the same as before the intervention

in the same round of the original run r.17

17In some cases, the local history remains unaffected by these sets: namely, if there is no events/actions to
add and the agent is unaware of the passing round, but the statement is true in this case too.
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2.7. Run Modifications

5. aware(i, eρ(r)) = aware(i, βt
ǫi

(r)), where ρ ∈ {PFaket
i, AFaket

i}, i.e., the awareness of
agent i of the passing of round t.5 is not changed by PFaket

i or AFaket
i.

18

Proof. The only properties that do not directly follow from the definition are the last three.

Property 3 follows from the fact that unaware(i, Z) is defined to be the negation of aware(i, Z)
(see Def. 2.2.17). Hence, exactly one of them always holds.

Property 4 follows from

σ({fake (i, E)}) = σ({E}) and σ({fake (i,Â 7→ A)}) = σ({fake (i, A 7→ A)}) = σ({A})

which are a direct consequence of (2.32). Note that in the latter case A ∈ βt
i (r) ⊂ GActionsi.

For Property 5, note that |eρ(r) ∩ {go(i), sleep (i), hibernate (i)}| = 1 by Properties 2 and 3.
Hence, there are exactly two possibilities: either unaware(i, eρ(r)) due to the presence of
hibernate (i) or awareieρ(r) due to the presence of sleep (i), equivalently, due to the absence
of hibernate (i). More precisely,

aware(i, eρ(r)) = t ⇐⇒ hibernate (i) /∈ eρ(r) ⇐⇒

sleep (i) ∈ eρ(r) ⇐⇒ aware(i, βt
ǫi

(r)) = t.

Another common construction is freezing an agent, i.e., allowing no actions or events update
its local history. Such a behavior is captured by an i-intervention CFreeze if the agent is to
remain correct or by BFreezei if the agent is to become Byzantine. It is defined as follows.

Definition 2.7.11. For a run r ∈ R, we define

CFreeze (r) := (∅,∅). (2.124)

It can serve as an i-intervention for any agent i.

Definition 2.7.12. For an agent i ∈ A and a run r ∈ R, we define

BFreezei (r) := (∅, {fail (i)}). (2.125)

Note that interventions CFreeze and BFreezei are constant, in other words, the modifications
they initiate are run-independent.

Sometimes we want an intervention that preserves the exact behavior of an agent i ∈ A during
round t.5.

Definition 2.7.13. For an agent i ∈ A, a run r ∈ R, and a timestamp t ∈ N,

Copyt
i (r) := (βt

i (r), βt
ǫi

(r)). (2.126)

18In some cases, the local history does not depend on such awareness: namely, if there are events/actions to
add, but the statement is true in this case too.
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2. The Byzantine Message-Passing Framework [KPS+19a]

Sometimes we want an agent i ∈ A during round t.5 to concentrate on important messages
originating from a specific set X of nodes ignoring the chatter from outside of this set but
otherwise to carry on as without the intervention. We will often use a causal cone as X.

Definition 2.7.14. For an agent i ∈ A, a run r ∈ R, a timestamp t ∈ N, and a set X ⊂ A × N

of nodes,

X-Focust
i (r) :=

(
βt

i (r), βt
ǫi

(r) \ {grecv(i, j, µ, id(j, i, µ, k, m)) | (j, m) /∈ X, k ∈ N}
)
.

(2.127)

Finally, sometimes we do not care about agent i itself but only need it to produce the same
communication as in a given round.

Definition 2.7.15. For an agent i ∈ A, a run r ∈ R, and a timestamp t ∈ N,

FakeEchot
i (r) :=

(
∅,

{fail (i)} ⊔ {fake (i, gsend(i, j, µ, id) 7→ Â) |

gsend(i, j, µ, id) ∈ βt
i (r) or (∃A ∈ GActionsi⊔{Â}) fake (i, gsend(i, j, µ, id) 7→ A) ∈ βt

bi
(r)}

)
.

(2.128)

Using some of the assumptions on agents defined at the end of Chapter 2, we can prove the
following lemma.

Lemma 2.7.16 (Brain-in-the-Vat Lemma). Let A = J1; nK be the set of agents with protocols
P = (P1, . . . , Pn), let Pǫ be the protocol of the environment, let r be a τB

Pǫ,P -transitional run,
let i be an agent, let t > 0 be a timestamp, and let adj = [Bt−1; . . . ; B0] be an adjustment of
extent t − 1 satisfying (2.116) for all 0 ≤ m ≤ t − 1 with

ρm
i = PFakem

i and for all j 6= i ρm
j ∈ {CFreeze, BFreezej}.

If the protocol Pǫ makes

• agent i gullible,

• every agent j 6= i delayable and fallible if ρm
j = BFreezej for some m,

• all remaining agents delayable,

then each run r′ ∈ R
(
τB

Pǫ,P , r, adj
)

satisfies the following properties:

1. r′ is τB
Pǫ,P -transitional;

2. (∀m ≤ t) r′
i (m) = ri (m);

3. (∀m ≤ t) (∀j 6= i) r′
j (m) = r′

j (0).

4. (i, 1) ∈ Bad (r′, 1) and, consequently, (i, m) ∈ Failed (r′, m′) for all m′ ≥ m > 0;

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.7. Run Modifications

5. A (Failed (r′ (t))) = {i} ∪ {j 6= i | (∃m ≤ t − 1) ρm
j = BFreezej}.

Proof. We prove all these statements alongside the following properties:

6. (∀m < t) (∀j 6= i) βm
ǫj

(r′) ⊂ {fail (j)}.
More precisely, βm

ǫj
(r′) = ∅ iff ρm

j = CFreeze and βm
ǫj

(r′) = {fail (j)} iff ρm
j = BFreezej ;

7. (∀m < t) βm
ǫi

(r′) \ βm
fi

(r′) = ∅;

8. (∀m < t)(∀j ∈ A) βm
j (r′) = ∅.

Consider an arbitrary r′ ∈ R
(
τB

Pǫ,P , r, adj
)
.

Property 4 follows from Lemma 2.7.10(3).

Property 5 follows from Property 4 and the fact that the only event assigned other agents j 6= i
is fail (j) and it is only assigned by BFreezej , making all agents with BFreezej interventions
Byzantine while leaving all agents without BFreezej interventions correct.

Property 6 follows from (2.124) and (2.125).

Property 7 follows from (2.122).

Property 8 follows from Lemma 2.7.10(1) for i and from (2.124) and (2.125) for j 6= i.

The remaining three properties except for the first depend solely on the first t rounds of r′

and the first property starting from round t.5 directly follows from (2.121). Thus, it remains
to show Properties 1–3 for m ≤ t by induction on m.

Base: m = 0. Properties 1 and 3 are trivial, whereas Property 2 follows from (2.117).

Step from m to m + 1. We prove Property 1 based on the gullibility of i and delayability
(and fallibility) of all other j 6= i. In order to show that r′ (m + 1) ∈ τB

Pǫ,P (r′ (m)), we
need to demonstrate that the β-sets prescribed by adj can be obtained in a regular round.
Since the adversary’s choice of actions αm

j (r) is immaterial due to the absence of go(j) by
Lemma 2.7.10(2) for i and by (2.124)/(2.125) for other j 6= i, we concentrate on showing which
α-sets of events the adversary needs to choose. Consider αm

ǫ (r) ∈ Pǫ (m) from the original
run r. It must be m-coherent because r is transitional. By the delayability of all j 6= i,

αm
ǫ (r) \

⊔

j 6=i

GEventsj = αm
ǫi

(r) ∈ Pǫ (m) .

Note that for any Z ⊂ BEventsi ⊔ {sleep (i), hibernate (i)},
(
αm

ǫi
(r) \ GEventsi

)
⊔ Z = ∅ ⊔ Z = Z

because αm
ǫi

(r) ⊂ GEventsi. Thus, by the gullibility of i,

Y0 := (βm
ǫi

(r) ∩ BEventsi) ∪
{

fake(i, E) | E ∈ βm
ǫi

(r) ∩ GEventsi

}
∪ {fake (i,Â 7→ A) | A ∈ βm

i (r)} ⊔

{sleep (i) | aware(i, βm
ǫi

(r))} ⊔ {hibernate (i) | unaware(i, βm
ǫi

(r))} ∈ Pǫ (m)

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2. The Byzantine Message-Passing Framework [KPS+19a]

if it is m-coherent. Note that exactly one of sleep (i) and hibernate (i) is added to Y0 meaning
that condition 2 of m-coherency is fulfilled (see Def. 2.2.1). Conditions 3–5 of m-coherency are
trivially fulfilled because Y0 contains no correct events. Finally, condition 1 is fulfilled because
all fake actions in Y0 either have Â actually performed or originate from βm

ǫi
(r) ⊂ αm

ǫi
(r) ⊂

αm
ǫ (r), the latter being an m-coherent set. Thus, Y0 ∈ Pǫ (m). Finally, by the fallibility of all

agents j 6= i with ρm
j = BFreezej ,

Y := Y0 ∪ {fail (j) | ρm
j = BFreezej} ∈ Pǫ (m) .

This Y is m-coherent and unaffected by filtering there are no correct events in Y to be filtered
out. We conclude that these choices by the adversary result, after the filtering phase, in

βm
ǫ (r) = Y,

βm
j (r) = ∅ for all j ∈ A.

The latter is due to go(j) /∈ Y for any j ∈ A. It remains to note that

βm
ǫi

(r) = βm
ǫ (r) ∩ GEventsi = Y0,

βm
ǫj

(r) = βm
ǫ (r) ∩ GEventsj =

{
∅ if ρm

j = CFreeze,

{fail (j)} if ρm
j = BFreezej

for other j 6= i.

This completes the induction step for Property 1.

For Property 2, the induction step follows from Lemma 2.7.10(4)–(5). More precisely, given
that σ(Y ) = σ(Y0), we have the following cases:

• if σ
(
βm

ǫi
(r)
)

6= ∅, then

ri (m + 1) = σ
(
βm

i (r) ⊔ βm
ǫi

(r)
)
: ri (m) = σ

(
βm

i (r) ⊔ βm
ǫi

(r)
)
: r′

i (m)

by the induction hypothesis. It remains to use Lemma 2.7.10(4) to see that it is the
same as

σ(Y ) : r′
i (m) = σ(∅ ⊔ Y0) : r′

i (m) = σ
(
βm

i

(
r′) ⊔ βm

ǫi

(
r′)) : r′

i (m) = r′
i (m + 1) (2.129)

because σ
(
βm

ǫi
(r′)

)
= σ(Y0) = σ

(
βm

i (r) ⊔ βm
ǫi

(r)
)

⊃ σ
(
βm

ǫi
(r)
)

6= ∅.

• if σ
(
βm

ǫi
(r)
)

= ∅ but aware(i, βm
ǫ (r)) = t, then

ri (m + 1) = σ
(
βm

i (r) ⊔ βm
ǫi

(r)
)
: ri (m) = σ(βm

i (r)) : ri (m) = σ(βm
i (r)) : r′

i (m)
(2.130)

by the induction hypothesis. By Lemma 2.7.10(5), also

aware(i, βm
ǫ

(
r′)) = aware(i, βm

ǫi

(
r′)) = aware(i, Y ) = aware(i, βm

ǫi
(r)) = aware(i, βm

ǫ (r)) = t.

Thus, the last expression of (2.130) is equal to the first expression of (2.129) and this
case can be concluded by continuing the series of equalities the same way as it was done
in (2.129) in the preceding case.
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2.7. Run Modifications

• if σ
(
βm

ǫi
(r)
)

= ∅ and unaware(i, βm
ǫ (r)) = t, then unaware(i, βm

ǫ (r′)) = t by the same

reasoning we just applied to aware(i, βm
ǫ (r′)). In addition, by (2.23), passive(i, βm

ǫ (r)),
meaning that βm

i (r) = ∅ by (2.25). Finally,

σ
(
βm

ǫi

(
r′)) = σ(Y ) = σ

(
βm

i (r) ⊔ βm
ǫi

(r)
)

= σ
(
βm

ǫi
(r)
)

= ∅.

Thus, in this case,

r′
i (m + 1) = r′

i (m) = ri (m) = ri (m + 1) .

This completes the proof of the induction step for Property 2.

For Property 3, the induction step is even simpler. Since βm
j (r′) = ∅ and βm

ǫj
(r′) ⊂ {fail (j)}

for any j 6= i, it follows that σ(βm
ǫj

(r′)) = ∅ and unaware(j, βm
ǫ (r′)) = unaware(j, βm

ǫj
(r′)) = t,

it follows that
r′

j (m + 1) = r′
j (m) = r′

j (0)

by the induction hypothesis.

Remark 2.7.17. The previous lemma states that for a designated agent i ∈ A at some local
state ri (t) there is always an i-indistinguishable local state r′

i (t) in an alternative transitional
run r′ such that all other agents are yet to leave their initial local states, with i definitely
Byzantine while other agents can be made Byzantine or correct at will. We call this the
Brain-in-the-Vat Lemma because agent i attains this indistinguishable local state by imagining
that all actions and events from the original run happened to it without any participation of
other agents.

Definition 2.7.18. For an adjustment adj = [Bt; . . . ; B0] of extent t satisfying (2.116), we
denote

Failed (adj) :=
{

j | (∃m ≤ t) eρm
j ∩ (BEventsj ⊔ {sleep (j), hibernate (j)}) 6= ∅

}

the set of agents who are assigned Byzantine events, including sleep (i) or hibernate (i) instruc-
tions by this adjustment.

Corollary 2.7.19. For the adjustment adj used in Lemma 2.7.16,

Failed (adj) = {i} ∪ {j 6= i | (∃m ≤ t − 1) ρm
j = BFreezej}.

Hence, the number |Failed (adj)| ≥ 1 of agents necessarily failed by this adjustment is always
positive.

Corollary 2.7.20. Lemma 2.7.16 also holds if r is a τ
Bf

Pǫ,P -transitional run for any

f ≥ |Failed (adj)|

(in particular, if all ρm
j = CFreeze for j 6= i, it is sufficient to have f ≥ 1). Moreover, in this

case Property 1 can be replaced by

1′. r′ is τ
Bf

Pǫ,P -transitional.
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2. The Byzantine Message-Passing Framework [KPS+19a]

Proof. The construction is exactly the same. The additional filtering of too many Byzantine
agents introduced in a round will not be used (until timestamp t) because the constructed
part of the new run only fails allowable number of agents, including agent i.

Corollary 2.7.21. For an agent i ∈ A, for a set BD ⊂ A \ {i} of agents, for a non-
excluding agent-context χ =

(
(Pǫ, G (0), τBf , Ψ), P

)
such that f ≥ 1 + |BD| and Pǫ makes

i gullible, all other agents j 6= i delayable, and additionally all agents from BD fallible,
for a χ-based interpreted system I = (Rχ, π), for a run r ∈ Rχ, and for a timestamp
t > 0, there is a run r′ ∈ Rχ that satisfies Properties 2–8 from Lemma 2.7.16 and such that

A (Failed (r′ (t))) = {i} ∪ BD.

Proof. Consider an tadjustment adj = [Bt−1; . . . ; B0] with (2.116) such that for all m < t,

ρm
i = PFakei,

ρm
j =

{
BFreezej if j ∈ BD,

CFreeze if j ∈ A \ ({i} ⊔ BD).

Clearly, |Failed (adj)| = 1 + |BD|. By Cor. 2.7.20, there exists a τBf -transitional run r′′

satisfying all the required conditions. Clearly, r′′ ∈ Rwχ because, by (2.117) we have r′′(0) =
r(0) ∈ G (0). It remains to note that the the initial prefix of r′′ up to timestamp t can be
extended to a run r′ ∈ Rχ because χ is non-excluding. Since all required properties depend
only on this initial prefix, they are also satisfied for r′.

Corollary 2.7.22. For an agent i ∈ A, a set BD ⊂ A \ {i} of agents, a fully f-Byzantine
agent-context χ =

(
(Pǫ, G (0), τBf , FS), P

)
with f ≥ 1 + |BD|, a χ-based interpreted system

I = (Rχ, π), a run r ∈ Rχ, and a timestamp t > 0, there is a run r′ ∈ Rχ that satisfies
Properties 2–8 from Lemma 2.7.16.

Proof. f -fully Byzantine agent-contexts are non-excluding by Lemma 2.6.18. Since all agents
in such agent-contexts are fully Byzantine, they are gullible by definition. In addition to i
being gullible, it follows from Cor. 2.6.16 that all other j 6= i are delayable. Finally, since fully
Byzantine agents are error-prone by definition, it follows from the same Cor. 2.6.16 that all
j ∈ BD are fallible.

Corollary 2.7.23. For the χ-based interpreted system I = (Rχ, π) and run r′ from Cor. 2.7.21
or Cor. 2.7.22 with BD = ∅ and, accordingly, with f ≥ 1, for any timestamp t ∈ N,

(∀o ∈ Actions ⊔ Events) (∀t′ ≤ t) (I , r′, t′) 6|= occurred (o). (2.131)

Proof. Recall that by (2.84) and (2.83)

occurred (o) =
∨

j∈A

occurredj(o).

Thus, we need to show that
(I , r′, t′) 6|= occurredj(o)

for each j ∈ A, each t′ ≤ t, and each o ∈ Actions ⊔ Events . By (2.81), we need to show that

(∀t′′ < t′) o /∈ label−1
(
βt′′

j

(
r′) ⊔ β

t′′

ǫj

(
r′)) .
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2.8. Introspection

Since all such t′′ < t, it is sufficient to show

(∀t′′ < t) o /∈ label−1
(
βt′′

j

(
r′) ⊔ β

t′′

ǫj

(
r′)) .

For t = 0, this is vacuously true. For t > 0, we can use Cor. 2.7.21 or Cor. 2.7.22 respectively.
Then this statement follows from the fact that for all agents j ∈ A,

βt′′

j

(
r′) = β

t′′

ǫj

(
r′) = ∅.

Regarding βt′′

j (r′), this follows from Lemma 2.7.16(8). Regarding β
t′′

ǫj
(r′) for j 6= i, it follows

from Lemma 2.7.16(6). Finally, regarding β
t′′

ǫi
(r′) for agent i it follows from Lemma 2.7.16(7)

and β
t′′

ǫi
(r′) ⊂ βt′′

ǫi
(r′) \ βt′′

fi
(r′).

2.8 Introspection

By introspection we understand the ability of agents to reason about their own state and their
own knowledge. The agent is primarily interested in its own correctness and the reliability of
data it receives.

2.8.1 Local Introspection

We will now use the brain-in-the-vat construction to show that fully Byzantine agents can
never be sure that a particular action/event definitively took place or, barring the initial state,
that they are correct.

Lemma 2.8.1. For an agent i ∈ A, for a non-excluding agent-context χ =
(
(Pǫ, G (0), τBf , Ψ), P

)

such that f ≥ 1 and Pǫ makes i gullible and all other agents j 6= i delayable, for a χ-based
interpreted system I = (Rχ, π), for a run r ∈ Rχ, for a timestamp t ∈ N, and for an action or
event o ∈ Actions ⊔ Events,

(I , r, t) 6|= Kioccurred (o).

In particular, this statement holds for fully f-Byzantine agent-contexts.

Proof. For t = 0, the statement is obvious. For t > 0, the statement follows directly
from (2.131) of Cor. 2.7.23 and Lemma 2.7.16(2).

Lemma 2.8.2. For an agent i ∈ A, for a non-excluding agent-context χ =
(
(Pǫ, G (0), τBf , Ψ), P

)

such that f ≥ 1 and Pǫ makes i gullible and all other agents j 6= i delayable, for a χ-based
interpreted system I = (Rχ, π), for a run r ∈ Rχ, and for a timestamp t > 0,

(I , r, t) 6|= Kicorrecti.

In particular, this statement holds for fully f-Byzantine agent-contexts.

Proof. Consider the run r′ constructed in Cor. 2.7.21 (respectively, Cor. 2.7.22) for BD = ∅.
Recall that by (2.78)

(I , r′, t) |= correcti ⇐⇒ (i, t) /∈ Failed
(
r′, t

)
.

Thus, the statement follows directly from Properties 2 and 4 of Lemma 2.7.16.
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2. The Byzantine Message-Passing Framework [KPS+19a]

Remark 2.8.3. It is clear that within any agent-context based on a transition template τB0 ,
i.e., for f = 0, all agents always know that they are correct and they can learn about real
actions/events from observation because no Byzantine events can ever happen in such runs.
Conversely, such agents can never learn that they are faulty because it will never be true.

Unlike the knowledge of own correctness, it is in principle possible for a fully Byzantine agent
to learn of its own defectiveness (provided, as just noted, that mistakes are, in fact, allowed).

Lemma 2.8.4. For some agent i ∈ A, an agent-context χ =
(
(Pǫ, G (0), τBf , Ψ), P

)
such

that f ≥ 1, it is possible that for some (weakly) χ-based interpreted system I, some (weakly)
χ-consistent run r, and some timestamp t > 0,

(I , r, t) |= Kifaultyi.

Proof. This happens whenever there is a mismatch between actions recorded in the agent’s
local history and actions prescribed by the agent’s protocol for the preceding local state.

2.8.2 Global Introspection

Similarly to the virtual impossibility for the agent to ascertain its own correctness, it is
similarly almost impossible for an agent to learn the Byzantine status of another agent.

Lemma 2.8.5. For some agents i 6= j, for a non-excluding agent-context χ =
(
(Pǫ, G (0), τBf , Ψ), P

)

such that f ≥ 1 and Pǫ makes agent i gullible and all other agents delayable, for a χ-based
interpreted system I = (Rχ, π), for a run r ∈ Rχ, and for a timestamp t ∈ N,

(I , r, t) 6|= Kifaultyj .

In particular, this statement holds for fully f-Byzantine agent-contexts.

Proof. For t = 0, the statement is obvious because no agent can be faulty in the initial state.
For t > 0, the statement follows directly from Properties 2 and 6 of Lemma 2.7.16 applied to
ρm

j = CFreeze for all j 6= i.

Lemma 2.8.6. For agents i 6= j, for a non-excluding agent-context χ =
(
(Pǫ, G (0), τBf , Ψ), P

)

such that f ≥ 2 and Pǫ makes agent i gullible, agent j delayable and fallible, and all other
agents delayable, for a χ-based interpreted system I = (Rχ, π), for a run r ∈ Rχ, and for a
timestamp t > 0,

(I , r, t) 6|= Kicorrectj .

In particular, this statement holds for fully f-Byzantine agent-contexts.

Proof. The statement follows directly from Properties 2 and 5 of Lemma 2.7.16 applied to

ρm
k =

{
CFreeze if k /∈ {i, j}

BFreezej if k = j.

It is also sufficient to set ρ0
j = BFreezej and all other ρm

k = CFreeze for k 6= i.

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.8. Introspection

In this proof, BD = {j} and Failed (adj) = {i, j}, which is why it was necessary to allow at
least two agents to become Byzantine.

Given that typical Byzantine agents can never be sure that they are correct, or that another
agent is correct (faulty), or that a particular action/event happened, their behavior cannot
rely on knowledge but should be governed by a weaker epistemic state. We define the following
operators:

Biϕ := Ki(correcti → ϕ) (2.132)

Hiϕ := correcti → Biϕ = correcti → Ki(correcti → ϕ). (2.133)

Thus, a belief in ϕ means that ϕ follows from the local state of the agent provided the agent
is correct, whereas hope that ϕ states that this belief need only hold if the agent is correct.

Lemma 2.8.7 (Properties of belief and hope). For any formula ϕ, any agent i, the following
formulas are propositional tautologies and, hence, are valid in every interpreted system.

• |= Biϕ → Hiϕ

• |= correcti → (Biϕ ↔ Hiϕ)

• |= faultyi → Hiϕ

Proof. The first two statements are obvious. The last statement follows from the definition of
faultyi as ¬correcti.

As can be seen from the preceding lemma, belief is stronger than hope in general, but equivalent
to it for correct agents. Hope provides no information for faulty agents, whereas belief can,
which can be used for designing algorithms for malfunctioning agents. In fact, given that

|= (correcti → faultyi) ↔ faultyi

is also a propositional tautology, it is the case that

|= Bifaultyi ↔ Kifaultyi

due to the normality of the Ki modality. In other words, in order to react to its own faults,
the agent should know of them, which can be formulated in terms of the belief modality. On
the other hand, 6|= Hifaultyi → Kifaultyi because a faulty agent always hopes to be faulty
but may not know it is.

On the other hand, the hope modality will be technically convenient in future proofs by
affording more elegant formulations for iterated modalities.
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CHAPTER 3
The Extension Framework

This chapter provides the core contribution of this thesis, a generic extension framework, which
allows to specify and safely combine extensions. Such framework extensions are restrictions of
the general framework, which are formally defined as follows:

Definition 3.0.1 (Extension). For a set of pairs of environment and joint protocols PP α ⊆
Cǫ × C , a transition template τα, an admissibility condition Ψα, and a set of sets of global
initial states ISα, such that PP α 6= ∅, ISα 6= ∅, Ψα 6= ∅ we define

E
α := (PP α, ISα, τα, Ψα). (3.1)

Further we say an agent-context χ =
(
(Pǫ, G (0), τ , Ψ), P

)
is part of E α = (PP α, ISα, τα, Ψα),

denoted χ ∈ E α iff

1. (Pǫ, P ) ∈ PP α

2. G (0) ∈ ISα

3. τ = τα

4. Ψ = Ψα

5. Rχ 6= ∅.

Finally we call E α a framework extension or just an extension iff there exists an agent context
χ such that χ ∈ E α.

Now, we extend the notion of non-excluding agent-contexts from Definition 2.3.28 to extensions
as follows:

Definition 3.0.2. For an extension E , we say that E is non-excluding iff ∀χ ∈ E , χ is
non-excluding.
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3. The Extension Framework

3.1 Filter Combination

In order to merge two extensions into a third one, we first have to define the intersection of its
constituent parts. For two sets of sets of initial states, admissibility conditions (which are sets
of runs) as for sets of pairs of environment and joint protocols we can simply use conventional
set intersection. However for transition templates the notion of intersection still has to be
defined.

Definition 3.1.1. For any agent i ∈ A, global history h ∈ G , sets Xǫ ⊆ GEvents, X1 ⊆
GActions1, ..., Xn ⊆ GActionsn we define the neutral event and action filters (the weakest
filters) as

filterN
ǫ (h, Xǫ, X1, . . . , Xn) := Xǫ (3.2)

and
filterN

i (X1, . . . , Xn, Xǫ) := Xi. (3.3)

The transition template, where only the neutral filters are used we denote by τN .

The only part that distinguishes different transition templates are the filter functions. Hence
we define different combinations of filter functions as follows (note that (3.4) we actually
repeat (2.92)):

Definition 3.1.2. Given two event filter functions filterα
ǫ of τα and filterβ

ǫ of τβ for some
h ∈ G , Xǫ ⊆ GEvents , X1 ⊆ GActions1, ..., Xn ⊆ GActionsn we define

• filter composition as

filterβ◦α
ǫ (h, Xǫ, X1, . . . , Xn) :=

filterβ
ǫ (h, filterα

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn)
(3.4)

• filter intersection as

filterα+β
ǫ (h, Xǫ, X1, . . . , Xn) :=

filterβ◦α
ǫ (h, Xǫ, X1, . . . , Xn) ∩ filterα◦β

ǫ (h, Xǫ, X1, . . . , Xn)
(3.5)

• k-filter intersection for k ∈ N \ {0} as

filterk·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) :=

filterα+β
ǫ


h,

(
. . .

(
filterα+β

ǫ (h, Xǫ, X1, . . . , Xn)

)
. . .

)

︸ ︷︷ ︸
k−1 times

, X1, . . . , Xn




(3.6)

• 0-filter intersection as

filter0·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) := filterN

ǫ (h, Xǫ, X1, . . . , Xn) (3.7)

• fixpoint filter intersection as

filterα∗β
ǫ (h, Xǫ, X1, . . . , Xn) := lim

k→∞
filterk·(α+β)

ǫ (h, Xǫ, X1, . . . , Xn) . (3.8)
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3.1. Filter Combination

We do the same for action filters.

Definition 3.1.3. Given two action filter functions (for i ∈ A) filterα
i of τα and filterβ

i of
τβ for sets Xǫ ⊆ GEvents , X1 ⊆ GActions1, ..., Xn ⊆ GActionsn we define

• filter composition as

filterβ◦α
i (X1, . . . , Xn, Xǫ) :=

filterβ
i (X1, . . . , Xi−1, filterα

i (X1, . . . , Xn, Xǫ, ) , Xi+1, . . . , Xn, Xǫ)
(3.9)

• filter intersection

filterα+β
i (X1, . . . , Xn, Xǫ) :=

filterβ◦α
i (X1, . . . , Xn, Xǫ) ∩ filterα◦β

i (X1, . . . , Xn, Xǫ)
(3.10)

• k-filter intersection for k ∈ N \ {0} as

filter
k·(α+β)
i (X1, . . . , Xn, Xǫ) :=

filterα+β
i


X1, . . . , Xi−1,

(
. . .

(
filterα+β

i (X1, . . . , Xn, Xǫ)

)
. . .

)

︸ ︷︷ ︸
k−1 times

, Xi+1, . . . , Xn, Xǫ




(3.11)

• 0-filter intersection as

filter
0·(α+β)
i (X1, . . . , Xn, Xǫ) := filterN

i (X1, . . . , Xn, Xǫ) (3.12)

• fixpoint filter intersection as

filterα∗β
i (X1, . . . , Xn, Xǫ) := lim

k→∞
filter

k·(α+β)
i (X1, . . . , Xn, Xǫ) (3.13)

The reason for not just using the intersection of two filters in Definitions 3.1.2, 3.1.3 without
filter composition, is that this would neglect any interaction between the filters with respect
to events happening in the current round. The combination of the at-most-f-Byzantine-agents-
filter (2.91) together with the Byzantine event filter (2.24) is a good example why filter
composition (and possibly filter intersection) is necessary.

In the worst case there could be a circular dependency between the filter functions, which can
then only be resolved by a fixpoint computation (3.8), (3.13).

Definition 3.1.4 (Repeated Composition). To simplify notation and stay consistent with
(3.6), (3.7) and (3.11), (3.12) for some k ∈ N \ {0} we define for arbitrary filters filterα

ǫ ,
filterα

i for i ∈ A

filterk·α
ǫ (h, Xǫ, X1, . . . , Xn) :=

filterα
ǫ


h, . . .

(
filterα

ǫ (h, Xǫ, X1, . . . , Xn)

)
. . .

︸ ︷︷ ︸
k−1 times

, X1, . . . , Xn


 ,

(3.14)
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3. The Extension Framework

filter0·α
ǫ (h, Xǫ, X1, . . . , Xn) := filterN

ǫ (h, Xǫ, X1, . . . , Xn) (3.15)

and similarly

filterk·α
i (X1, . . . , Xn, Xǫ) :=

filterα
i


X1, . . . , Xi−1, . . .

(
filterα

i (X1, . . . , Xn, Xǫ)

)
. . .

︸ ︷︷ ︸
k−1 times

, Xi+1, . . . , Xn, Xǫ


 ,

(3.16)

filter0·α
i (X1, . . . , Xn, Xǫ) := filterN

i (X1, . . . , Xn, Xǫ) . (3.17)

Definition 3.1.5. Considering Definitions 3.1.2 and 3.1.3, we define

• τα◦β as the resulting transition template with the combined filter functions from (3.4)
and (3.9).

• τα+β as the resulting transition template with the combined filter functions from (3.5)
and (3.10).

• τk·(α+β) as the resulting transition template with the combined filter functions from
(3.6) or (3.7) and (3.11) or (3.12) (depending on k).

• τα∗β as the resulting transition template with the combined filter functions from (3.8)
and (3.13).

Definition 3.1.6. We define PDt−coh
ǫ as the (downward closed) domain of all t-coherent

events.
PDt−coh

ǫ := {Xǫ ∈ 2GEvents | Xǫ is t-coherent for some t ∈ N} (3.18)

3.1.1 Basic Filter Property

To make reasoning about filters more concise, we formalize the following property, which we
expect to hold true for all filter functions. Hence, whenever we refer to a function as filter and
write filterǫ or filteri (for some agent i ∈ A), we assume them to satisfy the following:

Definition 3.1.7 (Basic Filter Property). We call a function filterα
ǫ (in accordance with

Definition 2.2.19) an event filter function iff for all h ∈ G , Xǫ ⊆ GEvents, X1 ⊆ GActions1,
..., Xn ⊆ GActionsn

filterα
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ Xǫ. (3.19)

Similarly we call a function filterα
i (in accordance with Definition 2.2.19) for some i ∈ A an

action filter function iff for all Xǫ ⊆ GEvents , X1 ⊆ GActions1, ..., Xn ⊆ GActionsn

filterα
i (X1, . . . , Xn, Xǫ) ⊆ Xi. (3.20)

Corollary 3.1.8. For two arbitrary filter functions filterγ
ǫ and filterγ

i for some i ∈ A, h ∈ G ,
Xǫ ⊆ GEvents, X1 ⊆ GActions1, ..., Xn ⊆ GActionsn and some k ∈ N it holds that

filter(k+1)·γ
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filterk·γ

ǫ (h, Xǫ, X1, . . . , Xn)

filter
(k+1)·γ
i (X1, . . . , Xn, Xǫ) ⊆ filterk·γ

i (X1, . . . , Xn, Xǫ) .
(3.21)
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3.1. Filter Combination

Proof. The statement immediately follows from Definitions 3.1.4 and 3.1.7.

Lemma 3.1.9. For two arbitrary filter functions filterγ
ǫ and filterγ

i for some i ∈ A, h ∈ G ,
Xǫ ⊆ GEvents, X1 ⊆ GActions1, ..., Xn ⊆ GActionsn and some k, k′ ∈ N, where k ≥ k′, it
holds that

filterk·γ
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filterk′·γ

ǫ (h, Xǫ, X1, . . . , Xn)

filterk·γ
i (X1, . . . , Xn, Xǫ) ⊆ filterk′·γ

i (X1, . . . , Xn, Xǫ) .
(3.22)

Proof. By induction over k − k′.
Induction Hypothesis: For i ∈ A, h ∈ G , Xǫ ⊆ GEvents, X1 ⊆ GActions1, ..., Xn ⊆
GActionsn and some k, k′ ∈ N, where k ≥ k′, it holds that

filterk·γ
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filterk′·γ

ǫ (h, Xǫ, X1, . . . , Xn)

filterk·γ
i (X1, . . . , Xn, Xǫ) ⊆ filterk′·γ

i (X1, . . . , Xn, Xǫ) .
(3.23)

Base Case: If k − k′ = 0, the statement trivially holds.
Induction Step: Suppose the induction hypothesis (3.23) holds for some k ≥ k′, applying
Corollary 3.1.8 gives us

filter(k+1)·γ
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filterk·γ

ǫ (h, Xǫ, X1, . . . , Xn) ⊆ (by the induction hypothesis (3.23))

filterk′·γ
ǫ (h, Xǫ, X1, . . . , Xn)

or similarly for action filters

filter
(k+1)·γ
i (X1, . . . , Xn, Xǫ) ⊆ filterk·γ

i (X1, . . . , Xn, Xǫ) ⊆ (by the induction hypothesis (3.23))

filterk′·γ
i (X1, . . . , Xn, Xǫ) ,

(3.24)
from which the statement follows by transitivity of the subset relation ⊆.

Lemma 3.1.10. filter≤f
ǫ satisfies the basic filter property (Definition 3.1.7), thus is an event

filter function.

Proof. Follows directly from (2.91) of its definition.

3.1.2 Monotonicity

Definition 3.1.11. We say an event filter filterα
ǫ is monotonic for a downward closed domain

PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1 , ..., PDn ⊆ 2GActionsn iff for every h ∈ G , sets Xǫ ∈ PDǫ,
X1 ∈ PD1, ..., Xn ∈ PDn it holds that

(∀X̃ǫ ⊆ Xǫ)(∀X̃1 ⊆ X1) . . . (∀X̃n ⊆ Xn)

filterα
ǫ

(
h, X̃ǫ, X̃1, . . . , X̃n

)
⊆ filterα

ǫ (h, Xǫ, X1, . . . , Xn) .
(3.25)

Definition 3.1.12. We say an event filter filterα
ǫ is simply monotonic for a downward closed

domain PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1 , ..., PDn ⊆ 2GActionsn iff for some h ∈ G , sets
Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn it holds that

(∀X̃ǫ ⊆ Xǫ) filterα
ǫ

(
h, X̃ǫ, X1, . . . , Xn

)
⊆ filterα

ǫ (h, Xǫ, X1, . . . , Xn) . (3.26)
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3. The Extension Framework

Definition 3.1.13. Similarly we say an action filter filterα
i for i ∈ A is monotonic for a

downward closed domain PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1 , ..., PDn ⊆ 2GActionsn iff for any
sets Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn it holds that

(∀X̃ǫ ⊆ Xǫ)(∀X̃1 ⊆ X1) . . . (∀X̃n ⊆ Xn)

filterα
i

(
X̃1, . . . , X̃n, X̃ǫ

)
⊆ filterα

i (X1, . . . , Xn, Xǫ) .
(3.27)

Definition 3.1.14. We say an action filter filterα
i for i ∈ A is simply monotonic for a

downward closed domain PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1 , ..., PDn ⊆ 2GActionsn iff for any
sets Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn it holds that

(∀X̃i ⊆ Xi) filterα
i

(
X1, . . . , Xi−1, X̃i, Xi+1, . . . , Xn, Xǫ

)
⊆ filterα

i (X1, . . . , Xn, Xǫ) .

(3.28)

Lemma 3.1.15. If an event (or action) filter filterα
ǫ (filterα

i for i ∈ A) is monotonic for
some downward closed domain, then filterα

ǫ (filterα
i ) is simply monotonic in this domain as

well.

Proof. The statement directly follows from the definitions of (simple) monotonicity (3.25),
(3.26), (3.27) and (3.28).

Lemma 3.1.16. For every global history h ∈ G the neutral filter functions filterN
ǫ and

filterN
i for any i ∈ A are monotonic in the domain 2GEvents , 2GActions1, ..., 2GActionsn.

Proof. By Definition 3.1.1 of the neutral filter functions it holds that for all i ∈ A, h ∈ G ,
Xǫ ⊆ GEvents , X1 ⊆ GActions1, ..., Xn ⊆ GActionsn, X ′

ǫ ⊆ Xǫ, X ′
1 ⊆ X1, ..., X ′

n ⊆ Xn

filterN
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
= X ′

ǫ ⊆ Xǫ = filterN
ǫ (h, Xǫ, X1, . . . , Xn) (3.29)

and

filterN
i

(
X ′

1, . . . , X ′
n, X ′

ǫ

)
= X ′

i ⊆ Xi = filterN
i (X1, . . . , Xn, Xǫ) . (3.30)

Hence the statement follows.

Lemma 3.1.17. For any global history h ∈ G and sets Xǫ ∈ PDt−coh
ǫ , X1 ⊆ GActions1, ...,

Xn ⊆ GActionsn the filter functions of the Byzantine transition template τB are monotonic.

Proof. We conduct the following proofs by induction. First we examine the Byzantine event
filter function. Suppose O1, . . . , OK is an arbitrary ordering of the events and actions in
Xǫ ⊔ X1 ⊔ . . . ⊔ Xn, where K = |Xǫ ⊔ X1 ⊔ . . . ⊔ Xn|, let X0

ǫ = Xǫ, X0
1 = X1, . . . , X0

n = Xn

and define for 0 ≤ k ≤ K − 1 and i ∈ A

Xk+1
ǫ =

{
Xk

ǫ \ {Ok+1} if Ok+1 ∈ Xǫ

Xk
ǫ otherwise

(3.31)

Xk+1
i =

{
Xk

i \ {Ok+1} if Ok+1 ∈ Xi

Xk
i otherwise

(3.32)
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3.1. Filter Combination

and denote

filterB
ǫ

(
h, Xk

ǫ , Xk
1 , . . . , Xk

n

)
= Y k

ǫ (3.33)

and

filterB
ǫ (h, Xǫ, X1, . . . , Xn) = Yǫ. (3.34)

Induction Hypothesis: For some 0 ≤ k < K

filterB
ǫ

(
h, Xk

ǫ , Xk
1 , . . . , Xk

n

)
= Y k

ǫ ⊆ Yǫ. (3.35)

Base Case: For k = 0

filterB
ǫ

(
h, X0

ǫ , X0
1 , . . . , X0

n

)
= filterB

ǫ (h, Xǫ, X1, . . . , Xn) = Yǫ. (3.36)

Therefore Y 0
ǫ ⊆ Yǫ trivially holds.

Induction Step for k → k + 1:
If Ok+1 = E ∈ Xǫ is ...

• some grecv(i, j, µ, id) or fake (i, grecv(i, j, µ, id)) or external (i, e) or fake (i, external (i, e))
or fake (i, internal (i, a) 7→ A) or sleep(i) or hibernate(i) (since t-coherence of Xǫ was
assumed, by Lemma 2.2.3 Xk

ǫ is also t-coherent and there can only ever be one of the
three system events present for some agent i ∈ A; in particular this means after removing
either sleep(i) or hibernate(i) there can be no go(i) left) for some i, j ∈ A, e ∈ Exti,
a ∈ Inti, µ ∈ Msgs, id ∈ N, A ∈ {Â} ⊔ GActionsi by definition of the Byzantine event
filter function (2.24) the result of the filtering is

filterB
ǫ

(
h, Xk+1

ǫ , Xk+1
1 , . . . , Xk+1

n

)
= filterB

ǫ

(
h, Xk

ǫ \ {E}, Xk
1 , . . . , Xk

n

)
= Y k

ǫ \{E}.

(3.37)
By assumption of the induction hypothesis (3.35) Y k

ǫ \ {E} ⊆ Y k
ǫ ⊆ Yǫ holds.

• fake (i, gsend(i, j, µ, id) 7→ A) for some i, j ∈ A, µ ∈ Msgs , id ∈ N, A ∈ {Â} ⊔ GActionsi

by definition of the Byzantine event filter function (2.24) the result of the filtering is
either

filterB
ǫ

(
h, Xk+1

ǫ , Xk+1
1 , . . . , Xk+1

n

)
= filterB

ǫ

(
h, Xk

ǫ \ {E}, Xk
1 , . . . , Xk

n

)
= Y k

ǫ \ {E}

(3.38)
if gsend(i, j, µ, id) ∈ Xk

i and active(i, Xk
ǫ ) = t, or

filterB
ǫ

(
h, Xk+1

ǫ , Xk+1
1 , . . . , Xk+1

n

)
=

filterB
ǫ

(
h, Xk

ǫ \ {E}, Xk
1 , . . . , Xk

n

)
= Y k

ǫ \ {E, grecv(j, i, µ, id)}
(3.39)

otherwise.

In either case by assumption of the induction hypothesis (3.35) Y k
ǫ \{E, grecv(j, i, µ, id)} ⊆

Y k
ǫ ⊆ Yǫ and Y k

ǫ \ {E} ⊆ Y k
ǫ ⊆ Yǫ holds.
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3. The Extension Framework

• go(i) for i ∈ A by definition of the Byzantine event filter (2.24) we get

filterB
ǫ

(
h, Xk+1

ǫ , Xk+1
1 , . . . , Xk+1

n

)
= filterB

ǫ

(
h, Xk

ǫ \ {E}, Xk
1 , . . . , Xk

n

)
=

Y k
ǫ \

(
{E} ⊔ {grecv(j, i, µ, id) | gsend(i, j, µ, id) ∈ Xk

i ∧

(∀A ∈ {Â} ⊔ GActionsi) fake (i, gsend(i, j, µ, id) 7→ A) /∈ Xk
ǫ }
)

.

(3.40)

By assumption of the induction hypothesis (3.35) the result of the filter is again a subset
of Y k

ǫ ⊆ Yǫ.

If Ok+1 = A ∈ Xi there are only two possibilities:

• A = internal (i, a) for some a ∈ Actionsi

In this case by definition of the Byzantine event filter (2.24) it follows that

filterB
ǫ

(
h, Xk+1

ǫ , Xk+1
1 , . . . , Xk+1

n

)
=

filterB
ǫ

(
h, Xk

ǫ , Xk
1 , . . . , Xk

i−1, Xk
i \ {A}, Xk

i+1, . . . , Xk
n

)
= Y k

ǫ ,
(3.41)

from which the statement trivially follows by the induction hypothesis (3.35) Y k
ǫ ⊆ Yǫ.

• A = gsend(i, j, µ, id) for some j ∈ A, µ ∈ Msgs and id ∈ N

In this case, again by definition of the Byzantine event filter (2.24) it holds that

filterB
ǫ

(
h, Xk+1

ǫ , Xk+1
1 , . . . , Xk+1

n

)
=

filterB
ǫ

(
h, Xk

ǫ , Xk
1 , . . . , Xk

i−1, Xk
i \ {A}, Xk

i+1, . . . , Xk
n

)
= Y k

ǫ \ {grecv(j, i, µ, id) |

(∀A ∈ {Â} ⊔ GActionsi) fake (i, gsend(i, j, µ, id) 7→ A) /∈ Xk
ǫ }.

(3.42)
By assumption of the induction hypothesis (3.35), the filtering result is obviously a
subset of Y k

ǫ ⊆ Yǫ.

This completes the induction step. Since the ordering O1, . . . , OK was arbitrary, we conclude

that the Byzantine event filter is indeed monotonic (in the domain PDt−coh
ǫ , 2GActions1 , . . . , 2GActionsn).

Next we examine the Byzantine action filters (for i ∈ A). Using the same arbitrary ordering
O1, . . . , OK as before and

filterB
i (X1, . . . , Xn, Xǫ) = Yi, (3.43)

we get the following induction hypothesis for every i ∈ A:
Induction Hypothesis: For 0 ≤ k < K

filterB
i

(
Xk

1 , . . . , Xk
n, Xk

ǫ

)
= Y k

i ⊆ Yi. (3.44)

Base Case: For k = 0

filterB
i

(
X0

1 , . . . , X0
n, X0

ǫ

)
= Y 0

i = filterB
i (X1, . . . , Xn, Xǫ) = Yi. (3.45)

Induction Step for k → k + 1:
If Ok+1 = A ∈ Xi there are two possibilities:
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3.1. Filter Combination

• j = i
By definition of the Byzantine action filter function (2.25) the following holds

filterB
i

(
Xk+1

1 , . . . , Xk+1
n , Xk+1

ǫ

)
=

filterB
i

(
Xk

1 , . . . , Xk
i−1, Xk

i \ {A}, Xk
i+1, . . . , Xk

n, Xk
ǫ

)
= Y k

i \ {A}
(3.46)

and the induction hypothesis (3.44) is again satisfied for k + 1, as Y k
i \ {A} ⊆ Y k

i ⊆ Yi.

• j 6= i
Again by (2.25) it holds that

filterB
i

(
Xk+1

1 , . . . , Xk+1
n , Xk+1

ǫ

)
=

filterB
i

(
Xk

1 , . . . , Xk
j−1, Xk

j \ {A}, Xk
j+1, . . . , Xk

n, Xk
ǫ

)
= Y k

i .
(3.47)

In this case the induction hypothesis (3.44) for k + 1 trivially holds.

Suppose Ok+1 = E ∈ Xǫ. By (2.25) there are two possibilities:

• E = go(i)
It follows that

filterB
i

(
Xk+1

1 , . . . , Xk+1
n , Xk+1

ǫ

)
= filterB

i

(
Xk

1 , . . . , Xk
n, Xk

ǫ \ {E}
)

= ∅. (3.48)

Since ∅ ⊆ Yi the induction hypothesis (3.44) for k + 1 is again satisfied.

• E 6= go(i)
Since t-coherence of Xǫ was assumed and t-coherent sets are downward closed, it cannot
happen that after the removal of sleep (i) or hibernate (i) a go(i) event remains in X ′

ǫ.
Therefore in this case it holds that

filterB
i

(
Xk+1

1 , . . . , Xk+1
n , Xk+1

ǫ

)
= filterB

i

(
Xk

1 , . . . , Xk
n, Xk

ǫ \ {E}
)

= Y k
i ⊆ Yi,

(3.49)
which trivially satisfies the induction hypothesis (3.44).

This completes the induction step for every i ∈ A. Since the ordering O1, . . . , OK is arbitrary,
we can safely conclude that the Byzantine action filter is monotonic as well (in the domain

PDt−coh
ǫ , 2GActions1 , . . . , 2GActionsn).

Lemma 3.1.18. The filter function filter≤0
ǫ is monotonic for the domain PDt−coh

ǫ , 2GActions1 ,

..., 2GActionsn.

Proof. By induction:

For any h ∈ G , Xǫ ∈ PDt−coh
ǫ , X1 ∈ 2GActions1 , ..., Xn ∈ 2GActionsn similar as in the proof

for Lemma 3.1.17 suppose O1, . . . , OK is an arbitrary ordering of the events and actions in
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3. The Extension Framework

Xǫ ⊔ X1 ⊔ . . . ⊔ Xn, where K = |Xǫ ⊔ X1 ⊔ . . . ⊔ Xn|, let X0
ǫ = Xǫ, X0

1 = X1, . . . , X0
n = Xn

and define for 0 ≤ k ≤ K − 1 and i ∈ A

Xk+1
ǫ =

{
Xk

ǫ \ {Ok+1} if Ok+1 ∈ Xǫ

Xk
ǫ otherwise

(3.50)

Xk+1
i =

{
Xk

i \ {Ok+1} if Ok+1 ∈ Xi

Xk
i otherwise

(3.51)

and denote
filter≤0

ǫ

(
h, Xk

ǫ , Xk
1 , . . . , Xk

n

)
= Y k

ǫ (3.52)

and
filter≤0

ǫ (h, Xǫ, X1, . . . , Xn) = Yǫ. (3.53)

Induction Hypothesis: For some 0 ≤ k < K

filter≤0
ǫ

(
h, Xk

ǫ , Xk
1 , . . . , Xk

n

)
= Y k

ǫ ⊆ Yǫ. (3.54)

Base Case: For k = 0

filter≤0
ǫ

(
h, X0

ǫ , X0
1 , . . . , X0

n

)
= filter≤0

ǫ (h, Xǫ, X1, . . . , Xn) = Yǫ. (3.55)

Thus Y 0
ǫ ⊆ Yǫ is trivially satisfied.

Induction Step for k → k + 1: If Ok+1 = E ∈ Xǫ

filter≤0
ǫ

(
h, Xk+1

ǫ , Xk+1
1 , . . . , Xk+1

n

)
=

filter≤0
ǫ

(
h, Xk

ǫ \ {E}, Xk
1 , . . . , Xk

n

)
=

(
Xk

ǫ \ {E}
)

\

((
Xk

ǫ \ {E}
)

∩

(
BEvents ⊔

⋃

i∈A

{sleep (i), hibernate (i)}

))
=

(
Xk

ǫ \ {E}
)

\

(
Xk

ǫ ∩

(
BEvents ⊔

⋃

i∈A

{sleep (i), hibernate (i)}

))
⊆

Xk
ǫ \

(
Xk

ǫ ∩

(
BEvents ⊔

⋃

i∈A

{sleep (i), hibernate (i)}

))
= Y k

ǫ .

(3.56)

Therefore by assumption of the induction hypothesis (3.54) we conclude Y k+1
ǫ ⊆ Y k

ǫ ⊆ Yǫ.

If Ok+1 = A ∈ Xi for i ∈ A by (2.91) it follows that

filter≤0
ǫ

(
h, Xk+1

ǫ , Xk+1
1 , . . . , Xk+1

n

)
= filter≤0

ǫ

(
h, Xk

ǫ , Xk
1 , . . . , Xk

i−1, Xk
i \ {A}, Xk

i+1, . . . , Xk
n

)
=

filter≤0
ǫ

(
h, Xk

ǫ , Xk
1 , . . . , Xk

n

)
= Xk

ǫ \

(
Xk

ǫ ∩

(
BEvents ⊔

⋃

i∈A

{sleep (i), hibernate (i)}

))
.

(3.57)
Thus from (3.57) we conclude that removing any action A from the set Xk

i does not affect
filter≤0

ǫ , hence by assumption of the induction hypothesis (3.54) it follows that Y k+1
ǫ = Y k

ǫ ⊆
Yǫ.

This completes the induction step. Since the ordering O1, . . . , OK is arbitrary, we can safely

conclude that filter≤0
ǫ is monotonic (in the domain PDt−coh

ǫ , 2GActions1 , ..., 2GActionsn).
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3.1. Filter Combination

3.1.3 Idempotence

Definition 3.1.19. An event filter function filterα
ǫ is called idempotent for some downward

closed domain PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1 , ..., PDn ⊆ 2GActionsn iff for all histories
h ∈ G , all sets Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn it holds that

filterα
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, filterα
ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn) . (3.58)

Definition 3.1.20. Similarly, an action filter function filterα
i for some i ∈ A is called

idempotent for some downward closed domain PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1 , ..., PDn ⊆

2GActionsn iff for all sets Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn it holds that

filterα
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xi−1, filterα
i (X1, . . . , Xn, Xǫ) , Xi+1, . . . , Xn, Xǫ) .

(3.59)

Lemma 3.1.21. For every global history h ∈ G the neutral filter functions filterN
ǫ and

filterN
i for any i ∈ A are idempotent in the domain 2GEvents , 2GActions1, ..., 2GActionsn.

Proof. By Definition 3.1.1 of the neutral filters for any i ∈ A, h ∈ G , Xǫ ⊆ GEvents,
X1 ⊆ GActions1, ..., Xn ⊆ GActionsn, we get

filterN
ǫ

(
h, filterN

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
= filterN

ǫ (h, Xǫ, X1, . . . , Xn) = Xǫ

(3.60)
and

filterN
i

(
X1, . . . , Xi−1, filterN

i (X1, . . . , Xn, Xǫ) , Xi+1, . . . , Xn, Xǫ

)
=

filterN
i (X1, . . . , Xn, Xǫ) = Xi,

(3.61)

from which the statement follows.

Lemma 3.1.22. The filter functions of the Byzantine transition template τB are idempotent

for every global history in the domain PDt−coh
ǫ , 2GActions1, ..., 2GActionsn.

Proof. By definition of the Byzantine event filter function (2.24) filterB
ǫ only removes receive

events. The condition for removing these however does not depend on the fact whether receive
events are present in its arguments. Suppose by contradiction that

filterB
ǫ (h, Xǫ, X1, . . . , Xn) = Yǫ

and it holds that
filterB

ǫ (h, Yǫ, X1, . . . , Xn) = Y ′
ǫ ⊂ Yǫ.

This implies that there exist j, i ∈ A, µ ∈ Msgs and id ∈ N such that

grecv(j, i, µ, id) ∈ Yǫ and (3.62)

gsend(i, j, µ, id) /∈ hǫ and (3.63)

(∀A ∈ {Â} ⊔ GActionsi) fake (i, gsend(i, j, µ, id) 7→ A) /∈ hǫ and (3.64)

(gsend(i, j, µ, id) /∈ Xi ∨ passive(i, Yǫ)) and (3.65)

(∀A ∈ {Â} ⊔ GActionsi) fake (i, gsend(i, j, µ, id) 7→ A) /∈ Yǫ. (3.66)
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3. The Extension Framework

However since Yǫ ⊆ Xǫ and Xǫ and Yǫ only differ with respect to correct receive events
(therefore in particular passive(i, Xǫ) = passive(i, Yǫ)), (3.62), (3.63, (3.64, (3.65), (3.66) would
hold for Xǫ as well (i.e. if Xǫ was substituted for Yǫ in (3.62), (3.65), (3.66)). Hence any such
grecv(j, i, µ, id) would have already been removed by definition of the Byzantine event filter
(2.24). As a result grecv(j, i, µ, id) /∈ Yǫ contradicting (3.62).
Regarding the action filter function filterB

i for some i ∈ A, it either returns Xi or ∅ depending
on the presence of go(i) in Xǫ (by Definition 2.2.17).

• go(i) ∈ Xǫ:
In this first case, the filter simply returns the input set (since t-coherence of Xǫ was
assumed, it is guaranteed that no other system events sleep (i) or hibernate (i) are present
in Xǫ):

filterB
i (X1, . . . , Xn, Xǫ) = Xi.

Hence it trivially follows that

filterB
i

(
X1, . . . , Xi−1, filterB

i (X1, . . . , Xn, Xǫ) , Xi+1 . . . , Xn, Xǫ

)
=

filterB
i (X1, . . . , Xn, Xǫ) = Xi.

• go(i) /∈ Xǫ:
In this second case, we get

filterB
i (X1, . . . , Xn, Xǫ) = ∅.

Since filterB
i satisfies the basic filter property we further get

filterB
i

(
X1, . . . , Xi−1, filterB

i (X1, . . . , Xn, Xǫ) , Xi+1 . . . , Xn, Xǫ

)
=

filterB
i (X1, . . . , Xi−1, ∅, Xi+1, . . . , Xn, Xǫ) = ∅.

Lemma 3.1.23. For any global history h ∈ G , natural number f ∈ N, the filter filter≤f
ǫ

(2.91) is idempotent in the domain PDt−coh
ǫ , 2GActions1, ..., 2GActionsn.

Proof. By definition of filter≤f
ǫ for some f ∈ N, h ∈ G , Xǫ ⊆ GEvents, X1 ⊆ GActions1, ...,

Xn ⊆ GActionsn either

1. filter≤f
ǫ (h, Xǫ, X1, . . . , Xn) = Xǫ

Since the output of the filter is equal to its input, it is trivially idempotent.

2. filter≤f
ǫ (h, Xǫ, X1, . . . , Xn) = Xǫ \

⋃
i∈A

XB
ǫi

for XB
ǫi

from (2.90). When applying filter≤f
ǫ again, we get either

a) filter≤f
ǫ

(
h, Xǫ \

⋃
i∈A

XB
ǫi

, X1, . . . , Xn

)
= Xǫ \

⋃
i∈A

XB
ǫi

Since the output is equal to the input, the filter is idempotent in this case.
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3.1. Filter Combination

b) filter≤f
ǫ

(
h, Xǫ \

⋃
i∈A

XB
ǫi

, X1, . . . , Xn

)
= (Xǫ \

⋃
i∈A

XB
ǫi

) \
⋃

i∈A
(Xǫ \

⋃
j∈A

XB
ǫj

)B
ǫi

From (2.90) it follows that
⋃

i∈A

(Xǫ \
⋃

j∈A

XB
ǫj

)B
ǫi

= ∅. (3.67)

Therefore
(Xǫ \

⋃

i∈A

XB
ǫi

) \
⋃

i∈A

(Xǫ \
⋃

j∈A

XB
ǫj

)B
ǫi

= Xǫ \
⋃

i∈A

XB
ǫi

(3.68)

holds. Since the output is equal to the input of the filter in this case also, the
statement of the Lemma follows.

3.1.4 Filter Composition

To reiterate, given two event filter functions filterα
ǫ and filterβ

ǫ for some h ∈ G , Xǫ ⊆ GEvents ,
X1 ⊆ GActions1, ..., Xn ⊆ GActionsn we defined filter composition (3.4) as

filterβ◦α
ǫ (h, Xǫ, X1, . . . , Xn) :=

filterβ
ǫ (h, filterα

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn)
(3.69)

and for two action filter functions filterα
i and filterβ

i (for i ∈ A) (3.9) as

filterβ◦α
i (X1, . . . , Xn, Xǫ) :=

filterβ
i (X1, . . . , Xi−1, filterα

i (X1, . . . , Xn, Xǫ, ) , Xi+1, . . . , Xn, Xǫ) .
(3.70)

Lemma 3.1.24. filterN
ǫ and filterN

i (for some i ∈ A) are the neutral elements w.r.t. filter
composition (3.4), (3.9).

Proof. This directly follows from the definition of the neutral filters (3.2), (3.3). For some
arbitrary filters filterα

ǫ , filterα
i , i ∈ A, h ∈ G , Xǫ ⊆ GEvents, X1 ⊆ GActions1, ..., Xn ⊆

GActionsn it holds by (3.4), (3.9) and (3.1.1) that

filterα◦N
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn) = filterN◦α
ǫ (h, Xǫ, X1, . . . , Xn)

filterα◦N
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ) = filterN◦α
i (X1, . . . , Xn, Xǫ) .

(3.71)

Lemma 3.1.25. Filter composition preserves the basic filter property, meaning for any i ∈ A,
h ∈ G , Xǫ ⊆ GEvents, X1 ⊆ GActions1, ..., Xn ⊆ GActionsn and arbitrary filters filterα

ǫ ,
filterβ

ǫ , filterα
i , filterβ

i it holds that

filterα◦β
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ Xǫ

filterα◦β
i (X1, . . . , Xn, Xǫ) ⊆ Xi.

(3.72)

Thus filterα◦β
ǫ and filterα◦β

i are again filter functions.
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3. The Extension Framework

Proof. By definition of event filter composition (3.4):

filterα◦β
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ

(
h, filterβ

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
. (3.73)

Since filterα
ǫ and filterβ

ǫ are both filter functions and therefore satisfy the basic filter property,
it holds that

filterα
ǫ

(
h, filterβ

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
⊆ filterβ

ǫ (h, Xǫ, X1, . . . , Xn) ⊆ Xǫ,

(3.74)
resulting (by transitivity of ⊆) in

filterα◦β
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ Xǫ. (3.75)

Similarly by definition of action filter composition (3.9):

filterα◦β
i (X1, . . . , Xn, Xǫ) = filterα

i

(
X1, . . . , Xi−1, filterβ

i (X1, . . . , Xn, Xǫ) , Xi+1, . . . , Xn, Xǫ

)
.

(3.76)

Since filterα
i and filterβ

i are both filter functions and thus satisfy the basic filter property, it
holds that

filterα
i

(
X1, . . . , Xi−1, filterβ

i (X1, . . . , Xn, Xǫ) , Xi+1, . . . , Xn, Xǫ

)
⊆

filterβ
i (X1, . . . , Xn, Xǫ) ⊆ Xi,

(3.77)

resulting (again by transitivity of ⊆) in

filterα◦β
i (X1, . . . , Xn, Xǫ) ⊆ Xi. (3.78)

Lemma 3.1.26. Filter composition (3.4), (3.9) preserves monotonicity: Given any two filter

functions filterα
ǫ and filterβ

ǫ (respectively filterα
i and filterβ

i for some i ∈ A), which are

monotonic for a given downward closed domain (PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1, ...,

PDn ⊆ 2GActionsn), the combined filter filterα◦β
ǫ (respectively filterα◦β

i ) is also monotonic
for this domain.

Proof. Since given two arbitrary monotonic event filter functions filterα
ǫ , filterβ

ǫ for any
h ∈ G , Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn, X ′

ǫ ⊆ Xǫ, X ′
1 ⊆ X1, ..., X ′

n ⊆ Xn, it holds that

filterα
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆ filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filterβ
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆ filterβ

ǫ (h, Xǫ, X1, . . . , Xn) ,
(3.79)

it immediately follows that

filterα
ǫ

(
h, filterβ

ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
, X ′

1, . . . , X ′
n

)
⊆

filterα
ǫ

(
h, filterβ

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

) (3.80)

and
filterβ

ǫ

(
h, filterα

ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
, X ′

1, . . . , X ′
n

)
⊆

filterβ
ǫ (h, filterα

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn) .
(3.81)
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3.1. Filter Combination

Similarly, for monotonic action filter functions filterα
i , filterβ

i , i ∈ A, h ∈ G , Xǫ ⊆ GEvents ,
X1 ⊆ GActions1, ..., Xn ⊆ GActionsn, X ′

ǫ ⊆ Xǫ, X ′
1 ⊆ X1, ..., X ′

n ⊆ Xn, since

filterα
i

(
X ′

1, . . . , X ′
n, X ′

ǫ

)
⊆ filterα

i (X1, . . . , Xn, Xǫ)

filterβ
i

(
X ′

1, . . . , X ′
n, X ′

ǫ

)
⊆ filterβ

i (X1, . . . , Xn, Xǫ)
(3.82)

it immediately follows that

filterα
i

(
X ′

1, . . . , X ′
i−1, filterβ

i

(
X ′

1, . . . , X ′
n, X ′

ǫ

)
, X ′

i+1, . . . , X ′
n, X ′

ǫ

)
⊆

filterα
i

(
X1, . . . , Xi−1, filterβ

i (X1, . . . , Xn, Xǫ) , Xi+1, . . . , Xn, Xǫ

) (3.83)

and
filterβ

i

(
X ′

1, . . . , X ′
i−1, filterα

i

(
X ′

1, . . . , X ′
n, X ′

ǫ

)
, X ′

i+1, . . . , X ′
n, X ′

ǫ

)
⊆

filterβ
i (X1, . . . , Xi−1, filterα

i (X1, . . . , Xn, Xǫ) , Xi+1, . . . , Xn, Xǫ) .
(3.84)

Lemma 3.1.27. Filter composition (3.4), (3.9) preserves simple monotonicity: Given any two

filter functions filterα
ǫ and filterβ

ǫ (respectively filterα
i and filterβ

i for some i ∈ A), which

are simply monotonic for a given downward closed domain (PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1 ,

..., PDn ⊆ 2GActionsn), the combined filter filterα◦β
ǫ (respectively filterα◦β

i ) is also simply
monotonic for this domain.

Proof. This proof is analogous to that of Lemma 3.1.26. Since, given two arbitrary simply
monotonic event filter functions filterα

ǫ , filterβ
ǫ for any h ∈ G , Xǫ ∈ PDǫ, X1 ∈ PD1, ...,

Xn ∈ PDn, X ′
ǫ ⊆ Xǫ, it holds that

filterα
ǫ

(
h, X ′

ǫ, X1, . . . , Xn

)
⊆ filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filterβ
ǫ

(
h, X ′

ǫ, X1, . . . , Xn

)
⊆ filterβ

ǫ (h, Xǫ, X1, . . . , Xn) ,
(3.85)

it immediately follows that

filterα
ǫ

(
h, filterβ

ǫ

(
h, X ′

ǫ, X1, . . . , Xn

)
, X1, . . . , Xn

)
⊆

filterα
ǫ

(
h, filterβ

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

) (3.86)

and
filterβ

ǫ

(
h, filterα

ǫ

(
h, X ′

ǫ, X1, . . . , Xn

)
, X1, . . . , Xn

)
⊆

filterβ
ǫ (h, filterα

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn) .
(3.87)

Similarly, for simply monotonic action filter functions filterα
i , filterβ

i , i ∈ A, Xǫ ∈ PDǫ,
X1 ∈ PD1, ..., Xn ∈ PDn, X ′

i ⊆ Xi, since

filterα
i

(
X1, . . . , Xi−1, X ′

i, Xi+1, . . . , Xn, Xǫ

)
⊆ filterα

i (X1, . . . , Xn, Xǫ)

filterβ
i

(
X1, . . . , Xi−1, X ′

i, Xi+1, . . . , Xn, Xǫ

)
⊆ filterβ

i (X1, . . . , Xn, Xǫ)
(3.88)
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3. The Extension Framework

it immediately follows that

filterα
i

(
X1, . . . , Xi−1, filterβ

i

(
X1, . . . , Xi−1, X ′

i, Xi+1, . . . , Xn, Xǫ

)
, Xi+1, . . . , Xn, Xǫ

)
⊆

filterα
i

(
X1, . . . , Xi−1, filterβ

i (X1, . . . , Xn, Xǫ) , Xi+1, . . . , Xn, Xǫ

)

(3.89)
and

filterβ
i

(
X1, . . . , Xi−1, filterα

i

(
X1, . . . , Xi−1, X ′

i, Xi+1, . . . , Xn, Xǫ

)
, Xi+1, . . . , Xn, Xǫ

)
⊆

filterβ
i (X1, . . . , Xi−1, filterα

i (X1, . . . , Xn, Xǫ) , Xi+1, . . . , Xn, Xǫ) .
(3.90)

In the following we define two sets of event filters, which we will use as counterexamples.

Definition 3.1.28. For some k ∈ N \ {0} and {E1
a, E2

a, . . . , Ek
a , E1

b , E2
b , . . . , Ek

b } ⊆ GEvents,
where all elements in {E1

a, E2
a, . . . , Ek

a , E1
b , E2

b , . . . , Ek
b } are pairwise distinct, let us define

filterαk

ǫ (h, Xǫ, X1, . . . , Xn) := Xǫ \ {El
a ∈ GEvents | 1 ≤ l ≤ k ∧ El

b /∈ Xǫ} (3.91)

filterβk

ǫ (h, Xǫ, X1, . . . , Xn) := Xǫ \{E
(l mod k)+1
b ∈ GEvents | 1 ≤ l ≤ k ∧ El

a /∈ Xǫ}. (3.92)

Lemma 3.1.29. The filter functions filterαk

ǫ (3.91) and filterβk

ǫ (3.92) are monotonic and

idempotent for the domain 2GEvents , 2GActions1, ..., 2GActionsn.

Proof. From (3.91) and (3.92) it trivially follows that filterαk

ǫ and filterβk

ǫ satisfy the basic
filter property. The fact that the filter functions (3.91) and (3.92) are idempotent is also quite
obvious, as they do not remove any elements on which their removal depends on. Monotonicity
on the other hand is less apparent. Since both filterαk

ǫ and filterβk

ǫ do not depend on any
actions, we only need to focus on the set of events in our proof.

Suppose O1, . . . , OK is an arbitrary ordering of the events Xǫ, where K = |Xǫ|, let X0
ǫ = Xǫ

and define for 0 ≤ l ≤ K − 1

X l+1
ǫ = Xk

ǫ \ {Ol+1} (3.93)

and X0
i = Xi, X l

i arbitrary for i ∈ A.

We start with the proof for filterαk

ǫ by induction on l.
Induction Hypothesis:

filterαk

ǫ

(
h, X l

ǫ, X l
1, . . . , X l

n

)
⊆ filterαk

ǫ (h, Xǫ, X1, . . . , Xn) = Yǫ (3.94)

Base Case: For l = 0 trivially

filterαk

ǫ

(
h, X0

ǫ , X0
1 , . . . , X0

n

)
= filterαk

ǫ (h, Xǫ, X1, . . . , Xn) = Yǫ (3.95)

Induction Step: Suppose the induction hypothesis (3.94) holds for some l ≥ 0. We distinguish
between the following cases for Ol+1:
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3.1. Filter Combination

• If Ol+1 = Ek′

b , for 0 ≤ k′ ≤ k

filterαk

ǫ

(
h, X l+1

ǫ , X l+1
1 , . . . , X l+1

n

)
= filterαk

ǫ

(
h, X l

ǫ \ {Ek′

b }, X l
1, . . . , X l

n

)
=

filterαk

ǫ

(
h, X l

ǫ, X l
1, . . . , X l

n

)
\ {Ek′

a , Ek′

b } ⊆ Yǫ

(3.96)

and the induction hypothesis remains satisfied for l + 1.

• Otherwise if Ol+1 6= Ek′

b , for 0 ≤ k′ ≤ k

filterαk

ǫ

(
h, X l+1

ǫ , X l+1
1 , . . . , X l+1

n

)
= filterαk

ǫ

(
h, X l

ǫ \ {Ol+1}, X l
1, . . . , X l

n

)
=

filterαk

ǫ

(
h, X l

ǫ, X l
1, . . . , X l

n

)
\ {Ol+1} ⊆ Yǫ

(3.97)

and the induction hypothesis again remains satisfied for l + 1.

This concludes the induction step. Since O1, . . . , OK is an arbitrary sequence of events in Xǫ,
we conclude that filterαk

ǫ is indeed monotonic.

Next we examine filterβk

ǫ . We use the same arbitrary sequence O1, . . . , OK , (3.92), X0
i = Xi

and X l
i arbitrary for i ∈ A.

Induction Hypothesis:

filterβk

ǫ

(
h, X l

ǫ, X l
1, . . . , X l

n

)
⊆ filterβk

ǫ (h, Xǫ, X1, . . . , Xn) = Yǫ (3.98)

Base Case: For l = 0 trivially

filterβk

ǫ

(
h, X0

ǫ , X0
1 , . . . , X0

n

)
= filterβk

ǫ (h, Xǫ, X1, . . . , Xn) = Yǫ (3.99)

Induction Step: Suppose the induction hypothesis (3.98) holds for some l ≥ 0. We distinguish
between the following cases for Ol+1:

• If Ol+1 = Ek′

a , for 0 ≤ k′ ≤ k

filterβk

ǫ

(
h, X l+1

ǫ , X l+1
1 , . . . , X l+1

n

)
= filterβk

ǫ

(
h, X l

ǫ \ {Ek′

a }, X l
1, . . . , X l

n

)
=

filterβk

ǫ

(
h, X l

ǫ, X l
1, . . . , X l

n

)
\ {E

(k′ mod k)+1
b , Ek′

a } ⊆ Yǫ

(3.100)

and the induction hypothesis remains satisfied for l + 1.

• Otherwise if Ol+1 6= Ek′

a , for 0 ≤ k′ ≤ k

filterβk

ǫ

(
h, X l+1

ǫ , X l+1
1 , . . . , X l+1

n

)
= filterβk

ǫ

(
h, X l

ǫ \ {Ol+1}, X l
1, . . . , X l

n

)
=

filterβk

ǫ

(
h, X l

ǫ, X l
1, . . . , X l

n

)
\ {Ol+1} ⊆ Yǫ

(3.101)

and the induction hypothesis again remains satisfied for l + 1.

This concludes the induction step. Since O1, . . . , OK is an arbitrary sequence of events in Xǫ,
we conclude that the event filter filterβk

ǫ is monotonic as well.
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3. The Extension Framework

Lemma 3.1.30. Filter composition generally does not preserve idempotence - even for mono-
tonic filters: Given any two filter functions filterα

ǫ and filterβ
ǫ (respectively filterα

i and

filterβ
i for some i ∈ A), which are idempotent and monotonic for some given downward

closed domain (PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1 , ..., PDn ⊆ 2GActionsn), the combined filter

filterα◦β
ǫ (respectively filterα◦β

i ) is not necessarily idempotent for this domain.

Proof. Assuming {E1
a, E2

a, E1
b , E2

b } ⊆ GEvents for pairwise distinct elements {E1
a, E2

a, E1
b , E2

b },
we provide the following counterexample. Using the monotonic and idempotent (by Lemma
3.1.29) filter functions from Definition 3.1.28 for k = 2, any h ∈ G and sets X1 ⊆ GActions1,
..., Xn ⊆ GActionsn, the combined filter (3.4) gives the following result:

filterβ2◦α2

ǫ

(
h, {E1

a, E2
a, E1

b }, X1, . . . , Xn

)
= {E1

a}. (3.102)

A second application on this resulting set however gives

filterβ2◦α2

ǫ

(
h, {E1

a}, X1, . . . , Xn

)
= ∅. (3.103)

Thus we conclude that filter composition (3.4) generally does not preserve idempotence, even
if the filter functions are both monotonic as well (a similar counterexample can be constructed
for action filter composition (3.9)).

Lemma 3.1.31. Filter composition is associative.

Proof. For three event filter functions filterα
ǫ , filterβ

ǫ , filterγ
ǫ , h ∈ G , Xǫ ⊆ GEvents,

X1 ⊆ GActions1, ..., Xn ⊆ GActionsn by definition of event filter composition (3.4)

filter(α◦β)◦γ
ǫ (h, Xǫ, X1, . . . , Xn) =

filterα
ǫ

(
h, filterβ

ǫ (h, filterγ
ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn) , X1, . . . , Xn

)
=

filterα◦(β◦γ)
ǫ (h, Xǫ, X1, . . . , Xn) .

(3.104)

Thus we conclude

filter(α◦β)◦γ
ǫ (h, Xǫ, X1, . . . , Xn) = filterα◦(β◦γ)

ǫ (h, Xǫ, X1, . . . , Xn) . (3.105)

Similarly for three action filter functions filterα
i , filterβ

i , filterγ
i , i ∈ A, Xǫ ⊆ GEvents,

X1 ⊆ GActions1, ..., Xn ⊆ GActionsn by definition of action filter composition (3.9)

filter
(α◦β)◦γ
i (X1, . . . , Xn, Xǫ) =

filterα
i

(
X1, . . . , Xi−1, filterβ

i (X1, . . . , Xi−1, filterγ
i (X1, . . . , Xn, Xǫ) , Xi+1, . . . , Xn, Xǫ) ,

Xi+1, . . . , Xn, Xǫ) = filter
α◦(β◦γ)
i (X1, . . . , Xn, Xǫ) .

(3.106)
Thus we conclude also for action filters

filter
(α◦β)◦γ
i (X1, . . . , Xn, Xǫ) = filter

α◦(β◦γ)
i (X1, . . . , Xn, Xǫ) . (3.107)
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3.1. Filter Combination

Lemma 3.1.32. Filter composition is generally not commutative, even for monotonic and
idempotent filters.

Proof. By counterexample. Recall that filterB
ǫ and filter≤0

ǫ are both monotonic and idem-

potent for the domain PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn by Lemmas 3.1.17, 3.1.18, 3.1.22,

3.1.23.
For i, j ∈ A, µ ∈ Msgs, id ∈ N, A′ ∈ {Â} ⊔ GActionsi, h ∈ G , where

• gsend(i, j, µ, id) /∈ h,

• for all A ∈ {Â} ⊔ GActionsi fake (i, gsend(i, j, µ, id) 7→ A) /∈ h,

• X1 ⊆ GActions1, ..., Xn ⊆ GActionsn, where gsend(i, j, µ, id) /∈ Xi and

• Xǫ = {fake (i, gsend(i, j, µ, id) 7→ A′), grecv(j, i, µ, id)}

we find
filter≤0◦B

ǫ (h, Xǫ, X1, . . . , Xn) = {grecv(j, i, µ, id)}

but

filterB◦≤0
ǫ (h, Xǫ, X1, . . . , Xn) = ∅.

(3.108)

Lemma 3.1.33. For some arbitrary filters filterα
ǫ (respectively filterα

i ) and filterβ
ǫ (re-

spectively filterβ
i for i ∈ A), if for some downward closed domain PDǫ ⊆ 2GEvents , PD1 ⊆

2GActions1 , ..., PDn ⊆ 2GActionsn filterα
ǫ (respectively filterα

i ) is simply monotonic or filterβ
ǫ

(respectively filterβ
i ) is stricter than filterα

ǫ (respectively filterα
i ), then for some h ∈ G ,

Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn

filterα◦β
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filterα◦β
i (X1, . . . , Xn, Xǫ) ⊆ filterα

i (X1, . . . , Xn, Xǫ)
(3.109)

holds.

Proof. There are two cases.

1. Suppose that filterα
ǫ (respectively filterα

i ) is simply monotonic for the downward closed
domain PDǫ, PD1, ..., PDn. This implies that for all h ∈ G , Xǫ ∈ PDǫ, X1 ∈ PD1, ...,
Xn ∈ PDn, X ′

ǫ ⊆ Xǫ

filterα
ǫ

(
h, X ′

ǫ, X1, . . . , Xn

)
⊆ filterα

ǫ (h, Xǫ, X1, . . . , Xn) . (3.110)

Since by the basic filter property for all h ∈ G , Xǫ ⊆ GEvents, X1 ⊆ GActions1, ...,
Xn ⊆ GActionsn

filterβ
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ Xǫ, (3.111)

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3. The Extension Framework

it particularly holds that

filterα◦β
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ

(
h, filterβ

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
⊆

filterα
ǫ (h, Xǫ, X1, . . . , Xn) .

(3.112)
For action filters our assumption implies that for all Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn,
X ′

i ⊆ Xi

filterα
i

(
X1, . . . , Xi−1, X ′

i, Xi+1, . . . Xn, Xǫ

)
⊆ filterα

i (X1, . . . , Xn, Xǫ) . (3.113)

Since by the basic filter property for all i ∈ A, Xǫ ⊆ GEvents, X1 ⊆ GActions1, ...,
Xn ⊆ GActionsn

filterβ
i (X1, . . . , Xn, Xǫ) ⊆ Xi, (3.114)

it also holds that

filterα◦β
i (X1, . . . , Xn, Xǫ) =

filterα
i

(
X1, . . . , Xi−1, filterβ

i (X1, . . . , Xn, Xǫ) , Xi+1, . . . , Xn, Xǫ

)
⊆

filterα
i (X1, . . . , Xn, Xǫ) .

(3.115)

the statement is also satisfied for action filters.

2. Suppose that filterβ
ǫ (respectively filterβ

i ) is stricter than filterα
ǫ (respectively filterα

i ).
This implies that for all h ∈ G , Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn

filterβ
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filterα

ǫ (h, Xǫ, X1, . . . , Xn) , (3.116)

thus by the basic filter property of filterα
ǫ

filterα◦β
ǫ (h, Xǫ, X1, . . . , Xn) =

filterα
ǫ

(
h, filterβ

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
⊆

filterβ
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filterα

ǫ (h, Xǫ, X1, . . . , Xn)

(3.117)

Similarly, for action filters for any i ∈ A, Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn we get
that

filterβ
i (X1, . . . , Xn, Xǫ) ⊆ filterα

i (X1, . . . , Xn, Xǫ) (3.118)

thus by the basic filter property of filterα
i

filterα◦β
i (X1, . . . , Xn, Xǫ) =

filterα
i

(
X1, . . . , Xi−1, filterβ

i (X1, . . . , Xn, Xǫ) , Xi+1, . . . , Xn, Xǫ

)
⊆

filterβ
i (X1, . . . , Xn, Xǫ) ⊆ filterα

i (X1, . . . , Xn, Xǫ)

(3.119)

and we are done.
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3.1. Filter Combination

Since Definition 2.3.14 regarding strictness of filters only considers the whole domain of actions
and events, we provide a separate definition of strictness that is limited to special domains.

Definition 3.1.34. We say that filterα
ǫ (respectively filterα

i for some i ∈ A) is stricter

than filterβ
ǫ (respectively filterβ

i ) for some domain PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1 , ...,

PDn ⊆ 2GActionsn iff for any h ∈ G , Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn

filterα
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filterβ

ǫ (h, Xǫ, X1, . . . , Xn)

filterα
i (X1, . . . , Xn, Xǫ) ⊆ filterβ

i (X1, . . . , Xn, Xǫ) .

Similarly we say that filterα
ǫ (respectively filterα

i for some i ∈ A) is equal to filterβ
ǫ

(respectively filterβ
i ) for some domain PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1 , ..., PDn ⊆

2GActionsn iff for any h ∈ G , Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn

filterα
ǫ (h, Xǫ, X1, . . . , Xn) = filterβ

ǫ (h, Xǫ, X1, . . . , Xn)

filterα
i (X1, . . . , Xn, Xǫ) = filterβ

i (X1, . . . , Xn, Xǫ) .

Lemma 3.1.35. For two filter functions filterα
ǫ (respectively filterα

i ) and filterβ
ǫ (respectively

filterβ
i ), where for some downward closed domain PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1, ...,

PDn ⊆ 2GActionsn , filterα
ǫ (respectively filterα

i ) is stricter than filterβ
ǫ (respectively filterβ

i )

and idempotent, the combined filter filterβ◦α
ǫ (respectively filterβ◦α

i ) simplifies to

filterβ◦α
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filterβ◦α
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ)
(3.120)

for this domain.

Proof. If filterβ
ǫ were to remove something after filterα

ǫ had been applied, it would contradict
our assumption that filterα

ǫ ⊆ filterβ
ǫ , as filterα

ǫ is assumed to be idempotent. Therefore by
definition of event filter composition (3.4) and the basic filter property of filterβ

ǫ we get for
some h ∈ G , Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn

filterα
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, filterα
ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn) ⊆

filterβ
ǫ (h, filterα

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn) ⊆ filterα
ǫ (h, Xǫ, X1, . . . , Xn)

resulting in

filterβ
ǫ (h, filterα

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn) =

filterβ◦α
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn) .
(3.121)

The reasoning for action filters is completely analogous.

Lemma 3.1.36. For two filter functions filterα
ǫ (respectively filterα

i for i ∈ A) and filterβ
ǫ

(respectively filterβ
i ), where for some downward closed domain PDǫ ⊆ 2GEvents , PD1 ⊆
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3. The Extension Framework

2GActions1 , ..., PDn ⊆ 2GActionsn , filterα
ǫ (respectively filterα

i ) is stricter than filterβ
ǫ (respec-

tively filterβ
i ), idempotent and simply monotonic, the combined filter filterα◦β

ǫ (filterα◦β
i )

simplifies to

filterα◦β
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filterα◦β
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ)
(3.122)

for this domain.

Proof. For some h ∈ G , Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn, by Lemma 3.1.33 it follows
that

filterα
ǫ

(
h, filterβ

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
⊆ filterα

ǫ (h, Xǫ, X1, . . . , Xn) .

(3.123)
Also by simple monotonicity of filterα

ǫ and our assumption that it is stricter than filterβ
ǫ , we

get that
filterα

ǫ (h, filterα
ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn) ⊆

filterα
ǫ

(
h, filterβ

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
.

(3.124)

From (3.124), by idempotence of filterα
ǫ , we get

filterα
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filterα

ǫ

(
h, filterβ

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
.

(3.125)
By (3.125) and (3.123) it follows that

filterα
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ

(
h, filterβ

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
.

(3.126)

Thus, the combined filter simplifies to

filterα◦β
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn) . (3.127)

Similarly, for action filters, by simple monotonicity of filterα
i using Lemma 3.1.33, it follows

that

filterα
i

(
X1, . . . , Xi−1, filterβ

i (X1, . . . , Xn, Xǫ) , Xi+1, . . . , Xn, Xǫ

)
⊆ filterα

i (X1, . . . , Xn, Xǫ) .

(3.128)

Also by simple monotonicity of filterα
i and our assumption that it is stricter than filterβ

i , we
get that

filterα
i (X1, . . . , Xi−1, filterα

i (X1, . . . , Xn, Xǫ) , Xi+1, . . . , Xn, Xǫ) ⊆

filterα
i

(
X1, . . . , Xi−1, filterβ

i (X1, . . . , Xn, Xǫ) , Xi+1, . . . , Xn, Xǫ

)
.

(3.129)

From (3.129), by idempotence of filterα
i , we get

filterα
i (X1, . . . , Xn, Xǫ) ⊆ filterα

i

(
X1, . . . , Xi−1, filterβ

i (X1, . . . , Xn, Xǫ) , Xi+1, . . . , Xn, Xǫ

)
.

(3.130)
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3.1. Filter Combination

By (3.130) and (3.128), it follows that

filterα
i (X1, . . . , Xn, Xǫ) = filterα

i

(
X1, . . . , Xi−1, filterβ

i (X1, . . . , Xn, Xǫ) , Xi+1, . . . , Xn, Xǫ

)
.

(3.131)

Thus the combined filter again simplifies to

filterα◦β
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ) (3.132)

and we are done.

What follows is a special case for Lemmas 3.1.35 and 3.1.36.

Corollary 3.1.37. For two filter functions filterα
ǫ (respectively filterα

i for i ∈ A) and filterβ
ǫ

(respectively filterβ
i ), where for a downward closed domain PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1 ,

..., PDn ⊆ 2GActionsn, filterα
ǫ (respectively filterα

i ) is equal to filterβ
ǫ (respectively filterβ

i )

and idempotent, the combined filter filterα◦β
ǫ (respectively filterα◦β

i ) simplifies to

filterα◦β
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn) = filterβ
ǫ (h, Xǫ, X1, . . . , Xn)

filterα◦β
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ) = filterβ
i (X1, . . . , Xn, Xǫ)

(3.133)
for this domain.

3.1.5 Filter Intersection

To reiterate, for two event filter functions filterα
ǫ and filterβ

ǫ for some h ∈ G , Xǫ ⊆ GEvents ,
X1 ⊆ GActions1, ..., Xn ⊆ GActionsn, we defined filter intersection (3.5) as

filterα+β
ǫ (h, Xǫ, X1, . . . , Xn) :=

filterβ◦α
ǫ (h, Xǫ, X1, . . . , Xn) ∩ filterα◦β

ǫ (h, Xǫ, X1, . . . , Xn)
(3.134)

and for two action filter functions filterα
i and filterβ

i (for i ∈ A) (3.10) as

filterα+β
i (X1, . . . , Xn, Xǫ) :=

filterβ◦α
i (X1, . . . , Xn, Xǫ) ∩ filterα◦β

i (X1, . . . , Xn, Xǫ) .
(3.135)

Lemma 3.1.38. filterN
ǫ and filterN

i (for some i ∈ A) are the neutral elements w.r.t. filter
intersection (3.5), (3.10).

Proof. This directly follows from the definition of the neutral filters (3.2), (3.3). For some
arbitrary filters filterα

ǫ , filterα
i , i ∈ A, h ∈ G , Xǫ ⊆ GEvents, X1 ⊆ GActions1, ..., Xn ⊆

GActionsn, from Lemma 3.1.24 (particularly (3.71)) and (3.5), (3.10), we immediately get
that

filterα+N
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn) ∩ filterα
ǫ (h, Xǫ, X1, . . . , Xn) =

filterα
ǫ (h, Xǫ, X1, . . . , Xn) = filterN+α

ǫ (h, Xǫ, X1, . . . , Xn)

and

filterα+N
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ) ∩ filterα
i (X1, . . . , Xn, Xǫ) =

filterα
i (X1, . . . , Xn, Xǫ) = filterN+α

i (X1, . . . , Xn, Xǫ) .
(3.136)
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3. The Extension Framework

Lemma 3.1.39. Filter intersection (3.5), (3.10) preserves the basic filter property: For any
i ∈ A, h ∈ G , Xǫ ⊆ GEvents, X1 ⊆ GActions1, ..., Xn ⊆ GActionsn and arbitrary filters
filterα

ǫ , filterβ
ǫ (respectively filterα

i , filterβ
i ), it holds that

filterα+β
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ Xǫ

filterα+β
i (X1, . . . , Xn, Xǫ) ⊆ Xi.

(3.137)

Thus filterα+β
ǫ and filterα+β

i are again filter functions.

Proof. Since filter intersection is defined as

filterα+β
ǫ (h, Xǫ, X1, . . . , Xn) = filterα◦β

ǫ (h, Xǫ, X1, . . . , Xn) ∩ filterβ◦α
ǫ (h, Xǫ, X1, . . . , Xn)

and

filterα+β
i (X1, . . . , Xn, Xǫ) = filterα◦β

i (X1, . . . , Xn, Xǫ) ∩ filterβ◦α
i (X1, . . . , Xn, Xǫ)

(3.138)
by Lemma 3.1.25 and semantics of set intersection, the statement follows.

Lemma 3.1.40. Filter intersection (3.5), (3.10) preserves monotonicity (for a given downward
closed domain): Given any two filter functions filterα

ǫ and filterβ
ǫ (respectively filterα

i

and filterβ
i for some i ∈ A), which are monotonic for a given downward closed domain

(PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1, ..., PDn ⊆ 2GActionsn), the combined filter filterα+β
ǫ

(respectively filterα+β
i ) is also monotonic for this domain.

Proof. By our assumption regarding monotonicity of the filters filterα
ǫ , filterβ

ǫ (respectively

filterα
i , filterβ

i ) for some downward closed domain by Lemma 3.1.26, we get that for i ∈ A,
h ∈ G , Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn, X ′

ǫ ⊆ Xǫ, X ′
1 ⊆ X1, ..., X ′

n ⊆ Xn

filterα◦β
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆ filterα◦β

ǫ (h, Xǫ, X1, . . . , Xn)

filterβ◦α
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆ filterβ◦α

ǫ (h, Xǫ, X1, . . . , Xn)

filterα◦β
i

(
X ′

1, . . . , X ′
n, X ′

ǫ

)
⊆ filterα◦β

i (X1, . . . , Xn, Xǫ)

filterβ◦α
i

(
X ′

1, . . . , X ′
n, X ′

ǫ

)
⊆ filterβ◦α

i (X1, . . . , Xn, Xǫ) .

Therefore, by definition of filter intersection (3.5), (3.10) and semantics of set intersection,

filterβ◦α
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
∩ filterα◦β

ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆

filterβ◦α
ǫ (h, Xǫ, X1, . . . , Xn) ∩ filterα◦β

ǫ (h, Xǫ, X1, . . . , Xn)

and

filterβ◦α
i

(
X ′

1, . . . , X ′
n, X ′

ǫ

)
∩ filterα◦β

i

(
X ′

1, . . . , X ′
n, X ′

ǫ

)
⊆

filterβ◦α
i (X1, . . . , Xn, Xǫ) ∩ filterα◦β

i (X1, . . . , Xn, Xǫ) ,

from which the statement follows.
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3.1. Filter Combination

Lemma 3.1.41. Filter intersection (3.5), (3.10) preserves simple monotonicity (for given
downward closed domain): Given any two filter functions filterα

ǫ and filterβ
ǫ (respectively

filterα
i and filterβ

i for some i ∈ A), which are simply monotonic for a given (downward

closed) domain (PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1, ..., PDn ⊆ 2GActionsn), the combined

filter filterα+β
ǫ (respectively filterα+β

i ) is also simply monotonic for this domain.

Proof. Analogous to the proof for Lemma 3.1.40.

Lemma 3.1.42. Filter intersection generally does not preserve idempotence (for some down-
ward closed domain), even if the filter functions are monotonic: Given any two filter functions

filterα
ǫ and filterβ

ǫ (respectively filterα
i and filterβ

i for some i ∈ A), which are idempotent

and monotonic for some given downward closed domain (PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1,

..., PDn ⊆ 2GActionsn), the combined filter filterα+β
ǫ (respectively filterα+β

i ) is not necessarily
idempotent for this domain.

Proof. We provide the following counterexample for event filters, assuming {E1
a, E2

a, E1
b , E2

b } ∈
PDǫ and pairwise distinct elements in {E1

a, E2
a, E1

b , E2
b }. Using the monotonic and idempotent

(by Lemma 3.1.29) filter functions from Definition 3.1.28 for any h ∈ G and sets Xǫ ⊆ GEvents ,
X1 ⊆ GActions1, ..., Xn ⊆ GActionsn, the combined filter (3.5) gives the following result

filterα2+β2

ǫ

(
h, {E1

a, E2
a, E1

b }, X1, . . . , Xn

)
= {E1

a}. (3.139)

A second application on this resulting set however gives

filterα2+β2

ǫ

(
h, {E1

a}, X1, . . . , Xn

)
= ∅. (3.140)

Thus we conclude that event filter intersection (3.5) generally does not preserve idempotence,
even if the filter functions are both monotonic as well. A similar counterexample can be
constructed for action filter intersection (3.10).

Definition 3.1.43. We define the following event filter functions for h ∈ G , Xǫ ⊆ GEvents,
X1 ⊆ GActions1, ..., Xn ⊆ GActionsn, where Ea, Ec

a, Eb
a, Ecb

a , Ebc
a , Eb, Ec

b , Ea
b , Eca

b , Eac
b , Ec,

Ea
c , Eb

c , Eab
c , Eba

c ∈ GEvents

filterα
ǫ (h, Xǫ, X1, . . . , Xn) :=





Xǫ \ {Ea} Eb ∈ Xǫ ∧ Ec ∈ Xǫ ∧ Ec
b ∈ Xǫ ∧ Eb

c ∈ Xǫ

Xǫ \ {Ea, Eb
a} Eb /∈ Xǫ ∧ Ec ∈ Xǫ ∧ Ec

b ∈ Xǫ ∧ Eb
c ∈ Xǫ

Xǫ \ {Ea, Ec
a} Eb ∈ Xǫ ∧ Ec /∈ Xǫ ∧ Ec

b ∈ Xǫ ∧ Eb
c ∈ Xǫ

Xǫ \ {Ea, Ec
a, Eb

a, Ebc
a } Eb /∈ Xǫ ∧ Ec /∈ Xǫ ∧ Ec

b ∈ Xǫ ∧ Eb
c /∈ Xǫ

Xǫ \ {Ea, Ec
a, Eb

a, Ecb
a } Eb /∈ Xǫ ∧ Ec /∈ Xǫ ∧ Ec

b /∈ Xǫ ∧ Eb
c ∈ Xǫ

Xǫ \ {Ea, Ec
a, Eb

a, Ecb
a , Ebc

a } Eb /∈ Xǫ ∧ Ec /∈ Xǫ ∧ Ec
b /∈ Xǫ ∧ Eb

c /∈ Xǫ ∧ Ea ∈

Xǫ Eb /∈ Xǫ ∧ Ec /∈ Xǫ ∧ Ec
b /∈ Xǫ ∧ Eb

c /∈ Xǫ ∧ Ea /∈

∅ otherwise,

(3.141)
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3. The Extension Framework

filterβ
ǫ (h, Xǫ, X1, . . . , Xn) :=





Xǫ \ {Eb} Ea ∈ Xǫ ∧ Ec ∈ Xǫ ∧ Ec
a ∈ Xǫ ∧ Ea

c ∈ Xǫ

Xǫ \ {Eb, Ea
b } Ea /∈ Xǫ ∧ Ec ∈ Xǫ ∧ Ec

a ∈ Xǫ ∧ Ea
c ∈ Xǫ

Xǫ \ {Eb, Ec
b} Ea ∈ Xǫ ∧ Ec /∈ Xǫ ∧ Ec

a ∈ Xǫ ∧ Ea
c ∈ Xǫ

Xǫ \ {Eb, Ec
b , Ea

b , Eac
b } Ea /∈ Xǫ ∧ Ec /∈ Xǫ ∧ Ec

a ∈ Xǫ ∧ Ea
c /∈ Xǫ

Xǫ \ {Eb, Ec
b , Ea

b , Eca
b } Ea /∈ Xǫ ∧ Ec /∈ Xǫ ∧ Ec

a /∈ Xǫ ∧ Ea
c ∈ Xǫ

Xǫ \ {Eb, Ec
b , Ea

b , Eca
b , Eac

b } Ea /∈ Xǫ ∧ Ec /∈ Xǫ ∧ Ec
a /∈ Xǫ ∧ Ea

c /∈ Xǫ ∧ Eb ∈

Xǫ Ea /∈ Xǫ ∧ Ec /∈ Xǫ ∧ Ec
a /∈ Xǫ ∧ Ea

c /∈ Xǫ ∧ Eb /∈

∅ otherwise,

(3.142)

filterγ
ǫ (h, Xǫ, X1, . . . , Xn) :=





Xǫ \ {Ec} Eb ∈ Xǫ ∧ Ea ∈ Xǫ ∧ Ea
b ∈ Xǫ ∧ Eb

a ∈ Xǫ

Xǫ \ {Ec, Eb
c} Eb /∈ Xǫ ∧ Ea ∈ Xǫ ∧ Ea

b ∈ Xǫ ∧ Eb
a ∈ Xǫ

Xǫ \ {Ec, Ea
c } Eb ∈ Xǫ ∧ Ea /∈ Xǫ ∧ Ea

b ∈ Xǫ ∧ Eb
a ∈ Xǫ

Xǫ \ {Ec, Ea
c , Eb

c , Eba
c } Eb /∈ Xǫ ∧ Ea /∈ Xǫ ∧ Ea

b ∈ Xǫ ∧ Eb
a /∈ Xǫ

Xǫ \ {Ec, Ea
c , Eb

c , Eab
c } Eb /∈ Xǫ ∧ Ea /∈ Xǫ ∧ Ea

b /∈ Xǫ ∧ Eb
a ∈ Xǫ

Xǫ \ {Ec, Ea
c , Eb

c , Eab
c , Eba

c } Eb /∈ Xǫ ∧ Ea /∈ Xǫ ∧ Ea
b /∈ Xǫ ∧ Eb

a /∈ Xǫ ∧ Ec ∈

Xǫ Eb /∈ Xǫ ∧ Ea /∈ Xǫ ∧ Ea
b /∈ Xǫ ∧ Eb

a /∈ Xǫ ∧ Ec /∈

∅ otherwise.

(3.143)

Lemma 3.1.44. The functions filterα
ǫ , filterβ

ǫ , filterγ
ǫ from Definition 3.1.43 are event filters

and idempotent for the domain 2GEvents , 2GActions1, ..., 2GActionsn under the assumption that
all elements in {Ea, Ec

a, Eb
a, Ecb

a , Ebc
a , Eb, Ec

b , Ea
b , Eca

b , Eac
b , Ec, Ea

c , Eb
c , Eab

c , Eba
c } are pairwise

distinct.

Proof. The three filters’ adherence to the basic filter property follows from their Definition
3.1.43.

Regarding idempotence the only non-trivial case for filterα
ǫ occurs if Xǫ is such that Eb /∈

Xǫ ∧ Ec /∈ Xǫ ∧ Ec
b /∈ Xǫ ∧ Eb

c /∈ Xǫ ∧ Ea ∈ Xǫ. For any h ∈ G and X1 ⊆ GActions1, ...,
Xn ⊆ GActionsn

filterα
ǫ

(
h, filterα

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
=

filterα
ǫ

(
h, Xǫ \ {Ea, Ec

a, Eb
a, Ecb

a , Ebc
a }, X1, . . . , Xn

)
= Xǫ \ {Ea, Ec

a, Eb
a, Ecb

a , Ebc
a }.

The reasoning for filterβ
ǫ and filterγ

ǫ are analogous.

Lemma 3.1.45. Filter intersection is generally not associative, even for idempotent filter
functions.

Proof. We construct the following counterexample using the three event filter functions (3.141),
(3.142), (3.143). Their idempotence follows from Lemma 3.1.44. For

Xǫ = {Ea, Ec
a, Eb

a, Ecb
a , Ebc

a , Eb, Ec
b , Ea

b , Eca
b , Eac

b , Ec, Ea
c , Eb

c , Eab
c , Eba

c } (3.144)
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3.1. Filter Combination

(where we assume that all elements in Xǫ are pairwise distinct) and any history h ∈ G and
sets X1 ⊆ GActions1, ..., Xn ⊆ GActionsn, after tedious but simple computations using

α + (β + γ) = α ◦ β ◦ γ ∩ α ◦ γ ◦ β ∩ β ◦ γ ◦ α ∩ γ ◦ β ◦ α

(α + β) + γ = α ◦ β ◦ γ ∩ β ◦ α ◦ γ ∩ γ ◦ α ◦ β ∩ γ ◦ β ◦ α

we get

filterα+(β+γ)
ǫ (h, Xǫ, X1, . . . , Xn) = {Eca

b , Eba
c } (3.145)

and

filter(α+β)+γ
ǫ (h, Xǫ, X1, . . . , Xn) = {Ebc

a , Eac
b }. (3.146)

Thus we conclude that filter intersection is not associative even for idempotent filters.

Lemma 3.1.46. Filter intersection is commutative.

Proof. From definition of filter intersection (3.5), (3.10), the lemma follows by commutativity
of set intersection.

Lemma 3.1.47. For two filter functions filterα
ǫ (respectively filterα

i for i ∈ A) and filterβ
ǫ

(respectively filterβ
i ), where for some downward closed domain PDǫ ⊆ 2GEvents , PD1 ⊆

2GActions1 , ..., PDn ⊆ 2GActionsn , filterα
ǫ (respectively filterα

i ) is stricter than filterβ
ǫ (respec-

tively filterβ
i ), idempotent and simply monotonic, the combined filter filterα+β

ǫ (respectively

filterα+β
i ) simplifies to

filterα+β
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filterα+β
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ)
(3.147)

for this domain.

Proof. Follows directly from Lemmas 3.1.35 and 3.1.36.

Corollary 3.1.48. For two filter functions filterα
ǫ (respectively filterα

i for i ∈ A) and

filterβ
ǫ (respectively filterβ

i ), where for some downward closed domain PDǫ ⊆ 2GEvents ,

PD1 ⊆ 2GActions1, ..., PDn ⊆ 2GActionsn, filterα
ǫ (respectively filterα

i ) is equal to filterβ
ǫ

(respectively filterβ
i ) and idempotent, the combined filter filterα+β

ǫ (respectively filterα+β
i )

simplifies to

filterα+β
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn) = filterβ
ǫ (h, Xǫ, X1, . . . , Xn)

filterα+β
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ) = filterβ
i (X1, . . . , Xn, Xǫ)

(3.148)
in this domain.

Proof. By definition of filter intersection (3.5), (3.10) the statement immediately follows from
Corollary 3.1.37 and semantics of set intersection.
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3. The Extension Framework

3.1.6 k-Filter Intersection

To reiterate, given two event filter functions filterα
ǫ and filterβ

ǫ for some h ∈ G , Xǫ ⊆ GEvents ,
X1 ⊆ GActions1, ..., Xn ⊆ GActionsn, we defined k-filter intersection for k ∈ N \ {0} (3.6) as

filterk·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) :=

filterα+β
ǫ


h,

(
. . .

(
filterα+β

ǫ (h, Xǫ, X1, . . . , Xn)

)
. . .

)

︸ ︷︷ ︸
k−1 times

, X1, . . . , Xn




(3.149)

and 0-filter intersection (3.7) as

filter0·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) := filterN

ǫ (h, Xǫ, X1, . . . , Xn) . (3.150)

For two action filter functions filterα
i and filterβ

i (for i ∈ A) we defined k-filter intersection
(3.11) as

filter
k·(α+β)
i (X1, . . . , Xn, Xǫ) :=

filterα+β
i


X1, . . . , Xi−1,

(
. . .

(
filterα+β

i (X1, . . . , Xn, Xǫ)

)
. . .

)

︸ ︷︷ ︸
k−1 times

, Xi+1, . . . , Xn, Xǫ




(3.151)
and 0-filter intersection (3.12) as

filter
0·(α+β)
i (X1, . . . , Xn, Xǫ) := filterN

i (X1, . . . , Xn, Xǫ) . (3.152)

Lemma 3.1.49. filterN
ǫ (respectively filterN

i for some i ∈ A) is the neutral element w.r.t.
k-filter intersection (for k ≥ 2) for some filterα

ǫ (respectively filterα
i ) in the domain (PDǫ ⊆

2GEvents , PD1 ⊆ 2GActions1 , ..., PDn ⊆ 2GActionsn) if and only if filterα
ǫ (respectively filterα

i )
is idempotent in this domain.

Proof. Direction "⇒":
Suppose for some arbitrary filter filterα

ǫ (respectively filterα
i for i ∈ A) and h ∈ G , Xǫ ∈ PDǫ,

X1 ∈ PD1, ..., Xn ∈ PDn

filterk·(α+N)
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filter
k·(α+N)
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ) .
(3.153)

Since k-filter intersection (3.6), (3.11) for k ≥ 2 is defined as compositions of filter intersection,
by Definition 3.1.7 (basic filter property) filterα

ǫ and filterα
i have to be idempotent in the

domain PDǫ, PD1, ..., PDn, as otherwise

filterk·(α+N)
ǫ (h, Xǫ, X1, . . . , Xn) = (by Lemma 3.1.38)

filterk·α
ǫ (h, Xǫ, X1, . . . , Xn) ⊂ filterα

ǫ (h, Xǫ, X1, . . . , Xn)
(3.154)
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3.1. Filter Combination

and similarly for action filters

filter
k·(α+N)
i (X1, . . . , Xn, Xǫ) = (by Lemma 3.1.38)

filterk·α
i (X1, . . . , Xn, Xǫ) ⊂ filterα

i (X1, . . . , Xn, Xǫ) .
(3.155)

would hold, which however violates our assumption (3.153).

Direction "⇐":
Suppose the filters filterα

ǫ , filterα
i for i ∈ A are idempotent in the domain PDǫ ⊆ 2GEvents ,

PD1 ⊆ 2GActions1 , ..., PDn ⊆ 2GActionsn . By Lemma 3.1.38 and (3.6), (3.11), k-filter intersec-
tion boils down to nesting filterα

ǫ (respectively filterα
i ) k − 1 times. However, since filterα

ǫ

(respectively filterα
i ) were assumed to be idempotent, it follows that for any i ∈ A, h ∈ G ,

Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn

(∀l ∈ N \ {0, 1}) filterα+N
ǫ


h,

(
. . .

(
filterα+N

ǫ (h, Xǫ, X1, . . . , Xn)

)
. . .

)

︸ ︷︷ ︸
l−1 times

, X1, . . . , Xn


 =

filterα
ǫ (h, Xǫ, X1, . . . , Xn)

and

(∀l ∈ N \ {0, 1}) filterα+N
i


X1, . . . , Xi−1,

(
. . .

(
filterα+N

i (X1, . . . , Xn, Xǫ)

)
. . .

)

︸ ︷︷ ︸
l−1 times

, Xi+1, . . . , Xn, Xǫ


 =

filterα
i (X1, . . . , Xn, Xǫ) .

Lemma 3.1.50. k-filter intersection (3.6), (3.11), (3.7), (3.12) preserves the basic filter
property: For any k ∈ N, i ∈ A, h ∈ G , Xǫ ⊆ GEvents, X1 ⊆ GActions1, ..., Xn ⊆ GActionsn

and arbitrary filters filterα
ǫ , filterβ

ǫ (respectively filterα
i , filterβ

i ) it holds that

filterk·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ Xǫ

filter
k·(α+β)
i (X1, . . . , Xn, Xǫ) ⊆ Xi.

(3.156)

Thus, filter
k·(α+β)
ǫ and filter

k·(α+β)
i are again filter functions.

Proof. For k ≥ 1,

filterk·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) =

filterα+β
ǫ


h,

(
. . .

(
filterα+β

ǫ (h, Xǫ, X1, . . . , Xn)

)
. . .

)

︸ ︷︷ ︸
k−1 times

, X1, . . . , Xn



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3. The Extension Framework

and

filter
k·(α+β)
i (X1, . . . , Xn, Xǫ) =

filterα+β
i


X1, . . . , Xi−1,

(
. . .

(
filterα+β

i (X1, . . . , Xn, Xǫ)

)
. . .

)

︸ ︷︷ ︸
k−1 times

, Xi+1, . . . , Xn, Xǫ




A trivial induction using Lemma 3.1.39 and 3.1.9 in the induction step establishes (3.156).
For k = 0, it follows trivially from

filter0·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) = filterN

ǫ (h, Xǫ, X1, . . . , Xn) = Xǫ

filter
0·(α+β)
i (X1, . . . , Xn, Xǫ) = filterN

i (X1, . . . , Xn, Xǫ) = Xi.

Lemma 3.1.51. k-filter intersection (for some k ∈ N) (3.6), (3.11), (3.7), (3.12) preserves
monotonicity (for a given downward closed domain): Given any two filter functions filterα

ǫ

and filterβ
ǫ (respectively filterα

i and filterβ
i for some i ∈ A), which are monotonic for a

given (downward closed) domain (PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1, ..., PDn ⊆ 2GActionsn),

the combined filter filter
k·(α+β)
ǫ (respectively filter

k·(α+β)
i ) is also monotonic for this domain.

Proof. We start by examining event filters and use induction on k. Induction Hypothesis:
For any h ∈ G , Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn and X ′

ǫ ⊆ Xǫ, X ′
1 ⊆ X1, ..., X ′

n ⊆ Xn

and k ≥ 1

filterk·(α+β)
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆ filterk·(α+β)

ǫ (h, Xǫ, X1, . . . , Xn) (3.157)

Base Case: If k = 0, then monotonicity follows from Lemma 3.1.16 as for any h ∈ G ,
Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn and X ′

ǫ ⊆ Xǫ, X ′
1 ⊆ X1, ..., X ′

n ⊆ Xn

filterN
ǫ (h, Xǫ, X1, . . . , Xn) = filter0·(α+β)

ǫ (h, Xǫ, X1, . . . , Xn) . (3.158)

Induction Step: Suppose the induction hypothesis (3.157) holds for k, then for any h ∈ G ,
Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn and X ′

ǫ ⊆ Xǫ, X ′
1 ⊆ X1, ..., X ′

n ⊆ Xn and k ≥ 1 by
monotonicity of filterα

ǫ and filterβ
ǫ and Lemma 3.1.40

filterα+β
ǫ

(
h, filterk·(α+β)

ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
, X ′

1, . . . , X ′
n

)
⊆

filterα+β
ǫ

(
h, filterk·(α+β)

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
.

(3.159)

Since

filter(k+1)·(α+β)
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
=filterα+β

ǫ

(
h, filterk·(α+β)

ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
, X ′

1, . . . , X ′
n

)

and

filter(k+1)·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) =filterα+β

ǫ

(
h, filterk·(α+β)

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
,

(3.160)
this completes the induction step. The reasoning for action filters is completely analogous.
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3.1. Filter Combination

Corollary 3.1.52. k-filter intersection (for some k ∈ N) (3.6), (3.11), (3.7), (3.12) preserves
simple monotonicity (for a given downward closed domain): Given any two filter functions

filterα
ǫ and filterβ

ǫ (respectively filterα
i and filterβ

i for some i ∈ A), which are simply

monotonic for a given downward closed domain (PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1, ...,

PDn ⊆ 2GActionsn), the combined filter filter
k·(α+β)
ǫ (respectively filter

k·(α+β)
i ) is also simply

monotonic for this domain.

Proof. Analogous to the proof of Lemma 3.1.51.

Lemma 3.1.53. For some k ≥ 1, any h ∈ G , Xǫ = {E1
a, E2

a, . . . , Ek
a , E2

b , . . . , Ek
b } (assum-

ing {E1
a, E2

a, . . . , Ek
a , E1

b , E2
b , . . . , Ek

b } ⊆ GEvents with distinct elements in {E1
a, E2

a, . . . , Ek
a ,

E1
b , E2

b , . . . , Ek
b }), arbitrary sets X1 ⊆ GActions1, ..., Xn ⊆ GActionsn, and 0 ≤ k̃ < k, the

result of the combined filter filter
k̃·(αk+βk)
ǫ is

filterk̃·(αk+βk)
ǫ (h, Xǫ, X1, . . . , Xn) = {Ek̃+1

a , Ek̃+2
a , . . . , Ek

a , Ek̃+2
b , Ek̃+3

b , . . . , Ek
b }. (3.161)

Proof. For k̃ = 0 we get

filter0·(αk+βk)
ǫ (h, Xǫ, X1, . . . , Xn) = {E1

a, E2
a, . . . , Ek

a , E2
b , E3

b , . . . , Ek
b } (3.162)

For k̃ ≥ 1 we use induction.
Base Case: By using Definition 3.1.28 we obtain

filter1·(αk+βk)
ǫ (h, Xǫ, X1, . . . , Xn) = {E2

a, E3
a, . . . , Ek

a , E3
b , E4

b , . . . , Ek
b }. (3.163)

Induction Step: Suppose the induction hypothesis (3.161) holds for some k̃ < k − 1. By
definition of k̃-filter intersection (3.6), the k̃ + 1-intersected filter results in

filter(k̃+1)·(αk+βk)
ǫ (h, Xǫ, X1, . . . , Xn) =

filterαk+βk

ǫ

(
h, filterk̃·(αk+βk)

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
=

(by the induction hypothesis (3.161))

filterαk+βk

ǫ

(
h, {Ek̃+1

a , . . . , Ek
a , Ek̃+2

b , . . . , Ek
b }, X1, . . . , Xn

)
= (by (3.91), (3.92))

filterαk

ǫ

(
h, filterβk

ǫ

(
h, {Ek̃+1

a , . . . , Ek
a , Ek̃+2

b , . . . , Ek
b }, X1, . . . , Xn

)
, X1, . . . , Xn

)
∩

filterβk

ǫ

(
h, filterαk

ǫ

(
h, {Ek̃+1

a , . . . , Ek
a , Ek̃+2

b , . . . , Ek
b }, X1, . . . , Xn

)
, X1, . . . , Xn

)
=

filterαk

ǫ

(
h, {Ek̃+1

a , . . . , Ek
a , Ek̃+2

b , . . . , Ek
b }, X1, . . . , Xn

)
∩

filterβk

ǫ

(
h, {Ek̃+2

a , . . . , Ek
a , Ek̃+2

b , . . . , Ek
b }, X1, . . . , Xn

)
=

{Ek̃+2
a , . . . , Ek

a , Ek̃+2
b , . . . , Ek

b } ∩ {Ek̃+2
a , . . . , Ek

a , Ek̃+3
b , . . . , Ek

b } =

{Ek̃+2
a , . . . , Ek

a , Ek̃+3
b , . . . , Ek

b } = {E(k̃+1)+1
a , . . . , Ek

a , E
(k̃+1)+2
b , . . . , Ek

b }.
(3.164)

This completes the induction step.
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3. The Extension Framework

Lemma 3.1.54. k-filter intersection for some k ≥ 1 does not necessarily preserve idempotence
(for some downward closed domain), even if the filter functions are monotonic: There does not
exists a number k ∈ N \ {0} s.t. for any two filter functions filterα

ǫ and filterβ
ǫ (respectively

filterα
i and filterβ

i for some i ∈ A), which are idempotent and monotonic for some given

downward closed domain (PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1, ..., PDn ⊆ 2GActionsn), the

combined filter filter
k·(α+β)
ǫ (respectively filter

k·(α+β)
i ) is also idempotent for this domain.

Proof. We use the filter functions filterαk′

ǫ (3.91) and filterβk′

ǫ (3.92) with k′ = k + 1 as
our counterexample. By Lemma 3.1.29, both are monotonic and idempotent. Suppose by
contradiction that there exists some number k ≥ 1 s.t. the k-filter intersection of any two

filters results in an idempotent filter. When applying the k-combined filter filter
k·(αk′

+βk′
)

ǫ to
the set Xǫ = {E1

a, E2
a, . . . , Ek′

a , E2
b , . . . , Ek′

b } (assuming {E1
a, E2

a, . . . , Ek′

a , E1
b , E2

b , . . . , Ek′

b } ⊆
GEvents and pairwise distinct elements in {E1

a, E2
a, . . . , Ek

a , E1
b , E2

b , . . . , Ek
b }), for any h ∈ G ,

X1 ⊆ GActions1, ..., Xn ⊆ GActionsn, by Lemma 3.1.53, the result is

filterk·(αk′
+βk′

)
ǫ (h, Xǫ, X1, . . . , Xn) = {Ek′

a }. (3.165)

However, applying filter
k·(αk′

+βk′
)

ǫ again leads to

filterk·(αk′
+βk′

)
ǫ

(
h, {Ek′

a }, X1, . . . , Xn

)
= ∅. (3.166)

Therefore filter
k·(αk+1+βk+1)
ǫ is not idempotent for any k ≥ 1.

Lemma 3.1.55. k-filter intersection is generally not associative for any k ∈ N \ {0}.

Proof. Using the filters from Definition 3.1.43 and the event set

Xǫ = {Ea, Ec
a, Eb

a, Ecb
a , Ebc

a , Eb, Ec
b , Ea

b , Eca
b , Eac

b , Ec, Ea
c , Eb

c , Eab
c , Eba

c }, (3.167)

for some k > 1 we get that

filterk·(β+γ)
ǫ (h, Xǫ, X1, . . . , Xn) = Xǫ \ {Eb, Ec, Eb

c , Ec
b}, (3.168)

thus

filterk·(β+γ)◦α
ǫ (h, Xǫ, X1, . . . , Xn) = Xǫ \ {Eb, Ec, Eb

c , Ec
b , Ea, Ec

a, Eb
a, Ecb

a , Ebc
a }. (3.169)

Also

filterα
ǫ (h, Xǫ, X1, . . . , Xn) = Xǫ \ {Ea} (3.170)

and

filterα◦k·(β+γ)
ǫ (h, Xǫ, X1, . . . , Xn) = Xǫ \ {Ea, Eb, Ec, Ea

b , Ea
c , Eac

b , Eab
c }. (3.171)

Therefore

filterk·(α+k·(β+γ))
ǫ (h, Xǫ, X1, . . . , Xn) = {Eca

b , Eba
c }. (3.172)
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3.1. Filter Combination

Regarding filter
k·(k·(α+β)+γ)
ǫ

filterk·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) = Xǫ \ {Ea, Eb, Ea

b , Eb
a}, (3.173)

thus

filterk·(α+β)◦γ
ǫ (h, Xǫ, X1, . . . , Xn) = Xǫ \ {Ea, Eb, Ea

b , Eb
a, Ec, Ea

c , Eb
c , Eab

c , Eba
c }. (3.174)

Also
filterγ

ǫ (h, Xǫ, X1, . . . , Xn) = Xǫ \ {Ec} (3.175)

and

filterγ◦k·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) = Xǫ \ {Ea, Eb, Ec, Ec

a, Ec
b , Eca

b , Ecb
a }. (3.176)

Therefore
filterk·(k·(α+β)+γ)

ǫ (h, Xǫ, X1, . . . , Xn) = {Ebc
a , Eac

b }. (3.177)

Lemma 3.1.56. k-filter intersection is commutative.

Proof. Since by (3.6) and (3.11) k-filter intersection is just k compositions of the same filter
intersection (3.5), (3.10) and filter intersection is commutative, so is k-filter intersection. More

specifically, for two filters filterα
ǫ , filterβ

ǫ (respectively filterα
i , filterβ

i for i ∈ A) and some
h ∈ G , Xǫ ⊆ GEvents , X1 ⊆ GActions1, ..., Xn ⊆ GActionsn, k ≥ 1

filterα+β
ǫ (h, Xǫ, X1, . . . , Xn) = filterβ+α

ǫ (h, Xǫ, X1, . . . , Xn)

=⇒

filterk·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) = filterα+β

ǫ

(
h, filterα+β

ǫ (. . . )X1, . . . , Xn

)
=

filterβ+α
ǫ

(
h, filterβ+α

ǫ (. . . ), X1, . . . , Xn

)
= filterk·(β+α)

ǫ (h, Xǫ, X1, . . . , Xn)

(3.178)

and equivalently for action filters

filterα+β
i (X1, . . . , Xn, Xǫ) = filterβ+α

i (X1, . . . , Xn, Xǫ)

=⇒

filter
k·(α+β)
i (X1, . . . , Xn, Xǫ) =

filterα+β
i

(
X1, . . . , Xi−1, filterα+β

i (. . . ), Xi+1, . . . , Xn, Xǫ

)
=

filterβ+α
i

(
X1, . . . , Xi−1, filterβ+α

i (. . . ), Xi+1, . . . , Xn, Xǫ

)
=

filter
k·(β+α)
i (X1, . . . , Xn, Xǫ)

(3.179)

The case k = 0 is even more trivial, as

filter0·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) = filterN

ǫ (h, Xǫ, X1, . . . , Xn) = filter0·(β+α)
ǫ (h, Xǫ, X1, . . . , Xn)

and

filter
0·(α+β)
i (X1, . . . , Xn, Xǫ) = filterN

i (X1, . . . , Xn, Xǫ) = filter
0·(β+α)
i (X1, . . . , Xn, Xǫ) .

(3.180)
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3. The Extension Framework

Lemma 3.1.57. Given filter functions filterα
ǫ , filterβ

ǫ (respectively filterα
i , filterβ

i for
i ∈ A) for some k, k′ ∈ N, where k′ ≤ k, h ∈ G , Xǫ ⊆ GEvents, X1 ⊆ GActions1, ...,
Xn ⊆ GActionsn, it holds that

filterk·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filterk′·(α+β)

ǫ (h, Xǫ, X1, . . . , Xn)

filter
k·(α+β)
i (X1, . . . , Xn, Xǫ) ⊆ filter

k′·(α+β)
i (X1, . . . , Xn, Xǫ)

(3.181)

Proof. Immediately follows from the definition of k-filter intersection (3.6), (3.11), Lemmas
3.1.39 and 3.1.9.

Lemma 3.1.58. For two filter functions filterα
ǫ (respectively filterα

i for some i ∈ A) and

filterβ
ǫ (respectively filterβ

i ), some k ≥ 1, where for some downward closed domain PDǫ ⊆

2GEvents , PD1 ⊆ 2GActions1, ..., PDn ⊆ 2GActionsn filterα
ǫ (respectively filterα

i ) is stricter

than filterβ
ǫ (respectively filterβ

i ), idempotent and simply monotonic, the combined filter

filter
k·(α+β)
ǫ (respectively filter

k·(α+β)
i ) simplifies to

filterk·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filter
k·(α+β)
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ)
(3.182)

for this domain.

Proof. From Lemma 3.1.47, it follows that for any i ∈ A, h ∈ G , Xǫ ∈ PDǫ, X1 ∈ PD1, ...,
Xn ∈ PDn

filterα+β
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filterα+β
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ) .
(3.183)

Further by idempotence of filterα
ǫ (respectively filterα

i ), we get that for any k ≥ 1

filterk·α
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filterk·α
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ) ,
(3.184)

from which the statement follows.

What follows is a special case of Lemma 3.1.58.

Corollary 3.1.59. For two filter functions filterα
ǫ (respectively filterα

i for some i ∈ A)

and filterβ
ǫ (respectively filterβ

i ), some k ≥ 1, where for some downward closed domain

PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1, ..., PDn ⊆ 2GActionsn, filterα
ǫ (filterα

i ) is equal to

filterβ
ǫ (respectively filterβ

i ) and idempotent, the combined filter filter
k·(α+β)
ǫ (filter

k·(α+β)
i )

simplifies to

filterk·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn) = filterβ
ǫ (h, Xǫ, X1, . . . , Xn)

filter
k·(α+β)
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ) = filterβ
i (X1, . . . , Xn, Xǫ)

(3.185)
in this domain.

Proof. The proof is analogous to Lemma 3.1.58, where instead of Lemma 3.1.47, Corollary
3.1.48 is used.
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3.1. Filter Combination

3.1.7 Fixpoint Filter Intersection

To reiterate, given two event filter functions filterα
ǫ and filterβ

ǫ for some h ∈ G , Xǫ ⊆ GEvents ,
X1 ⊆ GActions1, ..., Xn ⊆ GActionsn, we defined fixpoint filter intersection as (3.8)

filterα∗β
ǫ (h, Xǫ, X1, . . . , Xn) := lim

k→∞
filterk·(α+β)

ǫ (h, Xǫ, X1, . . . , Xn) (3.186)

and for two action filter functions filterα
i and filterβ

i (for i ∈ A) (3.13) as

filterα∗β
i (X1, . . . , Xn, Xǫ) := lim

k→∞
filter

k·(α+β)
i (X1, . . . , Xn, Xǫ) . (3.187)

Lemma 3.1.60. For arbitrary filters filterα
ǫ , filterβ

ǫ (respectively filterα
i , filterβ

i for some

i ∈ A) the fixpoint filter intersections filterα∗β
ǫ (respectively filterα∗β

i ) is well-defined, i.e.,
the limits

filterα∗β
ǫ (h, Xǫ, X1, . . . , Xn) = lim

k→∞
filterk·(α+β)

ǫ (h, Xǫ, X1, . . . , Xn)

filterα∗β
i (X1, . . . , Xn, Xǫ) = lim

k→∞
filter

k·(α+β)
i (Xǫ, X1, . . . , Xn, Xǫ)

(3.188)

always exist.

Proof. By Lemma 3.1.57 repeated nesting of filterα+β
ǫ (respectively filterα+β

i for some i ∈ A)
is non-increasing, i.e., can only ever lead to a smaller and smaller subset, from which the
statement follows, as

lim inf
k→∞

filterk·(α+β)
ǫ =

⋃

k≥1

⋂

j≥k

filterj·(α+β)
ǫ = lim sup

k→∞
filterk·(α+β)

ǫ =
⋂

k≥1

⋃

j≥k

filterj·(α+β)
ǫ .

Lemma 3.1.61. filterN
ǫ (respectively filterN

i for some i ∈ A) is the neutral element w.r.t.
fixpoint intersection for some filterα

ǫ (respectively filterα
i for some i ∈ A) in the domain

PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1, ..., PDn ⊆ 2GActionsn if and only if filterα
ǫ (respectively

filterα
i ) is idempotent in this domain.

Proof. Follows from Lemma 3.1.49.

Lemma 3.1.62. Fixpoint filter intersection (3.8), (3.13) preserves the basic filter property:
For any i ∈ A, h ∈ G , Xǫ ⊆ GEvents, X1 ⊆ GActions1, ..., Xn ⊆ GActionsn and arbitrary
filters filterα

ǫ , filterβ
ǫ (respectively filterα

i , filterβ
i ) it holds that

filterα∗β
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ Xǫ

filterα∗β
i (X1, . . . , Xn, Xǫ) ⊆ Xi.

(3.189)

Thus filterα∗β
ǫ and filterα∗β

i are again filter functions.
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3. The Extension Framework

Proof. Since fixpoint filter intersection, as k-filter intersection, is defined as nestings of the
filter intersection the statement follows from from Lemma 3.1.57, as for any i ∈ A, h ∈ G ,
Xǫ ⊆ GEvents , X1 ⊆ GActions1, ..., Xn ⊆ GActionsn

filterk·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ Xǫ

filter
k·(α+β)
i (X1, . . . , Xn, Xǫ) ⊆ Xi

for all k ∈ N, implies the same for the limit, i.e.,

filterα∗β
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ Xǫ

filterα∗β
i (X1, . . . , Xn, Xǫ) ⊆ Xi.

Lemma 3.1.63. Fixpoint filter intersection (3.8), (3.13) preserves monotonicity for a given
downward closed domain: Given any two filter functions filterα

ǫ and filterβ
ǫ (respectively

filterα
i and filterβ

i for some i ∈ A), which are monotonic for a given downward closed

domain (PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1, ..., PDn ⊆ 2GActionsn), the combined filter

filterα∗β
ǫ (respectively filterα∗β

i ) is also monotonic for this domain.

Proof. Follows directly from Lemma 3.1.51, since for any i ∈ A, h ∈ G , Xǫ ∈ PDǫ, X ′
ǫ ⊆ Xǫ,

X1 ∈ PD1, X ′
1 ⊆ X1, ..., Xn ∈ PDn, X ′

n ⊆ Xn,

filterk·(α+β)
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆ filterk·(α+β)

ǫ (h, Xǫ, X1, . . . , Xn)

filter
k·(α+β)
i

(
X ′

1, . . . , X ′
n, X ′

ǫ

)
⊆ filter

k·(α+β)
i (X1, . . . , Xn, Xǫ)

for all k ∈ N implies

filterα∗β
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆ filterα∗β

ǫ (h, Xǫ, X1, . . . , Xn)

filterα∗β
i

(
X ′

1, . . . , X ′
n, X ′

ǫ

)
⊆ filterα∗β

i (X1, . . . , Xn, Xǫ) .

Lemma 3.1.64. Fixpoint filter intersection (3.8), (3.13) preserves simple monotonicity for a
given downward closed domain: Given any two filter functions filterα

ǫ and filterβ
ǫ (respectively

filterα
i and filterβ

i for some i ∈ A), which are simply monotonic for a given downward closed

domain (PDǫ ⊆ 2GEvents , PD1 ⊆ 2GActions1, ..., PDn ⊆ 2GActionsn), the combined filter

filterα∗β
ǫ (respectively filterα∗β

i ) is also simply monotonic for this domain.

Proof. Analogous to Lemma 3.1.63.

Lemma 3.1.65. Fixpoint filter intersection always leads to idempotent filters for any downward
closed domain: Given any two filter functions filterα

ǫ and filterβ
ǫ (respectively filterα

i and

filterβ
i for some i ∈ A), the combined filter filterα∗β

ǫ (respectively filterα∗β
i ) is always

idempotent for the whole domain 2GEvents , 2GActions1, ..., 2GActionsn.

Proof. Follows from the definition of fixpoint filter intersection (3.8), (3.13) and Lemma
3.1.60.
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3.1. Filter Combination

Lemma 3.1.66. Fixpoint filter intersection is not associative.

Proof. Analogous to the proof of Lemma 3.1.66.

Lemma 3.1.67. Fixpoint filter intersection is commutative.

Proof. Follows from definition of fixpoint filter intersection (3.8), (3.13) and Lemma 3.1.56.

Lemma 3.1.68. For two filter functions filterα
ǫ (respectively filterα

i for some i ∈ A) and

filterβ
ǫ (respectively filterβ

i ), where for some downward closed domain PDǫ ⊆ 2GEvents ,

PD1 ⊆ 2GActions1 , ..., PDn ⊆ 2GActionsn , filterα
ǫ (respectively filterα

i ) is stricter than filterβ
ǫ

(respectively filterβ
i ), idempotent and simply monotonic, the combined filter filterα∗β

ǫ (respec-

tively filterα∗β
i ) simplifies to

filterα∗β
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filterα∗β
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ)
(3.190)

for this domain.

Proof. Follows directly from Lemma 3.1.58.

Corollary 3.1.69. For two filter functions filterα
ǫ (respectively filterα

i for some i ∈ A)

and filterβ
ǫ (respectively filterβ

i ), where for some downward closed domain PDǫ ⊆ 2GEvents ,

PD1 ⊆ 2GActions1, ..., PDn ⊆ 2GActionsn, filterα
ǫ (respectively filterα

i ) is equal to filterβ
ǫ

(respectively filterβ
i ) and idempotent, the combined filter filterα∗β

ǫ (respectively filterα∗β
i )

simplifies to

filterα∗β
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn) = filterβ
ǫ (h, Xǫ, X1, . . . , Xn)

filterα∗β
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ) = filterβ
i (X1, . . . , Xn, Xǫ)

(3.191)
in this domain.

Proof. Follows from Lemma 3.1.59.

3.1.8 General Filter Combination Properties

Lemma 3.1.70. Given two event filter functions filterα
ǫ and filterβ

ǫ , for the combined filters
it holds that (for some k ≥ 1)

filterα∗β
ǫ ⊆ filterk·(α+β)

ǫ ⊆ filterα+β
ǫ ⊆ filterβ◦α

ǫ ⊆ filterα
ǫ (3.192)

filterα∗β
ǫ ⊆ filterk·(α+β)

ǫ ⊆ filterα+β
ǫ ⊆ filterα◦β

ǫ ⊆ filterβ
ǫ . (3.193)

Similarly for i ∈ A given two action filter functions filterα
i and filterβ

i , for the combined
filters it holds that (again for some k ≥ 1)

filterα∗β
i ⊆ filter

k·(α+β)
i ⊆ filterα+β

i ⊆ filterβ◦α
i ⊆ filterα

i (3.194)

filterα∗β
i ⊆ filter

k·(α+β)
i ⊆ filterα+β

i ⊆ filterα◦β
i ⊆ filterβ

i . (3.195)
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3. The Extension Framework

Proof. From Definitions 3.1.2, 3.1.3 of event and action filter function combination for some
global history h ∈ G , agent i ∈ A, sets Xǫ ⊆ GEvents , X1 ⊆ GActions1, ..., Xn ⊆ GActionsn

and k ≥ 1 since filter functions satisfy the basic filter property (in accordance with Definition
3.1.7) (meaning they only remove elements)

filterβ◦α
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filterα◦β
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filterβ

ǫ (h, Xǫ, X1, . . . , Xn)

and

filterβ◦α
i (X1, . . . , Xn, Xǫ) ⊆ filterα

i (X1, . . . , Xn, Xǫ)

filterα◦β
i (X1, . . . , Xn, Xǫ) ⊆ filterβ

i (X1, . . . , Xn, Xǫ) .

clearly hold as well. By semantics of set intersection we get that

filterα+β
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filterα◦β

ǫ (h, Xǫ, X1, . . . , Xn)

filterα+β
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filterβ◦α

ǫ (h, Xǫ, X1, . . . , Xn)

and again similarly for action filters

filterα+β
i (X1, . . . , Xn, Xǫ) ⊆ filterα◦β

i (X1, . . . , Xn, Xǫ)

filterα+β
i (X1, . . . , Xn, Xǫ) ⊆ filterβ◦α

i (X1, . . . , Xn, Xǫ) .

Since k ≥ 1 by Lemma 3.1.57 it follows that

filterk·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filterα+β

ǫ (h, Xǫ, X1, . . . , Xn)

filter
k·(α+β)
i (X1, . . . , Xn, Xǫ) ⊆ filterα+β

i (X1, . . . , Xn, Xǫ) .
(3.196)

Lastly by (3.8), (3.13) (definition of filterα∗β
ǫ and filterα∗β

i ) and Lemma 3.1.57 we get that
for any k′ ∈ N

lim
k̃→∞

filterk̃·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filterk′·(α+β)

ǫ (h, Xǫ, X1, . . . , Xn)

lim
k̃→∞

filter
k̃·(α+β)
i (X1, . . . , Xn, Xǫ) ⊆ filter

k′·(α+β)
i (X1, . . . , Xn, Xǫ) .

(3.197)

In order to demonstrate that our introduced notion of filter intersection (for event filters by
Definition 3.1.2) is consistent with the combined filter from Chapter 2, we will now show that
the Fully Byzantine asynchronous agents event filter (2.93) can be constructed with (3.5).

Lemma 3.1.71. For some global history h ∈ G , sets Xǫ ∈ PDt−coh
ǫ , X1 ⊆ GActions1, ...,

Xn ⊆ GActionsn

filter
Bf
ǫ (h, Xǫ, X1, . . . , Xn) = filterB◦≤f

ǫ (h, Xǫ, X1, . . . , Xn) = filterB+≤f
ǫ (h, Xǫ, X1, . . . , Xn)

(3.198)
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3.1. Filter Combination

Proof. By (2.92), (2.93),

filter
Bf
ǫ (h, Xǫ, X1, . . . , Xn) =

filterB
ǫ

(
h, filter≤f

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

) (3.199)

and by Definition 3.1.2

filterB+≤f
ǫ (h, Xǫ, X1, . . . , Xn) = (3.200)

filter≤f◦B
ǫ (h, Xǫ, X1, . . . , Xn) ∩ filterB◦≤f

ǫ (h, Xǫ, X1, . . . , Xn) = (3.201)

filter≤f
ǫ

(
h, filterB

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
∩ (3.202)

filterB
ǫ

(
h, filter≤f

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
(3.203)

we see that (3.199) is equal to line (3.203). Therefore it remains to show that (3.203) is a
subset of (3.202).

We start by examining (3.202). By (2.24), filterB
ǫ only removes correct receive events and

by (2.91), filter≤f
ǫ removes only Byzantine events (including sleep(i) and hibernate(i) for

some agent i) depending on the current Byzantine events (and obviously on the number of
Byzantine agents so far via the history, which however for this reasoning is unimportant), but
is independent of any grecv events. Thus

Xǫ \ filter≤f
ǫ (h, Xǫ, X1, . . . , Xn) =

filterB
ǫ (h, Xǫ, X1, . . . , Xn) \ filter≤f

ǫ

(
h, filterB

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)

(3.204)
and let

Dǫ := Xǫ \ filter≤f
ǫ (h, Xǫ, X1, . . . , Xn) . (3.205)

Regarding (3.203), since by (2.24) filterB
ǫ only removes correct receive events, depending on

possibly removed fake send events and since filter≤f
ǫ (2.91) does not remove any correct receive

events however might remove fake send events, and since we assumed Xǫ to be t-coherent
(meaning that especially no go event can occur simultaneously with sleep or hibernate), it
follows that

Xǫ \ filterB
ǫ (h, Xǫ, X1, . . . , Xn) ⊆

filter≤f
ǫ (h, Xǫ, X1, . . . , Xn) \ filterB

ǫ

(
h, filter≤f

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
.

(3.206)
Let

Eǫ := filter≤f
ǫ (h, Xǫ, X1, . . . , Xn) \ filterB

ǫ

(
h, filter≤f

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)

(3.207)
and

E′
ǫ := Xǫ \ filterB

ǫ (h, Xǫ, X1, . . . , Xn) . (3.208)

We can rewrite (3.202) as

filter≤f
ǫ

(
h, filterB

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
= (Xǫ \ E′

ǫ) \ Dǫ (3.209)
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3. The Extension Framework

and (3.203) as

filterB
ǫ

(
h, filter≤f

ǫ (h, Xǫ, X1, . . . , Xn) , X1, . . . , Xn

)
= (Xǫ \ Dǫ) \ Eǫ. (3.210)

Thus by (3.206), (3.210), (3.209), (3.207), (3.208), semantics of set intersection and set
difference it indeed holds that

filterB◦≤f
ǫ (h, Xǫ, X1, . . . , Xn) ⊆ filter≤f◦B

ǫ (h, Xǫ, X1, . . . , Xn) , (3.211)

from which the Lemma follows.

3.2 Extension Combination

Definition 3.2.1. For two extensions E α = (PP α, ISα, τα, Ψα) and E β = (PP β, ISβ , τβ, Ψβ)
with sets of pairs of protocols PP α, PP β ⊆ Cǫ × C , two transition templates τα, τβ, two
admissibility conditions Ψα, Ψβ and two sets of sets of global initial states ISα, ISβ , we define
their

• composition as

E
α◦β := (PP α ∩ PP β, ISα ∩ ISβ, τα◦β, Ψα ∩ Ψβ), (3.212)

• intersection as

E
α+β := (PP α ∩ PP β, ISα ∩ ISβ, τα+β, Ψα ∩ Ψβ), (3.213)

• k-intersection (for k ∈ N) as

E
k·(α+β) := (PP α ∩ PP β, ISα ∩ ISβ , τk·(α+β), Ψα ∩ Ψβ), (3.214)

• fixpoint intersection as

E
α∗β := (PP α ∩ PP β, ISα ∩ ISβ , τα∗β , Ψα ∩ Ψβ). (3.215)

Note that the combinations E α◦β , E α+β ,E k·(α+β),E α∗β need not necessarily be valid extensions
again. Therefore we introduce the notion of (in-)compatibility of extensions. Informally two
extensions are said to be compatible if their combination can produce some runs. It is formally
defined as follows:

Definition 3.2.2 (Compatibility). For a number of l ≥ 2 extensions E α1 , E α2 , ..., E αl we say
the extensions E α1 , E α2 , ..., E αl are compatible w.r.t. to some series of extension combinations
⋆1, ⋆2, ..., ⋆l−1

1 iff

• PP α
1 ∩ . . . ∩ PP α

l 6= ∅ and

1For some l′ ∈ N we use α ⋆l′ β or just ⋆ to represent either composition (α ◦ β), reversed composition
(β ◦ α), k-intersection for some k ≥ 1 (k · (α + β)) or fixpoint intersection (α ∗ β).
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3.2. Extension Combination

• ISα
1 ∩ . . . ∩ ISα

l 6= ∅ and

• Ψα1 ∩ . . . ∩ Ψαl 6= ∅ and

• ∃χ ∈ E α1⋆1α2⋆2...⋆l−1αl .

Reciprocally, we define the incompatibility relation between extensions E α1 , E α2 , ..., E αl w.r.t.
some series of extension combinations ⋆1, ⋆2, ..., ⋆l−1: E α1 , E α2 , ..., E αl are incompatible w.r.t.
⋆1, ⋆2, ..., ⋆l−1 iff they are not compatible w.r.t. ⋆1, ⋆2, ..., ⋆l−1.

Definition 3.2.3. Iff extensions E α1 , E α2 , ..., E αl (l ≥ 2) are compatible w.r.t. the extension
combination series ⋆1, ⋆2, ..., ⋆l−1, then E α1⋆1α2⋆2...⋆l−1αl is also an extension.

Lemma 3.2.4. Extension composition is associative.

E
(α◦β)◦γ = E

α◦(β◦γ) (3.216)

Proof. From Definition 3.2.1 for three extensions E α, E β, E γ we get

E
(α◦β)◦γ := ((PP α ∩ PP β) ∩ PP γ , (ISα ∩ ISβ) ∩ ISγ , τ (α◦β)◦γ , (Ψα ∩ Ψβ) ∩ Ψγ) =

E
α◦(β◦γ) := (PP α ∩ (PP β ∩ PP γ), ISα ∩ (ISβ ∩ ISγ), τα◦(β◦γ), Ψα ∩ (Ψβ ∩ Ψγ))

(3.217)

by associativity of set intersection, where τ (α◦β)◦γ = τα◦(β◦γ) follows from Lemma 3.1.31.

Lemma 3.2.5. Extension composition is generally not commutative.

E
α◦β 6= E

β◦α (3.218)

Proof. This follows from Lemma 3.1.32.

Lemma 3.2.6. Extension intersection is generally not associative.

E
(α+β)+γ 6= E

α+(β+γ) (3.219)

Proof. This follows from Lemma 3.1.45.

Lemma 3.2.7. Extension intersection is commutative.

E
α+β = E

β+α (3.220)

Proof. From Definition 3.2.1 for two extensions E α, E β we get

E
α+β := (PP α ∩ PP β, ISα ∩ ISβ, τα+β , Ψα ∩ Ψβ) =

E
β+α := (PP β ∩ PP α, ISβ ∩ ISα, τβ+α, Ψβ ∩ Ψα)

(3.221)

by commutativity of set intersection, where τα+β = τβ+α follows from Lemma 3.1.46.
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3. The Extension Framework

3.3 Extension Classification

In our framework, extension properties can be implemented in many different ways using a
combination of altering the

• environment protocol,

• joint protocol,

• event filter,

• action filters, and

• admissibility condition.

One crucial question arises however: If a particular property could be implemented using
different restriction methods 2 - for example either by altering the joint protocol or by changing
the action filters: Which of these methods should be favored? A major goal of this framework is
to provide a model for extensions that is as modular and as composable as possible. Intuitively,
it makes sense that not all possible implementations of properties are easily composable with
any other implementation. Therefore, in this section, we provide a classification of extension
implementations, which we refer to as implementation classes, and analyze their composability
to answer our posed question.

3.3.1 Implementation Classes

In this section, we also introduce some implementation classes that utilize neutral action filters.
We are well aware that in principle this violates our assumption (2.52). However, note that
we are only introducing these kinds of implementation classes to be able to define a downward
closed subset of them and reap the benefits of downward closed safety properties (see Section
3.3.3) w.r.t. improved composability, since by Lemma 3.3.53 any extension’s safety property
that uses the Byzantine action filters is inherently not downward closed.

Definition 3.3.1. We assume that in the following implementation classes, all filter functions

are idempotent for the domain PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn. Note that the neutral and

Byzantine filters are idempotent for PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn by Lemmas 3.1.21 and

3.1.22.

• Adm
The desired extension property is implemented via an appropriate admissibility condition
Ψ. An extension E α ∈ Adm iff

E
α = (Cǫ × C , ISα, τN,N , Ψα), (3.222)

where in τN,N the filter functions filterN
ǫ and filterN

i (for all i ∈ A) are used, ISα ⊆
2G (0) and Ψα ⊂ R hold.

2Note that any property could always be implemented via the admissibility condition. For non-liveness
properties, this would inevitably lead to a not non-excluding extension, however.
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3.3. Extension Classification

• JP
The extension property is implemented via restricting the set of joint protocols C . An
extension E α ∈ JP iff

E
α = (Cǫ × C

α, ISα, τN,N , Ψα), (3.223)

where in τN,N the filter functions filterN
ǫ and filterN

i (for all i ∈ A) are used, C α ⊂ C ,
Ψα ⊆ R and ISα ⊆ 2G (0) hold.

• JP − AFB
An extension E α ∈ JP − AFB iff

E
α = (Cǫ × C

α, ISα, τN,B, Ψα), (3.224)

where in τN,B the filter functions filterN
ǫ and filterB

i (for all i ∈ A) are used, C α ⊂ C ,
Ψα ⊆ R and ISα ⊆ 2G (0) hold.

• EnvJP
The extension property is implemented via restricting the set of environment protocols
Cǫ possibly in conjunction with the set of joint protocols C . An extension E α ∈ EnvJP
iff

E
α = (PP α, ISα, τN,N , Ψα), (3.225)

where in τN,N the filter functions filterN
ǫ and filterN

i (for all i ∈ A) are used, PP α ⊂
Cǫ × C , Ψα ⊆ R, ISα ⊆ 2G (0) and E α /∈ JP hold.

• EnvJP − AFB
An extension E α ∈ EnvJP − AFB iff

E
α = (PP α, ISα, τN,B, Ψα), (3.226)

where in τN,B the filter functions filterN
ǫ and filterB

i (for all i ∈ A) are used, PP α ⊂
Cǫ × C , Ψα ⊆ R, ISα ⊆ 2G (0) and E α /∈ JP − AFB hold.

• EvFJP
The extension property is implemented via restricting the environment filter filterǫ and
possibly also the set of joint protocols C . An extension E α ∈ EvFJP iff

E
α = (Cǫ × C

α, ISα, τα,N , Ψα), (3.227)

where in τα,N the filter functions filterα
ǫ and filterN

i (for all i ∈ A) are used, C α ⊆ C ,
Ψα ⊆ R and ISα ⊆ 2G (0) hold, where for filterα

ǫ there exist some h ∈ G , Xǫ ∈ PDt−coh
ǫ ,

X1 ⊆ GActions1, ..., Xn ⊆ GActionsn such that

filterα
ǫ (h, Xǫ, X1, . . . , Xn) ⊂ filterN

ǫ (h, Xǫ, X1, . . . , Xn) . (3.228)

• EvFJP − AFB
An extension E α ∈ EvFJP − AFB iff

E
α = (Cǫ × C

α, ISα, τα,B, Ψα), (3.229)

where in τα,B the filter functions filterα
ǫ ⊂ filterN

ǫ and filterB
i (for all i ∈ A) are used,

C α ⊆ C , Ψα ⊆ R and ISα ⊆ 2G (0) hold, where for filterα
ǫ there exist some h ∈ G ,

Xǫ ∈ PDt−coh
ǫ , X1 ⊆ GActions1, ..., Xn ⊆ GActionsn such that

filterα
ǫ (h, Xǫ, X1, . . . , Xn) ⊂ filterN

ǫ (h, Xǫ, X1, . . . , Xn) . (3.230)
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3. The Extension Framework

• EvFEnvJP
An extension E α ∈ EvFEnvJP iff

E
α = (PP α, ISα, τα,N , Ψα), (3.231)

where in τα,N the filter functions filterα
ǫ ⊂ filterN

ǫ and the neutral action filters filterN
i

(for all i ∈ A) are used, PP α ⊂ Cǫ ×C , Ψα ⊆ R and ISα ⊆ 2G (0) hold, where for filterα
ǫ

there exist some h ∈ G , Xǫ ∈ PDt−coh
ǫ , X1 ⊆ GActions1, ..., Xn ⊆ GActionsn such that

filterα
ǫ (h, Xǫ, X1, . . . , Xn) ⊂ filterN

ǫ (h, Xǫ, X1, . . . , Xn) . (3.232)

• EvFEnvJP − AFB
An extension E α ∈ EvFEnvJP − AFB iff

E
α = (PP α, ISα, τα,B, Ψα), (3.233)

where in τα,B the filter functions filterα
ǫ ⊂ filterN

ǫ and the Byzantine action filters
filterB

i (for all i ∈ A) are used, PP α ⊂ Cǫ ×C , Ψα ⊆ R and ISα ⊆ 2G (0) hold, where for
filterα

ǫ there exist some h ∈ G , Xǫ ∈ PDt−coh
ǫ , X1 ⊆ GActions1, ..., Xn ⊆ GActionsn

such that
filterα

ǫ (h, Xǫ, X1, . . . , Xn) ⊂ filterN
ǫ (h, Xǫ, X1, . . . , Xn) . (3.234)

• Others
This class contains all remaining extension implementations like restrictions via arbitrary
action filters filteri (for i ∈ A) and possibly something else.

An extension E α ∈ Others iff

E
α = (PP α, ISα, τα, Ψα), (3.235)

where in τα the filter functions (for all i ∈ A) filterα
ǫ and filterα

i are used, where
filterα

i 6= filterB
i and filterα

i ⊂ filterN
i , Ψα ⊆ R, ISα ⊆ 2G (0), PP α ⊆ Cǫ × C and

where for filterα
i (for every i ∈ A) there exist some Xǫ ∈ PDt−coh

ǫ , X1 ⊆ GActions1, ...,
Xn ⊆ GActionsn such that

filterα
i (X1, . . . , Xn, Xǫ) ⊂ filterN

i (X1, . . . , Xn, Xǫ) . (3.236)

Next we list important subsets of the just mentioned implementation classes, which however
we will also treat as individual implementation classes (see listing below):

• JPDC

This implementation class is a subset of JP, additionally restricted to extensions, whose
safety properties (see Section 3.3.3) are downward closed. Formally, this means that

JPDC := {E
α ∈ JP | Sα is downward closed} (3.237)

• EnvJPDC

This implementation class is a subset of EnvJP, additionally restricted to extensions,
whose safety properties are downward closed. Formally, this means that

EnvJPDC := {E
α ∈ EnvJP | Sα is downward closed} (3.238)
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3.3. Extension Classification

• EvFJPDC

This implementation class is a subset of EvFJP, additionally restricted to extensions,
whose safety properties are downward closed. Formally, this means that

EvFJPDC := {E
α ∈ EvFJP | Sα is downward closed} (3.239)

• EvFEnvJPDC

This implementation class is a subset of EvFEnvJP, additionally restricted to extensions,
whose safety properties are downward closed. Formally, this means that

EvFEnvJPDC := {E
α ∈ EvFEnvJP | Sα is downward closed} (3.240)

• OthersDC

This implementation class is a subset of Others, additionally restricted to extensions,
whose safety properties are downward closed. Formally, this means that

OthersDC := {E
α ∈ Others | Sα is downward closed} (3.241)

• EvFEnvJPDC mono

This implementation class is a subset of EvFEnvJPDC, additionally restricted to
extensions, whose event filter functions are simply monotonic and whose action filters

are monotonic in the domain PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn . Formally, this means

that

EvFEnvJPDC mono := {E
α ∈ EvFEnvJPDC | (∀i ∈ A) filterα

i and filterα
ǫ are

monotonic for the domain PDt−coh
ǫ , 2GActions1 , . . . , 2GActionsn}

(3.242)

• OthersDC mono

This implementation class is a subset of OthersDC, additionally restricted to extensions,
whose event filter functions are simply monotonic and whose action filters are monotonic

in the domain PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn . Formally, this means that

OthersDC mono := {E
α ∈ OthersDC | (∀i ∈ A) filterα

i and filterα
ǫ are monotonic

for the domain PDt−coh
ǫ , 2GActions1 , . . . , 2GActionsn}

(3.243)

The set of all implementation classes is denoted by I and to provide a concise overview
consists of the following classes:

I := {Adm,

JP, JPDC, JP − AFB,

EnvJP, EnvJPDC, EnvJP − AFB,

EvFJP, EvFJPDC, EvFJP − AFB,

EvFEnvJP, EvFEnvJPDC, EvFEnvJPDC mono, EvFEnvJP − AFB,

Others, OthersDC, OthersDC mono}.

Before we delve into the analysis of composability of these implementation classes, we first
have to formalize the notions of liveness and safety properties in our framework.
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3. The Extension Framework

3.3.2 Trace-based Safety and Liveness Properties

Definition 3.3.2. We define Rtrans ⊆ R as the set of all transitional runs.

Rtrans := {r ∈ R |(∀t ∈ N)(∃X ∈ (2GEvents × 2GActions1 × · · · × 2GActionsn))

r(t + 1) = update (r(t), X)}
(3.244)

Definition 3.3.3. We define a liveness property L as

L ⊆ Rtrans, where

L 6= ∅ ∧ (∀r ∈ Rtrans)(∀t ∈ N)(∃r′ ∈ L) r′(t) = r(t).
(3.245)

Informally this means every prefix r(t) of a run r ∈ Rtrans for some timestamp t ∈ N, has an
extension in L.

Definition 3.3.4. Let

PRtrans = {h | (∃r ∈ Rtrans)(∃t ∈ N) r(t) = h}. (3.246)

A set S′ ⊆ Rtrans ⊔ PRtrans is a safety property if

(i) S′ 6= ∅,

(ii) S′ is prefix-closed in that

• r(t) ∈ S′ for r ∈ Rtrans and t ∈ N also implies that r(t′) ∈ S′ for t′ ≤ t and

• r′ ∈ S′ implies that r′(t′′) ∈ S′ for all t′′ ∈ N,

(iii) S′ is limit-closed in that r(t) ∈ S′ for r ∈ Rtrans and all t ∈ N implies that r ∈ S′.

Definition 3.3.5 (Adherence to Safety respectively Liveness Property). We say an extension
E α adheres to a safety property S′, respectively liveness property L iff

⋃

χα∈E α

Rχα

⊆ S′, (3.247)

respectively ⋃

χα∈E α

Rχα

⊆ L. (3.248)

In the following we will show that any property P α ⊆ Rtrans can be written as intersection of
a safety and liveness property.

Definition 3.3.6. For a set P α ⊆ Rtrans of transitional runs, where P α 6= ∅, we define

L′α := {r ∈ Rtrans | (∃t ∈ N)(∀r′ ∈ P α)(∀t′ ∈ N) r(t) 6= r′(t′)} (3.249)

Lα := P α ∪ L′α. (3.250)

Lemma 3.3.7. Lα is a liveness property.
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3.3. Extension Classification

Proof. Since P α 6= ∅, Lα 6= ∅ as well by (3.250).

Take any finite prefix r(t) of a run r ∈ Rtrans for some timestamp t ∈ N. If r(t) has an
extension in P α, then there exists a run r′ ∈ P α, s.t. r(t) = r′(t). Since by Definition 3.3.6
P α ⊆ Lα, r′ ∈ Lα as well. If r(t) has no extension in P α, then by Definition 3.3.6 r ∈ L′α,
thus r ∈ Lα.

Lemma 3.3.8. P α = Lα ∩ S′α, where S′α ⊆ Rtrans ⊔ PRtrans is the prefix and limit closure
of P α.

Proof. Since P α ⊆ S′α and P α ⊆ Lα, it follows that P α ⊆ Lα ∩ S′α. Hence it remains to show
that Lα ∩S′α ⊆ P α. Assume by contradiction that there exists a run r ∈ Lα ∩S′α, but r /∈ P α,
hence r ∈ Lα — specifically r ∈ L′α — and r ∈ S′α. Since r ∈ S′α (by prefix closure of S′α)
for all t′ ∈ N, r(t′) ∈ S′α as well. This implies (by limit closure of S′α) that there must exist a
run r′ ∈ P α such that r(t) = r′(t) for all t ∈ N. This however contradicts that r ∈ L′α.

Definition 3.3.9. We define Lα as the liveness property Lα of some extension E α for

P α =
⋃

χ∈E α

Rχ. (3.251)

Lemma 3.3.10. Consider two arbitrary extensions E α = (PP α, ISα, τα, Ψα), E β = (PP β, ISβ, τβ , Ψβ)
both encoding some properties (not necessarily limited to liveness properties) in their admissi-
bility conditions Ψα ⊆ R and Ψβ ⊆ R. If E α and E β are compatible w.r.t. the combination ⋆,
then

(∀χ ∈ E
α⋆β)(∀r ∈ Rχ) r ∈ Ψα ∧ r ∈ Ψβ, (3.252)

meaning that any combined extension satisfies the properties encoded by the admissibility
conditions of both extensions.

Proof. If the two extensions are compatible w.r.t. ⋆, by Definition 3.2.1 of extension combina-
tion the resulting extension is

E
α⋆β = (PP α ∩ PP β, ISα ∩ ISβ, τα⋆β , Ψα ∩ Ψβ).

By definition of runs strongly consistent with an agent context (2.75), where χα⋆β ∈ E α⋆β (the
existence of such an agent contexts follows from Definition 3.2.2 of compatibility, Definition
3.0.1 of extensions and agent contexts being part of an extension and the assumption that the
extensions in question are compatible w.r.t. ⋆)

Rχα⋆β

= Rw(χα⋆β) ∩ (Ψα ∩ Ψβ).

Thus by semantics of set intersection the Lemma follows.

3.3.3 Safety Properties

To ensure that agent contexts χ remain non-excluding, we only encode liveness properties via
admissibility conditions. Thus our remaining options to implement safety properties are with
protocols and filter functions.
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3. The Extension Framework

From Lemma 3.3.8 we already know that for any P α ⊆ Rtrans (P α 6= ∅), P α = Lα ∩ S′α,
where Lα from Definition 3.3.6 is a liveness property (by Lemma 3.3.7) and S′α is the smallest
safety property containing P α (or equivalently S′α is the prefix and limit closure of P α),
formally defined as follows:

Definition 3.3.11. We define the smallest trace safety property containing P ⊆ Rtrans, for
P 6= ∅, as the prefix and limit closure of P , formally

S′(P ) := {h ∈ G | (∃r ∈ P )(∃t ∈ N) r(t) = h} ⊔ {r ∈ Rtrans | (∀t ∈ N)(∃r′ ∈ P ) r(t) = r′(t)}.
(3.253)

The set of all trace safety properties is denoted by T and defined as

T := {S′(P ) | ∅ 6= P ⊆ Rtrans}. (3.254)

Since safety properties expressed in terms of trace semantics (3.253) are very inconvenient for
our purposes, as we usually reason on a round by round basis, we will provide an alternative
definition of a safety property that maps global states (i.e. prefixes reached by runs in P α) to
the possible β sets that safely extend them.

Definition 3.3.12. An operational safety property S is defined as a function

S : G → 22GEvents⊔GActions

, (3.255)

which satisfies the following two conditions

(1) (∃h ∈ G ) hǫ = [] ∧ S(h) 6= ∅

(2) (∀h ∈ G ) hǫ 6= [] →
((

(∃h′ ∈ G )(∃X ∈ S(h′)) h = update (h′, X)
)

↔ S(h) 6= ∅
)
.

Informally the first condition means that there has to exist at least one initial state that is
safe. The second condition means that every non-initial state is safely extendable if and only
if it is safely reachable.

The set of all operational safety properties is denoted by O.

Definition 3.3.13. A transitional run r ∈ Rtrans satisfies an operational safety property
S ∈ O iff

(∀t ∈ N) βt (r) ∈ S(r(t)). (3.256)

Definition 3.3.14. We say an extension E adheres to an operational safety property S ∈ O

iff

(∀χ ∈ E )(∀r ∈ Rχ) r satisfies S. (3.257)

In order to show that the operational safety property S from Definition 3.3.26 indeed coincides
with the standard trace-based Definition 3.3.11 based on traces, we provide a bijective mapping
from one to the other.
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3.3. Extension Classification

Definition 3.3.15. We define a construction F ′ of an operational safety property from a
trace safety property S′ ∈ T , where F ′ is defined as

F ′(S′)(h) := {βt (r) | r ∈ S′ ∧ t ∈ N ∧ h = r(t)}. (3.258)

Lemma 3.3.16. F ′(S′) ∈ O for any S′ ∈ T .

Proof. Suppose by contradiction there exists some S′α ∈ T s.t. F ′(S′α) = Sα, where Sα

violates the first operational safety property attribute ((1)). This implies that

(∀h ∈ G ) hǫ 6= [] ∨ Sα(h) = ∅. (3.259)

Since by Definition 3.3.11 P α 6= ∅, we get that there has to exist a run r ∈ S′α. Further, by
prefix closure of S′α,

(∀t ∈ N) r(t) ∈ S′α, (3.260)

from which by universal instantiation we get that r(0) ∈ S′α. Since S′α ⊆ Rtrans ⊔ G , r is
transitional, hence rǫ(0) = [], from which by our assumption Sα(r(0)) = ∅ follows. However,
by Definition 3.3.15 of construction F ′, it follows that β0 (r) ∈ Sα(r(0)), thus Sα(r(0)) 6= ∅.

Next, suppose by contradiction there exists some S′α ∈ T s.t. F ′(S′α) = Sα, where Sα

violates the second operational safety property attribute ((2)). This implies that there exists
some h ∈ G s.t. hǫ 6= [] and

(((∃h′ ∈ G )(∃X ∈ Sα(h′)) h = update
(
h′, X

)
) ∧ Sα(h) = ∅) ∨ (3.261)

(((∀h′′ ∈ G )(∀X ′ ∈ Sα(h′′)) h 6= update
(
h′′, X ′)) ∧ Sα(h) 6= ∅). (3.262)

Suppose (3.261) is true. This implies that there exists some h′ ∈ G and some X ∈ Sα(h′) such
that h = update (h′, X). By Definition 3.3.15 of F ′ there exists a run r ∈ S′α and a timestamp
t ∈ N s.t.

r(t) = h′ ∧ X = βt (r). (3.263)

By transitionality of r and Definition 2.2.31 of update

r(t + 1) = h. (3.264)

Again by Definition 3.3.15

βt+1 (r) ∈ Sα(h), (3.265)

hence Sα(h) 6= ∅ and we conclude that (3.261) is false.

Suppose (3.262) is true. This implies by Definition 3.3.15 that there exists a run r ∈ S′α and
timestamp t ∈ N \ {0}, where h = r(t), since r is transitional and hǫ 6= []. Further we get that

βt−1 (r) ∈ Sα(r(t − 1)). (3.266)

Thus by Definition 2.2.31 of update

r(t) = update
(
r(t − 1), βt−1 (r)

)
(3.267)

and we conclude that (3.262) is false as well.
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3. The Extension Framework

Definition 3.3.17. We define

F : T 7→ O, (3.268)

where for any S′ ∈ T

F (S′) := F ′(S′), (3.269)

which is indeed a mapping from T to O by Lemma 3.3.16.

Lemma 3.3.18. F from Definition 3.3.17 is injective.

Proof. Suppose by contradiction that the opposite is true: There exists S′α, S′β ∈ T s.t.
S′α 6= S′β, but F (S′α) = F (S′β). Since S′α 6= S′β , either

(i) w.l.o.g. there exists some history h ∈ S′α s.t. h /∈ S′β or

(ii) w.l.o.g. there exists some run r ∈ S′α s.t. r /∈ S′β. We show that this implies (i).
Suppose by contradiction that there does not exist some h ∈ S′α s.t. h /∈ S′β, meaning
(∀h ∈ S′α) h ∈ S′β. By limit closure of S′β however it follows that r ∈ S′β, hence there
has to exist a history h ∈ S′α such that h /∈ S′β .

Therefore, we can safely assume (i), i.e., w.l.o.g. that there exists some h ∈ S′α s.t. h /∈ S′β.
By Definition 3.3.17 of F , we get that F (S′β)(h) = ∅, as otherwise there would exist a run
r′ ∈ S′β and time t′ ∈ N s.t. r′(t′) = h, from which by prefix closure of S′β it would follow
that h ∈ S′β . Since S′α is the prefix closure of some non-empty set P α ⊆ Rtrans by Definition
3.3.11, we get that there exists some run r ∈ S′α and time t ∈ N s.t. r(t) = h, additionally by
Definition 3.3.17 of F , βt (r) ∈ F (S′α)(h). Therefore F (S′α) 6= F (S′β) and we are done.

Definition 3.3.19. For some arbitrary S ∈ O, we define

S̃′
0

S
:= Rtrans (3.270)

S̃′
t

S
:= S̃′

t−1

S
\ {r ∈ Rtrans | βt−1 (r) /∈ S(r(t − 1))} (3.271)

S̃′α
∞

S
:= lim

t′→∞
S̃′

t′

S
(3.272)

S̃′
S

:= S̃′α
∞

S
⊔ {h ∈ G | (∃r ∈ S̃′α

∞

S
)(∃t ∈ N) h = r(t)}. (3.273)

Note that the limit in (3.272) exists, as by (3.271) the set S̃′
t

S
is non-increasing in t.

Lemma 3.3.20. For S̃′
m

S̃
(for m ∈ N \ {0} and S̃ ∈ O) from Definition 3.3.19, it holds that

S̃′
m

S̃
= {r ∈ Rtrans | (∀t < m) βt (r) ∈ S̃(r(t))}. (3.274)

Proof. By induction:
Induction Hypothesis:

S̃′
m

S̃
= {r ∈ Rtrans | (∀t < m) βt (r) ∈ S̃(r(t))}. (3.275)
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3.3. Extension Classification

Base Case: For m = 1 by Definition 3.3.19 it follows that

S̃′
1

S̃
= Rtrans \ {r ∈ Rtrans | β0 (r) /∈ S̃(r(0))} = {r ∈ Rtrans | β0 (r) ∈ S̃(r(0))}. (3.276)

Induction Step: Suppose the induction hypothesis (3.275) holds for m, but by contradiction
does not hold for m + 1. There are two cases:

1. There exists a run r′ ∈ S̃′
m+1

S̃

s.t. r′ /∈ {r ∈ Rtrans | (∀t < m + 1) βt (r) ∈ S̃(r(t))}.
This implies that there exists some timestamp t′ < m + 1 s.t.

βt′ (
r′) /∈ S̃(r′(t′)). (3.277)

We distinguish two cases:

a) t′ = m:
r′ ∈ {r ∈ Rtrans | βm (r) /∈ S̃(r(m))}. (3.278)

Hence by Definition 3.3.19 of S̃′
m+1

S̃

, r′ would have been removed.

b) t′ < m: This directly contradicts the induction hypothesis (3.275), as r′ /∈ S̃′
t′+1

S̃

and S̃′
m+1

S̃

⊆ S̃′
t′+1

S̃
.

2. There exists a run r′ ∈ {r ∈ Rtrans | (∀t < m + 1) βt (r) ∈ S̃(r(t))} s.t. r′ /∈ S̃′
m+1

S̃

. We
distinguish two cases regarding at which step r has been removed:

a) r′ ∈ S̃′
m

S̃
:

r′ ∈ {r ∈ Rtrans | βm (r) /∈ S̃(r(m))}. (3.279)

This implies that βm (r′) /∈ S̃(r′(m)) contradicting that

r′ ∈ {r ∈ Rtrans | (∀t < m + 1) βt (r) ∈ S̃(r(t))}. (3.280)

b) r′ /∈ S̃′
m

S̃
: This directly contradicts the induction hypothesis (3.275), thus conclud-

ing the induction step.

Lemma 3.3.21. For S̃′
∞

S
from Definition 3.3.19 it holds that

S̃′
∞

S
= {r ∈ Rtrans | (∀t ∈ N) βt (r) ∈ S(r(t))} (3.281)

Proof. Follows from Lemma 3.3.20 and Definition 3.3.19.

Lemma 3.3.22. For S̃′
S
, from Definition 3.3.19, where S ∈ O, it holds that S̃′

S
∈ T , i.e.

S̃′
S

is a trace safety property.
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3. The Extension Framework

Proof. From Definition 3.3.19, particularly (3.272) and (3.273), it follows that S̃′α
Sα

is the

prefix and limit closure of S̃′α
′

Sα

.

Lemma 3.3.23. F from Definition 3.3.17 is surjective.

Proof. Suppose by contradiction that F is not surjective. This implies that there exists some
S ∈ O s.t. for all S′ ∈ T , F (S′) 6= S.

To arrive at a contradiction, we use the trace safety property S̃′
S

from Definition 3.3.19. This

is safe to use, as by Lemma 3.3.22 S̃′
S

∈ T . There are two cases causing F (S̃′
S
) 6= S:

1. There exists a run r′ ∈ S̃′
S

and timestamp t′ ∈ N s.t. βt′
(r′) /∈ S(r′(t′)). Hence,

r′ ∈ {r ∈ Rtrans | βt′
(r) /∈ S(r(t′))}, (3.282)

such that by (3.271) r′ /∈ S̃′
t+1

S
, from which by (3.271), (3.272) and (3.273) r′ /∈ S̃′

S

follows, which provides a contradiction.

2. There exists some history h̃ ∈ G and some X ∈ S(h̃) s.t. for all runs r ∈ S̃′
S

and all
timestamps t ∈ N

r(t) 6= h̃ ∨ βt (r) 6= X. (3.283)

However, by Lemma 3.3.21 and Definition 3.3.19,

S̃′
S

= {r ∈ Rtrans | (∀t ∈ N) βt (r) ∈ S(r(t))} ⊔ {h ∈ G | (∃r ∈ S̃′
′

S
)(∃t ∈ N) h = r(t)}.

(3.284)
By Definition 3.3.2 and 3.3.13, we get that there exists some run r′ ∈ Rtrans and
timestamp t′ ∈ N s.t.

r′(t) = h̃ ∧ βt′ (
r′) = X. (3.285)

By Definition 3.3.19 in particular (3.272), it follows that r′ ∈ S̃′
S
, also providing the

required contradiction.

Hence by definition of our construction (3.270), (3.271) and (3.272), F (S̃′
S
) = S.

Lemma 3.3.24. F from Definition 3.3.15 is bijective.

Proof. Follows from Lemma 3.3.18 and 3.3.23.

Remark 3.3.25. From this point on, whenever we refer to a safety property, we refer to the
operational safety property. However, since by Lemma 3.3.24 the mapping F of Definition
3.3.17 is bijective, both the operational and the trace safety property can be easily obtained
from one another via F .

Definition 3.3.26. As some extension E α’s operational safety property Sα we refer to the
smallest operational safety property that the extension E α adheres to. Using

P α =
⋃

χ∈E α

Rχ, (3.286)

we can calculate S′α as the prefix and limit closure of P α and then apply the bijective mapping
F from Definition 3.3.17.
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3.3. Extension Classification

Adherence to safety properties does not completely capture the expressivity of an extension.
One reason is the following: If the smallest safety property Sα of some extension E α is a
(proper) subset of some smallest safety property Sβ of another extension E β, obviously E α

also satisfies Sβ, but cannot produce all runs that E β can produce (formal statements for
these issues follow below). However, there is an even more subtle issue.

A demonstrative example is the restriction of the number of Byzantine agents. In (2.91) this
restriction is implemented by an appropriate event filter function filter≤f

ǫ , which is the most
natural choice for this task: As the event filter function depends on the global history, it
can easily check who is already Byzantine and remove inappropriate events. Nonetheless,
one could also put this restriction in the set of environment protocols, where we could only
allow protocols that make at most f agents Byzantine, no matter what the adversary chooses.
Since environment protocols do not depend on the history however, any such f restriction
environment protocol would be quite limited regarding which agents it can allow to become
Byzantine and/or the point in time, at which agents become Byzantine, as it has no way to
check, who has already failed in the run due to the adversary’s choices. Anyway, despite these
limitations in what events such a protocol can generate for every round w.r.t. making agents
Byzantine, iterating over all such f restriction environment protocols (for a particular bound
f) and all runs resulting from using these in appropriate agent contexts, yield the same runs,
which an extension with the ≤ f filter can produce.

The difference between these implementations lies in what runs a single agent context can
produce. Since the environment protocol is fixed for some agent context χ, when using the
f environment protocol restriction, the runs strongly consistent with χ are very limited.
Intuitively, it should be quite clear that no single agent context with such an f environment
protocol exists that can produce all possible runs satisfying the f restriction on Byzantine
agents if 1 ≤ f < n.

An easy counterexample is provided by all runs, where during the first two points in time
all possible combinations of f agents can fail. An agent context that is part of an extension
employing an f restriction environment protocols already fails to produce these runs: If the
protocol were to allow any combination of Byzantine failures of a group of f agents during
round 0.5 and 1.5, by our assumption that 1 ≤ f < n, we could find a combination of agent
failures (by picking an appropriate choice of the adversary) for these two rounds, such that
the combined number of Byzantine failures would exceed f .

To formalize this, we introduce the notion of agent context power.

Definition 3.3.27. We say an extension E β is at least as powerful w.r.t. agent contexts as
E α or E β has at least the same agent context power as E α and write

E
α ⊑ E

β (3.287)

iff ⋃

χα∈E α

Rχα

=
⋃

χβ∈E β

Rχβ

(3.288)

and

(∀χα ∈ E
α)(∃χβ ∈ E

β) Rχα

= Rχβ

. (3.289)
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3. The Extension Framework

Similarly we say E α is exactly as powerful w.r.t. agent contexts or has exactly the same agent
context power as E β and write

E
α ≡ E

β (3.290)

iff
E

α ⊑ E
β ∧ E

β ⊑ E
α. (3.291)

Two extensions E α, E β are incomparable w.r.t. agent context power and we write

E
α 6≡ E

β (3.292)

iff
E

α 6⊑ E
β ∧ E

β 6⊑ E
α (3.293)

holds.

Lemma 3.3.28. Given two compatible (w.r.t. ⋆) extensions E α = (PP α, ISα, τα, Ψα), where
E α adheres to safety property S, and E β = (PP β, ISβ , τβ, Ψβ) such that

τα ⊆ τβ (meaning that filterα
ǫ ⊆ filterβ

ǫ and (∀i ∈ A) filterα
i ⊆ filterβ

i ) and (3.294)

filterα
ǫ and (∀i ∈ A) filterα

i are simply monotonic and idempotent

for the domain PDt−coh
ǫ , 2GActions1, ..., 2GActionsn

(3.295)

the extensions E α⋆β adheres to S, and simplifies to

E
α⋆β = (PP α ∩ PP β, ISα ∩ ISβ, τα, Ψα ∩ Ψβ).

Proof. From Lemmas 3.1.35, 3.1.36, 3.1.47, 3.1.58 and 3.1.68 it follows that for some k ≥ 1,
i ∈ A, h ∈ G , Xǫ ∈ PDǫ, X1 ∈ PD1, ..., Xn ∈ PDn

filterα◦β
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filterα◦β
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ)

filterβ◦α
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filterβ◦α
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ)

filterα+β
ǫ (h, xǫ, x1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filterα+β
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ)

filterk·(α+β)
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filter
k·(α+β)
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ)

filterα∗β
ǫ (h, Xǫ, X1, . . . , Xn) = filterα

ǫ (h, Xǫ, X1, . . . , Xn)

filterα∗β
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ) .

(3.296)

Since also

• (Pǫ, P ) ∈ PP α ∩ PP β ⇒ (Pǫ, P ) ∈ PP α and

• G (0) ∈ ISα ∩ ISβ ⇒ G (0) ∈ ISα and
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3.3. Extension Classification

• r ∈ Ψα ∩ Ψβ ⇒ r ∈ Ψα and

the Lemma follows by Definition 3.2.1 of extension combination.

What follows is a special case of Lemma 3.3.28.

Corollary 3.3.29. Given two extensions — compatible w.r.t. ⋆, E α = (PP α, ISα, τα, Ψα) —,
where E α adheres to safety property S, and E β = (PP β, ISβ , τα, Ψβ) with matching transition
templates and thus matching filter functions, such that

filterα
ǫ and (∀i ∈ A) filterα

i are idempotent for any

Xǫ ∈ PDt−coh
ǫ , X1 ⊆ GActions1, ..., Xn ⊆ GActionsn

(3.297)

the extension E α⋆β adheres to S as well and simplifies to

E
α⋆β = (PP α ∩ PP β, ISα ∩ ISβ, τα, Ψα ∩ Ψβ). (3.298)

Proof. The proof is analogous to the proof for Lemma 3.3.28, with the only difference that
instead of Lemmas 3.1.35, 3.1.36, 3.1.47, 3.1.58 and 3.1.68 the Corollaries 3.1.37, 3.1.48, 3.1.59
and 3.1.69 are used.

Lemma 3.3.30. Given two extensions — compatible w.r.t. reverse composition (β ◦ α) —
E α = (Cǫ × C α, ISα, τα, Ψα) and E β = (PP β , ISβ, τβ, Ψβ) (for PP β ⊆ Cǫ × C ) such that

for PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn the event filter filterβ◦α

ǫ and the action filters filterα
i ,

filterβ
i (for i ∈ A) are idempotent and such that

(∀i ∈ A) filterα
i = filterβ

i , (3.299)

it holds that

(∀χβ◦α ∈ E
β◦α)(∃χα ∈ E

α) Rχβ◦α

⊆ Rχα

. (3.300)

Proof. Completely analogous to the proof for Lemma 3.3.38 further below, where instead of
Corollary 3.1.59 Corollary 3.1.37 is used to conclude that for all i ∈ A filterβ◦α

i = filterα
i .

Corollary 3.3.31. Given two extensions — compatible w.r.t. reverse composition (β ◦ α) —
E α = (Cǫ × C α, ISα, τα, Ψα) and E β = (PP β , ISβ, τβ, Ψβ) (for PP β ⊆ Cǫ × C ) such that

for PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn the event filter filterβ◦α

ǫ and the action filters filterα
i ,

filterβ
i (for i ∈ A) are idempotent and such that

(∀i ∈ A) filterα
i = filterβ

i , (3.301)

the extension E β◦α adheres to Sα.

Proof. Immediately follows from Lemma 3.3.30.
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3. The Extension Framework

Lemma 3.3.32. Given two extensions — compatible w.r.t. reverse composition (β ◦ α) —
E α = (Cǫ × C α, ISα, τα, Ψα) and E β = (PP β , ISβ, τβ, Ψβ) (for PP β ⊆ Cǫ × C ) such that

for PDt−coh
ǫ , 2GActions1, ..., 2GActionsn the event filter filterβ◦α

ǫ is idempotent and the action
filters filterα

i (for i ∈ A) are idempotent and such that

(∀i ∈ A) filterα
i ⊆ filterβ

i , (3.302)

it holds that
(∀χβ◦α ∈ E

β◦α)(∃χα ∈ E
α) Rχβ◦α

⊆ Rχα

. (3.303)

Proof. Completely analogous to the proof for Lemma 3.3.40 further below, where instead of
Lemma 3.1.58 Lemma 3.1.35 is used to conclude that for all i ∈ A filterβ◦α

i = filterα
i .

Corollary 3.3.33. Given two extensions — compatible w.r.t. reverse composition (β ◦ α) —
E α = (Cǫ × C α, ISα, τα, Ψα) and E β = (PP β , ISβ, τβ, Ψβ) (for PP β ⊆ Cǫ × C ) such that

for PDt−coh
ǫ , 2GActions1, ..., 2GActionsn the event filter filterβ◦α

ǫ is idempotent and the action
filters filterα

i (for i ∈ A) are idempotent and such that

(∀i ∈ A) filterα
i ⊆ filterβ

i , (3.304)

the extension E β◦α adheres to Sα.

Proof. Immediately follows from Lemma 3.3.32.

Lemma 3.3.34. Given two extensions — compatible w.r.t. composition (α ◦ β) — E α =
(Cǫ × C α, ISα, τα, Ψα) and E β = (PP β, ISβ , τβ, Ψβ) (for PP β ⊆ Cǫ × C ) such that for

PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn the action filters filterα

i , filterβ
i (for i ∈ A) are idempotent

and such that
(∀i ∈ A) filterα

i = filterβ
i , (3.305)

it holds that
(∀χα◦β ∈ E

α◦β)(∃χα ∈ E
α) Rχα◦β

⊆ Rχα

. (3.306)

Proof. By Definition 3.2.1 of extension combination, the resulting combined extension is

E
α◦β = ((Cǫ × C

α) ∩ PP β, ISα ∩ ISβ, τα◦β, Ψα ∩ Ψβ). (3.307)

For some χα◦β ∈ E α◦β, where

χα◦β =
((

Pǫ, G (0), τα◦β , Ψα ∩ Ψβ
)

, P
)

, (3.308)

since all sets for any t ∈ N of Pǫ(t) are t-coherent and the set of all t-coherent sets is downward
closed by Lemma 2.2.3, it follows that

• (h ∈ G )(∀t ∈ N)(∀Xǫ ∈ Pǫ(t))(∀X1 ∈ P1(h1)) . . . (∀Xn ∈ Pn(hn))
filterβ

ǫ (h, Xǫ, label1 (X1, t) , . . . , labeln (Xn, t)) is t-coherent.

• Hence we can find an environment protocol P̃ǫ ∈ Cǫ such that

(∀h ∈ G )(∀t ∈ N)(∀Xǫ ∈ Pǫ(t))(∀X1 ∈ P1(h1)) . . . (∀Xn ∈ Pn(hn))

filterβ
ǫ (h, Xǫ, label1 (X1, t) , . . . , labeln (Xn, t)) ∈ P̃ǫ(t),

(3.309)
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3.3. Extension Classification

• thus, with the environment protocol P̃ǫ from (3.309) we can construct an agent context
χα ∈ E α, where

χα =
((

P̃ǫ, G (0), τα, Ψα
)

, P
)

, (3.310)

which we will show to produce all runs from Rχα◦β
. Note that P ∈ C α ∩ C β trivially

implies (by semantics of set intersection) that P ∈ C α and similarly if G (0) ∈ ISα ∩ ISβ

this again trivially implies that G (0) ∈ ISα. Therefore, χα can indeed always be
constructed as such.

We conduct the remaining part of the proof by induction, where we will first show that
Rw(χα◦β)) ⊆ Rw(χα).
Induction Hypothesis: For some t ∈ N it holds that

(∀r ∈ Rw(χα◦β))(∃r̃ ∈ Rw(χα))(∀t′ ≤ t) r(t′) = r̃(t′). (3.311)

Base Case: For t = 0, by definition of the contexts χα◦β (3.308) and χα (3.310), since both
use identical sets of initial states G (0) the statement trivially follows.
Induction Step: Suppose the induction hypothesis (3.311) holds for some t ∈ N, in particular

for two runs r′ ∈ Rw(χα◦β) and r̃′ ∈ Rw(χα) who are equal up to time t, we will now show
that it also holds for t + 1, meaning that r′(t + 1) = r̃′(t + 1) or there exists some other run
r̃′′ ∈ Rw(χα) such that (∀t′′ ≤ t + 1) r′(t′′) = r̃′′(t′′).

First we look at events. From the definition of the protocol P̃ǫ (3.309) it follows that it provides
all possibilities regarding what filterβ

ǫ could return for any combination of global history,
event set (from Pǫ) and action sets (from P1, ..., Pn). Moreover, suppose that X ′

ǫ ∈ Pǫ(t),
X ′

1 ∈ P1(r′
1(t)), ..., X ′

n ∈ Pn(r′
n(t)) are the sets chosen by the protocols in run r′ for round t.5,

we get that

(∃Xǫ ∈ P̃ǫ(t)) Xǫ = filterβ
ǫ

(
r′(t), X ′

ǫ, label1
(
X ′

1, t
)

, . . . , labeln
(
X ′

n, t
))

. (3.312)

Considering the application of filter filterα
ǫ , since the same joint protocols are used in both

agent contexts, also the same output sets can be produced. Using the induction hypothesis
(3.311) r′(t) = r̃′(t) and X̃ǫ obtained by existential instantiation of Xǫ in (3.312), we find

filterα
ǫ

(
r̃′(t), X̃ǫ, label1

(
X ′

1, t
)

, . . . , labeln
(
X ′

n, t
))

=

filterα
ǫ

(
r′(t), X̃ǫ, label1

(
X ′

1, t
)

, . . . , labeln
(
X ′

n, t
))

=

filterα
ǫ

(
r′(t), filterβ

ǫ

(
r′(t), X ′

ǫ, label1
(
X ′

1, t
)

, . . . , labeln
(
X ′

n, t
))

, label1
(
X ′

1, t
)

, . . . , labeln
(
X ′

n, t
))

.

(3.313)
This means there exists a run r̃′′ ∈ Rw(χα), such that

(∀t′ ≤ t) r̃′′(t′) = r′(t′) ∧ βt
ǫ

(
r̃′′
)

= βt
ǫ

(
r′). (3.314)

Next we take a look at actions, especially the filtering part. Since (for all i ∈ A) filterα
i =

filterβ
i and idempotence was assumed for all action filters, by Corollary 3.1.37 the combined

filter simplifies for any sets Xǫ ∈ PDt−coh
ǫ , X1 ∈ 2GActions1 , ..., Xn ∈ 2GActionsn to

(∀i ∈ A) filterα◦β
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ) = filterβ
i (X1, . . . , Xn, Xǫ) .

(3.315)
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3. The Extension Framework

As the agent protocols from agent contexts χα and χα◦β are the same, the only concern left is
the set of events passed to the action filter function. However, we have already concluded that
the agent context χα can produce a run r̃′′ for which (3.314) holds. For the two runs r′, r̃′′ —
using the event and actions sets from above - this means that

(∀i ∈ A) filterα◦β
i

(
X ′

1, . . . , X ′
n, filterα◦β

ǫ

(
r′(t), X ′

ǫ, X ′
1, . . . , X ′

n

))
=

filterα
i

(
X ′

1, . . . , X ′
n, filterα

ǫ

(
r̃′′, X̃ǫ, X ′

1, . . . , X ′
n

))
.

(3.316)

Hence we are done with the induction step and can now safely conclude that

Rw(χα◦β)) ⊆ Rw(χα). (3.317)

Since the admissibility condition Ψα◦β of E α◦β is Ψα ∩ Ψβ and

Rχα◦β

= Rw(χα◦β) ∩ Ψα◦β

Rχα

= Rw(χα) ∩ Ψα,
(3.318)

from (3.317) and (3.318) we finally get that

Rχα◦β

⊆ Rχα

. (3.319)

Corollary 3.3.35. Given two extensions — compatible w.r.t. composition (α ◦ β) — E α =
(Cǫ × C α, ISα, τα, Ψα) and E β = (PP β, ISβ , τβ, Ψβ) (for PP β ⊆ Cǫ × C ) such that for

PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn the action filters filterα

i , filterβ
i (for i ∈ A) are idempotent

and such that
(∀i ∈ A) filterα

i = filterβ
i , (3.320)

the extension E α◦β adheres to Sα.

Proof. Immediately follows from Lemma 3.3.34.

Lemma 3.3.36. Given two extensions — compatible w.r.t. composition (α ◦ β) — E α =
(Cǫ × C α, ISα, τα, Ψα) and E β = (PP β, ISβ , τβ, Ψβ) (for PP β ⊆ Cǫ × C ) such that for

PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn the action filters filterα

i (for i ∈ A) are idempotent, simply
monotonic and such that

(∀i ∈ A) filterα
i ⊆ filterβ

i , (3.321)

it holds that
(∀χα◦β ∈ E

α◦β)(∃χα ∈ E
α) Rχα◦β

⊆ Rχα

. (3.322)

Proof. Analogous to the proof for Lemma 3.3.34, where instead of Corollary 3.1.37 Lemma

3.1.36 is used to conclude that for all i ∈ A filter
(α◦β)
i = filterα

i .

Corollary 3.3.37. Given two extensions — compatible w.r.t. composition (α ◦ β) — E α =
(Cǫ × C α, ISα, τα, Ψα) and E β = (PP β, ISβ , τβ, Ψβ) (for PP β ⊆ Cǫ × C ) such that for

PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn the action filters filterα

i (for i ∈ A) are idempotent, simply
monotonic and such that

(∀i ∈ A) filterα
i ⊆ filterβ

i , (3.323)

the extension E α◦β adheres to Sα.
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3.3. Extension Classification

Proof. Immediately follows from Lemma 3.3.36.

Lemma 3.3.38. Given two extensions — compatible w.r.t. k-intersection for some k ≥ 1
(k ·(α+β)) — E α = (Cǫ ×C α, ISα, τα, Ψα) and E β = (PP β, ISβ, τβ, Ψβ) (for PP β ⊆ Cǫ ×C )

such that for PDt−coh
ǫ , 2GActions1, ..., 2GActionsn the event filter filter

k·(α+β)
ǫ for some k ≥ 1

and its action filters are idempotent and such that

(∀i ∈ A) filterα
i = filterβ

i , (3.324)

it holds that
(∀χk·(α+β) ∈ E

k·(α+β))(∃χα ∈ E
α) Rχk·(α+β)

⊆ Rχα

(3.325)

Proof. By Definition 3.2.1 of extension combination, the resulting combined extension is

E
k·(α+β) = ((Cǫ × C

α) ∩ PP β), ISα ∩ ISβ, τk·(α+β), Ψα ∩ Ψβ). (3.326)

For some χk·(α+β) ∈ E k·(α+β), where χk·(α+β) =
((

Pǫ, G (0), τk·(α+β), Ψα ∩ Ψβ
)

, P
)
, since all

runs r ∈ Rχk·(α+β)
are transitional and every subset of a t-coherent set is t-coherent by Lemma

2.2.3, it follows that

• (∀r ∈ Rχk·(α+β)
)(∀t ∈ N) βt

ǫ (r) is t-coherent.

• Hence, we can find an environment protocol P̃ǫ ∈ Cǫ such that

(∀r ∈ Rχk·(α+β)
)(∀t ∈ N) βt

ǫ (r) ∈ P̃ǫ(t), (3.327)

• thus, with the environment protocol P̃ǫ from (3.327) we can construct an agent context
χα ∈ E α, where

χα =
((

P̃ǫ, G (0), τα, Ψα
)

, P
)

, (3.328)

which we will show produces all runs from Rχk·(α+β)
. Note that since the joint protocol

P is used in agent context χk·(α+β), trivially P ∈ C α follows.

First we look at the events from all the runs, which the agent context (3.328) produces.

Considering the result of the combined event filter for a run r ∈ Rχk·(α+β)
and timestamp

t ∈ N, it has to hold that

(∃Xǫ ∈ Pǫ(t))(∃X1 ∈ P1(r1(t))) . . . (∃Xn ∈ P1(rn(t)))

filterk·(α+β)
ǫ (r(t), Xǫ, X1, . . . , Xn) = βt

ǫ (r).
(3.329)

Since by assumption filter
k·(α+β)
ǫ is idempotent for any Xǫ ∈ Pǫ(t), X1 ∈ P (r1(t)), ...,

Xn ∈ P (rn(t)) we get that

filterk·(α+β)
ǫ

(
r(t), βt

ǫ (r), X1, . . . , Xn

)
= βt

ǫ (r). (3.330)

Further from (3.330) and Lemma 3.1.70, it follows that

filterα
ǫ

(
r(t), βt

ǫ (r), X1, . . . , Xn

)
= βt

ǫ (r). (3.331)
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3. The Extension Framework

Hence, from the definition of the protocol P̃ǫ (3.327), we can conclude that the agent context
χα from (3.328) can produce runs with the same events as runs generated by χk·(α+β).

Next we take a look at actions. However, since (for all i ∈ A) filterα
i = filterβ

i and
idempotence was assumed for all filters, by Corollary 3.1.59 the combined filter simplifies for

any sets Xǫ ∈ PDt−coh
ǫ , X1 ∈ 2GActions1 , ..., Xn ∈ 2GActionsn to

(∀i ∈ A) filter
k·(α+β)
i (X1, . . . , Xn, Xǫ) = filterα

i (X1, . . . , Xn, Xǫ) = filterβ
i (X1, . . . , Xn, Xǫ) .

(3.332)
As the agent protocols from agent contexts χα and χk·(α+β) are the same, the only concern left
is the set of events passed to the action filter function. However we have already concluded
that the agent context χα can produce runs that have the same βǫ sets (for the same attempted

actions X1 ⊆ GActions1, ..., Xn ⊆ GActionsn) as runs from χk·(α+β). Hence we are done for
actions.

Considering the initial state as G (0) ∈ ISα ∩ ISβ , we can conclude that

Rw(χk·(α+β)) ⊆ Rw(χα) (3.333)

Since the admissibility condition Ψk·(α+β) of E k·(α+β) is Ψα ∩ Ψβ and

Rχk·(α+β)
= Rw(χk·(α+β)) ∩ Ψk·(α+β), (3.334)

from (3.333) we finally get that

Rχk·(α+β)
⊆ Rχα

. (3.335)

Corollary 3.3.39. Given two extensions — compatible w.r.t. k-intersection for some k ≥ 1
(k ·(α+β)) — E α = (Cǫ ×C α, ISα, τα, Ψα) and E β = (PP β, ISβ, τβ, Ψβ) (for PP β ⊆ Cǫ ×C )

such that for PDt−coh
ǫ , 2GActions1, ..., 2GActionsn the event filter filter

k·(α+β)
ǫ for some k ≥ 1

and the action filters are idempotent and such that

(∀i ∈ A) filterα
i = filterβ

i , (3.336)

the extension E k·(α+β) adheres to Sα.

Proof. Immediately follows from Lemma 3.3.38.

Lemma 3.3.40. Given two extensions — compatible w.r.t. k-intersection for some k ≥ 1
(k ·(α+β)) — E α = (Cǫ ×C α, ISα, τα, Ψα) and E β = (PP β, ISβ, τβ, Ψβ) (for PP β ⊆ Cǫ ×C )

such that for PDt−coh
ǫ , 2GActions1, ..., 2GActionsn the event filter filter

k·(α+β)
ǫ for some k ≥ 1

is idempotent and the action filters filterα
i (for i ∈ A) are idempotent, simply monotonic and

such that

(∀i ∈ A) filterα
i ⊆ filterβ

i , (3.337)

it holds that

(∀χk·(α+β) ∈ E
k·(α+β))(∃χα ∈ E

α) Rχk·(α+β)
⊆ Rχα

. (3.338)
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3.3. Extension Classification

Proof. Analogous to the proof of Lemma 3.3.38, where instead of Corollary 3.1.59 Lemma
3.1.58 has to be used to conclude that for all i ∈ A

filter
k·(α+β)
i = filterα

i . (3.339)

Corollary 3.3.41. Given two extensions — compatible w.r.t. k-intersection for some k ≥ 1
(k ·(α+β)) — E α = (Cǫ ×C α, ISα, τα, Ψα) and E β = (PP β, ISβ, τβ, Ψβ) (for PP β ⊆ Cǫ ×C )

such that for PDt−coh
ǫ , 2GActions1, ..., 2GActionsn the event filter filter

k·(α+β)
ǫ is idempotent

and the action filters filterα
i (for i ∈ A) are idempotent, simply monotonic and such that

(∀i ∈ A) filterα
i ⊆ filterβ

i , (3.340)

the extension E k·(α+β) adheres to Sα.

Proof. Immediately follows from Lemma 3.3.40.

Lemma 3.3.42. Given two extensions — compatible w.r.t. fixpoint intersection (α ∗ β) —
E α = (Cǫ ×C α, ISα, τα, Ψα) and E β = (PP β , ISβ, τβ, Ψβ), whose action filters are idempotent

for PDt−coh
ǫ , 2GActions1, ..., 2GActionsn and such that

(∀i ∈ A) filterα
i = filterβ

i , (3.341)

it holds that

(∀χα∗β ∈ E
α∗β)(∃χα ∈ E

α) Rχα∗β

⊆ Rχα

. (3.342)

Proof. Analogous to the proof for Lemma 3.3.38, where the idempotence of filterα∗β
ǫ follows

from Lemma 3.1.65 and instead of Corollary 3.1.59 Corollary 3.1.69 is used to conclude that
for all i ∈ A filterα∗β

i = filterα
i .

Corollary 3.3.43. Given two extensions — compatible w.r.t. fixpoint intersection (α ∗ β)
— E α = (Cǫ × C α, ISα, τα, Ψα) and E β = (PP β, ISβ, τβ, Ψβ) such that the action filters are

idempotent for PDt−coh
ǫ , 2GActions1, ..., 2GActionsn and such that

(∀i ∈ A) filterα
i = filterβ

i , (3.343)

the resulting extension E α∗β adheres to Sα.

Proof. Immediately follows from Lemma 3.3.42.

Lemma 3.3.44. Given two extensions — compatible w.r.t. fixpoint intersection (α ∗ β) —
E α = (Cǫ × C α, ISα, τα, Ψα) and E β = (PP β , ISβ, τβ, Ψβ) the action filters filterα

i (for all

i ∈ A) are idempotent and simply monotonic for PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn and such

that

(∀i ∈ A) filterα
i ⊆ filterβ

i , (3.344)

it holds that

(∀χα∗β ∈ E
α∗β)(∃χα ∈ E

α) Rχα∗β

⊆ Rχα

. (3.345)
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3. The Extension Framework

Proof. Analogous to the proof for Lemma 3.3.38, where the idempotence of filterα∗β
ǫ follows

from Lemma 3.1.65 and instead of Corollary 3.1.59 Lemma 3.1.68 is used to conclude that for
all i ∈ A filterα∗β

i = filterα
i .

Corollary 3.3.45. Given two extensions — compatible w.r.t. fixpoint intersection (α ∗ β) —
E α = (Cǫ × C α, ISα, τα, Ψα) and E β = (PP β , ISβ, τβ, Ψβ) the action filters filterα

i (for all

i ∈ A) are idempotent and simply monotonic for PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn and such

that

(∀i ∈ A) filterα
i ⊆ filterβ

i , (3.346)

the resulting extension E α∗β adheres to Sα.

Proof. Immediately follows from Lemma 3.3.44.

Lemma 3.3.46. Given two safety properties S, S′ such that (∀h ∈ G ) S′(h) ⊆ S(h) and an
extension E adhering to S′, E also adheres to S.

Proof. Suppose by contradiction that E adheres to S′ but not S ⇒

(∃χ ∈ E )(∃r ∈ Rχ)(∃t ∈ N)(∃X /∈ S(r(t))) βt (r) = X (3.347)

However, since (∀h ∈ G ) S′(h) ⊆ S(h) is assumed, it follows that for such a particular set X ′,
run r′ and time t′ (by existential instantiations from from (3.347)) X ′ /∈ S′(r(t)) as well. Since
E adheres to S′ by Definitions 3.3.13 and 3.3.14 it holds that

(∀χ ∈ E )(∀r ∈ Rχ)(∀t ∈ N)(∀X /∈ S′(r(t))) βt (r) 6= X

meaning X ′ never appears in any run of an agent context part of E .

Lemma 3.3.47. An extension E that adheres to safety properties Sα and Sβ also adheres to
a safety property Sγ, where

(∀h ∈ G ) Sγ(h) = Sα(h) ∩ Sβ(h) (3.348)

Proof. Suppose by contradiction E does not adhere to Sγ . This implies that

(∃χ ∈ E )(∃r ∈ Rχ)(∃t ∈ N) βt (r) /∈ Sα(r(t)) ∩ Sβ(r(t)). (3.349)

By semantics of set intersection we further get

(∃χ ∈ E )(∃r ∈ Rχ)(∃t ∈ N) βt (r) /∈ Sα(r(t)) ∨ βt (r) /∈ Sβ(r(t)), (3.350)

which however contradicts our assumption that E adheres to Sα and Sβ:

(∀χ ∈ E )(∀r ∈ Rχ)(∀t ∈ N) βt (r) ∈ Sα(r(t)) ∧ βt (r) ∈ Sβ(r(t)). (3.351)
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3.3. Extension Classification

Lemma 3.3.48. For any extension E α = (Cǫ ×C , ISα, τα,N , Ψα) (that adheres to the smallest

safety property Sα), where in τα,N the idempotent (for the domain PDt−coh
ǫ , 2GActions1, ...,

2GActionsn) event filter filterα
ǫ and the neutral action filters for all i ∈ A are used, for any

h ∈ G it holds that

X ∈ Sα(h) =⇒ filterα
ǫ (h, Xǫ, X1, . . . , Xn) = Xǫ, (3.352)

where X = Xǫ ⊔ X1 ⊔ · · · ⊔ Xn.

Proof. Suppose by contradiction that this is not true. By the basic filter property of filterα
ǫ

it follows that there exists a h ∈ G and X ∈ Sα(h) such that

filterα
ǫ (h, Xǫ, X1, . . . , Xn) ⊂ Xǫ, (3.353)

where X = Xǫ ⊔ X1 ⊔ · · · ⊔ Xn.

Since X ∈ Sα(h) and Sα is the smallest safety property of E α, there has to exist some

Xsup ⊃ X (where Xsup = Xsup
ǫ ⊔ Xsup

ag , where Xsup
ǫ ∈ PDt−coh

ǫ and Xsup
ag ∈ 2GActions) such

that

filterα
ǫ (h, Xsup

ǫ , Xsup
1 , . . . , Xsup

n ) = Xǫ, (3.354)

where Xsup = Xsup
ǫ ⊔ Xsup

1 ⊔ · · · ⊔ Xsup
n . However, since by our assumption in E α the neutral

action filters are used and for all i ∈ A

filterN
i (Xsup

1 , . . . , Xsup
n , Xǫ) = Xsup

i , (3.355)

it follows that for all i ∈ A

Xsup
i = Xi. (3.356)

From (3.353), (3.354) and (3.356), however, we get that

filterα
ǫ (h, filterα

ǫ (h, Xsup
ǫ , X1, . . . , Xn) , X1, . . . , Xn) ⊂ filterα

ǫ (h, Xsup
ǫ , X1, . . . , Xn) ,

(3.357)
which leads to a contradiction, as filterα

ǫ was assumed to be idempotent for the domain

PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn .

3.3.4 Downward Closed Safety Properties

An important category of safety properties are those that are closed with respect to subsets of
their elements (downward closed).

Definition 3.3.49. We say a safety property S is downward closed iff

(∀h ∈ G )(∀X ∈ S(h))(∀X ′ ⊆ X) X ′ ∈ S(h) (3.358)

Lemma 3.3.50. For every safety property S that is not downward closed, there does not
necessarily exist some S′ such that (∀h ∈ G ) S′(h) ⊆ S(h) and S′ is downward closed.
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3. The Extension Framework

Proof. An easy counterexample is a safety property for which the following holds

(∀h ∈ G ) ∅ /∈ S(h). (3.359)

The only downward closed safety property S′ that is a subset of S would be

(∀h ∈ G ) S′(h) = ∅, (3.360)

which however conflicts with the Definition 3.3.12 of operational safety properties.

Lemma 3.3.51. Given a safety property S that is downward closed, an extension E α =
(PP α, ISα, τα, Ψα) adhering to S, an extension E β = (PP β, ISβ, τβ, Ψβ) compatible w.r.t.
composition β ◦ α respectively intersection α + β respectively k-intersection k · (α + β) (for
some k ≥ 1) respectively fixpoint intersection α ∗ β with E α, if all action filter functions

filterα
i are monotonic for PDt−coh

ǫ , 2GActions1, ..., 2GActionsn, then any run (corresponding

with the extensions’ compatibility) r ∈ Rχβ◦α
respectively r′ ∈ Rχα+β

respectively r′′ ∈ Rχk·(α+β)

respectively r′′′ ∈ Rχα∗β
of some agent contexts χβ◦α ∈ E β◦α respectively χα+β ∈ E α+β

respectively χk·(α+β) ∈ E k·(α+β) respectively χα∗β ∈ E α∗β always satisfies S. In other words, if
S is a safety property that is downward closed and E α is an extension adhering to S, whose

action filter functions are all monotonic for PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn , then for k ≥ 1

the extensions E β◦α respectively E α+β respectively E k·(α+β) respectively E α∗β also adhere to S
for any E β compatible with E α w.r.t. β ◦α respectively α+β respectively k · (α+β) respectively
α ∗ β.

Proof. If the two extensions are compatible w.r.t. β ◦ α, α + β, k · (α + β) or α ∗ β, the
combined extensions (by Definition 3.2.1) are

E
β◦α = (PP α ∩ PP β , ISα ∩ ISβ, τβ◦α, Ψα ∩ Ψβ)

E
α+β = (PP α ∩ PP β , ISα ∩ ISβ, τα+β, Ψα ∩ Ψβ)

E
k·(α+β) = (PP α ∩ PP β, ISα ∩ ISβ, τk·(α+β), Ψα ∩ Ψβ)

E
α∗β = (PP α ∩ PP β, ISα ∩ ISβ, τα∗β, Ψα ∩ Ψβ).

Since (first three points by semantics of set intersection, fourth one by assumption)

• (Pǫ, P ) ∈ PP α ∩ PP β ⇒ (Pǫ, P ) ∈ PP α and

• G (0) ∈ ISα ∩ ISβ ⇒ G (0) ∈ ISα and

• r ∈ Ψα ∩ Ψβ ⇒ r ∈ Ψα and

• E α adheres to S,

it remains to investigate whether the transition templates τβ◦α, τα+β, τk·(α+β), τα∗β might
contradict our claim.

By Lemma 3.1.70, we get that

filterβ◦α
ǫ ⊆ filterα

ǫ

filterα+β
ǫ ⊆ filterα

ǫ

filterk·(α+β)
ǫ ⊆ filterα

ǫ

filterα∗β
ǫ ⊆ filterα

ǫ .

(3.361)
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3.3. Extension Classification

For some h ∈ G , Xǫ ∈ PDt−coh
ǫ , X1 ∈ 2GActions1 , ..., Xn ∈ 2GActionsn , by the assumption of

monotonicity of the filter functions filterα
i (for all i ∈ A) in the domain PDt−coh

ǫ , 2GActions1 ,

..., 2GActionsn and also by Lemma 3.1.70, we get that

filterβ◦α
i

(
X1, . . . , Xn, filterβ◦α

ǫ (h, Xǫ, X1, . . . , Xn)
)

⊆

filterα
i

(
X1, . . . , Xn, filterβ◦α

ǫ (h, Xǫ, X1, . . . , Xn)
)

⊆

filterα
i (X1, . . . , Xn, filterα

ǫ (h, Xǫ, X1, . . . , Xn))

filterα+β
i

(
X1, . . . , Xn, filterα+β

ǫ (h, Xǫ, X1, . . . , Xn)
)

⊆

filterα
i

(
X1, . . . , Xn, filterα+β

ǫ (h, Xǫ, X1, . . . , Xn)
)

⊆

filterα
i (X1, . . . , Xn, filterα

ǫ (h, Xǫ, X1, . . . , Xn))

filter
k·(α+β)
i

(
X1, . . . , Xn, filterk·(α+β)

ǫ (h, Xǫ, X1, . . . , Xn)
)

⊆

filterα
i

(
X1, . . . , Xn, filterk·(α+β)

ǫ (h, Xǫ, X1, . . . , Xn)
)

⊆

filterα
i (X1, . . . , Xn, filterα

ǫ (h, Xǫ, X1, . . . , Xn))

filterα∗β
i

(
X1, . . . , Xn, filterα∗β

ǫ (h, Xǫ, X1, . . . , Xn)
)

⊆

filterα
i

(
X1, . . . , Xn, filterα∗β

ǫ (h, Xǫ, X1, . . . , Xn)
)

⊆

filterα
i (X1, . . . , Xn, filterα

ǫ (h, Xǫ, X1, . . . , Xn)) .

Hence since S is assumed to be downward closed we conclude that for any timestamp t ∈ N,
agent contexts χβ◦α ∈ E β◦α, χα+β ∈ E α+β, χk·(α+β) ∈ E k·(α+β), χα∗β ∈ E α∗β and runs
r ∈ Rχβ◦α

, r′ ∈ Rχα+β
, r′′ ∈ Rχk·(α+β)

, r′′′ ∈ Rχα∗β

βt (r) ∈ S(r(t))

βt
(
r′) ∈ S(r′(t))

βt
(
r′′) ∈ S(r′′(t))

βt
(
r′′′) ∈ S(r′′′(t)).

(3.362)

Lemma 3.3.52. Given a safety property S that is downward closed, an extension E α = (PP α,
ISα, τα, Ψα) adhering to S, an extension E β = (PP β, ISβ, τβ , Ψβ) compatible w.r.t. α ◦ β

with E α, if for PDt−coh
ǫ , 2GActions1, ..., 2GActionsn filterα

ǫ is simply monotonic or filterβ
ǫ is

stricter than filterα
ǫ and if for PDt−coh

ǫ , 2GActions1, ..., 2GActionsn the action filters filterα
i

are monotonic (for all i ∈ A), then any run r ∈ Rχα◦β
of some agent context χα◦β ∈ E α◦β

satisfies S.

Proof. The reasoning is analogous to Lemma 3.3.51, with the only difference that instead

of Lemma 3.1.70 Lemma 3.1.33 has to be used to conclude that for PDt−coh
ǫ , 2GActions1 , ...,

2GActionsn and all i ∈ A
filterα◦β

ǫ ⊆ filterα
ǫ (3.363)
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3. The Extension Framework

Lemma 3.3.53. Any extension E α = (PP α, ISα, τα, Ψα), where in τα at least one Byzantine
action filter for some i ∈ A is used if for some (Pǫ, P ) ∈ PP α there exists some h ∈ G s.t.
there exists some Xi ∈ Pi(hi) with ∅ ⊂ Xi and there exist sets Xnogo

ǫ , Xgo
ǫ ∈ Pǫ(|h|), where

Xnogo
ǫ ⊂ Xgo

ǫ and s.t. go(i) ∈ Xgo
ǫ , but go(i) /∈ Xnogo

ǫ , then Sα is not downward closed.

Proof. We conduct this proof by counterexample. Suppose for some (Pǫ, P ) ∈ PP α there
exists some h ∈ G s.t. there exists some Xi ∈ Pi(hi) with ∅ ⊂ Xi and there exist sets
Xnogo

ǫ ⊂ Xgo
ǫ ∈ Pǫ(|h|) s.t. go(i) ∈ Xgo

ǫ , go(i) /∈ Xnogo
ǫ . For any X1 ⊆ GActions1, ...,

Xi−1 ⊆ GActionsi−1, Xi+1 ⊆ GActionsi+1, ..., Xn ⊆ GActionsn, by |h|-coherence of Xgo
ǫ and

Xnogo
ǫ , it follows that

filterB
i (X1, . . . , Xn, Xgo

ǫ ) = Xi, (3.364)

but

filterB
i (X1, . . . , Xn, Xnogo

ǫ ) = ∅. (3.365)

Hence the configuration consisting of Xnogo
ǫ , Xi (a subset of the configuration that instead

consists of Xgo
ǫ ) cannot be achieved with the Byzantine action filter.

3.3.5 Composability of Implementation Classes

Definition 3.3.54 (Composability Relation). We define a composability relation Q between
implementation classes:

Q ⊆ I × I . (3.366)

For two implementation classes ICα, ICβ ∈ I we say ICα is composable with ICβ and write
either

ICα
Q ICβ or (ICα, ICβ) ∈ Q

iff for all extensions E α ∈ ICα and E β ∈ ICβ , s.t. E α and E β are compatible w.r.t. ⋆, where
⋆ represents composition (α ◦ β), reverse composition (β ◦ α), k-intersection (k · (α + β) for
k ≥ 1) or fixpoint intersection (α ∗ β), the extension E α⋆β adheres to Sβ .

Definition 3.3.55 (Downward Closed Safety Property Composability Relation). We define
the DCSP composability relation Q̃ between implementation classes:

Q̃ ⊆ I × I . (3.367)

For two implementation classes ICα, ICβ ∈ I we say ICα is DCSP composable with ICβ

and write either

ICα
Q̃ ICβ or (ICα, ICβ) ∈ Q̃

iff for all extensions E α ∈ ICα and E β ∈ ICβ, s.t. E α and E β are compatible w.r.t. ⋆DCSP ,
where ⋆DCSP represents composition (α ◦ β), k-intersection (k · (α + β) for k ≥ 1) or fixpoint
intersection (α ∗ β), the extension E α⋆DCSP β adheres to Sβ.

Definition 3.3.56 (Fixpoint Composability Relation). Further we define the fixpoint com-
posability relation F between implementation classes:

F ⊆ I × I . (3.368)
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3.3. Extension Classification

For two implementation classes ICα, ICβ ∈ I we say ICα is fixpoint composable with ICβ

and write either

ICα
F ICβ or (ICα, ICβ) ∈ F

iff for all extensions E α ∈ ICα and E β ∈ ICβ , s.t. E α and E β are compatible w.r.t. ⋆f , where
⋆f represents reversed composition (β ◦ α) or fixpoint intersection (α ∗ β), the extension E α⋆f β

adheres to Sβ .

Definition 3.3.57 (Readily Composable). For two implementation classes ICα, ICβ ∈ I we
say ICα is readily composable with ICβ or ICβ is readily composable with ICα iff

(ICα, ICβ) ∈ Q ∧ (ICβ, ICα) ∈ Q,

meaning the composability relation is symmetric.

Definition 3.3.58 (Readily DCSP Composable). Similarly for two implementation classes
ICα, ICβ ∈ I we say ICα is readily DCSP composable with ICβ or ICβ is readily DCSP
composable with ICα iff

(ICα, ICβ) ∈ Q̃ ∧ (ICβ, ICα) ∈ Q̃,

meaning the DCSP composability relation is symmetric.

Definition 3.3.59 (Readily Fixpoint Composable). Similarly for two implementation classes
ICα, ICβ ∈ I we say ICα is readily fixpoint composable with ICβ or ICβ is readily fixpoint
composable with ICα iff

(ICα, ICβ) ∈ F ∧ (ICβ, ICα) ∈ F ,

meaning the fixpoint composability relation is symmetric.

Lemma 3.3.60. Composability implies DCSP composability and fixpoint composability: For
some implementation classes ICα, ICβ ∈ I

(ICα, ICβ) ∈ Q =⇒ (ICα, ICβ) ∈ Q̃ ∧ (ICα, ICβ) ∈ F (3.369)

Proof. Follows directly from the Definitions 3.3.54, 3.3.55 and 3.3.56.

Note that since some of our introduced implementation classes are subsets of other classes,
any finding for a super set class is obviously valid for the subset class as well. Hence in the
following results we only ever denote the biggest classes for which the results hold.

Lemma 3.3.61. The implementation class Adm is readily composable with all implementation
classes. Formally for all implementation classes IC ∈ I , it holds that

(Adm, IC) ∈ Q (3.370)

(IC, Adm) ∈ Q. (3.371)

135

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3. The Extension Framework

Proof. Regarding equation (3.370): For some E α ∈ Adm it holds that

E
α = (Cǫ × C , ISα, τN,N , Ψα). (3.372)

For any arbitrary extension
E

β = (PP β, ISβ, τβ, Ψβ), (3.373)

which is compatible (w.r.t. some composition, k intersection for k ≥ 1 or fixpoint intersection)
with E α, the combined extensions are (for some k ≥ 1)

E
α◦β = (Cǫ × C ∩ PP β, ISα ∩ ISβ, τN,N◦β, Ψα ∩ Ψβ), (3.374)

E
β◦α = (Cǫ × C ∩ PP β, ISα ∩ ISβ, τβ◦N,N , Ψα ∩ Ψβ), (3.375)

E
k·(α+β) = (Cǫ × C ∩ PP β, ISα ∩ ISβ , τk·(N,N+β), Ψα ∩ Ψβ), (3.376)

E
α∗β = (Cǫ × C ∩ PP β, ISα ∩ ISβ , τN,N∗β, Ψα ∩ Ψβ). (3.377)

Since by Lemmas 3.1.24, 3.1.38, 3.1.49 and 3.1.61 the neutral filters are the neutral element for
idempotent filters w.r.t. filter composition, filter intersection, k-filter intersection and fixpoint
filter intersection, and the filter functions of any implementation class are idempotent in the

domain PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn the transition templates simplify to

τN,N◦β = τβ◦N,N = τk·(N,N+β) = τN,N∗β = τβ, (3.378)

from which (3.370) follows (by semantics of set intersection) as

E
α◦β = E

β◦α = E
k·(α+β) = E

α∗β = (Cǫ × C ∩ PP β, ISα ∩ ISβ , τβ, Ψα ∩ Ψβ). (3.379)

Considering (3.371) since the implementation class Adm only restricts the admissibility
condition the statement follows from Lemma 3.3.10.

Lemma 3.3.62. The implementation class JP is composable with all implementation classes.
Formally, for all implementation classes IC ∈ I it holds that

(JP, IC) ∈ Q (3.380)

Proof. For some E α ∈ JP it holds that

E
α = (Cǫ × C

α, ISα, τN,N , Ψα). (3.381)

For any arbitrary extension
E

β = (PP β, ISβ, τβ, Ψβ), (3.382)

which is compatible (w.r.t. some composition, k-intersection for k ≥ 1 or fixpoint intersection)
with E α the combined extensions are (for some k ≥ 1)

E
α◦β = (Cǫ × C

α ∩ PP β, ISα ∩ ISβ, τN,N◦β, Ψα ∩ Ψβ), (3.383)

E
β◦α = (Cǫ × C

α ∩ PP β, ISα ∩ ISβ , τβ◦N,N , Ψα ∩ Ψβ), (3.384)

E
k·(α+β) = (Cǫ × C

α ∩ PP β, ISα ∩ ISβ , τk·(N,N+β), Ψα ∩ Ψβ) or (3.385)

E
α∗β = (Cǫ × C

α ∩ PP β, ISα ∩ ISβ , τN,N∗β, Ψα ∩ Ψβ) (3.386)
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3.3. Extension Classification

Since by Lemmas 3.1.24, 3.1.38, 3.1.49 and 3.1.61 the neutral filters are the neutral element for
idempotent filters w.r.t. filter composition, filter intersection, k-filter intersection and fixpoint
filter intersection, and the filter functions of any implementation class are idempotent in the

domain PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn the transition templates simplify to

τN,N◦β = τβ◦N,N = τk·(N,N+β) = τN,N∗β = τβ, (3.387)

from which (3.380) follows (by semantics of set intersection) as

E
α◦β = E

β◦α = E
k·(α+β) = E

α∗β = (Cǫ × C
α ∩ PP β, ISα ∩ ISβ, τβ, Ψα ∩ Ψβ). (3.388)

Lemma 3.3.63. The implementation class EnvJP is composable with every implementation
class. Formally, for every IC ∈ I it holds that

(EnvJP, IC) ∈ Q. (3.389)

Proof. For some arbitrary E α ∈ EnvJP it holds that

E
α = (PP α, ISα, τN,N , Ψα) (3.390)

and some arbitrary E β ∈ IC (for some IC ∈ I ) compatible (w.r.t. some composition,
k-intersection for k ≥ 1 or fixpoint intersection) with E α it holds that

E
β = (PP β, ISβ, τβ, Ψβ). (3.391)

By Definition 3.2.1 of safety properties and Lemmas 3.1.24, 3.1.38, 3.1.49 and 3.1.61 we get
(for some k ≥ 1) that

E
α◦β = E

β◦α = E
k·(α+β) = E

α∗β = (PP α ∩ PP β , ISα ∩ ISβ, τβ, Ψα ∩ Ψβ), (3.392)

from which (3.389) follows.

Lemma 3.3.64. The implementation classes EvFEnvJP and EvFJP are composable with
JP. Formally,

(EvFEnvJP, JP) ∈ Q (3.393)

(EvFJP, JP) ∈ Q. (3.394)

Proof. Regarding (3.393) for some arbitrary E α ∈ EvFEnvJP it holds that

E
α = (PP α, ISα, τα,N , Ψα), (3.395)

where in τα,N the event filter filterα
ǫ and the neutral action filters filterN

i (for all i ∈ A) are
used. For some E β ∈ JP compatible (w.r.t. some composition, k-intersection for k ≥ 1 or
fixpoint intersection) with E α it holds that

E
β = (Cǫ × C

β, ISβ, τN,N , Ψβ). (3.396)
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3. The Extension Framework

By Definition 3.2.1 of extension combination and Lemmas 3.1.24, 3.1.38, 3.1.49 and 3.1.61 we
get (for some k ≥ 1) that

E
α◦β = E

β◦α = E
k·(α+β) = E

α∗β = (PP α ∩ Cǫ × C
β, ISα ∩ ISβ, τα,N , Ψα ∩ Ψβ). (3.397)

By Corollary 3.3.43 the extension (3.397) satisfies Sα, from which (3.393) follows.

Regarding (3.394) for some arbitrary E α ∈ EvFJP it holds that

E
α = (Cǫ × C

α, ISα, τα,N , Ψα), (3.398)

where in τα,N some event filter function filterα
ǫ and the neutral action filters are used and

some E β ∈ JP compatible (w.r.t. some composition, k-intersection for k ≥ 1 or fixpoint
intersection) with E α it holds that

E
β = (Cǫ × C

β, ISβ, τN,N , Ψβ). (3.399)

By Definition 3.2.1 of extension combination and Lemmas 3.1.24, 3.1.38, 3.1.49 and 3.1.61 we
get (for some k ≥ 1) that

E
α◦β = E

β◦α = E
k·(α+β) = E

α∗β = (Cǫ × (C α ∩ C
β), ISα ∩ ISβ, τα,N , Ψα ∩ Ψβ). (3.400)

Similar to our previous case by Corollary 3.3.43 the extension (3.400) satisfies Sα, from which
(3.394) follows.

Lemma 3.3.65. The implementation class EvFJP is fixpoint composable with EvFJP (itself)
and EvFJP − AFB. Formally,

(EvFJP, EvFJP) ∈ F (3.401)

(EvFJP, EvFJP − AFB) ∈ F . (3.402)

Proof. Regarding (3.401) for two compatible (w.r.t. composition β ◦ α or fixpoint intersection)
extensions E α, E β ∈ EvFJP it holds that

E
α = (Cǫ × C

α, ISα, τα,N , Ψα) (3.403)

E
β = (Cǫ × C

β, ISβ, τβ,N , Ψβ), (3.404)

where in τα,N the event filter filterα
ǫ and the neutral action filters and in τβ,N the event

filter filterβ
ǫ and the neutral action filters are used. The statement now directly follows from

Corollaries 3.3.35 and 3.3.43.

Regarding (3.402) let

E
α = (Cǫ × C

α, ISα, τα,N , Ψα) (3.405)

E
β = (Cǫ × C

β, ISβ, τβ,B, Ψβ) (3.406)

be some arbitrary extension E α ∈ EvFJP and E β ∈ EvFJP − AFB an extension compatible
(w.r.t. composition β ◦ α or fixpoint intersection) with E α, where in τα,N the event filter
filterα

ǫ and the neutral action filters and in τβ,B the event filter filterβ
ǫ and the Byzantine

action filters filterB
i (for all i ∈ A) are used. Since the Byzantine filters are monotonic by

Lemma 3.1.17, the statement now directly follows from Corollaries 3.3.37 and 3.3.45.
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3.3. Extension Classification

Lemma 3.3.66. The implementation class EvFEnvJP is fixpoint composable with EvFJP
and EvFJP − AFB. Formally,

(EvFEnvJP, EvFJP) ∈ F (3.407)

(EvFEnvJP, EvFJP − AFB) ∈ F (3.408)

Proof. For three arbitrary extensions E α ∈ EvFEnvJP, E β ∈ EvFJP, E γ ∈ EvFJP − AFB
it holds that

E
α = (PP α, ISα, τα,N , Ψα) (3.409)

E
β = (Cǫ × C

β , ISβ, τβ,N , Ψβ) (3.410)

E
γ = (Cǫ × C

γ , ISγ , τγ,B, Ψγ), (3.411)

where in τα,N the event filter filterα
ǫ and the neutral action filters, in τβ,N the event filter

filterβ
ǫ and the neutral actions filters and in τγ,B the event filter filterγ

ǫ and the Byzantine
action filters filterB

i (for all i ∈ A) are used. (3.407) follows directly from Corollaries 3.3.35
and 3.3.43. Since the Byzantine filter functions are monotonic by Lemma 3.1.17 the statement
(3.408) follows from Corollaries 3.3.37 and 3.3.45.

Lemma 3.3.67. The implementation classes EvFJP − AFB and EvFEnvJP − AFB are
fixpoint composable with EvFJP − AFB. Formally

(EvFJP − AFB, EvFJP − AFB) ∈ F (3.412)

(EvFEnvJP − AFB, EvFJP − AFB) ∈ F (3.413)

Proof. Let E α, E β ∈ EvFJP − AFB and E γ ∈ EvFEnvJP − AFB be three extensions. It
holds that

E
α = (Cǫ × C

α, ISα, τα,B, Ψα) (3.414)

E
β = (Cǫ × C

β, ISβ, τβ,B, Ψβ) (3.415)

E
γ = (PP γ , ISβ, τγ,B, Ψγ), (3.416)

where in τα,B the event filter filterα
ǫ and the Byzantine action filters filterB

i (for all i ∈ A),
in τβ,B the event filter filterβ

ǫ and the Byzantine action filters filterB
i (for all i ∈ A) and in

τγ,B the event filter filterγ
ǫ and also the Byzantine action filters filterB

i (for all i ∈ A) are
used. Since the Byzantine filters are idempotent by Lemma 3.1.22 the statements (3.412),
(3.413) now directly follow from Corollaries 3.3.35 and 3.3.43.

Lemma 3.3.68. Every implementation class except Others is composable with JP − AFB.
Formally, for every IC ∈ I \ {Others}, it holds that

(IC, JP − AFB) ∈ Q. (3.417)

Proof. For some arbitrary E α ∈ JP − AFB, it holds that

E
α = (Cǫ × C

α, ISα, τN,B, Ψα). (3.418)

For some arbitrary E β ∈ IC (for some IC ∈ I \ {Others}) compatible (w.r.t. some
composition, k-intersection for k ≥ 1 or fixpoint intersection) with E α there are two possibilities:
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3. The Extension Framework

1. E β = (PP β, ISβ, τβ,N , Ψβ) or

2. E β = (PP β, ISβ, τβ,B, Ψβ)

However, either way by Definition 3.2.1 of extension combination and Lemmas 3.1.24, 3.1.38,
3.1.49 and 3.1.61, since the Byzantine action filters are idempotent by Lemma 3.1.22, we get
(for some k ≥ 1) that

E
α◦β = E

β◦α = E
k·(α+β) = E

α∗β = (Cǫ × C
α ∩ PP β, ISα ∩ ISβ, τβ,B, Ψα ∩ Ψβ). (3.419)

from which (3.417) follows.

Lemma 3.3.69. The implementation class JP − AFB is composable with EnvJP − AFB,
EvFJP − AFB and EvFEnvJP − AFB, or formally

(JP − AFB, EnvJP − AFB) ∈ Q (3.420)

(JP − AFB, EvFJP − AFB) ∈ Q (3.421)

(JP − AFB, EvFEnvJP − AFB) ∈ Q (3.422)

Proof. Regarding (3.421) and (3.422) let the following be two arbitrary compatible (w.r.t. some
composition, k-intersection for k ≥ 1 or fixpoint intersection) extensions E α ∈ JP − AFB
and E β ∈ EvFJP − AFB or E β ∈ EvFEnvJP − AFB. In either case we get

E
α = (Cǫ × C

α, ISα, τN,B, Ψα) (3.423)

E
β = (PP β, ISβ, τβ,B, Ψβ), (3.424)

where C α ⊂ C , PP β ⊆ Cǫ ×C , ISα, ISβ ⊆ 2G (0), Ψα, Ψβ ⊆ R, and for the transition template
τN,B the neutral event filter filterN

ǫ and the Byzantine action filters filterB
i (for all i ∈ A),

and for the transition template τβ,B the event filter filterβ
ǫ and also the Byzantine action

filters filterB
i (for all i ∈ A) are used. By Definition 3.2.1 of extension combination and

Lemmas 3.1.24, 3.1.38, 3.1.49 and 3.1.61, since the Byzantine action filters are idempotent by
Lemma 3.1.22, we get (for some k ≥ 1) that

E
α◦β = E

β◦α = E
k·(α+β) = E

α∗β = (Cǫ × C
α ∩ PP β, ISα ∩ ISβ, τβ,B, Ψα ∩ Ψβ), (3.425)

from which (3.421) and (3.422) follow.

Regarding (3.420) let the following be two arbitrary compatible (w.r.t. some composition,
k-intersection for k ≥ 1 or fixpoint intersection) extensions E α ∈ JP − AFB and E β ∈
EnvJP − AFB. In either case we get

E
α = (Cǫ × C

α, ISα, τN,B, Ψα) (3.426)

E
β = (PP β, ISβ, τN,B, Ψβ), (3.427)

where C α ⊂ C , PP β ⊆ Cǫ ×C , ISα, ISβ ⊆ 2G (0), Ψα, Ψβ ⊆ R and for the transition template
τN,B the neutral event filter filterN

ǫ and the Byzantine action filters filterB
i (for all i ∈ A)

are used. By Definition 3.2.1 of extension combination and Lemmas 3.1.24, 3.1.38, 3.1.49 and
3.1.61, since the Byzantine action filters are idempotent by Lemma 3.1.22, we get (for some
k ≥ 1) that

E
α◦β = E

β◦α = E
k·(α+β) = E

α∗β = (Cǫ × C
α ∩ PP β, ISα ∩ ISβ, τN,B, Ψα ∩ Ψβ), (3.428)

from which (3.420) follows.
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3.3. Extension Classification

Lemma 3.3.70. The implementation class EnvJP − AFB is composable with EnvJP − AFB
(itself), EvFJP − AFB and EvFEnvJP − AFB or formally

(EnvJP − AFB, EnvJP − AFB) ∈ Q (3.429)

(EnvJP − AFB, EvFJP − AFB) ∈ Q (3.430)

(EnvJP − AFB, EvFEnvJP − AFB) ∈ Q (3.431)

Proof. Regarding (3.429) let the following be two arbitrary compatible (w.r.t. some composi-
tion, k-intersection for k ≥ 1 or fixpoint intersection) extensions E α, E β ∈ EnvJP − AFB.
We get that

E
α = (PP α, ISα, τN,B, Ψα) (3.432)

E
β = (PP β, ISβ , τN,B, Ψβ), (3.433)

where PP α, PP β ⊆ Cǫ × C , ISα, ISβ ⊆ 2G (0), Ψα, Ψβ ⊆ R and for the transition template
τN,B the neutral event filter filterN

ǫ and the Byzantine action filters filterB
i (for all i ∈ A)

are used. By Definition 3.2.1 of extension combination and Lemmas 3.1.24, 3.1.38, 3.1.49 and
3.1.61, since the Byzantine action filters are idempotent by Lemma 3.1.22, we get (for some
k ≥ 1) that

E
α◦β = E

β◦α = E
k·(α+β) = E

α∗β = (PP α ∩ PP β, ISα ∩ ISβ, τN,B, Ψα ∩ Ψβ), (3.434)

from which (3.429) follows.

Regarding (3.430) and (3.431) let the following be two arbitrary compatible (w.r.t. some
composition, k-intersection for k ≥ 1 or fixpoint intersection) extensions E α ∈ EnvJP − AFB
and either E β ∈ EvFJP − AFB or E β ∈ EvFEnvJP − AFB. In either case we get

E
α = (PP α, ISα, τN,B, Ψα) (3.435)

E
β = (PP β, ISβ, τβ,B, Ψβ), (3.436)

where PP α, PP β ⊆ Cǫ × C , ISα, ISβ ⊆ 2G (0), Ψα, Ψβ ⊆ R and for the transition template
τN,B the neutral event filter filterN

ǫ and the Byzantine action filters filterB
i (for all i ∈ A)

and in τβ,B some arbitrary event filter filterβ
ǫ and the Byzantine action filters filterB

i (for
all i ∈ A) are used. By Definition 3.2.1 of extension combination and Lemmas 3.1.24, 3.1.38,
3.1.49 and 3.1.61, since the Byzantine action filters are idempotent by Lemma 3.1.22, we get
(for some k ≥ 1) that

E
α◦β = E

β◦α = E
k·(α+β) = E

α∗β = (PP α ∩ PP β, ISα ∩ ISβ , τβ,B, Ψα ∩ Ψβ), (3.437)

from which (3.430) and (3.431) follow.

Lemma 3.3.71. All implementation classes ICα ∈ I are DCSP composable with JPDC,
EvFJPDC, EvFJPDC and EvFEnvJPDC. Formally for any class IC ∈ I

(IC, JPDC) ∈ Q̃ (3.438)

(IC, EnvJPDC) ∈ Q̃ (3.439)

(IC, EvFJPDC) ∈ Q̃ (3.440)

(IC, EvFEnvJPDC) ∈ Q̃. (3.441)
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3. The Extension Framework

Proof. Since the implementation classes JPDC, EvFJPDC, EvFJPDC and EvFEnvJPDC

all use the neutral action filter functions and the neutral action filters are monotonic by Lemma

3.1.16 in the domain PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn , the statement directly follows from

Lemma 3.3.51.

Lemma 3.3.72. All implementation classes ICα ∈ I are composable with any implementation
class ICβ ∈ I if we restrict ICβ to extensions E β ∈ ICβ s.t. Sβ is downward closed and the
event filter of E β is simply monotonic and all its action filters are monotonic for the domain

PDt−coh
ǫ , 2GActions1, ..., 2GActionsn.

Proof. Follows directly from Lemma 3.3.51 and 3.3.52.

Corollary 3.3.73. For any class ICα ∈ I

(ICα, EvFEnvJPDC mono) ∈ Q (3.442)

(ICα, OthersDC mono) ∈ Q. (3.443)

Proof. Follows directly from Lemma 3.3.72.

Lemma 3.3.74. Every implementation class is composable with JPDC, EnvJPDC, EvFJPDC.
Formally for any implementation class IC ∈ I

(IC, JPDC) ∈ Q (3.444)

(IC, EnvJPDC) ∈ Q (3.445)

(IC, EvFJPDC) ∈ Q. (3.446)

Proof. Let E α be some arbitrary extension compatible (w.r.t. some composition, k-intersection
for k ≥ 1 or fixpoint intersection) with E β ∈ JPDC, E γ ∈ EnvJPDC, E δ ∈ EvFJPDC, where

E
α = (PP α, ISα, τα, Ψα)

E
β = (Cǫ × C

β, ISβ, τN,N , Ψβ)

E
γ = (PP γ , ISγ , τN,N , Ψγ)

E
δ = (Cǫ × C

δ, ISδ, τ δ,N , Ψδ),

where in τα some event filter filterα
ǫ and for all i ∈ A some action filters filterα

i , in τN,N

the neutral event and action filters (for all i ∈ A) and in τδ,N some event filter filterδ
ǫ for all

i ∈ A the neutral action filters are used.

Regarding (3.444) any combination (for k ≥ 1) of the extensions E α, E β by Lemmas 3.1.24,
3.1.38, 3.1.49 and 3.1.61 leads to

E
α◦β = E

β◦α = E
k·(α+β) = E

α∗β = (PP α ∩ Cǫ × C
β, ISα ∩ ISβ, τα, Ψα ∩ Ψβ). (3.447)

Since it has to hold that

filterα
ǫ ⊆ filterN

ǫ ∧ (∀i ∈ A) filterα
i ⊆ filterN

i , (3.448)
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3.3. Extension Classification

(3.444) follows from the downward closure of Sβ . If by contradiction (3.448) did not hold, by
Definition 3.1.1 of the neutral filters one of the filters from τα would violate the basic filter
property and thus would not be a valid filter function.

Regarding (3.445) again similarly any combination (for k ≥ 1) of the extensions E α, E γ by
Lemmas 3.1.24, 3.1.38, 3.1.49 and 3.1.61 leads to

E
α◦β = E

β◦α = E
k·(α+β) = E

α∗β = (PP α ∩ PP γ , ISα ∩ ISγ , τα, Ψα ∩ Ψγ). (3.449)

Again by (3.448) statement (3.445) follows from the downward closure of Sγ .

Lastly regarding (3.446) the different combinations of the extensions E α, E δ result in (for
k ≥ 1)

E
α◦δ = (PP α ∩ Cǫ × C

δ, ISα ∩ ISδ, τα◦δ,α, Ψα ∩ Ψδ) (3.450)

E
δ◦α = (PP α ∩ Cǫ × C

δ, ISα ∩ ISδ, τ δ◦α,α, Ψα ∩ Ψδ) (3.451)

E
k·(α+δ) = (PP α ∩ Cǫ × C

δ, ISα ∩ ISδ, τk·(α+δ),α, Ψα ∩ Ψδ) (3.452)

E
α∗δ = (PP α ∩ Cǫ × C

δ, ISα ∩ ISδ, τα∗δ,α, Ψα ∩ Ψδ), (3.453)

where

• in τα◦δ,α the event filter is filterα◦δ
ǫ and the action filters for all i ∈ A are filterα

i

• in τ δ◦α,α the event filter is filterδ◦α
ǫ and the action filters for all i ∈ A are filterα

i

• in τk·(α+δ),α the event filter is filter
k·(α+δ)
ǫ and the action filters for all i ∈ A are filterα

i

• in τα∗δ,α the event filter is filterα∗δ
ǫ and the action filters for all i ∈ A are filterα

i .

The adherence of the extensions (3.451), (3.452) and (3.453) to Sα follows from Lemma 3.3.51.
The proof for the adherence of extension (3.450) to Sα is almost identical to the proof of
Lemma 3.3.34 with the only difference that since the combined action filters for all i ∈ A
are filterα

i and by Definition 3.1.1 of the neutral action filters it holds that for any i ∈ A,
Xǫ, X ′

ǫ ⊆ GEvents , X1, X ′
1 ⊆ GActions1, ..., Xn, X ′

n ⊆ GActionsn

filterα
i (X1, . . . , Xn, Xǫ) ⊆ Xi = filterN

i

(
X ′

1, . . . , Xi, . . . , X ′
n, X ′

ǫ

)
, (3.454)

by downward closure of Sα extension (3.450) also satisfies it.

Lemma 3.3.75. The implementation classes JP − AFB and EnvJP − AFB are composable
with EvFEnvJPDC. Formally

(JP − AFB, EvFEnvJPDC) ∈ Q (3.455)

(EnvJP − AFB, EvFEnvJPDC) ∈ Q. (3.456)

Proof. Let E α ∈ JP − AFB, E β ∈ EnvJP − AFB be two extensions that are compatible
(w.r.t. some composition, k-intersection for k ≥ 1 or fixpoint intersection) with E γ ∈
EvFEnvJPDC. Generally it holds that

E
α = (Cǫ × C

α, ISα, τN,B, Ψα)

E
β = (PP β, ISβ , τN,B, Ψβ)

E
γ = (PP γ , ISγ , τγ,N , Ψγ).

(3.457)
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3. The Extension Framework

Regarding (3.455) the combined extensions (for some k ≥ 1) simplify to

E
α◦γ = E

γ◦α = E
k·(α+γ) = E

α∗γ = (Cǫ × C
α ∩ PP γ , ISα ∩ ISγ , τγ,B, Ψα ∩ Ψγ), (3.458)

where in τγ,B the event filter filterγ
ǫ and the Byzantine action filters (for all i ∈ A) filterB

i

are used. Since the event filter in all combined extensions is the same as for E γ and the
Byzantine action filters are stricter than the neutral filters, by downward closure of Sγ the
statement follows.

The reasoning for (3.456) is very similar. In this case the combined extensions (for some k ≥ 1)
simplify to

E
β◦γ = E

γ◦β = E
k·(β+γ) = E

β∗γ = (PP β ∩ PP γ , ISβ ∩ ISγ , τγ,B, Ψβ ∩ Ψγ) (3.459)

where again in τγ,B the event filter filterγ
ǫ and the Byzantine action filters (for all i ∈ A)

filterB
i are used. Since the event filter in all combined extensions is the same as for E γ and

the Byzantine action filters are stricter than the neutral filters, by downward closure of Sγ

(3.456) follows and we are done.

We have added Table 3.1 to paint a clear picture of the composability between the different
implementation classes. The entries in this table are to be read as follows supposing x is the
content of the entry, LC is the implementation class to the left and TC is the implementation
class on the top:

• x = c means that LC is composable with TC.

• x = d means that LC is DCSP composable with TC.

• x = f means that LC is fixpoint composable with TC.

• An empty entry means that LC can generally not be safely combined with TC.

Table 3.1: composability matrix of implementation classes

Adm JP
Env

JP

EvF

JP

EvF

Env

JP

JP

-

AFB

Env

JP -

AFB

EvF

JP -

AFB

EvF

Env

JP -

AFB

Oth

ers

JP

DC

Env

JP

DC

EvF

JP

DC

EvF

Env

JP

DC

Oth

ers

DC

EvF

Env

JP

DC

mono

Oth

ers

DC

mono

Adm c c c c c c c c c c c c c c c c c

JP c c c c c c c c c c c c c c c c c

EnvJP c c c c c c c c c c c c c c c c c

EvFJP c c f c f c c c d d c c

EvFEnvJP c c f c f c c c d d c c

JP − AFB c c c c c c c c c d c c

EnvJP − AFB c c c c c c c c c d c c

EvFJP − AFB c c f c c c d d c c

EvFEnvJP − AFB c c f c c c d d c c

Others c c c c d d c c

JPDC c c c c c c c c c c c c c c c c c

EnvJPDC c c c c c c c c c c c c c c c c c

EvFJPDC c c f c f c c c d d c c

EvFEnvJPDC c c f c f c c c d d c c

OthersDC c c c c d d c c

EvFEnvJPDC mono c c f c f c c c d d c c

OthersDC mono c c c c d d c c
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3.3. Extension Classification

3.3.6 Guide to Extension Creation and Combination

In this section we aim at providing a clean guide on how to go about creating extensions as
well as combining them.

Extension Creation

Given some property that we want to implement as an extension, there are the following
possibilities. If the property is ...

• a liveness property ⇒ use Adm (formulate an appropriate admissibility condition).

• a combination of safety S and liveness L properties, then continue with the next point
below and simply put the liveness property L into the admissibility condition of whatever
implementation class we end up with.

• a safety property S:

Is S downward closed?

– Yes, then implement S in

1. JPDC if not possible then

2. EnvJPDC if not possible then

3. EvFJPDC if not possible then

4. EvFEnvJPDC mono if not possible then

5. EvFEnvJPDC if not possible then

6. OthersDC mono if not possible then

7. OthersDC

– No

Can S be implemented with filterB
i (for all i ∈ A)?

∗ Yes, then implement S in

1. JP − AFB if not possible then

2. EvFJP − AFB 3 if not possible then

3. EnvJP − AFB if not possible then

4. EvFEnvJP − AFB

∗ No
Such an extension would not make much sense, as it does not allow the
environment control over agents’ processing time (whether they are allowed
to act). (The reason why we allow it in the case of downward closed safety
properties is that such an extension can be combined with another one that
uses the Byzantine action filter without violating its own safety property.)
However if this is still desired, it is suggested to be implemented S in

3The reason why we prefer EvFJP − AFB over EnvJP − AFB is that the most prominent extensions
that we will want to combine are the Byzantine extension E

B (enforces causality and control of the environment
over whether agents are allowed to act) and the at most f -Byzantine extension E

≤f (restricts the number of
Byzantine agents). Since however E

B ∈ EvFJP − AFB and E
≤f ∈ EvFJPDC by Corollary 3.5.4, both of

them would generally not be composable with an extension in the implementation class EnvJP − AFB by
Table 3.1.
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3. The Extension Framework

1. JP if not possible then

2. EvFJP if not possible then

3. EnvJP if not possible then

4. EvFEnvJP if not possible then

5. Others

Extension Combination

Suppose we have a set EX of extensions that we want to combine. We distinguish between
the following cases. If EX contains ...

• only extensions from implementation classes JPDC, EnvJPDC, JP − AFB, EnvJP − AFB,
then any extension composition order will be safe by Lemmas 3.3.62, 3.3.63, 3.3.68,
3.3.69, 3.3.70, 3.3.74.

• extensions from other implementation classes, we do the following (obviously if certain
implementation classes are not present in the set EX, we can skip the corresponding
step):

– We compose all the extensions of EX from the classes EvFJPDC and JPDC. By
Lemma 3.3.74, any such combination is safe. Let E 1 ∈ EvFJPDC be the extension
resulting from this combination.

– Next we combine all extensions E
2

l ∈ EvFEnvJPDC mono (1 ≤ l ≤ m, where m
is the number of such extensions present in EX) via extension composition. By

Lemma 3.3.73, any such combination is safe. Let E 2 ∈ EvFEnvJPDC mono be the
extension resulting from this combination, meaning

E
2 = E

21◦22◦...◦2m . (3.460)

– Next we combine all extensions E 2l ∈ EvFEnvJPDC (1 ≤ l ≤ m, where m is
the number of such extensions present in EX) of EX via extension intersection.
By Lemma 3.3.71, any such combination is safe. Let E 2 ∈ EvFEnvJPDC be the
extension resulting from this combination, meaning

E
2 = E

21+22+l···+2m . (3.461)

– Now we combine the two extensions E 2 ∈ EvFEnvJPDC and E 2 ∈ EvFEnvJPDC mono

via (reverse) extension composition. Such a combination is safe by Lemma 3.3.71 and
3.3.73. Let E 3 ∈ EvFEnvJPDC be the extension resulting from this combination,
meaning

E
3 = E

2◦2. (3.462)

– Next we compose E 1 with E 3. Again by Lemma 3.3.71, any such combination is
safe. Let E 4 ∈ EvFEnvJPDC be the extension resulting from this combination,
meaning

E
4 = E

1◦3. (3.463)
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3.3. Extension Classification

– Now we compose all extensions E 4l′ ∈ EnvJPDC (1 ≤ l′ ≤ m′, where m′ is the
number of such extensions present in EX) of EX. By Lemma 3.3.74, any such
combination is safe. The resulting extension we call E 5 ∈ EnvJPDC,

E
5 = E

41◦42◦...◦4m′ . (3.464)

– In the next step, we compose E 5 with E 4. This combination is safe by Lemma
3.3.74. We will refer to the resulting extension as E 6

E
6 = E

5◦4. (3.465)

– Next we compose all extension E 7l′′ ∈ JP − AFB (1 ≤ l′′ ≤ m′′, where m′′ is the
number of such extensions present in EX) of EX. By Lemma 3.3.68, any such
combination is safe. We denote by E 8 ∈ JP − AFB the resulting extension

E
8 = E

71◦72◦...◦7m′′ . (3.466)

– Next we combine all extension E 9l′′′ ∈ EvFJP − AFB (1 ≤ l′′′ ≤ m′′′, where
m′′′ is the number of such extensions present in EX) of EX either by a suitable
composition or fixpoint intersection.

For this, a dependence analysis on the event filter functions of all the extensions
E 9l′′′ is needed, which checks, which kinds of events a certain event filter depends on
and which kinds of events it removes. Based on these dependencies, a dependence
graph between the extensions’ event filters can be drawn. If one gets a circular
dependence, it can be resolved via fixpoint intersection (by Lemma 3.3.67, fixpoint
intersection of these extensions is always safe), where in the graph all nodes, part
of the circular dependence, are joined into one node and all incoming and outgoing
edges from the individual former nodes are attached to the new node. Note that the
new node now represents the extension, which results from fixpoint intersection of
its individual parts. After having resolved all circular dependencies, one can finally
find an extension composition order based on the resulting dependence graph that
is safe.

We denote by E 10 ∈ EvFJP − AFB the resulting extension

E
10 = E

91◦92◦...◦9m′′′ . (3.467)

– Now we compose the extension E 10 with E 8. Any such composition is safe by Lem-
mas 3.3.68 and 3.3.69. We denote the resulting extension by E 11 ∈ EvFJP − AFB

E
11 = E

10◦8. (3.468)

– In a next step, we compose E 11 with E 6. By Lemmas 3.3.66, 3.3.71 such a compo-
sition is safe. The resulting extension we denote as E 12 ∈ EvFEnvJP − AFB

E
12 = E

11◦6. (3.469)

– On the off chance that there are still extensions E 13j ∈ OthersDC (1 ≤ j ≤ q,
where q is the number of such extensions EX), E

14j′ ∈ EnvJP − AFB (1 ≤ j′ ≤ q′,
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3. The Extension Framework

where q′ is the number of such extensions EX) and E
15j′′ ∈ EvFEnvJP − AFB

(1 ≤ j′′ ≤ q′′, where q′′ is the number of such extensions in EX) present, we have
to look for a fixpoint intersection order — that is a permutation p of the sequence
(131, 132, . . . , 13q, 141, 142, . . . , 14q′ , 151, 152, . . . , 15q′′ — and check whether for this
p it holds that (we denote by πkp the kth element in the sequence p) for all
extensions E α ∈ EX

⋃

χ∈E
π1p∗π2p∗...π

q+q′+q′′ p

Rχ ⊆
⋃

χ′∈E α

Rχ′
. (3.470)

If no permutation p can be found that satisfies (3.470) for all E α ∈ EX, then a
safe combination of the extensions in EX is not possible.

Otherwise we denote the resulting extension as E 16 ∈ Others

E
16 = E

π1p∗π2p∗...∗πq+q′+q′′ p. (3.471)

– In our second to last step, we combine the extensions E 12 and E 16 via fixpoint
intersection. Since this combination is generally not safe anyway a different com-
bination method (other than fixpoint intersection) can be chosen: as in the case
above we have to show that

⋃

χ∈E 12∗16

Rχ ⊆
⋃

χ′∈E 12

Rχ′
(3.472)

and
⋃

χ∈E 12∗16

Rχ ⊆
⋃

χ′∈E 16

Rχ′
(3.473)

hold. If both equations (3.472) and (3.473) cannot be satisfied, then a safe combi-
nation of the extensions in EX is not possible.

Otherwise we denote the resulting extension as E 17

E
17 = E

12∗16 (3.474)

– Finally, the only extensions left in EX should be from the class Adm. 4 These
can be safely composed (in any order) with E 17 by Lemma 3.3.10 and we are done.

3.4 Liveness Property Extensions

In this section we introduce extensions to our framework, which restrict the general model by
adding liveness properties. For encoding liveness properties, we will solely use the admissibility
condition. Therefore, in this section we will only use the implementation class Adm.

4Note that we do not consider the non downward closed extensions with neutral action filters, as they are
generally not composable with any extension that utilizes the Byzantine action filters.
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3.4. Liveness Property Extensions

3.4.1 Reliable Communication

In the reliable communication extension agents can behave arbitrarily. However the
communication — the transmission of messages by the environment — is reliable for a
particular set of (reliable) channels, i.e., a message that was sent through one of these (reliable)
channels, is guaranteed to be delivered by the environment in finite time. This also holds for
the delivery of messages to and from Byzantine agents. Since a Byzantine agent can always
"choose" to ignore any messages it receives anyway, this does not restrict its Byzantine power
to exhibit arbitrary behaviour. Formally, we define a set of (reliable) channels as C ⊆ A2.

The reliable communication property will be ensured by the admissibility condition EDelC ,
which is a liveness property.

Definition 3.4.1 (Eventual Message Delivery).

EDelC =





r ∈ R |









gsend(i, j, µ, id) ∈ rǫ(t)

or

(∃A ∈ {Â} ⊔ GActionsi) fake (i, gsend(i, j, µ, id) 7→ A) ∈ rǫ(t)





and

(i, j) ∈ C





=⇒ (∃t′ ∈ N) grecv(j, i, µ, id) ∈ rǫ(t
′)
}

(3.475)

Definition 3.4.2. We define by

E
RCC :=

(
Cǫ × C , 2G (0) \ {∅}, τN , EDelC

)
(3.476)

the reliable communication extension.

Additionally, we define a variant of the reliable communication extension, the eventual
reliable communication extension, where the communication is only reliable after a certain
unknown point in time. Every message sent after this time is eventually received.

Definition 3.4.3 (Eventual Eventual Message Delivery).

EEDelC =
{
r ∈ R | (∃t ∈ N)(∀t′ ∈ N)(t′ ≥ t)








gsend(i, j, µ, id) ∈ rǫ(t
′)

or

(∃A ∈ {Â} ⊔ GActionsi) fake (i, gsend(i, j, µ, id) 7→ A) ∈ rǫ(t
′)





and

(i, j) ∈ C





=⇒ (∃t′′ ∈ N) grecv(j, i, µ, id) ∈ rǫ(t
′′)
}

(3.477)

Definition 3.4.4. We define by

E
ERCC := (Cǫ × C , 2G (0) \ {∅}, τN , EEDelC) (3.478)

the eventual reliable communication extension.

149

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3. The Extension Framework

3.4.2 Stubborn Channels

The stubborn channels extension captures systems, in which a given message that is sent
infinitely many times, eventually will be delivered. The crucial difference to the reliable
communication extension is that here messages that have been sent can be discarded by the
environment. However, sending the same message over and over again will eventually lead to
its delivery even for Byzantine agents, or those that may become Byzantine in the future. As
for the reliable communication extension, this property can only be ensured by an appropriate
admissibility condition.

Definition 3.4.5 (Infinite Send Delivery).

ISDel =
{
r ∈ R | ((∀t ∈ N)(∃t′ ∈ N)(t′ > t)





((
gsend(i, j, µ, id) ∈ Λt ⇒ gsend(i, j, µ, id′) ∈ Λt′

)
and

(
(∃t̃ ∈ N) gsend(i, j, µ, ĩd) ∈ Λ

t̃

))

or((
(∃A, A′ ∈ {Â} ⊔ GActionsi) fake (i, gsend(i, j, µ, id) 7→ A) ∈ Λt ⇒ fake (i, gsend(i, j, µ, id′) 7→ A′) ∈ Λt′

)

and (∃t̃ ∈ N)(∃Ã ∈ {Â} ⊔ GActionsi) fake
(
i, gsend(i, j, µ, ĩd) 7→ Ã

)
∈ Λ

t̃

)

=⇒ (∃t′′ ∈ N) grecv(j, i, µ, id′′) ∈ Λt′′

}
(3.479)

Definition 3.4.6. We denote by

E
StC := (Cǫ × C , 2G (0) \ {∅}, τN , ISDel) (3.480)

the stubborn channels extension.

As for the reliable communication extension we also define a variant of the stubborn channels
extension, where the stubborn channels property only holds after some unknown point in time.

Definition 3.4.7 (Eventual Infinite Send Delivery).

EISDel =
{
r ∈ R | (∃t ∈ N)(∀t′ ∈ N)(∃t′′ ∈ N)(t′′ > t′)(t′ ≥ t)





((
gsend(i, j, µ, id) ∈ Λt′ ⇒ gsend(i, j, µ, id′) ∈ Λt′′

)
and

(
(∃t̃ ∈ N) gsend(i, j, µ, ĩd) ∈ Λ

t̃

))

or((
(∃A, A′ ∈ {Â} ⊔ GActionsi) fake (i, gsend(i, j, µ, id) 7→ A) ∈ Λt′ ⇒ fake (i, gsend(i, j, µ, id′) 7→ A′) ∈ Λt′′

)

and (∃t̃ ∈ N)(∃Ã ∈ {Â} ⊔ GActionsi) fake
(
i, gsend(i, j, µ, ĩd) 7→ Ã

)
∈ Λ

t̃

)

=⇒ (∃t′′′ ∈ N) grecv(j, i, µ, id′′) ∈ Λt′′′

}
(3.481)

Definition 3.4.8. We denote by E EStC = (Cǫ × C , 2G (0) \ {∅}, τN , EISDel) the eventual
stubborn channels extension.
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3.5. Safety Property Extensions

3.4.3 Fair Lossy Links

The fair lossy links extension models a communication medium, which ensures that when
an infinite number of messages is sent from agent i to agent j, j receives an infinite number of
those messages. Note that unlike for the reliable communication extension, messages can still
be dropped, and unlike the stubborn channels extension, messages do not need to be the same.

Definition 3.4.9 (Infinite Send Infinite Receive).

ISIR =
{
r ∈ R | (∀t ∈ N)(∃t′ ∈ N)(t′ > t)





((
gsend(i, j, µ, id) ∈ Λt ⇒ gsend(i, j, µ′, id′) ∈ Λt′

)
and

(
(∃t̃ ∈ N) gsend(i, j, µ, ĩd) ∈ Λ

t̃

))

or((
(∃A, A′ ∈ {Â} ⊔ GActionsi) fake (i, gsend(i, j, µ, id) 7→ A) ∈ Λt ⇒ fake (i, gsend(i, j, µ′, id′) 7→ A′) ∈ Λt′

)

and (∃t̃ ∈ N)(∃Ã ∈ {Â} ⊔ GActionsi) fake
(
i, gsend(i, j, µ, ĩd) 7→ Ã

)
∈ Λ

t̃

)

=⇒ (∀t′′ ∈ N)(∃t′′′ ∈ N)(t′′′ > t′′)
(

grecv(j, i, µ′′, id′′) ∈ Λt′′ ⇒ grecv(j, i, µ′′′, id′′′) ∈ Λt′′′

)
and

(
(∃t̃′ ∈ N) grecv(j, i, µ̃, ĩd) ∈ Λ

t̃′

)}
(3.482)

Definition 3.4.10. We denote by

E
F LL := (Cǫ × C , 2G (0) \ {∅}, τN , ISIR) (3.483)

the fair lossy links extension.

3.5 Safety Property Extensions

Here we present other extensions of our general framework, which encode safety properties. In
order to make our framework as modular as possible, we implement these extensions according
to Section 3.3, especially Section 3.3.5 (composability of implementation classes).

3.5.1 Asynchronous Byzantine Agents

In this section we define a framework extension corresponding to the base model from Chapter
2, mainly for the purpose of enabling combinations with other extensions.

Definition 3.5.1. We denote by

E
B := (Cǫ × C , 2G (0) \ {∅}, τB, R) (3.484)

the asynchronous Byzantine agents extension.

3.5.2 ≤ f Byzantine Agents

In this extension the number of Byzantine agents for any run is limited to some number f ∈ N.
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3. The Extension Framework

Definition 3.5.2. We denote by

E
≤f := (Cǫ × C , 2G (0) \ {∅}, τ≤f,N , R) (3.485)

the ≤ f Byzantine agents extension (where in τ≤f,N the event filter filter≤f
ǫ (2.91) and

the neutral action filters are used).

The reason why we define the ≤ f Byzantine agents extension with neutral action filters unlike
in Definition 2.6.7, is to accommodate easier composability, as without the Byzantine action
filters by Lemma 3.5.3 below, this extension’s safety property is downward closed. If we were
to include the Byzantine action filters, by Lemma 3.3.53, this would not be the case anymore.

Lemma 3.5.3. S≤f is downward closed (for any f ∈ N).

Proof. Suppose by contradiction that S≤f is not downward closed. This implies that there
exists some h ∈ G s.t. there exists some X ∈ S≤f (h) s.t. there exists some X ′ ⊆ X s.t.

X ′ /∈ S≤f (h). (3.486)

From this it becomes immediately clear that

X 6= ∅ ∧ X 6= X ′, (3.487)

which implies that
X ′ ⊂ X. (3.488)

Since by Definition 3.5.2 the extension E ≤f does not restrict the protocol sets

(∃Pǫ, P ′
ǫ ∈ Cǫ)(∃P, P ′ ∈ C )(∃Xǫ ∈ Pǫ(|h|))(∃X1 ∈ P1(h1)) . . . (∃Xn ∈ Pn(hn))

(∃X ′
ǫ ∈ P ′

ǫ(|h|))(∃X ′
1 ∈ P ′

1(h1)) . . . (∃X ′
n ∈ P ′

n(hn))
n⊔

i=1

label (Xi, |h|) ⊔ Xǫ = X ∧
n⊔

i=1

label
(
X ′

i, |h|
)

⊔ X ′
ǫ = X ′

(3.489)

holds. Since X ′ /∈ S≤f (h) was assumed, we get that

filter≤f
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
= X̃ ′

ǫ ⊂ X ′
ǫ, (3.490)

as the neutral action filters do not remove any elements

(∀i ∈ A) filterN
i

(
X ′

1, . . . , X ′
n, X̃ ′

ǫ

)
= X ′

i. (3.491)

This means that by definition of filter≤f
ǫ (2.91)

∣∣∣A(Failed (h)) ∪
{

i ∈ A | X ′B
ǫi

6= ∅
}∣∣∣ > f, (3.492)

where for X ′B
ǫi

the definition from (2.90) is used. However, since X ′ ⊆ X, we also get that (for
all i ∈ A) X ′B

ǫi
⊆ XB

ǫi
and as a result

{
i ∈ A | X ′B

ǫi
6= ∅

}
⊆
{

i ∈ A | XB
ǫi

6= ∅
}

(3.493)
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3.5. Safety Property Extensions

holds, which would imply that also
∣∣∣A(Failed (h)) ∪

{
i ∈ A | XB

ǫi
6= ∅

}∣∣∣ > f (3.494)

and as a result lead to

filter≤f
ǫ (h, Xǫ, X1, . . . , Xn) = X̃ǫ ⊂ Xǫ. (3.495)

This however is impossible due to Lemma 3.3.48.

Corollary 3.5.4. E ≤f ∈ EvFJPDC.

Proof. Follows immediately from Definition 3.5.2 and Lemma 3.5.3.

3.5.3 Time-bounded Communication

We say that communication is time-bounded if for every channel and for every message there
is an upper-bound (possibly infinite) on the transmission time. Since the transmission is
not reliable a priori, the time-bounded communication extension only specifies the time
window during which the delivery of a message can occur. In order to gain flexibility, bounds
can be changed depending on the sending time and depending on the message too — for
instance a byte of data and picture will not have the same time bound. We encode these
bounds in an upper-bound structure defined as follows:

Definition 3.5.5. For the first ordinal number ω, the agents (i, j) ∈ A2 and the channel
i 7→ j, we define the message transmission upper-bound for the channel i 7→ j as follows

δi7→j : Msgs × N → N ∪ {ω}. (3.496)

We define an upper bound structure as

∆ :=
⋃

(i,j)∈A2

{δi7→j}. (3.497)

Since the time-bounded safety property is downward closed (we will show this formally below),
we implement it by restriction of the set of environment protocols.

Definition 3.5.6 (Time-bounded Communication Environment Protocols). For an upper-
bound structure ∆, we define the set of time-bounded communication environment protocols
as

C
T C∆
ǫ := {Pǫ ∈ Cǫ |(∀t ∈ N)(∀Xǫ ∈ Pǫ(t))

grecv(j, i, µ, id(i, j, µ, k, t′)) ∈ Xǫ → t′ + δi7→j

(
µ, t′) ≥ t}.

(3.498)

Definition 3.5.7. For an upper-bound structure ∆

E
T C∆ := (C T C∆

ǫ × C , 2G (0) \ {∅}, τN , R) (3.499)

denotes the Time-bounded Communication extension.

Lemma 3.5.8. ST C∆ is downward closed.
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3. The Extension Framework

Proof. Suppose that by contradiction ST C∆ is not downward closed. This implies that

(∃h ∈ G )(∃X ∈ ST C∆)(∃X ′ ⊆ X) X ′ /∈ ST C∆(h). (3.500)

It immediately follows that X ′ ⊂ X. Since in τN the neutral (event and action) filters are
used we further get that

(∃Pǫ ∈ C
T C∆
ǫ )(∃P ∈ C )(∃t ∈ N) Xǫ ∈ Pǫ(t) ∧ X1 ∈ P1(h1) ∧ · · · ∧ Xn ∈ Pn(hn) ∧

X = Xǫ ⊔ X1 ⊔ · · · ⊔ Xn.
(3.501)

Since the set of joint protocols is unrestricted there exists some joint protocol P ′ ensuring
that together with Pǫ

(∀X ′
1 ⊆ X1) . . . (∀X ′

n ⊆ Xn) Xǫ ⊔ X ′
1 ⊔ · · · ⊔ X ′

n ∈ ST C∆(h). (3.502)

Therefore, we conclude that the violation of X ′ has to be caused by some X ′
ǫ ⊂ Xǫ =

X ⊔ GEvents .

From X ∈ ST C∆(h) we conclude that

(∀t ∈ N) grecv(j, i, µ, id(i, j, µ, k, t′)) ∈ Xǫ → t′ + δi7→j

(
µ, t′) ≥ t. (3.503)

By semantics of "→" and since X ′
ǫ ⊆ Xǫ we get

(
grecv(j, i, µ, id(i, j, µ, k, t′)) ∈ X ′

ǫ

)
→
(

grecv(j, i, µ, id(i, j, µ, k, t′)) ∈ Xǫ

)
. (3.504)

Using (3.504) in (3.503) we get

(∀t ∈ N)
(

grecv(j, i, µ, id(i, j, µ, k, t′)) ∈ X ′
ǫ

)
→
(

grecv(j, i, µ, id(i, j, µ, k, t′)) ∈ Xǫ

)
→

(
t′ + δi7→j

(
µ, t′) ≥ t

)
.

(3.505)
Finally from (3.505) by transitivity of "→" we get that

(∀t ∈ N)
(

grecv(j, i, µ, id(i, j, µ, k, t′)) ∈ X ′
ǫ

)
→
(
t′ + δi7→j

(
µ, t′) ≥ t

)
. (3.506)

Hence, we conclude that X ′ ∈ ST C∆(h) and we are done.

3.5.4 Synchronous Communication

The Synchronous Communication extension guarantees for a set of synchronous communi-
cation channels C ⊆ A2 that whenever a message is correctly received, it has been sent during
the same round. This means that it is a special case of the time-bounded communication
extension.

Definition 3.5.9 (Synchronous Communication Environment Protocols). We define the
synchronous message delay as

δSCC
i7→j (µ, t) :=

{
0 if (i, j) ∈ C

ω otherwise
(3.507)
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3.5. Safety Property Extensions

We define the synchronous communication upper bound structure ∆SCC as

∆SCC :=
⋃

(i,j)∈A2

{δSCC
i7→j }. (3.508)

C
SCC
ǫ := C

T C
∆SCC

ǫ (3.509)

Definition 3.5.10. We denote by

E
SCC :=

(
C

SCC
ǫ × C , 2G (0) \ {∅}, τN , R

)
(3.510)

the Synchronous Communication extension.

Lemma 3.5.11. SSCC is downward closed.

Proof. Follows from Lemma 3.5.8, as the synchronous communication extension is just an
instance of the time-bounded communication extension (3.509).

Corollary 3.5.12. E SCC ∈ EnvJPDC.

Proof. Follows from Definition 3.5.10 and Lemma 3.5.11.

3.5.5 Multicast Communication

In the multicast communication paradigm, each agent has several multicast channels at its
disposal and is restricted to sending messages using these particular channels. In this section,
we provide a software based multicast, meaning that only correct agents have to adhere to this
behavior (further along we provide a hardware based multicast as well, where also Byzantine
agents are forced to exhibit this multicast behavior).

First, we define a multicast communication problem. For each agent i ∈ A we define a
collection Mci of groups of agents it can send messages to.

Definition 3.5.13. For each agent i ∈ A the set of available multicast channels is

Mci ⊆ 2A \ {∅}. (3.511)

The multicast communication problem is the tuple of these collections of communication
channels:

Ch = (Mc1, . . . , Mcn) (3.512)

We denote the set of recipients for the kth copy of a message µ, i.e., for µk that has been sent
according to some set X ⊆ Actions by

RecX(µk) = {j | send(j, µk) ∈ X}. (3.513)

Since we implement a software based multicast (and since we want our extensions to be
modular) we will naturally use a restriction of the joint protocol to do so.
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3. The Extension Framework

Definition 3.5.14 (Multicast Joint Protocols). For a multicast communication problem Ch,
we define the set of multicast joint protocols as

C
MCCh = {(P1, . . . , Pn) ∈ C |(∀i ∈ A)(∀hi ∈ Li)(∀X ∈ Pi (hi))(∀µ ∈ Msgs)(∀k ∈ N)

RecX(µk) 6= ∅ → RecX(µk) ∈ Mci}.
(3.514)

Definition 3.5.15. For a multicast communication problem Ch, the multicast communi-
cation extension is defined by

E
MCCh :=

(
Cǫ × C

MCCh , 2G (0) \ {∅}, τN,B, R
)

, (3.515)

where in τN,B the neutral event and the Byzantine action filters are used (for all i ∈ A).

An important special case of the multicast communication problem is the broadcast communi-
cation problem, where each agent must broadcast each message to all the agents:

Definition 3.5.16. The broadcast communication extension E BC is a multicast com-
munication extension E MCBCh for

BCh = ({A}, . . . , {A}︸ ︷︷ ︸
n

) (3.516)

E
BC = (Cǫ × C

MCBCh , 2G (0) \ {∅}, τN,B, R), (3.517)

where in τN,B the neutral event filter and the Byzantine action filters (for all i ∈ A) are used.

Corollary 3.5.17. E MCCh ∈ JP − AFB.

Proof. Follows from Definition 3.5.15.

3.5.6 Synchronous Agents

For the synchronous agents extension, we first introduce the notion of virtual rounds.

Definition 3.5.18 (Virtual Round). For a given transitional run r ∈ R and timestamp t ∈ N,
the round t.5 is called a virtual round iff

(∀i ∈ A) βt
gi

(r) 6= ∅, (3.518)

where βt
gi

(r) ⊆ SysEventsi, see Definition 2.2.22.

Definition 3.5.19 (Number of Virtual Rounds). We denote the number of virtual rounds
for a history h = r(t) ∈ G given some transitional run r ∈ Rtrans and timestamp t ∈ N by
NV R (r(t)).

Informally, a virtual round is a round, in which for all agents i some event ∈ {go(i), sleep(i),
hibernate(i)} occurs. By forcing correct agents to act only during virtual rounds, we will
ensure that all correct agents execute their protocol in synchronous steps, while still allowing
Byzantine agents to both skip virtual rounds or take any number of additional fake actions in
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3.5. Safety Property Extensions

between them. Since the synchronous agents safety property is generally not downward closed,
it will be implemented with an appropriate event filter function (and set of joint protocols)
that removes go(i) events for all agents in a given round t unless for every agent i one of the
system events (go(i), sleep(i), hibernate(i)) occurs.

Definition 3.5.20 (Synchronous agents event filter function). Given a global history h ∈ G

and sets Xǫ ⊆ GEvents, X1 ⊆ GActions1, ..., Xn ⊆ GActionsn we define the event filter
function for the synchronous agents extension as

filterS
ǫ (h, Xǫ, X1, . . . , Xn) :=

{
Xǫ \ {go(i) | i ∈ A} (∃j ∈ A) {go(j), sleep(j), hibernate(j)} ∩ Xǫ = ∅,

Xǫ otherwise.

(3.519)

Lemma 3.5.21. For the general asynchronous Byzantine framework given two τB
Pǫ,P -transitional

runs r, r′ ∈ R and timestamps t, t′ ∈ N \ {0}, an agent i ∈ A cannot distinguish

• a round t.5 in run r, where a set of events Q ⊆ GEventsi ⊔ BEventsi, Q 6= ∅ was
observed by i, but no go(i) occurred ⇒

go(i) /∈ βt
gi

(r), βt
i (r) = ∅, β

t
ǫi

(r) ⊔ βt
bi

(r) = Q

• from a round t′.5 in run r′, where the same set of events Q was observed by i, go(i)
occurred, but the protocol prescribed the empty set (∅ ∈ Pi (r′(t′))), which was chosen by
the adversary ⇒

go(i) ∈ βt′

gi

(
r′), βt′

i

(
r′) = ∅, β

t′

ǫi

(
r′) ⊔ βt′

bi

(
r′) = Q.

Proof. This immediately follows from the definition of the update function (2.39) and (2.19),
as in this scenario (for ri(t + 1) = [λm, . . . , λ1, λ0] and r′

i(t
′ + 1) = [λ′

m′ , . . . , λ′
1, λ′

0]) λm =
λ′

m′ = Q.

Since Lemma 3.5.21 holds, we need to restrict the behavior of synchronous agents in such a
way that enables them to distinguish these two scenarios, as it is desirable for at least non
Byzantine agents in a synchronous setting to correctly infer from their local state the number
of virtual rounds that have passed. We do this by modifying the joint protocol, where we
specify that the sets of actions that an agent protocol returns for a given history have to

be supersets of the set containing the special internal action {➊}, which we assume to be
available for all agents:

(∀i ∈ A) ➊ ∈ Actionsi. (3.520)

Definition 3.5.22 (Synchronous joint protocols). We define the synchronous joint protocols
as

C
S :=

{
(P1, . . . Pn) ∈ C | (∀i ∈ A)(∀hi ∈ Li)(∀D ∈ Pi (hi)) {➊} ⊆ D

}
. (3.521)
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3. The Extension Framework

Definition 3.5.23. We denote by

E
S :=

(
Cǫ × C

S , 2G (0) \ {∅}, τS,B, R
)

(3.522)

the synchronous agents extension, where in the transition template τS,B the synchronous
agents event filter Definition 3.5.20 and the Byzantine action filters (2.25) (for all i ∈ A) are
used.

Corollary 3.5.24. E S ∈ EvFJP − AFB.

Proof. Follows immediately from Definition 3.5.23.

Lemma 3.5.25. For any global history h ∈ G and domain PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn

the filter functions of the synchronous agents extension are monotonic.

Proof. By Definition 3.5.23 of the synchronous agents extension, it uses the Byzantine action
filters. Since by Lemma 3.1.17 the Byzantine action filter functions are monotonic (for the

domain PDt−coh
ǫ , 2GActions1 , ..., 2GActionsn), we are done for the action filters.

Regarding the synchronous agents event filter function (3.519), for some h ∈ G , Xǫ ∈ PDt−coh
ǫ ,

X1 ∈ 2GActions1 , ..., Xn ∈ 2GActionsn and X ′
ǫ ⊆ Xǫ, X ′

1 ⊆ X1, ..., X ′
n ⊆ Xn, let

filterS
ǫ (h, Xǫ, X1, . . . , Xn) = Yǫ (3.523)

and

filterS
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
= Y ′

ǫ . (3.524)

Since the synchronous event filter is independent of the sets of actions, we only need to focus
on the event set. We can differentiate between four scenarios:

1. Yǫ = Xǫ ∧ Y ′
ǫ = X ′

ǫ

In this case the statement follows from our assumption that X ′
ǫ ⊆ Xǫ.

2. Yǫ = Xǫ ∧ Y ′
ǫ ⊂ X ′

ǫ

The statement holds by transitivity of "⊆", as Y ′
ǫ ⊆ X ′

ǫ ⊆ Xǫ = Yǫ.

3. Yǫ ⊂ Xǫ ∧ Y ′
ǫ = X ′

ǫ

By definition of the synchronous agents event filter (3.519), this implies that

(∃j ∈ A) {go(j), sleep(j), hibernate(j)} ∩ Xǫ = ∅ (3.525)

is true. But

(∃j ∈ A) {go(j), sleep(j), hibernate(j)} ∩ X ′
ǫ = ∅ (3.526)

has to hold as well, as otherwise for some i ∈ A for which {go(i), sleep(i), hibernate(i)}∩
Xǫ = ∅ is true, we would have that

{go(i), sleep(i), hibernate(i)} ∩ X ′
ǫ 6= ∅, (3.527)
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3.5. Safety Property Extensions

which however would contradict our assumption that X ′
ǫ ⊆ Xǫ. Hence, the results of the

filters are
Yǫ = Xǫ \ {go(i) | i ∈ A}

Y ′
ǫ = X ′

ǫ \ {go(i) | i ∈ A}.
(3.528)

Since X ′
ǫ ⊆ Xǫ it follows that

Y ′
ǫ = X ′

ǫ \ {go(i) | i ∈ A} ⊆ Xǫ \ {go(i) | i ∈ A} = Yǫ ⊂ Xǫ (3.529)

and we are done.

4. Yǫ ⊂ Xǫ ∧ Y ′
ǫ ⊂ X ′

ǫ

In this case the results of the filters are

Yǫ = Xǫ \ {go(i) | i ∈ A}

Y ′
ǫ = X ′

ǫ \ {go(i) | i ∈ A}.
(3.530)

Just as in the previous case, since X ′
ǫ ⊆ Xǫ, it follows that

X ′
ǫ \ {go(i) | i ∈ A} ⊆ X ′

ǫ \ {go(i) | i ∈ A} (3.531)

and we are done.

Lemma 3.5.26. For any global history h ∈ G and sets Xǫ ∈ PDt−coh
ǫ , X1 ∈ 2GActions1, ...,

Xn ∈ 2GActionsn, the filter functions of the synchronous agents extension are idempotent.

Proof. Since the synchronous agents extension uses the Byzantine action filter functions, which
are idempotent by Lemma 3.1.22 in our domain, the statement trivially follows for the action
filters.

Regarding the synchronous agents event filter, let

filterS
ǫ (h, Xǫ, X1, . . . , Xn) = Yǫ

filterS
ǫ (h, Yǫ, X1, . . . , Xn) = Y ′

ǫ .
(3.532)

We need to show that Yǫ = Y ′
ǫ . By Definition 3.5.20 of the synchronous agents event filter,

there are two possibilities:

• (∃j ∈ A) {go(j), sleep(j), hibernate(j)} ∩ Xǫ = ∅

In this case the result of the filtering is

Yǫ = Xǫ \ {go(i) | i ∈ A}. (3.533)

Regarding a second application of the synchronous agents filter, we again differentiate
between two possibilities:
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3. The Extension Framework

– (∃j ∈ A) {go(j), sleep(j), hibernate(j)} ∩ Yǫ = ∅

In this case we get by definition of the synchronous agents filter that

Y ′
ǫ = Yǫ \ {go(i) | i ∈ A}. (3.534)

Using (3.533) in (3.534) we get

Y ′
ǫ = (Xǫ \ {go(i) | i ∈ A}) \ {go(i) | i ∈ A}. (3.535)

Since by semantics of set difference "\"

(Xǫ \ {go(i) | i ∈ A}) \ {go(i) | i ∈ A} = Xǫ \ {go(i) | i ∈ A} (3.536)

holds, we conclude that Yǫ = Y ′
ǫ .

– (∀j ∈ A) {go(j), sleep(j), hibernate(j)} ∩ Yǫ 6= ∅

By definition of the synchronous agents filter

Y ′
ǫ = Yǫ, (3.537)

from which the statement follows.

• (∀j ∈ A) {go(j), sleep(j), hibernate(j)} ∩ Xǫ 6= ∅

In this case by definition of the synchronous agents event filter, we get

Yǫ = Xǫ, (3.538)

therefore the statement Y ′
ǫ = Yǫ trivially holds and we are done.

Lemma 3.5.27. An agent i in a synchronous agents context executes its protocol only during
virtual rounds, i.e., for every χ ∈ E S and r ∈ Rχ, go(i) ∈ βt

gi
(r) if t.5 is a virtual round.

Proof. From the definition of virtual rounds (3.518) and the synchronous agents event filter
function (3.519), it immediately follows that in a synchronous agents context go(i) events can
only ever occur during a virtual round. Hence the Lemma follows.

Lemma 3.5.28. Given a correct agent i ∈ A, a τS,B

Pǫ,P S -transitional run r ∈ R (where

P S ∈ C S) and any t ≥ 0 it holds that NV R (r(t)) ≤ |ri(t)| − 1.

Proof. Since by Lemma 3.5.27 it follows that a correct agent has to receive go(i) in a virtual
round and by definition of the update function (2.19), (2.39), for every update the length of
the agent history increases by one, the lemma follows from Definition 2.1.22.

Lemma 3.5.29. For a correct agent i, a τS,B

Pǫ,P S -transitional run r (where P S ∈ C S), some

timestamp t′ ≥ 1, agent i’s local history ri(t
′) = hi = [λm, . . . , λ1, λ0] (given the global history

h = r(t′) ∈ G ) and some round (t − 1).5 (t′ ≥ t ≥ 1), there exists some a ∈ Actionsi such that
a ∈ λkt

where λkt
= σ

(
βt−1

ǫi
(r) ⊔ βt−1

i (r)
)

if and only if (t − 1).5 is a virtual round.
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3.5. Safety Property Extensions

Proof. ⇒
From Lemma 3.5.27, we know that an agent can only execute its protocol during virtual
rounds. Therefore, since agent i is assumed to be correct and (t − 1).5 is a virtual round, it
follows that {go(i)} = βt−1

gi
(r) (sleep(i) or hibernate(i) would make the agent Byzantine). By

(2.19), (2.39) (the definition of the update function) and Definition 3.5.22 (the definition of

the synchronous agents joint protocols, which dictates that at least ➊ has to be among the
attempted actions, hence the empty set can never be issued) an action a ∈ Actionsi such that
a ∈ λkt

has to exist.
⇐
Suppose there exists an action a ∈ Actionsi such that a ∈ λkt

. Since agent i is assumed to be
correct, by Lemma 3.5.27 agents only execute their protocol during virtual rounds and by the
definition of the update function (2.39) (and aware(i, Xǫ) (2.19)) round (t − 1).5 has to be a
virtual round.

Now we show that agents in the synchronous agents context can actually distinguish the two
scenarios in Lemma 3.5.21 due to the joint protocol from Definition 3.5.22

Lemma 3.5.30. For any agent i ∈ A, any run r ∈ Rχ, where χ ∈ E S and any timestamp
t ∈ N, it holds that

{go(i)} = βt
gi

(r) ⇐⇒ (∃A ∈ GActionsi) A ∈ βt
i (r). (3.539)

Proof. This directly follows from Definition 3.5.22 of the synchronous agents joint protocol and
the Byzantine action filter function (2.25). As no synchronous agents protocol can prescribe
the empty set, whenever an agent i receives a go(i) event during some round t.5 (t ∈ N), it will
perform some action a ∈ Actionsi, as by t-coherence (in accordance to Definition 2.2.1) of the
environment protocol’s event sets (in accordance with Definition 2.2.4, specifically point 3),
there can always only be one system event present for any agent during one round. Similarly,
if (∃A ∈ GActionsi) A ∈ βt

i (r) by definition of the Byzantine action filter, i must have gotten
a go(i).

Lemma 3.5.31. Lemma 3.5.21 does not hold for runs r, r′ ∈ Rχ for χ ∈ E S.

Proof. This follows directly from Lemma 3.5.30.

We will now proceed and formulate a version of the "Brain-in-the-Vat" Lemma 2.7.16 for the
synchronous agents extension.

Lemma 3.5.32 (Synchronous Brain-in-the-Vat Lemma). Let A = J1; nK be a set of agents
with joint protocol P S = (P1

S , . . . , Pn
S) ∈ C S, let Pǫ ∈ Cǫ be the protocol of the environment,

let r ∈ Rχ be a run from the synchronous agents extension for χ ∈ E S, let i ∈ A be an agent,
let t > 0 be a timestamp and let adj = [Bt−1; . . . ; B0] be an adjustment of extent t−1 satisfying

Bm = (ρm
1 , . . . , ρm

n )

for all 0 ≤ m ≤ t − 1 with

ρm
i = PFakem

i and for all j 6= i ρm
j ∈ {CFreeze, BFreezej}.

If the protocol Pǫ makes
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3. The Extension Framework

• agent i gullible,

• every agent j 6= i delayable and fallible if ρm
j = BFreezej for some m,

• all remaining agents delayable,

then each run r′ ∈ R
(
τS,B

Pǫ,P S , r, adj
)

satisfies the following properties:

1. r′ is τS,B

Pǫ,P S -transitional;

2. (∀m ≤ t) r′
i (m) = ri (m);

3. (∀m ≤ t)(∀j 6= i) r′
j (m) = r′

j (0);

4. (i, 1) ∈ Bad (r′, 1) and consequently (i, m) ∈ Failed (r′, m′) for all m′ ≥ m > 0;

5. A (Failed (r′ (t))) = {i} ∪ {j 6= i | (∃m ≤ t − 1) ρm
j = BFreezej};

6. (∀m < t) (∀j 6= i) βm
ǫj

(r′) ⊂ {fail (j)}.
More precisely, βm

ǫj
(r′) = ∅ iff ρm

j = CFreeze and βm
ǫj

(r′) = {fail (j)} iff ρm
j = BFreezej;

7. (∀m < t) βm
ǫi

(r′) \ βm
fi

(r′) = ∅;

8. (∀m < t)(∀j ∈ A) βm
j (r′) = ∅.

Proof. The proof is analogous to the original Brain-in-the-Vat Lemma 2.7.16, since by Definition
2.7.8 of the intervention PFaket

i, Definition 2.7.11 of CFreeze and Definition 2.7.12 of BFreezei

it holds that

(
∀r′ ∈ R

(
τS,B

Pǫ,P S , r, adj
))

(∀j ∈ A)(∀m ∈ N s.t. 0 ≤ m < t) go(j) /∈ βm
ǫj

(
r′). (3.540)

Because the synchronous agents extension by Definition 3.5.23 does not restrict the environment
protocol and because the synchronous agents event filter function by Definition 3.5.20 only
additionally removes go events, which by Definition 2.7.8 of the interventions (from Definitions

2.7.11, 2.7.12 and 3.540) are irrelevant for such runs r′ ∈ R
(
τS,B

Pǫ,P S , r, adj
)

((3.540) also makes

the synchronous agents joint protocol irrelevant for this lemma), the proof of Lemma 2.7.16
applies for the synchronous agents extension as well.

Local Introspection

Lemma 3.5.33. For adj ∈ Adjusts with extent t − 1 from Lemma 3.5.32, some o ∈ Actions ⊔
Events, χ ∈ E S, where χ = ((Pǫ, G (0), τS,B, R), P S), where Pǫ makes i gullible and all other
agents j 6= i delayable, a run r ∈ Rχ, an interpreted system I = (Rχ, π), it holds that

(
∀r′ ∈ R

(
τS,B

Pǫ,P S , r, adj
))

(∀m ∈ N, s.t. m ≤ t) (I, r′, m) 6|= occurred (o). (3.541)
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3.5. Safety Property Extensions

Proof. By Definitions 2.7.8, 2.7.11, 2.7.12 of the intervention PFaket
i, CFreeze and BFreezei it

immediately follows that
(
∀r′ ∈ R

(
τS

Pǫ,P S , r, adj
))

(∀m ≤ t − 1)(∀j ∈ A) β
m
ǫj

(
r′) = ∅ ∧ βm

j

(
r′) = ∅. (3.542)

By definition of occurred (o) from (2.84), (2.83) and (2.80), in order to satisfy (I, r′, t′) 6|=
occurred (o), the following has to hold:

(∀i ∈ A)(∀m ≤ t′ − 1) o /∈ label−1
(
βm

j

(
r′) ⊔ β

m
ǫi

(
r′)) (3.543)

Since (3.542) holds, it however becomes clear that for such runs r′ ∈ R
(
τS,B

Pǫ,P S , r, adj
)

(3.543)

is always satisfied if t′ ≤ t.

Lemma 3.5.34. For an agent i ∈ A, for a non-excluding agent-context χ ∈ E S, where

χ =
(
(Pǫ, G (0), τS,B, Ψ), P S

)
, such that Pǫ makes i gullible and all other agents j 6= i

delayable, for a χ-based interpreted system I = (Rχ, π), for a run r ∈ Rχ, for a timestamp
t ∈ N, and for an action or event o ∈ Actions ⊔ Events,

(I , r, t) 6|= Kioccurred (o). (3.544)

Proof. For t = 0 the statement is obvious. For t > 0 the Lemma follows from Lemma
3.5.32 (Synchronous Brain-in-the-Vat Lemma): If for m ≤ t, (I, r, m) 6|= occurred (o), then
by reflexivity of the possible worlds relation and semantics of the knowledge operator (from
Definition 2.4.8), the statement holds.

Suppose for m ≤ t, (I, r, m) |= occurred (o). For all runs r′ ∈ R
(
τS,B

Pǫ,P S , r, adj
)
, where adj is

from Lemma 3.5.32, by Property 2 of Lemma 3.5.32 it holds that

(∀m′ ≤ t) ri(m
′) = r′

i(m
′).

Hence by Definition 2.4.4 of the possible worlds relation

(∀m′ ≤ t) r(m′) ∼i r′(m′),

from which we get (by universal instantiation of m′)

r(m) ∼i r′(m).

Additionally, from Lemma 3.5.33, it follows that

(I, r′, m) 6|= occurred (o).

By semantics of the knowledge operator (from Definition 2.4.8), in order for (I , r, t) |=
Kioccurred (o) to be true, occurred (o) has to hold in all (i-)accessible states. However, since it
does not hold at r′(m) (for m ≤ t), the Lemma follows.

Lemma 3.5.35. For an agent i ∈ A and a non-excluding agent-context χ =
(
(Pǫ, G (0), τS,B, R), P S

)

such that χ ∈ E S and Pǫ makes i gullible and all other agents j 6= i delayable, for a χ-based
interpreted system I = (Rχ, π), for a run r ∈ Rχ, and for a timestamp t > 0,

(I , r, t) 6|= Kicorrecti. (3.545)
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3. The Extension Framework

Proof. Consider a run r′ ∈ R
(
τS,B

Pǫ,P S , r, adj
)
, where adj with extent t − 1 is from Lemma

3.5.32. By (2.78),

(I , r′, t) |= correcti ⇐⇒ (i, t) /∈ Failed
(
r′, t

)
.

Thus the statement follows directly from Properties 2 and 4 of Lemma 3.5.32, since (for m ≤ t)
r(m) ∼i r′(m) and (I , r′, t) |= ¬correcti.

As for the fully Byzantine extension, it is sometimes possible for a synchronous agent to learn
of its own defectiveness given the right circumstances.

Lemma 3.5.36. For some agent i ∈ A, an agent-context χ =
(
(Pǫ, G (0), τS,B, R), P S

)
, it is

possible that for some (weakly) χ-based interpreted system I, some (weakly) χ-consistent run
r and some timestamp t > 0

(I , r, t) |= Kifaultyi. (3.546)

Proof. As for the Byzantine extension, this is the case when for example there is a mismatch
between actions recorded in the agent’s local history and actions prescribed by the agent’s
protocol for the preceding local state. Formally, such a scenario can be described as follows: If
it is the case that for some t′ < t

ri(t
′ + 1) ∩ Actionsi /∈ Pi

(
ri(t

′)
)
. (3.547)

Definition 3.5.37. In addition to the propositions from Section 2.5, we further restrict the
interpretation π to adhere to the following meaning for the atomic proposition nvr(h) for
h ∈ G , given some interpreted system I = (R′, π) (for R′ ⊆ R):

(I, r, t) |= nvr(h) ⇔ NV R (r(t)) = NV R (h) . (3.548)

Lemma 3.5.38. A correct agent i with local history hi in a synchronous agents context can
infer from hi the number of virtual rounds that have passed. Formally, for an agent context
χ ∈ E S, a χ-based interpreted system I = (Rχ, π), a run r ∈ Rχ and timestamp t ∈ N

(I, r, t) |= Binvr(r(t)). (3.549)

Proof. By definition of the belief operator (2.132)

(I, r, t) |= Binvr(r(t)) ⇐⇒ (I, r, t) |= Ki

(
correcti → nvr(r(t))

)
.

By semantics of Ki (from Definition 2.4.8)

(∀t′ ∈ N)(∀r′ ∈ Rχ)
(
(r(t) ∼i r′(t′)) →

(
(I, r′, t′) |= correcti → nvr(r(t))

))

Suppose by contradiction that there exists such a run r′ and timestamp t′ such that r(t) ∼i r′(t′),
i is correct in both runs and NV R (r(t)) 6= NV R (r′(t′)). By Definition 2.4.4 of the possible
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3.5. Safety Property Extensions

worlds relation, it follows that ri(t) = r′
i(t

′). Since agent i is assumed to be correct in both
runs, it follows

(∀t′′′ < t′) βt′′′

fi

(
r′) = ∅

(∀t′′ < t) βt′′

fi
(r) = ∅.

(3.550)

Since ri(t) = r′
i(t

′) and 3.550 it follows that all updates of the agent histories in runs r and r′

were due to correct actions and events. By Definition 3.5.22 of the synchronous joint protocol,
Lemma 3.5.27 (an agent executes its protocol only during virtual rounds) and Lemma 3.5.29, it
follows that the number of virtual rounds in both runs has to be the same, hence contradicting
that NV R (r(t)) 6= NV R (r′(t′)).

Global Introspection

Lemma 3.5.39. For some agent i 6= j (i, j ∈ A), for a non-excluding agent context χ =(
(Pǫ, G (0), τS,B, R), P S

)
, where χ = E S, such that Pǫ makes agent i gullible and all other

agents delayable, for a χ-based interpreted system I = (Rχ, π), for a run r ∈ Rχ and for a
timestamp t ∈ N,

(I , r, t) 6|= Kifaultyj . (3.551)

Proof. Similarly to the asynchronous Byzantine extension for t = 0, the statement holds, as
initially no agent can be faulty. For t > 0, the statement follows directly from the synchronous
Brain-in-the-Vat Lemma 3.5.32, specifically from Properties 2 and 6 applied to interventions,
where for all m ≤ t′ − 1 (where t′ − 1 is the extent of the adjustment used in Lemma 3.5.32)

ρm
j = CFreeze. (3.552)

Lemma 3.5.40. For agent i 6= j, for a non-excluding agent context χ =
(
(Pǫ, G (0), τS,B, R), P S

)
,

where χ ∈ E S, such that Pǫ makes agent i gullible, agent j delayable and fallible and all other
agents delayable, for a χ-based interpreted system I = (Rχ, π), for a run r ∈ Rχ and for a
timestamp t ∈ N,

(I , r, t) 6|= Kicorrectj . (3.553)

Proof. This proof is again analogous to the one for the asynchronous Byzantine extension.
This Lemma simply follows from the synchronous Brain-in-the-Vat Lemma 3.5.32, specifically
Properties 2 and 5 applied to the following interventions from the adjustment in Lemma 3.5.32,
where for all m ≤ t′ − 1 (where t′ − 1 is the extent of the adjustment used in Lemma 3.5.32):

ρm
k =

{
CFreeze if k /∈ {i, j}

BFreezej if k = j.
(3.554)
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3. The Extension Framework

3.5.7 Physical Multicast Communication

The physical multicast communication extension is quite similar to the multicast com-
munication extension from Section 3.5.5. However, there is one major difference: Since the
physical multicast communication extension is supposed to model hardware multicast commu-
nication systems, Byzantine agents cannot violate the multicast paradigm in such systems.
Therefore, in addition to restricting the set of joint protocols, we also introduce an event filter,
which removes fake send events that do not comply with the underlying multicast problem.

Since filter functions operate in the global context, we cannot use RecX(µk) from (3.513) in
our filter definition.

Definition 3.5.41. For a set X ⊆ GActions ⊔ GEvents, we denote the set of recipients for
µk ∈ Msgs by

Recg
X(µk) :=

{
j | (∃i′ ∈ A)(∃t′ ∈ N) gsend(i′, j, µ, id(i′, j, µ, k, t′)) ∈ X ∨

(∃A ∈ GActions ⊔ {Â})(∃i ∈ A)(∃t ∈ N) fake (i, gsend(i, j, µ, id(i, j, µ, k, t)) 7→ A) ∈ X
}

.

(3.555)

Definition 3.5.42 (Physical Multicast Communication Event Filter). For some global history
h ∈ G , sets Xǫ ⊆ GEvents, X1 ⊆ GActions1, ..., Xn ⊆ GActionsn and a multicast problem
Ch, we define the physical multicast communication event filter as follows (note that we use
the abbreviation Xǫi

= Xǫ ∩ GEventsi from Definition 2.2.31):

filterP MCCh
ǫ (h, Xǫ, X1, . . . , Xn) := Xǫ\

{fake (i, gsend(i, j, µ, id(i, j, µ, k, t)) 7→ A) ∈ Xǫ |
(
active(i, Xǫ) ∧ Recg

Xǫi
⊔Xi

(µk) /∈ Mci

)
∨

(
passive(i, Xǫ) ∧ Recg

Xǫi
(µk) /∈ Mci

)}
.

(3.556)

Definition 3.5.43. For a multicast communication problem Ch, we denote by τP MCCh,B the
transition template, where the Byzantine action filters and the physical multicast communica-
tion event filter (3.556) is used.

Definition 3.5.44. For a multicast communication problem Ch, we denote by

E
P MCCh :=

(
Cǫ × C

MCCh , 2G (0) \ {∅}, τP MCCh,B, R
)

(3.557)

the physical multicast communication extension, where in τP MCCh,B the physical multi-
cast communication event filter and (for all i ∈ A) the Byzantine action filter is used.

Definition 3.5.45. The physical broadcast communication extension E P BC is a multi-
cast communication extension E P MCBCh for the special broadcast communication problem

BCh := ({A}, . . . , {A}︸ ︷︷ ︸
n

). (3.558)

Lemma 3.5.46. The physical multicast communication event filter is generally not monotonic

for the domain PDt−coh
ǫ , 2GActions1, ..., 2GActionsn.
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3.5. Safety Property Extensions

Proof. Counterexample:
Given a multicast communication problem, where agent 1 can only send messages to agent 2
and 3, but all other agents are unrestricted

Ch = ({{2}, {3}}, 2A \ {∅}, . . . , 2A \ {∅}), (3.559)

given sets X1 ⊆ GActions1, ..., Xn ⊆ GActionsn, actions A, A′ ∈ GActions1 ⊔ {Â}, agents
1, 2, 3 ∈ A, messages µ, µ′ ∈ Msgs, global history h ∈ G and timestamp t = |h| s.t.

Xǫ ={fake (1, gsend(1, 2, µ, id(1, 2, µ, 1, t)) 7→ A),

fake
(
1, gsend(1, 3, µ, id(1, 3, µ, 1, t)) 7→ A′)}

X ′
ǫ ={fake (1, gsend(1, 2, µ, id(1, 2, µ, 1, t)) 7→ A)}

(3.560)

it obviously holds that X ′
ǫ ⊆ Xǫ, however we get that

filterP MCCh
ǫ (h, Xǫ, X1, . . . , Xn) = ∅ (3.561)

filterP MCCh
ǫ

(
h, X ′

ǫ, X1, . . . , Xn

)
= {fake (1, gsend(1, 2, µ, id(1, 2, µ, 1, t)) 7→ A)} (3.562)

and therefore

filterP MCCh
ǫ (h, Xǫ, X1, . . . , Xn) ⊂ filterP MCCh

ǫ

(
h, X ′

ǫ, X1, . . . , Xn

)
. (3.563)

Since by (3.560) Xǫ (and X ′
ǫ) is t-coherent, the Lemma follows.

Lemma 3.5.47. The physical broadcast communication event filter is monotonic for the

domain PDt−coh
ǫ , 2GActions1, ..., 2GActionsn.

Proof. We conduct the proof by induction.
Induction Hypothesis: Suppose for some global history h ∈ G , sets Xǫ ∈ PDt−coh

ǫ ,

X1 ∈ 2GActions1 , ..., Xn ∈ 2GActionsn , X ′
ǫ ⊆ Xǫ, X ′

1 ⊆ X1, ..., X ′
n ⊆ Xn it holds that

filterP BC
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆ filterP BC

ǫ (h, Xǫ, X1, . . . , Xn) . (3.564)

Base Case: For X ′
ǫ = Xǫ, X ′

1 = X1, ..., X ′
n = Xn the statement is trivially satisfied.

Induction Step: We split this into two parts. First we examine the filter w.r.t. removing
an element from the event set and then we will do the same for some (arbitrary) action set.
Suppose the induction hypothesis holds for X ′

ǫ. We examine whether the induction hypothesis
also holds for X ′

ǫ \ {E} (where E ∈ X ′
ǫ). There are two cases:

1. (∀i, j ∈ A)(∀µ ∈ Msgs)(∀k ∈ N)(∀t ∈ N)(∀A ∈ GActionsi ⊔ {Â})
E 6= fake (i, gsend(i, j, µ, id(i, j, µ, k, t)) 7→ A)

a) If E = go(i) for some i ∈ A
It follows that

Recg
X′

ǫi
\{E}(µk) ⊆ Recg

X′
ǫi

⊔X′
i
(µk). (3.565)

Therefore, by Definition 3.5.41 and 3.5.42

filterP BC
ǫ

(
h, X ′

ǫ \ {E}, X ′
1, . . . , X ′

n

)
⊆ filterP BC

ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
\ {E} ⊆

filterP BC
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆ filterP BC

ǫ (h, Xǫ, X1, . . . , Xn) .
(3.566)
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3. The Extension Framework

b) If E 6= go(i) for some i ∈ A
Note that since X ′

ǫ is t-coherent, there can only ever be one of the system events
present for each agent. Thus, it cannot happen that after removing some sleep (i) or
hibernate (i) from X ′

ǫ, there is a go(i) left. By (3.555) and (3.556), for any µ ∈ Msgs
and k ∈ N this leads to

Recg
X′

ǫi
\{E}(µk) = Recg

X′
ǫi

(µk) (3.567)

from which also

Recg
(X′

ǫi
\{E})⊔Xj

(µk) = Recg
X′

ǫi
⊔Xj

(µk) (3.568)

follows for any j ∈ A. Thus, by (3.568) and the induction hypothesis (3.564)

filterP BC
ǫ

(
h, X ′

ǫ \ {E}, X ′
1, . . . , X ′

n

)
= filterP BC

ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
\ {E} ⊆

filterP BC
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆ filterP BC

ǫ (h, Xǫ, X1, . . . , Xn) .
(3.569)

2. (∃i′, j ∈ A)(∃µ ∈ Msgs)(∃k ∈ N)(∃t ∈ N)(∃A ∈ GActionsi ⊔ {Â})
E = fake (i′, gsend(i′, j, µ, id(i, j, µ, k, t)) 7→ A)
By existential instantiation, we get that

E = fake
(
i, gsend(i, j′, µ′, id(i′, j′, µ′, k′, t′)) 7→ A′), (3.570)

which implies that Recg
X′

ǫi
\{E}(µ′

k′) ⊂ Recg
X′

ǫi

(µ′
k′). Hence we further distinguish between

the cases:

a) Recg
(X′

ǫi
\{E})⊔Xi

(µ′
k′) = Recg

X′
ǫi

⊔Xi
(µ′

k′)

If active(i′, X ′
ǫ \ {E}) is true, then by (3.555), since E ∈ X ′

ǫ and by the induction
hypothesis (3.564) we get that

filterP BC
ǫ

(
h, X ′

ǫ \ {E}, X ′
1, . . . , X ′

n

)
= filterP BC

ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
\ {E} ⊂

filterP BC
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆ filterP BC

ǫ (h, Xǫ, X1, . . . , Xn) .
(3.571)

Otherwise if active(i, X ′
ǫ \ {E}) is false or equivalently passive(i, X ′

ǫ \ {E}) is true,
by definition of the broadcast communication problem (3.558) and the induction
hypothesis (3.564) we get

filterP BC
ǫ

(
h, X ′

ǫ \ {E}, X ′
1, . . . , X ′

n

)
= (filterP BC

ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
\ {E})\

{
fake

(
i, gsend(i, j, µ′, id(i, j, µ′, k′, t)) 7→ A

)
∈ X ′

ǫ \ {E} |

j ∈ A ∧ t ∈ N ∧ A ∈ {Â} ⊔ GActionsi

}
⊆

filterP BC
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆ filterP BC

ǫ (h, Xǫ, X1, . . . , Xn) .
(3.572)

b) Recg
(X′

ǫi
\{E})⊔Xi

(µ′
k′) ⊂ Recg

X′
ǫi

⊔Xi
(µ′

k′)

By definition of the broadcast communication problem (3.558) and the induction
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3.5. Safety Property Extensions

hypothesis (3.564) we get

filterP BC
ǫ

(
h, X ′

ǫ \ {E}, X ′
1, . . . , X ′

n

)
= (filterP BC

ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
\ {E})\

{
fake

(
i, gsend(i, j, µ′, id(i, j, µ′, k′, t)) 7→ A

)
∈ X ′

ǫ \ {E} |

j ∈ A ∧ t ∈ N ∧ A ∈ {Â} ⊔ GActionsi

}
⊆

filterP BC
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆ filterP BC

ǫ (h, Xǫ, X1, . . . , Xn) .
(3.573)

Lastly we will examine whether the induction hypothesis still holds after removing an action
A from some action set X ′

i for some i ∈ A. We distinguish between two cases:

1. (∀j ∈ A)(∀µ ∈ Msgs)(∀k ∈ N)(∀t ∈ N) A 6= gsend(i, j, µ, id(i, j, µ, k, t))
By (3.555)

Recg
X′

ǫi
⊔(X′

i
\{A})(µk) = Recg

X′
ǫi

⊔X′
i
(µk), (3.574)

hence by (3.556) and the induction hypothesis (3.564) it follows that

filterP BC
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

i−1, X ′
i \ {A}, X ′

i+1, . . . , X ′
n

)
=

filterP BC
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆ filterP BC

ǫ (h, Xǫ, X1, . . . , Xn) .
(3.575)

2. (∃j ∈ A)(∃µ ∈ Msgs)(∃k ∈ N)(∃t ∈ N) A = gsend(i, j, µ, id(i, j, µ, k, t))
By existential instantiation we get that A = gsend(i, j′, µ′, id(i, j′, µ′, k′, t′)). We distin-
guish between the cases

a) Recg
X′

ǫi
⊔(X′

i
\{A})(µ

′
k′) = Recg

X′
ǫi

⊔X′
i
(µ′

k′)

Similarly as in the case above by (3.556) and the induction hypothesis (3.564) it
follows that

filterP BC
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

i−1, X ′
i \ {A}, X ′

i+1, . . . , X ′
n

)
=

filterP BC
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆ filterP BC

ǫ (h, Xǫ, X1, . . . , Xn) .
(3.576)

b) Recg
X′

ǫi
⊔(X′

i
\{A})(µ

′
k′) ⊂ Recg

X′
ǫi

⊔X′
i
(µ′

k′)

Since by (3.555)

Recg
X′

ǫi

(µ′
k′) ⊆ Recg

X′
ǫi

⊔(X′
i
\{A})(µ

′
k′) (3.577)

it follows that no matter whether active(i, X ′
ǫ) or passive(i, X ′

ǫ) is true, it holds
that (by (3.556) and (3.564))

filterP BC
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

i−1, X ′
i \ {A}, X ′

i+1, . . . , X ′
n

)
⊆

filterP BC
ǫ

(
h, X ′

ǫ, X ′
1, . . . , X ′

n

)
⊆ filterP BC

ǫ (h, Xǫ, X1, . . . , Xn) .
(3.578)

Lemma 3.5.48. The Physical Multicast event filter is idempotent for the domain PDt−coh
ǫ ,

2GActions1, ..., 2GActionsn.
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3. The Extension Framework

Proof. For some history h ∈ G , Xǫ ∈ PDt−coh
ǫ , X1 ∈ 2GActions1 , ..., Xn ∈ 2GActionsn , let

filterP MCCh
ǫ (h, Xǫ, X1, . . . , Xn) = Yǫ. (3.579)

Suppose by contradiction that

filterP BC
ǫ (h, Yǫ, X1, . . . , Xn) ⊂ Yǫ. (3.580)

This implies that for some agents i, j ∈ A, some message µ ∈ Msgs , some k, t ∈ N, some action
A ∈ GActionsi ⊔ {Â}

fake (i, gsend(i, j, µ, id(i, j, µ, k, t)) 7→ A) ∈ Yǫ (3.581)

such that
Recg

Yǫ
(µk) /∈ Mci. (3.582)

Since Yǫ ⊆ Xǫ, it follows that also

fake (i, gsend(i, j, µ, id(i, j, µ, k, t)) 7→ A) ∈ Xǫ. (3.583)

If Recg
Xǫ

(µk) ∈ Mci, then by (3.556)

Recg
Yǫ

(µk) ∈ Mci, (3.584)

which however would contradict (3.582). Otherwise if Recg
Xǫ

(µk) /∈ Mci by (3.582), we would
get that

fake (i, gsend(i, j, µ, id(i, j, µ, k, t)) 7→ A) /∈ Yǫ, (3.585)

which contradicts (3.583). Thus the Lemma follows.

3.5.8 Coordinated Agents

Coordinated agents describes a system, where actions of certain groups of agents must be
coordinated, i.e., the group of agents woken up by the environment at some round must satisfy
certain criteria. These criteria can generally depend on time, so that the coordination could
be dynamically adjusted. However, coordination is not changed based on the local or global
state.

Definition 3.5.49. A coordinated agents problem is described as a FailGo function FG
that, to each pair of a timestamp and a set of agents scheduled to act at this timestamp,
assigns a collection of possible Byzantine culprits

FG : N × 2A → 22A
. (3.586)

Let us define

GoX = {i | go(i) ∈ X} and FailX = {i | fail (i) ∈ X}. (3.587)

Since the coordinated agents problem FG could be such that it actually disallows rounds in
which nothing happens, we cannot implement the coordinated agents property just with a
specialized event filter. We therefore introduce the Coordinated Agents environment protocol.
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3.5. Safety Property Extensions

Definition 3.5.50. For a coordinated agents problem FG, we define the set of Coordinated
Agents environment protocols as

C
CAF G
ǫ := {P ∈ Cǫ | (∀t ∈ N)(∀Xǫ ∈ P (t))(∃Y ∈ FG(t, GoXǫ)) FailXǫ ⊇ Y } . (3.588)

Without loss of generality, we can require FG(t, G), which is a subset of 2A, to consist of
pairwise incomparable subsets of A for each t ∈ N and each G ⊆ A.

This means that for each timestamp t and each set of agents scheduled to act by the environment,
the function FG gives a range of possibilities for assigning “fall guys” in case the scheduling
is faulty. If it happens that when the scheduling is indeed faulty, the environment protocol
does not supply a superset of the necessary fall guys, the environment protocol removes all go
events, thus preventing anyone from acting.

Remark 3.5.51. The fact that a group G of agents is allowed to act together at timestamp
t is represented by FG(t, G) = {∅}, because ∅ ⊆ FailX , whichever set FailX of agents the
adversary chooses to fail. W.l.o.g. if ∅ ∈ FG(t, G), then FG(t, G) = {∅}.

Remark 3.5.52. All cases where ∅ /∈ FG(t, G) correspond to violations of the coordination
conditions. They demand FailX to be non-empty and specify who should be considered at
fault. For instance, suppose A = {1, 2, 3} and agents 1 and 2 are supposed to act either
together or not at all. If

FG(t, {1}) = FG(t, {1, 3}) = {{1}} and FG(t, {2}) = FG(t, {2, 3}) = {{2}}

for all t ∈ N, then the agent that acts unilaterally is at fault. If

FG(t, {1}) = FG(t, {1, 3}) = {{2}} and FG(t, {2}) = FG(t, {2, 3}) = {{1}}

for all t ∈ N, then the agent that fails to join the action is at fault. If

FG(t, {1}) = FG(t, {1, 3}) = {{1}, {2}} and FG(t, {2}) = FG(t, {2, 3}) = {{1}, {2}}

for all t ∈ N, then the environment has a choice whether to blame 1 or 2 but must blame at
least one of them. If

FG(t, {1}) = FG(t, {1, 3}) = {{3}} and FG(t, {2}) = FG(t, {2, 3}) = {{3}}

for all t ∈ N, then agent 3 is considered at fault for the failure of 1 and 2 to coordinate.

Definition 3.5.53. For a coordinated agents problem FG, the coordinated agents exten-
sion is

E
CAF G :=

(
C

CAF G
ǫ × C , 2G (0) \ {∅}, τB, R

)
. (3.589)

Remark 3.5.54. The coordinated agents extension is more expressive than the basic frame-
work. In particular, the basic framework is an instance of the coordinated agents problem
for

FG(t, G) = {∅}

for each t ∈ N and each G ⊆ A, in which case the condition FailX ⊇ ∅ is trivially satisfied by
any set X of events.
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3. The Extension Framework

Remark 3.5.55. While the primary purpose of this extension is coordination among agents,
it can also be used to prevent simultaneous actions. For instance, setting for all t ∈ N

FG(t, G) = {G}

for all G ⊆ A such that |G| > 1 restricts correct action to one agent acting per round. If more
than one agent acts, then all acting agents are considered to be at fault. Alternatively, one
can set for all t ∈ N

FG(t, G) = {G \ {i} | i ∈ G}

for all G ⊆ A such that |G| > 1, which sets the same restriction of one agent per round but
allows to consider one of the acting agents be correct.

Remark 3.5.56. Synchronous agents can also be modeled as a particular coordinated agents
problem with

FGsync(t, G) = {A \ G}

for each t ∈ N and each G ⊆ A.

3.6 Combined Extensions

In this section we present extensions that were constructed by combining some previously
defined extensions.

3.6.1 Rendezvous Communication

Rendezvous communication refers to a system, where sender and receiver must synchronize
themselves. This implies that a message sent by a correct agent must be received in the
same round. We only require the rendezvous property to hold for certain channels C ⊆ A2.
Therefore we define the rendezvous communication extension as combination of E SCC and
E RCC (the synchronous communication and reliable communication extension).

Lemma 3.6.1. The extensions E RCC and E SCC are compatible w.r.t. composition RCC ◦SCC ,
thus E RCC◦SCC is a valid extension.

Proof. Since obviously

Cǫ ∩ C
SCC
ǫ 6= ∅ (3.590)

C ∩ C 6= ∅ (3.591)

(2G (0) \ ∅) ∩ (2G (0) \ ∅) 6= ∅, (3.592)

we only need to examine, whether for

E
RCC◦SCC =

(
C

SCC
ǫ × C , 2G (0) \ {∅}, τN,N , EDelC

)
(3.593)

there exists an agent context χ ∈ E RCC◦SCC such that Rχ 6= ∅. Let χ =
(
(P ′

ǫ, G (0), τN,N , EDelC), P ′
)
,

where P ′
ǫ only produces the set containing the empty set and P ′ produces the set containing

the empty set for every agent. By (3.509) and (3.498) (the synchronous communication envi-
ronment protocol is defined as a special case of the time-bounded communication environment
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3.6. Combined Extensions

protocol, which only restricts environment protocols w.r.t. allowing only correct receive events,
when their corresponding send event has happened ’recent enough’) it follows that P ′

ǫ ∈ C SCC
ǫ .

Therefore
(∀t ∈ N) P ′

ǫ(t) = {∅} (3.594)

(∀h ∈ G ) P ′(h) = ({∅}, . . . , {∅}). (3.595)

Since this agent context can produce the empty run r ∈ R, where

(∀t ∈ N) rǫ(t) = [∅, . . .︸︷︷︸
t−2

,∅], (3.596)

E RCC◦SCC is indeed a valid extension.

Lemma 3.6.2. The extension E RCC◦SCC satisfies the liveness property of E RCC .

Proof. This follows from Lemma 3.3.10.

Lemma 3.6.3. The extension E RCC◦SCC satisfies the safety property SSCC .

Proof. This follows from Corollary 3.3.29.

Definition 3.6.4. For a set of channels C ⊆ A2, we denote by

E
dRdVC =

(
C

SCC
ǫ × C , 2G (0) \ {∅}, τN,N , EDelC

)
(3.597)

the rendezvous communication extension.

3.6.2 Lock-step Synchronous Agents

In the lock-step synchronous agents extension agents are synchronous and communication
is synchronous and reliable. Moreover communication is broadcast (physical or not). To
implement this extension, we only have to combine extensions that we have already intro-
duced (synchronous agents, synchronous communication, reliable communication, broadcast
communication, asynchronous Byzantine agents). Hence our mix of extensions looks like this:
1 × Adm, 1 × EnvJPDC, 1 × JP − AFB, 2 × EvFJP − AFB.

Following our established extension combination guide from Section 3.3.6, the first (non-trivial)
step is drawing a dependence graph of the event filters from E S (Definition 3.5.23) and E B

(Definition 3.5.1). In order to help us with that, we construct a small table based on the
definitions of the involved filters (2.24), (3.519) showing what both filters depend on and which
events they remove.

Table 3.2: filter dependencies

filter dependency removal

filterS
ǫ go(i), sleep(i), hibernate(i) go(i)

filterB
ǫ go(i), gsend(i, j, µ, id), fake (i, gsend(i, j, µ, id) 7→ A) grecv(j, i, µ, id)

Table 3.2 reveals that filterB
ǫ depends on go(i) events, which filterS

ǫ removes. Therefore
we have a dependence relation from filterB

ǫ to filterS
ǫ . filterB

ǫ removes only correct receive
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3. The Extension Framework

filterB
ǫ filterS

ǫ

Figure 3.1: dependence graph for filterB
ǫ and filterS

ǫ

events grecv(j, i, µ, id). filterS
ǫ however, is independent of such events, hence there is no

dependence relation from filterS
ǫ to filterB

ǫ .

Figure 3.1 shows the final dependence graph. Since there is no circular dependence, we can
directly use the composition order given by the graph. This gives us

E
B◦S = (Cǫ × C

S , 2G (0) \ {∅}, τB◦S,B, R), (3.598)

where in τB◦S,B the event filter is filterB◦S
ǫ and the action filters result in filterB

i for all
i ∈ A (by idempotence by Lemma 3.1.22 of the Byzantine action filter function). Following
the rest of the extension combination guide finally leads to

E
B◦S◦BC◦SCA2 ◦RCA2 =

(
C

SCA2
ǫ × (C MCBCh ∩ C

S), 2G (0) \ {∅}, τB◦S,B, EDelA2

)
. (3.599)

Lemma 3.6.5. The extensions E B, E S, E SCA2 , E RCA2 and E BC are compatible (w.r.t. the
composition B ◦ S ◦ BC ◦ SCA2 ◦ RCA2).

Proof. The only condition from Definition 3.2.2 that does not trivially follow from the
definition of the extensions in question is whether there exists an agent context χ, such
that χ ∈ E B◦S◦BC◦SCA2 ◦RCA2 . Such a χ however can be easily constructed. Let χ =(
(P ′

ǫ, G (0), τB◦S,B, EDelA2), P ′
)
, where P ′

ǫ only produces the set containing the empty set

and P ′ for every agent produces the set containing the set that only contains the action ➊.

(∀t ∈ N) P ′
ǫ(t) = {∅} (3.600)

(∀h ∈ G ) P ′(h) = ({{➊}}, . . . , {{➊}}). (3.601)

It is easy to see that this agent context is part of the extension E B◦S◦BC◦SCA2 ◦RCA2 , as

P ′
ǫ ∈ C

SCA2
ǫ and P ′ ∈ (C MCBCh ∩ C

S). (3.602)

Lemma 3.6.6. The extension E B◦S◦BC◦SCA2 ◦RCA2 satisfies all safety properties of its con-
stituent extensions.

Proof. This results from its construction, as we were strictly following the extension combina-
tion guide from Section 3.3.6.

Finally, after having proved that the resulting extension E B◦S◦BC◦SCA2 ◦RCA2 satisfies all
desired properties, we can define it as E LSS .
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3.6. Combined Extensions

Definition 3.6.7. We denote by E LSS =
(
C

SCA2
ǫ × (C MCBCh ∩ C S), 2G (0) \ {∅}, τB◦S,B, EDelA2

)

the lock-step synchronous agents extension.

We will now add a few Lemmas about properties, which the lock-step synchronous agents
extension inherits from the synchronous agents extension.

Lemma 3.6.8. An agent i in a lock-step synchronous agents context executes its protocol only
during virtual rounds, i.e., go(i) ∈ βt

gi
(r) iff t.5 is a virtual round.

Proof. Follows from Lemma 3.5.27 for the synchronous agents extension, as Lemma 3.5.27
describes a property of SS that by Lemma 3.6.6, E LSS satisfies.

Lemma 3.6.9. For a correct agent i, a τB◦S,B

P
SC

A2
ǫ ,P SMCBCh

-transitional run r (where P
SCA2
ǫ ∈

C
SCA2
ǫ and P SMCBCh ∈ C S ∩ C MCBCh), some timestamp t′ ≥ 1, agent i’s local history

ri(t
′) = hi = [λm, . . . , λ1, λ0] (given the global history h = r(t′) ∈ G ) and some round (t − 1).5

(t′ ≥ t ≥ 1), there exists some a ∈ Actionsi such that a ∈ λkt
where λkt

= σ
(
βt−1

ǫi
(r)⊔βt−1

i (r)
)

if and only if (t − 1).5 is a virtual round.

Proof. This again follows from Lemma 3.5.29 for the synchronous agents extension, as the
statement of this lemma is a safety property of E S and by Lemma 3.6.6, E LSS satisfies SS .

Lemma 3.6.10. For any agent i ∈ A, any run r ∈ Rχ, where χ ∈ E LSS and any timestamp
t ∈ N it holds that

go(i) ∈ βt
gi

(r) ⇐⇒ (∃A ∈ GActionsi) A ∈ βt
i (r). (3.603)

Proof. Analogous to the proof of Lemma 3.5.30 for the synchronous agents extension.

Unlike for the synchronous agents extension, it is not possible to formulate a lock-step
synchronous version of the Brain-in-the-Vat Lemma. We will now show why.

Lemma 3.6.11 (No Lock-step Synchronous Brain-in-the-Vat Lemma). Let A = J1; nK be a set

of agents with joint protocol P SMCBCh = (P1, . . . , Pn) ∈ (C MCBCh ∩C S), let P
SCA2
ǫ ∈ C

SCA2
ǫ be

the protocol of the environment, for χ ∈ E LSS, where χ = ((P
SCA2
ǫ , G (0), τB◦S,B, EDelC), P SMCBCh),

let r ∈ Rχ, let i ∈ A be an agent, let t > 0 be a timestamp and let adj = [Bt−1; . . . ; B0] be an
adjustment of extent t − 1 satisfying

Bm = (ρm
1 , . . . , ρm

n )

for all 0 ≤ m ≤ t − 1 with

ρm
i = PFakem

i and for all j 6= i ρm
j ∈ {CFreeze, BFreezej}.

If the protocol P
SCA2
ǫ makes

• agent i gullible,
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3. The Extension Framework

• every agent j 6= i delayable and fallible if ρm
j = BFreezej for some m,

• all remaining agents delayable,

then not for every run r′ ∈ R

(
τB◦S,B

P
SC

A2
ǫ ,P SMCBCh

, r, adj

)
it holds that r′ ∈ Rχ.

Proof. We will provide an appropriate counterexample. Suppose for some run r ∈ Rχ,
timestamp t′ ≤ t − 1, agent j′ 6= i, message µ ∈ Msgs, copy number k ∈ N and action
A ∈ {Â} ⊔ GActions

fake
(
i, gsend(i, j′, µ, id(i, j′, µ, k, t′)) 7→ A

)
∈ βt′

ǫ (r). (3.604)

From (3.475) (definition of EDelC), it follows that for some timestamp t′′ ∈ N

grecv(j′, i, µ, id(i, j′, µ, k, t′)) ∈ βt′′

ǫ (r). (3.605)

From (3.509) (definition of the synchronous communication environment protocol), it follows
that t′′ = t′. However by Definitions 2.7.8, 2.7.11, 2.7.12 of the interventions PFaket

i, CFreeze

and BFreezei, it holds that for all r′ ∈ R

(
τB◦S,B

P
SC

A2
ǫ ,P SMCBCh

, r, adj

)

grecv(i, j′, µ, id(i, j′, µ, k, t′)) /∈ βt′

ǫ

(
r′) ∧ fake

(
i, gsend(i, j′, µ, id(i, j′, µ, k, t′)) 7→ A

)
∈ βt′

ǫ

(
r′).

(3.606)
Hence we conclude that r′ /∈ Rχ.

What follows are some new properties unique to the lock-step synchronous extension.

Lemma 3.6.12. Whenever a correct agent i ∈ A in an agent context χ ∈ E LSS sends a
message µ in round t, it sends µ to all agents and µ is received by all agents in the same
round t.

Proof. When a correct agent i sends a message, this is done by executing its protocol (as a
fake send initiated by the environment protocol would immediately make this agent faulty).
From the definition of the joint protocol (consisting of (3.521), (3.514) with (3.516)), an agent
can only send a message to all agents or no one. From the admissibility condition EDelA2

(3.475) and the synchronous communication environment protocol (3.509), it follows that a
sent message has to be delivered to the receiving agent during the same round t it was sent.
Suppose by contradiction that a message, sent in round t, is not received by some agent in
round t. By (3.475), it follows that this message has to be correctly received at some later
point in time t′ > t. However by (3.509), a correct receive event can only happen during the
same round of its corresponding send event, thus leading to a contradiction.

Local Introspection

As for the synchronous agents extension, it is in principle possible for a lock-step synchronous
agent to learn of its own defectiveness given the right circumstances.
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3.6. Combined Extensions

Lemma 3.6.13. For some agent i ∈ A, an agent-context χ =
(
(P

SCA2
ǫ , G (0), τB◦S , EDelA2), P SMCB

)
,

it is possible that for some (weakly) χ-based interpreted system I, some (weakly) χ-consistent
run r and some timestamp t > 0

(I , r, t) |= Kifaultyi. (3.607)

Proof. Analogous to the proof of Lemma 3.5.36.

Lemma 3.6.14. A correct agent i with local history hi in a lock-step synchronous agents
context can infer from hi the number of virtual rounds that have passed. Formally, for an agent
context χ ∈ E LSS, a χ-based interpreted system I = (Rχ, π), a run r ∈ Rχ and timestamp
t ∈ N,

(I, r, t) |= Binvr(r(t)) (3.608)

Proof. Analogous to the proof of Lemma 3.5.38 from the synchronous agents extension as
C MCBCh ∩ C S ⊆ C S .

Global Introspection

Lemma 3.6.15. There exists a non-excluding agent context χ =
(
(P

SCA2
ǫ , G (0), τB◦S , EDelA2), P̃ SMCBCh

)
,

where χ ∈ E LSS, such that for a χ-based interpreted system I = (Rχ, π), there exists a run
r ∈ Rχ, for agents i, j ∈ A, where i 6= j and some timestamp t ∈ N, such that

(I , r, t) |= Bifaultyj . (3.609)

Proof. Suppose the joint protocol is such that for all global histories h ∈ G

P̃ SMCBCh(h) = {(S1, . . . , Sn) |

(∀i ∈ A)(∃µ ∈ Msgs)(∀D ∈ Si) {send(j, µ) | (∀j ∈ A)} ∪ {➊} ⊆ D}.
(3.610)

meaning that every agent has to perform at least one broadcast in case it gets the opportunity
to act. By Lemma 3.6.8 (agents execute their protocols only during virtual rounds), Lemma
3.6.12 (whenever a message is sent by a correct agent, all agents receive it during the same
round) and (3.610), it follows that every agent receives at least one message from every correct
agent during a virtual round. Thus in all states, where i is correct, it received a message from
itself, but not from some agent j, j has to be faulty. Suppose by contradiction that this is not
the case, meaning there exists a run r and timestamp t, where i is correct, received a message
from i (itself) but not from j, i.e.,

(∃µ ∈ Msgs) recv(i, µ) ∈ π1ri(t) (3.611)

but

(∀µ ∈ Msgs) recv(j, µ) /∈ π1ri(t) (3.612)

despite the fact that j is correct.

(I , r, t) |= correctj (3.613)
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3. The Extension Framework

Since agents execute their protocols only during virtual rounds (by Lemma 3.6.8) and all
agents according to our defined protocol (3.610) send messages to all agents, when they get the
opportunity to act and since any message that is sent, is correctly received in the same round
(by Lemma 3.6.12), it is impossible that j is correct in r(t) by (2.78) (definition of correctj)
and Definition 2.3.3 (of Failed (r, t)). Hence, by Definition 2.132, of the belief operator the
Lemma follows.
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CHAPTER 4
Conclusions and Directions of

Future Research

In this thesis, we developed

(1) a generic extension framework for the existing epistemic reasoning framework [KPS+19a]
for asynchronous multi-agent systems with byzantine-faulty agents,

(2) extensions for the most common distributed computing models, including reliable
communication, time-bounded communication, multicasting, synchronous and lock-step
synchronous agents, and even agents with coordinated actions,

(3) analyzed basic properties of the most important extensions, namely, synchronous and
lock-step synchronous byzantine agents.

Our generic extension framework rests on five different handles for controlling the behavior of
the environment and the agents, namely, the environment protocol, the agent protocols, the
event filter, the action filters, and the admissibility conditions. Whereas liveness properties
are primarily enforced by the admissibility conditions, safety properties could be enforced by
different ways, some of which turned out to be favorable over others in terms of composability
of extensions. This gave rise to the definition of a number of different implementation classes.
A distinguishing feature of our extension framework is its explicit support for composability,
in the sense that all extensions in certain implementation classes can (or cannot) be composed
with others, as laid down in an explicit extension creation and combination guide.

The suitability of our extension framework has been demonstrated by providing explicit
specifications of (composable) extensions that correspond to the most important distributed
computing models. It is therefore possible to combine extensions such as reliable communica-
tion, broadcast communication, and synchronous agents to model classic lock-step synchronous
distributed systems with byzantine agents, for example. For two such synchronous models,
we also provided a set of generic results that prove the general inability of an agent to assert
its own and some other agent’s correctness. We also answer the question in which of those
models a “brain-in-a-vat” scenario is possible.
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4. Conclusions and Directions of Future Research

Whereas our extension framework has been developed with genericity and completeness in
mind, there are still open problems left for further research. Apart from adding extensions
that cover distributed computing models currently not yet supported, we list the following
two major issues:

• Develop additional generic results for pivotal implementation classes, for example, a
characterization of the reliable causal cone in synchronous byzantine systems as done for
asynchronous systems in [KPSF19a].

• Demonstrate the suitability of the specific extensions provided in this thesis by analyzing
a concrete distributed algorithm that is known to work correctly in the corresponding
model.
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