Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

FAKULTAT
FUR INFORMATIK

Evaluation of Microservice
Implementation Approaches for
Image Processing

Faculty of Informatics

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Masterstudium Software Engineering/Internet Computing
eingereicht von

Manuel Kruisz, BSc
Matrikelnummer 01026780

an der Fakultat fir Informatik

der Technischen Universitat Wien

Betreuung: Ao.Univ.Prof. Mag. Dr. Horst Eidenberger

Wien, 19. Janner 2020

Manuel Kruisz Horst Eidenberger

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Evaluation of Microservice
Implementation Approaches for
Image Processing

DIPLOMA THESIS
submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Master’s programme Software Engineering & Internet Computing
by

Manuel Kruisz, BSc
Registration Number 01026780

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Mag. Dr. Horst Eidenberger

Vienna, 19" January, 2020

Manuel Kruisz Horst Eidenberger

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der
Arbeit

Manuel Kruisz, BSc

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. Janner 2020

Manuel Kruisz


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Acknowledgements

My special thanks goes to Professor Eidenberger, the supervisor of this thesis. His
outstanding patience, feedback and guidance played an important role in the creation of
this work.

I would further like to thank everyone who enabled me to become a software engineer,
which includes everyone involved in the Technical University of Vienna, current and past
employers, colleagues and everyone openly sharing their knowledge in any way.

vii


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Kurzfassung

In den letzten Jahren ist ein wachsendes Interesse an dem relativ jungen Thema der
Microservice-Architekturen zu beobachten. Einhergehend damit steigt die Anzahl der
Erfahrungen zu Microservices und besonders Vorteile dieser Architektur, als auch zuneh-
mend potentielle Nachteile sind ein hdufig diskutiertes Thema. Wéhrend bereits erste
Erfolgsrezepte und Architekturmuster zu der Konstruktion solcher Systeme entstehen,
wird noch unzureichend thematisiert, wie ein Microservice System am besten gebaut
werden kann und in welchen Féllen dieser Architekturstil wirklich anwendbar ist. Viele
Erkenntnisstdnde und Informationen zu diesem Thema sind noch allgemeiner Natur und
spezielle Anwendungsfille mit besonderen Eigenschaften vollig unerforscht.

In dieser Arbeit wurden Microservices im Kontext von Bilderverarbeitungssystemen néaher
betrachtet. Als Basis der Evaluierung diente ein System, das fiinf verschiedene Arten
von verbreiteten Bildtransformationen anbietet. Anhand der bestehenden Anforderungen
wurde das System ohne Frameworks, mit einem Framework und mit einem Function-as-
a-Service Ansatz in der Microservice-Architektur implementiert. Diese drei resultierenden
Systeme wurden quantitativ durch den Entwicklungsaufwand und ihre Leistungsfahigkeit
bewertet. Qualtiativ wurden Vor- und Nachteile der einzelnen Entwicklungsansitze
evaluiert und allgemeine Erkenntnisse zu Microservice-Architekturen im Kontext der
Bildverarbeitung festgehalten.

In den Resultaten wurde festgestellt, dass fiir solch ein Bildverarbeitungssystem kein
klar zu bevorzugender Ansatz existiert. Jede der drei Implementierungen bietete ver-
schiedenartige Vor- und Nachteile in Form eines Kompromisses zwischen Flexibilitat und
Entwicklungsgeschwindigkeit. Es zeigte sich jedoch, dass im allgemeinen ein Function-as-
a-Service Ansatz hier sehr gut geeignet sein kann und sowohl die Entwicklungszeit als
auch die Komplexitéit des resultierenden Quellcodes positiv beeinflusst.

Die Kombination von Bildverarbeitung und Microsrevices brachte Eigenschaften mit
sich, die starke Auswirkung auf die resultierende Architektur hatten. Primir wurde
diese durch die lange Verarbeitungszeit von einzelnen Anfragen und die Netzwerklast
durch den Transfer von Bilddateien zwischen Services beeinflusst. Als Resultat dessen
sind verbreitete, simple Ansétze nur mit gravierenden Nachteilen umsetzbar, und es
werden komplexe Mechanismen wie asynchrone Kommunikation im gesamten System
notwendig. Jedoch zeigte sich, dass die korrekte Anwendung von Microservices zu einfacher
Wartbarkeit und Skalierbarkeit eines solchen Systems fithren kann.

ix


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Abstract

In recent years we can observe an increasing interest in the relatively young topic of
Microservice Architectures. As a consequence thereof, the number of experiences with
Microservices is increasing and both advantages, as well as disadvantages become a
commonly discussed topic. While first best practices and architectural patterns regarding
the construction of such systems emerged, there is a lack of discussion regarding the
construction and applicability in certain contexts of Microservice Systems. The current
state of knowledge revolves primarily around general properties of microservices and
therefore use cases in contexts with special characteristics are still uncharted terrain.

This thesis provides a closer look at Microservices in the context of image processing
systems. The evaluation was performed based on a system offering five commonly used
image transformations. With a given set of requirements this system was implemented
without the use of a framework, with a framework and with an Function as a Service
approach to achieve a Microservice Architecture. All three of the resulting applications
were evaluated via quantitative metrics such as the time spent on development and
performance characteristics. A qualitative evaluation was performed as well, which
compared advantages and disadvantages of the different approaches and yielded findings
regarding Microservice Architectures in the context of image processing.

The results showed that no single, generally preferable approach exists for such a system.
All three implementations offered different advantages and disadvantages in the form of
a trade-off between flexibility and development speed. However, there were indications
that generally a Function as a Service approach can yield the most benefits, because of a
strong reduction in both development time and the complexity of the resulting source
code.

The combination of image processing and Microservices lead to properties which had a
strong influence on the resulting architecture. This was primarily caused by the long
processing time of the requests and the high load on the network caused by the transfers
of image files between services. As a result thereof, commonly used and simple approaches
would often have resulted in serious disadvantages, and more complex mechanisms such
as asynchronous communication were necessary throughout the whole system. However,
it became apparent that a correct application of microservice principles leads to better
maintainability and scalability of such a system.

X1


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Kurzfassung

Abstract

1

Introduction
1.1 Motivation

Contents

1.2 Aimofthe Work . . . . . . . . . . . . . . . ..
1.3 Methodological Approach . . . . .. ... ... ... ..........
1.4 Structure of the Work . . . . . . ... .. ... .. ... ... ...,

Relevant Background
2.1 Software Architectures . . . . . . . . . ... ... ..

2.2 Microservices

2.3 Microservice Patterns . . . . . . . ...
2.4 Microservice Infrastructure . . . . . . . . . ... .o
2.5 Related Work . . . . . . . . .

Design

3.1 Requirements . . . . . .. ...

3.2 Architecture
3.3 Technologies

Implementation
4.1 Implementati
4.2 Implementati
4.3 Implementati

Evaluation
5.1 Quantitative

on without a Framework . . . . . ... ... ... ....
on with a Microservice Framework . . . . . . .. ... ..
on with a Function as a Service Framework . . . . . . . .

Evaluation . . . . . . .. .. ... ...

5.2 Qualitative Evaluation . . . . . . ... ... ... ... ... ... ...

5.3 Critical Refle

Conclusions
6.1 Conclusions

ction . . . ..

ix

B W N

SN

13
17
28
29

37
37
38
41

45
45
53
53

57
o7
62
66

67
67

Xiii


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

68

6.2 Future Work

69

List of Figures

71

List of Tables

73

Bibliography

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

qny a8pajmoud| INoA

Saylolqie


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

1.1 Motivation

The microservice architectural style is now used in most of the well-known companies in
the industry. Names like Uber, Netfliz, Amazon and Ebay, among numerous others, come
to mind when there is talk about microservices. And the interest in this architectural
style does not appear to die off either. Since the term started to become popular in 2014,
we are able to observe a growth in interest in year. A search on the IEEE Digital Library
[IEE] for the terms Microservice and Microservices reveals a significant increase in the
number of articles published on the topic per year, as shown in Table 1.1.

Table 1.1: IEEE search results for Microservices.

Results | Year

3| 2014
24 | 2015
76 | 2016

152 | 2017

A similar trend can also be observed in Figure 1.1, which shows a Google Trends [MST]
search for the term Microservices over the last five years. Here also, the interest has been
constantly growing.

As a result of the growing interest in this young architectural style and its fast adoption,
we can observe that research, tools and approaches related to microservices, are all still
constantly evolving. Our approaches to the construction of microservice systems are
shifting from building microservices from scratch over using dedicated frameworks to
approaches like Function as a Service (FaaS), which provide an abstraction to build

1



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.

INTRODUCTION

Google Trends Result for "Microservices"

— Interest
120

100

60

Interest

Time

Figure 1.1: Microservices Google Trends.

microservices in the form of simple functions. With every evolutionary step in these
approaches we are moving towards a higher level of abstraction and transparency for
commonly used parts of systems.

But are microservices applicable to every domain? Is this architecture suited for domains
like image processing? If so, do current best practices, approaches and tools yield benefits
for this domain or are practitioners better off by building infrastructure code on their
own? In this thesis we are trying to answer these and other questions.

1.2 Aim of the Work

Because of this field’s relatively young age, research is still ongoing and many areas,
applications and effects of this architectural style are yet to be researched. One such
area is image processing. In this work we want to answer some of the questions related
specifically to properties of this domain.

For this purpose we create and evaluate different approaches for the construction of
an image processing system via microservices. This in turn enables us to answer the
following research questions:

e How well is the implementation of image processing services supported by this
architectural style?


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

1.3. Methodological Approach

Are the identified best practices applicable in the given domain?

Are there limits to these approaches in the given context?

e Is one approach preferable to the others?
e What are the advantages and drawbacks of each approach in the given domain?

e What are these advantage’s and disadvantage’s influences on the implementation
of the system as a whole?

An additional goal of this work is to uncover further ideas for research based questions.
Due to the relatively young age of the field and the limited amount of similar work, we
expect to find numerous additional research questions. If applicable to the overall focus
of this work and the nature of the additional questions we try to investigate and answer
them. In any case we strive to give as much insight into the problem as possible to enable
future work to answer them.

1.3 Methodological Approach

The chosen approach consists of several phases, which build on each other. In the first
phase we conduct a literature review, which provides us with insights into the known
best practices and challenges in the context of building microservice-, image processing-
and distributed systems.

Based on these results, we closely inspect the given requirements for the intended
application and design an architecture in the second phase. The resulting architecture
should fulfill all given requirements and the identified best practices for a microservice
System.

On the basis of this architecture we build the image processing system via three different
approaches in the next phase. Each of the different approaches is realized as a prototypical
implementation. From an outer perspective the behaviour of each system should appear
identical, but the inner workings and the construction process can drastically differ.
During the process of building the systems we measure aspects like time spent for the
construction and take note of interesting aspects and challenges encountered during the
implementation phase for each approach.

The first prototype is implemented without the use of any frameworks. We expect this
to result in an application structure without any constraints on the inner and outer
workings of the system, but to provide the least support from existing tools.

The second prototype is implemented using a general purpose microservice framework.
This approach should offer some support in the implementation while still maintaining a
certain level of flexibility.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

The third prototype is implemented using a FaaS Framework. In this approach a
significant part of the required infrastructure of the system is already provided and it is
only necessary to add the logic for the specific image processing tasks.

Once the implementation of the different prototypes is complete, we begin the evaluation
phase. By combination of the research questions, the knowledge gained from the literature
review, insights gained during the implementation phase and the actual resulting systems,
we evaluate each approach on its own and in relation to the other prototypes.

1.4 Structure of the Work

The structure of the work closely relates to the different phases used in the methodological
approach.

Relevant Background contains information about the underlying architectural prin-
ciples in software construction and especially those related to distributed system archi-
tectures. In this section take a closer look at the overall concepts of the microservice
architectural style. We discuss how this style relates to existing principles and the recent
concepts that enabled microservices to emerge. Thereafter, we dive deeper into the
currently known positive and negative effects of using this architectural style. These
advantages and disadvantages lead us to different patterns which yield the mentioned
benefits and try to mitigate the known and common downsides of such systems.

Since microservice systems possess some very specific requirements in their infrastructure
we have a look at the most important developments, techniques and technologies that
enable this architectural style.

The background part is concluded by a close inspection and discussion of related work,
which consists primarily of, but is not limited to, research in the domain of microservices
and especially the application of this architectural style in the context of the construction
of various systems. Other areas of interest considered in this section are architecture
related research, but also research related to software construction in general and the
different effects of using certain techniques.

The Design section describes the requirements for the given image processing systems.
This part contains functional, as well as non-functional requirements and gives us an
understanding on how the system should behave from a client’s perspective and which
use cases are to be supported. After the requirements are clear we present and discuss
an architecture, which supports them and the best practices found in the Background
chapter. The last part of the Design chapter gives an overview of the technology choices
taken to build the system. Here we briefly mention the advantages as disadvantages of
each technology in regards to the system we are building.

The Implementation section presents the concrete implementation of the three different
prototypes. For each prototype there are explanations how the system is built and fulfills
the various requirements.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.4. Structure of the Work

The Evaluation section compares the prototypes and their different aspects via quantita-
tive and qualitative metrics. By combining the results the comparison and the theoretical
base we have built in the background chapter, we answer the research questions of this
work. We conclude this chapter with a critical reflection of the chosen approach and
the decisions made during the implementation and evaluation phase, by having a look
at their possible impact on the results and discussing the effects of possible alternative
approaches.

In the end of this work we draw conclusions from our findings and discuss future work.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Relevant Background

2.1 Software Architectures

2.1.1 Monolithic Architecture

The term Monolith describes a software system that is packaged and deployed as a single
executable file. This is often viewed as the traditional approach to design a software
system [RIC].

The resulting application usually consists of several components and layers providing
the different capabilities of the system. A monolith commonly contains all code for
the graphical interface, business logic, integrations to third-party systems and database
access. All functionality required by the business is present in the single codebase [RIC].
Supporting all requirements of the business leads to vastly different parts of functionality
with little to no overlap. Without a strategy to manage and structure these different
capabilities and features the code might quickly become unmanageable [APP]. In order
to avoid these problems two main strategies in the structuring of such an application are
employed. These are layering and components as shown in figure 2.1.

In layering the application is sliced horizontally by the different technical layers. A
typical layering would be to separate the user interface (UI), business logic and database
access layers [APP]. These different parts are then ordered in a clear hierarchy that only
allows one layer to communicate with the layer directly underneath [BCK12]. This and
similar approaches being so common lead to the emergence of well-known patterns like
the Model-View-Controller Pattern [SW14].

The second strategy for structuring is to separate the system into components. Com-
ponents are independent parts of the program that can be composed and linked. One
component provides and is responsible for a given part of the overall functionality [SHO].
This could for example be a user component that handles user management. Another

7



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.

RELEVANT BACKGROUND

Manaolith

User ul Order User 2P| Order
lcomponent [companent [companent lcomponent

&
¥

Client

User . Order
lcomponent] Services lcomponent

I Database

User Order
lcomponent] Database Access lcomponent

A
h 4

Figure 2.1: A monolithic system separated into different layers for technical capabilities
and different components within the layers for different functionality [APP] (modified).

component, for example an order component, could then call the user component to
receive certain data about a given customer. However, when components reside next to
each other, there is usually very little resistance to change the way they communicate,
which can both act as a blessing and a curse [RIC].

Therefore when employing both of these layering strategies, changes within one layer are
usually easy to perform, however bear a risk of breaking down the component structure
within the system [RIC]. On the other hand changes that span across different layers take
more time because of the additional effort to create the communication structures and
interfaces between the different layers and the need to recompile the whole application if
there were changes in every layer [RIC].

These days the term Monolith received an increasingly negative connotation over time.
On first sight the consensus might appear to be that Monoliths are bad, which like most
other generalizations, does not hold true in every case. There are still good reasons
to favor a monolithic system over another architectural approach [FOWd]. In some
cases it can also be an advantage that the previously mentioned boundaries created
by layering the application and those created by splitting the system into components
are much weaker than the boundaries in a distributed system. This makes it easier to
perform changes across large parts of the overall system in monolithic systems and to
achieve higher flexibility when it comes to larger changes in the general structure of


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.1. Software Architectures

functionality [FOWc] [Ric18]. From the operational point of view, the application being
a single deployable or executable file results in a relatively simple deployment process
[APP]. A single executable file could even be deployed manually and does not require a
complex deployment infrastructure [Ric18]. Should any upscaling be required, monolithic
architectures offer the possibility to have several instances running behind a load balancer
[APP] [Ric18].

However, once the application and the number of developers working on it reach a certain
size these perks can turn into a burden. Over time the lack of strict boundaries causes
the separation of components to break down [APP]. Developers working on the same
codebase start to face conflicting changes with their peers, oftentimes producing side
effects that are difficult to trace and understand. The application grows to a size that
tests the limits of humans and machines alike [APP]. Developers, especially those new
to the system, are no longer able to understand or even be familiar with all parts of
the application [APP] [Ric18]. Integrated Development Environments (IDEs) on normal
hardware stop being able to handle the amount of source code, runs of the automated test
suites take days to complete and the deployment of the application takes hours [Ricl8].

Therefore it is often recommended to start out with a monolithic system. Only when the
application grows to a size where the drawbacks of monoliths come into effect one should
consider splitting the system up [FOWc]. When this moment arrives the developers should
have enough knowledge about different possible boundaries in the system. Therefore
separating the system into parts of related functionality should be possible at this point
in time [FOWc]. This trend can be observed amongst several companies in the industry.
Many started out by using a monolithic approach and only later on split the monolith
into microservices. When companies tried to immediately start out with a microservice
system in many cases their design failed [FOWc].

2.1.2 Service Oriented Architecture

Service Oriented Architecture (SOA) is a structured approach to software architecture
that splits a monolithic system into several loosely coupled services. Each such service
contains only related functionality and is invokable via a standard-based interface over
the network. By creating separate services the different parts of the system are decoupled
and clear boundaries between the different components are created [PVDHOT].

Figure 2.2 shows the outline of a SOA based system in which separate services are used
for the handling of users and orders. In contrast to the monolithic architecture in figure
2.1, the User Service and Order Service reside in separate applications.

SOA is based on several other concepts like Component Based Architecture and Interface
Based Design and Distributed Systems [VAMDO09]. The services of SOA can typically be
classified into three different types [Mah07]

e Infrastructure services which provide capabilities like management, monitoring,
identification and security.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2. RELEVANT BACKGROUND

‘ 5 User Order User Order
module ul module module AP module

Client

Enterprise Service Bus

User Order
Service Service

Database

Figure 2.2: SOA system with different services that communicate and are accessible via
the Enterprise Service Bus.

e Business-neutral services which handle the workflow, messaging broking, notifi-
cations and scheduling.

e Business services which are based on business domains and encapsulate related
functionality of the system.

Depending on the type of interaction a service is involved in, it can either act as the
Service Provider, which offers invokable functionality to the overall system or as a Service
Consumer which invokes, and makes us of, the functionality provided by other services.
These roles are not mutually exclusive for a single service and even for a single piece of
functionality a service can act both as a provider and consumer [VAMDO09].

Separating a system into smaller components via a SOA based approach promises the
following benefits

e Increased flexibility and agility. Teams are able to work on independent
applications, which enables a higher level of parallelization during development.
This in turn leads to faster development cycles and makes it easier to change parts
of a system. Changes in such services are smaller in scope compared to changes in
a monolithic system and are less likely to produce side effects [Mah07] [SOA].

e Well-defined building blocks around business capabilities. Because of the
clear boundaries between the services that make up the whole architecture it

—_
]


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.1. Software Architectures

is easier to determine which building block is responsible for a given part of the
system. Building blocks can then be modeled after the different business capabilities,
enabling a vertical slicing of the organization [Mah07] [VAMDO09] [SOA].

e Reuse. The different building blocks can be reused by other applications in the
system, whereas in monolithic systems such functionality must be implemented in

each application [Mah07] [VAMDO09] [SOA].

¢ Ease of maintenance. Smaller applications are easier to understand and therefore
easier to modify. If the deployment process is only viewed from one service’s
perspective, the limited size and scope leads to easier deployment [Mah07].

e Better scalability. In bigger applications there are usually only parts of the system
that need to be scaled up. Having separate services that are only responsible for
certain parts of the functionality makes it possible to perform scaling only on the
services which are under a high amount of system load [Mah07] [VAMDO09].

On the other hand SOA also comes with its limitations and drawbacks

e High overhead & vendor lock-ins if the protocol that is used for communication
between the services is proprietary [XWQ16] [Mah07]. This is especially the case
if a heavy-weight protocol or middleware like an Enterprise Service Bus (ESB) is
used.

e Big upfront investment. In contrast to a monolithic system, SOA takes more
effort to set up. Regardless of the number of services, the full infrastructure to
deploy an arbitrary amount of services and to enable the communication between
these services needs to be in place. Additionally, there is much more planning
involved, because services need to be grouped, whereas in a monolithic system
getting such bounds wrong does not result in a costly refactoring [Mah07].

The concept of SOA is highly related to different architectural styles and can be used in
conjunction with Space-based Architecture.

2.1.3 Space-based Architecture

Space-based Architecture (SBA) is an architectural style that uses the tuple space paradigm
to achieve linear scalability [SBA]. Also known as the blackboard metaphor, the tuple space
paradigm provides a repository of tuples in which all data of the application resides and
can be accessed concurrently. This repository is then replicated amongst the processing
nodes. In more general terms such a repository can be viewed as a distributed shared
memory.

With SBA a monolithic system can be decomposed into several smaller applications
by creating agents which each provide parts of the overall functionality [EG02]. The

11


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

RELEVANT BACKGROUND

12

actual location of the data the application operates on and possible issues in terms of
concurrency are then transparently handled by the infrastructure [SBA].

The shared repository in this case acts as an isolation layer between the different services,
because service do not need to talk directly to each other and therefore strongly increases
the independence of services [SBA]. In general this approach offers three types of
decoupling in communication between services. Communication is decoupled in time,
because tuples possess their own lifetime which is independent of both the sender and
receiver, decoupled in destination, because senders do not know who will receive a given
tuple and decoupled in space, because associative addressing can be used in the tuple
space [EG02].

This leads to a higher robustness in comparison to a peer-to-peer system. If parts of the
system experience a failure, replication in the system still allows the remainder of the
application to function normally [EGO02]. If scaling is required this architecture offers the
possibility to add additional agents and spaces to the overall system [EGO02].

The decoupling aspect of this architecture can also be found in the more general archi-
tectural style of Event-Driven Architecture.

2.1.4 Event-driven Architecture

Event-driven Architecture (EDA) is another architecture that aims to achieve loose
coupling in a larger system. The core concept of this architectural style is the creation
and consumption of events [LS09] [Jurl0]. In EDA two different parties interact with
events:

e Event Emitters listen for changes in the system and dispatch events to the event
channel [Mic06].

e Event Consumers receive events from the event channel and handle them ac-
cordingly [Mic06].

By using an event channel between emitters and consumers we achieve a decoupling of
the sending and the receiving party. Emitters simply publish events to the event channel,
while having neither knowledge about the types nor the amount of consumers. The
situation on the consumer side is very similar. A consumer does not have information
about the emitters of the events he consumes and possesses no information about which
other consumers are operating on the same events [Mic06].

2.1.5 Shared-Nothing Architecture

In strong contrast to an architectural approach like SBA, Shared-Nothing Architecture
(SNA) is an architectural style that emphasizes the importance of creating an architecture
in which components do not share any resources and only communicate by passing
messages [NZT96]. The goal of this isolation is to eliminate bottlenecks and to create


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2. Microservices

a system that is easily scalable [NZT96]. Applicable to a variety of domains, SNA is
present on the operating-system level, when components must not access the same pieces
of hardware [Sto86], in databases when sharding is used to split up a larger data set into
separate databases [SHA]| responsible only for a subset of the overall data and in software
architectures when applications have exclusive control over certain parts of the data.

2.2 Microservices

2.2.1 Overview of Microservice Architecture

Microservices are small, autonomous services related to a specific business capability,
that work together [New15] [FOWd].

The term Microservices was first discussed during a software architecture workshop to

describe an architectural approach the participants of the workshop had been exploring.

Due to the similarities to SOA, microservices are also called fine-grained SOA and by
enthusiasts SOA done right [JPMT18].

This basic approach of separating business capabilities into separate services is highly
related to the previously discussed concept of SOA and microservices are often viewed
as a specialization of the SOA style, taking the older concept to new limits [Sil16]. To
achieve autonomy microservice systems are also implemented in an SNA style, where
each Microservice has exclusive control over its data. This is often achieved by having an
exclusive database for each microservice, in which the application stores and retrieves
the data that belongs to the capabilities of the service [MSD].

But what makes microservices different from SOA and why are they seen as an evolutionary
step from SOA in the construction of software architecture? Instead of using an enterprise
service bus (ESB) which provides the infrastructure to enable the communication between
different services, MSA puts a strong emphasis on the need for light-weight communication
structures [XWQ16]. A commonly used expression in this case is that microservices
are about creating smart endpoints and dumb pipes [FOWD]. The communication layer
should be as light-weight and simple as possible, containing little to no logic, whereas the
services themselves contain all the logic about which messages to handle, how to validate
and how to transform messages. For this reason microservice APIs are often built using
communication protocols such as HIT'TP and exchange their data via JSON over REST
interfaces [XWQ16] in contrast to heavyweight formats or protocols such as SOAP and
WSDL [JPMT18].

But why did microservices emerge at the time they did? And why did we have SOA
first? The reasons are changes in the organizational and technological perspective of
software construction [PZA117].

Organizational Perspective

The concept of domain-driven design (DDD) is getting more and more popular. DDD
places the focus of a system’s design on the domain itself and encourages close collaboration

13


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

RELEVANT BACKGROUND

14

between technical and domain experts [LWOO07]. Usually companies are separated
into different departments handling distinct aspects of the business. Therefore if we
map this structure directly to the architecture of software, we end up with separate,
specialized services that have clear logical boundaries, a so called Bounded Context [BOU]
[Eva04] [New15]. This result can also be explained by Conway’s Law which states that
"organizations which design systems are constrained to produce designs which are copies
of the communication structures of these organizations" [Con68]. These services in turn
map very well to separate microservices [PZA117] [Fow16].

Closely related to DDD there are also changes in the way that teams are structured
[Eva04]. While in the past teams were separated horizontally, by their technical function,
there is a movement towards cross functional teams. Instead of having separate teams of
operations engineers, backend developers, frontend developers, mobile developers, QA
engineers and product managers/owners a team in the cross-functional approach consists
of every kind of party that is needed for the full life cycle of a software product. This
enables each team to be fully autonomous and makes it possible to achieve end-to-end
product ownership for a given application [MIO00].

Technical Perspective

From a technical perspective the evolution to microservices was heavily influenced by
the appearance of several technologies and management tools [JPM™18].

In the past it would have been very challenging to manage the amount of applications
that emerge from a microservice system. Each system could have specific requirements
for its environment to run in. Coordination and discovery between systems would have
been difficult and it would have been nearly impossible to efficiently monitor the health of
hundreds of applications. These problems were however addressed by a set of technologies
and tools that emerged between 2008 and 2014. LXC, Docker and rkt made it possible to
to create runnable and deployable containers that contained the code of the application
with all the additional libraries and requirements of the application [JPM*18].

Service discovery technologies like Zookeeper, Eureka, etcd, Synapse and Consul made it
possible to automatically register the presence of one or more instances of a given service
and removed the overhead of connecting large numbers of services [JPM™18]. Monitoring
tools like Graphite, cAdvisor and Prometheus offered a way to efficiently monitor large
numbers of applications [JPM™18].

From then on more and more technologies emerged that deal with challenges in the
construction of large distributed systems. They address issues like service orchestration,
fault tolerance and continuous delivery [JPMT18].

2.2.2 Goals of Microservices

The goals of microservices span over many varied concepts. These benefits origin mainly
from the concepts of distributed systems and SOA, are however pronounced by the
tendency of microservices to take these approaches to their extremes [New15].


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2. Microservices

Organizational Alignment

Microservices provide an easier way to align the architecture of the system with the
organization’s structure. Each application is responsible for a certain part of the given

business domain and services correspond directly to business capabilities of the company.

Having separate applications and teams responsible for these applications, which map
directly to departments of the organization, makes it easier to tailor these parts of the
overall system to the needs of the specific department and its business cases and enables
teams of technical and domain experts to collaborate efficiently [New15] [Con68|.

Scaling

One of the key goals of microservices is to enable scaling in two different forms. The
first form of scaling is of an organizational nature. By creating applications with a
clear bounded context these applications are independently modifiable, deployable and
maintainable by a single team. This clear ownership reduces the friction and difficulties
that occur when several teams with different goals are making concurrent modifications
to a shared codebase. Therefore a larger number of teams is able to work on the same
overall system in parallel [Kill6].

The second kind of scalability is the technical horizontal scalability of the application
[Kil16]. It is common that certain parts of the system require more resources, or are
under heavy or varying load. If for example the part of the system that is responsible for
sending out email notifications to users can not keep up with the amount of messages to
send, it is more efficient to spin up an additional instance of the specific service. The
additional instance can then help with the processing of pending requests. In contrast
in a monolithic system the only possibility in this case would be to start an additional
instance of the whole system which consumes a larger amount of resources, because it
also needs to initialize the other capabilities of the overall system [New15].

Resilience

The claim of improved resilience might sound counter-intuitive at first, because distributed
systems and therefore microservice systems typically increase the number of overall failures
[Kil16]. There are however arguments that this actually increases the overall resilience
of the system, because it forces the architects to take failures into account early during
the construction of the system. Having few and clear boundaries between the different
parts of the overall system makes it possible to design sensible fallback mechanisms if an
outage of certain non-critical applications occurs. This concept is known as the bulkhead
pattern [Kill6]. For all applications, and for critical ones in particular, the possibility to
provide redundancy in form of additional running instances, advanced monitoring and
automated scaling greatly reduces the risk of an overall system failure [Kil16] [New15].

Ease of deployment

As previously explained large applications tend to result in a difficult and slow deployment
process over time. This is especially a problem when a change to a certain part of the
system needs to get deployed quickly [New15] [Fow16]. Fixing a critical bug in the UT of

15


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

RELEVANT BACKGROUND

16

a monolithic system requires the whole application to be rebuilt and redeployed, even
if the change is only in one line of a very specific part of the overall functionality. In
contrast when having multiple smaller applications, the problem can be fixed in the
application responsible for the erroneous behavior, while all other systems are unaffected
by recompilation and deployment [Newl15].

Optimizing for replaceability

Technologies, tools and approaches are constantly changing and evolving in the field of
software development. It is possible that even if a problem is solved optimally by today’s
standards, two or three years later the ecosystem around software construction has evolved
in such a way that there is a superior approach to solving the same problem [Fow16].
In a monolithic system, however, it can be very hard to move from one technology or
approach to another one, because the switch would require a vast amount of changes
across the whole system. Small and independent microservices provide the possibility to
be changed and sometimes even to be fully rewritten with little required effort [New15].

2.2.3 Common Problems and Bad Practices in Microservices

Just like any other architectural approach to software construction, microservices possess
some specific challenges [TL18|. Especially since many developers are still only gaining
their first experience with microservices we can observe a number of frequently made
mistakes.

Wrong Cuts

One of the most common and impactful problems when building a microservice system
occurs when the overall domain is wrongly cut. In this case the boundaries between
the resulting services have not been correctly identified and behaviour that should be in
one service is spread out through several services, creating tight coupling between the
different microservices. In this case the resulting system is called a distributed monolith
and refactoring of such a system is a very costly undertaking [TL18].

Shared Persistency

In this bad practice services are decoupled on the deployment and application level, but
access the same data on a shared database [New15]. This in turn leads to the different
microservices being coupled again and remedies the promised benefits regarding increased
independence [TL18].

Shared libraries

Usually in an attempt of engineers to follow the Don’t Repeat Yourself (DRY) rule in
software development, common functionality and objects are put into libraries which are
then used by all services. However, when following a microservice approach this leads
to another bad smell in such services [New15]. By having a shared library, teams need
to coordinate their changes in the shared library. Modifications of the library for one


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.3. Microservice Patterns

service are inevitably affecting all the other services and can require an update of every
application that uses it [TL18].

Clients call Microservices directly

In monolithic systems clients are able to call the REST API of the system directly.

However, if this approach is directly transferred to a microservice system, clients would
perform direct calls to a multitude of different applications, which leads to significant
drawbacks. Having a client call an endpoint on a service directly makes it difficult to
move the given endpoint to a different service. This can be especially problematic when
a service needs to be split into several smaller services [TL18§].

There is also an additional cost with this approach. Each service needs to be able to
authenticate client requests and must adhere to the client’s communication mechanism
and protocol. If there ever was the decision to change the way clients and servers
communicate (for example by switching from REST to GraphQL), every microservice
would need to change [Ricl8].

Too many standards

Since microservices provide the possibility to use different programming languages and
tools for different services, there is a danger of ending up with too many standards
[Fow16]. If a company uses too many different programming languages and technologies
it becomes difficult for developers to switch between teams or applications. Although
this might be fine in the beginning when a stable team is gaining experience with the
used technologies during the construction of each service, employing a multitude of
technologies can pose a significant threat to the maintainability of applications once
developers need to be replaced [TL18].

2.3 Microservice Patterns

Microservice Patterns aim to address many of the common problems that are specific to
the MSA. In the following we have a look at the most important patterns in the context
of this work.

2.3.1 API Gateway Pattern

Intent

Provides a single point of communication for clients, routes requests to other services in
the system, aggregates data from various services and handles cross-cutting concerns like
authentication and rate limiting [Ric18] [MW16].

Motivation

In order for a client application to be able to display a single view to the user, it often
needs data provided by several microservices. In this case the client must perform several
calls to different services, which leads to chatty communication and overhead from a

17


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

RELEVANT BACKGROUND

18

client’s perspective [Ricl8]. Especially for clients that operate on a slow or unreliable
internet connection, it would be preferable to perform a single call that returns all the
necessary data [MW16]. This can be especially problematic for systems with multiple
different clients. Due to their different nature in terms of screen size mobile applications
might not display as much data as a desktop client. The data returned by an endpoint that
both services call must return the conjunction of the fields required by all clients. This
leads to drawbacks for mobile clients, because of the additional overhead of unnecessary
data transferred [MW16]. One possibility to solve this problem is to create separate
endpoints for each client. But doing so would result in coupling services to the clients and
microservices would soon become unmaintainable due to the sheer number of different
endpoints [Ricl8].

In addition to the disadvantages from the client’s perspective, connecting clients directly
to the services would also be problematic on the server’s side. For a service to be
invokable by clients over a public network, it must be connected to the outer network,
which weakens security and makes changes to the service’s endpoints more difficult.
When a service is publicly exposed it needs to handle several cross-cutting concerns like
authorization, response caching and rate limiting [Ric18]. Furthermore, since clients
and services need to be able to communicate via a common protocol, services would
need to provide their endpoints via this protocol, even if a different protocol would be
advantageous for most other use-cases [Ricl8].

Microservice 1

A

IWobile Client

A

Desktop Client

Microservice 2

Microservice 3

Figure 2.3: Without an API Gateway different clients talk directly to the services of the
system.

A common solution in such a case is to use the API Gateway Pattern.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.3. Microservice Patterns

Structure

An API Gateway is a single component in the overall system. Clients are only able
to communicate directly with the API Gateway. When the API Gateway receives a
request it authenticates the client and looks up where it needs to route the request to
[Ric18]. If necessary the API Gateway handles the transformation of the communication
protocol between the client and the service that handles the request in the end. These
transformations can reach from simple cases where only the format of the request or
response needs to be slightly altered to a full translation from a synchronous request over
HTTP to an asynchronous request that gets sent over a messaging queue. With the API
Gateway pattern it is possible to issue a single request from the client and then fan the
request out to several services to aggregate all the necessary data for the client before a
response is returned [Ricl8].

S

Mabile Client

A

Desktop Client

Microservice 1

Microservice 2

API Gateway

Y

Microservice 3

Figure 2.4: Clients communicating with the system via an API Gateway.

A common variation of this pattern is the Backend for Frontend (BFF) pattern. Instead
of having a single API Gateway for all the different clients, each client gets its own
specialized API Gateway. This approach is preferable when aggregation is done in the
API Gateway and clients require different communication protocols or use different
mechanisms for authentication [Ric18].

Consequences

e An additional network hop is required when a client’s request always need to
pass through the API Gateway component. However, in most cases the cost of
this network hop is low due to the fact that typically the API Gateway and the
microservices are co-located in the same network.

19


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

RELEVANT BACKGROUND

20

e The API Gateway is another single point of failure and component in a system

that needs to be highly available. If this component fails, the whole system is
effectively down for the clients. In the case of the BFF variation of this pattern,
only a single type of clients would be affected. However, if it is possible to provide
a highly available API Gateway, this component could provide fallback behavior for
the services it proxies the requests to, which increases the stability of the overall
system [Ric18].

Especially in the case of synchronous requests, but also when asynchronous requests
are used, there is a danger that an API Gateway acts as a bottleneck in
the overall architecture. The architects of the system have to take care that no
expensive computations are performed in this part of the system and that the
system is load tested before adding additional routes to other services through the
Gateway [Ric18].

Ownership. If a shared API Gateway exists, ownership would either be shared
between the teams of the different clients or the gateway would belong to a single
team. In each case the independence of the teams is negatively affected [Ric18].

An advantage of this pattern is the decoupling of clients and microservices
that it provides. Acting effectively as a facade for the clients, the API Gateway is
able to translate the client’s preferred communication protocol to each service’s own
protocol and hides the existence and location of the existing microservices in the
overall architecture. Providing such a decoupling layer makes it easier to change,
to split or to merge existing services. In such a case only the API Gateway would
need to be changed and everything happening within the system is transparent to
the clients [Ric18].

It decreases the cost of communication for clients. Usually a client would
need to call several microservices to gather the data for a single page that is
displayed to the user. If the API Gateway performs an aggregation, the client needs
to only perform a single call to the API Gateway on the edge of the network. The
calls from the API gateway to the different services would then be performed in
the faster network of the backend system [Ric18].

This pattern simplifies client code if data from multiple services need to be
aggregated. Performing multiple calls that depend on each other and performing
the data aggregation makes the client more complex and must be implemented in
a multitude of clients. If an API Gateway is used, the gateway can perform this
complex task [Ricl8].


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.3. Microservice Patterns

2.3.2 Circuit-Breaker Pattern
Intent

Immediately reject requests targeted at a non-responsive service to prevent cascading
failures in the overall system [FOWa| [MW16].

Motivation

A typical microservice system consists of many services that interact with one another.
Oftentimes the invocations between the services are of a synchronous nature, which bears
the risk of partial failure. The service receiving the request might be down, overloaded
or under maintenance and therefore not able to respond in a timely manner. As a result
the client is blocked until it receives a response and if it acts as a server to another client,
this blocking state could cascade amongst a chain of services, blocking valuable resources
(in many cases threads) and in the worst case leading to a failure of the overall system
[MW16] [FOWal/.

The goal of using the circuit breaker pattern is to mitigate this problem by aborting
requests after a certain timeout and by rejecting requests to services that appear to
be unresponsive. A service is typically classified as unresponsive if it is not able to
successfully serve a certain percentage of client requests within a timely manner. By
rejecting further requests for a given period of time, the target service gets a chance to
recover [MW16].

Structure

In its most common form the circuit breaker is a proxy implemented in a library, which
the client uses to invoke the target service [Ric18].

Each request from a service passes through the circuit breaker proxy. Depending on the
results of recent requests to the given target service, the circuit breaker decides whether to
pass the request on or to reject it immediately. If the target service responds successfully,
the circuit breaker proxy takes note that the target service is currently available and
regards it to be currently in a healthy state. In case the request takes too long, the circuit
breaker might choose to terminate the request. If a high number of such cases occur,
the circuit breaker trips the circuit for the given service, setting the service’s state to
unhealthy [Ricl8].

In a variation of this pattern the circuit breaker proxy is deployed as a side-car container
in the system.

While originally implemented in the form of client libraries, a new kind of circuit breaker
implementation occurred in recent years. Services in a system might be written in different
programming languages, which makes it difficult to provide and maintain compatible
circuit breaker libraries for each language that is used in a system. Instead of relying
on such libraries, some companies use light-weight services that are independent proxy
applications which handle, amongst other things, circuit breaking. These applications
are typically deployed as sidecar containers [IST].

21


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.

RELEVANT BACKGROUND

22

h 4

AP| Gateway Circuit Breaker

[ S e bbbl Bl Order Service

I SR A, AP Gateway

| =< side-car container >> .
' - »| Order Service

Circuit Breaker

Figure 2.6: Communication via the circuit breaker pattern in a side-car container.

Consequences

e Increases overall resilience of system by reducing the amount of resources
that are tied up when calls are failing [Ric18].

e Decreases response times in case of failures. It is possible to anticipate ahead
of time that a call will fail. In this case the fallback behaviour can be triggered
immediately without first making another call that will result in a timeout [Ric18].

e When using the circuit-breaker pattern we often face complexity in the configu-
ration of the circuit-breaker. For the proxy to determine whether a call succeeded
in a timely fashion, it needs information about how long the call is supposed to
take in the success case. However, this is far from trivial, because different calls
to the same service might behave very differently. A call that uploads a file to a
service has very different performance metrics from a request with minimal or no


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.3. Microservice Patterns

payload and a complex processing task on one endpoint takes much longer than a
quick lookup from a cache that is performed by another endpoint.

e Circuit-breakers can also pose as a danger to the systems stability if they are
misconfigured. Wrong settings for the timeouts or a wrong grouping of endpoints
for one bulkhead (a group of endpoints that are disabled when any of them appears
unresponsive) can result in overall failure of the service, even if just one of the
endpoints produces errors and all other endpoints provided by the service would
still be able to fulfill their role in the overall system.

2.3.3 Service Discovery Pattern

Intent

Provide a registry of dynamic service locations in the network [MW16].
Motivation

A typical microservice system consists of many different services and due to its dynamic
nature in terms of scaling, the amount of instances of a given service might change at
any point in time. If a new instance spins up or an existing instance is taken out of the
system, clients need to know where to find the live instances of a given service. It is
not possible to simply hard-code IP addresses and ports, as those are always subject to
change. Furthermore it would require significant effort to manually set up and update
all the required service locations for each service that performs calls to other services
[MW16] [Ricl8].

Instead, an approach that enables services to dynamically discover live instances of other
services is preferable [Ricl8].

Structure

At the core of the service discovery pattern is always a service registry. The service
registry holds information about the registered services, their names and IP addresses
[Ric18].

There are two typical variations how this registry can be used in the overall system. In one
approach the registry is directly accessible by the services, we call this application-level
service discovery, in the other approach registration of services in and querying of the
registry is handled transparently by the platform. This is known as platform-provided
service discovery [Ricl8].

Application-level service discovery

In this variation each client talks directly to the service registry to register itself and to
query the registry for the locations of other services.

In order for a service to be reachable, the registry needs information about the service’s
location and whether the service is still live. To achieve the former, a service sends a

23


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

RELEVANT BACKGROUND

24

/ Service B #1

J_._'_'_.____._F__,_._.—-—-—iwnke
Service A

register Service B #2

fetch locations for senvices /

register

Service Registry

Figure 2.7: Application-level service discovery [Ricl8] (modified).

request to the registration API of the service registry, known as the self registration
pattern. In the process of the registration the service also submits a health check URL to
the service registry, which is used to periodically check for the liveness of the registered
service [Ricl8].

When a service needs to send a request to another service, it queries the service registry for
the target-service’s location. Once the locations of the target service’s running instances
are obtained, and typically cached, the client service performs a load-balanced call to one
of these. Performing discovery in this way is called client-side discovery [Ricl8] [MW16].

Platform-provided service discovery

Senvice A Senvice B #1

\

invoke service-b Senvice B #2

\ /{ﬁsmtch request

Platform Router

h

&

Service Registry Reqistrar

Figure 2.8: Platform-provided service discovery [Ric18] (modified).

In this approach service discovery is handled by the deployment platform (for example
Docker and Kubernetes). In addition to a service registry this variation has two additional
components: The platform router which transparently routes and load-balances requests
from the services that only use DNS names to talk to other services, and the registrar
which registers services in the service registry when a service is deployed to the platform


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.3. Microservice Patterns

[Ric18] [MW16]. In contrast to the previous variation this approach uses the 3rd party
registration pattern and server-side discovery [Ricl8] [MW16].

This approach yields the benefit of keeping the services simple and providing a service-
discovery approach that is independent of the language or libraries available to the specific
service. A drawback of platform-provided service discovery is that it only works out of
the box with services that are deployed in and via the platform [Ric18].

Consequences

e Provides easier maintenance of services and easier scaling. By not having to
worry about the actual location of a service, the number of instances that are up
and consequently how to load-balance requests to a service, it becomes far easier
to scale and relocate services on demand without any manual changes in other
services or the infrastructure setup [Ric18].

e Increased complexity in setup. When service-discovery is used on an appli-
cation level every component needs to be set up to register itself via the service
registry and to perform calls via the information provided by the service registry.
Despite there usually being many libraries that help with the heavy lifting in this
case, changing existing systems might still be a time-consuming task, because every
existing service needs to be changed. In the platform-provided approach existing
services that are not deployed via the platform require complex solutions in order
to be reachable [Ricl8].

e Can create an additional single-point-of-failure. When the application-level
approach is used, the service discovery is an additional single-point-of-failure in the
system. If the service discovery goes down, clients might get by for some time by
relying on cached data, after some time however no component could invoke any
other component anymore [Ric18].

2.3.4 Communication Patterns

One of the many ways to differentiate between the types of communication is to separate
between synchronous and asynchronous calls. These two forms of communication possess
very different characteristics and both of them can be useful in a microservice system.

Synchronous remote procedure invocation pattern

Intent

In this pattern a client sends a request and blocks until it receives a response from the
invoked endpoint [Ric18] [New15].

Motivation

In many cases a client service needs to send a request to a target service and requires an
immediate response. When the cost in terms of latency is relatively low and a failure with

25


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.

RELEVANT BACKGROUND

[\~
(=]

a fallback can be acceptable this pattern can provide the preferred style of communication
[Ric18].

Structure

Client Service Target Service
request

RPI et -
Proxy Tesponse. .. -7 Proxy

Figure 2.9: Synchronous communication between two services [Ric18].

In this pattern the client service performs its calls to the target service in a synchronous
fashion via a Remote-Procedure-Invocation (RPI) Proxy. The calling service waits until it
receives a response from the target service and only then continues its execution. Widely
used protocols for such an invocation are REST and gRPC [Ricl8].

Consequences

e Having many synchronous calls in a system, especially if two services invoke each
other in a synchronous fashion, creates strong coupling between the services. The
calling service depends on the availability of the target service and the structure
of the response. The target service on the other hand requires a specific request
format from the client service [Ric18].

e For the base case it is simpler to implement a synchronous call than an asyn-
chronous one [Fow16] [New15]. When moving from a monolithic system the concept
of performing a synchronous call is similar to performing a method call to another
local service. With this simplicity comes also easier testability, since any endpoint
that serves REST calls is easily testable with a variety of existing tools [Ric18].

e Because of the possibility of an outage of the target service in a distributed system,
synchronous calls require circuit breaking and fallback behaviour if the
target service is unresponsive [Ric18].

e For a service to be able to invoke other services a service discovery approach
is needed [Ricl8].

e Due to the nature of this invocation only one-to-one invocations are possible.
If a service needs to send a request to several or all services, this would result in
multiple calls [Ric18].


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.3. Microservice Patterns

Asynchronous remote procedure invocation pattern
Intent

A service invokes one or several target services asynchronously through messaging [Ric18]
[New15] [Fowl16].

Motivation

In cases where no immediate response is required it can often be beneficial to send
messages in an asynchronous fashion. As long as the client can be sure that the message
will be handled eventually it does not care about who processes it and when the processing
actually finishes. Therefore there is no need to block on the client side until a response is
received. This also eliminates the need to put complex fallback behaviour into the client
if the target service is not available. Furthermore, asynchronous communication and
messaging can solve the problem of having multiple interested parties for one message by
supporting the publish-subscribe pattern [Ricl8] [Fow16].

Structure

Message send request
Sender v

Messaging
infrastructure

Client Service Target Service

receive request | Message
" handler

Figure 2.10: Asynchronous communication between two services [Ric18].

In this pattern the client service dispatches a request via its message sender to the
messaging infrastructure, which is typically a message broker. Other services then listen
to different channels of the message broker and receive messages published to relevant
channels. In this case the target service fetches the client’s request from the corresponding
channel [Ricl8] [Fow16].

This approach enables fire and forget communication, where a client sends a message and
does not require any response and publish-subscribe, in which a client sends a message
and an arbitrary number of services fetch the dispatched event. A more complex case
arises when the client needs a response. Here the client would dispatch the initial message

and also act as a target service for the response sent back by the invoked service [Ric18].

Consequences

e When asynchronous communication is used the system becomes more resilient. A
service is independent of the availability of the services it sends messages to and
therefore cases where failures of one service cascade throughout the system are
eliminated [Ric18].

27


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

RELEVANT BACKGROUND

28

e By using messaging, asynchronous communication is more flexible and supports
in addition to a request response pattern also publish-subscribe and fire and forget
communication [Ricl8] [Fow16].

e Network requests are less transparent in the code, because instead of syn-
chronous invocations that are very similar to calls within a system, handling request
and response communication requires a different approach [Ric18].

e Having a message broker creates a possible bottleneck or single point of failure
in the system [Ricl8]. However, if this danger is addressed correctly, a messaging
solution can become more resilient and scalable than its synchronous counterpart
[Fow16].

e Communication, especially in the case of request and response communication, be-
comes more complex [Ricl8] [Fow16]. On the other hand the resulting complexity
tends to be spread out through the system. Instead of a client acting as the central
brain of the interaction, each component acts autonomously on the published event
[Newl5].

2.4 Microservice Infrastructure

Distributed systems with a large number of small, different services face very specific
challenges in terms of handling those services and the underlying infrastructure. Without
recent new technologies in this space we would not be able to create maintainable
microservice systems. One of the most important technological concept in this space are
containers [JNS16].

Containers

Microservices within a system have very different roles and capabilities. In order to fulfill
their function they might be written in different programming languages and require
vastly different libraries and configuration. Instead of viewing a service merely as its
application-level code, it makes more sense to regard a service as a fully functional bundle
with all its required configuration [JNS16].

One of the previous ways to achieve such a bundling was to create virtual machines
that contain everything a service needs to be up and running without any manual
configuration. Technologies like Vagrant were built to simplify the process of building
and maintaining such portable virtual machines, but were still too heavy-weight when
dealing with numerous services.

To solve the problems of virtual machines, new technologies like Docker were developed.
In Docker, software with its libraries and configuration files is bundled into containers.
These containers are then executed via operating-system-level virtualization [SP17]. From
a user’s perspective the result is very similar to having a virtual machine image, but
there are some important differences between the two technologies.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.5. Related Work

Containers Virtual Machines
Application #1 Application 2 Application 3 Application #1 Application #2 Application #3
Docker Guest 05 Guest 05 Guest 05
Host Operating System Hypervisor
Hardware Hardware

Figure 2.11: Layers of Containers and Virtual Machines [CON] (modified).

Both virtual machines and containers isolate the resources within their images, but virtual
machines apply virtualization on the hardware level, whereas containers are virtualized at
the operating-system level. Because of this difference containers abstract the application
layer, and they are able to run on the same machine and share the operating system
kernel, which greatly reduces the amount of memory that is required by each container

[SP17].

Virtual machines on the other hand are abstracting the hardware of the underlying system.

By using a hypervisor on the actual hardware of the system, each virtual machine runs
under the illusion that it has exclusive access to the system’s hardware. This approach
however comes at the cost that each virtual machine needs to have its own virtual

hardware layer which leads to overhead in terms of memory and cpu consumption [SP17].

2.5 Related Work

In the following section we present existing scientific work that we found to be related
to our evaluation. First we have a look at research related to building specific systems
via a microservice architecture. Following these we discuss articles related the general
construction of microservice systems. The last topic we investigate is Function as a
Service and Serverless Computing. We present each paper briefly, summarize the results

and discuss how they relate to our work. In the end we give an overview of our findings.

2.5.1 Microservice Systems

In A microservices architecture for collaborative document editing enhanced
with face recognition [GTIT16] a system similar to ours is built, where the goal of
the authors is to create a collaborative document editing system via microservices. The
system they are building consists of four different services:

e A web based user interface served by a Node.js server.

29


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

RELEVANT BACKGROUND

30

e The Collaboration Server which is responsible for operational transformation, which
is written in Node.js and supports communication with the client via websockets.

e The Chat Server which enables users to chat and offers history functionality. This
server is based on Java and communicates directly with clients via websockets.

e The Face Recognition Server which offers face recognition on images via a REST
API written in Java.

The authors leverage the possibility provided by microservices to use several technologies
depending on the needs of the specific service and aim at achieving a higher level of
flexibility in terms of technologies, scalability and extendability of the system. After
building and evaluating the system they found that it performed well in terms of
synchronization with 80 users performing collaborative editing in the system. However,
they also state that having a direct websocket connection from the web clients to different
microservices is far from ideal and it would be preferable if there was only one open
websocket. This is especially the case once the system is extended with several other
services. Another finding is that microservices introduce some duplication in the overall
code, which is outweighed by the advantages of microservices.

These results are consistent with what we found during the research and the construction
of our system. Especially when it comes to adding functionality to the system and
the possibility of scaling certain parts of the overall application, the effects of using a
microservice architecture are very similar in both their and our work. However, the
focus of our work is different. Instead of implementing a prototype with an emphasis on
providing sophisticated functionality and a fully usable system, we are focusing on the
implementation process based on an architecture that meets the standards of a production
ready system. This becomes especially clear when the authors mention that their system’s
clients communicate with services directly and via several websocket connections instead
of using an API Gateway.

Lihonga — A Microservice-Based Virtual Learning Environment [SKI18§]
presents a microservice system that provides a virtual learning environment with a
strong emphasis on the system’s architecture. In this application the clients (an Android
app and an iOS app) both communicate via an API Gateway with the system. Com-
munication between the services behind the API Gateway happens in an asynchronous
fashion via a message broker. This broker is connected to the different microservices and
enables the architecture to provide the overall functionality of the system. According to
the authors asynchronous communication provided them with a higher level of flexibility
and the possibility to decouple services. The findings in this work are that a microservice
architecture offers the possibility to perform iterative development on the system more
easily and to choose technologies that fit the given functionality and each microservice
best. Since the authors of the work focus on the architecture of the system and aimed
at creating a system that is already extensible, their architecture is similar to what we
identified as best practices for microservice systems and therefore the use of an API


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.5. Related Work

Gateway, Docker and messaging for asynchronous communication can also be found in
our systems.

Dynamic Web Service Based Image Processing System [HAJ08] introduces a
distributed image processing system based on SOA. The system proposed in the work
classifies algorithms for image processing into Image Enhancement algorithms, Deblurring
algorithms, Image transformations, Colour space conversion functions and proposes to
split algorithms into services that encapsulate common analysis functionality amongst

algorithms like Edge Detection, Image Segmentation and Feature measurement functions.

The goal of this extraction is to provide services that make up the atomic step of an
image transformation and can be arbitrarily combined to achieve the desired result. It is
therefore possible to create new transformations by connecting existing services and to

extend transformations by plugging in additional processing steps via additional services.

The system then exposes its services as web services to the public. These services can
be used by a client that supplies an image and chooses transformations that shall be
applied to this image. After submitting the task the client receives a unique identifier
for the given task, while the task is analyzed by the rule engine and distributed to the
responsible services. During the computation intermediate results and in the end the
finalized images are pushed back to the client.

Despite their implementation also being composed of separate services for image processing
there are significant differences to our work. While the authors use SOA and aim at
creating a distributed system of reusable image processing components that provides
flexible transformations via a complex rule engine, we are focusing on creating services
that provide atomic image transformations with a lightweight protocol.

2.5.2 Microservice System Construction

Development and evaluation of MicroBuilder: a Model-Driven tool for the
specification of REST Microservice Software Architectures [TDK™'18] presents

the architecture of a tool to generate microservice systems from a given specification.

In the second part of this article the tool is evaluated in two different ways. The first
evaluation is based on a comparison of the number of lines of code written in both a
MicroBuilder specification that is used to generate the target project and the lines of code
required for writing the system manually. Each of the resulting services required only
about 10% of the lines of code when written via their domain specific language, leading
to a total number of 152 lines for the system when using MicroBuilder and 1802 lines
of code when the code was written manually. For the second evaluation 15 participants
in the study built the same system according to a specification by using MicroBuilder

and were required to answer a questionnaire about their experience using the system.
The questions and evaluation are primarily focused on the usability of MicroBuilder.

According to the findings the participants perceived using such a tool positively.

This work is especially of interest in relation to our work, because the use of a domain
specific language (DSL) to generate the system via a tool is very similar to what we do

31


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

RELEVANT BACKGROUND

32

in our second approach using GoKit. While our tool does not provide a DSL, it provides
the possibility to generate most of the boilerplate used in the system via a command line
tool. The results of the paper’s and our evaluation are however very different. While the
authors find that using a generic generator for microservices drastically reduces their effort
related metric, our result show no significant difference in effort to an implementation
without such tools.

We find that there are two main reasons for these differences:

1. Lines of Code (LoC) vs Time Spent to measure effort. Our results might
be more in line if we had also used LoC as a metric. However, our argumentation is
that writing a smaller amount of code, which is more complex and therefore takes
the same amount of time as writing less complex code, does not necessarily result
in any advantage. This is especially the case when the resulting amount of code
in the application, that is after the code generator is run, results in the same or a
higher amount of code that needs to be maintained.

2. Simple Synchronous vs Asynchronous Communication. While the sample
application using MicroBuilder exclusively uses synchronous calls over HT'TP, the
nature of our application requires asynchronous communication, which is neither
supported out of the box by MicroBuilder nor GoKit. The need to customize and
replace large parts of the generated code resulted in an increase of effort. We
would also argue that the sample application used for the MicroBuilder evaluation
shows the limits of such approaches, because microservice systems that offer the
possibility to buy, order and pay for products, such as theirs, greatly benefit from
asynchronous communication.

Apart from these differences our assumption is that we might have had similar results if
both works were using similar metrics for building the same system.

Constructing a Service Software with Microservices [WF18] describes a system-
atic approach to constructing layered microservice systems. In their approach the authors
propose a microservice architecture which not only splits microservices by the Bounded
Contexts in the domain of the given system, but also by performance characteristics of
services and by classifying services into certain types that correspond to specific layers.
The layers in the example are the Domain Microservice Layer, Shared Microservice
Layer, Utility Microservice layer. According to the paper this approach could increase
the concurrency of the system and improve performance and reusability. If we take into
account that our system is different from most microservice systems in the aspect that
we do not have different domain objects, but split our services by the actual function
that is performed on an image, we can find numerous similarities in the architectures of
the two systems. Instead of services for the domain, we have a Image Service Layer and
the other two layers would map to our infrastructure, storage and gateway services.

Workload Characterization for Microservices [UNO16] presents an investigation
of the performance impact when moving from a monolithic system to microservices.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.5. Related Work

The hypothesis of this work is that although microservices originate from SOA, both
approaches possess very different performance characteristics, because microservices use
simpler, but more expensive, communication mechanisms like REST HTTP calls and
each microservice needs to run in its own container.

In order to evaluate this impact the authors ran performance tests via the Acme Air
Benchmark [ACM] for both the monolithic and the microservice implementations of
the system in Java and Node.js. This combination of languages was chosen because
Node.js uses a single threaded model with asynchronous execution, while Java uses a
multi threaded model. They found a performance penalty of 79.2% for the Node.js
version and of 70.2% for the Java version. The two main reasons for this result are an
increase of the number of CPU cache misses and the increased network load especially in
virtualized networks between Docker containers.

This publication is of interest to us because in our work we also evaluate the use of
microservices for a system that could as well be implemented in a monolithic fashion
and performance plays an important role in image processing systems. It is therefore
possible to argue that this increased cost could be an argument against creating such
a microservice system. However, despite not having a direct comparison between a
monolithic version and the different microservice implementations of our system, we
found that in the case of image processing the time spent in the image transformation
outweighs all other processing tasks for a given request. This is the main reason why
we could not find any differences between the various implementations. Therefore we
assume that as the transformation of an image for a given task is always done in a single
service, a system that performs such a CPU intensive task will not show differences in
performance compared to its monolithic counterpart.

2.5.3 Function as a Service and Serverless Computing

Serverless programming (function as a service) [CIMS17] presents key character-
istics, use cases, challenges and open problems in the space of serverless computing. The
authors state that this approach is well suited for bursty, compute intensive workloads.
For this reason image processing is mentioned as one of the typical use cases for this
approach and an example is provided in which serverless functions receive events about
new images being uploaded to a storage server (in this case an amazon S3 bucket). Upon
receiving such an event the serverless function performs its image transformation on the
given file in the bucket. The proposed technique is similar to what we are doing in the
third approach which we are evaluating with OpenFaaS.

A Review of Serverless Frameworks [KS18] evaluates different frameworks for
serverless computing. Serverless promises zero administration, infinite elasticity and
minimal cost by offering a pay-as-you-use model. This leads to a decrease in administration
effort for the devops and the ability to handle unanticipated loads well. According to the
authors typical use cases are image processing, video processing and scientific computing.

33


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

RELEVANT BACKGROUND

34

One of the disadvantages of serverless computing is that providers try to lock-in clients.
In order to avoid possible disadvantages, serverless frameworks are being developed. The
cited work presents two types of frameworks that help with this problem: abstraction
frameworks that abstract away the underlying serverless platform and provide a unified
interface to each provider, and provisioning frameworks which are mini serverless platforms
that can be deployed on any cloud provider.

For their evaluation the authors chose several aspects to identify the most promising
serverless frameworks:

e FuaaSification: How well is the mapping of existing code to functions in the framework
supported? Are lots of adaptions required or can existing code be used as is?

e Development: Are multiple languages supported? Is there a Function Development
Kit to help with the development of functions?

e Deployment: Is it easy to deploy functions?

o Testing: How well are existing testing strategies like unit and integration testing
supported?

e FEzecution: Are multiple ways to execute a function supported? Are the provided
execution mechanisms flexible enough?

e Monitoring: Is monitoring supported?

e Security: Does the framework support authentication and authorization?

By evaluating existing frameworks based on these criteria they found that there is
currently no framework that clearly outperforms all or most other frameworks in each
area. There are however significant differences for the specific aspects.

The criteria used by the authors are highly relevant to our work, because we are also
using a serverless framework, OpenFaaS, in our third implementation approach. Despite
our framework not being evaluated in this paper, it is important to take the presented
evaluation aspects into account.

We find that especially FaaSification, Development and Monitoring need to be supported
by the framework that we use. Having the possibility to easily map existing code to
functions in the framework results in a speed-up in development time which is one of the
factors that we measure in our work. We find that OpenFaaS supports this very well by
automatically wrapping a provided function to work with its internal structures. If this
was not the case our findings in terms of effort might have been different. Development is
important to us because in image processing we can not implement every image processing
functionality by ourselves, but need to use existing tools and libraries which are not always
written in the same language. OpenFaaS supports this by offering the possibility to
configure Docker containers that run the actual functions. This containerization enables


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.5. Related Work

us to use multiple languages and to install relevant libraries for image processing in the
corresponding containers. Furthermore, our evaluation requires the resulting system to
provide monitoring, which is also supported by OpenFaaS.

Eventually Function-as-a-Service X Platform-as-a-Service: Towards a Com-
parative Study on FaaS and PaaS [AJFOG17] compares microservices deployed via
a PaaS approach to Function as a Service based on the resulting performance, scalability
and cost. In their experiment the authors use a prototypical system of two services, one
responsible for writing data to a database, the other one for retrieving data from the
database and returning it as JSON to the client. They find that despite both approaches
providing sufficient scalability to handle different workloads, a deployed function with
more memory resulted in a better correlation of resources and performance than adding
additional memory to a service deployed via a PaaS approach. However, they faced prob-
lems with timeouts due to cold starts, which describe the phenomenon when a deployed
function responds only very slowly to the first invocation. Cold starts appear on some of
the FaaS platforms and can be especially problematic for synchronous invocations.

In terms of cost the findings were that FaaS is more efficient if the workloads are varying
and PaaS$ is preferable when the workload is stable. This is because in a FaaS environment
the client pays per number of invocations. While the FaaS infrastructure is capable of
handling thousands of requests in seconds if needed, there is little or no cost while no
requests hit the services. As a result it can be more cost efficient to use such an approach
instead of running and paying for a large amount of instances to handle eventual bursts
of requests. On the other hand dedicated servers are more cost efficient if they are fully
utilized.

In our work the results regarding scalability are quite similar. We faced no issues with
scaling between the different approaches and find it important to note that the results
are dependent on the type of FaaS platform that is used. In our case OpenFaaS uses
containers as a wrapper for the given functions and it is possible to specify that at least
one container must always run for a given service. This eliminates the cold start problem,
but would result in disadvantages regarding cost. It is also important to note that the
importance of cold starts and the time needed to scale services is highly dependent on the
type of invocation. While the findings in the paper are relevant to synchronous requests,
cold starts are less significant for asynchronous requests that do not require an immediate
response but only need to be handled eventually. In the end the authors mentioned the
need for further proof of concept implementations of systems with a FaaS approach, the
third implementation in our work can be viewed as such an implementation.

2.5.4 Summary

We found several articles about the construction of microservice systems. While each
publication presented a successful implementation and in many cases found advantages
of such an architecture, the focus of the works varied. On one end of the spectrum we
saw articles that presented proof of concept implementations of specific functionalities

35


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.

RELEVANT BACKGROUND

w
(=]

in a system without going into detail about the architecture and the resulting quality
attributes for the overall system. At the opposite side we found articles with a stronger
emphasis on an idiomatic microservice architecture. Especially in cases when the authors
presented findings about such a system’s structure we see a significant overlap with our
findings and design and are therefore confident that our system contains no large errors
in its design.

The articles about the construction of microservices showed us different approaches to
create microservice systems. When we had a look at the work presenting a DSL for
microservices and the impact of using a DSL when building similar system, we felt that
this is most likely the publication with the most similarities to our work. However, we
found that measuring the implementation effort can be done in a variety of ways, possibly
leading to very different results.

In the end we looked into Functions as a Service and learned that the serverless approach
can be especially useful for resource intensive computations and for varying load on
the system. There are however differences between the platforms and frameworks for
this approach. We will later see that this approach is also very promising for an image
processing system.

Following this chapter we will look into the design considerations of our system. There
we will see how the findings of this chapter translate to an architecture for our system.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CHAPTER

Design

In this chapter we will first present the requirements for our system. On the basis of
these we will discuss general architectural decisions. Finally, the last part will give a
short overview of the main technologies used for our implementations.

3.1 Requirements

This work started with a basic set of given requirements, which were mainly concerned
with the usage of the system and its behaviour from a client’s perspective. However,
due to the fact that the application must be created using a microservice architecture,
additional non-functional requirements in terms of the architecture arose. They are
primarily related to the creation of a system that is maintainable and matches the needs
and best practices of a microservice architectural style.

From a functional viewpoint the overall goal is to create a microservice system for image
processing tasks. The resulting application must offer a given set of common image
transformations:

optimization of a given image

e cropping an image to fit a given aspect ratio

performing face detection and the extraction of a portrait on an image

taking a full-page screenshot of a website

extracting the most significant image from a given website

Since the focus of the work lies on the integration of the service layer, we are not required
to write the code for the image transformations on our own. Instead existing open source
libraries to perform the actual transformation logic can be used.

37



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

DESIGN

38

Each transformation has to be implemented as a separate service to provide the possibility
to easily scale the system. Furthermore each service must be packaged in a Docker
container and these containers should be run via Docker Swarm [DOC] to provide
redundancy and easy scaling. In order to have information about the performance and
health of the system and its services each service must expose metrics concerning its
current health status. For time-consuming tasks the system must be able to process
images in an asynchronous manner and images must be stored on an object storage
server.

From a client’s perspective, the system must be invokable over HTTP via JsonApi.
Clients must have the possibility to upload images, trigger transformations on the images
and to download the resulting image after the processing.

Regarding the triggering of transformations we identified the need of clients to be able to
trigger these on a large set of images in a short time. Therefore the system must be able
to handle bursts of load and must not become unresponsive once it reaches its limits
due to the high amount of system resources used during such transformations. In such
cases it is especially important that no requests get lost and each image transformation
finishes eventually.

If the load on the system for a certain task gets too high it should support a basic
automated mechanism to start additional instances of the corresponding service to adapt
to the current load.

3.2 Architecture

Designing, the architecture of a microservice system is a complex task with many possible
pitfalls. On one hand there is a unique combination of requirements that must be fulfilled,
while on the other hand we have a set of general best practices, strengths and constraints
that come with a given architectural style. When faced with architectural decisions there
is often no single right answer. Instead each possibility comes with its own advantages
and disadvantages.

3.2.1 Core Architecture Requirements

We identified the following properties as being the most impactful on the constraints and
requirements for our architecture.

Clients talk to the system over HTTP via JsonApi

While communication between clients and a system via RESTful APIs is often viewed
as the default communication mechanism, we were explicitly asked to use the JsonApi
specification for our system. Despite the specification’s advantages, we found that there
are currently several competing standards for sending JSON over HTTP. Therefore we
regard the use of JsonApi as a property that might be subject to change in the future


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.2. Architecture

and the architecture of the system should offer the possibility to easily change the way
clients talk to the system.

Image processing is a resource heavy and slow process

In many applications the most common tasks are Create, Read, Update, Delete (CRUD)
operations. In such cases the resulting functionality heavily relies on reading and writing
of data, with little time spent on actual computations. In this regard our system heavily
differs. Transforming an image is a computationally complex task and therefore most
of execution time for each request is spent on CPU operations. This results not only
in a relatively long time to process a single request, but also in limitations on the
parallelization of tasks. While the bottleneck in CRUD tasks is usually IO on the system
and tasks can therefore be handled asynchronously, image processing quickly takes up
all of the system’s computing power and a high level of parallelization would result in a
general slowdown and unresponsiveness of the overall system.

Images are large in file size

Typically the different services within a microservice system communicate via messages
that have a small payload. Our system differs in this regard, because images play a
central role in the requests and responses produced by each component. Due to their size
we regard it as crucial to minimize the load on the network by having as few transfers of
images between applications as possible.

Requests will come in bursts

Clients of our system need to perform transformations on a large amount of images in
batches. This aspect is especially important when we take the previous two points into
account. The system must be able to deal with high numbers of requests that are very
expensive regarding the system’s resources.

Request types are not evenly distributed

Despite the system offering several different image transformations, it is unlikely that
the amount of requests for each task will be evenly distributed. A particular client might
choose to request a large number of images processed at the same time. This same
client might however not be interested in performing all of the other available image
transformations on these or other images at the same time. We further assume that
not all image transformations are of the same interest to clients and therefore that the
distribution will also not even out across multiple clients.

3.2.2 Decisions
API Gateway

We already identified the use of an API Gateway as a best practice in the chapter
chapter 2. For our requirements this pattern offers a number of benefits. The use of
an API Gateway gives us the possibility to expose a specific API format, in our case

39


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

DESIGN

40

JsonApi, to the client, while keeping the system’s internal communication formats flexible.
This service will act as the publicly reachable component and acts as a facade for the
underlying system. While we do not require some of the typical functionality offered
by this pattern, we can make use of the fact that all requests flow through the API
Gateway by monitoring the current rate of requests of each image processing task on
this component. Having such a focal point in the request flow should make automatic
scaling easier.

Asynchronous communication behind the API Gateway

Using asynchronous communication within the system promises a higher degree of
flexibility. Our system performs very resource intensive tasks and we do not want the
services to become unresponsive. To achieve this we chose to decouple the API Gateway
from the services that perform the image processing. With asynchronous communication
we are able to easily queue up tasks, while the microservice that performs the image
transformation is able to spend all of its available resources on its current task. Once a
specific service is finished with the computations it can then fetch the next piece of work
from the queue.

Because of the large amount of time that is spent on the processing of an image,
asynchronous communication allows us to save system resources. Instead of having to
keep a connection open between all components that are involved in a processing task,
we are able to simply dispatch messages to the queue.

Furthermore, asynchronous communication enables us to shut down all instances of a
given image transformation if no requests of one type are currently present. While with
synchronous communication we would always need at least one running instance for each
service to accept a possible request at any time, asynchronous communication enables us
to scale the amount of instances to zero, queue up a possible request and then launch an
instance for the request on demand.

No direct transfer of images

The large file size of images and the fact that we were already using a storage server
lead to the decision that we only allow image transfers via the storage server. Instead of
passing all image data along with the actual request, we chose a typical approach by only
using references to images via identifiers on the storage server. This avoids unnecessary
load on the network layer and in the queuing system and the problem that such large
payloads are not properly supported by JsonApi.

In our approach the client first makes a request to upload the image to the storage server
and all subsequent requests only contain a reference of the image on the server. If a
service needs to perform an operation on the image, it fetches the file from Minio [MIN].


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.3. Technologies

3.2.3 Alternatives
Reactive approach for task creation via the storage server

In systems that use storage servers with special functionality an alternative approach can
be found for similar use cases. Some of the implementations for storage servers offer the
possibility to emit events to the overall system if a new file is placed in a bucket or folder.

In such a case we could for example create a separate bucket for cropping images. When
the API Gateway receives a request for cropping an image, it would then send a request
to the storage server to move the corresponding image file into the crop bucket. With
the arrival of a new file in the bucket, the storage server’s trigger would automatically
emit an event that a new file needs to be processed. One of the services offering these
capabilities would then handle the task.

In simple cases and when the storage server that is used supports this behavior, this might
be the preferred option. However, we decided against this option for several reasons.
Whether or not this functionality is supported strongly depends on the technology that
is used for the storage server, leading to a vendor lock in if such behavior is used. The
fact that our processing tasks also take dynamic properties, like the width and height
to crop to in this example, would also make this approach more complex or impossible.
Furthermore we need to support tasks like analyzing a web page and downloading a
screenshot of the given web location, which does not use an input image that we could
put into such a bucket.

3.3 Technologies

In this part we want to give a short overview of the technologies that we used to build
the system, their roles and characteristics for a microservice architecture.

3.3.1 Go

Golang is a relatively new programming language that was developed by Google with
cloud systems in mind. Apart from providing an easy-to-learn and concise syntax, the
designers of the language aimed at creating a performant language, similar to C++,
that still offers some of the modern amenities like garbage collection. In addition to
its performance, Golang comes with the advantage that no interpreter like the Java
Virtual Machine (JVM) is required to run a Go program. This is achieved by compiling
the binary to machine code for the target system. Abstaining from interpreters that
consume a lot of resources offers the possibility to create very light-weight containers for
microservices [AH17].

It is therefore of little surprise that many of the modern tools in cloud systems, such
as Docker and Kubernetes, are built using Golang. However, the language’s young age
results in immature tooling and a lack of stable frameworks and libraries when it is used
to build larger systems.

41


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

DESIGN

42

3.3.2 JsonApi

Endpoints that are exposed to clients by our system are implemented using the JsonApi
specification. The goal of the specification is to provide a clear and standardized structure
for responses of APIs, which is supposed to make it easier to implement an API on
the server side and to consume it on the client side. The community around JsonApi
creates and maintains both client and server libraries that can be used to easily integrate
endpoints that adhere to the specification.

3.3.3 Docker

We use the popular container technology Docker to package each of our services with
its required libraries into deployable bundles. This is especially useful in our system for
the different image processing services which require vastly different configurations and
libraries to be installed [JNS16].

3.3.4 Docker Swarm

In order to manage the running containers in our system we use Docker Swarm, which is
a popular tool provided by the makers of Docker. With Docker Swarm we are able to
create a description of all the required services in our system, their connections, virtual
networks and their configuration for different environments. The resulting services can
then be deployed to a single or even multiple machines using a simple command [DOC].

3.3.5 Prometheus

Prometheus is a popular open-source monitoring solution that does not rely on distributed
storages, offers a flexible query language and supports multiple graphing and dashboarding
solutions [PROa). In contrast to other monitoring tools, the Prometheus server is used
to scrape the metrics each service exposes. Such targets can either be found via service
discovery or via static configuration. Due to the tool’s popularity there exists a multitude
of libraries for different programming languages and components that work seamlessly
with the Prometheus server. These differences to traditional monitoring tools lead to a
higher level of reliability when the environment is dynamic, making Prometheus a good
fit for modern microservice architectures [PROa].

This technology plays an important role in the monitoring and for the automatic scaling
in our system.

3.3.6 Alertmanager

One of the components that can be connected to the Prometheus server is Alertmanager.
This application can be configured to receive and handle alerts that are produced by
Prometheus or other monitoring servers [Ale].


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.3. Technologies

In our system we use Alertmanager to dispatch scaling commands to the application
when the load on services does not align with the number of running instances for the
given type.

3.3.7 Minio

Minio is an open source storage server that offers an Amazon S3 compatible API for
storing data and files. While Amazon S3 is a popular choice for large production
systems in the cloud, Minio offers the advantage to use such an environment locally for
development purposes and to easily switch over to Amazon S3 because of the compatible
APT [MIN].

We use Minio to store all image files our system operates on.

3.3.8 Faktory

Faktory is a work server that provides a repository to manage tasks produced by other
applications in queues. Other services can connect to the Faktory server as workers to
fetch and process tasks [FAK].

We use Faktory to store the image processing tasks that we receive from clients. Each
image processing service is a worker that fetches tasks from the specific queue on the
Faktory server.

3.3.9 OpenFaaS

Currently most of the major players in the cloud space provide solutions for serverless
computing [CIMS17], to deploy and to run single functions in the cloud. Similar to
the approach taken with Minio we use OpenFaaS to host our own serverless functions
framework [OPEa].

The requirements of this chapter, the decisions that followed from them and the actual
technologies lead us to the concrete implementation part of the system.

43


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Implementation

This chapter presents details on the actual implementation of the system. It is organized
into three different parts, one for each implementation approach we used. First we will
have a look at the Implementation without a Framework, then at the Implementation
with a Microservice Framework, which will be brief because of its numerous similarities
to the previous approach and finally at the Implementation with a Function as a Service
Framewortk.

4.1 Implementation without a Framework

4.1.1 Components

The resulting system is composed of a number of different services. Figure 4.1 provides
a full overview over all of them. In the following we want to have a brief look at the
different services and their roles within the system.

API Gateway

In chapter 3 we already discussed the need for the API Gateway pattern in our system.
Therefore we implemented such a service using GoLang [GOL]. It provides a single
entrypoint for clients to communicate with the system and translates requests and
responses between the external communication protocols of clients and the internal
formats.

This is achieved by offering REST endpoints to clients. All of these endpoints follow
the JsonApi specification to provide a consistent API format for outside requests. Each
such request is translated by the API Gateway into a message for the Faktory Server.
After dispatching the message to the queue the API Gateway replies to the client that
his request has been successfully accepted and will be processed.

45



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

IMPLEMENTATION

W
(@)}

System J

Image Services

I

Storage Senver

Service 1

Client
Tl Al Gateway

Faktory Server Senvice ..

[N/

Senvice n

) 4
¥

Grafana | Prometheus

AlertManager Scale Service

Figure 4.1: Components of the System.

Faktory Server

The Faktory Server is a third-party service that we run in our system. It acts as our
message broker and provides multiple persistent queues for messages.

Our API Gateway dispatches messages to the queues of this service and the image
processing services fetch available tasks from this server’s queues. A task is marked as
completed once a service fetched the task and acknowledges that it successfully finished
the processing. If a service fails to perform a task it fetches from the queue, the task will
be made available for processing by another instance. Therefore the Faktory Server has
reliable information about the number of tasks currently in the system.

Image Services

These are the services that are able to perform the transformation logic on image
files. Each Image Service is written in GoLang and provides exactly one type of image
transformation. The actual logic for image processing is never written directly in the
Image Service. Instead each service either invokes libraries or other applications co-located
on the same host.

The current system contains five different image processing services and depending on


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.1. Implementation without a Framework

the number of pending requests there might be one or several running instances of each
service.

Services fulfill their task by following a clear series of steps:

1. Fetch an open task from the Faktory Server.

2. If necessary, load the image specified in the task from the Storage Server.
3. Perform the image processing logic.

4. Upload the resulting image file to the Storage Server.

5. Acknowledge the successful processing of the task to the Faktory Server.

Storage Server

The Storage Server is another third-party component that we use in our system. It stores
all image files that are handled within our system and provides an API to upload and
download files.

This service is used by clients to upload the input images and to download the resulting
images. In contrast the image processing services download input images and upload
resulting images to this server.

Prometheus

The Prometheus Server is a third-party component that we configured to collect the
metrics which we expose from the other services in our system. This service is configured

with alerting rules which we use to monitor the load on the system for automatic scaling.

Alertmanager

This is a third-party component that is able to handle and dispatch alerts provided by
the Prometheus Server. We configured the component to dispatch the alerts to the Scale
Service with the use of webhooks.

Scale Service

Is a service written in GoLang that receives messages about alerts in the system from
the Alertmanager. The actual logic to perform automatic scaling is implemented by us
in this service.

Grafana

A third party service that offers the possibility to manage and create the visualization of
metrics provided by Prometheus.

47


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

IMPLEMENTATION

48

© 00 N O Uk W N =

= = = e
W N = O

4.1.2 Flow of Processing

In general there are two large interaction flows between the components in our system.
The first one being when an image processing request is handled by the system. The
second largest interaction between components happens when the systems scales services
up or down depending on the current load.

4.1.3 Image Processing Flow

The largest and most important processing flow in our system takes place when a client
sends a request for an image transformation. This flow involves numerous interactions
between components and nearly every component in the system is involved in the time
between the upload of the initial image and the client finally downloading the result.
Below we want to have a look at the detailed steps of this flow and how the different
services play together to provide this functionality.

Optional step zero: Image Upload

Many of the services in the system require an input image to perform their image
transformation. Therefore, if a client wants to request such a transformation it must first
upload the image to the storage server. Once the image is successfully uploaded, the
client receives an identifier that acts as a reference to the newly uploaded image.

However, there are cases in which no initial upload of an image is necessary. Tasks
such as downloading the most significant image of a website or to take a screenshot of a
website do not require an input image. In such cases this step can be skipped.

Step one: Client request is processed in the API Gateway

In the first step of the image processing flow a client issues a request for an image task
to the API Gateway’s endpoint. This request contains all information necessary to
process a task. Listing 4.1 shows an example request to crop an image with the identifier
example.jpg to 50 % of its width and 10 % of its original height.

curl -X POST \
http://api-gateway-host/crop \
-H ’Content-Type: application/json’ \
-H ’cache-control: no-cache’ \
7dl{
"data": {
"type": "crop_task",
"attributes": {
"image_id": "example. jpg",
"width": 50,
"height": 10

Listing 4.1: Client HTTP request to submit a new task.



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

0 N O Ut Ww N =

4.1. Implementation without a Framework

[ Client J [ Minin J [ API Gateway J [ Faktory J [ Image Sen"iceJ

upload image

returmn image id
| Jetum image id

sendi task

h

dispatch to quene

fetch task

o feplylageepted”

&

download image

process
image

upload result image

ark task completed

-

download result image |
*.
i

Figure 4.2: Interactions between services during image processing.

func (faktoryServiceImpl) PublishToFaktory(taskType string,
jsonTask string) error {
client, _ := faktory.Open()
job := faktory.NewdJob (taskType, jsonTask)
job.Queue = taskType
err = client.Push (job)
return err

Listing 4.2: Code to submit a task to the Faktory Server’s queue (simplified).

When the API Gateway receives such a task, it first needs to forward the task into the
system. During the dispatching of the task, the API Gateway first enriches the request
with a unique identifier. This enriched request is then serialized and passed to one of the



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

IMPLEMENTATION

(@4
@)

© 00 N O U W N

e e e el
DT W N = O

Faktory Server’s queues as shown in Listing 4.2. For each possible image transformation
type there is exactly one matching queue.

Once the request was successfully dispatched into the system, the API Gateway returns
a response to the client, informing it of the unique identifier of the task and that the
request has been accepted and will be processed.

< HTTP/1.1 201 Created
< Date: Mon, 14 Oct 2019 18:04:59 GMT
< Content-Length: 139
< Content-Type: text/plain; charset=utf-8
<
{
"data": {
"type":"crop_task",
"id":"04d11ba2-4912-4e0b-b396-4d77d2bf4302",
"attributes": {
"height":10,
"image_id":"example. jpg",
"width":50

}

Listing 4.3: Example HTTP response from the system after a client submitted a new
task.

It is important to note that only very little work is done in this step and the connection
to the client can be closed nearly instantaneously. This behaviour provides a sharp
contrast to an option in which client requests would be handled synchronously. If we
used synchronous requests here, the connection from the client through the API Gateway
into the system would stay open throughout the whole processing flow.

Once this step is complete the task resides on the Faktory Server’s queue and is ready to
be picked up for processing by the image services.

Step two: Image Service processes the request

Since every service listens to its corresponding queue on the Faktory Server, it detects the
presence of a new open task and loads this task from the queue for processing. Depending
on the type of the task, the service might need to fetch the input image from the storage
server via the image identifier provided with the request.

Once these preparatory actions are completed, the service processes the image. Depending
on the type of the task, the input parameters and the hardware used, this step can take
from milliseconds to several minutes. Once the operation is completed the output image
is available. This resulting image is then uploaded on to the Storage Server. After this
step the Image Service notifies the Faktory Server that it successfully completed its task
and starts to listen on the queue again.



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4.1. Implementation without a Framework

Step three: Client downloads final image

Finally the client can retrieve the result. This is achieved by requesting the image with
the task identifier the API Gateway issued in step one.

4.1.4 Auto Scaling Flow

The second large interaction within the system takes place when the system performs
automatic scaling on its image processing services.

[ Prometheus ] { System ]

) Container
Alert Manager ] [ Scale Service ] [ Infrastructure ]

fetch metrics "

check alert rules

o

0

send dlert

i
L

|_| send alert

h

[ e e

trigger scaling

__________________{

Figure 4.3: Interactions between services during auto scaling.

Step one: Prometheus detects an alert according to rule file

The Prometheus Server acts as a starting point for this interaction. While this service is
configured to constantly collect metrics about the system and the number of open tasks,
we also added alerting rules to detect whether we have too many or too few instances
running for the current load.

Such rules can easily be specified in yaml [YAM] files by using the Prometheus Query
Language [PROD]. Listing 4.4 demonstrates two simple rules for firing alarms to scale
the number of instances of a service up or down.

o1


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4.

IMPLEMENTATION

52

© 00 N O U W N

© 00 N O U W N

=
(=)

groups:
- name: default
rules:
— alert: ManyCropTasksPending
expr: sum(up{job="crop_service"}) % 10
< sum(crop_tasks_pending) + 1
- alert: TooManyCropInstances
expr: sum(up{job="crop_service"})
> sum (crop_tasks_pending) +

(G2 3
ul

Listing 4.4: Example Prometheus alert rules for up and down scaling.

If the Prometheus Server detects that any of the expressions defined in the alerting
rules are fulfilled, the corresponding alert is set to the firing state and passed on to the
Alertmanager.

Step two: Alertmanager dispatches the alert

When the Alertmanager receives an alert it uses its configuration file to determine how
to handle the alert. As shown in Listing 4.5, all of our alerts are configured to be passed
on to the Scale Service via the generic webhook configuration.

route:
receiver: scale
group_wait: 10s
group_interval: 10s
repeat_interval: 10s

receivers:
- name: scale
webhook_configs:
- url: ’'http://scale-service:8085’

Listing 4.5: Alertmanager configuration to use our Scale Service as webhook target for
alerts.

Step three: Scale Service performs scaling

As shown in the previous step, the Scale Service implements the endpoints to act as a
webhook receiver for alerts. Depending on the type of alert this service receives, it picks
the corresponding service in the system and scales the number of instances accordingly.



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.2. Implementation with a Microservice Framework

4.2 Implementation with a Microservice Framework

The second implementation, which uses a framework, is very similar to the implementation
without a framework. This is especially true when it comes to the architecture of the
system and the interactions of components.

The use of this framework did hardly affect the system’s architecture, because the
framework itself operates only on a lower level within single services. From an architectural
point of view the use of the framework is therefore transparent.

Within each service we tried to follow the conventions provided by the framework.

However, we found that most of the benefits that the framework would have provided
were not applicable to our system for two reasons.

1. The framework only supported a limited set of very well established technologies.

In the case of the Faktory Server, as our means to performs messaging in the system,
GoKit [GOK] did not provide an existing adapter. In such cases we implemented
our own compatible version that implements the interfaces used by GoKit. While
this will allow us to easily switch to another solution that is supported by the
framework, we had to go through additional effort to integrate the messaging
provider of our choice.

2. GoKit follows an approach where only a very small set of decisions is provided by
the framework. It acts as an unopinionated set of libraries. For our use case we only
required very few of these libraries since GoLang already provided a sophisticated
standard library with sufficient capabilities for our system.

4.3 Implementation with a Function as a Service
Framework

The concept of serverless functions works on a very high level of abstraction, which
clearly shows in the implementation using OpenFaaS [OPEa]. For this implementation
we had to loosen some of our requirements. In the case of an approach that has the
goal of replacing the need to implement and handle one’s own infrastructure we had no
other options, but to use the technologies that are already provided by OpenFaaS. In
the following we present the implementation with OpenFaaS from the user’s and the
developer’s point of view and will then look into the details of how OpenFaaS achieves
its tasks.

User & Developer View

From a developer’s point of view this implementation is by far the simplest of the
three options investigated in this thesis. A developer’s conceptual view of the system is
illustrated in Figure 4.4. There is no need to implement any services other than the five
functions for image processing. Even those were drastically reduced to a single file of

53


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

4. IMPLEMENTATION

_»| Storage Server

Screenshot
Function

Crop Function Function ...

User
OpenFaas Stack

Figure 4.4: Client retrieves processed image.

about 80 lines of code each. This file only contains the innermost logic for the actual
handling of a task. Listing 4.6 shows a slightly adapted version of the code from our
system to integrate an image transformation into the OpenFaaS stack.

1| type Task struct {

2 ID string ‘jsonapi:"primary,crop_task"®
3 Imageld string ‘jsonapi:"attr,image_id"‘
4 Width int ‘jsonapi:"attr,width"?

5 Height int ‘jsonapi:"attr,height"®
6| }

7| func Handle (req []byte) string {

8 task, err := unmarshalTask (req)

9 handleTask (task)

10 return ""

111}

12| func unmarshalTask (req) Task, error {

=
w

task := new(Task)

14 task.ID = uuid.New () .String/()

15 _ := jsonapi.UnmarshalPayload(bytes.NewReader (req), task)
16 return task, nil

17| }

18| func handleTask (task xTask) error {

19 // download image, transform, upload result

20| }

Listing 4.6: Code example of OpenFaaS service (simplified).

54


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

4.3. Implementation with a Function as a Service Framework

However, abstracting away a lot of the complexity also results in the framework acting as
a black box. In our case this lead to difficulties with some of our image transformations,
because they are dependent on the installation of other programs and libraries on the
same system. Since OpenFaaS only provides one standard (Docker-based) GoLang image,
we had to create additional templates in OpenFaaS. Once we solved this issue, we were
able to create new base images that contained all the libraries that we needed for a
given image transformation. However, handling such special cases was more difficult
than implementing the service logic itself and cancelled out some of the advantages of
the simple cases.

Detail View

In this part we want to have a look at the internal implementation of OpenFaaS for two
different reasons. The first is that some architectural decisions within the framework
might have an impact on how it could be used and for which use cases the framework
might show certain strengths and weaknesses. The second reason is that we can use the
internal architecture of OpenFaaS to some extent as a reference implementation for our
architecture in the first two approaches.

Service 1

Function
Watchdog

Function Senvice 1

e

__y| Storage Server

J_.—"
= Service ...
J-J_-)--’
e Function
) SpaibEEs »| Faas-Provider Watchdog
Gateway

Function Service 1

i

Client

Service n

Prometheus

AleriManager

Y

Function
Watchdog

Function Service n

Figure 4.5: Detailed view of internal components in OpenFaaS and our system [OPEa]
(modified).

55


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

IMPLEMENTATION

56

When we have a look at the overall high-level architecture of OpenFaaS in Figure 4.5 we
cannot help but noticing a strong similarity to our own architecture:

e The OpenFaaS Gateway takes the role of our API Gateway. Additionally it

contains the logic for processing alerts from the Alertmanager and therefore maps
also to our Scaling Service.

The FaaS-Provider offers the middleware functionality in the system. In cases
when OpenFaaS is used asynchronously the FaaS-Provider acts as a queuing system
and uses NATS Streaming [NAT] to achieve this. This part maps to the Faktory
Server in our system. It is interesting to note that the FaaS-Provider can be used
both for synchronous as well as asynchronous communication.

The Services within OpenFaaS are another interesting part of the framework. They
can either be regarded very similar to the other implementations or as drastically
different. While the actual source code provided by the developer is minimal and
looks only like a simple function call, there is more to these services. Behind the
scenes OpenFaa$ is performing a lot of the heavy lifting to make the communication
work. This is achieved by packaging each function with the OpenFaaS Function
Watchdog [OPED]. This watchdog provides a minimal HTTP server for the service,
takes care of request and response translation between other services and the
function and exposes health metrics, as illustrated in Figure 4.6. If we look at a
service in OpenFaaS as the actual container that is running in the stack, the only
differences to the services from the previous approaches are implementation details.

reqguest stdin

HTTF 8080

body

fusr/bin‘node_
handler.js

4 SESponse _ stdout

body -

Figure 4.6: Request and response translation by the OpenFaaS Watchdog [OPED]
(modified).

e Just like in our implementation OpenFaaS depends on Prometheus for moni-

toring and in combination with Alertmanager provides its automatic scaling
functionality.

Now that we know how the three implementations work, we would like to have a deeper
look into the effects of their differences in the following chapter.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Evaluation

In this chapter we evaluate the consequences of the three different implementation
approaches. The first half of the chapter presents qualitative metrics, where we have a
look at the differences in implementation effort and performance of each prototype. This
is followed by the qualitative evaluation, where we discuss advantages and disadvantages
of each approach and how well each of them supports current best practices.

5.1 Quantitative Evaluation

For the Quantitative Evaluation we use two distinct metrics. First we will have a look at
the Implementation Effort and then in Performance at metrics regarding the performance
of the resulting system for each approach.

5.1.1 Implementation Effort

To measure the implementation effort we were logging each change we made with a
description of the change and the affected components. By doing so we created a detailed
log of the time effort put into each implementation. During the evaluation we then
classified each action by its description, affected parts of the system and the code changes
into different categories to allow a more detailed analysis. The results of this evaluation
are illustrated in Table 5.1.

While we can only observe a small difference in the overall development effort between
the first two approaches, the third approach shows a clear difference. The implementation
using OpenFaaS took only 45% of the time compared to the implementation without a
framework and 48% of the time to the implementation with a framework. To get a better

o7



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

58

Task Type Without Framework With Framework With FaaS
Development  79.21 (69% of total)  72.36 (66% of total) 34.30 (65% of total)

Operations 20.61 (18% of total)  21.56 (20% of total)  9.20 (17% of total)
Knowledge 10.52 (9% of total)  10.35 ( 9% of total)  5.78 (11% of total)
Testing 4.10 ( 4% of total) 6.10 ( 5% of total)  3.75 ( 7% of total)
Total Time 114.44 110.37 53.03

Table 5.1: Time in hours spent on development per task type.

understanding of the cause of these differences, we need to analyse them separately by
type. In the following we separate the effort into four different types of tasks:

Development. Changes in the source code of the application.

Operations. Tasks related to the infrastructure of the application.

Knowledge. Tasks related to research about how a specific technology is used.

Testing. Verification of the correctness of the system’s behaviour.

Development

The measured effort for this type of task is similar for the first two approaches. Using
the third approach, however, shows a significant decrease in development time. To
understand these differences better we need to split the task type Development into two
subcategories:

e Development - Service Core, which classifies changes within the image pro-
cessing services. This category involves both the processing logic and handling of
images, as well as connecting each service to the surrounding infrastructure. For a
service to be fully functional, it needs to be able to communicate with the Faktory
Server to fetch its tasks, serialize and deserialize tasks and inform the system about
a successful or unsuccessful completion.

e Development - Service Communication, which classifies changes related to
services that are responsible for the communication within the system. A typical
example for this is the API Gateway in our system. Effort spent on developing
these services is counted in this category.

After a reclassification of Development we end up with Table 5.2, which makes the
differences clearer. While the development time spent within services is still lower for the
third approach, we can observe that the differences in the Services - Core subcategory
are at least not as drastic as the differences in the Service - Communication category.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.1. Quantitative Evaluation

Task Type Without Framework With Framework With FaaS
Service - Core 50.78 51.16 32.66
Service - Communication 28.43 21.2 1.63
Development 79.21 72.36 34.30

Table 5.2: Time in hours spent on development per service task type.

The differences for the Service - Communication category are easily explained. While
the first two approaches required an implementation of additional services such as the
API Gateway and the Scale Service, OpenFaaS already provided such services and the
corresponding functionality via the internals of the framework.

For the Service - Communication category we would like to point out some differences
between the first and the second approach. While the overall time spent is nearly
identical, the effort in these approaches was different in nature. Despite the integration
of the image processing library taking the same amount of effort, we observed differences
when connecting the services to the overall system. The first approach, without a
framework, presented the highest level of flexibility, which lead both to certain benefits
and disadvantages. On the one hand it enabled us to choose easy and well fitting solutions
to perform parts of the communication, but on the other hand the lack of a given structure
and standards lead to certain pitfalls and the need to refactor the code several times
until an acceptable solution was found. The second approach offered less flexibility and
required additional effort to implement the communication mechanism in a way that is
compatible with the given framework. While the effort was spent differently in these
approaches, these factors evened out in the end. In the third approach OpenFaaS already
provided useful abstractions for the communication and apart from the translation of
requests to the library calls, little work had to be done here.

Operations

This part describes the effort for infrastructure-related changes. It includes the creation of
Docker containers, scripts to build and start the system and for setting up the monitoring
solutions.

The first two approaches are nearly identical in this case, because they use the same
infrastructure. The use of the GoKit framework was in this case transparent. However,
the case is different when it comes to the third approach. OpenFaaS already provides all
the necessary infrastructure out of the box and in a simple case there would have been
no effort at all for this category, but in our case we had to adapt and extend the existing
Docker images to work with the image processing libraries.

59


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

EvVALUATION

60

Knowledge

Here we compare how the time was spent on getting familiar with the technologies and
on planning of implementation details.

In the first approach this part was mainly concerned with research on possible libraries
and how to structure the services. The lack of constraints in this approach lead again to
additional effort and responsibility for the developer.

In the second approach the set of technologies was already dictated by the framework,
but additional effort had to be taken to figure out what and how the framework supports
certain tasks.

We faced a similar, even more pronounced situation with the third approach. While many
of the details were hidden behind the framework, every action that had to be performed
required steps that were specific to OpenFaaS. These spanned from the installation of
the framework on the host system, over the required signatures of exposed functions, to
how to deploy a function and to start the system.

Testing

We could not observe any differences in this category, since all approaches offered very
similar APIs to the client.

5.1.2 Performance

In this section we compare the performance of the resulting systems in all three ap-
proaches. Our tests are mainly concerned with the performance of the system and not the
performance of the different image processing libraries. Therefore we chose just one type
of image transformation, cropping an image, which we used across all our tests. Each test
run was executed ten times and all docker containers, including infrastructure-related
ones, were shut down and restarted after each execution. The processing times in this
section are always the averages over all runs we performed for the given test configuration.
Furthermore we used a fixed upper bound of CPU time and memory that each docker
container could consume from the host system. By setting the sum of these limits to a
value that is lower than the overall resources on the host machine, we aimed to isolate
the performance of the tests from external factors on the host system.

Results

When the performance tests were run with a single instance of the image processing
service we could

An analysis of the results of our performance tests with a single running image service in
Tables 5.3, 5.4 and 5.5 shows that there are no significant differences in the processing
time for each approach. During our analysis of these results we found that the execution
of the image transformation, as a long running task, leads to an insignificance of minor


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.1. Quantitative Evaluation

Requests Processing Time (seconds) Processing Time per Task (seconds)

10 2.81 0.28
100 27.29 0.27
250 68.28 0.27
500 131.78 0.26

Table 5.3: Implementation without Framework performance test with one running service.

Requests Processing Time (seconds) Processing Time per Task (seconds)

10 2.89 0.29
100 27.47 0.27
250 68.37 0.27
500 135.14 0.27

Table 5.4: Implementation with Framework performance test with one running service.

Requests Processing Time (seconds) Processing Time per Task (seconds)

10 2.96 0.30
100 29.33 0.29
250 72.21 0.29
500 139.11 0.28

Table 5.5: FaaS performance test with one running service.

optimizations in the different approaches. Therefore other factors, such as the performance
of related services, play no significant role as long as those service do not become a
bottleneck in the system.

The results of adding a second running instance of the image processing service confirms
this. We can observe in Tables 5.6, 5.7 and 5.8, that by adding a second instance of the
Crop Service, we effectively process the requests twice as fast.

This is an interesting result, because it lets us assume that we can achieve linear scalability
by adding additional image processing services. However, with a high number of image
processing services the storage server will become the bottle-neck of the system, because
of the heavy input and output load. Once this point is reached additional measures have
to be taken to perform scaling on the storage server itself. We assume that there are
several ways to easily scale this service with simple strategies such as partitioning the
images over several storage servers by key or by image type.

61


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

62

Requests Processing Time (seconds) Processing Time per Task (seconds)

10 1.34 0.13
100 12.17 0.12
250 30.17 0.12
500 61.33 0.12

Table 5.6: Implementation without a Framework performance test with two running

services.

Requests Processing Time (seconds) Processing Time per Task (seconds)

10 1.34 0.13
100 12.58 0.13
250 31.03 0.12
500 61.12 0.12

Table 5.7: Implementation with a Framework performance test with two running services.

Requests Processing Time (seconds) Processing Time per Task (seconds)

10 1.34 0.13
100 13.2 0.13
250 32.24 0.13
500 66.41 0.13

Table 5.8: FaaS performance test with two running services.

5.2 Qualitative Evaluation

In this section we want to give an overview of the differences from a qualitative perspective.
Here we discuss our experience during the implementation of the prototypes and compare
their strenghts and weaknesses. Finally we evaluate whether a microservice architecture
is a suitable choice for an image processing system.

5.2.1 Implementation without Framework

Implementing the system without the use of a framework shows very pronounced strenghts
and weaknesses. This approach clearly provides the highest level of flexibility. No matter
which surrounding and integrating technologies are chosen, writing the system from
scratch allows to create a specifically tailored system. However, this flexibility comes
with a high premium. Choosing this approach requires a large amount of code that
needs to be written and even more important, requires a lot of planning. With the
possibility to freely choose the libraries and the structure of the system, come nearly
endless possibilities and a multitude of decisions. Because of the longer evaluation and


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Qualitative Evaluation

decision making process, this can not only slow down development, but also increases
the chance that early decisions need to be reverted. Such refactorings of parts that
strongly influence the overall structure of the system can then be very costly in terms of
development time and effort. Another disadvantage of this freedom is that the resulting
structure of the software is completely custom to the application and onboarding of new
developers can be costly.

With this approach we found ourselves several times in situations where the lack of a
given structure resulted in repeated refactorings of the same parts of the system. The
main reason for this was a constant increase in understanding of the specific challenges
and needs in such a system obtained during the development process. Despite following
the general best practices for microservice systems, we lacked experience with a similar
image processing system. Additionally we had little experience with the Go programming
language and its surrounding ecosystem, which resulted in considerable effort to implement
even trivial functionality that can often be provided by a framework and might easily be
implemented by someone with more experience in the programming language. However,
we found that this approach supported very specific requirements, like the use of the
Faktory Server very well.

Therefore, our conclusions are that this approach is well suited if a high level of flexibility
to integrate with non-standard systems is required. In practice this is often the case
when an existing system is migrated to a microservice system. With an already existing
infrastructure that uses a very particular set of technologies which may not be well
supported by current frameworks, a migration to a microservice system can be easier
if the system is written without any frameworks. However, in this case a detailed
understanding of the needs of the resulting system and experience of the developers in
the domain and with the technologies are required.

In contrast, if there are no existing services, infrastructure and strict technological
requirements for the inner workings of the system, the other approaches will in many
cases be a preferable choice.

In conclusion we would state this approach if there is already significant existing infras-
tructure and an existing system with a set of non-standard technologies that need to be
supported.

Implementation with a Microservice Framework

Our experience was very different in the second approach, where we used a microservice
framework. Typically such frameworks provide parts of the boilerplate code and a
predefined set of libraries that work well with each other. In many cases developers speak
of frameworks as being more or less opinionated, which describes the case when certain
decisions are already made by the maintainers of a framework and only a limited set or
a single way of achieving certain results is supported by the framework. This resulted
both in advantages and disadvantages in our case, as being provided with a predefined
structure and a set of libraries for the services greatly reduced the need to evaluate and

63


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

64

restructure parts of the application. We also assume that using a predefined structure
improves the maintainability of the overall system if the system is maintained by multiple
developers.

However, parts of the structure provided by the framework introduced complexity into
otherwise simple parts of the system, as our image processing services by themselves
were rather small and the complexity of the services was mostly in parts very specific
to image processing. Another drawback that we experienced in this approach was that
frameworks, such as GoKit, are tailored for typical use cases and support only a limited
set of integrating technologies. In our case this was especially problematic when we
needed to use the Faktory Server as a means to manage and distribute image processing
tasks. Integrating a technology that is not supported by a framework can be a difficult
and time consuming undertaking.

From an architectural point of view the use of a framework was transparent, as the
framework only operates on the level of a single service. Whether a service was created
with a framework or not, is not visible if the microservice itself is regarded as a black
box.

In conclusion we would state that the use of such a framework can be justified if a large
number of services needs to be created and maintained by several developers, the system
performs typical tasks and the technologies that must be used are already supported by
the framework.

Implementation with a Functions as a Service Framework

The Function as a Service approach is promising for a system that is mainly concerned
with image transformations, as such a system revolves primarily around the execution
of single tasks, a typical usecase for FuaS. The approach offers considerable flexibility
within the functions, which contain the image processing code, while eliminating most of
the boilerplate code needed for a microservice system.

In our experience, using OpenFaaS made the implementation and especially the design
of the system easier and therefore drastically reduced the amount of time needed to
implement the system. In contrast to the other two approaches, where we had to create
and design the services around the actual image processing applications by ourselves, this
part was already provided by the framework. Additionally, the implementation of the
image services themselves required less work, since we only had to create the functions.

However, with OpenFaaS we needed to loosen some of the requirements regarding the
surrounding system. While we used Faktory to manage the tasks in the other approaches,
this was not possible with FaaS, as the messaging solution is part of the framework itself
and can not be replaced.

In conclusion we experienced many benefits with Functions as a Service and would use
this approach in all cases where the requirements and constraints by an already existing
system allow us to do so.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Qualitative Evaluation

5.2.2 Microservice Advantages & Disadvantages in Image Processing
Systems

Since all three implementations are microservice systems in the context of image process-
ing, we experienced some advantages and disadvantages of this combination across all
approaches.

One of the first disadvantages that we experienced was related to the upload and
transfer of images. There seems to be no standard way of creating requests that contain
images for systems that offer a REST API. The content type for such an API has to be
application/json, which is not suitable for files. Therefore many approaches with different
pros and cons to try to work around this issue exist. Additionally the transfer of image
files within the system is costly when it comes to network load. This leads to complex
solutions to minimize the amount of image transfers between services, while a monolithic
system would completely avoid this problem.

REST APIs, which are considered the default communication approach for microservice
systems are also not perfectly suited to represent endpoints for image processing. While
an image processing system is focused at invocations, the concept of REST maps best
to representing data resources. A REST API offers endpoints under flexible paths that
provide information about the type and relations of the objects that are handled at a
given endpoint. However, the ways to represent actions in such an API are limited by
the HTTP verbs GET, POST, PUT, DELETE. This leads to the unnatural abstractions
where the API offers endpoints to create image processing transformations instead of
more naturally invoking an action directly.

On the other hand we also identified several advantages of using the microservice
architectural style, when it comes to image processing. Since image processing requires a
large amount of system resources and most of the time to handle a request is spent in the
part of the system that performs the actual image transformation, it can be advantageous
to isolate this code in a separate service. Separate services for image processing then
offer the possibility to be efficiently scaled on demand. This can be especially useful in
terms of resources when viewed in contrast to a monolithic system in which an additional
instance of the whole application must be deployed if one of its capabilities reaches the
resource limits.

By comparing the execution times between a system with a single instance of a service
and one with multiple instances, we also found that increasing the number of running
instances of a service provides an easy mechanism to provide parallelization of the
execution of tasks.

In addition to scalability, advantages of microservice systems in terms of maintainability
are applicable to image processing systems. When patterns like Service Discovery and
API Gateway are used, services can be added, removed and changed on demand. We
experienced this during the implementation phase of the three prototypes. Once we
completed the basic infrastructure and a single image processing service for each approach,
we could easily add additional services without modifying other parts of the system.

65


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

EvVALUATION

66

Additionally the use of an API Gateway would make it easily possible to add capabilities
like rate-limiting or to change the protocol that is exposed to clients, as it offers the
single interface between clients and internals of the system.

5.3 Ciritical Reflection

Despite trying our best to achieve results which are as general and objective as possible
we realize that this is not always possible and that there are parts in our approach that
influence the results. In the following we mention the most significant factors.

While there are cases in which a system is built without any preexisting infrastructure,
it is common that some parts of the infrastructure already exist before the project is
started. In many cases this happens when a company migrates from a monolithic system
to microservices. In such cases approaches that come with their own infrastructure might
not be suitable and quantitatively only the effort we measured for implementing the
services themselves applies in this case.

We also found that the results for the second and third approach are dependent on the
actual framework that is used. There are many different frameworks and providers to
choose from to build a system with a framework or to deploy serverless functions. There
are also significant differences between these options and a piece of functionality that
is provided by a framework or by an FaaS provider might make a big difference in the
results.

Furthermore, since we created three similar systems we had to deal with a learning effect.
We tried to mitigate this effect by isolating tasks which are identical in the approaches
and correcting the time effort by setting it to the same value for each approach.

Eventually, there are always several ways to separate the parts of a single system into
different microservices. In our case we chose to create a separate service for each image
processing task. A possible alternative would be to create a general image processing
microservice that is able to fulfill all possible image processing tasks and register its
capabilities at the API Gateway.

Now that we have presented and evaluated the results of this thesis we want to briefly
present the conclusions we draw for our work and point out possibilities for future work.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Conclusions

This chapter summarizes the results we obtained during this thesis. In the first part we
present the conclusions we draw from the combination of the research, implementation
and evaluation phase. Thereafter, in the second part, we discuss possible future work
that can be based on what we learned during this thesis.

6.1 Conclusions

In this work we saw that there is no one clear answer to which approach for creating
a microservice system is best suited for image processing systems. Whether using no
framework, a framework or the serverless functions as a tool for the implementation
is the most beneficial, depends on the specific needs in a given situation. The main
factors contributing to this decision are the required amount of flexibility, the presence of
already existing parts of the system and the specific tools and frameworks that are used.
Therefore a rigorous planning and evaluation phase should precede the actual decision
on and implementation of such a system.

We saw that image processing systems pose additional challenges when implemented
as a microservice system. Image transfers within the system and the resource inten-
sive computations during image transformations are both challenges that need to be
addressed at all times during the design of such a system and lead to a need for more
complex and resilient design. Therefore communication mechanisms such as asynchronous
communication via messaging solutions are favourable over the simpler forms such as
synchronous JSON requests via REST and the amount of image transfers has to be kept
to a minimum within the system. However, if the principles of microservice systems
are correctly applied, we can expect the resulting architecture to yield benefits such as
improved maintainability, a clear separation of concerns and better scalability.

67



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.

CONCLUSIONS

68

In case one decides against the monolithic approach, our findings strongly suggest that
a Function as a Service approach, if possible in the specific situation, suites the use
case of image processing very well and can be beneficial in terms of maintainability and
scalability while reducing the required development time needed.

6.2 Future Work

While this work focuses on a comparison between implementation approaches for a
microservice architecture, the questions whether or not and when such an architecture is
a good fit for image processing systems remains partly unanswered. Additional research
would be needed that gives insights on conditions when a microservice architecture would
be favorable over a monolithic system. Especially in the case of image processing and
resource intensive operations there is currently no information available that helps with
this decision.

In our work we only provided an exemplary overview over each implementation approach,
but as we can observe in our results there is a multitude of options to choose from when
an application is implemented via framework or with FaaS approaches. Depending on the
chosen technology each approach might show significant differences by itself. Additional
and more detailed research would be required to evaluate characteristics of the different
approaches when building an image processing system.

Despite the availability of research on cloud system auto-scaling techniques [LBMAL14],
further research is needed regarding systems that perform tasks such as image processing.
Such long running and computationally expensive tasks have a strong influence on the
feasibility of scaling approaches and would require a separate analysis. It would be
beneficial to have findings on possible auto-scaling techniques in such a domain available
and conditions that imply the usage of a certain technique.

To minimize the network load in our system we aimed to keep the necessary image
transfers to a minimum. However, this still leaves room for improvements. Ideally
transfers of large files and their location could be handled transparently. Especially when
the system is spread out over several machines, sophisticated strategies regarding the
physical location of files would be necessary to keep the network load as low as possible.
Therefore, we see a need for further research on efficient mechanisms to transfer and
store large files in distributed systems.

Eventually, when it came to creating the diagrams for this thesis, we found that there
is no standard approach available to visualize microservice systems. The existing work
on microservices uses different variants of UML diagrams to represent such systems and
therefore we too used an approach that resembles the majority of what we found in
existing papers. During our research we observed differences in how the same concept
is visually presented across different works. Therefore, we see a need to either research,
collect and classify existing patterns in the visualization of microservices or to create a
visualization language that can be used in the context of this topic.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

1.1

21

2.2

2.3

2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

4.1
4.2
4.3
4.4
4.5

4.6

List of Figures

Microservices Google Trends. . . . . . . . . ... ... ...

A monolithic system separated into different layers for technical capabilities
and different components within the layers for different functionality [APP]
(modified). . . . . . .
SOA system with different services that communicate and are accessible via
the Enterprise Service Bus. . . . . .. .. ... oo oL
Without an API Gateway different clients talk directly to the services of the
System. . . ..o e e e e
Clients communicating with the system via an API Gateway. . . . . . ..
Communication via the circuit breaker pattern in a client library [Ricl8].
Communication via the circuit breaker pattern in a side-car container. . .
Application-level service discovery [Ricl8] (modified). . . ... ... ...
Platform-provided service discovery [Ric18] (modified). . . . . . ... ...
Synchronous communication between two services [Ricl8]. . . . . ... ..
Asynchronous communication between two services [Ricl8]. . . . . . . ..
Layers of Containers and Virtual Machines [CON] (modified). . . . . . . .

Components of the System. . . . . . ... ... ... ... ... ...,
Interactions between services during image processing. . . . . . . . . . ..
Interactions between services during auto scaling. . . . . . . ... ... ...
Client retrieves processed image. . . . . . . .. .. .. ... ...
Detailed view of internal components in OpenFaaS and our system [OPEa]
(modified). . . . . . . .
Request and response translation by the OpenFaaS Watchdog [OPEDb| (modi-

10

18
19
22
22
24
24
26
27
29

46
49
51
54
95

56

69


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

List of Tables

1.1 IEEE search results for Microservices. . . . . . . . . . . o v v v v ..

5.1 Time in hours spent on development per task type. . . . . . . .. ... ..
5.2 Time in hours spent on development per service task type. . .. ... ..

5.3 Implementation without Framework performance test with one running service.

5.4 Implementation with Framework performance test with one running service.
5.5 FaaS performance test with one running service. . . . .. .. .. ... ...
5.6 Implementation without a Framework performance test with two running
SETVICES. . v v v v v i e e e e e e e e e e e
5.7 Implementation with a Framework performance test with two running services.
5.8 FaaS performance test with two running services. . . . . . . . .. .. ...

url breakurl [breaklinks|hyperref

58
99
61
61
61

62

62
62

71


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[ACM]

[AH17]

[AJFOG17]

[Ale]

[APP]

[BCK12]

[BOU|

[CIMS17]

[CON]

[Con68]

[DOC]

Bibliography

Acme air sample and benchmark. https://github.com/acmeair/
acmeair. Accessed: 24.08.2019.

Mina Andrawos and Martin Helmich. Cloud Native Programming with
Golang: Develop microservice-based high performance web apps for the cloud
with Go. Packt Publishing Ltd, 2017.

Lucas F Albuquerque Jr, Felipe Silva Ferraz, RF Oliveira, and SM Galdino.
Function-as-a-service x platform-as-a-service: Towards a comparative study
on faas and paas. In ICSEA, pages 206-212, 2017.

Prometheus alertmanager github. https://github.com/prometheus/
alertmanager. Accessed: 21.09.2019.

Software architecture - the monolithic approach. https:
//medium.com/@shivendraodean/software—architecture-
the-monolithic-approach-b948ded8c333. Accessed: 04.09.2019.

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley Professional, 3rd edition, 2012.

Bounded context. https://martinfowler.com/bliki/
BoundedContext.html. Accessed: 25.09.2019.

Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski.
Serverless programming (function as a service). In 2017 IEEE 37th Inter-
national Conference on Distributed Computing Systems (ICDCS), pages
2658-2659. IEEE, 2017.

Containers vs. virtual machines. https://blog.netapp.com/blogs/
containers-vs-vms/. Accessed: 15.09.2019.

Melvin E Conway. How do committees invent. Datamation, 14(4):28-31,
1968.

Docker swarm. https://docs.docker.com/engine/swarm/. Accessed:
21.09.2019.

73


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[EG02]

[Eva04]

[FAK]

[FOWa]

[FOWb]

[FOWC]

[FOWd]

[Fow16]

[GOK]

[GOL)

[GTT+16]

[HAJOS]

[IEE]

[IST]

74

Fritjof Boger Engelhardtsen and Tommy Gagnes. Using javaspaces to create
adaptive distributed systems. In Proceedings of Workshop and FEUNICE
Summer School on Adaptable Networks and Teleservices, pages 125-130,
2002.

Eric Evans. Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2004.

Faktory. https://github.com/contribsys/faktory. Accessed:
21.09.2019.

Circuit breaker. https://martinfowler.com/bliki/
CircuitBreaker.html. Accessed: 16.08.2019.

Microservices. https://martinfowler.com/articles/
microservices.html. Accessed: 07.09.2019.

Monolith first. https://martinfowler.com/bliki/
MonolithFirst.html. Accessed: 15.07.2019.

Monolithic architecture pattern. https://microservices.io/
patterns/monolithic.html. Accessed: 15.07.2019.

Susan J Fowler. Production-ready microservices: Building standardized
systems across an engineering organization. " O’Reilly Media, Inc.", 2016.

Go kit - a toolkit for microservices. https://gokit.io/. Accessed:
14.12.2019.

The go programming language. https://golang.org/. Accessed:
13.12.2019.

Cristian Gadea, Mircea Trifan, Dan Ionescu, Marius Cordea, and Bogdan
Ionescu. A microservices architecture for collaborative document editing
enhanced with face recognition. In 2016 IEEE 11th International Symposium
on Applied Computational Intelligence and Informatics (SACI), pages 441—
446. TEEE, 2016.

T Hemalatha, G Athisha, and S Jeyanthi. Dynamic web service based image
processing system. In 2008 16th International Conference on Advanced
Computing and Communications, pages 323-328. IEEE, 2008.

Teee xplore digital library. https://ieeexplore.ieee.org. Accessed:
29.08.2019.

Istio/circuit breaking. https://istio.io/docs/tasks/traffic—
management /circuit-breaking/. Accessed: 09.09.2019.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

[INS16]

[JPM™*18]

[Jurl0]

[Kil16]

[KS18]

[LBMAL14]

[LS09]

[LWOO7]

[Mah07]

[MIOO]

[Mic06]

[MIN]

[MSD]

D. Jaramillo, D. V. Nguyen, and R. Smart. Leveraging microservices
architecture by using docker technology. In SoutheastCon 2016, pages 1-5,
March 2016.

Pooyan Jamshidi, Claus Pahl, Nabor C Mendonga, James Lewis, and Stefan
Tilkov. Microservices: The journey so far and challenges ahead. IFEE
Software, 35(3):24-35, 2018.

Matjaz B. Juric. Wsdl and bpel extensions for event driven architecture.
Information and Software Technology, 52(10):1023 — 1043, 2010.

Tom Killalea. The hidden dividends of microservices. Communications of
the ACM, 59(8):42—-45, 2016.

K. Kritikos and P. Skrzypek. A review of serverless frameworks. In 2018
IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion), pages 161-168, Dec 2018.

Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. A review
of auto-scaling techniques for elastic applications in cloud environments.
Journal of grid computing, 12(4):559-592, 2014.

Olga Levina and Vladimir Stantchev. Realizing event-driven soa. In 2009
Fourth International Conference on Internet and Web Applications and
Services, pages 37-42. IEEE, 2009.

Einar Landre, Harald Wesenberg, and Jorn Olmheim. Agile enterprise soft-
ware development using domain-driven design and test first. In Companion
to the 22nd ACM SIGPLAN conference on Object-oriented programming
systems and applications companion, pages 983-993. ACM, 2007.

Zaigham Mahmood. The promise and limitations of service oriented archi-
tecture. International journal of Computers, 1(3):74-78, 2007.

Edward F McDonough III. Investigation of factors contributing to the success
of cross-functional teams. Journal of Product Innovation Management:
An International Publication of the Product Development & Management
Association, 17(3):221-235, 2000.

Brenda M Michelson. Event-driven architecture overview. Patricia Seybold
Group, 2(12):10-1571, 2006.

Minio. https://min.io/. Accessed: 21.09.2019.

Database per service. https://microservices.io/patterns/data/
database—per—-service.html. Accessed: 09.09.2019.

75


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[MST]

[MW16]

INAT]

[New15]

[NZT96]

[OPEa]

[OPED]

[PROa]

[PROb]

[PVDHO7]

[PZA*17]

[RIC]

[Ric18]

[SBA]

[SHA]

76

Google trends search for microservices. https://trends.google.com/
trends/explore?date=today%$205-y&g=Microservices. Ac-
cessed: 10.08.2019.

Fabrizio Montesi and Janine Weber. Circuit breakers, discovery, and api
gateways in microservices. arXiv preprint arXiv:1609.05830, 2016.

Nats - open source messaging system. https://nats.io/. Accessed:
22.10.2019.

Sam Newman. Building Microservices. O’Reilly, 2015.

Michael G. Norman, Thomas Zurek, and Peter Thanisch. Much ado about
shared-nothing. SIGMOD Rec., 25(3):16-21, September 1996.

Openfaas. https://github.com/openfaas/faas. Accessed:
21.09.2019.

Openfaas watchdog. https://docs.openfaas.com/architecture/
watchdog/. Accessed: 23.10.2019.

Overview | prometheus. https://prometheus.io/docs/
introduction/overview/. Accessed: 21.09.2019.

Prometheus query language. https://prometheus.io/docs/
prometheus/latest/querying/basics/. Accessed: 29.10.2019.

Mike P Papazoglou and Willem-Jan Van Den Heuvel. Service oriented
architectures: approaches, technologies and research issues. The VLDB
journal, 16(3):389-415, 2007.

Cesare Pautasso, Olaf Zimmermann, Mike Amundsen, James Lewis, and
Nicolai Josuttis. Microservices in practice, part 1: Reality check and service
design. IEEE Software, 34(1):91-98, 2017.

Monolithic architecture pattern. https://microservices.io/
patterns/monolithic.html. Accessed: 03.09.2019.

Chris Richardson. Microservices Patterns - With examples in Java. Manning
Publications, 2018.

Space-based architecture and microservices in xap. https://dzone.com/
articles/space-based-microservicesgigaspaces—xap-blog-
the—i-1. Accessed: 07.09.2019.

Database  sharding. http://www.agildata.com/database—-
sharding/. Accessed: 07.09.2019.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

[SHO]

[Sil16]

[SK18]

[SOA]

[SP17]

[Sto86]

[SW14]

[TDK*18]

[TL18]

[UNO16]

[VAMDOY]

[WF18]

Deconstructing the monolith. https://engineering.shopify.com/
blogs/engineering/deconstructing-monolith-designing-
software-maximizes—-developer—-productivity. Accessed:
06.09.2019.

Alan Sill. The design and architecture of microservices. IEEE Cloud
Computing, 3(5):76-80, 2016.

José Quenum Samuel Kapembe. Lihonga — a microservice-based virtual
learning environment. In 2018 IFEE 18th International Conference on
Advanced Learning Technologies (ICALT), pages 1-4. IEEE, 2018.

Soa manifesto. http://www.soa—manifesto.org. Accessed: 13.08.2019.

V. Singh and S. K. Peddoju. Container-based microservice architecture
for cloud applications. In 2017 International Conference on Computing,
Communication and Automation (ICCCA), pages 847-852, May 2017.

Michael Stonebraker. The case for shared nothing. IFEE Database Eng.
Bull., 9(1):4-9, 1986.

A. Syromiatnikov and D. Weyns. A journey through the land of model-view-
design patterns. In 2014 IEEE/IFIP Conference on Software Architecture,
pages 21-30, April 2014.

Branko Terzié¢, Vladimir Dimitrieski, Slavica Kordi¢, Gordana Milosavljevié,
and Ivan Lukovié. Development and evaluation of microbuilder: a model-
driven tool for the specification of rest microservice software architectures.
Enterprise Information Systems, 12(8-9):1034-1057, 2018.

Davide Taibi and Valentina Lenarduzzi. On the definition of microservice
bad smells. IEEFE software, 35(3):56-62, 2018.

Takanori Ueda, Takuya Nakaike, and Moriyoshi Ohara. Workload char-
acterization for microservices. In 2016 IEEE international symposium on
workload characterization (IISWC), pages 1-10. IEEE, 2016.

M.H Valipour, B Amirzafari, K.N Maleki, and N Daneshpour. A brief survey
of software architecture concepts and service oriented architecture. In 2009
2nd IEEFE International Conference on Computer Science and Information
Technology, pages 34-38. IEEE, 2009.

Feng-Jian Wang and Faisal Fahmi. Constructing a service software with
microservices. In 2018 IEEE World Congress on Services (SERVICES),
pages 43-44. IEEE, 2018.

7


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

[XWQ16]

[YAM]

78

Zhongxiang Xiao, Inji Wijegunaratne, and Xinjian Qiang. Reflections on
soa and microservices. In 2016 4th International Conference on Enterprise
Systems (ES), pages 60-67. IEEE, 2016.

The official yaml web site. https://yaml.org/. Accessed: 29.10.2019.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Introduction
	Motivation
	Aim of the Work
	Methodological Approach
	Structure of the Work

	Relevant Background
	Software Architectures
	Microservices
	Microservice Patterns
	Microservice Infrastructure
	Related Work

	Design
	Requirements
	Architecture
	Technologies

	Implementation
	Implementation without a Framework
	Implementation with a Microservice Framework
	Implementation with a Function as a Service Framework

	Evaluation
	Quantitative Evaluation
	Qualitative Evaluation
	Critical Reflection

	Conclusions
	Conclusions
	Future Work

	List of Figures
	List of Tables
	Bibliography

