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Abstract

Computational Fluid Dynamics (CFD) deals with the numerical analysis of flow phenomena. The 
Navier-Stokes equations, which govern the motion of a Newtonian viscous fluid, are the base of 
almost all CFD problems. The method of dealing with any fluid dynamics problem is to solve these 
equations for the appropriate boundary conditions. There are some software packages available that 
solve fluid flow problems, as for instance FLUENT that is used in this thesis. 

The goal of this project is the investigation of flow fields and degrees of turbulence with regard to 
microphones which are used in cars for the purpose of hands free speaking systems. The fact that 
these microphones are usually positioned near the air condition outlet flow fields leads to decrease 
in the quality of voice recording. Hence there is a need for a better understanding of flow fields 
inside  of  vehicle  interiors  for  the  microphone  producer.  For  the  analysis  of  these  fluid  flows 
different setups of turbulence generators are positioned in the test wind tunnel in order to produce 
turbulence, so microphones can be tested under defined turbulence flow conditions which match the 
flow conditions in the vehicle interior. 

This thesis deals with the numerical analysis of  the different degrees and spectra of turbulence that 
are produced by different setups of turbulence generators  located in the test  wind tunnel.  First, 
several  steady CFD simulations  are  performed  for  each  turbulence  generator  to  investigate  the 
characteristic of the fluid flow, and the numerically generated results for the velocity components 
and the turbulent kinetic energy are compared to experimental results. Unsteady CFD simulations 
for  the  quantitative  analysis  of  the  turbulent  flow fields  are  then  performed.  The  correlations 
between local velocity fluctuations and pressure fluctuations near the microphones are investigated 
and  compared  to  experimental  results.  Among  steady  CFD  simulations  the  RNG  k-ε  model 
compared best to experimental data, however steady solutions cannot always be delivered, transient 
DES have been performed to provide frequency spectra which show that prominent features of the 
spatial frequency behavior are well captured. The position of the shear layers, the separation and the 
combination of the turbulent regions can be observed easily. The comparison of the experimentally 
and  numerically  generated  frequency  spectra  offer  the  possibility  to  find  out  where  CFD 
simulations are effective and it shows that the simulation gives results approximately equivalent to 
the experimental results.

For the geometry and mesh generation the software tool GAMBIT is used. All CFD simulations 
have been performed on a Linux cluster at the Austrian Institute of Technology.

This thesis was undertaken within the 'TUNICA-Project', which is a collaboration of the Austrian 
Institute of Technology, an industrial partner and the Vienna University of Technology. This work 
was supported by the Austrian Research Promotion Agency (FFG). The experimental and numerical 
results of the TUNICA project have been presented at national as well as international  conferences.



Zusammenfassung

Die  numerische  Strömungsmechanik,  auf  englisch  Computational  Fluid  Dynamics  (CFD) 
beschäftigt  sich  mit  der  numerischen  Behandlung  von  Strömungsvorgängen.  Fast  jedes 
Strömungsphänomen  kann  mithilfe  der  Navier-Stokes  Gleichungen,  die  das  Newtonsche 
reibungsbehaftete  Fluid  beschreiben,  formuliert  werden.  Um  ein  CFD  Problem  behandeln  zu 
können,  ist  es  notwendig  die  Navier-Stokes  Gleichungen  zu  lösen.  Es  gibt  verschiedene 
kommerzielle CFD Software Pakete, wie z.B. FLUENT, mit dem alle numerischen Simulationen in 
dieser Diplomarbeit durchgeführt wurden.   

Ziel des TUNICA Projektes ist die Untersuchung von Strömungsfeldern und Turbulenzgraden im 
Bereich  von  Mikrofonen,  die  wie  in  diesem  Fall  in  Fahrzeugen  zum  Freisprechen  verwendet 
werden. Diese Mikrofone sind an den üblichen Montagepunkten in Fahrzeugen allerdings oft der 
direkten Luftströmung  der Klimaanlage ausgesetzt, was die Qualität der Sprachaufnahme mindert 
und eine störungsfreie Kommunikation verhindert. Daher ist es wichtig die Strömungsverhältnisse 
im Innenraum des Fahrzeugs für den Hersteller nachvollziehbar zu machen.  Für die Analyse der 
Strömungsfelder kommt ein Testwindkanal zum Einsatz, wobei der Turbulenzgrad der Strömung 
durch den Einbau von Turbulenzgeneratoren  im Windkanal  gezielt  erhöht wird.  Die Mikrofone 
können dann fortan unter definierten turbulenten Strömungsbedingungen untersucht werden,  die 
den Bedingungen im Fahrzeug entsprechen.

Diese Diplomarbeit beschäftigt sich mit der Analyse der Turbulenzgrade und -spektren, die  durch 
verschiedene Turbulenzgeneratoren in der Strömung erzeugt werden, mittels CFD Simulationen. 
Die  Geometrie-  und  Netzerstellung  der  verschiedenen  Rechengeometrien  erfolgte  mit  dem 
Softwaretool  GAMBIT.  Zuerst  werden  stationäre  Simulationen  für  jeden  Turbulenzgenerator 
durchgeführt,  um das  Verhalten  der  turbulenten  Strömung  zu  untersuchen.  Die  Ergebnisse  der 
Geschwindigkeitskomponenten und der turbulenten kinetischen Energie aus den CFD Simulationen 
können  mit  experimentellen  Ergebnissen  verglichen  werden.  Für  eine  quantitative  Analyse  der 
turbulenten Strömung werden zusätzlich instationäre Simulationen durchgeführt.  Die Korrelation 
zwischen lokalen Geschwindigkeitsfluktuationen und Druckschwankungen in Nähe der Mikrofone 
ist  dabei  von  Interesse,  wobei  ebenfalls  für  einen  Vergleich  experimentelle  Ergebnisse  zur 
Verfügung stehen. Von den stationären Simulationen lieferte das RNG k-ε Modell Ergebnisse, die 
am besten mit den experimentell ermittelten Werten  übereinstimmen. Stationäre Lösungen können 
jedoch  nicht  für  jeden  Turbulenzgenerator  simuliert   werden.  Zusätzlich  wurden  instationäre 
Detached Eddy Simulationen (DES) durchgeführt.  Aus der DES ergeben sich Frequenzspektren, 
die  mit  den  Frequenzspektren  aus  dem  Experiment  verglichen  wurden.   Aus  den  simulierten 
Frequenzspektren lassen sich die Strömungs-charakteristiken, wie die Position der Scherschichten 
oder Strömungsablösung gut ablesen. Der Vergleich der Frequenzspektren aus der Simulation mit 
denen aus dem Experiment zeigt in wann CFD Simulationen effektiv sind und dass die simulierten 
Ergebnisse in etwa den experimentellen entsprechen.  

Die CFD Simulationen wurden alle an einem Linux Cluster am Austrian Institute of Technology 
durchgeführt.    

Diese Diplomarbeit wurde im Rahmen des TUNICA Projektes, unter Zusammenarbeit des Austrian 
Institute  of  Technology,  einem  industriellen  Partner  und  der  Technischen  Universität  Wien 
durchgeführt.  Das  TUNICA  Projekt  wurde  als  Bridge  Projekt  von  der  Österreichischen 
Forschungsförderungsgesellschaft  gefördert.  Die  experimentellen  und  numerischen  Ergebnisse 
wurden sowohl auf nationalen als auch internationalen Fachtagungen vorgestellt und präsentiert. 
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Introduction 1

 1  Introduction

 1.1 Overview of the TUNICA Project
Microphones  are  used  in  vehicles  for  many  different  purposes,  such  as  voice  recognition, 
intercommunication and handsfree kits. First of all, they should be optimally positioned and they 
should adapt flexibly to the design of the vehicle. The microphone is normally set up next to the air 
conditioner,  which  decreases  the  quality  of  the  voice  recording  and  prevents  interference  free 
communication. In the course of the research project TUNICA flow fields as well as the degrees of 
the turbulence with regard to microphones are investigated experimentally and numerically.  The 
aim of this research has been to make the flow fields in vehicle interiors more understandable for 
producers of microphones. 

For the analysis  of these fluid flow noises and the development  of new microphones  industrial 
partners use a wind tunnel, which has low turbulence due to its initial design. The main objective of 
the TUNICA project is the design and the installation of different turbulence generators in the feed 
of these wind tunnels, experimental surveying and numerical modeling of the stream turbulence and 
its influence on the microphones. Finally, a variable set of turbulence generators are adapted in the 
test tunnel, which produces the degrees of turbulence and its spectra on purpose. As a result, the 
microphones can be investigated under defined turbulence stream conditions, which match all the 
conditions in the vehicle.

It is essential for the production and setting up of microphones in the inside of vehicle interior to 
recognize flow conditions in order to offer the ideal quality of the voice recording and interference 
free communication. Research projects dealing with flow simulation research are important for the 
investigation of the interior stream of present and prospective vehicles. This method is used in order 
to find the ideal position for the microphone with regard to fluid engineering and in order to provide 
the expected degrees of turbulence for the wind tunnel. The wind channel can contribute to the 
fluidic optimization of microphones before they are totally finished and installed. As a result, the 
final products and their acoustic quality can be optimized.
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 2 Theory of Turbulent Flow
Most  flows  encountered  in  practice  are  turbulent  and  therefore  require  different  treatment  in 
comparison to laminar or non-viscous flows. Turbulence occurs as a result of instabilities of a flow. 
An instability occurs if a perturbation of the flow grows with time. Turbulent flows are highly 
unsteady,  very  difficult  to  predict  in  detail  and  always  three-dimensional.  The  time-averaged 
velocity may be a function of only two coordinates, but the instantaneous field fluctuates rapidly in 
all  three  spatial  dimensions.  Turbulent  flows  contain  a  great  deal  of  vorticity.  Indeed  vortex 
stretching is one of the principal mechanisms by which the intensity of turbulence is increased. The 
turbulence increases the rate at which conserved quantities are stirred. Stirring is a process in which 
parcels of fluid with differing concentrations of at least one of the conserved quantities are brought 
into contact. The actual mixing is accomplished by diffusion. This process is often called turbulent 
diffusion.  As  mentioned  before,  turbulence  brings  fluids  of  differing  momentum  content  into 
contact. The reduction of the velocity gradients due to the action of viscosity reduces the kinetic 
energy  of  the  flow  and  mixing  is  therefore  a  dissipative  process.  The  energy  is  irreversibly 
converted into internal energy of the fluid. It has been shown in recent years that turbulent flows 
contain coherent structures – repeatable and essentially deterministic events that are responsible for 
the mixing. However, the random component of turbulent flows causes these events to differ from 
each other in size,  strength and time interval  between occurrences,  making study of them very 
complicated. Turbulent flows fluctuate on a broad range of length and time scales. This property 
makes direct numerical simulation of turbulent flows very difficult.

All  of  these  properties  explained  in  the  last  paragraph  are  important.  The  effects  produced by 
turbulence may or may not be desirable, depending on the application. Engineers need to be able to 
understand and predict these effects in order to achieve good designs. In some cases it is possible to 
control the turbulence, at least in part. 

In the past, the primary approach to studying turbulent flows was experimental. Overall parameters 
such  as  the  time-averaged  drag  or  heat  transfer  are  relatively  easy  to  measure  but  as  the 
sophistication  of  engineering  devices  increases,  the  levels  of  detail  and accuracy  required  also 
increase, as does cost and the expense and difficulty of making measurements. To optimize a design 
it  is  usually  necessary to  understand the  source  of  the  undesired  effects;  this  requires  detailed 
measurements that are costly and time-consuming. Some types of measurements, for example, the 
fluctuating pressure within a flow are almost impossible to make at the present time. Others cannot 
be made with the required precision. As a result, numerical methods have an important role to play. 
[1, 2]

 2.1 Navier-Stokes-Equation
The Navier-Stokes-Equation (2.1) is one of the most important equations in fluid mechanics since it 
describes the motion of a fluid. It is a vector differential equation derived from Newton's Law of 
Motion and by supplementation of the continuity equation. This provides a fundamental, and very 
general, momentum balance that is valid at all of any fluid flow. 

 Du
Dt
=−∇ p g−∇×∇×u=−∇ p g−∇ 2×u equation (2.1)

The  Navier-Stokes-Equation  here  is  written  in  its  vectorial  form  (u=(u,v,w))  and  represents 
therefore a system of three nonlinear second order partial differential equations. Together with the 
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continuity  equation  they  form  a  set  of  four  equations  which  is  complete  for  incompressible 
Newtonian flows, i.e., in principle they are sufficient to solve for the four dependent variables p,u,v 
and w.  Every kind of flow can be described by the Navier-Stokes-Equation by using the right initial 
and boundary conditions. The proper boundary conditions for the velocity on a rigid boundary are

un = ut = 0  equation (2.2)

where  un is  the normal  component  of  the  velocity  relative  to  the solid  boundary,  and  ut   is  its 
tangential component. These conditions are also termed the no-penetration (un = 0) and no-slip (ut = 
0) viscous boundary conditions. When the region occupied by the fluid is not closed, i.e., the fluid is 
not completely confined, additional conditions are still required on some surfaces which completely 
enclose the domain of the solution. These may represent some some real physical surfaces or they 
may be chosen arbitrarily, provided the velocity on them is known. The pressure which is also a 
dependent variable, requires boundary conditions too. 

The form containing ∇×∇×u is a standard vectorial  form for the Navier-Stokes equations. 
The other form derives from taking ∇×∇×u and using the equation of continuity, ∇⋅u=0
for incompressible flows. [3]

For the physical interpretation of the Navier-Stokes equation we divide equation 2.1 and express the 
vectorial equation system as follows

∂ u
∂ t
local
accel

u∇u
convective

accel


total acceleration

= −1
 ∇ p

pressure forces

 u
viscous forces

 1
 f

body forces

equation (2.3)

Here, ν is the kinematic viscosity, the ratio of viscosity μ to density ρ, and f  represents other body 
forces. It is worthwhile to consider the Navier-Stokes equation term-by-term and ascribe specific 
physical meaning to each of these terms. This understanding is important for simplifying of the 
equations to treat specific physical flow situations. By knowing the physics represented by these 
terms and what physics is not included in a problem, it is easy to determine what terms can be 
omitted from the equation to simplify the analysis. The characterization of the terms is carried out 
in equation 2.3. The left-hand side of this equation is the substantial derivative of the velocity u and 
these terms are often called the 'inertial terms' in the context of the Navier-Stokes equations, and 
they contain of two main contributions: local acceleration and convective acceleration. They can be 
viewed  as  time-rate  of  change  of  momentum  per  unit  mass.  
The  first  term on  the  right-hand  side  of  equation  2.3  represents  normal  surface  forces  due  to 
pressure, 'pressure forces', but in the present form this is actually a force per unit mass as it must be 
to be consistent with the time rate of change of momentum per unit mass one the left-hand side. To 
understand the behavior of solutions to the Navier-Stokes equations it is essential to thoroughly 
treat the unique phenomena arising from the viscous terms.  These terms are:

u=u xxu yyuzz equation (2.4)

Viscosity arises at the molecular level, and the terms given above are associated with molecular 
transport  (i.e.,  diffusion)  of  momentum.  In  general,  second  derivative  terms  in  a  differential 
equation are usually associated with diffusion, and in both physical and mathematical contexts this 
represents a smearing, or smoothing, or mixing process. Diffusive action of the viscosity dissipates 
mechanical  energy,  ultimately  converting  it  to  thermal  energy.  In  turn,  this  results  in  entropy 
increases and loss of usable energy. Thus, we see that the viscous terms in the momentum equations 
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render them non-conservative, and appreciable pressure, shearing or body forces must be applied 
continuously to preserve the fluid motion. [4] 

 2.1.1 Reynolds number
The Reynolds number Re is a dimensionless parameter and one of the most important parameters in 
all fluid dynamics.  The Reynolds number is named after  Osborne Reynolds who proposed it in 
1883. This parameter gives qualitative  information about the flow field, whether it is laminar or 
turbulent. It is defined as the ratio of the inertial forces (Uρ) to the viscous forces (μ/L). U, L, µ and 
ρ are the reference values for velocity, length, density and dynamic viscosity.

Re=inertial force 
viscous force

=
UL 
 equation (2.5)

And in terms of kinematic viscosity ν = (μ/ρ) the Reynolds number is given by

Re=UL
  equation (2.6)

One  of  the  main  efforts  in  theoretical  analysis  of  fluid  flow  is  to  predict  the  changes  in  the 
qualitative nature of the flow as Re increases. If Re is large the diffusive terms (viscous force terms) 
will be small,  hence the behavior of the flow will be dominated by the inertial  forces. At high 
Reynolds numbers flows tend to be turbulent. [5, 4] 

The  importance  of  the  Reynolds  number  can  be  demonstrated  by  regarding  the  Reynolds  
Experiment. 
Consider the experimental apparatus shown in Fig.2.1. It consists of a small tube inserted inside a 
large transparent pipe. The inner tube has a small diameter and its opening is located far from the 
bend, i.e., LB is sufficiently long to guarantee fully developed flow. The fluid in the inner tube is the 
same as that in the outer pipe, and they have the same ρ and  μ. However the inner fluid is dyed 
while the outer one is clear. In all experiments the velocities of the two fluids are adjusted so as to 
have a little shear strain between them as possible.  

Figure 2.1.:  Reynolds Experiment using water in a pipe to study the transition to turbulence, (a) low-speed 
flow, (b) high-speed flow [4]

As the experiment proceeds, a dyed stream cylinder is seen to form downstream from the opening 
of the inner tube. The stream tube which makes the envelope of this stream cylinder is well defined, 
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and the dye is restricted to the inside of this stream tube. The dye begins to spread out by molecular 
diffusion only far downstream.

The  experiment  is  repeated  for  various  fluids  and  for  various  velocities  and  all  these  can  be 
summarized  using  the  Reynolds  number  as  the  single  parameter  involved.  It  is  found that  the 
description given above fits flows whose Reynolds number, calculated using the pipe diameter D as 
the characteristic length, is below a certain numerical value, namely,

ReD=
VD

2 000 equation (2.7)

where V is the average velocity in the pipe, i.e., the flowrate per unit cross-sectional area. Above 
this Reynolds number the envelope of the dyed stream tube is not clearly defined. The dye is seen to 
mix with the outer fluid right from the opening of the inner tube. The laminar character of the flow 
is lost and the flow becomes turbulent.

One finds out that the momentum and continuity equations, with time-independent solutions for Re 
<  2000,  do  not  have  such  time-independent  solutions  for  Re >  2000.  Although the  boundary 
conditions remain time-independent, the resulting flow persist to be time-dependent, non-periodic 
and non-decaying. The transition to turbulence is illustrated in Figure 2.2.:

Figure 2.2.: Transition to turbulence in spatially-evolving flow [4]

If one was to plot the velocity of the fluid at a given point in the pipe, a pattern similar to that of 
Figure 2.3. would result. As seen, there are small rapid velocity fluctuations about some average 
value. This average value may or may not depend on time. The velocity then is a superposition of 
an average velocity u and a velocity fluctuation u' ,

u=uu ' equation (2.8)

Figure 2.3.: Velocity in turbulent flow [6]
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Similar relations may be written for the other velocity components as well as for other  properties, 
such as the pressure, the temperature, etc.:

p= p p ' , T=TT ' . equation (2.9)

The average quantities are defined according to the form

q= 1
 t ∫t

tt

q dt= 1
 t ∫t

tt

qq ' dt equation (2.10)

and

q= ∫
t

tt

q ' dt=0 equation (2.11)

i.e., the time average of the fluctuation vanishes. [3] 

 2.1.2 Convection
Convection  is  one  of  the  major  modes  of  mass  and  heat  transfer.  There  exist  two  types  of 
convection, forced  convection and natural convection. Convection occurs when a system becomes 
unstable  and  therefore  begins  to  mix  by  the  movement  of  mass.  The  onset  of  convection  is 
characterized by the Rayleigh number Ra, a dimensionless parameter.

Ra=g L3
0

 equation (2.12)

Where  g is  the  acceleration  of  gravity,  Δρ is  the  density  variation  within  the  domain,  ρ0 is  a 
reference density and  κ  is the  thermal diffusivity.  Buoyancy-driven or natural  convection is that 
density  variations  interacting  with  gravity  produces  a  body  force.  That  may  modify  the  flow 
considerably and may be the principal driving force in the flow. The relative importance of forced 
convection to buoyancy effects is measured by the ratio of the Rayleigh and Reynolds numbers. If 
Re/Ra>104, the effects of natural convection may be ignored.  In a zero-gravity environment exist 
no  buoyancy  forces  and  therefore  natural  convection  processes  are  not  possible.  In  forced 
convection the heat- mass transfer is due to movement in the fluid that is caused by many other 
forces, such as a pump. [1]

 2.1.3 Turbulent Kinetic Energy 
The turbulent kinetic energy k is one of the most important variables to study the turbulence of a 
flow.  As  demonstrated  above  the  velocity  components  and  pressure  are  split  into  a  mean  and 
fluctuating component:   

p= p p '  , u=uu ' equation (2.13)

Introducing this concept to the Navier-Stokes equation, one gets the Reynolds-averaged Navier-
Stokes equations, which is demonstrated in section 2.3.1.. The terms that involve the products of the 
fluctuating  velocities  act  as  turbulent  stresses,  also  called  the  Reynolds  stresses,  on  the  mean 
velocity  components.  The  Reynolds  averaged  Navier-Stokes  equation  for  a  stationary, 
incompressible flow of an Newtonian fluid can be written as:
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
∂ u j ui

∂ x j
= f i

∂
∂ x j [−pij ∂ ui

∂ x j


∂ u j

∂ xi −u i
, u j

, ]  equation (2.14)

As it is explained later, it is general not possible to derive governing equations for the Reynolds 
stresses, because of the closure problem. Hence several turbulence models have been introduced, 
that  are  described  in  sections  2.3.1.1-2.3.1.3.  Since  in  laminar  flows,  energy  dissipation  and 
transport of mass, momentum, and energy normal to the streamlines are mediated by viscosity, it is 
natural to assume that the effect of turbulence can be represented as an increased viscosity. This 
leads to the eddy-viscosity model for the Reynolds stresses. The Reynolds stresses are calculated 
from 

−ui
,u j

,=t ∂ u i

∂ x j


∂ u j

∂ xi −2
3

k ij equation (2.15)

where k is the turbulent kinetic energy:

k=1
2

u i
, ui

,=1
2 u x

, u x
,u y

, uy
,uz

, uz
,  equation (2.16)

and t is the eddy-viscosity. [6, 1]

 2.2 Discretization

 2.2.1 Discretization Methods
After selecting the mathematical method, i.e. the set of partial differential or integro-differential 
equations  governing  a  complex  fluid  dynamics  problem  the  solution  process  requires  the 
introduction of a suitable discretization method. Discretization means that the differential equations 
are  approximated  by a  system of  algebraic  equations  for  the  variables  at  some  set  of  discrete 
locations in space and time. Several methods have been developed and are currently in use. Most 
important  approaches  are  finite  differences  (FD),  finite  volume  (FV)  and  finite  element  (FE) 
methods. In this section the basic ideas of these discretization methods will be presented. [6, 1]

 2.2.1.1 Finite Difference Method 

The  finite  difference  method  (FD)  is  the  the  oldest  method  for  numerical  solution  of  PDE's, 
believed to have been introduced by Euler in the 18th century. It is also the easiest method to use for 
simple geometries. The starting point is the conservation equation in differential form. The solution 
domain  is  covered  by a  grid.  At  each  grid  point,  the  differential  equation  is  approximated  by 
replacing the partial derivatives by approximations in terms of the nodal values of the functions. 
The result is one algebraic equation per grid node, in which the variable value at that and a certain 
number of neighbor nodes appear as unknowns. [1]

Taylor  series  expansion or polynomial  fitting  is  used to  obtain approximations  to  the first  and 
second derivatives of the variables with respect to the coordinates. When necessary, these methods 
are also used to obtain variable values at locations other than grid nodes (interpolation). [1]
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On structured grids, the FD method is very simple and effective.  It is especially easy to obtain 
higher–order schemes on regular grids. The disadvantage of FD methods is that the conservation is 
not enforced unless special care is taken. Also, the restriction to simple geometries is a significant 
disadvantage in complex flows. [1]

Figure 2.4.: An example of a 1D (above) and 2D (below) Cartesian grid for 
FD methods (full symbols denote boundary nodes and open symbols 

denote computational nodes) [1]  

 2.2.1.2 Finite Volume Method

The FV method  uses  the  integral  form of  the conservation  equations  as  its  starting  point.  The 
solution domain is subdivided into a finite number of contiguous control volumes (CVs), and the 
conservation equations are applied to each CV. At the centroid of each CV lies a computational 
node at which the variable values are to be calculated.  Interpolation is used to express variable 
values at the CV surface in terms of the nodal (CV-center) values. Surface and volume integrals are 
approximated using suitable quadrature formulas. As a result, one obtains an algebraic equation for 
each CV, in which a number of neighbor nodal values appear. [1]

The FV method can accommodate any type of grid, so it is suitable for complex geometries. The 
grid defines only the control volume boundaries and need not be related to a coordinate system. The 
method is conservative by construction, so long as surface integrals (which represent convective 
and diffusive fluxes) are the same for the CVs sharing the boundary. [1]

The FV approach is perhaps the simplest to understand and to program. All terms that need be 
approximated have physical meaning which is why it is popular with engineers. [1]

The disadvantage of FV methods compared to FD schemes is that methods of order higher than 
second are more difficult to develop in 3D. This is due to the fact that the FV approach requires 
three levels of approximation: interpolation, differentiation and integration. [1] 
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Figure 2.5.: A typical CV and the notation used for a Cartesian 2D grid [1]

Figure 2.6.: A typical CV and the notation used for a Cartesian 3D grid [1]

 

 2.2.1.3 Finite Element Method

The FE method is similar to the FV method in many ways. The domain is broken into a set of 
discrete volumes or finite elements that are generally unstructured; in 2D, they are usually triangle 
or  quadrilaterals,  while  in  3D tetrahedra  or  hexahedra  are  most  often used.  The  distinguishing 
feature of FE methods is that the equations are multiplied by a  weight function before they are 
integrated over the entire domain. In the simplest FE methods, the solution is approximated by a 
linear shape function within each element in a way that guarantees continuity of the solution across 
element  boundaries.  Such  a  function  can  be  constructed  from its  values  at  the  corners  of  the 
elements. The weight function is usually of the same form. [1]

This approximation is then substituted into the weighted integral of the conservation law and the 
equations to be solved are derived by requiring the derivative of the integral with respect to each 
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nodal value to be zero; this corresponds to selecting the best solution within the set of allowed 
functions (the one with minimum residual). The result is a set of non-linear algebraic equations.[1]

An important advantage of finite element methods is the ability to deal with arbitrary geometries. 
The  grids  are  easily  refined;  each  element  is  simply  subdivided.  Finite  element  methods  are 
relatively easy to analyze mathematically and can be shown to have optimality properties for certain 
types of equations. The principal drawback, which is shared by any methods that uses unstructured 
grids, is that the matrices of the linearized equations are not as well structured as those for regular 
grids making it more difficult to find efficient solution methods. [1]

 2.2.2 Discretization Errors
Discretization errors are defined as the difference between the exact solution of the conservation 
equations and the exact solution of the algebraic system of equations obtained by discretizing the 
differential equations. 

Since  the  discretized  equations  represent  approximations  to  the  differential  equation,  the  exact 
solution of the latter, which we shall denote by  , does not satisfy the differential equation. The 
imbalance, which is due to truncation of the Taylor series, is called truncation error. For a grid with 
a reference spacing h, the truncation error h  is defined as: 

L =Lh h=0  equation (2.17)

where L is a symbolic operator representing the differential equation and Lh  is a symbolic operator 
representing the algebraic equation system obtained by discretization on grid h, which is given by 
Eq. (2.18). 

A=Q equation (2.18)

A is the square sparse coefficient matrix,  Φ is a vector containing the variable values at the grid 
nodes of h and Q contains all the terms which do not contain unknown variable values.

The exact solution of the discretized equations on grid h, h , satisfies the following equation: 

Lhh=A−Q h=0.  equation (2.19)

It differs from the exact solution of the partial differential equation by the discretization error, h
d , 

i.e.: 

=hh.
d   equation (2.20)

From Eqs. (2.17) and (2.19) one can show that the following relation holds for linear problems: 

Lhh
d=−h. . equation (2.21)

This equation states that the truncation error acts as a source of the discretization error, which is 
convected and diffused by the operator Lh. Exact analysis is not possible for non-linear equations, 
but we expect similar behavior; in any case, if the error is small enough, we can locally linearize 
about  the  exact  solution  and  what  we  will  say  in  this  section  is  valid.  Information  about  the 
magnitude and distribution of the truncation error can be used as a guide for grid refinement and 
can help achieve the goal of having the same level of the discretization error everywhere in the 
solution domain. However, as the exact solution   is not known, the truncation error cannot be 
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calculated exactly. An approximation to it may be obtained by using a solution from another (finer 
or coarser) grid. The estimate of the truncation error thus obtained is not always accurate but it 
serves the purpose of pointing to regions that have large errors and need finer grids. For sufficiently 
fine grids, the truncation error (and the discretization error as well) is proportional to the leading 
term in the Taylor series: 

h
d≈h pH .  equation (2.22)

where  H stands for higher-order terms and a depends on the derivatives at the given point but is 
independent of h. The discretization error can be estimated from the difference between solutions 
obtained on systematically refined (or coarsened) grids. Since the exact solution may be expressed 
as (see eq. (2.20)): 

=hhpH=2h2hpH ,  equation (2.23)

the exponent p, which is the order of the scheme, may be estimated p as follows: 

p=
log2h−4h

h−2h 
log2

. equation (2.24)

From Eq. (2.22) it also follows that the discretization error on grid h can be approximated by: 

h
d≈
h−2h

2 p−1
. equation (2.25)

If the ratio of the grid sizes on successive grids is not two, the factor 2 in the last two equations 
needs to be replaced by that ratio.

When solutions on several grids are available, one can obtain an approximation of   which is 
more accurate  than the solution  h  on the finest grid by adding the error estimate (2.25) to 
h ; this method is known as Richardson extrapolation. It is simple and, when the convergence is 

monotonic,  accurate.  When a number of solutions are available,  the process can be repeated to 
improve the accuracy further. 

It is shown in the paragraphs shown above that it is the rate at which the error is reduced when the 
grid is refined that matters, not the formal order of the scheme as defined by the leading term in the 
truncation error. Equation (2.24) takes this into account and returns the correct exponent p. [1]

 2.2.3 Consistency
The discretization  should become exact as the grid spacing tends to zero. The difference between 
the discretized equation and the exact one is called the truncation error. It is usually estimated by 
replacing the nodal values in the discrete approximation by a Taylor series expansion about a single 
point. As a result one recovers the original differential equation plus a remainder, which represents 
the truncation error. For a method to be consistent, the truncation error must become zero when the 
mesh spacing  t 0 and/or  xi0 . The truncation error is usually proportional to a power 
of the grid spacing  x i  and/or the time step  t . If the most important term is proportional to 
 x n  or   t n we  call  the  method  an  nth-order  approximation;  n  >  0  is  required  for 

consistency.  Ideally,  all  therms should be discretized with approximations of the same order of 
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accuracy; however, some terms (eg. convective terms in high Reynolds number flows or diffusive 
terms  in  low  Reynolds  number  flows)  may  be  dominant  in  a  particular  flow  and  it  may  be 
reasonable  to  treat  them  with  more  accuracy  than  the  others.
Some discretization methods lead to truncation errors which are functions of the ratio of  xi  to 
 t  or vice versa. In such a case the consistency requirement  is  only conditionally fulfilled: 
 x i  and  t  must be reduced in a way that allows the appropriate ratio to go to zero.  Even if 

the approximations are consistent, it does not necessarily mean that the solution of the discretized 
equation system will become the exact solution of the differential equation in the limit of small step 
size. For this to happen, the solution method has to be stable; which is defined below. [1]

 2.2.4 Stability
A numerical solution method is said to be stable if it does not magnify the errors that appear in the 
course of numerical solution process. For temporal problems, stability guarantees that the method 
produces a bounded solution whenever the solution of the exact equation is bounded. For iterative 
methods a  stable is one that does not diverge. Stability can be difficult to investigate, especially 
when  boundary  conditions  and  non-linearities  are  present.  For  this  reason,  it  is  common  to 
investigate the stability of a method for linear problems with constant coefficients without boundary 
conditions. Experience shows that the results obtained in this way can often be applied to more 
complex  problems  but  there  are  notable  exceptions.
The most widely used approach to studying stability of numerical schemes is the von Neumanns's  
method. We shall describe it briefly for one scheme in the next paragraphs. 

The  von Neumann's  method  is  based  on  the  Fourier  decomposition  of  the  error.  The  discrete 
Fourier-series for the initial condition at the time n=0 in the interval of x∈[0,1] can be stated as:

 j
0=∑

m=1

J

am ei m j x=∑
m=1

J

am e im j ,  for j = 1,2,3,...,J equation (2.26)

while  m=m x∈ℝ and  am∈ℂ . The space is defined by  j x , the wave number by 
k=m and the wave length is given by =2/k=2/m . 

for  linear  partial  differential  equations,  only  the  temporal  Fourier-series  are  needed.  Since  the 
modes are linear independent from each other, working with one mode is sufficient for the method. 
The general solution of the different equation is given by superposition. For the temporal expansion 
of  j the separation ansatz

 n
j
=G n 0

j
=a G n e i j

 equation (2.27)

is used. G∈ℂ is the separated time-dependency of the spatial mode of interest and represents the 
enhancement factor G at one time step:

G=
 j

n1

 j
n . equation (2.28)

The amplitude of the mode is amplified about the factor (G)n after n time steps. The enhancement 
factor G certainly depends on the wave number (θ respectively) and some other parameters. 
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The separation-ansatz should be implemented in the discretized differential equation of interest in 
order to checking the stability of the used discretization. Since it is necessary that the discretization 
scheme should be stable the error must not grow which leads to the condition for the enhancement 
factor:

∣G∣1 . equation (2.29)

[7]  

When  solving  complicated,  non-linear  and  coupled  equations  with  complicated  boundary 
conditions, there are few stability results so we may have to rely on experience and intuition. Many 
solutions schemes require that the time step be smaller than a certain limit or that under relaxation 
be used. [1]

 2.2.5 Convergence
A numerical method is said to be convergent if the solution of the discretized equations tends to the 
exact solution of the differential equation as the grid spacing tends to zero. For linear initial value 
problems,  the  Lax equivalence  theorem states  that  “given  a  properly  posed  linear  initial  value 
problem and a finite difference approximation to it that satisfies the consistency condition, stability 
is  the  necessary  and  sufficient  condition  for  convergence”.  Obviously,  a  consistent  scheme  is 
useless unless the solution method converges.

For non-linear problems which are strongly influenced by boundary conditions, the stability and 
convergence of a method are difficult to demonstrate. Therefore convergence is usually checked 
using numerical experiments, i.e., repeating the calculation on a series of successively refined grids. 
If the method is stable and if all approximations used in the discretization process are consistent, we 
usually find that the solution does converge to a  grid-independent solution. For sufficiently small 
grid sizes, the rate of convergence is governed by the order of principal truncation error component. 
This allows us to estimate the error in the solution. [1]
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 2.3 Turbulence Models
All numerical  methods that are described in the following sections require the solution of some 
form the  conservation  equation  for  mass,  momentum,  energy,  or  chemical  species.  The  major 
difficulty is that turbulent flows contain variations on a much wider range of length and time scales 
than laminar flows. So, even though they are similar to the laminar flow equations, the equations 
describing turbulent flows are usually more difficult and expensive to solve. [1]

 2.3.1 RANS (Reynolds-Averaged Navier-Stokes) Models
Engineers are normally interested in knowing just a few quantitative properties of a turbulent flow, 
such as the average force on a body, the degree of mixing between two incoming streams of fluid, 
or  the  amount  of  a  substance  that  has  reacted.  
In Reynolds-averaged approaches  to  turbulence,  all  of  the unsteadiness is  averaged out,  i.e.  all 
unsteadiness is regarded as part of the turbulence. On averaging, the non-linearity of the Navier-
Stokes equations gives rise to terms that must be modeled. The complexity of turbulence make it 
unlikely that any single Reynolds-averaged model will be able to represent all turbulent flows, so 
turbulence models should be regarded as engineering approximations rather than scientific laws.

When the flow becomes turbulent every variable  can be written as the sum of a time-averaged 
value and a fluctuating value, i.e.

x i , t =x i ' xi ,t   equation (2.30)

where x i= lim
T ∞

1
T ∫0

T

x i , t dt  equation (2.31)

Here  t is the time and T is the averaging interval.  This interval must be large compared to the 
typical time scale of the fluctuations;  thus, we are interested in the limit of  T→∞. If T is large 
enough,  does  not  depend  on  the  time  at  which  the  averaging  is  started.
If  the  flow is  unsteady,  time  averaging  cannot  be  used  and  it  must  be  replaced  by  ensemble 
averaging. This concept is illustrated in Figure 2.7.. 

x i , t = lim
N ∞

1
N ∑n=1

N

x i , t   equation (2.32)

where  N is the number of members of the ensemble and must be large enough to eliminate the 
effects of the fluctuations.  This type of averaging can be applied to any flow. We use the term 
Reynolds averaging to refer to any of these averaging processes; applying Reynolds-averaging on 
the Navier-Stokes equations yields the Reynolds-averaged Navier-Stokes (RANS) equations.
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Figure 2.7.: Time averaging for a statistically steady flow (left) and ensemble averaging for an unsteady 
flow (right) [1]

From Eq. (2.31), it  follows that   '=0 . Thus, averaging any linear term in the conservation 
equations simply gives the identical term for the averaged quantity. From a quadratic nonlinear term 
we get two terms, the product of the average and a covariance:

u i=u iui
, ' =uiu i

,, . equation (2.33)

The last term is zero only if the two quantities are uncorrelated; this is rarely the case in turbulent 
flows  and,  as  a  result,  the  conservation  equations  contain  terms  such  as  u i

, u j
, ,  called  the 

Reynolds stresses,  and u i
, , , known as the turbulent scalar flux, among others. These cannot 

be  be  represented  uniquely  in  terms  of  the  mean  quantities.

The averaged continuity  and momentum equations  can,  for  incompressible  flows without  body 
forces, be written in tensor notation and Cartesian coordinates as:

∂ ui
∂ x i

=0  equation (2.34)

∂ ui
∂ t

 ∂
∂ x j

u i u ju i
, u j

, =−∂ p
∂ x i


∂ij

∂ x j
, equation (2.35)

where the ij are the mean viscous stress tensor components:

ij=
∂ ui

∂ x j


∂ u j

∂ x i
 . equation (2.36)

Finally the equation for the mean of a scalar quantity can be written:

∂ 
∂ t

 ∂
∂ x j

u ju j
, ,= ∂

∂ xi
 ∂

∂ x j
 . equation (2.37)

The occurrence of pressure of the Reynolds stresses and turbulent scalar flux in the conservation 
equations means that the latter are not closed, that is to say, they contain more variables than there 
are  equations.  Closure  requires  use  of  some  approximations,  which  usually  take  the  form  of 
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prescribing the Reynolds stress tensor and turbulent scalar fluxes in terms of the mean quantities. It 
is possible to derive a closed set of exact equations.  To close the equations we must  introduce 
turbulence models. The widely used turbulence models are introduced in the next paragraphs. [1]

 2.3.1.1 Standard k-ε-Model

The Two-Equation, k-ε-Model calculates the turbulent viscosity using the ansatz:

t=C
k 2


, C=0.09 . equation (2.38)

The model  assumes  that  the  turbulent  viscosity,  t=t ,  is  related  to  the  turbulent  kinetic 
energy, k, and the dissipation rate of turbulent kinetic energy per unit volume, ε, where 

= ∂ ui
,

∂ x k 
2

 equation (2.39)

and C is  an  empirical  constant  determined  from experiments.  This  model  is  equivalent  to  a 
specification of a length scale

l t=C D
k 3 /2


 equation (2.40)

and a time scale

t=C t
k
  equation (2.41)

where both k and ε are determined by semi-empirical turbulent transport equations. The equations 
for  k and ε are modeled as

Dk
Dt
=1


∂
∂ x l [

t

k

∂ k
∂ x l ]

t

 ∂ U i

∂ xl


∂ U l

∂ x i ∂ U i

∂ x l
−  equation (2.42)

D
Dt
=1


∂
∂ xl [ t


∂
∂ xl ]C1t



k ∂ U i

∂ x l


∂U l

∂ x i ∂ U i

∂ x l
−

C2
2

k  equation (2.43)

where the constants are chosen to be 

C1=1.44 , C2=1.92 ,  k=1.0  and  =1.3  equation (2.44)

The equation for k is derived in a straightforward fashion from the Reynolds stress equations, but 
the ε equation has empirical roots. In fact, the lack of physical interpretation of the ε equation may 
lead  to  its  downfall  as  more  complicated  flows  are  attempted.   Also,  the  model  as  currently 
formulated does not predict accurately the transition and viscous layers near the wall. In order to 
treat these regions, wall functions or additional low Reynolds number modeling must be added to 
both the k and the ε equations. Both of these near-wall, corrections continue to undergo extensive 
study and revision. The k-ε-model is only valid for high-Reynolds number flows. The k-ε model is 
the most widely applicable model of the existing models, but with considerable deficiencies. [8, 6]
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 2.3.1.2 RNG-k-ε-Model

The RNG-k-ε-model  was  developed  using  Renormalization  group methods  by  Yakhot  et  al. to 
renormalize the Navier-Stokes equations, to account for the effects of smaller scales of motion.  The 
RNG-k-ε-model brings improvements in contrast to the Standard-k-ε-Model. The RNG approach, 
which is a mathematical technique yields an additional term in the  epsilon equation which attempts 
to account for the different scales of motion through changes to the production term. Hence, it is 
suitable  for  low  Reynolds  number  flows  than  the  Standard  k-ε-model.  The  effects  near  the 
boundaries are better calculated by using the RNG k-ε-Model in contrast to the Standard-k-ε-Model 
and the effect of swirls is included in this mathematical method. These features make the RNG k-ε-
Model more accurate and reliable for a wider class of flows. [9]

 2.3.1.3 k-ω-Model

Another two-equation model is the  k-ω model by  Wilcox. One equation formulates the turbulent 
kinetic  energy  k and the second equation describes the variable  ω –  defined as dissipation per 
turbulent kinetic  energy.   The  k-ω model uses the kinetic  energy equation from the proceeding 
section, but it is modified:

 ∂ k
∂ t
U j

∂ k
∂ x j

=ij

∂U i

∂ x j
−*k  ∂

∂ x j [*t
∂ k
∂ x j ]  equation (2.45)

The equation for the specific dissipation rate ω is given by Wilcox as:

 ∂
∂ t
U j

∂
∂ x j

=
k
ij

∂ U i

∂ x j
−2 ∂

∂ x j [t
∂
∂ x j ]  equation (2.46)

In this model the eddy-viscosity is expressed as:

t=
k
  equation (2.47)

The closure coefficients are different from those of the k-ε-model:

=5
9 , =

3
40 , *= 9

100 , *==1
2  equation (2.48)

The model performs best at low to medium Reynolds numbers. [10]

 2.3.1.4 Reynolds Stress Model (RSM)

The most complex models in common use today are Reynolds stress models which are based on 
dynamic  equations  for  the  Reynolds  stress  tensor  ij=ui

,u j
,  itself.  These  equations  can  be 

derived from the Navier-Stokes equations and are given as:

∂ij

∂ t


∂ ukij

∂ xk
=−ik

∂ u j

∂ xk
 jk

∂ u i

∂ xk ij−
ij
 ∂

∂ xk  ∂ij

∂ xk
C ijk  equation (2.49)
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The left hand side is always exact. The first two terms of the right hand side are the production 
terms and require no approximation or modeling. The following term is defined as:

ij=2
∂ ui

,

∂ x k

∂ u j
,

∂ x k
 equation (2.50)

which is the dissipation tensor. The following term: 


ij
= p , ∂ u i

,

∂ xk


∂ u j
,

∂ x k   equation (2.51)

is  often  called  the  pressure-strain  term.  It  redistributes  turbulent  kinetic  energy  among  the 
components of the Reynolds stress tensor but does not change the total kinetic energy. The last term 
is: 

C ijk=ui
,u j

, uk
, p ,u i

,ikp , u j
, ik  equation (2.52)

and is often called the turbulent diffusion. 

The dissipation, pressure-strain, and turbulent diffusion terms cannot be computed exactly in terms 
of the other terms in the equations and therefore must be modeled. The simplest and most common 
model for the dissipation term treats it as isotropic, i.e., instead of a tensor a scalar domain– the 
dissipation rate ε ,that is used in the proceeding sections - is calculated: 

ij=
2
3
ij  equation (2.53)

This means  that  an equation for the dissipation must  be solved along with the Reynolds  stress 
equations. Typically, this equation is taken to formulate the dissipation, ε, in the k-ε-model. 

In  three  dimensions,  Reynolds  stress  models  require  the  solution  of  seven  partial  differential 
equations in addition to the equations for the mean flow (six components for the Reynolds stress 
tensor – since it is symmetric - and one equation for ε). Still more equations are needed when scalar 
quantities need to be predicted. These equations are solved in a manner similar to that for the k-c 
equations. The only additional issue is that when the Reynolds-averaged Navier-Stokes equations 
are solved together with a Reynolds stress model they are even stiffer than those obtained with the 
k-ε equations and even more care is required in their solution and the calculations usually converge 
more slowly. 

While there is no doubt that Reynolds stress models have greater potential to represent turbulent 
flow  phenomena  more  correctly  than  the  two-equation  models,  their  success  so  far  has  been 
moderate. Excellent results have been obtained for some flows in which k-ε models perform badly 
(e.g., swirling flows, flows with stagnation points or lines, flows with strong curvature and with 
separation from curved surfaces, etc.); however, in some flows their performance is hardly better at 
all. There is a lot of current research in this field, and new models are often proposed. Which model 
is best for which kind of flow (none is expected to be good for all flows) is not yet clear, partly due 
to the fact that in many attempts to answer this question numerical errors were too large to allow 
clear conclusions to be reached. [1] 
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 2.3.2 Direct Numerical Simulation (DNS)
A direct  numerical  simulation  is  a  simulation  in  which the Navier-Stokes  equations  are  solved 
without using averaging or approximation other than numerical discretization whose errors can be 
estimated and controlled. In such simulations, all of the motions contained in the flow are resolved. 
The computed flow field obtained is equivalent to a short-duration laboratory experiment.

In a direct numerical simulation, in order to assure that all of the significant structures of turbulence 
have been captured, the domain on which the computation is performed must be at least as large as 
the physical domain to be considered or the largest turbulent eddy. A useful measure of the latter 
scale is the integral scale of turbulence L which is essentially the distance over which the fluctuating 
of the viscosity remains correlated. Thus, each linear dimension of the domain must be at least a 
few  times  the  integral  scale.  A  valid  simulation  must  also  capture  all  of  the  kinetic  energy 
dissipation. This occurs on the smallest scales, the ones on which viscosity is active, so the size of 
the grid must be no larger than a viscosity determined scale, called  the Kolmogoroff scale, η. 

Since the grid points that can be used in a computation is limited by the proceeding speed and 
memory of the machine on which it is carried out direct numerical simulation is possible only for 
flows  at  relatively  low  Reynolds  numbers  and  in  geometrically  simple  domains.  On  present 
machines, it is possible to make direct numerical simulations of homogeneous flows at turbulent 
Reynolds numbers up to a few hundred. At the low end of the range of Reynolds numbers the DNS 
is for engineers a useful method in some cases. 

The results of a DNS contain very detailed information about the flow. This can be very useful but, 
on the one hand, it is far more information than any engineer needs and, on the other, DNS is too 
expensive to be employed very often and cannot be used as a design tool. One must then ask what 
DNS can be used for. With it, one can obtain detailed information about the velocity, pressure, and 
any other variable of interest at a large number of grid points. These results may be regarded as the 
equivalent of experimental data and can be used to produce statistical information or to create a 
'numerical  flow  visualization'.  From the  latter,  one  can  learn  a  great  deal  about  the  coherent 
structures that exist in the flow. DNS makes it possible to investigate certain effects accurately. This 
wealth of information can then be used to develop a qualitative understanding of the physics of the 
flow or to construct a quantitative model, which will allow other, similar, flows to be computed. 
One can thus conclude that the major role that DNS can fill is as a research tool. [1]
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 2.3.3 Large Eddy Simulation (LES) and Detached Eddy Simulation (DES)
The Large Eddy Simulation (LES) is a popular technique for the simulation of turbulent flows. As 
we have noted, turbulent flows contain a wide range of length and time scales; the range of eddy 
sizes that might be found in a flow is shown schematically in Fig. 2.8. 

Figure 2.8. Schematic representation of turbulent motion [1]

 

The large scale motions are generally much more energetic than the small scale ones; their large 
size and strength make them by far the most effective transporters of the conserved properties. The 
small scales are usually much weaker and provide little transport of these properties. A simulation 
which  treats  the  large  eddies  more  exactly  than  the  small  ones  may  make  sense;  large  eddy 
simulation is just such an approach. Large eddy simulations are three dimensional, time dependent 
and expensive but much less costly than DNS of the same flow. In general,  because it is more 
accurate, DNS is the preferred method whenever it is feasible. LES is the preferred method for 
flows in which the Reynolds number is too high or the geometry is too complex to allow application 
of DNS. 

A velocity field that contains only the large scale components of the total field is needed for the 
LES approximation. This is best produced by filtering the velocity field; in this approach, the large 
or resolved scale field, the one to be simulated, is essentially a local average of the complete field. 
A one-dimensional notation is used; the generalization to three dimensions is straightforward. The 
filtered velocity is defined by: 

u ix =∫G x , x ' ui x ' dx '  equation (2.54)

where G(x, x'), the filter kernel, is a localized function. Filter kernels which have been applied in 
LES include a Gaussian, a box filter (a simple local average) and a cutoff (a filter which eliminates 
all Fourier coefficients belonging to wave numbers above a cutoff). Every filter has a length scale 
associated with it, Δ. Roughly, eddies of size larger than Δ are large eddies while those smaller than 
Δ are small eddies, the ones that need to be modeled. 

When the Navier-Stokes equations with constant density (incompressible  flow) are filtered,  one 
obtains a set of equations very similar to the RANS equations: 

∂ ui
∂ t


∂ui u j

∂ x j
=−∂ p

∂ xi
 ∂

∂ x j [ ∂ u i

∂ x j


∂ u j

∂ x i ]  equation (2.55)
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Since the continuity equation is linear, filtering does not change it: 

∂ ui
∂ x i

=0  equation (2.56).

[1]

The detached eddy simulation (DES) is a very new hybrid technique, that is introduced by Travin et  
al.  (2000)  and already included in  commercialized  CFD-codes.  This  simulation  uses  a  RANS-
method in the adjacent boundary layers, while the LES is used to resolve the shear flow which 
results from flow separation. Since near-wall regions do not need to be resolved in detail, the DES 
can be applied for high Reynolds number flow. Admittedly the coupling of these regions and their 
boundary conditions meet to problems. Since very good results have been achieved by applying the 
DES to many applications  (mainly to the prediction of aerodynamic  noises),  also disappointing 
results are published. [11]       

 2.4 Pipe Flow
Flow phenomena in round pipes are a subject of interest for technical applications as well as for 
scientific research. Pipes a very suitable tool for fundamental experiments, since many phenomena 
can be observed and documented without great complexities and the Navier-Stokes equations can 
be solved exactly. These research findings can be applied on similar problems in fluid mechanics. 

 2.4.1 Laminar Pipe Flow
A classic problem is the steady laminar flow of a Newtonian fluid through a very long pipe of 
radius R, as shown in Figure 2.9. (a). Let x be the axial coordinate. 

For a location far downstream of the entrance, the flow will be  fully-developed,  that is, the axial 
velocity  u=u(r)  in  the  plane  velocities  v=u=0.  Then  continuity  is  satisfied  identically  and  the 
momentum equation reduces to


r

∂
∂ r r ∂ u

∂ r =∂ p
∂ x
=constant  equation (2.57)

subject to the no-slip condition u(R) = 0 

Figure 2.9.: velocity-profile of a fully-developed laminar 
pipe flow [6]  

The solution is the Poiseuille paraboloid distribution:

u=umax 1−
r2

R2   equation (2.58)
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where 

umax=
R2

4 −dp
dx   equation (2.59)

The average velocity V can be computed from the volume flow

V=Q
A , Q=∫ u dA equation (2.60)

After combining the two equations one yields the laminar solution:

V=1
2

umax=
R2

8 −dp
dx   equation (2.61)

The pressure drop through a pipe of length L can be derived from equation and one gets the pressure 
gradient as follows:

−dp
dx
= p

L
=8Q /  R4=8V /R2  equation (2.62)

That means that the drop in pressure is proportional to the velocity. The pipe Reynolds number is 
defined as 

ReD=
VD
  equation (2.63)

Pressure drop and and velocity distribution can be computed easily for fully-developed laminar pipe 
flow, but the results are only valid up to Reynolds numbers ReD = 2000, after which the flow gets 
unstable undergoes a transition to turbulence. [6]

 2.4.2 Turbulent Pipe Flow and the Law-of-the-Wall
The analysis of turbulent pipe is simplified by the fact that the mean velocity profile is correlated 
over the complete range of Reynolds numbers by a simple formula called the Law-of-the-Wall. Both 
axial  velocity  U and  distance  y from the wall  are  non dimensionalized  by wall  shear  stresses, 
density, and viscosity

u+=U
u* the dimensionless velocity , u*=w

 
1 /2

 equation (2.64)

y+=u* y


the  dimensionless distance from the wall equation (2.65)

where  y = R–r for pipe flow.  R is the radius of the pipe. For smooth wall flow with a negligible 
pressure gradient, turbulent velocity data forms a nearly unique curve u+(y+), as shown in Figure 
2.10. Except very near the wall and in the center of the pipe, the data is well approximated by a 
logarithmic law

u+= 1


ln y+5.0 , =0.41 equation (2.66)

This correlation of constants was developed in the 1930's by L. Prandtl and by T. von Karman; the 
constant   is  now  called  the  Karman's  constant  and  is  sensitive  to  wall  or  external  flow 
conditions. Note in Figure 2.10., the viscous sublayer very near the wall (y+ ≤ 5), where u+ = y+  and 
turbulence effects on the profile are completely damped out. [6]
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A more elaborate  treatment  divides the flow in a pipe into a laminar  sublayer  near the wall,  a 
turbulent core and a buffer layer in between. The velocity profile obtained is given in the form of 
three equations, one for each region. It is known as the universal profile and it holds for the whole 
cross section of the pipe.

For the laminar sublayer, which extends from the wall to y+=5, the profile is linear: 

u+= y+ , 0 y+5 equation (2.67)

For the buffer layer the profile is given by

u+=5.0 ln  y+3.5 , 5 y+30 equation (2.68)

while for the turbulent core Prandtl's simple expression still applies,

u+=2.5 ln  y+5.5 , y+30 equation (2.69)

The universal profile given by equations (2.67.), (2.68.) and (2.69) applies to turbulent flows in 
smooth pipes. It is particularly useful in the analysis of heat and mass transfer to walls in turbulent 
conduit flows, where the processes depend strongly on the flow field details near the wall. In some 
cases the use of the profile, ignoring the laminar sublayer and the buffer zone, yields also good 
results. [3]

Figure 2.10.: The law-of-the-wall for turbulent mean flow past a smooth, 
impermeable surface with modest pressure gradient [6]
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 2.5 Free Jet
The mixing of a free jet and its vicinity is of great importance for practical and theoretical reasons. 
If an air jet resigns from a blind, as pictured in Figure 2.11., ram pressure profiles are enlarging 
sideways and the original exit speed is only available in the center. 

A schematic overview is given in Figure 2.11.. Afterwards the jet spreads straight–lined, while a 
steadily decreasing part of the jet still moves with the original injector exit speed in the jet’s center. 
This area is called the core of the jet. It has the form of a cone and is 4 to 4,74 times the length of 
the  jet’s  diameter.  The  propagation  of  the  jet  also  has  the  form of  a  cone  whereas  the  total 
momentum is preserved. Air particles are swept along from the outside so that the amount of air in 
the jet direction is increasing. The development of a free jet is documented in figure 2.12. While the 
inside cone angle  i of the development of the core is clearly defined, another question arises: 
How should the outside angle a be determined?

The speed profile moves diffusely ad infinitum and this represents another difficulty. In this case it 
is necessary to define that point as a barrier, where the speed matches a special part of the speed in 
the jet’s center , such as 0.5 …. 0.05 etc. In the inside of the jet there is a small overpressure, which 
is about ½ % of the ram pressure. Furthermore, the overpressure results from the impact of the 

Figure 2.12.: Development of a free jet [12]

Figure 2.11.: Development of ram pressure profiles [12]
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impulse of the streaming air, which streams in from outside. This impulse is always constant due to 
the same pressure. This is an especially beautiful result of Prandtl’s turbulence theory because the 
theoretical calculation of this case has succeeded and has been affirmed completely. The account, 
that the mixing path in the mixing zone is constant and proportional to its particular width, was 
responsible for its success. However, the ratio of mixing path/width of the mixing zone is taken 
from experimental results. [12]

Despite extensive research, there exists still some unclarity regarding the turbulence in the core jet. 
In the course of all experiments, scientists have mostly worked with air of great speed and high 
Reynolds number, that streamed out of an injector. As a result, impacts of the turbulence’s character 
of the core were not observed. In a transition zone of smaller Reynolds numbers it seems that there 
is  such  an influence.  In  the  area  of  air  conditioning  of  rooms,  scientists  have  proved such an 
influence.  It  has been found out  that  laminar  streams penetrate  greater  distances  than turbulent 
streams. These differences of the depth of impression are observed in the order of 1:3. Therefore 
scientists  should  take  account  this  influence  by  introducing  a  factor  m.  Depending  on  the 
turbulence, the angle i  of the core is bigger or smaller. This means tan 2i=d / x0=m . 

In connection with a freeblowing stream another useful and important phenomena will be described. 
There exists a difference between a freeblowing and suction process in a closed room. This is a 
problem especially in connection with air ventilation. In order to illustrate these differences, one 
observes  the  following experiment.  If  one tries  to  aspirate  the  fumes  of  cigarettes  which  have 
already been blown out of the mouth, it  will not work. During the suction process, air particles 
stream in from all sides, as pictured in Figure 2.13. A suction of purged air will not occur. [12]

The  extension  of  a  stream  through  micros  trainers. While  accelerated  streams  can  make  any 
contractions  possible,  they  can  just  reach  moderate  grades  of  deceleration.  The  possible  cross-
section extension is limited by the angles which may lead to the development of turbulent mixing. 
Values from 10° to 14° are surely within reach. If higher cross-section extensions are needed, they 
are most likely to be reached with the help of micro strainers. Figure 2.14 shows the fluid flow of a 
stream with  three  micro  strainers,  which  are  put  in  series.  The  result  is  that  the  fluid  flow is 
spreading immediately to the fourfold cross-section. The flow of the fluid becomes more and more 
constant, the more micro strainers are used. Several wide-mashed micro strainers work better than 
one small-meshed micro strainer. However, it is clear that this sudden delay can only be explained 
with a huge loss of energy.  [12] The deceleration and the stream extension of a fluid flow is also 

Figure2.13.: air particles stream in from all 
sides [12]
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observed in the simulations that are performed in this thesis. Turbulence generators that are built of 
blades, spikes and rods are positioned in the  pipe outlet to create a turbulent flow field. This is 
described in detail in the following chapter. [12]

 
Figure 2.14.: Stream extension after passing a microstrainer [12]
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 3 Geometry
The geometry for the CFD simulation is designed on the basis of the experimental setup. Some 
simplifications are needed,  as for building a mesh that  guarantees a good mesh quality or for 
controlling the number of cells in the mesh. An increased number of cells also leads to increased 
calculation times. The whole geometry is designed with the geometry- and meshing- tool GAMBIT. 
In general GAMBIT is a preprocessor for CFD analysis. The calculation geometry is rebuilt for 
each turbulence generator which leads to eleven different setups. Figure 3.1 shows the graphical 
user interface of the software tool GAMBIT.  

Figure 3.1.: GAMBIT graphical user interface 
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The geometric definition of the calculation volume is given in Figure 3.2.

 

Figure 3.2.: Geometry for the CFD Simulation

The process that is going to be simulated is explained in the following paragraph. A circular pipe 
flow leaves the cylindrical tube and the generated separating jet impinges on a wall which is 550 
millimeters  distant  from  the  pipe  outlet.  Since  it  is  the  aim  of  this  work  to  investigate  the 
characteristics of turbulence, different sets of turbulence generators consisting of rods, cubes and 
spikes are used. These turbulence generators are all positioned at the pipe outlet.

Twelve different evaluation lines L01-L12 are defined in the area between the pipe outlet and the 
plate.  The x-coordinates positions of the evaluation lines in the analysis plane  are summarized in 
Figure 3.3., 3.4. and Figure 3.5. below.

Figure 3.3.: Evaluation lines L01-L12 in the analysis plane
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Figure 3.4.: Lines L01-L04 in detail

Figure 3.5.: Lines L10-
L12 in detail

The x-coordinates positions of the evaluation lines in the analysis plane are given by table 3.1.

Line-name Position on the x-axis [mm]

L01y 6.00
L02y 9.40
L03y 19.59
L04y 50.17
L05y 141.90
L06y 229.26
L07y 312.74
L08y 400.10
L09y 491.83
L10y 522.41
L11y 532.60
L12y 536.00

Table 3.1.: x-coordinates 
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 3.1 Geometry of Turbulence Generators
Different turbulence generators are positioned in the pipe outlet  as described in the proceeding 
section to create different turbulent flow fields. These turbulence generators TG00-TG10 built of 
spikes, rods and blades, are illustrated in the following figures. The TG00 is the only pipe section 
without any obstruction.

Figure 3.6.: TG00 Figure 3.7.: TG01

Figure 3.8.: TG02 Figure 3.9.: TG03

Figure 3.10: TG04 Figure 3.11.: TG05
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Figure 3.12.: TG06 Figure 3.13.: TG07

Figure 3.14.: TG08 Figure 3.15.: TG09

Figure 3.16.: TG10
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 3.2 Degrees of Obstruction
The installation of spikes, rods and blades in the pipe outlet has a great impact on the flow field. 
The turbulence generators change the form and area of the cross-section at the pipe outlet, which 
influences  the characteristics  of  the pipe flow leaving  the outlet  to  different  pressure gradients
 p . Additionally the fan speed is influenced by the pressure drop inside  the pipe. The pass-

through surface area of the pipe's cross-section is pictured in the following figures.  

Figure 3.17.: TG01 Figure 3.18.: TG02

Figure 3.19.: TG03 Figure 3.20.: TG04

Figure 3.21: TG05 Figure 3.22.: TG06
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Figure 3.23.: TG07 Figure 3.24.: TG08

Figure 3.25.: TG09 Figure 3.26.: TG10

The surface area of the pass-through surface for each turbulence generator is listed in table 3.2. 
Additionally,  the size of the obstructed areas and their percentage on the total cross-section for 
different geometries can be seen in the following table:

turbulence 
generator

area of the pass-through 
surface

[mm2]

obstructed surface area

[mm2]

degree of obstruction

[%]

TG00 20 459 - -
TG01 12 116 8 343 40.78
TG02 12 929 7 830 38.27
TG03 7 731 12 728 62.21
TG04 7 172 13 287 64.94
TG05 13 193 7 266 35.51
TG06 15 010 5 449 26.64
TG07 11 803 8 656 42.31
TG08 12 061 8 398 41.05
TG09 5 579 14 880 72.73
TG10 10 504 9 955 48.66

Table 3.2.: degrees of obstruction for each turbulence generator 
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 4 Mesh Generation
All geometries used for simulations in this thesis are meshed with the CFD preprocessing-software 
GAMBIT. The user interface of the mesh generation software with a meshed geometry can be seen 
from Figure 4.1. Since eleven different geometry setups have been created, each one of those needs 
to be meshed separately. 

Figure 4.1.: software interface of GAMBIT for mesh generation

 4.1 Meshing Strategies
For discretization the flow domains have to be split in smaller subdomains made up of geometric 
figures like tetrahedra or hexahedra in 3D and quadriliterals and triangles in 2D respectively. The 
partial differential equations describing the flow are then discretized and solved inside each of these 
subdomains. The subdomains are often called elements or cells, and the collection of all elements or 
cells is called a mesh or grid.  Mesh generation is the process of obtaining an appropriate mesh in 
the flow domain. It is essential that the grid is fitted to the size and form of the geometry. The mesh 
quality can have a great impact on the accuracy of the solutions resulting from the computational 
analysis. Grid refinement on the boundaries is achieved by increasing the number of cells, which 
may lead to a better resolution of smaller eddy structures in the flow. The drawback of achieving 
high numbers of cells is the increasing calculation time. For industrial applications particularly long 
calculation times of some weeks are not desired. Thus a compromise between the number of cells 
and the accuracy of the calculation must be found. The meshes in this thesis consist of four to six 
million elements. 

Primarily the geometry has to be clean and connected before one starts the meshing process.  As 
mentioned in the proceeding paragraph the quality of the grid is basically important for the accuracy 
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of the computational analysis. It is very important to reproduce the physical phenomena in the flow 
correctly.  The quality of a grid [6] is defined by basic metric measures. These metric measures 
include cell aspect ratios, lengths, angles, and sizes. It also includes variations of these items as we 
go to their neighbors. This is just the smoothness in the distribution of these properties. In the case 
of structured grids,  good geometric  quality is  seen as smooth  variations  in cell  properties  with 
angles that are nearly perpendicular. In case of unstructured grids, quality is seen as smoothness 
together  with  nearly  equilateral  triangles  in  2D  or  similarly  contrived  tetrahedra  in  3D.  For 
unstructured  paving  (quadralaterals)  and  plastering  (hexahedrals)  it  is  smoothness  and 
orthogonality. Examples of a structured (regular) and one unstructured grid are given in Figures 4.2. 
and 4.3. [1].

Figure 4.2.: Example of a 2D, structured, non-orthogonal grid [1]

Figure 4.3.:Example of a 2D unstructured grid [1]

Strong acute and obtuse angles in the elements should be avoided, otherwise numerical problems 
cannot be excluded. Two examples of undesirable distortions of control volumes are depicted in 
Figure 4.4. In one case, the upper face of a regular hexahedral CV is rotated around its normal, 
warping the adjacent faces. In the other case, the top face is sheared in its own plane. Both features 
are undesirable and should be avoided at all if possible. 
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Figure 4.4.: An example of poor grid quality due to warping (middle) and distortion (right) [1]

  

 4.2 Meshing Process
This section will explain the special meshing strategy for the geometry, as pictured in Figure 3.2. 
with the different turbulence generators (Figures 3.4. - 3.14.) located in the pipe outlet. As shown in 
Figure 3.1 and 4.1. the whole domain is cut into quarters  in the direction of the y-  and z-axis. 
Furthermore the geometry is cut into slices. By separating the originally entire volume into quarter 
slices it gets easier to achieve a mesh with good quality. To simplify the description of this meshing 
process the final grid is pictured in Figure 4.5.. 

Figure 4.5.: Final mesh in the y-z-plane
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One can see that the grid is much finer in the center, where the pipe is located. The details of the 
grid can be seen in Figure 4.6.

As soon the geometry is clean and connected one can start the meshing process. Grids are created 
on the faces for the beginning, at which the cross-section of the pipe and the regions close the pipe 
wall have a more refined grid than the outer regions.  Since the characteristics of the pipe flow and 
its behavior after leaving the outlet are the matter of interest this meshing scheme makes sense. 
GAMBIT provides many options for the parameters that specify the face meshing scheme [13]. 
These parameters are the  Elements parameter  and the Type parameter.  The Elements parameter 
defines the shape(s) of the elements  that  are used to mesh the face,  while  the  Type parameter  
defines the pattern of mesh elements on the face. The cross-section of the pipe is meshed with the 
Quad Pave meshing scheme. The  Quad-Map scheme is used for meshing the exterior faces. The 
Elements parameter  Quad  specifies  that  the  mesh  includes  only  quadrilateral  mesh  elements. 
Enabling the Type parameter Map creates a a regular, structured grid of mesh elements on the face, 
while the parameter Pave creates an unstructured grid of mesh elements. Another important step in 
mesh generation is to create  boundary layers. Boundary layers define the spacing of mesh node 
rows in regions immediately adjacent to edges and/or faces. They are used primarily to control 
mesh density and, thereby, to control the amount of information available from the computational 
model in specific regions of interest. This problem now consists of a pipe through which flows a 
viscous fluid, air. Under normal circumstances, it is likely that the fluid velocity gradients are large 
in  the region immediately adjacent  to  the pipe wall  and small  near  the  center  of  the pipe.  By 
attaching a boundary layer to the face that represents the pipe wall, the mesh density near the wall 
can be increased and the density near the center of the cylinder can be decreased, thereby obtaining 
sufficient  information  to  characterize  the  gradients  in  both  regions  while  minimizing  the  total 
number of mesh nodes in the model. The grid near the pipe wall refined by creating boundary layers 
is pictured in Figure 4.7.  

Figure 4.6.: Generated mesh in detail near the pipe center
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Figure 4.7.: Boundary layer near the boundaries

After having meshed all faces which are located along the x-axis and parallel to each other, the 
meshing process can be finished by creating the volume mesh. By meshing a volume one creates 
mesh  nodes  throughout  the  selected  volume  according  to  the  currently  specified  meshing 
parameters. One has to specify the volume(s) to be meshed, the meshing scheme and the mesh node 
spacing. The meshing scheme is defined by two parameters. The  Elements parameter defines the 
shape(s) of the elements that are used to mesh the volume. The Type parameter defines the meshing 
algorithm and, therefore, the overall pattern of mesh elements in the volume.  

The Element option Hex/Wedge which specifies that the mesh is built primarily of hexahedral mesh 
elements  but  includes  wedge elements  where appropriate. By looking  more  closely at  the  face 
meshes in Figure 4.5. it is realized that the face meshes match. This is a very important factor for 
using the Cooper meshing scheme for the generation of a volume mesh. The Cooper meshing type 
sweeps the mesh node patterns of specified "source" faces through the volume. Hence applying the 
Cooper meshing scheme to a volume this volume gets treated as consisting of one or more logical 
cylinders each of which is composed of two end caps and a barrel. Faces that comprise the caps of 
such cylinders are called "source" faces; faces that comprise the barrels of the cylinders are called 
"non-source" faces. This strategy is depicted in Figure 4.8.

In general, the Cooper meshing scheme can be only applied to volumes which meet the following 
two  criteria.  The  volume  should  consist  of  at  least  one  face  that  is  neither  mappable  nor 
submappable. Moreover the volume can also consist of faces that are all  mappable or submappable, 
but the vertex types are specified that the volume cannot be divided into mappable subvolumes. 
Faces that meet either of these two criteria outlined above, as well as those that are logically parallel 
to such faces, constitute source faces for the volume and the end caps of the corresponding logical 
cylinder. 
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Figure 4.8.: Cooper volume meshing scheme [14]

This  strategy  as  explained  in  this  section  is  basically  applied  to  all  eleven  geometries.  The 
geometry set-ups which include the turbulence generators TG01-TG10 cannot be meshed with the 
Cooper meshing scheme. Hence this volumes that include spikes, rods or blades are meshed by 
selecting the  Tet/Hybrid Element option and the  TGrid Type option. One example of a geometry 
that includes the turbulence generators is given in Figure 4.9.:

Figure 4.9.:  meshed geometry of a turbulence generator

The Tet/Hybrid Element option specifies that the mesh is composed primarily of tetrahedral mesh 
elements  but  may  include  hexahedral,  pyramidal,  and  wedge  elements  where  they  may  be 
appropriate. By applying the  TGrid meshing scheme to a volume, GAMBIT creates a mesh that 
consists primarily of tetrahedral mesh elements but which may also contain elements that possess 
other shapes. If one meshes one or more faces of the volume by means of a  Quad or  Quad/Tri 
scheme  before  applying  the  TGrid volume  meshing  scheme  to  a  volume,  GAMBIT  creates 
hexahedral,  pyramidal,  and/or wedge elements where appropriate in proximity to the previously 
meshed faces. [13] This strategy of meshing the faces in the cross-sections in a Quad scheme before 
the volume mesh is generated is chosen for all  volumes that include the turbulence generators. 
Hence the Cooper meshing scheme can be applied in the adjacent volumes.    
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When the meshing process is finished, one has  to check the grid quality, which is a very important 
factor for the subsequent computational analysis. Executing this mesh volume check in GAMBIT 
displays  a tabular  output,  as  pictured in  Table  4.1.  The tabular  output  represents  the statistical 
distribution of element mesh quality values.  [13] 

Table 4.1.: Check Volume Meshes tabular output 

In addition to the tabular output shown in Table 4.1, the Check Volume Meshes command displays 
the minimum and maximum values of element quality for the set of specified volumes, thus: 

Table 4.2.: minimum and maximum value of cell quality

The meshing process is then successfully finished when the grid quality is good. Only then the 
mesh can be exported for the subsequent CFD-applications.  One complete  meshed geometry is 
pictured in Figure 4.10.: 

Figure 4.10.: completed volume mesh

The following table 4.3. gives an overview of the numbers of cells in the grid for each turbulence 
generator.



Mesh Generation 41

Turbulence Generator Number of Cells 

TG00 4.95 * 106

TG01 5.54 * 106

TG02 5.59 * 106

TG03 5.57 * 106

TG04 5.52 * 106

TG05 5.49 * 106

TG06 5.42 * 106

TG07 5.85 * 106

TG08 5.56 * 106

TG09 5.22 * 106

TG10 5.62 * 106

Table 4.3.: Overview of the characteristics for each turbulence generator
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 4.3 Setting Boundary Types
Before  the  mesh-file  can  be  exported  for  the  subsequent  CFD-analysis,  the  boundary  type 
specifications  have  to  be  set.  Boundary-type  specifications  define  the  physical  and  operational 
characteristics of the model at its boundaries. The following Figure 4.11. gives an overview of the 
various zones and their type specifications in the volume.

 

After  saving  the  final  GAMBIT file,  the  mesh-file  for  FLUENT can  be  exported  to  start  the 
computational analysis.

Figure 4.11..: Boundary-Type specification



Stationary Simulations 43

 5 Stationary Simulations
For the numerical simulations the commercial CFD-software FLUENT is used. 

A complicated CFD problem involving turbulence can be solved by splitting the grid. At this point 
parallel computing comes into play. The simultaneous use of more than one processor  to execute a 
program is defined as parallel computing. [14] The computational analysis matter is performed on a 
Cluster at AIT (Austrian Institute of Technology), where the numerical simulation are performed on 
a set of computers that  are interconnected through a cluster.  Figure 5.1. gives an example of a 
FLUENT user-interface while working a node of this network. 

 5.1 Boundary Conditions resulting from the Experiment
As  mentioned  in  the  Introduction  the  second  thesis  of  the  TUNICA  project  deals  with  the 
experimental  investigation of this  problem. The data taken from the results  of the experimental 
analysis are the base for the ansatz of the initial conditions at the velocity inlet of the geometry. 
These initial conditions are individually set for each geometry set-up. 

Since FLUENT has the option of importing user-defined-functions (UDF) the values taken from the 
experiment are used to define a function profile for the velocity-inlet. It is necessary for the CFD-
simulations to specify values for the variables at the inlet. Usually the conditions at each type of 
boundary zone are defined as constant values, but they can be defined also as profile functions. This 
gives us the opportunity of optimizing the simulation, since it is possible to compare the results 
from the numerical calculation with the experiment. If necessary the boundary conditions can be 
adapted to the experimental results [14]. 

For the stationary CFD simulations the k-ε model and RNG k-ε model are used, which are described 
in 2.3.1., and therefore we have to specify the values of the turbulence variables k and ε at the inlet. 
The values for the turbulent kinetic energy, the velocity magnitude and the velocities in x-direction 

Figure 5.1.: FLUENT user interface
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are given by the experiment.  The values of the dissipation rate  can be calculated  by using the 
following formula:  

=C
3/4 k 3/2 1

l  equation (5.1)

where C is an empirical constant for turbulence models which has usually the value of  0.09 for 
k-ε models or 0.085 for RNG k-ε models, and l is defined as the turbulent length scale:

l=0.07 L

where L is the characteristic length. For these simulations L has the value of the pipe diameter.

So  the  UDF  specifies  the  values  for  x-velocity,  turbulent  kinetic  energy  and  the  turbulence 
dissipation rate at the inlet.  The values are specified for each variable in equally spaced radius 
intervals. One extract of one of the eleven UDFs is given below.  All UDFs are written in C.
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 5.2 Axis-Symmetrical 2D-Simulations at TG00
Since the  geometry for  the  turbulence  generator  TG00 is  axis-symmetrical,  a  2D mesh can be 
created. This provides the opportunity to study the characteristics of the turbulent flow after a short 
calculation time because the number of cells in the 2D grid is much smaller than in the 3D grid. It is 
also the matter of interest in which way the solution is dependent on the grid. 

Hence three different meshes are created to answer this question. These face meshes are all regular 
and meshed with the face meshing scheme Map. The first grid consists of 29 915 cells, the second 
of 110 105 and the third of 442 075. Furthermore more cells  are added by using the boundary 
adaption function in FLUENT, which allows to mark and then refine cells in the proximity of the 
selected boundary zones. The ability to refine the grid near one or more boundary zones is provided 
because important fluid interactions often occur in these regions, such as the development of strong 
velocity gradients in the boundary layer  near a wall [Fluent User's Guide]. This refinement at the 
boundary zones board and pipe wall leads to an increased number of cells.  After the boundary 
adaption the first grid consists of 216 153, the second of 295 532 and the third of 625 018 cells. 
Numerical simulations are also performed on these refined grids.  

The details of all six grids are pictured in the following figures:  

Figure 5.2.: First Grid (regular) in detail Figure 5.3.: First Grid refined in detail

Figure 5.4.: Second Grid (regular) in detail Figure 5.5.: Second Grid refined in detail
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Figure 5.6.: Third Grid (regular) in detail Figure 5.7.: Third Grid refined in detail

 5.2.1 The Selection of the Turbulence Models
The grids are imported in the 2D FLUENT solver. After checking and scaling the grid one can 
define the properties of the numerical problem. The three important categories that are to define are 
Models, Materials and Boundary Conditions which specify the flow. Then the Solution Parameters  
can be set. The settings in FLUENT for the simulations, using the K-Epsilon model without the 
Enhanced Wall Treatment option are summarized in the following table 5.1. Summarizing all grids 
and two different variations of FLUENT settings six CFD-simulations are performed.

Solver

Solver segregated

Formulation implicit

Space 2D

Time steady

Viscous Model

Model k-ε model

k-ε model RNG

Near-Wall Treatment Standard Wall Functions

Materials

Name: air

Boundary Conditions

Inlet: velocity inlet

Velocity Specification Method Magnitude, normal to boundary

Velocity [m/s] UDF

Turbulence Specification Method K and Epsilon 

Turbulence Kinetic Energy UDF

Turbulence Dissipation Rate UDF

Outlet 1 & 2: pressure outlet

Gauge Pressure [Pa] 0

Backflow Direction normal to boundary

Backflow Turbulence Intensity [%] 0
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Backflow Turbulence Length Scale [m] 1

Solution Controls

Discretization

Pressure Second Order

Momentum Second Order Upwind

Turbulence Kinetic Energy Second Order Upwind

Turbulence Dissipation Rate Second Order Upwind

Solution Initialization

Gauge Pressure [Pa] 0

X-Velocity [m/s] 0

Y-Velocity  [m/s] 0

Turbulence Kinetic Energy 0. 001

Turbulence Dissipation Rate 0. 01
Table 5.1.: Settings in FLUENT

An overview of the variations on the settings for the different grids is given below by table 5.2.. 
They differ from each other, whether the Enhanced Wall Treatment or the Standard Wall Functions 
option is enabled.  

Regular Grid Refined Grid

k-ε Model RNG RNG

Near Wall Treatment Standard Wall Functions Enhanced Wall Treatment

Table 5.2.: Differences between the FLUENT settings

Since this differentiation is applied to all grids, twelve CFD-simulations have to be performed. 
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 5.2.2 Mesh–Dependency of the Solutions
This chapter deals with the interpretation of the solutions of the computational analysis. 

The solutions for the regular and refined grid are all  summarized in the following figures. The 
results  of  the  computational  analysis  using  the  RNG   k-ε  Model for  the  regular  meshes  are 
confronted with the refined meshes, to investigate the mesh-dependency of the solutions. It should 
be mentioned that the representations of the solutions do not all have the same scaling.  Furthermore 
the 'interior_line' is called 'schnitt' in the related figures.   

First Grid (regular) First Grid (refined)

Figure 5.8.: Turbulence Kinetic Energy Figure 5.9.: Turbulence Kinetic Energy

Figure 5.10.: Velocity Magnitude Figure 5.11.: Velocity Magnitude

Figure 5.12.: XY-Plot at the 'interior_line' (red) and 
'inlet' (black), Turb. Kinetic Energy

Figure 5.13.: XY-Plot at the 'interior_line' (red) and 
'inlet' (black), Turb. Kinetic Energy
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Figure 5.14.: XY-Plot at the inlet, Velocity Magnitude Figure 5.15.: XY-Plot at the inlet, Velocity Magnitude

Figure 5.16.: XY-Plot at the 'interior_line', Velocity 
Magnitude

Figure 5.17.: XY-Plot at the 'interior_line', Velocity 
Magnitude

Figure 5.18.: XY-Plot of Yplus along the board (black) Figure 5.19.: XY-Plot of Yplus along the board (black)

Figure 5.20.: XY-Plot of Yplus along the pipe wall 
(red)

Figure 5.21.: XY-Plot of Yplus along the pipe wall 
(red)
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The solutions for the simulations on the first grid using the RNG k-ε model show that the contours 
of the turbulent kinetic energy for the regular and refined grid do not strongly differ from each other 
which can be observed in the Figures 5.8. and 5.9. The contours of the velocity magnitude for the 
two grids do not differ from each other either (s. Fig. 5.10., 5.11.). The color scaling is positioned at 
the left-hand side of the figures.  

Figures  5.12-5.17  show  in  which  way  the  velocity  and  turbulence  profiles  change  during  the 
propagation through the tube. The 'inlet' defines the velocity or turbulence profile at the inlet of the 
pipe.  'Interior_line',  called  as  'schnitt'  in  the  figures,  is  positioned 127.25 mm distant  from the 
velocity inlet. By comparing the values of the variables at this two positions the change of these 
variables in a turbulent pipe flow can be seen. The profiles are not dependent on the mesh. The 
values of the variables are nearly the same, only the shape of the profiles are a bit different, caused 
by the higher number of grid points in the refined grid.  

According to the analysis of the y+ value it is possible to find out, if the grid in near wall regions is 
suitable  for  the  chosen  turbulence  model  and  the  chosen  option  for  near  wall  treatment.  Here 
turbulence has a great impact of the behavior of the flow and its quantities. Therefore turbulence 
quantities  should  be  resolved  appropriately  to  guarantee  a  high  accuracy  of  the  numerical 
simulation. So numerical results for turbulent flows are more dependent on the grid than those for 
laminar flows. The near wall meshed is then checked by plotting the y+ values at the boundary 
regions 'tube', the pipe wall  and 'brett', the board (s. Fig. 4.11.). These checks are plotted by Figures 
5.18-5.20.

The Fig, 5.18. and 5.20. show the y+ values in the two near wall regions. Since standard wall 
functions are used the law-of-the-wall is valid for values of y+  ≥ 30 [chapter 2.4.2, 3]. The y+ 
values for the board (s. Fig. 5.18.) match this conditions apart from a small deviation near the zero 
point.  The y+ values along the pipe wall (s. Fig. 5.20.) also satisfy the law.

Due to the law-of-the-wall  the y+  values  should satisfy 0  ≤  y+  < 5,  when the enhanced wall 
treatment option is chosen. It can be seen from Figures 5.19. and 5.21. the grid fulfills this condition 
over the whole range.
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Second Grid (regular) Second Grid (refined)

Figure 5.22.: Turbulence Kinetic Energy Figure 5.23.: Turbulence Kinetic Energy

Figure 5.24.: Velocity Magnitude Figure 5.25.: Velocity Magnitude

Figure 5.26.: XY-Plot at the 'interior_line' (red) and 
'inlet' (black), Turb. Kinetic Energy

Figure 5.27.: XY-Plot at the 'interior_line' (red) and 
'inlet' (black), Turb. Kinetic Energy

Figure 5.28.: XY-Plot at the inlet, Velocity Magnitude Figure 5.29.: XY-Plot at the inlet, Velocity Magnitude
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Figure 5.30.: XY-Plot at the 'interior_line', Velocity 
Magnitude

Figure 5.31.: XY-Plot at the 'interior_line', Velocity 
Magnitude

Figure 5.32.: XY-Plot of Yplus along the board (black) Figure 5.33.: XY-Plot of Yplus along the board (black)

Figure 5.34.: XY-Plot of Yplus along the pipe wall 
(red)

Figure 5.35.: XY-Plot of Yplus along the pipe wall 
(red)

The results of the computational analysis using the RNG k-ε model on the second grid do not show 
strong differences in the contours of the turbulent kinetic energy for different mesh resolutions. The 
contours of the velocity magnitude are not grid dependent as well which can be seen from the 
Figures 5.22. – 5.25.  

The figures from 5.26. to 5.31.  show in which way the velocity and turbulence profiles change 
during the propagation through the tube. One can see that the profiles are not dependent on the 
mesh.  The values of the variables are nearly the same,  only the shape of the profiles are a bit 
different, caused by the higher number of grid points in the refined grid.  
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The y+ values in the two near wall regions can be taken from Fig, 5.32. - 5.35.  Since standard wall 
functions are used, the law-of-the-wall is valid for values of y+  ≥ 30 [chapter 2.4.2, 3]. Most y+ 
values for the board (s. Fig. 5.32.)  do not match this conditions, the 

values range form 20 to 25.  The y+ values along the pipe wall (s. Fig. 5.34.) do not satisfy the law 
either.

Due to the law-of-the-wall the y+ values should be 0 ≤  y+ < 5, when the enhanced wall treatment 
option is chosen. It can be seen from Figures 5.33. and 5.35. the grid fulfills the condition.
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Third Grid (regular) Third Grid (refined)

Figure 5.36.: Turbulence Kinetic Energy Figure 5.37.: Turbulence Kinetic Energy

Figure 5.38.: Velocity Magnitude Figure 5.39.: Velocity Magnitude

Figure 5.40.: XY-Plot at the 'interior_line' (red) and 
'inlet' (black), Turb. Kinetic Energy

Figure 5.41.: XY-Plot at the 'interior_line' (red) and 
'inlet' (black), Turb. Kinetic Energy

Figure 5.42.: XY-Plot at the inlet, Velocity Magnitude Figure 5.43.: XY-Plot at the inlet, Velocity Magnitude
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Figure 5.44.: XY-Plot at the 'interior_line', Velocity 
Magnitude

Figure 5.45.: XY-Plot at the 'interior_line', Velocity 
Magnitude

Figure 5.46.: XY-Plot of Yplus along the board (black) Figure 5.47.: XY-Plot of Yplus along the board (black)

Figure 5.48.: XY-Plot of Yplus along the pipe wall 
(red)

Figure 5.49.: XY-Plot of Yplus along the pipe wall 
(red)

The  results  of  the  computational  analysis  using  the  RNG k-ε  model  on  the  third  grid  are  all 
summarized in Figures 5.36-5.49. 

The contours of the turbulent kinetic energy and the velocity magnitude as well are not dependent 
on the grid which can be seen from the Figures 5.36. – 5.39.  

The figures from 5.40. to 5.45.  show in which way the velocity and turbulence profiles change 
during the propagation through the tube. One can see that the profiles are not dependent on the 
mesh. The values of the variables are nearly the same, only the shape of the profiles can be a bit 
different, caused by the higher number of grid points in the refined grid.  
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The y+ values in the two near wall regions can be taken from Fig, 5.46. - 5.49.  Since standard wall 
functions are used, the law-of-the-wall is valid for values of y+  ≥ 30 [chapter 2.4.2, 3]. Most y+ 
values for the board (s. Fig. 5.46.)  do not match this  conditions,  the highest  values which are 
reached are from 8 to 17.  The y+ values along the pipe wall (s. Fig. 5.48.) do not satisfy the law 
either.

Due to the law-of-the-wall the y+ values should be 0 ≤  y+ < 5, when the enhanced wall treatment 
option is chosen. It can be seen from Figures 5.47. and 5.49. that the grid fulfills the condition.

By summarizing the results of the stationary 2D simulations there is almost no grid dependency of 
the kinematic variables. Thus the first grid can be used. According to the analysis of the y+ values 
either the first grid using the standard wall  functions or the refined first grid can be used. The 
refined grid with a better resolution in near wall regions would be better according to the analysis of 
the y+ values. Numerical simulations on the refined grid are too expensive because of the higher 
number of grid cells, which may lead to longer calculation times. By using the regular first grid 
some geometric features might not be perfectly modeled, but numerical solutions can be generated 
very quickly. Therefore the use of finer mesh sizes is prohibitive in terms of the total cell number, 
when one starts with 3D simulations. This fact is accounted for the 3D simulations.

 5.3 3D-Simulations
The computational analysis for the volumes including different types of turbulence generators have 
been performed on a hybrid  mesh consisting of tetrahedral  cells in the region of the turbulence 
generators and a prismatic/hexahedral mesh in the up- and downstream area. The details of mesh 
generation and the properties of the generated grids are described in chapter 4.2.  

The  flow  propagates  through  the  pipe  and  turbulence  is  generated  by  using  different  sets  of 
turbulence generators which are positioned in the pipe outlet.  The different  types  of turbulence 
generators have been introduced in section 3.1. The turbulent flow field downstream of the pipe 
outlet is analyzed in the analysis plane. The turbulent jet then impinges on the opposite circular area 
of the cylinder, which is defined as a hard wall. 

Steady CFD calculations using the standard k-ε model and the RNG k-ε model are performed  for 
all geometries. The FLUENT settings for the numerical simulations using the  Standard - and RNG 
k-ε model are summarized in the following tables.
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Solver

Solver segregated

Formulation implicit

Space 3D

Time steady

Viscous Model

Model k-ε model

k-ε model Standard

Near-Wall Treatment Standard Wall Functions

Materials

Name: air

Boundary Conditions

Inlet: velocity inlet

Velocity Specification Method Magnitude, normal to boundary

Velocity [m/s] UDF

Turbulence Specification Method K and Epsilon 

Turbulence Kinetic Energy UDF

Turbulence Dissipation Rate UDF

Outlet 1 & 2: pressure outlet

Gauge Pressure [Pa] 0

Backflow Direction normal to boundary

Backflow Turbulence Intensity [%] 0

Backflow Turbulence Length Scale [m] 1

Solution Controls

Discretization

Pressure Second Order

Momentum Second Order Upwind

Turbulence Kinetic Energy Second Order Upwind

Turbulence Dissipation Rate Second Order Upwind

Solution Initialization

Gauge Pressure [Pa] 0

X-Velocity [m/s] 0

Y-Velocity  [m/s] 0

Z-Velocity  [m/s] 0

Turbulence Kinetic Energy 0. 001

Turbulence Dissipation Rate 0. 01

Parallel Partitioning

Method Cartesian X-Coordinate

Number 4
Table 5.3.: Settings in FLUENT for the steady k-ε simulations
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Solver

Solver segregated

Formulation implicit

Space 3D

Time steady

Viscous Model

Model k-ε model

k-ε model RNG

Near-Wall Treatment Standard Wall Functions

Materials

Name: air

Boundary Conditions

Inlet: velocity inlet

Velocity Specification Method Magnitude, normal to boundary

Velocity [m/s] UDF

Turbulence Specification Method K and Epsilon 

Turbulence Kinetic Energy UDF

Turbulence Dissipation Rate UDF

Outlet 1 & 2: pressure outlet

Gauge Pressure [Pa] 0

Backflow Direction normal to boundary

Backflow Turbulence Intensity [%] 0

Backflow Turbulence Length Scale [m] 1

Solution Controls

Discretization

Pressure Second Order

Momentum Second Order Upwind

Turbulence Kinetic Energy Second Order Upwind

Turbulence Dissipation Rate Second Order Upwind

Solution Initialization

Gauge Pressure [Pa] 0

X-Velocity [m/s] 0

Y-Velocity  [m/s] 0

Z-Velocity  [m/s] 0

Turbulence Kinetic Energy 0. 001

Turbulence Dissipation Rate 0. 01

Parallel Partitioning

Method Cartesian X-Coordinate

Number 4
Table 5.4.: Settings in FLUENT for the steady RNG k-ε simulations
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 5.4 Summary of the Results
The solutions of the numerical simulations are evaluated on the one hand along the post processing 
lines L01-L12 (s. chap. 3) and on the other hand on the analysis plane. 

The values of the velocity and the turbulent kinetic energy can be plotted along each evaluation 
line.  These  plots  can  be  generated  both for  the  experimental  and  the  numerical  results,  which 
provides the possibility of comparing experiment and numerical simulation. The results of these 
evaluations are summarized in chapter 5.4.1  

The  behavior  of  the  turbulent  flow can  be  easily  illustrated  by displaying  the  contours  of  the 
turbulent kinetic energy and the velocity magnitude on the analysis plane. Further explanations are 
in chapter 5.4.2. 

 5.4.1 Comparison of Simulation and Experiment
The values for the flow properties along each evaluation line are plotted in MATLAB. These plots 
compare the results  of the experimental  and both numerical  analyses along each line.  This will 
show, if the simulation match the experiment in the entire flow domain. The post processing lines 
are positioned that they can give information about the regions of interest in the flow domain. Many 
of  them are  positioned  near  the  pipe  outlet  and  the  plate  where  the  jet  impinges.  A  few  are 
positioned at the half distance from the pipe outlet and the plate, as it is explained in chapter 3 (s. 
Fig. 3.2. - 3.4.). 

The  comparison  of  the  simulation  with  the  experiment  for  the  x-velocity,  y-velocity  and  the 
turbulent  kinetic  energy is  given  in  the  following Figures  5.50.  -  5.52.,  where the color  black 
represents the experimental results, red the results of the standard k-ε and blue of the RNG k-ε 
simulation. This comparison is done with the experimental and numerical results with the geometry 
that  includes  TG00 which does not  have a turbulence  generator.  Further  information  about  the 
experimental setup and experimental data can be found on the Master Thesis by Wolfgang Tilser.    
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Figure 5.50.:  Evaluation of the x-velocity [m/s] along the lines

Figure 5.51.: Evaluation of the y-velocity [m/s] along the lines
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Figure 5.52.: Evaluation of the turbulent kinetic energy [m2/s2] along the lines 

The comparison for each property leads to the conclusions that both turbulence models match the 
behavior of the flow in the region reaching from line L01 to L09. A short overview of the positions 
of the post processing lines in the flow domain is given in Figure 5.53. The plots for L10 – L12 
show, that the RNG k-ε model is more applicable in near-wall regions than the standard k-ε model. 

Figure 5.53.: Definition of the post processing lines in the flow domain
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 5.4.2 Flow Properties for the Different Turbulence Generators
Since  the   RNG  k-ε model  compared  to  the  experiment  is  the  better  turbulence  model,  the 
simulations the geometries including the other turbulence generators are performed by use of the 
RNG k-ε model. So the following figures show the solution of the steady RNG k-ε simulations. 

The contours of the turbulent kinetic energy and the velocity magnitude are all evaluated on the 
analysis plane. The behavior of the turbulent flow is then illustrated for each turbulence generator 
which makes it is easy to investigate the impact of each turbulence generator on the pipe flow. 

Contours of the velocity magnitude [m/s]:

Figure 5.54.: TG00

Figure 5.55.: Contours of the velocity 
magnitude on the analysis plane

Figure 5.56.: TG01

Figure 5.57.: Contours of the velocity 
magnitude on the analysis plane
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Figure 5.58.: TG02

Figure 5.59.: Contours of the velocity 
magnitude on the analysis plane

Figure 5.60.: TG03

Figure 5.61.: Contours of the velocity 
magnitude on the analysis plane

Figure 5.62.: TG04

Figure 5.63.: Contours of the velocity 
magnitude on the analysis plane
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Figure 5.64.: TG05

Figure 5.65.: Contours of the velocity 
magnitude on the analysis plane

Figure 5.66.: TG06

Figure 5.67.: Contours of the velocity 
magnitude on the analysis plane

Figure 5.68.: TG07

Figure 5.69.: Contours of the velocity 
magnitude on the analysis plane
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Figure 5.70.: TG08

Figure 5.71.: Contours of the velocity 
magnitude on the analysis plane

Figure 5.72.: TG09

Figure 5.73.: Contours of the velocity 
magnitude on the analysis plane

Figure 5.74.: TG10

Figure 5.75.: Contours of the velocity 
magnitude on the analysis plane



Stationary Simulations 66

Contours of the turbulent kinetic energy [m2/s2]:

Figure 5.76.: TG00

Figure 5.77.: Contours of the turbulent kinetic 
energy [m2/s2] on the analysis plane

Figure 5.78.: TG01
Figure 5.79.: Contours of the turbulent 

kinetic energy [m2/s2] on the analysis plane

Figure 5.80.: TG02

Figure 5.81.: Contours of the turbulent 
kinetic energy [m2/s2] on the analysis plane
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Figure 5.82.: TG03

Figure 5.83.: Contours of the turbulent 
kinetic energy [m2/s2] on the analysis plane

Figure 5.84.: TG04

Figure 5.85.: Contours of the turbulent 
kinetic energy [m2/s2] on the analysis plane

Figure 5.86.: TG05

Figure 5.87.: Contours of the turbulent 
kinetic energy [m2/s2] on the analysis plane



Stationary Simulations 68

Figure 5.88.: TG06

Figure 5.89.: Contours of the turbulent 
kinetic energy [m2/s2] on the analysis plane

Figure 5.90.: TG07

Figure 5.91.: Contours of the turbulent 
kinetic energy [m2/s2] on the analysis plane

Figure 5.92.: TG08

Figure 5.93.: Contours of the turbulent 
kinetic energy [m2/s2] on the analysis plane
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Figure 5.94.: TG09

Figure 5.95.: Contours of the turbulent 
kinetic energy [m2/s2] on the analysis plane

Figure 5.96.: TG10

Figure 5.97.: Contours of the turbulent 
kinetic energy [m2/s2] on the analysis plane

The ability to produce turbulence of each turbulence generator can be observed in the Figures 5.94. 
– 5.97. Steady CFD simulations leading to acceptable low numerical residuals cannot be achieved 
for  all  types  of  turbulence  generators.  Turbulence  generators  built  of  blades  cause  very  high 
fluctuating flow fields. Examples of the oscillating behavior of turbulent flow fields are given in 
Figures 5.73. and 5.95. Turbulent flows like them cannot be captured by using  steady solvers. 
Therefore  the  average  of  transient  computations  have  to  be  calculated  for  these  turbulence 
generators. [15, 16]  

Transient  CFD  simulations  (DES)  will  be  employed  to  provide  frequency  spectra  for  further 
comparison with the experimental data. Furthermore, this offers the opportunity to investigate the 
correlation between simulated local velocity fluctuations and pressure fluctuations at the wall. [15, 
16] 

Details of the unsteady CFD simulations using the Detached Eddy Simulation and their results are 
documented and evaluated in the following chapters.
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 6 Unsteady Simulations
CFD simulations are performed for the different turbulence generators using the Detached Eddy 
Simulation (DES). The Settings for the numerical calculations in FLUENT are summarized in the 
following table.

Solver

Solver segregated

Formulation implicit

Space 3D

Time unsteady

Unsteady Formulation 2nd Order Implicit

Viscous Model

Model Detached Eddy Simulation

Spalart-Allmaras Option Vorticity-Based Production

Materials

Name: air

Boundary Conditions

Inlet: velocity inlet

Velocity Specification Method Magnitude, normal to boundary

Velocity [m/s] UDF

Turbulence Specification Method Intensity and Hydraulic Diameter 

Turbulence Intensity [%] 5

Hydraulic Diameter [m] 0.15259

Outlet 1 & 2: pressure outlet

Gauge Pressure [Pa] 0

Backflow Direction normal to boundary

Turbulence Specification Method Intensity and Length Scale

Backflow Turbulence Intensity [%] 0

Backflow Turbulence Length Scale [m] 1

Solution Controls

Discretization

Pressure Second Order

Momentum Bounded Central Difference

Modified Turbulent Viscosity Bounded Central Difference

Solution Initialization

Gauge Pressure [Pa] 0

X-Velocity [m/s] 0

Y-Velocity  [m/s] 0

Z-Velocity  [m/s] 0

Modified Turbulent Viscosity [m2/s] 0. 1

Reference Frame Relative to Cell Zone
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Iteration

Time Step Size [s] 0.0001

Time Stepping Method fixed

Options Data Sampling for Time Statistics

Max. Iteration per Time Step 10

Reporting Interval 1

UDF Profile Update Interval 1

Parallel Partitioning

Method Cartesian X-Coordinate

Number 4
Table 6.1.: Settings in FLUENT for DES

The results of the unsteady CFD calculations are the base for the extraction of fluctuating velocity 
and  pressure  time  series.  Using  a  time  step  of  100µs  around  5000  time  steps  for  the  CFD 
simulations are necessary to reach quasi-static behavior of the flow field. An additional amount of 
5000 time steps are calculated and recorded to perform the steps for the spectral  analysis.  The 
spectral evaluation of the data is performed using Fourier Transformation and analyzed in 1/3 terz 
band representations. [16, 17] The simulations have been performed for each turbulence generator, 
except for TG03 which has been omitted out of its similarity to TG04.
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 6.1 Mean Velocities and Fluctuations 
The following figures show the mean and RMS values of the velocity magnitude [m/s]  for the 
different turbulence generators on the planes y=0 and z=0. An overview of the calculation volume 
is  given in  figure 3.2.  In some figures are white  regions which represent  RMS values that  are 
beyond the range. 

Mean values (left) and RSM (right) for the velocity magnitude [m/s]:

TG00 (y=0)

Figure 6.1.: Mean values for the velocity 
magnitude [m/s]

Figure 6.2.: RMS value for velocity 
magnitude [m/s]

TG00 (z=0)

Figure 6.3.: Mean values for the velocity 
magnitude [m/s]

Figure 6.4.: RMS value for velocity 
magnitude [m/s]
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TG01 (y=0)

Figure 6.5.: Mean values for the velocity 
magnitude [m/s]

Figure 6.6.: RMS value for velocity 
magnitude [m/s]

TG01 (z=0)

Figure 6.7.: Mean values for the velocity 
magnitude [m/s]

Figure 6.8.: RMS value for velocity 
magnitude [m/s]
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TG02 (y=0)

Figure 6.9.: Mean values for the velocity 
magnitude [m/s]

Figure 6.10.: RMS value for velocity 
magnitude [m/s]

TG02 (z=0)

Figure 6.11.: Mean values for the velocity 
magnitude [m/s]

Figure 6.12.: RMS value for velocity 
magnitude [m/s]
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TG04 (y=0)

Figure 6.13.: Mean values for the velocity 
magnitude [m/s]

Figure 6.14.: RMS value for velocity 
magnitude [m/s]

TG04 (z=0)

Figure 6.15.: Mean values for the velocity 
magnitude [m/s]

Figure 6.16.: RMS value for velocity 
magnitude [m/s]
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TG05 (y=0)

Figure 6.17.: Mean values for the velocity 
magnitude [m/s]

Figure 6.18.: RMS value for velocity 
magnitude [m/s]

TG05 (z=0)

Figure 6.19.: Mean values for the velocity 
magnitude [m/s]

Figure 6.20.: RMS value for velocity 
magnitude [m/s]
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TG06(y=0)

Figure 6.21.: Mean values for the velocity 
magnitude [m/s]

Figure 6.22.: RMS value for velocity 
magnitude [m/s]

TG06 (z=0)

Figure 6.23.: Mean values for the velocity 
magnitude [m/s]

Figure 6.24.: RMS value for velocity 
magnitude [m/s]
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TG07 (y=0)

Figure 6.25.: Mean values for the velocity 
magnitude [m/s]

Figure 6.26.: RMS value for velocity 
magnitude [m/s]

TG07 (z=0)

Figure 6.27.: Mean values for the velocity 
magnitude [m/s]

Figure 6.28.: RMS value for velocity 
magnitude [m/s]
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TG08 (y=0)

Figure 6.29.: Mean values for the velocity 
magnitude [m/s]

Figure 6.30.: RMS value for velocity 
magnitude [m/s]

TG08 (z=0)

Figure 6.31.: Mean values for the velocity 
magnitude [m/s]

Figure 6.32.: RMS value for velocity 
magnitude [m/s]
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TG09 (y=0)

Figure 6.33.: Mean values for the velocity 
magnitude [m/s]

Figure 6.34.: RMS value for velocity 
magnitude [m/s]

TG09 (z=0)

Figure 6.35.: Mean values for the velocity 
magnitude [m/s]

Figure 6.36.: RMS value for velocity 
magnitude [m/s]
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TG10 (y=0)

Figure 6.37.: Mean values for the velocity 
magnitude [m/s]

Figure 6.38.: RMS value for velocity 
magnitude [m/s]

TG10 (z=0)

Figure 6.39.: Mean values for the velocity 
magnitude [m/s]

Figure 6.40.: RMS value for velocity 
magnitude [m/s]
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The mean values of the velocity magnitude on the planes y=0 and z=0 for each turbulence generator 
are given in a profile representation. These profiles show the results of the CFD simulation at the 
post-processing lines L01-L12. The lines are separated and shifted by 4 m/s which helps to observe 
the  change  of  the  velocity  magnitude  in  the  turbulent  flow.  The  profile  representations  of  the 
turbulent kinetic energy for the different turbulence generators using DES for the computational 
analysis  are  given  also  in  the  following  figures.  The  turbulent  kinetic  energy

k=1
2

u i
, ui

,=1
2
ux

, ux
,u y

, uy
,uz

, uz
,  is calculated from the values of all  three velocity variations 

(x,y,z). The different lines are separated and shifted by a value of 0.2 m2/s2.

These profiles are given in the Fig. 6.41. - 6.78. which are all generated in the graphing software 
SigmaPlot .

TG00

Figure 6.41.: Mean velocities [m/s] Figure 6.42.: Turbulent Kinetic Energy [m2/s2]
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TG01 (z=0)

Figure 6.43.: Mean velocities [m/s] Figure 6.44.: Turbulent Kinetic Energy [m2/s2]

TG01 (y=0)

Figure 6.45.: Mean velocities [m/s] Figure 6.46.: Turbulent Kinetic Energy [m2/s2]
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TG02 (z=0)

Figure 6.47.: Mean velocities [m/s] Figure 6.48.: Turbulent Kinetic Energy [m2/s2]

TG02 (y=0)

Figure 6.49.: Mean velocities [m/s] Figure 6.50.: Turbulent Kinetic Energy [m2/s2]
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TG04 (z=0)

TG04 (y=0)

Figure 6.51.: Mean velocities [m/s] Figure 6.52.: Turbulent Kinetic Energy [m2/s2]

Figure 6.53.: Mean velocities [m/s] Figure 6.54.: Turbulent Kinetic Energy [m2/s2]
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TG05 (z=0)

Figure 6.55.: Mean velocities [m/s] Figure 6.56.: Turbulent Kinetic Energy [m2/s2]

TG05 (y=0)

Figure 6.57.: Mean velocities [m/s] Figure 6.58.: Turbulent Kinetic Energy [m2/s2]
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TG06 (z=0)

Figure 6.59.: Mean velocities [m/s]

TG06 (y=0)

Figure 6.61.: Mean velocities [m/s] Figure 6.62.: Turbulent Kinetic Energy [m2/s2]

Figure 6.60.: Turbulent Kinetic Energy [m2/s2]
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TG07 (z=0)

Figure 6.63.: Mean velocities [m/s] Figure 6.64.: Turbulent Kinetic Energy [m2/s2]

TG07 (y=0)

Figure 6.65.: Mean velocities [m/s] Figure 6.66.: Turbulent Kinetic Energy [m2/s2]
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TG08 (z=0)

Figure 6.67.: Mean velocities [m/s] Figure 6.68.: Turbulent Kinetic Energy [m2/s2]

TG08 (y=0)

Figure 6.69.: Mean velocities [m/s] Figure 6.70.: Turbulent Kinetic Energy [m2/s2]
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TG09 (z=0)

Figure 6.71.: Mean velocities [m/s] Figure 6.72.: Turbulent Kinetic Energy [m2/s2]

TG09 (y=0)

Figure 6.73.: Mean velocities [m/s] Figure 6.74.: Turbulent Kinetic Energy [m2/s2]
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TG10 (z=0)

Figure 6.75.: Mean velocities [m/s] Figure 6.76.: Turbulent Kinetic Energy [m2/s2]

TG10 (y=0)

Figure 6.77.: Mean velocities [m/s] Figure 6.78.: Turbulent Kinetic Energy [m2/s2]
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Pressure fluctuations have been recorded on the evaluation lines during the transient  DES. The 
profile representations in the planes y=0 and z=0 for the mean value (left) of static pressure are 
given at the evaluation lines L01-L12 which are shifted by the value of 2 Pa. The  RSM (right) 
value of static pressure is given at 6 selected evaluation lines L01, L04, L05, L06, L07 and L09 
from  top  to  bottom.  The  y-axis  for  the  RMS  of  static  pressure  is  given  in  a  logarithmic 
representation. 

TG00

Figure 6.79.: Static Pressure [Pa] Figure 6.80.: Variance of Static Pressure [Pa]
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TG01 (y=0)

Figure 6.81.: Static Pressure [Pa] Figure 6.82.: Variance of static pressure [Pa]

TG01 (z=0)

Figure 6.83.: Static Pressure [Pa] Figure 6.84.: Variance of static pressure [Pa]
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TG02 (y=0)

Figure 6.85.: Static Pressure [Pa] Figure 6.86.: Variance of static pressure [Pa]

TG02 (z=0)

Figure 6.87.: Static Pressure [Pa]
Figure 6.88.: Variance of static pressure [Pa]
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TG04 (y=0)

Figure 6.89.: Static Pressure [Pa] Figure 6.90.: Variance of static pressure [Pa]

TG04 (z=0)

Figure 6.91.: Static Pressure [Pa] Figure 6.92.: Variance of static pressure [Pa]
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TG05 (y=0)

Figure 6.93.: Static Pressure [Pa] Figure 6.94.: Variance of static pressure [Pa]

TG05 (z=0)

Figure 6.95.: Static Pressure [Pa] Figure 6.96.: Variance of static pressure [Pa]
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TG06 (y=0)

Figure 6.97.: Static Pressure [Pa] Figure 6.98.: Variance of static pressure [Pa]

TG06 (z=0)

Figure 6.99.: Static Pressure [Pa] Figure 6.100.: Variance of static pressure [Pa]
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TG07 (y=0)

Figure 6.101.: Static Pressure [Pa] Figure 6.102.: Variance of static pressure [Pa]

TG07 (z=0)

Figure 6.103.: Static Pressure [Pa] Figure 6.104.: Variance of static pressure [Pa]



Unsteady Simulations 99

TG08 (y=0)

Figure 6.105.: Static Pressure [Pa] Figure 6.106.: Variance of static pressure [Pa]

TG08 (z=0)

Figure 6.108.: Variance of static pressure [Pa]Figure 6.107.: Static Pressure [Pa]
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TG09 (y=0)

Figure 6.109.: Static Pressure [Pa] Figure 6.110.: Variance of static pressure [Pa]

TG09 (z=0)

Figure 6.111.: Static Pressure [Pa] Figure 6.112.: Variance of static pressure [Pa]
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TG10 (y=0)

Figure 6.113.: Static Pressure [Pa] Figure 6.114.: Variance of static pressure [Pa]

TG10 (z=0)

Figure 6.115.: Static Pressure [Pa] Figure 6.116.: Variance of static pressure [Pa]
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 6.2 Fast Fourier Transformation 
Spectral Methods are important in some applications, as the simulation of turbulence. Hence they 
are briefly described here. 

The  Fast Fourier-Transformation (FFT) is based on the  Discrete Fourier-Transformation (DFT). 
Spectral Methods use periodic functions which can be represented by discrete Fourier-series:

u j=u x j=∑
k=−K

K

uk eik x j  equation (6.1)

where x j= j x , j=1,2 ,... , N and x j=2 j /N . Equation (6.1) can be inverted by using

uk=u xk =
1
N ∑m=1

N

ume−ikxm  equation (6.2)

where k=−K , ... , K .

In many situations, there is a considerable advantage of implementing equation (6.1) by FFT. Data 
are shuffled into a bit-reversed order and appropriate phase factors are introduced. The Fast Fourier 
Transformation reduces successively the original Fourier Transformations at  N points to Fourier 
Transformations each with the half number of points (N → N/2 → N/4). This splitting is going to 
be continued till only one trivial Fourier Transformation for one single point remains. 

The savings in computational time are substantial,  since only N⋅ln N  operations are required 
for an N-point transformation as opposed to N2 operations for the DFT. 

To take advantage of the FFT,  N must not be a prime number.  The highest acceleration of the 
computational efforts can be achieved by choosing N to the power of 2:

N=2p , p∈ℕ . [6, 7]
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 6.3 Spectral Analysis
This chapter gives detailed information about the simulation post-processing and shows the FFT 
spectra

With the purpose of a spectral  analysis,  data for the x-,  y-, z-velocities  and the  transient static 
pressure have been recorded on twelve evaluation lines (L01 – L12) for about 5000 time steps after 
the simulation has reached a quasi-periodic state.  

Velocity Fluctuations: 
Figures 6.117. - 6.135. show the spectral normalized, absolute squared value of the variance of the 
mean velocity, which is multiplied by a factor of two to account for the positive frequency space. 
The FFT signals are displayed in a logarithmic scale (logarithmic y-axis) with a reference value set 
to 1 m2/s2. By integrating over the frequency space one yields the corresponding turbulent kinetic 
energy. The frequency spectra at different evaluation lines, which are described in detail in chapter 
3, are displayed, as  follows. The colors represent the order of the band mid frequency. While the 
area with the highest frequencies is red-colored, the area with the lowest band mid frequency is 
dark-blue colored.

TG00

L01 L06 L09

Figure 6.117.: Frequency Spectra for TG00 at different lines L01, L06, L09
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TG01 (z=0)

L01 L06 L09

Figure 6.118.: Frequency Spectra for TG00 at different lines L01, L06, L09

TG01 (y=0)

L01 L06 L09

Figure 6.119.: Frequency Spectra for TG00 at different lines L01, L06, L09
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TG02 (z=0)

L01 L06 L09

Figure 6.120.: Frequency Spectra for TG00 at different lines L01, L06, L09

TG02 (y=0)

L01 L06 L09

Figure 6.121.: Frequency Spectra for TG00 at different lines L01, L06, L09
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TG04 (z=0)

L01 L06 L09

Figure 6.122.: Frequency Spectra for TG00 at different lines L01, L06, L09

TG04 (y=0)

L01 L06 L09

Figure 6.123.: Frequency Spectra for TG00 at different lines L01, L06, L09
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TG05 (z=0)

L01 L06 L09

Figure 6.124: Frequency Spectra for TG00 at different lines L01, L06, L09

TG05 (y=0)

L01 L06 L09

Figure 6.125.: Frequency Spectra for TG00 at different lines L01, L06, L09
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TG06 (z=0)

L01 L06 L09

Figure 6.126: Frequency Spectra for TG00 at different lines L01, L06, L09

TG06 (y=0)

L01 L06 L09

Figure 6.127.: Frequency Spectra for TG00 at different lines L01, L06, L09
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TG07 (z=0)

L01 L06 L09

Figure 6.128: Frequency Spectra for TG00 at different lines L01, L06, L09

TG07 (y=0)

L01 L06 L09

Figure 6.129.: Frequency Spectra for TG00 at different lines L01, L06, L09



Unsteady Simulations 110

TG08 (z=0)

L01

Figure 6.130: Frequency Spectra for TG00 at different lines L01, L06, L09

TG08 (y=0)

L01

Figure 6.131.: Frequency Spectra for TG00 at different lines L01, L06, L09

L06 L09

L06 L09
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TG09 (z=0)

L01 L06 L09

Figure 6.132: Frequency Spectra for TG00 at different lines L01, L06, L09

TG09 (y=0)

L01 L06 L09

Figure 6.133.: Frequency Spectra for TG00 at different lines L01, L06, L09
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TG10 (z=0)

L01 L06 L09

Figure 6.134: Frequency Spectra for TG00 at different lines L01, L06, L09

TG10 (y=0)

L01 L06 L09

Figure 6.135.: Frequency Spectra for TG00 at different lines L01, L06, L09
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Pressure Fluctuations:
Fig. 6.136 – 6.154. show the spectral  normalized,  absolute squared value of the variance of the 
static pressure, which is multiplied by a factor of two to account for the positive frequency space. 
FFT signals are displayed in a logarithmic scale with a reference value set to 1 m2/s2.

TG00

L01 L06 L09

Figure 6.136.: Frequency Spectra for TG00 at different lines L01, L06, L09
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TG01 (z=0)

L01 L06 L09

Figure 6.137.: Frequency Spectra for TG00 at different lines L01, L06, L09

TG01 (y=0)

L01 L06 L09

Figure 6.138.: Frequency Spectra for TG00 at different lines L01, L06, L09
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TG02 (z=0)

L01 L06 L09

Figure 6.139.: Frequency Spectra for TG00 at different lines L01, L06, L09

TG02 (y=0)

L01 L06 L09

Figure 6.140.: Frequency Spectra for TG00 at different lines L01, L06, L09
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TG04 (z=0)

L01 L06 L09

Figure 6.141.: Frequency Spectra for TG00 at different lines L01, L06, L09

TG04 (y=0)

L01 L06 L09

Figure 6.142.: Frequency Spectra for TG00 at different lines L01, L06, L09



Unsteady Simulations 117

TG05 (z=0)

L01 L06 L09

Figure 6.143: Frequency Spectra for TG00 at different lines L01, L06, L09

TG05 (y=0)

L01 L06 L09

Figure 6.144.: Frequency Spectra for TG00 at different lines L01, L06, L09
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TG06 (z=0)

L01 L06 L09

Figure 6.145: Frequency Spectra for TG00 at different lines L01, L06, L09

TG06 (y=0)

L01 L06 L09

Figure 6.146.: Frequency Spectra for TG00 at different lines L01, L06, L09



Unsteady Simulations 119

TG07 (z=0)

L01 L06 L09

Figure 6.147: Frequency Spectra for TG00 at different lines L01, L06, L09

TG07 (y=0)

L01 L06 L09

Figure 6.148.: Frequency Spectra for TG00 at different lines L01, L06, L09
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TG08 (z=0)

L01 L06 L09

Figure 6.149: Frequency Spectra for TG00 at different lines L01, L06, L09

TG08 (y=0)

L01 L06 L09

Figure 6.150.: Frequency Spectra for TG00 at different lines L01, L06, L09
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TG09 (z=0)

L01 L06 L09

Figure 6.151: Frequency Spectra for TG00 at different lines L01, L06, L09

TG09 (y=0)

L01 L06 L09

Figure 6.152.: Frequency Spectra for TG00 at different lines L01, L06, L09
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TG10 (z=0)

L01 L06 L09

Figure 6.153: Frequency Spectra for TG00 at different lines L01, L06, L09

TG10 (y=0)

L01 L06 L09

Figure 6.154.: Frequency Spectra for TG00 at different lines L01, L06, L09
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 6.4 Pressure Fluctuations at the Plate
Pressure fluctuations are recorded at several points at the center of the microphone plate during the 
Detached Eddy Simulation. These data are collected for each simulated turbulence generator. The 
frequency spectra  of  the  pressure  fluctuations  at  those  specific  points  can  be  compared  to  the 
frequency spectra of the microphones from the experimental analysis. The following figure (Fig. 
6.155.)  represents  the comparison of the frequency spectra  of one microphone MIC 12 for the 
different turbulence generators.  The experimental  signals are recorded at the center of the plate 
where the jet impinges on the microphone plate. The off-axis signal represents the acoustic signal of 
the fan. The wall is positioned at a distance of 550mm downstream the tube outlet. The gray area 
represents the the maximal signal of the acoustic offset measurement for the different turbulence 
generators. The experimental part of the TUNICA-project was done by Wolfgang Tilser in course 
of his Master Thesis at the AIT.

Figure 6.155.: Summary of the frequency spectra of the microphone MIC12 
for the different turbulence generators [15, 16, 17, 18]

The comparison of the frequency spectra of the simulated pressure fluctuations for the different 
turbulence generators is given in Figure 6.156.
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Figure 6.156.: Comparison of the simulated frequency spectra [17, 18]

Figure 6.157.: Frequency spectra of the CTA signals [17, 18]

All  turbulence  generators  are  represented  in  figures  3.4.  -  3.14.  The  experimental  as  well  the 
computational analysis of the frequency spectra show that TG10 and TG07 reach the highest and 
broadest  spectra.  By  comparing  Figure  6.155.  and  Figure  6.155.  one  sees  the  correlations  of 
velocity  with  pressure  fluctuations.  The  turbulence  generators  which  cause  high  velocity 
fluctuations  do  also  lead  to  high  pressure  fluctuations.  The  spectra  of  the  other  turbulence 
generators  show  similar  behavior  for  the  experimental  and  computational  counter  parts.  The 
simulation results drop at lower frequency values than the experimental results do, which can be 
related to insufficient mesh resolution in the propagation region.  Due to the minimum cell  side 
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length of 1 mm at the turbulence generating surfaces and a mean value of around 5 mm cell side 
length in the turbulent area, higher frequencies cannot be propagated well. 

These results have been presented at several conferences, and further information can be taken from 
the publications. [17,18]
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 7 Conclusions
Flow phenomena can be solved quickly by means of steady CFD simulations. In case of laminar 
flow they can provide reliable results.  Turbulent  flows can be hard to solve by stationary CFD 
simulations if the flow is unsteady, but they can give trends about the global behavior of the flow. 
The inherent transient flow patterns cannot be captured by steady solvers. The RNG k-ε model 
compared best  to the experimental  data.  Differences in the models are most  pronounced in the 
stagnation area of the impinging jet at the wall. For some turbulence generators that are built of 
blades, a steady solution cannot be achieved. The characteristics and the values of the variables of 
interest  of  these turbulent  flows can be investigated  by performing unsteady CFD simulations. 
Transient CFD calculations using the detached eddy simulation are performed to provide frequency 
spectra  which  can  be  compared  to  the  experimental  data.  Moreover,  the  correlation  between 
simulated local velocity and pressure fluctuations at the wall can be investigated. [15, 16]

Grid quality has a great impact on the success and accuracy of the computational analysis of  flow 
phenomena.  The  grid  resolution  at  the  boundaries  of  the  flow  domain  is  important  for  the 
modulation of eddies and turbulence. By checking the y+ values in near wall regions in respect to 
the law-of-the-wall it is possible to fit the number and size of cells to the demands of the flow and 
geometry. 

The acoustic effects of the different turbulence generators can be compared by performing unsteady 
DES  CFD-simulations.  The  general  behavior  of  the  DES  simulated  spectra  of  the  pressure 
fluctuations for the different turbulence generators coincide with the experimental frequency spectra 
recorded with the microphone signals  concerning  broadness and level.  However  the simulation 
results under-predict their experimental counterparts with regards to the lower frequency values. 
From the velocity spectra in figures 6.115 – 6.136. it can be seen that prominent features of the 
spatial frequency behavior are well captured. The position of the shear layers, the separation and the 
combination of the turbulent  regions can be observed easily. The comparison of the experimentally 
and  numerically  generated  frequency  spectra  offer  the  possibility  to  find  out  where  CFD 
simulations are effective and gives results approximately equivalent to the experimental  results. 
However, the representation of all details of the spectra is limited. This can be attributed to the 
constraints of the computing power and cell size. Using a cell number of around five million and 
the fact that one time step takes approximately six minutes, leads to calculation times of 40 days on 
four CPUs of a  3.2  GHz Linux cluster.  Due to the minimum cell  side length  of 1  mm at  the 
turbulence generating surfaces and a mean value of around 5 mm cell side length in the turbulent 
area,  higher  frequencies  cannot  be propagated  well,  which can be seen in  the lower frequency 
content of the numerical based spectra compared to the experimental data. 

To  overcome  present  limitations  different  mesh  strategies  and  the  implementation  of  stronger 
fluctuating boundary conditions would be needed. [17,18]
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Introduction 
A turbulent circular free stream jet is generated using an 
axial symmetric fan driven by a brushless actuator with 
variable frequency leading to typical core-velocities of 
around 10 m/s (Re = 99000). The flow is propagated through 
a pipe (radius = 80.5 cm) system significantly damping the 
noise from the fan. Turbulence is generated using different 
sets of turbulence generators [2, 3, 4] in the tunnel (length 
approx. 3 m) consisting of meshes, rods, blades and spikes. 
The turbulent flow field downstream of the pipe outlet is 
measured using two-axis hot wire anemometry [1] with a 
temporal resolution of 48 kHz. The CTA probe is positioned 
using an automated three-axis traversing system. The 
turbulent jet impinges on a wall in the distance of 0.55 m 
from the pipe outlet. 12 Microphones are positioned on a flat 
plate mounted on the wall in the center-line of the jet. CFD 
(computational fluid dynamics) calculations are performed 
for the different turbulence generators and compared to the 
CTA signals. An important aspect of the work is the 
simultaneous recording of both the CTA- and the 
microphone signals. This allows for the calculation of 
correlation patterns between turbulence and the acoustic 
signals. The generation of free stream turbulence in a 
controlled way and its correlation to downstream pressure 
fluctuations is the primary aim of the work.  

Numerical Simulation 
The numerical analysis have been performed on a hybrid 
mesh consisting of tetrahedral cells in the region of the 
turbulence generators (see figure 3) and a prismatic / 
hexahedral mesh in the up- and downstream area. Mesh sizes 
of 2 mm at the turbulence generator core lead to typical cell 
counts of 3 million cells). Best results have been achieved by 
applying a turbulent velocity profile at the tube inlet and 
fixing the turbulent kinetic intensity to a value of 2.6 %. The 
fluid leaves the calculation area through the cylindrical 
surface and its base plane (see figure 1. The jet impinges on 
the opposite circular area of the cylinder, which is defined as 
a hard wall. Steady CFD calculations leading to acceptable 
low numeric residuals were not possible for all turbulence 
generators. Sharp blades caused very high fluctuating fields, 
which could not be captured by a steady solver. Comparing 
experimental and numerical results, the RNG formulation of 
the k-ε model gave best agreement. The differences have 
been found to be most pronounced in the near wall region at 
the microphone plate. Figure 2 shows the turbulent kinetic 
energy on the analysis plane for a turbulence generator with 
4 spikes.  

 

Figure 1: Geometry for the CFD simulation. A circular jet 
impinges on a microphone plate mounted on a wall. 
Turbulence generators can be applied in the outlet region of 
the tunnel. 

 

 
Figure 2: Turbulent kinetic energy [m2/s2] for a turbulent 
generator with 4 spikes. The simulations are performed 
using a steady kε-RNG model (grey scale range from 0 to 
1). 

Experimental Results 
Signals from the 2-axis CTA (constant temperature 
anemometer) have been recorded simultaneously with 12 
microphone signals with a sampling rate of 48 kHz. The data 
were acquired in the analysis plane on 492 points 
(streamwise tunnel direction x: 12 points, perpendicular 
crosswise direction +y: 41 points). All signals (CTA, 
microphone) have been scaled by their corresponding 
calibration values. For the spectral analysis they have been 
further numerically filtered (low pass filter 20 kHz), DC 
subtracted and Fourier transformed. 

As an example, figure 4 compares two signals for 6 different 
turbulence generator setups: (1) the spectra of the CTA 
measurement 6 mm in front of the microphone plate and (2) 
the spectra of one of the microphone signals.  



Figure 2: Different turbulence generators consisting of 
rods, blades, spikes and meshes. They can be mounted on 
top of the tunnel outlet. 

All three turbulence generators (5 circular rods with 
diameter 12 mm, 5 quadratic rods with 12 mm side length 
and 7 circular rods with 8 mm diameter) were designed to 
have the same amount of obstruction.  

Figure 4: Comparison between frequency spectra of CTA 
signal (upper figure) 6 mm in front of microphone plate and 
microphone spectra (lower figure) for 6 different turbulence 
generator flow setups. 

The microphone signals (lower figure 4) are clearly 
separated and show a peak around 250 Hz which is not 
observed in the CTA signals (upper figure 4). The reason for 
this can, however, not be found in the turbulence generator, 
as the peak persists, when no turbulence generator is present. 

Conclusions & Outlook 
Steady CFD simulations can give trends but are not ideally 
suited for quantitative analysis as they are not able to capture 
the inherent transient flow patterns. The RNG formulation of 
the k-ε model compared best to the experimental data 
(streamwise and crosswise velocity, turbulent kinetic 
energy). Differences in the models are most pronounced in 
the stagnation area of the impinging jet at the wall.  For 
some turbulence generators (blades), a steady solution could 
not be achieved.  

Correlations between turbulent velocity fields and 
microphone signals have been investigated for 11 different 
turbulence generators. Larger turbulence coincides with 
larger pressure fluctuations, the full frequency behaviour, 
however, could not always be reproduced. The reasons may 
lie in additional acoustic incoming waves, which can be 
attributed to dipolar and quadrupolar sound sources as well 
as vibrations of the turbulent generators. 

Transient CFD simulations (DES) will be employed to 
provide frequency spectra for comparison to the 
experimental data. Furthermore, the correlation between 
simulated local velocity fluctuations and pressure 
fluctuations at the wall can be investigated. These results 
will also be compared to the experimental correlation, as 
CTA and microphone signals have been recorded 
simultaneously. The 12 microphone signals also allow for 
spatial correlation analysis.  
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ABSTRACT 
A turbulent circular pipe-flow with typical 

core-velocities of around 10 m/s is generated by an 
axial symmetric fan. After leaving the cylindrical 
tube, the generated separating jet impinges on a flat 
plate. Turbulence is generated using different sets 
of turbulence generators at the pipe outlet consisting 
of rods, cubes and spikes. To extract the inlet 
boundary conditions for the CFD calculations, 
turbulent velocity profiles have been measured in 
the pipe using two-axis constant temperature 
anemometry (CTA). The turbulent flow field 
downstream of the pipe outlet is also measured 
using two-axis hot wire anemometry. The CTA 
probe is positioned using an automated three-axis 
traversing system recording the turbulent velocities 
on 492 points downstream of the pipe outlet.  

CFD calculations are performed for the 
different turbulence generators using Detached 
Eddy Simulation (DES) to generate the base for the 
extraction of fluctuating velocity time series. The 
spectral evaluation of the data is analysed in 1/3 terz 
band representations via FFT. The spectral content 
of the time series is compared with the experimental 
values.  

This contribution explores the robustness of 
present transient turbulence modelling approaches. 
Based on experimental and numerical methods free 
stream turbulence is generated in a well defined 
way and spectrally characterized. 

 
Computational Fluid Dynamics (CFD), detached 
eddy simulation (DES), impinging jet, RANS, 
turbulence, turbulence generators 

 
 

NOMENCLATURE 
CFD [-] Computational Fluid Dynamics 
CTA [-] Const. Temperature Anemometry 
DES [-] Detached Eddy Simulation  
FFT [-] Fast Fourier Transformation  
RANS [-] Reynolds-averaged Navier-Stokes 
rms [-] root mean square 
RNG [-] Re-Normalisation Group 
 
1. INTRODUCTION 

A turbulent circular free stream jet is generated 
using an axial symmetric fan driven by a brushless 
actuator with variable frequency leading to typical 
core-velocities of around 10 m/s (Re = 99000). The 
flow is propagated through a pipe (radius = 80.5 
mm). Turbulence is generated using different sets of 
turbulence generators [2, 3, 4] in the tunnel 
consisting of rods, blades and spikes. The length of 
the tunnel is approx. 2.5 m. The turbulent flow field 
downstream of the pipe outlet is measured using 
two-axis hot wire anemometry [1] with a temporal 
resolution of 48 kHz. The CTA probe is positioned 
using an automated three-axis traversing system. 
The turbulent jet impinges on a wall in the distance 
of 0.55 m from the pipe outlet. Computational fluid 
dynamics (CFD) calculations are performed for the 
different turbulence generators and compared to the 
CTA signals.  

 
2. NUMERICAL SIMULATION 

2.1. Geometry Definition 
The geometric definition is shown in figure 1. 

After entering the simulation area at the tube inlet 
and crossing the turbulence generators, the fluid 
leaves the calculation area through the cylindrical 
surface and its base plane. The jet impinges on the 



opposite circular area of the cylinder, which is 
defined as a hard wall.  

 

 
 
Figure 1. Geometry for the CFD simulation. A 
circular jet impinges on a microphone plate 
mounted on a hard wall. Turbulence generators 
can be applied in the outlet region of the tunnel. 
12 different evaluation lines L01-L12 are defined in 
the area between tube outlet and plate. Their x-axis 
positions are given in table 1. Different turbulence 
generators are summarized in figure 3. The empty 
tube section (no turbulence generator) is called 
TG00. 

 
 

 
 
 
Figure 2. Definition of the postprocessing lines 
L01-L12. 

           
TG01           TG06           TG07           TG09 
Figure 3. Different turbulence generators 
consisting of rods, spikes and blades. They can 
be mounted on top of the tunnel outlet. 

 

 

Table 1. x-coordinates of the analysis planes 

linename x-axis 
position 
[mm]  

linename x-axis 
position 
[mm] 

L01y 6.00 L07y 312.74 
L02y 9.40 L08y 400.10 
L03y 19.59 L09y 491.83 
L04y 50.17 L10y 522.41 
L05y 141.90 L11y 532.60 
L06y 229.26 L12y 536.00 

2.2 Mesh Definition 
The numerical analysis have been performed on 

a hybrid mesh consisting of tetrahedral cells in the 
region of the turbulence generators (see figure 4) 
and a prismatic / hexahedral mesh in the up- and 
downstream area. Mesh sizes of 1 mm at the 
turbulence generator core and 12 mm at the 
boundaries lead to typical cell counts of 5 million 
cells.  

 
Figure 4. Mesh resolution on the spike surfaces 
of TG05. 

2.3. Simulation Method 
Results of steady RANS simulations have been 

calculated before [5] giving best results using the 
RNG formulation of the k-ε model. In publication 
[5] additional turbulence generators have been 
analyzed as well. Especially the sharp blades caused 
very high fluctuating fields, which could not be 
captured by a steady solver. The present paper 
focuses on five turbulence generators showing 
different spectral data. The mean velocity inlet 
boundary profiles were extracted from the 
experimental CTA data. The turbulence boundary 
condition was defined using the hydraulic diameter 
of 152.59 mm and a turbulence intensity of 5%. For 
the simulations the commercial Navier Stokes 
solver Fluent [6] was used applying the Detached 
Eddy Simulation with vorticity based production 
terms. Second order schemes were used in space 
and time.  

Using a time step of 100µs around 5000 time 
steps were necessary to reach quasistatic behaviour 
of the flow field. An additional amount of 5000 
time steps have been calculated and recorded to 
perform the steps for the spectral analysis. 

y41 
y36 
y31 
y26 
y21 
y16 
y11 
y06 
y01 

L04  L03  L02  L01 



2.4. Mean Velocities and Fluctuations 
Figure 5 gives the mean and rms values of the 

velocity magnitude for the five turbulence 
generators. Results are given on planes with fixed 
y=0 (TGxx-y) and z=0 (TGxx-z) coordinates. 

 

 
 

 
 

  
 

 
 

  
 

 
 

  
 

  
 

   
Figure 5. Mean velocities [m/s] (left figure) and 
rms velocity magnitudes [m/s] (right figure) 
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Figure 6. Mean velocities [m/s] (left figure, 
distance of two lines = 4 m/s) and turbulent 
kinetic energy [m2/s2] (right figure, distance of 
two lines 0.2 m2/s2). The different lines show 
results of the different profiles at lines L01-L12 
(see first graph left side).  

Figure 6 shows a profile representation of the 
different simulation runs for the 5 turbulence 
generators. Here mean velocities and the turbulent 
kinetic energy calculated from the values of all 
three velocity variations (x,y,z) are shown. 
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3. SPECTRAL ANALYSIS 
Velocity fluctuations are available from the 

CTA measurements as well as from the numerical 
DES simulations. This part of the paper gives 
details for the data processing and shows the 
corresponding FFT spectra. 

3.1 Simulation Results 
With the purpose of a spectral analysis, the x-, 

y- and z-velocities on twelve evaluation lines (L01 
– L12) have been recorded for about 5000 time 
steps.  

Figure 7 and 8 show the spectral normalized, 
absolute squared value of the variance of the mean 
velocity, which is multiplied by a factor of two to 
account for the positive frequency space. FFT 
signals are displayed in a logarithmic scale with a 
reference value set to 1 m2/s2.  Integrating over the 
frequency space yields the corresponding turbulent 
kinetic energy.  
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 Figure 7. Frequency spectra at different lines 
(upper graphs L01, L04, mid graphs L05, L06, 
lower graphs L07, L09) for different turbulence 
generators TGxx. The grey scale represents the 
variance of the mean velocity [m2/s2]. The y-axis 
is nonlinear representing the nonlinear mesh. 

 

3.2. Experimental Results 
 
Signals from the 2-axis CTA have been 

recorded with a sampling rate of 48 kHz. The data 
was acquired in an analysis plane on 492 points 
(streamwise tunnel direction x: 12 points, 
perpendicular crosswise direction +y: 41 points). 
All signals have been scaled by their corresponding 
calibration values. The spectral analysis was carried 
out after numerically filtering (low pass filter 20 
kHz), DC subtraction and Fourier transformation. 

 
 

9
5
1
7
3
9
5
1
7
3
9
5
1
7
3
9
5
1
7
3
9
6
2
8
4
0
6
2
8
4
0
6
2
8
4
0
6
2
8
4
0

 

 

 
TG00 

 

 

13

la
te

ra
l p

os
iti

on
 [m

m
]

-135.9
-132.5
-129.1
-125.7
-122.3
-118.9
-115.5
-112.1
-108.7
-105.3
-101.9

-98.5
-95.1
-91.7
-88.3
-84.9
-81.5
-78.1
-74.7
-71.3
-67.9
-64.6
-61.2
-57.8
-54.4
-51.0
-47.6
-44.2
-40.8
-37.4
-34.0
-30.6
-27.2
-23.8
-20.4
-17.0
-13.6
-10.2

-6.8
-3.4
0.0



 
TG01-y 

 

 

 
TG06-y 

 

 

 
TG07-y 

 

 

 
TG09-y 

 

band mid frequency [Hz]

13 16 20 25 32 40 50 63 80 10
0

12
5

16
0

20
0

25
0

31
5

40
0

50
0

63
0

80
0

10
00

12
50

16
00

20
00

25
00

31
50

40
00

50
00

63
00

80
00

10
00

0
12

50
0

16
00

0
 

Figure 8. Frequency spectra at different lines 
(upper graphs L01, L04, mid graphs L05, L06, 
lower graphs L07, L09) for different turbulence 
generators TGxx. The grey scale represents the 
variance of the mean velocity [m2/s2]. The y-axis 
is linear, data showing one half of the turbulence 
generator. 

 
4. PRESSURE FLUCTUATIONS 

During the simulation runs, pressure 
fluctuations have been recorded at several positions 
at the centre of the flat plate (figure 10). Figure 9 
relates them to microphone spectra [5] located at 
the same position. 

 



TGx MIC12 (5 mm) - 1500 rpm
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Figure 9. Comparison of the frequency spectra 
of the microphone MIC12 for the different 
turbulence generators (TGx). The signal was 
recorded at the center of the plate (y~1cm, z = 0), 
where the turbulent jet impinges on the 
microphone plate. The gray area is the 
maximum signal of the acoustic offset 
measurement for the different TGx [5]. The 
reference pressure for the logarithmic scale was 
set to 20 µPa. 
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 Figure 10. Comparison of the frequency spectra 
of the pressure fluctuations for the different 
turbulence generators (TGx) from the DES. 
TG10 and TG07 reach the highest and broadest 
spectra in the simulation as well as the experiment. 
The simulation results drop at lower frequency 
values than their experimental counterparts. This 
can be attributed to insufficient mesh resolution in 
the propagation region. 
 
5. SUMMARY 

 
Comparing the spectra from the DES (figure 7, 

mind the nonlinear y-axis, which is more dense in 
the shear layer) with the spectra from the 
experimental data (figure 8, only one half of the 
tube was scanned) the following results can be 
extracted. 

The prominent features of the spatial frequency 
behaviour are well captured (e.g. the position of the 

shear layers, the separation and the combination of 
the turbulent areas). However, the representation of 
all details of the spectra is limited. This can be 
partly attributed to the constraints of the computing 
power and cell size. Using a cell amount of 5 
million cells, one timestep needs approximately 6 
min real time, leading to calculation times of 40 
days on 4 CPUs of a 3.2 GHz Linux cluster.  

Due to the minimum cell side length of 1 mm at 
the turbulence generating surfaces and a mean value 
of around 5 mm cell side length in the turbulent 
area, occurring lower mesh densities prevent 
accurate propagation of higher frequencies, which 
can be seen in the lower frequency content of the 
numerical based spectra (fig. 7) compared to the 
experimental data (fig. 8). 

The experimental spectra of TG00 show a 
higher turbulence level between the shear layers as 
compared to the simulation data.  

Future investigations will, thus, be devoted to 
different mesh strategies and the implementation of 
stronger fluctuating boundary conditions to 
overcome the present limitations. 
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A turbulent circular free stream jet is generated using an axial symmetric fan driven by a brushless actuator with 
variable frequency leading to typical core-velocities of around 10 m/s (Re = 99000). The flow is propagated 
through a pipe system significantly damping the noise from the fan. Turbulence is generated using different sets 
of turbulence generators in the pipe consisting of meshes, rods, cubes and spikes. The turbulent flow field 
downstream of the pipe outlet is measured using two-axis hot wire anemometry with a temporal resolution of a 
minimum of 48 kHz. The CTA probe is positioned using an automated three-axis traversing system. 
Microphones located at freely adjustable positions are used to capture the acoustic radiation and the wall 
pressure fluctuations. CFD calculations are performed for the different turbulence generators and compared to 
the acoustic and CTA signals. An important aspect of the work is the simultaneous recording of both the CTA- 
and the acoustic signals in the experimental and numerical approach. This allows for the calculation of 
correlation patterns between turbulence and the acoustic signals. The generation of free stream turbulence in a 
controlled way and its correlation to downstream pressure fluctuations is the primary aim of the work.  
  

1 Introduction 

A turbulent circular free stream jet is generated using an 
axial symmetric fan driven by a brushless actuator with 
variable frequency leading to typical core-velocities of 
around 10 m/s (Re = 99000). The flow is propagated 
through a pipe (radius = 80.5 mm). Turbulence is generated 
using different sets of turbulence generators [2, 3, 4] in the 
tunnel (length approx. 2.5 m) consisting of meshes, rods, 
blades and spikes. The turbulent flow field downstream of 
the pipe outlet is measured using two-axis hot wire 
anemometry [1] with a temporal resolution of 48 kHz. The 
CTA probe is positioned using an automated three-axis 
traversing system. The turbulent jet impinges on a wall in 
the distance of 0.55 m from the pipe outlet. 12 Microphones 
are positioned on a flat plate mounted on the wall in the 
center-line of the jet. CFD (computational fluid dynamics) 
calculations are performed for the different turbulence 
generators and compared to the CTA signals. An important 
aspect of the work is the simultaneous recording of both the 
CTA- and the microphone signals. This allows for the 
calculation of correlation patterns between turbulence and 
the acoustic signals. The generation of free stream 
turbulence in a controlled way and its correlation to 
downstream pressure fluctuations is the primary aim of the 
work.  

2 Numerical Simulation 

The numerical analysis have been performed on a hybrid 
mesh consisting of tetrahedral cells in the region of the 
turbulence generators (see figure 2) and a prismatic / 
hexahedral mesh in the up- and downstream area. Mesh 
sizes of 2 mm at the turbulence generator core lead to 
typical cell counts of 3 million cells). Best results have been 
achieved by applying a turbulent velocity profile at the tube 
inlet and fixing the turbulent kinetic intensity to a value of 
2.6 %. The fluid leaves the calculation area through the 
cylindrical surface and its base plane (see figure 2). The jet 
impinges on the opposite circular area of the cylinder, 
which is defined as a hard wall. Steady CFD calculations 
leading to acceptable low numeric residuals were not 
possible for all turbulence generators. Sharp blades caused 
very high fluctuating fields, which could not be captured by 
a steady solver. Comparing experimental and numerical 

results, the RNG formulation of the k-ε model gave best 
agreement. 
 

 
Fig.1 Different turbulence generators consisting of rods, 

blades, spikes and meshes. They can be mounted on 
top of the tunnel outlet. First row: TG01, TG08, TG02, 
TG05; Second row: TG07, TG10, TG09, TG06; Third 
row: TG11, TG13, TG12; Fourth Row: TG04, TG03 

 

 
Fig.2 Geometry for the CFD simulation. A circular jet 

impinges on a microphone plate mounted on a wall. 
Turbulence generators can be applied in the outlet 
region of the tunnel.  

The differences have been found to be most pronounced in 
the near wall region at the microphone plate. Figure 3 



 

shows the turbulent kinetic energy on the analysis plane for 
a turbulence generator with 4 spikes (TG05). 
 

 
Fig.3 Turbulent kinetic energy [m2/s2] for a turbulent 

generator with 4 spikes. The simulations are performed 
using a steady kε-RNG model (grey scale range from 0 
to 1). 

3 Experimental Results 

Signals from the 2-axis CTA (constant temperature 
anemometer) have been recorded simultaneously with 12 
microphone signals with a sampling rate of 48 kHz. The 
data were acquired in the analysis plane on 492 points 
(streamwise tunnel direction x: 12 points, perpendicular 
crosswise direction +y: 41 points). All signals (CTA, 
microphone) have been scaled by their corresponding 
calibration values. For the spectral analysis they have been 
further numerically filtered (low pass filter 20 kHz), DC 
subtracted and Fourier transformed. In the figures always 
the normalized, absolute squared value, which is multiplied 
by a factor of two to account for the positive frequency 
space, is shown. CTA and acoustic FFT signals are 
displayed in a logarithmic scale, for acoustic signals, the 
sound pressure level was calculated using a reference 
pressure of 20 µPa, for CTA signals the reference value 
was set to 1 m2/s2. Figure 4 gives an overview of the 
evolvement of turbulent velocity field for different x-
positions. The data was recorded in the center (y=z=0 m) of 
the jet directly pointing towards the microphone 
plate.
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TG07 - CTA - x-scan (1500 rpm)
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TG08 - CTA - x-scan (1500 rpm)
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TG09 - CTA - x-scan (1500 rpm)
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TG10 - CTA - x-scan (1500 rpm)
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Fig.4 Development of the turbulent flow field of different 

turbulence generators, showing the variance of the 
mean velocity based on the CTA signal. The area 
below the different curves correspond to the variance 
of the mean velocity. 

Different spatial evolvement of the frequency distributions 
can be observed applying different turbulence generators. 
Often some spectral peaks can be found between 50 Hz and 
160 Hz in the direct vicinity of the turbulence generator 
(L1). The spectra then generally start a deep slope down in 
sound pressure level from around 1000 Hz towards higher 
frequencies. 
Acoustic measurements for all turbulence generators were 
performed downstream of the tube outlet (distance 55.5 cm) 
directly on the plate and offaxis (angle of 60° to the x-axis). 
Figure 5 shows the offaxis acoustic signal for a fan rotation 
frequency of 1500 rpm. The largest contribution lies in the 
250 Hz range, almost no contribution can be seen in the 
lower frequency range. The signal is almost independent 
from the turbulence generator placed in the tube and comes 
primarily from the sound radiation of the fan. 

TGx acoustic offset measurement
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Fig.5 Acoustic measurements downstream of the tube outlet 

(distance 55.5 cm) and offaxis (angle of 30° to the x-
axis). The fan speed was fixed to 1500 rpm.  

Figure 6 – 8 compare parts of the recorded time-series of 
CTA and microphone signal. Periods of fast and slow 
fluctuations correlate (see fig. 8), an exact match (even 
considering a slight offset due to time shift between CTA 
and MIC position) of the waves cannot be seen. The signals 
of the microphones MIC10 and MIC12 which are 
horizontally separated by about 2 cm are shown in fig. 8.  
 

 
Fig.6 Comparison of the simultaneous recorded signals of 

the microphone MIC12 and the CTA positioned 5mm 
in front of the microphone for turbulence generator 
TG09. The gray curve corresponds to the microphone 
signal (right axis), the black curve to the mean velocity 
of the CTA (left axis). 

 
Fig.7 Simultaneous recording of the pressure signal at two 

microphones on the plate in the impinging jet range. 
The distance of the two microphones in y-direction is 
about 2cm. Showing overall similar behaviour (fast and 
slow fluctuations), the two curves are not matching, 
showing differing local pressure fluctuations at 
different positions on the plate. 

 
Fig.8 Comparison of the simultaneous recorded signals of 

the microphone MIC12 and the CTA positioned 5mm 
in front of the microphone (turbulence generator 
TG09). Shown are the mean velocity, the x- and the y-
velocity components.  

 



 

To analyse the correlation between microphone signal on 
the plate (MIC 12) and the CTA signal 5mm in front of the 
microphone, fig. 10 and fig. 11 show overviews of the 
frequency spectra for different turbulence generators. 
 

 
Fig.9 Comparison of the frequency spectra of the 

microphone MIC12 for the different turbulence 
generators (TGx). The signal was recorded at the center 
of the plate (y~1cm, z = 0), where the turbulent jet 
impinges on the microphone plate. The gray area is the 
maximum signal of the acoustic offset measurement for 
the different TGx. 
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Fig.10 Comparison of frequency spectra of the CTA signal 

(mean velocity) for the different turbulence generators 
(TGx). The signal was recorded 5mm in front of the 
microphone MIC12, where the turbulent jet impinges 
on the microphone plate.  

The microphone signals (fig. 9) clearly show large 
frequency content in the range up to 200 Hz, where no 
sound contribution from the fan (grey area) is present. The 
CTA signals (see fig. 10) show their large spectra content in 
this low frequency range. Comparing the different 
turbulence generators, a good agreement in the power and 
in the width of the spectra can be found. 
For some turbulence generators (TG07, TG09, TG10) an 
even broader (and higher) spectrum is observed completely 
masking the fan noise (which is also directly propagating 
through the tube towards the microphone plate). Only part 
of this frequency range can be seen in the CTA signal and 
thus be attributed to the local velocity fluctuations at the 
plate.  

Fig. 11 compares frequency spectra of the microphones on 
the plate (MIC 12) with the local x-velocity fluctuations 
5mm in front of the microphone for different turbulence 
generators TGx.  
For each generator TGx, microphone and CTA signals for 5 
different rotation frequencies (500, 750, 1000, 1250 and 
1500 rpm) of the fan have been measured. 
If no turbulence generator is inserted into the tube (TG00) 
and for some “quiet” turbulence generators the noise from 
the fan can readily be seen in the spectra.  
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Fig.11 Comparison of the frequency spectra of the 

microphone signals (bold lines, MIC 12) to the CTA 
spectra (dashed lines) for different turbulence 
generators TGx. The CTA signal was recorded 5mm in 
front of the microphone MIC12, where the turbulent jet 
impinges on the microphone plate. The five different 
sets correspond to the fan speed frequencies of 500, 
750, 1000, 1250 and 1500 rpm. 

5 Conclusion 

Steady CFD simulations can give trends but are not ideally 
suited for quantitative analysis as they are not able to 
capture the inherent transient flow patterns. The RNG 
formulation of the k-ε model compared best to the 
experimental data (streamwise and crosswise velocity, 
turbulent kinetic energy). Differences in the models are 
most pronounced in the stagnation area of the impinging jet 
at the wall.  For some turbulence generators (blades), a 
steady solution could not be achieved.  

Correlations between turbulent velocity fields and 
microphone signals have been investigated for different 
turbulence generators. Larger turbulence coincides with 
larger pressure fluctuations, the full frequency behaviour, 
however, could not always be reproduced. The reasons may 
lie in additional acoustic incoming waves, which can be 
attributed to dipolar and quadrupolar sound sources as well 
as vibrations of the turbulent generators. 
Broader CTA spectra, however, coincide well with broader 
signals at the microphones.  
Transient CFD simulations (DES) will be employed to 
provide frequency spectra for comparison to the 
experimental data. Furthermore, the correlation between 
simulated local velocity fluctuations and pressure 
fluctuations at the wall can be investigated. These results 
will also be compared to the experimental correlation, as 
CTA and microphone signals have been recorded 
simultaneously. The 12 microphone signals also allow for 
spatial correlation analysis.  
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Abstract 
 
Turbulent flow fields are commonly present in HVAC ventilation systems. Especially outlet nozzle designs 
have a strong impact on turbulence and acoustic radiation in the emerging jets. It is highly desirable to 
model these turbulent flows and to characterize the spectral content of the pressure perturbations. For this 
purpose, a turbulent circular pipe-flow with typical core-velocities of around 10 m/s (Re = 99000) has been 
generated by an axial symmetric fan. Turbulence is generated using different sets of turbulence generators at 
the pipe outlet consisting of meshes, rods, cubes and spikes. The turbulent flow field downstream of the pipe 
outlet is measured using two-axis hot wire anemometry with a temporal resolution of 48 kHz. The CTA 
probe is positioned using an automated three-axis traversing system recording the turbulent velocities on 492 
points downstream of the pipe outlet. A set of 12 microphones is used to capture wall pressure fluctuations 
and off axis sound fields. To extract the inlet boundary conditions for the CFD calculations, turbulent 
velocity profiles have been measured in the pipe using two-axis CTA. The development and stability of the 
simulated pipe flow is checked by comparing the numerical data to a second CTA data set further 
downstream in the pipe. CFD calculations are performed for the different turbulence generators using 
several numerical approaches: First, steady RANS simulations including standard k-epsilon, k-omega and 
non-isotropic turbulence models show the overall behaviour of the studied flow types. Second, unsteady 
DES has been carried out to generate the base for the extraction of fluctuating velocity and pressure time 
series. The spectral evaluation of the data is performed using Fourier Transformation and analysed in 1/3 
terz band representations. The spectral content of the time series for the different HVAC jets is finally 
compared to the experimental values. 
 
Key words: HVAC components, nozzles, acoustics, RANS, DES, CFD, CTA measurements 
 

1. Introduction 
 
Pressure fluctuations and velocity perturbations are 
commonly found in the wake of turbulent jets, 
which are generated by HVAC duct outlets. In this 
work turbulent jets in the low-velocity region of 
around 10 m/s are generated using turbulence 
generators [3, and references herein]. Turbulent 
flow fields are - in addition to the propagated fan 
noise - often the source of aero-acoustic noise. If 
pressure fluctuations and velocity fluctuations are 
known, the acoustic behaviour of jets can be 
characterized [2, 4]. This paper aims in analyzing 
the velocity and pressure fluctuations in impinging 
jets and compares simulation results to experimental 
investigations using two-axis hot wire anemometry 
[1].  

2. Numerical Simulation 

2.1. Geometry Definition 
The geometry of the calculation domain is shown in 
figure 1. The calculation domain is an imaginary 
cylinder having a tube for the incoming fluid 
attached on one side and an impermeable wall for 
the impinging jet on the other. The fluid enters the 
domain at the tube inlet to pass through a turbulence 
generator (figure 3) and leaves it through the rest of 
surface except for the wall. 
 

12 different evaluation lines L01-L12 are defined in 
the area between tube outlet and plate (see figure 2). 
Their x-axis positions are 6.00, 9.40, 19.59, 50.17, 
141.90, 229.26, 312.74, 400.10, 491.83, 522.41, 
532.60 and 536.00 mm. Different turbulence 
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generators are summarized in figure 3. The empty 
tube section (no turbulence generator) is TG00. 
 

 
 

Figure 1. Geometry: A circular jet impinges on a plate 
mounted on a hard wall. Turbulence generators can be 

applied in the outlet region of the tunnel. 

 
L12 L11 L10 L09 L08 L07 L06 L05 

 
 

 
Figure 2. Definition of the postprocessing lines L01-L12. 

 
 

 
Figure 3. Different turbulence generators consisting of 

rods, blades, spikes and meshes. They can be mounted on 
top of the tunnel outlet. First row: TG01, TG08, TG02, 
TG05; Second row: TG07, TG10, TG09, TG06; Third 
row: TG11, TG13, TG12; Fourth Row: TG04, TG03 

 

2.2. Mesh Definition 
The numerical analysis have been performed on a 
hybrid mesh consisting of tetrahedral cells in the 
region of the turbulence generators (see figure 4) 
and a prismatic / hexahedral mesh in the up- and 
downstream area. Mesh sizes of 1 mm at the 
turbulence generator core and 12 mm at the 
boundaries lead to typical cell counts of 5 million 
cells. 

 
 

Figure 4. Mesh resolution on the spike surfaces of TG05. 

2.3. Simulation Method 
Results of steady RANS simulations have been 
calculated previously [3] giving best results for the 
RNG formulation of the k-ε model. In publication 
[3] additional turbulence generators have been 
analyzed as well. Especially the sharp blades caused 
very high fluctuating fields, which could not be 
captured by a steady solver. The mean velocity inlet 
boundary profiles were extracted from the 
experimental CTA data. The turbulence boundary 
condition was defined using the hydraulic diameter 
of 152.59 mm and a turbulence intensity of 5%. For 
the simulations the commercial Navier Stokes 
solver Fluent was used applying the Detached Eddy 
Simulation with vorticity based production terms. 
Second order schemes were used in space and time 
using the segregated implicit solver. Using a time 
step of 100µs around 5000 time steps were 
necessary to reach quasistatic behaviour of the flow 
field. An additional amount of 5000 time steps have 
been calculated and recorded to perform the steps 
for the spectral analysis. 

2.4. Mean Velocities and Velocity Fluctuations 
Mean values of the velocity magnitude for different 
turbulence generators are given on the plane y=0 
(see figure 5) in a profile representations for 
selected turbulence generators. The different 
evaluation lines (L01 – L12) are separated and 
shifted by 4 m/s. Figure 6 shows profile 
representations of the turbulent kinetic energy of the 
DES simulations using different turbulence 
generators. The turbulent kinetic energy is 
calculated from the values of all three velocity 
variations (x, y, z). The different lines are separated 
and shifted by a value of 0.2 m2/s2. 
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Figure 5. Mean velocities [m/s] (distance of two lines = 4 

m/s. The different lines show results of the different 
profiles at lines L01-L12. 

 

  

       

  

 

 
Figure 6. Turbulent kinetic energy [m2/s2] (distance of 

two lines = 0.2 m2/s2.  

2.5. Pressure Fluctuations 
Pressure fluctuations have been recorded during the 
transient DES and are presented in figure 7. 

      

      

      

      

      
 

Figure 7. varianz of static pressure [Pa2] on 6 evaluation 
lines  L01, L04, L05, L06, L07 and L09 from top to 

bottom. The y-axis is given in a logarithmic 
representation. 
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3. Spectral Analysis 

3.1. Pressure Fluctuations (DES Simulation) 
The transient static pressure has been recorded on 
twelve evaluation lines (L01 – L12) for about 5000 
time steps after the simulation has reached a quasi-
periodic state. Figure 8 shows the spectral 
normalized, absolute squared value of the static 
pressure, which is multiplied by a factor of two to 
account for the positive frequency space. FFT 
signals are displayed in a logarithmic scale with a 
reference value set to 1 m2/s2.   

 

 

 

 

 

 

 
 

Figure 8. Spectral representation of the pressure 
fluctuations [Pa2] for different turbulence generators 

(left L01, mid  L04, right L05). 

3.2. Velocity Fluctuations (DES Simulation) 
Figure 9 (simulation) and 10 (experiment) show the 
spectral normalized, absolute squared value of the 
mean velocity (multiplied by a factor of two, see 
section 3.1). FFT signals are displayed in a 
logarithmic scale with a reference value set to 1 
m2/s2.  Integrating over the frequency space yields 
the corresponding turbulent kinetic energy.  
 

 

 

 

 

 

 

 
 

Figure 9. Frequency spectra at different lines (left L01, 
mid  L04, right L05) for different turbulence generators 

TGxx. The grey scale represents the variance of the mean 
velocity [m2/s2]. The y-axis is nonlinear representing the 
nonlinear mesh. The band mid frequency axis numbers 

are shown enlarged and are valid for all three figures in 
a row. 
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3.3. Velocity Fluctuations (CTA) 
Signals from the 2-axis CTA have been recorded 
with a sampling rate of 48 kHz. The data was 
acquired in an analysis plane on 492 points 
(streamwise tunnel direction x: 12 points, 
perpendicular crosswise direction +y: 41 points). 
All signals have been scaled by their corresponding 
calibration values. The spectral analysis was carried 
out after numerically filtering (low pass filter 20 
kHz), DC subtraction and Fourier transformation 
(see figure 10). 
 

 

 

 

 

 

 

 
 

Figure 10. Frequency spectra at different lines (left L01, 
mid  L04, right L05). The grey scale represents the 
variance of the mean velocity [m2/s2]. The y-axis is 

linear. 

3.4. Near wall pressure fluctuations 
During the simulation runs, pressure fluctuations 
have additionally been recorded at several positions 
at the centre of the flat plate, where the turbulent jet 
impinges (y~1cm, z = 0, see figure 11). The wall is 
located 550 mm downstream of the tube outlet. For 
comparison the plate was also moved upstream to a 
wall-tube outlet distance of 140 mm.  
 

 

 
 

Figure 11. Comparison of the measured frequency 
spectra of the microphone MIC12 for different 

turbulence generators.  The gray area is the maximum 
signal of the acoustic offset measurement for the different 

TGx [3].  
 

 
 

Figure 12. Comparison of the calculated frequency 
spectra of the pressure fluctuations for the different 

turbulence generators from the DES results. 

TG00y 

TG01y 

TG05y 

TG08y 

TG10z 

TG04y 

[m
m

] 



 
________________________________________________________________________________________________________________________ 

________________________________________________________________________________________________________________________ 
 
 

3.5. Near wall velocity fluctuations 
Frequency spectra of the CTA signal are compared 
for the different turbulence generators in figure 13. 
The wall plate distance was set to 550 mm and 140 
mm. For both cases, the CTA probe was positioned 
5 mm direct in front of the plate, in the 140 mm 
case CTA measurements have also been performed 
with the CTA in the middle between tube and plate. 
 

 

 

 
 

Figure 13. Frequency spectra of the CTA signals. 

4. Conclusions 
Correlations between near wall turbulent velocity 
fields (figure 13) and microphone signals (figure 
11) can be experimentally established for different 
turbulence generators. While larger turbulence 
coincides with larger pressure fluctuations, the full 
frequency behaviour, however, could not always be 
reproduced. The reasons may lie in additional 
acoustic incoming waves, which can be attributed to 
dipolar and quadrupolar sound sources as well as 
vibrations of the turbulent generators. Higher and 
broader CTA spectra, however, coincide well with 

broader signals at the microphones. These trends 
can also be reproduced by the DES simulated 
spectra of the pressure fluctuations (figure 12). The 
simulation results underpredict their experimental 
counterparts at lower frequency values.  
Comparing the velocity spectra from the DES 
(figure 9, mind the nonlinear y-axis, which is more 
dense in the shear layer) with the spectra from the 
experimental data (figure 10, only one half of the 
tube was scanned) the following results can be 
extracted: The prominent features of the spatial 
frequency behaviour are well captured (e.g. the 
position of the shear layers, the separation and the 
combination of the turbulent areas). However, the 
representation of all details of the spectra is limited. 
This can be partly attributed to the constraints of the 
computing power and cell size.  
Due to the minimum cell side length of 1 mm at the 
turbulence generating surfaces and a mean value of 
around 5 mm cell side length in the turbulent area, 
higher frequencies cannot be propagated well, 
which can be seen in the lower frequency content of 
the numerical based spectra compared to the 
experimental data.  
The experimental spectra of TG00 show a higher 
turbulence level between the shear layers as 
compared to the simulation data. 
Future investigations will, thus, be devoted to 
different mesh strategies and the implementation of 
stronger fluctuating boundary conditions to 
overcome the present limitations.  
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