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Abstract

For software testing or measurement based timing analysis it is often required to achieve
a particular structural code-coverage criteria. It is beneficial to derive the test-data at a
higher-level representation of the tested program, like source code for instance. During
generation of machine code modern compilers apply optimizations to make best use of the
target computer platform, for example, parallel execution or memory hierarchies. But these
optimizations can destroy the structural code-coverage being achieved in the higher-level
representation of the program.

A possibility to face this problem is to investigate in advance whether optimizing code
transformations preserve a structural code-coverage of interest or not, and to summarize
this information in a coverage profile for each transformation. A collection of such profiles
can then be used to adjust a compiler to apply only those optimizations that preserve the
intended structural code coverage or to emit warnings, whenever a code transformation does
not ensure the preservation of a given structural code coverage.

This thesis develops a system for automatic analysis of code-transformations with re-
spect to preservation of structural code coverage. The analysis is based on an existing formal
coverage preservation theory. The first part of this work establishes a formal description of
code-transformations. In the second part, the formalism is transposed to a mathematical
software system for automatic analysis of code transformations with respect to their ability
for preserving certain kinds of code coverage, and to generate a coverage profile. Finally,
a certain number of code optimizations are provided in the third part to demonstrate the
feasibility of the approach.

Keywords. Coverage metric, structural code coverage, coverage preservation, code op-
timization, program transformation, automatic analysis.
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Zusammenfassung

Beim Testen von Software und für die Measurement Based Timing Analysis wird oft
das Einhalten bestimmter Code Coverage Kriterien verlangt. Vorzugsweise werden die Test-
daten aus einer höheren Repräsentationsform des getesteten Programms abgeleitet, bei-
spielsweise aus dem Source Code. Moderne Compiler nehmen beim Erzeugen des Ma-
schinencodes jedoch zahlreiche Optimierungen vor, um die Eigenschaften der verwende-
ten Zielplattform, beispielsweise durch Parallelverarbeitung oder hierarchisch organisierte
Zwischenspeicher (Cache), so gut wie möglich auszunutzen. Solche Optimierungen können
jedoch die strukturelle Code Coverage zerstören, die in der höheren Repräsentationsform
bereits erzielt wurde.

Eine Möglichkeit dieses Problem zu umgehen ist, Code Optimierungen vorab zu ana-
lysieren, ob sie eine bestimmte Art der strukturellen Code Coverage bewahren oder nicht.
So kann für jede Code Optimierung ein Coverage Profil erstellt werden. Ein Compiler kann
die vorhandenen Profile dann benutzen, um entweder beim Übersetzungsvorgang nur Opti-
mierungen vorzunehmen, welche die entsprechende Code Coverage erhalten, oder um eine
Warnung auszugeben falls eine angewendete Optimierung die Erhaltung einer bestimmten
Code Coverage nicht sicherstellt.

Diese Diplomarbeit entwickelt ein System zur automatischen Analyse von Code Trans-
formationen in Hinblick auf die Erhaltung struktureller Code Coverage Kriterien. Die Ana-
lyse basiert auf einer bereits vorhandenen, formalen Theorie der Code Coverage Erhal-
tung. Der erste Teil der Arbeit führt eine formale Beschreibung von Code-Transformationen
ein. Der zweite Teil überträgt den zuvor eingeführten Formalismus in ein mathematisches
Software-System, um eine automatische Analyse von Code Transformationen bezüglich der
Erhaltung bestimmter Arten von Code Coverage durchzuführen und daraus ein Coverage
Profil zu erstellen. Die Anwendbarkeit des Lösungsansatzes wird schließlich im dritten Teil
anhand mehrerer Analyse Beispiele gezeigt.

Schlagworte. Coverage Metrik, Strukturelle Code Coverage, Coverage Erhaltung, Co-
deoptimierung, Programmtransformation, Automatische Analyse.
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CHAPTER 1
Introduction

1.1 Background

There is a growing number of computer-controlled systems in safety-critical real-time appli-
cations. The correctness of the functional behaviour of such systems not only depends on the
correct result of a calculation. Compliance with temporal requirements is also an essential part
of the functional correctness. Therefore the verification of a real-time system has to focus on the
outcome of operations as well as on their temporal constraints and temporal predictability. In
addition, available computer hardware becomes more and more powerful and allows integration
of more complex functionality. This makes analysis of the timing behaviour for these types of
systems a time consuming and error-prone task. Thus, for timing analysis measurement-based
approaches are often preferred to formal methods of timing analysis [54].

The need to reduce development time and cost has also resulted in a shift towards model-
based development [16]. Model based development uses executable models designed with popu-
lar tools like SIMULINK or SCADE through the development process [25]. These models form
a blueprint for the automatic or manual coding of the software. The existence of such executable
models can help to detect errors at early phases and eliminate them with low costs. In addition
models can serve as supplementary source of information for testing [8].

For software testing as well as for measurement-based timing analysis systematic generation
of suitable input-data can be a challenging problem. In an ideal world one would like to perform
tests or measurements using a set containing every possible input-data combination. But creating
tests for all possible input-data combinations is impractical, due to the large number of test cases
needed even for small programs. For instance, consider a multiplication operation of two 8-bit
integers. Each operand can hold a value from a set of 256 different values. A complete test of
the operation would therefore require a total number of 256 × 256 = 65536 test cases to cover
all possible combinations of the input-data. Thus, more realistic programs will reach very fast
an astronomical number of test cases if exhaustive testing is required [41].

For restricting the set of test-data to a manageable set, some strategy is needed to avoid
the generation of ineffective test-data. Such strategies fall into one of two categories: func-

1



1. INTRODUCTION

tional (“black box”) techniques based on the requirements written down in a program speci-
fication [55], and structural (“white box”) techniques based on the computational structure of
the program [52]. Structural testing strategies are generally based either on a program’s control
structure or on its data definitions and references [41, 52].

Test adequacy metrics are used to assess the extent to which a given set of test-data satisfies
its objectives [25, 24]. Test adequacy metrics to analyze and quantify the control-flow coverage
that is achieved for a given set of test-data are called structural code coverage criteria [31]. They
can be utilized in two different ways: First as an adequacy criterion to decide whether a given
test-data set is complete with respect to that criterion, and second as an explicit specification
for test-data selection. Structural metrics based on control flow are most suitable for automated
processing which is an important fact to deal with realistic programs containing thousands of
code-lines [8].

1.2 Problem Statement

A high-level representation like source code or a formal model of the software is preferred when
analyzing systems with respect to a certain coverage metric, or when using a coverage metric
for creation of appropriate test data. There are several reasons for this preference. High-level
representations are easier for a human to understand and their complexity is reduced compared
with machine code. Source code and formal models also contain additional information about
the program behaviour like directives, assertions or other meta-information. This information
might get lost during generation of machine code. Another aspect is the portability of such a
higher-level representation to different platforms and also the portability of the tools [31].

Using a test-data generation strategy, which is oriented on code-coverage analysis and based
on a model or on source-code, creates the need to ensure that the particular coverage achieved on
a higher-level representation can be transposed to machine level code in an adequate way. The
higher-level representation, however, is rarely intended to accommodate details of the underly-
ing machine architecture. A naive translation may introduce inefficiencies into the generated
machine level code. Therefore code generators and compilers perform many transformations
to optimize the code. They are responsible for automatically suiting code to take advantage of
features like memory hierarchies, pipelining, parallel execution units and many more. The goal
of such optimizations is to eliminate inefficiencies and to generate a code that is well tuned for
the given architecture. To achieve this goal the code generator or compiler is free to transform
the program in any way as long as the transformed program computes the same results as the
original program specification. This can include reordering pieces of code as well as reducing
the number of operations, replace them or insert new instructions [5].

On the contrary, structural code coverage achieved on the higher-level representation can
only be guaranteed by analyzing the produced machine code with respect to that coverage crite-
rion. One possibility to avoid this object-code analysis is to configure the compiler to omit all
optimizations. But this would introduce inefficiencies into the machine level code. The respon-
sibility to take care of best use of the computer hardware would be loaded onto the programmer
with the consequence of introducing more complexity into the higher-level representation. Apart
from the fact that the independence of the program from the hardware architecture will get lost,

2



1.3. Contributions

the programmer will not always be able to perform this task since the hardware architecture is
not visible at source-code level.

A more subtle solution proposed by Kirner [30] evaluates code optimizations in advance
for their possible influence on structural code coverage. The essence of this analysis can be
collected in a coverage preservation profile. A collection of such coverage preservation profiles
for all kinds of possible optimizations can then serve as additional configuration input for a code
generator or a compiler. The information can be profitably used in one of two ways:

1. Avoiding a certain kind of optimizing transformation if the optimization does not preserve
the intended structural code coverage.

2. Display a warning if an optimizing transformation applied does not guaranty the preser-
vation of the intended structural code coverage.

Obtaining coverage-preservation profiles in an efficient manner is an important step to turn
this idea into reality. If an axiomatic formal description of the optimizing code transformation
with pre-conditions, post-conditions and the invariant properties of the transformation is avail-
able, formal coverage-preservation formalisms can be used to work out coverage-preservation
profiles automatically [31].

1.3 Contributions

This thesis presents a possible approach for automatically analyzing code transformations with
respect to structural code coverage.

• It introduces a mathematical formalism to describe code transformations. The formalism
is based on control-flow-graph models describing the program structure before and after
an optimizing program transformation.

• Supplementary information associated with the nodes and edges of the control-flow-graph
model support to track the changes of control flow when a program is transformed.

• Based on the formal model an analysis procedure is developed to check the ability of a
code transformation to preserve certain kinds of structural code-coverage. The analysis
adapts the coverage-preservation formalism described by Kirner [31] to facilitate its ap-
plication with the control-flow-graph model. As a preparation step, the presented analysis
method describes how to collect basic information about pre-conditions, post-conditions
and properties of the investigated program transformation.

• The analysis method serves as a basis for creating a framework with the mathematical
software package Mathematica. This framework is able to automatically collect most of
the basic information needed for analysis, and it calculates coverage-preservation profiles
for optimizing code-transformations defined with the presented control-flow-graph model.

In addition, the thesis presents several use cases with different kinds of optimizing code-
transformations, taken from the literature about compiler design. The investigations performed
in the use-cases show the feasibility of the described analysis approach.

3



1. INTRODUCTION

1.4 Related Work

Code coverage criteria where originally introduced as a measure for the efficiency of software
tests [41]. Application of particular structural coverage metrics is especially required for test-
ing safety-critical software [10, 12]. Many publications deal with considerations about testing
strategies [52, 42], and about the properties of different kinds of coverage metrics [15, 8, 55, 59].
Considerations about the faultfinding ability of certain coverage metrics and about the influence
of program structure with respect to MCDC [25, 20, 9, 42] are also of some concern. Another
area of work is to investigate how to find appropriate test data based on coverage metrics to
achieve certain objectives for testing [45, 21, 54].

Several approaches have been made to establish formal representations of programs for pro-
gram analysis and correctness proofs [19, 27, 44]. In addition, some formal approaches have
been made to reason about programs with a view at compiler optimizations [33, 36], and val-
idation of the produced object code [61, 32]. In relation to that, some publications deal with
formalized descriptions of program transformations [51, 34], which are mainly based on graph
rewriting of control flow graphs [7].

Unfortunately most of the formalisms used to describe programs and compiler optimizations
are centred on the computational results of program statements. From this point of view, a
transformation is correct, as long as it computes the same result for the same input. Aspects of
changing the flow of control during program transformation are only rarely mentioned [61].

Investigations on preservation of structural code coverage seem to be a new field of research,
started recently. Considerations done in the past are mainly focused on examining advantages
or disadvantages of applying metrics on source level or object-code level [46]. Formal code
coverage criteria where established in [50], using the Z notation. Conclusions especially about
structural code-coverage in relation to changes in the software structure are made in [18].

The basis for the work done in this thesis is the paper of Raimund Kirner [31], which presents
a collection of formal criteria checking whether a certain transformation of program code pre-
serves a particular kind of structural code coverage or not. In addition, Kirner describes in [30]
the idea of integrating compilation profiles into the compilation process to ensure that structural
code coverage criteria are preserved during object code generation.

1.5 Overview of this Thesis

Chapter 2 first establishes the basic terminology. In addition, it surveys the formal definition
of structural code-coverage metrics and the formal description of structural code-coverage-
preservation conditions.

The first part of Chapter 3 introduces a formal mathematical model for describing code trans-
formations based on a control-flow-graph model. It continues developing a formal procedure for
using the code-coverage-preservation criteria described in Chapter 2 to judge the ability of a
transformation to preserve a certain kind of structural code coverage.

Chapter 4 describes the implementation of the framework based on the mathematical com-
puter-software system Mathematica for automatic application of the formalisms established in
Chapter 3. In addition, this chapter describes some in-depth details on the practical implemen-
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1.6. Summary of Chapter 1

tation of the framework.
Chapter 5 presents several use cases of optimizing code transformations. The chapter demon-

strates how an optimizing code transformation must be prepared for the implemented framework
to enable the automatic processing of the steps needed for analysis. In addition, it describes pre-
conditions, post-conditions and properties of the investigated transformations, and it describes
how automatic coverage-preservation analysis is done for them. A summary with detailed anal-
ysis results finishes each use-case section.

Finally Chapter 6 summarizes the results and compares it with the results established in a
preceding work. Some conclusions about this work and ideas for future work are finishing the
chapter.

The appendix is organized in two parts. First, Appendix A provides a brief overview of the
Mathematica programming constructs used for the implementation of the analysis framework.
It is intended as help for readers not familiar with Mathematica to understand the programming
code. Second, the most important parts of the programming code are presented in Appendix B
together with a short introduction how to start execution of the implemented use cases.

1.6 Summary of Chapter 1

Some background information about structural code coverage is presented. In addition, the
objectives of the thesis are described. The chapter also includes a survey of work related to
structural code coverage.

5





CHAPTER 2
Structural Code-Coverage and

Coverage Preservation

This chapter gives a brief survey on structural code-coverage criteria. It presents informal def-
initions of certain code-coverage criteria. For some criteria a formal definition and a formal
preservation theorem are stated allowing to check, whether a program transformation preserves
this code-coverage or not.

Section 2.1 starts introducing the basic terminology and the foundation of formal definitions
and preservation theorems. Basic reflections about program transformations complete this sec-
tion. Beginning with Section 2.2, certain structural code-coverage criteria and conditions for
their preservation are explained.

2.1 Basic Terms and Definitions

Program Structure

Structural code-coverage quantifies the ability of a set of test-data to cover the execution logic of
a program P . A set of test-data achieves a certain kind of structural code-coverage in a program,
if certain artifacts of that program like, for example, basic blocks or conditions are executed in a
predefined way.

A program P can be seen as a composition of program instructions like simple statements
and conditions [31] specified by some formal model that reflects the control flow structure of P .
Most common formalisms for such a model are control-flow graphs or transition systems [33].
Chapter 3 of this thesis introduces a control-flow-graph model tailored for analysis of structural
code-coverage preservation.

A program instruction with a single point of entry and exit is called a simple statement. The
main property of a simple statement is, that it includes no control-flow decision. Therefore a
simple statement always has exactly one successor, but it may have more than one predeces-

7



2. STRUCTURAL CODE-COVERAGE AND COVERAGE PRESERVATION

sor. Common examples for simple statements are assignments, calculations and unconditional
branches.

A program instruction with at least two points of exit is called a control-flow statement.
Through which point of exit control-flow will continue is determined by a logical decision inside
the control-flow statement. A common example for a control-flow statement is a conditional
branch represented by the if-statement. Although control-flow statements in principle can have
an arbitrary number of exits (like the switch-statement in C/C++, for example), this thesis
restricts control-flow statements to the most common case of conditional branches with two
possible exits.

A program scope of a program P is a connected fragment of P with well-defined interfaces
for entry and exit. The set of all scopes of P is denoted as PS(P ). The partitioning of a program
into scopes is application specific and may also include the creation of partly or fully overlapping
segments [60].

A sequence of consecutive statements is called a basic block, if it has a single point of
entry at the beginning, and when entered all statements are executed in sequence without the
possibility of branch except at the end of the sequence [1]. For a given program P the symbol
B(P ) denotes the set of all basic blocks of that program. Given a program scope ps ∈ PS(P ),
then B(ps) denotes the set of basic blocks of scope ps.

A condition is a logical expression that cannot be broken down into simpler logical expres-
sions. The set of all conditions of a program P is denoted with C(P ). Typical examples for
conditions available in many programming languages are relational operations, for example,
like a 6= 0.

A decision is a condition or a combination of multiple conditions linked together with
Boolean operators. The set of all decisions of a program P is denoted with D(P ). If one
condition occurs more then once in a decision, each occurrence is treated like a distinct condi-
tion.

If varying the outcome of one condition of a decision also changes the outcome of another
condition inside the same decision, these conditions are said to be coupled conditions. They
are strongly coupled if varying the outcome of one decision always varies the outcome of the
other decision for all possible input-data. They are said to be weak coupled, if for all possible
input-data varying the outcome of one decision sometimes but not always varies the outcome of
the other decision [12].

A scoped path pp of a program scope ps ∈ PS(P ) is a sequence of basic blocks beginning
at an entry point of that scope and ending at an exit point. If the scope comprises the whole
program P then, for simplicity, the term path is used. The symbol B(pp) denotes all basic
blocks along a scoped path pp and BS(pp) denotes the basic block, pp is starting with. Since
loops can be part of a scope, a scoped path may include multiple instances of certain basic blocks
from different iterations of the loop.

To avoid some unpleasant properties when building up a consistent theory of structural
code-coverage, it is often helpful to introduce the following restrictions for the investigated
programs [41]:

• The considered programs and program scopes have single points of entry and exit. The
reason for this restriction is, that if a program contains multiple points for entry and exit,

8



2.1. Basic Terms and Definitions

the required coverage may depend on the entry-point or exit-point actually used.

• Any statement of the considered programs is executed whenever the flow of control reaches
this statement. There must not be any hidden condition not derived from the input-data
preventing a statement from execution when it’s reached by the flow of control.

Valuations of Variables

The set-theoretic formalism for describing structural code-coverage criteria and preservation
conditions for structural code-coverage is based on valuations and sets of valuations of input-
variables of a program [31].

A valuation of a variable is the assignment of a concrete value from its value domain to that
variable. A vector (v1, . . . , vm) where vi is a possible valuation of the i-th input variable of a
program P is called input-valuation of P . The set of all possible input-valuations of a program
P is denoted with ID and called the input data or input data set of that program.

A set TD ⊆ ID defines the set of input-valuations selected for testing and is therefore
called test-data. The case TD = ID would mean exhaustive testing with test-data covering all
possible input-data combinations. As described in Section 1.1 above, such a coverage is not a
realistic goal due to the typically huge cardinality of ID . So in the most common cases TD
will be a true subset of ID .

This thesis will assume, that a certain input valuation id ∈ ID will always trigger the
execution of a specific path or scoped path. If a path triggered by an input-valuation id includes
a statement x, then it is said, that id triggers the execution of statement x. The other way round,
there may be several paths with one statement x in common, and therefore x can be triggered by
more than one input-valuation.

Definition 2.1 (Reachability Valuation) Let x be a simple statement, a basic block, a condition
or a decision. Then the set IVR (x) denotes the set of all input-valuations that trigger the
execution of x and IVR (x) is called reachability valuation of x.

If x is a condition or a decision, then the satisfyability valuation defines the set of input
valuations that trigger the execution of condition/decision x with a certain result of evaluating
the logical expression of x.

Definition 2.2 (Satisfyability Valuation) Let x be a condition or decision, then

• IVT (x) is the set of all input valuations that trigger the execution of x and the outcome
of the evaluation result of x is true.

• IVF (x) is the set of all input valuations that trigger the execution of x and the outcome
of the evaluation result of x is false.

Due to the definition of IVT (x) and IVF (x) it is obvious, that the following relation be-
tween reachability- and satisfyability-valuation must always hold:

9
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Corollary 2.1

IVT (x) ∪ IVF (x) = IVR (x)

Note, that in the common case the intersection IVT (x) ∩ IVF (x) is not the empty set. For
example, consider a program structure where x is placed inside a loop and the evaluation of x
depends on the iteration variable of that loop. Then it may happen, that two different iterations
of the loop trigger different branches of x. Only if a condition or decision is addressed at most
once in every execution of a program, then IVT (x) ∩ IVF (x) = ∅ is true. From the point
of view of the program structure that means, that the condition or decision must not be placed
inside a loop or inside a subroutine that is called more than once.

Program Transformations

The transformation of a program P1 into a program P2 is denoted P1 → P2. It means that P2

is the final result of applying some well-defined transformation steps in a well-defined order to
P1 and its subsequent intermediate transformation results. Although some intermediate transfor-
mation steps may result in an incorrect program structure, P1 and P2 are required to be a valid
program with respect to the chosen program representation. Program P1 is often referred as the
original program or untransformed program and P2 is called the transformed program.

The individual steps of an optimizing transformation can involve reordering of program
statements, replacing existing statements or inserting new code. This will cause changes in the
sets of basic-blocks, conditions and decisions. Execution paths triggered by the input-valuations
in a certain test-set TD may change and therefore the reachability of statements may differ
compared with the original program. When test-data are generated from a higher-level repre-
sentation of a program with the goal to achieve a certain kind of structural code-coverage the
question arises, if the intended structural coverage will hold after transforming the higher-level
representation of the program to object-code.

Conditions under which circumstances a program transformation preserves a certain kind
of structural code-coverage are subject of the following sections and in [31]. These coverage
preservation criteria are independent of a concrete test-data set and can be applied to any kind
of code-transformations, like for instance on source-to-source transformations as well as on
compilers. If it can be shown, that a program transformation preserves a certain kind of struc-
tural code-coverage then one can be sure, that the transformed program will achieve this certain
kind of structural code-coverage for a given test-set TD whenever the untransformed program
achieves this coverage criteria for the same test-set.

2.2 Statement Coverage

Statement Coverage (abbreviated SC) requires, that every statement in a program has been exe-
cuted at least once with respect to a certain set TD of test-data. Achieving statement coverage
also shows that every statement in the program is reachable. On the other hand, statement cov-
erage is classified as a weak criterion, because it is insensitive to the control structure of the
program [41].

10



2.3. Decision Coverage

Formally statement coverage is defined as follows [31]:

Definition 2.3 (Statement Coverage) A set TD of test-data achieves Statement Coverage in a
program P if the condition

TD ∩ IVR (b) 6= ∅

holds for all basic blocks b ∈ B(P ) of that program.

An aspect to consider is, that the classical view of statement coverage does not always con-
cern conditions. But in most programming languages conditions may contain operational state-
ments, often hidden behind function-calls, for example. So the use of operational statements
as part of a condition can hide control flow inside logical expressions, if conditions are not
considered for statement-coverage.

To determine, if a given program transformation preserves statement-coverage the following
preservation condition can be used [31]:

Theorem 2.1 Let P2 be a program that results from transforming P1. Then the transformation
P1 → P2 preserves statement coverage if and only if the following condition holds:

∀b′ ∈ B(P2) ∃ b ∈ B(P1) with IVR
(
b′
)
⊇ IVR (b)

In [31] a proof is maintained to show, that Theorem 2.1 is a necessary and sufficient condition
for the preservation of statement coverage.

2.3 Decision Coverage

Decision Coverage (abbreviated DC), also called Branch Coverage or Edge Coverage, requires
creating enough test cases such that each decision goes at least once into each possible direction
[41]. The decision of each if-statement in a program for example, must evaluate at least once for
the true and once for the false outcome of the decision to achieve decision coverage.

A formal definition of decision coverage is as follows [31]:

Definition 2.4 (Decision Coverage) A set TD of test-data achieves Decision Coverage in a
program P if the condition

IVT (d) ∩ TD 6= ∅ ∧ IVF (d) ∩ TD 6= ∅

holds for all decisions d ∈ D(P ) of that program.

The definition of decision coverage given in Definition 2.4 considers only two-way decisions
and has to be modified for multi-way decisions like switch-statements in C/C++, for example.

Since every statement of a program is on some sub path starting at the programs entry point
or at a branch decision, every statement will be executed at least once, if every branch direction
is executed at least once. Therefore decision coverage implies statement coverage, but only if
the program contains at least one decision [41].
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Corollary 2.2 Let P be a program with at least one decision. If a set TD of test-data achieves
decision coverage in P , then it also achieves statement coverage.

The preservation criteria for decision coverage (and also the preservation criteria for condi-
tion coverage below) uses a helper predicate touches_ID(x, ID), where ID is a set of input
data and x can be a condition or decision. It is a check, whether some set of input data ID
includes all of the true- or false-satisfyability valuation of a condition or decision x.

touches_ID(x, ID) :⇐⇒ (IVT (x) ⊆ ID) ∨ (IVF (x) ⊆ ID) (2.1)

Using the helper predicate (2.1), the preservation criterion for decision coverage is stated as
follows:

Theorem 2.2 Let P2 be a program that results from the transformation P1 → P2. The transfor-
mation preserves decision coverage if the following condition holds:

∀d′ ∈ D(P2) ∃ d ∈ D(P1) : touches_ID(d, IVT
(
d′
)
)

and ∃ d ∈ D(P1) : touches_ID(d, IVF
(
d′
)
)

The proof for Theorem 2.2 can be found in [31], showing that it is a necessary and sufficient
criterion.

2.4 Condition Coverage

Condition Coverage (abbreviated CC) requires for each condition in a decision, that it take all
possible outcomes at least once when the program is executed with a given set of test-data. This
criterion does not require, that the decision itself takes all possible outcomes at least once [24].
For the decision A ∨ B, for instance, the two test cases with 〈A = true, B = false〉 and
〈A = false, B = true〉 would satisfy condition coverage, but will cause the decision to take
only one possible outcome.

The formal definition of condition coverage is similar to decision coverage with the differ-
ence, that it mentions conditions instead of decisions:

Definition 2.5 (Condition Coverage) A set TD of test-data achieves Condition Coverage in a
program P if the condition

IVT (c) ∩ TD 6= ∅ ∧ IVF (c) ∩ TD 6= ∅

holds for all conditions c ∈ C(P ) of that program.

Note, that special care is necessary if Boolean operators have a shortcut semantics (also
called short-circuit logic [24]). Shortcut evaluation means, that the conditions remaining in the
execution order sequence are not evaluated any more, if they cannot change the final outcome.
For example, if the expression A ∨ B is evaluated from left to right, then the result of B could
not change the final outcome if A evaluates to true. In a shortcut-semantics, execution of this
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logical expression will therefore stop after A evaluates to true, because executing B seems to be
superfluous.

Definition 2.5 requires, that each condition is really executed for each possible outcome [31].
Therefore, condition coverage in case of shortcut evaluation needs more test cases to assure that
each possible condition outcome has been evaluated by executing the condition.

The preservation criteria uses again the helper predicate (2.1) and states as follows below
[31]:

Theorem 2.3 Let P2 be a program that results from the transformation P1 → P2. The transfor-
mation preserves condition coverage if the following condition holds:

∀c′ ∈ C(P2) ∃ c ∈ C(P1) : touches_ID(c, IVT
(
c′
)
)

and ∃ c ∈ C(P1) : touches_ID(c, IVF
(
c′
)
)

A proof for Theorem 2.3 can be found in [31], showing that it is a necessary and sufficient
criterion.

2.5 Condition/Decision Coverage

Since decision coverage does not guarantee condition coverage and condition coverage does not
guarantee decision coverage respectively, the obvious way out of this dilemma is to combine the
requirements for decision coverage with the requirements for condition coverage. This criteria
is called Condition/Decision Coverage (abbreviated CDC). It requires sufficient test cases that
each condition of a decision takes each possible outcome at least once and that the decision goes
in either direction at least once.

Definition 2.6 A set TD of test-data achieves Condition/Decision Coverage in a program P if
TD achieves decision coverage and also condition coverage.

There is no special preservation criteria needed, because condition/decision coverage is pre-
served whenever condition coverage and decision coverage are preserved.

Corollary 2.3 A transformation P1 → P2 preserves Condition/Decision Coverage if it pre-
serves decision coverage and condition coverage.

Although it seems that condition/decision coverage exercises the effect of all possible out-
comes of all conditions, it frequently does not [41]. Its weakness is, that certain conditions can
mask other conditions and therefore hide the effect of changing one condition. In addition, not
all combinations of conditions can be distinguished. The two test cases 〈A = true,B = true〉
and 〈A = false,B = false〉, for example, satisfy the condition/decision coverage requirement
for the decision A ∨B, but they cannot distinguish it from the decision A ∧B [24].
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2.6 Multiple Condition Coverage

Multiple Condition/Decision Coverage requires to test all possible combinations of condition
outcomes in each decision. This is exhaustive testing of the input combinations of each decision.
Although it may be a desirable criteria it is impossible in practice, since the number of possible
combinations grows exponentially. Testing a decision with n conditions would require 2n test
cases to achieve multiple condition coverage [24].

2.7 Modified Condition/Decision Coverage

The Modified Condition/Decision Coverage (abbreviated MCDC) criterion was intended as a
golden mean between multiple condition testing with its exponential growth of required test
cases and condition/decision coverage testing. The essence of this criterion is, that each con-
dition of a decision must be shown to independently affect the outcome of its decision. That
means, one must demonstrate that the outcome of a decision changes as a result of changing
a single condition while holding the outcome of all other conditions fixed. The independence
requirement ensures that the effect of each condition is tested relative to the other conditions.
To achieve modified condition/decision coverage in a decision with n conditions, a minimum of
n+1 test cases is needed [12, 24].

Showing, that a condition independently affects the outcome of a decision while holding
all others fixed is commonly referred as the unique cause approach. If changing the value of a
single condition changes the outcome of the decision, then the single condition is assumed to
be the reason for that change. This can be formalized with the helper predicate unique_Cause
defined as follows [31]:

unique_Cause(c1, d, td1, td2) :⇐⇒ control_Expr(td1, td2, c1)

and

control_Expr(td1, td2, d) (2.2)

and

∀ c2 ∈ C(d) with c2 6= c1 ⇒
is_invariantExpr({td1, td2}, c2)

The sub-predicate control_Expr, used in (2.2) indicates, that the two test-data td1 and td2
are able to affect the outcome of a decision or condition x into both directions:

control_Expr(td1, td2, x) :⇐⇒ td1 ∈ IVT (x) ∧ td2 ∈ IVF (x)

or (2.3)

td1 ∈ IVF (x) ∧ td2 ∈ IVT (x)

Finally, the sub-predicate is_invariantExpr of (2.2) indicates, that the provided test-data
do not change the remaining conditions of the examined decision:

is_invariantExpr(ID, x) :⇐⇒ td1 ∩ IVT (x) = ∅ or td2 ∩ IVF (x) = ∅ (2.4)
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Using (2.2), modified condition/decision coverage can be formalized in the following man-
ner:

Definition 2.7 (Modified Condition/Decision Coverage) A set TD of test-data achieves Mod-
ified Condition/Decision Coverage in a program P if the condition

∀c ∈ C(d) : ∃td1, td2 ∈ TD such that unique_Cause(c, d, td1, td2)

holds for all decisions d ∈ D(P ) of program P .

If the restriction that P has a single point of entry is dropped, then one must also require,
that every point of entry is used at least once. This is the original definition of MCDC [12].

Note, that the definition of MCDC also subsumes condition- and decision-coverage.

Corollary 2.4 If a set TD of test-data achieves modified condition/decision coverage in a
program P , then it also achieves condition- and decision-coverage in P for the same set TD
of test-data.

The modified condition/decision coverage criterion is required for testing highly critical soft-
ware in the avionics industry. The support for this testing is based on the assumptions, that a
higher number of test cases will find more errors. Performing multiple condition coverage would
be impractical, because in avionics systems, complex Boolean expressions are common [12, 24].
On the other hand, some authors argue that such highly complex decision do not really exist, be-
cause such complex expressions would make the code unreadable for the common practice of
independent code-reviews. Therefore this explosion of test cases seems to be unfounded [9].

Developing a condition for preservation of multiple condition/decision coverage, a more
general version of the helper predicate (2.3) with respect to the test-data set, is used:

mult_control_Expr(ID1, ID2, x) :⇐⇒ ID1 ⊆ IVT (x) ∧ ID2 ⊆ IVF (x)

or (2.5)

ID1 ⊆ IVF (x) ∧ ID2 ⊆ IVT (x)

The following preservation condition [31] for MCDC uses the sub-predicates (2.2) and (2.5)
defined above:

Theorem 2.4 Let P2 be a program produced by a program transformation P1 → P2. Then the
program transformation preserves modified condition/decision coverage if and only if

∀ d′ ∈ D(P2), ∀ c′ ∈ C(d′) ∃ ID1, ID2 ⊆ ID
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such that the following condition holds:

∃ d ∈ D(P1), ∃ c ∈ C(d), ∃ IDtmp ⊆ ID : multi_control_Expr(ID1, IDtmp, c)

and

∀〈id1, id2〉 ∈ ID1 × IDtmp : unique_Cause(c, d, id1, id2)

and

∃ d ∈ D(P1), ∃ c ∈ C(d), ∃ IDtmp ⊆ ID : multi_control_Expr(ID2, IDtmp, c)

and

∀〈id1, id2〉 ∈ ID2 × IDtmp : unique_Cause(c, d, id1, id2)

and

∀〈id1, id2〉 ∈ ID1 × ID2 : unique_Cause(c′, d′, id1, id2)

A proof for theorem 2.4, showing that it is a necessary and sufficient criteria, is given in [31].
The use of short-circuit operators may force a relaxation of the requirement to hold all other

conditions fixed while the condition of interest is varying. Consider the expression x 6= 0 ∧
y/x > 1, for example. Short circuit evaluation will assure, that the second condition is never
evaluated, if the first condition is false. In this case it is impossible to create test-cases where the
first condition is held fixed to false and the second condition evaluates to either results, because
y/x is undefined in this case. Another problem can arise if a decision owns at least two strongly
coupled conditions, because it is not possible then to vary one condition and holding the other
fixed. These cases need an alternative, less restrictive approach to MCDC [12, 31].

2.8 Path Coverage

Path coverage (abbreviated PC) requires, that test-data are selected such that each possible ex-
ecution path of a program is executed at least once. Unfortunately experience shows that the
number of execution-paths grows exponentially with the size of the program. Even small pro-
grams can have a possibly huge number of paths. If endless loops or endless recursions are
possible, even the smallest program can comprise an infinite number of execution paths.

To reduce the number of test cases needed, paths that differ only by the number of iterations
of a loop can be grouped together and then only a few representative paths from each group
are executed. These restricted versions of path testing are known as structured path testing and
boundary interior path testing [42].

2.9 Scoped Path Coverage

The idea behind scoped path coverage (abbreviated SPC) is to split a program P into hand able
segments that are small enough to cover all possible paths inside each scope. To avoid the need
of dealing with an infinite number of paths, programs with endless loops and endless recursion
will be excluded by definition. Defining one program scope comprising the whole program P is
just a special case of path-coverage [31].
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The following definition 2.8 uses the expression BS(pp) to denote the basic block, the
scoped path pp starts with. The expression CT (pp) denote the set of all conditions along the
path pp, that evaluate to true and CF (pp) denotes the set of conditions along pp evaluating to
false.

Definition 2.8 (Scoped Path Coverage) A set TD of test-data achieves scoped path coverage
in a program P if the condition

∀ pp ∈ PP (ps) : ∃ td ∈ TD such that IVR (BS(pp)) ∩ {td} 6= ∅
and

∀cT ∈ CT (pp) : IVT (cT ) ∩ {td} 6= ∅
and

∀cF ∈ CF (pp) : IVF (cF ) ∩ {td} 6= ∅

holds for all program scopes ps ∈ PS(P ).

Partitioning a program into scopes is application specific and depends on the testing-goals.
Scoped path coverage is a coverage metric introduced for the purpose of measurement based
timing analysis. Measurement based timing analysis techniques combine static program analysis
with execution time measurement to find a compromise between precision and safety on one side
and the effort it takes on the other side [54, 60].

Defining a coverage preservation criteria for scoped path coverage [31] uses a helper predi-
cate is_CondTF_enclosed, defined as follows:

is_CondTF_enclosed(ID,CT , CF ) :⇐⇒ ∃ cT ∈ CT : IVT (cT ) ⊆ ID
or (2.6)

∃ cF ∈ CF : IVF (cF ) ⊆ ID

Using (2.6) the preservation condition for scoped path coverage is stated as follows:

Theorem 2.5 A program transformation P1 → P2 preserves scoped path coverage if the condi-
tion

∀pp′ ∈ PP (ps′) : ∃ ps ∈ PS(P1), ∃pp ∈ PP (ps) such that

IVR
(
BS(pp′)

)
⊇ IVR (BS(pp))

and

∀ c′ ∈ CT (pp′) ∃ ps ∈ PS(P1) ∃ pp ∈ PP (ps) such that

is_CondTF_enclosed(IVT
(
c′
)
, CT (pp), CF (pp))

and

∀ c′ ∈ CF (pp′) ∃ps ∈ PS(P1) ∃pp ∈ PP (ps) such that

is_CondTF_enclosed(IVF
(
c′
)
, CT (pp), CF (pp))

holds for all scoped paths ps′ ∈ PS(P2) of the transformed program.
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A proof, showing that theorem 2.5 is a necessary and sufficient condition for preservation of
scoped path coverage is given in [31].

2.10 Summary of Chapter 2

Basic terms and definitions are introduced in this chapter as a foundation to describe programs,
program transformations and structural code coverage in a formal way. An informal survey
of several code-coverage criteria is given. For certain structural code-coverage criteria formal
definitions and formal conditions for their preservation are explained.
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CHAPTER 3
A Program-Model for Coverage

Preservation Analysis

This chapter establishes the formalism, automatic coverage preservation analysis is based on.
Section 3.1 starts with definition of a control-flow graph model as representation language for
programs. Section 3.2 describes some basic properties of the control-flow graph model. Sec-
tions 3.3 and 3.4 continue to describe properties of program transformations. Finally, Section 3.5
is putting all together and presents a principle procedure for analysis and some examples for an-
alyzing the preservation of statement coverage, condition coverage and decision coverage.

3.1 Definition and Examples

Introduction

The code-coverage-analysis procedure presented in this thesis is based on a control-flow graph
model [4] for programs or fragments of a program. Control-flow graphs are well established
in discrete event simulation and in different types of control-flow analysis and data-flow analy-
sis(see, e.g., [48, 13, 26]). They are very illustrative objects and in most cases their structure can
be derived directly from the program under investigation.

A control-flow graph (abbreviated CFG) is a kind of transition system. It uses a directed
graph, also called digraph [11], to express the basic control-flow relationships in a program or in
a fragment of a program. Every vertex in a control-flow graph represents a basic block of code.
Directed edges represent possible transfers of the flow of control between these blocks.

The CFG-model used in this thesis will establish some enhancements specifically tailored
for code coverage analysis. These additions will also support the implementation of the analysis
technique in a mathematical software system. This thesis uses the term analysis control-flow
graph (abbreviated aCFG) to distinguish the enhanced CFG for code-coverage analysis from
classical control-flow graphs.
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Compared with classical CFG-models like the one described in [4], the aCFG used in this
thesis for coverage preservation analysis will provide a higher grade of detail. Its structure is
based explicitly on single statements or basic groups of single statements, whereas classical
control-flow graphs use basic blocks. In addition, a supplementary set is introduced to define
the structures of the programs decisions. Finally, the edges in an aCFG will carry additional
information allowing tracking the correlation between input-valuations and execution paths.

To meet the restrictions described in Section 2.1, this thesis will require that programs and
fragments of programs under investigation have single points of entry and exit. Therefore, an
aCFG as a representation of such a program must have a well-defined single entry node and a
single exit node. Furthermore, it will be assumed that the statement, represented by a node of
an aCFG will be executed without further conditions, as soon as the flow of control reaches that
node.

Statements and Nodes

If an aCFG represents a program or a fragment of a program, then each node of the aCFG
represents a simple statement, a statement sequence or a condition. However, the mathematical
structure of a node does not depend on the type of statement it represents. The distinction
between different types of statements results from how edges link nodes together.

A single node with one outgoing edge is called a simple node and represents a simple state-
ment, because a simple statement includes no control-flow decision. A simple statement has
therefore exactly one successor in every execution sequence that includes this statement when
executing the program or program fragment P . Simple statements may have more than one pre-
decessor and therefore the node representing a simple statement in an aCFG may also have an
arbitrary number of incoming edges.

In most cases it is convenient to unite a linear sequence of simple statements to one object.
A linear sequence of simple statements is a sequence s1, s2, . . . , sr such that for all i = 2 . . . r
always si−1 is the only one predecessor of si. Such a sequence is called a statement sequence
and can be treated like a super-instruction. Since there are no joins and forks allowed inside a
statement sequence, execution of the first statement of a sequence implies that all statements of
the sequence are executed in order.

In an aCFG a simple node represents a statement sequence. The input of a statement se-
quence is the input of the sequences first simple statement and the output is the result of execut-
ing all statements of the sequence exactly in order. The predecessors of a statement sequence
are the predecessors of the sequences first simple statement. The successor is the successor of
its last simple statement. Note, that statement sequences are not required to be maximal. So the
length of the sequence can be chosen specific to the application.

A node with more than one outgoing edges is called a condition node and represents a con-
dition. A condition includes a control-flow decision with a predefined set of possible successor
statements. The successor where the flow of control continues is determined by the result of the
conditions execution. In general, conditions may have an arbitrary number of results and many
programming languages provide such multiple-branch statements. The switch-statement in
C/C++, for instance, branches according to the actual value of an integer-variable and can there-
fore produce a large number of possible outcomes. However, as already mentioned before this
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thesis will only deal with conditions producing Boolean results and therefore having two possi-
ble successors.

The mathematical structure of a node of an aCFG is a composition of two mandatory and
one optional element. The mandatory elements are a tag taken from an arbitrary tag set and a
unique node identifier taken from an identifier set. As an optional element, the node definition
may contain a related-node identifier also taken from an identifier set.

Definition 3.1 Let N and N ′ be two sets of identifiers and let Λ be an arbitrary set of tags.
Then a

tagged node is a tuple v = 〈λ, n〉 with λ ∈ Λ called the tag of the node and n ∈ N being the
nodes identifier.

related tagged node is a tuple v = 〈λ, n, n′〉 with λ ∈ Λ called tag of the node, n ∈ N
being the nodes unique identifier and with an identifier n′ ∈ N ′ called the nodes related
identifier.

Node identifiers serve as unique identification of the nodes of an aCFG. Within this thesis,
node identifiers are taken from a set of integers. In contrast to node identifiers, node tags are not
required to be unique. At the moment, node tags are only used for documentary reasons without
functional purpose. This thesis will use text-strings describing the function of the statement
represented by a node.

If an aCFG P2 is the result of a transformation P1 → P2, then related tagged nodes may be
used for some nodes of the aCFG P2. The related-node identifier n′ ∈ N ′ of a node n ∈ N of
P2 is a designation for the node of the transformed program and refers to the instance of that
statement in the original program P1. In this case, the set N ′ is the set of the node identifiers
of P1 and N comprises the node identifiers of P2. In other words, the related-node identifier
is a pointer from a statement n of the transformed program to a statement n′ of the original
program, if the node n′ was used by the program transformation to construct the node n of
the transformed program. Constructing a node of the transformed program may include any
kind of action, ranging from using a one-by-one copy of the original statement up to creating
a new sequence of statements replacing the original statement. More than one statement of the
transformed program may refer to the same statement in the original program, if one statement
is used several times for creating statements of the transformed program. However, related-
tagged nodes and tagged nodes may be used together in the same aCFG representing different
statements, since not every statement of a transformed program needs to be created on basis of
a statement of the original program.

In conformance with the definitions in Section 2.1, the symbol B(P ) will be used to refer
to the set of nodes representing simple statements or statement sequences of a program P . The
node-set representing conditions of P will be denoted C(P ). In addition, V (P ) represents the
unified node set B(P ) ∪ C(P ), and finally ST (P ) denotes the tuple 〈s, t〉, where s is the entry
node and t is the exit node of the aCFG representing the program P .
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Decisions

The decision set of a program or a program fragment P defines a partition of the programs set
of conditions. In the aCFG representing P the sub-graph representing a decision is treated as
a hyper-node [23] grouping together the condition nodes the decision is composed of. Similar
to single nodes, the formal definition of a decision comprises also a tag used as an additional
identification. This thesis will use text strings describing the branch statement the decision
hyper-node is representing. For example, a decision hyper-node is named “while” if it represents
the loop decision of a while loop. As described for single nodes, the tag of a decision mainly
has documentary functions. In addition, the framework implementation for automatic analysis
uses the decision tag to recognize loop-control decisions. This implementation specific feature
is described in Section 4.1.

Definition 3.2 Let P be a program and λi ∈ Λ a tag from an arbitrary tag set Λ. Also let
{ci1 , . . . , cik} ⊆ C(P ) be a subset of the programs condition set.

A tagged decision of P is a tuple di := 〈λi, ci1 , . . . , cik〉, and λi is called the decision tag
of di and {ci1 , . . . , cik} is called the condition set of di.

Note, that the order of the conditions inside the decision has no meaning and can be chosen
arbitrary. As defined in Section 2.1, D(P ) denotes the set of decisions of a program P and
C(di) = {ci1 , . . . , cik} denotes the set of conditions the decision di ∈ D(P ) is composed of.

For a decision di any edges with both endpoints being part of C(di) are called internal edges
of the decision. If one endpoint of an edge e is member of C(di) while the other endpoint is
not, e is called an external edge of the decision. Internal edges are relevant for defining how
the conditions are logically linked together composing the decision while the external edges are
relevant for linking a decision to other nodes or hyper-nodes of an aCFG.

The notion of terms for single nodes is applied by analogy to the hyper-nodes representing
decisions. For instance, in analogy to single nodes an external edge ending inside a decision is
called incoming edge and the number of incoming edges is called incoming degree of a decision
hyper-node.

Control Flow Edges

Control flow edges inside an aCFG represent the transition relation between the statements of a
program P .

Definition 3.3 Let V (P ) be the set of nodes representing all statements of a program P , let ID
be the set of possible input data for P , and let {α1, . . . , αr} a set of arbitrary markers.

A labelled control flow edge e of an aCFG P is a directed edge represented by a tuple
e := 〈v, w, α, δ〉 with the following components:

1. A pair v, w with v, w ∈ B(P )∪C(P )∪ ST (P ), defining the endpoints and the direction
of the edge. The node v is the origin of the edge and is called head of the edge, w is the
destination of the edge and called tail of the edge.
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2. A component α, called the condition/decision label of e. α can be empty or an element of
the set {true, false} × {X, true, false, α1, . . . , αr}.

3. A set of input valuations δ ⊆ ID , called the input-valuation set of e.

Head and tail of an edge e are denoted head(e) and tail(e) [22]. If two nodes are connected
with multiple edges, then they are required to differ in their condition/decision label.
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Figure 3.1: Components associated with an edge e of an aCFG representing a program P , dependent on
the type of statement represented by head(e).

The condition/decision label of an edge e is empty, if head(e) represents a simple statement.
In case of a condition the condition/decision label is used to mark the edge where control flow
continues depending on the result of evaluating the condition represented by head(e). The
condition/decision label comprises two parts, one for the condition, called condition label and
one for the decision, called decision label.

The condition label is a marker for the outcome of the condition represented by head(e).
It can either be true or false and determines the edge, where the flow of control continues if
the outcome of the condition represented by head(e) evaluates to the corresponding result. For
instance, if the expression represented by head(e) evaluates to true, flow of control continues
using the edge marked with condition label true. If more than one edges with the same condition
label leaves a node, the edges must differ in their decision label. On the other hand, a condition-
node must have at least two outgoing edges, one for true and one for false.

The decision label represents the possible results of the decision, so far as it can be predicted
after the evaluation of head(e). Evaluating the result of a decision is a lot more complex than
evaluating the result of single conditions, because the outcome of a decision can depend on
the result of several conditions. Therefore, the number of possible markers is higher than for
conditions. In the simplest case, the result of a decision is finalized after executing a certain
condition. In this case, the decision label is either true or false. On the contrary, the result of the
decision can be completely undetermined after evaluation of a certain condition. In this case, the
symbol X is used to express the fact, that the result is still undecided. Obviously, if the outcome
of a decision is fixed on a certain point, the result must not be changed on any further feasible
path through the decision.
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For example, think of a decision A ∧B, with A and B being two conditions evaluated from
left to right. If A evaluates to false, then the result of the decision is fixed to false and can’t be
changed by the result of B. In the other case, when A evaluates to true, the final result of the
decision can be either true or false, dependent on the result of evaluating B.

In some cases, the result after evaluating a condition is still undetermined, but with the
tendency to a certain result after evaluating the rest of the decisions logical expression. For
instance, think of the logical expression A ⇔ B and again evaluate it from left from right.
Although the result of the decision is not fixed after evaluatingA, the result ofA has an influence
on how B affects the final result. To handle such cases, arbitrary markers can be used to mark
feasible paths through a decision, if the result of a condition sets up a tendency for the result
of the whole decision. Nevertheless, external edges of a decision must be marked in a way
that implies an unambiguous final result. If arbitrary markers are used on external edges of a
decision, they must be clearly related to a result of true or false.

The component δ is a set of input valuations attached to an edge e. An input valuation
id ∈ ID is member of δ, if it triggers an execution path that includes e at least once. Note,
that δ is a symbolic value, since no information is available about the elements of ID . A more
detailed description, how the input-valuation sets attached to the control-flow edges of an aCFG
support the analysis follows in Section 3.2.

Figure 3.1 introduces a notation used for drawing a graphical representation of an aCFG. For
several reasons an abbreviated string notation is used for the condition/decision labels instead of
a tuple-notation. The character on the left-hand side of such strings is always a condition label
and the character on the second position is reserved for the decision label. For both labels true
will be abbreviated with the letter “T” and false will be denoted using the letter “F”. The letter
“X” is the symbol for unknown decision result. The string “TT”, for instance, is an abbreviation
for the condition/decision label 〈true, true〉.

Analysis-Control-Flow Graph (aCFG)

Definition 3.4 (Analysis-Control-Flow Graph (aCFG)) A directed connected graph defined
by the tuple P = 〈B,C,D,R, s, t〉 is called analysis-control-flow graph (aCFG) representing
a program or a program fragment if it comprises the following components with the following
properties:

B is a set of tagged nodes or related tagged nodes with unambiguous identifiers, representing
the simple statements or statement sequences of a program. It is called the statement set
of P .

C is a set of tagged nodes or related tagged nodes with unambiguous identifiers, representing
the conditions of a program and called the condition set of P .

D is a set of tagged decisions forming a partition of C, called the decision set of P .

R is a set of aCFG edges over B ∪ C ∪ {s, t} correlated to the programs input-data set ID ,
called the control flow edges of P .
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s,t are two tagged nodes or related tagged nodes not part of B or C with unambiguous identi-
fiers, representing the programs unique nodes of entry and exit. The node s is called the
start node or entry node of P and t is called the terminal node or exit node of P .

Note, that in the rest of this thesis an aCFG will be used as abstraction for a program,
preserving the details of the program as far as it is necessary for the analysis. As described on
Section 2.1, the notation B(P ), C(P ), V (P ) and D(P ) will be used to identify the different
node sets of a program P . In addition, the symbol R(P ) denotes the set of edges of P and
ST (P ) denotes the tuple 〈s, t〉 containing the entry node and the exit node of P .

Since the decisions of a program P are defined to create a partition over C(P ), the condition
sets C(di) of all decisions di ∈ D(P ) must fulfil the same properties as blocks of a set-partition:

(i) C(di) ∩ C(dj) = ∅ ∀ i 6= j (3.1)

(ii) ∪iC(di) = C(P ) (3.2)

In other words, two different decisions must not share any condition and each condition must
be part of some decision. Note also, that the current definition does not allow the presence of
multiple instances of one condition inside a decision and therefore the model does not support
coupled conditions (ref. to Page 8).

Further Definitions

An execution path represents a possible sequence of statement executions of the program rep-
resented by an aCFG P . Paths are defined by sequences of edges rather than sequences of
nodes. The background of this choice is, that the essential information for coverage analysis is
associated with edges, and the nodes are identifiable by the common end-points of succeeding
edges.

Definition 3.5 (Execution Path) Let P be an aCFG with entry-node s and exit-node t, and
v, w be two arbitrary nodes of P . Let pp := 〈e1, . . . , er〉 be a sequence of edges with possibly
multiple occurrences of the same edge. Then

1. The sequence pp is called execution path from v to w if head(e1) = v, tail(er) = w and
if the equality tail(ei) = head(ei+1) holds for each 1 ≤ i ≤ r−1.

2. If v = s andw = t the sequence pp is called execution path throughP or simply execution
path of P .

Note, that the graph-theoretic definition of a path typically requires, passing each edge at
most once. In contrast to that, Definition 3.5 allows multiple instances of every edge. In graph
theory this is often addressed as walk through the graph [22].

As described in Section 2.1, the set of all execution paths of an aCFG P is denoted PP(P ).
The path triggering function path : ID → PP(P ) is a surjection, since typically more than
one input valuation will trigger the same path. On the other hand it is assumed, that PP(P )
only contains such executions paths, which are triggered by at least one input valuation of the
program. This unambiguous trigger relation includes some important assumptions.
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• All input data are fixed when program execution starts and there will be no additional
input during execution.

• The execution path is determined in a predictable way and there are no random variables
with influence on any decision inside the program.

The next definition establishes a CFG-like equivalence for scopes of a program. The idea
behind this definition is to pick out some arbitrary detail of an aCFG.

Definition 3.6 A scope or aCFG-scope of an aCFG P is a tuple H:= 〈V,E〉 with the following
characteristics:

1. V ⊆ B(P ) ∪ C(P )

2. E = {e ∈ R(P ) | head(e) ∈ V ∨ tail(e) ∈ V }

If head(e) ∈ V and tail(e) ∈ V for some e ∈ E, e is called internal edge of H . If for some
e ∈ E the condition head(e) /∈ V or tail(e) /∈ V is true, e is called external edge of H .

The set of all possible aCFG-scopes of an aCFG P will be denoted with PS(P ) in conformance
with the definitions in Section 2.1. Note, that the smallest possible scope consists of a single
node with its incoming and outgoing edges.

Be aware, that a scope is neither a valid aCFG, nor a valid graph in general, because it may
contain edges with one endpoint not member of the node set of the scope. It has neither a single
entry point nor a single exit point, and it does not require including all conditions of a decision
hyper-node. A scope of an aCFG should be seen as a focus on some details of an aCFG, like
looking through a spyglass.

Examples

The examples in this section will illustrate the application of the aCFG model. It presents two
possible implementations of a branch-statement. The investigated snippet of the program is
written down in Figure 3.2(a) using a pseudo-code language. The branch-decision is com-
posed of two conditions linked by a Boolean and-operator. If the decision evaluates to true,
a statement-sequence s1 should be executed. If the result is false, execution continues with
statement-sequence s2.

The first version of the aCFG shown in Figure 3.2(b) demonstrates an example of shortcut-
evaluation semantics. Shortcut evaluation is used in some programming languages to optimize
the evaluation of Boolean expressions. It operates in such a way, that the logical expression
is only evaluated as far as necessary to determine a final result. In the present example the
evaluation of condition B is skipped if evaluating condition A results to false. In the aCFG
there is a shortcut-edge 〈2, 5〉 to continue control-flow immediately with statement sequence s2
if execution of condition A results false.

In contrast Figure 3.2(c) implements the same piece of code but without shortcut-evaluation
semantic. After executing condition A execution continues evaluating condition B. Although
there is only one execution path, two edges are needed to express the fact, that node 2 represents a
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if A ∧ B then
s1;

else
s2;

endif
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Figure 3.2: A branch statement and two possible representations by an aCFG with and without shortcut-
evaluation semantics.

condition that can evaluate to either true or false. In contrast to the shortcut version, continuation
of the control flow after evaluating B does not only depend on the local result. Only if B
evaluates to false then execution will always continue with the else branch. But in case of result
true the control flow may continue in either directions dependent on the result of A. Therefore
two edges for condition result true with different decision results are necessary to model the
difference in the decision result.

Integer-numbers serve as unique identifiers of the aCFG nodes. For the tags of the nodes text
strings are chosen, describing the function of the program statement represented by a node. In
addition, the entry node has identifier 1 and is tagged with “start” and the exit node 6 is tagged
with “end”. Input-valuation sets are denoted using the Greek letter δ with an index.

Since both graph representations use the same symbols for the same objects, the formal defi-
nition of the node sets and edge sets are quite similar. Node 4 and 5, representing the operations
inside the then and else branch, are the only simple statements or statement sequences. They are
therefore members of the statement set B. The condition-nodes (identifiers 2 and 3) are mem-
bers of the condition-set C. Both condition nodes are forming the only one decision 〈2, 3〉 of
this example and the only one member of the set D. In the graph, they are enclosed by a dotted
line to emphasize the hyper-node representing the decision. Therefore, the sets B, C, D and the
special nodes s and t are defined as follows:

B = {〈“s1“, 4〉 , 〈“s2“, 5〉}
C = {〈“A“, 2〉 , 〈“B“, 3〉}
D = {〈“if“, 2, 3〉}
s = 〈“start“, 1〉
t = 〈“end“, 6〉
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The obvious difference of the two aCFGs is how nodes are linked together. The edge sets
for both variants of the program are listed below.

Shortcut version, figure 3.2(b):

Rs = { 〈1, 2, ““, δ1〉 , 〈2, 3, “TX“, δ2〉 , 〈2, 5, “FF“, δ3〉 , 〈3, 4, “TT“, δ4〉 ,
〈3, 5, “FF“, δ5〉 , 〈4, 6, ““, δ6〉 , 〈5, 6, ““, δ7〉 }

Non-shortcut version, figure 3.2(c):

Rf = { 〈1, 2, ““, δ1〉 , 〈2, 3, “TX“, δ2〉 , 〈2, 3, “FF“, δ3〉 , 〈3, 4, “TT“, δ4〉 ,
〈3, 5, “TF“, δ5〉 , 〈3, 5, “FF“, δ6〉 , 〈4, 6, ““, δ7〉 , 〈5, 6, ““, δ8〉 }

Finally, the complete aCFG definitions Ps for the shortcut version and Pf for the full evalu-
ated version of the conditional branch look as follows:

For the shortcut version figure 3.2(b):

Ps = 〈B,C,D,Rs, s, t〉

For the non-shortcut version, figure 3.2(c):

Pf = 〈B,C,D,Rf , s, t〉

Please be aware, that the choice of tags, node-identifiers, and input-valuation set symbols is
free, as long as it meets the limitations of unambiguity stated in Definition 3.4. So the presented
aCFG representations for the piece of code in Figure 3.2(a) are only one of many possibilities.
Only the principle structure of the graph is independent of naming and drawing issues, because
it reflects the structure and the semantics of the program.

3.2 Input-Valuation Relations

This section introduces basic relations between the input-valuation sets of adjacent edges of a
node. This is possible, although neither any assumptions have been made about the input-data
set ID , nor any knowledge is available about the elements of ID . The principle for gaining
relationships between input-valuation sets associated with the edges of the aCFG is inspired by
a class of graph-theoretic problems known as network flow theory [2]. Instead of costs associated
with the edges of the graph the valuations sets attached to each edge of an aCFG are used, and
set-theoretic operations replace the arithmetic calculations. The foundation for this similarity is
the fact, that each input valuation triggers a path sourcing at a specific entry node and terminating
at a specific exit node. And as well as that, an execution path must form a feasible continuous
sequence of statements according to the programs transition relation.
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Basic Properties

The foundation for the relations between input-valuation sets associated with the edges of the
aCFG is expressed by two axioms forming the heart of the valuation analysis. Axiom 3.1 formal-
izes the properties of a single-entry point and a single-exit point of an aCFG while Axiom 3.2
will establish a property of continuity for input valuations inside an aCFG.

Axiom 3.1 If P is an aCFG with entry-node s and exit-node t. Then the following properties
are true:

1. s has no incoming edges and exactly one outgoing edge, and s is the only one node of this
kind.

2. t has an arbitrary number of incoming edges but no outgoing edges, and t is the only one
node of this kind.

3. Let δ denote the input-valuation set associated with the outgoing edge of s and let ϑi be
an input-valuation set associated with an edge ei∈R(P ). Then the relationship δ ⊇ ϑi
holds for all i.

Axiom 3.2 (Conservation Axiom) Let δ1, . . . , δmk
denote the input-valuation sets associated

with the incoming external edges of an arbitrary aCFG scope psk and %1, . . . , %nk
denoting the

input-valuation sets associated with the external outgoing edges of the same scope psk, then the
following relations are true for every scope psk ∈ PS (P ):

1. The input-valuation sets associated with the incoming-external edges and the outgoing-
external edges of psk fulfil the equality⋃

i=1...mk

δi =
⋃

i=1...nk

%i

2. For each input-valuation set ϑ associated with some internal edge of psk⋃
i=1...mk

δi ⊇ ϑ

The entry node and the exit node are acting as an interface to the environment of the program
or program fragment represented by the aCFG. To serve this function the entry node “produces”
the input valuations entering the aCFG from its environment and the exit node “consumes” the
input valuations handed over to the environment. If the aCFG represents a complete program, the
input-valuations “produced” by s are the input-valuations of the program. If the aCFG represents
a fragment of a program, the input-valuations “produced” by s are restricted to the subset of the
programs input data triggering paths through this fragment.

Part (1) and (2) of Axiom 3.1 require, that the entry node and the exit node exclusively act
as an interface. But over and above they are not involved into the actual program structure.
For example, the entry node or the exit node is not allowed to be part of a loop structure. The
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essential statement of part (3) of Axiom 3.1 is, that any path through the aCFG must start at
the entry node. Axiom 3.2 is a statement about the properties of the inner nodes of an aCFG. It
implies, that the inner nodes must not produce or consume any input valuations. This property
is comparable to the Kirchhoff law in the theory of electrical networks.

Together both axioms are a formal description for the assumption, that each execution path
of P originates at the entry node, terminates in the exit node, and that there must not be any gaps
in between. Using the graph-theoretic idea established with Definition 3.5, a path must always
form an unbroken sequence of edges where all input-valuations triggering that path, must be
always member in the associated input-valuation set of each edge.

Axiom 3.1 together with Definition 3.5 also has a consequence, that will be important for
the analysis:

Corollary 3.1 Let δ denote the input-valuation set associated with the outgoing edge of the
entry node s and %1, . . . , %n denoting the input-valuation sets associated with the incoming
edges of the exit-node t. Then

δ =
⋃

i=1...n

%i

This fact is directly implied by Axiom 3.2, if a scope comprising all nodes B(P ) ∪ C(P )
is chosen. An important consequence of Corollary 3.1 is, that non-terminating loops inside the
aCFG are not allowed, because these would violate the input-output equality of some scope
enclosing the loop.

Remarks: This thesis will only deal with entry-nodes having a single outgoing edge. Multi-
ple outgoing edges may be a possible enhancement for the future to handle optimizations using
parallel execution on different hardware entities. With exception of the empty program, direct
edges from the entry-node to the exit-node will not be allowed, because they make no contribu-
tion to the analysis.

Local Input-Valuation Relations

Applying the basic properties of input-valuation relations described above to certain predefined
scopes of the aCFG, it is easy to determine several non-strict superset relations between input-
valuation sets associated with the edges of the aCFG. Obtaining such non-strict superset relations
is an important preparation step for the analysis, because nearly all of the conditions that must be
fulfiled when checking preservation of a certain code coverage criteria, are based on non-strict
superset relations between some sets of input-valuations. The non-strict superset relations will
be called input-valuation relations for short and input-valuation relations inside one aCFG are
called local input-valuation relations or local relations.

For finding local input-valuation set relations, corresponding to Axiom 3.2 it would be nec-
essary to pick-up every possible scope of the program. Then for each such scope, a bundle
of input-valuation relations can be obtained as described below. In the following description
δ1, . . . , δm denotes the input-valuation sets associated with the incoming external-edges of the
inspected scope, and %1, . . . , %n denotes the input-valuation sets associated with the outgoing
external edges of the inspected scope.
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Figure 3.3: Determining local input-valuation relations based on the conservation axiom.

1. The equality δ1 ∪ . . . ∪ δm = %1 ∪ . . . ∪ %n can be directly derived from the conservation
axiom.

2. Using the equality above, the following forward relations can be derived by set-theoretic
considerations:

δ1 ∪ . . . ∪ δm ⊇ %i 1 ≤ i ≤ n

3. Using the equality above, the following backward relations can be derived by set-theoretic
considerations:

%1 ∪ . . . ∪ %n ⊇ δi 1 ≤ i ≤ m

Figure 3.3 illustrates the principle of obtaining a set of local input-valuation relations using an
example with a scope that is restricted to one node.

The basic relations mentioned so far only consider input-valuation sets associated with edges
incoming to and outgoing from the same scope. But using the transitivity of the superset-relation

δ ⊇ ϑ and ϑ ⊇ % =⇒ δ ⊇ %

the set of relations can be expanded to input-valuation sets associated with edges not adjacent to
one scope.

When developing a handsome procedure for determining local input-valuation relations, in-
specting every possible scope of an aCFG can become a very complex task, even for small
aCFGs. To avoid this effort the set of local input-valuation set relations will be restricted
using only obvious scopes immediately available. Such obvious scopes are the nodes v ∈
B(P )∪C(P ) (all nodes without entry node and exit node), and the hyper-nodes d ∈ D(P )
representing the decisions of the inspected program. So, walking through each node and hyper-
node of the aCFG reveals a bundle of local relations that can serve as basis for code-coverage
preservation analysis.

Example

As an example consider the representation of the branch-statement with shortcut-evaluation pre-
sented in figure 3.2(b) on page 27. Inspecting the nodes 2, 3, 4, 5 reveals the following valuation-
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relations:

Node 2 ⇒ δ1 = δ2 ∪ δ3
δ1 ⊇ δ2
δ1 ⊇ δ3

Node 3 ⇒ δ2 = δ4 ∪ δ5
δ2 ⊇ δ4
δ2 ⊇ δ5

Node 4 ⇒ δ4 = δ6

Node 5 ⇒ δ3 ∪ δ5 = δ7

δ7 ⊇ δ3
δ7 ⊇ δ5

Corollary 3.1 finally creates a relation between the entry node and the exit node of the investi-
gated aCFG:

⇒ δ1 = δ6 ∪ δ7
δ1 ⊇ δ6
δ1 ⊇ δ7

Examples for additional relations obtained by transitivity of relations are δ1 ⊇ δ4 (using δ2
or δ6 as a link) or δ1 ⊇ δ5 (using δ2 as a link).

Remark: Because of the equality in case of simple statements like δ4 = δ6 it would be cor-
rect to associate the same input-valuation set symbol with both edges instead of using different
symbols. In the example it would be possible to associate δ4 with the edges 〈3, 4〉 and 〈4, 6〉. But
for practical reasons it is highly recommended to use different input-valuation set symbols for
different edges. This supports keeping track of what is going on during coverage preservation
analysis.

Reachability and Satisfyability Valuation in aCFGs

Reachability valuation and satisfyability valuation from Definitions 2.1 and 2.2 can be trans-
posed to the aCFG model in an obvious way. The reachability-valuation set of a node is deter-
mined by “summing up” the input-valuation sets on all edges incoming to a node or hyper-node.
Each satisfyability valuation is determined in an analogous way by “summing up” all input-
valuation sets on all outgoing edges marked with a certain condition label or decision label.

Definition 3.7 Let P be an aCFG representing a program.

1. If x is a node or hyper-node of P representing a simple statement, a statement-sequence,
a condition or a decision and δ1, . . . , δm denotes the input-valuation sets associated with
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the incoming edges of x, then

IVR (x) =
⋃

i=1...m

δi

2. If x is a node of P representing a condition or a hyper-node representing a decision,
and if %1, . . . , %r denotes the valuations-sets associated to the outgoing edges of x with
condition label or decision label true and %r+1, . . . , %n denotes the input-valuation sets
associated to the outgoing edges of x with condition label or decision label false. Then

IVT (x) =
⋃

i=1...r

%i and IVF (x) =
⋃

i=r+1...n

%i

If the aCFG is a correct representation of a program, then Definition 3.7 will provide corre-
sponding values for reachability valuation and satisfyability valuation of the represented state-
ment. When determining reachability valuation or satisfyability valuation of a hyper-node rep-
resenting a decision, the external incoming and outgoing edges have to be used for summing up
the input-valuation sets. The interpretation for IVR (x) and IVT (y) , IVF (y) given in Defini-
tion 3.7 and the Conservation-Axiom 3.2 both correspond with the statement of Corollary 2.1,
because

⋃
i=1...m

δi︸ ︷︷ ︸
IVR(x)

=
⋃

i=1...n

%i =

( ⋃
i=1...r

%i

)
︸ ︷︷ ︸

IVT (y)

∪

( ⋃
i=r+1...n

%i

)
︸ ︷︷ ︸

IVF (y)

3.3 Program Transformations

Several approaches have been made to formalize optimizing transformations for translation vali-
dation [34, 6]. Modelling program transformations is commonly based on some kind of rewriting
rules that use a substitution to alter the program on relevant places [51]. In addition, an applica-
bility condition is specified using some class of temporal logic [28], for instance, to specify the
conditions under which a statement or a group of statements may be transformed [36].

The checks, whether or not the optimized version of an input program is equivalent to
the original program, are mostly based on semantic verification conditions derived from data
flow [61]. But they rarely take care about changes in the structure of a program that can alter
execution paths. This focus on semantic aspects is also reflected in the logical construct of the
applicability conditions, which is therefore of poor usefulness for code coverage analysis.

Graph transformations on control-flow graph representations [7] seem to be more reasonable
for describing changes in the structure of a program. Graph transformations are described by
graph grammars, which provide a mechanism to specify local transformations on graphs in a
mathematical way [47]. The basic concept of a graph transformation mechanism is to search for
certain occurrences of a specified pattern inside a host graph. Whenever such an occurrence is
found, it is removed and a specified graph is added instead. Finally the added graph is connected
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to the remainder of the host graph using some embedding rules. Dependent on the used rewriting
strategy, the replacement can be focused on nodes or edges.

Graph transformations have been mentioned in this work as a possible useful approach to
gain information about changes in the structure of a program and the involved changes in control
flow essential for coverage-preservation analysis. The first idea was to keep track of changes in
the input-valuation sets associated with the edges of an aCFG while transforming the aCFG in
small replacement steps. Unfortunately it figured out, that this strategy failed, because it is not
able to collect all the information needed to assess the corresponding change of input-valuation
sets along the edges of the aCFG. If the reconstruction of the graph is done using a certain
number of small steps, the intermediate steps of transforming a control-flow graph may produce
incorrect graph structures or the produced intermediate aCFG is not semantically identical to
the original program. As a consequence, essential information may get lost or may be corrupted
while applying the transformation steps.

So instead of trying to keep track of the changes in the input-valuation sets associated with
the control-flow edges during small transformation steps the program transformation is per-
formed in one step and the statements of the transformed program are tagged with supplemen-
tary information to keep track of their origin in the original program. This idea is based on the
observation, that a program transformation does not create the transformed program from sketch
without considering the statements of the original program. It typically uses the statements of
the original program as a kind of template to create the statements of the transformed program.
In most cases statements of the transformed program are either an exact copy of the correspond-
ing statement in the original program or they are modified versions of a statement of the original
program. Even newly created statements are not completely independent of the statements of the
original program, since they are often added to correct the behavioural differences of statements
modified during transformation.

Definition 3.8 A node of the transformed program is said to perform the same function as a
node of the original program, if the corresponding program statements produce identical results
for the same set of input-data.

A node of the transformed program is said to perform a similar function as a node of the
original program, if the corresponding program-statements produce different results for some
input-data.

A pair of nodes performing the same function or performing similar functions is called
functional related nodes.

If two nodes, one located in the original program and one located in the transformed pro-
gram, perform the same function, then the input-valuations of the input-valuation sets associated
to the incoming edges of the nodes are mapped to the input-valuation sets of the outgoing edges
in the same way. For nodes representing simple statements, this behaviour is mandatory, be-
cause a node representing a simple statement has only one outgoing edge and therefore all input
valuations entering the node are naturally mapped to the input-valuation set associated with the
only one outgoing edge. For nodes and hyper-nodes representing conditions and decisions, the
mapping of the incoming input-valuations is defined by the calculated result of the control-flow
decision. Therefore, the control-flow decision of the transformed program will be the same for
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the same set of input data, as long as the condition or decision performs the same function as in
the original program.

On the contrary, if statements, especially conditions or decisions, are modified during a
transformation, input valuations associated with the incoming edges of the corresponding nodes
may be mapped differently to the outgoing edges, compared with the unmodified statement of
the original program. Since nodes representing simple statements and statement sequences have
only one outgoing edge, changes of their functions cannot change the mapping of the input
valuations from the incoming to the outgoing edges. So the assessment of changes in control
flow caused by program transformations is focused on nodes representing conditions and hyper-
nodes representing decisions.

The following definition will characterize the notion of functional-related nodes, established
in Definition 3.8, and the two different levels of functional relationship more precisely:

Definition 3.9 Let P1→P2 be a program transformation. Also let v be a node or hyper-node of
the original program P1 which is functional related to the node or hyper-node v′ of the trans-
formed program P2, both representing a condition or a decision.

1. The nodes v and v′ are said to be functional-equivalent nodes, if their reachability-
valuations and satisfyability-valuations meet the condition:

IVR (v) = IVR
(
v′
)

=⇒ IVT (v) = IVT
(
v′
)

and IVF (v) = IVF
(
v′
)

2. The nodes or hyper-nodes v and v′ are said to be functional-similar nodes if at least one
of the satisfyability-valuation relations is not an equality.

Corollary 3.2 If v and v′ are two functional-equivalent nodes, then the following additional
relations must hold:

(1) IVR (v) ⊆ IVR
(
v′
)

=⇒ IVT (v) ⊆ IVT
(
v′
)

and IVF (v) ⊆ IVF
(
v′
)

(2) IVR (v) ⊇ IVR
(
v′
)

=⇒ IVT (v) ⊇ IVT
(
v′
)

and IVF (v) ⊇ IVF
(
v′
)

If two nodes v and v′ are functional similar, the correlation between reachability-valuations
and satisfyability-valuations is much more complex than for functional-equivalent nodes. If the
reachability valuation IVR (v) = IVR (v′) is true, then one out of eight initial combinations for
the satisfyability-valuations is possible for the behaviour of the node:

(1) IVR (v) = IVR
(
v′
)

=⇒ IVT (v) = IVT
(
v′
)

and IVF (v) ⊆ IVF
(
v′
)

(2) IVR (v) = IVR
(
v′
)

=⇒ IVT (v) ⊆ IVT
(
v′
)

and IVF (v) = IVF
(
v′
)

(3) IVR (v) = IVR
(
v′
)

=⇒ IVT (v) = IVT
(
v′
)

and IVF (v) ⊇ IVF
(
v′
)

(4) IVR (v) = IVR
(
v′
)

=⇒ IVT (v) ⊇ IVT
(
v′
)

and IVF (v) = IVF
(
v′
)

(5) IVR (v) = IVR
(
v′
)

=⇒ IVT (v) ⊆ IVT
(
v′
)

and IVF (v) ⊇ IVF
(
v′
)

(6) IVR (v) = IVR
(
v′
)

=⇒ IVT (v) ⊇ IVT
(
v′
)

and IVF (v) ⊆ IVF
(
v′
)

(7) IVR (v) = IVR
(
v′
)

=⇒ IVT (v) ⊆ IVT
(
v′
)

and IVF (v) ⊆ IVF
(
v′
)

(8) IVR (v) = IVR
(
v′
)

=⇒ IVT (v) ⊇ IVT
(
v′
)

and IVF (v) ⊇ IVF
(
v′
)

35



3. A PROGRAM-MODEL FOR COVERAGE PRESERVATION ANALYSIS

If the corresponding reachability valuation changes from equality to a non-strict superset or
subset, then dependent on the combinations (1) to (8) the relations of the satisfyability valuations
may stay unchanged, change from equality to a non-strict subset or non-strict superset or they
may be undefined. The possible combinations for IVR (v) ⊆ IVR (v′) and IVR (v) ⊇ IVR (v′)
in dependence of the initial combinations are listed in the table below:

Satisfyability Relations
IVT IVF IVT IVF IVT IVF IVT IVF IVT IVF IVT IVF IVT IVF IVT IVF

IVR (v) = IVR

(
v′) = ⊆ ⊆ = = ⊇ ⊇ = ⊆ ⊇ ⊇ ⊆ ⊆ ⊆ ⊇ ⊇

IVR (v) ⊆ IVR

(
v′) ⊆ ⊆ ⊆ ⊆ ⊆ × × ⊆ ⊆ × × ⊆ ⊆ ⊆ × ×

IVR (v) ⊇ IVR

(
v′) ⊇ × × ⊇ ⊇ ⊇ ⊇ ⊇ × ⊇ ⊇ × × × ⊇ ⊇

Each cell of the table contains the relation between the true-satisfyability valuations on the
left-hand side and the relation of the false-satisfyability valuations on the right-hand side. The
first row of the table defines the initial relation present in case of equality between the reachabil-
ity valuations. The rows below show the combinations of the satisfyability-valuation relations
if the equality condition for the reachability valuations is dropped. If the relation between par-
ticular satisfyability valuations cannot be determined, the corresponding position in the table is
marked with ×.

For example, if in case of IVR (v) = IVR (v′) the satisfyability-valuations are related
IVT (v) = IVT (v′) and IVF (v) ⊆ IVF (v′) then the first column shows the following fur-
ther relations in the corresponding lines:

(1) IVR (v) ⊆ IVR
(
v′
)

=⇒ IVT (v) ⊆ IVT
(
v′
)

and IVF (v) ⊆ IVF
(
v′
)

(2) IVR (v) ⊇ IVR
(
v′
)

=⇒ IVT (v) ⊇ IVT
(
v′
)

If IVR (v) ⊇ IVR (v′) is true no relation exists between the satisfyability valuations for
IVF (v) and IVF (v′), because IVF (v) is only a subset of IVF (v′). If additional input valua-
tions are added, then no general statement is possible whether IVF (v) is less, equal or greater
than IVF (v′).

In the aCFG representing the transformed program, related tagged nodes introduced with
Definition 3.1(2) are used to create the link between a pair of functional related nodes. The
related-node identifier of a related-tagged node is a pointer from a node of the transformed
program to its counterpart in the original program.

Be aware, that the functional relations between nodes used here to describe the effect of a
program transformation, does not necessarily imply a strong semantic identity of the statements
represented by the pair of nodes. It just means, that both statements produce comparable results
for the same input-valuations in the sense of distributing the input valuations in the same or
in a similar manner. But the program statements itself performing this task may be different.
Consider for example a transformation as shown in Figure 3.4. It transforms a program by
increasing the loops step-size from 1 to 2 and adapting the body accordingly. In both versions
of the program the loop is entered for the same values of the variable N and possibly for an
additional value, if N is an odd number. Therefore the loop decisions will still distribute the

36



3.4. Transformation Relations

loop i← 1 by 1 to N
body(i);

endfor

loop i← 1 by 2 to N
body(i);
if i+1 < N then

body(i+ 1);
endif

endfor

Figure 3.4: Pseudo code of a simple loop transformation producing two equivalent loops with semanti-
cally different but functional similar loop-statements.

input-valuations in a similar manner. So the loop-statement of the original program and the
transformed program will be classified as functional similar, although they are semantically
different.

3.4 Transformation Relations

Transformation relations or inter-CFG relations are relations between the input-valuation sets of
edges in two different aCFGs. They can be determined by assumptions about the behaviour of a
program transformation, by functional relationships between nodes of two different aCFGs and
by using transitivity of local relations or already known transformation-relations.

Axiom 3.3 Let s be the entry node of an aCFG P1 and s′ be the entry node of an aCFG P2,
which is the result of a transformation P1 → P2.

If δ is the input-valuation set associated with the outgoing edge of s and % the input-valuation
set associated with the outgoing edge of s′, then δ=%.

The background of Axiom 3.3 is the inherent assumption that a transformation does not
change the remainder of a program. If the aCFG comprises a complete program the assumption
is obvious. If the aCFG represents only a fragment of a program, then it is assumed that the
execution flow of the unchanged remainder of the program and therefore the input-data of the
interface of the fragment does not change when transforming only the fragment.

In other words, it is required, that the behaviour of the entry-node of an aCFG representing
a program P1 is idempotent to an arbitrary number of transformations P1 → P2 → . . . →
Pz . Furthermore, Corollary 3.1 implies, that also the union of the input valuations associated
with the incoming edges of the exit node must keep unchanged during transformation. But the
transformation P1 → P2 may add some new sequences of edges possibly terminating in the
exit node or the changes during transformation may cause a shift of input-valuations from one
edge to another. So in contrast to the entry node each input-valuation set of the incoming edges
of the exit node may differ compared with the input-valuation sets before the transformation.
For example, the Loop-Peeling transformation described in Section 5.4 increases the number of
edges terminating in the exit node.
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Relations that are determined by assumptions about the behaviour of a program transforma-
tion emerge directly from the transformations post-conditions or from the applicability condi-
tion. This kind of relations is not always systematically derivable from other properties of the
transformation. In most cases they are created using some prior knowledge about the behaviour
of a transformation. For example, think of a loop transformation. A common requirement for
a loop transformation is, that the number of executions of the innermost loop body must not be
changed. Therefore all input valuations, executing the body of the innermost loop before the
transformation must also execute the body of the innermost loop after the transformation, and
therefore the input-valuation set on the edge representing the execution of the innermost loop
must be the same before and after the transformation.

Most of the valuation-relations can be derived systematically using the knowledge about
functional-related nodes. To be able to apply the rules for functional-similar nodes described in
Section 3.3 above, the aCFG must be processed in a top-to-bottom order, starting with the basic
equivalence of the entry-nodes. If a related tagged-node of the transformed program provides a
pointer to a node of the original program and if the relation of the input-valuation sets associated
to the incoming edges of two nodes are known, the relations of the input-valuation sets associated
to the outgoing edges can be determined. Then the procedure can progress iteratively to the tail-
nodes of the outgoing edges and so on. If the chain is broken somewhere, because no relations
can be found, then sometimes processing the graph in bottom to top order starting at the exit-
node may help. Moreover, deriving relations from functionally similar decisions may also help
to jump over the gap of a broken relation chain.

Original Program

?

IVR (v)

}v
�
�
�
�	

@
@
@
@R

IVT (v) IVF (v)

TX FX

Transformed Program

?

IVR (w)

}w
�

�
�
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@
@
@
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Funct. related nodes IVR(v) = IVR(w)
⇓

IVT (v) = IVT (w)
and

IVF (v) = IVF (w)

Figure 3.5: Determining inter-CFG relations by functional node relationships.

Transitivity is another chance to fill the gap, when the chain of subsequent inter-CFG re-
lations is broken somewhere. Finding relationships by transitivity usually mean to use local
relations inside one aCFG to close the sequence of relations. In addition, already known inter-
CFG relations can be used to complete the chain.
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3.5 Principle of Coverage Preservation Analysis

Basic Algorithm

The foundation, created in the first part of this chapter, will now be used to describe a princi-
ple algorithm for performing an analysis of the structural code coverage criteria described in
Chapter 2. The analysis algorithm performs on simplified prototype versions of the investigated
program fragments represented by aCFGs. The remainder of the program, not affected by the
(optimizing) transformation, will be assumed to be concentrated inside the entry- and exit-node.

An aCFG P1 of the program fragment where the optimizing code transformation under in-
vestigation takes place will serve as model for the analysis. A second aCFG P2 will serve as
model for the transformed version of P1. The transformed aCFG P2 will use related tagged
nodes to setup functional relationships to the nodes of P1. Beside these node relationships,
initial input-valuation set relations between input-valuation sets of P1 and P2 can be used to
describe, how the transformation affects the taxonomy of execution paths. After creating basic
relationships of input-valuation sets, the code-coverage preservation criteria described in Chap-
ter 2 will be used to compare the two versions of the program with respect to their ability of
preserving a certain structural code coverage under investigation. In more detail, the principle
algorithm looks as follows:

1. Create an aCFG P1 for the program fragment under investigation.

2. Create a copy P2 of the aCFG P1 and perform the intended program transformations.

3. In the transformed program P2 use related tagged nodes and setup pointers to pinpoint
functional relationships between the nodes of P2 and P1.

4. Create new symbols for the input-valuation sets associated with the edges of the trans-
formed aCFG to make the input-valuation sets of P2 distinguishable from the input-
valuation sets of P1.

5. For each aCFG Pi (i∈{1, 2}) determine local relationships between the input-valuation
sets:

a) Setup the initial entry-node to exit-node relationship (Corollary 3.1).

b) Walk through all nodes from B(Pi) ∪ C(Pi) and setup the relationships implied by
the conservation-axiom (Axiom 3.2).

c) Walk through all hyper-nodes fromD(Pi) and setup the relationships implied by the
conservation-axiom (Axiom 3.2).

6. Create the basic inter-CFG relationships:

a) Setup the initial relationship between the entry nodes and exit nodes of both aCFGs
(Axiom 3.3).

b) Add relationships derived from the characteristics of the performed program trans-
formation.
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c) Walk through the related-tagged condition nodes of P2. If a known relationship be-
tween the incoming input-valuation sets of the node of P2 and its functional-similar
node in P1 exists, register the relationship of the outgoing input-valuation sets.

7. Apply the preservation condition of the structural code coverage that should be investi-
gated using a suitable procedure.

The concrete procedure for applying a certain preservation criteria depends on the structure
of the used preservation condition. In most cases the procedure will walk through all nodes of
P2, belonging to a certain type. For each such node it will try to find a node of the same type in
P1, that fulfils a certain condition, required by the preservation criteria. If a corresponding node
in P1 can be found for all investigated nodes in P2, then the preservation condition is proven for
this special transformation-configuration.

A weakness of the algorithm with respect to an automatic detection of relationships is that the
ability to find inter-CFG relationships may depend on the order the nodes of P2 are investigated.
Practical experience has shown that a top to bottom order, where the entry node is the top and
the exit node is the bottom, works best. However, loop structures are always hard to handle,
because the feedback links of the cycle are causing a stalemate. The feedback link is unknown
as long as the start of the cycle is not analyzed, but the start of the cycle cannot be analyzed as
long as the feedback link is not.

Example 1: Useless Code Elimination

Useless code elimination, sometimes also called dead code elimination, is an optimization that
removes a statement that computes a value that is never used on any executable path leading
from the position of the statement [40]. A common example for useless code is the assignment
of a value to a variable that is never used again. A more detailed discussion of this optimization
will be done in Section 5.2, and a code example is given in Figure 5.1.

Because of its simplicity this exercise is well suited to take a deeper look into the transfor-
mation steps. Figure 3.6 depicts the steps taken to convert the aCFG of a program fragment to
an aCFG of the optimized program fragment. The nodes of the graphs are identified by integer-
numbers drawn in the middle of the node-symbols. Entry node and exit node are always marked
with an extra circle around the node. It is assumed, that node 3 of the original program is useless
code, that should be removed.

Figure 3.6(a) shows the linear sequence of statements in its original structure. The input-
valuation sets associated with the edges are denoted δ1, . . . , δ4. The first step of the transforma-
tion (b) creates a one-by-one copy of the original graph. The copy uses related tagged nodes to
keep track of the relations between the nodes of the original program and the transformed pro-
gram. In the figure this is drawn with mapping symbols pointing to the identifier of the related
node. To make the nodes of the copy distinguishable from the original graph, the identifiers of
the copied nodes are replaced by numbers ranging from 11 to 15. The input-valuation sets are
dropped in this step, because they must be recalculated after the transformation. Now the actual
optimization step is performed (c). Node 13, which is assumed to be useless code, is removed
and the edge originating at node 12 is reconnected with node 14. Finally, the edges are asso-
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Figure 3.6: Transformation steps for useless code elimination.

ciated with input-valuation sets (d). To distinguish them from the input-valuation sets δi of the
original program, different symbols %i are used.

Note, that following aCFG drawings will skip intermediate steps like step (b) and (c) in
figure 3.6. The aCFG representing the original program and the aCFG of the final transformation
result (the transformed program) will be drawn only.

As further preparation steps for coverage-preservation analysis, the local relations of the
relevant graphs (a) and (d) have to be determined. This is very easy, since there are only simple
statements involved. Walking through nodes 2, 3 and 4 of the original program (a) and the nodes
12 and 14 of the optimized program (d) reveals:

δ1 = δ2, δ2 = δ3, δ3 = δ4︸ ︷︷ ︸
(a)

and %1 = %2, %2 = %3︸ ︷︷ ︸
(d)

(3.3)

The transformation relations are also easy to determine in this case, because δ1 = %1 must
be true by default (Axiom 3.3). Transitivity then implies the equality δi = %j for all 1 ≤ i ≤ 4
and 1 ≤ j ≤ 3.

Based on these relations, preservation of statement-coverage can now be proved, using the
condition from Theorem 2.1:

∀b′ ∈ B(P2) ∃b ∈ B(P1) with IVR
(
b′
)
⊇ IVR (b) (3.4)

Because of Definition 3.7, the following equalities are evident:

IVR (12) = %1, IVR (14) = %2, IVR (2) = δ1, IVR (3) = δ2, IVR (4) = δ3 (3.5)

To perform the formal proof of (3.4), the preservation condition has to be shown for all nodes
b′ ∈ {12, 14} in relation to the statement-nodes b ∈ {2, 3, 4}. Putting together (3.5) with (3.3),
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the validity of the statement-coverage preservation condition IVR (b′) ⊇ IVR (b) is obviously
true for all possible combinations of nodes b′ and b.

Since the program fragment contains no conditions or decisions, the preservation conditions
for condition coverage and decision coverage are true by default. This interpretation conforms
to the fact, that CC and DC of the remainder of the program are not affected by that opti-
mization. But be aware, that in this case the implication “decision coverage”=⇒“statement
coverage” is inadmissible, since the part of the program relevant for the optimization contains
no decision [41].

Example 2: Decision Distribution

The following example is a problem that could arise if the actual object-code implementation
of a higher-level program construct is not known by the user or not exactly specified by the
compiler-manufacturer. The programmer, for whatever reason, assumes that the two condi-
tions of a branch-statement are always executed independent of the result of each condition.
Unfortunately, the compiler translation of the branch results in two single decisions evaluating
the branch condition with a shortcut-semantics. Figure 3.7 presents a possible example of the
decision-distribution problem written in a high-level pseudo code language.

if A ∧ B then
s1;

else
s2;

endif

=⇒

if A then
if B then

s1;
goto L;

endif;
endif;
s2;
L: ...

Figure 3.7: High-level pseudo code version of the decision distribution problem.

Figure 3.8 presents the aCFG representing the untransformed high-level program P1 on the
left and the final result of the object code level transformation P2 on the right. In addition, the
node equivalences relevant for the transformation analysis are shown next to the aCFG repre-
senting P2. The transformation has not changed the semantics of any statement. Only how
statements are linked together has changed.

Moreover, a characteristic property of the shown transformation is, that the statement se-
quences representing the then branch and the else branch in both versions of the program must
be executed for the same input values. Therefore, the following transformation-relations must
hold:

δ4 = %4 and δ5 ∪ δ6 = %3 ∪ %5 (3.6)

Inspecting the local relationships of both aCFGs by walking through each node in a top-
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Figure 3.8: Two aCFGs representing P1 and P2 of the decision distribution problem.

down order, results in the following basic relations:

Entry/Exit: P1 δ1 = δ7 ∪ δ8, δ1 ⊇ δ7, δ1 ⊇ δ8
Node 2: δ1 = δ2 ∪ δ3, δ1 ⊇ δ2, δ1 ⊇ δ3
Node 3: δ2 ∪ δ3 = δ4 ∪ δ5 ∪ δ6, δ2 ∪ δ3 ⊇ δ4, δ2 ∪ δ3 ⊇ δ5,

δ2 ∪ δ3 ⊇ δ6, δ4 ∪ δ5 ∪ δ6 ⊇ δ2, δ4 ∪ δ5 ∪ δ6 ⊇ δ3
Node 〈2, 3〉 : δ1 = δ4 ∪ δ5 ∪ δ6, δ1 ⊇ δ4, δ1 ⊇ δ5, δ1 ⊇ δ6

Node 4: δ4 = δ7

Node 5: δ5 ∪ δ6 = δ8, δ8 ⊇ δ5, δ8 ⊇ δ6
Entry/Exit: P2 %1 = %6 ∪ %7, %1 ⊇ %6, %1 ⊇ %7

Node 12: %1 = %2 ∪ %3, %1 ⊇ %2, %1 ⊇ %3
Node 13: %2 = %4 ∪ %5, %2 ⊇ %4, %2 ⊇ %5
Node 14: %4 = %6

Node 15: %3 ∪ %5 = %7, %7 ⊇ %3, %7 ⊇ %5

Inspecting the condition-nodes of P2 and their functional-similar nodes in P1 reveals the
following transformation-relations:

Entry/Entry: δ1 = %1 (3.7)

12 7→ 2 : δ1 = %1 =⇒ δ2 = %2, δ3 = %3 (3.8)

13 7→ 3 : %2 ⊆ δ2 ∪ δ3 =⇒ %4 ⊆ δ4, %5 ⊆ δ5 ∪ δ6 (3.9)
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Note, that the transformation-relations (3.6) implied by the characteristic properties of the
transformation are not completely derivable from functional relationships. The relationship
13 7→ 3 for instance, only induces the relation %4 ⊆ δ4 and not equality as required by the
transformation properties. Note also, that functional relationships for non-condition nodes are
normally not mentioned explicitly. As considered before (Section 3.3) their one-by-one input-
output relationships cannot directly cause a redirection of execution paths.

As an exercise, determination of local relations and transformation relations was done very
extensively here. But for practical purposes it is not mandatory to derive all existing relations,
because analysis usually only needs a small subset of them. To check preservation of statement
coverage for example, it is sufficient to have the transformation relations from the characteristic
properties of the transformation.

Preservation of Statement Coverage. The proof for preservation of statement coverage needs
only the characteristic relations from (3.6). These relations immediately imply

IVR (14) = %4 = δ4︸ ︷︷ ︸
(3.6)

= IVR (4)

IVR (15) = δ5 ∪ δ6 = %3 ∪ %5︸ ︷︷ ︸
(3.6)

= IVR (5)

and therefore statement-coverage is preserved.

Preservation of Decision Coverage. Expanding the predicate touches_ID, the complete
preservation condition for decision coverage looks as follows:

∀d′ ∈ D(P2) ∃ d ∈ D(P1) : (IVT (d) ⊆ IVT
(
d′
)
) ∨ (IVF (d) ⊆ IVT

(
d′
)
)

and ∃ d ∈ D(P1) : (IVT (d) ⊆ IVF
(
d′
)
) ∨ (IVF (d) ⊆ IVF

(
d′
)
)

The transformed program P2 consists of two decisions: 〈12〉 and 〈13〉. These have to be
correlated to the only one decision 〈2, 3〉 of P1 to check the preservation condition.

IVT (〈12〉) = %2 = δ2︸ ︷︷ ︸
(3.8)

= IVT (〈2, 3〉) =⇒ true

IVF (〈12〉) = %3 = δ3︸ ︷︷ ︸
(3.8)

= IVF (〈2, 3〉) =⇒ true

IVT (〈13〉) = %4 = δ4︸ ︷︷ ︸
(3.6)

= IVT (〈2, 3〉) =⇒ true

IVF (〈13〉) = %5 ⊆ δ5 ∪ δ6︸ ︷︷ ︸
(3.9)

= IVF (〈2, 3〉) =⇒ false

Checking the preservation criteria for IVF (〈13〉) fails, because the distribution of the original
decision 〈12, 13〉 redirects some paths to the edge 〈12, 15〉, and they are now missing at the
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incoming edge of decision 〈13〉. As a consequence the missing valuations reduce the input-
valuation set at the false-outcome of 〈13〉, and the required non-strict superset relation is not
fulfiled. Therefore, the transformation does not preserve decision coverage.

Preservation of Condition Coverage. Expanding the predicate touches_ID results in the
following preservation criteria for condition coverage:

∀c′ ∈ C(P2) ∃ c ∈ C(P1) : (IVT (c) ⊆ IVT
(
c′
)
) ∨ (IVF (c) ⊆ IVT

(
c′
)
)

and ∃ c ∈ C(P1) : (IVT (c) ⊆ IVF
(
c′
)
) ∨ (IVF (c) ⊆ IVF

(
c′
)
)

The transformed program P2 consists of two conditions: 12 and 13. Possible candidates in
P1 for applying the preservation criterion are the conditions 2 and 3.

IVT (12) = %2 = δ2︸ ︷︷ ︸
(3.8)

= IVT (2) =⇒ true

IVF (12) = %3 = δ3︸ ︷︷ ︸
(3.8)

= IVF (2) =⇒ true

IVT (13) = %4 = δ4︸ ︷︷ ︸
(3.6)

= IVT (3) =⇒ true

IVF (13) = %5 ⊆ δ5 ∪ δ6 ⊇ δ5︸ ︷︷ ︸
(3.9)

= IVF (3) =⇒ false

The transformation does not preserve condition coverage, because the preservation condition for
IVF (13) fails. Intuitively this result is expected, because the shortcut edge 〈12, 15〉 redirects
some execution paths and therefore the false-satisfyability valuation of condition 13 is reduced.

3.6 Summary of Chapter 3

A formal control-flow graph based model for programs and program transformations is intro-
duced. Based on this model, some basic rules to derive formal relations for coverage-preservation
analysis are described. Examples are given to illustrate the usage of the model.

A basic procedure is described, how to utilize the control-flow graph model for coverage-
preservation analysis.

45





CHAPTER 4
Automatic Analysis

This chapter describes, how the aCFG-Model and its application for coverage-preservation anal-
ysis are transposed to the mathematical software-system Mathematica. It combines the analysis
approach described in Chapter 3 with the preservation conditions for structural code-coverage
described in Chapter 2 to form a mathematical-computing system for investigating certain use
cases with respect to code-coverage preservation.

Section 4.1 starts with the description of the internal implementation of the aCFG structure
introduced in Section 3.1. The basic elements, used to compose nodes and edges are described
first. The second part of this section describes how the nodes and edges and the different sets
defining an aCFG are implemented and how they are linked together. The implementation de-
scription continues in Section 4.2 with some general graph function. Section 4.3 adds some
remarks, how paths are handled in the Mathematica implementation. The processing steps for
determining input-valuation-set relations are the focus of Section 4.4 and finally Section 4.5
describes the implementation of the coverage-preservation proofs.

Supplementary information for this chapter can be found in Appendix B, where the relevant
parts of the implementation are listed. In addition, Appendix A gives a quick survey on the used
Mathematica features.

4.1 aCFG Definition and Graph Functions

Basic Elements

Tags. Strings of arbitrary length and contents are used as tags for nodes and decision hyper-
nodes. There is no predefined tag set implemented, so all tags can be constructed free
from arbitrary character sequences when defining the aCFG structure. The tag string has
mainly documentary functions with one exception for decisions. There is no need to keep
tags unambiguous.

Node Identifiers. Identifiers are taken from the set of positive integers and must be unambigu-
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ous inside an aCFG. Although it would be possible to use the same identifier set in dif-
ferent aCFGs it is good practice to use different ranges of integers for the identifiers of
different aCFGs. This ensures a better distinguish ability for the nodes of aCFGs repre-
senting the original program and the transformed program.

Condition/Decision Label. The condition/decision labels of edges are implemented as strings
with a length of up to 3 characters. An empty string is used for edges without condi-
tion/decision label. If not empty, the label string has a minimum length of 2 characters
and each position in the label string is associated with a certain kind of information:

• The first position of the string is reserved for the condition label. The character ”T”
is used for condition label true and character ”F” is used for false.

• The second position of the condition/decision-label string is associated with the de-
cision label. The characters ”T”, ”F” and ”X” are used for decision outcomes true,
false and undecided.
For tagging feasible paths inside complex decisions, additional characters, repre-
senting a decision outcome of true or false, can be defined in the global variable
DecTrueFalseSet. These additional characters are the corresponding imple-
mentation for the arbitrary decision-path markers α1, ..., αr mentioned in Defini-
tion 3.3. The global variable for additional decision-path markers contains two lists:
one for characters associated with a true outcome and one for characters associated
with a false outcome. If a character from one of these sets is used for an external
outgoing edge of a decision, it is treated as true or false dependent on its membership
in the true or false set.

• The functional relation character, if present, is placed on the third position of the
condition/decision label. This part supports the automatic generation of transfor-
mation relations for the head node of an edge. A detailed description will follow
starting with page 62.

input-valuation set. The set of input-valuations associated with each edge is represented using
unassigned Mathematica variables. Every free Mathematica variable can be used for this
purpose. In this thesis, the symbols δ and % with an index are used in most cases to tag the
input-valuation sets of the original and the transformed program.

Path Marker. Path markers support some path-related calculations. Each path marker repre-
sents a certain path, traversing the edge it is associated with. Path markers are imple-
mented as unassigned Mathematica symbols consisting of some symbol together with an
index, like p3 or π7, for instance.

Graph Structure

In the Mathematica implementation the aCFG of a program is a nested structure of several lists
handled like tuples or sets dependent on which part of the aCFG they represent. In the following
description the terms set and tuple will be used synonymous with the term list to emphasize,
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whether a list is treated as set or as a tuple. Please be aware that the internal implementation of
sets and tuples is always a list.

In contrast to the formal mathematical Definition 3.4, the Mathematica representation of an
aCFG uses only four components to define the internal graph-structure. These four components
are:

• A set of statement nodes corresponding to the set B(P ). This set comprises the non-
condition nodes.

• A set that corresponds to the set D(P ) of the aCFG definition, holding the decisions of
the aCFG.

• The corresponding set for R(P ) with the edges of the aCFG.

• Two single nodes, one representing the entry node s and one representing the exit node
t. As described in Section 3.1, these two nodes must be neither in B(P ) nor part of any
decision inD(P ), and so they must not be members in the corresponding implementations
of these sets.

Note, that the node set corresponding to B(P ) is used a little bit tricky to implement an
extended statement-coverage preservation check. Please refer to the description of the imple-
mentation of the statement-coverage-preservation proof in Section 4.5 for more details.

The set C(P ) mentioned in the formal definition of the aCFG is not implemented explicitly.
Since every condition must be uniquely assigned to some decision the corresponding set for
C(P ) is constructed “on the fly” from the decisions if necessary. This avoids duplicates of
condition nodes and possible inconsistencies in the assignments of conditions to decisions when
defining aCFGs in the Mathematica framework.

Lists on the innermost level of the graph structure define nodes, decisions and edges. They
are treated in a tuple-like manner. There are three types of such lists serving as basic building
blocks:

Nodes. A node is a tuple comprising 2 or 3 elements. The first entry is reserved for the node
tag, the second element is the node identifier. The third element, if available, holds the
related nodes identifier. There is no explicit distinction between tagged nodes and related
tagged nodes, except their number of elements. Both node types can be used at the same
time for different nodes inside one graph.

Examples: The list {"then",3} is a possible definition of a tagged node, and the list
{"then",13,3} is a possible related tagged node definition.

The tag of a single node has only documentary functions. In addition, tags of different
nodes do not need to be different.

Decisions. A decision hyper-node is implemented as a flat list of arbitrary length with at least
two elements. The decisions tag always occupies the first position in the list. The follow-
ing entries define the condition nodes, the decision is composed of. The condition nodes
can be represented by tagged nodes as well as by related tagged nodes without restrictions
in combining different types of nodes.
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Apart from its documentary function the tag of a decision is also used to distinguish loop-
decisions and conditional-branch decisions. This is done by examining the tag-string
of a decision for the occurrence of a special loop-keyword, defined in the global list
loopDecisionKeywords.

Examples: The list {"decision1",{"cond1*",11,1},{"cond2*",12,2}} de-
fines a decision hyper-node of two conditions using related tagged nodes.
The list {"while",{"loopcond",1}} defines a decision comprising one, non-related
condition node. If the keyword “while” is member of loopDecisionKeywords (as it
initially is), the second decision is classified as loop-decision.

Edges. An edge is implemented as a list, comprising at least four elements. The first element
always defines the node identifier of the head node where the edge originates while the
second element contains the node identifier of the destining node. The third element holds
the condition/decision-label string and the fourth element stores the symbol for the input-
valuation set associated with that edge.

Examples: The list {1,2,"TX",δ2} represents an edge originating at a condition node.
The list {2,1,"",δ3} implements an edge originating at a simple statement node.

For some kind of calculations, a set of path markers may be created and appended as fifth
element to the list. A path marker set contains one marker for each path that traverses the
current edge. A more detailed description will follow starting on page 59.

On the topmost level, the four lists, defining the graph-structure, are bundled in a tuple, to
allow handling of an aCFG as a unit. To get the certain components of an aCFG structure P,
there is a set of retrieval functions:

gB[P], gD[P] and gR[P] extract the corresponding sets for B(P ), D(P ) and R(P ) “as is”.
That means, that all these sets are returned, as they where originally defined.

gC[P] returns the virtual set of all conditions corresponding to C(P ). The set returned in-
cludes all conditions part of any decision defined in the corresponding set-implementation
of D(P ).

gST[P] returns a list comprising two elements with the entry node on the first and the exit
node on the second position.

gV[P] returns a set, that is simply the correspondence to the union of B(P ) ∪ C(P ).

Finally, the function eCFG[B,D,R,ST] constructs the corresponding structure for an aCFG
by taking the corresponding sets for B(P ), D(P ), R(P ) and ST (P ). This function is intended
to decouple the internal program defined structure of the aCFG from the logical structure, and
to present a kind of “counterpart” to the way, components are returned by the retrieval function.
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Retrieve Elements of Node, Hyper-Node and Edges

There are several functions implemented to extract the elements of nodes, decision hyper-nodes
and edges in various ways. Most of these functions are intended to decouple the internals like
position or actual presence of elements from the outside logical view. Others are designed to
perform additional services, like extracting the comprehensive information of elements.

The following explanations are intended to survey the set of available functions. The com-
plete function-set with a detailed description can be found in the Mathematica notebook (Ap-
pendix B):

Node Retrieval Functions. Functions like gNodeLabel[] or gNodeId[] are pure retrieval
functions. Since these elements of the node structure are mandatory, these retrieval func-
tions presuppose their availability and provide no “plan B” if they are missing.

On the contrary, the function gNodeRelFunc[], which returns the identifier of the
functional equivalent node in a second aCFG, checks the availability of the element first.
It returns −1 as default if the element is missing in the nodes list structure, otherwise it
returns the current value.

Most of the advanced functions work with node identifiers rather than directly with com-
plete node tuples. To get the node tuple associated with an identifier, the supplementary
function gSelectNodeById[V,iv] searches a node set V for the occurrence of a
node with identifier iv. The result of this function is a set with zero or one element (taking
for granted, that the node set V of the aCFG is correct).

Edge Retrieval Functions. gEdgeHead[], gEdgeTail[] or gEdgeValuation[] sim-
ply retrieve certain components of an edge structure, like the identifier for the head node
and tail-node or the input-valuation set symbol associated with the edge. As described
before, mandatory elements are not checked for availability.

The access to the condition/decision label needs a two-staged procedure. In a first step,
gEdgeLabel[] returns the whole string representing the complete set of information.
To access a certain part one of the extra functions gCLabel, gDLabel or gRLabel
must be applied to the label in a second step to get a single condition, decision or func-
tional equivalence label.

Since edge path markers are optional, their retrieval function provides an appropriate de-
fault value {} (the empty set), if it is missing in the structure of the edge given as argu-
ment.

Decision Retrieval Functions. Although a decision can be represented by a list of arbitrary
length, there are only two retrieval functions: one for the decisions tag, and one returning a
set of the condition nodes the decision is composed of. The gDecisionNodes[] func-
tion returns a set with the nodes of a condition in complete form with all node elements.
Since most of the functions work with node identifiers only gDecisionIdSet[] re-
turns only the identifier of the decisions node set. In addition, gDecisionRelSet[]
extracts the identifiers of the functional-related nodes of a decision. Knowing a set of
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node identifiers of a decision the decision the nodes are belonging to can be found with
gSelectDecisionById[].

4.2 Elementary Graph Functions

Examining the Graph Structure

Functions like gInEdges[] or gLabOutEdges[], for instance, are designed to extract the
edges incoming to or outgoing from a certain node. These functions are provided in two ver-
sions: one for hyper-nodes and one for single nodes.

• The function for single nodes takes a single node identifier as argument and refers to the
edges directly incoming to or outgoing from the node.

• The functions for the hyper-node version have the same name and the same structure of
the argument-list as the function for single nodes, but always end with H. They take a set
of node identifiers as hyper-node argument. The nodes defining the hyper-node are treated
as a unit and the terms outgoing edge and incoming edge are transposed to the external
edges of the hyper-node accordingly.

There are certain criteria available to select the edges of interest:

• gInEdges[] and gOutEdges[] simply select all edges incoming to or outgoing from
a node or hyper-node.

• gInDegree[] and gOutDegree[] are counting the number of all edges incoming to
or outgoing from a node or hyper-node.

• gLabOutEdges[] returns all outgoing edges of a node or hyper-node associated with
a certain condition/decision label.

• gSLabOutEdges[] is similar to gLabOutEdges, but it allows selecting the outgoing
edges of a node or hyper-node according to a certain part of the condition/decision label.
The interesting part of the label is specified with a selection function that is responsible
for extracting the interesting piece of information. The functions CLabel and DLabel
are usually used for this purpose.

Note, that gLabOutEdges and gSLabOutEdges have no corresponding functions for
incoming edges, since selecting the edges by condition or decision label is only needed
on outgoing side.

• gPredEdges[] and gSuccEdges[] determine corresponding incoming or outgoing
edges, which share a node with a given edge. The difference between the two functions is
how the given edge is treated. gPredEdges[R,e] treats the given edge e as outgoing
edge of a node head(e) and searches R for all occurrences of edges e′ that fulfill the
condition tail(e′) = head(e). gSuccEdges[R,e] acts exactly the other way round,
searching R for all occurrences of edges e′ with head(e′) = tail(e). In both cases, the
result is returned in a set of edges.

52



4.3. Path Handling

Supplementary Functions

This paragraph deals with two kinds of helper functions: Search order functions and graph
drawing functions.

Search Order Functions. These are functions, to determine a structure related search order for
the nodes of a graph. In some cases it is necessary or preferred to traverse a graph in a
top to bottom order. Search order functions provide a list, where the nodes of a graph
are sorted in some reasonable sequence, which represents their position relative to the
start-node.

Two different kinds of search orders are provided. Breadth first search order places nodes
adjacent to the current examined node first before moving on. In the depth first search
order nodes are stored with increasing distances from the start node first before continuing
with the next node on the same level [49]. To guarantee that all nodes are included in the
result-sets, all search order functions finally add remaining nodes to the end of the list.
This situation can arise from nodes that are not connected to the start node of the search.

Graph Drawing. This set of functions supports drawing of simple pictures of the investigated
graphs, based on the library DiscreteMath‘GraphPlot‘. In Mathematica 5.2 the
ability of the graph-plot library is restricted. Therefore, the capability of the main drawing
function gDrawCfg[] is restricted too.

The drawings of a graph can be supplemented with node identifier and node-labels. In
addition, the direction pointer and the condition/decision label for each edge can be drawn.
Unfortunately, appealing plots of multiple edges between nodes are not directly supported
by this version of the library. The chosen less-then-ideal solution is to draw multiple edges
as a single edge, and add to it all condition/decision labels of the involved edges separated
by colons.

Two versions of the gDrawCfg[] function are provided. Both versions take a structure
representing an aCFG as first argument. The extended version takes two additional ar-
guments: one for selecting to draw node tags and one for selecting to draw identifier for
nodes. The simple version of gDrawCfg[] just draws the identifier for each node, since
tags are often very space consuming because of their extensive length.

4.3 Path Handling

Path Construction

Paths are involved in the automatic analysis in two ways: firstly, they can be used to enhance
the automatic local-relation analysis and secondly, they are needed for path-coverage analysis.
Since a path is defined as a sequence of edges (Definition 3.5), a list containing the edges of the
walk in the correct order is chosen as representation.

Two edge sets, one for the origin and one for the destination, serve as input for the path
construction. The edges specified as origin of the paths are allowed to be outgoing edges of
distinct nodes and similar the destination set may consist of incoming edges of distinct nodes.
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Clearly, the construction must respect the direction of the included edges. In general, two spec-
ified nodes will be connected by more than one path, since an aCFG is a structure where paths
can fork and join in an arbitrary way. On the other hand, there is no guarantee, that there exists
a walk, connecting the specified start-node and end-node. However, the construction algorithm
is designed to drop hopeless edge configurations, which will never reach the specified end of the
path to guarantee the termination of the algorithm.

The function gPathSet[R, ss, ts] is the key function to determine paths possibly
starting at a specified origin and ending at a specified destination. The function takes the edge
set R (the edge set of the aCFG) as its first argument, the origination edge set as second argument
ss, and the destination edge set is given in the third argument ts. The edge sets for start and
end may include an arbitrary but non-zero number of members. The result of the function is a
set of paths or the empty set, if no path between the edges of the specified edge sets exists.

gPathSet[] constructs paths in back-to-front order, starting with the edges from the ter-
mination edge set. Each edge of the end-set is initially assumed to be the last edge of an individ-
ual preliminary path. Therefore, each path of the result set is guaranteed to finish with one edge
of the end-set, if a path exists.

After setting up the initial set of paths for investigation the algorithm try’s to expand each
path torso iteratively in backward direction. This is done by prepending the incoming edge of
the head of its first edge to the path. If the examined node, joins n incoming edges, the currently
investigated path torso is duplicated n − 1 times, and each incoming edge is prepended to one
of these instances. If loops are found during path construction, all paths iterating the loop more
than once are dropped. The construction of a path is finished, if either an edge from the start-set,
a node without incoming edges or the entry node of the aCFG is reached.

There is no guarantee that path construction finally connects to any edge in the start-set.
Thus there is no guarantee that any edge from the start-set is included in some path of the result
set. But the algorithm will terminate anyway, because it will iterate loop-cycles at most one
time and therefore cannot be trapped inside a loop. So it will somehow reach any node without
incoming edge or all path torsos are dropped.

Unified paths

The path coverage preservation proof uses a re-organized set of the aCFGs edge set to deter-
mine possible execution paths. This re-organization removes multiple edges between nodes, and
avoids additional paths in the structure of an aCFG caused by data-flow dependencies. The dou-
ble edges connecting nodes 2 and 3 in the aCFG P1 of Figure 3.8 on page 43, for instance, are an
example for such a data-flow dependence. From the point of view of the program execution both
edges are part of the same execution path, but the aCFG model requires having two different
edges for the outgoing true and false outcome of a condition. If such kind of multiple edges are
removed the resulting path is called unified path.

If multiple edges are removed, their condition labels and decision labels are joined in a
certain way. If condition labels of both outcomes (true and false) are associated with the edges
in question, the resulting condition label is set to the character “V”. Otherwise the resulting label
is true or false according to the values in the set. If the decision labels are all members of the
same outcome set the decision label is set to the matching outcome true or false. Otherwise or if
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one of the multiple labels contains “X”, the resulting decision component of the unified label is
set to “X”. Functional equivalence symbols are omitted. Note, that these unified labels are only
used temporary inside the function for proving the preservation of (scoped) path coverage.

Additional Path Functions

gShortestSubPathSet[p,gG] is a function to cut out sub-paths from a path given with
the function argument p. The function returns a set of non-overlapping sub-paths of p, and each
sub-path meets all the conditions described below:

1. All edges of a sub-path in the result set originate at nodes from the same node set. The
node set is taken from a list of possible node sets supplied with the function argument gG.

2. If two edges are member of the same sub-path, they do not share a common head node. In
other words, each node from the node set is used at most once.

3. The sub-path meeting condition (1) and (2) above is maximal. That means, that a sub-
path is expanded with a subsequent edge, as long as the head of the subsequent edge is an
unused member in the same node set as the other edges of this sub-path.

Note, that sections of the path p, that do not meet the conditions above, will be dropped. Note
also, that the edges of different sub-paths are allowed to originate at nodes from different node
sets. But all edges in the same sub-path are required to have head nodes from the same node set.

The function gShortestSubPathSet is usually used to pick out the sections, where a
path traverses a certain decision, and to drop the edges outside the decision. In this case the given
node sets, supplied with the function argument gG, are the investigated decisions of a program.

4.4 Input-Valuation Relation Processing

Input-Valuation Set Handling

Input-valuation sets are represented by symbols associated with edges of an aCFG. In addition to
these input-valuation sets directly gained from the edges of the aCFG, unions of input-valuation
sets must be handled to obtain representations for joins of execution paths. These unions must
be treated in a symbolic way, since the actual contents of input-valuation sets is unknown. For
programming technical reasons the internal representation of a union of input-valuation sets
is a set of input-valuation set symbols. Single input-valuation sets are represented by a set
containing the single input-valuation set symbol as the only one element. One advantage of this
internal representation is that the union of input-valuation sets is reduced to simply flatten the
set containing all operands of the union.

Example: The notation {δi} represents the input-valuation set δi inside the automatic analy-
sis, and the notation {δi, δj , δk} represents the union δi ∪ δj ∪ δk of input-valuation sets.

The input-valuation-relation analysis is based on an auxiliary graph similar to digraph mod-
els for relations [22]. The vertices of the input-valuation relation graph are the representations of
the input-valuation sets involved. The arcs of the graph represent the superset-or-equal relations
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implied by the basic properties of input-valuation relations. In other words, if v = {δi, . . .}
and w = {δj , . . .} are two vertices representing input-valuation sets then arc 〈v, w〉 in the input-
valuation relation graph indicates that v ⊇ w is true. Note, that according to basic set-theory [14]
the existence of 〈v, w〉 and 〈w, v〉 implies equality between v and w.

The structure of the input-valuation-relation graph represents the direct input-valuation re-
lations gathered from Axiom 3.2 and other directly derived relations. But it is not intended to be
a complete representation of the relations. Especially it is not a transitive digraph, which would
require that the existence of an arc 〈x, y〉 and 〈y, z〉 implies the existence of arc 〈x, z〉 [22]. Of
course, the superset relation the graph is corresponding to is transitive. But the idea behind the
input-valuation relation graph is contrary to that. Its purpose is to serve as an auxiliary structure
supporting the search for transitivity relations based on already found basic relations “on the fly”
whenever needed. A transitivity relation is found by searching for walks between two vertices
of interest.

In the practical implementation of the automatic coverage-preservation analysis it was more
efficient to always determine all possible relatives to the given input-valuation set. This is,
because most of the coverage-preservation proofs need to determine several relatives to one
input-valuation set, and most of the needed information is created as a side effect of the search.
The main function for determining such relations is vRelNodes[]. It uses a breadth-first-
search strategy starting at a given input-valuation set v in the input-valuation relation graph.
Its purpose is to determine all input-valuation sets stored in the input-valuation relation graph,
which are in superset-or-equal relation to the given input-valuation set.

The check, whether a given input-valuation relation set δi is a superset of some other input-
valuation relation set δj or not, can be more or less reduced to check, whether or not δj is
included in the set of relatives of δi returned by vRelNodes[R, {δi}]. If a coverage preser-
vation proof needs to check the same node of some aCFG with the same kind of reachability
valuation or satisfyability valuation, then the set of relatives must be determined only once and
can be reused to check it against the reachability valuation or satisfyability valuation of different
instances of another node.

In most cases, determining if a given input-valuation set is a member in the set of relatives
returned by vRelNodes[] is a sufficient check for a superset-or-equal relation of the involved
input-valuation sets, especially when checking coverage preservation based on a finished input-
valuation-relation graph. In some rare cases this simple procedure may fail. Particularly during
the construction of a relation graph the presence of obvious relations may be sensitive to the
order of the construction sequence. So when using the relations constructed so far, the necessary
relation may not be available directly. But other relations may be already present in the graph,
which can substitute the lack of relations. If it is necessary to check, for instance, if δi ⊇ δj ∪ δk
is true, then for the simple method a vertices for δi and one for δj ∪ δk must be present to apply
the simple check. But if δj ∪ δk is missing the check fails. On the other hand, if the relations
δi ⊇ δj and δi ⊇ δk are both already available then the relation above eventually can be verified
successful using an enhanced check.

To understand the method for the enhanced check consider a union of n subsets B := b1 ∪
b2 ∪ . . . ∪ bn, each of them being a subset of another set A. Then B ⊆ A is true. Now consider
a “sub-union” D := bi1 ∪ . . . ∪ bim with bik (1 ≤ ik ≤ n) being some element of {b1, . . . , bn}.
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Then D must be a subset of B, and therefore subset of A. This consideration can now be
applied in the following way to check some relations like δi ⊇ δj ∪ δk when δj ∪ δk is not
directly available:

1. Determine the relatives for δi using the function vRelNodes[R,{δi}].

2. Calculate the union of all relatives. This can be simply done by “flattening” the result set
and convert it into a set representation.

For example, assume the result of vRelNodes[] is {{δr, δj} , {δr, δk}} which is the
internal representation for δr ∪ δj and δr ∪ δk. Flattening the result and converting it into
a set gives {δr, δj , δk} which is the internal representation for δr ∪ δj ∪ δk.

3. Take the intersection of the input-valuation relation representation of δj ∪ δk which is
{δj , δk} with the calculated union of the relatives of δi. If the result of the intersection is
{δj , δk} (or in other words, if {δj , δk} is a subset or equal), then δi ⊇ {δj , δk} must be
true. Otherwise, the relation is false.

The function vSubsetOf[sc,v] supports the enhanced method for the relation check. It
firstly performs the intersection operation between the set of related input-valuation sets sc and
the input-valuation set v of the investigated node of the aCFG. Finally it returns a Boolean value
to indicate, if the result of the intersection is equal to the investigated set v. This intersection-
and-compare solution was chosen, because Mathematica does not directly support super-set
operations or sub-set operations. Note, that the function does not flattening and unifying the
input set sc, because it is often called several times with the same set sc, and at each call the
flattening and unifying operations would be performed again and again. So it is left to the caller
to do these operations.

Reachability and Satisfyability Valuation

Determining the reachability valuation IVR (x) and the satisfyability valuations IVT (x) and
IVF (x) for some node x is implemented in a two stage process. First, a subset of edges tagged
with the relevant input-valuation set information is selected. In the second step the valuation
information is extracted from the obtained edge subset.

cRIE[R, iv] returns a set of all incoming edges of a node with identifier iv or hyper-node
with identifier-set iv of an aCFG with edge set R.

cIVR[R, iv] is the Mathematica implementation of IVR (iv). The function returns the
union δi1 ∪ . . . ∪ δik of the input-valuation sets of all incoming edges in the internal
set notation {δi1 , . . . , δik}.

cSOE[R, iv, l] returns a set of all edges marked with condition/decision label l outgoing
from a node with identifier iv or hyper-node with identifier-set iv of an aCFG with edge
set R. The function automatically accesses the condition or decision label according to
the kind of node (single node or hyper-node) iv represents.

57



4. AUTOMATIC ANALYSIS

cIVS[R, iv, l] is the Mathematica implementation of the satisfyability valuation IVl(iv).
It returns the union δi1 ∪ . . . ∪ δik of the input-valuation sets of all outgoing edges tagged
with the condition or decision label l ∈ {“T“, “F“}. The result uses the internal set
notation {δi1 , . . . , δik}.

cSOD[R, iv] is a helper function to count the number of different outcomes of a node with
identifier iv or a hyper-node with identifier set iv in an aCFG with edge set R. Typically
the result is 1 for nodes representing simple statements or statement sequences, and 2 for
nodes representing conditions or hyper-nodes representing decisions.

Note, that all these functions automatically determine the kind of node (single node or hyper-
node) given as argument. The appropriate versions of the underlying support functions like
gInEdges[] and gInEdgesH[], for instance, are selected automatically.

Local Relations Graph Construction, the Simple Approach

Constructing the input-valuation-relation graph is the most important preparation step for au-
tomatic code-coverage analysis. Two methods are provided which differ in how local input-
valuation relations are determined. This section describes the simple one.

Determining local input-valuation relations in a simple way starts by initially setting up the
input-valuation set equality of the entry-nodes output and the exit-nodes input. Then it just
examines each node of the interesting aCFG excluding entry-node and exit-node in some order.
In the current implementation the node set of the aCFG is examined in the order actually defined
with the use-case implementation. So the order of examination depends on the present order of
the elements and on how identifiers are associated to nodes. For each node, the basic axioms,
namely Axiom 3.1 and 3.2, are applied to determine the input-valuation relations locally obvious
to the node as described in Section 3.2.

The determination procedure for single nodes first obtains the input-valuation sets of the
incoming and the outgoing side. For simplicity, only single input-valuation sets and the union
of all valuations entering or exiting a node are mentioned.

The helper function vResolveValRel[inSet, outSet] is used to construct pairs of
related input-valuation sets. It combines inSet with each single element of outSet, and
adds finally an equality pair for inSet with the complete outSet. Finally, the function
vResolveValRel[] is called with swapped arguments, to reveal the complete result accord-
ing to the conservation axiom. Each relation pair returned by vResolveValRel[] adds two
vertices, each of them representing one of the involved input-valuation sets, and an arc connect-
ing the vertices in the input-valuation relation graph. Since the edge list of the input-valuation
relation graph is handled as a set, adding the same edge several times is an idempotent operation
producing only a single copy of the edge. Note, that the input-valuation relation graph does not
maintain an explicit set of vertices, because it is not needed for practical application.

The function vResolveDecisionValuation[] is similar to vResolveValRel[],
but it investigates input-valuation relations for a complete decision hyper-node and returns the
determined relation pairs. The function vValRelGraph[P] is the main function for con-
structing a local input-valuation relation graph for an aCFG using the simple method of con-
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struction. The function is called with a structure P representing the aCFG as argument. The
function returns the whole bundle of relations found for P.

Local Relation Graph Construction, the Path Based Approach

During practical application of the automatic analysis with different use cases it has turned
out, that the simple approach for constructing the local input-valuation-relation graph has some
limitations. Especially for loop decisions it does not always obtain the results needed for a
successful coverage-preservation analysis. Due to the focus of the simple algorithm on single
nodes and single decision hyper-nodes, it has a restricted perception which limits the ability of
the construction algorithm to identify global facts related to fork and joins of execution paths.

loop i ← 1 to N
A(i) ← A(i) + A(1);

endloop

Simple input-valuation rela-
tions for node 1:

δ1 ∪ δ3 = δ2 ∪ δ4 (4.1)

δ1 ⊆ δ2 ∪ δ4 (4.2)

δ3 ⊆ δ2 ∪ δ4 (4.3)

δ1 ∪ δ3 ⊇ δ2 (4.4)

δ1 ∪ δ3 ⊇ δ4 (4.5)

Some additional path-based
relations for node 1:

δ3 = δ2 (4.6)

δ1 ⊇ δ2 (4.7)

}����0
}1
}2
}����3?

?

- -
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Figure 4.1: Recognizing control-flow inside a simple loop configuration.

An example for the most common restriction of the simple approach is its inability to recog-
nize edges going into and edges coming out from a loop. In the aCFG, shown in Figure 4.1, node
1 is a loop decision with a single condition. Edge 〈1, 2〉 is the only edge going into the loop, and
edge 〈2, 1〉 is the only edge coming out of the loop. Since the loop has no intermediate points
of exit, paths passing edge 〈1, 2〉must also pass edge 〈2, 1〉, and furthermore the input-valuation
sets δ2 and δ3 must comprise the same input-valuations. In contrast, the simple approach only
will find the relations (4.1) to (4.5), listed on the right-hand side of Figure 4.1. All these relation
are induced by using the conservation axiom for node 1. Looking at node 1 from a path-based
point of view reveals, for example, the additional relations (4.6) and (4.7). The equality (4.6) is
the corresponding formal proposition for the fact that all paths entering the loop also must leave
it. In addition, the relation (4.7) formally expresses the fact, that some execution-paths will not
enter the loop.

To avoid the limitations of the simple approach, an enhanced construction method called
path-based input-valuation graph construction was developed for obtaining local input-valuation
relations of an aCFG. The basic idea of the path based approach is to incorporate information
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about execution paths through the aCFG into the edges before starting to evaluate the input-
valuation set relations locally for each node. Analyzing the execution paths through the aCFG
collects the path information used to generate path-marker sets, as described in Section 4.1, for
all edges. The local evaluation can then benefit from this execution-path information, because
it is able to identify interrelations caused by global control flow. So it is possible to generate
specific relations between input-valuation sets associated with incoming and outgoing edges.

The path based valuation graph construction starts with determining possible execution paths
through a given aCFG P and tags them with markers associated to each path. This job is done
by the function vPathTrace[], which first determines the set of execution paths. In a second
step it uses the function vAddPathMarker[] to go through each path and to append a unique
path marker psi to every edge of the aCFG which is in the examined path. The index i is
incremented for every path so that each path marker represents a certain path, and i ranges
therefore from 1 to the number of different paths. As a result vPathTrace returns a modified
edge set R(P ) of the aCFG where a set of path markers is appended to each element of R(P ).

Example: The following example demonstrates the modified edge set with added path markers
corresponding to the aCFG illustrated on the left-hand side of Figure 4.1, and the call of the
function vPathTrace, which is necessary to produce this result. The symbol P in the function
call represents the aCFG structure implementing the aCFG in Figure 4.1.

MatrixForm[vPathTrace[gR[P],gST[P],Map[gDecisionIdSet,gD[P]],p]]
0 1 δ1 {p1, p2}
1 2 TT δ2 {p2}
2 1 δ3 {p2}
1 3 FF δ4 {p1, p2}


The lines of the matrix show the modified edges R(P ) of the aCFG with appended path-

marker sets added for the different paths. In this case, two different execution paths are identi-
fied, and each of them is tagged with another path marker. Marker p1 is used for the path not
entering the loop, and therefore this marker is only used on the edge from the start node to the
loop decision and then continuing from the loop decision to the termination node. Marker p2 is
used for the path that enters the loop and is therefore used for all edges of P .

Most of the work for constructing the input-valuation relation graph is done by the function
vPathRelValuations[R1_, R2_]. The arguments R1 and R2 are two sets of edges
the function should construct input-valuation relation pairs for. In most cases R1 contains the
incoming edges and R2 the outgoing edges of a node or decision hyper-node. Similar to the
simple method of input-valuation relation graph construction relations are determined for the
whole set R1 with each element of R2 and for all edges in R2 with each single edge of R1. In
addition, relations are determined for all pairs of edges from R1 × R2.

The basic principle of the path based input-valuation relation construction is that the input-
valuation sets are related in the same way as the path marker sets, which must be associated to
each edge. This principle is derived from the assumption, that each path is triggered by a well-
defined set of input-valuations. Therefore the input-valuations triggering a certain path must be
present in the input-valuation sets associated with the edges traversed by this path. Supplemen-
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tary to the conservation axiom additional relations are derived for each node based on the present
path-markers associated with the incoming and outgoing edges. For the following description
consider Min being the set of path markers of some incoming edges of a node and Mout being
the path-marker set of some outgoing edges of the same node. In the same way let Vin and Vout
be the input-valuation sets associated to the incoming and outgoing edges mentioned with the
path-marker sets. Then the logic for determining the additional input-valuation relations is as
follows:

• IfMin ⊇Mout, then the relation 〈Vin, Vout〉 is added to the input-valuation relation graph.

• IfMin ⊆Mout, then the relation 〈Vout, Vin〉 is added to the input-valuation relation graph.

The described logic is implemented in the function vResolvePathEquality[] that is
called several times as a sub-function of the input-valuation relation graph construction.

The results of the path-based approach for constructing the input-valuation relation graph
have been compared experimental with the simple construction method. For loop-less structures
both approaches produced the same results. For loop structures it turned out on one hand that for
some use-cases the path based construction approach can acquire up to 40 percent more input-
valuation relations than the simple method. On the other hand the price seems to be higher than
the benefit. For more complex structures the number of paths grows rapidly with the complexity
of the aCFG structure, even for small pieces of code. And on top of that, it turned out that
even the additional relationships gained from the path-based approach are in some cases not
sufficient for coverage-preservation analysis, and that it will be necessary to setup some relations
manually. In such cases the local relationships gained with the simple method are often sufficient
together with a few manually created one to successfully perform code-coverage preservation
analysis. Unfortunately there is no absolute criterion to decide in advance, which method is
more beneficial for the examined use-case. So it is decided empirical from case to case if the
simple method or the path-based method is used to automatically determine the input-valuation
relations. Nevertheless, in any case there is the possibility to supplement missing input-valuation
relations manually.

Transformation Relation Graph Construction

Adding transformation relations is the second step in constructing the input-valuation relation
graph. However, this part needs the local input-valuation relations of both aCFGs as a basement.
Therefore the main function for constructing the transformation relation graph, the function
vTransRelGraph[uP, tP, hints, pathBased], calls the function for constructing
a local-valuation graph first. In more detail, it calls the simple or path-based construction func-
tion exactly two times: Firstly for the original program uP and secondly for the transformed
program tP. Both input-valuation relations are written into the same input-valuation relation
graph. The caller determines with the Boolean function argument pathBased whether the
function performs a simple construction or a path-based construction of the local input-valuation
relations. The default value of the argument pathBased is False.

As described in Section 3.4, there are three relevant sources for gaining relationships be-
tween the input-valuation sets of the original and the transformed program. These input-valuation
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sets are added to the existing local input-valuation relation graph produced in the first step. The
relations are added in the following order:

1. Axiom 3.3 implies the initial equality between the output of the entry nodes of the two
involved aCFGs. This initial equality is created first to establish an initial connection
between the two aCFGs.

2. Relations derived from the properties of the program transformation. These are manually
created input-valuation relations defined once together with the definition of the aCFG
structures in the use-case implementation. They can include all kind of input-valuation-set
relations, local relations inside each of the involved aCFGs as well as inter-CFG relations
between the input-valuation sets of both aCFGs.

The argument hints of the function vTransRelGraph[] takes manually created
input-valuation relations. The input-valuation relations in the argument hints are simply
added to the input-valuation-relation graph as defined without further processing.

3. Relations induced by functional relations between nodes of the transformed program and
its functional-related nodes in the original program. This process will be described in
more details below.

Note, that since the creation process also removes some relations already in the intermediate
input-valuation relation graph the relation of the argument hints are added a second time at the
end of the creation process. This makes sure, that they are added anyway.

Functional relationships between the nodes of the transformed program and nodes of the
original program are the source of information for automatically detecting transformation rela-
tions. Definition 3.9 introduced the notion of functional-equivalent nodes and functional-similar
nodes to describe the properties of functional-related nodes. But knowing whether a pair of
related nodes is functional equivalent or functional similar is of less importance for automatic
transformation-relation detection than knowing at which particular outgoing edge in the trans-
formed program the input-valuation sets have changed compared with the original program.
Therefore the implementation of the coverage-preservation-analysis framework focuses on out-
going edges of functional-related nodes of the transformed aCFG.

To describe the changes in the input-valuation sets, special symbols are associated with the
outgoing edges of a node of the transformed program. These symbols are used as hints during the
automatic determination procedure for transformation relations, to identify the particular edges
where the input-valuation sets have changed compared with the corresponding outgoing edge
of the related node in the original program. For convenience the functional relationship-symbol
was incorporated as last part of the condition/decision label. This avoids the need to introduce a
new component in the edge definition. The functional relationship is defined by one character.
This part is called the relation label, and it can be accessed with the function gRLabel (ref
to Section 4.1 for more details). At the moment, the following symbols are supported to define
functional relations between nodes (please refer also to the description in Section 3.3):
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= for equal output. If the node receives the same input valuations on its incoming edges, the
input-valuation set associated to the edge marked with “=” will be the same as in the
functional-related node in the non transformed graph.

Note, that this is the default value. If no functional-relationship symbol is assigned to an
edge, the symbol is always assumed to be “=”.

+ for amplified output. This symbol means, that if the incoming input-valuations of the head
node of the edge are the same as in the non-transformed program, the valuation on the
edge will be a superset of the comparable edge in the non-transformed program.

- is the same as "+" but in the other direction. If the input of functional-related nodes is equal,
the output of the node in the transformed program on this edge will be less than the com-
parable edge in the original program.

X is a special implementation specific symbol used to suppress the creation of a transformation
relation for the marked condition outcome of a node when creating the input-valuation
relation graph. This functional relationship symbol is intended to avoid interferences be-
tween manually created transformation relations (defined as hint argument when calling
the function for transformation relation graph creation), and automatically created rela-
tions. If “X” is present on a path in a decision, it overrides all other functional relations
and no relation is generated for this outgoing edge of the decision.

Different to condition/decision labels there is no distinction between functional relationship
of conditions and decisions. In case of a decision only the edges outgoing from the decision
hyper-node are relevant. The functional relations along the path inside the decision are not
mentioned. Like condition/decision labels the functional relationship is meant to be valid for the
outgoing side of a node/hyper-node only.

Note, that if the functional relationship of all outgoing edges of a related node or related
hyper-node in the transformed program is “=”, then the node is functional-equivalent to its
counterpart in the original program. If a symbol different to “=” is associated with at least
one outgoing edge, then the related nodes are functional similar.

If more than one edge is involved for the outcome of a condition or decision, then the func-
tional relation must be determined as a logical combination of the relationship symbols of each
involved edge. To do this, firstly all relation labels are collected and putted into a combination-
set, removing all duplicates of the symbols. Then the following rules below are used to calculate
the resulting common functional-relationship symbol of the combined edges:

1. If the combination set contains the symbol “X” (a single “X” or “X” together with any
other symbol) or if it contains conflicting symbols (“+” and “-”), then the common result
is “X”.

2. If the combination set contains only “=” then the common result is “=”.

3. If the combination set contains “=” with “+” or a single “+”, then the common result is
“+”. If it contains “=” and “-” or a single “-”, then the common result is “-”.
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The following table shows how the input-valuation set of an edge in the transformed pro-
gram is effected dependent on the functional relationship associated to the edge and in relation
to the proportion of the input-valuations of the incoming edges of the functional related nodes.
The symbol “⊆” for the input of the transformed node in the table means that the reachability-
valuations of the transformed node are a non-strict subset of the reachability-valuations of the
functional-related node in the original program. “⊇” means, that the input-valuations of the
transformed node are a non-strict superset compared with the reachability-valuations of the re-
lated node of the original program. The symbol “=” describes equality between the reachability-
valuations of the functional-related nodes. The symbols on output side show, if the input-
valuation set associated to the examined outgoing edge is equal, a non-strict subset or non-
strict superset in the transformed program, compared with the corresponding edge in the non-
transformed program. The character “×” means, that the output cannot be qualified because of
the unfavourable combination of the reachability-valuation relation and the kind of change de-
fined by the relationship-symbol. Another reason for the “×”-symbol can be, that the outgoing
edge contains a suppression symbol “X”.

Equivalence symb.
on outg. edge(s)

+ = - X
Input of → ⊆ × ⊆ ⊆ × ← Output of

transformed → = ⊇ = ⊆ × ← transformed
node → ⊇ ⊇ ⊇ × × ← node

The function vCondDecRelFunc calculates the resulting relationship for a condition or
a decision. The function automatically determines if the input is a node-index or a index-set
representing nodes of a decision. In any cases only the outgoing edges labelled with a con-
dition/decision label are taken into account. If there is more than one outgoing edge then the
function returns a combined relation symbol that is calculated with the rules described above.
Remember that for a decision only the outgoing edges and no internal edges are relevant to
calculate the result.

4.5 Preservation Proofs

General Remarks

The functions for preservation proofs are all following the same scheme. Each proof function has
the form cXXPres[P1,P2,RG], where XX is the letter combination SC for statement cover-
age, CC for condition coverage, DC for decision coverage, MCDC for modified condition/decision
coverage or PC for (scoped) path coverage. The argument P1 supplies the function with the
aCFG structure representing the original program while P2 is the aCFG for the transformed
version of P1. Finally, the argument RG holds the input-valuation relation graph containing
all local relations and the transformation relations of the input-valuation sets in both programs.
Since all proofs use the same input-valuation relation graph it was decided to construct it in the
run-up of the preservation proof and hand it over to the functions as argument RG.
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All proof functions return the Boolean value True, if the preservation condition has been
verified successfully. Otherwise False is returned. That the proof function was not able to
verify the preservation condition may point out that the examined transformation does not pre-
serve the investigated code coverage. Missing relations between the involved input-valuation
sets however may also cause a negative result. In other words a positive result is always accu-
rate, because it is based on the existence of relations. A negative result can be created by the
existence of “wrong” relations as well as by a lack of information.

In addition to the proof functions, most of the additional predicates used in the coverage
preservation theorems 2.2, 2.3, 2.4 and 2.5 are implemented as well. Of course, most of their
arguments are adapted to serve the needs of the Mathematica implementation. Instead of nodes
representing some statements, for instance, often a list comprising the set of relational input-
valuation sets is used as argument. This avoids unnecessary multiple calculations of input-
valuation sets related to IVR (x), IVT (x) etc., if some node x is used frequently in successive
calls of the same function.

All proofs can be executed manually by taking the necessary steps by hand. Examples for
manually executed proofs can be found in the code coverage notebook. The code coverage
notebook also provides some functions doing all steps automatically:

cUseCaseAnalysis[name,p1,p2,hints,pathBased] performs all necessary steps
to execute all coverage-preservation proofs for one use case. The arguments of this func-
tion are:

name with a text string containing a name for the use case.

p1 holding the aCFG structure for the original program.

p2 holding the aCFG structure for the transformed version of p1.

hints a set of input-valuation relations characterizing the transformation. The caller can
supply this set with any kind of input-valuation relations, independent whether they
are local relations or transformation relations. But note, that these relations are tak-
ing effect for constructing transformation relations only, not for local relations.

pathBased is a Boolean value determining whether the local valuation graph construction
should be done using the path based approach (if the argument is True) or the
simple approach (if the argument is False).

cPresAnalysis[outLevel] is the “do everything” function, performing all implemented
preservation proofs. It takes an integer value outLevel as the only argument. This pa-
rameter determines the grade of details of the progress output printed during execution.
The function uses an internal map to translate the integer value to correlating assignments
of the set variable outputSet. The map can be found at the beginning of the func-
tion definition in the code coverage notebook, where it can be modified and expanded
if needed. However, a negative integer always means “totally silent” – no intermediate
output is produced in this case.

The global variable outputSet is a set of integer numbers used to control the details
of functions output prints. It determines the kind of information that should be printed while
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processing preservation proof functions. The content of the variable is valid for nearly all
kinds of functions, not only for high level functions. Each integer number used as element
of outputSet represents a special level of information. The higher the value of the set ele-
ment, the more detailed is the output. The correlated information is printed during processing,
if the certain element is member of outputSet. An empty set produces no output. During
manual evaluation the outputSet can be changed at any time by adding or removing values
to or from outputSet.

The following description is a guideline, how the elements of outputSet can be used to
produce/get certain kind of output:

• (0) . . . high-level information produced on use-case level and above, e.g. printing which
use-case is processed.

• (1) . . . prints the input (the arguments) of use-cases.

• (2) . . . prints information about steps done to process a certain preservation proof and
information about preparation steps.

• (3) . . . presenting important result of proof processing, e.g. printing final transformation
relations.

• (4) . . . prints information about internal steps when processing preservation proofs., e.g.
print information about predicates used in preservation proofs.

• (5) . . . informs about important sub-results, e.g. which nodes are related to each other.

• (6) . . . more detailed output of internal results.

• (7) . . . currently unused.

• (8) . . . currently unused.

• (9) . . . prints pure debugging information, e.g. print name and arguments of called sub-
functions.

Be aware, that the usefulness of some kind of information is sometimes hard to classify and
may depend on the point of view of the user. So take the list above rather as a guideline than as
a strict rule.

Statement Coverage

The preservation proof for statement coverage in the function cSCPres[] is a straightforward
implementation of the preservation condition (Theorem 2.1). The algorithm replaces the “for
all” quantifier with a loop, running over all nodes of the set gB[P2]. For each node of P2 it
scans the nodes of gB[P1], whether or not they satisfy the required superset condition for the
reachability valuations. All nodes of P1 satisfying the preservation condition with respect to
the examined node of P2 fill a result set. The test for one node of P2 is classified as successful,
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if the result is not the empty set. Although it would be sufficient to abort as soon as a pair of
nodes is successfully tested, the function performs a complete test comprising all nodes of P1.
This behaviour has technical reasons as well as documentary reasons. So a total number of tests
performed is equal to |B(P2)×B(P1)|.

If the setB comprises only the simple statements and statement sequences of the program (as
it is originally defined in Section 4.1), the statement coverage test is performed in a “classical”
way without mentioning the conditions. But since the preservation proof function performs the
statement-coverage preservation check with everything that is member of B(P2) and B(P1),
the sets B(Pi) can be used a little bit tricky to perform a enhanced check. If the sets hold also
copies of the conditions of the programs, the conditions are treated like simple statement and
tested if their reachability valuation meets the preservation condition. However, every possible
valid assignment of the set B(Pi) would be conceivable.

The analysis function cPresAnalysis[] uses this behaviour to perform both kind of
statement coverage analysis. The classical analysis is performed with the original sets B(P2)
and B(P1). For the enhanced statement-coverage preservation analysis the sets B(P2) and
B(P1) are temporary changed to B(P2)∪C(P2) and B(P1)∪C(P1) to produce unified sets of
simple statements and condition statements.

Condition and Decision Coverage

Since the preservation proofs for condition and decision coverage are very similar, they are
described together in this section. The only difference of the proofs is the use of decision hyper-
nodes instead of condition nodes when proofing preservation of decision coverage. As well as
that, the implementations of both proofs have the same algorithmic structure, and they differ
only in the use of condition nodes or decision hyper-nodes as objects of test. Both proofs are
distributed on two functions according to the use of an additional predicate in theorem 2.2 and
theorem 2.3 respectively.

touchesID[] implements the helper predicate from definition 2.1. The implementation
is a one-to-one transposition of the predicate condition. The only difference is that it takes the
set of input-valuation sets related to IVR (x) as argument, serving as a substitute for the node
x. As the predicate in the definition the function works correctly independent of whether it is
called with a single condition or with a decision.

cCCPres[] and cDCPres[] provide the algorithmic implementation of the formal preser-
vation conditions for condition and decision coverage. The only difference between cCCPres[]
and cDCPres[] is that the condition coverage check iterates over the nodes from gC[P2]
and gC[P1] while the decision coverage check iterates over the hyper-nodes of gD[P2] and
gD[P1].

Like the function for statement coverage, they are implemented in a straightforward manner
using the same principles. The nodes, relevant for testing the preservation condition are taken
from the appropriate sets of the program representations P2 and P1. Each relevant node of P2
is tested in a loop with all relevant nodes of P1. The examination fills two local result sets,
one for the true satisfyability valuation and one for the false satisfyability valuation. The local
result sets contain all nodes of P1 meeting the preservation condition. The overall result is again
calculated by testing these result sets for the empty set. As described for statement coverage, the
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test is done completely, although is would be sufficient to abort as soon as a positive test result
is detected.

Modified Condition/Decision Coverage

The preservation condition for modified condition/decision coverage (Theorem 2.4) differs from
the other preservation conditions described so far in this section. It requires the existence of some
pairs of subsets of the input data, which elements fulfil the MCDC conditions in a certain manner.
But the only knowledge about the valuations inside the program representations comprises the
input-valuation sets associated with the edges of the aCFG. So the first task must be to find some
candidates for subsets of the input data, which can later be used for the MCDC preservation
proof. This makes the automatic evaluation of the MCDC preservation proof a little bit wicked.

The function constructIDcand[R, d, c] returns a list of possible characterizations
for ID-sets related to a condition c of a decision d in the program, defined by its execution
relation R. The function applies a trick to find candidates for the subsets ID1, ID2 and IDtmp

mentioned in Theorem 2.4. It uses the formal conditions from Definition 2.7 in reverse, assuming
that MCDC is fulfilled in P1. As a result it returns a list of possible characterizations for ID-sets
related to decision d and its condition c.

The characterization for such an ID-set is a 3-tuple 〈γ, δ, σ〉. Here γ is the input-valuation
set related to the condition c, determined by IVT (c) or IVF (c) in the auxiliary predicate
mult_control_expr. The element δ is the input-valuation set related to the decision d determined
by IVT (d) or IVF (d) in mult_control_expr. And finally σ is a set containing all input-valuation
sets in all condition c′′ 6= c with an empty intersection ID ∩ IVT (c′′) or ID ∩ IVF (c′′), deter-
mined by the isInvariantExpr condition of uniqueCause.

The practical construction of this list is based on analysis of paths starting at the entry of the
decision and terminating at the outgoing true edge and the outgoing false edge of the decision
respectively. The edge sequence is constructed in a two-step process. In the first step the paths
from the decisions entry up to the incoming edges of the currently investigated condition and
from the outgoing true and false edges of the condition to the outgoing true and false edges of
the decision are calculated separately. In the second step all feasible combinations of the partial
paths obtained in the first step are constructed. The input-valuation sets of the edges along a
feasible path-combination are then collected as possible characteristics for the input-valuation
sets ID1 and ID2.

The proof function cMCDCPres[] for preservation of modified condition/decision cover-
age first of all calculates a list of possible candidates for the sets ID1, ID2, and IDtmp using the
function described above. Then the preservation condition is executed iteratively in two loops
for all decisions and conditions of P2 in correlation with the decisions and conditions of P1. The
list of possible candidates for IDk is used in the predicates to check if they lead to a feasible
path configuration in the examined decision. Since the sets ID1 and ID2 must be the same for
all checks, the different predicates are called one after the other using a system of systematically
excluding unsuitable candidates. The first predicate always starts with the full list of all IDk-sets
and returns a subset of candidates that fulfil the predicates condition. This reduced list is then
handed over to the second predicate which removes again candidates not meeting the predicates
condition, and so on. At the end a list of candidates fulfilling all conditions of all predicates is
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left. If this list is not empty the check was successful.
Since the preservation proofs are only able to handle sets of valuations they never deal with

single elements from the sets IDk, but with the whole sets instead. This procedure is permis-
sible, because the elements of the IDk sets are always used in a way similar like the following
excerpt from the coverage-preservation condition:

∀〈id1, id2〉 ∈ ID1 × IDtmp : unique_Cause(c, d, id1, id2)

For the same reason the predicate unique_Cause and all its sub-predicates are defined slightly
different. Instead of using all possible combinations of pairs of elements and checking the con-
dition tdi ∈ IVT (x) etc. it takes the whole set IDi and checks IDi ⊆ IVT (x) etc. If this check
succeeds the original proposition of unique_cause must be true, because of the definition of the
non-strict subset relation (A ⊆ B :⇐⇒ ∀a ∈ A⇒ a ∈ B).

As a consequence of modifying unique_cause (Definition 2.2) in the way described above,
the first part of this predicate control_expr will become identical to mult_control_expr. There-
fore the predicate control_expr is not implemented, and the predicate mult_control_expr replaces
it in an appropriate way.

Using mult_control_expr for checking the first proposition of unique_cause makes the sec-
ond use of the mult_control_expr check unnecessary when trying to proof the MCDC conditions,
and so it is omitted.

(Scoped) Path Coverage

Programs can be divided into scopes in a very sophisticated way [60]. Such divisions can include
overlapping segments as well as nested segments. Therefore the number of ways to structure a
program into segments is very huge. To avoid all this complexity the implementation of the
automatic preservation proof for scoped path coverage restricts the mentioned segmentations
of the examined programs to those, which include the whole investigated fragment inside one
segment. So the automatic preservation proof excludes the “for all scopes” clause from its area
of responsibility. The scoped path coverage is reduced to a kind of “path coverage” problem.

The path coverage preservation proof function cPCPres[] only works on unified paths as
described on page 54. Modifying the edge sets of both aCFGs to include only unified edges and
use these when determining the paths produces the unified paths. The rest of the function is rela-
tively straightforward to Theorem 2.5. The function cCondPathTrace[] is used to perform
the required distribution of the conditions with respect to their outcome to different sets. This
function is also responsible for handling the “in-official” condition outcome “V”, created during
the joining of labels of the unified edges. The predicate is_CondTF_enclosed is implemented
accordingly. In addition, allConditionsEnclosed[] implements the multiple check for
is_CondTF_enclosed of a complete set of conditions.

4.6 Graph Transformation Functions

The work done for this thesis also included some experimental implementations of graph trans-
formation functions. The principle of these functions was inspired by [17]. The scope of this
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work was to gather some information useful for automatically tracking the changes of the input-
valuation sets caused by the program transformation. As described in Section 3.3 it turned out
that this goal could not be reached with the taken approach based on input-valuation sets.

To get information about changes of the input-valuation sets it is necessary to transform the
graph in small steps. If the steps are too big, the intermediate steps will reveal no information
how the input-valuation sets are changed by the transformation. Two different procedures have
been considered to investigate the transformation problem:

• Classical graph rewriting [47] uses a “cut-and-paste” strategy to transform a graph. Each
rewriting rule removes some part of the host graph, associates a new sub graph to it and
uses then some embedding rules to connect the added sub graph with the remainder of
the host graph. More complicated rewritings can be realized applying a chain of graph
rewritings, each of them modifying the intermediate result of the last rewriting.

Transposed to the aCFG model this procedure means that the intermediate results are not
valid representations of some program, especially they may not be even valid aCFGs.
Valuation information on adjacent edges may get lost, because the operation may result in
an unconnected graph. In general it is hard to assess how relations between input-valuation
sets change.

• In contrast to the classical “cut-and-paste” strategy, a “first-insert-then-remove” strategy
was considered. This method changes the aCFG in a way that new structures are inserted
first before some structures are removed. This produces always a formally correct aCFG.
Edges can be reconnected immediately, which makes it easy to keep the relevant valuation
information.

Unfortunately, this method is also insufficient, because the intermediate results are not
semantically equivalent representations of the investigated program. Consider a transfor-
mation, for instance, which swaps the conditions of a branch statement. Applying the
“first-insert-than-remove” strategy would mean that a new copy of one of the conditions
is added before the not longer needed copy is removed. The intermediate result need
not always be a semantically equivalent version of the program, and therefore relations
between valuations may change in an unexpected manner.

Finally the experiments where stopped, since it is not the main focus of this thesis. As an
essence of these experiments the functional relationship approach (see Section 3.3) has been
developed and involved into the aCFG model. This approach allows to include facts about the
transformation into the aCFGs and determine some transformation relations partially automati-
cally.

4.7 Restrictions of the Current Implementation

This section provides some final notes concerning the limitations of the taken approach. Some
of them are specific to the formal model design while others are caused by implementation
decisions.
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• Loop structures. In the current implementation, it is assumed, that loops have only one
single entry point and only one exit point. Multiple exits to be like, for example, the
break statement in C/C++ are not supported yet.

• Support for coupled conditions. This is a restriction of the aCFG model. No information
is provided to identify coupled conditions inside a decision and moreover each condition
is allowed to be included in a decision only once.

This seems to be a minor disadvantage, since the classical modified condition/decision
coverage definition the preservation condition is based on cannot be fulfilled with coupled
conditions anyway.

• Number of condition/decision outcomes. In the current model the number of results evalu-
ating a condition or decision is restricted to true and false. It should be possible to extend
the model and the implementation for supporting more than two outcomes. This would
require changing some of the theoretical background, for example, satisfyability valuation
and preservation conditions as considered in Section 2.3. Most of the involved functions
of the framework would need a change, especially functions related to input-valuation
handling described in Section 4.4. In addition, it would be necessary to adapt the proof
functions, described in Section 4.5, to involve the changed coverage-preservation checks.

• Multiple outgoing edges from the entry node. At the moment, the definition of the aCFG
structure (ref. to Section 3.2 ) only allows one edge outgoing from the start node. Multiple
outgoing edges from the entry node would be a possible enhancement to model optimiza-
tions executing parts of the program in parallel. Multiple entry points to the investigated
program fragment would be another possible application of multiple outgoing edges of
the start node.

• Hidden decisions and conditions. The model does not address explicitly the possibility of
nested conditions or decisions. These situations can arise if conditions comprise function
calls with further decisions inside. This thesis assumes, that changes in the first level of
such nested condition/decision structures do not change the coverage of the conditions and
decisions on deeper level. In other words, it is assumed that the coverage of conditions
or decisions on deeper levels will not be affected by the program transformation, and that
the proof result is only dependent of the conditions and decisions of the first level.

• Loop iterations. At the moment only one iteration of a loop is mentioned as relevant path
for analysis together with the possibility not to enter the loop. If the loop body includes
structures with alternative control-flow, an appropriate number of paths representing one
iteration of the loop with different control-flow inside the loop body is considered only.
Different combinations of the alternative control-flow inside the loop in subsequent itera-
tions are not considered at the moment.

• Scoped path coverage. Due to the complexity of possible segmentations, the Mathematica
implementation of scoped path coverage is restricted. As described above, it is assumed,
that both program fragments are completely enclosed by one segment.
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4.8 Summary of Chapter 4

The implementation of the basic control-flow-graph structures described in Chapter 3 with the
mathematical software system Mathematica is explained. In addition, the implementation of
several proof functions which are able to automatically perform a coverage-preservation analysis
is described.

Restrictions of the current implementation are listed.
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CHAPTER 5
Use Cases

5.1 General Remarks

Introduction

One of the most important goals of the automatic generation of object code is to make the best
use of the underlying computer technology and to produce code that is well tuned for a given
architecture [39, 5]. The compiler should tailor the produced code to the specific architecture
used, without requiring any modification of the source code. In general compilers attempt to
be as aggressive as possible when doing optimizations. But they do it never at the expense of
producing incorrect code. If there is no guarantee that an optimized operation produces no error,
the optimization is omitted. It should be noted, that the term “optimization” is a misnomer,
because most of the optimizations applied to a program do not result in object code which is
optimal by any measure [40]. Optimizations may improve the performance of a program, but it
is also possible that they decrease performance or leave it unchanged for the used set of input
data.

Not all optimizations are performed at the same phase of the compilation process, and on
the same level of intermediate language. Certain kinds of code optimizations are best done on
a higher level of intermediate language, while others are best performed on a lower level. They
are normally performed in a certain order to be as optimal as possible. In addition, not all code
optimizations are done in a one-phase process. Some optimizations need some preparation steps
first, intended to enable further transformation steps.

Code coverage analysis normally does not care too much about order or reasons why a cer-
tain optimization is done. The need to judge the influence of a code transformation is triggered
by the fact, that the compiler does it. The only reason to take care about the conditions for a
certain kind of transformation is to determine the properties of the transformation.
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Structure of Use-Case Descriptions

Each of the use-case descriptions provided in this chapter is divided into four main subsections.
The first subsection provides a brief description of the applicability and the basic properties of
the code transformation. For better understanding, a small code example is given to illustrate
how the transformation works. The implementation subsection explains the transformation con-
ditions and the basic facts for preservation analysis including aCFG models for the original and
the transformed program. In the third part, the analysis section, some facts about the proper-
ties of the investigated code transformation are described, as far as they are important for the
coverage-preservation analysis. Finally, the last subsection gives a summary of the results and
provides some informal arguments, why a particular kind of coverage is preserved or not.

Note, that the explanations of the use cases presuppose two basic assumptions already con-
sidered in Chapter 3:

• The transformation of the examined program fragment does not change way, how the
remainder of the program is executed. In particular, the transformations done in the inves-
tigated piece of code will not corrupt the code coverage achieved in the remainder of the
program.

• The same execution paths will enter the transformed program fragment and the original
program fragment. Especially, the input-valuations triggering the execution of the exam-
ined program fragment are the same for both versions of the fragment (Axiom 3.3).

Node identifiers and naming of input-valuation sets in the drawings of the aCFGs are cho-
sen in conformance with the use cases in the code coverage Mathematica notebook. Additional
circles are used to mark the entry node and the exit node. In addition, the identifier with the low-
est value of an aCFG is by convention associated with the entry-node, while the identifier with
the highest value inside an aCFG is associated with the exit-node. Decisions are marked with
a thick dotted oval enclosing all conditions the decision is composed of. Functional relation-
ships of nodes are drawn as dotted lines pointing from a node or hyper-node of the transformed
program to the functional related node or hyper-node of the original program. Sometimes the
string “7→ X” is placed beside a node of the transformed program, to point out that this node
is identical with node X in the original program. Note, that for better understanding functional
relationships are only drawn if they are important for analysis or important for better understand-
ing of the use case.

Although compilers perform most of the optimizing code transformations normally on some
kind of intermediate code, code examples are written in a pseudo source-code language for better
readability. The examples presented as part of the description of a code optimization usually
show a special application of the considered code transformation and do not claim to be a general
description of the code transformation. However, the aCFGs are intended to draw the general
case of the code optimizations. So there may be differences between the code example and the
aCFG representation, especially concerning the interpretation of the transformation properties.
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5.2 Useless Code Elimination

Description

Useless code, also called dead code, is reachable code which performs no computations that can
affect final results [39]. A variable is called dead, if it is not used on any path from the location in
the code where it is defined either to its redefinition or to the exit point of its scope. A statement
is dead, if it computes only values that are not used on any path leading from the instruction.
Useless code is often the result of optimization steps passed before, although a program may
include useless code before any optimization is applied to it [40].

Figure 5.1 presents on the left-hand side a code example for useless code which is removed
by useless code elimination. The statement a:=3 in the second line obviously has no effect,
since a is redefined in the third line. So the second line of the original program is removed
by the optimizing compiler resulting in a transformed program shown on the right-hand side of
Figure 5.1.

b:= a + c;
a:= 3;
a:= b;

⇒
b:= a + c;
a:= b;

Figure 5.1: Code example for removing useless code. The first assignment to a has no effect, since its
value is never used.

Implementation

Figure 5.2 shows aCFG representations for the original and the transformed program. Be aware,
that each node of the graph can represent a single statements as well as a sequence of simple
statements. Clearly, if the removed node represents a statement sequence, the whole sequence
is assumed to be useless code. The transformation removes the useless statement node, and
connects its predecessor with its successor directly. All other statements and their relative order
with respect to control flow are preserved.

Analysis

Both versions of the program fragment consist of only one path without forks and joins. The only
one path therefore includes all statements of the fragment and all input valuations triggering the
execution of the examined program fragment will always execute each statement of the fragment.

More formal, there are only simple statements or statement sequences involved. Therefore
all input-input-valuation sets inside each aCFG are equal. Furthermore, the equality δi = %j
holds for all possible combinations of the indices i and j with 1 ≤ i ≤ 4 and 1 ≤ j ≤ 3.
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Figure 5.2: USELESS CODE ELIMINATION: aCFGs representing the program before and after applying
useless code elimination.

Results

Statement Coverage is preserved, because all statements are included in the only one path and
every execution of the fragment will also execute each statement.

The formal statement-coverage preservation condition is fulfiled, because all input-input-
valuation sets of both aCFGs are equal.

Condition Coverage is preserved by default. Since both versions of the program fragment
contain no condition, condition coverage is true by default.

Decision Coverage is preserved by default, because both versions of the program fragment
contain no decisions, and therefore decision coverage is always true by definition.

Modified Condition/Decision Coverage is preserved by default, because of the absence of
conditions and decisions.

(Scoped) Path Coverage is preserved, since the only one path of the fragment is executed
whenever the execution of the program fragment is triggered.

5.3 Condition Reordering

Description

Condition reordering is an example of a code transformation that is not a classical optimization.
It serves as a preparation step to apply further optimizing code transformations. Consider, for
instance, an expression which contains two sub expressions A ∧ B and B ∧ A. Reordering
the operands in B ∧ A to A ∧ B reveals the existence of two common sub expressions. This
enables the application of optimizing transformations like algebraic simplifications or common
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sub expression elimination. Figure 5.3 presents a possible example, using commutativity of a
logical and operator to reorder the conditions of a branch decision. It should be noted, that each
of the operands can be a single condition or a logical expression treated as a unit.

if (a > 0) ∧ (a < 10)
then

then_statement;
else

else_statement;
endif

⇒

if (a < 10) ∧ (a > 0)
then

then_statement;
else

else_statement;
endif

Figure 5.3: Possible code example for a reordering transformation of two conditions inside a branch
decision.

It should be noted, that condition reordering seems to be easy from the point of view of
the source-code level but from the point of view of the program structure on object-code level
or intermediate-code level it is often is not. The corresponding aCFG structure can become
very complex depending on the type and number of Boolean operations and depending on the
used evaluation semantics. In addition, priority rules and bracketing have also influence on the
structure, because they can change the order in which conditions are processed. So it is not easy
to find representative structures for the condition-reordering transformations.

On the other hand, semantic preserving reordering of conditions cannot be done arbitrary,
because the priority of operations must be taken into account. Consider, for example, the ex-
pression A ∨ B ∧ C with A, B and C being conditions. This expression could be evaluated in
two different ways:

1. From left to right: (A ∨B) ∧ C.

2. With the usual priority of the AND operation: A ∨ (B ∧ C).

These interpretations of the expression are not equal, because they will obtain different results
for some value combinations of the three conditions. The reordering of the conditions must
respect the evaluation sequence to preserve the semantics of the expression. For example, it
is not allowed to just swap A and C, because this would produce a different expression. But
it would be allowed to swap the expression enclosed in brackets with the single condition, for
example, changing (A ∨ B) ∧ C to C ∧ (A ∨ B). But this kind of reordering is an equivalent
transformation to that shown in the use-cases.

Implementation

The condition-reordering problem is demonstrated here with four instances of case studies. The
first pair assumes branch statements with non-empty then and else branches, but with different
evaluation semantics. The second pair analyzes branch statements with an empty else branch,
but two different logical connectives for the conditions.

77



5. USE CASES

Original Program

}����1
}2
}3
}4 }5
}����6

?

	R

�
�
�	 -

?

@
@
@R

�
�
�	

δ1

δ2 δ3

δ4
δ5

δ6

δ7
δ8

TX FF

TT FF

TF

Transformed Program

}����11

}12

}13

}14}15

}����16

?

	R

�
�
�	 -

?

@
@
@R

�
�
�	

%1

%2 %3

%4
%5

%6

%7
%8

TX FF

TT FF

TF

�

�

Figure 5.4: CONDITION REORDERING: Swapping conditions in a branch decision without short-cut
semantics.

Full evaluated branch. The first use case in Figure 5.4 implements a full evaluated branch
decision with two conditions connected by logical AND. The characteristic of a full-evaluated
branch is, that different to the shortcut-evaluation semantic all conditions of a decision are al-
ways evaluated independent of the outcome of the already evaluated conditions. In the present
use case, the second condition will always be evaluated independent of the outcome of the first
condition.

Shortcut evaluated branch. The second use case shown in Figure 5.5 implements the same
branch statement as described above, but with shortcut evaluation semantics (also called short-
circuit evaluation). In this case, subsequent parts of a Boolean expression are only evaluated,
if the evaluation done so far has not obtained a final result. To give an example, this behaviour
corresponds to the semantics of the operators && and || in C/C++ and to the semantics of the
operators and then and or else in ADA. In the present case the second condition is only executed
if the outcome of the first condition reveals no final result.

Shortcut evaluated branch with empty else. These are two use cases demonstrating a short-
cut evaluation implementation but with different logical connectives between the conditions of
the branch decision. Changing the logical connective of the two conditions from AND to OR
causes a relevant change of the structure of control flow. Compared with the non-empty else
case, omitting the else-branch causes a lack of symmetry in the structure. This shows, that even
minor changes in a program can have major influence on control flow with respect to preserva-
tion of code coverage.
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Figure 5.5: CONDITION REORDERING: Swapping the conditions of a branch with two conditions eval-
uated with short-cut semantics and a non-empty else fork.
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Figure 5.6: CONDITION REORDERING: Swapping conditions of a branch statement with two conditions
using short-cut evaluation semantics. The else branch is empty and the conditions are con-
nected with a logical AND.
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Figure 5.7: CONDITION REORDERING: Condition swap in a branch statement using short-cut evaluation
semantics. The else branch is empty and the conditions are connected with a logical OR.

Analysis

The main characteristic of this transformation is, that the statements in the then branch of the
transformed program fragment must be entered for the same input values than in the original
program. The same is true for the statements in the else branch. If the else branch is omitted,
execution of statements inside the then branch must skipped for the same input values in both
versions of the program fragment.

Full evaluated branch. Since the transformation just swaps the two conditions by leaving
the evaluation semantic of the decision unchanged, the valuations entering the then and else
branch must be kept unchanged. This implies the equality δ4 = %4 for the then branch and
δ5∪δ6 = %5∪%6 for the else branch. Both equalities are detected by the automatic transformation
relation determination, because the functional equivalences 12 7→ 3 and 13 7→ 2 imply the
functional equivalence of the decisions.

All relevant transformation relations can be obtained with the automatic transformation-
relation detection, using the simple method. There is no need to specify transformation relations
manually.

Shortcut evaluated branch. In case of shortcut evaluation semantic, the connection 〈2, 5〉
and 〈12, 15〉 respectively can bypass the evaluation of the second condition. Therefore, some
execution paths can get excluded to the second condition in the transformed program.

Consider, for example, a sequence of three test cases where the conditions evaluate to
{TT, FF, TF}, with the first value assigned to condition 2 and the second assigned to condition
3. This set of test-data achieves condition coverage in the non-transformed program, covering
all possible paths inside the decision. Due to the condition swap in the transformed program, the
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first value of the same test pairs is now assigned to condition 13 and the second value is assigned
to the outcome of condition 12. Now the path 11− 12− 13− 15− 16 is not covered anymore,
because the test cases FF and TF bypass node 13 over the shortcut path. Condition coverage
is therefore not achieved.

With similar arguments as in the full evaluated branch the relevant relations are determined
to be δ4 = %4 for the then branch and δ5 ∪ δ6 = %5 ∪ %6 for the else branch.

Like in the full evaluated case, automatic transformation relation determination will be able
to reveal these relations without manual intervention using the same node mappings as described
above.

Shortcut evaluated branch with empty else. Characteristic relations derived from the trans-
formations properties are similar to that for the non-empty else case:

• %4 = δ4, %5 ∪ %3 = δ5 ∪ δ3 for the version with AND connective, and

• %2 ∪ %4 = δ2 ∪ δ4, %5 = δ5 for the version with OR connective.

All the characteristic relations are detected by the automatic transformation relation deter-
mination using the simple method. If the else fork of a shortcut evaluated branch statement is
empty, changing the logical connective of the conditions can change the preservation of struc-
tural code coverage. The result shows that statement coverage including condition is not pre-
served when changing the logical connective of the conditions from AND to OR. This happens,
because of the different structure of the control flow. A branch structure with non-empty else
fork is insensitive to changing the connective from AND to OR, due to its symmetry.

Results

Full evaluated branch. The full-evaluated branch statement preserves all kinds of structural
code coverage, because its conditions always can decide on the full input-valuation sets entering
the decision. Therefore the produced input-valuation distribution of the conditions is exactly the
same. In contrast to the shortcut evaluation, there are no alternative paths where control flow
can bypass some conditions.

Statement Coverage is preserved in the classical sense as well as in the enhance sense with
taking care about conditions.

Condition Coverage is preserved, since all conditions are executed.

Decision Coverage is preserved, because this is the prerequisite for the validity of this trans-
formation.

Modified Condition/Decision Coverage is preserved, because of the non-shortcut semantics
no condition can be bypassed and so the unique-cause approach is applicable in the same
way in both versions of the program.

81



5. USE CASES

(Scoped) Path Coverage is preserved. Because of the non-shortcut semantics all conditions
inside the decision are on a unified single path (ref. to Section 4.3 for details about unified
paths).

Shortcut evaluated branch with two conditions.

Statement Coverage is preserved for the classical view of statement coverage, without consid-
ering statement. If conditions are considered to be statements, then statement coverage
cannot be preserved, because after swapping the conditions, the second condition may be
bypassed and therefore not executed.

Condition Coverage is not preserved, because the shortcut semantics may redirect some paths
and therefore reducing the set of input-valuations, the second condition decides on.

Decision Coverage is preserved, because this is a prerequisite for the validity of the transfor-
mation.

Modified Condition/Decision Coverage is not preserved, since condition coverage is not pre-
served.

(Scoped) Path Coverage is not preserved, because short-cut semantics may redirect some paths.

Shortcut evaluated branch with empty else (AND).

Statement Coverage is preserved for the classical view of statement coverage, because the
prerequisite for this transformation is to preserve decision coverage. Statement coverage
is also preserved if conditions are treated like statements, because entering the then branch
requires, that all conditions are executed and evaluate to true.

Condition Coverage is not preserved for the same reason as explained for the short-cut evalu-
ated branch.

Decision Coverage is preserved, because this is a prerequisite for the validity of the transfor-
mation.

Modified Condition/Decision Coverage is not preserved, since condition coverage is not pre-
served.

(Scoped) Path Coverage is not preserved, because short-cut semantics may redirect some paths.

Shortcut evaluated branch with empty else (OR).

Statement Coverage is preserved for the classical view of statement coverage, because the
prerequisite for this transformation is to preserve decision coverage. Statement coverage is
not preserved if conditions are treated like statements, because the structure of the decision
allows bypassing the second condition when the then-branch is entered.
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Condition Coverage is not preserved for the same reason as explained for the short-cut evalu-
ated branch.

Decision Coverage is preserved, because this is a prerequisite for the validity of the transfor-
mation.

Modified Condition/Decision Coverage is not preserved, since condition coverage is not pre-
served.

(Scoped) Path Coverage is not preserved, because short-cut semantics may redirect some paths.

5.4 Loop Peeling

Description

Loop peeling is a transformation used to resolve dependences inside a loop, if the source of
dependence is a restricted number of iterations like in the example in Figure 5.8. Peeling k
iterations from the beginning of a loop means replacing the first k iterations by k copies of the
body plus the increment and test code for the loop index variable. The peeled-out code is placed
immediately ahead of the loop [40]. Loop peeling can also involve iterations other than the
first and the last. In this case the loop must be separated first across the iteration causing the
dependence [5].

loop i ← 1 to N
A(i) ← A(i) + A(1);

endloop
⇒

A(1) ← A(1) + A(1);
loop i ← 2 to N

A(i) ← A(i) + A(1);
endloop

Figure 5.8: Example for application of loop peeling, taken from [5]. The computation uses the value
A(1) computed in the first iteration. Peeling out the first iteration produces a loop without
dependences that can be directly vectorized.

Implementation

The aCFG in Figure 5.9 implements a loop transformed by peeling out the first iteration (k = 1)
of the loop. The termination check is assumed to be part of node 1 in the original program at the
entry of the loop. In addition to the loop-decision 15 a branch 11 is placed in front of the copy
of the loop body of the transformed program to avoid entering the loop, if the loop condition is
not fulfiled at the beginning. The statement dealing with the iteration variable is assumed to be
part of the loop body.
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Figure 5.9: LOOP PEELING: aCFGs of a loop peeling transformation with k = 1 and a loop decision
comprising a single condition.

Analysis

From point of view of code coverage analysis, this little change in code structure has severe
effects on preservation of all coverage criteria. This fact can be considered by an example. To
keep the semantics of the loop, the transformation has to fulfil the requirement that each set
of input data triggers the same number of executions of the loop body in the original and the
transformed version. In the original program, statement coverage, for instance, can be achieved
by executing only the first iteration of the loop. Now assume a set of test data, iterating the
loop of the original version of the program exactly once. Using the same test data set for the
transformed versions only triggers the execution of the first copy of the loop body (node 12 in
the aCFG in Figure 5.9). The modified loop will not be entered, because this would cause a
second execution of the loop body, violating the basic requirement of the transformation. Thus,
the second copy of the loop body will never be triggered by the same set of test-data, and the
transformed program will fail to achieve statement coverage. The same applies to other kinds of
structural code coverage.

The requirement, that the number of executions of the loop body has to be invariant with
respect to the transformation, implies the equality %2 = δ2. Further considerations reveal the
relation %8 ⊆ δ2, because the transformed loop is not entered for the first iteration. The relations
%3 ⊆ δ4 and %10 ⊆ δ4 are a consequence of the exit equality (axiom 3.3 together with proposition
3.1). All these relations are found using the automatic determination function for transformation
relations.
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Results

Statement Coverage is not preserved, because it cannot be guaranteed that the loop in the
transformed program is entered.

Condition Coverage is not preserved. Since it cannot be guaranteed, that the loop is entered it
cannot be guaranteed that the second loop decision will be executed.

Decision Coverage is not preserved for the same reach as condition coverage.

Modified Condition/Decision Coverage not preserved, because neither condition coverage nor
decision coverage is preserved.

(Scoped) Path Coverage is not preserved, since the transformation creates new paths and so
increases the number of paths to cover.

5.5 Loop Inversion

Description

Loop Inversion, in source-language terms, transforms a while-loop with the loop-closing test
at the begin of the loop into a repeat/until loop with the loop-closing test at the end of the
loop [40]. In the simplest case it is save to execute the loop body at least once and no additional
test is needed on front of the transformed loop. Otherwise a branch decision is generated in front
of the loop checking the exit condition to avoid entering the loop if the loop condition is already
false at the begin. This second case is illustrated in the code example (Figure 5.10) and serves
as basis for the analysis.

i ← 1;
while i ≤ N

loop_body;
endwhile

⇒

i ← 1;
if (i ≤ N) then

do
loop_body;

until (i > N);
endif;

Figure 5.10: Code example of moving the end test of a loop from before the loop to the end. The missing
check of the exit condition in front of the loop is performed with additional code.

Implementation

The aCFGs for the loop-inversion transformation are presented in Figure 5.11. In the trans-
formed version, decision 〈12〉 is a conditional branch, which is a modified copy of the original
loop decision. It protects the loop-body from execution, if the loop condition is false from the
beginning. In addition, the original loop decision 〈2〉 is moved behind the loop body, acting as
transformed loop-decision 〈14〉.
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Figure 5.11: LOOP INVERSION: The aCFGs for a loop inversion transformation with an additional
loops-closing test placed in front of the loop.

Analysis

The requirement to preserve the semantics of the loop, implies the equality δ2 = %2 and δ2 = %4
respectively. Informally spoken, this formal conditions mean that the loop body of the trans-
formed program must be executed the same number of times for the same input-valuations as in
the original program. Splitting the loops-closing decision 〈2〉 into two decisions 〈12〉 and 〈14〉
causes a split of the input-valuation set δ4 into %3 ∪ %6.

Most of the relevant relations are automatically detected by the simple relation determination
method. The relation δ2 = %4 is not found automatically with the path-based method either. But
this relation can be derived indirectly using the equality %2 = %4, which is found automatically
with the path-based method.

Results

Statement Coverage is preserved, because the number of executions of the loop body must be
kept unchanged by the transformation. So any test case that enters the loop of the original
program will also execute the loop body in the transformed program.

Condition Coverage is not preserved, because the split of the loop-decision duplicates the con-
ditions. There is no guarantee that the loop-back edge 〈14, 13〉 is ever used. But if edge
〈14, 13〉 is not used then condition 14 will never evaluate to true.

Decision Coverage is not preserved for the same principle reason as described for condition
coverage.
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Modified Condition/Decision Coverage is not preserved, because neither condition coverage
nor decision coverage is preserved.

(Scoped) Path Coverage is not preserved for a similar reason as described for condition cover-
age. The transformation increases the number of execution-paths and therefore the num-
ber of test cases achieving path coverage in the original program may be insufficient to
achieve path coverage in the transformed program.

5.6 Loop Fusion

Description

Loop fusion, also called loop jamming [1], takes two adjacent loops that have the same iteration-
space traversal and concatenates their bodies to create a single loop [40]. Loop fusion is possible,
if the loops have the same iteration space and if there are no unfavourable dependences between
the statements of the loop bodies. A possible example for this transformation is shown in Fig-
ure 5.12.

loop i ← 1 to N
loop_body1;

endloop;
loop i ← 1 to N

loop_body2;
endloop;

⇒

loop i ← 1 to N
loop_body1;
loop_body2;

endloop;

Figure 5.12: A pair of two loops with the same iteration space and the result of fusing them.

Implementation

As a prerequisite, loop fusion requires, that both loops in the original program execute exactly
the same number of iterations for each possible input. On the other hand, the transformation
must guarantee, that the number of iterations in the transformed program is the same than in the
non-transformed version for each possible input.

Analysis

Clearly, this transformation preserves all kind of code coverage criteria, since the transformed
loop decision has a semantics that is identical to the semantic of the original loops. The basic
properties of the transformation allow derivation of the transformation relations δ2 = %2 and
δ5 = %3. In addition, %5 = δ7 follows from the basic exit-equality requirement.

Not all these relations are found automatically, even by the path based method. But other
relations found are sufficient to derive all missing relations indirectly.
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Figure 5.13: LOOP FUSION: aCFG representation of combining two loops with the same iteration space
into one loop.

Results

Statement Coverage is preserved, because a valid loop-fusion transformation requires leaving
the number of iterations triggered by each input-valuation unchanged.

Condition Coverage is preserved, since the loop-control of the transformed loop is identical to
the loop-control of each non-transformed loop.

Decision Coverage is preserved for the same reason as condition coverage.

Modified Condition/Decision Coverage is preserved for the same reason as condition cover-
age.

(Scoped) Path Coverage is preserved since the number of paths decreases and the loop-control
of the transformed loop is the same as the loop control of the non-transformed loop.

5.7 Loop Interchange

Description

Loop interchange swaps the order of the loop-decisions in a multiply nested loop [43]. The
generalization of loop interchange allowing more than two loops to be moved at once is called
loop permutation [38].
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There is a broad range of reasons for a compiler to perform this transformation. Support-
ing parallelism, register reuse or spatial locality are some examples for the use of loop inter-
change [5]. Another reason may be to increase the amount of code executed between syn-
chronization points. Finally, loop interchange is used as preparation step to vectorize array
operations [39].

A simple code example for loop interchange is given in Figure 5.14.

loop i ← 1 to M
loop j ← 1 to N

loop_body;
endloop;

endloop;

⇒

loop j ← 1 to N
loop i ← 1 to M

loop_body;
endloop;

endloop;

Figure 5.14: A double nested loop and the result of reordering the innermost and the outermost loop.

Implementation

The aCFG representation for the loop interchange transformation is presented in Figure 5.15.
Statement and decision coverage can be proved using decisions composed of a single condition.
But for such simple decisions condition coverage will trivially go with decision coverage, since
there is a strict relation between the outcome of the decision and the outcome of the condition. A
more complex decision structure with two conditions per decision is needed to be able to proof
that condition coverage is not fulfiled by this transformation.

Analysis

The basic requirement of the loop interchange transformation is that the same input data must
trigger the same number of iterations of the loop body in the original version as well as in the
transformed version of the program. From the point of view of the code coverage analysis the
input-valuations entering the innermost loop, δ9 in the original version of the program and %9
in the transformed version, must be exactly the same. This is, because if only δ9 ⊃ %9 is true,
then there must be some input valuation executing the loop body in the original program but
not in the transformed version of the program. But this would violate the basic requirement of
the transformation. The same argument can be considered in the other direction. Therefore the
equality δ9 = %9 must hold for this transformation.

The automatic detection method for transformation relation is not able to determine the main
relation δ9 = %9. So this relation must be supplemented manually. No transformation relation
can be determined between δ4 and %4, because the valuations passing the outer loop decisions
can change in an unpredictable way.
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Figure 5.15: LOOP INTERCHANGE: Representation of the changes caused by swapping the loop deci-
sions of a double nested loop.

Results

Statement Coverage is preserved. This is facilitated by the basic property of the transfor-
mation, because achieving statement coverage in the original program requires that the
test-data trigger execution of the loop body. But then the loop body must be also executed
by the same test-data in the transformed program.

Condition Coverage is not preserved. The inability of this transformation to preserve condition
coverage is caused by the fact, that swapping the decisions can bring some more restrictive
conditions in front. These more restrictive conditions possibly “catch” some input values,
necessary to evaluate the conditions of the inner decision into all possible directions. Con-
sider for example a condition in the innermost loop header evaluating to false, whenever
the input value is an odd number. If all negative test cases comprise only odd numbers,
swapping the decisions will bring this condition with its decision in front. Now all nega-
tive test cases will be rejected in the loop decision of the outer loop. As a consequence,
the inner loop decision will only evaluate on the test-data provided by the positive test
cases, and therefore some conditions of the inner loop decision in the transformed version
of the program may become inactive.
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Decision Coverage is preserved. This is a consequence of the basic loop structure. If the
execution of the loop body was triggered by some test-data, the loop decision must be
evaluated in either way. Otherwise there would be some non-terminating loop.

Modified Condition/Decision Coverage is not preserved since condition coverage is not pre-
served.

(Scoped) Path Coverage is not preserved for the same principle reason as condition coverage.
Swapping the loop-decisions may possibly cause some paths of the original program to
be joined after the transformation, leaving some other paths of the transformed program
uncovered.

5.8 Loop Unrolling

Description

Loop unrolling replaces the body of a loop by k modified copies of the body and adjusts the loop-
control code accordingly. The number k is called the unrolling factor. The original loop is called
the rolled loop [40]. Unrolling reduces the overhead of executing the loop control decision. A
possible code example for unrolling a loop with factor k = 4 is shown in Figure 5.16.

loop i ← 1 to N
loop_body(i);

endloop; ⇒

loop i ← 1 by 4 to 4*bN/4c
loop_body(i);
loop_body(i+ 1);
loop_body(i+ 2);
loop_body(i+ 3);

endloop;

loop i ← 4*bN/4c+1 to N
loop_body(i);

endloop;

Figure 5.16: Example for unrolling a loop four times. The subsequent loop is created to catch remaining
iterations of the rolled loop if the unrolling factor k = 4 does not divide the number of loop
iterations evenly.

In the common case, the iteration counts of the loop are not always constants known at
compile time and the unrolling factor does not divide the number of iterations evenly. Loops
with a number of iterations unknown at compile time need therefore a rolled copy of the original
loop following the exit of the unrolled loop. This additional copy of the loop executes remaining
iterations, if their number is less than the unrolling factor. This approach is preferred rather than
testing for early termination before executing each unrolled copy of the loop-body.
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Implementation

Figure 5.17 shows the aCFG representation for the common case with an unrolling factor k = 2.
The loop decision of the original program is composed of a single decision 2 which is sufficient,
since it will reveal that decision coverage and condition coverage are not preserved. The unrolled
copies of the body 3 of the original loop are represented by statements 13 and 14. The additional
rolled copy of the loop body for executing possibly remaining loop iterations is represented by
node 16. Hyper-node 〈12〉 represents the loop decision, modified for executing the unrolled
version of the loop in double steps. Loop decision 〈15〉 is a modified copy of the original loop
decision with shifted lower iteration limit.

Clearly instead of using a loop structure for processing the rolled copy of the loop body,
a simple branch decision would be sufficient for k = 2. But the loop structure was chosen to
visualize the common principle of this transformation.

The implementation of the aCFG uses the functional relationship symbols “-” for the true
forks of the loop decisions. These symbols are associated to edges 〈12, 13〉 and 〈15, 16〉. They
express the fact, that less execution paths than in the original program enter the loops of the
transformed program. The loop decisions of the original and the transformed version of the
program are functional-similar decisions. The unrolled loop deals only with multiples of the
unrolling factor, omitting remaining iterations. On the other hand the rolled copy only handles
remaining iterations omitting all iterations fitting into the multiples of the unrolling factor.
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Figure 5.17: LOOP UNROLLING: Unrolling the body of the original loop 2 times and holding a rolled
copy of the loop to execute remaining iterations.
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Analysis

In the common case loop unrolling is not expected to preserve any kind of structural code cov-
erage criteria. If the loop body is executed for some input valuation in the original program,
the unrolled loop or the rolled loop will be executed a certain number of times. But there is no
guarantee, that execution will enter both loops. In the best case the input-valuations entering
one of the loops are equal, but in general they are a subset, which is stated by the functional-
relationship symbol “-” on the true fork of the loop decision in the transformed program. The
functional-relationship symbol directly implies %2 ⊆ δ2 and %6 ⊆ δ2. All necessary trans-
formation relations can be derived completely from functional equivalencies, and no manual
intervention is necessary.

Results

Statement Coverage is not preserved, since there is no guarantee, that each loop in the trans-
formed program is ever entered.

Condition Coverage is not preserved, for the same reason as statement coverage. Since one of
the transformed loops is possibly not entered, the conditions of the loop decision will not
been evaluated with all possible outcomes.

Decision Coverage is not preserved, because otherwise this would contradict the fact, that state-
ment coverage is not preserved.

Modified Condition/Decision Coverage is not preserved, because neither condition coverage
nor decision coverage is preserved.

(Scoped) Path Coverage is not preserved since there is no guarantee for executing all loops of
the transformed program with the same test-data set as the original program.

5.9 Strip Mining

Description

Strip mining transforms a single loop into a nested loop operating on strips of the original one.
The outer loop steps through the iteration space in blocks of equal size, while the inner loop
executes each block. The optimization is used for memory management, for example, to fit
the block size handled in the inner loop to the characteristics of the machine [39, 43]. Another
application is distributing loop iterations for parallel processing. Strip mining adapts the code
to the number of available processors, or justifies iteration blocks for scheduling when single
iterations produce not enough work for efficient parallel execution [5]. A possible example for
strip-mining the iterations of a for-loop is given in Figure 5.18.
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for i ← 1 to N do
loop_body;

endfor;
⇒

for i ← 1 by 2 to N do
for i1 ← to min(i+1,N) do

loop_body;
endfor;

endfor;

Figure 5.18: Code example for strip mining: Dividing the execution of the left-hand side original loop
into strips with a length of 2.

Implementation

The aCFG representations for automatic analysis are presented in Figure 5.19. The analysis
uses complex decisions composed of two conditions. This is necessary to show that decision
coverage is preserved while condition coverage is not. So, to get a more general result, the
loop decision is composed of two conditions 〈2, 3〉. The decision of the original program is
distributed amongst two decisions 〈12, 13〉 for the outer loop and 〈14, 15〉 for the inner loop.

Original Program

}����1
}2
}3
}4
}����5

?

�U

?

'

&

-

j

*

δ1

δ2
δ3

δ4

δ5

δ6
δ7

TX
FF

TT

TF
FF

Transformed Program

}����11

}12

}13

}14

}15

}16

}����17

?

�U

?

�U

?

$

%

y

'

&

-�

�

:

j

*

%1

%2
%3

%4

%5

%6

%7 %8

%9

%12

%10

%11

TX
FF

TX
FF

TT

TF
FF

TF

FF

TT

�

s
�

s

Figure 5.19: STRIP MINING: Dividing the iteration space of a loop to operate on smaller strips of the
original loop.
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Analysis

Like most loop transformations, the transformation condition for strip mining requires equality
for the number of iterations of the loop body for the same input. This implies the equality
δ4 = %9 as the essential transformation relation. In addition, the transformation relation δ4 ⊆ %4
is true for entering the body of the outer loop, because all execution paths entering the inner loop
have to pass this edge. In addition, some execution paths not entering the inner loop may pass
this edge.

Most of the essential transformation relations can be obtained automatically using the path-
based method. On the other hand, the relation δ4 = %9 is not determined completely. If this
relation is added manually, even the simple method is sufficient to get all relevant relations for
analysis.

Results

Statement Coverage is preserved because the transformation is only allowed if the number of
loop iterations is kept unchanged for the same set of input data.

Condition Coverage is not preserved. Due to the distribution of the decisions it cannot be
guaranteed that the innermost decision is getting all input-values necessary to evaluate
into all possible directions.

Decision Coverage is preserved. Since decision coverage in the original program requires en-
tering the loop at least once, the same must happen in the transformed program and both
decisions will therefore evaluate into all possible directions.

Modified Condition/Decision Coverage is not preserved because condition coverage is not
preserved.

(Scoped) Path Coverage is not preserved for the same principle reason as for condition cover-
age.

5.10 Loop Tiling

Description

Tiling is a transformation to improve the data locality of algorithms. Tiling reorders the execution
sequence such that reused data is still in the cache or register file. This can cause a significant
improvement on single processors as well as on multiple processors [56].

Tiling a single loop replaces it by a pair of loops with the inner one (called the tile loop)
having an incremental like the original loop, and the outer one having an incremental appropriate
for the lower and upper bounds of the inner loop. Tiling a loop nest of depth n may increases
the depth of the loop nest anywhere from n+ 1 up to 2n, depending on how many of the loops
are tiled. Tiling also interchanges the loops beginning from the tiled one inward to make the tile
loops the innermost one in the loop nest. The number of iterations of the tile loop is called the
tile size [40].
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Tiling has several different names in the literature. Sometimes it is called “blocking” [5].
Other names are “strip mine and interchange” or “unroll and jam” [40]. Strip mine and inter-
change refers to the basic principle of tiling, because the loops are first divided to operate on
strips of the original iteration space. Then the loops are rearranged such that they operate on a
series of small polyhedrons of the original iteration space.

An example of tiling a double nested for-loop structure is presented in Figure 5.20 using
a tile size of 2. The loops of the double nest i → j on the left-hand side of Figure 5.20 are
first divided into a sequence i → i1 → j → j1 of four nested loops. The step-size of the
original loops i and j is adapted accordingly to the tile size of 2. In a second step, the i1-loop
is interchanged with the j-loop to bring the tile loops together. The final result is shown on the
right-hand side of Figure 5.20. The innermost loop nest is now operating on square tiles of size
2× 2.

for i ← 1 to N do
for j ← 1 to M do
loop_body(i, j);

endfor;
endfor;

⇒

for i ← 1 by 2 to N do
for j ← 1 by 2 to M do
for i1 ← i to min(i+1,N) do
for j1 ← j to min(j+1,M) do
loop_body(i1, j1);

endfor;
endfor;

endfor;
endfor;

Figure 5.20: The starting point and the final result of tiling a double nested loop with a tile size of 2. Both
loops are first divided by strip mining, then the loops i1 and j are interchanged to bring the
tile loops inward.

Note, that tiling a single loop is the same as strip mining, described in Section 5.9.

Implementation

The aCFG representations used to analyze loop tiling is shown in Figure 5.21. The transformed
programs aCFG is quite complex, because decisions with double conditions are needed to show,
that condition coverage and decision coverage preservation are different. The final result is not
surprising being aware that tiling combines two loop transformations: strip mining and loop
interchange. Both of these transformations preserve statement and decision coverage but not
condition coverage.

Analysis

The main characteristic of the transformation is the same as for other similar transformations,
especially strip mining. The number of iterations of the inner loop must be kept invariant during
transformation, and therefore the equality δ9 = %19 is mandatory. This relation must be specified
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Figure 5.21: LOOP TILING: aCFG representation of tiling a double nested loop.
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manually. All other relation can be determined automatically using the path-based method for
determining valuation relations.

Results

Statement Coverage is preserved because the transformation must guarantee that the number
of loop iterations is kept unchanged for the same set of input data.

Condition Coverage is not preserved. Due to the distribution of the decisions it cannot be
guaranteed that the innermost decision is getting all input-values necessary to evaluate
into all possible directions. Another aspect to mention is, that the increasing number of
conditions may need more test-data to guarantee, that all conditions are evaluated into all
possible directions.

Decision Coverage is preserved, because if decision coverage is achieved in the original pro-
gram, then the loop must have been entered at least once. So the same must happen in the
transformed program and all decisions will therefore evaluate into all possible directions.

Modified Condition/Decision Coverage is not preserved because condition coverage is not
preserved.

(Scoped) Path Coverage is not preserved for the same principle reason as for condition cover-
age.

5.11 Loop Unswitching

Description

Unswitching is a control flow optimization that pulls a loop invariant conditional branch out of
the loop [40]. The example in Figure 5.22 assumes that the loops iteration variable is i, while
the conditional branch depends on some variable k.

loop i ← 1 to N do
if k 6= 0 then
then_branch;

else
else_branch;

endif;
endloop;

⇒

if k 6= 0 then
loop i ← 1 to N do
then_branch;

endloop;
else
loop i ← 1 to N do
else_branch;

endloop;
endif;

Figure 5.22: Example for pulling out a loop invariant branch predicate from a loop [40].
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Figure 5.23: LOOP UNSWITCHING: Representation of the general case for pulling a loop invariant
branch decision out of the loop.

Implementation

The aCFGs for automatic analysis are presented in Figure 5.23. The original loop decision is
represented by nodes 〈2, 3〉, while 〈4, 5〉 represents the original conditional branch decision.
Nodes 6 and 7 implement the statements in the then and else fork of the branch. Node 8 has
neither a real function nor is it necessary for analysis, but it is useful here to produce a nicer
drawing. If preferred, the loop back to node 2 could be drawn directly from nodes 6 and 7.

In the transformed version of the program, the conditional branch decision 〈12, 13〉 has
been pulled out of the loop, without changing the semantic. In addition, two copies of the
loop decision, 〈14, 15〉 and 〈17, 18〉 have been placed inside the branch forks. Nodes 16 and 19
implement the corresponding statements taken from the then and else fork of the original branch.

Analysis

Basic relations for analysis are δ12 = %9 and δ13 = %15. Source of these relations is the re-
quirement, that the then and the else statements must be executed in the transformed program
the same number of times for each possible input than in the original program. Thus, statement
coverage must be fulfiled.
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On the other hand, the set of input data for the conditional branch in the transformed pro-
gram is now bigger. It may contain additional values originally blocked by the loop decision.
Therefore %4 ⊇ δ9 and %5 ∪ %6 ⊇ δ10 ∪ δ11 must be true. Thus, decision coverage is preserved.

The transformation does not preserve condition coverage for the same reason as for similar
loop transformations. The structural change only preserves execution paths of all input values
triggering the execution of the statements located in the then and in the else fork of the con-
ditional branch. Bit execution paths for all other input values may be redirected and therefore
not reaching the same decision as in the original program. For that reason, conditions may be
evaluated different and it cannot be guaranteed, that all conditions evaluate in either direction.

Results

Statement Coverage is preserved. Achieving statement coverage in the original program means
that the loop has been entered at least once and the branch decision must have been evalu-
ated into each possible direction. The number of iterations must be kept equal for the same
set of input data during transformation. In addition, as a prerequisite the branch-decision
must be independent of the loop-iteration variable. Thus, the branch decision in the trans-
formed program will be taken in the same way as in the original program and each loop
copy of the transformed program will be entered the same number of times. Therefore,
statement coverage is also achieved in the transformed program with the same set of test
data.

Condition Coverage is not preserved. Although the branch decision is presupposed indepen-
dent of the loop iterations, it may filter out some input-valuations necessary for creating
all possible outcomes of the loop decisions.

Decision Coverage is preserved, since the loop must be entered at least once and the branch
decision must have gone into each possible direction. Because of the independence of the
branch decision from the loop-iteration variable the branch statement in the transformed
program must also go into each directions. If a outcome of the branch decision is taken,
than the transformations must guarantee, that the number of iterations is the same for as
in the original program for the same input-data set and so the loop decision must go into
each direction.

Modified Condition/Decision Coverage is not preserved, because condition coverage is not
preserved.

(Scoped) Path Coverage is not preserved, because although the branch decision is presupposed
to be independent of the loop-iteration variable it may redirect some paths necessary to
cover all paths inside one branch.
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5.12 Software Pipelining

Description

Software pipelining, also called kernel scheduling, is a preparation step to improve performance
by utilizing parallelism at the instruction level. It reorganizes loops across loop iterations such
that iterations are executed in overlapped fashion [3]. Software pipelining is an effective schedul-
ing technique for VLIW processors. But its drawback is its complexity, since the problem to find
an optimal schedule is NP-complete [35].

Software pipelining reorganizes a loop into three components:

1. A kernel including the code that must be executed on every cycle of the loop, once it has
reached a steady state.

2. A prologue, which includes the code that must be executed before the steady state can be
reached.

3. An epilogue to finish the loop, once the kernel can no longer be executed.

Software pipelining focuses on temporal movement of instructions through loop iterations,
and not on spatial movement within a single loop iteration. Critical instructions whose results
are needed early are moved to earlier loop iterations, so that their results become available within
the current iteration. On the other side, instructions at the tail end of the critical path are moved
to future iterations to shorten completion of the current iteration. In other words, the body of
one loop iteration is pipelined across multiple iterations to take advantage of available resources
within one iteration [5].

The code example in Figure 5.24 shows a loop with two statements, both dependent on the
loop iteration variable i. The transformed program on the righthand side of the figure assumes,
that N is always greater than 1. The first iteration of the first loop statement has been peeled
out of the loop to serve as prologue, while on the other side the last iteration N of the second
statement is pulled out and placed behind the loop to serve as epilogue. The kernel reorders ex-
ecution of the statements of the original loop, such that the i−1’th iteration of the first statement
is combined with the i’th execution of the second statement [29].

loop i ← 1 to N
loop_statement_1 (i);
loop_statement_2 (i);

endloop;
⇒

loop_statement_1 (1);
loop i ← 2 to N do

loop_statement_2 (i− 1);
loop_statement_1 (i);

endloop;
loop_statement_2 (N);

Figure 5.24: Code example for software pipelining with the original program on the lefthand side and
the pipelined version of the program on the righthand side [29].
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Implementation

The behaviour of software pipelining, concerning structural code coverage is quite similar to
other loop transformations like loop peeling for instance. The structural changes performed
during transformation must guarantee for each input value that the statements of the loop body
in the transformed program are executed the same number of times as in the original loop.
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Figure 5.25: SOFTWARE PIPELINING: Distributing the execution of the statements 3 and 4 of two suc-
cessive iterations of the loop to create an overlapped execution of iterations.

Figure 5.25 represents a common case for this loop transformation, with nodes 3 and 4
representing two statements that should be reorganized for overlapping execution. The used
structure is inspired by the source code representation for software pipelining used by Kirner
in [29]. In the pipelined version, node 12 represents the prologue (executing the statement
represented by node 3 in the first iteration of the original loop), and node 16 represents the
epilogue (executing the statement represented by node 4 in the last iteration of the original loop).
The pair of nodes 14 and 15 implements the kernel. Decision 〈13〉 and decision 〈2〉 are classified
as functional similar. Less execution paths than in the original loop will enter the transformed
loop, because of the adapted loop bounds. This fact is taken into account by tagging the outgoing
edge 〈13, 14〉 of the transformed decision with the functional-relationship label “−” to support
the automatic transformation-relation determination procedure.

Analysis

The following example should give an informal insight about the effect of this transformation
on structural code-coverage. Consider, that the test of the piece of code in Figure 5.24 has been
performed with a set of test data triggering one iteration of the loop of the original program. This
test will be able to achieve all kind of structural code-coverage in the original program. After
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the transformation, executing the prologue and the epilogue of the program fragment will satisfy
the transformation condition, that the first iteration must be executed for both statements of the
original loop body. But the loop kernel will never be entered, because this happens only if two
or more iterations of the loop are triggered by the test data.

From a more formal point of view, the main crunch is the relation %3 ⊆ δ2, which prevents
the required superset relations for IVR (14) as well as of IVT (13).

Results

Statement Coverage is not preserved, because there is not guarantee that the loop of the trans-
formed program is ever entered. Thus the statements inside the loop are not guaranteed to
be executed.

Condition Coverage is not preserved, since the loop of the transformed program may not be
entered.

Decision Coverage is not preserved, because the loop of the transformed program may not be
entered and therefore the loop decision will never evaluate to an outcome necessary for
entering the loop.

Modified Condition/Decision Coverage is not preserved since condition coverage and deci-
sion coverage are not preserved.

(Scoped) Path Coverage is not preserved. Since the loop is not guaranteed to be entered, the
path through the loop may be never executed.

5.13 Branch Optimization

Description

The purpose of this transformation is to eliminate unnecessary branches by reordering the code
and changing branch targets. Branches to branch instructions are often a result of a simple-
minded code-generation strategy [37, 40].

Implementation

The prerequisite situation for branch optimization is comparable with useless code elimination,
especially when the branch instruction to remove is a branch to the next instruction. But the
situation is a little bit more complicated than it seems on the first view. A possible configura-
tion representative for some types of branch optimization problems is presented in Figure 5.26.
Nodes 2 and 3 are assumed to be unconditional branch statements, symbolized by using circled
edges to connect them with their successor. The situation illustrated with the aCFGs is the redi-
rection of the unnecessary branch from node 2 to node 3 directly to the target 4 of the second
branch. The problem with this transformation, shown on the righthand side of Figure 5.26 is that
the redirection possibly leaves the former branch instruction 13 unconnected.
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Figure 5.26: BRANCH OPTIMIZATION: Redirecting a branch to a branch instruction directly to the
branch target.

Branch optimization is an example showing some problems concerning the approach to an-
alyze single optimizations. The optimization obviously reduces the reachability of the bypassed
branch instruction, and in the worst case it may produce unreachable code. Therefore, statement
coverage cannot be achieved in the transformed program. However, optimizations are normally
followed by a compiler phase to eliminate dead code. So in the worst case when the branch in-
struction is completely bypassed, the following dead code elimination will re-establish statement
coverage again.

Analysis

This use-case shows some limitations of the chosen model and its implementation. The classi-
fication true for preservation of coverage criteria other than statement coverage results from the
default behaviour due to the absence of conditions and decisions. The implication DC =⇒ SC
is obviously not correct concerning the program fragment, because it contains no conditions and
decisions. But the default behaviour makes sense, because these coverage criteria are assumed
to be unchanged in the rest of the program. On the other hand, if the bypassed branch will not
become a complete orphan, there must be some decision somewhere outside, which addresses
this statement, and this decision is now reduced somehow violating the preservation of decision
coverage. So the result true is caused by the absence of conditions and decisions as well as by
the inability due to the restricted view, to decide whether the bypassed instruction is dead code
after the transformation or not.
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Results

Statement Coverage is not preserved, since the reachability of the first branch statement will
be reduced or the statement will become unreachable.

Condition Coverage is preserved by default, because the program fragment contains not con-
dition.

Decision Coverage is preserved by default, because the program fragment contains not deci-
sion.

Modified Condition/Decision Coverage is preserved by default, because the program frag-
ment contains not conditions and decisions.

(Scoped) Path Coverage is classified as preserved by default. The reason for this behaviour is,
that it is assumed that node 13 in Figure 5.26 is either connected by some other path or
removed by dead-code elimination. If node 13 is still connected to the remainder of the
program, then by the assumption that path coverage is achieved in the original program
the path including 13 must be still covered in the transformed program. If node 13 has
become an orphan, then dead-code elimination will also remove edge 〈13, 14〉. But then
the program fragment will only comprise one path.

5.14 Final Remarks

Elaborating the use-cases has shown, that the chosen aCFG representations of program frag-
ments are very intuitive to handle, because most of the aCFG structure can be directly derived
from the program structure. On the other hand, it is not a general approach with respect to the
structure of the investigated program fragment. Changes in the program, which seem to be small
on source-code level can change the structure of the corresponding aCFG dramatically, creating
the need to open a new use-case to proof the examined behaviour. Example for this fact are
discussed in Section 5.3, where adding brackets or changing the logical connective of condi-
tions can create a new structure of a decision. The evidence of the result of a use-case therefore
depends on the ability of the use-case developer to find a representative structure for a program
transformation, which is as general as possible.

An aspect that has also been shown with the condition-reordering problem in Section 5.3, is
that a less complex structure can reveal surprising results with respect to coverage preservation.
In some cases the less complex structure is more restrictive with respect to preserving a certain
kind of code coverage, in other cases it may be less restrictive.

Another inherent problem related to the approach of analyzing single transformations is the
fact, that subsequent code transformations may reverse the effect of a single transformation in the
sequence. In other words, two sequent applied code transformations may as a whole preserve
the investigated code coverage, even if each of them does not preserve the investigated code
coverage. For example, the investigations on the use case of Section 5.13 have been shown,
that branch optimization with a subsequent dead-code elimination can re-establish statement-
coverage.. So analyzing only single code transformations reveals sometimes an overcautious
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result for a sequence of code-transformations. The only way to deal with such configurations is
to create a model for the final result of the transformation sequence. But in practice it is hard to
identify cases where this is necessary.

5.15 Summary of Chapter 5

Several common optimizations from the literature are explained in this chapter. For each opti-
mization an informal description and aCFGs for the original program and the transformed pro-
gram are presented. In addition, each use case is supplemented with the results of the coverage-
preservation analysis.

General things learned from the use cases are noted at the end of the chapter.
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CHAPTER 6
Summary

6.1 Conclusions

The work related to this thesis has established formalism for applying the structural-code-
coverage preservation criteria described in [31] on structural changes of fragments of programs.
The formalism described in Chapter 3 is based on a kind of control-flow graph representation,
called the analysis control flow graph (aCFG). The aCFG model, introduced in Section 3.1, is
used to create formal representations of fragments of the examined program, representing the
part of the program where the program transformation is done.

Some existing approaches to formally specify program transformations and to describe the
effect of a program transformation have been discussed in Section 3.3. Usual formal specifi-
cations of programs widely used for proving their correctness have been shown to be not very
helpful for coverage preservation analysis. They are often closely related to the result values of
operations, classifying two pieces of a program to be identical, if they deliver the same result
values for the same input. But they offer no direct indication about the changes of the program
structure caused by the transformation. The same applies to the transformation conditions ex-
pressed, for instance, in some terms of temporal logic and used to formally proof the correctness
of code optimizations.

A mathematical system has been established in Section 3.2 and Section 3.4 to obtain re-
lationships between input-valuations, necessary to apply the coverage-preservation conditions
described in Chapter 2. Graph transformations, often used as formalism to describe structural
changes of programs, have been mentioned to derive changes of execution-paths automatically.
But execution path relations between the elements of the graph are often distorted or completely
lost during the graph transformation process. This is the reason, why the method established in
this thesis uses a “post-mortem” analysis, based on two models of the examined program frag-
ment. One model is representing the examined fragment of the original program and the other
represents the same fragment of the program after the transformation. Based on functional rela-
tionships between statements of the original program and statements of the transformed program
the necessary relations for analysis are obtained.
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The established formalism served as a basis to implement a framework in the mathematical
software-system Mathematica. Some details of the implementation of this framework have been
described in Chapter 4. The framework is able to do most of the steps for coverage-preservation
analysis automatically. An automatic execution of coverage-preservation proofs has been im-
plemented (see Section 4.5) for statement coverage, decision coverage, condition coverage and
modified condition/decision coverage. Scoped-path coverage has only been implemented in a
restricted version, which avoids the complexity of segmentations of the program that cut the
examined program fragment.

The results achieved with the Mathematica framework, processing a certain number of use
cases in Chapter 5, have shown that code optimizations in particular and code transformations
in general can be analyzed automatically based on the structural changes represented by aCFGs.
One lesson learned from this work is the fact, that apparent small changes in the structure of a
program can have severe effects on the preservation ability of a code transformation with respect
to a particular coverage criterion. An example for that, shown in Section 5.3, is changing the
connective of two conditions from AND to OR in a shortcut evaluated conditional branch, which
changes statement coverage preservation for the conditions.

One drawback of the taken approach, discussed in Section 5.14 is, that it is not a general
approach with respect to the structure of the investigated program fragment. Sometimes it is
hard to find the representative structure for a program transformation to get a general statement
about the ability of the transformation to preserve a particular code coverage. Another possible
disadvantage is the fact, that program transformations are analyzed with a restricted view to sin-
gle transformations. The estimation achieved with this restricted view may be too pessimistic in
some cases, because subsequent program transformations can sometimes compensate the effect
of prior transformations, as shown in Section 5.13.

6.2 Results

Several common code optimizations and transformations described in the literature have been
examined with respect to their ability to preserve the structural code coverage criteria under
discussion. The results of these investigations are presented in table 6.1. One column is spent
for each kind of code coverage. The entry 3 in a column means, that the certain kind of
coverage is preserved. The column entry · indicates that the automatic analysis failed to proof
the particular preservation condition.

The first two columns contain the results for statement coverage, where SC w/o C. contains
the result, when conditions are not treated like statements (statement coverage is only checked
for nodes in B). SC w. C. presents the results when conditions are treated like statements
(statement coverage is checked for B ∪ C). The columns CC, DC and MCDC store results for
condition coverage, decision coverage and modified condition/decision coverage. Finally PC is
the result for checking preservation of a restricted kind of (scoped) path coverage, as described
in section 4.5. The order in which the transformations are listed is related to the description in
chapter 5.

The results of the detailed manual and automatic analysis worked out in this thesis have been
compared with the results given in [30]. The table presented there was a first estimation of the
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preservation properties of certain code optimizations. Most of the results have been confirmed,
but for some code optimizations the classification has been revised based on the results of this
work. The changed entries are marked in table 6.1 with a gray background.

SC w/o C. SC w. C. CC DC MCDC PC
Useless Code Elim. 3 3 3 3 3 3

Full Evaluated Branch 3 3 3 3 3 3

Shortcut Branch 3 3 · 3 · ·
Empty Else (AND) 3 3 · 3 · ·
Empty Else (OR) 3 · · 3 · ·
Loop Peeling · · · · · ·
Loop Inversion 3 3 · · · ·
Loop Fusion 3 3 3 3 3 3

Loop Interchange 3 3 · 3 · ·
Loop Unrolling · · · · · ·
Strip Mining 3 3 · 3 · ·
Loop Tiling 3 3 · 3 · ·
Loop Unswitching 3 3 · 3 · ·
Software Pipelining · · · · · ·
Branch Optimization · · 3 3 3 3

Table 6.1: Result of the automatic analysis of certain kinds of code transformations and code optimiza-
tions with respect to structural code coverage preservation.

Implementing the automatic analysis, two different methods have been developed to support
the automatic setup of relations between the original and the transformed version of the analyzed
program fragments (refer to Section 4.4). The first method is only based on a local view of the
relations inside a control flow graph. It is very simple, easy to implement and efficient. The
second method is based on execution paths, which adds a more global view to control flow
analysis but also adds more complexity due to the exponential growth of the number of paths.

Practical experience with the use cases has shown, that the more complicated path based
method sometimes is able to gain some more relevant relationships than the simple method.
But even using the more complicated method, in most cases manual specification of relations
relevant for the investigated transformation is mandatory. An example is the loop interchange
use-case provided in Section 5.7.

6.3 Future Work

The use cases, presented in this thesis are based on descriptions of code transformations found
in the literature. So one logical continuation of this work would be to analyze real compilers to
learn in particular how they change program structure when optimizing code during the com-
pilation process. Another extension of this work would be the experimental integration of the
compilation profiles created by the automatic analysis into a real compiler.
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Related to the analysis method itself, there are several extensions conceivable, in the estab-
lished formalism as well as in the Mathematica implementation. Here are some examples for
that:

• Investigating nested structures of conditions and decisions.

• Releasing some of the limitation of the model and/or implementation, like

– implementing coupled conditions,

– providing the possibility to implement more complicated decision structures,

– extending the model to support decisions with more than two outcomes, allowing to
create aCFG models of, for example, switch-statements in C/C++,

– extending the aCFG to be able to create models for parallel executed program frag-
ments, for example, to create models of optimizations distributing task on parallel
processors,

– creating more general graph elements, representing repeated sub-structure for in-
stance.

• The consequences of the decision to take only one iteration of a loop with all possible
variants were not studied in detail.

• Extending the automatic search for relationships inside the analysis control flow graphs
to get better results and possibly avoid the need to specify manual relations. Especially,
creating a possibility to gain the transformation relations from some kind of structure
related formal transformation description.

Finally, supplementing the work with analysis of further optimizations would be another
beneficial direction for future work. An interesting aspect may be to examine sequences of
transformations, where subsequent steps re-establish the preservation conditions compromised
by earlier steps.
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APPENDIX A
Mathematica, a Short Survey

This chapter should provide a brief description of the used Mathematica, programming con-
structs. It is intended to help readers not familiar with Mathematica to read and understand the
details of the Mathematica implementation.

A.1 Introduction

Mathematica is a fully integrated environment for technical computing [58]. It is a modular
system where the front-end interacting with the user, is separated from the kernel. The Mathe-
matica kernel actually performs computations and may be run either on the same computer as
the front-end or on a different computers. The communication between kernel and front end is
handled by MathLink, using any available networking mechanism.

The most common type of front end for Mathematica is based on an interactive document
called notebook, and is supported on most computer systems. Notebooks are interactive docu-
ments mixing Mathematica input and output with text, graphics and other material. Although
there are slight differences on different computer systems, the structure of Mathematica note-
books is the same on all computer systems. If a notebook is created on one computer system it
should be immediately useable on another computer system. Especially the commands given to
the Mathematica kernel are absolutely identical on every computer system.

A Mathematica notebook is a structured interactive document organized into cells. A bracket
on the right of the screen display indicates the extent of a cell. Each cell contains material of
a definite type like text, graphics or a Mathematica expression. The prepared contents of a cell
can be sent to the kernel by pressing SHIFT-RETURN or SHIFT-ENTER. The kernel processes
the material and sends back whatever output is generated. The front end will create new cells in
the notebook to display this output. However, if the material sent to the kernel is finished with a
; character, the output is suppressed. This is sometimes useful, if the operation reveals a trivial
result.

Each cell within a notebook is assigned a particular style to indicate its role within the
notebook. A style specifies a whole collection of properties for a cell. It not only defines the
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format of the cell contents but also their placement and spacing. Material intended as input to
be executed by the kernel for instance is typically in a style called input style. Larger notebooks
commonly have chapters and sections, each represented by a group of cells. A bracket on the
right indicates the extent of these groups. Groups of cells can be open or closed. If a group is
open, all it’s cells can be seen. If it’s closed, only the heading cell in the group is shown.

If a notebook document is opened, nothing of its contents is normally sent to the kernel
for evaluation, until the user explicitly requests it. Cells within the notebook can be identified
as initialization cellsto be processed automatically in top to bottom order. Note, that the code
coverage notebook emphasizes initialization cells containing function definitions with a yellow
background colour. The situation when the initialization cells will be processed depends on the
current preference settings of the Mathematica front-end. These are some of the possibilities to
handle initialization cells:

• They are executed whenever the notebook document is opened.

• The user triggers the execution of the initialization cells explicitly by choosing the menu
item “Kernel→Evaluation→Evaluate Initialization”.

• If a notebook document contains any initialization cells and if these cells where not ex-
ecuted by one of the procedures above, the front-end presents a pop-up the first time a
command is sent to the kernel asking the user whether or not the initialization cells should
be executed.

A certain amount of mathematical and other functionality is built into Mathematica. But
Mathematica is an extensible system and it’s always possible to add more functionality. These
additional functions are included into Mathematica packages containing collections of defini-
tions for particular application areas. The code coverage analysis system only loads and uses the
package « DiscreteMath‘GraphPlot‘; [49] for drawing simple pictures of the speci-
fied aCFGs. Be aware, that the work of this thesis uses Mathematica version 5.2, and that this
package has changed in newer versions [57].

A.2 Expressions, Variables and Functions

Many different kinds of objects like mathematical formulas, lists and graphics are handled in
Mathematica. Although they may look very different, they are represented in one uniform way
as expressions. Expressions are often used to specify operations or functions but they can also
be used to maintain user-defined structures. Expressions are built from atomic blocks (numbers,
strings or symbols) or from other expressions. Numbers are sequences of digit’s representing
a numerical value of a certain type like integer or real. Strings are sequences of characters
representing arbitrary text.

An expression may be a single expression or a compound expression. A compound expres-
sion is a sequence of single expressions separated by semicolons. It can be placed wherever
an expression is required. Compound expressions are evaluated in top to bottom (left to right)
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order, corresponding to the control flow1. Its result is the result value of the last expression in
the sequence. Putting a semicolon at the end of an expression or expression sequence is like
giving an empty statement to the end of a sequence. The empty expression always returns Null.
So ending a Mathematica input with a semicolon suppresses the output of the operation.

A symbol is a name for a Mathematica object, and it can serve many different purposes. It
can be a variable just standing for itself, or it can be the name of another expression. Much of the
flexibility of Mathematica comes from its ability to mix these different purposes. Different to
traditional programming languages, variables in Mathematica can be used in a formal symbolic
calculation as well as for numerical calculations. Variables like x can be treated in a formal
symbolic fashion, but if needed x can be replaced by a definite value. Once a variable is defined,
the definition will stay, until it is redefined or explicitly removed.

A symbol is created with its first use and needs no explicit declaration. It has global validity.
As long as a symbol is not defined, it is treated in a formal symbolic way. A symbol is defined
by assigning a value or an expression to it. When assignments are made to symbols, the two
different types of assignments in Mathematica have to be carefully distinguished:

Immediate assignment is written Set[lhs,rhs] or more commonly lhs=rhs, where lhs stands
for the left-hand side and rhs stands for the right-hand side. Mathematica evaluates the
right-hand side immediately when the assignment is made.

Delayed assignment is written SetDelayed[lhs,rhs] or more commonly lhs:=rhs. In this
case the right-hand side will not be evaluated until the left-hand side is used inside an
expression.

Usually the delayed assignment is used for defining functions, because these are intended to be
evaluates when used inside an expression and not when they are defined. In contrast, immediate
assignment is normally used to assign a concrete value to a variable. The value, assigned to a
symbol is permanent until the end of the current Mathematica session. A symbols value can be
redefined by using the symbol again on the left side of an assignment. The value defined for a
symbol can be removed anytime with Clear[symbol].

In addition to built in functions, Mathematica allows the definition of user defined functions
that work like mathematical functions, operating on specific expressions and output unique ex-
pressions for each input [53]. The left-hand side of a function definition is a symbol followed
by an argument list enclosed in square brackets. The right-hand side can contain an arbitrary
sequence of expressions, possibly including other functions, which should be evaluated when
calling the function.

Mathematica provides several ways to create user-defined functions. The coverage analysis
notebook uses two of them:

• Simple functions are defined by writing the expression, the function is composed of, to
the right-hand side of the function definition. Sequences of expressions can be used as
well, separating the single expressions by semicolons.

1There are several commands for changing the control flow like Return or Break. The code coverage note-
book makes no use of these operations. More information about control flow changing commands can be found in
the Mathematica online manual.
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gB[G_] := G[[1]]

is an example for a simple function definition with one argument.

• Setting up a function as module allows to create a more complex procedure with a list of
variables to be treated as local variables.

gReplaceNode[e_, iv_, iw_] := Module[{head = gEdgeHead[e],
tail = gEdgeTail[e]},
If[head == iv, head = iw];
If[tail == iv, tail = iw];
gReconnectEdge[e, head, tail]

]

is an example for a function definition with 3 arguments e, iv and iw as module with two
local variables head and tail. The list of local variables is enclosed in curly brackets.
Note, that local variables can be initialized together with their declaration. This method is
equivalent to just declaring a local variable and assigning a value later.

The behaviour of a local variable is similar to other variables, with the only difference that
the symbol is only valid inside the module. Especially, if a local variable is not defined
when it’s used inside an expression it is treated in a formal symbolic way.

Functions, independent whether they are user-defined or built-in, are used similar to standard
mathematical functions. They are called by writing the function name followed by the list of
arguments enclosed in square brackets2. Used inside an expression, the result of the function
replaces the function call for further evaluation. When creating a user-defined function, the result
of the whole function is simply the result of the last expression evaluated on the right-hand side
of the function definition.

An underline character must follow each argument name on the left-hand side of a function
definition. This advices Mathematica to replace each occurrence of the arguments name on the
right-hand side with the actual expression of the argument. Defining f[x_] for instance means,
that each occurrence of the symbol x on the right-hand side of the function definition is replaced
by the actual value of the argument x_ when calling f.

Note, that Mathematica allows defining multiple definitions of the same function. Multiple
definitions of a function differ in their number or form of arguments given to that function. The
code coverage analysis notebook uses this feature to define functions having optional arguments.
A second way to define multiple versions of a function is it’s piecewise definition. Piecewise
defined functions have a range specification appended to each version of the function. The range
specification defines the condition, for which range of their arguments a certain version of a
function should be called.

2Mathematica allows to write a multiplication in standard mathematical notation, just writing the operands in a
sequence. When using round brackets for function calls, the problem arises to distinguish the multiplication f(a+ b)
“multiplying the variable f with the expression (a + b)” from the function-call f(a + b) “calling function f with
arguments a+ b”.
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Commentary text inside Mathematica programming code can be added at any point of the
code. It is enclosed in matching commentary-brackets (* and *). Comments are not restricted
to a single line and can be nested in any way [58].

A.3 Lists, Tuples and Sets

Constructing, Accessing and Measuring Lists

Mathematica provides no special set or tuple data-types for representing collections of objects.
Instead it uses a fundamental data structure called list. A list groups objects together and uses
them as a single entity. The elements of a list can be expressions of different types, possibly
other lists [58, 53]. The empty list is represented by the expression {}.

Lists can be created in various ways:

{elem1, . . . , elemn} is one of the most common forms for constructing a list of length n,
comprising the expressions elem1, . . . , elemn. A sequence of integers enclosed in curly
braces, for example {1,2,3,4,5}, constructs a list of 5 integer numbers. As an alter-
native, the equivalent function List[elem1, . . . , elemn] can be used to construct the
list.

Table[f, {i, imin, imax}] builds a vector of length imax−imin+1 by running the function
f with sequential values i = imin, . . . , imax.

The expression Table[{ts[[i]]},{i,1,Length[ts]}], for instance, constructs
a new list with each element of ts enclosed in an extra list. If ts, for example, is
{1,5,2}, then the result will be {{1},{5},{2}}.

Table[f, {i, imax}] is similar to the version above, but with the function f evaluated for
values i = 1, . . . , imax.

The following operations allow investigating the structure of a list by measuring its dimen-
sions:

• Length[list] returns the number of elements in the topmost level of a list. If the list is
a nested structure, each sub list is counted like a single element. The length of the empty
list Length[{}] is 0.

• ArrayDepth[list] determines the maximum depth of a possibly nested list structure.
The ArrayDepth is 1 for a linear list and 0 if the argument is an unstructured object. Note,
that ArrayDepth[{}] returns 1, because {} is a list, although it contains no elements.

Lists can be treated in an array-like manner, picking out or setting individual elements in
the list by giving it’s index or a list of indices enclosed in double square brackets [[ and ]].
Instead of double square brackets, a sequence of two square brackets [[ and ]] can be used.
The numbering of the elements of a list ranges from 1 to Length[list]. If a list is constructed
in a form like {1,2,3,4,5}, the elements are numbered from left to right. The expression

115



A. Mathematica, A SHORT SURVEY

v[[2]] for instance, returns the second element of v. The expression v[[{2, 4}]] returns a list of
length 2 containing the elements on position 2 and 4 in the same order as in v.

Alternatively, list elements can be accessed in a back to front order with negative indices.
v[[−1]] for instance, accesses the last element of list v. Both types of indices can be used
together. For example: v[[{1,−1}]] returns a list containing the first and the last element of v.
If v has only one element, both entries in the returned list contain this value. If the given index
is higher or lower than the length of the list, Mathematica emits an error message.

Certain extractions are so important, that they have their own functions:

First[list] returns the first element of a list. This function is identical with list[[1]].

Last[list] returns the last element of a list. The same result can be obtained with the expres-
sion list[[-1]] or list[[Length[list]]].

Rest[list] returns a copy of list where the first element is dropped.
The result of Rest[{1,2,3,4}], for example, is the list {2,3,4}.

If a list contains a nested structure, multiple indices can be used to access elements on a
deeper level. If the number of used indices is smaller then the depth of the structure, a substruc-
ture of the list is returned. The following example shows the handling of a matrix-structure:

m={{11,12},{21,22}}→
(

11 12
21 22

)
m[[1,2]]→ 12
m[[1,1]]→ 11
m[[1]]→ {11,12}

The function Take[] provides a way to get pieces of a list:

Take[list,n] returns the first n elements of list, if n is a positive integer. If n is a negative
integer, the last n element of list are returned.

Take[list,{m,n}] returns a sequential sub list of elements from list, starting with the m’th
element and ending with the n’th element. m and n can be positive or negative integers
specifying the position of the first or last element in front to back and back to front order
respectively.

Testing and Searching List Elements

MemberQ[list,form] tests, whether form is an element of list and returns either True or
False.

FreeQ[list,form] tests, whether form is no element of list and returns either True or
False.
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Changing the Structure of a List

The structure of a nested list can be flattened in various ways:

Flatten[list] removes all nested levels creating a linear list of all elements on the innermost
levels.

Example: Flatten[{{{1},{2}},{{3},{4}}}] returns {1,2,3,4}.

Flatten[list,n] limit’s the degree of flattening by only removing n levels down from the
top of the nested structure.

Example: The expression Flatten[{{{1},{2}},{{3},{4}}},1] returns the list
{{1},{2},{3},{4}}.

Selecting Elements from Lists

The operation Select[list,condition] matches the elements of list against a certain condi-
tion and returns a new list including only the matching elements. The expression list can be any
valid Mathematica expression representing a list. The expression representing condition must
be a logical expression that evaluates either to True or False.

Select evaluates the logical expression condition for each element of list. Inside condition
the actually examined element can be referenced with the symbol #3, which acts as a placeholder
representing the actual element. The placeholder # can be used repeatedly to reference to the
actual processed element on several places inside the logical expression. The symbol & is used
to mark the end of scope of the current # placeholder. This is necessary, because functions like
Select iterating over the elements of a list can be used in nested structures.

Examples: The following piece of code defines a function, returning all nodes from a set V with
a label matching the string vl:
gSelectNodeByLabel[V_, vl_]:= Select[V, gNodeLabel[#] == vl &]

The next excerpt from the coverage preservation notebook shows the multiple use of the # place-
holder:
gSelectEdgeById[R_, eh_, et_] :=

Select[R, (gEdgeHead[#] == eh) ∧ (gEdgeTail[#] == et) &]

The result of the Select function is a list, including all elements that match the given
condition. If no element matches the condition, the empty list {} is returned.

Set Operations

The “natural” behaviour of a list is similar to a tuple. It provides a fixed order of elements and
allows multiple occurrences of the same element. Some functions are especially designed to

3The symbol # stands for a Mathematica feature called pure function. Pure functions allow defining functions
without given them explicit names. For more detailed information on pure functions, please refer to the Mathematica
online manual.
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treat a list in a set-like manner, removing duplicates of elements and sorting the elements in
some standard order4.

The following functions are designed to treat lists in a set-like manner. It doesn’t matter,
whether the arguments of the set-functions are already in set-style or not, the result of these
operations will always be a set:

Union[list1, . . . , listn] returns a list of the distinct elements of all given lists. Alternatively,
the mathematical notation list1 ∪ . . . ∪ listn reveals the same result.

Intersection[list1, . . . , listn] returns a list of the elements that are common to all given
lists. The same result can be obtained using the set-theoretic notation list1 ∩ . . . ∩ listn.

Complement[list1, . . . , listn] returns a list of all elements that are in list1 but not in any of
the other lists.

Union[list] converts a list into a set by sorting the elements in an arbitrary manner and re-
moving any duplicates.

Rearranging Lists

The functions described in this paragraph manipulate lists in a way that avoids changing the
tuple-like behaviour of a list. Such functions do not remove multiple occurrences of elements
and avoid unintentional changes in the order of elements.

Append[list,element] adds one element at the end of list and returns the new list.

Prepend[list,element] inserts one element at the beginning of list and returns the new
list.

Join[list1,. . .,listn] concatenates list1, . . . , listn in the given order and returns the result-
ing list. In contrast to Union[], the Join[] function does not remove multiple occur-
rences of elements and does no resorting of elements.

Applying Functions to Lists

A common task of list handling is to apply functions in various ways to the elements of a list.
Mathematica provides several ways to do this:

Map[function, list] wraps function around each element of the outermost level of list. In
other words, it calls function with each entry on the first level of list as argument. Map
returns a list with the results of expression function for each element of list.

If only a function name is given for expression function, the function is called with
each element of list as the only one argument. More complex expressions can be created

4The standard behaviour of set-functions in Mathematica 5.2 is to bring elements into a numerically or lexically
sorted order.
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using the # symbol to reference the actually examined entry of list (please refer to the
description of Select above).

Example: The following excerpt from the code coverage notebook defines a function,
which converts a list of node tuples into a list of node identifiers:

gDecisionIdSet[d_] := Map[gNodeId, gDecisionNodes[d]]

gDecisionNodes is a function, returning a list of nodes of decision d. gNodeId
returns the identifier of the node, given as argument. Map applies gNodeId to each
element of the list returned by gDecisionNodes and therefore extracts the identifier of
each node of the decision. The result is returned as a list, which contains all identifiers.

Apply[f, list] applies f directly to the elements of a list, making each element of list a
separate argument of f .

Example: The expression Apply[f,{a,b,c}] gives f[a,b,c].

Outer[f, list1, list2, n] is a generalized version of the Cartesian product of lists. It takes
all possible combinations of elements of the lowest level from list1 and list2 calling the
function f with each combination as arguments. The optional value n determines the level
of sub lists that is treated as separated elements.

Example: The expression Outer[f,{a,b,c},{1,2}] gives the result
{{f[a,1], f[a,2]},{f[b,1], f[b,2]},{f[c,1],f[c,2]}}.

A.4 Control Flow Expressions

Procedural programming normally involves some kind of execution flow control. Dependent on
the result of evaluating a certain condition the procedure will follow different execution steps.
Although Mathematica provides several different ways for execution flow control, only a few are
used to implement the automatic code coverage analysis: If, While and For. The principle
function of control flow expressions are similar to if, while and for control structures in
programming languages like C/C++. But there are some important differences, not only in
syntax but also in their semantic.

If[test, then, else] executes expression then, if the condition test evaluates to True. If test
evaluates to False, expression else is executed. If the result of evaluating test is neither
True nor False, both branches of the If will remain unevaluated5.

While[test, body] evaluates body repeatedly as long as test evaluates to True.

For[start, test, incr, body] executes the expression start and then repeatedly executes body
and incr, until evaluating expression test fails to be True.

The loop-test is always executed before the body of the loop. If the loop test fails, the While
and For loop terminates. Boolean expressions are evaluated in a definite sequence with shortcut

5The reason for this behaviour is Mathematicas ability to perform symbolic computations.
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semantic. Evaluating a combination of Boolean expressions stops, if any of the tests reveals a
final result. This behaviour allows sequences of tests, where later tests make sense only if the
earlier ones are satisfied [58].

The result of a control flow expression is always the result of the last expression evaluated.
The result of a compound expression is always the result of the last expression executed. If a
compound expression is finished with a semicolon, or if an empty expression is executed as last
operation however, the evaluation result will be Null.

A.5 Operations on Strings

This is a brief overview of some string functions. More information can be found in the Mathe-
matica online manual.

StringLength[s] returns the number of characters in string s.

StringJoin[{s1, . . . , sn}] concatenates several strings of a list together.

StringTake[s, {n}] takes the nth character of string s.

StringPosition[s, {sub1, . . . , subn}] gives a list of the starting and end positions of any
occurrences of substrings subi in the string s.

ToLowerCase[s] generates a string where all letters of s are lower case characters.
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Mathematica Notebook Listing

This section provides an excerpt listing of the Mathematica implementation with algorithmic
solutions and proofs for the coverage preservation analysis. The notebook was written for Math-
ematica version 5.2.

Automatic analysis can be started by running the analysis function

MatrixForm[cPresAnalysis[−1]]MatrixForm[cPresAnalysis[−1]]MatrixForm[cPresAnalysis[−1]]

Note, that the prefix MatrixForm is optional for presenting the output in a more appealing
form. The argument −1 means “no intermediate output”. Running the analysis function as
described above will produce the following output, for example:

Use Case SC w/o C. SC w. C. CC DC MCDC PC
——– ——— ——– —– —– —– —–
Useless Code Elimination True True True True True True
Full-Evaluated If-Then-Else True True True True True True
Shortcut If-Then-Else True True False True False False
Empty Else Shortcut AND True True False True False False
Empty Else Shortcut OR True False False True False False
Loop Peeling (k=1) False False False False False False
Loop Inversion True True False False False False
Loop Fusion True True True True True True
Loop Interchange True True False True False False
Loop Unrolling (k=2) False False False False False False
Strip Mining True True False True False False
Loop Tiling True True False True False False
Loop Unswitching True True False True False False
Software Pipelining False False False False False False
Branch Optimization False False True True True True


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Initializations and Globals

ü Loading Libs

Using GraphPlot for visualizing the program graphs in a (more or less) appealing form. Note, that the ability of
version 5.2 to produce nice drawings is very restricted.

<< DiscreteMath`GraphPlot`;

ü Defining Globals

The following variables serve as global values to control program properties and program execution. Some of
them are  only  used  in  one  place,  but  they  are  given  here  to  collect  them all  on  a  single  place  for  easyer
maintenance.

ü outputSet

outputSet  is  used  to control  the  details  of function-output  prints.  outputSet  is  a set  variable.  Each  element
represents a certain type of output that is displayed during running a function. The higher the value of the set
element  the  more detailed  is the  output,  e.g.  0  represents  high level  output,  printing  only what's  going on
without further details. In contrast, 9 represents output of internal information produced in deeper levels of the
functions. An empty set produces no output. The outputSet can be changed at any time by assigning a new
value to the variable outputSet.

outputSet = 80, 1<;

ü loopDecisionKeyword

loopKeywords defines the keywords of decision tags to identify a decision as loop-decision.

loopDecisionKeywords = 8"loop", "while"<;

CoveragePreservation_CodeListing.nb 1

Printed by Mathematica for Students

ü Decision True/False Set

To model  decisions  with tendency,  we use a set  of symbols  to label  the outcome within one  decision.  To
restrict possible path combinations through a decision these symbols must be used on the outgoing edges of a
decision too. On the external edges outgoing from a decision it is always necessary to present a final decision,
because this is required when calculatiing IVT  or IVF  of a decision. Therefore it is necessary to map the used
symbols to True or False. We do this by creating two global sets, which hold the symbols for True and False.
For convenience we use the characters "0","1","2","3",  "4" and "T" for True and "5",...,"9" together with "F"
for False. If necessary, this set can be expanded using additional  characters. The only restriction is, that the
symbols "T" and "F" must be part of these sets and that the used symbol must not comprise more than one
character, since the decision label is only one character long.

DecTrueFalseSet =
88"T", "0", "1", "2", "3", "4"<, 8"F", "5", "6", "7", "8", "9"<<;

ü Changing Built-in Properties

We often  use names with small  differences.  Mathematica  produces a bunch of warnings  for that. Setting the
following property to off will avoid these warning messages.

Off@General::spellD

Graph-Functions

This  part  contains  Mathematica-versions  of  graph  functions  for  Analysis  Control  Flow  Graphs  (aCFG).  For
convenience we use the abbreviation CFG also for Analysis CFGs. Without further notice, the abbreviation CFG
addresses an aCFG. Because of the history of the framework decelopment,  the aCFG is also named "Extended
Control Flow Graph" (eCFG).

ü Definition "Extended Control Flow Graph" (CFG)

The following functions  are helpers to extract  the different sets defining the aCFG without concern about the
exact  position  in  the  tuple  or  the  actual  implementation.  To  avoid  confusions  between  these  functions  and
Mathematica's built in functions we use a notation with a preceeding g like for all general graph and control flow
graph functions (Note: The Mathematica-Book defines, that all non standard functions should start with a lower
case letter to distinguish them from built-in functions). 

gB selects the set of basic blocks, gC returns the set of conditions nodes and gD returns the decision set. Finally
gV returns the set B ‹ C. gR gives the edge set of the graph G and finally gST returns the tuple Xs,t\ consisting of
start and termination node.

gB@G_D := GP1T

gD@G_D := GP2T

CoveragePreservation_CodeListing.nb 2
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gC@G_D := Flatten@Map@Rest, gD@GDD, 1D

gV@G_D := gB@GD ‹ gC@GD

gR@G_D := GP-3T

gST@G_D := 8GP-2T, GP-1T<

The following function will construct an aCFG from given sets bB, dD, rR and a tuple stST containing the start
node as first and the termination node as last  component. The arguments are used to construct the components
B,D,R,s,t of an extended CFG. 
Note, that this function is not used consequently in the use cases.

eCFG@bB_, dD_, rR_, stST_D := 8bB, dD, rR, First@stSTD, Last@stSTD<

ü Selection Functions for Nodes and Node-Components

The following functions  will extract informations from a node tuple v. A node is a tuple Xl,i,ri\ where l is a
(textual) node tag and i is a unique node-id. Additional, a node could carry a related-id. ri, which defines func-
tional relationships between nodes. Detailed information on the functional node relations are given in the section
about transformation relations. The component ri is used in case of transformed graphs to define the functional
relationships between nodes of transformed and untransformed graphs. If there is no functional relationship, the
component is missing or initialized with -1. Please note, that the node tag need not to be unique for all nodes, but
the node id must  be unique.  gNodeTag  returns the tag of a node,  gNodeId  returns the unique (internal) node
identifier and gNodeRelId returns the related node id.

gNodeTag@v_D := vP1T

gNodeId@v_D := vP2T

gNodeRelId@v_D := If@Length@vD > 2, vP3T, -1D

gSelectNodeById is a helper to examine an (arbitrary) node-set V for the presence of a node with a given node-id.
gSelectNodeByTag searches for nodes with a given node-label.  Note, that the function gSelectNodeById always
returns a set of nodes, although a correct node-set of an aCFG should only contain one node with the given id.

gSelectNodeById@V_, iv_D := Select@V, gNodeId@#D ã iv &D

gSelectNodeByTag@V_, vl_D := Select@V, gNodeTag@#D ã vl &D
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ü Selection Functions for Edge Components

These functions retrieve components of the edge structure. gEdgeHead returns the node-id., the edge is starting
from, gEdgeTail  returns the termination node-id of edge e. gEdgeLabel returns the string the edge is labelled
with and gEdgeValuation returns the valuation value attached to e. gEdgePathMarker is a function to return a
path-identifier. If the components 4 or 5 do not exist, an empty set is returned.

gEdgeHead@e_D := eP1T

gEdgeTail@e_D := eP2T

gEdgeLabel@e_D := eP3T

gEdgeValuation@e_D := eP4TH*If@Length@eD¥4,eP4T,8<D*L

gEdgePathMarker@e_D := If@Length@eD ¥ 5, eP5T, 8<D

gSelectEdgeById searches a given edge set R for the presence of edges starting at a node with id eh and terminat-
ing at a node with id et. The edges are returned in a set of edges.

gSelectEdgeById@R_, eh_, et_D :=
Select@R, HgEdgeHead@#D ã ehL fl HgEdgeTail@#D ã etL &D

ü Selection Functions for Decision Components

A decision is implemented as a flat tuple Xl, c1 , c2 ,…\ of arbitrary length, where l is a decision tag and ci  are
tagged nodes or related tagged nodes (like the nodes defined above) the decision is composed of. The selection
function  gDecisionTag  returns  the tag  of decision  d,  gDecisionNodes  returns  the set  of  condition-nodes,  the
condition is composed of.

gDecisionTag@d_D := First@dD

gDecisionNodes@d_D := Rest@dD

The following functions extract sets of node-id's and related node-id's respectively of decision d:

gDecisionIdSet@d_D := Map@gNodeId, gDecisionNodes@dDD

gDecisionRelSet@d_D := Union@Map@gNodeRelId, gDecisionNodes@dDDD
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gSelectDecisionById  returns the set of decisions from the decision-set ds, that contains a node with the given id
or which set of node-id's is identical to the given id-set id. The result is always a set of decisions, although in a
correct CFG there should exist at most one matching decision.

gSelectDecisionById@ds_, id_D :=
If@ArrayDepth@idD ã 0,
Select@ds, MemberQ@gDecisionIdSet@#D, idD &D,
Select@ds, gDecisionIdSet@#D ã id &D

D

gSelectDecisionByTag retrieves all decisions of decision set ds matching a given decision tag dl.

gSelectDecisionByTag@ds_, dl_D := Select@ds, gDecisionTag@#D ã dl &D

ü Other Edge Functions

gOutEdges determines the outgoing edges directed from the node with id iv to other nodes, gInEdges determines
the edges  terminating  in the  node with id  iv.  gInEdgesH  and  gOutEdgesH  do the  same,  but  for  hypernodes
defined by a set iv of node-id's. gEdgeSetH returns the internal edges of the subgraph determined by the hyper-
node v.

gOutEdges@R_, iv_D := Select@R, gEdgeHead@#D ã iv &D

gOutEdgesH@R_, iv_D :=
Select@R, Ÿ MemberQ@iv, gEdgeTail@#DD fl MemberQ@iv, gEdgeHead@#DD &D

gInEdges@R_, iv_D := Select@R, gEdgeTail@#D ã iv &D

gInEdgesH@R_, iv_D :=
Select@R, Ÿ MemberQ@iv, gEdgeHead@#DD fl MemberQ@iv, gEdgeTail@#DD &D

gEdgeSetH@R_, iv_D :=
Select@R, MemberQ@iv, gEdgeTail@#DD fl MemberQ@iv, gEdgeHead@#DD &D

gLabOutEdges and gLabOutEdgesH selects outgoing edges with a particular label l and returns them in a set. If
an edge with the required label does not exist, it returns the empty set. 

gLabOutEdges@R_, iv_, l_D :=
Select@R, HgEdgeHead@#D ã ivL fl HgEdgeLabel@#D ã lL &D

gLabOutEdgesH@R_, iv_, l_D := Select@R,
Ÿ MemberQ@iv, gEdgeTail@#DD fl MemberQ@iv, gEdgeHead@#DD fl gEdgeLabel@#D ã l &D

gSLabOutEdges is a selective version of gLabOutEdges.  The user provides a string function sf which is applied
to the label before comparing it with the string l. gSLabOutEdgesH provides the same function but for hypern-
odes. gSLabOutEdgesHS is a special version of the hypernode-function, which selects all outgoing edges where
the label-component selected by sf is a member of a label set ll.
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gSLabOutEdges is a selective version of gLabOutEdges.  The user provides a string function sf which is applied
to the label before comparing it with the string l. gSLabOutEdgesH provides the same function but for hypern-
odes. gSLabOutEdgesHS is a special version of the hypernode-function, which selects all outgoing edges where
the label-component selected by sf is a member of a label set ll.

gSLabOutEdges@R_, iv_, sf_, l_D :=
Select@R, HgEdgeHead@#D ã ivL fl Hsf@gEdgeLabel@#DD ã lL &D

gSLabOutEdgesH@R_, iv_, sf_, l_D := Select@R, Ÿ MemberQ@iv, gEdgeTail@#DD fl
MemberQ@iv, gEdgeHead@#DD fl sf@gEdgeLabel@#DD ã l &D

gSLabOutEdgesHS@R_, iv_, sf_, ll_D :=
Select@R, Ÿ MemberQ@iv, gEdgeTail@#DD fl MemberQ@iv, gEdgeHead@#DD fl

MemberQ@ll, sf@gEdgeLabel@#DDD &D

gInDegree(H) and gOutDegree(H) calculates the number of incoming/outgoing edges of a node with index iv or
a set iv of node-indices.

gOutDegree@R_, iv_D := Length@gOutEdges@R, ivDD

gInDegree@R_, iv_D := Length@gInEdges@R, ivDD

gOutDegreeH@R_, iv_D := Length@gOutEdgesH@R, ivDD

gInDegreeH@R_, iv_D := Length@gInEdgesH@R, ivDD

The following functions are simple helpers returning the predecessor edge set or the successor edge set sharing a
common endpoint with a given edge.

gPredEdges@R_, e_D := gInEdges@R, gEdgeHead@eDD

gSuccEdges@R_, e_D := gOutEdges@R, gEdgeTail@eDD

ü Condition-, Decision- and Relation-Label

To allow connecting  the  outcome  of  conditions  to  an  arbitrary  outcome  of a  decision  we  use a  two-parted
condition-/decision-label  on edges  outgoing from a decision node.  The first letter defines  the outcome of the
current condition while the second letter defines the decision outcome. For the condition- and the decision-part
the letters "T" and "F" are used for true and false outcome of the condition/decision. Only for the decision-part
the letter  "X" is used if the outcome of the decision is not decided when passing the current edge. Clearly "X" is
only allowed inside a decision hypernode. All edges leaving a decision-hypernode must have one of the decision
labels "T" or "F". Note, that some additional characters can be used for decision outcome.

The functions  gCLabel  and gDLabel  extract the Condition part or Decision part of an edge-label.  The return-
value is a one character string. If the label is the empty string both functions return the empty string. If the label
only  consists  of  the  condition-label  the  gDLabel  function  returns  the  empty  string.  The  gRLabel-function
accesses the functional relationship character. If the character is not present, the default character "=" is returned.
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gCLabel@l_D := If@StringLength@lD > 0, StringTake@l, 81<D, ""D

gDLabel@l_D := If@StringLength@lD > 1, StringTake@l, 82<D, ""D

gRLabel@l_D := If@StringLength@lD > 2, StringTake@l, 83<D, "="D

ü gLabelJoin

...joins edge labels given in the set ls. If the set includes condition labels of both outcomes (True and False) the
resulting condition label is V, else the resulting label is True or False according to the values in the set. If the
decision labels are all members of the same outcome set, the decision label is set to the matching outcome True
or False. Otherwise or if one of the multiple labels contains X, the resulting decision component of the unified
label is set to X. The functional relation labels are omitted.

gLabelJoin@ls_D := Module@8cl, dl, c, d<,
H* Divide label into conditionêdecision components.

*L
cl = Union@Map@gCLabel, lsDD;
dl = Union@Map@gDLabel, lsDD;

H* The condition label can only contain "T" or "F". Therefore
a length of 2 means, that both are member in "cl".

*L
If@Length@clD > 1, c = "V", c = First@clDD;

H* Check the decision symbols if they are all from one decision
set and if so, select the leading decision symbol. In all
other cases, the result must be "X", because the decision
symbols comprise "X" or symbols from different TrueêFalse
decision symbol sets.

*L
If@Complement@dl, DecTrueFalseSetP1TD ã 8<,
d = First@DecTrueFalseSetP1TD,
H* else *L
d = If@Complement@dl, DecTrueFalseSetP2TD ã 8<,
First@DecTrueFalseSetP2TD, "X"D

D;

c <> d
D
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ü Path Functions

ü gPathSet

The function gPathSet examines an edge set R for the existence of paths starting at some edge from the edge
set ss and ending at some edge of the edge set ts. The returned set contains all possible combinations of edge-se-
quences from one of the edges of ss to one of the end edges of ts, including the corresponding start-edge and
end-edge from the input set. The returned paths all contain single lines of edges without forks and joins. It is
not guaranteed, that each of the given start-edges and end-edges are part of some path in the result set. If there
are any loops the result set contains one path without the loop (immediate exit) and one path where the loop is
executed exactly once.

The implementation of the function builds up the paths from the end to the beginning. It maintains two sets:
explore for  unfinished paths and pathList for finished paths (that means that these paths contain one of the
given start edges). explore initially holds a path-set, where each path only includes one of the input end-edges.
Inside a loop, an arbitrary path p of the explore set is taken (and removed from explore), expanded with the
predecessor edge of the first path-edge and re-unified with explore. If the first edge of the path has more than
one predecessor, then a certain number of pathes is produced and re-unified with explore. If there are more than
one possibilities to expand a path, only the expansion which do not add an edge, which is already in the path, is
processed. This avoids endless loops and on the other hand produces pathes, that walk through a loop exactly
one time. If a path reaches the start-node without passing the given start-edges, it is earased. At the end of the
path expansion phase, all pathes which include one of the starting-edges are moved from explore to pathList.
The loop ends if nothing's left to explore.

gPathSet@R_, ss_, ts_D :=
Module@8i, explore, pred, expandedPath, pathList = 8<, p<,
If@MemberQ@outputSet, 4D,
Print@"X4\ Path-set from ", MatrixForm@ssD, " to ", MatrixForm@tsDD

D;

H* Construct the initial path-list by adding each single edge in
"ts" to explore. Check if there are already finished pathes
and move them to "pathList".

*L
explore = Table@8tsPiT<, 8i, 1, Length@tsD<D;
pathList = pathList‹ Select@explore, H# › ssL ! 8< &D;
explore = Complement@explore, pathListD;
If@MemberQ@outputSet, 9D,
Print@"X9\ HgPathSetL Init. Ø pathList: ", pathListD;
Print@"X9\ HgPathSetL explore: ", exploreD

D;

While@Hexplore ! 8<L,
H* Take and remove an arbitrary path from explore Hwe use the

first in the listL.
*L
p = First@exploreD;
explore = Rest@exploreD;

H* Expand the path by taking the predecessor of the first
element of the selected path prepending the new edge.
If there are no predecessors Hthe start node of the graph
is reached without passing the given start-edgesL

discard the path. If there are more than one predecessors
expand only if the edge is not already in the path to avoid
endless
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endless cycles.
*L
pred = gPredEdges@R, First@pDD;
If@MemberQ@outputSet, 9D,
Print@"X9\ HgPathSetL Iter. Ø pred. of ", First@pD, ": ", predD;

D;

If@pred ! 8<,
If@Length@predD > 1,
pred = Select@pred, Ÿ MemberQ@p, #D &D;
H*pred=Select@pred,ŸgDoubleCirclePath@#,pD&D;*L
If@MemberQ@outputSet, 9D,
Print@"X9\ HgPathSetL Loop cleaned pred.: ", predD;

D
D;

explore = explore ‹ Table@Prepend@p, predPiTD, 8i, 1, Length@predD<D;

H* Move finished pathes to "pathList" and remove it from "explore".
*L
pathList = pathList‹ Select@explore, H# › ssL ! 8< &D;
explore = Complement@explore, pathListD

D; H* If pred ! 8< *L

If@MemberQ@outputSet, 9D,
Print@"X9\ HgPathSetL Iter. Ø pathList: ", pathListD;
Print@"X9\ HgPathSetL explore: ", exploreD

D

D; H* While *L

pathList
D

ü gShortestSubPathSet

Sometimes it is necessary to select a subpath from a path p which only consist of edges originating a certain
vertices-set g. This is done by the function gShortestSubPathSet, which extracts  the shortest subsequence of
edges from a path p that meet the condition, that (1) each subsequence selected contains only edges originating
at nodes from one vertices-set of gG and (2) the nodes of this set are included in the path at most once but (3)
as most  as possible.  Condition  (2)  means,  that  any  second occurence  of an element  of  a vertices-set  in an
edge-sequence  closes  the current  subpath and opens a new one.  Condition  (3)  means that a subpath is not
complete as long as there exists a subsequent edge originating at a node from the current vertices-set which is
not already head-node of the edges already included in the subpath. 
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gShortestSubPathSet@p_, gG_D :=
Module@8flatG, explore, subPath, expDec, pathList = 8<<,
explore = p;
flatG = Flatten@gGD;
H*Print@"gG: ",gG," flatG: ",flatGD;*L

While@explore ! 8<,
H*Print@"#: ",Length@exploreD," explore: ",exploreD;*L

If@FreeQ@flatG, gEdgeHead@First@exploreDDD,
explore = Rest@exploreD,

H* else *L
expDec =
Complement@First@Select@gG, MemberQ@#, gEdgeHead@First@exploreDDD &DD,
8gEdgeHead@First@exploreDD<D;

H*Print@First@exploreD," starts sub-path, remaining
subset to explore: ",expDecD;*L

subPath = 8First@exploreD<;
explore = Rest@exploreD;

While@Hexplore ! 8<L fl HMemberQ@expDec, gEdgeHead@First@exploreDDDL,
subPath = Append@subPath, First@exploreDD;
expDec = Complement@expDec, 8gEdgeHead@First@exploreDD<D;
explore = Rest@exploreD;

D;

pathList = Append@pathList, subPathD;
H*Print@"add ",subPath," to path-list. "D;*L

D H* While *L

D; H* While *L

pathList
D

ü Labelled Path

To get pathes related to certain condition/decision-labels,  we need a helper function to check, wether or not a
path p fits a certain edge-label pattern. A path fits a certain edge-label pattern L, if the labels of all edges in the
path are elements of the set L. The function gSLabelPath checks a path p, if it fits an edge-label pattern elp. Like
gSLabOutEdges the function can be supplied with the name of a filter-function to convert the edge label before
evaluate  them with respect  to elp.  The advantage  of  this  method  is,  that  structured  labels  can  be processed
without mention the values of the other labels (e.g. Decision labels can be processed without knowing the values
of condition labels).

The function returns True if the path fits the label pattern, False otherwise. The empty path always returns True.

gSLabelPath@p_, elp_, f_D :=
Apply@And, Map@MemberQ@elp, f@gEdgeLabel@#DDD &, pDD
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ü Breadth/Depth First Search Order

In some cases it  is necessary  or preferred to traverse a graph in a "top to bottom" order.  Therefore  the next
functions provide a list, where the nodes of a transformation-graph are ordered in a sequence which represents
their position relative to the start-node. Two different kinds of search orders are provided. Breadth First Search
order places first all nodes with the same distance from the start-node before storing the nodes on the next level.
In the Depth First Search order nodes are stored with increasing distances from the start node first before nodes
on the same level are placed. 

gDfsOrderList  creates  a list in depth first  search  order, gBfsOrderList  creates  a list  of nodes in breadth first
search order. The purpose of this functions is to create a list of node id's to walk through an aCFG in a "top to
bottom" order. To avoid problems with any kind of incorrect graphs, the function finally adds all orphan nodes
(if any exists) at the end of the list to make sure, that all nodes are in the list. The result list always starts with the
start-node and does not contain the termination-node.

The function takes a set V of inner nodes, the edge set R and a tuple ST=X s,t \ of start and termination node as
argument. This argument-split  gives the possibility to use this function for CFG's as well as for transformation
graphs.

gBfsOrderList@V_, R_, ST_D :=
Module@8wtl = 8<, explore = 8gNodeId@STP1TD<, t = gNodeId@STP2TD, n<,
H* continue until nothing' s left to explore...

*L
While@explore ! 8<,
n = First@exploreD;
wtl = Append@wtl, nD;

H* when updating "explore" avoid to include the termination node or
any node already processed or in process The new nodes are added
at the end of the list to keep the bfs order.

*L
explore = Join@Rest@exploreD,
Complement@Map@gEdgeTail, gOutEdges@R, nDD, wtl‹ explore ‹ 8t<DD;

D;

H* Complete the list by adding all nodes not in "wtl" at end of the list
Hexcept termination nodeL.

*L
wtl = Join@wtl, Complement@Map@gNodeId, VD, wtlDD;

wtl
D
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gDfsOrderList@V_, R_, ST_D :=
Module@8wtl = 8<, explore = 8gNodeId@STP1TD<, t = gNodeId@STP2TD, n<,

While@explore ! 8<,
H* continue until nothing' s left to explore...

*L
n = First@exploreD;
wtl = Append@wtl, nD;

H* when updating "explore" avoid to include the termination node or
any node already processed or in process The new nodes are added
in front of the list to keep the dfs order.

*L
explore = Join@Complement@

Map@gEdgeTail, gOutEdges@R, nDD, wtl ‹ explore ‹ 8t<D, Rest@exploreDD
D;

H* Complete the list by adding all nodes not in "wtl" at end of the list
Hexcept termination nodeL.

*L
wtl = Join@wtl, Complement@Map@gNodeId, VD, wtlDD;

wtl
D

ü Graph-Plot Functions

These functions support pictoral drawing of control flow graphs, using some built in Mathematica functions.

ü Support Functions for Graph-Plots

gPlotListEdge  converts  the  edge  given  as  input  to  the  format  required  by  Mathematica's  built  in  drawing
function. This function is defined in two versions: The first one receives as input an edge and outputs a rule-list
entry based on the node-id's. The second version receives a set of vertices together with the edge and returns a
rule-list entry based on the node-labels.

gPlotListEdge@e_D := gEdgeHead@eD Ø gEdgeTail@eD

gPlotListEdge@e_, V_D :=
gNodeTag@First@Select@V, gNodeId@#D == gEdgeHead@eD &DDD Ø
gNodeTag@First@Select@V, gNodeId@#D == gEdgeTail@eD &DDD

gEdgePlotList  converts  the list  based edge representation  to a rule list  for  use with Mathematica's  drawing
functions. If only an edge-set is given as argument, the nodes are named with their id's. If the node set is given
in addition, the labels of the nodes are used to name the vertices in the plot-list.

gEdgePlotList@R_D := Map@gPlotListEdge, RD

gEdgePlotList@R_, V_D := Map@gPlotListEdge@#, VD &, RD

CoveragePreservation_CodeListing.nb 12

Printed by Mathematica for Students



ü Plot-Functions

Now we are ready to draw a programs graph. We need two drawing functions,  to draw the vertices and the
edges of the graph.

gVertexDraw  is the drawing function for  vertexes.  labelDraw  set  to True selects output  of vertex-labels.  If
idDraw  is set to True, id's are drawn. If both are True,  the full node information is drawn, if both are False,
only a point is drawn.

gVertexDraw@P_, pos_, id_, labelDraw_, idDraw_D :=
Module@8theNode, labelColor<,
theNode = First@gSelectNodeById@gB@PD ‹ gC@PD ‹ gST@PD, idDD;
labelColor = Black;
If@MemberQ@gST@PD, theNodeD,
If@theNode ã gST@PDP1T,
labelColor = DarkGreen,
labelColor = Red

D
D;
If@MemberQ@gC@PD, theNodeD,
labelColor = Blue

D;

If@labelDraw fl idDraw,
8labelColor, Text@ToString@theNodeD, pos,
Background Ø White, TextStyle Ø 8FontWeight Ø "Bold"<D<,

H*else*L
If@labelDraw,
8labelColor, Text@gNodeTag@theNodeD, pos,

Background Ø White, TextStyle Ø 8FontWeight Ø "Bold"<D<,
H*else*L
If@idDraw,
8labelColor, Text@ToString@gNodeId@theNodeDD, pos,

Background Ø White, TextStyle Ø 8FontWeight Ø "Bold"<D<,
H*else*L8labelColor, Disk@pos, 0.02D<

D
D

D
D

gEdgeDraw is the drawing function for the edges.
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gEdgeDraw@P_, e1_, e2_, pos1_, pos2_D :=
Module@8arrowPos, textPos, theEdges, theLabels<,
textPos = 80.5* pos1P1T + 0.5* pos2P1T, 0.5 *pos1P2T + 0.5 *pos2P2T<;
arrowPos = 80.25* pos1P1T + 0.75* pos2P1T, 0.25* pos1P2T + 0.75* pos2P2T<;
theEdges = gSelectEdgeById@gR@PD, e1, e2D;
theLabels =
Prepend@Map@If@gEdgeLabel@#D ! "", StringJoin@":", gEdgeLabel@#DDD &,
Rest@theEdgesDD, gEdgeLabel@First@theEdgesDDD;

If@theLabels ã 8<,
8AbsoluteThickness@2D,
Arrow@8pos1, arrowPos<, HeadCenter Ø 0.8D, Line@8arrowPos, pos2<D<,

8AbsoluteThickness@2D, Arrow@8pos1, arrowPos<, HeadCenter Ø 0.8D,
Line@8arrowPos, pos2<D, Blue,
Text@StringJoin@theLabelsD, textPos, Background Ø WhiteD<

D
D

gDrawCfg creates  a plot of a complete Cfg P. In the extended version,  drawVertexLabels and drawVertexId
determine,  if drawing of labels  or drawing of node-id's should be performed. If both values are False, only
points are drawn. If drawVertexLabels and drawVertexId are omitted, vertex-id's are drawn.

gDrawCfg@P_D := gDrawCfg@P, False, TrueD

gDrawCfg@P_, drawVertexLabels_, drawVertexId_D := Module@8gp, vl, vc<,
H* Mathematicas graph-functions introduce their own node id-scheme,

therefore we need a translation list "vl" to map them to the
node-id' s originally used. "vc" holds a list of appropriate
node-coordinates.

*L
gp = gEdgePlotList@gR@PDD;
vl = VertexList@gpD;
vc = GraphCoordinates@gp, Method Ø "SpringModel", PlotRange Ø AutomaticD;

GraphPlot@gp, EdgeStyleFunction Ø
HgEdgeDraw@P, vlP#1T, vlP#2T, vcP#1T, vcP#2TD &L, VertexStyleFunction Ø
HgVertexDraw@P, vcP#T, vlP#T, drawVertexLabels, drawVertexIdD &LD

D

Valuation-Functions

Now defining functions  to extract  the  valuation information from the edges  and prepare it  for  evaluation.  For
simplicity we only determine the single valuations and the union of all valuations. We do not deal with different
combinations of unions, if a combination of more then two edges on incoming and outgoing side are present. 

ü Determining Valuation Information

vOutValuations  and vInValuations  extracts the valuation-information  of all outgoing/incoming edges of a node
with index iv and returns it as a plain-set. The functions automatically determine, if iv is a single index or a set of
node-indices. In cases where iv is a set only the incoming edges with source outside or the outgoing edges with
destination outside the node-set are mentioned while edges between the nodes are ignored.
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The returned set is a flat valuation set, meaning that the function returns the valuations in the form {di , dk ,…}
where di , dk etc. are the valuation set values taken from the edges. This is identical to the union of all valuations
on the incoming/outgoing side of the node with id iv.

vOutValuations@R_, iv_D := Module@8oe<,
If@ArrayDepth@ivD ã 0,
oe = gOutEdges@R, ivD,
oe = gOutEdgesH@R, ivD

D;
If@oe ! 8<,
Union@Flatten@Map@8gEdgeValuation@#D< &, oeDDD,
H* else *L
8<

D
D

vInValuations@R_, iv_D := Module@8ie<,
If@ArrayDepth@ivD ã 0,
ie = gInEdges@R, ivD,
ie = gInEdgesH@R, ivD

D;
If@ie ! 8<,
Union@Flatten@Map@8gEdgeValuation@#D< &, ieDDD,
H* else *L
8<

D
D

ü Reachability/Satisfyability  Valuation

The following functions are implementations for the IVR , IVT  and IVF  functions. The results are coded in a way
that allows  evaluation  of the  valuation-flow relations.  For convinience  we  do not use the  subscript-notation.
Additional we use a generalized version of the satisfyability relations  IVT  and IVF  called IVS. This functions
takes the required label as a third parameter.

The functions are implemented in a two stage manner. cRIE and cSOE first extract the edges with the valuation-
sets relevant for IVR and IVS. In a second step, IVR  and IVS  extracts  the valuation sets  from the edges and
returnes them in a flat set.

ü Reachability Input Edge and Reachability Valuation (IVR)

Reachability  Input  Edges  (RIE)  returns all  incoming  edges  of  node with id iv.  The function automatically
detects, if iv  is a single node or a cluster to collect the input edges of a single node or the input edges to a
hypernode. The result of RIE is corresponding to IVR except that IVR directly returns the valuation values.

cRIE@R_, iv_D := If@ArrayDepth@ivD ã 0, gInEdges@R, ivD, gInEdgesH@R, ivDD

cIVR is the implementation of IVR HxL.

cIVR@R_, iv_D := Union@Map@gEdgeValuation, cRIE@R, ivDDD
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ü Satisfyability Valuation (IVT  and IVF)

vDecisionLabelSet returns a set with all decision labels used in the given set of edges p (application note: p is
usually a path through a decision).

vDecisionLabelSet@p_D := Map@gDLabel@gEdgeLabel@#DD &, pD

Satisfyability Outgoing (or Outcome) Degree (SOD) returns the number of different outcomes of a node with
node-index iv   or  a decision  with a  set iv  of  condition-id's.  The function  is  a helper  for valuation-relation
handling. 

cSOD@R_, iv_D :=
Length@
Union@
If@ArrayDepth@ivD ã 0,
Map@gCLabel@gEdgeLabel@#DD &, gOutEdges@R, ivDD,
Select@DecTrueFalseSet,
# › vDecisionLabelSet@gOutEdgesH@R, ivDD ! 8< &D

D
D

D

Satisfyability  Output  Edges  (SOE)  returns  all  outgoing  edges  of  node  iv  marked  with  condition-label  or
decision label l. The function automatically detects, if iv is a single node or a hyper-node to read the correct
label with one of the functions CLabel or DLabel. The result of SOE is corresponding to IVS with the differ-
ence, that IVS directly returns the valuation values.

cSOE@R_, iv_, l_D := If@ArrayDepth@ivD ã 0,
gSLabOutEdges@R, iv, gCLabel, lD,
gSLabOutEdgesHS@R, iv, gDLabel,
Flatten@Select@DecTrueFalseSet, MemberQ@#, lD &DDD

D

IVS is a general implementation for IVT HxL and IVF HxL. The required satisfyability-label is given as Parameter.

cIVS@R_, iv_, l_D := Union@Map@gEdgeValuation, cSOE@R, iv, lDDD

ü Documentary Functions

The functions of this section are for documetary purposes.

vUnionRelFormat prepares print of valuation-set union vu , which is internal stored as { di , d j ,... }, by expand-
ing the list to form  di ,‹, d j ,‹, ...

vUnionPrefix@n_D := 8"‹", n<

vUnionRelFormat@rg_D :=
Prepend@Flatten@Map@vUnionPrefix, Rest@rgDDD, First@rgDD

vRelationPrint  is a extended printing function for valuation relations. The purpose of this function is to print
relations from a relation set in a more readable form like di û d j . The expression is given in a three parted form
where lhs defines the expression on the left hand side, rc the relation character and  rhs is the expression on the
right handed side. 
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vRelationPrint  is a extended printing function for valuation relations. The purpose of this function is to print
relations from a relation set in a more readable form like di û d j . The expression is given in a three parted form
where lhs defines the expression on the left hand side, rc the relation character and  rhs is the expression on the
right handed side. 

vRelationPrint@ps_, lhs_, rc_, rhs_D :=
Print@ps, MatrixForm@vUnionRelFormat@lhsD, TableDirections Ø 8Row<,
TableSpacing Ø 80.1<D, " ", rc, " ", MatrixForm@
vUnionRelFormat@rhsD, TableDirections Ø 8Row<, TableSpacing Ø 80.1<DD

vPrintRelationSet is a printing function for a complete relation set. It receives the relation graph rg as an input
argument and prints the relations in form of û and ã relations,  that means that this function checks for each
relation dûr if also rûd is in the relation and dependent on that is decides to print û or ã. The prefix string ps is
printed in front of each line.

vPrintRelationSet@rg_, ps_D := Module@8explore = rg, r1, r2<,
While@explore ! 8<,
8r1, r2< = First@exploreD;
If@MemberQ@explore, 8r2, r1<D,
vRelationPrint@ps, r1, "ã", r2D,
H* else *L
vRelationPrint@ps, r1, "û", r2D

D; H* If *L
explore = Complement@explore, 88r1, r2<, 8r2, r1<<D

D H* While *L
D

vCompareRelSets  compares  two relation sets  set1  and set2  and  prints  a list  with remarks,  which  relation is
member of which set.

vCompareRelSets@set1_, set2_D := Module@8inter, set1only, set2only<,
inter = set1 › set2;
set1only = Complement@set1, set2D;
set2only = Complement@set2, set1D;

Print@"fl ", Length@set1onlyD, " of ", Length@set1D,
" elements only in SET 1. fl ", Length@set2onlyD,
" of ", Length@set2D, " elements only in SET 2. fl ",
Length@interD, " elements in common."D;
vPrintRelationSet@set1only, " only Set1 Ø "D;
vPrintRelationSet@inter, "Set1 & Set2 Ø "D;
vPrintRelationSet@set2only, " only Set2 Ø "D

D

ü Resolving Valuation Relations

The functions of this sections are helpers for the function vValRelGraph. The function vValRelGraph is the key
element for calculating the valuation relations. It constructs a relation graph for a given aCFG P which is used to
solve the relations between valuations. The nodes of this graph are the valuation sets (as defined before with the
vValRelObjects function). A directed edge ( di , d j  ) is added to the graph, if di ûdj. In case of  di ãdj the graph
contains edges between di  and d j   in both directions.
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vRelEdgeSet  constructs the bundle of relations between the single valuation element vSuper and the elements in
the set of valuations vSubSet, returning a set of tuples Xd,r\ with valuations d=vSuper and rœvSubSet for any r in
vSubSet. 

vRelEdgeSet@vSuper_, vSubSet_D :=
Flatten@Outer@8#1, #2< &, 8vSuper<, vSubSet, 1D, 1D

Next we define a helper function vResolveValRel to resolve all forward relations between the union of input-valua-
tions inSet and the union of  output  valuations  outSet.  The function only determines  the forward relations. If
forward and backward relations are required, one must call this function a second time with swapped valuation
sets. 

vResolveValRel@inSet_, outSet_D :=
88inSet, outSet<< ‹ Map@8inSet, #< &, Partition@outSet, 1DD

The function vResolveValEquality constructs all valuation relation between a incoming set of valuations iv and a
outgoind set of valuations ov  being in =-relation. The relations are resolved in forward direction as well as in
backward direction. Additional it checks the input sets for validity and returns the empty set if at least one input
set is empty. The main purpose of creating this function is allowing the use of the built-in Mathematica-function
Map in vValRelGraph to iterate through node-set B.

vResolveValEquality@iv_, ov_D :=
If@Hiv ! 8<L fl Hov ! 8<L, vResolveValRel@iv, ovD ‹ vResolveValRel@ov, ivD, 8<D

vResolveNodeValuation  calculates the valuation relation equality local to the input-valuation of node in and the
output valuation of node out. The division in/out was made for using the function to determine relations between
start- and termination-node. Calling the function with the same node for in and out determines the local relation
inside one node (Ø  conservation axiom). vResolveDecisionValuation  determines valuation relations of a deci-
sion, taking into account the type of the decision (loop decision or single branch-decision). The decision-type is
determined by the label: if the decision label contains one of the keywords defined in the global loopDecisionKey-
words (e.g.: "loop", "while"), the decision is treated as a loop, meaning that the outgoing False decision branch
valuation is set  equal  to the decisions  incoming  valuation and the True  branch is set  to be the subset of the
incoming valuation. In all other cases, the decision is treated "normal" with both exits set to be a subset of the
incoming valuation. 

vResolveNodeValuation@R_, in_, out_D := vResolveValEquality@
vInValuations@R, gNodeId@inDD, vOutValuations@R, gNodeId@outDDD

vResolveDecisionValuation@R_, decision_D :=
Module@8dLabel = gDecisionTag@decisionD,
dSet = gDecisionIdSet@decisionD, ivr, ivt, ivf, vr<,
ivr = cIVR@R, dSetD;
ivt = cIVS@R, dSet, "T"D;
ivf = cIVS@R, dSet, "F"D;
vr = vResolveValEquality@ivr, ivt‹ ivfD ‹
vResolveValRel@ivr, ivtD ‹ vResolveValRel@ivr, ivfD ‹
If@StringPosition@ToLowerCase@dLabelD, loopDecisionKeywordsD ! 8<,
vResolveValEquality@ivr, ivfD, 8<D;

vr
D
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ü Simple Valuation Relation-Graph

vValRelGraph  iterates through all elements  of node-set  V adding local relations according to the conservation
axion. The undlying relation is given by R. Start- and termination-nodes are given in the tuple st where the first
element is alway the start node and the second is always the termination node. 

vValRelGraph@P_D :=
Flatten@Map@vResolveNodeValuation@gR@PD, #, #D &, gB@PD ‹ gC@PDD, 1D ‹
vResolveNodeValuation@gR@PD, gST@PDP2T, gST@PDP1TD ‹
Flatten@Map@vResolveDecisionValuation@gR@PD, #D &, gD@PDD, 1D

The  valuation relation graph only contains "obvious" û-relations.  Furthermore,  there exists a whole bunch of
more  relations  which  can  not  be  found  directly  by  inspecting  the  control  flow graph  node-by-node.  These
additional relations must be investigated by transitivity which correspond to inspecting the nodes along a path.
The following function determines the set of all valuation-sets being in a Œ-relation to a given node v defined by
relation-set R (or in other words:  it determines all nodes w where a path from v  to w  exists).  We do this by
inspecting each outgoing edge starting with v and adding the target-nodes to the relation node list. This procedure
is repeated with all founded nodes until no uninspected reachable node is left. 

ü Path Based Valuation Relation-Graph

ü sameEdge

Helper function, returns True if edge e1 and edge e2 are eqivalent in the first three components: head, tail and
label (but not valuation set or path marker).

sameEdge@e1_, e2_D := HgEdgeHead@e1D ã gEdgeHead@e2DL fl
HgEdgeTail@e1D ã gEdgeTail@e2DL fl HgEdgeLabel@e1D ã gEdgeLabel@e2DL

ü vAddPathMarker

... adds path marker pm to the path-marker set of edge e, if e is part of path p and returns a modified version of
e. If the edge is not included in path p, e is returned unmodified.

vAddPathMarker@p_, e_, pm_D :=
If@Select@p, sameEdge@#, eD &D ! 8<,
8gEdgeHead@eD, gEdgeTail@eD, gEdgeLabel@eD,
gEdgeValuation@eD, gEdgePathMarker@eD ‹ 8pm<<,
e

D

ü vValidDecisionPath

A path through a decision is called a valid decision path  if  the decision labels of all edges  in the path are
markers for the same decision outcome, e.g. a decision path is valid if the decision labels of the edges carry "X"
and "T" symbols, but it is not valid if one of the edges has decision label "F" and another edge on the path has
decision label "T".

The function vValidDecisionPath checks if the given (sub-)path p is a valid decision path. This is done in the
following way: First the decision labels of the edges in the given path are extracted and putted into a set. After
removing  the  neutral  symbols  given  by argument  ns  the  remaining  set  must  not consist  of more  than one
symbol, otherwise the decision path is not valid. 
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The function vValidDecisionPath checks if the given (sub-)path p is a valid decision path. This is done in the
following way: First the decision labels of the edges in the given path are extracted and putted into a set. After
removing  the  neutral  symbols  given  by argument  ns  the  remaining  set  must  not consist  of more  than one
symbol, otherwise the decision path is not valid. 

vValidDecisionPath@p_, ns_D :=
Length@Complement@vDecisionLabelSet@pD, nsDD § 1

ü vValidExecutionPath

Checks if path p is a possible execution path in an aCFG with respect to decisions-set dD. A path through an
aCFG is a valid execution path if it comprises only valid decision sub-pathes for all its decisions.

vValidExecutionPath@p_, dD_D :=
Apply@And, Map@vValidDecisionPath@#, 8"X"<D &, gShortestSubPathSet@p, dDDDD

ü vPathTrace

Traces all  pathes in an aCFG defined by execution  relation R and  start-/termination-node  st  using the path
symbol ps. It  returns the modified execution  relation R with edges that contain an appended set-component
with elements  of the form psi  where ps  is the path symbol from the argument list  and i œ ! is a continual
number,  one for  each path.  If an edge is  not  part  of any  path between start-node  and termination-node,  it
contains an empty set as last component.
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vPathTrace@R_, st_, dD_, ps_D := Module@8i, r2, pP<,
If@MemberQ@outputSet, 4D,
Print@"X4\ Tracing pathes through CFG ..."D

D;

pP = Select@gPathSet@R, gOutEdges@R, gNodeId@stP1TDD,
gInEdges@R, gNodeId@stP2TDDD, vValidExecutionPath@#, dDD &D;

If@MemberQ@outputSet, 4D,
Print@"X4\ Found ", Length@pPD,
" executable pathes, mark CFG-Edges with path-identifier ", psD

D;

r2 = Map@8gEdgeHead@#D, gEdgeTail@#D,
gEdgeLabel@#D, gEdgeValuation@#D, 8<< &, RD;

If@MemberQ@outputSet, 9D,
Print@"X9\ HvPathTraceL Initial execution-relation: ", MatrixForm@r2DD

D;

For@i = 1, i § Length@pPD, i++,
r2 = Map@vAddPathMarker@pPPiT, #, psiD &, r2D;

If@MemberQ@outputSet, 6D,
Print@"X6\ Using ", psi, " for path ", pPPiTD;

D;
If@MemberQ@outputSet, 9D,
Print@"X9\ HvPathTraceL Intermediate relation fl ", MatrixForm@r2DD

D

D H* For *L

If@MemberQ@outputSet, 5D,
Print@"X5\ Final relation: ", MatrixForm@r2DD

D;

r2
D H* Module *L

ü vResolvePathEquality

vResolvePathEquality resolves a valuation relation induced by a path relations between the (incoming) edge-set
e1 and the (outgoing) edge-set e2. The function, as a prerequisite, depends on the presence of path markers in
both edges. Otherwise if at least on of the edges contains no path marker, the function always returns an empty
relation. 

Remark:  although  usually  e1  and  e2  will  be  sets  of  edges  on  corresponding  incoming/outgoing  sides,  the
function does not depend on the fact, that the edges share a comon endpoint nor does it depend on any pre-
ferred direction of the edges. Therefore the function can be used for any combination of edges.
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vResolvePathEquality@e1_, e2_D := Module@8m1, m2, v1, v2, res<,

m1 = Union@Flatten@Map@gEdgePathMarker, e1DDD;
m2 = Union@Flatten@Map@gEdgePathMarker, e2DDD;

res = 8<;
If@Hm1 ! 8<L fl Hm2 ! 8<L,
v1 = Union@
Flatten@Map@gEdgeValuation, Select@e1, gEdgePathMarker@#D ! 8< &DDDD;

v2 = Union@Flatten@Map@gEdgeValuation,
Select@e2, gEdgePathMarker@#D ! 8< &DDDD;

H* Check first for m1 û m2, then for m1 Œ m2
*L
If@Hm1› m2L ã m2,
res = res‹ 88v1, v2<<

D;
If@Hm1› m2L ã m1,
res = res‹ 88v2, v1<<

D
D;

res
D

ü vPathRelValuations

This function gets two sets of edges R1 and R2  with path markers. The result  is a set of valuation relations
calculated based on the path markers. If both sets contain identical edges, trivial relations of an edge with itself
are omitted and will not be part of the result set. If the edges of at least one set contain no path markers or if no
relations based on pathes can be found, the empty set is returned.
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vPathRelValuations@R1_, R2_D := Module@8i, vv, res<,
If@MemberQ@outputSet, 6D,
Print@"X6\ Resolve path related valuation relations R1 = ",

MatrixForm@R1D, " ¨ R2 = ", MatrixForm@R2DD;
D;

H* Initial relation with all elements of R1,R2.
*L
res = vResolvePathEquality@R1, R2D;
If@MemberQ@outputSet, 7D,
Print@"X7\ Initial Relation for R1 ¨ R2 : ", MatrixForm@resDD

D;

H* All elements of R1 with each element of R2 and
all elements of R2 with each element of R1.

*L
If@R1 ! R2,
vv = Flatten@Map@vResolvePathEquality@R1, 8#<D &, R2D, 1D ‹
Flatten@Map@vResolvePathEquality@R2, 8#<D &, R1D, 1D;

If@MemberQ@outputSet, 7D,
Print@"X7\ Relations for R1 with each of R2 and reverse : ",
MatrixForm@Union@vvDDD

D;
res = res‹ vv;

D;

For@i = 1, i § Length@R1D, i++,
H* Get all relations with the i' th element. The complement on the

set "R" avoids trivial relation with the edge RPiT itself.
*L
vv = Flatten@Map@

vResolvePathEquality@8R1PiT<, 8#<D &, Complement@R2, 8R1PiT<DD, 1D;
If@MemberQ@outputSet, 7D,
Print@"X7\ Relations for ", R1PiT, " µ R2 : ", MatrixForm@Union@vvDDD

D;

H* Add the results to the result set and continue.
*L
res = res‹ vv

D;

res
D
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vPathDecCondValuations@R_, dcSet_D := Module@8ier, iet, ief, vr<,
If@MemberQ@outputSet, 6D,
Print@"X6\ Cond.êDec.-Relation for ", dsetD

D;

ier = cRIE@R, dcSetD;
iet = cSOE@R, dcSet, "T"D;
ief = cSOE@R, dcSet, "F"D;
If@MemberQ@outputSet, 6D,
Print@"X6\ Dec.êCond. Ø In: ", MatrixForm@ierD, " out-true: ",
MatrixForm@ietD, " out-false: ", MatrixForm@iefDD

D;

vr = vPathRelValuations@ier, iet‹ iefD ‹
vPathRelValuations@ier, ietD ‹ vPathRelValuations@ier, iefD;

If@MemberQ@outputSet, 6D,
Print@"X6\ Cond.êDec.-Relations: ", MatrixForm@vrDD

D;

vr
D

ü vPathRelGraph

...creates  a  valuation-relation  graph  of  program  P  created  using  additional  path  information.  The  function
always uses an internal created set of edges with added path-markers no matter if the edge set of P already
contains path markers or not.

vPathRelGraph@P_D := Module@8r2, res<,
r2 = vPathTrace@gR@PD, gST@PD, Map@gDecisionIdSet, gD@PDD, pD;

res = Flatten@Map@vPathRelValuations@
gInEdges@r2, gNodeId@#DD, gOutEdges@r2, gNodeId@#DDD &, gB@PDD, 1D ‹

vPathRelValuations@gInEdges@r2, gNodeId@gST@PDP2TDD,
gOutEdges@r2, gNodeId@gST@PDP1TDDD ‹
Flatten@Map@vPathDecCondValuations@r2, gNodeId@#DD &, gC@PDD, 1D ‹
Flatten@Map@vPathDecCondValuations@r2, gDecisionIdSet@#DD &, gD@PDD,
1D;

res
D
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ü Transformation Relation-Graph

ü Functional Relations

For convenience, the functional relation symbol was incorporated as last part of the edge label (avoiding the
need to introduce a new component in the edge definition). This one character represents the RelationLabel and
is  accessed  with  the  function  gRLabel.  If  an  edge  carries  no  functional  relation  label,  the  symbol  "=" is
returned.  So  edges  without  functional  relation  labels  are  treated  like  carrying  the  functional  relation  "=".
Different to condition-/decision-labels  there  is no distinction between functional  relations of conditions  and
decisions. In case of a decision, only the edges outgoing from the decision hypernode are relevant, the func-
tional relations along  the path inside the decision are not relevant.  Like condition-/decision-labels  the func-
tional relation is meant to be valid for the outgoing side of a node/hypernode only.

Calculating the relation function label for a condition/decision is done by the function vCondDecRelFunc. The
function automatically determines if the input is a node-index or a index-set representing nodes of a decision.
In any cases only the outgoing edges labelled with condition/decision label l are taken into account. If there are
more than one outgoing edge the function returns a combined relation symbol that is calculated with the rules
described above. Remember that for a decision only the outgoing edges are relevant for the function relation
but no internal edge is mentioned.

vCondDecRelFunc@R_, iv_, l_D := Module@8edgeSet, combSet<,
edgeSet = cSOE@R, iv, lD;

H* Calculate the combination-set of functional relations symbols
and remove the neutral "=".

*L
combSet =
Complement@Union@Map@gRLabel, Map@gEdgeLabel, edgeSetDDD, 8"="<D;

H* Calculate the result. Be careful about comparing a set with a
constant set. The constant set must be converted to a set
first, otherwise the comparison may fail.

*L
If@combSet ã 8<,
"=",
If@MemberQ@combSet, "X"D fi HcombSet› 8"+", "-"< ã Union@8"+", "-"<DL,
"X",
First@combSetD

D
D

D

ü Node/Decision Transformation Relation

The function vNodeTransRelation is a helper for vTransRelGraph to determine the transformation relation of a
single node or decision hypernode and its counterpart in the original program (if such a counterpart exists).

vNodeTransRelation@uP_, tP_, tRel_, vi1_, vi2_D :=
Module@8rel, tfr, ffr, ivr1, ivr2, relValSet, oDeg1, oDeg2<,
H*Print@"vNodeTransRel for ",vi1," ¨ ",vi2D;*L

rel = tRel;
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H* First of all get some properties of the two Nodes...
*L
tfr = vCondDecRelFunc@gR@tPD, vi2, "T"D;
ffr = vCondDecRelFunc@gR@tPD, vi2, "F"D;
H*Print@"tfr,ffr",MatrixForm@8tfr,ffr<DD;*L

ivr1 = cIVR@gR@uPD, vi1D;
ivr2 = cIVR@gR@tPD, vi2D;
H*Print@"ivr1,ivr2",MatrixForm@8ivr1,ivr2<DD;*L

oDeg1 = cSOD@gR@uPD, vi1D;
oDeg2 = cSOD@gR@tPD, vi2D;
H*Print@"oDeg1,oDeg2: ",MatrixForm@8oDeg1,oDeg2<DD;*L

If@MemberQ@outputSet, 8D,
Print@"X8\ HvNodeTransRelationL P2-node ", vi2, " XIVR=", ivr2,
", Out-deg.=", oDeg2, "\ ¨ P1-node ", vi1, " XIVR=", ivr1,
", Out-deg.=", oDeg1, "\; functional relation is ", 8tfr, ffr<D

D;

H* Now check relation from P1 to P2 and add it to "rel", if such a
relation exists. We only add relations for conditions, because
further relations for simple nodes should be easy to resolve by
transitivity.

*L

relValSet = Union@Flatten@vRelNodes@rel, ivr2DDD;
H*Print@"relValSet: ",relValSetD;*L

If@vSubsetOf@relValSet, ivr1D ,

H* Add relation for case IVR Hx'L û IVR HxL Hx' in P2, x in P1L.
*L
If@MemberQ@outputSet, 9D,
Print@"X9\ + Outg. relation for ", ivr2, " û ", ivr1D

D;

If@HoDeg1 > 1L fl HoDeg2 > 1L,
If@tfr ! "X",
rel =
rel‹ vResolveValRel@cIVS@gR@tPD, vi2, "T"D, cIVS@gR@uPD, vi1, "T"DD

D;
If@ffr ! "X",
rel =
rel‹ vResolveValRel@cIVS@gR@tPD, vi2, "F"D, cIVS@gR@uPD, vi1, "F"DD

D;

H* Check the type of relation,
the node of the transformed program has

compared to the node of the untransformed program.
If the output is amplified or equal,

then nothing has to be done. If
output is reduced, nothing can be stated about the output-
relations and
therefore the û-relation must be removed.
Remark:
It seems to be very inefficient first to add and then to remove
a relation instead not to add it. But it is
not sufficient not to add it,
because the same relation may have been added

before. So it needs to be
actively removed!

*L
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*L
If@Ÿ MemberQ@8"=", "+", "X"<, tfrD,
rel = Complement@rel,

vResolveValRel@cIVS@gR@tPD, vi2, "T"D, cIVS@gR@uPD, vi1, "T"DDD
D;
If@Ÿ MemberQ@8"=", "+", "X"<, ffrD,
rel = Complement@rel,

vResolveValRel@cIVS@gR@tPD, vi2, "F"D, cIVS@gR@uPD, vi1, "F"DDD
D

H*, else *L
H* rel=rel‹vResolveValRel@

vOutValuations@gR@tPD,vi2D,vOutValuations@gR@uPD,vi1DD*L

D H* If oDeg *L
D; H* If vSubsetOf *L

relValSet = Union@Flatten@vRelNodes@rel, ivr1DDD;
If@vSubsetOf@relValSet, ivr2D ,

H* Add relation for case IVR HxL û IVR Hx'L Hx' in P2, x in P1L.
*L
If@MemberQ@outputSet, 9D,
Print@"X9\ + Outg. relation for ", ivr1, " û ", ivr2D

D;
If@HoDeg1 > 1L fl HoDeg2 > 1L,
If@tfr ! "X",
rel =
rel‹ vResolveValRel@cIVS@gR@uPD, vi1, "T"D, cIVS@gR@tPD, vi2, "T"DD

D;
If@ffr ! "X",
rel =
rel‹ vResolveValRel@cIVS@gR@uPD, vi1, "F"D, cIVS@gR@tPD, vi2, "F"DD

D;

H* Check the type of relation like in the case IVR Hx'L û IVR HxL,
but with the nodes swapped. In this case, the relation must
be removed in case of amplification.

*L
If@Ÿ MemberQ@8"=", "-", "X"<, tfrD,
rel = Complement@rel,

vResolveValRel@cIVS@gR@tPD, vi1, "T"D, cIVS@gR@uPD, vi2, "T"DDD
D;
If@Ÿ MemberQ@8"=", "-", "X"<, ffrD,
rel = Complement@rel,

vResolveValRel@cIVS@gR@tPD, vi1, "F"D, cIVS@gR@uPD, vi2, "F"DDD
D

H* , else *L
H* rel=rel‹vResolveValRel@

vOutValuations@gR@uPD,vi1D,vOutValuations@gR@tPD,vi2DD *L

D H* If oDeg *L
D; H* If vSubsetOf *L

rel
D

ü Transformation Relation Graph Construction
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vTransRelGraph  investigates  the transformation-relation  between  the untransformed program represented by
aCFG uP  and the transformed program represented by aCFG tP. tP  must be in the extended transformation
form, where each nodes contains a additional rel-id-component. The first definition is only a shortcut

vTransRelGraph@uP_, tP_, hints_D := vTransRelGraph@uP, tP, hints, FalseD

vTransRelGraph@uP_, tP_, hints_, pathBased_D :=
Module@8wto, valIndex, P1rel, P2rel,
Trel, explore, expDec, decToProc, vd1, vd2, dfr<,

H* Now start to determine transformation relations by using the
extended transfed graph for identifying eqivalent statements
in the transformed and in the non-transformed graph.

*L
If@pathBased,
H* PATH BASED analysis *L
If@MemberQ@outputSet, 4D,
Print@"X4\ Performing transformation-

relations analysis using PATH-BASED relation graph"D,
D;
P1rel = vPathRelGraph@uPD;
P2rel = vPathRelGraph@tPD

, H* else ... SIMPLE analysis *L
If@MemberQ@outputSet, 4D,
Print@"X4\ Performing transformation-

relations analysis using SIMPLE relation graph"D
D;
P1rel = vValRelGraph@uPD;
P2rel = vValRelGraph@tPD

D;

If@MemberQ@outputSet, 5D,
Print@"X5\ ", Length@P1relD, " local Valuation-Relations in P1: "D;
vPrintRelationSet@P1rel, " Â "D;
Print@"X5\ ", Length@P2relD, " local Valuation-Relations in P2:"D;
vPrintRelationSet@P2rel, " Â "D

D;

H* By axiom the output of the start-node and the input of
the termination is the same for both programs. Also add
the hints to the initial relations.

*L
Trel = P1rel ‹ P2rel‹ hints ‹
vResolveValEquality@vOutValuations@gR@uPD, gNodeId@gST@uPDP1TDD,
vOutValuations@gR@tPD, gNodeId@gST@tPDP1TDDD ‹
vResolveValEquality@vInValuations@gR@uPD, gNodeId@gST@uPDP2TDD,
vInValuations@gR@tPD, gNodeId@gST@tPDP2TDDD;

If@MemberQ@outputSet, 6D,
Print@"X6\ Initial Trans.-Rel. for

start-êtermination-node Hequality by definitionL..."D;
Print@"X6\ P2-node ", gNodeId@gST@tPDP1TD,
" ¨ P1-node ", gNodeId@gST@uPDP1TDD;
Print@"X6\ P2-node ", gNodeId@gST@tPDP2TD,
" ¨ P1-node ", gNodeId@gST@uPDP2TDD

D;

H* Now traverse all other nodes in top to bottom order. We use now a
depth first search order to avoid early evalutation of nodes on a
deeper level and to evaluate the longest possible chain before
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deeper level and to evaluate the longest possible chain before
evaluating nodes on the same level.
??? Not really sure if that is better than bfs order, but I think

it' s better for loops. Hmmm... Why?
*L
wto = gDfsOrderList@gV@tPD, gR@tPD, gST@tPDD;
explore =
Flatten@Map@gSelectNodeById@gB@tPD ‹ gC@tPD, #D &, Rest@wtoDD, 1D;
expDec = gD@tPD;
If@MemberQ@outputSet, 6D,
Print@"X6\ Exploring trans.-relations P1 Ø P2 using order ", wtoD

D;

While@explore ! 8<,
H* Check, if there is any related node for "v2". If not,

HgNodeRelId < 0L there is nothing to do.
*L
If@gNodeRelId@First@exploreDD ¥ 0,
Trel = vNodeTransRelation@uP, tP, Trel,

gNodeRelId@First@exploreDD, gNodeId@First@exploreDDD;

H* Check if there is a decision, the processed node is part of
and determine, if there is a functional identical decision in
the non-transformed program "uP".

*L
vd2 = gSelectDecisionById@expDec, gNodeId@First@exploreDDD;
If@vd2 ! 8<,

vd1 = gSelectDecisionById@gD@uPD, gDecisionRelSet@First@vd2DDD;
If@vd1 ! 8<,
H*Print@"Decision found: ",vd1," <- vd1 » vd2 -> ",vd2D;*L
Trel = vNodeTransRelation@uP, tP, Trel,
gDecisionIdSet@First@vd1DD, gDecisionIdSet@First@vd2DDD;

expDec = Complement@expDec, vd2D

D H* If decToProc ! 8< *L

D H* If vd1 ! 8< *L

D; H* if gNodeRelId@First@exploreDD¥0 *L

H* Remove the already processed node from explore. We took the
first and therefore "Rest" will do the job.

*L
explore = Rest@exploreD;

D; H* While *L

If@MemberQ@outputSet, 5D,
Print@"X5\ ", Length@Complement@Trel, P1rel‹ P2relDD,
" Final P1 Ø P2 relations:"D;
vPrintRelationSet@Complement@Trel, P1rel ‹ P2relD, " Â "D

D;

Trel H* ‹ hints ??? *L
D

ü Investigating Relations Between Valuation-Sets
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vRelNodes returns a set of all nodes, reachable from a given node v. The argument set R holds the edge set of the
graph. This function is normally used for the valuation relation graph to determine the related valuations of a
given valuation set v in a valuation relation graph with relations R.

vRelNodes@R_, v_D := Module@8II = 8<, X = 8v<, w<,
H*Print@"ØØØ RelNodes for node ",vD;*L
While@X ! 8<,
w = First@XD;
H*Print@"w: ",w," X: ",XD;*L
II = II ‹ 8w<H*‹Partition@w,1D*L;
H*Print@"II: ",II," Succ. of ",w,": ",gOutEdges@R,wDD;*L
X = X ‹ Map@gEdgeTail@#D &, gOutEdges@R, wDD ‹ Partition@w, 1D;
H*Print@"X: ",X," X\II: ",Complement@X,IIDD;*L
X = Complement@X, IID

D;
H*Print@"""" ",IID;*L
II

D

Checking, wether or not a given valuation set di  is a superset of another valuation set d j  can be done by checking
if  d j  is  a member  in  the set  vRelNodes(R,  {di }).  This is  sufficient  for  most  cases  especially  when  checking
coverage preservation. In some rare cases this simple procedure may fail. Particularly during construction of a
relation graph the presence of obvious relations may be sensitive to the order of the construction sequence. So
when using the relations constructed so far the necessary relation may not be available direclty, but other rela-
tions may be present which can substitude the lack of relations in the graph. E.g.: If it is necessary to check, if di

û d j‹ dk , then with the simple method a node for  di  and d j‹ dk  must be present. If the node d j‹ dk  is missing,
the check fails.  But if the relations  di  û d j  and di  û dk are both available  instead,  the relation above can be
verified even though successful. 

This task is performed by the function vSubsetOf. The function takes as parameters a (flat) set of valuation-candi-
dates sc created in relation to the superset-valuation and the valuation v which should be checked. The function
checks the candidates in sc, if there are members  which imply, that v is a subset of the original superset-valua-
tion. True or False is returned as result. 

vSubsetOf@sc_, v_D := Module@8<,
H*Print@"SubsetOf: ",sc," › ",v," fl ",sc›vD;*L
sc › v ã v

D

The operation Union[Flatten[…]] in the valuation notation is the union of all valuation-sets and constructs the
set d' from above while the union representation used for valuation-sets is identical to the notation of r'.

Preservation Proofs

ü Statement Coverage

Definition: Preservation of Statement Coverage: "b'œB2  $bœB1 with IVR (b')ûIVR (b). We implement this rule in
an algorithmic way by scanning through each basic block of Program 2 and check if there exists any basic block
in Program 1 with a valuation label that fullfills the required û relation.
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SCPres  checks  for  Program P1  and  the transformed  Program P2  if  the SC-Preservation  criteria is  fullfilled.
Properties of the transformation are defined by TR in form of relations between the valuation relation graphs of
P1 and P2. 

WARNING-Messages:
"Empty Reachability Valuation for node # !!!" will be printed if IVR  returns the empty set. Possible reason: The
start node is member in B or a non connected node is included in set B.

cSCPres@P1_, P2_, RG_D := Module@8S1, S2, R1, R2, i, vr, rvr, rn, scpf = True<,
H* To make sure, not to deal with the empty IVR-set we exclude

start and termination node from the basic block set.
*L
S1 = Map@gNodeId, gB@P1DD;
R1 = gR@P1D;
S2 = Map@gNodeId, gB@P2DD;
R2 = gR@P2D;

If@MemberQ@outputSet, 2D,
Print@"Ë SC-Preservation, checking: "b'œ ",
S2, " $bœB1 with IVRHb'LûIVRHbL"D

D;

H* Scan through each node of P2...
*L
For@i = 1, i § Length@S2D, i++,
H* Determine the Reachability Valuation of the current node and their

related valuations.
*L
vr = cIVR@R2, S2PiTD;
If@Hvr ã 8<L fl HMemberQ@outputSet, 4DL,
Print@
"X4\: WARNING! Empty Reachability Valuation for node ", S2PiT, "!!!"D

D;

rvr = Union@Flatten@vRelNodes@RG, vrDDD;
If@MemberQ@outputSet, 6D,
Print@"X6\: P2-node ",
S2PiT, " IVRã", vr, " Ø related valuations: ", rvrD

D;

H* Select Nodes of Program 1
with related valuations and check if there is any.

*L
rn = Select@S1, vSubsetOf@rvr, cIVR@R1, #DD &D;
If@MemberQ@outputSet, 3D,
Print@"™ P1-nodeHsL b with IVRH", S2PiT, "L û IVRHbL: ", rnD

D;

scpf = scpf fl Hrn ! 8<L;
D;

H* Return the accumulated result. *L
scpf

D 
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ü touchesID

Definition of touches_ID: touches_ID(x,ID):ó (IVT (x) ŒID) fi (IVF (x) Œ ID)

touchesID  is implemented  a little bit different compared to the original definition.  Instead of ID the predicate
gets  the flat set  vr of  valuations,  related to ID.  The program object  x  can be a condition  or a decision.  The
difference between condition and decission is handled by the IVS-function.  The function is not able to check,
wether the given execution-relation R is valid for x since x can be a isolated node.

touchesID@R_, x_, vr_D := Module@8ivt, ivf, re<,
ivt = cIVS@R, x, "T"D;
ivf = cIVS@R, x, "F"D;
re = vSubsetOf@vr, ivtD fi vSubsetOf@vr, ivfD;
If@MemberQ@outputSet, 4D,
Print@"X4\: @IVTH", x, "Lã",
ivt, " fi IVFH", x, "Lã", ivf, "D Œ ", vr, " Ø ", reD

D;

re
D

ü Condition Coverage

Definition of Condition Coverage: " c ' œ CHP2 ) ($ c œ CHP1 ) with touches_ID Hc, IVT (c')) and $ c œ CHP1 ) with
touches_ID Hc, IVF (c')))
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cCCPres@P1_, P2_, RG_D :=
Module@8C1, C2, R1, R2, i, vrt, vrf, rvrt, rvrf, rnt, rnf, scpf = True<,

H* To adapt to future enhancements we read some informations
from left to right and other from right to left. *L

C1 = Map@gNodeId, gC@P1DD;
R1 = gR@P1D;
C2 = Map@gNodeId, gC@P2DD;
R2 = gR@P2D;

If@MemberQ@outputSet, 2D,
Print@"Ë CC-Preservation, checking " c2 œ ", C2, ": $ c œ C1 »

touches_ID Hc, IVTHc2LL <and> $ c œ C1 » touches_IDHc,IVFHc2LL"D;
Print@" touches_IDHx,IDL:óHIVT HxLŒIDLfiHIVFHxLŒIDL"D

D;

H* Scan through each condition node of P2...*L
For@i = 1, i § Length@C2D, i++,
H* Determine the Satisfyability

Valuations of the current node and their
related valuations.

*L
vrt = cIVS@R2, C2PiT, "T"D;
vrf = cIVS@R2, C2PiT, "F"D;
If@Hvrt ã 8<L fi Hvrf ã 8<L fl MemberQ@outputSet, 4D,
Print@"X4\: WARNING! At least one empty

Satisfyability Valuation for node ", C2PiT, " detected!!!"D
D;

rvrt = Union@Flatten@vRelNodes@RG, vrtDDD;
rvrf = Union@Flatten@vRelNodes@RG, vrfDDD;
If@MemberQ@outputSet, 6D,
Print@"X6\ P2: IVTH",
C2PiT, "Lã", vrt, " Ø related valuations ", rvrtD;

Print@"X6\ P2: IVFH", C2PiT, "Lã", vrf,
" Ø related valuations ", rvrfD

D;

H* Select Nodes of Program 1
with related valuations and check if there is any.

*L
H*rn=Select@C1,touchesID@R1,#,rvrtDfltouchesID@R1,#,rvrfD&D;*L
rnt = Select@C1, touchesID@R1, #, rvrtD &D;
rnf = Select@C1, touchesID@R1, #, rvrfD &D;
scpf = scpf fl Hrnt ! 8<L fl Hrnf ! 8<L;
If@MemberQ@outputSet, 3D,
Print@"™ P1-nodeHsL: 8c » touches_ID Hc, IVTH", C2PiT, "LL< Ø ", rnt,
" <and> 8c » touches_ID Hc, IVFH", C2PiT, "LL< Ø ", rnfD

D
D;

H* Return the accumulated result. *L
scpf

D H* CCPres *L
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ü Decision Coverage

Definition of Decision Coverage: " d ' œ DHP2 ) ($ d œ DHP1 ) with touches_ID Hd, IVT (d')) and $ d œ DHP1 ) with
touches_ID Hd, IVF (d')))
Definition of touches_ID: as above but in this case x is a decision.

cDCPres@P1_, P2_, RG_D :=
Module@8D1, D2, R1, R2, i, vrt, vrf, rvrt, rvrf, rdt, rdf, scpf = True<,

H* To adapt to future enhancements we read some informations
from left to right and other from right to left. *L

D1 = Map@gDecisionIdSet, gD@P1DD;
R1 = gR@P1D;
D2 = Map@gDecisionIdSet, gD@P2DD;
R2 = gR@P2D;

If@MemberQ@outputSet, 2D,
Print@"Ë DC-Preservation, checking " d2 œ ", D2, ": $ d œ D1 »

touches_ID Hd, IVTHd2LL <and> $ d œ D1 » touches_IDHd,IVFHd2LL"D;
Print@" touches_IDHx,IDL:óHIVT HxLŒIDLfiHIVFHxLŒIDL"D

D;

H* Scan through each condition node of P2...*L
For@i = 1, i § Length@D2D, i++,
H* Determine the Satisfyability

Valuations of the current decision and their
related valuations.

*L
vrt = cIVS@R2, D2PiT, "T"D;
vrf = cIVS@R2, D2PiT, "F"D;

If@Hvrt ã 8<L fi Hvrf ã 8<L fl MemberQ@outputSet, 4D,
Print@"X4\: WARNING! At least one empty Satisfyability

Valuation for decision ", D2PiT, "detected!!!"D
D;
rvrt = Union@Flatten@vRelNodes@RG, vrtDDD;
rvrf = Union@Flatten@vRelNodes@RG, vrfDDD;
If@MemberQ@outputSet, 6D,
Print@"X6\ P2: IVTH", D2PiT, "Lã", vrt, " is related with ", rvrtD;
Print@"X6\ IVFH", D2PiT, "Lã", vrf, " is related with ", rvrfD

D;

H* Select Nodes of Program 1
with related valuations and check if there is any.

*L
H*rd=Select@D1,touchesID@R1,#,rvrtDfltouchesID@R1,#,rvrfD&D;*L
rdt = Select@D1, touchesID@R1, #, rvrtD &D;
rdf = Select@D1, touchesID@R1, #, rvrfD &D;
scpf = scpf fl Hrdt ! 8<L fl Hrdf ! 8<L;
If@MemberQ@outputSet, 3D,
Print@"™ P1-DecisionHsL: 8d » touches_ID Hd, IVTH", D2PiT, "LL< Ø ",
rdt, " <and> 8d » touches_ID Hd, IVFH", D2PiT, "LL< Ø ", rdfD

D
D;

H* Return the accumulated result. *L
scpf

D H* DCPres *L
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ü Modified Condition Decision Coverage

To solve the MCDC preservation problem we have to show among others, that subsets ID1 and ID2 exist, that
fullfill the MCDC condition for some condition/decision pair in P1 and in P2. To get a list of possible candidates
for these sets,  we use the first two parts of the preservation condition to gain  characterizations,  that must  be
fullfilled, if these sets exist. 

The construction of  possible  characterizations  for  ID-sets  is based  on paths  through a decision  d,  starting at
IVR(d)  and  terminating  at  IVT (d)  or IVF (d).  To find these  paths,  the  gPathSet  function  from above  is used
together with the helper function cDecisionPath to check, wether or not a path p fits a certain decision outcome
dr. A path fits a certain decision outcome gœ{T,F},  if the decision labels on all edges in the path are x , X or
empty, and if g and x are members of the same set determined by the global variable DecisionTrueFalseSet. 

cDecisionPath@p_, dr_D := Module@8pl<,
pl = Complement@vDecisionLabelSet@pD, 8"", "X"<D;
symbSet =
If@dr == "X", DecTrueFalseSet, Select@DecTrueFalseSet, MemberQ@#, drD &DD;

HLength@plD ã 0L fi
HHLength@plD ã 1L fl HMemberQ@Flatten@symbSetD, First@plDDLL

D

cVariantCondition is a helper to check the validity of a path through a decision. It checks, if a path p includes
the same edge as e but with a different condition result. This function is normally used as a helper for examining
two paths for common variant conditions (see cCommonVariantConditions below). cVariantCondition returns a
list with the head identifier of e, if an edge with the same head and tail but with a different condition result exists
in p. Otherwise, it returns the empty set.

cVariantCondition@e_, p_D :=
Map@gEdgeHead, Select@p, gEdgeHead@eD ã gEdgeHead@#D fl

gCLabel@gEdgeLabel@eDD ! gCLabel@gEdgeLabel@#DD &DD;

cValidMCDCPath  compares two paths p1 and p2 if exactly one of the shared conditions has a different condi-
tion result. If such a condition exists and if this condition has the identifier c, the function returns True, otherwise
it returns False.

cValidMCDCPath@c_, p1_, p2_D := Module@8vc<,
vc = Apply@Union, Map@cVariantCondition@#, p2D &, p1DD;
Length@vcD ã 1 fl First@vcD ã c

D

InvExprPath  performs  the  invariant  expression  check  for  a  condition  c  in  relation  to  a  true-path  tp  and  a
false-path  fp.  The check is done  by intersecting  the true-edges  and the false-edges  with the given  paths and
checking if at least one result is empty. 

cInvExprPath@R_, c_, tp_, fp_D := Module@8te, fe<,
te = cSOE@R, c, "T"D;
fe = cSOE@R, c, "F"D;

HHte› tp ã 8<L fi Hfe› fp ã 8<LL fl HHte › fp ã 8<L fi Hfe› tp ã 8<LL
D

The function constructIDcand  returns a list  of possible characterizations  for ID-sets  related to decision d and
condition c in the program defined by execution relation R. The characterization for a ID set related to decision d
and condition c is a 3-tuple ( g , d , s ), where g is the valuation set related to c (determined with IVT (c) or
IVF (c) in the mult_control_expr condition), d the valuation set related to d (determined by IVT (d) or IVF (d) in
mult_control_expr) and s is a set containing all valuation sets in all condition c''! c with an empty intersection
ID› IVT (c'') or ID›IVF (c''), determined by the isInvariantExpr condition of uniqueCause. 
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The function constructIDcand  returns a list  of possible characterizations  for ID-sets  related to decision d and
condition c in the program defined by execution relation R. The characterization for a ID set related to decision d
and condition c is a 3-tuple ( g , d , s ), where g is the valuation set related to c (determined with IVT (c) or
IVF (c) in the mult_control_expr condition), d the valuation set related to d (determined by IVT (d) or IVF (d) in
mult_control_expr) and s is a set containing all valuation sets in all condition c''! c with an empty intersection
ID› IVT (c'') or ID›IVF (c''), determined by the isInvariantExpr condition of uniqueCause. 

The construction of this list is based on analysis of pathes starting at IVR(d) and terminating at IVT (d) or IVF (d)
(d is a decision). The edge sequences for the true and false paths are constructed in a 2 step process. In the first
step the pathes from  IVR (d) up to  IVR (c)  and from  IVR(c) to IVT (d) or IVF (d) are calculated. In the second
step all valid combinations of the path torsos calculated in the first step are constructed. The valuation-sets of the
edges are used to determine the characteristics of the required valuation-sets ID1/ID2. 

constructIDcand@R_, d_, c_D :=
Module@8ect, ecf, edt, edf, de, ce, dEntry, dpt, dpf,
it, if, jt, jf, cpt, cpf, invCond, e2tf, invVal, ids = 8<<,

If@MemberQ@outputSet, 4D,
Print@
"X4\ construct ID candidates for condition ", c, " in decision ", dD

D;

H* Determine the outgoing edges and reachability edges for d and c
*L
ect = cSOE@R, c, "T"D;
ecf = cSOE@R, c, "F"D;
edt = cSOE@R, d, "T"D;
edf = cSOE@R, d, "F"D ;

de = cRIE@R, dD;
ce = cRIE@R, cD;

If@MemberQ@outputSet, 5D,
Print@"X5\ Â Condition involves edges IVR Ø ", MatrixForm@ceD,
" XIVT,IVF\ Ø X", MatrixForm@ectD, ",", MatrixForm@ecfD, "\"D;
Print@"X5\ Â Decision involves edges IVR Ø ", MatrixForm@deD,
" XIVT,IVF\ Ø X", MatrixForm@edtD, ",", MatrixForm@edfD, "\"D

D;

H* Construct path-
segments. From IVR HdL to IVR HcL we remove the entry edges,
because they may disturb qualification as a valid decision path,if they
contain a decision label from a other decision. Then construct paths
from IVT HcL to IVT HdL and IVF HcL to IVF HdL
and select only valid ones.

*L
dEntry = Select@Union@Map@Complement@#, deD &, gPathSet@R, de, ceDDD,
cDecisionPath@#, "X"D &D;

If@MemberQ@outputSet, 5D,
Print@"X5\ Entry paths from IVRH",
d, "L to IVRH", c, "L fl ", MatrixForm@dEntryDD

D;

H* We start with the combinations Condition TrueêFalse -
Decision TrueêFalse!

*L
dpt = Select@gPathSet@R, ect, edtD, cDecisionPath@#, "T"D &D;
dpf = Select@gPathSet@R, ecf, edfD, cDecisionPath@#, "F"D &D;
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If@MemberQ@outputSet, 5D,
Print@"X5\ Searching for valid TêF-TêF outcome combinations fl"D;
Print@"X5\ Dec.-True Path: ", dptD;
Print@"X5\ Dec.-False Path: ", dpfD

D;

H* Construct all possible combinations of path-elements using a path
from "dEntry" as the beginning
and continuing with a path from "dpt" and "dpf"
as true and false fork of the condition.
"i" loops over all entry pathes, jtêjf over all trueêfalse pathes.

*L
For@it = 1, it § Length@dEntryD, it++,
For@if = 1, if § Length@dEntryD, if++,
For@jt = 1, jt § Length@dptD, jt++,
For@jf = 1, jf § Length@dpfD, jf++,

H* Combine two pieces to
form the complete path for True H"cpt"L and the
complete path for False H"cpf"L.

*L
cpt = Join@dEntryPitT, dptPjtTD;
cpf = Join@dEntryPifT, dpfPjfTD;
If@MemberQ@outputSet, 6D,
Print@
"X6\ Â Complete paths to check: True Ø ", cpt, " False Ø ", cpfD;
Print@" Valid decision path and MCDCPath for ",
c, " ? ", 8cDecisionPath@cpt, "T"D,
cDecisionPath@cpf, "F"D, cValidMCDCPath@c, cpt, cpfD<D

D;
H* Check first, if the path combinations are a valid decision paths.

*L
If@cDecisionPath@cpt, "T"D fl
cDecisionPath@cpf, "F"D fl cValidMCDCPath@c, cpt, cpfD,

H* The control_expr predicate is fullfilled
by construction. To determine
the empty intersection we have to do the invariant_expr check.

*L
invCond = Select@d, cInvExprPath@R, #, cpt, cpfD &D;
If@MemberQ@outputSet, 6D,
Print@"X6\ Â Invariant Conditions: ", invCondD

D;

H* If not all conditions from the complement d\8c< are invariant,
then this is not a valid path combination and therefore ignore it.
*L
If@Complement@d, 8c<D ã invCond,
e2tf = Flatten@Map@cSOE@R, #, "T"D ‹ cSOE@R, #, "F"D &, invCondD, 1D;
invVal = Map@8gEdgeValuation@#D< &,
Select@e2tf, Ÿ MemberQ@cpt, #D fl Ÿ MemberQ@cpf, #D &DD;

If@MemberQ@outputSet, 6D,
Print@"X6\ + Edges of inv. Cond.: ",
e2tf, " invariant valuations: ", invValD

D;

H* If there are invariant conditions
but no invariant valuation have been found,
then the invariant_expr predicate is not

fullfilled. Otherwise add the two
pathes to the result-list.

*L
If@HinvCond ã 8<L fi HinvVal ! 8<L,
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ids = ids‹ 888gEdgeValuation@First@dptPjtTDD<,
8gEdgeValuation@Last@dptPjtTDD<, invVal<< ‹ 888gEdgeValuation@
First@dpfPjfTDD<, 8gEdgeValuation@Last@dpfPjfTDD<, invVal<<;

If@MemberQ@outputSet, 6D,
Print@"X6\ + Updated result-list: ", MatrixForm@idsDD

D
D H* If invCond fi invVal *L

D H* If invCond *L
D H* If valid decision path *L

D H* For jf *L
D H* For jt *L

D H* For if *L
D; H* For it *L

H* Now trying the combinations Condition TrueêFalse -
Decision FalseêTrue!

*L
dpt = Select@gPathSet@R, ecf, edtD, cDecisionPath@#, "T"D &D;
dpf = Select@gPathSet@R, ect, edfD, cDecisionPath@#, "F"D &D;
If@MemberQ@outputSet, 5D,
Print@"X5\ Searching for valid TêF-FêT outcome combinations fl"D;
Print@"X5\ Dec.-True Path: ", dptD;
Print@"X5\ Dec.-False Path: ", dpfD

D;

H* Construct again all possible combinations of path-
elements using a path
from "dEntry" as the beginning and continuing
with a path from "dpt" and "dpf"
as true and false fork of the condition.
"i" loops over all entry pathes, jtêjf over all trueêfalse pathes.

*L
For@it = 1, it § Length@dEntryD, it++,
For@if = 1, if § Length@dEntryD, if++,
For@jt = 1, jt § Length@dptD, jt++,
For@jf = 1, jf § Length@dpfD, jf++,

H* Combine two pieces to
form the complete path for True H"cpt"L and the
complete path for False H"cpf"L.

*L
cpt = dEntryPitT ‹ dptPjtT;
cpf = dEntryPifT ‹ dpfPjfT;
If@MemberQ@outputSet, 6D,
Print@
"X6\ Â Complete paths to check: True Ø ", cpt, " False Ø ", cpfD;
Print@" Valid decision path and MCDCPath for ",
c, " ? ", 8cDecisionPath@cpt, "T"D,
cDecisionPath@cpf, "F"D, cValidMCDCPath@c, cpt, cpfD<D

D;

H* Check first, if the path combination is a valid decision path.
*L
If@cDecisionPath@cpt, "T"D fl
cDecisionPath@cpf, "F"D fl cValidMCDCPath@c, cpt, cpfD,

H* The control_expr predicate is fullfilled
by construction. To determine
the empty intersection we have to do the invariant_expr check.

*L
invCond = Select@d, cInvExprPath@R, #, cpt, cpfD &D;
If@MemberQ@outputSet, 6D,
Print@"X6\ Â Invariant Conditions: ", invCondD

D;
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D;

H* If not all conditions from the complement d\8c< are invariant,
then this is not a valid path combination and therefore ignore it.
*L
If@Complement@d, 8c<D ã invCond,
e2tf = Flatten@Map@cSOE@R, #, "T"D ‹ cSOE@R, #, "F"D &, invCondD, 1D;
invVal = Map@8gEdgeValuation@#D< &,
Select@e2tf, Ÿ MemberQ@cpt, #D fl Ÿ MemberQ@cpf, #D &DD;

If@MemberQ@outputSet, 6D,
Print@"X6\ + Edges of inv. Cond.: ",
e2tf, " invariant valuations: ", invValD

D;

H* If there are invariant conditions
but no invariant valuation have been found,
then the invariant_expr predicate is not

fullfilled. Otherwise add the two
pathes to the result-list.

*L
If@HinvCond ã 8<L fi HinvVal ! 8<L,
ids = ids‹ 888gEdgeValuation@First@dptPjtTDD<,

8gEdgeValuation@Last@dptPjtTDD<, invVal<< ‹ 888gEdgeValuation@
First@dpfPjfTDD<, 8gEdgeValuation@Last@dpfPjfTDD<, invVal<<;

If@MemberQ@outputSet, 6D,
Print@"X6\ + Updated result-list: ", MatrixForm@idsDD

D
D H* If invCond fi invVal *L

D H* If invCond *L
D H* If valid decision path *L

D H* For jf *L
D H* For jt *L

D H* For if *L
D; H* For it *L

ids
D

Additional Predicates used in Preservation-Condition for Modified Condition Decision Coverage (MCDC):

mult_control_expr (ID1 , ID2 , x) : ó  ( ID1 Œ IVT (x)  fl  ID2 Œ IVF (x) ) fi ( ID1 Œ IVF (x)  fl  ID2 Œ IVT (x) )

The implementation  multControlExpr  takes the execution relation R of the program and the valuation relation
graph rg as additional parameter. Since this predicate is always used in a way like "$ ID1 , ID2  Œ "# such that
mult_control_expr is true" we take the immediate supersets of ID1 and ID2 as a substitude for ID1 and ID2 as
parameters and check, if IVT  and IVF  are in a û-relation. Because IVS can handle condition-input and decision-in-
put for x, this version of multControlExpr can handle conditions as well as decisions.
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cMultControlExpr@R_, rg_, ID1_, ID2_, x_D := Module@8vst, vsf, ivt, ivf, ok<,
If@MemberQ@outputSet, 4D,
Print@"X4\ MultControlExpr: 8ID1<: ",
ID1, " 8ID2<: ", ID2, " Cond.êDec. checked: ", xD

D;

vst = cIVS@R, x, "T"D;
vsf = cIVS@R, x, "F"D;
ivt = vRelNodes@rg, vstD;
ivf = vRelNodes@rg, vsfD;

If@MemberQ@outputSet, 3D,
Print@" Â IVTH", x, "Lã", vst, " ¨ ", ivtD;
Print@" Â IVFH", x, "Lã", vsf, " ¨ ", ivfD

D;

H* Check, if valuations of ID1 and ID2 satisfy the membership-
relation with ivt and ivf

*L
ok = HMemberQ@ivt, ID1D fl MemberQ@ivf, ID2DL fi

HMemberQ@ivf, ID1D fl MemberQ@ivt, ID2DL;

If@MemberQ@outputSet, 5D,
Print@"X5\ + ID1 Œ IVTH", x, "L fl ID2 Œ IVFH",
x, "L fi ID1 Œ IVFH", x, "L fl ID2 Œ IVTH", x, "L"D;
Print@"X5\ + H", MemberQ@ivt, ID1D, " fl ", MemberQ@ivf, ID2D,
"L fi H", MemberQ@ivf, ID1D, " fl ", MemberQ@ivt, ID2D, "L fl ", okD

D;

ok
D

In the original definition of the predicate isInvariantExpression, ID is a set {id1,id2} of pairs of elements, with
id1 œ ID1 and id2 e ID2. It is normally used in a way that all possible combinations of elements of the original
sets ID1 and ID2 have to satisfy this condition. In this implementation, each argument ID1 and ID2 holds a list of
valuations.  Instead  of checking  for  intersections  with {id1,id2} we  check  the whole  base sets  for  non-strict
super-set. If this is true, then the required element combinations {id1,id2} considered above must exist.
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cIsInvariantExpr@R_, rg_, ID1_, ID2_, x_D :=
Module@8xID1, xID2, ivt, ivf, i, rn, r1, r2, r3, r4, re = True<,

H* Add the union of all subsets listed in ID1 and ID2, because
the empty subset condition must also be true for the union
if it is true for all of the subsets.

*L
xID1 = ID1‹ 8Union@Flatten@ID1DD<;
xID2 = ID2‹ 8Union@Flatten@ID2DD<;

If@MemberQ@outputSet, 4D,
Print@"X4\ isInvariantExpr for Node: ",
x, " in rel. with xID1: ", xID1, " xID2: ", xID2D

D;

ivt = cIVS@R, x, "T"D;
ivf = cIVS@R, x, "F"D;
If@MemberQ@outputSet, 4D,
Print@"X4\ Â IVTH", x, "L ã ", ivt, " IVFH", x, "L ã ", ivfD

D;

H* Check, if there exists at least one valuation set from xID1 and xID2,
which is a superset of IVT

*L
r1 = Select@xID1, MemberQ@vRelNodes@rg, #D, ivtD &D;
r2 = Select@xID2, MemberQ@vRelNodes@rg, #D, ivtD &D;

H* Check, if there exists at least one valuation set from ID1 and ID2,
which is a superset of IVF

*L
r3 = Select@xID1, MemberQ@vRelNodes@rg, #D, ivfD &D;
r4 = Select@xID2, MemberQ@vRelNodes@rg, #D, ivfD &D;

H* Now check, if at least two corresponding sets are not empty
*L
re = HHr1 ! 8<L fl Hr2 ! 8<LL fi HHr3 ! 8<L fl Hr4 ! 8<LL;

If@MemberQ@outputSet, 5D,
Print@"X5\ + H", r1, "!8< fl ",
r2, "!8<L fi H", r3, "!8< fl ", r4, "!8<L fl ", reD

D;

re
D H* Module *L

control_expr( td1 , td2 , x) :ó ( td1 œ IVT (x) fl td2 œ IVF (x) ) fi ( td2 œ IVT (x) fl td1 œ IVF (x) )

See remark on unique_cause: We do not implement this predicate but using mult_control_expr instead.

unique_cause( c1 , d, td1 , td2 ) :ó 
control_expr ( td1 , td2 , c1 ) fl control_expr ( td1 , td2 , d) fl " c2 œ C(d) Hc2  ! c1 ) fl is_invariant_expr ( {

td1 , td2 }, c2  )

Since unique_cause  is always used in a way like "" X id1 , id2 \ œ ID1 ä ID2  unique_cause ( c, d, id1 , id2 )" we
define this predicate and all its sub-predicates  slightly different. Instead  of using all  possible combinations of
pairs of elements and checking tdx  œ Y we take the whole set TDx  and check TDx  Œ Y. If this succeeds, the
original proposition of unique_cause must be true because of the definition of Œ (AŒB :ó " aœA ï aœB). 

To get higher efficiency, we also do not use single sets for TD1and TD2  but take the whole candidate list and
make an intersection with the related set list of IVT  and IVF . Normally both candidate lists will be the same, but
for any reason whatever we distinguish between the two candidate lists.

Since the sets, fulfilling the condions must be always the same, we use the following procedure: Each predicate
returns a list with the candidates that fulfill the predicates conditions. This reduced list is then used as input for
the next predicate. The test was successful, if after checking the last predicate at least one candidate is left.
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To get higher efficiency, we also do not use single sets for TD1and TD2  but take the whole candidate list and
make an intersection with the related set list of IVT  and IVF . Normally both candidate lists will be the same, but
for any reason whatever we distinguish between the two candidate lists.

Since the sets, fulfilling the condions must be always the same, we use the following procedure: Each predicate
returns a list with the candidates that fulfill the predicates conditions. This reduced list is then used as input for
the next predicate. The test was successful, if after checking the last predicate at least one candidate is left.

cUniqueCause@R_, rg_, d_, c_, TC1_, TC2_D := Module@8rr1, rr2, rr3, dd<,
H* Determine the conditions relevant for the non-variant condition

check and store them in "dd".
*L
dd = Complement@d, 8c<D;

H* Calculate the overall result and store it for debugging purposes
*L
rr1 = cMultControlExpr@R, rg, TC1P1T, TC2P1T, cD;
rr2 = cMultControlExpr@R, rg, TC1P2T, TC2P2T, dD;
rr3 = HSelect@dd, cIsInvariantExpr@R, rg, TC1P3T, TC2P3T, #D &D ã ddL;

If@MemberQ@outputSet, 4D,
Print@"X4\ UniqueCause: d'= ", d,
", c'= ", c, ", 8TC1<: ", TC1, ", 8TC2<: ", TC2,
" fl HcMCEHcL fl cMCEHdL fl cIE " :: ", rr1, "fl", rr2, "fl", rr3D

D;

rr1 fl rr2 fl rr3
D H* Module *L

(Realistic) Preservation Criteria of Modified Condition Decision Coverage (MCDC):

" d'œ D2  " c'œ C(d') $ ID1, ID2  Œ "# 
($dœ D1  $ cœ C(d) $ IDtmp Œ "# with mult_control_expr ( ID1 , IDtmp , c ) fl " X id1 , id2 \ œ ID1 ä IDtmp

unique_cause ( c, d, id1 , id2 )
fl
($dœ D1  $ cœ C(d) $ IDtmp Œ "# with mult_control_expr ( ID2 , IDtmp , c ) fl " X id1 , id2 \ œ ID2 ä IDtmp

unique_cause ( c, d, id1 , id2 )
fl
" X id1 , id2\ œ ID1 ä ID2  unique_cause ( c', d', id1 , id2 )

cMCDCPres implements the realistic preservation criterion for MCDC.

cMCDCPres@P1_, P2_, RG_D := Module@8D1, D2, R1, R2, i, j, cc, dd,
c, d, ivrdd, IDcand, rc, found, ci, cj, lengthID, scpf = True<,
D1 = Map@gDecisionIdSet, gD@P1DD;
R1 = gR@P1D;
D2 = Map@gDecisionIdSet, gD@P2DD;
R2 = gR@P2D;

If@MemberQ@outputSet, 2D,
Print@
"Ë MCDC-Preservation, checking "d'œD2 "c'œCHd'L $ ID1,ID2 Œ !""D;
Print@" H$ dœD1 $cœCHdL $ IDtmp Œ !" with mult_control_exprHID1,

IDtmp,cL fl "Xid1,id2\œID1µIDtmp unique_causeHc,d,id1,id2L fl"D;
Print@" fl H$ dœD1 $cœCHdL $ IDtmp Œ !" with mult_control_exprHID2,

IDtmp,cL fl "Xid1,id2\œID2µIDtmp unique_causeHc,d,id1,id2L fl"D;
Print@" fl "Xid1,id2\œID1µID2 : unique_causeHc',d',id1,id2L"D;
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Print@" Â mult_control_exprHID1,ID2,xL:ó
HID1ŒIVTHxLflID2ŒIVFHxLLfiHID1ŒIVFHxLflID2ŒIVTHxLL"D;

Print@" Â unique_causeHc,d,td1,td2L:ó control_expr
Htd1,td2,cL fl control_exprHtd1,td2,dL fl"D;

Print@" fl "c2œCHdL Hc2!c1L ï
is_invariant_exprH8td1,td2<,c2L"D;

Print@" Â control_exprHtd1,td2,xL:ó Htd1œIVTH
xLfl td2œIVFHxLL fi Htd2œIVTHxL fl td1œIVFHxLL"D;

Print@" Â is_invariant_exprHID,xL:ó HID›
IVTHxL=8<L fi HID›IVFHxL=8<L"D

D;

H* First of all, construct candidates-list for ID1 and ID2 from P1
*L
If@MemberQ@outputSet, 3D,
Print@"™ Searching for candidates of temporary sets ID1 and ID2"D

D;

IDcand = 8<;
For@i = 1, i § Length@D1D, i++,
d = D1PiT;
For@j = 1, j § Length@dD, j++,
IDcand = IDcand‹ constructIDcand@R1, d, dPjTD

D H* For j *L
D; H* For i *L

If@MemberQ@outputSet, 3D,
Print@"™ Final ID1êID2 candidates: ", MatrixForm@IDcandDD

D;

H* Scan through each Decision d' of P2 and each Condition c' of d'
and try to find a pair from candidate-list, that fullfills the
unique cause condition.

*L
For@i = 1, i § Length@D2D, i++,
d = D2PiT;
If@MemberQ@outputSet, 4D,
Print@"X4\ H", i, "L: P2-Decision ", dD

D;

For@j = 1, j § Length@dD, j++,
c = dPjT;
If@MemberQ@outputSet, 4D,
Print@"X4\ ÈH", j, "L: P2-Condition ", cD

D;

H* Now search for a pair of candidates, that fullfills UniqueCause
*L
lengthID = Length@IDcandD;
ci = 1;
cj = 1;
found = False;
While@Ÿ found fl Hci § lengthIDL,
found = cUniqueCause@R2, RG, d, c, IDcandPciT, IDcandPcjTD;
++cj;
If@cj > lengthID,
cj = 1;
++ci

D
D;

scpf = scpf fl found;
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If@Ÿ found fl MemberQ@outputSet, 3D,
Print@"*** No ID1êID2 pair satisfies UniqueCauseHL!"D

D;

D H* For j *L
D; H* For i *L

scpf

D H* Module *L

ü Path Coverage

Since Scoped Path Coverage is a quite complex task due to the huge set of possible segmentations of a program
we first concentrate on Path Coverage inside the program snippet.

ü cUnifiedEdgeSet

This function re-organizes a given edge-set E by removing multiple edges between nodes and joining the labels
of the multiple edges into the unified edge (see also gLabelJoin for details). Valuation-information and path-in-
formation is omitted.

cUnifiedEdgeSet@E_D := Module@8explore = E, uE = 8<, current<,
While@explore ! 8<,
current = Select@explore, HgEdgeHead@First@exploreDD ã gEdgeHead@#DL fl

HgEdgeTail@First@exploreDD ã gEdgeTail@#DL &D;

uE = Append@uE,
If@Length@currentD ã 1,
Take@First@currentD, 81, 3<D,
8gEdgeHead@First@currentDD, gEdgeTail@First@currentDD,
gLabelJoin@Union@Flatten@Map@gEdgeLabel, currentDDDD<

D
D;

explore = Complement@explore, currentD
D;

uE
D

ü cCondPathTrace

This function searches a (unified) path PP and performs a distribution of the found conditions to the sets CT

and CF , where  CT  contains all conditions that contribute to the path with the True branch and CF  contains all
conditions where the False branch is coincident with the path. The result is returned as a tuple  XCT , CF \ of the
resulting sets.

cCondPathTrace@PP_D := 8Map@gEdgeHead,
Select@PP, MemberQ@8"T", "V"<, gCLabel@gEdgeLabel@#DDD &DD,
Map@gEdgeHead, Select@PP, MemberQ@8"F", "V"<, gCLabel@gEdgeLabel@#DDD &DD<
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ü isCondTFenclosed

Preservation  proof  for  scoped  path  coverage  uses  a  predicate  is_CondTF_enclosed  with  the  following
definition:

is_CondTF_enclosed(ID, CT , CF ) :ó $ cT  œ CT  with IVT (cT ) Œ ID or $ cF  œ CF  with IVF (cF ) Œ ID

The implementation isCondTFenclosed  uses the (flat) set idr of related valuation sets instead of ID. ct and cf
are sets of condition id's. R is the execution relation of the Cfg.

isCondTFenclosed@R_, idr_, ct_, cf_D := Module@8ts, fs<,
If@MemberQ@outputSet, 4D,
Print@"X4\ Â isCondTFenclosed: cT œ",
ct, " cF œ", cf, " check against ID û ", idrD

D;

ts = Select@ct, vSubsetOf@idr, cIVS@R, #, "T"DD &D;
fs = Select@cf, vSubsetOf@idr, cIVS@R, #, "F"DD &D;

If@MemberQ@outputSet, 5D,
Print@"X5\ cT œ CT » IVTHcTL Œ ID: ", ts, " fl ", ts ! 8<D;
Print@"X5\ cF œ CF » IVF HcFL Œ ID: ", fs, " fl ", fs ! 8<D;

D;

Hts ! 8<L fi Hfs ! 8<L
D

ü allConditionsEnclosed

This function is a helper that checks isCondTFenclosed for a complete set of conditions. It returns True if all
conditions in c fullfill isCondTFenclosed for the given path path and False, if at least one check fails.

allConditionsEnclosed@R1_, R2_, vr_, c2_, tf_, path_D :=
Module@8ct, cf, rv<,
If@MemberQ@outputSet, 6D,
Print@"X6\ Â Checking \"", tf, "\"-conditions ", c2, " on path ", pathD

D;

8ct, cf< = cCondPathTrace@pathD;
res = Map@isCondTFenclosed@R1,

Union@Flatten@vRelNodes@vr, cIVS@R2, #, tfDDDD, ct, cfD &, c2D;

If@MemberQ@outputSet, 5D,
Print@"X5\ + P1-Condition split CT: ", ct, " CF: ", cfD;
Print@"X5\ + isCondTFenclosed "cœ",
c, ": ", res, " fl ", Apply@And, resDD

D;

Apply@And, resD
D

ü cPCPres

This is the main function for Path-Coverage-Preservation check.
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cPCPres@P1_, P2_, RG_D := Module@
8scpf = True, C1, R1, uR1, C2, R2, uR2, PP1, PP2, i, ct2, cf2, ppt, ppf<,
H* First of all, get the information most needed from "P1"

and "P2".
*L
C1 = Map@gNodeId, gC@P1DD;
R1 = gR@P1D;
C2 = Map@gNodeId, gC@P2DD;
R2 = gR@P2D;

If@MemberQ@outputSet, 2D,
Print@"Ë PC-Preservation, checking "pp'œPPHP2L $ppœPPHP1L :"D;
Print@" IVRHBSHpp'L û IVRHBSHppL fl"D;
Print@" fl "c'œCTHpp'L $ppœPPH

P1L : is_condTF_enclosedHIVTHc'L,CTHppL,CFHppLL fl"D;
Print@" fl "c'œCFHpp'L $ppœPPHP1L : is_condTF

_enclosedHIVFHc'L,CTHppL,CFHppLL"D;
Print@" is_condTF_enclosedHID,CT,CFL:ó $cTœ

CT : IVTHcTL Œ ID fi $cFœCF : IVFHcFL Œ ID"D;
D;

H* Determine all HunifiedL pathes in P1 and P2.
*L
uR1 = cUnifiedEdgeSet@gR@P1DD;
uR2 = cUnifiedEdgeSet@gR@P2DD;
PP1 = gPathSet@uR1, gOutEdges@uR1, gNodeId@gST@P1DP1TDD,
gInEdges@uR1, gNodeId@gST@P1DP2TDDD;

PP2 = gPathSet@uR2, gOutEdges@uR2, gNodeId@gST@P2DP1TDD,
gInEdges@uR2, gNodeId@gST@P2DP2TDDD;

If@MemberQ@outputSet, 3D,
Print@"™ Found ", Length@PP2D,
" pathes in P2 and ", Length@PP1D, " pathes in P1."D

D;

H* Iterate over all pathes of program "P2". It would be more efficient
to stop immediately if

the the accumulated result changes to "False",
but for documentary reasons we iterate over ALL pathes of "P2".

*L
For@i = 1, Hi § Length@PP2DLH*flscpf*L, i++,
If@MemberQ@outputSet, 3D,
Print@"™ H", i, "L P2-Path ", PP2PiTD

D;
H* Determine the condition distribution along

the selected path.
*L

8ct2, cf2< = cCondPathTrace@PP2PiTD;

H* Check all conditions of CT of P2 for "isCondTFenclosed"
*L
ppt = Select@PP1, allConditionsEnclosed@R1, R2, RG, ct2, "T", #D &D;

If@MemberQ@outputSet, 3D,
Print@"™ Pathes in P1 fullfilling

isCondTFenclosedHIVTHc2L,...L for c2 œ ", ct2, ":"D;
Print@" ", MatrixForm@pptDD

D;

ppf = Select@PP1, allConditionsEnclosed@R1, R2, RG, cf2, "F", #D &D;
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If@MemberQ@outputSet, 3D,
Print@"™ Pathes in P1 fullfilling

isCondTFenclosedHIVFHc2L,...L for c2 œ ", cf2, ":"D;
Print@" ", MatrixForm@ppfDD

D;

H* Add the result for the current path to the overall
result.

*L
scpf = scpf fl Hppt ! 8<L fl Hppf ! 8<L;
If@MemberQ@outputSet, 3D,
Print@"™ H", i, "L Preserving PC fl ",
Hppt ! 8<L fl Hppf ! 8<L, " H", scpf, "L"D

D;

scpf
D; H* For i *L

scpf
D 

Case Studies

The following use cases present some examples. The assignements define the structures of the aCFG sets B,D,-
R,ST and the aCFG structure P itself. Each component is defined twice, one for the non-transformed program and
one for the transformed program. If necessary, some supplementary input-valuation set relations are defined.

Naming of  Use Cases and naming of  aCFG components:  A combination  of letters and  numbers  identifies  the
different components of the aCFG definitions. The first part of each name is an abbreviation of the use-case name.
The abbreviation of the name is defined in the headline of the use case. The use-case name is followed by the
lower-case letter u if the component is related to the non-transformed program. The identifier is followed by the
lower-case letter t if it refers to the transformed program. One or two upper-case letters at the end of the compo-
nents name identify the aCFG components: B for the statement set B, D for the decision set D, R for the edge set R
and ST for the entry-node/termination-node tuple ST. Finally P identifies the structure of the whole aCFG.

Examples:  UceuB  identifies  the statement  set B of the aCFG of the non-transformed program for the use case
"Useless Code Elimination". LttR identifies the edge set R of the aCFG of the transformed program for the Loop
Tiling use case. 

ü Useless Code Elimination (Uce)

Delete code, wich has no influence on the programs final result (e.g. assignment to a variable, which is not used
until its next definition).

Original Program:

UceuB := 88"stm1", 2<, 8"stm2", 3<, 8"stm3", 4<<

UceuD := 8<

UceuR := 881, 2, "", d1<, 82, 3, "", d2<, 83, 4, "", d3<, 84, 5, "", d4<<

UceuST := 88"start", 1<, 8"stop", 5<<
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UceuP := eCFG@UceuB, UceuD, UceuR, UceuSTD

Transformed Program:

UcetB := 88"stm1", 12, 2<, 8"stm3", 14, 4<<

UcetD := 8<

UcetR := 8811, 12, "", r1<, 812, 14, "", r2<, 814, 15, "", r3<<

UcetST := 88"start", 11, 1<, 8"stop", 15, 5<<

UcetP := eCFG@UcetB, UcetD, UcetR, UcetSTD

ü Condition Reordering If-Then-Else with Full Evaluation (Two Conditions with 
AND) (Tcfr)

Reordering of condition evaluation in a AND-connected two condition two-way branch, where each condition is
always executed independent of the outcome of the first condition.

Original Program:

TcfruB := 88"then", 3<, 8"else", 4<<

TcfruD := 88"decision1", 8"cond1", 1<, 8"cond2", 2<<<

TcfruS := 8"s", 0<

TcfruT := 8"t", 5<

TcfruR := 880, 1, "", d1<, 81, 2, "TX", d2<, 81, 2, "FF", d3<, 82, 3, "TT", d4<,
82, 4, "TF", d5<, 82, 4, "FF", d6<, 83, 5, "", d7<, 84, 5, "", d8<<

TcfruP := 8TcfruB, TcfruD, TcfruR, TcfruS, TcfruT<

TcfruP

888then, 3<, 8else, 4<<, 88decision1, 8cond1, 1<, 8cond2, 2<<<,
880, 1, , d1<, 81, 2, TX, d2<, 81, 2, FF, d3<, 82, 3, TT, d4<,
82, 4, TF, d5<, 82, 4, FF, d6<, 83, 5, , d7<, 84, 5, , d8<<, 8s, 0<, 8t, 5<<

Transformed Program:

TcfrtB := 88"then", 13, 3<, 8"else", 14, 4<<

TcfrtD := 88"decision1", 8"cond1*", 11, 2<, 8"cond2*", 12, 1<<<

TcfrtS := 8"s", 10<

TcfrtT := 8"t", 15<

TcfrtR := 8810, 11, "", r1<, 811, 12, "TX", r2<,
811, 12, "FF", r3<, 812, 13, "TT", r4<, 812, 14, "TF", r5<,
812, 14, "FF", r6<, 813, 15, "", r7<, 814, 15, "", r8<<

TcfrtP := 8TcfrtB, TcfrtD, TcfrtR, TcfrtS, TcfrtT<
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The following Relation should be part of the calculated transformation relation:
r1 ã d1 T1

r2 ã d4 ‹ d5 T2
r3 ã d6 T3
r6 ã d3 T4

r4 ‹ r5 ã d2 T5
Hr7 ã d7 L T6
Hr8 ã d8 L T7

ü Condition Reordering If-Then-Else with Shortcut Evaluation (Two Conditions 
with AND) (Tcsr)

Reordering of condition evaluation in a AND-connected two condition two-way branch. 

Original Program:

TcsruB := 88"then", 3<, 8"else", 4<<

TcsruD := 88"decision1", 8"cond1", 1<, 8"cond2", 2<<<

TcsruS := 8"s", 0<

TcsruT := 8"t", 5<

TcsruR := 880, 1, "", d1<, 81, 2, "TX", d2<, 81, 4, "FF", d3<,
82, 3, "TT", d4<, 82, 4, "FF", d5<, 83, 5, "", d6<, 84, 5, "", d7<<

TcsruP := 8TcsruB, TcsruD, TcsruR, TcsruS, TcsruT<

Transformed Program:

TcsrtB := 88"then", 13, 3<, 8"else", 14, 4<<

TcsrtD := 88"decision1", 8"cond1*", 11, 2<, 8"cond2*", 12, 1<<<

TcsrtS := 8"s", 10, 0<

TcsrtT := 8"t", 15, 5<

TcsrtR := 8810, 11, "", r1<, 811, 12, "TX", r2<, 811, 14, "FF", r3<,
812, 13, "TT", r4<, 812, 14, "FF", r5<, 813, 15, "", r6<, 814, 15, "", r7<<

TcsrtP := 8TcsrtB, TcsrtD, TcsrtR, TcsrtS, TcsrtT<

The following relations should be included in the result of vTransRelGraph :
Hr1 ã d1L T1

Hr2 û d4L T2

Hr3 û d5L T3

Hr4 Œ d2L T4

Hr5 Œ d3L T5

Hr6 ã d6L T6

Hr7 ã d7L T7
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ü Condition Reordering If-Then with Shortcut Evaluation (Swap two Conditions 
connected with AND) (Itar)

Reordering of condition evaluation in a AND-connected two condition branch with empty else branch.

Original Program:

ItaruB := 88"then", 4<<

ItaruD := 88"IF", 8"cond1", 2<, 8"cond2", 3<<<

ItaruST := 88"start", 1<, 8"stop", 5<<

ItaruR := 881, 2, "", d1<, 82, 3, "TX", d2<,
82, 5, "FF", d3<, 83, 4, "TT", d4<, 83, 5, "FF", d5<, 84, 5, "", d6<<

ItaruP := eCFG@ItaruB, ItaruD, ItaruR, ItaruSTD

Transformed Program:

ItartB := 88"then", 14, 4<<

ItartD := 88"IF", 8"cond2", 12, 3<, 8"cond1", 13, 2<<<

ItartST := 88"start*", 11<, 8"stop*", 15<<

ItartR := 8811, 12, "", r1<, 812, 13, "TX", r2<, 812, 15, "FF", r3<,
813, 14, "TT", r4<, 813, 15, "FF", r5<, 814, 15, "", r6<<

ItartP := eCFG@ItartB, ItartD, ItartR, ItartSTD

The following relations should be included in the result of vTransRelGraph:
Hr1 ã d1L T1

Hr2 û d4L T2

Hr3 û d5L T3

Hr4 Œ d2L T4

Hr5 Œ d3L T5

Hr6 ã d6L T6

Hr5 ã d5L T7

ü Condition Reordering If-Then with Shortcut Evaluation (Swap two Conditions 
connected with OR) (Itor)

Reordering of condition evaluation in a OR-connected two condition branch with empty else branch.

Original Program:

ItoruB := 88"then", 4<<

ItoruD := 88"IF", 8"cond1", 2<, 8"cond2", 3<<<

ItoruST := 88"start", 1<, 8"stop", 5<<

ItoruR := 881, 2, "", d1<, 82, 4, "TT", d2<,
82, 3, "FX", d3<, 83, 4, "TT", d4<, 83, 5, "FF", d5<, 84, 5, "", d6<<
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ItoruP := eCFG@ItoruB, ItoruD, ItoruR, ItoruSTD

Transformed Program:

ItortB := 88"then", 14, 4<<

ItortD := 88"IF", 8"cond2", 12, 3<, 8"cond1", 13, 2<<<

ItortST := 88"start*", 11<, 8"stop*", 15<<

ItortR := 8811, 12, "", r1<, 812, 14, "TT", r2<, 812, 13, "FX", r3<,
813, 14, "TT", r4<, 813, 15, "FF", r5<, 814, 15, "", r6<<

ItortP := eCFG@ItortB, ItortD, ItortR, ItortSTD

The following relations should be included in the result of vTransRelGraph:
Hr1 ã d1L T1

Hr2 û d4L T2

Hr3 û d5L T3

Hr4 Œ d2L T4

Hr5 Œ d3L T5

Hr6 ã d6L T6

Hr5 ã d5L T7

ü Condition Swap, Two Conditions with XOR Connective (Csx)

Swapping  the  conditions  of  a  conditional  branch  with  two conditions  connected  with  XOR.  Then  and  Else
Branch are implemented (Bonus example for to demonstrate use of decisionTrueFalseSet).

Original Program:

CsxuB := 88"then", 4<, 8"else", 5<<

CsxuD := 88"decision1", 8"cond1", 2<, 8"cond2", 3<<<

CsxuST := 88"s", 1<, 8"t", 6<<

CsxuR := 881, 2, "", d1<, 82, 3, "T1", d2<, 82, 3, "F2", d3<,
82, 3, "T5", d4<, 82, 3, "F6", d5<, 83, 4, "F1", d6<, 83, 4, "T2", d7<,
83, 5, "T5", d8<, 83, 5, "F6", d9<, 84, 6, "", d10<, 85, 6, "", d11<<

CsxuP := eCFG@CsxuB, CsxuD, CsxuR, CsxuSTD

Transformed Program:

CsxtB := 88"then", 14, 4<, 8"else", 15, 5<<

CsxtD := 88"decision1", 8"cond1", 12, 3<, 8"cond2", 13, 2<<<

CsxtST := 88"s", 11, 1<, 8"t", 16, 6<<

CsxtR := 8811, 12, "", r1<, 812, 13, "T1", r2<, 812, 13, "F2", r3<,
812, 13, "T5", r4<, 812, 13, "F6", r5<, 813, 14, "F1", r6<, 813, 14, "T2", r7<,
813, 15, "T5", r8<, 813, 15, "F6", r9<, 814, 16, "", r10<, 815, 16, "", r11<<

CsxtP := eCFG@CsxtB, CsxtD, CsxtR, CsxtSTD
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CsxHints := 888d2<, 8r7<<, 88r7<, 8d2<<, 88d3<, 8r6<<,
88r6<, 8d3<<, 88d4<, 8r8<<, 88r8<, 8d4<<, 88d5<, 8r9<<,
88r9<, 8d5<<, 88d6<, 8r3<<, 88r3<, 8d6<<, 88d7<, 8r2<<,
88r2<, 8d7<<, 88d8<, 8r4<<, 88r4<, 8d8<<, 88d9<, 8r5<<, 88r5<, 8d9<<<

ü Loop Peeling (Lp)

Peeling k iterations from the beginning of a loop means replacing the first k iterations by k copies of the body
plus the increment and test code for the loop index variable and placing them immediatly ahead of the loop (Øp.
684).  The following graph models  the peeling of 1 or 2 iteration(s)  with a branch in front of each copy (the
increment is thought to be included inside the block).

LpuB := 88"loop-body", 2<<

LpuD := 88"while", 8"loopcond", 1<<<

LpuR := 880, 1, "", d1<, 81, 2, "TT", d2<, 82, 1, "", d3<, 81, 3, "FF", d4<<

LpuS := 8"s", 0<

LpuT := 8"t", 3<

LpuP := 8LpuB, LpuD, LpuR, LpuS, LpuT<

Transformed graph, peeling out one copies of the loop-body

Lp1tB := 88"lb-copy1", 12, 2<, 8"loop-body*", 16, 2<<

Lp1tD := 88"if", 8"lc-copy1", 11, 1<<, 8"while", 8"loopcond", 15, 1<<<

Lp1tR := 8810, 11, "", r1<, 811, 12, "TT", r2<, 811, 17, "FF-", r3<,
812, 15, "", r4<, 815, 16, "TT", r8<, 816, 15, "", r9<, 815, 17, "FF-", r10<<

Lp1tS := 8"s", 10, 0<

Lp1tT := 8"t", 17, 3<

Lp1tP := 8Lp1tB, Lp1tD, Lp1tR, Lp1tS, Lp1tT<

Transformed graph, peeling out two copies of the loop-body

Lp2tB := 88"lb-copy1", 12, 2<, 8"lb-copy2", 14, 2<, 8"loop-body*", 16, 2<<

Lp2tD := 88"if", 8"lc-copy1", 11, 1<<,
8"if", 8"lc-copy2", 13, 1<<, 8"while", 8"loopcond", 15, 1<<<

Lp2tR := 8810, 11, "", r1<, 811, 12, "TT", r2<, 811, 17, "FF-", r3<,
812, 13, "", r4<, 813, 14, "TT", r5<, 813, 17, "FF-", r6<, 814, 15, "", r7<,
815, 16, "TT", r8<, 816, 15, "", r9<, 815, 17, "FF-", r10<<

Lp2tS := 8"s", 10, 0<

Lp2tT := 8"t", 17, 3<

Lp2tP := 8Lp2tB, Lp2tD, Lp2tR, Lp2tS, Lp2tT<
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ü Loop Inversion (Li)

Loop Inversion moves the termination test from beginning of the loop to the end. This modification requires, that
the loop body is always executed at least once and that it is safe to do so. In other cases additional test has to be
generated in front of the loop to determine wether it is entered. The following model considers the second case
and generates a additional decision in front that skips the whole loop, if the loop-termination condition is true at
beginning of the loop.

LiuB := 88"loop-body", 3<<

LiuD := 8 8"while", 8"loopcond", 2<<<

LiuR := 881, 2, "", d1<, 82, 3, "TT", d2<, 83, 2, "", d3<, 82, 4, "FF", d4<<

LiuS := 8"s", 1<

LiuT := 8"t", 4<

LiuP := 8LiuB, LiuD, LiuR, LiuS, LiuT<

Now the definition  of the modified  graph. The fork 12-15 is marked with "-", because although the decision
made at node 12 is the same as the loop control the False branch only covers a subset of input valuations com-
pared with 2, where the False branch is the main exit of the loop that comprises all input valuations.

LitB := 88"loop-body", 13, 3<<

LitD := 88"if", 8"c1", 12, 2<<, 8"while", 8"c2", 14, 2<<<

LitR := 8811, 12, "", r1<, 812, 13, "TT", r2<, 812, 15, "FF-", r3<,
813, 14, "", r4<, 814, 13, "TT", r5<, 814, 15, "FF-", r6<<

LitS := 8"s", 11, 1<

LitT := 8"t", 15, 4<

LitP := 8LitB, LitD, LitR, LitS, LitT<

ü Loop Fusion (Lf)

Loop Fusion takes two adjacent loops that have the same iteration-space traversal and combines their bodies into
a single loop.

LfuB := 88"body1", 2<, 8"body2", 4<<

LfuD := 88"while1", 8"cond", 1<<, 8"while2", 8"cond", 3<<<

LfuR := 880, 1, "", d1<, 81, 2, "TT", d2<, 82, 1, "", d3<,
81, 3, "FF", d4<, 83, 4, "TT", d5<, 84, 3, "", d6<, 83, 5, "FF", d7<<

LfuS := 8"s", 0<

LfuT := 8"t", 5<

LfuP := 8LfuB, LfuD, LfuR, LfuS, LfuT<

Now the optimized program:
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LftB := 88"body1", 12, 2<, 8"body2", 13, 3<<

LftD := 88"while", 8"cond", 11, 1<<<

LftR := 8810, 11, "", r1<, 811, 12, "TT", r2<,
812, 13, "", r3<, 813, 11, "", r4<, 811, 14, "FF", r5<<

LftS := 8"s", 10, 0<

LftT := 8"t", 14, 5<

LftP := 8LftB, LftD, LftR, LftS, LftT<

ü Loop Interchange (Lic)

Loop Interchange (or more general Loop Permuation) swaps the order, nested loops are processed. This use case
shows a model for a double nested loop where the inner and outer loop are swaped. Each loop decision consists
of two conditions. 

LicuB := 88"body", 6<<

LicuD := 88"loop1", 8"cond11", 2<, 8"cond12", 3<<,
8"loop2", 8"cond21", 4<, 8"cond22", 5<<<

LicuR := 881, 2, "", d1<, 82, 3, "TX", d2<, 82, 3, "FF", d3<, 83, 7, "TF", d5<,
83, 7, "FF", d6<, 83, 4, "TT", d4<, 84, 5, "TX", d7<, 84, 5, "FF", d8<,
85, 6, "TT", d9<, 85, 2, "TF", d11<, 85, 2, "FF", d12<, 86, 4, "", d10<<

LicuST := 88"s", 1<, 8"t", 7<<

LicuP := eCFG@LicuB, LicuD, LicuR, LicuSTD

Now the optimized program:

LictB := 88"body", 16, 6<<

LictD := 88"loop1*", 8"cond21", 12, 4<, 8"cond22", 13, 5, "X="<<,
8"loop2*", 8"cond11", 14, 2<, 8"cond12", 15, 3<<<

LictR := 8811, 12, "", r1<, 812, 13, "TX", r2<, 812, 13, "FF", r3<,
813, 17, "TF", r5<, 813, 17, "FF", r6<, 813, 14, "TT", r4<,
814, 15, "TX", r7<, 814, 15, "FF", r8<, 815, 16, "TT", r9<,
815, 12, "TF", r11<, 815, 12, "FF", r12<, 816, 14, "", r10<<

LictST := 88"s'", 11, 1<, 8"t'", 17, 7<<

LictP := eCFG@LictB, LictD, LictR, LictSTD

Theory for transformation conditions:  A Loop Interchange is valid, if it is true for all input-valuations, that the
same input valuation triggers the same number of iterations of the statements inside the innermost loop in the
non-transformed  program as well  as in the transformed  program.  Therefore,  the input-valuations  entering  the
innermost loop must be the same and there could be no additional input valuations inside the innermost loop. If
the number of loop iterations is not dependent on the input-valuations,  this is obvious.  If the loop decision are
dependent on the input-valuations then, assuming that the loop-decision are independent from each other, each
input-valuations entering the innermost loop must evaluate each loop-decision to True  at least once and there-
fore, because the decisions  are the same, this must  be true also in the transformed  program. This implies T1
(r9 ã d9 ). All  input valuations  entering  the loop structure  must  leave it  through the fork 2Ø7 resp.  12Ø17
which implies d5 ‹ d6 ã r5 ‹ r6 . For all other input-valuations,  not entering the innermost loop, there is no
statement possible, where they will be rejected. This can happen either by the first or the second loop decision
(please be aware, that the loop conditions can be dependent and therefore swapping the loop decisions can cause
a shift of input-valuations with outgoing False from one decision to another decision). Therefore the relation for
the True-fork of decision {12,13} can be Œ, ã  or û. Therefore we define the functional relation X in node 13 to
avoid creation of a True relation. 

Following transition relations seems to be the most importent and should be found by vTransRelGraph or added
manually.
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Theory for transformation conditions:  A Loop Interchange is valid, if it is true for all input-valuations, that the
same input valuation triggers the same number of iterations of the statements inside the innermost loop in the
non-transformed  program as well  as in the transformed  program.  Therefore,  the input-valuations  entering  the
innermost loop must be the same and there could be no additional input valuations inside the innermost loop. If
the number of loop iterations is not dependent on the input-valuations,  this is obvious.  If the loop decision are
dependent on the input-valuations then, assuming that the loop-decision are independent from each other, each
input-valuations entering the innermost loop must evaluate each loop-decision to True  at least once and there-
fore, because the decisions  are the same, this must  be true also in the transformed  program. This implies T1
(r9 ã d9 ). All  input valuations  entering  the loop structure  must  leave it  through the fork 2Ø7 resp.  12Ø17
which implies d5 ‹ d6 ã r5 ‹ r6 . For all other input-valuations,  not entering the innermost loop, there is no
statement possible, where they will be rejected. This can happen either by the first or the second loop decision
(please be aware, that the loop conditions can be dependent and therefore swapping the loop decisions can cause
a shift of input-valuations with outgoing False from one decision to another decision). Therefore the relation for
the True-fork of decision {12,13} can be Œ, ã  or û. Therefore we define the functional relation X in node 13 to
avoid creation of a True relation. 

Following transition relations seems to be the most importent and should be found by vTransRelGraph or added
manually.

r1 ã d1
r9 ã d9 HT1L

T1 describes the equality of the input-valuations in the innermost loop.

LicT1 := 888d9<, 8r9<<, 88r9<, 8d9<<<

ü Loop Unrolling (Lur)

Loop Unrolling  replaces  the body of a loop by several copies  of the body and adjusts  the loop-control  code
accordingly. The number of copies K (K=2 in this example) is called the unrolling factor. The original loop is
called the rolled loop.

LuruB := 88"body", 3<<

LuruD := 88"loop", 8"cond", 2<<<

LuruR := 881, 2, "", d1<, 82, 3, "TT", d2<, 83, 2, "", d3<, 82, 4, "FF", d4<<

LuruST := 88"s", 1<, 8"t", 4<<

LuruP := eCFG@LuruB, LuruD, LuruR, LuruSTD

Now the optimized program where node 3 is duplicated with unrolling factor K=2 (nodes 13,14) and a copy of
the rolled loop (Decision 15, body 16) to handle iterations not a multiple of K:

LurtB := 88"unrolledBody1", 13, 3<, 8"unrolledBody2", 14, 3<, 8"body", 16, 3<<

LurtD := 88"unrolledLoop", 8"cond", 12, 2<<, 8"loop", 8"cond", 15, 2<<<

LurtR := 8811, 12, "", r1<, 812, 13, "TT-", r2<, 813, 14, "", r3<, 814, 12, "", r4<,
812, 15, "FF", r5<, 815, 16, "TT-", r6<, 816, 15, "", r7<, 815, 17, "FF", r8<<

LurtST := 88"s", 11, 1<, 8"t", 17, 4<<

LurtP := eCFG@LurtB, LurtD, LurtR, LurtSTD

Following Transition Relations should be found by vTransRelGraph for Loop Unrolling:

r1 ã d1
r2 ã d2
r3 ã d5
r5 ã d7

LurHints := 8<

CoveragePreservation_CodeListing.nb 55

Printed by Mathematica for Students

ü Strip Mining, 2 Conditions Per Decision (Sm)

Strip Mining  divides  a loop into a series of loops operating  on strips of the original  one as in the following
example: 

Remark: To get the correct result, the 2 Condition per Decision Version must be used, because decision coverage
is preserved and a single condition always goes with the decision.

The following CFG represents the untransformed program (a):

SmuB := 88"statement-block", 4<<

SmuD := 88"i-loop", 8"cond-i1", 2<, 8"cond-i2", 3<<<

SmuR := 881, 2, "", d1<, 82, 3, "TX", d2<, 82, 3, "FF", d3<,
83, 4, "TT", d4<, 83, 5, "TF", d5<, 83, 5, "FF", d6<, 84, 2, "", d7<<

SmuST := 88"s", 1<, 8"t", 5<<

SmuP := eCFG@SmuB, SmuD, SmuR, SmuSTD

Strip Mining creates a 2 level deep loop nest (b) by splitting the i-loop:

SmtB := 88"statement-block", 16, 4<<

SmtD := 88"i-loop", 8"cond-i1", 12, 2<, 8"cond-i2", 13, 3<<,
8"i1-loop", 8"cond-i1-1", 14, 2<, 8"cond-i1-2", 15, 3<<<

SmtR := 8811, 12, "", t1<, 812, 13, "TX", t2<, 812, 13, "FF", t3<, 813, 14, "TT", t4<,
813, 17, "TF", t5<, 813, 17, "FF", t6<, 814, 15, "TX", t7<, 814, 15, "FF", t8<,
815, 16, "TT", t9<, 815, 12, "TF", t10<, 815, 12, "FF", t11<, 816, 14, "", t12<<

SmtST := 88"s", 11, 1<, 8"t", 17, 5<<

SmtP := eCFG@SmtB, SmtD, SmtR, SmtSTD

Following transition relations are essential to analyse transformations:

d1 ã t1
d4 ã t9
d4 Œ t4

SmHints := 888d4<, 8t9<<, 88t9<, 8d4<<, H*88d4<,8t4<<,*L88t4<, 8d4<<<

ü Loop Tiling (Lt)

Tiling (other names: Blocking, Strip Mine and Interchange, Unroll and Jam) of a single loop replaces it by a pair
of loops with the inner one (called the tile loop) having an incremental like the original loop and the outer one
having an incremental equal to ub-lb+1, where lb and ub are the lower and upper bounds of the inner loop. Tiling
a loop nest of depth n may increases the depth of the loop nest anywhere from n+1 up to 2n, depending on how
many of the loops are tiled. Tiling also interchanges the loops beginning from the tiled one inward to make the
tile loops the innermost one in the loop nest. The number of iterations of the tile loop is called the tile size. 

The following CFG represents the untransformed program (a):

LtuB := 88"statement-block", 6<<
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LtuD := 88"i-loop", 8"cond-i1", 2<, 8"cond-i2", 3<<,
8"j-loop", 8"cond-j1", 4<, 8"cond-j2", 5<<<

LtuR := 881, 2, "", d1<, 82, 3, "TX", d2<, 82, 3, "FF", d3<, 83, 4, "TT", d4<,
83, 7, "TF", d5<, 83, 7, "FF", d6<, 84, 5, "TX", d7<, 84, 5, "FF", d8<,
85, 6, "TT", d9<, 85, 2, "TF", d10<, 85, 2, "FF", d11<, 86, 4, "", d12<<

LtuST := 88"s", 1<, 8"t", 7<<

LtuP := eCFG@LtuB, LtuD, LtuR, LtuSTD

First we create a tile-loop for both loops resulting in a 4 level deep loop nest. In the second step we do an inter-
change of the two loops in the middle to bring it inwards.

LttB := 88"statement-block", 20, 6<<

LttD := 88"i-loop", 8"cond-i1", 12, 2<, 8"cond-i2", 13, 3<<,
8"j-loop", 8"cond-j1", 14, 4<, 8"cond-j2", 15, 5<<,
8"i1-loop", 8"cond-i1-1", 16, 2<, 8"cond-i1-2", 17, 3<<,
8"j1-loop", 8"cond-j1-1", 18, 4<, 8"cond-j1-2", 19, 5<<<

LttR := 8811, 12, "", r1<, 812, 13, "TX", r2<, 812, 13, "FF", r3<,
813, 14, "TT", r4<, 813, 21, "TF", r5<, 813, 21, "FF", r6<, 814, 15, "TX", r7<,
814, 15, "FF", r8<, 815, 16, "TT", r9<, 815, 12, "TF", r10<, 815, 12, "FF", r11<,
816, 17, "TX", r12<, 816, 17, "FF", r13<, 817, 18, "TT", r14<, 817, 14, "TF", r15<,
817, 14, "FF", r16<, 818, 19, "TX", r17<, 818, 19, "FF", r18<,
819, 20, "TT", r19<, 819, 16, "TF", r20<, 819, 16, "FF", r21<, 820, 18, "", r22<<

LttST := 88"s", 11, 1<, 8"t", 21, 7<<

LttP := eCFG@LttB, LttD, LttR, LttSTD

Following Transition Relations should be found by vTransRelGraph for Loop Tiling:

r1 ã d1
r2 ã d2
r3 ã d5
r5 ã d7
d9 ã r19

LtHints := 888d9<, 8r19<<, 88r19<, 8d9<<<

ü Unswitching with 2 Conditions per Decision (Usw2)

...is a loop optimization that pulls out a branch which does not depend on the iteration variable. E.g. let's assume,
the loop iteration variable is i but the branch only depends on the value of a variable k:

Usw2uB := 88"then-statement1", 6<, 8"else-statement2", 7<, 8"join-statement", 8<<

Usw2uD := 88"i-loop", 8"i-cond1", 2<, 8"i-cond2", 3<<,
8"if", 8"k-cond1", 4<, 8"k-cond2", 5<<<

Usw2uR := 881, 2, "", d1<, 82, 3, "TX", d2<,
82, 3, "FF", d3<, 83, 4, "TT", d4<, 83, 8, "TF", d5<, 83, 8, "FF", d6<,
84, 5, "TX", d7<, 84, 5, "FF", d8<, 85, 6, "TT", d9<, 85, 7, "TF", d10<,
85, 7, "FF", d11<, 86, 8, "", d12<, 87, 8, "", d13<, 88, 2, "", d14<<

Usw2uST := 88"s", 1<, 8"t", 8<<
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Usw2uP := eCFG@Usw2uB, Usw2uD, Usw2uR, Usw2uSTD

Now the optimized program:

Usw2tB := 88"then-statement1", 16, 6<, 8"else-statement2", 19, 7<<

Usw2tD := 88"i-loop-then", 8"i-cond1", 14, 2<, 8"i-cond2", 15, 3<<,
8"i-loop-else", 8"i-cond1", 17, 2<, 8"i-cond2", 18, 3<<,
8"if", 8"k-cond1", 12, 4<, 8"k-cond2", 13, 5<<<

Usw2tR := 8811, 12, "", r1<, 812, 13, "TX", r2<, 812, 13, "FF", r3<,
813, 14, "TT", r4<, 813, 17, "TF", r5<, 813, 17, "FF", r6<, 814, 15, "TX", r7<,
814, 15, "FF", r8<, 815, 16, "TT", r9<, 815, 20, "TF", r10<,
815, 20, "FF", r11<, 816, 14, "", r12<, 817, 18, "TX", r13<, 817, 18, "FF", r14<,
818, 19, "TT", r15<, 818, 20, "TF", r16<, 818, 20, "FF", r17<, 819, 17, "", r18<<

Usw2tST := 88"s*", 11, 1<, 8"t*", 20, 8<<

Usw2tP := eCFG@Usw2tB, Usw2tD, Usw2tR, Usw2tSTD

Theory for transformation conditions:  With the same arguments than above the basic transformation conditions
are as follows:

Usw2Hints := 888d12<, 8r9<<, 88r9<, 8d12<<, 88d13<, 8r15<<, 88r15<, 8d13<<<

ü Software Pipelining (Swpl)

Software Pipelining (also called kernel scheduling) is a preperation step to make use of parallelism across loop
iterations. It reorganizes a loop into three components: (1) a kernel including the code that must be executed on
every cycle of the loop, once it has reached a steady state, (2) a prolog, which includes the code that must be
executed before the steady state can be reached and (3) an epilog, which must be executed to finish the loop once
the kernel can no longer been executed. 

The goal of kernel scheduling is to focus on temporal movement of instructions through loop iterations rather
than on spatial movement within a single loop iteration. Critical instructions whose results are needed early are
moved to earlier loop iterations, so that their results become available within the current iteration just as they are
needed. Similarly, instructions at the tail end of the critical path are moved to future iterations so as to shorten
completion of the current iteration. In other words, the body of one loop iteration is piplinded across multiple
iterations in order to take fullest advantage of available resources within one iteration.

The following CFG represents the non-transformed program (a):

SwpuB := 88"statement1HiL", 3<, 8"statement2HiL", 4<<

SwpuD := 88"loop-i", 8"loopcond", 2<<<

SwpuR := 881, 2, "", d1<, 82, 3, "TT", d2<,
82, 5, "FF", d3<, 83, 4, "", d4<, 84, 2, "", d5<<

SwpuST := 88"s", 1<, 8"t", 5<<

SwpuP := eCFG@SwpuB, SwpuD, SwpuR, SwpuSTD

Transformed graph, peeling out prolog-/epilog-copies of the loop-body:

SwptB := 88"statement1H1L", 12, 3<, 8"statement2HnL", 16, 4<,
8"statement1HiL", 15, 3<, 8"statement2Hi-1L", 14, 4<<

CoveragePreservation_CodeListing.nb 58

Printed by Mathematica for Students



SwptD := 88"loop-i", 8"loopcond", 13, 2<<<

SwptR := 8811, 12, "", r1<, 812, 13, "", r2<, 813, 14, "TT-", r3<,
814, 15, "", r4<, 815, 13, "", r5<, 813, 16, "FF", r6<, 816, 17, "", r7<<

SwptST := 88"s", 11, 1<, 8"t", 17, 5<<

SwptP := eCFG@SwptB, SwptD, SwptR, SwptSTD

Transition Relations for Software Pipelining:

ü Branch Optimization (Bo)

Branch Optimization  redirects a jump to a unconditional  jump immediately to the target of the unconditional
jump.

BouB := 88"Jump-Statement", 2<, 8"Jump-Unconditional", 3<, 8"Branch-Target", 4<<

BouD := 8<

BouST := 88"s", 1<, 8"t", 5<<

BouR := 881, 2, "", d1<, 82, 3, "", d2<, 83, 4, "", d3<, 84, 5, "", d4<<

BouP := eCFG@BouB, BouD, BouR, BouSTD

After redirecting the jump, the unconditional jum instruction 13 is unconnected on the input side.

BotB := 88"Jump-Statement", 12, 2<,
8"Jump-Unconditional", 13, 3<, 8"Branch-Target", 14, 4<<

BotD := 8<

BotST := 88"s", 11, 1<, 8"t", 15, 5<<

BotR := 8811, 12, "", r1<, 812, 14, "", r2<, 813, 14, "", r3<, 814, 15, "", r4<<

BotP := eCFG@BotB, BotD, BotR, BotSTD

ü End Of Use Cases

Automatic Preservation Analysis

This section provides complete functions for analysis of all coverage preservation condition for one use case as
well as a matrix function to produce a overall matrix scheme for als preservation criteria for different usecases.

ü cUseCaseAnalysis

First we start with a analysis function for one usecase. It returns a line vector including usecase-name and entries
for  SC w/o  C.  (Statement  Coverage  without  including  conditions),  SC w.  C.  (Statement  Coverage  treating
conditions  as  statements),  CC  (Condition  Coverage),  DC (Decision  Coverage),  MCDC  (Modified  Condition
Decision Coverage) and PC (Path Coverage) in this order.
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cUseCaseAnalysis@name_, p1_, p2_, hints_, pathBased_D :=
Module@8startTime, vfr, sc1, sc2, cc, dc, mcdc, pc<,
startTime = SessionTime@D;
If@MemberQ@outputSet, 0D,
If@pathBased,
Print@">>> Processing Use-Case \"",
name, "\", PATH-based valuation-relations analysis."D,

H* else *L
Print@">>> Processing Use-Case \"",
name, "\", SIMPLE valuation-relations analysis."D

D;
If@hints ! 8<,
Print@" Hints:"D;
vPrintRelationSet@hints, " "D

D
D;

If@MemberQ@outputSet, 1D,
Print@"Program P1:"D;
gDrawCfg@p1D;
Print@"BHP1L: ", MatrixForm@gB@p1DD, " DHP1L: ",
MatrixForm@gD@p1DD, " STHP1L:", MatrixForm@gST@p1DDD;

Print@"Program P2:"D;
gDrawCfg@p2D;
Print@"BHP2L: ", MatrixForm@gB@p2DD, " DHP2L: ",
MatrixForm@gD@p2DD, " STHP2L:", MatrixForm@gST@p2DDD

D;

vfr = vTransRelGraph@p1, p2, hints, pathBasedD;
If@MemberQ@outputSet, 3D,
Print@"Input-Valuation Relations obtained:"D;
vPrintRelationSet@vfr, " "D

D;

sc1 = cSCPres@p1, p2, vfrD;
sc2 = cSCPres@eCFG@gB@p1D ‹ gC@p1D, gD@p1D, gR@p1D, gST@p1DD,
eCFG@gB@p2D ‹ gC@p2D, gD@p2D, gR@p2D, gST@p2DD, vfrD;

cc = cCCPres@p1, p2, vfrD;
dc = cDCPres@p1, p2, vfrD;
mcdc = cMCDCPres@p1, p2, vfrD;
pc = cPCPres@p1, p2, vfrD;

If@MemberQ@outputSet, 0D,
Print@"<<< Finished \"", name,
"\", time elapsed: ", SessionTime@D - startTime, " sec."D

D;

8name, sc1, sc2, cc, dc, mcdc, pc<
D H* UseCaseAnalysis *L
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ü cPresAnalysis

cPresAnalysis  just  calls  UseCaseAnalysis  with  different  use  cases.  To  display  the  result  as  matrix  call  the
function with MatrixForm[cPresAnalysis[].  Otherwise the result  is presented in a "list of list" form. The argu-
ment outLevel  is a value that maps to a  temporary global outputSet  used during runtime of the function.  For
convenience integer numbers from 0 to 5 are used.  Values of 0 to 5 establish a certain temporary outputSet (Ø
outLevelMap  in the function body).  A value of  -1 makes the output  silent.  A higher  number  produces more
output than a lower number. 0 produces more or less only progress messages, 1 produces mainly output related to
the coverage preservation theory. 2,3,4,5 go more deep into the interals of the perservation proofs.

cPresAnalysis@outLevel_D :=
Module@8saveOutSet, overallResult, outLevelMap<,
overallResult = 88"Use Case", "SC wêo C.", "SC w. C.",

"CC", "DC", "MCDC", "PC"<, 8"--------", "---------",
"--------", "-----", "-----", "-----", "-----"<<;

outLevelMap = 8
80<, H* 0 *L
80, 2, 3<, H* 1 *L
80, 2, 3, 4, 5<, H* 2 *L
80, 2, 3, 4, 5, 6<, H* 3 *L
80, 1, 2, 3, 4, 5, 6<, H* 4 *L
80, 1, 2, 3, 4, 5, 6, 7, 8, 9< H* 5 *L

<;

saveOutSet = outputSet;
If@outLevel < 0,
outputSet = 8<,
outputSet = outLevelMapPMin@outLevel + 1, 5DT

D;

H* Useless Code Elimination
*L
overallResult = Append@overallResult,
cUseCaseAnalysis@"Useless Code Elimination", UceuP, UcetP, 8<, FalseDD;

H* Two Condition If-Then-Else Branch with Full Condition-Evaluation
*L
overallResult = Append@overallResult, cUseCaseAnalysis@

"Full-Evaluated If-Then-Else", TcfruP, TcfrtP, 8<, FalseDD;

H* Two Condition If-Then-Else Branch with Shortcut Evaluation
*L
overallResult = Append@overallResult,
cUseCaseAnalysis@"Shortcut If-Then-Else", TcsruP, TcsrtP, 8<, FalseDD;

H* Two Condition Branch HANDL with empty ELSE and Shortcut Evaluation
*L
overallResult = Append@overallResult,
cUseCaseAnalysis@"Empty Else Shortcut AND", ItaruP, ItartP, 8<, FalseDD;

H* Two Condition Branch HORL with empty ELSE and Shortcut Evaluation
*L
overallResult = Append@overallResult,
cUseCaseAnalysis@"Empty Else Shortcut OR", ItoruP, ItortP, 8<, FalseDD;

H* Loop Peeling Hpeeling out 1 StepL
*L
overallResult = Append@overallResult,

D;
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cUseCaseAnalysis@"Loop Peeling Hk=1L", LpuP, Lp1tP, 8<, FalseDD;

H* Loop Inversion
*L
overallResult = Append@overallResult,
cUseCaseAnalysis@"Loop Inversion", LiuP, LitP, 8<, FalseDD;

H* Loop Fusion
*L
overallResult = Append@overallResult,
cUseCaseAnalysis@"Loop Fusion", LfuP, LftP, 8<, FalseDD;

H* Loop Interchange
*L
overallResult = Append@overallResult,
cUseCaseAnalysis@"Loop Interchange", LicuP, LictP, LicT1, TrueDD;

H* Loop Unrolling
*L
overallResult = Append@overallResult, cUseCaseAnalysis@

"Loop Unrolling Hk=2L", LuruP, LurtP, LurHints, TrueDD;

H* Strip Mining
*L
overallResult = Append@overallResult,
cUseCaseAnalysis@"Strip Mining", SmuP, SmtP, SmHints, FalseDD;

H* Loop Tiling
*L
overallResult = Append@overallResult,
cUseCaseAnalysis@"Loop Tiling", LtuP, LttP, LtHints, TrueDD;

H* Unswitching
*L
overallResult = Append@overallResult,
cUseCaseAnalysis@"Loop Unswitching", Usw2uP, Usw2tP, Usw2Hints, TrueDD;

H* Software Pipelining
*L
overallResult = Append@overallResult,
cUseCaseAnalysis@"Software Pipelining", SwpuP, SwptP, 8<, FalseDD;

H* Branch Optimization
*L
overallResult = Append@overallResult,
cUseCaseAnalysis@"Branch Optimization", BouP, BotP, 8<, TrueDD;

outputSet = saveOutSet;

overallResult
D H* Module *L
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