
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Querying Rich Ontologies by
Exploiting the Structure of Data

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Labinot Bajraktari

Matrikelnummer 1429606

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dr.Techn. Magdalena Ortiz

Zweitbetreuung: Univ.-Prof.Dr. Stefan Szeider

Diese Dissertation haben begutachtet:

Domenico Lembo Sebastian Rudolph

Wien, 12. Dezember 2019

Labinot Bajraktari

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Querying Rich Ontologies by
Exploiting the Structure of Data

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Labinot Bajraktari

Registration Number 1429606

to the Faculty of Informatics

at the TU Wien

Advisor: Dr.Techn. Magdalena Ortiz

Second advisor: Univ.-Prof.Dr. Stefan Szeider

The dissertation has been reviewed by:

Domenico Lembo Sebastian Rudolph

Vienna, 12th December, 2019

Labinot Bajraktari

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der

Arbeit

Labinot Bajraktari

Operngasse 20A/12a

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. Dezember 2019

Labinot Bajraktari

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

In dedication
to the Love of my Life, Yllka,

to my mesmerizing boys, Bato and Fron,
to my devoted parents, Latife and Bislim,

and to my loving siblings, Genzana and Granit.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

Looking back, I realize how lucky I’ve been to get an advisor like Magdalena Ortiz. For
without her guidance and support, this thesis would have never materialized. Particularly
I value the positive energy she brought to our countless meetings, and her pinpoint
advices on the many challenges I faced in my work. I’m especially grateful for the
empathy and help to me and Yllka when we were just two newly made parents. Muchas
Gracias Magdalena! My sincere thanks go to Mantas Šimkus, from whom I learned
so much and whose company I particularly enjoyed. For all the support, collaboration
and conversations, Ačiū Mantas! I also thank Diego Calvanese for hosting me in Free
University of Bolzano for the research stay, and members of KRDB group for making me
feel welcomed. Notably, I thank Guohui Xiao for his collaboration and fruitful discussions.

My heartfelt appreciation goes to the late father of LogiCS doctoral college (DK) Helmut
Veith, for bringing to life a DK that fosters quality research, part of which I had the
fortune to belong to. Also, I thank Anna Prianichnikova from the DK, for her extra
efforts on making sure that social life at the DK thrives. I’m thankful to all the members
of the DK for the nice moments we shared together, and in particular, to my office
buddies for making the working environment a pleasure to be in. Especially, I’m fond of
Shqiponja Ahmetaj and Martin Diller for the friendship we cultivated during this time.

Big thanks to Nysret Musliu, for his kind support, and for all the warm conversations
which helped me keep my sanity and motivation during difficult times. My thanks extend
to Driton Statovci for being a friend on whom I could count on. Also, I would like to
thank the many friends with whom I share some of the best memories during these years
in Vienna, in particular: Enkele Rama, Fjolla Ademaj, Gramoz Goranci, Taulant Berisha,
and last but not least, my dear friend Valon Raça.

I am very grateful to my mother for her unconditional love that accompanies me everyday;
my father for being a role model and for believing in me; my sister on whom I could
always count; and my brother for passing on his stubborn view on chasing one’s dreams.

Special thanks go to my sons, Fron and Bato, for stalling the progress of my Ph.D. in the
most enjoyable way possible, and for painting my life with some of the best memories a
person could wish for. The ultimate gratitude goes to my love Yllka, for showering me
with love and support, and for taking the burden of raising our kids during this time,
and doing an amazing job at it. Most of all, I am grateful for her genuine smiles which
reminded me that the best days are ahead of us. Falemnderit Zemër!

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Wir leben in aufregenden Zeiten. Unsere Fähigkeit Information zu verarbeiten und
zu speichern ist beispiellos in der menschlichen Geschichte und hat unsere Gesellschaft
transformiert. Unglücklicherweise ist das Verwalten und Erlangen von Wissen aus heutigen
Datenbanken ein kompliziertes Unterfangen für Organisationen, vor allem wegen der
eingeschränkten semantischen Bedeutung der gespeicherten Daten.

Eine Lösung für diese Situation versprechen Beschreibungslogiken (Description Logics,
DL)—eine Familie ontologischer Sprachen welche reichhaltige Modellierungseigenschaften
mit in Logik grundierter Semantik zur Verfügung stellen, welche effektiv genutzt werden
können um Wissen zu repräsentieren. Kürzlich ist das Paradigma des ontologiebasier-
ten Datenzugriffs (ontology-based data access, OBDA) aufgekommen als ein Weg zur
Verwaltung und Integration traditioneller Datenquellen vermittels der Nutzung von
Ontologien. Ein essenzieller Schlussfolgerungsservice in OBDA, und der Fokus dieser
Dissertation, ist die ontologievermittelte Anfragebeantwortung (ontology mediated query
answering, OMQ-Beantwortung). OMQ-Beantwortung hat im letzten Jahrzehnt viel
Aufmerksamkeit erfahren, wobei der Standard-Ansatz die Anfrage-Umschreibung (query
rewriting) war. Für ausdrucksstarke Ontologien, d.h., solche, die Disjunktive Operato-
ren nutzen um Wissen auszudrücken, existieren nur theoretische Algorithmen, die sich
nicht für eine Implementierungen eignen. Umschreibungen wie diejenigen für leichtere
Ontologien wären wünschenswert, aber diese skalieren nicht, zumindest nicht im üblichen
datenunabhängigen Rahmen.

In dieser Dissertation suchen wir nach einem durchführbaren Ansatz für OMQ-Beantwor-
tung in ausdrucksstarken Ontologien, indem die Struktur der Daten genutzt wird zur
Lenkung des Schließens der Anfragebeantwortungsalgorithmen. Wir stellen eine generi-
sche Beschreibung von ABoxen (der Datenkomponente in DL Wissensbasen) vor, welche
wir Profile nennen und benutzen diese in drei verschiedenen Situationen um Schließen
zu ermöglichen. In der Ersten stellen wir einen Algorithmus vor, der die Repräsentation
der Menge der Modelle für ALCHI Ontologien kompiliert, was, wie wir zeigen, ausrei-
chend ist zur Beantwortung jeder Anfrage die unter Homomorphismen erhalten bleibt.
Wir entwickeln Algorithmen zur Beantwortung verschiedener Anfragesprachen welche
vorberechnete Repräsentationen benutzen und schreiben diese um in ASP Programme.
In der Zweiten erweitern wir unseren Ansatz auf den ausdrucksstärkeren Rahmen von
hybriden Sprachen, welche Ontologien mit Regeln kombinieren. Wir definieren eine neue

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Hybridsprache, die wir Clopen nennen und wir stellen, für ein Fragment, das bestimmte
Einschränkungen erfüllt, eine praktische Übersetzung in einfache ASP Programme vor,
die Profile benutzt. In der Dritten setzten wir Profile zur Optierung eines wolhbekannten
Algorithmus zur Anfragebeantwortung für Horn-SHIQ, einer ausrucksstarken Horn DL,
ein und zeigen signifikante Verbesserung im Vergleich zum aktuellen Stand der Technik.
Am Ende zeigen wir, dass unsere Profile leicht von OBDA Spezifikationen mit in R2RML
ausgedrückten Zuordnungen bezogen werden können, was unseren Ansatz in praktischen
Umgebungen einsetzbar macht.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

We live in exciting times; our ability for processing and storing information is unprece-
dented in human history and has transformed our society. Unfortunately, managing and
acquiring knowledge from today’s databases is a complicated endeavour for organizations,
in large part due to the limited semantic meaning of the stored data.

To remedy the situation one can use Description Logics (DL)—a family of ontological
languages which provide rich modeling features with semantics grounded in logic that
can be used effectively for representing knowledge. Recently, the Ontology-based Data
Access (OBDA) paradigm has emerged as a way of managing and integrating traditional
data sources through the use of ontologies. An essential reasoning service in OBDA, and
the focus of this thesis is Ontology Mediated Query (OMQ) answering. OMQ answering
has received much attention in the last decade, with the standard approach being query
rewriting. For expressive ontologies, i.e., those that use the disjunctive operator to express
knowledge, only theoretical algorithms not amenable to implementation exist. Rewritings
like the ones for lighter ontologies would be desirable, but they don’t scale, at least not
in the usual data independent setting.

In this thesis, we seek to find a feasible approach for OMQ in expressive ontologies, by
utilizing the structure of data for ‘guiding’ the reasoning of query answering algorithms.
We propose a generic description of ABoxes (the data component in DL knowledge bases)
by what we call profiles, and use them in three different settings to facilitate reasoning.
In the first, we propose an algorithm to compile a representation of sets of models for
ALCHI ontologies, which we show is sufficient for answering any query preserved under
homomorphisms. We develop algorithms for answering different query languages that
make use of the computed representation, and rewrite them into ASP programs. In the
second, we extend our approach into the more expressive setting of hybrid languages
which combine rules with ontologies. We define a new hybrid language that we call
Clopen, and provide a practicable translation into plain ASP programs which utilizes
profiles for a fragment that satisfies certain restrictions. In the third, we employ profiles
for optimizing a well-known query answering algorithm for Horn-SHIQ, an expressive
Horn DL, and show significant gains compared to the state of the art algorithm. In
the end, we show that our profiles can be easily obtained from OBDA specifications
with mappings expressed in R2RML, which makes our approach deployable in practical
settings.

xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 3
1.2 State of the Art . 5
1.3 Goals of the Thesis . 7
1.4 Contributions . 8
1.5 Structure of the Thesis . 10

2 Preliminaries 13
2.1 Description Logic . 13
2.2 Answer Set Programming . 26

3 Reasoning About Families of ABoxes 31
3.1 Profiles for Representing Families of ABoxes 32
3.2 Compiling Models in Expressive DLs 36
3.3 Benchmarks Set-up for Expressive DLs 55
3.4 Evaluation . 60
3.5 Discussion and Related Work . 63

4 Query Answering in Expressive DLs 65
4.1 Instance Queries and ABox Materialization 66
4.2 Reachability Queries . 72
4.3 Semi-full Conjunctive Queries with Reachability Atoms 78
4.4 Evaluation . 81
4.5 Discussion and Related Work . 83

5 Practicable Reasoning in Hybrid Languages 85
5.1 Basic Definitions . 87
5.2 Clopen Knowledge Bases . 87

xv

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3 Decidable CKBs . 91
5.4 CKBs and Description Logics . 92
5.5 Translations and Implementation . 94
5.6 Evaluation . 99
5.7 Discussion and Related Work . 100

6 Optimizing Reasoning in Expressive Horn DLs 103
6.1 Restricting Horn-SHIQ Saturation . 106
6.2 Evaluation . 118
6.3 Discussion and Related Work . 122

7 Extracting ABox Structure from OBDA Specifications 125
7.1 Preliminary Definitions . 127
7.2 Profiles and Activators from Mappings 128
7.3 Validating Profile Extraction from OBDA Specifications 135
7.4 Discussion . 136

8 Summary and Conclusions 137

List of Figures 141

List of Tables 143

List of Algorithms 145

Bibliography 147

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

The advent of the technology for storing and retrieving information was of paramount
significance for the shift of our society into the information age. The introduction of
relational database theory and relational database management systems propelled the
wide adoption of databases, and since then new databases models and query languages
have been adopted. Query languages are powerful tools for extracting the ‘answers’ one
seeks from the database. However, writing queries requires a deep understanding of how
the data that is stored resembles the application domain. Unfortunately database schemas
contain very little semantic meaning of the domain they model, hence transferring and
acquiring the knowledge about the domain is a time consuming and challenging task.
Moreover, databases see the world as a set of facts. They make the so-called closed world
assumption (CWA), i.e., only the information recorded in the database is considered
to be true. The lack of tools for expressing knowledge make the addition of inference
services on top of databases very cumbersome, typically forcing the developers to encode
the knowledge directly into the queries, or in low level application code, resulting in
complicated solutions with very limited inferential capabilities that are hard to maintain
and interpret.

Around the time of the mass adoption of databases, in the area of knowledge representation
(a sub area of AI) significant work on approaches for representing knowledge was taking
place. The most prominent early approaches were Semantic Networks [Qui67] and
Frame-based systems [Min85]. They used simple intuitive graphic representations for
describing knowledge. However, they were problematic to interpret since they lacked
formal semantics. The work of [Hay81] showed that frames could be mapped to first-order
logic (FOL), which increased the interest for logic-based formalisms by the community
and ultimately gave rise to Description Logics (DLs) [BCM+03].

DLs are a family of ontological formalisms designed for modeling knowledge in terms of
objects (individuals), their classes (concepts) and binary relationships between objects
(roles). They are fragments of FOL, with one of the driving principles behind their design

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

being decidability. The knowledge in DLs is expressed in the form of a Knowledge Base
(KB) consisting of the extensional component known as the ABox and the intensional
component known as the TBox. In the ABox factual data regarding the objects of
the domain are recorded, whereas in the TBox constraints between concepts and roles
in the form of terminological statements are given. Since their inception in the 80s,
DLs have become indispensable and the language of choice for expressing ontologies.
They have been used successfully in several application use cases, such as in health
and life sciences [RBG+97, HRG96, McG99], data and information integration [CDL+98,
Len02], and natural language processing [Fra94, GBFF91]. Undoubtedly, the pinnacle
of DLs success is their adoption by the W3C as the underlying logical formalism for
the standardized Web Ontology Language (OWL) of the Semantic Web [OWL09]. The
goal of DLs is not only to model the domain but to also allow for automated reasoning,
inferring this way new ‘knowledge’ from the one stated in their knowledge base. They
adopt the Open World Assumption (OWA) that allows for modeling of knowledge under
the setting of incomplete data, more specifically it states that what is unknown is not
necessarily false.

Although DLs allow for rich modeling of domains in their KBs they fall short in providing
tools for querying the KB. The only possible way to query the KB in DLs with DL
proprietary tools is to ask for instances of a concept or role. While this is helpful, it is
not satisfactory as we can not pose queries that join instances in the data arbitrarily, a
critical requirement in many use cases. On the other hand, conventional databases offer
rich querying capabilities, but virtually no support for modeling knowledge. Moreover
their schemas are very rigid when it comes to integrating information residing in different
sources. Combination of the two, databases with a mature technology for storing data
and rich querying capabilities in one hand, and DLs with their rich modeling constructs
and clear cut semantics that allows for sound inferences from the knowledge base on
the other hand, gave rise to a new paradigm known as Ontology-based Data Access
(OBDA) [Len11]. OBDA has three components: the ontology, the data sources, and the
mappings which semantically link the data sources with the terms in the ontology.

The benefits of having an ontology on top of the database are manifold, (i) the data
is integrated through a common layer, the ontology, which pins down the semantic
meaning of the domain of interest, (ii) the ontology adds the benefit of simpler knowledge
transfer of the domain of discourse as it is written in a logical language which can be
consumed and interpreted unambiguously, (iii) moreover the data is queried using a
familiar vocabulary of the ontology, and (iv) the knowledge encoded in the ontology is
used to infer new knowledge, providing this way more complete answers to queries than
the data stored in the database. Since the introduction of OBDA paradigm, there has
been considerable interest from the research community, which has been materialised in
practical OBDA systems available today, the most well known being Mastro [CDL+11]
and Ontop [BCH+14] which have been successfully deployed in industry.

The focus of this thesis is query answering in the ontological setting; a problem commonly
referred to as Ontology Mediated Query (OMQ) answering. OMQ answering, in a nutshell,

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.1. Motivation

is the simplification of OBDA (and a prerequisite thereof) that omits the mapping layer:
where one assumes that the data is already given in an ABox, that is, a set of facts over
the ontology vocabulary.

1.1 Motivation

Querying a database with an ontology in between is desirable. However, it introduces
significant computational challenges. Getting the answers to a query amounts to logical
inference, i.e., we have to check if the query is true in all possible situations (interpreta-
tions) in which the ontology and the database are interpreted consistently. We call such
interpretations models. The challenges in query answering arise from two things: first,
the sizes of the models that need to be considered are usually quite large, and in many
cases infinite due to the use of existential quantification; second, the number of models
we have to consider is in principle infinite for any knowledge base, this spurs from the
ability to add unrelated information to the models while still preserving modelhood.

The large (infinite) size of the models is unavoidable in any DL. Still techniques that tame
this property have been developed and successfully implemented for query answering in
lightweight DLs. Lightweight DLs are Horn DLs that are characterized with the nice
universal model property, i.e. for any given Horn DL KB we can devise a model that is
sufficient for answering any query over it. On the other hand, in the case of expressive
DLs, i.e. those that extend ALC (the most basic propositionally complete DL), even if
we restrict to only the models with ‘relevant’ information, due to the use of disjunction
we are forced to reason by cases, i.e., to consider different models for different cases.

Adopting techniques that might work well in practice for expressive DLs is not so obvious.
Despite the fact that answering OMQs has received much attention in the last decade,
the big gap between practicable algorithms for lightweight DLs, that are supported by
implemented reasoners, and purely theoretical algorithms for expressive ontologies that
are not amenable to implementation, has only increased.

Example 1. Consider the following university project management KB shown in the
table below. This example follows closely the example given by [Sch93]. The KB contains
a set of facts related to researches and a set of terminological statements.

From the facts given we notice four individuals: Ben, John, Mary, and Paul who are
researchers. Moreover we see that John supervises both Mary and Ben, and Mary has
Ben as a co-author in some work, and Ben has Paul as a co-author. The statement (a)
says that every researcher is an external staff or an university staff, whereas (b) states
that nobody can be both external and university staff at the same time. The statement (c)
states that anybody that supervises someone must be an university staff.

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

Researcher(ben). Researcher(john). Researcher(mary).

Researcher(paul). ExternalStaff(mary). UniveristyStaff(paul).

supervises(john,mary). supervises(john, ben). coAuthored(mary, ben).

coAuthored(ben, paul).

(a) Researcher ⊑ ExternalStaff ⊔ UniversityStaff.

(b) ExternalStaff ⊓ UniversityStaff ⊑⊥.

(c) ∃supervises.⊤⊑ UniversityStaff.

Table 1.1: An example ontology.

Now consider the following query through which we seek to find all the individuals that
supervise some external staff that has co-authored with some member from the university
staff:

q(x)←∃y, z.supervises(x, y),ExternalStaff(y),

coAuthored(y, z),UniveristyStaff(z).

We are interested in getting the answers to the query that satisfy both the facts and the
terminological statements. Note that in every possible scenario (interpretation) John has
to be an university staff due to (c), whereas due to the facts in the database Mary is a
member of external staff and Paul is a member of university staff. Ben on the other
hand, depending on the interpretation will be either member of the external or university
staff. In Figure 1.1 two viable interpretations of the given ontology are represented as
directed graphs. The concept and role names are shortened for presentation purposes.

john

ben mary

paul

coAuth

c
o
A
u
th

su
p
e
rv
is
e
s su

p
e
rvise

s

Res, UniStaff

Res, ExtStaffRes, ExtStaff

Researcher, UniStaff

john

ben mary

paul

coAuth

c
o
A
u
th

su
p
e
rv
is
e
s su

p
e
rvise

s

Res, UniStaff

Res, ExtStaffRes, UniStaff

Res, UniStaff

Figure 1.1: Representation of interpretations for the ontology in Table 1.1.

Note that the labels marked in red are inferred by the ontology while the rest are given as
facts. If we also view the query as a directed graph, we can quickly check if there is an
answer to the given query by checking if the graph of the query can be homomorphically
mapped against the graph of the interpretation. In both interpretations we have given

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.2. State of the Art

such possible mappings via the edges and nodes colored in black. As can be seen, John is
an answer to the given query in both interpretations. In fact, it is an answer in every
interpretation that models the knowledge base, since in each of them we find at least the
information in one of two intepretations above.

Cases like the one presented in the example above where disjunction is needed seem
natural, and working towards algorithms that work for real-world settings is important
in its own right. However, the high complexity of the query answering even for the
most basic query languages has discouraged research towards practicable algorithms. To
the best of our knowledge, to date there are no implementations of query answering
algorithms for expressive DLs.

1.2 State of the Art

OMQ answering is one of the core reasoning services in the ontological setting, and as
such, it has received much attention from the research community. There are two main
approaches to OMQ answering problem. The first one is to saturate the knowledge base
with all relevant inferences from the ontology before posing queries against it. However,
this is widely regarded as impractical since it can typically blow up the size of the data
which is presumed to be large to begin with. The second one is query rewriting and is
the current standard approach in the field, where an OMQ (T , q) comprising of a DL
TBox T and a query q in a standard language (e.g., conjunctive queries (CQs)) is written
into a new query q′ in a target query language. Obtaining q′ may be costly, but it is
independent of a concrete dataset (ABox). Then q′ can be evaluated over any ABox
using existing engines for the target language, typically SQL and Datalog for more
expressive DLs. We believe that a significant source of hardness comes from the data
independent approaches to query rewriting which rewrite the query taking into account
any database, including databases that would never be encountered in practice.

One usually distinguishes between two types of DLs, those that can express disjunction,
typically known as expressive DLs, and those that can not, commonly referred to as Horn
DLs.

Horn DLs enjoy the universal model property, which makes query answering more
tameable. Moreover answering conjunctive queries (CQs)- a key class of queries, is
known to be tractable in data complexity; an important feature that has made Horn DLs
potential candidates for practical adaptation. Extensive research has been undertaken
on choosing the ‘right’ constructors for designing DLs that are scalable in practical
application use cases, from which the most notable are DL-Lite and EL families. DL-Lite
was designed with low data complexity in mind, which for CQ answering coincides with
the data complexity of answering CQs over plain databases. Consequently, DL-Lite was
adopted as the underlying logic of OWL2 QL profile,1 and efficient algorithms for query

1www.w3.org/TR/owl2-profiles/#OWL_2_QL

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

rewriting have been designed and successfully incorporated in the most prominent OBDA
systems to date, like Mastro and Ontop. On the other hand, EL [BBL05, BLB08] is
the underlying logc for the OWL2 EL profile,2 which was designed to accommodate
conjunction of concepts and existential quantifiers features used extensively in biomedical
ontologies such as the National Cancer Institute (NCI) Ontology, 3 and SNOMED CT 4.
Query answering in EL has higher data complexity than DL-Lite, however is still in
PTime. This is because one can encode reachability in EL TBoxes hence not every query
is First-Order (FO) rewritable. However, attempts to implement algorithms that do CQ
answering in EL exist, the authors of [LTW09] show how one can utilise RDBMS to
answer FO-rewritable CQs over a variant of EL KBs, whereas in the works of [SM15]
a CQ answering algorithm over a more expressive variant of EL that looks practicable
for many cases is given. The algorithm in [SM15] computes certain consequences of the
given KB via a Datalog program implemented in RDFox [MNP+14] and then evaluates
the query over it.

Another very popular Horn DL worth mentioning is Horn-SHIQ, which can be seen as
the Horn fragment of OWL Lite. Although it’s Horn it is still quite expressive, and in
addition to supporting all the features of DL-Lite and EL, it also supports transitive
roles and some number restrictions. Horn-SHIQ is relatively well understood, and
there are existing reasoners for traditional reasoning problems like satisfiability and
classification [Kaz09]. As for query answering, unlike DL-Lite it is in general not possible
to reduce query answering in the presence of a Horn-SHIQ ontology to plain SQL query
evaluation. Some alternative approaches have been proposed in order to make OBDA
with Horn-SHIQ feasible on top of existing database technologies. For example, to
rewrite (exactly or approximately) an ontology into a weaker DLs [LWW07, RPZ10],
or to compile some of the extra expressivity into the mappings [BCS+16]. Another
possibility is to compile the query and the ontology into a more expressive query language
than SQL, like Datalog, as done in the Clipper system [EOv+12b]. Clipper can
handle realistic ontologies and queries, despite being a relatively simple prototype. It
is among the richest query answering engines for Horn DLs, and has inspired recent
adaptations [LMTV19, CDK19]. However, Clipper has stark limitations, and there are
many ontologies that it cannot process in a reasonable time [CGK19a]. This is largely
due to the ABox independence of the saturation step it employs: some axioms that could
be omitted for simpler tasks like classification [Kaz09], must be inferred by Clipper since
they may be made relevant by the assertions in some input ABox.

In the case of non-Horn DLs, the use of disjunction plays a pivotal role in the hardness of
these logics, since it forces reasoning by cases, causing this way the loss of the universal
model property. State-of-the-art reasoners for expressive DLs can handle very large
ontologies (e.g., Pellet [SPG+07], HermiT [GHM+14], Konclude [SLG14]), but they
usually use the tableau technique which aims at deciding if some model exists, and it

2www.w3.org/TR/owl2-profiles/#OWL_2_EL
3https://bioportal.bioontology.org/ontologies/NCIT
4https://bioportal.bioontology.org/ontologies/SNOMEDCT

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.3. Goals of the Thesis

remains unclear whether they could be adapted for OMQ answering. Adopting tableau
algorithms even for the task of instance checking is hard, as authors [HM05] rightfully
profess; developing of efficient tableaux algorithms is hard due to the fact that tableaux
procedures are non-deterministic in nature and for retrieving the individuals that belong
to a given concept name one may be forced to run the tableaux procedure for each
individual. Modern tableaux reasoners such as Konclude [SLG14] use advanced caching
techniques to overcome some of the difficulties for answering instance queries, however
uplifting the tableaux algorithms to richer query languages beyond instance queries
seems an implausible task to undertake. One of the key features that makes the query
answering problem hard to tackle is the high data complexity of these logics. It is known
that the data complexity of the problem of answering instance or conjunctive queries in
DLs extending ALC is coNP-hard [Sch93]. Currently there is a wide gap between Horn
DLs in one side, for which as mentioned algorithms have been developed, improved, and
implemented in reasoners, and expressive DLs containing ALC on the other side, in the
case of which most of the research on OMQ answering has had theory-oriented goals,
like understanding decidability and worst-case complexity [Lut08]. Many algorithms
employ tools that are not amenable to implementation, like automata [CDL08, CEO14].
Rewritings have been proposed (e.g.,[BtCLW14, AOS16, EOv12a]) but they appear
impracticable, and to our knowledge, they have not led to implementation attempts.
A rewriting into Datalog for SHIQ was implemented a decade ago in the KAON2
reasoner, but only for instance queries. A published extension to CQs did not yield a
data-independent rewriting and was never implemented [HMS04].

In summary, up to the writing of this thesis, when it comes to OMQ algorithms, the
standard technique is the data independent query rewriting, and most of the work done
for expressive DLs was confined to addressing complexity theory goals, with no work
done to push for query answering algorithms beyond instance queries. In the case of
expressive Horn DLs such as Horn-SHIQ although an algorithm for CQ answering has
been implemented in Clipper, there are still many cases in which it exhibits exponential
behavior. We believe that a more constrained approach to the data independent approach
is important for working towards obtaining practical algorithms for query answering
expressive DLs.

1.3 Goals of the Thesis

This thesis is motivated by the following research question:

(R) Can we leverage the structure of datasets to guide the reasoning process, in order
to obtain algorithms for query answering in expressive DLs that have the potential for
implementation?

Guided by this question we define three main goals:

(G1) Devise representations of data whose size is reasonably small compared to the
datasets they cover, and easy to compute in real-world settings.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

We want to focus on representations of datasets that are practicable to deploy in real-
world applications, hence the requirement for an easy computation in one hand, and to be
small compared to the original data set on the other hand. These requirements increase
the potential of techniques built on top of them for scaling in practice. In particular, we
are interested in representations that can be obtained from OBDA specifications.

(G2) Develop reasoning techniques for answering queries in the presence of expressive
ontologies, parametrized and guided by suitable representations of the datasets of interest.

We want to capture enough information about the models so that we can tackle query
answering for different query languages that have so far been considered infeasible for
expressive DLs. To achieve this, we will parametrize the algorithms by representations
of data that are in line with the goal (G1). The parametrization has the purpose of
separating the expensive reasoning about the ontology from reasoning with the data. This
makes the computation more modular where the core ontological reasoning is reusable
over different data sets.

(G3) The algorithms should have the potential for implementation, and preferably they
should reuse existing technologies like Datalog systems and ASP solvers.

We seek to obtain practicable algorithms, hence a proof of concept is needed in order to
test their potential for adoption in practice.

1.4 Contributions

To address the goals of the thesis, we focused on obtaining a representation that character-
izes the structure of the data, and on developing algorithms that utilize the representation
in order to answer different query languages for the expressive DL ALCHI. Moreover,
we investigated our approach in a more complex setting of hybrid languages that combine
rules with an expressive ontology, and devised a practical translation of hybrid programs
into plain Answer Set Programming (ASP).We also explored how our representation
could be utilized to improve the efficiency of query answering for expressive Horn DLs,
and provide an optimization technique for a well know query answering algorithm for
Horn-SHIQ. Lastly, as a real-world setting for obtaining the representation of the data,
we considered OBDA specifications where the mapping layer is defined over relational
databases (R2RML) and give an algorithm for this.

Our contributions can be summarized as follows:

(C1) We define a general way of representing the structure of ABoxes through what
we call a set of profiles which encode the configuration of concepts and roles an
individual in the ABox may participate in. We provide empirical evidence that our
representations are typically small compared to the datasets in most cases.

(C2) We give a simple algorithm which given an OBDA specification with R2RML
mappings, extracts the profiles (as defined in (C1)) that cover all possible ABoxes

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.4. Contributions

that can result from evaluation of the mapping layer in the given OBDA specification
over any concrete database. Considering the wide adoption of relational databases,
this setting was considered of particular interest to address. This contribution
together with (C1) address the first goal of the thesis.

(C3) We utilize profiles to obtain model representations for answering queries that are
preserved under homomorphism for ALCHI, and show that in most cases our
model representations are feasible to compute and small compared to the ones we
would have to consider in a data-independent approach. This contribution is the
cornerstone for fulfilling the second goal of the thesis, as all our algorithms for
reasoning in expressive DLs are parametrised by the computed model representa-
tion which in itself encapsulates a good part of expensive ontological reasoning.
Computing the model representations from a set of profiles makes our reasoning
technique modular, as they need to be computed only once, and are reusable for
any dataset covered by the set of profiles. Moreover the model representations
can: (i) be computed offline, an important feature especially for large and complex
ontologies, and (ii) can be computed incrementally, i.e., if the structure of the data
changes and our set of profiles do not cover certain cases, incorporating new profiles
and recomputing the model representation can be done incrementally on top of the
previous ones.

(C4) We present concrete algorithms that depend solely on the computed model repre-
sentation in (C3) for answering instance queries, reachability queries, and semi-full
conjunctive queries with reachability atoms. These algorithms rewrite the queries
into ASP programs. We implemented the algorithms into a proof of concept Mod4Q

which uses efficient ASP solvers to evaluate the rewritten queries, and give experi-
mental evidence for successful evaluation of instance queries and reachability queries
over all ontologies for which computation of model representation was feasible. The
implemented and tested algorithms address all goals of the thesis.

(C5) We present Clopen knowledge bases, a rich hybrid language that generalizes the
prominent language of Rosati r-hybrid, for which no implementations exist. We
identify a useful fragment of Clopen KBs (CKBs) which we call separable CBKs,
and provide an algorithm that translates separable CKBs to plain ASP programs
using our model representation from (C3). We remark that separable CKBs still
generalize r-hybrid KBs. Moreover, we have incorporated our translation of CKBs
in our Mod4Q and tested against a real-world ontology with programs realizing
interesting use cases. The implemented translation addresses all the goals of the
thesis.

(C6) Lastly, we show that profiles can also be utilized for optimizing an algorithm for
query answering in an expressive Horn DL. We use profiles to guide the derivation
of new consequences in the TBox inference calculus used by a state of the art CQ
answering algorithm for Horn-SHIQ [EOv12a]. The inference calculus in [EOv12a]
is already decoupled from other steps of the query answering algorithm and can be

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

computed offline. However, it easily leads in an exponential blow up for many cases.
To address the goals of the thesis, we constraint the derivation of redundant axioms
by guiding the derivation of new axiom by the inference calculus with activators
obtained from our profiles. We implemented our approach in Clipper, the system
that uses the algorithm subject to our optimization, and evaluated it against the
original version over a well-known ontology repository with significant gains.

The work on this thesis has been published in the following peer reviewed venues given
in chronological order:

[BOS17] Labinot Bajraktari, Magdalena Ortiz, and Mantas Simkus.
Clopen Knowledge Bases: Combining Description Logics and
Answer Set Programming.
In Proceedings of Thirtieth Description Logic Workshop, DL2017, July 18-21,
Montpellier, France., 2017.

[BOS18a] Labinot Bajraktari, Magdalena Ortiz, and Mantas Simkus.
Combining Rules and Ontologies into Clopen Knowledge Bases.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 1728–1735,
2018.

[BOS18b] Labinot Bajraktari, Magdalena Ortiz, and Mantas Simkus.
Compiling Model Representations for Querying Large ABoxes in Expressive DLs.
In Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden., pages 1691–1698,
2018.

[BOX19] Labinot Bajraktari, Magdalena Ortiz, and Guohui Xiao.
Optimizing Horn-SHIQ reasoning for OBDA.
To appear: In Proceedings of the Eighteenth International Semantic Web Conference,
ISWC 2019, October 26-30, 2019, Auckland, New Zealand., 2019.

Contribution (C1) is reflected in all the publications, however it is explained more in depth
in [BOS18b]. Contribution (C2) is presented in [BOX19], whereas contributions (C3,C4)
are presented in [BOS18b]. Contribution (C5) is presented in [BOS18a] and [BOS17],
and lastly contribution (C6) is presented in [BOX19].

1.5 Structure of the Thesis

This thesis consists of eight chapters. In Chapter 1 (this chapter), we gave a basic
description of the field and motivated the work done in the thesis, as well as presented
the goals and an overview of the key results achieved. The remainder of this thesis is
followed by Chapter 2 in which we give the fundamental concepts used through the thesis,

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.5. Structure of the Thesis

with a focus on Description Logics and Answer Set Programming. This is followed by
five core chapters of this thesis which describe the following work:

• In Chapter 3, we describe our representation of ABoxes via profiles and give a
model compilation algorithm for ALCHI based on types. We prove the soundness
and completeness of model compilation algorithm, i.e., that for any model I of the
knowledge base one can construct a model from our computed representation that
can be homomorphically mapped to I. In this chapter we also give an overview of
our proof of concept implementation Mod4Q including the ontologies used to test
the algorithms in this thesis, and report the results on the sizes of profiles and the
feasibility of model compilation for those ontologies. Contributions (C1) and (C3)
are described in this chapter.

• In Chapter 4, we show that the computed model representation from the previous
chapter is sufficient for answering any query preserved under homomorphism. Con-
crete algorithms for query answering that depend solely on the model compilation
for reasoning are given. We report encouraging results from the evaluation of algo-
rithms for answering instance and reachability queries against a range of ontologies.
Contribution (C4) is described in this chapter.

• In Chapter 5, we define a new rich hybrid language clopen that combines rules and
ontologies. We identify a restricted version of clopen knowledge bases (CKBs), we
call separable CKBs which generalize some of the most prominent hybrid languages,
and show how utilising the computed model representations in Chapter 2 one
can obtain a plain ASP program with a potential for implementation in practice.
We give a practical use cases and report on the positive results obtained for an
expressive real-world ontology evaluated against real-world data. Contribution (C5)
is described in this chapter.

• In Chapter 6, we show that profiles can be employed in a different context. Instead
of using them to compile model representations, we utilise them for optimizing a
very well known CQ answering algorithm for Horn-SHIQ by [EOv12a]. Further-
more we report very encouraging results from the comparison of our implemented
optimization in Clipper versus the original version. Contribution (C6) is described
in this chapter.

• In Chapter 7, we show that our chosen representation of ABoxes via profiles makes
sense by giving an approach how one can obtain them from OBDA specifications.
We give an analysis of three OBDA mappings with encouraging outlook for deploying
them in practice. Contribution (C2) is described in this chapter.

Finally, we close this thesis with Chapter 8 in which we give a summary of the work that
has been carried out, along with conclusions and future research directions we envision.

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Preliminaries

In this chapter, we present the foundations upon which this thesis builds on. We assume
that the reader is equipped with basic knowledge of First Order Logic (FOL).

In Section 2.1 we start by giving an introduction to Description Logics (DLs) in general,
and specifically we define the syntax and semantics of particular DLs of interest (ALCH,
ALCHI, and Horn-SHIQ). Further, we give a brief overview of the reasoning tasks
with a focus on query answering in the presence of ontologies. For a more thorough
introduction into DLs, the reader might want to check [BCM+03], whereas for a lighter
introduction to the subject one might consider [Rud11] and [KSH12].

In Section 2.2, we define Answer Set Programming (ASP), a declarative problem-solving
approach that resulted from extensive work of the logic programming, knowledge represen-
tation, and constraint satisfaction research communities. ASP is our paradigm of choice
for encoding the query answering algorithms presented in this thesis, and evaluating them
with efficient ASP solvers. We open the section with an introduction to ASP, followed by
a formal definition of their syntax and semantics, and a brief overview of reasoning with
answer sets. For a more in-depth introduction to ASP, we point the reader to [EIK09],
whereas for a more high-level read, one may consider [BET11].

2.1 Description Logic

Description logics (DLs)[BHLS17] are a family of knowledge representation languages
that can be used to represent knowledge of an application domain in a structured
and unambiguous way. They are fragments of FOL designed with a key principle in
mind, decidability. DLs have found their way into a range of different application
domains such as data and information integration [CDL+98, Len02], health and life
sciences [RBG+97, HRG96, McG99], natural language processing [Fra94, GBFF91], and
the most important one being their adoption as the underlying logical formalism for the

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

Semantic Web [DFH11], all of which have sparked a renewed interest in DLs from the
research community since their inception in the 80s.

In DLs the domain knowledge is modeled as a Knowledge Base (KB), which represents
the knowledge of the chosen domain in terms of relationships between concepts, roles,
and individual names in the domain of interest. Typically individual names represent
objects in the domain of discourse, e.g., if we would like to model a domain of people and
their friendship as well as family relationships we may use their names as individuals
names like bato, fron to identify persons Bato and Fron. We use concepts to represent
objects that belong to a particular class, such as the concept child which represents all
children. Then we use roles to represent binary relationships between objects, such as
the role brotherOf which represents all pairs of objects that are in the relation brother of
with one another.

So far everything we have said about DLs can be represented by a simple database con-
taining unary and binary relations. In databases, one makes the closed world assumption
(CWA), that only the recorded facts in the database are true, and the rest (the unknown)
are assumed to be false. This is fine in many application use cases in which we consider
to have complete information, e.g., consider an insurance database, we ask may ask “is
person named Bato insured?”, in which case one naturally expects the answer to be
recorded in the database. However, there are application use cases where CWA is not
well suited. Consider for example a hospital database in which we store the treatment
information for each patient, we may want to ask the question, “will patient Fron have
some reaction to a certain prescribed drug”, in CWA the answer is no, however for these
types of question a more appropriate answer would be ‘don’t know’. DLs make the open
world assumption (OWA) which states that what is unknown is not necessarily untrue.
However, the point of adopting OWA by DLs is not to answer to each question for which
we don’t have recorded facts in the database with ‘don’t know’, but to phrase knowledge
in logical axioms coupled with the database which would enable for automatic inferences
that help us to complete answers to various questions as the one asked above. In the
example above an ontology encoding the knowledge about drugs used may come in handy
to answer the question posed.

In DLs, the KB is partitioned into two sets: the set of axioms in one hand which represent
the terminological knowledge commonly referred to as the TBox, and the set of assertions
on the other hand that represent the factual knowledge about the domain of discourse
typically referred to as the ABox. The facts in ABox state what is known about the
individuals in our domain, i.e., which classes they belong to and the relationships between
them. ABox assertions that state concept memberships look like the following:

Female(yllka)

which states that the individual yllka belongs to the class Female, in DL jargon we say
yllka is an instance of the concept Female. Role membership assertions in ABox state
the relationship between two individuals:

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. Description Logic

siblingOf(fron, bato)

which is read fron is a sibling of bato. Note that the first component in the role
memberships is the subject of the sentence, the role is the predicate, and the second
component is the object of the sentence. Another type of assertion, is the so called
individual (in)equality assertion, which states that two individual names do (not) represent
the same object. This has to do with the so called unique name assumption (UNA) which
is natural in the CWA where each object is treated to be different from others, however
in DLs by default such assumption is not made, and in case we want to state that two
individual names correspond to different individuals, we write:

bato 6≈ fron

In our daily discourse we usually make UNA assumpition, and there are riddles that
illustrate this, consider the following for example: “Two fathers and their two sons went
fishing together. Each of them caught a fish. On their way home, they did not lose any
fish, and yet when they arrived, they had only three fish. How could this happen?”. To
us this doesn’t make sense because by default we assume that there were 4 different
individuals (i.e. we make UNA assumption), however in this case we have three persons,
a grandfather who went fishing with his son and his grandson, and they each caught a
fish. Note that in many application use cases UNA is preferred, and we have chosen
to adopt UNA in our work since it is natural in the setting of OMQ answering [BO15]
where ABoxes are viewed as data repositories.

The other part of the KB, the set of terminological axioms in TBox are used to specify
subsumption or equivalence relationships between concepts or roles expressions, where
concept and role expressions are built using different concept, respectively role con-
structors. For example, when we like to state that all boys are children, we state that
all instances of concept Boy are also instances of concept Child through the following
inclusion axiom:

Boy ⊑ Child

One can also use equivalence relationships to define that two concept expressions are the
same, i.e. they have the same instances. Consider for example the following equivalence
axiom:

Mother ≡ Person ⊓ Female ⊓ ∃hasChild.⊤

which states that all instances of the concept Mother belong also to the concepts Person,
Female and ∃hasChild.⊤ which represents individuals that should be in at least one
relationship hasChild with some individual (notice the special concept ⊤ which represents

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

all individuals in the domain), and vice versa. The right hand side read as a sentence
represents all persons of gender female that have some child. Note that in the right
hand side we have used a concept expression which in this case contains two concept
constructors, the conjunction ⊓ which allows us to intersect two different concepts, and
the existential restriction constructor which allows us to restrict the membership only
to the individuals that have to take part in at least one role membership with another
individual instance of a certain concept. Another core concept constructor of DLs is the
universal role restriction constructor, an example of which might look like the following:

∀isSiblingOf.Male

which restricts the membership to individuals who can not occur in a role relationship
with an individual that does not belong to the stated concept, in this case we model all
individuals who can only have siblings that are male.

Apart from stating relationships between concept expressions one often is interested in
stating the relationships between role expressions, e.g.:

isBrotherOf ⊑ isSiblingOf

which states that all pairs of individuals in isBrotherOf relationship are also in isSiblingOf

relationship. One of the most common role constructors used in role expressions is the
inverse role constructor, e.g.:

isParentOf ⊑ isChildOf−

which states that all pairs of individuals in isParentOf relationship are in inverse relation-
ship with pairs of individuals in isChildOf relationship.

The multitude of combinations between concept and role constructors give rise to different
DLs with different expressive power, hence different computational properties. This
represents an interesting feature of DLs, which allow for the targeted design of DLs for
different use cases and application domains by balancing between expressivity and the
expense in complexity. Some of the most well known DL logics are DL-Lite, EL and RL
which have been adopted by W3C for different semantic web entailment regimes. The
above discussed elements of DLs are only a part of available constructors and elements,
where the purpose was to give a high-level intuition on DLs as a formalism. In the next
subsection, we give formal definitions of basic notions as well as syntax and semantics of
DLs of interest in this thesis.

2.1.1 Basic Definitions, Syntax and Semantics

Previously we stated that the domain knowledge in DLs is modelled in terms of rela-
tionships between concept names, role names, and individual names in the domain of
interest, these three constitute the DL vocabulary.

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. Description Logic

Definition 1 (DL Vocabulary). DL vocabulary is defined as a triple of the following
countably infinite pairwise disjoint sets used for modelling some domain of interest:

• NC the set of concept names which denote primitive classes, and

• NR the set of role names which denote primitive binary roles, and

• NI the set of individuals which denote objects in the domain.

Throughout this thesis we assume that NC additionally includes two special concept
names ⊥ and ⊤, known as bottom and top concept.

We use the following naming convention in this thesis:

• concept names starts with an upper letter and uses the math sans serif font Concept.

• role names use math sans serif font with camel case hasRole.

• individuals start with italic lower case roman font ergosum.

Concepts and roles are important building blocks in DLs. They are expressions defined
recursively over different concept and role constructors available in certain DL. Depending
on the DL we are talking about, the concept and role constructors at the disposal for
forming concept and role expressions differ, and are the primary source of expressivity
of reasoning in DLs. The trade-off between the computational cost and the gain in
expressivity specific combination of constructors may bear is a subject of multiple
studies throughout the field. While in one hand certain application use cases require for
certain constructors to be present, the theoretical study of the same shades light on the
computational efforts one may need for different reasoning task in the DL at hand.

Definition 2 (Concepts and Roles). Given a DL L:

• Concepts are defined from concept names inductively with the concept constructors
from Table 2.1 available in L, and

• Roles are defined from role names inductively with the role constructors from
Table 2.1 available in L.

If r ∈ NR, then r and r− are roles; the set of all roles is denoted NR. For readability, r−

stands for s whenever r = s− for s ∈ NR.

DLs use a naming scheme which reveals the constructors certain DL uses, e.g., the letter
H used in the name of a DL represents the availability of role inclusion constructor, I
the availability of the inverse role constructor, O the availability of the nominal concept
constructor, Q the availability of qualified number restriction constructor, S denotes
all the constructors available in the DL ALC with the addition of the transitive role

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

constructor, and R the availability of complex role inclusions of the form r ◦ . . .◦s⊑ t and
further axioms that allow, for example to declare reflexive, irreflexive, and antisymmetric
roles. The aforementioned list is by no means exhaustive but we listed some of the well
known constructors to give an idea on the myriad of DLs one can obtain by combining
different available constructors.

In DLs knowledge is expressed via axioms, which are divided into two groups: termino-
logical axioms (TBox axioms for short), and assertion axioms (assertions for short).

Definition 3 (Assertion Axioms). Assertion axioms take one of the following forms:

• C(a) where C is a concept and a ∈ NI, known as concept membership assertions.

• r(a, b) where r is a role and a, b ∈ NI, known as role membership assertions.

Sometimes inequality assertions of the form a 6≈ b are considered. We omit them in this
thesis because we make the UNA, hence they are meaningless in this thesis.

For any assertion of the form C(a) and r(a, b) we always assume that C ∈ NC, r ∈ NR,
i.e., we always assert membership of individuals only in concept and role names.

TBox axioms are further divided into two sub groups General Concept Inclusions axioms
(GCIs) and Role Inclusion Axioms (RIAs). Depending on the concrete DL, different
terminological axioms can be used.

Definition 4 (GCIs and RIAs). A TBox axiom is:

• a general concept inclusions axiom that takes the following form:
C ⊑D where C and D are concepts, or

• a role inclusion axioms that takes the following form:
r ⊑ s where r and s are roles.

Next we define DL ABoxes, TBoxes and KBs.

Definition 5 (DL KBs, ABox and TBox). Given a DL L, a L knowledge base is a pair
K = (T ,A) where:

• A is a finite set of assertion axioms in L, known as the ABox, and

• T is a finite set of terminological axioms in L, known as the TBox.

For a given ABox A we define the set of individuals occurring in A with NI(A).

The semantics of DLs is given in terms of interpretations I = (∆I , ·I) where ∆I is the
domain of I a non-empty set defined over NI, and ·I is a mapping function which maps
each individual name NI to an element in ∆I , each concept name in NC to a subset of
elements ∆I , and each role name in NR to a subset of set of pairs of elements in the
domain (∆I ×∆I).

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. Description Logic

Definition 6 (Interpretation). An interpretation I = (∆I , ·I) consists of a non-empty
domain ∆I and a valuation function ·I that maps:

• each a ∈ NI to an element aI ∈ ∆I ,

• each A ∈ NC to a set CI ⊆ ∆I ,

• each r ∈ NR to a set rI ⊆ ∆I ×∆I ,

• ⊤ to the domain ∆I , and

• ⊥ to the empty set ∅.

We recall that we make the UNA throughout the thesis, i.e. for any interpretation I and
pair a, b ∈ NI s.t. a 6= b, we require aI 6= bI .

Next we define the model of a TBox, an ABox and a KB.

Definition 7 (TBox, ABox, KB models). An interpretation I is a model of:

• a TBox T if

for each concept inclusion C ⊑D ∈ T , CI ⊆ DI , and

for each role inclusion R⊑ S ∈ T , RI ⊆ SI , and

for each transitivity axiom trans(R) ∈ T , RI ◦RI ⊆ RI .

• an ABox A if

for each assertion C(a) ∈ A, aI ∈ CI , and

for each assertion r(a, b) ∈ A, (aI , bI) ∈ rI .

• a KB K if I is a model of T and A.

We say that a KB, TBox or an ABox is consistent (or, satisfiable) if it has a model. For
an axiom α and a TBox T we say that α is entailed by (or a logical consequence of) T
(T |= α), if for every model I of T , I satisfies α.

For a TBox T , we use ⊑∗
T for the transitive closure of the relation {(r, s) | r ⊑ s ∈

T or r− ⊑ s− ∈ T } ∪ {(r, r)|r ∈ NR}.

Definition 8 (Homomorphism from I to J). Let I and J be two interpretations.A
homomorphism h : I 7−→ J is a mapping from ∆I to ∆J such that:

• d ∈ AI implies h(d) ∈ AJ for all A ∈ NC, and

• (d, d′) ∈ rI implies (h(d), h(d′)) ∈ rJ for all r ∈ NR.

If a homomorphism from I to J exists we write I ⊲ J .

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

Name Syntax Semantics

CONCEPT CONSTRUCTORS
1 Concept names A AI

2 Top concept ⊤ ∆I

3 Bottom concept ⊥ ∅
4 Negation ¬C ∆I \ CI

5 Conjunction C ⊓D CI ∩DI

6 Disjunction C ⊔D CI ∪DI

7 Existential restriction ∃r.C {d ∈ ∆I | ∃(d, d′) ∈ RI and d′ ∈ CI)}
8 Universal restriction ∀r.C {d ∈ ∆I | ∀(d, d′) ∈ RI and d′ ∈ CI)}

9 Qualified number restrictions
6n r.C {d | n ≤ |(d, d′) ∈ RI and d′ ∈ CI |}
>n r.C {d | n ≥ |(d, d′) ∈ RI and d′ ∈ CI |}

ROLE CONSTRUCTORS
10 Role names r rI

11 Inverse r− {(d′, d)|(d, d′) ∈ rI}

ABOX AXIOMS
12 Concept assertion A(a) aI ∈ AI

13 Role assertion t(a, b) (aI , bI) ∈ tI

TBOX AXIOMS
14 Concept inclusion axiom C ⊑D CI ⊆ DI

15 Role inclusion axiom r ⊑ s rI ⊆ sI

16 Transitivity axiom trans(r) rI ◦ rI ⊆ rI

Table 2.1: Syntax and semantics of some of the concept and role constructors in DLs,
TBox, and ABox axioms relevant for this thesis. C, D represent concepts and r, s roles,
whereas A is a concept name and t is a role name.

2.1.2 ALCH and ALCHI Description Logics

In this subsection, we present the syntax and semantics of two DLs used extensively
throughout this thesis ALCH and ALCHI. Both of these logics are extensions of ALC,
which is one of the most studied DLs, as it is the most basic logic to be propositionally
complete and also to contain the existential and universal quantifier constructors deemed
interesting for practical purposes. Referring back to the table 2.1 ALC concepts are
defined inductively over the concept constructors listed (1–8), roles are simply role names
(10), where as ALC TBoxes contain only general concept inclusion axioms (14) and ABox
assertions (12–13). As already pointed out, role inclusions are represented with the letter
H in the DL naming scheme, from where we get that ALCH extends ALC with role
inclusions axioms in the TBox (15). In this thesis, we assume that ALCH TBoxes are
always given in the following normal form:

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. Description Logic

Definition 9 (ALCH normal form).

l
Ai ⊑ B (NF1)

A ⊑
⊔

Bi (NF2)

A ⊑ ∃r.B (NF3)

∃r.A ⊑ B (NF3’)

A ⊑ ∀r.B (NF4)

r ⊑ s (NF5)

where A, Ai, B, Bi are concept names and r, s role names.

It is well known that any ALCH TBox T can be normalized into a TBox T ′ in normal
form presented in Definition 9 in polynomial time so that T and T ′ have the same
models up to the original signature of T (see, e.g., [SKH11]). Note that [SKH11] uses a
slightly different normal form than the one shown in the definition above. More precisely,
[SKH11] instead of using axioms of the form NF1 and NF2, it uses a more generic form
that can express both: l

Ai ⊑
⊔

Bi

which can be easily transformed into our given normal forms, by introducing a fresh
concept name F for the right hand side:

l
Ai ⊑ F

F ⊑
⊔

Bi

ALCHI is obtained from ALCH by adding the inverse role constructor (11) listed in
Table 2.1. For the rest of this thesis we assume each ALCHI TBox to be given in the
following normal form:

Definition 10 (ALCHI normal form).

l
Ai ⊑ B (NF1)

A ⊑
⊔

Bi (NF2)

A ⊑ ∃r.B (NF3)

A ⊑ ∀r.B (NF4)

r ⊑ s (NF5)

where A, Ai, B, Bi are concept names and r, s are roles.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

A normalization procedure for an arbitrary ALCHI can be obtained from the SHI
normalization procedure presented in [Sim13] by simply dropping transitivity axioms
in the original ontology. Moreover, since ALCHI is basically an extension of ALCH
with the role inverse constructor, we could use the normal form of ALCH but allowing
for possibly inverse roles in the place of role names. We chose instead to get rid of the
axioms of the form (NF3’) in Definition 9 by making use of the following equivalence:

∃r.A ⊑ B ⇔ A ⊑ ∀r−.B

from where we get the normal form for ALCHI presented above.

2.1.3 Horn-SHIQ Description Logic

Horn-SHIQ is an expressive Horn DL that enjoys the nice property of being tractable
in data complexity. One obtains Horn-SHIQ from the very expressive DL SHIQ by
restricting the use of axioms such that they do not exhibit non-deterministic behaviour,
i.e. they can not be used to encode the disjunctive concept constructor ⊔ in the right
hand side of GCIs. Hence, Horn-SHIQ does not use the disjuntcive concept constructor
used in ALC, however it add two new things not present in ALCHI the qualified number
restrictions concept constructor and transitivity axioms. To properly define Horn-SHIQ
we need to first define SHIQ. We do so by following definition given by [Kaz09].

SHIQ concepts and roles are defined inductively over the constructors shown in table 2.1,
whereas a SHIQ KB is a set of axioms defined in the table.

If trans(r) ∈ T or trans(r−) ∈ T we call r transitive, and we consider a role r ∈ T
simple if there are no transitive sub roles of r, i.e. there exists no transitive role s ∈ T s.t.
s⊑∗

T r. Each role occurring in concepts of the form 6n s.C and >n s.C is a simple role.

To define Horn-SHIQ we first need to define the polarities of SHIQ concepts occurrences
in SHIQ concepts and axioms as done in [Kaz09]:

• C occurs positively in C, and
• C occurs positively (negatively) in ¬C− (¬C+), and
• C occurs positively (negatively) in C+ ⊓D (C− ⊓D), and
• C occurs positively (negatively) in C+ ⊔D (C− ⊔D), and
• C occurs positively (negatively) in ∃r.C+ (∃r.C−), and
• C occurs positively (negatively) in ∀r.C+ (∀r.C−), and
• C occurs positively (negatively) in >n s.C+ (>n s.C−), and
• C occurs positively (negatively) in 6n s.C− (6n s.C+), and
• C occurs positively (negatively) in C− ⊑D (C+ ⊑D), and
• C occurs positively (negatively) in D ⊑ C+ (D ⊑ C−).

where C+(C−) is some concept in which the concept C occurs positively (negatively),
and D is some arbitrary concept.

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. Description Logic

We say then that some concept C occurs positively (negatively) in T if C occurs positively
(negatively) in some axiom in T . Note that a concept can occur at the same time positively
and negatively in the same axiom or in T . Then we are ready to define a Horn-SHIQ
TBox.

Definition 11 (Horn-SHIQ TBox). A Horn-SHIQ TBox T is a SHIQ TBox where:

• no concept of the form C ⊔D or 6n r.C with n > 1 occurs positively in T , and

• no concept of the form ¬C, ∀r.C, >n r.C with n > 1, or 6mr.C occurs negatively
in T .

For our purposes we assume w.l.o.g. that each Horn-SHIQ T is given in the normal
form defined below.

Definition 12 (Horn-SHIQ normal form).

l
Ai ⊑ B (NF1)

A ⊑ ∃r.B (NF3)

A ⊑ ∀r.B (NF4)

A ⊑ 61 s.B (NF6)

where A, Ai, B are concept names, r is a role, and s is a simple role.

For a detailed description of the normalization process please refer to [Kaz09] or [KRH07].

2.1.4 Reasoning Tasks

In the DL literature a large number of reasoning tasks have been considered. In this
thesis we are interesting in query answering which is considered an ABox reasoning task.
The most basic ABox reasoning task is instance checking [BCM+03], this is because other
important reasoning tasks such as knowledge base consistency, realization and instance
retrieval can be framed in terms of the task of instance checking.

Instance checking in a KB K is to decide:

• for a given individual a and a concept C, if K |= C(a), or

• for a given pair of individuals (a, b) and a role r, if K |= r(a, b).

In this case, we call a and instance of C, respectively (a, b) an instance of r.

In knowledge base consistency the problem is to decide if there exists an interpretation I
that is a model of the knowledge base such that for each concept C in the knowledge

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

base CI is non empty, where as in instance retrieval the problem is to find for a given
concept, all the individuals in the KB that are instances of the given concept.

Similarly, another reasoning task closely related to instance checking is instance query
answering where the task is to find for a given concept name or role name all the
individuals respectively pairs of individuals in the KB that are instance of such concept
or role.

Query Answering From the databases point of view, queries are seen as a mechanism
for retrieving information. We call the data retrieved from the evaluation of the given
query the answer to such query. There exist multiple query languages in which queries
can be expressed, some of the most famous include: FOL queries, CQs which are a
restricted version of FOL formulas that corresponds to select-project-join queries of
SQL, and Datalog queries characterized by their support for recursion. Adopting these
query languages for querying DL knowledge bases from the syntactical point of view is
easy, since we only need to restrict the relation symbols in those queries to concept and
role names occurring in the vocabulary of the ontology. However when it comes to the
semantics of query answering in DLs, the solution is not so obvious since contrary to the
setting of databases where semantics of the queries are tied to one interpretation (the
database itself), in DLs KBs we have to deal with multiple interpretations.

For a query q in any given language we write q(~x) and refer to the variables in ~x as
answer (free) variables of the query. For a tuple of individuals ~a we write q(~a) to denote
the result of substituting each answer variables xi ∈ ~x with ai ∈ ~a.

Given an interpretation I and a query q(~x) the semantics of answers of the query w.r.t
to I is given as follows:

ans(q, I) = {(aI
i , . . . , a

I
n) | I |= q(~a), (ai, . . . , an) ∈ (NI(A))n}

Then the semantics of query answering in DL w.r.t to their knowledge base is given by
the so called certain answer semantics. We call a tuple of individuals ~a in NI(A) a certain
answer of the q(~x) w.r.t. (T ,A) if the ground query q(~a), is entailed in every model of
the KB.

Definition 13 (Certain Answers). Let (T ,A) be an arbitrary DL KB, and q(~x) an
arbitrary query defined over the vocabulary of T . Then the certain answers to q(~x) over
(T ,A) are defined as follows:

cert(q,K) = {(a1, . . . , an) | (aI
i , . . . , a

I
n) ∈ ans(q, I) for each I |= K}

Complexity Measures for Query Answering Complexity theory has proven itself
as an indispensable tool for measuring the hardness of problems, and we will often refer
to the complexity of certain problems throughout the thesis. We give here a very brief
overview of some of the concepts from Complexity Theory used through the thesis, and

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. Description Logic

point the reader to the classical textbook [Pap94] for an in depth coverage of the topic.
In complexity theory the problems are typically reformulated as decision problems, where
the given problem is posed as a question with a yes or no answer. For example in the
case of query answering problem in DL we give as an input a query q, a knowledge base
K = (T ,A), and a tuple ~a ∈ NI(A), and the question we seek to answer is: “Is ~a found
among the answers in cert(q,K)?”.

In complexity theory the problems are categorised into complexity classes, which intu-
itively represent the set of problems whose solution can be computed within certain
amount of time or space. The notion of the problem hardness, membership or complete
for certain complexity class is the standard one, see [Pap94] for details. Below an overview
of some of the important complexity classes is given.

PTIME =
⋃

k>0

DTIME(nk)

NP =
⋃

k>0

NTIME(nk)

PSPACE =
⋃

k>0

DSPACE(nk)

NPSPACE =
⋃

k>0

NSPACE(nk)

EXPTIME =
⋃

k>0

DTIME(2nk

)

NEXPTIME =
⋃

k>0

NTIME(2nk

)

Complexity class DTIME(f(n))(NTIME(f(n))) represents the set of decision problems
that can be decided by a (non)deterministic Turing machine in time O(f(n)), whereas
DSPACE(f(n))(NSPACE(f(n))) represents the set of decision problems that can be
decided by a (non)deterministic Turing machine using space O(f(n)).

For query answering we distinguish two important ways of measuring the complexity
of the task: (i) Combined Complexity where complexity is measured with respect to
the whole size of the input (|q| + |T | + |A| + |~a|), and (ii) Data Complexity where
complexity is measured with respect to the size of the data (|A|), whereas |q|, |T |, and
|~a| are assumed as fixed, i.e. they do not contribute to the complexity.

The combined complexity is the classical measure in which we seek to describe the com-
plexity of the overall problem. The data complexity measure was introduced by [Var82]
due to the observation that in the setting of databases the queries are typically very
small compared to the data, hence data complexity was considered a more revealing
measure for query answering algorithms. Although in the setting of OMQ answering,
there are cases when the TBox can be quite large, still there are many application use
cases where the size of the query and the TBox is negligible compared to the size of the
ABox, therefore accounting for data complexity is important.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

For decision problems sometimes it is useful to consider their complements, which are the
problems obtained by rephrasing the question of the given problem such that the answers
to it are flipped. This is generalized to complexity classes, where for a given class C its
complement class is denoted co-C and is the set of all complements of a problems in C.
Perhaps the most well known co class of interest to us is the coNP class, the complement
class of NP, which contains the query answering problem for expressive DLs measured in
terms of data complexity. In contrast, it is worth mentioning that the data complexity
of query answering problem for DL-Lite falls in a quite low complexity class, in AC0,
which is a circuit complexity class and represents the set of problems that can be solved
through the use of polynomially sized circuits of constant depth, with unlimited-fanin
AND and OR gates. It is worth mentioning that the data complexity of query answering
problem in relational databases is in AC0 as well.

Finally we give a relation of the main complexity classes mentioned here:

AC0 ⊂ PTime ⊆ NP ⊆ PSpace = NPSpace ⊆ ExpTime ⊆ NExpTime ⊆ 2ExpTime

2.2 Answer Set Programming

Answer set programming (ASP, in short) is a declarative knowledge representation
formalism that falls in the area of logic programming. ASP programs correspond to
disjunctive datalog programs with negation as failure (Datalog∨,¬) under stable model
semantics. In ASP paradigm one addresses the solving of a problem by first encoding
the problem instance I into an ASP program P, then computing the models M of P by
using an ASP solver, and finally extracting a solution or multiple solutions therein from
M depending on the setting. A diagram borrowed from [EIK09] that depicts the uniform
approach to problem encoding in ASP is shown in Figure 2.1. Note that ASP has a useful
feature when it comes to encoding the problem in a program. Usually the encoding of
a solution to the problem PS is separated from the data describing a concrete instance
of the problem PD, which decouples the logic of the solution from concrete problem
instances thus encouraging more modular encodings that allow reusability of encoded
solutions over different problem instances. The ease of moving from the problem instance

Encoding:
Program

Encoding:
Program

Specification

ProbelmS:

DataD:

ASP Solver
Model(s)

Solution(s)

Figure 2.1: Uniform problem encoding in ASP

to modeling and solving has made ASP a successful paradigm which has been applied
in a range of areas, among which are constraint satisfaction, robotics, bioinformatics,
and security analysis. For a comprehensive list of areas of application, the reader may

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Answer Set Programming

consider [EGL16, EIK09], while for a list of latest industrial application of ASP we refer
to [FFS+18].

ASP programs are a set of facts, and a set of rules which intuitively justify the derivation
of new facts if the conditions they encode are met. In the beginning we will give an
intuition of ASP programs and for this reason we present the rules rather informally.
Rules in ASP are expressions of the following form:

h1 ∨ . . . ∨ hk ← b1, . . . , bℓ,not bℓ+1, . . . ,not bm

where hi are head atoms, whereas bis are body atoms. One important feature to note in
ASP programs is that the negation which appears in the negated atoms in the body of
the rules is known as negation as failure, which is different from the standard negation
operator, and stands for non provable. A classical example to show it’s usefulness is the
example from law that a person is innocent unless proven guilty. Consider the following
rule:

innocent← accused, not evidence.

where the atom accused represents some accused individual, in this case for whom we
have no evidence that has committed the crime he/she is being accused of. In classical
setting for this example we would not be able to derive that the accused is innocent since
we would need for the incriminating evidence to be explicitly state as false, where as in
the setting with negation as failure since we can not derive any incriminating evidence we
can justify that the accused is innocent. However, tackling negation as failure in a formal
way posed a major challenge for the knowledge representation community and many
semantics have been proposed. To address this ASP adopts the answer set semantics,
also known as the stable model semantics introduced by [GL88].

We will proceed by giving a high level intuition of answer sets (or stable models) upon
which answer set semantics is built on. First let’s consider ASP programs that do not
contain negation, and disjunction in the head. In these the establishing of what is derived
is easy as we just need to proceed in bottom-up fashion starting from facts. Let’s consider
a simple example:

phd← .

educated← phd.

smart← successfull.

successfull← smart, educated.

In this example we can establish phd since it is given as a fact, then from the second
rule we establish educated. Since we can not establish neither smart nor successfull from
what is given in the program, the only set that is justified is {phd, educated}, which is
considered an answer set to the program. Computing justifications in a positive program

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

without negation is simple indeed, we only need to proceed in iterative fashion, at each
iteration deriving new atoms, until we reach a point where no new atoms can be derived.
However, in the presence of negation things become more tricky, consider the following
simple example:

innocent← not guilty.

guilty← not innocent.

Since neither guilty or innocent are given as a fact that means that both rules are
reasonable candidates to derive new facts, however if the first rule derives innocent then
the precondition of the second will not hold, and vice versa. In this case it is clear
that the bottom-up fashion we considered for positive programs does not work. The
intuition behind answer set semantics is to assume which atoms will not be derived. For
example, if we assume that guilty will not be derived then we can use the first rule to
derive innocent, from where we get that the set {innocent} is justified by the program,
likewise if we assume that innocent can not be derived, then we can use the second
rule of the program to derive the set {guilty}, hence we consider that the program has
two answer sets {innocent} and {guilty}. The main idea in answer set semantic is that
instead of focusing on computing the answer sets (model) from the program, one starts
by proposing a model (everything that can be derived by a program), which gives a way
for interpreting the negated atoms and rules with negated atoms, i.e. those that have a
negated atom that is found in the proposed model become irrelevant, while the other
negated atoms than can be discarded since they all evaluate to true, getting in this way
a positive program which is known as the reduct of the program with respect to the
proposed model. In the last step one checks if all the atoms in the proposed model are
justified by the reduct, if yes then the proposed model is considered an answer set of the
program.

2.2.1 Syntax and Semantics

We assume countably infinite set ND of relation symbols, where each R ∈ ND has an
associated arity arity(R) ≥ 0. It will be convenient to allow concept names and role
names in ASP programs, therefore we assume that NR ∪ NC ⊆ ND and let arity(A) = 1
for each A ∈ NC, and arity(r) = 2 for each r ∈ NR. We use the same countably infinite
set NI of individual names for constants in ASP, and also assume a countably infinite set
NV of variables. The elements of NI ∪ NV are called terms.

An atom (or, positive literal) is an expression of the form R(~t), where R is a relation
symbol, and ~t is a tuple of terms with |~t| = arity(R). A negative literal is an expression
of the form not R(~t), where R(~t) is an atom with R ∈ ND. A literal is either a positive
literal, or a negative literal. We also refer to R(~t) (resp. not R(~t)) as positive (negated)
atom.

A rule ρ is an expression of the form

h1 ∨ . . . ∨ hk ← b1, . . . , bm (2.1)

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Answer Set Programming

such that {h1, . . . , hk} is a set of atoms, denoted head(ρ), and {b1, . . . , bm} is a set of
literals, denoted body(ρ). We let body+(ρ) denote positive atoms, where as body−(ρ) the
negative ones appearing in the body of the rule ρ.

A program P is any finite set of rules.

An atom, a literal, a rule, or a program is called ground if no variables occur in it. As
usual, dom(f) and ran(f) denote the domain and range of a function f , respectively. A
substitution σ is any partial function from NV to NI. For a rule ρ and a substitution
σ, we use σ(ρ) to denote the rule that is obtained from ρ by replacing every variable
X ∈ dom(σ) with σ(X). The grounding of a program P, denoted ground(P), is the
ground program that consists of all ground rules ρ′ such that ρ′ = σ(ρ) for some ρ ∈ P
and some substitution σ.

Furthermore,

• A rule p(~a)← consisting of a single ground head is called a fact. We write r(~t) ∈ P
in case the rule r(~t)← is present in a program P.

• A rule ← b1, . . . , bm with no head atoms (i.e., k = 0) is called a constraint.

• A rule h ← b1, . . . , bm with only one atom in the head (i.e., k = 1) is called
disjunction-free.

• A rule without negative literals in the body, is considered a positive disjunctive
rule.

The semantics of ASP programs is given by Herbrand interpretations, which are sets
of ground atoms. Note that ABoxes are Herbrand interpretations, and a Herbrand
interpretation becomes an ABox when restricted to atoms over the predicates in NC ∪NR.

An Herbrand interpretation I is called a model of a ground positive program P if
body+(ρ) ⊆ I implies head(ρ) ∩ I 6= ∅ for all ρ ∈ P. Furthermore, I is a minimal model
of the ground positive program P if, I is a model of P and there is no J (I such that J
is a model of P.

An answer set (a.k.a. stable model) of P is a Herbrand interpretation M that is a minimal
model of the GL-reduct [GL88] of ground(P) w.r.t. M , obtained in two steps:

(i) deleting every rule ρ that contains a negative body atom r(~a) with r(~a) ∈M , and

(ii) deleting all negated atoms in the remaining rules.

Going back to our example:

innocent← not guilty.

guilty← not innocent.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

Let M = {innocent} be a Herbrand interpretation, then by the rule (i) of the reduct
we delete the second rule of the program since we have innocent ∈M and it’s negated
therefore the body of this rule can never be satisfied, we get:

innocent← not guilty.

next by the rule (ii) of the reduct we delete the negated atom not guilty from the remaining
rule. Intuitively, since we know that guilty is not found in M we know that not guilty will
evaluate to true, hence its redundant. After this step the reduct looks like the following:

innocent←

Finally, since M is a minimal model of the reduct we conclude that {innocent} is an
answer set of the given program.

Note that there is a close correspondence between ASP and variants of the famous
language from logic programming Datalog. An ASP program where all rules are
positive and disjunction free corresponds to a plain Datalog program where the answer
sets of the ASP program coincide with the minimal models of the corresponding Datalog

program. Whereas an ASP program is simply a datalog program with negation and
disjunction (Datalog∨,¬) interpreted under stable model semantics.

2.2.2 Reasoning over Answer Sets

As already showed with our previous example in ASP we commonly get more than one
answer set for a given program P . Depending on the task we are considering, the solution
might be to pick one of the answer sets and extract a solution from it, or an atom may
be part of the solution only if it is found in all the answer sets.

We differentiate two modes of reasoning when it comes to entailment of r(~c) from P:

• Brave reasoning. A ground atom r(~c) is bravely entailed from P if r(~c) ∈ M for
some answer set M of P.

• Cautious reasoning. A ground atom r(~c) is cautiously entailed from P if r(~c) ∈M
for every answer set M of P.

We are usually interested in the second mode of reasoning and cautious entailment is
often in close correspondence with certain answer semantics of query answering, therefore
for all the programs in this thesis we assume they are evaluated in cautious reasoning
mode.

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
Reasoning About Families of

ABoxes

Reasoning in expressive DLs is known to have high complexity. Satisfiability checking
of knowledge bases for the basic ALC DL is already hard for ExpTime in combined
complexity [Neb90], whereas data complexity for different query languages ranging from
instance queries (IQs) to conjunctive queries is in coNP [Sch93], making the task of OMQ
answering in expressive DLs very challenging. The standard technique for answering
OMQs is via rewriting, i.e., given a query and an ontology, the query is rewritten to take
into account the knowledge encoded in the ontology such that when evaluating the query
over any database its result coincides with the answers of the original query mediated
by the ontology. Note that these rewritings do not depend on the data, which is an
essential feature that allows the reuse of the rewriting over evolving databases. While
data independent query rewriting technique has proven to work well in practice for many
lightweight DLs such as DL-Lite, and practical algorithms have been implemented, in
the case of expressive DLs there are practically no such algorithms implemented. Most of
the algorithms for expressive DLs are based on techniques that are costly to implement
and mostly target at proving complexity results. However, state-of-the-art reasoners
for expressive DLs target standard reasoning task such as satisfiability checking and
can handle very large ontologies (e.g., Pellet [SPG+ 07], HermiT [GHM+14], Konclude
[SLG14]). But, they implement tableaux algorithms which are based on refutation
procedure that is suitable for deciding model existence but regarded as impractical for
query answering [HM05]. A rewriting into Datalog for SHIQ was implemented a
decade ago in the KAON2 reasoner, but only for instance queries. A published extension
to CQs did not yield a data-independent rewriting and was never implemented [HMS04].

In this chapter, we present a technique that paves the way for a middle ground approach
between data dependent and independent query rewriting approaches, namely a structure
based approach, in which we make use of structure-specific description of ABoxes of

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

interest for narrowing the search space for query answering algorithms. We propose
profile sets as a general and straightforward way to describe families of ABoxes. We
claim that, in most real-world cases, data residing in most databases is regular, i.e., one
encounters multiple copies of the same patterns, and only a moderate number of profiles
is relevant, even when the datasets are large. At the end of this chapter we provide
empirical evidence for this.

We provide a type based algorithm that takes as an input a TBox T in ALCHI, a set
of profiles P, and computes a structure T that represents a set of relevant models, for
all knowledge bases of interest, and that can be used for answering OMQs. Specifically,
for any ABox A that complies to the description given by the set of profiles P, from the
computed structure T we can construct a set of models of (T ,A) that is sufficient for
answering a range of interesting query languages.

On top of the fact that the computation of the structure T can be done offline, another
important feature of the algorithm for computing the representation of models is the
support for incremental reasoning on evolving families of ABoxes, i.e. if the representation
of models has been obtained for a set of profiles, and a new family of ABoxes becomes of
interest, new profiles can be incorporated easily.

The rest of this chapter is organized as follows: In Section 3.1, we lay out the definition
of profiles as a means of representing families of ABoxes, from which we obtain base
types- ‘partially’ complete types. Base types are further expanded into ‘full’ types in
Section 3.2 by the type table computation algorithm and stored into a structure T from
which one can construct the set of relevant models for answering queries preserved under
homomorphism for any KB covered by the given profiles. In fact, we prove the latter
statement in the next chapter. In Section 3.3 explanation of the experimental set up
for the rest of the thesis is given, including the benchmarking ontologies used and the
implemented prototype Mod4Q for DLs expressed in ALCH. Finally, in Section 3.4 we
provide our evaluation results of the tests run against a large repository of ontologies,
which show that for a large real-world ABoxes are typically covered by a small number of
profiles, and for most large complex ontologies the type computation algorithm is feasible
and results into a small-sized structure T.

3.1 Profiles for Representing Families of ABoxes

In practice, data residing in a database adheres to a certain structure, usually encoded via
a schema. Hence it makes sense to consider only ABoxes that fit some constraints when
rewriting queries mediated by an ontology. We start by presenting an abstract ‘schema’
for ABoxes and show how one can obtain such schema for specific ABoxes. Later on (in
Chapter 7), we show that this representation can be obtained from OBDA specifications,
making the algorithms that utilize our ‘schema’ representation deployable in practice.

To describe families of ABoxes, we define profiles, which are combinations of concepts
names, role domains, and role ranges that an individual may be asserted to participate

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Profiles for Representing Families of ABoxes

in.

Definition 14 (Profiles). Concept names in NC, and concepts of the forms ∃r and ∃r−

with r ∈ NR are called basic concepts. A profile is a set of basic concepts. Given an
ABox A, the profile of a in A is:

profA(a) = {A | A(a)∈A} ∪ {∃r | r(a, b)∈A} ∪ {∃r− | r(b, a)∈A}

A set P of profiles covers A if profA(a)∈P for all a∈NI(A).

Example 2. Consider following ABoxes represented as a graphs:

a1 a3

A,B

a2

C

B

a1 a3

A,B

a2

C

BA

a4

r s r s

r

and the following set of profiles P = {p1, p2, p3}:

p1

A,B r

p2

Br s

p3

Cs

Then P covers A1 but doesn’t cover A2 as profA2(a4) = {A,∃r} 6∈ P.

Given an ABox A one can obtain the set of profiles that cover A by simply taking the
set of profiles for each individual occurring in A, i.e, {profA(a)|for each a ∈ NI(A)}.

In the rest of this section, we assume a fixed TBox T , and a set P of profiles that covers
all the ABoxes of interest. We then expand the profiles p ∈ P with concept names A such
that, for some A covered by P, and some individual a with profA(a) = p, it may be the
case that a ∈ AI holds in the models I of (T ,A). Roughly, we first expand each profile
with possibly different ‘guesses’ of concepts that their neighbors may propagate to it,
and then partially complete it with concepts inferred from T . This gives us base types
which in the next stage are further expanded to satisfy the axioms in T , or eliminated if
we infer that they cannot occur in models.

Definition 15 (Relevant Guesses). The relevant guesses for a profile p are:

GuessT (p) = {B | ∃r− ∈ p,A⊑ ∀s.B ∈ T , r ⊑∗
T s,B 6∈ p}

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

To understand the relevant guesses, we observe that each ABox A, by asserting specific
relations between individuals, stipulates concepts that the individuals will need to
participate in to satisfy the axioms in T , particularly the ones of the forms (NF4). For
example, assume A⊑ ∀r−.B ∈ T . If in a concrete A we have r(a, b) ∈ A, then a ∈ BI

must hold in any model I of (T ,A) with b ∈ AI . However, this is not enforced if no
relation assertions between a and b are present in A, or if b turns out not to be an
instance of AI . To abstract away from the relations asserted in each concrete ABox,
and the specific concepts that the neighbors of an object may satisfy, we take a simple
approach: we consider all possible combinations (or ‘guesses’) of sets of concepts that may
be enforced at an individual due to its neighborhood in A. That is, we reason explicitly
about both a ∈ BI and a 6∈ BI , but only if a participates in a relation r involved in an
axiom of the form (NF4).

The subsets of the guesses from the previous definition induce base types of p.

Definition 16 (Base Types). A type is a set τ ⊆ NC ∪ {⊥,⊤}. For a type τ , we let

detT (τ) = {B | {A1, . . . , An} ⊆ τ and A1 ⊓ . . . ⊓An ⊑B ∈ T }.

For a profile p, we define its deterministic closure detClT (p) as the smallest type τ such
that (p ∩ NC) ⊆ τ , and

(d1) detT (τ) ⊆ τ ,

(d2) if ∃r− ∈ p and ⊤⊑ ∀s.B ∈ T with r ⊑∗
T s, then B ∈ τ .

For S ⊆ GuessT (p), we let btyp(p, S) = detClT (p ∪ S).

We define base types induced by profiles and sets of profiles.

btypT (p) = {btyp(p, S) | S ⊆ GuessT (p),⊥ 6∈ btyp(p, S)}

btypT (P) =
⋃

p∈P

btypT (p).

As we will show in our experiments in Section 3.4, despite being quite naive, this approach
already leads to sets of base types of manageable size for many large ontologies.

Example 3. Consider the profile set from the Example 2 and the following TBox T :

A⊑ ∀s−.C C2 ⊑ ∃r.C

C ⊑ C1 ⊔ C2 C2 ⊑ ∃s.D

C ⊑ ∀r.B C2 ⊓B ⊑⊥

C1 ⊑ ∀s.A r ⊑ s

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Profiles for Representing Families of ABoxes

Recall that each of the profiles have the following concept names:

p1 ∩ NC = {A,B}
p2 ∩ NC = {B}
p3 ∩ NC = {C}

From Definition 15 we get the following set of guesses:

GuessT (p1) = {C}
GuessT (p2) = {A,B,C}
GuessT (p3) = {A}

For p1 we have only one concept to be guessed: C, to accommodate for the possibility of
(not) having an s successor that is A in which case the axiom A⊑ ∀s−.C would force the
concept C, hence the need to reason about both possibilities. Similarly, for p2 we have to
guess A from the possibility of (not) having an s predecessor that is in C1, and we have
to guess C as in the case of p1. Note that although B is included in the set of guesses
for p2, it is already contained in the set of concept names (p2 ∩ NC) therefore it doesn’t
constitute a ‘true’ guess. Lastly, for the profile p3 we have to guess A as in the case of
p2, i.e. from the foreseen possibility of (not) having an s predecessor that is in C1.

Accounting only for true guesses, i.e., discarding the guesses for concepts already contained
in the profiles, based on Definition 16 we get the following base types for the given profiles:

btyp(p1, {}) = {A,B}
btyp(p1, {C}) = {A,B,C}

btyp(p2, {}) = {B}
btyp(p2, {A}) = {A,B}
btyp(p2, {C}) = {B,C}

btyp(p2, {A,C}) = {A,B,C}

btyp(p1, {}) = {C}
btyp(p1, {A}) = {A,C}

Note from above that the set S can also be empty. Also, each base type is closed determin-
istically, that is, it contains its deterministic closure as defined in Definition 16. From
the above we notice that we get six resulting base types in total for the given set of profiles
and the TBox T : τ1 = {A,B}, τ2 = {A,B,C}, τ3 = {B}, τ4 = {B,C}, τ5 = {C}, and
τ6 = {A,C}.

Note that it is often the case that profiles share a considerable number of base types
in between each other, which contributes to a relatively small number of types that
represent families of ABoxes obtained via profiles.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

3.2 Compiling Models in Expressive DLs

In this section, we present an algorithm for compiling a representation of the relevant
models for answering different kinds of queries for a given ALCHI DL and a set of
profiles. Roughly, for representing the relevant models we use the notion of types that
represent configuration of concept names realizable in relevant models, and store relations
between them that witness existential axioms in T . We show that our algorithm is sound
and complete in the sense that for any model of the knowledge base we can construct a
model from our representation that can be homomorphically mapped to it. A significant
feature of this approach is that it can be computed offline and reused to answer many
different OMQ, as we will show in the next chapter.

3.2.1 Type Table Compilation

We start from the base types of P and an ALCHI TBox T , and compute a representation
of all the relevant models of the KBs whose ABox is covered by P. We represent models
by means of what we call type tables T.

Definition 17. For T a set of types, a type table T is a pair (L,S) with S ⊆ T×
(

NR ×
NC

)

×T, L ⊆
(

T×T
)

. We let

L(τ) ={τ ′ | (τ, τ ′) ∈ L}, and

S(τ, r, B) ={τ ′ | (τ, (r,B), τ ′) ∈ S}.

A type table T covers a profile p if L(τ) 6= ∅ for all τ ∈ btypT (p), and it covers a set P of
profiles if it covers all p ∈ P. The set TG of good types in T contains each τ such that:

(i) ⊥ 6∈ τ , and

(ii) there is some τo with τ ∈ L(τ0) and ⊥ 6∈ τ0.

We let, for each τ ∈ T, and each r ∈ NR:

fwdT (τ, r) ={B | A⊑ ∀s.B ∈ T , A ∈ τ, and r ⊑∗
T s}

bckT (τ, r) ={B | A⊑ ∀s.B ∈ T , A ∈ τ, and r ⊑∗
T inv(s)}

Intuitively the link table L stores the pairs of an initial type (the first component) and
a respective extended type (the second component). An initial type is one of the two:
(i) a base type of a profile in P, or (ii) a fresh type which is added in order to satisfy
some existential axiom. These initial types are ‘partial’ types which are extended into
complete types by the rules of the algorithm. Due to non-deterministic nature of the
logic for any of the initial types we may get multiple extended types. When doing these
updates, we keep track of the original initial type for three reasons:

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Compiling Models in Expressive DLs

• Initial types make the reuse of the computation easier, since at any point during the
computation when a new ‘fresh’ type is needed to satisfy some existential axiom,
in case such type coincides with some other initial type in L we simply reuse it.
This allows us to get the computed extended types of initial types in L for free.

• They are utilized for bookkeeping, allowing us to recall from where expanded types
came from, thus making it possible to match them with base types of profiles.

• They play an important role in the termination of the algorithm.

On the other hand, in S we store the ‘branches’ of models, i.e. for each existential axiom
A⊑∃r.B and a type that would fire such an axiom, we store a triple (τ, (r,B), τ ′) where:

• the type τ is the parent type, and

• the pair (r,B) witnesses the application of such axiom over the parent type, and

• the type τ ′ is the successor type.

Similarly to the case of L, due to the non-deterministic nature of the logic, we may get in
S multiple successor types for some parent type and a pair (r,B). These act as options
when one constructs a model from S and L.

For computing a type table T for a given set of profiles P and an ALCHI ontology T we
employ the following algorithm:

Algorithm 3.1: Type table computation algorithm for ALCHI

Input: an ALCHI TBox T , and a set of profiles P

Output: a T -complete type table T = (Lfin ,Sfin)

(S1) Initialize L0 = btypT (P)× btypT (P), S0 = ∅.

(S2) We obtain (Li+1,Si+1) from (Li,Si) by applying one of the following rules:

(rule-mark) *
If there exists τ, r, B with Si(τ, r, B) 6= ∅ such that τ ∈ TG

i

and Si(τ, r, B) ∩ TG
i = ∅

then replace
each (τ0, τ) ∈ Li by (τ0, τ ∪ {⊥}), and
each (τ, (r,B), τ ′)∈Si by (τ ∪ {⊥}, (r,B), τ ′).

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

(rule-det) *
if there exists some (τ0, τ) ∈ Li with detT (τ) 6⊆ τ and τ ∈ TG

i

then replace
each (τ0, τ) ∈ Li by (τ0, τ ∪ detT (τ)),

each (τ, (r,B), τ ′)∈Si by (τ ∪ detT (τ), (r,B), τ ′),

each (τ ′, (r,B), τ)∈Si by (τ ′, (r,B), τ ∪ detT (τ)).

(rule-nondet) *
if there exists some (τ0, τ) ∈ Li with τ ∈ TG

i

and an axiom A⊑B1 ⊔ . . . ⊔Bn of the form (NF2) in T
such that A ∈ τ and {B1, . . . Bn} ∩ τ = ∅

then replace, for 1 ≤ i ≤ n:
each (τ0, τ) ∈ Li by all (τ0, τ ∪ {Bi}),
each (τ, (r,B), τ ′)∈Si by all (τ ∪ {Bi}, (r,B), τ ′),
each (τ ′, (r,B), τ)∈Si by all (τ ′, (r,B), τ ∪ {Bi}).

(rule-addSucc) *
if there exists some (τ0, τ) ∈ Li with τ ∈ TG

i

and an axiom A⊑ ∃r.B of the form (NF3) in T
such that A ∈ τ and Si(τ, r, B) = ∅

then let τn = {{B} ∪ fwdT (τ, r)} and:
if Li(τn) = ∅, then add (τn, τn) to Li, and

add (τ, (r,B), τn) to Si.
if Li(τn) 6= ∅, then add (τ, (r,B), τ̂) to Si for each τ̂ ∈Li(τn).

(rule-forw) *
if there exists some (τ, (r,B), τ ′) ∈ Si with τ and τ ′ in TG

i

and fwdT (τ, r) 6⊆ τ ′

then we let τn = τ ′ ∪ fwdT (τ, r), and
if Li(τn) = ∅
then add (τn, τn) to Li, and

replace (τ, (r,B), τ ′) in Si by (τ, (r,B), τn).
otherwise, replace (τ, (r,B), τ ′) in Si by

(τ, (r,B), τ̂) for each τ̂ ∈ Li(τn).

(rule-back) *
if there exists some (τ, (r,B), τ ′) ∈ Si with τ and τ ′ in TG

i

such that bckT (τ ′, r) 6⊆ τ
then replace (τ, (r,B), τ ′) in Si by (τn, (r,B), τ ′)

where τn = τ ∪ bckT (τ ′, r), and
for each τ0 such that (τ0, τ) ∈ Li:

if there is some (τ, (r,B), τ ′′) in Si

s.t. bckT (τ ′, r) 6= bckT (τ ′′, r)

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Compiling Models in Expressive DLs

then add (τ0, τn) to Li

otherwise, replace (τ0, τ) in Li by (τ0, τn).

(S3) If no rules are applicable, the type table (Li,Si) is called T -complete and the
algorithm terminates.

The algorithm starts with (L0,S0), and generates (L1,S1), (L2,S2), . . . until a T -complete
(Lfin ,Sfin) is reached. Moreover, the algorithm builds the types in a goal oriented way,
closing them deterministically with the rule (rule-det), to satisfy the axioms of the
form (NF1), and then using rule (rule-nondet) to expand the types into types that
minimally satisfy each non-deterministic axiom (NF2), i.e. each type that contains the
left-hand side (LHS) of some disjunctive axiom (NF2) is expanded into types where
each of them contains exactly one of the disjuncts in right-hand side (RHS). The rule
(rule-addSucc) adds suitable successor types for each (parent) type that contains the
LHS of some existential axiom (NF3). The rule (rule-forw) propagates all the concepts
that a parent type forces on its successor type due to axioms of the form (NF4), whereas
the (rule-back) does this in the opposite direction, i.e., it propagates back all the
concepts that a successor type forces on its parent type due to axioms of the form (NF4).
Note that back-propagation may be non-deterministic, since for a certain branch in the
successor structure we can have many options for the successor types and not all of them
may propagate back the same concept. In this case rule (rule-back) properly expands
the parent type. Finally the rule (rule-mark) marks bad types, i.e. those that contain
⊥, and those for which we can not pick a consistent successor.

Although there is no difference in the sequence of rule application from the result point
of view, i.e., the computed table would still encapsulate the relevant models, we give
precedence to the (rule-mark), (rule-det) or any of the applications of the rules (rule-
forw) and (rule-back) when their applications have deterministic effect. Then, we
consider (rule-nondet) and (rule-back) when it’s application yields a non-deterministic
effect. The last rule to be applied is (rule-addSucc). This order is kept because in
many cases speeds up the saturation as the rules with higher precedence are cheaper to
apply and help us to identify types that can become bad earlier than later, resulting in
this way in inactive types, from which no new entries for successors would be added.

Example 4. Consider the base types and the ontology from our running example. We
show a sequence of type table computation. As per the algorithm for computing T, in the
first step (S1) we initialize the L and S tables. According to Example 3 we have six base
types, we get:

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

L0

τ1 = {A,B} τ1 = {A,B}

τ2 = {A,B,C} τ2 = {A,B,C}

τ3 = {B} τ3 = {B}

τ4 = {B,C} τ4 = {B,C}

τ5 = {C} τ5 = {C}

τ6 = {A,C} τ6 = {A,C}

S0

In the next steps, we apply the rules under (S2) until we reach the state (S3). We will
develop the example per rule application. In some cases where we have n axioms applicable
under some rule application we chose to divide the rule application in multiple steps for
clarity of presentation, while in other cases we apply all at once. Also, in each table
Li and Si we mark with ⊲ the component in Li and (or) the entry in Si over which the
emphasized rule is being applied, while with bold text we mark the resulting change from
the rule application at each step.

(step:1) At this point the only applicable rule is (rule-nondet), more precisely the axiom
C ⊑ C1 ⊔ C2 over the types τ2, τ4, τ5 and τ5, we get:

L1

τ1 = {A,B} τ1 = {A,B}

⊲ τ2 = {A,B,C} τ21 = {A, B, C, C1}

⊲ τ2 = {A,B,C} τ22 = {A, B, C, C2}

τ3 = {B} τ3 = {B}

⊲ τ4 = {B,C} τ41 = {B, C, C1}

⊲ τ4 = {B,C} τ42 = {B, C, C2}

⊲ τ5 = {C} τ51 = {C, C1}

⊲ τ5 = {C} τ52 = {C, C2}

⊲ τ6 = {A,C} τ61 = {A, C, C1}

⊲ τ6 = {A,C} τ62 = {A, C, C2}

⊥
S1

(step:2) Next, the rules (rule-det) and (rule-addSucc) become applicable. As a rule of
thumb we apply (rule-det) first, in this case the axiom B ⊓ C2 ⊑ ⊥ is applicable over
the types τ22 and τ42, from where we get:

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Compiling Models in Expressive DLs

L2

τ1 = {A,B} τ1 = {A,B}

τ2 = {A,B,C} τ21 = {A,B,C,C1}

τ2 = {A,B,C} ⊲ τ22 = {A, B, C, C2, ⊥}

τ3 = {B} τ3 = {B}

τ4 = {B,C} τ41 = {B,C,C1}

τ4 = {B,C} ⊲τ42 = {B, C, C2, ⊥}

τ5 = {C} τ51 = {C,C1}

τ5 = {C} τ52 = {C,C2}

τ6 = {A,C} τ61 = {A,C,C1}

τ6 = {A,C} τ62 = {A,C,C2}

S2

(step:3) The only applicable rule is (rule-addSucc) over the types τ52 and τ62. More
precisely, the axioms C2 ⊑ ∃r.C and C2 ⊑ ∃s.D. Let’s apply C2 ⊑ ∃r.C first. Note
fwdT (τ5, r) = fwdT (τ6, r) = B, therefore the (r, C) successor type is {B,C}. From
L({B,C}) = {τ41, τ42}, however since ⊥ ∈ τ42 we have that only τ41 ∈ TG, therefore we
get an entry for each of the parent types τ52, τ62 in the successors table S with τ41 as an
r, C successor:

L3

τ1 = {A,B} τ1 = {A,B}

τ2 = {A,B,C} τ21 = {A,B,C,C1}

τ2 = {A,B,C} τ22 = {A,B,C,C2,⊥}

τ3 = {B} τ3 = {B}

τ4 = {B,C} τ41 = {B,C,C1}

τ4 = {B,C} τ42 = {B,C,C2,⊥}

τ5 = {C} τ51 = {C,C1}

τ5 = {C} ⊲ τ52 = {C,C2}

τ6 = {A,C} τ61 = {A,C,C1}

τ6 = {A,C} ⊲ τ62 = {A,C,C2}

S3

τ52 (r, C) τ41

τ62 (r, C) τ41

(step:4) Finally, we apply (rule-addSuc) over the types τ52 and τ62, i.e. the axiom
C2 ⊑ ∃s.D and since fwdT (τ52, s) = fwdT (τ52, s) = ∅, both types τ52 and τ62 get the
same (s,D) successor type {D}. And since there are no initial types that match the
successor type, the fresh type τ7 = {D} is added in the type link table L:

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

Lfin

τ1 = {A,B} τ1 = {A,B}

τ2 = {A,B,C} τ21 = {A,B,C,C1}

τ2 = {A,B,C} τ22 = {A,B,C,C2,⊥}

τ3 = {B} τ3 = {B}

τ4 = {B,C} τ41 = {B,C,C1}

τ4 = {B,C} τ42 = {B,C,C2,⊥}

τ5 = {C} τ51 = {C,C1}

τ5 = {C} ⊲ τ52 = {C,C2}

τ6 = {A,C} τ61 = {A,C,C1}

τ6 = {A,C} ⊲ τ62 = {A,C,C2}

τ7 = {D} τ7 = {D}

Sfin

τ52 (r, C) τ41

τ62 (r, C) τ41

τ52 (s, D) τ7

τ62 (s, D) τ7

Notice that in the example above, in case we would have applied the (rule-addSucc)
in (step:2) instead of (rule-det), we would have gotten two entries in the successor
table for each of the types τ52 and τ62, more precisely (τ52, (r, C), τ41), (τ52, (r, C), τ42),
(τ62, (r, C), τ41) and (τ62, (r, C), τ42). However this would have not affected the reasoning
since the type τ42 would have become bad whenever the rule (rule-det) was applied, and
the algorithm that builds the relevant models based on T ignores bad types. However, in
that sequence of rule applications, the size of the type table Tfin would have grown larger
than in our example above. Therefore we apply the precedence of the rule application
mentioned earlier.

Example 5. Consider the ABox A1, the base types and the computed link table Lfin

from our running example. We can visualize the corresponding extended types for each
individuals in A1 in Figure 3.1.

The rule applications always lead to a T -complete type table, in at most exponential
time:

Lemma 1. The number of different tables (Li,Si) that can be produced by the rule
applications, and the number of rule applications required to reach a T -complete (Lfin ,Sfin),
are bounded by an exponential in the vocabulary of T , and by a polynomial in the number
of existential axioms in T .

Proof. First of all we emphasize that the algorithm is monotonic, i.e. each rule applied
by the algorithm may:

• introduce a fresh type (initial type) τ in case L(τ) = ∅, but never remove or alter
an initial type in L(τ),

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Compiling Models in Expressive DLs

extended
types

base types

individuals

profiles p1 p3p2

a b c

good types bad types fresh types

links

stored
in

Figure 3.1: Visualisation of the extended types of individuals in A1.

• add new concepts to extended types but never remove them,

• add new entries in S for some extended type τ and a pair (r,B) with S(τ, r, B) = ∅,
as a result of applying some existential axiom in T .

Since the number of initial types (all types) and the number of existential axioms is finite,
and since the algorithm may only add new types that are not found in L, and only add
new entries in S for each (r,B) that witnesses some existential axiom, we get that the
number of rule applications is finite and algorithm terminates.
Now the maximal size of table L is bounded by 2NC × 2NC , and the size of the table
S is bounded by 2NC × |α| × 2NC , where |α| is the number of existential axioms in T .
Since the algorithm is monotonic, the number of different tables that can be produced
by the algorithm coincides with their maximal sizes. It follows that there are at most
2NC × 2NC + 2NC × |α| × 2NC rule applications.

3.2.2 Incremental Reasoning for Dynamic ABoxes

In practice it is often the case that a database will evolve during time. Naturally most
databases will constantly get new facts, and they may evolve in structure in order to
incorporate new use cases. Therefore it is important to have a technique that is suitable
of dealing with such changes.

In this thesis we see the database as an ABox, but note that this does not cause a loss of
generality in our approach, as most of the databases can be transformed into an ABox,
moreover as we will show in Chapter 7 we can extract the profiles from a given OBDA
specification’s mapping layer, which cover any ABox that may be generated when the
mappings are evaluated over any possible database.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

In our framework we have that if a type table T covers P, then it also covers every P′ ⊆ P.
This follows from the Definition 17, since for each p ∈ P′ we have that p ∈ P, and from
the assumption that T covers P we get that T covers p, i.e. T covers P′. The fact that
the type table T contains potentially more types not linked with a set of profiles covering
a certain ABox does not affect the reasoning, since only the types linked with the profiles
and their respective entries in S will be utilised during reasoning.

The information stored in the L table allows us to expand a type table if we need to
cover additional profiles, while reusing as much as possible from previous computations.
We need only to add the missing base types in L for a profile that is not covered by T

and initiate the computation (S2) of the Algorithm.

Definition 18 (Incremental Types Computation). Let T = (L,S) be a T -completed type
table for a set of profiles P, and let P′ be the set of profiles that are not covered by T.
Then we can obtain a T -completed type table T′ that covers P′ by applying exhaustively
the rules in (S2) above to:

(L ∪ {(τ, τ)|τ ∈ btypT (P′) s.t. L(τ) = ∅},S)

Example 6. Consider the ABox A1 from our running example, let’s suppose that it’s
updated with the following assertions:

A(d), r(a, d)

yielding a new ABox A′. The profile for d is: profA′

(d) = {A,∃r−} which is not included
in the set of profiles P that cover A1. Note that although the individual a has a new
asserted membership in r, it still has the same profile profA′

(a) = profA1(a). We have
the following base types for profA′

(d):

GuessT (profA′

(d)) = {A,B} btypT (profA′

(d)) = {{A}, {A,B}}

Note that the candidate type {A,B} coincides with τ1, where as there is no introduced
type in L that coincides with the type {A}, therefore, the initialization of the L and S
table for the incremental computation looks like the following:

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Compiling Models in Expressive DLs

L0

τ1 = {A,B} τ1 = {A,B}

τ2 = {A,B,C} τ21 = {A,B,C,C1}

τ2 = {A,B,C} τ22 = {A,B,C,C2,⊥}

τ3 = {B} τ3 = {B}

τ4 = {B,C} τ41 = {B,C,C1}

τ4 = {B,C} τ42 = {B,C,C2,⊥}

τ5 = {C} τ51 = {C,C1}

τ5 = {C} τ52 = {C,C2}

τ6 = {A,C} τ61 = {A,C,C1}

τ6 = {A,C} τ62 = {A,C,C2}

τ7 = {D} τ7 = {D}

τ8 = {A} τ8 = {A}

S0

τ52 (r, C) τ41

τ62 (r, C) τ41

τ52 (s,D) τ7

τ62 (s,D) τ7

and since, there are no rules in (S2) that are applicable, in this case the initialized tables
are already T -complete hence the algorithm terminates.

3.2.3 Type Tables as Model Representations

In the rest of this section, we assume a given ABox A covered by P, and a T -complete
T = (L,S) that covers P.

Different models of (T ,A) can be constructed by selecting good types from T. First, the
L relation allows us to assign good types to the input profiles.

Definition 19. For p ∈ P, the set of good types for p in T is:

GTT(p) = {τ ∈ TG | (τ0, τ) ∈ L for some τ0 ∈ btypT (p)}

To capture different models of (T ,A), we need to consider the different ways of assigning
types from GTT(profA(a)) to the individuals, so that the axioms of the form (NF4) in T
are compatible with the role assertions in A.

Definition 20 (T-assignment). A T-assignment for A is a mapping t that assigns a type
from GTT(profA(a)) to each a ∈ NI(A) so that:

(t1) for each r(a, b) ∈ A, with A ∈ t(a),
if A⊑ ∀s.B ∈ T for some r ⊑∗

T s, then B ∈ t(b), and

(t2) for each r(a, b) ∈ A, with A ∈ t(b),
if A⊑ ∀s.B ∈ T for some r ⊑∗

T s−, then B ∈ t(a).

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

Note that GTT(profA(a)) 6= ∅ for each a ∈ NI(A) is necessary (but not sufficient) for the
existence of T-assignments.

Example 7. In our running example, for A1 we have:

GTTfin
(p1) = {τ1, τ21}

GTTfin
(p2) = {τ1, τ21, τ3, τ41}

GTTfin
(p3) = {τ51, τ52, τ61, τ62}

in which case we have 32 ways of assigning types to individuals check Table 3.1, from
which only the following eight are Tfin-assignments for the ABox A1:

t1(a) = τ1 t1(b) = τ3 t1(c) = τ51

t2(a) = τ1 t2(b) = τ3 t2(c) = τ52

t3(a) = τ1 t3(b) = τ41 t3(c) = τ61

t4(a) = τ1 t4(b) = τ41 t4(c) = τ62

t5(a) = τ21 t5(b) = τ1 t5(c) = τ51

t6(a) = τ21 t6(b) = τ1 t6(c) = τ52

t7(a) = τ21 t7(b) = τ21 t7(c) = τ61

t8(a) = τ21 t8(b) = τ21 t8(c) = τ62

We define a special kind of models of (T ,A) that can be constructed by taking A and a
T-assignment t, and adding successors according to the S in our type table.

Definition 21. Let t be a T-assignment. An (A, t,T)-interpretation I = (∆I , ·I) is
defined as follows:

• Its domain ∆I is a set of sequences of the form ar1B1τ1 . . . rnBnτn with n ≥ 0,
a ∈ NI(A), and

(d1) For each 0 ≤ i < n, where τ0 denotes t(a), we have,
(τi, (ri+1, Bi+1), τi+1) ∈ S and τi+1 in TG, and

(d2) For each a ∈ NI(A) (a ∈ ∆I) and each pair (r,B) with S(t(a), r, B) 6= ∅,
there is exactly one arBτ ∈ ∆I , where τ ∈ TG and

(d3) For each a . . . τn ∈ ∆I and pair (r,B) with S(τn, r, B) 6= ∅,
there is exactly one a . . . τnrBτ

′ in ∆I .

• The interpretation function ·I is defined as follows:

(i1) For each a ∈ NI(A), aI = a, and

(i2) For each A ∈ NC,

AI = {d ∈ ∆I | A ∈ tail(d)}

where tail(d) = t(d) if d ∈ NI, and tail(d) = τn if d = a . . . τn, and

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Compiling Models in Expressive DLs

t(a) t(b) t(c) Axioms violated

{A,B} {A,B} {C,C1} A⊑ ∀s−.C
{A,B} {A,B} {C,C2} A⊑ ∀s−.C
{A,B} {A,B} {A,C,C1} A⊑ ∀s−.C
{A,B} {A,B} {A,C,C2} A⊑ ∀s−.C
{A,B} {A,B,C,C1} {C,C1} A⊑ ∀s−.C
{A,B} {A,B,C,C1} {C,C2} A⊑ ∀s−.C
{A,B} {A,B,C,C1} {A,C,C1} A⊑ ∀s−.C
{A,B} {A,B,C,C1} {A,C,C2} A⊑ ∀s−.C
{A,B} {B} {C,C1}
{A,B} {B} {C,C2}
{A,B} {B} {A,C,C1} A⊑ ∀s−.C
{A,B} {B} {A,C,C2} A⊑ ∀s−.C
{A,B} {B,C,C1} {C,C1} A⊑ ∀s−.C
{A,B} {B,C,C1} {C,C2} A⊑ ∀s−.C
{A,B} {B,C,C1} {A,C,C1}
{A,B} {B,C,C1} {A,C,C2}
{A,B,C,C1} {A,B} {C,C1}
{A,B,C,C1} {A,B} {C,C2}
{A,B,C,C1} {A,B} {A,C,C1} A⊑ ∀s−.C
{A,B,C,C1} {A,B} {A,C,C2} A⊑ ∀s−.C
{A,B,C,C1} {A,B,C,C1} {C,C1} C1 ⊑ ∀r.A
{A,B,C,C1} {A,B,C,C1} {C,C2} C1 ⊑ ∀r.A
{A,B,C,C1} {A,B,C,C1} {A,C,C1}
{A,B,C,C1} {A,B,C,C1} {A,C,C2}
{A,B,C,C1} {B} {C,C1} C1 ⊑ ∀r.A
{A,B,C,C1} {B} {C,C2} C1 ⊑ ∀r.A
{A,B,C,C1} {B} {A,C,C1} C1 ⊑ ∀r.A, A⊑ ∀s−.C
{A,B,C,C1} {B} {A,C,C2} C1 ⊑ ∀r.A, A⊑ ∀s−.C
{A,B,C,C1} {B,C,C1} {C,C1} C1 ⊑ ∀r.A
{A,B,C,C1} {B,C,C1} {C,C2} C1 ⊑ ∀r.A
{A,B,C,C1} {B,C,C1} {A,C,C1} C1 ⊑ ∀r.A
{A,B,C,C1} {B,C,C1} {A,C,C2} C1 ⊑ ∀r.A

Table 3.1: All possible type assignment to individuals in A1 based on the extended types
from Example 4.

(i3) For each r∈NR,

rI = {(a, b) | s(a, b)∈A with s⊑∗
T r} ∪

{(b, a) | s(a, b) ∈ A with s⊑∗
T r−} ∪

{(d, dsBτ) ∈ ∆I ×∆I | s⊑∗
T r} ∪

{(dsBτ, d) ∈ ∆I ×∆I | s⊑∗
T r−}

The set of (A, t,T)-interpretations is denoted modst(A,T), and mods(A,T) denotes the
union of modst(A,T) for all t.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

Next we give a claim that for any good type that contains entries ‘branches’ in the
successor table we can always pick a suitable successor (i.e. successor type that is good).

Claim 1. Let T = (L,S) be a T -complete type table for some T and P. For each τ ∈ TG

and a pair (r,B) s.t. S(τ, r, B) 6= ∅, there exists a τs in S(τ, r, B) s.t. τs ∈ TG.

Proof. This claim follows immediately from the rules of the T computation algorithm.
Let T = (L,S) be a T -complete type table for some T and P. Now let’s assume that
there exists a type τ ∈ TG and a pair (r,B) s.t. S(τ, r, B) 6= ∅ and for each τs ∈ S(τ, r, B)
we have that τs 6∈ TG, then by the rule (rule-mark) we get that ⊥ ∈ τ which contradicts
our assumption that τ ∈ TG i.e. that ⊥ 6∈ τ .

Claim 2. Let T = (L,S) be a T -complete type table for some T and P. If a T-assignment
function t for A exists then modst(A,T) 6= ∅.

Proof. By Definition 20 we have that for each a ∈ NI(A) the function t assigns some type
τ ∈ TG. Then we get that for each a ∈ NI(A) the assigned type is a good type, from the
Claim 1 we have that we can always pick suitable successors for each element with an
assigned good type, therefore all the conditions in Definition 21 are satisfied, we have
that an (A, t,T)-interpretation is defined. Since we got that an (A, t,T)-interpretation is
defined we have that modst(A,T) 6= ∅.

Each interpretation in mods(A,T) is a model of (T ,A):

Theorem 1. If I ∈ mods(A,T), then I |= (T ,A).

Proof. Let I ∈ mods(A,T). By construction we have that I is an (A, t,T)-interpretation
where t is a T-assignment. Let T = (L,S) be a T -complete type table.

First we prove that I |= A, by proving that each assertion α in A is modelled by I. Let
α be an arbitrary assertion in A, we have two cases:

• α is of the form A(a). By the rule (i1) of the construction of I we have that aI = a.
From Definition 20 T-assignment for A we have that t(a) ∈ GTT(profA(a)) is
assigned to a. Notice that from definition of GTT (Definition 19) and the definition
of base types (Definition 15) the following relation holds:

profA(a) ∩ NC ⊆ btypT (profA(a)) ⊆ t(a)

Since by the definition of profiles (Definition 14) we have that A ∈ profA(a), from
the relation above we get that A ∈ t(a) as well. Then, by the (i2) rule of the
construction of I in Definition 21 we get that a ∈ AI as well.

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Compiling Models in Expressive DLs

• α is of the form r(a, b). By the rule (i1) of the construction of I we have that
aI = a, bI = b. By the (i3) rule of the construction of I in Definition 21 we get
that (a, b) ∈ rI as well.

Next we prove that I |= T , by proving that each axiom in T is modelled by I. First
observe that by construction of I in Definition 21 we have that for each element d ∈ ∆I

the assigned type tail(d) ∈ TG and tail(d) = {A ∈ NC | d ∈ A
I}.

Let α be an arbitrary axiom in T . By the normal form for ALCHI we have that α takes
one of the following forms:

• (NF1)
d
Ai ⊑ B ∈ T . Let d be an arbitrary element in ∆I , s.t for each Ai

we have d ∈ AI
i . By construction we have that

⋃

{Ai} ⊆ tail(d). Lets assume
that B 6∈ tail(d), then the rule (rule-det) would be applicable to tail(d), which
contradicts our initial assumption that T is T -complete, i.e. it violates the condition
(S3) of the algorithm that all rules have been applied. Therefore B ∈ tail(d), i.e.
d ∈ BI , α is satisfied.

• (NF2) A⊑B1 ⊔ . . .⊔Bn ∈ T . Let d be an arbitrary element in ∆I , s.t. d ∈ AI . By
construction we have that A ∈ tail(d). Lets assume that tail(d)∩{B1, . . . , Bn} 6= ∅,
then the rule (rule-nondet) would be applicable to tail(d) replacing it with n
other types of the form tail(d)∪{Bi} which contradicts our initial assumption that
T is T -complete. Therefore we get that tail(d) ∩ {B1, . . . , Bn} 6= ∅, i.e. d ∈ BI

i for
some Bi ∈ {B1, . . . , Bn}, α is satisfied.

• (NF3) A ⊑ ∃r.B ∈ T . Let d be an arbitrary element in I, s.t. d ∈ AI . By
construction we have that A ∈ tail(d). Lets assume that there exists no pair
(d, d′) ∈ rI s.t. d′ ∈ BI . This means either that (i) S(tail(d), r, B) = ∅ or (ii) each
of the types in S(tail(d), r, B) are bad. In the case of (i) we have that the rule
(rule-addSucc) would be applicable over the type tail(d) for the axiom A⊑ ∃r.B
from where we get that S(tail(d), r, B) 6= ∅, which contradicts our assumption
that T is T -complete. Moreover for each τ ∈ S(tail(d), r, B) we have that B ∈ τ ,
due to B ∈ fwd(tail(d), r) and fwd(tail(d), r) ⊆ τ . In the case of (ii) due to rule
(rule-mark) we would get that ⊥ ∈ tail(d) which is a contradiction to our initial
assumption that tail(d) ∈ TG. This way we have reached a contradiction to our
assumption that there exists no pair (d, d′) ∈ rI s.t. d′ ∈ BI , i.e. the axiom α is
satisfied.

• (NF4) A⊑ ∀r.B ∈ T . Let (d, d′) ∈ rI such that d ∈ AI . By construction of I we
distinguish four possible cases how the pair (d, d′) was introduced in rI :

– There exists s(d, d′) ∈ A and s⊑∗
T r, i.e. d, d′ ∈ NI(A). Then by construction

of I we have tail(d) = t(d) and tail(d′) = t(d′) where t is an T-assignment
function. Since A ∈ t(d) and A ⊑ ∀r.B ∈ T , by the rule t1 of T-assignment

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

function (Definition 20), we get that B ∈ t(d′), i.e. d′ ∈ BI , the axiom is
satisfied.

– There exists s(d′, d) ∈ A and s⊑∗
T r

−, i.e. d, d′ ∈ NI(A). Then by construction
of I we have tail(d) = t(d) and tail(d′) = t(d′) where t is an T-assignment
function. Since A ∈ t(d) and A ⊑ ∀r.B ∈ T , by the rule t2 of T-assignment
function (Definition 20), we get that B ∈ t(d′), i.e. d′ ∈ BI , the axiom is
satisfied.

– There exists a (τ, (s, C), τ ′) ∈ S where τ = tail(d), τ ′ = tail(d′) and s ⊑∗
T r.

Then by the rule i3 of the construction of I we have that (d, d′) ∈ rI .
By assumption we have that d ∈ AI , hence we get that A ∈ τ . Since
B ∈ fwdT (τ, s) rule (rule-fwd) would be applicable over (τ, (s, C), τ ′) in
which case we get that B ∈ τ ′, i.e. d′ ∈ BI therefore the axiom is satisfied.

– There exists a (τ ′, (s, C), τ)) ∈ S where τ = tail(d), τ ′ = tail(d′) and s⊑∗
T r−.

Then by the rule i3 of the construction of I we have that (d, d′) ∈ rI . By
assumption we have that d ∈ AI , hence by construction A ∈ τ . Since
B ∈ bckT (τ, s) rule (rule-back) would be applicable over (τ ′, (s, C), τ) in
which case we get that B ∈ τ ′, i.e. d′ ∈ BI therefore the axiom is satisfied.

• (NF5) r⊑ s ∈ T . Let (d, d′) ∈ rI . From r⊑ s we have that r⊑∗
T s, then by the rule

(i3) of the construction of I we get that s(d, d′) ∈ I as well, therefore the axiom is
satisfied.

It remains to show that ⊥I = ∅. By construction we have that for each element d ∈ I
it’s type tail(d) as observed earlier is one of the good types i.e. we have that ⊥ 6∈ tail(d).
Therefore it follows that for each d ∈ ∆I we have d 6∈ ⊥I .

Conversely, every model is reflected in mods(A,T).

Note that given an interpretation I and an individual d ∈ I we use the notation typeI(d)
to refer to the type of d ∈ I, i.e. typeI(d) = {A ∈ NC|d ∈ A

I}.

Theorem 2. If I |= (T ,A), then there is some J ∈ mods(A,T) such that J ⊲ I.

Proof. Let I be an arbitrary interpretation such that I |= (A, T). To this end we use I
to define a new model J ∈ mods(A,T) together with a mapping π from ∆J to ∆I so
that the following hold:

(c1) For every d ∈ ∆J , typeJ (d) ⊆ typeI(π(d)), and

(c2) If (d, d′) ∈ rJ for some role name r, then (π(d), π(d′)) ∈ rI .

We build J inductively, starting by building J0 from individuals in NI(A), and adding
suitable successors. At each step, we define π, and show that (c1)–(c2) still hold. In the

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Compiling Models in Expressive DLs

end we show that J is an (A, t,T) interpretation, i.e. J ∈ mods(A,T).

Step J0

• ∆J0 = NI(A)

• π(a) = aI

• for each a ∈ NI(A) we pick a type τa ∈ T such that the following hold:

(f1) (btyp(profA(a), S), τa) ∈ L where:

S ={B | r(a, b) ∈ A, A⊑ ∀s.B ∈ T , r ⊑∗
T s−, B ∈ typeI(b)} ∪

{B | r(b, a) ∈ A, A⊑ ∀s.B ∈ T , r ⊑∗
T s,B ∈ typeI(b)}

(f2) τa ⊆ typeI(a), and

• for each A ∈ NC, AJ0 = {a|A ∈ τa and a ∈ NI}.

• for each r ∈ NR, rJ0 = {(a, b) | s(π(a), π(b)) ∈ I and s(a, b) ∈ A and s⊑∗
T r}

We argue that for each a ∈ NI(A) such τa exists. To prove this let’s pick an arbitrary
individual a ∈ NI(A). First we show that we can pick a type in T such that (f1) holds.

Note that the set S from (f1) corresponds to one of the subset’s of the guess set
GuessT (profA(a)). Also, S ⊆ typeI(a), otherwise one of the axioms of the form (NF4)
that enforce the concepts that an individual gets from it’s neighbourhood in I would
be violated, from which would follow that I 6|= (T ,A). From definition of base types we
have:

btypT (p, S) = detClT (p ∪ S)

Since we already established that typeI(a) ⊇ S, and we know that {A|A(a) ∈ A} ⊆
typeI(a) we have that detClT (profA(a) ∪ S) is included as well, therefore we get the
following:

btyp(profA(a), S) ⊆ typeI(a)

Note that ⊥ 6∈ btyp(p, S), otherwise we would have a ∈ ⊥I . By (S1) of type table
computation T we have that (btyp(profA(a), S), btyp(profA(a), S)) would be added during
the initialization of L0. Note that the type table computation is monotonic, each rule
application may only add new concepts to second component of the L table. Hence, for
each τ ∈ L(btyp(profA(a), S)) we have btyp(profA(a), S) ⊆ τ , i.e. fulfills (f1). Next, it

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

remains to show that we can pick a type τa ∈ Lfin(btyp(profA(a), S)) such that (f2) is
fulfilled.

To this end, we let wτ
n = τ0 . . . τn−1τ denote the sequence of computed types from the

initialisation τ0 up to the completed type τ , i.e (τ0, τ) ∈ L. Furthermore each wτ
i+1 is

obtained from wτ
i by applying one of the rules of the type table computation, which

results in τi alteration. Let wτa
n = btyp(profA(a), S) . . . τa. For wτa

0 = btyp(profA(a), S)
we already showed that btyp(profA(a), S) ⊆ typeI(a). Now assuming that for wτa

i we
have τi ⊆ type

I(a) we prove that τi+1 ⊆ type
I(a) as well. Let τi+1 = τi ∪ der, then der

is the set of concepts added to τi+1 by applying one of the following rules:

• (rule-det) der = {B} from application of some axiom A1 ⊓ . . . ⊓An ⊑B ∈ T to
τi. By assumption we have that {A1, . . . , An} ⊆ type

I(a), and since I |= T we get
that B ∈ typeI(a) as well.

• (rule-nondet) der = {Bj} from application of some axiom A⊑B1⊔. . .⊔Bn ∈ T to
τi. Note that we get n different types τ j

i+1 = τi ∪ {Bj} (where Bj ∈ {B1, . . . , Bn}).
By assumption we have that {A} ∈ typeI(a), and since I |= T we get that at least
some Bj ∈ {B1, . . . , Bn} is included in typeI(a), otherwise I 6|= T . Therefore at
least for one of the τ j

i+1 types we have that τ j
i+1 ⊆ type

I(a).

• (rule-forw) by definition this rule does not change existing types, it can only
introduce new ones, hence τi would not be affected by this rule application.

• (rule-back) der = bckT (s, τ ′) s.t. there exists an entry (τi, (s,B), τ ′) ∈ S. Observe
that, each entry (τi, (s,B), τ ′) ∈ S is a result of applying the rule (rule-addSucc)
over τi for some axiom A⊑∃s.B ∈ T s.t. A ∈ τi. But then, by assumption we have
that a ∈ AI as well, and since I |= T there exists an individual b ∈ ∆I such that
(a, b) ∈ rI and s⊑∗

T r. We know that fwdT (τi, s) ⊆ typeI(b) otherwise I does not
model some axiom of the form (NF4) in T that is applicable to typeI(a) or the
existential axiom A⊑ ∃s.B ∈ T . Now since fwdT (τi, s) ⊆ typeI(b) it follows that
der = bckT (τ ′, r) ⊆ typeI(a) as well.

• (rule-mark) Note that propagation of ⊥ to parent types from their immediate
successor types of some ’branch’ r,B is done in the case when all of the successor
types contain ⊥. Note that in case all the types in T are good, then the rule (rule-
mark) would never be triggered, and the only way for such rule to ever become
applicable, ⊥ has to be added to all of the successor types of some parent type for
some branch r,B through (rule-det) applications over each of the successor types.
Therefore, as long as we can find successor types from S that maps to elements in
∆I we can guarantee that rule (rule-mark) wasn’t applicable to any of the types
used in the process, otherwise at some point we will reach a successor type τ which
gets ⊥ due to some (rule-det), and since the type is mapped to some individual
d ∈ ∆I that means that d ∈ ⊥I , i.e. I 6|= (T ,A).

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Compiling Models in Expressive DLs

Since we proved that for each a ∈ NI(A) we can pick a type in T such that (f1) and (f2)
are satisfied, we get that for each a ∈ ∆J0 , typeJ0(a) ⊆ typeI(π(a)), i.e. (c1) is satisfied.

Since I |= (T ,A), for each s(a, b) ∈ A and s ⊑∗
T r we have (aI , bI) ∈ rI . Considering

that π maps each a ∈ ∆J0 to aI , from the last step of J0 construction we get that for
each (a, b) ∈ rJ0 , (π(a), π(b)) ∈ rI as well, i.e., (c2) is satisfied as well.

Next we prove the inductive case, let (c1) and (c2) hold for some Jk, we show that they
hold also for Jk+1. For the Step Jk+1 we have:

Step Jk+1

We add the successors for this step in the following manner:

For each a . . . τk ∈ ∆Jk s.t. π(a . . . τk) = d, if there exists a rI(d, e) with B ∈ typeI(e)
s.t. S(τk, s, B) 6= ∅, a . . . τksBτ

′ 6∈ ∆Jk+1 , and s⊑∗
T r, we proceed as follows:

• pick some τe ∈ (τk, s, B) ∈ S such that τ ′ ⊆ typeI(e), and

• add a . . . τksBτe to ∆Jk+1 , and

• set π(a . . . τksBτe) = eI , and

• for each A ∈ NC, let AJk+1 = AJk ∪ {w|A ∈ τe and a . . . τksBτe ∈ ∆Jk+1}, and

• for each r ∈ NR, let rJk+1 = rJk ∪ {r(a . . . τk, a . . . τksBτe)|s⊑∗
T r}.

We want to prove that (c1) and (c2) hold for Jk+1 as well. To this end, let a . . . τk be
an arbitrary element in J k s.t. π(a . . . τk) = d, and let (d, e) be an arbitrary instances
of rI s.t. S(τk, s, B) 6= ∅, s ⊑∗

T r, a . . . τksBτ
′ 6∈ ∆Jk+1 , and B ∈ typeI(e). We argue

that we can pick a type τe from S(τk, s, B) s.t. τe ⊆ typeI(e). Now, for each of
τ ′ ∈ S(τk, s, B) it is the case that fwdT (τk, s) ∪ {B} ⊆ τ ′, moreover as per (rule-
addSucc), ({B} ∪ fwdT (τk, s), {B} ∪ fwdT (τk, s)) would have been added to L, hence
for each τ ′ we have Lfin({B} ∪ fwdT (τk, s), τ ′).

Since, the type computation algorithm is monotonic, we get that for each τ ′ ∈ S(τk, (s,B))
its sequence of computed types looks like the following: wτ ′

= {B} ∪ fwdT (τk, s) . . . τ ′.
Similarly as in the base case we show by induction in the sequence of computed types
that there exists a τe ∈ S(τk, (s,B)) s.t. τe ⊆ typeI(e). Note that for the base case, we
have that fwdT (τk, s) ∪ {B} ⊆ typeI(e) as well, in the converse I does not model some
axiom of the form (NF4) in T that is applicable to d and e. Now assuming that for wτe

i

we have τi ⊆ typeI(e) we prove that τi+1 ⊆ typeI(e) as well. Let τi+1 = τi ∪ der, then
der is the set of concepts added to τi+1 by applying one of the rules of the algorithm.
The proof for each rule is identical to the one in the base case for J0. Hence we can set
π(a . . . τksBτe) = eI s.t. τe ⊆ typeI(e), i.e. (c1) holds. From the last step of Jk+1 we get

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

that (a . . . τk, a . . . τksBτe) ∈ rJk+1 , where as from our assumption that π(a . . . τk) = dI ,
(d, e) ∈ rI , and since we established π(a . . . τksBτe) = eI we get that (c2) holds as well.

Since we proved that (c1) and (c2) hold for the inductive case as well we have established
that J ⊲ I. It remains to be proven that J ∈ mods(A,T). To prove this, we show that
J is an (A, t,T)-interpretation.

First, note that each assigned type in J is good, otherwise as per our observation in the
case (rule-mark) of the construction of J0, we know that at some point we would get
some type that satisfies some non-deterministic axiom, and since each type is a subset of
the type of some individual in I, it would follow that I is not a model of T which is a
contradiction.

Furthermore, the type assignments for each individual in ∆J0 fulfill the conditions t1
and t2 of T-assignment function due to condition (f1) of the J0 construction. From
where it follows that the type assignments in J0 correspond to some T-assignment
function t, therefore the basic condition for J being an (A, t,T)-interpretation is fulfilled.
Moreover, the construction of Ji satisfies all conditions (d1)-(d3) of the Definition 21
of (A, t,T). Let’s assume the converse that there exists an individual a . . . τ ∈ J and a
pair (s,B) s.t. S(τ, s, B) 6= ∅ and there exists no individual a . . . τsBτ ′ ∈ J for some
τ ′ ∈ S(τ, s, B). From this would follow that there exists some axiom A⊑ ∃s.B ∈ T , such
that A ∈ π(a . . . τ) and no pair (π(a . . . τ), e) ∈ sI , which is a contradiction. Furthermore,
from the construction of each Ji we get that there exists only one a . . . τsBτ ′ ∈ ∆J .
Finally, since for each a ∈ NI(A) we have aJ = a the condition (i1) of a (A, t,T)-
interpretation is satisfied, where as the last two steps of Ji construction faithfully
treat the concept and role memberships as per conditions (i2) and (i3) of a (A, t,T)-
interpretation, therefore we arrive at the conclusion that J is a (A, t,T)-interpretation,
i.e. J ∈ mods(A,T).

Finally, we remark that, since the algorithm guarantees that good types always have
suitable successors in S to continue the model construction, the existence of a T-assignment
already implies the existence of an (A, t,T)-interpretation.

Lemma 2. (T ,A) is satisfiable iff A has a T-assignment.

Proof. First we prove the (⇒) direction. Let t be a T-assignment. By Claim 2 we have
that modst(A,T) 6= ∅, i.e. there exists at least one (A, t,T)-interpretation I, then from
Theorem 1 we get that I |= (T ,A), hence (T ,A) is satisfiable.

(⇐). Let (T ,A) be satisfiable, then there exists an interpretation I such that I |= (T ,A).
From Theorem 2 we have that there exists a J ∈ mods s.t. J ⊲ I. From Definition 21 we
have that each J ∈ modst(A,T) is constructed starting from a T-assignment t of types
to ABox individuals, therefore there exists a T-assignment t for A.

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Benchmarks Set-up for Expressive DLs

In the next section, we explain the benchmarking set up for testing the feasibility of the
developed algorithms in this thesis that make use of the model compilation showed in
this chapter.

3.3 Benchmarks Set-up for Expressive DLs

Recall that one of the goals of the thesis was that the developed algorithms should have the
potential for implementation (G3). Moreover, we required that the data representations
over which our algorithms reason should be small compared to the data and easy to be
computed (G1).

In this section, we describe the experimental set up for assessing the achievement of the
aforementioned goals for expressive DLs, i.e., we present the instances (ontologies), the
implemented prototype, and the hardware environment used in the experiments we will
present in Chapter 3, 4 and 5. Note that in Chapter 6 we use the same source to obtain
the ontologies, but define different criteria for selecting them.

3.3.1 Software and Hardware

We have implemented the type table T computation algorithm for ALCH including
most of the algorithms presented in this thesis who utilize T into a proof of concept
implementation, which we call Mod4Q1 (an abbreviation for models for querying). The
fact that Mod4Q prototype is implemented for the DL ALCH, rather than for ALCHI; is
mostly due to historic reasons and the way this work evolved. The extension to ALCHI
would be relatively simple, it just requires a little more engineering effort.

Our implementation is written in Java and uses a PostgreSQL 9.5.5 as a back-end
database for storing and computing T. For managing ontologies it uses OWLAPI [HB11],
whereas for evaluating the resulting translations it uses Clingo 4.2.1 [GKK+11], one of
the most prominent ASP solvers to date. All experiments presented in this thesis were
run on a PC with an i7 2.4 GHz CPU with 4 cores running 64bit Linux-Mint 17, with a
JAVA heap space of 12GB.

Mod4Q has two modes of work, the full and incremental mode. In full mode it clears
the profiles and entries in T from previous computations, and computes everything from
scratch, whereas in incremental mode it checks if there are individuals that are not
covered by the profiles stored in previous computation, in which case it performs the
type table computation algorithm only for the new profiles reusing the entries in T. A
workflow diagram of Mod4Q is given in Figure 3.2.

1http://www.kr.tuwien.ac.at/research/systems/Mod4Q/

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

Figure 3.2: Workflow Diagram of Mod4Q

The boxes marked with orange in Figure 3.2 depict the steps adhering to offline computa-
tion phase of our approach, where as those marked with green depict the steps adhering
to online phase, i.e., the query answering phase. The reasoner works like follows:

• In the offline phase it takes as an input an ABox A and an ALCH TBox T , from
which, in step 1 it obtains the profiles of individuals in NI(A), whereas in step 2 it
normalizes T into T ′ by dropping axioms not in ALCH and transforming others
into axioms that conform to the normal form shown in Definition 9. Moreover,
in step 1, in case the working mode is incremental, it first matches the obtained
profiles against the stored ones (Ps) in the database and passes to the next step
only the new ones (P). In the case when it is working in full mode it simply passes
the obtained profiles. In step 3 it extracts the base types from the passed profiles
P and runs the type table computation algorithm described in Section 3.2.1 to
obtain a T -complete type table T that covers P ∪ Ps. During the whole time the
reasoner maintains designated indexes that point from individuals to profiles and
from profiles to base types, and from base type to extended types. In step 4 it
uses the normalized TBox T ′ from step 2 and the T including the indexes stored
in step 3 to encode the core rules that enforce all possible T-assignment including
the role hierarchy of τ ′ (PT). In step 5, we encode A as a set of datalog facts,
ensuring that the fact profp(a) (PA) is present for each individual a with profile
p = profA(a) ∈ P.

• In the online phase it takes as an input a query q and uses the type table T stored
in the database to encode the query into an ASP program Pq. Lastly it merges Pq

with PA and PT and evaluates it using clingo.

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Benchmarks Set-up for Expressive DLs

3.3.2 Ontologies

Ultimately, the algorithms designed in this thesis reason over the computed structure
T = (L,S) in order to answer the queries. Therefore when designing the tests for
expressive DLs, as important as testing for the size of the set of profiles covering the
ABox is, so is testing for the size and feasibility of computing T = (L,S) from profiles
by the type table algorithm. This is a necessary precondition towards fulfilling the goal
(G3) of this thesis.

In order to design proper benchmarks for assessing the T computation algorithm and the
query answering algorithms that reason over them in chapter 4 and 5, we had to keep the
following in mind: while the size of the set of profiles depends entirely on the size and
structure of the data, the size of T depends on the number of profiles, but even more so
on the combinatorics that the TBoxes encode, hence the larger and more expressive a
TBox is, the more likely the T computation algorithm may under perform.

Finding suitable benchmarking ontologies that come with real-world data is a challenge
that the DL community faces, and in fact, finding ontologies with TBox expressed in
ALCH and a large ABox was impossible. However, since the process of obtaining the
profiles is dependent exclusively on the data, for evaluating the size of profiles w.r.t. the
data any ontology with preferentially large real-world ABox was seen as a good option.
On the other hand, for testing the feasibility of algorithms (i.e. addressing (G3)), we
considered all ontologies with TBoxes expressed in DLs that contain ALC, and have
ABoxes.

After extensive search we have identified three real-world ontologies with large data
(ABoxes), and a repository2 with numerous ontologies, some of which quite complex.
While the first three played a pivotal role on showing that a moderate number of profiles
cover even large ABoxes (important for addressing (G1)), the large repository helped us
show that even for quite complex ontologies our approach is feasible for a lot of cases,
i.e., showing that (G3) was reached. Towards showing that the (G1) is addressed in
full, in Chapter 7 we show that profiles can be obtained from OBDA specifications with
mappings expressed in R2RML.

Ontologies with real world data we considered include:

• NPD, a petroleum ontology, and

• IMDb, a film ontology, and

• MyITS, a transport ontology.

NPD: stands for Norwegian Petroleum Directorate, which is a body that regulates and
monitors the exploitation of oil and gas in Norway. NPD dataset in fact refers to NPDs

2https://www.cs.ox.ac.uk/isg/ontologies/

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

FactPages3 that are mostly known to the semantic web and description logic community
due to EU Optique4 project that adopted it as one of the two real-world use cases from
the energy sector. NPD FactPages record all kind of activities of companies who operate
petroleum fields in Norway, including numerous other facts such as seismic activities in
Norwegian Continental Shelf (NCS) etc. The data spans from 1970s and serve as the
basis for future planning of one of the major stake holders in the Norwegian economy.
The ontology we used here, was obtained from [GKT17] which included data in ABox
format, with TBox expressed in Horn-SHIF . This ontology fit our purpose of testing
for the size of the profile set covering the ABox, due to its sizeable real-world data from
an important application scenario.

MyITS: stands for My Personalized Intelligent Mobility Service; a project that was
developed by Austrian Institute of Technology together with Vienna University of
Technology with a goal of building new approaches to routing services that would
incorporate user intentions during route search. The project utilized Semantic Web
technologies to achieve its goals, and an ontology (TBox) was developed. The project also
published a methodology [EPS+15] on how to obtain real world data for the provided
ontology from OpenStreetMap5 data and transform it into an ABox. This was of
particular interest to us, since it provided a tool for shaping and obtaining RDF data
from real world geo spatial data.

Following the methodology in [EPS+15] we extracted the data describing the city of
Vienna, which were taken as database dumps at BBBike6. The extracted data contains
facts about 19517 geographical points in the map treated as individuals. Concept
assertions were extracted from tags in the mapping data, for points of interest that
correspond to a particular point like Hotel,Restaurant,Shop,Hospital,MetroStation etc.
There are also role assertions involving these points and other individuals representing
objects of interest such as metro lines, types of cuisine, dishes they offer etc. Further
more we modeled the transport network, and we manually extracted a binary relation
next, relating pairs of points whose distance is below a certain threshold set in meters.
By considering different thresholds, ranging from 50 to 250 meters, we obtained ABoxes
of different sizes. Other roles extracted to describe the Vienna metro network are
locatedAlong and nextStation. The former relates a metro station to the corresponding
metro line, and the latter relates pairs of consecutive stations on the same line. The
extracted relations that also occur in the TBox include roles like hasCuisine and serves,
which relate a Restaurant to a Cuisine or a Dish, respectively. Originally the ontology was
in DL-Lite, but we enriched it with ALCH axioms like the following:

3https://npdfactpages.npd.no/factpages/
4http://optique-project.eu/
5https://www.openstreetmap.org
6http://download.bbbike.org/osm/bbbike/Wien/

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Benchmarks Set-up for Expressive DLs

Restaurant⊑ LocalRestaurant ⊔ InternationalRestaurant

∃serves.Schnitzel⊑ LocalRestaurant

∃hasCuisine.Japanese⊑ InternationalRestaurant

The ontologies we got from this methodology contained large ABoxes obtained from
real world data and as such were useful for testing the size of the profiles covering them.
Also, the TBox obtained was in ALCH, hence they were seen as suitable for assessing
(G3) for algorithms in Chapter 4 and 5. Moreover, since we obtained ABoxes of sizes
ranging from 125 thousand to 1 million assertions, they helped us observe the behaviour
of algorithms executed over scaled examples.

IMDb: stands for Internet Movie Database, the most comprehensive movie database on
the web. Here, it represents the movie ontology with a sizeable data set represented as an
ABox obtained from [GKT17]. The original movie ontology7 was developed by University
of Zurich, with an aim to model the movie application domain through providing concept
categorization for movies and relationship with other concepts of interest. The movie
ontology we got from [GKT17] is expressed in Horn-SHOIF . Our primary purpose for
selecting this source in particular had to do with the large size of its ABox obtained from
IMDb with over four million assertions, and as such fit the purpose of assessing (G1).

Oxford Ontology Repository: is an online repository8 of 787 ontologies collected by
the Oxford University from numerous studies. Only the ontologies with data (ABoxes)
were of interest to us. Most of the ontologies had small ABoxes, which from our inspection
looked as ABoxes representing possible combinations that appear in the data. We focused
only on those that included role assertions in their ABoxes, as this allowed us to assess
the generation of base type w.r.t. potential guesses resulting from incoming and outgoing
roles of profiles obtained from their ABoxes.

From 787 ontologies, 370 had ABoxes, out of which 95 were extensions of ALC that
contained role assertions. From them, 6 ontologies yielded an error while loading with
OWLApi, which left us with 89 ontologies that were interesting for our purpose of
assessing (G3). Particularly they were interesting for assessing the feasibility of type table
computation due to their TBox sizes and composition. In Figure 3.3 a graph showing
the composition of the selected 89 ontologies is given. In the x-axis the file names of the
ontologies as they appear in the repository are given,9 where as in the y-axis different
factors of interest in the ontology are given, where CN stands for concept names, RN
for role names, CA for concept assertions, RA for role assertions, IND for individuals,
TBox for TBox axioms, NF1—NF5 for axioms of the respective ALCH normal form. The

7http://www.movieontology.org/
8https://www.cs.ox.ac.uk/isg/ontologies/
9https://www.cs.ox.ac.uk/isg/ontologies/

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

colour coded dots show the size (number) of each factor, where the green color stands for
the numbers between 1 and 100, the blue for the number between 101 and 1000, and the
red for the number above 1000. The purpose of this graph is to show the composition of
the selected ontologies for testing. As can be observed from the graph we obtained a fair
mix of ontologies of different sizes, moreover, the colors show that most of the TBoxes
were quite large.

NF6

NF5

NF4

NF3

NF2

NF1

TBox

PA

CA

IND

RN

CN

1 2 3 7 8 9 1
0

1
4

1
8

2
0

2
1

2
4

4
9

6
2

8
1

8
2

1
0
6

1
1
0

1
1
1

1
1
2

1
1
4

1
1
6

1
1
8

1
2
0

1
6
3

1
6
7

1
7
2

1
7
6

2
0
2

2
0
9

2
1
0

2
7
5

2
8
3

2
8
4

2
8
5

3
0
1

3
1
8

3
1
9

3
2
0

3
2
4

3
4
3

3
4
4

3
4
5

3
4
6

3
4
8

3
5
0

3
5
2

3
5
3

3
5
4

3
5
5

3
6
2

3
6
3

3
9
5

4
0
6

4
0
7

4
1
0

4
3
0

4
3
1

4
5
0

4
7
9

4
8
0

4
8
4

5
0
8

5
1
8

5
4
1

5
5
6

5
5
7

5
6
0

5
6
1

5
6
6

5
9
0

5
9
6

5
9
7

6
0
9

6
1
0

6
1
2

6
1
3

6
3
6

6
6
0

7
0
1

7
0
3

7
1
2

7
2
8

7
5
4

7
6
5

7
7
3

7
8
1

7
8
2

7
8
3

S

L

V

Figure 3.3: Key features of the selected ontologies.

3.4 Evaluation

In this section we show the results obtained from evaluating the size of profiles for showing
that they fulfill the objectives from (G1), and results obtained from testing the feasibility
of computing T which is a precondition for feasibility of our approach in general, i.e., for
reaching the goal (G3).

For evaluating the size of profiles we used the three real-world ontologies with large
datasets: NPD, MyITS and IMdb. We used Mod4Q to obtain the profiles from their
ABoxes and report the results in Table 3.2. As can be observed the sizes of profiles
obtained were small compared to the size the large ABoxes covered. This confirmed our
expectations, since databases in real-world are very regular, i.e., they record multiple
copies of individuals belonging to certain classes.

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4. Evaluation

Ontology |A| |NI(A)| |P| |P|/|NI(A)|

MyITS50 125K 20K 206 0.01056
MyITS150 501K 20K 206 0.01056
MyITS250 1073K 20K 206 0.01056
NPD 856K 1510K 173 0.00011
IMDb 4736K 3765K 190 0.00005

Table 3.2: Size of P for real world ontologies.

For evaluating the feasibility of compiling models into T we used the selected ontologies of
Oxford Ontology Repository as explained in the Subsection 3.3.2 and run Mod4Q on them.
For roughly for 80% of the ontologies (70) Mod4Q computed the model representation T

successfully, while for the remaining 19 cases the computation was infeasible since we
got ≥ 215 base types for some profiles. In Figure 3.4 a distribution of the cases in which
Mod4Q succeed is given.

20 21-22

successfull

unsuccessfull

23-26 29 >215

70

19

Figure 3.4: Ontologies categorised by successful computation of T and the maximal
number of base types per profile.

Moreover, the graph in Figure 3.5 shows that the same graph in Figure 3.3 restricted
only to successful instances, in which it can be observed that the type table computation
algorithm succeeded in large complex ontologies, some of which included significant
number of non-deterministic type of axioms NF2 and NF3’. From our observations, the
size of the TBox as long as we could load it in our hardware didn’t play a role in failure.
The main bottleneck of our approach was the high number of guesses we got for 19
ontologies.

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

CN |T | |T ′| |P| BTmax GT PT

DOLCE21 0.3K 1.3K 0.7K 11 29 17 14s
Gardin.81 0.3K 0.4K 0.3K 27 20 224 0.3s
Gardin.283 0.2K 1K 0.5K 11 26 17 9.4s
Gardin.284 0.3K 1.3K 0.7K 22 21 73 9.5s
OBI350 3.2K 10K 0.4K 38 225 – –
OBO354 4.5K 7.2K 0.6K 9 20 69 0.4s
WINE781 0.6K 0.7K 0.2K 62 228 – –

Table 3.3: Compilation details for selected complex ontologies.

NF6

NF5

NF4

NF3

NF2

NF1

TBox

PA

CA

IND

RN

CN

1 2 3 7 8 9 1
0

1
8

2
0

2
1

4
9

6
2

8
1

8
2

1
0
6

1
1
0

1
1
1

1
1
2

1
1
6

1
1
8

1
2
0

1
6
3

1
6
7

1
7
2

1
7
6

2
0
2

2
0
9

2
1
0

2
7
5

2
8
3

2
8
4

2
8
5

3
0
1

3
1
8

3
2
4

3
4
3

3
4
8

3
5
2

3
5
3

3
5
4

3
5
5

3
6
2

3
6
3

3
9
5

4
0
6

4
0
7

4
1
0

4
3
0

4
3
1

4
5
0

4
7
9

4
8
0

4
8
4

5
0
8

5
1
8

5
4
1

5
5
6

5
6
0

5
6
1

5
6
6

5
9
6

5
9
7

6
0
9

6
1
0

6
1
2

6
1
3

6
3
6

6
6
0

7
6
5

7
7
3

S

L

V

Figure 3.5: Key features of the selected ontologies with successful computation of T.

For the successful cases, on average the number of profiles per ontology was 10, while the
number of base types 24, and the number of computed good types was 23. Moreover the
time for computing T and producing the encoded rules in program PT ranged from 171
milliseconds to 14 seconds, with an average of 1.3 seconds. We report selected results in
Table 3.3, where CN denotes the number of concept names occurring in T , |T | the size
of the TBox, |T ′| the size of the TBox reduced only to axioms of forms (NF2, NF3’) in
the normalized TBox, BTmax=maxp∈P(btypT (p)), and GT = |GTT(P)|.

Our experiments showed that:

• In most cases, the number of base types generated from the profiles used in the ABox
is sufficiently small.

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.5. Discussion and Related Work

• Our model compilation can handle complex ontologies. Both the number of good
types in the computed T, and the time required to produce T, were very small even for
ontologies with thousands of concept names and axioms.

Not surprisingly, the evaluation on complex ontologies made apparent that, while com-
puting all the base types for the given profiles is feasible in most cases, it is also the main
bottle neck of our approach. Indeed, in all cases where our prototype failed to compute
the model compilation, there were profiles with over 9 relevant guesses, thus 29 base
types. An interesting observation is that some ontologies, like DOLCE21, have a large
number of base types, but result in few good types that are often shared by profiles.

3.5 Discussion and Related Work

In this chapter we have presented a middle ground approach to data dependent and
data independent query rewritings which utilises a set of profiles, an abstract way of
defining the structure of families of ABoxes, from which we can compute a structure
T = (L,S) that represents all the relevant models for answering queries. We note that
similar directions to using the structure of the ABox exist, albeit in different fashion. The
abstraction refinement technique of [GKT17, GKL+14] builds on similar intuitions, but
tackles ABox materialization in Horn DLs. It works in two stages: the abstraction stage in
which the ABox individuals are partitioned into equivalence classes based on the asserted
information, and a representative individual is used for identifying the equivalence class.
In the second stage, named the refinement stage the equivalence classes are split when
new assertions are derived that distinguish individuals represented by the same class.
In comparison to our representation the equivalent classes obtained in the first stage
coincide with our profiles, however they are used for running the materialization over
them and transferring the entailments to the original ABox using homomorphisms. The
process of obtaining abstractions, computing materializations and transferring them back
to the ABox is repeated iteratively until no new entailments can be added to the ABox.
Hence, abstract ABoxes are used to drive the materialization and changes in the original
ABox iteratively, and get updated after each abstraction step. Moreover, they are based
on a concrete ABox. The technique is tailored for Horn-SHOIF . Adding disjunctive
axioms may require to keep track of multiple ABoxes during the course of computation
which requires a complicated machinery and seems infeasible. Moreover, it is not obvious
how this approach tailored for the task of materialization can be efficiently adopted for
answering different query languages.
Another approach, less related to ours, but which exploits the structure of the ABox is
the one by [WM12]. Here ontology modularization is used for addressing the problem of
instance checking for description logic SHI. The basic idea is to partition the ABox into
smaller parts, called ‘individual islands’: that are sufficient for computing the entailed
assertions. This way the problem of computing becomes parallelizable since multiple
instances of reasoners can be used concurrently for reasoning on ‘individual islands’
supposedly much smaller than the original ABox. The authors propose several ways
of splitting the ABox. The first one known as the component based modularization,

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Reasoning About Families of ABoxes

partitions the ABox into connected components, i.e., if two individuals are members of
some role assertion in the ABox they end up in the same module. Since this naive approach
in realistic cases may yield few large modules which is unsatisfactory, the authors propose
a more involved technique. In intensional-based modularization individuals that are
connected via some role assertion may be split in different modules if certain conditions
are met. Although their technique utilizes the structure of the ABox with the goal of
reducing the size of the ABoxes, from their work is not obvious how one can extend their
approach to query languages beyond instance queries.
The aforementioned techniques are appealing and scale well for large ABoxes, however
they are built around concrete ABoxes, which requires them to run the whole procedure
online. In contrast our computation of type tables can be done offline and be reused for
any ABox that is covered by the given profiles. The check for ABox coverage consist
on simple partition of the ABox which can be implemented efficiently. Moreover, the
techniques mentioned are complete only for the task of ontology materialization and
instance query answering. To the best of our knowledge our approach is the first to
utilise the structure of ABoxes which can be leveraged by query rewriting algorithms, and
that targets expressive DLs, (ALCHI). Moreover the simple structure representation via
profiles has its advantages: (i) we can efficiently check if an individual in some given ABox
is covered by the given set of profiles; and (ii) obtaining profiles from practical settings
such as from the OBDA settings is possible and feasible as we show in Chapter 7. Another
interesting observation from our experiments, is that even for large ABoxes we witnessed
few profiles that cover them. This may sometimes be partially explained by automated
processes that produce the data (mappings, forms, scripts, etc), which naturally restrict
its shape. However, we expected this results since in practice it is common for databases
to store multiple copies of the same patterns. Currently, the main bottleneck of our
algorithm is the computation of ‘base types’ from profiles, which expands the profiles
with sets of guesses. Although the number of guesses was usually small for the considered
ontologies, it became unmanageable in roughly 20% of the cases, therefore investigating
more refined alternatives than current naive guessing seems crucial.

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Query Answering in Expressive

DLs

In this chapter we present OMQ answering algorithms for expressive ontologies in ALCHI
that are designed to utilise the computed type table T. We illustrate the usefulness of
our model representation via T with sound and complete algorithms for three different
query languages: (a) instance queries (IQs), (b) a restricted class of regular path queries
(RPQs) known as reachability queries (RQs), and (c) a query language we call semi-full
conjunctive queries with reachability atoms that combines RQs and CQs with restrictions
on the existential quantification of variables. Our approach is modular, and a significant
part of the computation is done offline; we have shown in the previous chapter that in
most of the tested cases computing the type table T is feasible and that they are usually of
tameable size. This leaves a lesser computational burden on the algorithms that utilize T

to answer queries, and as such makes them suitable candidates for practical consideration.
As we will show in our experiments with our proof of concept implementation Mod4Q,
they behaved well computationally against the ontologies for which we could compute
the structure T, both in terms of the size of the data as well as the size of the ontology
expressed in ALCH.

We focus on queries that are preserved under homomorphisms, we call such queries
monotone.

Definition 22 (Monotone query). We call a query q monotone if I ⊲ J and I |= q
implies J |= q. We call our OMQ (T , q) monotone if q is monotone.

The nice feature of our model representation T is that it represents all the relevant models
for answering any monotone OMQ over any ABox covered by the profiles. In fact, from
Theorems 1 and 2 we get the following lemma:

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Query Answering in Expressive DLs

Lemma 3. Let (T , q) be a monotone OMQ, P a set of profiles, and T a T -complete type
table that covers P. Given an ABox A covered by P, we have (T ,A) |= q iff for each
I ∈ mods(A,T) we have I |= q.

Proof. (⇒) Let I |= q for each I ∈ mods(A,T). We want to prove that (T ,A) |= q. Let’s
assume that (T ,A) 6|= q then there exists an interpretation J |= (T ,A) such that J 6|= q.
From the Theorem 2 we know that there exists an interpretation I ∈ mods(A,T) s.t.
J ⊲ I, but then since q is a monotone query and I |= q we get that J |= q which is a
contradiction, therefore we established that (T ,A) |= q.

(⇐) Let (T ,A) |= q. We want to prove that then for each I ∈ mods(A,T), I |= q. We
proceed by contrapositive, i.e. let I ∈ mods(A,T) s.t. I 6|= q. By Theorem 1 we have
that I |= (T ,A), and since I 6|= q it follows that (T ,A) 6|= q as well.

Note that the above lemma is important since practically all the families of queries that
have been considered in the context of DLs are monotone, including conjunctive queries
(CQs), regular path queries (RPQs), fragments of Datalog, etc. In fact, decidability
results for non-monotone OMQs are very limited, e.g., [GIKK15].

The set T represents all relevant models, but we need to test query entailment over all
represented models in T, which may be infinitely many and of infinite size. Therefore,
different query languages need different algorithms for T. We present in this chapter
algorithms for evaluating queries of different query languages over all the relevant models
using the computed type table T. We use these algorithms to rewrite the given queries
into ASP programs, reducing OMQ answering to cautious entailment.

The rest of this chapter is organised as follows. In Section 4.1 an ASP encoding for
answering IQs and an explanation of why such encoding is suitable for ABox materializa-
tion is given. In Section 4.2 we present an encoding of RQs. In Section 4.3 we show how
results from previous sections can be combined to form an interesting query language
which can be viewed as a conjunction of CQs and multiple RQs, named semi-full CQs
with reachability atoms (s-CRQ). In Section 4.4 we show promising results of experiments
carried with a proof concept implementation Mod4Q over a range of ontologies, and
finally we close the chapter with the Section 4.5 on related work and discussions.

4.1 Instance Queries and ABox Materialization

In this section we present a direct algorithm which makes use of T to answer instance
queries and show how it can be encoded into an ASP program.

For each relevant model I of (T ,A), from Theorem 2 we have that there exists an
interpretation J ∈ mods(A,T) such that J ⊲ I, and from Theorem 1 we have that
J |= (T ,A). Then from the way J is constructed we have that types of individuals NI(A)
coincide with one of the possible T-assignments. Therefore for answering any instance

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Instance Queries and ABox Materialization

query q = A(x), it suffices to iterate through each individual a ∈ NI(A), and check if for
each possible T-assignment t we have that A is contained in t(a).

We consider a set of ABoxes which intuitively capture the models of modst(A,T) for
different T-assignments t, which then allows us to test for an entailment of some assertion
α, i.e. we test I |= α for all I ∈ mods(A, T) by checking if I |= α for any t such that
I ∈ modst(A, T).

Definition 23. Let t be a T-assignment. At is the smallest A ⊆ At such that:
(a1) A(a) ∈ At for all A ∈ t(a) and all a ∈ NI(A).
(a2) s(a, b) ∈ At for each r(a, b) ∈ A and r ⊑∗

T s.

The ABoxes At capture the entailment of assertions in all the models in modst(A,T).

Lemma 4. Let α be an assertion, then I |= α for all I ∈ mods(A,T) iff α ∈ At for each
T-assignment function t.

Proof. (⇒) First we prove that if α ∈ At for each T-assignment function t, then I |= α
for each I ∈ mods(A,T). Let α be an arbitrary assertion such that α ∈ At for each
possible T-assignment function t. We want to show that for any I ∈ mods(A,T) we
have that I |= α. Let I be an arbitrary interpretation in mods(A,T). Note that by
Definition 21 I is an (A, t,T)-interpretation. We have two cases:

• α is of the form A(a). By construction of I we have that for each a ∈ NI(A)
typeI(a) = t′(a) for some T-assignment function t′. By our assumption we have
A(a) ∈ At′

as well, then from the condition (a1) of At definition we get that
A ∈ t′(a), hence we get that A ∈ typeI(a), i.e. I |= A(a).

• α is of the form r(a, b). By construction of I we have that for each s(a, b) ∈ A and
s⊑∗

T r, (a, b) ∈ sI , which coincides with (a2) of definition of At ABoxes, therefore
I |= r(a, b).

(⇐) Next we prove if I |= α for each I ∈ mods(A,T) then α ∈ At for each T-assignment
function t. Let α be an arbitrary assertion such that I |= α for each I ∈ mods(A, T).
Let’s pick an t be an arbitrary T-assignment function, we want to prove that α ∈ At as
well. We have two cases:

• α is of the form A(a). Note that since t is a T-assignment function from the Claim 2
we get that modst(A,T) 6= ∅. Let I be an arbitrary interpretation in modst(A,T),
we have that I ∈ mods(A,T) as well. By construction of I we have that for each
a ∈ NI(A) typeI(a) = t(a), and since I |= α we get that A ∈ t(a). Then, by the
condition (a1) of At definition we get that A(a) ∈ At as well.

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Query Answering in Expressive DLs

• α is of the form s(a, b). There are two cases (i) α ∈ A in which case α ∈ At as
well by definition, and (ii) there exists a r(a, b) ∈ A s.t. s⊑∗

T r, hence s(a, b) ∈ I
for each Imods(A,T). But then, since At ⊇ A by definition of At and r(a, b) ∈ A
from the condition (a2) of the At definition we get that α ∈ At as well.

From the above lemma we get that in order to decide for entailment of some assertion we
need to iterate through each possible At and check if the assertion is included in each of
them. Hence in order to achieve a practicable algorithm we need a language supported
by scalable tools. Given that data complexity of query answering in ALCHI is coNP,
and our need for guessing the good types, ASP is a natural candidate, also due to the
fact that efficient ASP solvers like clingo and dlv have been around for quite a while with
committed development teams.

To this end we present a rewriting to ASP answer sets of which characterize each At

ABox. We achieve the characterization of all At ABoxes in our rewriting by encoding
in the program the types assignment from T and encoding the conditions (t1) and (t2)
of T-assignment to enforce that the assignment of types to constants in the program
corresponds to some T-assignment function.

Note that we assume a T -complete type table T = (L,S) that covers a given set P

containing all the profiles of interest. We use names in NC as unary predicates and
(possibly inverse) roles in NR as binary predicates. We also use a unary predicate prof p

for each profile p ∈ P and an unary predicate typeτ for each good type τ ∈ TG.

We split the rewriting into two parts, a program that contains the rules PT, and a
program PA that contains the facts related to A. PA (see Figure 4.1 below) represents a
given ABox A via facts r(a, b)← for all role assertions r(a, b) ∈ A, and facts prof p(a)←
for each a ∈ NI(A) with p = profA(a).

prof p(a)← for each a ∈ NI where p = profA(a) (4.1)

r(a, b)← for each r(a, b) ∈ A (4.2)

Figure 4.1: PA for a given A

Note that we do not need to add the facts for concept assertions in A as each constant a
in the program gets those from the type that is inferred by the rules in the program PT
which is comprised of the following rules (4.3 – 4.7) shown in the Figure 4.2. Intuitively,
assuming that the fact prof p(a) holds for each a ∈ NI(A) with p = profA(a), the rule
(4.3) guesses the assignments of types to constants (individuals). Rules (4.4) and (4.5)
generate the assertions (a1) and (a2) in At for each guess, while (4.6) and (4.7) enforce
the neighbourhood conditions (t1) – (t2) in Definition 20.

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Instance Queries and ABox Materialization

∨

τ∈GTT(p)

typeτ (x)← prof p(x) for each p ∈ P (4.3)

A(x)← typeτ (x) for each τ ∈ TG and each A ∈ τ (4.4)

s(x, y)← r(x, y) for each r ⊑∗
T s (4.5)

⊥ ← r(x, y), A(y),not B(x) for each A⊑ ∀r−.B ∈ T (4.6)

⊥ ← r(x, y), A(x),not B(y) for each A⊑ ∀r.B ∈ T (4.7)

Figure 4.2: PT for instance queries in ALCHI

Recalling the use of negation in the rewriting, and note that we use stratified negation
in the context of constraints, i.e. they can not be used to derive new facts, but instead
are used to prune the models that violate the encoded condition. Hence transforming
the rules (4.6) and (4.7) in PT into positive rules is easy. In such a case we need to use
unary predicates A which encode the fact that a certain individual is not an instance of
A. An alternative rewriting in Datalog∨ is shown in Figure 4.3.

∨

τ∈GTT(p)

typeτ (x)← prof p(x) for each p ∈ P (4.8)

A(x)← typeτ (x) for each τ ∈ TG and each A ∈ τ (4.9)

A(x)← τ(x) for each τ ∈ TG and each A ∈ NC \ τ (4.10)

⊥ ← A(x), A(x) for each A ∈ NC and (4.11)

(4.12)

s(x, y)← r(x, y) for each r ⊑∗
T s (4.13)

B(x)← r(x, y), A(y) for each ∃r.A⊑B ∈ T (4.14)

B(y)← r(x, y), A(x) for each A⊑ ∀r.B ∈ T (4.15)

Figure 4.3: ASP rewriting of PT with positive rules.

The rules in Figure 4.3 in figure resamble closely the rules in the chosen rewriting in
Figure 4.2. The new program has two additional types of rules 4.10 and 4.11, which
together with the rules 4.14 and 4.15 encode the behaviour of the original rules (4.6)
and (4.7), namely they ensure that each constant gets only the concepts from the type
assignment and that those concepts do not violate one of the T-assignment conditions.

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Query Answering in Expressive DLs

Note that the answer sets of PT ∪ PA are in close correspondence with the ABoxes
At. This is due to the rules 4.14 and 4.15. The reduct of PT ∪ PA with respect to a
proposed model M will not justify some assignment that deviates from the T-assignments.
Since each At reflects some T-assignment t, the answer sets of PT ∪ PA coincide with
the ABoxes At. Therefore, answering an IQ q amounts to cautious entailment over the
program PT ∪ PA. As anticipated, the rewriting does not depend on a specific ABox,
but only on a T that covers a set P of profiles, and it can be used for answering q over
any ABox that is covered by P.

From the fact that the answer sets of PT ∪ PA coincide (on the common vocabulary)
with the ABoxes At for the different T-assignments, and Lemma 4 we get that the next
theorem follows:

Theorem 3. Let A be an ABox covered by P. For any assertion α, we have (T ,A) |= α
iff α ∈M for all answer sets M of PT ∪ PA.

Example 8. Let A, T ,T be taken from the running example in the previous chapter,
more precisely refer to the ABox A1 and profiles from Example 2, and T -complete T from
Example 4. Let q1 = A(x), q2 = C1(x). We have get the following ASP encoding (here
we use τi and pi rather than typeτi

and prof pi
as predicates):

PA = { p1(a)← . p2(b)← . p3(c)← .
r(a, b)← . s(b, c)← .}

PT = { τ1(X) ∨ τ21(X)← p1(X).
τ1(X) ∨ τ21(X) ∨ τ3(X) ∨ τ41(X)← p2(X).
τ51(X) ∨ τ52(X) ∨ τ61(X) ∨ τ62(X)← p3(X).

A(X)← τ1(X). B(X)← τ1(X).
A(X)← τ21(X). B(X)← τ21(X). C(X)← τ21(X). C1(X)← τ21(X).
B(X)← τ3(X).
B(X)← τ41(X). C(X)← τ41(X). C1(X)← τ41(X).
C(X)← τ51(X). C1(X)← τ51(X).
C(X)← τ52(X). C2(X)← τ52(X).
A(X)← τ61(X). C(X)← τ61(X). C1(X)← τ61(X).
A(X)← τ62(X). C(X)← τ62(X). C2(X)← τ62(X).

s(X,Y)← r(X,Y).

⊥ ← r(x, y), A(y),not C(x).
⊥ ← r(x, y), C(x),not B(y).
⊥ ← s(x, y), C2(x),not A(y). }

The ASP program PT ∪ PA has eight answer sets:

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Instance Queries and ABox Materialization

M1 = {τ1(a), τ3(b), τ51(c), A(a), B(a), B(b), C(c), C1(c),

r(a, b), s(a, b), s(b, c)}.

M2 = {τ1(a), τ3(b), τ52(c), A(a), B(a), B(b), C(c), C2(c),

r(a, b), s(a, b), s(b, c)}.

M3 = {τ1(a), τ41(b), τ61(c), A(a), B(a), B(b), C(b), C1(b), A(c), C(c), C1(c),

r(a, b), s(a, b), s(b, c)}.

M4 = {τ1(a), τ41(b), τ62(c), A(a), B(a), B(b), C(b), C1(b), A(c), C(c), C2(c),

r(a, b), s(a, b), s(b, c)}.

M5 = {τ21(a), τ1(b), τ51(c), A(a), B(a), C(a), C1(a), A(b), B(b), C(c), C1(c),

r(a, b), s(a, b), s(b, c)}.

M6 = {τ21(a), τ1(b), τ52(c), A(a), B(a), C(a), C1(a), A(b), B(b), C(c), C2(c),

r(a, b), s(a, b), s(b, c)}.

M7 = {τ21(a), τ21(b), τ61(c), A(a), B(a), C(a), C1(a), A(b), B(b), C(b), C1(b),

A(c), C(c), C1(c), r(a, b), s(a, b), s(b, c)}.

M8 = {τ21(a), τ21(b), τ62(c), A(a), B(a), C(a), C1(a), A(b), B(b), C(b), C1(b),

A(c), C(c), C2(c), r(a, b), s(a, b), s(b, c)}.

As seen from the answer sets Mi, the types of the individuals here coincide with the
T-assignments ti from Example 7. From the answer sets above we get that q1 has only
a as an answer since the atom A(a) is found in all the answer sets, where q2 has no
answers since as no atom C1(z) for some constant z is found in all the answer sets.

Observe that to answer any instance queries, all we need is to consider all answer sets of
the program PA ∪ PT, i.e. no additional reasoning on top of the answer sets is needed.
For answering any given instance query one needs to take the intersection of all the
answer sets, and then gather the atoms whose predicate matches the concept/role of the
instance query.

Our rewriting is suitable for the task of ABox materialization, which consists on ma-
terializing the instances of concept and role names in the ontology. The fact that we
compute the answer sets only once and we can reuse them to decide entailment of all
possible assertions, makes our approach practicable for this task. A simple algorithm like
the following would suffice:

(1) Compute answer sets of PA ∪ PT.

(2) Compute the intersection of the answer sets obtained in (1).

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Query Answering in Expressive DLs

(3) Add the atoms obtained from (2) into the ABox.

Since steps (1) and (2) are anyway performed for answering any instance query, the only
additional step one needs to perform for ABox materialization is step (3).

4.2 Reachability Queries

In this section we show how we can answer an interesting class of queries beyond IQs,
by employing a simple algorithm that makes use of our model representation in T. We
focus here on reachability queries (RQs) a restricted class of the well-known RPQs (see
e.g., [BOS15, CDLV03, CDLV02]). RQs are monotone, hence as already established they
can be answered with our model compilation.

Definition 24. A reachability query (RQ) q takes the form

q(x) = ∃y r∗(x, y), C(y)

where r is a (possibly inverse) role, and C is of the form A1 ⊓ · · · ⊓An with n ≥ 1 and
Ai ∈ NC for 1 ≤ i ≤ n. We call x the answer variable of q. An ontology-mediated
reachability query (OMRQ) is a pair (T , q) of a TBox T and an RQ q.

Let I be an interpretation, let e1, e2 ∈ ∆I , and let r be a role. We say that e1 r-reaches
e2 if there is a sequence d1, . . . , dn of objects from ∆I such that d1 = e1, dn = e2, n ≥ 1,
and for each 1 ≤ i < n, (di, di+1) ∈ rI .

We write I |= q(a), if aI r-reaches some d ∈ ∆I with d ∈ CI . We call a ∈ NI an answer
to (T , q) over A, and write (T ,A) |= q(a) if I |= q(a) for all I |= (T ,A).

Although the reachability queries defined above might seem simple, it is not hard to see
their usefulness. Consider the following example.

Example 9. Assume we have an ontology describing items in an inventory system. It
may contain, e.g., the following axioms:

Phone5 ⊑ ∃hasProcessor .AtmZ

PU25 ⊑ ∃hasProcessor .AtmX

Watch3 ⊑ ∃hasPart.PU25

Tab2 ⊑ ∃hasPart.PU25

AtmX ⊑AtomProcessor

AtmZ ⊑AtomProcessor

hasProcessor ⊑ hasPart

Assume a dataset containing instances of concepts like Phone5 , Tab2 , etc. If the prices
of processors of type Atom increase, we may want to find all items that contain one.
Therefore it would be valuable to be able support RQs like:

∃y hasPart∗(x, y), AtomProcessor(y)

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Reachability Queries

Algorithm 4.1: Retrieve types that reach C through r

input : r, C, T = (L,S)
output : set reach[r,C] of types from TG

Let reach[r,C] := {τ |τ ∈ TG and C ∈ τ}
Let reach′

[r,C] := reach[r,C]

repeat
for each τ ∈TG and s,B with s⊑∗

T r such that S(τ, s, B) ∩ TG 6= ∅ do
if τ ′ ∈ reach[r,C]

for each (τ, (s,B), τ ′)∈S with τ ′ ∈ TG then
reach[r,C] := reach[r,C] ∪ {τ}

end

end

until reach′
[r,C] = reach[r,C];

return reach[r,C]

which can navigate the hasPart relation to different levels of depth and retrieve all
individuals that can reach a certain individual belonging to a certain class.

We note that in ALCHI, RQs can be reduced to instance queries by modifying the
TBox (see [BCOv14]), but then the ‘expensive’ TBox reasoning step would depend on
the query.

We now provide a technique that given a RQ q decides whether I |= q(a) for all models
in mods(A,T). The core component of our technique is Algorithm 4.1, which runs
on T = (L,S). It takes as an input a role r and a conjunction of concept names
C = A1 ⊓ · · · ⊓ An, and collects the set reach[r,C] of all the good types τ from T such
that each d with typeI(d) = τ r-reaches some d′ ∈ CI , for every I ∈ mods(A,T). For
convenience, we write C ∈ τ to denote {A1, . . . , An} ⊆ τ . Intuitively, our algorithm
collects all the types τ such that, in every model, an individual that realizes τ can reach
some element that satisfies the desired conjunction of concepts C.

Proposition 1. Let τ ∈ TG. Then τ ∈ reach[r,C] iff for every I ∈ mods(A,T) and every

d ∈ ∆I , typeI(d) = τ implies that d r-reaches in I some d′ ∈ CI .

Proof. (⇒) We prove the contrapositive of the if statement, i.e. if τ 6∈ reach[r,C] s.t.
τ ∈ TG then there exists an I ∈ mods(A,T) and a d ∈ ∆I , where typeI(d) = τ such that
d does not r-reach any d′ ∈ CI . Each I ∈ mods(A,T) is a (A, t,T)-interpretation, and by
the construction rules in Definition 21 at each step of construction we choose successor
types for each element in the domain from the S. To this end let I be an arbitrary
interpretation in mods(A,T) s.t. there exists an element in d ∈ ∆I where typeI(d) = τ .
By construction d is a sequence of the form as1B1τ1 · · · snBnτ where s⊑∗

T . We construct,
another model I ′ from I by:

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Query Answering in Expressive DLs

• Let ∆I′

= ∆I \ d∗, where d∗ are all the successors of d, i.e. elements that are of
the following form as1B1τ1 · · · snBnτ · · · .

• Let rI = rI \ rI
s where rI

s the set of all role membership assertion such that it’s
domain or range is one of the removed elements.

• Close the interpretation I ′ under the construction rules in Definition 21 such
that each of the immediate successors as1B1τ1 · · · snBnτsBτs of d fulfill one of the
following conditions:

(c1) τs 6∈ reach[r,C], or

(c2) s 6⊑∗
T r

Note that we require only for immediate successors of d to fulfill (c1) or (c2). We know
that each successor of d d′ = as1B1τ1 · · · snBnτ · · · sBτs has as a witness some entry
(τ, (s,B), τs) in S. We want to show that for each such pair (s,B) we can pick a type
τs ∈ S(τ, (s,B)) s.t. (c1) or (c2) above is satisfied. Let (s,B) be an arbitrary pair s.t.
S(τ, (s,B)) 6= ∅, we have two cases:

• s ⊑∗
T r. Assume that for each good type τs in S(τ, (s,B)) we have that τs ∈

reach[r,C] then by the rules of the Algorithm 4.1 we get that τ ∈ reach[r,C] as well,
which contradicts our assumption that τ 6∈ reach[r,C]. Therefore we can pick a type
in S(τ, (s,B)) that satisfies (c1).

• s 6⊑∗
T r in which case (c2) is satisfied.

Since τ is a good type by Claim 1 there are good successor types in S for each pair
(s,B) i.e. {τs ∈ TG|τs ∈ S(τ, (s,B))} 6= ∅ therefore I ′ is an (A, t.T) interpretation, i.e.
I ′ ∈ mods(A,T). Moreover, since for each immediate successor d′ of d in I ′ we have that
either type(d′) 6∈ reach[r,C] or (d, d′) 6∈ rI′

, we get that d does not r-reach an individual

d′′ ∈ ∆I′

such that d′′ ∈ CI .

(⇐) If τ ∈ reach[r,C] where τ ∈ TG then for every I ∈ mods(A,T) and every d ∈ ∆I ,
typeI(d) = τ implies that d r-reaches in I some d′ ∈ CI . Let τ ∈ reach[r,C] s.t.
τ ∈ TG, I an arbitrary interpretation in mods(A,T) and an arbitrary element d ∈ ∆I s.t.
typeI(d) = τ . We want to prove that d r-reaches some element d′ ∈ ∆I where d′ ∈ CI .
By the Algorithm 4.1 we have that a good type τ r-reaches a type τs if:

(i) C ∈ τ , or

(ii) for some pair (s,B) s.t. s ⊑∗
T r and each good type τs ∈ S(τ, s, B) we have

τs ∈ reach[r,C].

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Reachability Queries

Since τ ∈ reach[r,C] and typeI(d) = τ we are guaranteed that either C ∈ typeI(d) or there
exists a chain of r successors between d and some other element d′ ∈ ∆I s.t. C ∈ typeI(d′)
i.e. d′ ∈ CI , hence we get that d r-reaches some element that contains C.

Example 10. Let q(x) = ∃y s∗(x, y), C1(y) be a reachability query that we would like to
answer against the knowledge base in our running example. For convenience let’s recall
the resulting Lfin and Sfin tables from the Example 4.

Lfin

τ1 = {A,B} τ1 = {A,B}

τ2 = {A,B,C} τ21 = {A,B,C,C1}

τ2 = {A,B,C} τ22 = {A,B,C,C2,⊥}

τ3 = {B} τ3 = {B}

τ4 = {B,C} τ41 = {B,C,C1}

τ4 = {B,C} τ42 = {B,C,C2,⊥}

τ5 = {C} τ51 = {C,C1}

τ5 = {C} τ52 = {C,C2}

τ6 = {A,C} τ61 = {A,C,C1}

τ6 = {A,C} τ62 = {A,C,C2}

τ7 = {D} τ7 = {D}

Sfin

τ52 (r, C) τ41

τ62 (r, C) τ41

τ52 (s,D) τ7

τ62 (s,D) τ7

After the computation of the Algorithm 4.1 the reach[s,C1] would contain τ21, τ41,t51,τ52,
τ61 and τ62. As can be seen from the table τ21, τ41, τ51 and τ61 would be contained trivially
since they already contain the concept C1, where as the type τ52 and τ62 would be added
to reach[s,C1] since all of their (r, C) successors in the table Sfin contain the concept C1

and we have r ⊑∗
T s.

Similarly as in the case of IQs, in order to test I |= q(a) for all I ∈ mods(A, T), we
consider ABoxes completed with certain information from reach[r,C], using a fresh concept
name RrC and asserting the membership of each individual that has a type that is found
in the set reach[r,C]. Additionally, we require that such ABoxes are a superset of the
ABoxes that contain all entailed assertions, i.e. that contain At.

Definition 25. Let t be a T-assignment and q(x) = ∃y r∗(x, y), C(y) with C = A1 ⊓
· · · ⊓An be an RQ. Then At,q is the smallest At ⊆ At,q such that:

(q1) RrC(a) ∈ At,q if t(a) ∈ reach[r,C].

(q2) RrC(a) ∈ At,q if R(a, b) ∈ At and RrC(b) ∈ At,q.

ABoxes At suffice for answering instance queries, and the assertions added in At,q correctly
capture the entailment of q in all the models in modst(A,T). Therefore to check if a
query q is entailed by (T , A) we check if it is entailed by each model in mods(A,T).

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Query Answering in Expressive DLs

Lemma 5. Let q = ∃x r∗(a, x), C(x) be an RQ then I |= q(a) for all I ∈ mods(A,T) iff
RrC(a) ∈ At,q for each T-assignment t.

Proof. Let q(a) = ∃x r∗(a, x), C(x) be an RQ.

(⇒) We want to prove if RrC(a) ∈ At,q for each T-assignment t then for each I ∈
mods(A,T) we have that I |= q(a). Let I be an arbitrary interpretation in mods(A,T),
by Definition 21 we have that I is a (A, t,T)-interpretation, hence for each a ∈ NI we
have that typeI(a) = t′(a) for some type assignment function t′. By our assumption we
have that Rrc ∈ A

t′,q, there are two cases by the Definition 25 how RrC was included in
At′,q:

(c1) t′(a) ∈ reach[r,C]. Since we have that type(a) = t′(a) from the Proposition 1 we get
that a r-reaches in I some element d ∈ ∆I such that d ∈ CI , therefore we have
that I |= q(a).

(c2) R(a, b) ∈ At′

and RrC(b) ∈ At′,q. Since RrC(b) ∈ At′,q by the argument above (c1)
we get that I |= q(b). By our assumption R(a, b) ∈ At′

, from Lemma 4 we have
that I |= R(a, b), then from the Definition 24 of RQs we get that I |= q(a).

(⇐) Next we prove that if I |= q(a) for all I ∈ mods(A,T) then RrC(a) ∈ At,q for each
T-assignment t. We will prove it in its contrapositive form, that is if there exists a
T-assignment such that RrC(a) 6∈ At,q then there exists an interpretation I ∈ mods(A,T)
such that I 6|= q(a). Let t be a T-assignment such that RrC(a) 6∈ At,q, from the Claim 2 we
get that there exists an interpretation I ∈ modst(A,T). By construction of I we get that
typeI(a) = t(a) for any I ∈ modst(A,T). Let’s assume that for any such I ∈ modst(A,T)
we have I |= q(a). But the by the Definition 24 of RQs we have that either:

• a ∈ CI in which case C ∈ t(a) in which case by the Algorithm we get that
t(a) ∈ reach[r,C] and by the case (q1) of At,q definition we get that RrC(a) ∈ At,q

which contradicts our initial assumption.

• a r-reaches some d ∈ ∆I with d ∈ CI . Since by assumption this holds for any
I ∈ modst(A,T) we get that for any possible successor τs of t(a) it is the case that
τs ∈ reach[r,C], then by the rules of the Algorithm 4.1 we get that t(a) ∈ reach[r,C]

and by the case (q1) of At,q definition we get that RrC(a) ∈ At,q which contradicts
our initial assumption.

Hence we have proved that there exists an I 6|= q(a).

We now provide a rewriting of OMRQs into ASP programs. The rewriting includes the
facts in PA, all the rules in program PT, and additionally the rules of the program Prq

shown in the Figure 4.4.

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Reachability Queries

RrC(x)← typeτ (x) for each τ ∈ reach[r,C] (4.16)

RrC(x)← r(x, y), RrC(y) (4.17)

Figure 4.4: Pq program for q(x) = ∃y r∗(x, y), C(y)

For a given RQ q(x) = ∃y r∗(x, y), C(y), the rules (4.16) and (4.17) of the program Prq

shown in the figure 4.4 generate the assertions (q1) – (q2) in the definition of At,q.

The answer sets of PA ∪PT ∪Prq coincide with the At,q. From this and Lemma 5 we get
the following theorem:

Theorem 4. Let A be an ABox covered by P. Given RQ q(x) = ∃y r∗(x, y), C(y), we
have (T ,A) |= q(a) iff RrC(a) ∈M for all answer sets M of PA ∪ PT ∪ Prq.

Example 11. Let A, T ,T and reach[s,C1] be taken from our running example. Programs
PA and PT are identical to the previous case since, whereas for Prq we get the following
rules:

Pq = { RsC1
(X)← τ21(X).

RsC1
(X)← τ41(X).

RsC1
(X)← τ51(X).

RsC1
(X)← τ52(X).

RsC1
(X)← τ61(X).

RsC1
(X)← τ62(X).

RsC1
(X)← s(X,Y), RsC1

(Y). }

The ASP program PT ∪ Pq ∪ PA has the same number of answer sets:

M1 = {τ1(a), τ3(b), τ51(c), A(a), B(a), B(b), C(c), C1(c),

r(a, b), s(a, b), s(b, c), RsC1
(c)}.

M2 = {τ1(a), τ3(b), τ52(c), A(a), B(a), B(b), C(c), C2(c),

r(a, b), s(a, b), s(b, c), RsC1
(c)}.

M3 = {τ1(a), τ41(b), τ61(c), A(a), B(a), B(b), C(b), C1(b), A(c), C(c), C1(c),

r(a, b), s(a, b), s(b, c), RsC1
(b), RsC1

(c)}.

M4 = {τ1(a), τ41(b), τ62(c), A(a), B(a), B(b), C(b), C1(b), A(c), C(c), C2(c),

r(a, b), s(a, b), s(b, c), RsC1
(b), RsC1

(c)}.

M5 = {τ21(a), τ1(b), τ51(c), A(a), B(a), C(a), C1(a), A(b), B(b), C(c), C1(c),

r(a, b), s(a, b), s(b, c), RsC1
(a), RsC1

(c)}.

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Query Answering in Expressive DLs

M6 = {τ21(a), τ1(b), τ52(c), A(a), B(a), C(a), C1(a), A(b), B(b), C(c), C2(c),

r(a, b), s(a, b), s(b, c), RsC1
(a), RsC1

(c)}.

M7 = {τ21(a), τ21(b), τ61(c), A(a), B(a), C(a), C1(a), A(b), B(b), C(b), C1(b),

A(c), C(c), C1(c), r(a, b), s(a, b), s(b, c), RsC1
(a), RsC1

(b), RsC1
(c)}.

M8 = {τ21(a), τ21(b), τ62(c), A(a), B(a), C(a), C1(a), A(b), B(b), C(b), C1(b),

A(c), C(c), C2(c), r(a, b), s(a, b), s(b, c), RsC1
(a), RsC1

(b), RsC1
(c)}.

By observing the above answer sets we see that the only answer to the query q(x) =
∃y s∗(x, y), C1(y) is c since the atom RsC1

(c) is found in all the answer sets.

4.3 Semi-full Conjunctive Queries with Reachability

Atoms

In this section, we show how we can obtain an ASP rewriting for an interesting query
language that combines conjunctive queries with reachability atoms, subject to some
restrictions on the existential quantification of variables. More specifically, in the proposed
query language we allow only the second term appearing in some reachability atom r∗(x, y)
to be existentially quantified, and disallow joins over existential variables. Regardless
of this restriction, the query language offers quite some flexibility by allowing one to
express multiple RQs (as defined in the previous section), and join them arbitrarily with
other atoms over answer variables. This allows for multiple search conditions about the
anonymous part to be expressed in the same query. We call such query language semi-full
conjunctive query with reachability atoms (s-CRQ).

Definition 26 (Semi-full Conjunctive Query with Reachability Atoms). A s-CRQ has
the following form:

q(~x) = ∃~y φ(~x, ~y)

where φ(~x, ~y) is a conjunction of atoms that take one of the following forms:

(a1) r(x, y) where x, y ∈ ~x and r ∈ NR, or

(a2) r∗(x, y) where x ∈ ~x, r ∈ NR, and if y ∈ ~y then it can occur only in other atoms of
the form A(y), or

(a3) A(x) where A ∈ NC, and if x 6∈ ~x, then it also occurs in some atom of the form
r∗(y, x).

As it can be observed from the definition of s-CRQs above, the only variables existentially
quantified are the ones occurring inside the reachability atoms or unary atoms sharing the
existential variable with some reachability atom, while all other variables are universally

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Semi-full Conjunctive Queries with Reachability Atoms

quantified. From (a3) it follows that all atoms of the form A(x) where x is existentially
quantified should share x with some reachability atom r∗(x, y), and from (a2) we get
that they share x with exactly one atom of the form r∗(x, y). Based on this observation,
we can see s-CRQ as a conjunction of RQs and a universally quantified CQ, sharing the
answer variables. Moreover, we distinguish two types of reachability atoms r∗(x, y), the
first where variables are universally quantified, and the second where y is existentially
quantified.

Given an s-CRQ query q, we define a separation of q into the sets RQe(q), RQu(q), and
FCQ(q), in the following manner:

RQe(q) ={ ∃y r∗(x, y), C(y) | r∗(x, y) ∈ q, y ∈ ~y,

C(y) represents the conjunction of unary atoms sharing y }

RQu(q) ={ r∗(x, y) | r∗(x, y) ∈ q, y ∈ ~x }

FCQ(q) ={ A(x) | A(x) ∈ q, x ∈ ~x } ∪ { r(x, y) | r(x, y) ∈ q, x, y ∈ ~x }

The set RQe(q) contains the reachability queries with existentially quantified variables as
per Definition 24, RQu(q) contains the reachability queries without existentially quantified
variables which can be seen as universally quantified reachability atoms, whereas FCQ(q)
contains all the rest of the atoms in q. Note that we preserve the variable names during
this process, s.t. by taking the union these three sets we can obtain the original query.

Next we define an ABox At,crq for each T-assignment. These ABoxes are essential for
testing entailment of ground s-CRQs, i.e., whether given a tuple of constants ~c and a
s-CRQ q, I |= q(~c) for each I ∈ modst(A,T). ABoxes At,crq contain each ABox At,rq for
each RQ with existential variables, moreover we complete them with certain information
Rr(a, b) which captures entailments of reachability atoms r∗(x, y) ∈ RQu(q), and RrC

which capture entailments of RQs in RQe(q).

Definition 27. Let t be a T-assignment and q(x) = ∃~y φ(~x, ~y) be an s-CRQ. Let RQe(q),
RQu(q) and FCQ(q) be the respective sets from the separation of q. Then At,crq is the
smallest At,crq such that:

• At,rq ⊆ At,crq for each rq ∈ RQe.

• Rs(a, a) ∈ At,crq for each s∗(x, y) ∈ RQu and a ∈ NI(A), s.t. s⊑∗
T r.

• Rs(a, b) ∈ At,crq if s(a, b) ∈ A s.t. s∗(x, y) ∈ RQu and s⊑∗
T r.

• Rs(a, c) ∈ At,crq if Rs(a, b) and Rs(a, b) ∈ At,crq.

From the given s-CRQ query q we obtain an universally quantified (full) CQ qfcq in the
following manner:

Definition 28. Let q be a s-CRQ query and RQe(q), RQu(q), FCQ(q) the respective
sets from its separation. We define an universally quantified query qfcq that contains:

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Query Answering in Expressive DLs

• all the atoms in FCQ(q), and

• an atom RrC(x) for each ∃y r∗(x, y), C(y) ∈ RQe(q), and

• an atom Rr(x, y) for each r∗(x, y) ∈ RQu(q).

Finally for checking if a s-CRQ query q(~c) is entailed in all the models I ∈ modst(A,T),
we only need to check if qfcq(~c) is entailed by At,crq.

Lemma 6. Let q(~c) = ∃~y φ(~c, ~y) be a s-CRQ query then I |= q(~c) for all I ∈ mods(A,T)
iff qfcq(~c) ⊆ At,crq for each T-assignment t.

Proof Sketch. The proof of this lemma follows from Lemma 4 and Lemma 5. By these
lemmas we can show that for each atom α(~c) in qfcq that α(~c) ∈ At,crq iff the corresponding
subquery of α(~c) in q is modeled by all the models in mods(A,T). Then one can show
that qfcq(~c) is entailed iff q(~c) is entailed by showing that all atoms of qfcq(~c) are found
in At,crq iff all their corresponding subqueries in q are entailed.

In Figure 4.5 an ASP rewriting Pcrq of an s-CRQ q is given. Note that we use the plain
qfcq query of the given s-CRQ to guide the rewriting. The rules 4.18 and 4.19 encode
each RQ subquery present in q, and as such are identical to the rules 4.16 and 4.17 of
the program Pq for RQs shown in Figure 4.4. On the other hand, the rules 4.20 and 4.21
encode the reachability in ABox for each of the atoms in RQu(q). Lastly, the rule 4.22
encodes the answers to the query qfcq , by putting all universally quantified atoms in the
original query together with the atoms of the form RrC and Rr that carry the inferences
of corresponding reachability queries.

The answer sets of the program PA ∪ PT ∪ Pcrq are in one-to-one correspondence with
the At,crq ABoxes. By this and Lemma 6, the following theorem holds:

Theorem 5. Let A be an ABox covered by P. Given a s-CRQ q(~c) = ∃~y φ(~c, ~y), we have
(T ,A) |= q(~c) iff ans(~c) ∈M for all answer sets M of PA ∪ PT ∪ Pcrq.

4.3.1 Uplifting the Technique to Conjunctive Queries

Our computed type table T structure can be used to answer conjunctive queries by
adopting the work of [EOv12a]. Moreover, our computation of T is largely motivated by
the technique shown in [EOv12a], which utilizes the concept of knots for compiling the
knowledge. Knots are trees of depth at most one, where the nodes represent types that
coincide with the types we use and branches represent roles. Their technique works in
three steps, in the first they define a set of knots K, in the second step they use K to
rewrite the given query into a union of CQs (UCQ), and in the last step they obtain a
set of ABox completions A over which they answer the rewritten query.

While the set of ABox completions A is similar with the union of all At for each T-
assignment function t, the set of knots K can be obtained easily from S by generating

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Evaluation

For each ∃y r∗(x, y), C(y) ∈ RQe(q), add:

RrC(x)← typeτ (x). for each τ ∈ reach[r,C] (4.18)

RrC(x)← r(x, y), RrC(y). (4.19)

For each r∗(x, y) ∈ RQu(q), add:

Rr(x, y)← r(x, y). (4.20)

Rr(x, y)← Rr(x, y), r(x, y). (4.21)

Add ASP encoding of qfcq

ans(x1, . . . , xn)←RriCi
(xi), · · · , each RriCi

(xi) ∈ RQe (4.22)

, Rri
(xi, xi+1), · · · , each Rri

(xi, xi+1) ∈ RQu

, A(xi), · · · , r(xj , xj+1), · · · . each Axi
, r(xj , xj+1) in qfcq

Figure 4.5: Pcrq program for a given s-CRQ q(~x) = ∃~y φ(~x, ~y)

all possible trees of depth one rooted at the parent type τ , and for each (r,B) s.t.
S(τ, r, B) 6= ∅ adding an r-branch to one of the good (r,B) successor types in S(τ, r, B).
Such set of knots K obtained from our model representation T represent all relevant
knots for answering CQs with the original algorithm presented in [EOv12a] as long as the
ABox is covered by the set of profiles P used for computing T. The key difference between
our approach and the knot approach is how the model compilation is obtained. In our
approach we do this in a goal oriented way, starting from a set of profiles P and a TBox,
thus computing only relevant representation of models for the ABoxes covered by P which
as we showed in the previous chapter are of tameable size. In contrast the algorithm
in [EOv12a] assumes the presence in K of all possible knots relevant for any query q and
ABox A, and as such is best case exponential, hence infeasible for implementation.

While following the knot technique to adopt CQ answering in our case is possible, it is
not clear how well would such an algorithm behave in practice, we believe it may need
careful engineering for making it viable candidate for implementation.

4.4 Evaluation

We have implemented the algorithms for IQ and RQ answering in the prototype Mod4Q,
and show in this section evidence that these algorithms are feasible to implement. We
recall here that the algorithms presented in this chapter rely on the computed structure
T for pruning the search space during reasoning, more precisely they consider typically
small number of types in T during evaluation compared to exponentially many in theory.
In previous chapter we gave empirical evidence that the number of the profiles covering
ontologies with real large ABoxes we tested was typically small. In this section we present

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Query Answering in Expressive DLs

the results obtained for the implemented algorithms for IQ answering and RQ answering
as a final evidence that our overall technique for answering queries in expressive DLs
fulfills the goals of the thesis.

We recall here that our technique works in two steps, an offline and online step. For
a detailed explanation please check the Figure 3.2 in the Subsection 3.3.2 of previous
chapter. Here we focus mostly on the online steps, i.e. the time the specific algorithm
reasons with T including getting the encoding of the program Pq and evaluating it with
Clingo.

We ran the implemented algorithms over all the ontologies described in Subsection 3.3.2
of the previous chapter, and report the results divided into two groups:

Ontologies with large ABox: in the first group we show the results obtained for the large
ontologies considered such as NPD, MyITS and IMdb, which were of particular
relevance due to their large ABox sizes.

Ontologies with complex TBox: in the second group we report the results from the se-
lected ontologies in Oxford Ontology Repository for expressive DLs as explained in
Subsection 3.3.2. Although they have small ABoxes, they are interesting due to
their complex TBoxes.

Our experiments showed that:

• rewriting into ASP is feasible and the generated ASP programs are simple and
perform well when evaluated with Clingo.

• query answering with our ASP rewritings scales to very large ABoxes.

Querying large ontologies with ABoxes The results we obtained testing the IQ
and RQ algorithm against the first group of ontologies are in Table 4.1. Here we report
also the time for producing PA which includes the extraction of P from the ABox. We
did this since the ontologies in this group have large ABoxes and we noticed that the
time for obtaining the ABox encoding played a role in the overall results. However, we
note that this is an offline step and can be computed on demand when new assertions
are added to the ABox. In addition we report the time for obtaining PT which includes
the type table computation of T.

Next we give a more detailed explanation of the results showed in the Table 4.1 for each
of the families of queries:

Instance queries: Using the program (PT ∪ PA) and Clingo, we tested for the instances
of all concept names in each ontology. This resulted in 370 (MyITS), 333 (NPD) and
84 (IMDb) IQs. The average answer time over all of them is reported in the table. For
comparison, we ran the same instance queries using HermiT [GHM+14]; it took 4.5 hours

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. Discussion and Related Work

Ontology PA PT RQs (avg) IQs (avg)
MyITS50 4.66s 1.21s 2.55s 1.67s
MyITS150 7.12s 1.19s 5.08s 4.53s
MyITS250 10.17s 1.29s 10.21s 8.87s
NPD 89s 2.02s 8.89s 8.47s
IMDb 1034s 2.42s 56.48 55.13s

Table 4.1: Querying ontologies with large ABoxes

for MyITS50, versus 10 minutes accumulated time with our prototype. For all other
ontologies, HermiT either timed out after 6 hours, or crashed due to memory exhaustion.

Reachability queries: We generated all RQs paring a role name r and concept name A for
which either (a) r occurs in a role assertions in an ABox, and A in a good type matching
the profile of an individual in the range of r; or (b) there was an (r,B) entry in the S
with A in its end type. Since there are many possible queries, we decided not to test
out the pairs for which the above conditions are not fulfilled, which are trivially empty,
or their answers coincide with the instances of A. This procedure resulted in a total of
139 (MyITS), 121 (NPD), and 51 (IMDb) RQs. Answering RQs was on average slightly
slower than answering IQs.

Querying ontologies with complex TBoxes We followed the same methodology
as the one explained above for obtaining reachability queries and instance queries for the
70 ontologies of the Oxford Ontology Repository for which the computation of type table
T was successful. Considering the large number of concept names in the signature of
these ontologies; in the order of tens of thousands, we restricted the number of generated
queries up to 100 queries per query family per ontology. We ended up with 5494 IQs and
962 RQs, i.e. not for all ontologies we could generate RQs. That is because some of the
ontologies were inconsistent, hence we could not find good successor types for them. We
noticed that for all the ontologies for which we could generate IQs and RQs, RQs were
slightly slower than IQs, in total the minimum time for answering both IQs and RQs
was 4 milliseconds, the maximum was 485 millisecond for IQs and 2.1 seconds for RQs,
where as the average time was 59 milliseconds for IQs and 164 milliseconds for RQs.

Although the ontologies in the second group weren’t perfect for testing the performance
of our IQ and RQ algorithms due to their small sized ABoxes, together with the tests
for the ontologies with large ABoxes, they provide evidence that our approach yields a
promising candidate for implementation in real world scenarios.

4.5 Discussion and Related Work

Answering ontology mediated queries (OMQs) has been a very active field of research over
the last decade. Two main research lines have emerged with a large gap in between. On
the one hand, for the so-called lightweight Description Logics (DLs), algorithms have been

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Query Answering in Expressive DLs

developed, improved, and implemented in reasoners, from DL-Lite (e.g., [CDL+05, RA10,
RKZ13]), to EL [SMKR14, PMH10], and other Horn DLs [EOv+12b, ORS11]. Most
works use query rewriting approaches, with CQs being the query language of choice. As
we have already noted obtaining the rewritten query may be costly, but it is independent
from a concrete dataset, which prompts it as suitable for evaluation over any ABox
using existing engines for the target language. On the other hand, for expressive DLs
containing ALC, most of the research on OMQ answering has had theory-oriented goals,
like understanding decidability and worst-case complexity [Lut08]. Many algorithms
employ tools that are not amenable to implementation, like automata [CDL08, CEO14],
or reduction to standard reasoning that cause an exponential blow up [GHS08, GLHS08,
OCE08]. Rewritings have been proposed (e.g.,[BtCLW14, AOS16, EOv12a]) but they
appear impracticable, and to our knowledge, they have not led to implementation attempts.
A rewriting into Datalog for SHIQ was implemented a decade ago in the KAON2 reasoner,
but only for instance queries. A published extension to CQs did not yield a data-
independent rewriting, and to our knowledge was never implemented [HMS04]. State-of-
the-art reasoners for expressive DLs can handle very large ontologies (e.g., Pellet [SPG+07],
HermiT [GHM+14], Konclude [SLG14]), but they usually aim at deciding if some model
exists, and as we have discussed, they don’t seem very useful for query answering.

From our observation, the usual notion of data independence is too strong and can
become an obstacle towards practicable algorithms, hence we have devised a technique
that makes use of the ‘structure’ of data. We believe that this is an important direction,
and as we showed in this chapter the structure of data can be utilized to obtain algorithms
for different types of queries. Moreover, for some selected query languages, like instance
queries and reachability queries we showed that our approach scales well for most of the
expressive ontologies we tested against. As a future step we seek to uplift our approach
to nested reachability queries and adopt the algorithm of [EOv12a] for full CQ answering
with the practicability of the technique in mind.

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Practicable Reasoning in Hybrid

Languages

ASP and ontology languages like DLs are two of the most important families of formalisms
in knowledge representation and reasoning, which have largely orthogonal features due
to very different assumptions regarding the completeness of information. Thus reasoning
techniques and algorithms that are deployed in ASP are significantly different from the
ones used in DLs. Combining ASP, which makes the closed-world assumption (CWA),
with DLs, which make the open-world assumption (OWA), into expressive hybrid languages
that would enjoy the positive features of ASP and DLs has received significant attention
in the last decade (see, e.g., [Ros05, Ros06, EIL+08, MR10, KAH11]). However, the
development of efficient reasoning algorithms and implementations for reasoning in hybrid
languages is lacking. This applies also to the progress on understanding the relationship
between different hybrid languages, and their relationship with more standard languages
like plain ASP.

In this chapter, we present a new hybrid language called Clopen Knowledge Bases (CKBs),
which generalizes and improves the prominent r-hybrid language [Ros05]. We also present
a technique that builds on our approach developed in the previous chapters to obtain
an algorithm that is a viable candidate for implementation in practice. We show that
reasoning with hybrid KBs that involve an expressive DL can be reduced to standard
ASP reasoning. Implementing such an approach efficiently is very challenging because
standard ASP tools were not designed for reasoning about ontologies, while existing
efficient DL reasoners have very limited capabilities to reason about rules.

This chapter is organized as follows: we start in Section 5.2 by introducing CKBs and
define for them a stable model semantics, inspired by the semantics given by Rosati
to r-hybrid KBs. In a nutshell, the major difference between the latter formalism and
CKBs is that CKBs allow to use CWA predicates in the ontology. This allows for more

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Practicable Reasoning in Hybrid Languages

convenient knowledge representation, but also causes technical challenges. Then, in
Section 5.3, we provide a general decidability result for checking entailment of ground
atoms and consistency testing in CKBs, where the ontology part is expressed in the
guarded negation fragment of FOL (GNFO) [BCS15]. This is a very expressive fragment
that subsumes the more prominent guarded fragment of FOL, as well as many expressive
DLs. We give a NExpTime2ExpTime upper bound for inference from GNFO-based CKBs
(we note that satisfiability of GNFO formulas is 2ExpTime-hard). Then, in Section 5.4
we study the reasoning in CKBs where the ontology is expressed in the very expressive
DL ALCHOI, which extends ALCHI with nominals. We show that the (combined)
complexity of reasoning in such CKBs is not higher than in standard (non-ground)
ASP. If we assume bounded predicate arities in rules, the basic reasoning problems are
ExpTime-complete, which coincides with the complexity of standard problems in plain
ALCHOI.

In Section 5.5 we study the relationship between CKBs and other existing hybrid
languages with an aim towards obtaining practicable algorithms. To this end, we
define a restricted class of separable CKBs, and show that they can be transformed in
polynomial time into the so-called dl-programs [EIL+08]. Separable CKBs still generalize
r-hybrid KBs, thus we establish a connection between r-hybrid KBs and dl-programs
that is interesting in its own right. The dl-programs resulting from this transformation
effectively implement a naive algorithm for reasoning in CKBs. In particular, such a
dl-program non-deterministically guesses a (relatively large) set of ground atoms, and
then uses an external query (a dl-atom) to update the DL ontology that is checked for
consistency by an external DL reasoner. However, our experiments with the dlvhex suite
(an implementation of dl-programs; see [Red17]) show that this approach is not suitable
for a practical implementation of CKBs. We address the above mentioned inefficiency by
developing translations from separable CKBs into standard ASP programs, thus enabling
the reuse of existing ASP solvers. Roughly, the idea is to compile the necessary knowledge
about the ontology into a set of ASP rules that are almost identical to the ASP programs
shown in Section 4.1. Together with the original rules of the CKB, they form an ASP
program whose stable models are in close correspondence with the stable models of the
input CKB. We define two translations. The first data-independent one establishes a
connection to ASP, showing that ASP is as expressive as separable CKBs. The other data
representation-dependent translation is geared towards implementation, which reduces
non-deterministic choices by exploiting the representation of the data via profiles and
the type table T computed as shown in Chapter 3. We have implemented the translation
into plain ASP for separable CKBs with ϕ expressed in ALCH in our prototype Mod4Q,
and compared it with the direct translation of separable CKBs into dl-programs using
dlvhex. We tested the ASP translations of four programs with a real world ontology on
real world data sets of different sizes and present encouraging results in Section 5.6. Our
approach yielded a translation procedure for efficient reasoning over instances that the
direct translation utilizing dlvhex could not handle.

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1. Basic Definitions

5.1 Basic Definitions

We recall here that hybrid languages are composed of two components, the rule and the
ontological component. We often refer to the ontological component as the theory ϕ, and
we talk about logics which are, in general, sets of theories. Our results in particular are
for specific logics that are fragments of standard FOL. We introduce here the notions of
(relational) interpretations, as usual in FOL.

Interpretations and models.

Similarly as in the definition of ASP programs, we assume a countably infinite set NV of
variables, NI of constants, and ND of predicates. An interpretation is a pair I = (∆I , ·I)
that consists of a non-empty set ∆I (called domain), and a valuation function ·I that
maps (i) each constant c∈NI to an element cI ∈ ∆I , and (ii) each predicate symbol r to
a set rI ⊆ (∆I)n, where n is the arity of r.

Furthermore, we assume a countably infinite set T of theories. Each theory ϕ ∈ T is
associated with a set mods(ϕ) of interpretations. Each I ∈ mods(ϕ) is called a model of
ϕ. We assume that ⊤ ∈ T, and we let mods(⊤) be the set of all interpretations. A logic
is simply a set of theories L ⊆ T. As concrete logics we will consider the DLs ALCH,
and ALCHOI which extends the ALCHI DL (defined in Section 2.1.2) with nominal
concept constructor. The syntax for the nominals is given in the following way: {a}
where a is an individual, whereas the valuation function ·I for ALCHI is extended with
{a}I = {aI}.

Note that we use I for ordinary (DL) interpretations, and I, J for Herbrand interpreta-
tions, and thus in what follows we refrain from explicitly specifying the types of interpre-
tations. An Herbrand interpretation I induces an ordinary interpretationĨ = (∆Ĩ , ·Ĩ),
where:

(i) ∆Ĩ = NI, and

(i) r Ĩ = {~u | r(~u) = I} for all r∈ND.

5.2 Clopen Knowledge Bases

We next formally define our hybrid language.

Syntax. A Clopen Knowledge Base (CKB) is a triple H = (P, ϕ,Σ), where P is a
program with a finite set of rules, ϕ ∈ T is a theory, and Σ ⊆ ND. The predicate symbols
in Σ are called the open predicates (in H); while the remaining predicates ND \ Σ are
called the closed predicates of H. The CKB H is called safe if the following holds for every
rule ρ ∈ P: each variable that appears in ρ also appears in some atom r(~u)∈ body+(ρ)
with r 6∈Σ. Unless stated otherwise, all considered CKBs are safe.

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Practicable Reasoning in Hybrid Languages

Semantics. We give the stable model semantics of Clopen inspired by the semantics of
r-hybrid KBs. Recall that stable model semantics were first defined by [GL88] through
the notion of the reduct (see Chapter 2). We define a variation of this reduct that takes
open predicates into account.

Given a program P, an Herbrand interpretation I, and Σ ⊆ ND, the reduct PI,Σ of P
w.r.t. I and Σ is the ground positive program obtained from ground(P) in two steps:

(1) First, delete every rule ρ that contains

(a) r(~u) ∈ body+(r) with r ∈ Σ and r(~u) 6∈ I,

(b) r(~u) ∈ head(r) with r ∈ Σ and r(~u) ∈ I, or

(c) r(~u) ∈ body−(r) with r(~u) ∈ I.

(2) In the remaining rules, delete all negated atoms, and all ordinary atoms r(~u) with
r ∈ Σ.

An Herbrand interpretation I is a stable model of a CKB H = (P, ϕ,Σ) if the following
two conditions are satisfied:

- {r(~u) | r(~u)∈ I, r 6∈Σ} is a minimal model of PI,Σ, and

- Ĩ is model of ϕ.

Reasoning problems. As usual in hybrid languages (see, e.g., [Ros05]), the basic
reasoning task for CKBs is entailment of ground atoms. That is, given a CKB H =
(P, ϕ,Σ) and a ground atom R(~u), the problem is to decide whether R(~u) ∈ I holds for
all stable models I of H. This problem can be reduced to checking the non-existence of a
stable model for the CKB H′ = (P ∪ {← R(~u)}, ϕ,Σ). Thus in the rest of the chapter
we focus on checking the stable model existence for a given CKB. Note that in general a
CKB may have infinitely many stable models.

Example 12. The CKB H = (P, ϕ,Σ) contains information on the local transport
network (provided by the city’s transport authority and assumed to be complete) and
on hotels and relevant locations (extracted form the web and not necessarily complete).
We have P = P1 ∪ P2 ∪ P3, where P1 and P2 contain facts. The network, which is
depicted by solid lines at the bottom of Figure 5.1, is described in P1. Facts of the
form RouteTable(ℓ, s, s′) ← store that on the line ℓ, station s is followed by station s′.
The constants t1 and t2 represent tram lines, while ℓ1 represents a metro line; we have
corresponding facts MetroLine(ℓ1), TramLine(t1), TramLine(t2). P2 contains facts related
to locations, including the following (for convenience, CloseTo is depicted with dotted
lines).

CloseTo(c1, s1)← Hotel(h1)← TramConn(h1)←
CloseTo(h2, s4)← Hotel(h2)←

88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Clopen Knowledge Bases

P3 = { MetroStation(Y1)← RouteTable(X,Y1, Y2),MetroLine(X)

TramStation(Y2)← RouteTable(X,Y1, Y2),TramLine(X)

ReachOnLine(X,Y1, Y2)← RouteTable(X,Y1, Y2)

ReachOnLine(X,Y1, Y3)← ReachOnLine(X,Y1, Y2),RouteTable(X,Y2, Y3)

TramOnly(X)← TramConn(X),not MetroConn(X)

Q(X)←Hotel(X),CloseTo(X,Y),ReachOnLine(Z, Y, Y ′),CloseTo(c1, Y
′)

Q′(X)←Q(X),not TramOnly(X) }

ϕ = { ∀x.
(

MetroStation(x) ∨ TramStation(x)↔ Station(x)
)

,

∀x.
(

TramConn(x)↔ ∃y CloseTo(x, y) ∧ TramStation(y)
)

,

∀x.
(

MetroConn(x)↔ ∃y CloseTo(x, y) ∧MetroStation(y)
)

,

∀x.
(

URailConn(x)↔ ∃y CloseTo(x, y) ∧ Station(y)
)

}

e(`1)
line l

e(t2)
station

e(t1)
is follo

,s1)

2,s4)

o(c1,

o(h2,

Figure 5.1: Example CKB

The (self-explanatory) rules in P3 and the theory ϕ are shown in Figure 5.1 (URailConn

stands for urban rail connection). If h is a hotel with direct connection to the point
of interest c1, then Q(h) holds for it. In this case, it holds for both h1 and h2 (note
that we do not know which station h1 is close to). We can use negation as failure to
further exclude hotels for which a tram connection is explicitly mentioned, but no metro
connection, hence we can assume that it is only reachable by tram, like h1. For this reason,
Q′ only holds for h2. The predicates that describe the network, and those that occur in
the heads of the rules in P3 are closed. The remaining ones are open, i.e. Σ = {Hotel,
CloseTo, Station, TramConn, MetroConn, URailConn}.

In the spirit of r-hybrid KBs, the FOL theory of a CKB can be seen as a set of integrity
constraints on the inferences made using the rules of the CKB. Since we are not in classical
logic, and in particular because double negation elimination is not valid, “moving” a fact
from the program to its theory need not preserve the stable models.

Example 13. We let Σ = {Edge} and

ϕ= {∀xy Edge(x, y)→ (Node(x) ∧ Node(y))}

P = Node(v1)←; . . .Node(vn)←;

Reach(X,X)←Node(X);

Reach(X,Z)←Reach(X,Y),Edge(Y,Z),Node(Z); }

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Practicable Reasoning in Hybrid Languages

Then these CKBs are not equivalent:

H1=(P, ϕ ∧ Reach(v1, v2),Σ)

H2 =(P ∪{Reach(v1, v2)←}, ϕ,Σ)

Indeed, each stable model of H1 correspond to a directed graph G over v1, . . . , vn such
that (v1, v2) is included in the reflexive transitive closure of the edge relation in G. In
contrast, a stable model of H2 consists of an arbitrary graph over v1, . . . , vn, together
with the reflexive transitive closure of the edge relation augmented with the tuple (v1, v2).

Relationship to ASP. Assume a program P and an Herbrand interpretation I. We
call I a stable model of P if I is a stable model of the CKB H = (P,⊤, ∅). It is not
difficult to see that this definition yields precisely the stable models that can alterna-
tively be computed using the standard definition of stable model semantics in ASP.
Indeed, the program PI,∅ boils down to the standard Gelfond-Lifschitz reduct PI of P
w.r.t. I [GL88](see Chapter 2). Observe that in a CKB H = (P, ϕ, ∅), the theory ϕ plays
the role of integrity constraints on the stable models of the plain program P, i.e. I is a
stable model of H iff I is a stable model of P such that Ĩ ∈ mods(ϕ).

Relationship to r-hybrid KBs. Our CKBs are a close relative of the r-hybrid KBs of
Rosati [Ros05]. The safety restriction here is inspired by the safety condition in r-hybrid
KBs, and so is our definition of the semantics via a generalization of the Gelfond-Lifschitz
reduct that additionally reduces the program according to the truth value of atoms over
open predicates. Intuitively, r-hybrid KBs are a special kind of CKBs in which the rule
component can refer to both open and closed predicates, but the theory component
can use open predicates only. More formally, an r-hybrid KB is defined as H= (ϕ,P),
where ϕ is a theory in FOL and P is an ASP program. It corresponds to the CKB
H′ = (P, ϕ,Σ), where Σ is the set of predicates symbols appearing in ϕ. One can verify
that the stable models of H′ are exactly the so-called NM-models of H.

In generic CKBs H = (P, ϕ,Σ), the set Σ need not contain all the predicate symbols
that appear in ϕ. That is, closed predicates may occur in ϕ, and the extensions of these
predicates in (the relevant) models of ϕ must be justified by program rules. This feature
causes technical challenges, but is very useful for declarative specification of problems: in
our approach, predicates under the OWA and the CWA can be used both in the program
and in the theory of a hybrid KB (see Example 12 for an illustration).

Active domain predicate. For convenience, we assume the availability of a unary
“built-in” predicate adom that, intuitively, stores the constants that appear in a given
program. More precisely, for any program P and each n-ary relation symbol r with
r 6= adom that appears in P, we assume that (i) P contains the rule adom(Xj) ←
r(X1, . . . , Xn) for every 1 ≤ j ≤ n, and (ii) adom is allowed to occur only in bodies of
the remaining rules.

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Decidable CKBs

5.3 Decidable CKBs

We now turn to identifying useful settings in which the existence of a stable model for
a CKB H = (P, ϕ,Σ) is decidable. This naturally requires ϕ to belong to a logic L in
which satisfiability is decidable (i.e., the set {ϕ ∈ L | mods(ϕ) 6= ∅} should be recursive).
However, this alone is not enough, since we will in general be interested in models of ϕ
where a selected set of predicates have a concrete extension that is given as input. We
will see that this calls for logics with a rather flexible support for equality reasoning.

Towards providing a quite general decidability result for checking stable model existence
in CKBs, we first define a simple program that allows us to freely “guess” the extensions
of open predicates of a given CKB H. These extensions are restricted to constants that
appear in H.

Definition 29 (Program Choose(H)). Assume a CKB H = (P, ϕ,Σ). For every n-ary
relation symbol r ∈ Σ, let r be a fresh n-ary relation symbol that does not appear in H.
We let Choose(H) be the set that contains

r(Y1, . . . , Yn)∨ r(Y1,. . . , Yn)← adom(Y1), . . . , adom(Yn)

for each n-ary relation symbol r ∈ Σ that appears in P.

A stable model I of P ∪Choose(H) can be seen as a (partially complete) candidate for a
stable model of a CKB H = (P, ϕ,Σ). The following proposition, whose proof relies on
the imposed CKB safety requirement, tells us when such an I witnesses the existence of
a stable model of H.

Proposition 2. A CKB H = (P, ϕ,Σ) has a stable model iff P ∪ Choose(H) has some
stable model I for which there exists some I ∈ mods(ϕ) with the following properties:

(C1) (cI
1 , . . . , c

I
n) ∈ rI for all r(c1, . . . , cn) ∈ I,

(C2) (cI
1 , . . . , c

I
n) 6∈ rI for all r(c1, . . . , cn) ∈ I, and

(C3) if (e1, . . . , en) ∈ rI and r 6∈ Σ, then there exists r(c1, . . . , cn) ∈ I with cI
1 =

e1, . . . , c
I
n = en.

From Proposition 2, we obtain decidability of stable model existence for H = (P, ϕ,Σ)
whenever we can list the stable models of P ∪ Choose(H) and test, for each of them, the
existence of a model I of the theory ϕ satisfying conditions (C1–C3). Moreover, if the
logic L in question is strong enough to express, for a fixed candidate I, conditions (C1–C3)
as part of a theory in L, then decidability of the underlying satisfiability problem suffices.
This applies, in particular, to the guarded negation fragment (GNFO), which is among
the most expressive FOL fragments for which decidability has been established [BCS15].

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Practicable Reasoning in Hybrid Languages

We use ϕ[~x] to indicate that a FOL formula ϕ has ~x as free variables. The fragment
GNFO contains all formulas that can be built using the following grammar:

ϕ ::= r(v1, . . . , vn) | v=u | ∃x ϕ |ϕ ∧ ϕ |ϕ ∨ ϕ |α ∧ ¬ϕ[~x],

where u, v, v1, . . . , vn are terms, and α is an atom or an equality statement such that all
variables of ~x also occur in α. Intuitively, in GNFO a subformula can be negated only if
its free variables are “guarded” by an atom or an equality statement. Observe also that a
subformula with a single free variable x can always be guarded by an equality statement
x = x. GNFO is flexible and natural for domain modelling; for instance, the theory ϕ in
Example 12 is in GNFO.

Theorem 6. Checking the stable model existence in CKBs H = (P, ϕ,Σ), where ϕ is in
GNFO, is decidable, moreover the problem belongs to the class NExpTime2ExpTime, and
is 2ExpTime-hard.

Proof. Assume a CKB H = (P, ϕ,Σ) with ϕ in GNFO. Let Σc be the set of predicates
that occur in P but not in Σ. For every n-ary predicate symbol r ∈ Σc, assume a tuple
~xr = (x1

r , . . . , x
n
r) of variables. Assume a stable model I of P ∪ Choose(H). For such I,

let ψ(I) be the following formula:

ψ(I) =
∧

r(~c)∈I

r(~c) ∧
∧

r(~c)∈I

¬r(~c) ∧
∧

r∈Σc

∀x1
r . . .∀x

n
r

(

r(x1
r , . . . , x

n
r)→

∨

r(c1,...,cn)∈I

(

∧

1≤i≤n

(xi
r = ci)

)

)

One can check that the formula ϕ ∧ ψ(I) is in GNFO. Note that the three conjuncts
mimic the conditions (C1)–(C3); the third one relies on the availability of equality, and is
essentially the same formula used in [BBtCP16] for reasoning about visible and invisible
tables in databases. The following holds: ψ(I) is satisfiable iff there exists I ∈ mods(ϕ)
that satisfies the conditions (C1-C3) of Proposition 2. Overall, this means that H has a
stable model iff P ∪Choose(H) has some stable model I such that ϕ ∧ ψ(I) is satisfiable.
Keeping in mind that satisfiability in GNFO is 2ExpTime-complete, this equivalence
yields the NExpTime2ExpTime upper bound. Indeed, we can decide the existence of a
stable model for H by non-deterministically guessing a candidate stable model I of
P ∪ Choose(H), whose size is at most exponential in the size of H, and then checking
that (i) I is a minimal model of PI,∅, and (ii) that the formula ψ(I) is satisfiable. The
lower bound is carried over trivially from GNFO.

5.4 CKBs and Description Logics

GNFO is very expressive and thus also computationally very expensive. Moreover the
focus of this thesis is on ontologies expressed in description logics, hence in this section we

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.4. CKBs and Description Logics

move on the study of DL-based CKBs, and show that such CKBs are (to a large extent)
computationally not more expensive than plain ASP. We show an interesting result for
ALCHOI an expressive DL, in which if we assume bounded predicate arities in the
rules, the complexity of basic reasoning problems in CKB coincide with the complexity of
standard problems in plain ALCHOI. We note that satisfiability of ALCHOI TBoxes
is ExpTime-complete [BCM+03].

Example 14. The theory ϕ in Example 12 can be written in the syntax of ALCHOI as
follows (we use the axiom C ≡ D as a shortcut for the two inclusions C ⊑D, D ⊑ C);

T = { MetroStation ⊔ TramStation ≡ Station,

TramConn ≡ ∃CloseTo.TramStation,

MetroConn ≡ ∃CloseTo.MetroStation,

URailConn ≡ ∃CloseTo.Station }

The following theorem is proven using (well) known complexity results from DLs and
ASP, in combination with an encoding of condition (C3) of Proposition 2 by means of
nominals, similarly to the encoding of DBoxes in [FIS11].

Theorem 7. Deciding stable model existence in CKBs H = (P, T ,Σ), where T is
an ALCHOI TBox, is NExpTimeNP-complete. If P is not disjunctive, the problem is
NExpTime-complete. The problem is ExpTime-complete, if (i) P is both non-disjunctive
and positive, or (ii) the arity of predicate symbols in P is assumed to be bounded by a
constant.

Proof. Assume a CKB H = (P, T ,Σ), where T is an ALCHOI TBox. Assume a stable
model I of P ∪ Choose(H). For any such I, let TBox(H, I) be the ALCHOI TBox that
contains the following inclusions (in some axioms below we use {d1, . . . , dn} instead of
{d1} ⊔ . . . ⊔ {dn}):

- {c} ⊑ A, for all A(c) ∈ I with A ∈ NC, and {c} ⊑ ¬A for all A(c) ∈ I with A ∈ NC,

- {c} ⊑ ∃r.{d} for all r(c, d) ∈ I with r ∈ NR, and {c} ⊑ ∀r.¬{d} for all r(c, d) ∈ I with
r ∈ NR,

- A ⊑
⊔

A(c)∈I{c}, for all concept names A 6∈ Σ,

- ∃r ⊑ {d | ∃d′ : r(d, d′) ∈ I}, for all role names r 6∈ Σ,

- {c} ⊑ ∀r.{d | ∃e : r(e, d) ∈ I} for all role names r 6∈ Σ and all constants c that appear
in I.

The construction of TBox(H, I) is inspired by a similar encoding in [FIS11] where an
expressive DL with the so-called DBoxes is a translated into a standard DL with nominals.

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Practicable Reasoning in Hybrid Languages

Due to Proposition 2, and due to the construction of the above TBoxes, H has a stable
model iff P ∪Choose(H) has a stable model I such that T ∪TBox(H, I) is consistent. In
other words, the consistency of H can be decided by traversing the stable models I of
P ∪ Choose(H), for each such I building T ∪ TBox(H, I) and checking its satisfiability.
We note that TBox(H, I) is always of polynomial size in the size of H, and consequently
checking the consistency of TBox(H, I) is feasible in single exponential time. From
this observation, and the complexity of standard ASP under the syntactic restriction
mentioned in the theorem, the completeness results follow.

5.5 Translations and Implementation

We focus here on DL-based CKBs as described in the previous section, and provide
translations from such CKBs to other formalisms, in particular to dl-programs and
to plain ASP. The translations are given for a large fragment of CKBs, which we call
separable CKBs, and which in fact generalizes r-hybrid KBs. To define the fragment we
need the notion of a positive occurrence and a negative occurrence of a concept or role
name α in a concept C. These notions are defined inductively as follows.

• Each concept name A occurs positively in A.

• Each role name s with r ⊑∗
T s occurs positively in ∃r.C, for any concept C.

• Each role name s with r ⊑∗
T s occurs negatively in ∀r.C, for any concept C.

• If a concept name A occurs positively (resp., negatively) in C, then A occurs
positively (resp., negatively) in C ⊓D, C ⊔D, ∀r.C and ∃r.C, for any concept D
and role r.

• If a concept or role name α occurs positively (resp., negatively) in C, then α occurs
negatively (resp., positively) in ¬C.

Definition 30 (Separability). A CKB H = (P, T ,Σ) is separable if the conceptd
C⊑D∈T (¬C ⊔D) does not have a positive occurrence of concept or role name α with

α 6∈ Σ.

Example 15. Take the CKB H = (P, T ,Σ) with P = {Q(X,Y, Z)← t(X,Y), p(Y,Z)},
T = {∃r.(∃p.A) ⊑ B}, and Σ = {r,A,B}. Then H is separable because p occurs only
negatively in ¬(∃r.(∃p.A)) ⊔B.

Intuitively, in a separable CKB H = (P, T ,Σ) the inclusions in T can be used to infer
the extensions of open predicates from the extensions of closed predicates and other
predicates, but these axioms simply cannot assert membership of a domain element
(resp., pair of elements) in a closed concept name (resp., role name). More concretely,
for separable CKBs one can show a version of Proposition 2 where the condition (C3) is
omitted (the rest of the proposition remains the same). The omission of condition (C3)

94

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.5. Translations and Implementation

is a major change: recall that we relied heavily on the equality predicate in GNFO, and
on nominals supported in ALCHOI in order to cope with (C3). We note that separable
CKBs capture r-hybrid KBs H = (T ,P) with T an ALCHOI TBox. Such KBs, as
mentioned, correspond to CKBs H = (P, T ,Σ), where Σ is the set of predicates symbols
that appear in T , and which trivially satisfy the separability condition. We remark
that the pair (T ,P) with T ,P from Example 15 is not a safe r-hybrid KB, because the
variable Z does not appear in a rule atom with a predicate symbol that does not occur
in T .

5.5.1 Translation into DL-programs

In this subsection we provide a translation from separable CKBs to dl-programs. First
we recall here the syntax and semantics of dl-programs [EIL+08]. Roughly speaking,
dl-programs extend plain ASP with dl-atoms, which are special atoms that correspond
to queries over an external DL KB. For the encoding based on Proposition 2, we need
only a relatively small fragment of dl-programs. In particular, here dl-atoms are only
allowed to test consistency of DL knowledge bases, and can only use the operators ⊎ and
−∪ to (“temporarily”) update it. More formally, a dl-atom α is an expression of the form

DL[S1op1R1, . . . , SnopnRn;⊥](t), (5.1)

where t is a term, {op1, . . . , opn} ⊆ {⊎, −∪}, and each pair Si, Ri with 1 ≤ i ≤ n is such
that (i) Si ∈ NC, and Ri ∈ ND is unary, or (ii) Si ∈ NR, and Ri ∈ ND is a binary. The
notion of dl-rules ρ is defined exactly as the notion of ordinary rules, except that here
dl-atoms can occur in the place of non-negated ordinary atoms. Each dl-rule ρ must
satisfy the next condition: every variable of ρ must appear in a non-negated ordinary
atom in the body of ρ. A dl-program is a pair Π = (T ,P) with T an ALCHOI TBox,
and P a set of dl-rules. Here concept and role names that occur in T are allowed to
occur in P only in dl-atoms. We let ground(P) be the set of ground dl-rules that can be
obtained from the rules in P by replacing variables with constants from P.

When building TBoxes next, we use P (t), P (t, v), ¬P (t) and ¬P (t, v) as abbreviations
for inclusion axioms {t} ⊑ P , {t} ⊑ ∃P.{v}, {t} ⊑ ¬P , and {t} ⊑ ∀P.¬{v}, respectively.
For a TBox T , an Herbrand interpretation I, and a ground dl-atom α of form (5.1), we
write I |=T α if the TBox T ∪ T1 ∪ · · · ∪ Tn is inconsistent, where each Ti, 1 ≤ i ≤ n, is
defined as follows:

- Ti = {Si(t) | Ri(t) ∈ I} if opi = ⊎ and Si ∈ NC,

- Ti = {Si(t, v) | Ri(t, v) ∈ I} if opi = ⊎ and Si ∈ NR,

- Ti = {¬Si(t) | Ri(t) ∈ I} if opi = −∪ and Si ∈ NC, and

- Ti = {¬Si(t, v) | Ri(t, v) ∈ I} if opi = −∪ and Si ∈ NR.

Assume a dl-program Π = (T ,P) and an Herbrand interpretation I. We let ΠI be the
(plain) ground positive program that is obtained from ground(P) by

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Practicable Reasoning in Hybrid Languages

- deleting every rule with a dl-atom L such that I 6|=T L,

- deleting every rule with a literal not R(~u) with R(~u) ∈ I,

- deleting all dl-atoms, and all negative literals in the remaining rules.

If I is a minimal model of ΠI , then I is called a (weak) answer set of Π.

We can now show how a separable CKB H can be translated into a dl-program ΠH while
preserving the existence of a stable model. From a separable CKB H = (P, T ,Σ) we
build a dl-program ΠH = (T ′,P ′) as follows. For every concept name A (resp., role name
r) that appears in T , let A′ be a fresh concept name (resp., let r′ be a fresh role name).
Then the TBox T ′ is obtained from T simply by replacing every concept and role name
S by S′. For the construction of P ′, let S1, . . . , Sn be an arbitrary enumeration of the
concept and role names that appear both in P and Σ. Then the set P ′ of dl-rules is
defined as follows:

P ′ = P ∪ Choose(H) ∪ {← DL[λ;⊥](X)},

where λ = S′
1⊎S1, . . . , S

′
n⊎Sn, S

′
1

−∪S1, . . . , S
′
n

−∪Sn.

Intuitively, given a stable model I of P ∪Choose(H), the expression λ above allows us to
check the conditions (C1) and (C2) of Proposition 2 (see the construction of TBox(H, I)
as used in the proof of Theorem 7). The constraint ← DL[λ;⊥](X) is then used to
discard I in case the built TBox is inconsistent. Thus from this encoding we get the
following result.

Theorem 8. A separable CKB H has a stable model iff the dl-program ΠH has an answer
set.

5.5.2 Translation into Plain ASP

We describe here our translations from separable CKBs H = (P, T ,Σ) into standard ASP.
Intuitively, instead of using a richer language than plain ASP to perform the search for
I ∈ mods(ϕ) with properties (C1) and (C2) described in Proposition 2 (as we did above
with dl-programs), we perform reasoning about the TBox of an input KB during the
translation so that afterwards the TBox can effectively be forgotten. Unlike our translation
into dl-programs, this translation is not polynomial and may take single exponential
time in the size of the input. However, our experiments show that in practice the latter
performs much better than the former. The below translations are inspired by existing
translation from expressive DLs into disjunctive Datalog [HMS07, EOv12a, BtCLW14]. In
fact, we provide a pair of translations: a generic modular translation that is independent
from the concrete facts in the input KB, and a restricted translation that does take into
account the representation of the data as defined in Chapter 3 which was implemented
in our proof of concept Mod4Q. Recall that Mod4Q in its current state supports ALCH,
therefore the translations presented in this section are restricted to ALCH instead of
ALCHOI. However, as already mentioned in Section 3.3.1 accommodating inverses
(ALCHI) into Mod4Q is not hard, whereas nominals would require significant changes in

96

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.5. Translations and Implementation

the type table computation algorithm implemented in Mod4Q (presented in Chapter 3),
therefore the feasibility of their adoption would need further considerations.

We assume here the ALCH TBoxes are in the normal form as given in Definition 9, and
recall it here for convenience:

A1 ⊓ . . .⊓An⊑B A⊑B1 ⊔ . . .⊔Bm A⊑∃r.B (I)

∃r.A⊑B A⊑ ∀r.B r ⊑ s (II)

where A,B,Ai, Bi are concept names, ⊤ or ⊥, and r, s are role names.

Definition 31 (Communication rules Comm(H)). For a separable CKB H = (P, T ,Σ),
let Comm(H) denote the set of the following rules:

s(X,Y)← r(X,Y) for each r ⊑ s∈T

B(X)← r(X,Y), A(Y) for each ∃r.A⊑B ∈T

B(Y)←A(X), r(X,Y) for each A⊑ ∀r.B ∈T

The program Comm(H) simply contains the direct translation of inclusions listed in (II).
To deal with the remaining inclusions (i.e. the ones listed in (I)), we employ types.

We recall here our definition of types. Types are simply a set of concept names including
{⊤,⊥}. Moreover we say that a type τ is consistent w.r.t. a TBox T if there exists a
model I of T and an element e ∈ ∆I such that e ∈ (

d
C∈τ C)I . We use types(T) to

denote the set of consistent types τ w.r.t. T .

Data-independent translation. Assume a separable CKB H= (P, T ,Σ). For each
τ ∈ types(T), let Typeτ be a fresh unary predicate symbol. We let ASP(H) be the
extension of P ∪ Choose(H) ∪ Comm(H) with the following rules:

(i) the rule
∨

τ∈types(T) Typeτ (X)← adom(X)

(ii) for each type τ ∈ types(T), the following constraints

A(X)←typeτ (X) for each A ∈ τ ∩ NC

←typeτ (X), A(X) for each A ∈ NC \ τ

The program ASP(H) above built from a CKB H yields a tool to decide consistency of H.
In fact, the rules additional to the original program P depend only on T and Σ, and
thus the translation is data-independent. Note that the set types(T) can be computed
in single exponential time in the size of T , and for this a standard DL reasoner can be
used. Indeed, a type τ is consistent w.r.t. T iff T ∪ {A(c) | A ∈ τ} ∪ {¬A(c) |∈ NC \ τ}
has a model, for a fresh constant c.

Theorem 9. The CKB H = (P, T ,Σ) has a stable model iff ASP(H) has a stable model.
In fact, for any set F of facts, H = (P ∪ F, T ,Σ) has a stable model iff ASP(H) ∪ F has
a stable model.

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Practicable Reasoning in Hybrid Languages

Data representation-dependent translation. Since |types(T)| is often exponential
in the size of T , the program ASP(H) can be prohibitively large to be used in practice.
We next present an optimized way to obtain a desired ASP program, by sacrificing data
independence.

Assume a separable CKB H= (P, T ,Σ), and a set of profiles P that cover the ABox
obtained from the constants in P. We obtain the translation in the following steps:

(1) For each profile p ∈ P and each concept name B s.t. B 6∈ p,
if B appears in one of the following:

a) in a non-fact rule of P,

b) in some ∃r.A⊑B ∈ T or A⊑ ∀r.B ∈ T such that r appears in a non-fact rule
of P

then add B to GuessT (p).

(2) Compute the base types for each p with the updated GuessT (p) from the previous step.

(3) Run the type table compilation algorithm from Chapter 3 over the base types ob-
tained in previous step.

(4) We let ASPdd(H) be the extension of P ∪ Comm(H) with the following rules:

(i) for all roles r ∈ Σ that appear in a non-fact rule in P , the rule r(X,Y)∨r(X,Y)←
adom(X), adom(Y), where r is a fresh relation symbol

(ii) for each constant c of H, the rule
∨

τ∈GTtypetab(p) typeτ (c)← where p is the profile
of c, and GTtypetab(p) are the set of good types computed by the type table algorithm
in step (2).

(iii) for each constant c of H and type τ ∈ τ ∈ GTT(p) where p is the profile of c, the
following constraints

A(c)←typeτ (c) for each A ∈ τ ∩ NC

←typeτ (c), A(c) for each A ∈ NC \ τ

The translation allows us to decide stable model existence:

Theorem 10. The CKB H = (P, T ,Σ) has a stable model iff ASPdd(H) has a stable
model.

98

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.6. Evaluation

5.6 Evaluation

We present here some experiments that demonstrate the advantages of translating
a separable CKB H into a plain program ASPdd(H). We have evaluated the data
representation based translation into ASP, using the type table computation implemented
in Mod4Q by extending the set of guesses for each profiles for each of the non-ground
rules as given in the steps of the translation in previous section.

We compared the performance of our implementation with the direct encoding to dl-
programs, as presented on Section 5.5.1. The latter is implemented in dlvhex, which also
uses Clingo as ASP solver. We recall that all the experiments were run on a modest
hardware, a PC with Intel Core i7 CPU and 16GB RAM running 64bit Linux-Mint 17.

For benchmarking, we used MyITS data, which were taken from OpenStreetMap1 data,
and transformed into Datalog facts following [EPS+15] as explained in Subsection 3.3.2
of Chapter 3. For convenience we recall here the key features of the MyITS benchmarking
data. The data contains facts about 19517 geographical points in the map treated as
constants. Concept assertions were extracted from tags in the mapping data, for points of
interest like Hotel,Restaurant,Shop,Hospital,MetroStation etc. There are also facts about
relations between these points and other constants representing objects of interest such
as metro lines, types of cuisine, dishes etc. Among relations interpreted under CWA, i.e.
not in Σ, we extracted next, relating pairs of points whose distance is below a certain
threshold set in meters. By considering different thresholds, ranging from 50 to 250
meters, we obtained sets of facts of different sizes. Other relations interpreted under
CWA that were extracted to describe the Vienna metro network are locatedAlong and
nextStation. The former relates a metro station to the corresponding metro line, and the
latter relates pairs of consecutive stations on the same line. The extracted relations that
also occur in T include roles like hasCuisine and serves, which relate a Restaurant to a
Cuisine or a Dish, respectively. The TBox of our separable CKB was extended from the
DL-LiteR as it appeared in MyITS Project [EKS13] to ALCH, for more details refer to
Subsection 3.3.2.

We considered 4 separable CKBs with the same TBox T , but different programs P
given in Figure 5.2. Each program captures the potential information need of a tourist
searching for a hotel. Programs P1–P4 ask for a reachable Hotel from the main station
“Hauptbahnhof ”. Additionally P1–P3 ask for Hotels that are next to some LocRestaurant (a
concept inferred from the ontology). P4 asks for Hotels that are in a quiet neighbourhood,
by negating the computed relation LoudNeighbourhood. Note that P1 requires that the
station close to the Hotel should be reachable without line changes, while P2 allows for at
most one line change, whereas P3–P4 allow for any number of changes as long as a station
is reachable (achieved via recursion). Note that the relation nextStation is symmetrical.

For each of the mentioned programs, we included the datasets of different sizes shown in
Table 5.1, which have up to roughly a million facts.

1https://www.openstreetmap.org

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Practicable Reasoning in Hybrid Languages

next50 next100 next150 next200 next250
Fact count 145014 263075 479283 743935 1053335
P1 19.6s 30.1s 44.6s 60.2s 87.6s
P2 19.6s 31.8s 52.7s 64.0s 95.4s
P3 19.6s 32.8s 56.1s 64.7s 98.2s
P4 23.8s 32.9s 49.8s 65.9s 87.3s

Table 5.1: Running times in seconds for programs P1–P4 for different next relations

Our approach behaved well, as can be seen from the running times shown in Table
5.1. The dl-program encoding for dlvhex did not scale for any of the example programs
provided, and failed to return answers because of memory exhaustion even for the smallest
dataset shown in Table 5.1. We tried to test it against a smaller yet useful set of facts
with approx 13000 Datalog facts, and it still reached the time out of 600s that was set.

5.7 Discussion and Related Work

We have presented CKBs, a powerful generalization of Rosati’s r-hybrid, and provided
decidability and complexity results for them. As shown in Example 12, the ability to
use CWA predicates in the theory of a CKB adds significant power. This power is not
readily available even in hybrid MKNF, a very rich formalism that captures r-hybrid
and DL+log KBs [MR10]. Roughly speaking, to capture CKBs we would need to
extend hybrid MKNF to support modal operator K inside FOL theories. Another way
to see a difference is using data complexity. Due to results on DLs with DBoxes (see
[FIS11]), satisfiability is already NP-hard in data complexity for CKBs based on basic
DL-Lite TBoxes in combination with non-disjunctive positive rules. The same setting in
hybrid MKNF is tractable.

In the direction of getting an algorithm for evaluating CKB programs, we have provided
translations for a rich fragment of CKBs (separable-CKBs); a data-representation based
translation into plain ASP, and a direct translation into dl-programs, and implemented
both translations. For the direct translation into dl-programs we used dlvhex, whereas
for the data-representation based translation into ASP we utilized the computed type
table T for a given set of profiles for effectively guessing the relevant types for each
of the constants in the program. We compared both translations using clingo as the
ASP solver. From our experiments we observed that the translation following our data
representation approach yields an efficient reasoner for evaluating CKBs and the first
reasoner for r-hybrid KBs thereof. Moreover, the reasoner allows to solve instances that
cannot be handled by a direct translation of r-hybrid into dl-programs, which can be
seen as a (slightly optimized) implementation of Rosati’s original algorithm for reasoning
in r-hybrid KBs [Ros05].

There are few other works on implementing reasoning over combinations of DL ontologies
and rules. For expressive (non-Horn) DLs that go beyond the DL-Lite and EL families,

100

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.7. Discussion and Related Work

P1: Find hotels that are close to stations reachable from Hauptbahnhof (main Station) with no
metro line changes, and have local restaurants close by.

reachableWithNoChanges(X,Y)←locatedAlong(X,Z), locatedAlong(Y,Z),

X = “Hauptbahnhof ”

q1(X)←Hotel(X), next(X,Y), reachableWithNoChanges(Z, Y),

next(X,V), LocRestaurant(V)

P2: Find hotels that are close to stations reachable from Hauptbahnhof (main Station) with up
to one metro line change, and have local restaurants close by.

reachableWithNoChanges(X,Y)←locatedAlong(X,Z), locatedAlong(Y, Z)

reachableWithOneChange(X,Z)←reachableWithNoChanges(X,Y), locatedAlong(X,V),

reachableWithNoChanges(Y, Z), locatedAlong(Z,W),

X = “Hauptbahnhof ”

q2(X)←Hotel(X), next(X,Y), reachableWithOneChange(Z, Y),

next(X,V), LocRestaurant(V)

P3: Find hotels that are close to stations reachable from Hauptbahnhof (main Station) using
metro lines and have local restaurants close by.

reachable(X,Y)←nextStation(X,Y), X = “Hauptbahnhof ”

reachable(X,Z)←nextStation(X,Y), reachable(Y,Z)

q3(X)←Hotel(X), next(X,Y), reachable(Z, Y),

next(X,V), LocRestaurant(V)

P4: Find hotels that are close to stations reachable from Hauptbahnhof (main Station) and are
in a quiet neighbourhood.

reachable(X,Y)←nextStation(X,Y), X = “Hauptbahnhof ”

reachable(X,Z)←nextStation(X,Y), reachable(Y,Z)

LoudNeighbourhood(X)←Hotel(X), next(X,Y),

reachable(Z, Y), next(X,V),

Club(V)

LoudNeighbourhood(X)←Hotel(X), next(X,Y),

reachable(Z, Y), next(X,V),

Bar(V)

q4(X)←Hotel(X), next(X,Y), reachable(Z, Y),

not LoudNeighbourhood(X)

Figure 5.2: Programs evaluated against both encodings.

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Practicable Reasoning in Hybrid Languages

dl-programs is the richest formalism that has been implemented, in particular in the dlvhex

suite. The HermiT system supports reasoning in expressive DLs enriched with positive
rules under DL-safety [GHM+14]. For Horn DLs, Heymans et al. showed how dl-programs
with external queries over Datalog-rewritable DLs can be translated into Datalog with
stable negation [HEX10]. Redl recently presented a generalization of this rewriting
approach to external atoms in general hex-programs [Red17], still its applicability for
reasoning with DL ontologies was demonstrated only using the lightweight logic DL-Lite.
An implementation of reasoning in hybrid MKNF KBs (with lightweight ontologies) under
the Well-Founded Semantics is also available [AKS13, IKL13]. The work in [Swi04] shows
how reasoning about DL concepts, but not general TBoxes, can be implemented in ASP.

102

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Optimizing Reasoning in

Expressive Horn DLs

In this chapter, we tackle the problem of optimizing the ontology mediated query
answering for expressive Horn DLs. In contrast to their non-Horn counterparts, query
answering in Horn DLs is tractable in data complexity [BO15]. This feature has made
them natural candidates for implementation in reasoners that scale in practice. The
best-known Horn DL is DL-Lite [CDL+05], which is the underlying logic for the OWL2
QL profile and has found the way into the application domain. DL-Lite is tailored so
that queries over the ontology can be transformed into standard SQL queries that already
incorporate all the relevant ontological knowledge and as such can be evaluated over the
plain database using standard relational database management systems. Although the
low data complexity (AC0) of DL-Lite has made them popular, this comes with a cost
on the expressivity side; there are many domains which call for expressive features not
expressible with the features of DL-Lite. Consider the following example:

Example 16. In Table 6.1 an ontology for the domain of anti money laundering is shown.
The purpose of this ontology is to model a monitoring mechanism that identifies persons
and businesses that may be part of money laundering schemes. It achieves this by modeling
the interaction between persons (Person) and business (Business) through their banking
accounts (Account). Banking accounts may additionally be monitored (MonitoredAccount)
(axiom (a)), that is if the account is owned by some politically exposed person (PEP).
Moreover, each account can have at most one owner that is a Person (axiom (b)). The
interaction between accounts is modeled through the role exchangedFundsWith which is
stated to be symmetrical (axiom (c)) and transitive (axiom (e)). Axiom (d) states that
each PEP is also a person (Person). Lastly, axiom (f) states that the role that represents
the ownership is transitive.

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Optimizing Reasoning in Expressive Horn DLs

(a) Account ⊓ ∃hasOwner.PEP⊑MonitoredAccount (d) PEP⊑ Person

(b) Account⊑ 61 hasOwner.Person (e) trans(exchangedFundsWith)

(c) exchangedFundsWith⊑ exchangedFundsWith− (f) trans(hasOwner)

Table 6.1: An example anti money laundering ontology

The axiom (a) expressed in the example above uses conjunction ⊓ and a qualified existential
restriction ∃r.B on the left-hand side (LHS). Both constructs are not expressible in the
DL-Lite family, but they are found in many ontologies [BCS+16], and they are the basis
of the OWL 2 EL profile (EL DL) popular for life science ontologies,1 e.g., SNOMED
CT, NCI, and GENE ontologies. Whereas the axioms (b), (e) and (f) are not expressible
in DL-Lite nor in EL.

Example 17. Consider the following ABox coupled with the ontology from the previous
example.

Account(a1). Account(a2). Account(a3).

Person(p1). Person(p2). PEP(p3).

Business(b1). hasOwner(a1, p1) hasOwner(a2, p2)

hasOwner(a3, b1) hasOwner(b1, p3) exchangedFundsWith(a2, a1)

exchangedFundsWith(a2, a3)

Table 6.2: An example ABox and query

Then one could obtain the owners of accounts that exchanged funds with a monitored
account with the following query q(y).

q(y)← Account(x), hasOwner(x, y), exchangedFundsWith(x, z),MonitoredAccount(z)

In Figure 6.1 the ABox completed with all the inferences from the TBox is given as a
directed graph. The given facts are marked in grey and the inferences in red. The concept
(role) names are shortened to Acc(Account), MonAcc (MonitoredAccount), Pers (Person),
hOwn (hasOwner), and exchangedFundsWith (eFunds). From this representation one can
easily check that answers for the given query q(y) over the given ABox are p1 and p2.

1https://www.w3.org/TR/owl2-profiles/#OWL_2_EL

104

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

a1 a3a2

Acc

Acc

Pers
p2

PEP, Pers

Persp1 p3 b1

Business

hOwn

hOwn

hOwn

hOwn

eFunds

Acc

hOwn

eFunds

eFunds eFunds

eFunds

MonAcc

Figure 6.1: The example ABox completed with the inferences from the Ontology

Horn DLs have been advocated for: they can support the features above while remaining
computationally manageable. Some advanced reasoning problems, like query empti-
ness and query inseparability, are more manageable for Horn DLs [BBLW16, BKR+16,
BLR+19], and they have proved much more amenable to implementation [EOv+12b,
Kaz09, CGK19a]. One of the most popular Horn DLs is Horn-SHIQ, which contains all
the constructors of DL-Lite and EL and can be seen as the Horn fragment of OWL Lite.
It supports all the axioms listed in the example, including transitive roles that, as seen
in the example above, allow us to detect interactions through a chain of roles. These
additional features make Horn-SHIQ particularly interesting to study.

Horn-SHIQ is relatively well understood, and there are existing reasoners for traditional
reasoning problems like satisfiability and classification [Kaz09] as well as for ontology
mediated querying (OMQ). Unlike DL-Lite, it is in general not possible to reduce query
answering in the presence of a Horn-SHIQ ontology to plain SQL query evaluation. Some
alternative approaches have been proposed in order to make Horn-SHIQ feasible on top
of existing database technologies. For example, to rewrite (exactly or approximately) an
ontology into a weaker DL [LWW07, RPZ10], or to compile some of the extra expressivity
into the mappings [BCS+16]. Another possibility is to compile the query and the ontology
into a more expressive query language than SQL, like Datalog, as done in the Clipper

system [EOv+12b].

Clipper is a query rewriting engine that takes as input an ontology and possibly a set
of queries. After a so-called ‘saturation’ step that uses a consequence-driven calculus
to add axioms implied by the ontology, it generates a Datalog rewriting of the given
queries. Clipper can handle realistic ontologies and queries, despite being a relatively
simple prototype. It is among the richest query answering engines for Horn DLs, and has
inspired recent adaptations [LMTV19, CDK19]. However, Clipper has stark limitations,
and there are many ontologies that it cannot process in reasonable time [CGK19a]. This
is largely due to the ABox independence of the saturation step: some axioms that could
be omitted for simpler tasks like classification [Kaz09], must be inferred by Clipper since
they may be made relevant by the assertions in some input ABox.

To overcome this obstacle, we draw from the central idea presented in Chapter 3, which

105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Optimizing Reasoning in Expressive Horn DLs

is to mildly compromise ABox independence, making the saturation step employed
in [EOv+12b] aware of the ABox structure, abstracting away concrete assertions. In
our running example, suppose we have two additional concepts BusinessAccount and
PrivateAccount. If we know that a combination of these will never occur together in
the ABox, then we can guide the reasoning not to consider such combination to begin
with. Specifically, in Section 6.1, we propose a version of the Clipper saturation that
is parametrized by a set of sets of concept names, obtained from the profiles of the
individuals as defined in Chapter 3. This set of concept names intuitively represent the
concept combinations that may occur in the relevant ABoxes and are used to guide the
inference of new axioms. Similarly as in the case of the algorithm for computing the
structure T in Chapter 3, the technique presented here is incremental, for instance, if
new ABoxes become relevant, all previous derivations remain valid; new sets of concepts
can be added, and the saturation can be re-executed on top of the previous output.
A proof of concept of this approach has been implemented on top of existing Clipper

reasoner. We will show that despite its simplicity the approach is very effective and gave
encouraging results over a range of ontologies. The results of these tests are shown in
Section 6.2.

6.1 Restricting Horn-SHIQ Saturation

The query rewriting algorithm for Horn-SHIQ described in [EOv+12b] relies on building
the canonical model that facilitates CQ answering. It does this in three steps:

• saturate T under specially tailored inference rules

• close A under all but existential axioms in T

• employ a chase procedure by extending A with existential axioms computed in the
first step

The first step is of crucial importance, and the subject of the optimization presented in
this chapter. In this step the algorithm utilises the calculus shown in Table 6.3 to saturate
a given TBox T to obtain a set of axioms that can be seen as a representation of models
that is sufficient for answering queries over any ABox, since from them we can build a
universal model of any ABox that is consistent with T . The saturated TBox is then used
to rewrite the query in such a way that it can be evaluated without constructing this
model.

Horn-ALCHIQ⊓ The inference calculus in [EOv+12b] produces a Horn-ALCHIQ⊓

TBox. A Horn-ALCHIQ⊓ TBox is a Horn-SHIQ TBox with no transitivity axioms and
additionally allowing role conjunction as a role constructor; here r1 ⊓ r2, where r1, r2 are
roles, and in any interpretation I, (r1 ⊓ r2)I = rI

1 ∩ r
I
2 . We let (r1 ⊓ r2)− = r−

1 ⊓ r
−
2

and assume w.l.o.g. that for each role inclusion r ⊑ s of an Horn-ALCHIQ⊓ TBox T ,

106

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Restricting Horn-SHIQ Saturation

Table 6.3: Inference rules. M,M ′, N,N ′, (resp., S, S′) are conjunctions of atomic concepts
(roles); A,B are atomic concepts.

M ⊑ ∃S.(N ⊓N ′) N ⊑A

M ⊑ ∃S.(N ⊓N ′ ⊓A)
R

c

⊑

M ⊑ ∃(S ⊓ S′).N S ⊑ r

M ⊑ ∃(S ⊓ S′ ⊓ r).N
R

r

⊑

M ⊑ ∃S.(N ⊓ ⊥)
M ⊑⊥

R⊥

M ⊑ ∃(S ⊓ r).N A⊑ ∀r.B

M ⊓A⊑ ∃(S ⊓ r).(N ⊓B)
R∀

M ⊑ ∃(S ⊓ r−).(N ⊓A) A⊑ ∀r.B

M ⊑B
R

−

∀

M ⊑ ∃(S ⊓ r).(N ⊓B) A⊑ 61 r.B M ′ ⊑ ∃(S′ ⊓ r).(N ′ ⊓B)

M ⊓M ′ ⊓A⊑ ∃(S ⊓ S′ ⊓ r).(N ⊓N ′ ⊓B)
R≤

M ⊑ ∃(S ⊓ r−).(N1 ⊓N2 ⊓A) A⊑ 61 r.B N1 ⊑ ∃(S′ ⊓ r).(N ′ ⊓B ⊓ C)

M ⊓B ⊑ C M ⊓B ⊑ ∃(S ⊓ (S′ ⊓ r)−).(N1 ⊓N2 ⊓A)
R

−

≤

s ∈ NR and r− ⊑ s− ∈ T . We assume w.l.o.g. that there are no r 6= s in NR such that
r ⊑∗

T s and s ⊑∗
T r. Abusing notation, we may write r(a, b) ∈ A for r ∈ NR, meaning

r(a, b) ∈ A if r ∈ NR, and r−(b, a) ∈ A otherwise. We recall that we make the unique
name assumption (UNA).

Before describing how we can improve saturation using information about the ABox
structure, we discuss next in more detail the problem of ABox-independent saturation as
described in [EOv+12b].

6.1.1 Bottleneck of ABox-independent Saturation

The calculus of [EOv+12b] shown in Table 6.3 is sound and complete for every possible
ABox, and it can be implemented in a relatively simple way. However, it is computationally
expensive. It is well-known that the algorithm is (unavoidably) worst-case exponential,
but the problem is that this is not just a hypothetical worst-case: an unmanageable
combinatorial explosion of inferred axioms may occur for realistic ontologies as well.
Roughly, this is because there may be many axioms that are relevant for building the
universal model of some ABox, but which are not relevant for the ABoxes we are interested
in. We illustrate this through the example below:

Example 18. Consider the following axioms, that stipulate different kinds of flags for
monitored accounts:

MonitoredAccount ⊑ ∃hasFlag.⊤
IndividualAccount ⊑ ∀hasFlag.YellowFlag

SmallBusinessAccount ⊑ ∀hasFlag.RedFlag

BigBusinessAccount ⊑ ∀hasFlag.YellowFlag

When running the calculus on this ontology, we obtain additionally seven axioms of the
form MonitoredAccount ⊓C ⊑ ∃hasFlag.D, where C is some conjunction of account types
such as IndividualAccount ⊓ SmallBusinessAccount, IndividualAccount ⊓ BigBusinessAccount,

107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Optimizing Reasoning in Expressive Horn DLs

etc., and D is some conjunction of flag colors. However, if we know that an account will
only have one account type, we do not need all these axioms.

Note that these account types could be made disjoint in the ontology by adding a suitable
axiom, in which case the algorithm would discard some of the axioms after inferring
them. Our approach does not require the account types to be declared disjoint and allows
us to save the computation of these axioms in advance if we know that an account is
never declared to have two types in the data. We also remark that these kind of patterns
are common in ontologies, and in fact they even occur for unrelated classes of objects
for which the same ‘general role’ is used. For example, if we also use the role hasFlag

to flag something other than accounts, such as transactions, the calculus would derive
axioms for all combinations of types of transactions and types of accounts. In practice,
ontologies often omit some “common sense” disjointness assertions (such as saying that
transactions are not accounts, or that accounts are not persons) which are apparent and
often irrelevant for modeling the knowledge, but could have a significant impact on this
kind of ABox-independent saturation.

6.1.2 Constraining the Derivation

From the example above, one can see that ABox independence may hinder the performance
of the calculus, which generates axioms with combinations of concepts which in practice
will never happen, since we are not querying arbitrary ABoxes. We therefore use
knowledge about the structure of relevant ABoxes stored in the profiles as done in
Chapter 3 to guide the calculus and avoid inferring these axioms in the first place.

Definition 32 (Propagated concepts and activators). Let a be an individual and A an
ABox. Let T be a TBox and p a profile. For convenience, we recall the Definition 14 of
profiles here.

profA(a) = {A | A(a)∈A} ∪ {∃r | r(a, b)∈A} ∪ {∃r− | r(b, a)∈A}

We define the T -propagating concepts of a profile p as follows.

prop(p, T) = {B|A⊑ ∀s.B ∈ T , r ⊑∗
T s,∃r− ∈ p}

An activator α is a set of concept names. We say that a set Λ of activators covers an
ABox A w.r.t. a TBox T if for each individual a occurring in A, there is some activator
α ∈ Λ such that profA(a)|NC

∪ prop(profA(a), T) ⊆ α, where profA(a)|NC
denotes the

restriction of the profile of a to concept names only.

Note that in covering sets of activators, we require that for each individual there is an
activator that contains not only its type, but all propagating concepts to be included
for each individual. We can see this as a way to over-approximate its actual type in the
universal model.

108

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Restricting Horn-SHIQ Saturation

Table 6.4: Optimized inference calculus ∇(T ,Λ). M,M ′, N,N ′, (resp., S, S′) are con-
junctions of concept names (roles); A,B are concept names. Λ is the set of activators
and α, α′ are activators in Λ. The calculus is obtained from [EOv+12b] by adding the
side conditions and the rules Λ

∗, Λ+, Λ−.

(Rc

⊑)
M ⊑ ∃S.(N ⊓N ′) N ⊑A

M ⊑ ∃S.(N ⊓N ′ ⊓A)
: M ⊆ α, α ∈ Λ

(Rr

⊑)
M ⊑ ∃(S ⊓ S′).N S ⊑ r

M ⊑ ∃(S ⊓ S′ ⊓ r).N
: M ⊆ α, α ∈ Λ

(R⊥)
M ⊑ ∃S.(N ⊓ ⊥)

M ⊑⊥
: M ⊆ α, α ∈ Λ

(R∀)
M ⊑ ∃(S ⊓ r).N A⊑ ∀r.B

M ⊓A⊑ ∃(S ⊓ r).(N ⊓B)
: M ∪A ⊆ α, α ∈ Λ

(R−
∀)

M ⊑ ∃(S ⊓ r−).(N ⊓A) A⊑ ∀r.B

M ⊑B
: M ⊆ α, α ∈ Λ

(R≤)

M ⊑ ∃(S ⊓ r).(N ⊓B) A⊑ 61 r.B
M ′ ⊑ ∃(S′ ⊓ r).(N ′ ⊓B)

M ⊓M ′ ⊓A⊑ ∃(S ⊓ S′ ⊓ r).(N ⊓N ′ ⊓B)
: M∪M ′∪A ⊆ α, α∈Λ

(R−
≤)

M ⊑ ∃(S ⊓ r−).(N1 ⊓N2 ⊓A) A⊑ 61 r.B
N1 ⊑ ∃(S′ ⊓ r).(N ′ ⊓B ⊓ C)

M ⊓B ⊑ C M ⊓B ⊑ ∃(S ⊓ (S′ ⊓ r)−).(N1 ⊓N2 ⊓A)
: M ∪B ⊆ α, α ∈ Λ

(Λ∗)
M ⊑B M ⊆ α

Λ = Λ ∪ {α ∪ {B}}
(Λ+)

M ⊑ ∃R.N

Λ = Λ ∪ {N}
(Λ−)

α′ ⊆ α

Λ = Λ \ α′

In Table 6.4 we present the optimized version of the calculus, which takes as input and
maintains a set of activators. Each rule has a side condition that checks if the LHS of
the axiom we want to derive is contained in an activator present in the maintained set of
activators. There are three additional rules Λ

∗,Λ+ and Λ
− not present in [EOv+12b].

The rule Λ
∗ is used to close the maintained activators under axioms of the form (NF1),

while Λ
+ is used to create fresh activators for inferred axioms of the form (NF2), and

Λ
− drops redundant activators.

For a TBox T , we can always take a singleton set of activators that contains exactly the
set of all concept names occurring in T , and it will cover any ABox over the signature of
T . However, this way our optimised calculus is reduced to the original one, since the
side condition will not play any role, hence we would derive the same set of axioms. For
a concrete ABox we can be more accurate, and take as set of activators precisely the set
of all αa = profA(a)|NC

∪ prop(profA(a), T) where a is an individual in A. In fact, we use
such activators sets in our experiments in Section 6.2.

We define the result of applying the calculus to the TBox. The handling of transitivity
here is standard: we drop transitivity axioms from the input TBox, and instead add

109

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Optimizing Reasoning in Expressive Horn DLs

axioms of the form (NF4) that ensure the effect of transitivity is accounted for during
saturation. The result of saturation, with standard chase techniques, is used to build
so-called premodels that become models once the extensions of non-simple roles are
updated to satisfy transitivity axioms. This is standard and not central to our results, so
we do not discuss it in depth. Our optimization of the calculus, of course, does not affect
the handling of transitivity during query rewriting from [EOv+12b].

Definition 33. Given an Horn-SHIQ ontology, let T ∗ be the result of dropping all
transitivity axioms trans(r) from T , and adding, for every A ⊑ ∀s.B ∈ T and every
transitive role r with r ⊑∗

T s, the axioms A⊑ ∀r.Br, Br ⊑ ∀r.Br and Br ⊑B, where Br

is a fresh concept name.

We denote by ∇(T ,Λ) the result of saturating T ∗ with the rules in Table 6.4 and set of
initial activators Λ.

Formally ∇(T ,Λ) is a pair of a TBox and a set of activators, but we sometimes abuse
notation and use ∇(T ,Λ) to denote the TBox alone.

Similarly as in [EOv+12b], the saturated set of axioms contains all inferences from the
ontology that are relevant for reasoning about any covered ABox; not only for checking
consistency, but also for other problems like query rewriting.

Definition 34. For an ABox A, we denote by Ac the result of closing A under the
following rules:

• A1 ⊓ . . . ⊓An ⊑B ∈ ∇(T ,Λ) and {A1(a), . . . An(a)} ∈ A, then B(a) ∈ A;

• A⊑ ∀r.B ∈ ∇(T ,Λ) and r(a, b) ∈ A, A(a) ∈ A, then B(b) ∈ A;

• r ⊑ s ∈ T and r(a, b) ∈ A, then s(a, b) ∈ A;

• A⊑ 61 rB ∈ T and A(a), r(a, b), r(a, c), B(b), B(c), then ⊥(a) ∈ A

• A1⊓ . . .⊓An ⊑ ∃(r1 ⊓ . . . ⊓ rm).(B1 ⊓ . . . ⊓Bk), A⊑ 61 r.B ∈ ∇(T ,Λ)
such that for some i, j we have r=ri,B=Bj and A(a), r(a, b) ∈ A,
then {B1(b), . . . , Bk(b), r1(a, b), . . . , rk(a, b)} ⊆ A.

We call A∇(T ,Λ) contradiction-free if there are no assertions of the form ⊥(a).

To test if a given ABox covered by Λ is consistent with T , it is enough to check Ac for
contradiction-freeness.

However, we do not want to only test consistency. Our motivation is OMQ, and we want
support for instance and conjunctive queries for different ABoxes. We thus provide the
standard guarantee one would expect in this setting: from the computed axioms and a
consistent ABox, we can build a universal model.

110

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Restricting Horn-SHIQ Saturation

Definition 35 (T -chase, universal model). Let T be a Horn-SHIQ TBox and I an
interpretation. We say that an axiom of the form M ⊑ ∃S.N is applicable at e ∈ ∆I if

(a) e ∈MI ,
(b) there is no e′ ∈ ∆I with (e, e′) ∈ SI and e′ ∈ NI ,
(c) there is no axiom M ′ ⊑ ∃S′.N ′ ∈ T such that e ∈ (M ′)I , S ⊆ S′, N ⊆ N ′, and

S ⊂ S′ or N ⊂ N ′.

If M ⊑ ∃S.N is applicable at e ∈ ∆I , then we obtain an interpretation I ′ by applying
M ⊑ ∃S.N in I as follows:

- ∆I′

= ∆I ∪ {e′} with e′ a new element not present in ∆I ,
- for each A ∈ NC, we have AI′

= AI ∪ {e′} if A ∈ N , and AI′

= AI otherwise.
- for each r ∈ NR, we have rI′

= rI ∪ {(e, e′)} if r ∈ S, rI′

= rI ∪ {(e′, e)} if r− ∈ S,
rI′

= rI otherwise.

For a contradiction-free ABox A, we let IA denote the interpretation whose domain
are the individuals in A, and that has AIA = {a | A(a) ∈ A} for all A ∈ NC, and
rIA = {(a, b) | r(a, b) ∈ A} for all r ∈ NR.

The T -chase of a contradiction-free ABox A is the possibly infinite interpretation obtained
from IA by fairly applying the existential axioms in T (that is, where every applicable
axiom is eventually applied).

We denote by Ic the interpretation obtained as follows:

• let J denote the T -chase of Ac, then

• ∆Ic = ∆J , and

• AIc = AJ for every A ∈ NC, and

• for every r ∈ NR rIc =
⋃

s⊑∗
T

r s
J
+

where sJ
+ is the transitive closure of sJ if trans(s) ∈ T , and sJ

+ = sJ otherwise.

Claim 3. Let T be a Horn-SHIQ TBox, Λ a set of activators. Let T ′, and Λ
′ be the

resulting TBox and the set of activators obtained from application of inference calculus
∇(T ,Λ). We say that an axioms δ ∈ T ′ is introduced by ∇(T ,Λ) if δ 6∈ T . Then,
we claim that for each introduced axiom of the form M ⊑ ∃S.N there exists a pair of
activators α, α′ ∈ Λ

′ s.t. M ⊆ α and N ⊆ α′.

Proof. Let δ : M⊑∃S.N be an arbitrary introduced axiom by ∇(T ,Λ), and let T1, . . . , Tn

(Λ1, . . . ,Λn) be the list of TBoxes (sets of Activators), where Ti was obtained from Ti−1

by applying one of the rules of the calculus during the course of saturation, and T1 = T ,
Tn = T ′.
Then δ was introduced at some i-th computation step, by applying one of the following
rules: Rc

⊑, Rr
⊑, R∀, R−

∀ , R≤, R−
≤, all of which have as a precondition that there should

111

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Optimizing Reasoning in Expressive Horn DLs

exist an activator α ∈ Λi−1 s.t M ⊆ α.
On the other hand since the calculus is exhaustive and any rule applicable is applied at
some time point, there is an j-th computation step in which the rule Λ

+ is applied to
the axiom M ⊑ ∃S.N resulting in the addition of an activator α′ = N to Λj .
Finally, since an activator can be removed in subsequent k-th computation step by the
rule Λ

− only in case there exists some other activator β ∈ Λk−1 s.t. α ⊆ β, then we
know that there exists a pair of activators α,α′ in Λ that contain the sets M and N .

Next we show that Ic is indeed a universal model. The following theorem is analogous to
Proposition 2 in [EOv+12b]. By guaranteeing that we can build a universal model of
any ABox that is consistent with T , we can use ∇(T ,Λ) as a representation of models
that is sufficient for query answering. As in the work of Eiter et al., the finite ∇(T ,Λ)
allows us to rewrite the query in such a way that it can be evaluated over a small and
easy to compute part of the possibly infinite represented universal model, please refer
to [EOv+12b] for details.

Theorem 11. Let (T ,A) be a Horn-SHIQ KB, and Λ a set of activators, such that Λ
covers A w.r.t. T . The following hold:

(a) Ac is contradiction-free iff (T ,A) is consistent, and

(b) if (T ,A) is consistent then Ic |= (T ,A), and

(c) Ic can be homomorphically embedded into any model of (T ,A).

Proof. This proof follows the structure of a very similar proof presented in [EOv+12b]
for the original calculus.

First we show (a) ⇐, i.e. if (T ,A) is consistent, then Ac is contradiction free.

Observe that for any axiom α ∈ ∇(Λ, T) we have that T |= α, i.e. α is a logical
consequence of T . Suppose that (T ,A) is consistent and I |= (T ,A), where as Ac is not
contradiction-free, i.e. there exists some a s.t. ⊥(a) ∈ Ac. Since we make use of UNA,
we can assume that for each a ∈ NI, aI = a. Now, such concept membership ⊥(a) ∈ Ac

can come from three cases:

• ⊥(a) ∈ A, in which case we get that (T ,A) is inconsistent. Contradiction.

• ⊥(a) ∈ Ac is derived by the first rule in Definition 34, where axiom is of the form
A1 ⊓ . . .⊓An⊑⊥ and {A1, . . . , An} ⊆ {A|A(a) ∈ Ac and A ∈ NC}. We distinguish
two cases:

– A1 ⊓ . . . ⊓An ⊑⊥ ∈ T , in which case (T ,A) is inconsistent. Contradiction.

– A1 ⊓ . . . ⊓ An ⊑ ⊥ ∈ ∇(T ,Λ). By our observation we have that T |= A1 ⊓
. . . ⊓An ⊑⊥, from where we get that (T ,A) is inconsistent. Contradiction.

112

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Restricting Horn-SHIQ Saturation

• ⊥(a) ∈ Ac is derived by the fourth rule in Definition 34, where axiom is of the
form A⊑ 61 rB ∈ T and A(a), r(a, b), r(a, c), B(b), B(c), in which case we get that
(T ,A) is inconsistent. Contradiction.

Next we show (b). Assume (T ,A) is consistent. Then there exists an interpretation
I |= (T ,A), from above we get that Ac is contradiction free. Then according to
Definition 35 it’s ∇(T ,Λ)-chase is defined, and Ic, IAc denote the interpretations of the
∇(T ,Λ)-chase and Ac.

To show that Ic |= (T ,A), we need to define some book keeping in the course of building
Ic. By construction we have ∆IAc is constrained to the individuals in the ABox, and we
add a suffix to each fresh individual introduced by the chase procedure in the following
way, if d is a successor of e (according to Definition 35) then d = e · n, where n is an
integer. To show that Ic |= (T ,A) we first prove Ic |= A then Ic |= T .

Showing that Ic |= A is trivial. We know that Ic is an extension of IAc , and A ⊆ Ac

from where we get that IAc is a model of A as well.

In order to show that Ic |= T , we show a stronger result that Ic |= ∇(T ,Λ), by arguing
that Ic satisfies each axiom found in ∇(T ,Λ), which can take one of the following forms:

(M ⊑ B ∈ ∇(T ,Λ)) Note that T ⊆ ∇(T ,Λ). Assume an arbitrary domain element
e ∈MIc . We have two cases:

(i) e ∈ NI, in this case since IAc |= Ac we know that e ∈ BIAc , and since Ic is an
extension of IAc we get e ∈ BIc as well.

(ii) e is introduced by the chase procedure, i.e e = w · n is a successor of some
individual w by application of some axiom M ′ ⊑ ∃S.N ∈ ∇(T ,Λ). By
the chase procedure we know that e satisfies exactly the concepts in N , i.e.
e ∈ NIc . By assumption we have that e ∈ MIc and M ⊆ N . It remains to
see that B ∈M .
Let’s assume that e 6∈ BIc , we have two cases:

• M ′ ⊑ ∃S.N ∈ T , in which case M ′ and N are concept names, by which
we get that N = M = B, therefore e ∈ BIc .

• M ′ ⊑ ∃S.N ∈ ∇(T ,Λ), M ⊑ B ∈ ∇(T ,Λ), M ⊆ N , and provided
that an activator α ∈ Λ

∇ s.t. M ′ ⊆ α exists then by application of
(Rc

⊑) we get that M ′ ⊑ ∃S.N ⊓B ∈ ∇(T ,Λ), which makes the axiom
M ′ ⊑ ∃S.N ∈ ∇(T ,Λ) inapplicable due to Definition 35. Then it follows
that N ∪B = N , i.e. e ∈ BIc .
It remains to show that an activator α ∈ Λ

∇ s.t. M ′ ⊆ α exists. Since
M ′ ⊑ ∃S.N is one of the introduced axioms then by Claim 3 we get that
an activator α ∈ Λ

∇ s.t. M ′ ⊆ α indeed exists.

113

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Optimizing Reasoning in Expressive Horn DLs

(M ⊑ ∃S.N ∈ ∇(T ,Λ)) To prove that Ic satisfies each existential axiom in ∇(T ,Λ) it
suffices to prove that Ic satisfies each applicable axioms at some arbitrary element
e ∈ ∆Ic . To this end, let M ⊑ ∃S.N be an arbitrary axiom applicable at e. Now,
suppose e ∈MIc and e 6∈ (∃S.N)Ic , but this leads to contradiction to the fairness
condition of the chase procedure, which guarantees that such an axiom will be
applied.

(A ⊑ ∀r.B ∈ ∇(T ,Λ)) Let’s assume an arbitrary domain element e ∈ ∆Ic and an axiom
A ⊑ ∀r.B ∈ ∇(T ,Λ) s.t. there exists some element e′ where (e, e′) ∈ rIc and
e′ 6∈ BIc . Due to construction of Ic there are three different cases where does
rIc(e, e′) come from:

(i) e, e′ ∈ NI, hence r(e, e′) ∈ IAc , and since IAc |= Ac, we reach a contradiction,
i.e. e′ ∈ BIAc , hence e′ ∈ BIc .

(ii) e′ = e · n, i.e. e′ is introduced by the chase procedure by applying some
axiom M ⊑ ∃S.N ∈ ∇(T ,Λ). We know that by construction of chase we
have e ∈ MIc , and e′ ∈ NIc . By assumption we have that e ∈ AIc , then
provided that an activator α ∈ Λ

∇ s.t. M ∪ A ⊆ α exists, (R∀) would be
applicable, hence M⊓A ⊑ ∃S.N ⊓B will be generated, and due to maximality
of M ⊑ ∃S.N , we have that N ⊓B = N .
It remains to show that an activator α ∈ Λ

∇ such that M ∪A ⊆ α exists. We
distinguish two cases on how e was introduced:

* e ∈ NI. We recall that Ic is an extension of IAc by application of the
chase procedure. Now, since Λ covers A w.r.t T c, we can prove that there
exists an activator α ∈ Λ

∇ that covers e s.t. {C|CI
Ac

(e)} ⊆ α.
Let C be an arbitrary concept name s.t. e ∈ CIc , and α an activator
from Λ

∇ that covers e. Since IAc is the least model of Ac, then the
membership e ∈ CIc must be supported by one of the following cases:

(a) C(e) ∈ A. Since α covers e then by the definition of coverage we have
that C ∈ α. we will get that A ∈ α as well.

(b) B ⊑ ∀r.C ∈ T s.t. s(a, e) ∈ A and r ⊑ s. Since α covers e then by
definition of coverage we have that C ∈ α.

(c) B ⊑ ∀r−.C ∈ T s.t. s(e, a) ∈ A and r− ⊑ s. Since α covers e we get
that C ∈ α.

(d) M ⊑ C ∈ ∇(T ,Λ) s.t. e ∈MIc . Assuming M ⊆ α, due to the rule
Λ

∗ we get that C ∈ α as well. Considering that the rule Λ
∗ is applied

exhaustively, and since we already proved that any other consequence
coming from (a)-(c) is captured by α since it covers e, the assumption
that M ⊆ α is correct.

** e is introduced by the chase procedure by applying an axiom of the form
M ′ ⊑ ∃S.M , and since by assumption we have that e ∈ AIc , i.e. A ∈M ′

then by the rule Λ
+ we get that an activator will be create for each RHS

114

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Restricting Horn-SHIQ Saturation

of each existential axiom in the set ∇(T ,Λ). Therefore there exists an
activator α s.t. M ∪A ⊆ α.

(iii) e = e′ · n, i.e. e is introduced by the chase procedure by applying some axiom
M ⊑ ∃S.N ∈ ∇(T ,Λ). We know that by construction e ∈ NIc , r− ∈ S. By
assumption we get that A ∈ N . Then by the inference rule (R−

∀), provided
that there exists an activator α such that M ⊆ α, we get the following axiom
M ⊑ B ∈ ∇(T ,Λ). Since we shown that axioms of the form M ⊑ B satisfy
Ic, by construction of we get that e′ ∈ BIc .
It remains to show that an activator α ∈ Λ

∇ exists such that M ⊆ α. The
proof for the existence of such activator is symmetric to the previous case.

(S ⊑ r ∈ ∇(T ,Λ)) Assume a role inclusion S ⊑ r ∈ ∇(T ,Λ) and a pair (e, e′) ∈ SIc .
Due to the definition of Ic, we have 3 possible cases:

(i) e, e′ ∈ NI. Then (e, e′) ∈ rIc because IAc is a model of Ac by assumption.

(ii) e′ = e · n for some integer n, where e′ was introduced by applying some
axiom M ⊑ ∃S′.N ∈ ∇(T ,Λ) with S ⊆ S′. We know from the inference rule
(Rr

⊑) that M ⊑ ∃S′ ⊓ r.N ∈ ∇(T ,Λ) provided that an activator α ∈ Λ
∇.

Due to maximality of M ⊑ ∃S′.N , we must have S′ ⊓ r = S′, which implies
(e, e′) ∈ rIc .
It remains to show that an activator α ∈ Λ

∇ s.t. M ⊆ α exists. The argument
is analogous to the case (A⊑ ∀r.B)(ii).

(iii) e = e′ · n for some integer n, where e was introduced by applying some
axiom M ⊑ ∃S′.N ∈ ∇(T ,Λ) with S− ⊆ S′. Note that S− ⊑ r− ∈ T (see
preliminaries). We know from the inference rule (Rr

⊑) that M ⊑∃S′ ⊓ r−.N ∈
∇(T ,Λ). Again, due to maximality of M ⊑∃S′.N , we must have S′⊓r− = S′,
which implies (e′, e) ∈ (r−)Ic and (e, e′) ∈ rIc .
The proof for the existence of an activator α ∈ Λ

∇ s.t. M ⊆ α is analogous
to the case (A⊑ ∀r.B)(ii).

(A⊑ 61 r.B ∈ ∇(T ,Λ)) Assume an axiom A⊑ 6 1 r.B ∈ T and a domain element
e ∈ AIc . Suppose there is e1, e2 ∈ ∆Ic such that e1 6= e2, {(e, e1), (e, e2)} ⊆ rIc

and {e1, e2} ⊆ B
Ic . We have the following possible cases:

(i) {e1, e2} ⊆ NI. Then by the construction of Ic we must have e ∈ NI. Also, B(e1)
and B(e2) in Ac. Then by the fourth completion rule of Ac (Definition 34)
we get that ⊥(e) ∈ Ac as well. Contradiction.

(ii) e1, e ∈ NI and e2 is of the form e2 = e · n for some integer. Assume e2 was
introduced by applying an applicable axiom M ⊑ ∃S.N ∈ ∇(T ,Λ) at e. Note
we have e ∈MIc . By the rule of the last type in the Definition 34, we have
that e1 ∈ N

IAc and (e, e1) ∈ SIAc . This shows that M ⊑ ∃S.N ∈ ∇(T ,Λ)
was never applicable at e. Contradiction.

115

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Optimizing Reasoning in Expressive Horn DLs

(iii) e2, e ∈ NI and e1 is of the form e1 = e · n for some integer. Symmetric to the
above.

(iv) e1, e2 are of the form e1 = e ·n and e2 = e ·n′. Suppose e1, e2 where introduced
by applying axioms M ⊑ ∃S.N ∈ ∇(T ,Λ) and M ′ ⊑ ∃S′.N ′ ∈ ∇(T ,Λ) at e.
Then by the construction of Ic we have r ∈ S, r ∈ S′, B ∈ N and B ∈ N ′.
Then by the inference rule (R≤), we have M ⊓M ′ ⊓ A⊑ ∃S ⊓ S′.N ⊓N ′ ∈
∇(T ,Λ), provided that an activator α ∈ Λ

∇ s.t. M ∪M ′∪A ⊆ α exists. Since
e ∈ (M⊓M ′⊓A)Ic , we have a violation of applicability of M⊑∃S.N ∈ ∇(T ,Λ)
and M ′ ⊑ ∃S.N ∈ ∇(T ,Λ) at e, i.e. they are not maximal.
It remains to show that there exists an activator α ∈ Λ

∇ s.t. M ∪M ′∪A ⊆ α.
By assumption we have that e ∈ MIc ⊓M ′Ic ⊓ AIc , and considering that
e 6∈ NI then it must be a result of applying an introduced axiom at his
parent by the chase, then by the Claim3 we get that an activator α ∈ Λ

∇ s.t.
M ∪M ′ ∪A ⊆ α exists.

(v) e = e1·n and e2 = e·n′ obtained by applying some axiomsM⊑∃S.N ∈ ∇(T ,Λ)
and M ′ ⊑ ∃S′.N ′ ∈ ∇(T ,Λ) at e1 and e, respectively. By the construction
of Ic, we have have A ∈ N , r− ∈ S, r ∈ S′ and B ∈ N ′. Then by the
inference rule (R−

≤), we have M ⊓ B ⊑ C ∈ ∇(T ,Λ) for all C ∈ N ′ and
also M ⊓ B ⊑ ∃S ⊓ (S′)−.N ∈ ∇(T ,Λ), provided that an activator α ∈ Λ

∇

s.t. M ∪ B ⊆ α exists. Since e1 ∈ (M ⊓ B)Ic , we have (S−)− ⊂ S by the
maximality of M⊑∃S.N . Due to point (2) in this proof, we also have e1 ∈ C

Ic

for all C ∈ N ′. This shows that M ′ ⊑ ∃S′.N ′ ∈ ∇(T ,Λ) was not applicable
at e, i.e. maximality violated.
It remains to show that there exists an activator α ∈ Λ

∇ s.t. M ∪B ⊆ α. By
assumption we have that e1 ∈M

Ic ⊓BIc , and considering that e1 6∈ NI then
it must be a result of applying one of the introduced axioms at his parent by
the chase, then by the Claim 3 we get that an activator α ∈ Λ

∇ s.t. M ∪B
exists.

(⊥Ic = ∅) It remains to see that ⊥Ic = ∅. First note that NI ∩ ⊥
Ic = ∅ because IAc is

a model of Ac. Thus it suffices to prove the following statement: if e · n ∈ ⊥Ic ,
then also e ∈ ⊥Ic . Assume some e · n ∈ ⊥Ic . Suppose e · n was introduced by
applying an axiom M ⊑ ∃S.N ∈ ∇(T ,Λ). Then by the definition of Ic, ⊥ ∈ N .
By the inference rule (R⊥), we have M ⊑⊥ ∈ ∇(T ,Λ). Since e ∈MIc , by point
(⊑B ∈ ∇(T ,Λ)) in this proof we have e ∈ ⊥Ic . Let e′ = a ·n be introduced through
applying an axiom M ′ ⊑ ∃S′.N ′ where e′ ∈ ⊥, by inductive hypothesis we get that
a ∈ ⊥Ic . Contradiction.

Now we show (c), i.e. that Ic can be homomorphically embedded into any model I of
(T ,A). A homomorphism h from Ic to I can be inductively defined as follows:

- h(e) = eI for all e ∈ NI∩∆Ic . It is straightforward to see that e1 ∈ A
Ic and (e1, e2) ∈ rIc

imply e1 ∈ A
I and (e1, e2) ∈ rI for all e1, e2 ∈ NI, concepts A and roles r.

116

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Restricting Horn-SHIQ Saturation

- Assume e · n ∈ ∆Ic was introduced in Ic by an application of M ⊑ ∃S.N ∈ ∇(T ,Λ).
Note that e ∈MIc . It suffices to define h(e · n) = e′ where e′ ∈ ∆I is an element such
that S ⊆ {r | (h(e), e′) ∈ rI} and N ⊆ {A | e′ ∈ AI}. Note that such e′ exists. Indeed,
by the induction hypothesis, h(e) ∈MI . Since I is a model of ∇(T ,Λ), we must have
h(e) ∈ (∃S.N)I .

Finally we show (a)⇒, i.e. that if Ac is contradiction-free then (T ,A) is consistent.
Assume (T ,A) is inconsistent and suppose Ac is contradiction-free. Then there exists
the least model IAc of Ac, and thus Ic is defined. As we shown in (a), Ic |= (T ,A).
Contradiction.

By this theorem, ∇(T ,Λ) can be used for query rewriting as in [EOv+12b]. Note that the
output of the original algorithm in [EOv+12b] coincides with ∇(T ,Λ) if Λ contains only
the set of all the concept names appearing in T . In terms of computational complexity,
the same worst-case upper bounds apply for the size of the saturated sets obtained with
either version of the calculus (it may be single exponential in T , and this exponential
blow-up is in general unavoidable), but as we discuss in Section 6.2, in practice the
version with activators is faster, builds smaller sets, and can handle more ontologies.

Incremental Computation of Activators Similarly as in the case of profiles, the
computation of activators can be done incrementally. This is an important feature since
as already stated in Chapter 3 the databases evolve over time, and most of them will
constantly get new entries, moreover their structure will evolve to accommodate for new
use cases.

Assuming an existing computation of ∇(T ,Λ), let T C be the TBox and Λ
C be the set of

activators resulting from the completion of the inference procedure. Now, suppose that
the underlying structure of the ABox A′ covered previously by Λ has changed and let Λ

′

be the minimal set of activators that covers it. Instead of running the optimized inference
calculus from scratch, we need only to get the set of initial activators Λ

U of uncovered
individuals e by Λ

C , i.e. for each such individual e we add it’s activator to Λ
U :

profA′

(e)|NC
∪ prop(profA′

(e), T)

Note that we required for individuals to be covered against the computed Λ
C instead

of initial Λ, since Λ
C is already computed from Λ w.r.t. T and considering that the

calculus is monotonic for each activator α in Λ there exists an activator in Λ
C that is

the superset of α. In the last step, instead of computing ∇(T ,Λ′) we can incrementally
compute:

∇(T C ,ΛC ∪Λ
U)

117

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Optimizing Reasoning in Expressive Horn DLs

This way we avoid re-computation of all inferred axioms in T C from previous computations
that would have been derived otherwise.

6.2 Evaluation

The optimized calculus presented in Table 6.4 was implemented in the Clipper reasoner.
From here on we will be referring to Clipper with C-orig and to our implementation
with C-opt. We tested C-opt on a large test set of ontologies from the Oxford Ontology
Repository,2 and compared its performance to C-orig. The activators that were given as
input to C-opt were obtained from the respective ABoxes found in the ontologies.

Oxford Ontology Repository contains 797 ontologies, from which, only 370 had ABoxes,
and out of them 18 yielded exceptions while loading on C-orig. Of the remaining ontolo-
gies, 131 were uninteresting since their normalized TBoxes did not contain existential
axioms (NF3), therefore the saturation step would trivialize since no rule would be fired.
The remaining 221 ontologies were selected for comparing the performance of the two
versions. All ontologies were preprocessed, axioms not expressible in Horn-SHIQ were
dropped, while the others were normalized according to the Horn-SHIQ normal form
given in Definition 12.

The test ontologies and the compiled C-opt can be found in the following repository3.

Table 6.5: Distribution of ontologies by their respective ABox and TBox sizes.

TBox Sizes
S M L VL Total

ABox
Sizes

S 5.12% 6.51% 4.65% 0.47% 16.75%
M 0% 9.3% 3.72% 0.93% 13.95%
L 0% 5.12% 12.09% 0.47% 17.68%

VL 0.47% 11.63% 14.88% 24.64% 51.62%
Total 5.59% 32.56% 35.34% 26.51%

In Table 6.5 the distribution of the 221 selected ontologies with respect to the sizes of
TBox and ABox is shown. For convince we have categorized them into (S)mall, (M)edium,
(L)arge and (V)ery (L)arge, with boundaries of up to 100, up to 1000, up to 10000, and
above 10000 axioms/assertions. As shown, the considered set of ontologies have a fair
mix of sizes, where around half of the ontologies have both an ABox and a TBox that
are large or very large.

We recall here that all experiments were run on the same hardware, a PC with an Intel
i7 2.4 GHz CPU with 4 cores running 64 bit LinuxMint 17, and a Java heap of 12 GB.
The test consisted of running both reasoners against the ontologies. The key component

2http://www.cs.ox.ac.uk/isg/ontologies/UID/
3https://github.com/ghxiao/clipper-materials/tree/master/iswc-2019

118

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Evaluation

we checked was the saturation procedure in C-orig and C-opt. A time-out limit of 2
minutes for running the tests was set. This was the total time allowed for loading and
normalizing the TBox, saturating it, and in the case of C-opt, also the time used to
obtain activators from the ABox.

In addition to successfully saturating all ontologies that C-orig succeeded on, C-opt

showed a 37.96% increase in the success rate: C-opt succeeded in 149 out of 221 (67.71%),
while C-orig in 108 out of 221 (49.33%), see Figure 6.2. Out of the 221 ontologies, 52
are in the DL-Lite or EL profiles. For them, C-opt succeeded in 49 vs 48 for C-orig. If
we take into account only ontologies in more expressive fragments, beyond DL-Lite and
EL, the performance improvement is even more pronounced: our C-opt succeeded in 100
cases out of 169 ontologies (59.17%), while C-orig succeeds only in 60 cases (35.5%),
resulting in an increase of 66.67% in the success rate.

108 ontologies 41 ontologies 72 ontologies

both versions succeded only C-opt succeded both versions failed

Figure 6.2: Successfull Instances.

Next we show a morefine grained analysis of tests runs along the categories shown in
Figure 6.2:

• (C1) successful test cases for C-orig and C-opt

• (C2) gained test cases with C-opt

• (C3) failed test cases with both versions

In (C1), we compare the test runs over the ontologies (108 of them) for which both
versions succeeded over metrics which show the performance of TBox saturation procedure.
In (C2), we show the data for the same metrics as in (C1) for cases in which only C-opt

succeded (41 ontologies), whereas in (C3) we present an analysis of the cases where both
versions failed (72 ontologies), and discuss the factors that we think are indicative why
the C-opt failed.

119

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Optimizing Reasoning in Expressive Horn DLs

Figure 6.3: (C1) TBox rate of growth for both versions (C-orig =red, C-opt =blue).

40

60

80

100

0 2 4 6 8

TBox rate of growth

In
s
ta

n
c
e

s

(C1) We compare the sizes of the saturated sets and the run times of both versions, on
the 108 ontologies that both versions succeeded on. To better understand how much
smaller the saturated set is in the optimized version, independently of the size of the
original TBox, we show the TBox rate of growth given by the number of axioms of
the form (NF1) and (NF3) in the saturated TBox, divided by their total in the initial
(normalized) TBox supplied. Figure 6.3 depicts the TBox rate of growth; where blue
bars that represent C-opt are plotted over the red bars representing C-orig. Note that
the y-axis is simply the 108 ontologies, ordered by the rate of growth of C-orig. The
x-axis is cut-off in order to avoid the distortion of the graph, as most of the cases had
a growth rates below 4-folds for C-orig and even smaller for C-opt. We remark that
the rate of growth of C-orig in fact reached a 20-fold growth. As shown in the figure,
the rate of growth of the C-opt was nearly always smaller, often just a small fraction
of C-orig, and in very few cases they were equal. For 88 ontologies the rate of growth
for C-opt was zero, i.e. no new axioms were derived (see the bars without blue color).
This means that all the axioms derived by C-orig were irrelevant for the ABox in the
ontology, and for any ABox covered by the same profiles extracted from that ABox.

The comparison of the run times is given in Figure 6.4. TBox saturation runtime is shown
in x-axis over ontologies in y-axis. Similarly as the previous graph, y-axis is ordered
by the runtime of C-orig. Here as well as in Figure 6.3, the run time of C-opt (blue)
is plotted over the runtime of C-orig (red). Also in this metric, C-opt outperformed
C-orig in most of the cases. With very few exceptions, in which C-orig was so fast
(typically under 100 milliseconds), that the overhead of handling the activators in C-opt

did not pay off.

120

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Evaluation

Figure 6.4: (C1) TBox saturation run time for both versions (C-orig =red, C-opt

=blue).

40

60

80

100

0 5 10 15

TBox saturation run time in seconds

In
s
ta

n
c
e

s

(C2) The growth rate and saturation run times of the 41 ontologies gained with C-opt

are shown in the Figure 6.5. In both graphs, the ontologies are ordered by the TBox
rate of growth. The left graph shows that the rate of growth for these ontologies is in
line with the growth reported in (C1), remaining below double times the original size
even in the worst-case. In the graph on the right one can see that the run time for most
ontologies was under 10 second, which is in line with the run times in (C1).

Figure 6.5: (C2) Gained instances with C-opt.

0.0

0.5

1.0

1.5

0

10

20

30

40

0 10 20 30 40 0 10 20 30 40

Gained instances

T
B

o
x
 r

a
te

 o
f

g
ro

w
th

T
B

o
x
 s

a
tu

ra
ti
o

n
 r

u
n

ti
m

e
 i
n

 s
e

c

(C3) We analysed the ontologies that we could not saturate, and observed that the
maximal size of T -propagating concepts over profiles plays a key role, for C-orig and
C-opt.

121

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Optimizing Reasoning in Expressive Horn DLs

Figure 6.6: Failed instances with both versions.

(C3) Failed instances with both versions.

1

3

5

7

9

0 300 600 900

max T−propagating concepts over profiles

n
u

m
b

e
r

o
f

 o
n

to
lo

g
ie

s

From our tests we observed C-orig always failed when this number was above 20, whereas
the C-opt could handle some ontologies with up to almost a hundred, but failed in all
ontologies above that threshold. In Figure 6.6 we give a histogram of the maximum
sizes of T -propagating concepts over profiles extracted from the ABoxes of the failed
instances. In the x-axis an ordering of the maximum number of T -propagating concepts
over any of the given profiles, whereas the y-axis shows the number of ontologies with
such a number. Note that there were a few ontologies with no propagating concepts for
which both versions failed. These were hard to saturate for other reasons not related to
our optimization.

From (C1)– (C3), we can conclude that the presented optimization yields improvements
in three dimensions: the number of ontologies we can saturate, the run time of the inference
calculus, and the size of the resulting saturated TBox.

6.3 Discussion and Related Work

In this chapter, we showed how the Horn-SHIQ CQ answering algorithm proposed
by [EOv+12b] could be optimized. To the best of our knowledge the aforementioned
algorithm remains the only one to support query answering along with all the features
of Horn-SHIQ, and its implementation in Clipper has also attracted recent adapta-
tions [LMTV19, CDK19]. Therefore the optimization of Clipper presented in this chapter
is beneficial to a broader community that build on it.

The authors of [TSCS15] also propose a CQ answering algorithm for Horn-SHIQ based on
resolution together with implementation as a proof of concept. However, their algorithm
does not support full CQs in the true sense, since they constrain the queries to not include
atoms encoding transitive roles. Other authors [CGK19b] propose a technique that seems
promising for Horn-SROIQ but constrained to deciding assertion entailments. [Kaz09]
presents a consequence based driven calculus for the task of classification and briefly
explains an approach used for guiding its calculus through the derivation process used
in its prototype. However such an approach does not apply to the case when one does
ABox reasoning as in our case.

We illustrated the problems of current ABox-independent approaches to TBox saturation,
which often manifests exponential behavior, and proposed a way to overcome this.

122

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Discussion and Related Work

In a nutshell, we avoid the derivation of axioms that are useless since they consider
combinations of concepts that can not occur in the real data. We achieve this by
constraining the axiom derivation through the use of activators that reflect the possible
structure of the data. We implemented our approach as an optimization of the Clipper

reasoner [EOv+12b], which scales well in general and can handle considerably more
ontologies than the original Clipper. For future work, it would be good to pursue more
refined techniques for generating initial activators as opposed to the over approximated
ones we are using and see if that brings some improvement in terms of the size of the
saturated TBox as well as in run-time.

123

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Extracting ABox Structure from

OBDA Specifications

The OBDA paradigm [XCK+18] eases access to possibly heterogeneous and incomplete
data sources using an ontology, a formal representation of the conceptualization of the
domain that is written in a shareable, machine-readable language. Different sources
can be linked to the same ontology, making OBDA a very effective alternative to the
costly integration of data sources [XDCC19]. Integrating data through an ontology is of
principal interest, considering that gathering and unifying the semantics of data across
databases which by design are built to fit the information needs of specific applications
is a challenging endeavour. Moreover, the user queries can be expressed over the familiar
ontology vocabulary, and the knowledge in the ontology can be leveraged to infer implicit
facts and obtain more query answers.

The ontology of an OBDA specification is commonly expressed in the so-called DL-Lite
family of description logics (DLs), which as already stated through the thesis, is tailored
for efficient query answering by rewriting the input query into standard SQL queries
that already incorporate the relevant ontological knowledge and can be evaluated with
existing mature database query engines. This central property is key to OBDA being
efficiently implementable on top of current database management systems. However,
many domains call for expressive features not supported in DL-Lite, hence real world
use cases in which more expressive DLs might scale are of particular interest.

Considerable research efforts have been devoted to more expressive DLs, however data
independent approaches seem to be impractical in this context. In the previous chapter we
showed some results of how the structure of ABox can be effectively used for optimizing
the most well know query answering algorithm for a rich Horn DL (Horn-SHIQ). In this
chapter, we want to show how the structure of families of ABoxes, paraphrased in this
thesis as profiles can be extracted from the mapping layer of OBDA, which strengthens

125

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Extracting ABox Structure from OBDA Specifications

the case for ABox structure aware algorithms, since it effectively can be extracted from
the mapping layer that arguably does not evolve on the fly and is used to ’represent’ a
family of ABoxes that can be expected when evaluated over different databases.

For showcasing the usefulness of OBDA, let us consider a use case scenario for the anti
money laundry ontology presented in the previous chapter.

Example 19. Consider a state regulatory body, which in order to facilitate compliance
with anti money laundry laws needs to gather information from financial institutions about
subjects that fit certain criteria. In order to achieve this, the regulatory body shares with
financial institutions the ontology from Example16. The actual storage of the accounts,
owners and interactions may be rather complex, spanning different tables and databases,
and is likely to differ between different (sub)organizations and financial institutions. In
OBDA this is overcome by using mappings such as:

sql1(x, y) interactedWith(x, y),Account(x),Account(y)
sql2(x, y) hasOwner(x, y)

sql3(x) PEP(x)

where sql1 − sql3 are (possibly complex) SQL queries that specify how the data in one
specific organization’s database is mapped to the vocabulary of the ontology. Then the
state regulatory body can supply each financial institution with a query such as the one
showed in the Example 16, with which it collects the necessary data to track suspicious
activities of individuals state wide.

The mappings in an OBDA specification together with a database instance can also be
seen as an ‘implicit’ ABox that results from evaluating them. Obtaining the profiles
directly from the mapping layer of an OBDA specification enables the use of data
representation based query answering algorithms such as the ones presented in this thesis
to be used in a practical setting. We focus in this thesis in OBDA settings where the
mappings are given in R2RML 1, which is a language for expressing the mappings from
relational databases to RDF datasets.

Our approach is particularly meaningful for OBDA, where the virtual ABoxes arising
from the mappings have a restricted and predictable structure. The rest of the chapter is
organized as follows: in Section 7.1 we provide basic definitions local to this chapter, in
Section 7.2 we give a simple algorithm for obtaining the profiles from mappings of an
OBDA specification and discuss other alternatives. Finally, in Section 7.3 we report on
the profiles we obtained from an analysis of three OBDA specifications with mappings
expressed in R2RML.

1https://www.w3.org/TR/r2rml/

126

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.1. Preliminary Definitions

7.1 Preliminary Definitions

We recall the definitions of ontology-based data access and databases we use in this
chapter.

A database schema S consists of a set of relations R and a set of functional dependencies
(FDs) F . The columns of a relation R are identified by their positions 1, . . . , n. For a
set ~i of columns of R, and a tuple t of R, t[~i] denotes the projection of t over ~i. An FD
F over R has the form R : ~i → ~j, where ~i and ~j are tuples of columns in R; we call
each j ∈ ~j a functional attribute in F . This FD holds in an instance D if the values of ~i
determine the values of ~j, i.e. ~t1[~i] = ~t2[~i] implies ~t1[~j] = ~t2[~j] for every pair of tuples ~t1
and ~t2 such that {R(~t1), R(~t2)} ⊆ D.

An OBDA specification is a triple P = (T ,M,S), where T is a TBox (in e.g, DL-Lite or
Horn-SHIQ), S is a database schema, M is a mapping consisting of mapping assertions
that link predicates in T to queries over S. The standard W3C language for mappings
is R2RML [DSC12], however here we use a more concise syntax that is common in the
OBDA literature. Formally, a mapping M is a set of mapping assertions m that take
the form

conj(~y) X(~f, ~x)

consisting of a source part conj(~y), which is a conjunction of database atoms whose
variables are ~y, and a target part X(~f, ~x), which is an atom whose predicate is X over
terms built using function symbols ~f and variables ~x ⊆ ~y. In this thesis X(~f, ~x) takes
either the form C(f(~x1)) for a concept name C, or the form r(f(~x1), g(~x2)) for a role
name r. We say that such mapping assertion m defines the predicate X. We use body(m)
to refer to the source part conj(~y) of a mapping m as above, and head(m) to refer to its
head X(~f, ~x).

We make the following assumptions:

(i) ~a 6= ~b implies f(~a) 6= f(~b), for any f , and

(ii) f1 6= f2 implies f1(~a) 6= f2(~b), for any ~a,~b.

Both assumptions are in-line with the use of function symbols in OBDA systems [PLC+08],
where they act as templates for producing a unique identifier for each input value. Assump-
tion (i) is ensured in the R2RML standard using “safe separators”, and although (ii) is not
built into R2RML, it is assumed in existing OBDA tools like Ontop version 1 (implicitly
in [RR15]).

In practice functions f(~x) take as an input a tuple of constants from the database,
and generate a string that is an IRI (International Resource Identifier). Typically such
functions can be seen as template strings that look like the following:

http://exampledomain/departmentid#c/employeeid#d

127

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Extracting ABox Structure from OBDA Specifications

where c, d are place holders for the input parameters c, d of the function.

For a database instance D and mappingM, the ABoxM(D) is the set of atoms X(~f,~a),
for all conj(~y) X(~f, ~x) ∈M and all tuples a of constants in D such that conj(a) holds
in D. An OBDA instance is a pair (P,D), where P is an OBDA specification and D is a
database instance that satisfies the dependencies in S from P. The semantics of (P,D)
is given by the models of T and M(D).

7.2 Profiles and Activators from Mappings

In this section we show how one can obtain profiles and activators from a given OBDA
specification P = (T ,M,S), such that they cover each ABoxM(D) for any legal database
D instance for S.

We first introduce the notion of profiles that pre-cover a given ABox.

Definition 36 (Profiles pre-Coverage of ABoxes). A set P of profiles pre-covers A if for
each a ∈ NI there exists a profile p ∈ P such that profA(a) ⊆ p.

In the first step we describe how to obtain profiles that pre-cover M(D) for any legal
database instance D for S. Later we will see how to obtain from these pre-covering
profiles a set of activators that cover all possible M(D) ABoxes, and as such can be
used to optimize any Horn-DL contained in Horn-SHIQ. We will also see how these
pre-covering profiles can help towards computing a type table as in Chapter 3 by showing
how one can obtain suitable profiles from the pre-covering ones.

One simple way to obtain the profiles that pre-cover relevant ABoxes would be to take
as a profile all the head predicates of mappings that share the same functional symbol,
roughly treating each function symbol as the same constant in the ABox. After all, if
all these mappings that share some f(~x) in the head would be successfully evaluated
for some mapping of ~x to the constants in D, they could potentially all yield assertions
for the same individual in ABox. This approach could potentially generate quite large
profiles. As we discuss in Section 7.3, we often encounter mapping assertions that share
a function in the head, but by the functional dependencies they cannot fire for the same
values of ~x. To leverage functional dependencies in obtaining a more fine-grained set of
profiles, we first define conflicting mappings, i.e. mappings that in practice would never
yield assertions for the same individuals when mapped over any database.

Definition 37 (Conflicting mapping assertions). Let F = R : ~i → ~j a functional
dependency and let j ∈ ~j be one of its functional attributes. We call a pair m,m′ of
mapping assertions (F, j)-conflicting if the following hold:

• there are terms f(~x) in head(m) and f(~y) in head(m′), for some function symbol
f , and

128

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.2. Profiles and Activators from Mappings

• there are atoms R(~t) ∈ body(m) and R(~t′) ∈ body(m′) such that, for each i ∈~i we
have ~t[i] = xi, ~t′[i] = yi, where xi ∈ ~x, yi ∈ ~y, and there exists a j ∈ ~j, such that
~t[j], ~t′[j] are two different constants.

Example 20. Let M be the mapping that maps the source database to the ontology from
Example 18.

m1 : transfers(x, y) interactedWith(f1(x), f1(y)),
Account(f1(x)),Account(f1(y))

m2 : account_owners(x, y, ‘politician′) PEP(f2(x))
m3 : account_owners(x, y, z) hasOwner(f1(x), f2(y))

m4 : account_details(x, ‘business′, ‘big′) BigBusinessAcc(f1(x))
m5 : account_details(x, ‘business′, ‘small′) SmallBusinessAcc(f1(x))

m6 : account_details(x, ‘private′, y) IndividualAcc(f1(x))

Now consider a functional dependency F1 : id → type, size defined over the relation
account_details(id, type, size). Then, according to Definition 37, pairs m4,m6 and m5,m6

are (F1, type)-conflicting, while the pair m4,m5 is (F1, size)-conflicting.

Note that we define conflicts in a way that they are easy to identify, and that we can
guarantee that conflicting mapping assertions cannot fire to create assertions about
the same constant. Failing to identify other reasons why two mappings do not fire
together does not compromise the correctness of our approach, it may simply result in
larger profiles with potentially more complex neighbourhood, which may decrease the
performance of the algorithm making use of the profiles.

We identify the sets of mapping assertions that can fire together, and create a profile
for each of them. For a functional symbol f , we denote by M(f) the set of all mapping
assertions in M such that f occurs in the head. A subset M′ of M(f) is conflict-free if
there are no mapping assertions m and m′ in M′ that are (F, j)-conflicting for some F
and j. With Mf we denote the set of maximal conflict-free subsets of M(f). Then we
can guarantee the pre-coverage of M(D) by creating a profile for each function symbol f
and each Mi ∈Mf .

The problem of computing maximal conflict-free subsets can be solved by using the
notions of cliques from graph theory and the hitting set problem. Recall that a clique
in an undirected graph is a subset of the vertices such that every two distinct vertices
are adjacent; a maximal clique is a clique that cannot be extended by adding one more
vertex. For a set of sets Ω, H is a hitting set of Ω if for all S ∈ Ω, H ∩ S 6= ∅; a
hitting set H is minimal if there exists no other hitting set H ′, such that H ′ ⊆ H. To
compute Mf , we first create a graph Gf where the node set is M(f) and the edge
set is {(m,m′) | m,m′ are (F, j)-conflicting for some (F, j)}. Next let Ωf be the set of
maximal cliques of Gf . Note that each set in Ωf also includes the set of conflict free
mapping assertions. Then every minimal hitting set of Ωf is a maximal conflict-free
subset of M(f). One can use any hitting set algorithm, e.g. [SC10], for this task. Note
that although the problems of maximal clique and minimal hitting set are intractable in

129

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Extracting ABox Structure from OBDA Specifications

general, there are efficient algorithms available and the sizes of instances in this case are
relatively small. We also point out that minimality is not always critical. An algorithm
that yields hitting sets that are small enough to be handled by the algorithms, even if
not minimal, may be sufficient.

Another approach in-between the fine grained approach of computing the maximal
conflict-free mappings via hitting sets and simply taking all the mappings that share the
same functional symbol in the head M(f), would be to generate the sets of mappings
by simply taking the Cartesian product of the (F, j)-conflicting mappings. One could
also consider relaxing the notion of conflict, provided that such an approach gives good
enough results for a given application use case.

Next we give a definition of how one can obtain a set of profiles that pre-cover any
relevant ABox for a given OBDA specification.

Definition 38 (Pre-Covering profiles from an OBDA specification). Given an OBDA
specification P = (T ,M,S), let f be a function symbol occurring in M, and let Mf be
the set of maximal conflict-free subsets of M(f). Then we define P(P) as the set that for
each Mi ∈Mf contains the following profiles:

profM(f,Mi) ={A | some m ∈Mi has head(m) of the form A(f(x))} ∪

{∃r | some m ∈Mi has head(m) of the form r(f(x), t)} ∪

{∃r− | some m ∈Mi has head(m) of the form r(t, f(x))}

Using the fact that, for all D, each assertion in M(D) comes from some mapping in
M, and that only non-conflicting mappings that share a function symbol can produce
assertions about a common individual, then we show the following.

Proposition 3. For every OBDA instance (P,D), P(P) pre-covers the ABox M(D).

Proof. Let (P,D) be an OBDA instance where P = (T ,M,S). Let P(P) be the set of
profiles obtained from P as per Definition 39, andM(D) the ABox obtained by evaluating
M over D.

We want to prove that for each individual a inM(D) there exists a profile p ∈ P(P) that
pre-covers a as in Definition 36, i.e., profM(D)(a) ⊆ p. Let a be an arbitrary individual in
M(D), we know that a = f(~c) where ~c is a tuple of constants from D and f is a function
symbol appearing in the heads of a set of mapping assertions M(f) ⊆M.

With Ma we denote the set of mappings assertions m ∈M(f) for some mapping from
variables in m to constants in D s.t. the head(m) is of one of the following forms A(a),
r(a, b), or r(b, a).

In order to prove that there exists a profile p ∈ P(P) that pre-covers a, we first recall
Definition 14 from which we have that the profile of a is:

130

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.2. Profiles and Activators from Mappings

profM(D)(a) ={A | A∈NC, A(a)∈M(D)} ∪

{∃r | r∈NR, r(a, b)∈M(D)} ∪

{∃r− | r∈NR, r(b, a)∈M(D)}

We prove the existence of a p that pre-covers a in two steps:

(a) there exists a maximal conflict-free subset Mi of Mf such that Ma ⊆Mi; and

(b) profM(D)(a) ⊆ profM(f,Mi)

(a) Since, Mf contains all the maximal conflict-free mappings of M(f) and since Ma ⊆
M(f), next we prove that there exists some Mi ∈Mf such that Ma ⊆Mi.
In order to prove that there exists such an Mi ∈Mf such that Ma ⊆Mi, we only need
to prove that there exists no pair of mappings in Ma that violate the Definition 37 of
conflicting mappings. To this end, let’s assume that there exist a pair of mappings
m,m′ ∈ Ma such that they are (F, j)-conflicting, where F = R : ~i → ~j and j ∈ ~j a
functional attribute of F , then according to the Definition 37 and definition of Ma we
have that:

• there exists some predicate R s.t. R(~b) ∈ m and R(~b′) ∈ m′; and

• both mappings share the same functional symbol f where f(~c) ∈ head(m), f(~c) ∈
head(m′); and

• ~b[i] = ci, ~b′[i] = ci for each i ∈~i, where ci = ~c[i]; and

• there exists some j ∈ ~j s.t. ~b[j] = d and ~b′[j] = d′

However such mappings from variables of R to constants violates the functional depen-
dency F , and since D is a legal database satisfying all the data base constraints, we get
a contradiction to our initial assumption that there exist a pair of conflicting mappings
in Ma.

Now, since Mf contains all maximal-conflict free subsets ofM(f), from Ma ⊆M(f) and
the fact that all mapping assertions in Ma are conflict free we get that there exists an
Mi ∈Mf , such that Ma ⊆Mi.

(b) We want to prove that profM(D)(a) ⊆ profM((f,Mi)). Considering that each assertion
in M(D) comes from successful evaluation of mappings, i.e., mappings in Ma, we can
rewrite the formula for profM(D)(a) into:

profM(D)(a) ={A | some m ∈Ma has head A(f(c))} ∪

{∃r | some m ∈Ma has head r(f(c), f(c′)} ∪

{∃r− | some m ∈Ma has head r(f(c′), f(c))}

131

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Extracting ABox Structure from OBDA Specifications

Since, Ma ⊆Mi then from Definition 39 we have:

profM(f,Mi) ={A | some m ∈Mi has head(m) of the form A(f(x))} ∪

{∃r | some m ∈Mi has head(m) of the form r(f(x), t)} ∪

{∃r− | some m ∈Mi has head(m) of the form r(t, f(x))}

from where we conclude profM(D)(a) ⊆ profM(f,Mi).

7.2.1 Covering Activators

Activators as defined in 32 are the cornerstone of the optimization calculus shown in
Table 6.4 for any Horn DL contained in Horn-SHIQ. We show in this subsection that
we can obtain the set of activators from an OBDA specification, such that they cover any
possible ABox that may result from the evaluation of the OBDA specification over legal
database instances. Hence, this set of activators can be used by the optimized calculus
for any of the resulting ABoxes. To obtain the set of activators we use the pre-covering
profiles as defined in 39 in the following manner.

Definition 39 (Covering Activators from an OBDA specification). Given an OBDA
specification P = (T ,M,S), we denote by Λ(P) the set of activators that contains, for
each p ∈ P(P):

p|NC
∪ prop(p, T)

where p|NC
denotes the restriction of p to concept names only, and prop(p, T) the set of

propagated concepts from the neighbourhood of p as given in Definition 32.

The following proposition shows that for a given OBDA specification P = (T ,M,S),
the set of activators Λ(P) obtained as defined above cover M(D) for any database D
adhering to S.

Proposition 4. For every OBDA instance (P,D), Λ(P) covers the ABox M(D).

Proof. From Definition 32 we have that Λ(P) covers M(D) if for each a ∈M(D) there
exists an activator α ∈ Λ(P) s.t.:

profM(D)(a)|NC
∪ prop(profM(D)(a), T) ⊆ α (7.1)

In Proposition 3 we proved that P(P) pre-covers M(D), i.e., for each a ∈M(D) there
exists a profile p ∈ P(P) s.t.:

profM(D)(a) ⊆ p (7.2)

Then according to Definition 39 there exists an activator α ∈ Λ(P) obtained in the
following manner:

p|NC
∪ prop(p, T) ⊆ α (7.3)

Then from (7.1), (7.2) and (7.3) we get that α covers a.

132

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.2. Profiles and Activators from Mappings

Example 21. Let’s consider mapping assertions from Example 20. For the functional
symbol f1, we get the graph Gf1

= (Ef1
, Vf1

), where

Ef1
= {m1,m3,m4,m5,m6}, and

Vf1
= {(m4,m5), (m4,m6), (m5,m6)}.

The maximal cliques are Ωf1
= {{m1}, {m3}, {m4,m5,m6}}. Thus,the maximal conflict-

free sets Mf1
are the minimal hitting sets of Ωf1

, i.e. Mf1
= {M1,M2,M3}, where

M1 = {m1,m3,m4}
M2 = {m1,m3,m5}
M3 = {m1,m3,m6}

Similarly, the maximal conflict-free sets for f2 is Mf2
= {M4} where

M4 = {m2,m3}

Then by Definition 39 we get:

profM(f1,M1) = {∃interactedWith,∃interactedWith−,Account, hasOwner,BigBusinessAcc}

profM(f1,M2) = {∃interactedWith,∃interactedWith−,Account, hasOwner,SmallBusinessAcc}

profM(f1,M3) = {∃interactedWith,∃interactedWith−,Account, hasOwner, IndividualAcc}

profM(f1,M4) = {∃hasOwner−,Politician}

and, the following set of activators:

Λ = {{Account,BigBusinessAcc}, {Account,SmallBusinessAcc},
{Account, IndividualAcc}, {Politician}}

Going back to the Example 18, note that, with the Λ obtained in example above, the
R∀ rule of the optimised calculus would have not derived the irrelevant axioms that were
discussed there.

7.2.2 Covering Profiles

For the type table computation algorithm 3.1 for ALCHI DL, a set of profiles that
covers the ABoxes as per the Definition 14 is needed. Here we explain how for a given
OBDA specification one can obtain such set of profiles, i.e, profiles that cover any ABox
that may result from that specification. A simple approach is to take all the possible
subsets for each profile in pre-covering P which cover any possible resulting ABox from
the specification. We propose a slight refinement of this naive technique in which we
get a set of profiles that do not formally cover the ABoxes but still are complete for
computing the type tables.

To define a weaker notion of ‘sutiable’ profiles, we rely on the the way the base types of
profiles are composed. We recall here parts from the base types Definition 16:

btypT (p) = {btyp(p, S) | S ⊆ GuessT (p),⊥ 6∈ btyp(p, S)}

133

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Extracting ABox Structure from OBDA Specifications

where
btyp(p, S) = detClT (p ∪ S)

Notice that, for any given ABox A, and any given set of profiles P, in order for the type
table computation algorithm to be complete, for the purpose of computing the good
types for A it would suffice that for each a ∈ NI(A) the base types of the profA(a) are
contained in the set of base types of some profile in P. Clearly, in such a case all the
types needed would have already been computed and ready to use. We call such profiles
suitable profiles.

Definition 40 (Suitable Profiles). Given an ABox and a TBox in ALCHI, and a set of
profiles PS, we call PS suitable if for each a ∈ NI(A) we that btypT (profA(a)) ⊆ btypT (PS).

Therefore a set of profiles PS is suitable for some OBDA specification, if for any ABox
M(D) that may result from the evaluation of the mappings M over some database D,
and any individual a ∈ NI(M(D)) we have btypT (profM(D)(a)) ⊆ btypT (PS). Next, we
show how a set of suitable profiles from pre-covering profiles can be obtained.

Definition 41 (Suitable Profiles from Pre-Covering Profiles). Given a set of pre-covering
profiles P of an OBDA specification P, for each profile p we define:

• Cp = {detT ({A}) | for each A ∈ p ∩ NC}, i.e., the deterministic closure of each
concept name in the profile under axioms of the form (NF1).

• Rp = {r | r ∈ p \ NC and detClT (r) 6= ∅}, i.e., the set of incoming and outgoing
roles that fire some domain or range axiom.

• R′
p = (p \Rp) \ NC.

Then, for each p and the set P we get the following set of suitable profiles:

PS
p = {conc ∪ roles ∪R′

p | conc ⊆ Cp and roles ⊆ Rp}

PS =
⋃

p∈P

PS
p

Note that, even if we use the suitable profiles, in some cases the number of them may be
quite large.

The set of suitable profiles computed this way can of course be very large, but we suspect
that in many cases an incremental computation may be useful, where one can consider a
more practical approach in which for any pre-covering profile p that is evaluated to have
an associated PS

p with a large number of profiles, we omit the generation of those profiles
and instead run the computation in incremental mode. This way the computation would
be done only for few profiles of a given ABox that are not contained in the set of suitable
profiles.

134

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. Validating Profile Extraction from OBDA Specifications

7.3 Validating Profile Extraction from OBDA

Specifications

All ontologies used for evaluation in other chapters had no accompanying mapping
specifications. With the purpose of understanding the feasibility of obtaining the profiles
when ABoxes come from real OBDA specifications, we analysed three OBDA specification
benchmarks:

• NPD [LRXC15] (1173 mapping assertions).

• Slegge [HKS+17] (62 mapping assertions).

• UOBM [BCS+16] (96 mapping assertions).

While UOBM is synthetic, the other two are from real-world scenarios. We analyzed the
above listed OBDA specification in terms of the sizes of profiles they would generate
using the algorithm provided in Section 7.2. Files with the mapping analysis can be
found in the following repository 2.

In the case of NPD mappings we encountered 107 functional symbols, 37 in the case of
Slegge and 8 in the case of UOBM, which in the plain approach in which we would not
consider the conflicts would mean that we get 107 profiles for NPD, 37 for Slegge and
8 for UOBM. However, as previously advocated in such a case the structure of profiles
could be quite complex with many incoming and outgoing roles and concept assertions.

Using the algorithm in Section 7.2 which exploits functional dependencies, we obtained a
set of pre-covering profiles with over 600 profiles for NPD, 12 for UOBM, and only 4 for
Slegge. In terms of the size of the largest profile, for all three ontologies we got similar
sizes. The largest profile obtained for NPD had 9 concept names, Slegge had 3 concept
names, and UOBM had 11 concept names. In terms of the number of profiles, NPD had
significantly more profiles. This is due to larger number of conflicts in the mappings of
NPD compared to Slegge and UOBM. We recall that when conflicts are present, the
number of maximal conflict-free subsets is higher, hence inducing more profiles. However,
from our observations during the evaluation of Mod4Q, the size of the profiles plays far
greater role in the performance of type table algorithm then the number of profiles.

In all the cases above the ontologies were simple, i.e., there were no propagating concepts,
hence the initial activators as presented in the previous chapter would coincide with the
set of concept names in the profiles. If we recall the results we got for ontologies from
the Oxford repository with similar ABoxes (namely, they contained 5 or more assertions
in the ABox type of some individual). From the view point of the sizes of the activators
we obtained from the mappings, an ontology paired with those set of activators should
be manageable for the optimized calculus presented in previous chapter.

2https://github.com/ghxiao/clipper-materials/tree/master/iswc-2019

135

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Extracting ABox Structure from OBDA Specifications

From the first look at the pre-covering profiles, we noticed that the number of suitable
profiles is still manageable, however for full evaluation of the technique one needs to have
OBDA specifications with expressive DLs including the data. The type table technique
makes sense to be evaluated in expressive settings. Since in the case of OBDA with
DL-Lite the profiles we would have gotten zero guesses, and furthermore the lack of
non-determinism would imply that for each profile we would get only one type. Hence
using ASP solvers that guess the types for each profiles in a setting where no guesses are
needed would be an overkill. Therefore an end to end evaluation of the technique, i.e.,
from obtaining the profile up to computing the types remains subject of further tests in
the future, once OBDA specifications with expressive DLs become available.

7.4 Discussion

In this chapter, we showed how we the mapping layer of the OBDA specification can be
exploited for obtaining the set or profiles as defined in Chapter 3, such that the obtained
profiles cover all the ABoxes that could be materialized by evaluating the mappings over
any given database instance. We gave a simple algorithm for computing the profiles,
which has important implications on the overall practicability of our data representation
approach since it makes it more viable for deploying it in practical settings.

We corroborated the presented algorithm in Section 7.2 into existing OBDA specifications.
The results of the analysis of three OBDA specifications were presented in the previous
Section, with encouraging observations in the size and shape of the profiles. We hope
this work will bring closer the goal of realizing OBDA with ontologies beyond DL-Lite.
Moreover, we believe that a careful implementation of the whole technique from obtaining
the profiles from the OBDA mappings to the evaluation of the translations in ASP could
yield first OBDA systems for more expressive DLs in use cases for which the underlying
data representation algorithms such as the ones presented in this thesis can scale.

Lastly, we note that getting OBDA specification of real systems remains a challenge,
and we recognize the need for validating our approach against more instances, and in
particular against instances paired with data and expressive DLs that allow for end-to-end
evaluation. Another direction worth pursuing towards further refinements of the technique
is to conduct extensive studies with more real-world OBDA specifications in order to
identify even more fine-grained approaches for generating the maximal conflict-free sets
of mappings, and studying the trade-offs between them and the more relaxed approaches
in concrete application use cases.

136

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 8
Summary and Conclusions

OMQ answering is a challenging problem in general, and even more so when one considers
expressive ontologies. In the light of the high complexity of the problem for expressive
DLs, the current state-of-the-art research is focused mainly on theory-oriented goals,
and to the best of our knowledge, there has been no attempt in implementing query
answering algorithms beyond instance queries for expressive DLs.

We believe that in practice, a significant obstacle for tackling the problem of query
answering for expressive DLs is the standard data independent approach to query rewriting.
Therefore we set as the primary goal of this thesis to obtain a technique that uses the
knowledge about the structure of the data for guiding the query answering algorithms.
We hope that the approach developed in this thesis will inspire further research in
this direction, and culminate with efficient systems for query answering algorithms in
expressive DLs.

We have presented our representation of the structure of the data in Chapter 3. More
specifically, we represented the structure of families of ABoxes via what we call profiles,
which play a key role in our approach. Profiles were used to compile model representations
for the ALCHI DL, which are expressed as a structure T that stores all the relevant types
and their relations with respective successor witnessing existential axioms. The algorithm
we presented runs in goal-oriented way, adding types along the way and reusing previous
computations. Hence, contrary to the existing ones, it is amenable to implementation.
To show this, we implemented the type table computation algorithm in a proof of concept
prototype Mod4Q. We presented in Chapter 3 evaluation results from which there are
two take away messages: (i) the sizes of the profile sets for real-world ontologies with
large ABoxes is expected to be small; and (ii) the model compilation computation T is
feasible for most complex ontologies with large TBoxes. We noticed 80% success rate
against a significant number of ontologies from different application domains obtained
from Oxford Ontology Repository, some of which were quite large and complex. However,
we note that our technique also has limitations, for roughly 20% of ontologies that force

137

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Summary and Conclusions

a lot of guesses in our profiles, our computation was infeasible; therefore we believe
that further investigation on refining the representations is needed in order to push the
scalability of the technique to a larger number of cases.

In Chapter 4 we proved that our model representation via type table computations T

is sufficient for answering any query preserved under homomorphisms. Furthermore,
we gave algorithms for answering instance queries, reachability queries, and semi-full
conjunctive query with reachability atoms an interesting query language that combines
RQs and CQs with restrictions on the existential quantification of variables. An important
feature of our approach is that the computation of the model representations is done
offline. Moreover, answers for each possible instance query can be obtained directly from
the answer sets of the ASP program, which makes our technique particularly suitable
for the task of ABox materialization. We showed some promising results from testing
the implemented algorithms for instance queries and reachability queries over the real
world ontologies reported in Chapter 3, and observed reasonable answering times. We
also remark that our model representation has similarities with the knot representation
presented in [EOv12a], and the CQ answering algorithm presented there can be adopted
for answering CQs in our approach. Therefore we envision that obtaining an algorithm
that is implementable for CQs inspired by the one in [EOv12a] is the next important
step to undertake.

In addition to showing that our approach in the setting of expressive DLs has the potential
for implementation in practice, in Chapter 5 we took the idea one step further by showing
that our approach can be also exploited in the context of expressive hybrid languages.
For this purpose, we presented an expressive new hybrid language which we call Clopen
KBs (CKBs), which generalizes and improves the prominent r-hybrid language [Ros05].
We showed that when the ontology in a CKB is expressed in ALCHOI and we assume
bounded predicate arities in rules, the complexity of basic reasoning problems coincides
with the complexity of standard problems in plain ALCHOI. Toward the purpose of
obtaining a practicable algorithm for Clopen KBs, we presented separable CKBs which
still generalize r-hybrid. We presented two translations of separable CKBs; the first
translation is a direct translation of separable CKBs to dl-programs, while the second a
translation into plain ASP programs. We compared both approaches with four CKBs
using real world data and a real ontology (MyITS). The translation in dl-programs run
with dlvhex failed to finish within the time-out limit. On the other hand, the translation
into plain ASP optimized using profiles performed well for different sizes of facts with
linear growth of program evaluation times. Both translations used clingo as the ASP
solver. Although limited to a small set of examples, our tests showed that there is
potential for obtaining implementable algorithms in the very expressive setting of hybrid
languages using our data representation-based approach.

In Chapter 6, we showed that profiles can be employed in a different setting than initially
envisioned. Instead of using the profiles for computing the representation of models
for expressive DLs, we showed that they can be adapted for optimizing algorithms in
Horn yet expressive DLs. We optimized a current state of the art algorithm for CQ

138

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

answering in Horn-SHIQ [EOv+12b] by using profiles for obtaining the set of activators-
which act as a constraining mechanism inside the TBox saturation inference calculus.
Activators contain information regarding the set of concepts that an individual from an
ABox covered by a profile can potentially satisfy. They helped us prune away superfluous
inferences, which for many ontologies were being derived with the original algorithm. An
implementation of the activators together with the rules and constraint conditions of
the optimized calculus was implemented in Clipper and was compared with the original
Clipper against a range of ontologies. We reported significant improvements. Many
ontologies that were untameable with the original implementation became manageable
with the optimized Clipper, showcasing in this way the benefits of using the representation
based approach instead of independent based query rewriting.

Finally, in Chapter 7, we showed that our abstract representation of families of ABoxes
via profiles can be obtained from existing OBDA specifications with R2RML mappings.
We gave a simple algorithm and a refinement technique for computing the profiles from a
given OBDA specification and observed manageable set of profiles from the analysis of
three real-world OBDA specifications. These results, together with the modularity of our
approach, and its support for incremental computation, encourage further development
and refinement of structure based approaches to OMQ answering.

For future research, we think that extending our type table T computation algorithm to
more expressive DLs and developing algorithms for supporting other query languages like
conjunctive queries should be undertaken next. We note here that Mod4Q is meant as a
proof of concept and due to time resources, not much performance engineering has been
put into it. Therefore we believe that it is equally important to continue the development
of Mod4Q with performance engineering in mind, and fitting its architecture to take full
advantage of incremental reasoning, a feature which due to the unavailability of data
has not been tested. Moreover, we believe that our approach allows for parallelization of
the computation of extended types distributed across different workers, and as such, it
remains an option to think about. With proper developmental resources our approach
could yield the first system that supports query answering for expressive DLs for a
range of application domains. In the end, we want to emphasize that obtaining more
benchmarking data for the DL community remains a challenging task. This is especially
true for expressive ontologies, which commonly come without real-world data because
application use cases of expressive DLs have targeted almost exclusively TBox reasoning
tasks. Therefore, for further validating our approach we think that identifying more
application use cases (such as MyITS) with large complex TBoxes in expressive DLs
remains an important goal.

139

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Figures

1.1 Representation of interpretations for the ontology in Table 1.1. 4

2.1 Uniform problem encoding in ASP . 26

3.1 Visualisation of the extended types of individuals in A1. 43
3.2 Workflow Diagram of Mod4Q . 56
3.3 Key features of the selected ontologies. 60
3.4 Successful computation of T catgorized by max number of base types 61
3.5 Key features of the selected ontologies with successful computation of T. . 62

4.1 PA for a given A . 68
4.2 PT for instance queries in ALCHI . 69
4.3 ASP rewriting of PT with positive rules. 69
4.4 Pq program for q(x) = ∃y r∗(x, y), C(y) 77
4.5 Pcrq program for a given s-CRQ q(~x) = ∃~y φ(~x, ~y) 81

5.1 Example CKB . 89
5.2 Programs evaluated against both encodings. 101

6.1 The example ABox completed with the inferences from the Ontology . . . 105
6.2 Successfull Instances. 119
6.3 TBox rate of growth for both versions (C-orig =red, C-opt =blue). . . . 120
6.4 TBox saturation run time for both versions (C-orig =red, C-opt =blue). . 121
6.5 Gained instances with C-opt. 121
6.6 Failed instances with both versions. 122

141

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Tables

1.1 An example ontology. 4

2.1 Syntax and semantics of DLs. 20

3.1 Type assignments for individuals in A1 from Example 4. 47
3.2 Size of P for real world ontologies. 61
3.3 Compilation details for selected complex ontologies. 62

4.1 Querying ontologies with large ABoxes . 83

5.1 Running times in seconds for programs P1–P4 for different next relations 100

6.1 An example anti money laundering ontology 104
6.2 An example ABox and query . 104
6.3 Original Horn-SHIQ inference calculus. 107
6.4 Optimized Horn-SHIQ inference calculus. 109
6.5 Distribution of ontologies by their respective ABox and TBox sizes. . . . 118

143

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Algorithms

3.1 Type table computation algorithm for ALCHI 37

4.1 Retrieve types that reach C through r 73

145

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[AKS13] José Júlio Alferes, Matthias Knorr, and Terrance Swift. Query-driven
procedures for hybrid MKNF knowledge bases. ACM Trans. Comput. Logic,
14(2):16:1–16:43, June 2013.

[AOS16] Shqiponja Ahmetaj, Magdalena Ortiz, and Mantas Simkus. Polynomial
datalog rewritings for expressive description logics with closed predicates.
In IJCAI 2016, USA, 2016.

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope.
In IJCAI-05, Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005,
pages 364–369, 2005.

[BBLW16] Franz Baader, Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. Query
and predicate emptiness in ontology-based data access. J. Artif. Intell. Res.,
56:1–59, 2016.

[BBtCP16] Michael Benedikt, Pierre Bourhis, Balder ten Cate, and Gabriele Puppis.
Querying visible and invisible information. In Proc. of LICS 2016, pages
297–306. ACM, 2016.

[BCH+14] Timea Bagosi, Diego Calvanese, Josef Hardi, Sarah Komla-Ebri, Davide
Lanti, Martin Rezk, Mariano Rodriguez-Muro, Mindaugas Slusnys, and
Guohui Xiao. The ontop framework for ontology based data access. In
The Semantic Web and Web Science - 8th Chinese Conference, CSWS 2014,
Wuhan, China, August 8-12, 2014, Revised Selected Papers, pages 67–77,
2014.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, New York,
NY, USA, 2003.

[BCOv14] Meghyn Bienvenu, Diego Calvanese, Magdalena Ortiz, and Mantas Šimkus.
Nested regular path queries in description logics. AAAI Press, 2014.

147

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[BCS15] Vince Bárány, Balder Ten Cate, and Luc Segoufin. Guarded negation. J.
ACM, 62(3):22:1–22:26, June 2015.

[BCS+16] Elena Botoeva, Diego Calvanese, Valerio Santarelli, Domenico F. Savo,
Alessandro Solimando, and Guohui Xiao. Beyond OWL 2 QL in OBDA:
rewritings and approximations. In AAAI, pages 921–928. AAAI Press, 2016.

[BET11] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set
programming at a glance. Commun. ACM, 54(12):92–103, 2011.

[BHLS17] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduc-
tion to Description Logic. Cambridge University Press, 2017.

[BKR+16] Elena Botoeva, Roman Kontchakov, Vladislav Ryzhikov, Frank Wolter, and
Michael Zakharyaschev. Games for query inseparability of description logic
knowledge bases. Artif. Intell., 234:78–119, 2016.

[BLB08] Franz Baader, Carsten Lutz, and Sebastian Brandt. Pushing the EL en-
velope further. In Proceedings of the Fourth OWLED Workshop on OWL:
Experiences and Directions, Washington, DC, USA, 1-2 April 2008., 2008.

[BLR+19] Elena Botoeva, Carsten Lutz, Vladislav Ryzhikov, Frank Wolter, and
Michael Zakharyaschev. Query inseparability for ALC ontologies. CoRR,
abs/1902.00014, 2019.

[BO15] Meghyn Bienvenu and Magdalena Ortiz. Ontology-mediated query answering
with data-tractable description logics. In Reasoning Web. Web Logic Rules -
11th International Summer School 2015, Berlin, Germany, July 31 - August
4, 2015, Tutorial Lectures, pages 218–307, 2015.

[BOS15] Meghyn Bienvenu, Magdalena Ortiz, and Mantas Simkus. Regular path
queries in lightweight description logics: Complexity and algorithms. J. Artif.
Intell. Res., 53:315–374, 2015.

[BOS17] Labinot Bajraktari, Magdalena Ortiz, and Mantas Simkus. Clopen knowl-
edge bases: Combining description logics and answer set programming. In
Proceedings of DL2017, Montpellier, France, 2017.

[BOS18a] Labinot Bajraktari, Magdalena Ortiz, and Mantas Simkus. Combining
rules and ontologies into clopen knowledge bases. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 1728–1735,
2018.

148

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[BOS18b] Labinot Bajraktari, Magdalena Ortiz, and Mantas Simkus. Compiling model
representations for querying large aboxes in expressive dls. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden., pages 1691–1698, 2018.

[BOX19] Labinot Bajraktari, Magdalena Ortiz, and Guohui Xiao. Optimizing horn-
SHIQ reasoning for OBDA. In To appear: Proceedings of the Eighteenth
International Semantic Web Conference, ISWC 2019, October 26-30, 2019,
Auckland, New Zealand., 2019.

[BtCLW14] Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter.
Ontology-based data access: A study through disjunctive datalog, csp,
and MMSNP. ACM Trans. Database Syst., 39(4):33:1–33:44, 2014.

[CDK19] David Carral, Irina Dragoste, and Markus Krötzsch. The combined approach
to query answering in horn-alchoiq (extended abstract). In Proceedings of
the 32nd International Workshop on Description Logics, Oslo, Norway, June
18-21, 2019., 2019.

[CDL+98] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi,
and Riccardo Rosati. Description logic framework for information integra-
tion. In Proceedings of the Sixth International Conference on Principles of
Knowledge Representation and Reasoning (KR’98), Trento, Italy, June 2-5,
1998., pages 2–13, 1998.

[CDL+05] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-
erini, and Riccardo Rosati. Dl-lite: Tractable description logics for ontologies.
In In AAAI/IAAI 2005, USA, 2005.

[CDL08] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Conjunctive
query containment and answering under description logic constraints. ACM
Trans. Comput. Log., 9(3), 2008.

[CDL+11] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-
erini, Antonella Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco
Ruzzi, and Domenico Fabio Savo. The MASTRO system for ontology-based
data access. Semantic Web, 2(1):43–53, 2011.

[CDLV02] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y.
Vardi. Rewriting of regular expressions and regular path queries. J. Comput.
Syst. Sci., 64(3):443–465, 2002.

[CDLV03] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y.
Vardi. Reasoning on regular path queries. SIGMOD Record, 32(4):83–92,
2003.

149

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[CEO14] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Answering regular
path queries in expressive description logics via alternating tree-automata.
Inf. Comput., 237:12–55, 2014.

[CGK19a] David Carral, Larry González, and Patrick Koopmann. From horn-sriq
to datalog: A data-independent transformation that preserves assertion
entailment. In AAAI, 2019.

[CGK19b] David Carral, Larry Gonzalez, and Patrick Koopmann. From horn-SRIQ to
datalog:a data-independent transformation that preserves assertion entail-
ment. In In AAAI 2019, USA, 2019.

[DFH11] John Domingue, Dieter Fensel, and James A. Hendler, editors. Handbook of
Semantic Web Technologies. Springer, 2011.

[DSC12] Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to
RDF mapping language. W3C recommendation, W3C, 2012.

[EGL16] Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of answer set
programming. AI Magazine, 37(3):53–68, 2016.

[EIK09] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer
set programming: A primer. In Reasoning Web. Semantic Technologies
for Information Systems, 5th International Summer School 2009, Brixen-
Bressanone, Italy, August 30 - September 4, 2009, Tutorial Lectures, pages
40–110, 2009.

[EIL+08] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schind-
lauer, and Hans Tompits. Combining answer set programming with descrip-
tion logics for the semantic web. Artif. Intell., 172(12-13):p. 1495, 2008.

[EKS13] Thomas Eiter, Thomas Krennwallner, and Patrik Schneider. Lightweight
spatial conjunctive query answering using keywords. In Proc. of ESWC 2013.
Springer, 2013.

[EOv12a] Thomas Eiter, Magdalena Ortiz, and Mantas Š. Conjunctive query answering
in the description logic SH using knots. J. Comput. Syst. Sci., 78(1):47–85,
2012.

[EOv+12b] Thomas Eiter, Magdalena Ortiz, Mantas Šimkus, Trung-Kien Tran, and
Guohui Xiao. Query rewriting for Horn-SHIQ plus rules. AAAI Press, 2012.

[EPS+15] Thomas Eiter, Jeff Z. Pan, Patrik Schneider, Mantas Šimkus, and Guohui
Xiao. A rule-based framework for creating instance data from OpenStreetMap.
In Proc. of RR 2015. Springer, 2015.

150

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[FFS+18] Andreas A. Falkner, Gerhard Friedrich, Konstantin Schekotihin, Richard
Taupe, and Erich Christian Teppan. Industrial applications of answer set
programming. KI, 32(2-3):165–176, 2018.

[FIS11] Enrico Franconi, Yazmin Angélica Ibáñez-García, and Inanç Seylan. Query
answering with DBoxes is hard. Electr. Notes Theor. Comput. Sci., 278:71–84,
2011.

[Fra94] Enrico Franconi. Description logics for natural language processing. In In:
Working Notes of the AAAI Fall Symposium on “Knowledge Representation
for Natural Language Processing in Implemented Systems”,1994, pages 37–44,
1994.

[GBFF91] Manfred Gehrke, Gerrit Burkert, Peter Forster, and Enrico Franconi. Nat-
ural language processing and description logics. In In: Peltason, C., von
Luck, K., Kindermann, C. (eds.) Proc. of the Terminological Logic Users
Workshop,Department of Computer Science, Technische Universität Berlin
(1991), pages 162–164, 1991.

[GHM+14] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang.
Hermit: An OWL 2 reasoner. J. Autom. Reasoning, 53(3):245–269, 2014.

[GHS08] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Unions of conjunctive
queries in SHOQ. In Principles of Knowledge Representation and Reasoning:
Proceedings of the Eleventh International Conference, KR 2008, Sydney,
Australia, September 16-19, 2008, pages 252–262, 2008.

[GIKK15] Víctor Gutiérrez-Basulto, Yazmin Angélica Ibáñez-García, Roman
Kontchakov, and Egor V. Kostylev. Queries with negation and inequal-
ities over lightweight ontologies. J. Web Sem., 35:184–202, 2015.

[GKK+11] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski,
Torsten Schaub, and Marius Schneider. Potassco: The potsdam answer set
solving collection. AI Comm., 24(2):107–124, 2011.

[GKL+14] Birte Glimm, Yevgeny Kazakov, Thorsten Liebig, Trung-Kien Tran, and
Vincent Vialard. Abstraction refinement for ontology materialization. In The
Semantic Web - ISWC 2014 - 13th International Semantic Web Conference,
Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part II, pages
180–195, 2014.

[GKT17] Birte Glimm, Yevgeny Kazakov, and Trung-Kien Tran. Ontology material-
ization by abstraction refinement in horn SHOIF. In In AAAI 2017, USA,
2017.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Proc. of ICLP/SLP 1988, pages 1070–1080. MIT
Press, 1988.

151

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[GLHS08] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. Conjunctive
query answering for the description logic SHIQ. J. Artif. Intell. Res., 31:157–
204, 2008.

[Hay81] Patrick J. Hayes. The logic of frames. In Nils J. Nilsson Bonnie Lynn Webber,
editor, Readings in Artificial Intelligence, pages 451–458. Morgan Kaufmann,
1981.

[HB11] Matthew Horridge and Sean Bechhofer. The OWL API: A java API for
OWL ontologies. Semantic Web, 2(1):11–21, 2011.

[HEX10] Stijn Heymans, Thomas Eiter, and Guohui Xiao. Tractable reasoning with
dl-programs over datalog-rewritable description logics. In Proc. of ECAI
2010. IOS Press, 2010.

[HKS+17] Dag Hovland, Roman Kontchakov, Martin Skjæveland, Ariid Waaler, and
Michael Zakharyaschev. Ontology-based data access to slegge. In ISWC,
2017.

[HM05] Ullrich Hustadt and Boris Motik. Description logics and disjunctive datalog
- the story so far. In Proceedings of the 2005 International Workshop on
Description Logics (DL2005), Edinburgh, Scotland, UK, July 26-28, 2005,
2005.

[HMS04] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. A decomposition rule for
decision procedures by resolution-based calculi. In LPAR 2004, Uruguay,
2004.

[HMS07] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in description
logics by a reduction to disjunctive datalog. J. Autom. Reasoning, 39(3):351–
384, 2007.

[HRG96] Ian Horrocks, Alan L. Rector, and Carole A. Goble. A description logic based
schema for the classification of medical data. In Knowledge Representation
Meets Databases, Proceedings of the 3rd Workshop KRDB’96, Budapest,
Hungary, August 13, 1996, 1996.

[IKL13] Vadim Ivanov, Matthias Knorr, and João Leite. A query tool for EL with
non-monotonic rules. In Proc. of ISWC 2013, pages 216–231, 2013.

[KAH11] Matthias Knorr, José Júlio Alferes, and Pascal Hitzler. Local closed world
reasoning with description logics under the well-founded semantics. Artif.
Intell., 175(9-10):1528–1554, 2011.

[Kaz09] Yevgeny Kazakov. Consequence-driven reasoning for Horn SHIQ ontologies.
In IJCAI, pages 2040–2045, 2009.

152

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[KRH07] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Complexity
boundaries for Horn description logics. In AAAI, pages 452–457. AAAI
Press, 2007.

[KSH12] Markus Krötzsch, Frantisek Simancik, and Ian Horrocks. A description logic
primer. CoRR, abs/1201.4089, 2012.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective. In Proceed-
ings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 3-5, Madison, Wisconsin, USA, pages
233–246, 2002.

[Len11] Maurizio Lenzerini. Ontology-based data management. In Proceedings of the
20th ACM Conference on Information and Knowledge Management, CIKM
2011, Glasgow, United Kingdom, October 24-28, 2011, pages 5–6, 2011.

[LMTV19] Nicola Leone, Marco Manna, Giorgio Terracina, and Pierfrancesco Veltri.
Fast query answering over existential rules. ACM Trans. Comput. Log.,
20(2):12:1–12:48, 2019.

[LRXC15] Davide Lanti, Martin Rezk, Guohui Xiao, and Diego Calvanese. The NPD
benchmark: Reality check for OBDA systems. In Proc. of the 18th Int. Conf.
on Extending Database Technology (EDBT 2015). ACM Press, 2015.

[LTW09] Carsten Lutz, David Toman, and Frank Wolter. Conjunctive query answering
in the description logic EL using a relational database system. In IJCAI
2009, Proceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17, 2009, pages 2070–2075,
2009.

[Lut08] Carsten Lutz. The complexity of conjunctive query answering in expressive
description logics. volume 5195 of LNCS, pages 179–193. Springer, 2008.

[LWW07] Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative extensions in
expressive description logics. In IJCAI, pages 453–458, 2007.

[McG99] Deborah L. McGuinness. Ontology-enhanced search for primary care medical
literature. In Proceedings of Int. Medical Informatics Association Working
Group 6 – Conference on Natural Language Processing and Medical Concept
Representation, IMIA 1999, 1999.

[Min85] Marvin Minsky. A framework for representing knowledge. In Readings in
Knowledge Representation, USA., pages 245–262. Morgan Kaufmann, 1985.

[MNP+14] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu.
Parallel materialisation of datalog programs in centralised, main-memory
RDF systems. In Proceedings of the Twenty-Eighth AAAI Conference on

153

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada.,
pages 129–137, 2014.

[MR10] Boris Motik and Riccardo Rosati. Reconciling description logics and rules.
J. ACM, 57(5), 2010.

[Neb90] Bernhard Nebel. Terminological reasoning is inherently intractable. Artif.
Intell., 43(2):235–249, 1990.

[OCE08] Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Data complexity
of query answering in expressive description logics via tableaux. J. Autom.
Reasoning, 41(1):61–98, 2008.

[ORS11] Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. Query answering
in the Horn fragments of the description logics SHOIQ and SROIQ. In
IJCAI 2011, Spain, 2011.

[OWL09] OWL working group. OWL Web Ontology Language semantics: docu-
ment overview – W3C recommendation. Technical report, World Wide
Web Consortium, October 2009. Available at http://www.w3.org/TR/
owl2-overview/.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley,
1994.

[PLC+08] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, and Riccardo Rosati. Linking data to ontologies. J.
Data Semantics, 10:133–173, 2008.

[PMH10] Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. Tractable query
answering and rewriting under description logic constraints. J. Applied Logic,
8(2):186–209, 2010.

[Qui67] M. Ross Quillan. A theory and simulation of some basic capabilities. In
Behavioral Science, pages 410–430. Morgan Kaufmann, 1967.

[RA10] Riccardo Rosati and Alessandro Almatelli. Improving query answering over
dl-lite ontologies. In KR 2010, Canada. AAAI Press, 2010.

[RBG+97] Alan L. Rector, Sean Bechhofer, Carole A. Goble, Ian Horrocks, W. A.
Nowlan, and W. D. Solomon. The GRAIL concept modelling language for
medical terminology. Artificial Intelligence in Medicine, 9(2):139–171, 1997.

[Red17] Christoph Redl. Efficient evaluation of answer set programs with external
sources based on external source inlining. In Proc. of AAAI 2017. AAAI
Press, February 2017.

154

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[RKZ13] Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev.
Ontology-based data access: Ontop of databases. volume 8218 of LNCS,
pages 558–573. Springer, 2013.

[Ros05] Riccardo Rosati. On the decidability and complexity of integrating ontologies
and rules. J. Web Sem., 3(1):61–73, 2005.

[Ros06] Riccardo Rosati. DL+log: Tight integration of description logics and dis-
junctive datalog. In Proc. of KR 2006, 2006.

[RPZ10] Yuan Ren, Jeff Z. Pan, and Yuting Zhao. Soundness preserving approximation
for tbox reasoning. In AAAI, 2010.

[RR15] Mariano Rodriguez-Muro and Martín Rezk. Efficient sparql-to-sql with
R2RML mappings. J. Web Semant., 33:141–169, 2015.

[Rud11] Sebastian Rudolph. Foundations of description logics. In Reasoning Web.
Semantic Technologies for the Web of Data - 7th International Summer
School 2011, Galway, Ireland, August 23-27, 2011, Tutorial Lectures, pages
76–136, 2011.

[SC10] L. Shi and X. Cai. An exact fast algorithm for minimum hitting set. In
2010 Third International Joint Conference on Computational Science and
Optimization, volume 1, pages 64–67, 2010.

[Sch93] Andrea Schaerf. On the complexity of the instance checking problem in con-
cept languages with existential quantification. J. Intell. Inf. Syst., 2(3):265–
278, 1993.

[Sim13] Frantisek Simancik. Consequence-Based Reasoning for Ontology Classifica-
tion. PhD dissertation, University of Oxford, 2013.

[SKH11] František Simančík, Yevgeny Kazakov, and Ian Horrocks. Consequence-based
reasoning beyond horn ontologies. In Proc. of IJCAI 2011, pages 1093–1098.
AAAI Press, 2011.

[SLG14] Andreas Steigmiller, Thorsten Liebig, and Birte Glimm. Konclude: System
description. J. Web Sem., 27:78–85, 2014.

[SM15] Giorgio Stefanoni and Boris Motik. Answering conjunctive queries over EL
knowledge bases with transitive and reflexive roles. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA., pages 1611–1617, 2015.

[SMKR14] Giorgio Stefanoni, Boris Motik, Markus Krötzsch, and Sebastian Rudolph.
The complexity of answering conjunctive and navigational queries over OWL
2 EL knowledge bases. J. Artif. Intell. Res. (JAIR), 51:645–705, 2014.

155

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical OWL-DL reasoner. J. Web Sem., 5(2):51–53,
2007.

[Swi04] Terrance Swift. Deduction in ontologies via ASP. In Proc. of LPNMR 2004.
Springer, 2004.

[TSCS15] Despoina Trivela, Giorgos Stoilos, Alexandros Chortaras, and Giorgos B.
Stamou. Query rewriting in horn-shiq. In Proceedings of the 28th Interna-
tional Workshop on Description Logics, Athens,Greece, June 7-10, 2015.,
2015.

[Var82] Moshe Y. Vardi. The complexity of relational query languages (extended
abstract). In Proceedings of the 14th Annual ACM Symposium on Theory of
Computing, May 5-7, 1982, San Francisco, California, USA, pages 137–146,
1982.

[WM12] Sebastian Wandelt and Ralf Möller. Towards abox modularization of semi-
expressive description logics. Applied Ontology, 7(2):133–167, 2012.

[XCK+18] Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo, An-
tonella Poggi, Riccardo Rosati, and Michael Zakharyaschev. Ontology-based
data access: A survey. In IJCAI, pages 5511–5519, 2018.

[XDCC19] Guohui Xiao, Linfang Ding, Benjamin Cogrel, and Diego Calvanese. Virtual
knowledge graphs: An overview of systems and use cases. Data Intelligence,
1:201–223, 2019.

156

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	State of the Art
	Goals of the Thesis
	Contributions
	Structure of the Thesis

	Preliminaries
	Description Logic
	Answer Set Programming

	Reasoning About Families of ABoxes
	Profiles for Representing Families of ABoxes
	Compiling Models in Expressive DLs
	Benchmarks Set-up for Expressive DLs
	Evaluation
	Discussion and Related Work

	Query Answering in Expressive DLs
	Instance Queries and ABox Materialization
	Reachability Queries
	Semi-full Conjunctive Queries with Reachability Atoms
	Evaluation
	Discussion and Related Work

	Practicable Reasoning in Hybrid Languages
	Basic Definitions
	Clopen Knowledge Bases
	Decidable CKBs
	CKBs and Description Logics
	Translations and Implementation
	Evaluation
	Discussion and Related Work

	Optimizing Reasoning in Expressive Horn DLs
	Restricting Horn-SHIQ Saturation
	Evaluation
	Discussion and Related Work

	Extracting ABox Structure from OBDA Specifications
	Preliminary Definitions
	Profiles and Activators from Mappings
	Validating Profile Extraction from OBDA Specifications
	Discussion

	Summary and Conclusions
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

