

DISSERTATION

SELF-ORGANIZATION FOR LOAD BALANCING
AND INFORMATION RETRIEVAL BASED ON

SHARED COORDINATION SPACES

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors

der technischen Wissenschaften unter der Leitung von

Ao. Univ.Prof. Dr. eva Kühn

185-1

Institut für Computersprachen

und

Univ.Prof. Dr. Slobodanka Mitrovic

Universität Belgrad

eingereicht an der Technischen Universität Wien

Fakultät für Informatik
von

Mag. Dipl.Math. Vesna Čavić geb. Šešum
0625918

Mohsgasse 26/15-17

A-1030 Wien

Wien, 10.02.2011. eigenhändige Unterschrift

Technische Universität Wien
 A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Diese Dissertation haben begutachtet:

--------------------- ----------------------

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

TABLE OF CONTENTS

1 INTRODUCTION ... 2
1.1 Complexity in IT systems .. 2
1.2 Research Questions .. 6
1.3 Approach and Contribution .. 8
1.4 Methods ... 10
1.5 Thesis Structure ... 13

2 RELATED WORK AND TECHNICAL BACKGROUND 15
2.1 Self-Organization ... 15

2.1.1 Theoretical Overview ... 15
2.1.2 Nature Based Mechanisms ... 23
2.1.3 Socially Based Mechanisms .. 27
2.1.4 Self-Organization in P2P ... 31
2.1.5 Self-Organization in SBC .. 34

2.2 Algorithms ... 39
2.2.1 Metaheuristics .. 40

2.3. Summary .. 43

3 APPLICATION SCENARIOS ... 45
3.1 Applicability of self-* approach .. 45
3.2 Location and Retrieval of Information in the Internet 46
3.3 Load Balancing in Distributed Heterogeneous Systems 47
3.4 Complexity in application scenarios .. 48
3.5 Measurement of Complexity .. 50
3.6 Summary .. 53

4 DESIGN AND IMPLEMENTATION ... 55
4.1 Architectures .. 55

4.1.1 P2P Unstructured Intelligent Overlay .. 55
4.1.2 SILBA .. 59

4.2 Model description and verification .. 67
4.2.1 Pluscal Algorithm Language .. 67
4.2.2 Architectures described in Pluscal ... 70

4.3 Implementation .. 80
4.3.1 LookUp Implementation .. 80
4.3.2 SILBA implementation .. 82

4.4 Summary .. 86

5 EMPLOYING NATURE-BASED MECHANISMS 88
5.1 Swarm Intelligence .. 88

5.2 Ant Algorithms .. 89
5.2.1. Ant behaviour in nature ... 89
5.2.2. Algorithms ... 90
5.2.3. Mapping Ant Algorithms to Application Scenarios 96

5.3 Bee algorithms ... 100
5.3.1. Bees Behaviour in Nature .. 100
5.3.2. Bee Algorithms for Application Scenarios 101

5.4 Summary .. 108

6 BENCHMARKS AND EVALUATION... 111
6.1 Results (Information Retrieval Scenario)..................................... 113

6.1.1 Test Examples .. 113
6.1.2 Test Environments ... 114
6.1.3 Results obtained on the Cluster .. 114
6.1.4 Results obtained on Amazon Cloud ... 124

6.2 Results (Dynamic Load Balancing) ... 132
6.2.1 Basic SILBA Benchmarks ... 132
6.2.2 Extended SILBA Benchmarks ... 141

6.3 Summary .. 155

7 CONCLUSION .. 157
7.1 Future Work ... 162

8 APPENDIX .. 164
Appendix A .. 164

SilbaNode .. 169
Worker Agent .. 171
Routing Agent ... 173

Appendix B .. 174
Appendix C .. 195

REFERENCES .. 209

LIST OF FIGURES

Figure 2.1: Sketch of a fitness landscape. ... 42
Figure 4.1. Local Node Pattern ... 57
Figure 4.2. Node classification according to the data quality policy. 57
Figure 4.3. Pattern composition (for ant algorithms). .. 58
Figure 4.4. The classification of nodes according to the Transfer Policy 61
Figure 4.5. Patterns in SILBA ... 63
Figure 4.6. An example of a network configuration ... 64
Figure 4.7. An example of a network topology .. 66
Figure 4.8. Local Node Implementation (lookup) .. 81
Figure 4.9. Forward Ant Implementation... 81
Figure 4.10. Local Node Implementation (silba) .. 82
Figure 4.11. Allocation Implementation ... 83
Figure 4.12. Routing Implementation ... 84
Figure 5.1 Pseudo-code of ACO metaheuristic .. 95
Figure 5.2. Pseudo-code of BCO metaheuristic ... 104
Figure 6.1. Different kind of combination for first case (Random/ MMAS) 116
Figure 6.2. The best combination (1st case): Random/ MMAS 116
Figure 6.3. Second case: Random/ AntNet . .. 117
Figure 6.4. The comparison between the best obtained results in the 1st and the 2nd
case .. 118
Figure 6.5. The comparison between the best obtained results in the 1st and the 3rd
case 118
Figure 6.6. The comparison between the best obtained results in the 2nd and the 4th
case .. 119
Figure 6.7. The lookup mechanism performed by MMAS with different number of
queries. ... 121
Figure 6.8. The lookup mechanism performed by AntNet with different number of
queries. ... 121
Figure 6.9. Comparison of performances of different lookup mechanisms on 80
containers 123
Figure 6.10. The comparison between the results of all algorithms 125
Figure 6.11. The lookup mechanism performed by Random/MMAS with different
number of queries. .. 126
Figure 6.12. The lookup mechanism performed by Random/AntNet with different
number of queries ... 126
Figure 6.13. The lookup mechanism performed by Brood/MMAS with different
number of queries. .. 127
Figure 6.14 The lookup mechanism performed by Brood/AntNet with different
number of queries. .. 127
Figure 6.15. The lookup mechanism performed by Random/Bees with different
number of queries. .. 128
Figure 6.16. An arbitrary topology of 16 nodes ... 134
Figure 6.17. Algorithms Comparison (the Cluster environment) 137

Figure 6.18. Algorithms Comparison (the Cloud environment) 138
Figure 6.19. Different task size .. 139
Figure 6.20. Different frequency of supplying tasks ... 139
Figure 6.21. An example of different topologies. .. 143
Figure 6.22. Combination of algorithms in the chain topology 144
Figure 6.23 Combination of algorithms in the full topology 145
Figure 6.24. Combination of algorithms in the ring topology 146
Figure 6.25. Combination of algorithms in the star topology 147
Figure 6.26. The results of the best combinations of each topology 148
Figure 6.27. Scaling behavior ... 153
Figure 8.1. The organization of the main classes in Lookup scenario. 165
Figure 8.2. The organization of the main classes in SILBA. 169
Figure 8.3. A detail presentation of the main class: SilbaBase. 170
Figure 8.4. A detail presentation of the main class: WorkerAgent 172
Figure 8.5. A detail presentation of the main class: SilbaNode. 173

LIST OF TABLES

Table 4.1. Classification of load balancing approaches .. 59
Table 4.2. Search Modes ... 85
Table 4.3. Suitability Functions .. 85
Table 4.4. Fitness Functions ... 86
Table 5.1. Lookup table for adjustment of probability. .. 104
Table 6.1. Possible combinations used in benchmarks .. 113
Table 6.2. A comparison of the performances of different lookup mechanisms 122
Table 6.3 A comparison of the performances of different lookup mechanisms
(number of containers = 80) ... 129
Table 6.4. A comparison of the performances of different lookup mechanisms
(number of containers = 120) ... 130
Table 6.5. Parameters ... 133
Table 6.6. Comparison on the Cluster ... 136
Table 6.7. Comparison on the Cloud .. 136
Table 6.8. Different task size. .. 138
Table 6.9. Different frequency of supplying tasks. .. 139
Table 6.10. Combinations of algorithms .. 142
Table 6.11. Distribution of nodes in subnets ... 142
Table 6.12. Overall comparison of the best results in all topologies 148
Table 6.13. Results of the best combinations in different network dimensions ... 149
Table 6.14 Deviation swarm based algorithms’ combinations from the best
solution .. 152
Table 8.1 Variation of parameters in random/MMAS (40 containers) 195
Table 8.2. Variation of parameters in random/MMAS (80 containers) 196
Table 8.3. Variation of parameters in random/MMAS (120 containers) 197

Table 8.4. Variation of parameters in random/MAS (160 containers) 199
Table 8.5. Variation of parameters in random/MMAS (200 containers) 200
Table 8.6. Variation of parameters in random/AntNet (40 containers) 201
Table 8.7. Variation of parameters in random/AntNet (80 containers) 202
Table 8.8. Variation of parameters in random/AntNet (120 containers) 202
Table 8.9. Variation of parameters in random/AntNet (160 containers) 203
Table 8.10. Variation of parameters in random/AntNet (200 containers) 204
Table 8.11. Combination in star topology. ... 205
Table 8.12. Combinations in chain topology. .. 206
Table 8.13. Combination in full topology. ... 207
Table 8.14 Combination in ring topology. ... 208

LIST OF LISTINGS

Listing 4.1. The Pluscal algorithm for Lookup pattern composition. 73
Listing 4.2. The PlusCal algorithm for SILBA pattern composition...................... 78
Listing 8.1. The PlusCal algorithm with TLA+ specification (Lookup). 181
Listing 8.2. The PlusCal algorithm with TLA+ specification (SILBA). 194

ABSTRACT
The increased complexity in nowadays information technology (especially

in distributed systems) presents a huge obstacle in the further development of
software systems. The huge number of unpredictable dependencies on inte-
racting components cannot be coped with any more in a traditional way. It
implies the necessity of finding more advanced, intelligent approaches. As
software systems develop rapidly and change constantly, the existing methods
are obsolete or inadequate in today’s dynamic environments. Therefore, self-
organization that is a relatively new approach with a lack of real applications
is proposed in the dissertation as a promising approach in coping with com-
plexity. The dissertation presents a new conception of a self-organizing coor-
dination infrastructure as a combination of different methods: coordination
spaces, self-organization, adaptive algorithms and multi-agent technologies.
The focus is put on two important IT problems: dynamic load balancing in he-
terogeneous distributed systems and information retrieval in the Internet.
These problems are treated in a new way by using self-mechanisms. For each
of these problems, a self-organizing framework, i.e., software architecture is
developed. These architectures are modeled and their correctness is proven by
using the PlusCal algorithm language. They are flexible and generic, unde-
pendable of the network topology, algorithms used, problem specification,
etc. A bee algorithm and two adapted ant algorithms are developed for the lo-
cated IT scenarios. These algorithms are inspired by self-organization from
nature. They mathematically describe bio-self-mechanisms and successfully
solve these complex problems through autonomy and fully distributed com-
munication of components in a system. These algorithms are plugged in the
frameworks. The results are obtained by benchmarking in two different envi-
ronments: a cluster and the Amazon EC2 Cloud. The benchmarking part
presents a way of selecting and fine-tuning of a huge number of parameters
used in the algorithms. The comparison is done taking into account the other
approaches: Gnutella lookup mechanisms for the information retrieval in the
Internet, and different unintelligent (Random, Sender) and intelligent (adapted
genetic algorithms) approaches for dynamic load balancing. The evaluation is
carried out by performance and scalability. The obtained results prove the
benefits of the used methods and constructed algorithms as the performance
of the system and scalability are improved. For example, the results of the
first considered scenario obtained on the Amazon EC2 Cloud, showed that the
random/bee combination on 80 nodes with 50 swarms and by treating 5 que-
ries was 0.5% better than the random/AntNet combination, 7.8% better than
the random/MMAS combination and 61.3% better than Gnutella. The results
of the first considered scenario obtained on the Amazon EC2 Cloud, showed
that: in the chain topology, the best result is obtained by both BeeAlgo-
rithm/Sender and MMAS/MMAS. They were equal good, and better than the

combination that “took the second place”, GA/Bee Algorithm, for 5.4%. The
combination RoundRobin/BeeAlgorithm showed the best results in the full
topology. This combination was better than the combination that “took the
second place”, RoundRobin/AntNet, for 1.3%. Both BeeAlgorithm/Sender
and MMAS/RoundRobin were equal good in the ring topology. They were
better than the combination that “took the second place”,
MMAS/RoundRobin, for 1.4%. In the star topology, the combinations
BeeAlgorithm/BeeAlgorithm and GA/AntNet were the best with the same re-
sulting value. They were better than the combination that “took the second
place”, AntNet/MMAS, for 6.1%. The self-organization is measured through
the usage of specially constructed functions (so-called the suitability func-
tion). The main innovation and contribution of this dissertation is: location of
problem types where self-* can be useful, construction of a new self-
organizing coordination infrastrucutre, adaptation of Ant Algorithms for the
located IT problems, specification of a new type of algorithm, Bee Algorithms
for the located IT problems, finding the best parameters tuning in each of the
considered scenarios as well as the best algorithm/combination of algorithms.

CHAPTER 1

CHAPTER 1 - INTRODUCTION

 2

1 INTRODUCTION

Self-organization surrounds us and offers apparently simple answers to

very complex questions and problems through spontaneously increased organ-
ization in a system without actions being controlled by some central coordina-
tor or an external system. It could be seen as a natural process of evolution
through which complex systems find qualitatively better patterns in order to
cope with their complexity. These mechanisms are extremely interesting to be
applied in different complex systems nowadays, especially IT-systems. This
chapter starts with a major issue in IT industry, the increased complexity of
software systems. Then it points out the advantages of self-organizing me-
chanisms and necessity of their usage in IT problems. After having introduced
the research area, this chapter continues with deriving the main research ques-
tions, explanation of the chosen approaches and the ways of evaluation of the
achieved results.

1.1 Complexity in IT systems

Today’s information technology industry is characterized by the growing
globalization of enterprises. In order to be competitive, companies require
software systems to communicate and collaborate across organizational
boundaries, using software components providing data and services from
many different, distributed, and heterogeneous sites. Such software systems
are rapidly changing caused by new and varying market needs, as well as by
technological evolutions. Developers of distributed software systems put a
significant effort to keep their systems up-to-date with all new standards and,
therefore, have to cope with an enormous increase in software complexity.
Main factors that determine software complexity are: huge amounts of distrib-
uted components that must interplay in a global solution, problem size like
number of computers, clients, requests, size of queries etc., heterogeneity,
autonomy of organizations, and dynamic changes of the environment. Distrib-
uted software systems are forced to integrate other software systems and com-
ponents that themselves are often not reliable, exhibit bad performance, and
are sometimes unavailable. As they are run and maintained by autonomous or-
ganizations they neither can be changed, nor adapted, nor hosted elsewhere.

These challenges are so fundamental that the usually taken approach to
control distributed components across enterprise boundaries through one cen-
tral coordinator software reaches its technical and conceptual limits. It is hard
to design such a single controlling component that is à priori aware of all the
mentioned possible changes and deficiencies in the environment. The more

CHAPTER 1 - INTRODUCTION

3

foreign software components are involved, the more the risks concerning com-
plexity of utilization, entire system performance, and operational dependabil-
ity, increase. Components and their capacity increase exponentially and over-
all-complexity increases super-exponentially ([HeGe03]). Therefore the huge
number of unpredictable dependencies on participating components cannot be
coped with any more in the traditional way, namely through one central coor-
dinator that implements the entire business logic and that possesses the com-
plete picture of the distributed environment. Rather, completely new ap-
proaches are demanded to diminish these problems.

Generally, complex systems are systems featuring a large number of inter-
acting components with internal state defined by a huge number of parame-
ters. These systems can be in any of a very large number of states at any given
time. Complex systems behave unreliably, with a number of unexpected and
often unexplained upturns. Except unpredictability, the behaviour of a com-
plex system is characterized by non-linearity, asymmetry and aperiodicity.

It is difficult to “decompose” and analyse such systems with a huge
number of elements (often heterogeneous) and relations between those ele-
ments, whereas the way of decision–making is highly decentralized. If com-
plex systems are so unpredictable, how can we deal with them? We are not
able to deal completely with them and can not predict everything that might
happen. What we can do is to be prepared to adapt as good as possible to the
unexpected changes, and to anticipate as much as we can. When a system is
adaptive, unexpected events can be tackled, as the system is reconfigured or
reconfigures itself without breaking. The complex system is not arbitrarily
regulated. It is ordered in a very organized way. This organization was not
built into the system at its origin, it has emerged in a sequence of self-
organizing processes that understood spontaneous transitions into new states
of higher organizational complexity. The term “spontaneous” doesn’t mean
“they just happen” for no particular reason. The challenge and need is to find
some principles additional to the low level laws to explain it. Some well-
known methods used to deal with complexity (like simplicity, abstraction, de-
coupling, decomposition, classification, etc.) have been proven to be appro-
priate to handle specific problems. A very useful concept in the adaptation of
complex systems is self-organization. Certainly, self-organizing systems will
not be able to adapt to all possible events, but they have proven to pose a good
perspective to deal with complexity. The goal for the elements of a system is
to self-organize, without the intervention of an engineer or manager. The ad-
vantage of self-organizing systems is not only that they can find un-foreseen
solutions for problems, but also that they are very adaptive. Major advantages
over traditional systems are: robustness, flexibility, capability to function au-
tonomously while demanding a minimum of supervision, and the spontaneous
development of complex adaptations without need for detailed planning. Dis-

CHAPTER 1 - INTRODUCTION

 4

advantages are limited predictability and difficulty of control. These systems
are “on the edge” between organization and chaos, which bears a certain risk.

The origin of the term “self-organization” dates from the 18th century and
the work of Immanuel Kant ([Kant1892]). In contemporary science, the term
"self-organizing" was introduced in 1947 by W. Ross Ashby ([Ashb47]) and
later used by Norbert Wiener ([Wien61]). The notion of self-organization was
used in the area of general systems theory in the 1960s, but the common usage
in the scientific literature started its adoption by physicists and researchers in
the field of complex systems in the 1970s and 1980s.

There is a constant necessity for self-organizing mechanisms in distributed
systems. Researchers have experimented with different paradigms in order to
achieve the main properties of self-organized systems. The paper
([MMTZ06]) presents a review on the state of the art of nature-inspired self-
organizing mechanisms in computer science. Five main areas are currently
identified to benefit from the presented self organized behaviours: middle-
ware, information systems and management, security, robotics, and network
management. Self-organization in middleware is further divided in four appli-
cation areas: grid computing, coordination systems, cache replacement sys-
tems, and pervasive computing. In grid computing, the resource utilization
needs to be adaptive to cope with dynamic conditions. Therefore, self-
organized mechanisms such as foraging, molding, and brood sorting could be
beneficial for the resource utilization in Grid frameworks ([AGKT02]). In co-
ordination systems, the problem of scalability is present, i.e., it does not scale
well with the number of processes in the system. SwarmLinda ([MeTo03])
tries to cope with this problem by applying the foraging and brood sorting
mechanisms. In adaptive web cache replacement, newly created ants could
follow such pheromones to predict what resources will be accessed in the fu-
ture, and to crate novel relevant entries in the cache ([Floy05]). In pervasive
computing, the models ([MaZL04], [MaZa04]) use the self-* mechanisms.
Self–organization in information systems and management generally refers to
database organization. In database organization, self-organization inspired by
brood sorting that may be used to provide an adaptive distribution of data
based on criteria based on the database tables, records, and even fields. These
concepts are very similar to the ideas of self-tuning databases presented in
([WMHZ02]). In the area of security, self-organization is used in malicious
code protection and refers to using self-mechanisms similar to the immune
systems ([Dasg99]), and distribution of security policies (e.g., [Mene05] de-
scribes a self-organized solution for policy distribution based on foraging with
elements of molding). In robotic systems, the use of self-organization is a
“hot” topic of intensive research. Several surveys exist covering this applica-
tion of self-organization (e.g., motion coordination [PaBS04] and self assem-
bly [SLTD02]). Applications of self-organization in networks refer to areas of
mobile ad-hoc networks (ant routing algorithms that apply foraging [BoDT99]

CHAPTER 1 - INTRODUCTION

5

and gradient routing algorithm that takes inspiration form molding [Poor01]),
sensor networks (directed diffusion [InGE00] is a routing algorithm that uses
of mechamisms like molding and ant foraging), and amorphous computing
([AACH00]) inspired by morphogenesis metaphors. However, the problem is
that we still do not have the appropriate language to speak and think clearly
about self-organizing systems. Although the theory of self-organization has
much potential, it has no enough practical applications yet. What are real use
cases that can profit from self-*1? On which kind of problem can it be ap-
plied? Self-* is not applicable to all kinds of problems, e.g. for “not very
complex” problems or for problems that have a deterministic best solution,
other methodologies will be more suitable and less risky. There are many fac-
ets of self-* one can think of, but probably not all of them will have a map-
ping and contribution to a real software problem. Some examples are:
 Self-healing/repairing systems will provide primitives for continued

execution when nodes or the network communication fails as well as
support the “repair” of node configuration.

 Self-configuring systems will provide mechanisms so that the software
will continue to work when nodes are added/removed during execu-
tion and that parts of the application can be upgraded “on-the-fly”
from one version to another without interrupting execution.

 Self-tuning systems will provide support for coping with high and dy-
namically changing loads through load balancing.

 Self-classifying systems will enable different optimization; e.g. mini-
mize search effort or reduce network costs by clustering nodes accord-
ing to certain interests.

 Self-learning systems will provide means to adapt fast to changes by
learning from history.

 We expect that self-* is applicable to those types of problems where we
can clearly adapt known self-* mechanisms from nature, organizations,
social domains, etc.

In order to investigate complex systems and benefits of self-* in reducing

their complexity in an abstract, general way, the knowledge about particular
scenarios must be collected. It is hard to predict what constitutes the “critical
mass” of scenarios (a huge number of very significant scenarios) after which it
could be possible to lift up our cognition about self-organization in a more ab-
stract way. This dissertation investigates two important IT problems: load ba-
lancing in heterogeneous distributed systems and information retrieval in the
Internet.

1 Self-* denotes all possible self-properties of a system that can lead to self-

organization.

CHAPTER 1 - INTRODUCTION

 6

1.2 Research Questions

Although the potential of self-organization in approaching to problems in
complex systems is recognized, there are many open questions in this field of
research. This subsection describes open problems and derives the research
questions addressed in this work.

Research Question 1: Can the two important IT use cases: 1) load balanc-

ing in heterogeneous distributed systems, and 2) information retrieval in the
Internet, profit from the usage of self-organization?

Although self-* has much potential and current research on it has raised
reasonable interest, there is a lack of real-life applications relevant enough to
derive a substantial practical experience from them ([Heyl01]). Self-* has
been successfully applied to combinatorial optimization problems and to
problems that treat routing, or search and optimization in general ([DoSt05],
[Blem03], [Stüt97], [DiDo98a], [DiDo98b], [ChZC10]) or the clustering or
grouping/aggregation of data ([CMVT07], [TaVe05]). But definitely, self-* is
not applicable to all kinds of problems, e.g. for “not very complex” problems
or for problems that have a deterministic best solution, other methodologies
will be more suitable. There are many facets of self-* one can think of, but
probably not all of them will have a mapping and contribution to a real soft-
ware problem. We expect that self-* is applicable to those types of problems
where we can adapt already known self-* mechanisms from nature, organiza-
tions, social domains, etc. A mission of Research Question1 is to investigate
two important IT problems: load balancing in heterogeneous distributed sys-
tems and information retrieval in the Internet and find out, whether and to
which degree they can profit from principles of self-*.

Research Question 2: Can the principles of self-* help to cope with com-

plexity in heterogeneous systems? What can be improved by employing self-*
mechanism? What kind of complexity exists and how can complexity be meas-
ured with the focus on the above mentioned problems?

Each software system bears a certain degree of unavoidable complexity
which refers to its specification ([Alha04], [KuKG08]). The kind of software
systems to be investigated in this research work are characterized by a huge
number of heterogeneous, distributed, unreliable components that need to col-
laborate to achieve a joint goal, dynamic changes in the environment, and
complicated business requirements (e.g. complex queries). There is often not
one “best” solution, rather there are many possible good or at least acceptable
solutions. A repeated execution of a software application might lead to differ-
ent results due to changed environmental conditions. Research Question 2 in-
vestigates whether decentralized, autonomous adaptation of component be-

CHAPTER 1 - INTRODUCTION

7

haviour, which allows a fast reaction to any kind of changes and opportuni-
ties, is a proper means to cope with complexity in heterogeneous software
systems. This refers on the one side to the issue to become able to build solu-
tions that are thought infeasible today as their design and development effort
would be too high, and on the other side the issue of reducing operational
risks as a self-* system is able to heal itself automatically (e.g. through
failover mechanisms). An example of a self-* system is the Internet where
there is no central control, each node of the network has its own task, and the
Internet protocol is designed in a way that if some servers go down, the traffic
can be still maintained by other servers. The Internet adapts constantly to
varying traffic loads. The rationale behind this research question is that mod-
elling and deployment of smaller and self-contained software components is
easier than designing a complex system in its entirety. Central responsibility,
knowledge about all possible circumstances from the outset, and a single-
point-of-failure are avoided. Unexpected events are tackled, as the system re-
configures itself without breaking. A running system evolves to a superior so-
lution by itself without explicit intervention of a software developer. The ad-
vantage is both to find unforeseen, good solutions for complex problems, and
to adapt and improve automatically whenever possible. Certainly, self-* sys-
tems will not be able to adapt to all possible events, but we believe they prom-
ise a good perspective to deal with complexity. It must be investigated,
whether new sources of complexity arise, how to guarantee that a system
finds a solution at all, will the system spend too much time “administrating”
itself, and can certain service level agreements be met.

Researchers from different areas of science like biology, computer science,
finance, etc., define different measures of complexity for each respective
field. ([Lloy01]) presents a categorization of complexity measures by defining
common questions for all problems: (1) How hard is to describe? (2) How
hard is it to create? (3) What is its degree of organization? Obviously, a gen-
eral form doesn’t exist yet; e.g., in ([CMVT07]), the mechanism of “brood
sorting” is used and as one measure a kind of spatial entropy is proposed. In
([ŠeKü08], [ŠeKü09]), it is tracked how good the single contributors (bees,
ants, …) organize themselves by means of suitability functions.

Also, it will be investigated how the application of self-* could improve
performance and scalability of a system both scenarios.

Research Question 3: How can swarm intelligence be mapped/adapted to

the load balancing problem and to the problem of locating and retrieving in-
formation in the Internet? Can bee intelligence be mapped to these two use
cases and how? Can ant intelligence be adapted to these two use cases and
how?

CHAPTER 1 - INTRODUCTION

 8

 As there is not yet a broad practical experience in the field of distributed
self-* software systems, Research Question 3 claims a need for (a) identifying
existing tools, methods, and architectures capable to be applied in the self-*
field, and (b) investigating and developing new ones. An appropriate language
to speak and think about self-* systems is required, as well as methods to eva-
luate a self-* system at both theoretical and practical level. Specific attention
will be given to swarm intelligence mechanisms (ant intelligence, bee intelli-
gence) as a very promising approach to obtain self-* properties ([DoSt05],
[WoLC08]).

Research Question 4: What is the best parameters tuning in each of the

considered scenarios?

Generally, dynamical systems are very sensitive to parameter changes. For
example, a single mutation leads the system into another completely different
behavior. As the possible states grow rapidly with complexity, dynamical sys-
tems possess very large state spaces. During these changes of state, a system
moves to a fixed structure, i.e., it arrives at the attractor - a preferred position
for the system ([Heyl01]). When we are talking about “transferring” self-*
mechanisms from nature (like the usage of swarm intelligence), the proper pa-
rameter settings and fine-tuning is a very delicate task.

Research Question 5: Is it better to have an intelligent approach or an un-

intelligent approach or a certain combination (which one)?

Intelligent approaches are new, promising ones. The investigation includes:
(a) whether it is always true or not true that intelligent approaches (or a certain
combination or hybrid) could outperform unintelligent ones, and (b) what are
specific situations in which intelligent approaches “win”, i.e., what the intelli-
gent approaches’ success depends on (e.g., a certain network topology, etc).

1.3 Approach and Contribution

This thesis presents a new conception of a self-organizing coordination
infrastructure that suggests a combination of coordination spaces, self-
organization, adaptive algorithms, and multi-agent technologies. Each of the
numbered issues has some form of self-organization in their incentives. For
the approach of this work, a finite set of self-* properties are considered that
are useful for the establishment of self-organizing coordinating infrastruc-
tures. The intention is to develop a guideline for classification of self-
organizing systems according to the specified set of self-* properties. It
should be mentioned that it is not the goal to limit the number of self-* prop-

CHAPTER 1 - INTRODUCTION

9

erties, i.e., systems should have as much features based on self-* functions as
applicable and needed. Distributed complex IT systems, i.e., coordination
model(s) that contribute successfully in parallel systems’ applications are
connected with complex adaptive systems by mapping underlying mechan-
isms.

Chapter 3 (as well as Chapter 6) addresses research questions 1 and 2. The
location of problem types where self-* can be useful is the starting important
step. Using a thorough interdisciplinary literature search of use cases in dif-
ferent domains, the characteristic scenarios are located. NP hard problems (or
problems that include some type of combinatorial optimization problem),
where searching and optimization is necessary to perform, can benefit of self-
. Also, clustering of data can benefit of self-. As a contribution, two well-
known distributed systems’ scenarios: load-balancing in heterogeneous distri-
buted systems, and searching, retrieving as well as placing information in the
Internet, are investigated. Further, the problem is approached by employing
principles of self-organization at different levels in software architectures, and
shifting the complexity from one central coordinator component to many dis-
tributed, autonomously acting software components. These components opti-
mize their behaviours in a dynamic, ad-hoc way and thus adapt quickly and
self-subsistent to both changing requirements and dynamically evolving sys-
tem states. The latter are caused through the interplay and contribution of the
many components to a global goal. Emphasis is put on the performance and
scalability of the solution, and the work is positioned in the scope of hetero-
geneous distributed peer-to-peer systems. The contribution is location of type
of complexity in the considered application case and explanation of possible
complexity measurements.

Chapter 4 prepares basis and frameworks for giving answers to research
questions 4 and 5, and partially answers them. Namely, two self-organizing
coordination architectures on the pattern layer are developed with that pur-
pose: SILBA (which stands for self initiative load balancing agents) for load-
balancing in heterogeneous distributed systems, and another, simpler architec-
ture for searching, retrieving and placing information in the Internet. SILBA
framework comprises a realization of the complex and advanced mechanism
for load balancing problem extended on several levels, i.e., load balancing
problem is solved on an abstract way that can be transferred on the higher
level. The novelty for the case of information retrieval scenario is a definition
and an implementation of a new overlay network with an intelligent lookup
mechanism based on swarm intelligence that is able to navigate successfully
through the network of data and scales well. The models are described in the
PlusCal algorithms languages and their correctness is proved via TLC model-
checker ([Lamp09]). A detailed and comprehensive fine tuning of parameters
is applied in both applications’ scenarios as well as construction of combina-
tions of algorithms and their hybrid forms.

CHAPTER 1 - INTRODUCTION

 10

Chapter 5 addresses research question 3 and explains how swarm intelli-
gent can be mapped or adapted to the located application cases. In a certain
sense, we cannot “invent” new forms of self-*. It already exists around us. We
must learn from it – biologically-based mechanisms and emergences of forms
are good examples – and try to transfer and implement such mechanisms into
software systems. Such systems have the following advantages over traditional
systems: robustness, flexibility, capability to function autonomously while
demanding a minimum of supervision, and spontaneous development of com-
plex adaptations without need for detailed planning. The contribution compris-
es a construction of a bee algorithm for load balancing and information re-
trieval, and an adaptation of two ant algorithms for load balancing and
information retrieval. The novelty is the implementation of bee intelligence for
the load balancing problem for the first time in order to improve the quality of
the solution and scalability.

Finally, Chapter 6 answers research questions 4 and 5 as well as one part
of research questions 1 and 2 (how and in which extent the employed prin-
ciples of self-organization improve performance and scalability in the two ap-
plication scenarios). For load balancing application scenario, it is explained
why and where bee intelligence outperformed other (un)intelligent approaches
taking in consideration the quality of a solution, the metric used and a scalabil-
ity issue. It is detected which combination of algorithms fits the best to a par-
ticular network topology; also, detection which topologies profit the most from
the application of swarm intelligence (by means of the used metric and scal-
ability) is investigated.

1.4 Methods

The methods to be applied for a new conception of self-* coordination in-
frastructures comprise a combination of: shared data spaces, intelligent and
adaptive algorithms, multi-agent technologies and benchmarking.

 Use space-based computing as agile software architecture

The distributed shared memory paradigm (also referred to “space-based
computing”) serves well for coordination of parallel and distributed processes
([PaAr98]). The main representative is the tuple space model ([CaGe89]). In
our approach, we use a space-based architecture, called extensible virtual
shared memory (XVSM) that generalizes Linda tuple based communication by
more powerful coordination capabilities ([KüMS08]) and by extensibility of
behaviour through aspects ([KMKS09]). Space-based middleware uses a
blackboard based communication for the interaction of autonomous peers.
Spaces have proven to be useful for communication between autonomous

CHAPTER 1 - INTRODUCTION

11

agents ([KMKS09]). An agent can organize its behaviour by accessing the
shared state where it finds information about the environment, so it can decide
by itself what information to pull or to be notified about and what to do after-
wards. A state is needed to remember history. The idea is to shift complexity
from a global “instructor” to smaller and autonomous pieces, i.e., the behav-
iours of single agents.

 Adopt and develop intelligent algorithms; apply different algorithm in
combination and/or form hybrid algorithms

The intension is to learn from nature, prolific with self-* mechanisms, to
detect, map and adapt these mechanisms, and apply them to real computer sci-
ence problems. In mapping, software agents will play the role of a particular
swarm (e.g., ants, bees) and “perform” self-* actions characteristic for the re-
spective bio-colony. All these mechanisms are characterized by a huge number
of different environmental parameters influencing the behaviour of artificial
swarms (e.g., [DoSt05]). Therefore, it is very important to find out best possi-
ble combinations of parameter settings of the algorithms for the given use
cases (i.e., there must be a context to define the best parameters).

 Use autonomous agents and multi-agents technologies

In agent-based systems ([ShLe09]) an agent is an entity (e.g. software
module) that acts or has power or authority to act and cause changes. Its au-
tonomy implies that its actions are neither controlled by others nor by outside
forces. It is independent in mind, judgment or government, it is self-directed
and self-governing. An agent acquires sensory data from its environment and
decides by itself how to relate the external stimulus to its behaviours in order
to attain certain goals. Responding to different stimuli received from its envi-
ronment, the agent selects and exhibits different behavioural patterns. These
may be predefined, or dynamically acquired by the agent based on learning
and adaptation mechanisms. In a single-agent setting, it must understand high
level goals and have knowledge about its abilities. In a multi-agent setting, it
must have some idea about the other agents and ways to communicate and col-
laborate with them to share knowledge. The power of autonomous agents lies
in their ability to deal with unpredictable, dynamically changing, heterogene-
ous environments. Therefore, intelligent algorithms benefit from autonomous
agents. Autonomous agents that operate in a peer-to-peer network shall take
over different roles (ants, bees, etc.) in the proposed research work. They are
self-responsible to be up and running, implement a certain reactive and conti-
nuous behavior, and can dynamically join and leave.

CHAPTER 1 - INTRODUCTION

 12

 Implement prototypes as proof-of-concept and perform benchmarks in
real environments

The space-based technology will be used for implementing prototypes.
The creation of test examples will include a special attention to the fine tuning
of parameters (as the intelligent and adaptive algorithms have many different
configurable parameters that are mainly problem-sensitive). For the realization
of benchmarks, two different test environments are available in order to inves-
tigate the behaviour of systems and algorithms. First test environment is a
cluster of 4 machines at the Institute of Computer Languages at TU Vienna.
Each machine has the following characteristics: 2*Quad AMD 2,0GHz with
16 GB RAM. Second test environment is the Amazon Cloud ([ACloud11]).

The following steps are taken to evaluate the concepts and methods pro-

posed in this thesis.
As a first proof of concept, two prototypical implementations are devel-

oped: one for load balancing and another one for information retrieval.
A new framework termed SILBA is proposed and developed in this thesis

as a generic architectural pattern for a load balancing that allows for the plug-
ging of different load balancing algorithms, (reaching from unintelligent to in-
telligent ones) and foresees exchangeable policies for load-balancing. The
presented pattern can be composed towards arbitrary network topologies and
assumes autonomous agents and decentralized control. Further, SILBA is ex-
tended on several layers that allow routing between different subnets, simul-
taneously with load balancing between nodes within these subnets. Each net-
work level can apply different algorithms and load balancing in the whole
network will be realized through the combination of algorithms. Benchmark-
ing is realized by using both environments.

For the case of information retrieval scenario, a new overlay network with
an intelligent lookup mechanism is developed and implemented in this thesis.
The chosen overlay is a purely decentralized and unstructured one (for an ini-
tial construction, the scale-free network approach is used). It supports a self-
organized approach that combines a purely decentralized unstructured P2P
system with space based computing in order to locate effectively and filter
(retrieve) information from a network. The lookup mechanism is inspired by
swarm intelligence (both ants and bees), is fully distributive and autonomous.
Benchmarking is also realized by using by using both environments (a cluster
and the Amazon Cloud).

CHAPTER 1 - INTRODUCTION

13

1.5 Thesis Structure

This thesis is structured as follows:

Chapter 2. Technical Background and Related Work provides an over-
view of the state-of-the-art of technical concepts employed in this work,
and explains the basis concepts and the theory on which they are estab-
lished.

Chapter 3. Application Scenarios describes scenarios, located to be suitable

for the appliance of self-* mechanisms, analyzes types of complexity that
exist in these scenarios and ways of its measurement.

Chapter 4. Design and Implementation describes the frameworks used, the

ways of their construction and implementation, and provides the proofs
for correctness of the constructed architectures.

Chapter 5. Employing Nature-Based Mechanisms gives a detail explana-

tion of the used swarm intelligent algorithms that are adapted and
mapped to the application scenarios. A theoretical establishment is also
discussed.

Chapter 6. Benchmarks explains the ways of generating test examples, fine-

tuning crucial parameters, combining different algorithms on different
network topologies, and evaluates the obtained results that are compared
at the end.

Chapter 7. Conclusion summarizes approaches, contributions and results of

this thesis, and describes future research directions.

 14

CHAPTER 2

CHAPTER 2 - RELATED WORK AND TECHNICAL BACKGROUND

15

2 RELATED WORK AND TECHNICAL
BACKGROUND

Related work focuses mainly on self-organization. It comprises the theoret-
ical basement of self-organization in general, state-of-the art of the applica-
tions of self-mechanisms from nature and society, and the application of self-
organization in P2P systems and in space based computing technology. The
main technical background connected with this work refers to distributed sys-
tems, i.e. more specifically peer-to-peer (P2P) systems, and coordination
models. At the end of this chapter, one section is dedicated to a short review
of special types of algorithms – metaheuristics.

2.1 Self-Organization

Although we are surrounded with self-organizing mechanisms, the interest
for an exploitation of them as well as the scientific study of self-organizing
systems is relatively new, grown out of many scientific fields. However, a
core of fundamental concepts and principles that should be applicable to all
self-organizing systems has slowly started to emerge. The most popular self-
mechanisms are those ones emerged in nature, detected and described by “ex-
act” scientific disciplines (biology, physics, chemistry, mathematics). From
the other side, the self-mechanisms exist also in social sciences (e.g., econom-
ics, collective intelligence, even linguistic). The scientific study of self-
organized systems tries to discover the general rules of appearing self-
organization as well as the forms which it can take.

This subsection starts with the description of some theoretical basement of
self-organization in general and continues with the application of self-
organized approaches in IT, originated both from nature and society.

2.1.1 Theoretical Overview

There are many definitions of self-organization. Some of them are provided
below. After introducing a definition of a self-organization, a description of
self-organizing mechanisms and an explanation of self-organizing characteris-
tics are presented.

Def1([CDFSTB01]):

“Self-organisation of a system means that system structure ap-
pears without explicit pressure from outside the system and re-
sults from the interactions between the components, whilst being

CHAPTER 2 – RELATED WORK AND TECHNICAL BACKGROUND

 16

independent of the physical nature of those components. In gen-
eral, it refers to the various mechanisms by which pattern, struc-
ture and order emerge spontaneously in complex systems. Self-
organization is a process in which pattern emerges at the global
(collective) level by means of interactions among components of
the system at the individual level without the guidance of well-
informed leaders, and without any set of predetermined blue-
prints, recipes or templates to explicitly specify the pattern.”

Def2 ([Heyl01]):
“Self-organization is a process where the organization (constraint,
redundancy) of a system spontaneously increases, i.e. without this
increase being controlled by the environment or an encompassing
or otherwise external system. Self-organization is basically the
spontaneous creation of a globally coherent pattern out of the lo-
cal interactions between initially independent components.”

Def3([CDFSTB01]):
“Self-organization is a process whereby pattern at the global
level of a system emerges solely from interactions among the
lower-level components of the system. The rules specifying the
interactions among the system’s components are executed using
only local information, without reference to the global pattern.”

Obviously, self-organization appears in a system without interventions by
external directing influences (instructions from a “supervisory leader” or an
order imposed on them in many different ways – various directives, recipes,
templates) and forms patterns through multiple interactions among their com-
ponents. This appearance means that a functional structure appears and main-
tains spontaneously. Nevertheless, we can say that the complex system is not
arbitrarily regulated. It is ordered in a very organized way. This organization
was not built into the system at its origin, it has emerged in a sequence of self-
organizing processes that understood spontaneous transitions into new states
of higher organizational complexity. The term “spontaneous” doesn’t mean
“they just happen” for no particular reason. Patterns are well organized struc-
tures ([CaDFSTB03]) and can refer to an arrangement of objects both in space
(e.g., a zebra’s coat) and in time (e.g., firefly flashing). The challenge and
need is to find some principles additional to the low level laws to explain it.
Self-organization could be seen as the evolution of order from a disordered
start ([Roch98]). According to ([Gold97]), a self-organizing system possesses
multiple interdependent components that cooperate in self-initiated interac-
tions. Through their synergy and internal interaction, a necessary information
exchange is done. Such a type of system expresses a certain level of self-

CHAPTER 2 - RELATED WORK AND TECHNICAL BACKGROUND

17

configuration (i.e., it is capable to construct itself through the arrangement of
its constituent parts) and self- maintenance (i.e., adaptation to change). As the
environmental changes are constant, it constantly adapts its behaviour.

([Roch98]) explains self-organization through the notions of eigenvalues
and eigenbehaviour. He refers to the notion of eigenbehavior as the ability of
an organization to classify its environment, and defines eigenvalues as the ex-
istence of some stable structures.

Def4 ([Roch98]):

“Eigenvalues are discrete representations of observables main-
tained by the successive cognitive operations of a cognitive
agent. An eigenvalue of an organizationally closed system can
be seen as an attractor of a self-organizing dynamical system.”

An attractor usually refers to a preferred position for the system. The type
of system of interest, i.e., dynamic complex system may have many possible
attractors. A system changes its state, from state sn to state sm, and the previ-
ous one (sn) is called a pre-image of the next one (sm). It is on the trajectory
that leads into state sm. The first possible pre-image (that itself has no pre-
image) is the starting point for a trajectory.

A state space (or phase space) is a set of all possible combinations (of
states) available to the system. As the possible states grow rapidly with com-
plexity, dynamical systems possess very large state spaces. If some initial
conditions are introduced, such systems typically converge to small areas of
the state space (so-called attractor basins) which can be interpreted as a form
of self-organization ([Heyl01]). Examples of such structures created by self-
organizing systems are ant paths. They can be viewed as stationary states of a
dynamical adaptive system that are stable as long as the conditions under
which they were created are stable, but when the conditions change, the equi-
librium automatically adjusts itself to a new stationary state. One of the prop-
erties of a self-organizing system is the possibility to re-establish the station-
ary state, i.e., to self-repair, if the structure of the system is damaged in some
way. During these changes of state, a system converges to the attractor
([Roch98]).

Self-organization in a system reflects at different levels (from the lowest
level to the highest one), and each of these levels can exhibit their own self-
organization. A self-organizing system consists of a large number of interact-
ing components that are constantly changing their state. “Decisions” and con-
sequently changes are local (e.g. in an ant colony, each ant “decides” by its
own which path it will choose). Also, components only interact with their
immediate “neighbours”. Mutual dependency implies that changes are not ar-
bitrary: some relative states are “preferable”, in the sense that they will be re-
inforced or stabilized (like those paths where there are more pheromone in na-

CHAPTER 2 – RELATED WORK AND TECHNICAL BACKGROUND

 18

ture swarm intelligence), while others are eliminated. The components of the
lowest level produce their own emergent properties (patterns) and form the
building blocks for the next higher level of organization, with different emer-
gent properties, and this process can proceed to higher levels in turn.

The interesting property of self-organizing system is the interaction of
components between different levels, while self-organization already exists on
each particular level. These can in turn self-organize into even higher level
components, i.e., self-organization between different levels can occur.

Most of dynamic systems are metastable, i.e., possessing many attractors as
alternative stable positions. The role of “noise”, i.e., fluctuations in such dy-
namic system is, therefore, very important as it allows the system to escape
one basin and to enter another, leading the system (over time) in approaching
of an optimum organization. The basic mechanism underlying self-
organization is the deterministic or stochastic variation that governs any dy-
namic system. This variation allows for exploring of different regions in a
state space until it happens to reach an attractor. The exploration of a state
space can be emphasized, accelerated and deepened by increasing variation,
i.e., by adding “noise” to the system. Reaching the attractor, the system comes
to the stable state. In order to continue an exploration of new state space posi-
tions, random changes are necessary to be introduced. It can cause the system
to move towards a new attractor, which forms the self-organized state
([Heyl01]). Mathematically speaking, it is possible to have several local op-
tima, but only one global optimum.

The self-organizational mechanisms have a fully distributed characteristic
in a dynamical system, i.e., it must be distributed over all participating com-
ponents. An opposite situation where the mechanism is centralized in a sub-
system or module will lead to the possibility that this module could be re-
moved and the system would lose its organization.

In the following, broad principles/characteristics of self-organization are

identified ([Macl04]). Up to this point (i.e., from the definition and descrip-
tion of self-organization), the following features of self-organization can be
noticed: absence of external control (autonomy), dynamic operations, multiple
equilibriums (many possible attractors), distributed “control”, hierarchies
(multiple nested self-organized levels). However, the typical characteristics
also include the following issues ([Heyl01]):

Global order from local interactions
([Macl04]) defined one of the central principles of self-organization: com-

plex, adaptive macrobehavior emerges from simple, local microdecisions.

CHAPTER 2 - RELATED WORK AND TECHNICAL BACKGROUND

19

Robustness, resilience
Self-organized systems function with a goal to preserve its own mainte-

nance, and therefore are robust and capable to resist perturbations, errors as
well as a partial destruction. This robustness is achieved by distributed control
so that damage can be restored by the remaining, undamaged sections and a
system can get back to its initial state. Random perturbations are connected to
fluctuation in the system and could even help system in achieving an ever bet-
ter organization ([Macl04]).

Non-linearity and feedback
Positive and negative feedback do not mean desirability. The negative

feedback loop tends to slow down a process, to bring a process to equilibrium,
to stabilize the system, while the positive feedback loop tends to speed it up,
leading to instability, to accelerate it away from equilibrium. It biases explora-
tion into directions, so that the system can begin exploiting information before
it has finished gathering it ([Heyl01]). Their interaction represents an adaptive
balance between exploration and exploitation. Feedback implies nonlinearity
of a system.

Organizational closure, hierarchy and emergence
The correlation between separate components defines an ordered configu-

ration, but not yet the organization that can be defined as the characteristic of
being ordered (or structured) so as to fulfil a particular function ([Macl04]).
This function is the maintenance of a particular configuration, in spite of dis-
turbances. This general characteristic refers to the concept of closure. More
generally, a self-organizing system may be divided into a number of relatively
autonomous, organizationally closed subsystems that interact in an indirect
way. It can be seen as a hierarchical, “boxes within boxes” architecture, where
a number of relatively autonomous, closed organizations can be distinguished
at each level. The organizational closure turns a collection of interacting ele-
ments into an individual, coherent whole. This whole has properties, so-called
emergence that arises out of its organization. This is an appearance of a higher
level property or feature not previously seen as a functional characteristic of a
system, i.e., qualitatively new pattern and structure. It arises unexpectedly
([Heyl01]).

Bifurcations, symmetry breaking
The feature of non-linearity implies that there is a range of stable configu-

rations in which the system may settle and that depends on a chance fluctua-
tion. Although the individual components all behave differently, on the
global, macroscopic level, the system is homogeneous and symmetric (from
each direction observed, it will look the same). Self-organization means a
searching for the best current state and therefore, among initially all equal

CHAPTER 2 – RELATED WORK AND TECHNICAL BACKGROUND

 20

configurations, only one possibility has a preference. Thus, one direction or
one configuration dominates all others, and therefore the symmetry is lost. For
such a choice - to achieve a preferred stable configuration, there are no objec-
tive criteria as the system makes an arbitrary decision ([Heyl01]).

Bifurcation describes a process caused by possibly a small change in one
parameter that results in a system splitting into two possible behaviours. Fur-
ther changes to the parameter then cause further splits at regular intervals until
finally the system enters a chaotic phase ([Heyl01]).

Stigmergy
Stigmergy is a mechanism of indirect coordination and reciprocal relation-

ships between components (workers, agents) of a system and the structures
that they build. The term was coined in ([BTDAC97]) and it describes the fol-
lowing principle: the trace left in the environment by an action stimulates the
performance of subsequent actions that tend to reinforce and build on each
other, leading to the spontaneous emergence of coherent pattern. Therefore
there is no need for an external blueprint or project leader. Each agent “en-
countering the project” knows exactly what it needs to do, e.g., in ant popula-
tion, each ant “knows” what is its task. Stigmergy permits the use of simpler
agents and decreases direct communication between agents. For example,
looking again to the ant population, ant can be seen as a simple agent and a
communication between them proceeds through a different amount of phero-
mone, laid to the paths. There are two different kinds of stigmergy ([Heyl01]):
quantitative (continuous), where quantitatively different stimuli trigger quanti-
tatively different behaviours and qualitative (discrete), where stimuli are clas-
sified into distinct categories, which trigger distinct behaviours.

Circular Causality
This principle is also known as the macro/micro feedback loop, which

means that global order emerges from the interaction of the agents, and they
in turn respond to the global order.

Formal Description

([Heyl01]) presented some formal concepts of a state space, an attractor
and fitness landscapes.

Def 5([Heyl01]):

“A state space of a system is the set of all possible states of that
system, and defined as set with finite, discrete or continuous
number of elements: S = {s1, s2, s3, ...}. For simplicity, we will
assume that the state space is discrete and finite (it can be gener-

CHAPTER 2 - RELATED WORK AND TECHNICAL BACKGROUND

21

alized to the continuous case). If a system A consists of n differ-
ent subsystems or components A1, A2, A3,, An that can vary
independently, then A’s overall state space S(A) is the Cartesian
product of the state spaces of its components:

 S = S1 S2 ... Sn, s S = (s1, s2, ..., sn)
The dimension of S is the product of the dimensions of all of the
component spaces.”

Self-organizing systems usually consist of a huge number of components
and therefore, can only be modelled by statistical methods, i.e., by calculating
the probability P(s) that the system is in a particular state s, given a limited
number of properties that have been determined by observation. The function
P: S [0, 1] assignes a probability to each state and determines a probability
distribution over the state space ([Heyl01]). In order to introduce a definition
of an attractor, some additional explanations are provided.

The function that describes how the system moves from one state to an-
other in the course of time t is needed in order to model the evolution of a sys-
tem. Such function fT: S S, fT(s1) = s2, where s1 is the state of a system in
time t and s2 is the state of a system in time t+T, is usually the solution of a
differential or difference equation. In principle, self-organizing systems dissi-
pate energy, thus dissipated energy cannot be recovered in order to undo the
process. This implies that the evolution of complex systems is irreversible,
i.e., a past state is impossible to reconstruct from the present state.

The appropriate stochastic process can be modelled as a Markov chain
([Heyl01]): for each initial state si of a system, it gives the probability of a
transition to a next state sj: P(sj|si) = Mij [0, 1] where M is the transition ma-
trix of the Markov chain. If a probability distribution for the initial state is
P(si,t), then the probability distribution for the next state:

),()1,(tsPMtsP i
i

ijj (2.1)

The attractor of a system is defined in a following way.

Def 6 ([Heyl01]):

“An attractor is a subset A of the system's state space S that the
system can enter but not leave, and which contains no smaller
subset with the same property. This means that:

 si A) (sj A) (n, T) fT(si) A Mn
ij = 0 (2.2)

CHAPTER 2 – RELATED WORK AND TECHNICAL BACKGROUND

 22

The property of not containing a smaller such set can be ex-
pressed as:

 0lim

n
ik

n
M sk A (2.3).”

The previous definition describes causal closure, i.e., inside the attractor,
the process has “closed in” on itself. There are many different shapes, sizes
and dimensions of attractors. Some of them are:

2.2 A zero-dimensional point attractor consists of a single state and this is
the situation where a system reaches equilibrium.

2.3 In one-dimensional limit cycle, all states of the attractor are revisited at
regular intervals and it represents far-from-equilibrium configurations
where the system exhibits periodical behaviour.

2.4 A non-integer, fractal dimension is a characteristic of a so-called
“strange” attractor and it is connected to certain chaotic processes.

Def 7 ([Heyl01]):

“A basin B(A) of an attractor is a set of states outside a given at-
tractor whose evolution necessarily ends up inside:

 (s B(A)) s A (T) fT(s) A (2.4)

In a deterministic system, every state either belongs to an attrac-
tor or to an attractor basin. In a stochastic system, there is a third
category of states that can end up in either of several attractors.”

The complex structure of attractors and basins can be replaced by the more

intuitive model of a fitness landscape which is explained in subsection 2.2.1.

Although there are not many practical applications of artificial self-

organizing systems, such systems offer several advantages over more tradi-
tional systems: robustness, flexibility, capability to function autonomously
while demanding a minimum of supervision, and the spontaneous develop-
ment of complex adaptations without need for detailed planning. Disadvan-
tages are limited predictability and difficulty of control. Nevertheless, the ba-
sic mechanisms underlying self-organization are not yet clear enough.

CHAPTER 2 - RELATED WORK AND TECHNICAL BACKGROUND

23

2.1.2 Nature Based Mechanisms

The most popular self-* approaches are those ones that scoop their power
from different bio-inspired mechanisms. Based on these mechanisms, a vari-
ety of swarm intelligent algorithms and adaptive algorithms are constructed
(ant intelligence, bee intelligence, immune system behaviour, hormone system
behaviour, evolutionary and genetic algorithms). They have been applied to
different problems of optimization, searching and routing, e.g.: travelling
salesman problem ([DoSt05]; [WoLC08]; [Potv96]), job-shop scheduling
problem ([CSLG06]), scheduling workflow applications in cloud computing
environments ([PWGB10]), vehicle routing problem ([ToVi02]), assignment
problem ([Stüt97); set problem ([HRTB00]), network routing ([DiDo98a]),
data mining ([PaLF02]), grid workflow scheduling problem ([ChZh09]), im-
age processing ([NeSR06]), power electronic circuit design ([ZhLC06]), the
Internet server optimization problem ([NaTo04]), document clustering
([TaVe05]), etc.

Ant Algorithms

The ant colony optimization (ACO) metaheuristic has been inspired by
biological (swarm) systems – the real ant colonies. Ants’ behavior is character-
ized by an indirect communication between individuals in a colony via phero-
mone. Mapping to the artificial ant colony where a software agent plays the
role of an ant, ACO means multi-agent organization. The natural pheromone is
stigmergic information that serves for the communication among the agents.
Ants make pure local decisions and work in a fully distributed way. In ACO,
ants construct solutions by moving from the origin to the destination, step-by-
step, according to a stochastic decision policy. After that, the aim of phero-
mone update is to increase the pheromone values associated with good solu-
tions (deposit pheromones) and decrease those associated with bad ones. More
details can be found in ([DoSt05]).

The most popular variations and extensions of ACO algorithms are
([DoSt05]): Elitist Ant System, Rank-Based Ant System, Min-Max Ant Sys-
tem (MMAS), and Ant Colony System. ACO algorithms have been applied to
different types of problems ([DoSt09]), e.g., (network) routing, assignment,
scheduling, and machine learning. ACO can be combined with other algo-
rithms, e.g., genetic algorithms ([RoMe08]) forming hybrid algorithms. Ant-
Net ([DiDo98a]; [DiDo98b]) is a network routing algorithm based on ACO. It
is an algorithm for adaptive routing in IP networks, it is highly adaptive to
network and traffic changes, robust to agent failures and provides multipath
routing. AntNet algorithm supports high dynamics of joining and leaving

CHAPTER 2 – RELATED WORK AND TECHNICAL BACKGROUND

 24

nodes. A detailed description of these algorithms can be found in ([DiDo98a],
[DiDo98b]) and ([DoSt05]).

Ant algorithms fit mostly to problems that treat optimization, searching,
and some adapted ant algorithms are suitable also for clustering. Ant algo-
rithms have a good theoretical base ([DoSt05]).

Bee Algorithms

Bee Algorithms are a relatively new and promising approach with just a
few applications up to now. The biological background of bee behaviour is
characterized by autonomy and distributed functioning, and self-organization
([CaSn91]). A honeybee colony of one hive contains bees with different roles:
foragers, followers, and receivers. Self-* of bees relies on two main strategies,
navigation and recruitment. The navigation strategy is concerned with search-
ing for nectar of flowers in an unknown landscape. A forager scouts for a
flower with good nectar and after finding and collecting it returns to the hive
and unloads the nectar. Afterwards, the forager performs a recruitment strategy
(a so-called “waggle dance”), meaning that it communicates the knowledge
about the visited flowers to other bees. This serves to inform other members of
the hive about the quality, distance and direction of the found nectar. A fol-
lower chooses to follow a forager at random and visit the flower that has been
“advertised”. It does not need a decision about navigation on its own and
therefore, is more efficient. A forager can choose to become a follower in the
next step of navigation, if it observes better information about nectar (through
the recruitment process of some other forager), i.e., foragers and followers can
change their roles. A receiver always stays in the hive (stationary) and proc-
esses the nectar.

Bee-inspired algorithms have been applied so far mainly in searching and
optimization like travelling salesman problem ([WoLC08]), job shop schedul-
ing ([CSLG06]), routing and wave-length assignment in all-optical networks
([MaTA07]). We adapted bee intelligence for the realization of load-balancing
policies in the load-balancing problem and implemented a load-balancing bee
algorithm ([ŠeKü08]).

Bee algorithms still have no established theoretical base.

Other bio-inspired mechanisms

A lot of research work exists dedicated to the mapping of naturally based
mechanisms (e.g., evolutionary algorithms, neural networks) as well as some
forms of swarm intelligence mechanisms (e.g., like ant algorithms, bee algo-
rithms etc.). The following mechanisms are also inspired by nature.

CHAPTER 2 - RELATED WORK AND TECHNICAL BACKGROUND

25

 ([KTTRS09]) use the coordination mechanism of slime mold for wireless
sensor and actor networks. They adapted the tubular network formation be-
havior of slime mold to design coordination protocols for wireless sensor and
actor networks. ([ScCr07]) use a technique of signal propagation that was in-
spired by slime mold and applied it to a navigation principle for swarm robot-
ics. Using the slime mold-inspired strategy, the simulated robots successfully
perform a collective cleaning scenario and show the ability of finding the
shortest path between two target places. ([MoMa08]) uses slime mold as a
model for numerical single objective optimization. The artificial fish school-
ing algorithm is articulated and described ([Farz09]; [BLLNL09]). Still there
are enough places to develop/adapt it further towards to wider classes of prob-
lems. ([TyAB06]) uses fireflies as role models for synchronization in ad hoc
networks. They review fireflies’ synchronization process by looking at ex-
periments that were made on fireflies and the mathematical model of
([MiSt90]), which provides key rules to obtaining a synchronized network in a
decentralized manner. This model is applied to wireless ad hoc networks.
([WTPWN05]) have been inspired by fireflies in the sensor networks syn-
chronicity. They present the Reach-back Firefly Algorithm (RFA), a decen-
tralized synchronicity algorithm based on a mathematical model that describes
how fireflies and neurons spontaneously synchronize. ([CuWa09]) apply fire-
fly’s synchronicity to wireless sensor networks.

Genetic Algorithms

Genetic Algorithms (GAs) ([BeBM93a], [BeBM93b], [Gold89]) are a kind
of mathematical simulation for Darwin’s theory of evolution. The starting
point is a formation of an initial population either using some particular
method or at random. The elements of an initial population, individuals, are
points from the searching space for a given problem. Every individual is
uniquely determined by its genetic material. The adaptation of every individual
has to be found according to the fact how good solution that individual is.
Therefore, the appropriate value of the fitness function is assigned to each in-
dividual. Using a selection operator and the values of the fitness function, “the
best fitted” individuals are being chosen. A new population is formed by using
crossover and mutation operators. The rules of genetic and evolution implies a
greater probability that a new generation have a better genetic material. Iterat-
ing this procedure from generation to generation, the genetic material of the
population becomes better and the process should converge to the optimal so-
lution of the given problem. If the specified number of generations is reached
or some criteria of convergence are fulfilled, the procedure stops.

GAs have been applied to a huge number of problems that treat searching
and optimization, e.g. just to mention a few of them: numerical and combina-

CHAPTER 2 – RELATED WORK AND TECHNICAL BACKGROUND

 26

torial optimization problems like travelling salesman problem ([Potv96],
[KLŠF98]), circuit design ([XuDH09]), job shop scheduling ([Davi85]), ma-
chine learning ([Gold89]), economic models ([Dawi96]), geophysical inverse
problem ([ŠeKr99], [ŠeKT00], [ŠeTo02]), uncapacitated warehouse location
problem ([KFŠT96]), the Internet search ([ŠeCv02]), improving the execution
time of the algorithm itself through some theoretical consideration
([KrRŠ97]), etc.

Immune System Based Algorithms

The Artificial Immune System Algorithm (AIS) ([Yu08], [LiDW09],
[TaVe05]) is inspired by processes in immunology. In basic AIS, the starting
point is the encoding of “antibodies”. Typically, an antigen is the target, e.g.
the data item we need to check to see if it is an intrusion. The antibodies are
the remaining targets in the database. Sometimes, there can be more than one
antigen at a time, and there are usually a large number of antibodies present
simultaneously. Antigens and antibodies are represented in the same way. The
next step is to determine the similarity measure or matching rule. This is one
of the most important design choices in developing an AIS algorithm, and is
closely coupled to the encoding scheme. Finally, a selection is performed in
every generation based on the affinity of antibodies. The expected number of
times an antibody is selected is proportional to its affinity. The selected anti-
bodies replace the existing population and form the next generation of popula-
tion. Mutation is performed on all selected antibodies.

AISs are used in several applications such as anomaly detection
([DaFo96]), pattern recognition ([CaDa03]), data mining ([TiNK02]), com-
puter security ([HoFo00]), adaptive control ([KrNe99]) and fault detection
([BrTy00]). A theoretical description of AIS can be found in ([TaDa00]).

Hormone System Based Algorithms

Artificial Hormone System (AHS) uses messages like hormones use the
blood circuit in the human body ([TrTU06]). ([TrTU06]) proposes an AHS
that consists of four parts that can be directly mapped to human counterparts.
First, the function of the cells is compared and measured by metrics to calcu-
late a reaction. Second, the hormone producing tissues of the human body are
influenced by receptors which observe the environment to trigger hormone
production. This behaviour is mapped by monitors that collect information lo-
cally about the running services and transfer back this information onto outgo-
ing messages. Third, the function of the cells receptors is mapped to monitors
for incoming messages in order to collect the information transferred back and

CHAPTER 2 - RELATED WORK AND TECHNICAL BACKGROUND

27

hand them over to the metrics. Fourth, the digital hormone values are carrying
the information. To further reduce the amount of information needed to ex-
change, ([TrTU06]) assumes that the digital hormone value enfolds both, the
activator as well as the inhibitor hormone. If the value of the digital hormone
is above a given level, it activates while a lower value inhibits the reaction.

AHS has been used in several applications like construction of “organic”
middleware ([BrRP08]), self-organization of network nodes ([TrTU06]), and
examination of task distribution ([VoBW08]). According to our investiga-
tions, algorithms and formalization of AHS are still open research issues.

Obviously, nature is prolific with a variety of self-* properties and mecha-

nisms that are attractive enough to be a challenge for IT scientists in order to
map them into the scope of IT complexity problem. Except adaptive algo-
rithms (from which genetics algorithms are used the most) and one type of
swarm algorithms (ant intelligence), the numbered bio-mechanisms are almost
totally or partially unexploited, leaving the place for new researches.

2.1.3 Socially Based Mechanisms

Self–organizing mechanisms can be found also in human society (sociolo-
gy and sociodynamics, economics, behavioral finance, and anthropology).
Examples from sociology and sociodynamics are described in the following
text.

Critical mass

This phenomenon, investigated and described in sociophysics, refers to the
existence of “sufficient momentum” in a social system such that it becomes
self-sustaining and fuels further growth. The mechanism can be classified as a
kind of self-aggregation and the idea is to capture it in a mathematical model
although this may not be possible for the behaviour of any particular individ-
ual ([Ball04]).

Herd behaviour

This notion in modern psychological and economic science denotes a
special behavior of humans (“inherited” from the animal society) where large
numbers of people are acting in the same way at the same time. As an
example of a benign herding behavior, the following situation can be

CHAPTER 2 – RELATED WORK AND TECHNICAL BACKGROUND

 28

described. A family needs to decide which of two restaurants to choose. The
decision is difficult as both restaurants look appealing from one side, but both
are empty from the other side. So, a family decides randomly and chooses
restaurant R1. After a while, a man walks down the same street wishing to find
a good restaurant. He sees that restaurant R1 has customers, while R2 is empty,
and therefore, he concludes having customers makes it the better choice and
chooses R1. This phenomenon is also referred as an information cascade
([Bane92], [BiHW92]) and it typically occurs when people make their own
decisions and choices based on the previous observations of the actions of
others. As a consequence, they make the same choice like the others,
independently of their own private information signals. Although it is usually
assumed to be the result of rational choice, information cascades can
sometimes lead to arbitrary or even erroneous decisions.

In principle, this phenomenon describes an emerging of new models of be-
haviour in a different situation through the behaviour of individuals in a group
that act together without planned direction. A crowd differs significantly from
the behaviour and psychology of those individuals within it. Usually, these are
situations that leave little time for decision making ([Berk74]).

Groupthink

It is a type of thought-behavior within a cohesive in-group whose members
try to minimize conflict and reach consensus. Despite some characteristics of
self-organization, this mechanism is exposed to criticism due to the fact that
such a consensus is usually reached without critically testing, analyzing and
evaluating ideas. Also, individual creativity, uniqueness, and independent
thinking are lost in a deeply cohesive group ([BuHu97]).

Social Learning

Knowledge propagation, as an important form of behaviour in a social
learning dynamic, leads to cognitive development. This well-know mecha-
nism from a human society was applied in technology showing promising re-
sults ([Vygo78]).

In economics, a market economy has some self-organizing mechanisms.

([Krug96]) states that market self-organization plays role in the business
cycle. In business and economic systems, the individual behaviour’s primary
goal is to increase the profit. Dynamics of a system is handled by the activity
developed to face business and economic constraints. Examples from

CHAPTER 2 - RELATED WORK AND TECHNICAL BACKGROUND

29

economics and business include market-based mechanisms and business
related mechanisms.

Market-based mechanisms ([FoCM02], [Brunn01]) that are inherited from

economic markets model systems in correlation to some economic model.
Participating individuals act towards increasing their personal profit or utility.
The parameters of a system depict macroeconomic variables (e.g., economic
growth), whereas the parameters of the individuals correspond to microeco-
nomic parameters. An example of economic-based self-mechanism is creative
destruction.

Creative Destruction

It refers to a situation when a new setting eliminates an old one leading to
economic development. For example, an economic system must destroy less
efficient firms in order to make room for new, possibly more efficient entrants
([Schu02]).

Business related mechanisms ([Stew01]) are based on business models and

theories which use self-organisation. A new business environment faces un-
predictable behaviours and fast changes. Consequently, contemporary busi-
ness models shifted from efficiency to flexibility and the speed of adaptation.
Therefore, the focus in such models is on the complex relationships between
different business components. The examples of business related mechanisms
are personalized marketing and activity-based management.

Personalized Marketing

This strategy is adjusted for each individual customer and evolved accord-
ing to customer reactions. An example is the one-to-one variable pricing
model, i.e., providing an individual offer to each customer using Internet
technologies ([WaYW04], [HaGr02]). One for of personalised marketing is
syndication: the sale of the same good to many customers, who then integrate
it with other offerings and redistribute it ([Werb00]).

CHAPTER 2 – RELATED WORK AND TECHNICAL BACKGROUND

 30

Activity-based Management

In this strategy, networks of working groups can change their structure,
links and behaviour in response to business requirements ([ViSk02]) in order
to capture the self-organisation decisions that need to be taken during the
business operations. The objective is to solve potential conflicts of interests in
both the inner and the external co-operative activity of the company. It is as-
sumed that the structure of the company is virtual without clear hierarchy and
control. The mechanism forces effects that can be initiated both vertically and
horizontally via “round table meetings”, which could be meetings normally
held in companies to assess results and handle exceptions.

 ([ZoJM06]) investigate a multi-agent model based on the formalization of

psychological and organizational theories. Multi-agent simulation is applied
to explore social self-organization when people have to perform a task.

 ([HDKC06]) discusses examples of socially inspired self-organization ap-
proaches and their use to build socially-aware, self-organizing computing sys-
tems. They present different mechanisms originating from existing social sys-
tems: stigmergy from social insects’ behaviors, epidemic spreading,
gossiping, trust and reputation inspired by human social behaviors, as well as
other approaches from social science related to business and economics. The
emphasis is put on social network dynamics, social network patterns, social
networks analysis, and their relation to the process of self-organization. The
applicability of socially inspired approaches in the engineering of self-
organizing computing systems was illustrated with applications concerning
WWW, computer networks and business communities.

([BaBD02]) based their work on experiences-learning network about
sustainable work systems with six companies and two research institutes.
They describe the intra-organizational conditions and social complexity in an
effort to establish realistic alternatives for the work organization that support
and develop sustainability for the organization and its personnel. They
observe and identify self-mechanisms and organizational levels in a company
through the complexity of a business life, diagnose self-organizing
mechanisms, explain management and leadership in self-organizing process,
and introduce the notion of emergence in the scope of business life.

([Fuch03]) investigated human co-operation and diagnosed emergent prop-
erties on upper hierarchical systemic levels. Co-operation means co-action
and takes place permanently in re-creative systems: two or more actors act to-
gether in a coordinated manner, producing a new emergent property.

Although self-organization in socio-domain exists as well as socially based
mechanisms, their application is unexploited enough (the related work from
this area is presented above). Comparing with a number of self-* properties
from nature, this domain is “poorer”, however it deserves attention.

CHAPTER 2 - RELATED WORK AND TECHNICAL BACKGROUND

31

2.1.4 Self-Organization in P2P

P2P Systems

Distributed computer architectures labelled peer-to-peer (P2P) have grown
dramatically in recent years, increasingly becoming popular because they of-
fer opportunities for real-time communication, ad-hoc collaboration and in-
formation sharing in a large-scale distributed environment ([AnSp04]). P2P
systems share computer resources (content, storage, CPU cycles) and infor-
mation through direct exchange and allow for a symmetric communication be-
tween the peers; by means that each peer has both a client and a server role.
One of the most important characteristics of P2P systems is their ability to
adapt to failures (of nodes or connections between nodes) and to continue
functioning without an interruption. They are capable to self-organize, i.e. to
react to changes without the need of a central server. There are many defini-
tions of P2P systems. One definition, proposed in ([AnSp04]) is:

“Peer-to-peer systems are distributed systems consisting of interconnected
nodes able to self-organize into network topologies with the purpose of shar-
ing resources such as content, CPU cycles, storage and bandwidth, capable of
adapting to failures and accommodating transient populations of nodes while
maintaining acceptable connectivity and performance, without requiring the
intermediation or support of a global centralized server or authority.”

P2P systems can be classified into three categories ([AnSp04]): communi-
cation and collaboration, distributed computation, and content distribution.
Usually the terms “node”, “peer” and “user” are used interchangeably, accord-
ing to the context, to refer to the entities that are connected in a P2P network.

P2P architectures have been employed for a variety of different application
categories ([AnSp04]): communication and collaboration, distributed compu-
tation Internet service support, database systems content distribution.

Nowadays, P2P content distribution systems are maybe the most interesting
category. Each operation in any P2P content distribution system goes through
a network of peer computers (nodes), and connections (edges) between them.
This network is virtual one, formed on top of one (or more) existing networks.
It is independent on the underlying physical computer (typically IP) network,
and is referred to as an “overlay” network. The operation of the P2P system
and its functioning strongly depends on the topology, structure, and degree of
centralization of the overlay network as well as the routing and location
mechanisms it employs. P2P overlay networks can be ([AnSp04]):
 Purely Decentralized Architectures: all nodes in the network are equal;

each node has both a client and a server role; there is no central coordina-
tion of their activities;

CHAPTER 2 – RELATED WORK AND TECHNICAL BACKGROUND

 32

 Partially Centralized Architectures. some of the nodes have a more impor-
tant role (so-called “supernodes”); they are dynamically assigned and act
as local central indexes for files shared by local peers; therefore, they are
not single points of failure for a peer-to-peer network, since if they fail,
the network will automatically take action to replace them with others;

 Hybrid Decentralized Architectures: a central server exists and it is re-
sponsible for maintaining and facilitating the interaction between peers;
the central server is a single point of failure (the central server); this could
imply a potentially vulnerable system, subjected to technical failures or
malicious attacks.

Overlay networks can be classified into two main categories according to
their structure:
 Unstructured: content typically needs to be located as the placement of

content is completely unrelated to the overlay topology. Searching mecha-
nisms expose emergent phenomena driven from purely local interactions
and range from brute force methods to more sophisticated methods (flood-
ing the network with propagating queries, the use of random walks and
routing indices). Examples of unstructured systems are Napster, Publius
[WaRC00], Gnutella [Gnut03], Kazaa [Kaza03], Edutella [NWQDS03],
FreeHaven [DiFM00].

 Structured: a globally consistent protocol is used to ensure that any node
can efficiently route a search to some peer that has the desired file. The
overlay topology is tightly controlled and files (or pointers to them) are
placed at precisely specified locations. A mapping between content and
location is typically provided in the form of a distributed routing table.
The most common type of structured P2P network is the distributed hash
table. Examples of structured systems are Chord [SMKKB01], CAN
[RFHK01], PAST [DrRo01], Tapestry [ZhKJ01].

 A category of networks that are in between structured and unstructured are
referred to as loosely structured networks. A typical example is Freenet
([ClSW00], [CHSW02]).

The most important “pros and cons” in “unstructured P2P networks versus
structured P2P networks” concern the issues of scalability and support of dy-
namics. Namely, a structured P2P network scales well, but the support of dy-
namics is not so good. The queries can be only “exact match queries” instead
of more complex ones. In contrast, in an unstructured P2P network, a query
must be more “sophisticated”, a placement of information can be done inde-
pendently of an overlay topology, but the content must be localized explicitly.
A disadvantage is that it does not scale well. However, it is very well suitable
for dynamic populations.

CHAPTER 2 - RELATED WORK AND TECHNICAL BACKGROUND

33

Examples for unstructured P2P networks are ([AnSp04]): hybrid decentral-
ized (Napster and Publius systems), purely decentralized (Gnutella, Free-
Haven and partially centralized (Kazaa, Edutella).

Examples for structured P2P networks are ([AnSp04]): Freenet, Chord,
CAN, Tapestry, Pastry, Kademlia ([MaBi02]).

Application of Self-Organization in P2P Systems

A certain amount of applications of self-organization can be found in P2P
systems. In most cases, work in this area leans to the self-* properties of P2P
themselves and eventually, to some specific algorithms used in particular
overlay networks.

([ACDDHSP03]) describes the PGrid system that combines the best cha-
racteristic of both unstructured and structured P2P systems by using self-
organization principles for constructing and maintaining a DHT-like routing
infrastructure. It takes advantage of the resulting emergent properties for im-
proving various services including routing, updates and identity management.

([MeKo05]) investigates which features of self-organization exist in P2P
(like decentralization for resource mediation and access, etc). The paper puts
in question whether non-linearity would be attractive for peer-to-peer systems
and to what extend. Also, it considers how self-organization will fit together
with some issues, which need much more control and management mecha-
nisms (security, anonymity).

([POAKS09]) discuss difficulties to achieve a high level of Quality-of-
Service for P2P traffic due to dynamic nature of P2P systems. The paper clas-
sifies relevant self-organizing aspects of P2P systems, in order to understand
better such self-mechanisms and how they affect the underlying Internet infra-
structure.

([LTSS02]) addresses the problem of forming groups in peer-to-peer (P2P)
systems and examines what dependability means in decentralized distributed
systems. The authors argue about how this global state remains stable as
nodes enter and leave the system. They introduce a self-organizing hierarchi-
cally-based P2P system and evaluate the reliability of Chord versus the hier-
archical grouping system through simulation experiments. According to their
obtained results, both systems perform adequately in a range of tolerance for
failure under normal conditions as well as they utilize self-configuration.

([BaJe08]) overviews bio-inspired techniques in order to implement self-
properties in large-scale, decentralized networks, and proposes gossip-based
algorithms. The paper describes a decentralized approach to arrange large
numbers of mobile agents into different formations. The approach is inspired
by the biological mechanism of cell sorting via differential adhesion.

CHAPTER 2 – RELATED WORK AND TECHNICAL BACKGROUND

 34

([BBJM07]) states that the major challenge is represented by the dynamic
character of P2P overlay networks, the unreliable communication channels
and the lack of reliable and robust components. The paper presents a heartbeat
synchronization protocol for overlay networks inspired by mathematical mod-
els of flash synchronization in certain species of fireflies. In their protocol,
nodes send flash messages to their neighbours when a local heartbeat triggers.
They adjust the phase of their next heartbeat based on incoming flash mes-
sages using an algorithm inspired by mathematical models of firefly synchro-
nization.

([JoLi10]) investigates a hybrid use of both paradigms (unstructured and
structured). Their work is based on a fully decentralized algorithm to build
such hybrid systems, as existing methods often require human intervention
and some centralized gateway to select peers and guide them to build the
structured overlay.

2.1.5 Self-Organization in SBC

Coordination Models

The distributed shared memory paradigm ([Kühn01]) for coordination be-
tween parallel processes has been relatively often used in the last two decades.
A rapid development of parallel and distributed systems and massive usage of
huge number of processors imposed the challenge: coordination of the coop-
eration among very large numbers of active entities. This implied design and
implementation of a number of coordination models and their associated pro-
gramming languages. A number of existing coordination models and their as-
sociated programming languages contribute successfully in parallel systems’
applications. The coordination paradigm possesses many advantages, e.g., it
hides the complexity of communication by offering the abstraction of reading
from and writing data into a virtually shared space, allows processes comput-
ing in different languages and platforms to interoperate using the same primi-
tives, provides a number of features, helpful to build distributed operational
processes ([PaAr98]). There are many definition of the notion of coordination.
One way to define coordination is the following.

Def1([CaGe89]):

“Coordination is the process of building programs by gluing to-
gether active pieces.”

CHAPTER 2 - RELATED WORK AND TECHNICAL BACKGROUND

35

([SaCM99]) argued that a clear separation of computation, communication
and coordination reduces the complexity of system design and provides for
more stable and reliable system implementations.

Coordination models and languages advocate a distinct separation between
the internal behaviour of the entities and their interaction. The purpose of a
coordination model and associated language is to allow for integrating a num-
ber of heterogeneous components.

Coordination models and languages are classified into two groups: data-
driven and control-driven. Each category is suitable for a different type of ap-
plication domain: the data-driven category is used mostly for parallelising
computational problems, whereas the control-driven category is suitable for
usage in modelling systems ([PaAr98]).

Data-driven Coordination. In data-driven coordination models, coordina-
tion is achieved by exchanging coordination information via shared data. The
coordination component is usually a set of primitives with predefined func-
tionality which is used in connection with some “host” computational lan-
guage. This type of coordination usually refers to the existence of a kind of a
mixture of coordination and computation code within a process definition.

In data-driven coordination language, the processes cannot easily be distin-
guished as either coordination or computational processes, because coordina-
tion primitives are mixes with a computational part. It depends on a program
designer to clearly separate the coordination and the computation.

Control-driven coordination. In the control-driven coordination models,
there is a complete separation of coordination components from computa-
tional components that are treated as black boxes with clearly defined in-
put/output interfaces. The coordinated systems do not influence the coordina-
tion process directly and thus, play a passive role.

Linda Coordination Model

The original coordination model Linda ([Gele85]) was developed by David
Gelernter and Nicholas Carriero and used to coordinate the computations
among several parallel processes. It operates with a logically shared memory,
called tuple space. In principal, the tuple space is an implementation of the as-
sociative memory paradigm for a distributed computing that provides a re-
pository for tuples. From mathematical point of view, instead of a repository,
it is usually called a bag. A tuple is a finite-sized ordered list of elements.

The defined operations are: out - writing tuple to the tuple space, rd - read-
ing that matches the provided template parameters, in - reading and removing
tuple from the tuple space, and eval - generating a tuple and writes it to the
tuple space. The tuple values can be provided explicitly or as function para-
meters.

CHAPTER 2 – RELATED WORK AND TECHNICAL BACKGROUND

 36

Based on the original Linda, a diversity of system implementations have
been developed, e.g. JavaSpaces ([FrHA99]), T-Spaces ([WMLF98]), GigaS-
paces ([Cohe10]), Lime ([PiMR99]), Rinda ([Masa09]), PyLinda ([PyLi10]),
CppLinda ([Slug07]) and Prolog-Linda ([Sutc90]). The Linda model is further
extended.

Space Based Computing

One style for realization of coordination paradigm is Space Based Comput-
ing (SBC). The space based computing is a powerful approach to handle the
complexity of the interplay of autonomous components in heterogeneous en-
vironment through a high abstraction of the underlying hardware and operat-
ing system software. An abstract space connects distributed processing enti-
ties over a network. Processes communicate and coordinate themselves by
reading and writing data structures (in a shared space). Among many useful
properties as a/synchronous communication, built-in replication for fault tol-
erance, near-time provision of information, etc., we can say that the main ad-
vantages of this model are high decoupling and reliable communication.

“The space based computing approach is an easy to use solution that han-
dles the complexity of the interplay of autonomous components in a heteroge-
neous environment through a high abstraction of the underlying hardware and
operating system software” [Kühn94].

The disadvantages are: the availability of a tuple space to any process im-
plies that a tuple space is unprotected, there is no hierarchical organization of
tuples, and it may not scale well with the number of tuple spaces and proc-
esses ([BHLTT09]).

XVSM is a middleware technology and one way how the SBC architectural

style can be realized ([KüRJ05], [XVSM)]). It can be used in many scenarios
(like distributing of the data over multiple peers, automatic data persistency,
etc). XVSM generalizes Linda tuple based communication ([CaDo98],
[Kühn01]) by introducing shared containers as the main concept for data
sharing and the place where data is stored and could be shared with other
peers. Multiple containers can exist in a space leading to a structuring of the co-
ordination space. In case that the number of containers is zero, then the space
is called “empty”. A container can be bounded (the number of entries is lim-
ited to a number greater than zero) and unbounded (if the number of entries
has reached the maximum permitted number of entries, then the container is
called “full”).

 Entries represent data items in a shared container. They are stored and re-
trieved as serializable objects. A container is a subspace where the data is
stored in, and that manages entries. A formal description of this model and its

CHAPTER 2 - RELATED WORK AND TECHNICAL BACKGROUND

37

navigational and extensible query language can be found in ([CrKS09],
[KüMS08]). Entries can be accessed by the operations read – returns a num-
ber of entries from a container without destroying them, take - similar as read,
but the entries are destroyed, write – writes a list of entries to the space, and
delete - removes entries like take, but does not return them.

Each container is accessible by an Internet address. A container is Internet
addressable using an URI of the scheme: xvsm://namespace/ContainerName.

Each container possesses so-called coordinators, which are responsible for
the observed order of entries in the container and define the exact semantics
of each operation ([KMKS09]). The container has a list of obligatory (for all
entries) and optional coordinators (only for specified entries), which are speci-
fied at creation time. If coordinators like Key or Vector are obligatory for a
container, each write operation must specify the necessary key or index in-
formation. On the other hand, implicit coordinators may only be optional and
thus only manage a subset of entries. A container possesses one or multiple
coordinators that are the programmable part of a container. However, coordi-
nators are not only programmable part of a container.2

Every coordinator has its specific selector that serves as a kind of help in
providing additional information to the coordinator. Whenever an operation is
performed on a container, the parameters of the operation are collected in a
selector. An access to a container can be done with or without a selector. If it
is used, it provides additional information to the coordinator about the desired
data. For write operations, this term was replaced by “coordination data”.
However, “selector” parameters are still in use for queries (read, take, delete).

Important features of XVSM are also its support for blocking operations,
transactions, and notifications. When the application component invokes a
method, the operation is executed on the targeted container. But, instead of re-
turning the result to the application component, the result is written into the
answer container ([CrKS09]). An answer container is either a physical (like
ordinary container) or a virtual (it is addressed the same way as a physical
one, but represents a binding in the XVSM-Application API between the iden-
tifier of the answer container and a call-back method provided by the applica-
tion component). In the API, the virtual container can return the result directly
to the application component or invoke an asynchronous callback function.

A detailed description of XVSM can be found in ([Mord10], [XVSM],
[Mozart11]).

2 Also, aspect can be user defined. An aspect is an extension of the existing func-

tionality, i.e., various pre- and post-methods on each action (e.g., preWrite and post-
Write methods). The idea is to implement these methods to perform some special ac-
tion that is done automatically before or after the call of one of the methods.

CHAPTER 2 – RELATED WORK AND TECHNICAL BACKGROUND

 38

Application of Self-Organization in SBC

An interesting application of self-organization techniques is in the context
of coordination languages and models. The synergy between self-organization
and space based computing technology is promising as space based compu-
ting offers high decoupling and a blackboard based communication for the in-
teraction of autonomous peers. Spaces have proven to be useful for communi-
cation between autonomous agents and processes. Thus, this synergy aims at
developing tools (languages, models, infrastructures) to flexibly manage the
interaction of components in distributed systems.

SwarmLinda ([GrMT08]) is a Linda-based system that abstracts Linda con-
cepts in terms of swarm intelligence (particularly ant intelligence). The im-
plementation is based on some nature mechanisms in ant colony and is created
to achieve an improvement of many characteristics such as scalability and
adaptiveness.

([CMVT07a]) considers one multi-agent systems based on swarms (ants).
This paper was inspired from self-organization to improve scalability and the
current status of tuple organization in tuple-space systems. They present a so-
lution that organizes tuples in large networks while requiring virtually no
global knowledge about the system.

([CMVT07b]) again discusses the issue about storing tuples in a way that
processes benefit from the organization of tuples. It also discusses the advan-
tages and disadvantages in the scope of achievement in this area and states
that although some progress has been made, most of the proposed solutions
fail to address the reverse problem. Namely, the ideal situation will be to
achieve a tuple-clustering, but to avoid an over-clustering which can affect a
system’s robustness. In other words, the goal is to have a balance where tuples
are clustered, but not totally concentrated in very few tuple spaces.

In ([ViCG07]), a collective sort based on bio-mechanisms is discussed. Au-
tonomous agents are assigned the task of moving tuples across different tuple
spaces with the goal of reaching perfect clustering: tuples of the same kind are
to be collected in the same, unique tuple space. The paper describes a self-
organizing solution to this problem, where each agent moves tuples according
to partial observations.

([CaVi08]) propose the alternative view of self-organizing coordination,
where coordination laws are probabilistic, based on local criteria, and time-
reactive. This results in coordination services where global properties of inter-
est appear by emergence. As a proof-of-concept, they created an application
inspired by corpse clustering and larvae sorting in ant colonies, where a dis-
tributed tuple-space-based scenario is enhanced with adaptive tuple clustering
and sorting.

In ([ViCO09]), the authors discuss the framework of self-organizing coor-
dination. They created the TuCSoN coordination infrastructure that can be

CHAPTER 2 - RELATED WORK AND TECHNICAL BACKGROUND

39

used as a general platform for enacting self-organising coordination. Testing
is done on two cases: an inter-space application of adaptive tuple clustering,
and an intra-space application of chemical-like coordination reactions.

Further, ([ViCa09]) is inspired by existing literature proposing nature-
inspired approaches for the coordination of complex distributed systems, and
proposes a mechanism to leverage exact computational modeling of chemical
reactions for achieving self-organization in system coordination. They intro-
duce the notion of biochemical tuple spaces and the appropriate model where:
a tuple resembles a chemical substance, a notion of activity/pertinency value
for tuples is used to model chemical concentration, coordination rules are
structured as chemical reactions evolving tuple concentration over time, a
tuple space resembles a single-compartment solution, and finally a network of
tuple spaces resembles a tissue-like biological system.

In [TripC08], semantic clustering and self-organization in triple space is
considered. The underlying work refers to the implementation of a distributed
Triple Space over Triple Space kernels. The distribution strategy stores refer-
ences to the triples in distributed indexes which are found efficiently over
hash values. Structural metadata is introduced as an extension of the existing
Triple Space ontology. However, self-organization approaches are also out-
lined as a future extension to optimize the distribution of triples in the Triple
Space network.

Although this synergy between self-organization and space based compu-
ting technology is promising, the research works numbered in the previous
text, mainly concentrate on swarm (ant) intelligence. Additionally, the point is
put on improving some disadvantages of SBC by using self-organized ap-
proaches. So, the contribution of this synergy could be found in the area of
coordination models. Still, the real benefits of the combination “self-
organization and SBC” in a wide application domain as well as the usage of
this combination in different IT scenarios are open issues.

2.2 Algorithms

The theory of algorithms is the strongest connection between mathematics
and computer sciences. Generally speaking, an algorithm is a set of precisely
ordered and well-defined finite sequence of steps (instructions) for solving a
certain problem [BlGu03]. The instructions describe a computation that starts
from an initial state, proceeds through a well-defined series of successive
states, and eventually terminating in a final ending state. However, the transi-
tion from one state to the next is not necessarily deterministic. In more ad-
vanced or abstract settings, the instructions do not necessarily constitute a fi-
nite sequence (and even not necessarily a sequence). One class of algorithms

CHAPTER 2 – RELATED WORK AND TECHNICAL BACKGROUND

 40

with such properties are so-called nondeterministic algorithms ([Floy67])
which have one or more choice points where multiple different continuations
are possible, without any specification of which one will be taken. Some algo-
rithms, known as randomized algorithms, incorporate randomness.

There are various ways to classify algorithms, each with its own merits
([CLRS09], [Good01], [Skie08]). The algorithms could be classified by:

 implementation (recursion or iteration, serial or parallel, deterministic
or non-deterministic, exact or approximate, logical, quantum),

 design (brute force, divide and conquer, linear programming, dynamic
programming, search and optimization)

 fields of study and area (combinatorial algorithms, computational
mathematics, computational sciences, computer sciences, information
theory and signal processing, software engineering, medical algo-
rithms)

 complexity
 computing power

The further emphasis will be put on algorithms for search and optimization.
This category encompasses the following subcategories: combinatorial opti-
mization algorithms, evolutionary algorithms, heuristics, dynamic program-
ming, and stochastic optimization. This classification does not mean that these
subcategories are strictly divided. On the contrary, these subcategories over-
lap each other. In order to precise the further narrowing in description, the fo-
cus will be on the algorithms that are commonly called metaheuristics.

2.2.1 Metaheuristics

Many combinatorial optimization problems are NP-hard, i.e., they cannot
be solved (optimally) within the polynomial bounded computational time,
especially when large instances needed to be solved. Hence, in such situations
when the time or resources are limited, the approximate algorithms that do not
try to find an optimal solution, but an approximate solution, have to be used.
These algorithms are usually called heuristics. Their advantage is that they
obtain near-optimal solutions in a relatively short time [Yang08]. Further, as
an extension of heuristics, a set of algorithmic concepts that can be used to
define heuristic methods applicable to a wide set of different problems, was
developed. This new class of algorithms, the so-called metaheuristics,
increases the ability of finding very high quality solutions to hard
combinatorial optimization problems in a reasonable time [Yang08]. A
metaheuristic is formally defined as an iterative generation process which
guides a subordinate heuristic by combining intelligently different concepts
for exploring and exploiting the search space, learning strategies are used to

CHAPTER 2 - RELATED WORK AND TECHNICAL BACKGROUND

41

structure information in order to find efficiently near-optimal solutions
[OsLa96]. The fundamental properties of metaheuristics are [BlRo03]:

• Metaheuristics are strategies that “guide” the search process.
• The goal is to efficiently explore the search space in order to find near-

optimal solutions.
• Techniques which constitute metaheuristic algorithms range from simple

local search procedures to complex learning processes.
• Metaheuristic algorithms are approximate and usually non-deterministic.
• They may incorporate mechanisms to avoid getting trapped in confined

areas of the search space.
• The basic concepts of metaheuristics permit an abstract level description.
• Metaheuristics are not problem-specific.
• Metaheuristics may make use of domain-specific knowledge in the form

of heuristics that are controlled by the upper level strategy.
• Today’s more advanced metaheuristics use search experience (embodied

in some form of memory) to guide the search.

The evolutionary algorithms and swarm intelligence algorithms belong to

this group. To emphasize their very specific characteristics: adaptive - they
change their behaviour based on the resources available, and intelligent - i.e.,
they are based on some form of the existing intelligence, usually from nature
and map it by forming an equivalent artificial intelligence.

1) They usually manipulate with a population of individuals, and the solu-
tion is eventually found through many iterations of the considered population.
A mapping is done by using a certain mathematical model.

2) The usefulness and fittest of a particular individual in the population is
“checked” by means of a measure of the solution optimality – a fitness func-
tion. This is a mathematical description of the algorithm’s goal and dynamics
of a system. Generally speaking, a fitness function can be seen as a function f
on the state space, f: S R, f=f(s). Every point in the space has a certain
“height” corresponding to its fitness value. A trajectory of the system through
the state space will move from a given state s to that neighbouring state for
which F is optimal3. The fitness function represents the degree to which a cer-
tain state is “preferable” to another state and transforms the state space into a
so-called fitness landscape with “peaks” and “valleys” (see Fig.2.1.). The at-
tractors correspond to the local minima of the fitness function (valleys), or to
the maxima of the fitness function (peaks). The local maxima are the points of
separation of the basins (valleys) that lie in between the peaks. In the Fig. 2.1,
a sketch of a fitness landscape is presented. The arrows denote the directions
in which the system will move and indicate the preferred flow of a population
on the landscape. Points A and C are local optima, whereas point B is a global

3 It refers to either minimal or maximal.

CHAPTER 2 – RELATED WORK AND TECHNICAL BACKGROUND

 42

optimum. The red ball indicates moving from a very low fitness value to the
top of a peak.

3) The type of the algorithm determines a trade-off between exploration
and exploitation of a state space. The exploration refers to the search of un-
known regions and the exploitation is (re)-using the previous knowledge in
order to find better point as a candidate solution. The balance between these
two strategies is controlled by some specific parameter of the algorithm and
depends on the particular algorithm. This balance is of a great significance
because the prevalence of one of the categories means the deviation of the
used algorithm: an excessive exploration leads to the deviation of the original
algorithm to a purely random search, whereas an excessive exploitation leads
to a purely hill-climbing method.

Figure 2.1: Sketch of a fitness landscape. The arrows indicate the preferred flow
of a population on the landscape: (a) peaks are local optima (in case of the
maximization problem), (b) valleys are local optima (in case of the minimization
problem).

CHAPTER 2 - RELATED WORK AND TECHNICAL BACKGROUND

43

2.3. Summary

This chapter reviewed the state-of-the-art from the area of self-

organization. Namely, self-organization has a theoretical basement as a scien-
tific discipline, made mainly by cyberneticists, physicists and generally, by re-
searchers from the area of complex systems. Through this chapter, it has been
seen that both nature and society are prolific with different self-* mechanisms
that can find the applications in IT areas. Self-organization has found the ap-
plication mainly in five sub areas of IT: middleware, information systems, se-
curity, robotics and network management. This chapter emphasizes a retro-
spective to self-organization in P2P systems and space based computing.
Especially, P2P unstructured systems are suitable as they support dynamic
processes. Space-based middleware uses a blackboard based communication
for the interaction of autonomous peers. Spaces have proven to be useful for
communication between autonomous agents ([KMKS09]). Space-based com-
puting offers a highly agile software architecture style ([MoKS10]). “Agile”
means flexibility and robustness against unavoidable changes of requirements
or changes in the environment, because the coordination is clearly separated
from the business logic. Although promising approach, self-organization is
without enough IT applications yet. Many mechanisms that range from nature
ones to socio and business ones can be mathematically modelled and imple-
mented. In modelling and mapping, the most suitable types of algorithms are
metaheuristics.

 44

CHAPTER 3

CHAPTER 3– APPLICATION SCENARIOS

45

3 APPLICATION SCENARIOS

Although there is no doubt that complexity in IT systems exists and could
be treated by using self-* approaches, it is not applicable to each scenario.
The ways of discovering which problem is possibly suitable for the self-
organizing application is discussed. In this chapter, two characteristic scena-
rios are presented. First scenario is placement, location and information re-
trieval in the Internet. Second one is dynamic load balancing in heterogeneous
systems. Further, it is described what kind of complexity exists in these scena-
rios and how complexity could be measured.

3.1 Applicability of self-* approach

Self-* approach is an attractive and promising relatively new area of re-
search, but not all IT problems can benefit of it. As this approach is proven to
cope with complexity, there is no need to apply it on those IT problems that
could be solvable on a simpler and traditional way. The main question is how
to determine whether or not to apply principles of self-organization on a par-
ticular case, i.e., how to define the group of IT problems that could benefit of
self-* principles and how to know that self-* principles will really have an ef-
fect on a particular problem. First, it is necessary to discern what kind of
complexity exists in a particular IT problem (more about different types of
complexity is presented in 3.4). According to that information, the conclusion
can be made about what self-* mechanisms or principle could be suitable for a
particular case. For example, if a considered problem possesses programming
complexity (and additionally a system itself is rather heterogeneous, like a
distributed heterogeneous system), then a high level of autonomy and de-
coupling is necessary to show some success in coping with this complexity.

The problems considered in this thesis are: dynamic load balancing in hete-
rogeneous systems and location and information retrieval in the Internet. Both
scenarios contain NP-hard problems of search and optimization.

In dynamic load balancing in heterogeneous systems, a system is heteroge-
neous and the appropriate load balancing algorithm considers an NP-hard
problem in combinatorial optimization that includes both searching and
optimization. In location and information retrieval in the Internet, the situation
is the same. Therefore, self-* approach fit for both IT scenarios.

CHAPTER 3– APPLICATION SCENARIOS

 46

3.2 Location and Retrieval of Information in the Internet

Location and retrieval of information in the Internet nowadays becomes a
more and more complex and difficult task that faces many challenges and
copes with a highly dynamic nature of the Internet. An additional challenge is
the manipulation of complex data (their efficient storing, querying and proc-
essing) imposed by an increasing complexity of systems and real-life applica-
tions. This requires an advanced approach that is able to manage and solve the
above-mentioned problems in an autonomous, intelligent manner and that is
sufficiently adaptable.

Some P2P techniques like ([ACDDHSP03], [BaBK02]) use a hierarchical
addressing similar to DNS mechanism, but unfortunately the implied costs are
high. ([KMGBT09]) addresses the need for efficient storage of complex struc-
tured data by proposing an architecture which unifies the P2P approach, par-
ticularly Distributed Hash Tables (DHT), with the space based computing
paradigm. In ([KMGBT09]), if a retrieval of k entries is needed, one single
DHT lookup is necessary to locate a container ([KMKS09]) holding struc-
tured data on which one query is performed, instead of k lookup queries in a
plain DHT storage approach - as distributed hash tables cannot support a
complex query, (i.e., limited query capability). In ([ApBu05],[BCDDD05]),
the searching mechanisms in P2P overlay networks are described. In
([BCDDD05]), the algorithm has been inspired by the simple mechanism of
the humoral immune system and applied to an unstructured overlay network,
whereas in ([ApBu05]), the focus is put on the structured overlay network
(CAN) enhanced by a mechanism that borrows some ideas from ant colony.
However, generally, the issue of finding several data efficiently and concur-
rently can be improved, especially in a highly dynamic environment.

The proposed solution takes advantage of unstructured P2P networks,
space based computing and swarm intelligence. The link between these three
technologies (by means of their combination) and the proposed solution is as
follows: the searching and retrieving in our unstructured P2P overlay network
is realized by using swarm intelligence, whereas space based computing is
used for the implementation of (sub)spaces, so-called containers, in the over-
lay network (to store the content that is searched for). Swarm intelligence
could help highly dynamic systems to cope with environmental changes. It
provides some properties inherited from biological systems: every item in the
population makes local decisions, and behaves and acts in a decentralized
manner. The subjects in this architecture are software agents that, e.g., per-
form the roles of artificial ants. The architecture is a new overlay network
with an intelligent lookup mechanism based on swarm intelligence that is able
to cope with complex queries even if the “full information” is not available in
the given query.

CHAPTER 3– APPLICATION SCENARIOS

47

3.3 Load Balancing in Distributed Heterogeneous Systems

Load Balancing can be described as finding the best possible workload
(re)distribution and addresses ways to transfer excessive load from busy
(overloaded) nodes to idle (under-loaded) nodes. The goal is to distribute
workload evenly across a network in order to get optimal resource utilization,
maximize throughput, minimize response time, and avoid overload. It is
possible to talk about load balancing at local node level allocating load to sev-
eral core processors of one computer, and load balancing at network level dis-
tributing the load among different nodes. The second case is more complex
and requires an additional estimating of the priorities as the transfer of data it-
self from a busy node to an idle node could be more time consuming than the
load assignment.

Many different approaches cope with the load balancing problem. One
classification can be done according to the used load balancing algorithm and
the approaches can be classified in conventional, pure theoretical and ad-
vanced (intelligent) ones.

The first group consists of different conventional approaches without using
any kind of intelligence, e.g.: Sender Initiated Negotiation and Receiver Initi-
ated Negotiation ([ShKr94]), Gradient Model ([LiKe87]), Random Algorithm
([Zhou88), and Diffusion Algorithm ([CRCSL02]).

Sender algorithm has a good performance for low to moderate load levels.
In this algorithm, an overloaded node is responsible for initiation of load bal-
ancing. Just opposite, Receiver algorithm has a good performance for moder-
ate to heavy loads levels - load balancing is initiated by the under-loaded
node. Symmetric algorithm refers to the combination of these two algorithms
in order to “conciliate” these two opposite situation, to make the bridge be-
tween them and overpass disadvantages from both sides.

In Gradient Model, an underloaded node dynamically initiates load balanc-
ing requests, which result is a system wide gradient surface. Overloaded
nodes respond to requests by migrating unevaluated tasks down the gradient
surface towards underloaded nodes.

In Random Algorithm, load balancing is basically initiated by an over-
loaded node and the “partner node” is chosen randomly without taking in con-
sideration whether the target “partner” node is overloaded or not. Namely,
each node checks the local workload during a fixed time period. Once when a
node becomes overloaded, it sends the newly arrived task to a randomly cho-
sen node.

The principle of diffusion algorithms is keeping the process iterate until
the load difference between any two processors is smaller than a specified
value.

CHAPTER 3– APPLICATION SCENARIOS

 48

The second group includes pure theoretical improvements of load balanc-
ing algorithms by means of developing the advanced mathematical models
([BrMe008]). The disadvantage is a lack of practical proof-of-concepts, im-
plementations and benchmarks.

The third group contains advanced approaches that use intelligent algo-
rithms like evolutionary approaches ([ChLH08]), and ant colony optimization
approaches ([HoEw07]). Evolutionary approaches rely on their high level of
adaptation and use the adjustment of specific parameters in order to achieve
the goal of load balancing. Ant colony optimization approach is used in for a
graph theoretic problem ([HoEw07]), i.e., Ant Colony Algorithm is applied to
the problem of constructing load-balanced clusters in ad hoc networks with
node mobility. The intelligent algorithms from the last group showed promis-
ing results.

Nevertheless, they still need improvement concerning experience in tuning
of algorithms, quality of solution they provide, scalability, provisioning of a
general model, flexibility, etc. ([LDTN08]) compared non-pheromone-based
(bee intelligence) versus pheromone-based algorithms. Its conclusion is that
the former are significantly more efficient in finding and collecting food.

3.4 Complexity in application scenarios

The sources of complexity in the presented application scenarios are:
1) amount of resources, i.e., the huge amounts of distributed components that

must interplay in a global solution,
2) type of resources, i.e., heterogeneity
3) large number of interactions of the various elements of the software
4) huge problem size (like number of computers-which correlates to 1),

clients, requests, size of queries etc.)
5) autonomy of organizations
6) dynamic changes of the environment (complex adaptive systems).

According to these sources, different types of complexity can be discerned:
point 1) is a pure computational complexity, points 2) and 3) address
programming complexity, point 4) refers to both computational and
programming complexity, and 5) and 6) are the consequences of features of
complex adaptive system.

In the analysis of computational complexity ([FoHo03]), two well-known
types appear:
 time complexity - the length of time it takes to find a solution or complete

a process as a function of the size of the input;

CHAPTER 3– APPLICATION SCENARIOS

49

 space complexity - the amount of physical storage required for a system to
perform a certain operation, i.e., to solve an instance of the problem as a
function of the size of the input.

Every task4 can contain subtasks. When all subtasks are carried out in a re-
quired order and completed, consequently the task is successfully completed.
The order of complexity of the task is determined through analyzing the de-
mands of each task by breaking it down into its constituent parts. All tasks
should fit in some configured sequence of tasks, making it possible to pre-
cisely determine the hierarchical order of task complexity. It is based on a
complex mathematical model of how the information is organized
([CoGD97]). Tasks vary in complexity in two ways: either as horizontal (in-
volving classical information) or as vertical, i.e., hierarchical (involving hier-
archical information). Horizontal complexity is the amount of information in
simple quantitative terms within a task. It consists of the number of different
responses that have to be performed. For example, if the number of bits for a
representation of some number is considered, then counting to 2 is one bit, 4
is 2 bits, 8 is three bits, 16 is 4 bits. Hierarchical complexity refers to the
number of recursions that the coordinating actions must perform on a set of
primary elements. The actions at a higher order of hierarchical complexity: (a)
are defined in terms of actions at the next lower order of hierarchical com-
plexity; (b) organize and transform the lower-order actions; (c) produce or-
ganizations of lower-order actions that are qualitatively new and not arbitrary,
and cannot be accomplished by those lower-order actions alone. Once these
conditions have been met, we can say the higher-order action coordinates the
actions of the next lower order. For example, consider the action A1 of evalu-
ating a + b and the action A2 of evaluating (a + b) + c. The horizontal com-
plexity of A1 is smaller than the horizontal of A2 since the action of addition is
executed less often in A1 than in A2. On the other hand, because A1 differs
from A2 only in how many times addition is executed, but not in the organiza-
tion of the addition, both actions have the same hierarchical complexity.

So, in the presented application scenarios, the above mentioned types of
complexity can be observed (programming and computational, in which both
time and space complexity are present; additionally hierarchical complexity is
present). Both scenarios consider the problems of searching in the network
and the optimizing a path at the same time.

Generally, problems can be classified by complexity class according to the
time it takes for an algorithm to solve them as a function of the problem size.
Some problems are difficult to solve, while others are easy. The problems that
are described in these scenarios are NP problems, i.e., difficult problems that
need algorithms that take an exponential amount of time in terms of the size

4 The notion of a task is used here as an example, and could be generalized with

the notion of a process.

CHAPTER 3– APPLICATION SCENARIOS

 50

of the problem to solve. For sure, it depends on the size of the network. As the
size of the network grows, the time needed to find the route grows (more
than) exponentially. Even though a problem may be computationally solvable
in principle, in actual practice it may not be that simple. These problems
might require large amounts of time or an inordinate amount of space.

3.5 Measurement of Complexity

The title refers to both measurement of complexity and measurement of
self-organization as there is a strong correlation between these notions.

Researchers from different areas of science like biology, computer science,
finance, etc., define different measures of complexity for each respective
field. ([Lloy01]) presents a categorization of complexity measures by defining
common questions for all problems:
1) How hard is to describe?
2) How hard is it to create?
3) What is its degree of organization?

([Lloy01]) provides a list of some measures of complexity grouped accord-
ing to the question that they try to answer. In case of difficulties of descrip-
tions, some kind of entropy could be used as a metric. If a difficulty of crea-
tion contributes to complexity, then it is typically measure in time, and it
usually addresses computational complexity (time computational complexity
and space computational complexity). A degree of organization can be di-
vided into two quantities:

a) Difficulty of describing organizational structure,
b) Amount of information shared between the parts of a system as the result

of this organizational structure.
In case of difficulty of describing organizational structure, some kind of

metric entropy is used. Specific types of complexity (hierarchical, stochastic,
homogeneous) are connected with this issue. Part b) addresses mutual infor-
mation and it is strongly connected with measurements of algorithmic mutual
information, correlation and organization itself. 5

The concept of measurement of self-organization is strongly related to the
concept of measurement of complexity. From the theoretical point of view,
the ratio of the volume of the basin to the volume of the attractor can be used
as a measure of the degree of self-organisation present. This Self-
Organization Factor (SOF) will vary from the total size of state space (for to-

5 The above mentioned measurements and metric refer only to the IT case. Gener-

ally, various types of complexity measurements can be found that address 1), 2) and
3) for different scientific disciplines.

CHAPTER 3– APPLICATION SCENARIOS

51

tally ordered systems - maximum compression) to 1 (for ergodic - zero com-
pression).

([Heyl01]) formally describe uncertainty and entropy in the following way:
All states have the same probability: P(s) = P(s’), s, s’ S. This implies

that if the system is in a particular state s: P(s) = 1, then P(s’) = 0, s’s S.
Shannon6 (information) entropy can be used to determine a degree of uncer-
tainty H about the system:

Ss

sPsPPH)(log)()((3.1)

Note: the sum can be replaced by an integral in case that the state space is
continuous. Uncertainty could take minimal, maximal and intermediate values
in these situations:

 minimal: H = 0, when one state has probability 1 and all others have
probability 0,

 maximal: H = log N, (where N is the number of states in S), when all
states have the same probability,

 an intermediate value: H = log N0, with 1 < N0 < N the number of
states in S0, when the state reside within a subspace S0 S.

Self-organization is equivalent to the reduction of H, that can be calculated as
H(before) - H(after).

 ([VaBr01]) investigate emergent self-organization in multi-agent systems
trying to connect with the second law of thermodynamics. It appears to be
contradictory as the macro level that hosts self-organization has an apparent
reduction in entropy, whereas in the micro level, where random processes ex-
ist, greatly increase entropy. They define a way to measure the Shannon en-
tropy at the macro (agent) and micro (pheromone) levels. The example of dif-
ferent levels in one self-organizing system is an ant colony. Ants and their
movements constitute the macro level of the system, while pheromone mole-
cules constitute the micro level. The construction of minimal paths between
their nests and food sources achieve a reduction in disorder at the macro level.
This is possible because the agents at this level are coupled to the micro level,
where the evaporation of pheromone molecules results in a growth in disor-
der. As a result, the disorder of the overall system increases. Through the no-
tion of thermodynamic entropy, they introduce information (Shannon) entropy
(Eq.3.1.) stating that the first one has strong formal similarities to the second
one. Further, computing the Shannon or information entropy (defined in
Eq.3.1.) requires measuring the set of states accessible to the system and the
probability of finding the system in each of those states. ([VaBr01]) define

6 Shannon’s uncertainty and Boltzmann’s statistical entropy are equivalent.

CHAPTER 3– APPLICATION SCENARIOS

 52

state, and thus entropy, in terms either of location or direction: location-based
state is based on a single snapshot of the system, while direction-based state is
based on how the system has changed between successive snapshots.

 ([ShSh03]) find that self-organization is the same as a spontaneous in-
crease in complexity, leaving us with the problem of measuring complexity.
The obvious candidate, from a physical point of view, is thermodynamic en-
tropy, but unfortunately it seems to be a most unsatisfying measure of organi-
zation in complex systems: It is quite difficult (and seems to be impossible) to
establish unique entropy for all self-organized systems. Thermodynamic en-
tropy measures how far a system departs from being in a pure state [ShSh03].
From the other side, different examples of organization in different science
disciplines cannot fit to this definition of entropy. For example, in the systems
treated by statistical mechanics, pure states are more organized than impure
ones, whereas in biology, the systems of organisms are never in pure states.

Grassberger ([Grass86]) proposed the idea that defines the complexity of a
process as the minimal amount of information about its state needed for
maximally accurate prediction. The Crutchfield-Young “statistical complex-
ity”, C, of a dynamical process is the Shannon entropy (information content)
of the minimal sufficient statistic for predicting the process's future. For a full
exposition of the resulting theory, as it applies to classical stochastic proc-
esses, see [Shal01].

Obviously, a general form of self-organization measurement doesn’t exist.
For example, in ([CMVT07]), the mechanism of “brood sorting” is used and
spatial entropy is proposed as a measure of self-organization.

In this thesis, the measurement of self-organization, i.e., how good the sin-
gle contributors (bees, ants, …) organize themselves is realized by means of
the suitability function, i.e., similarity function. The description of these func-
tions is in Chapter 5, connected to the description of the algorithms. Higher
values of these functions denote the better self-organization in the presented
systems. Computational complexity is tracked in time.

CHAPTER 3– APPLICATION SCENARIOS

53

3.6 Summary

The location of problem types where self-* can be useful is the starting im-
portant step. Chapter 3 described the ways of detecting use cases suitable for
the application of self-* mechanisms. First, it should be clear which type(s) of
complexity exist in a particular IT problem. According to that, it is possible to
conclude what self-* mechanisms would be the best applicable (they range
from autonomy and decoupling like mechanisms in P2P systems and space
based computing to intelligent algorithms). Also, problems that are NP-hard
and require an optimization need to be treated by self-* approaches, especially
if large instances are taken in consideration. In this chapter, two use cases are
detected and considered in this thesis: dynamic load balancing in heterogene-
ous systems and location and information retrieval in the Internet. Both scena-
rios contain NP-hard problems of search and optimization, and therefore they
are applicable to the self-* approach. After defining types of complexity in
these scenarios and analyzing the measurements of complexity, it is con-
cluded that a general measurement of complexity (and consequently, of self-
organization) cannot be derived. It is problem and domain specific. In this
thesis, the measurement of self-organization is based on functions specially
constructed for each considered case.

 54

CHAPTER 4

CHAPTER 4 – DESIGN AND IMPLEMENTATION

55

4 DESIGN AND IMPLEMENTATION

The necessary frameworks for the application scenarios are presented in
this chapter. The first one, P2P Unstructured Intelligent Overlay is a frame-
work for location and information retrieval in the Internet. The second one,
SILBA (self initiative load balancing agents) is a more complex framework
that serves for dynamic load balancing. After explaining their design and ar-
chitectures and identifying patterns, the communication in the architectures is
described by using the PlusCal algorithm language ([Lamp09]) and further,
models are checked via TLC model-checker ([Lamp09]). At the end, the way
of their implementations is explained by using sequence diagrams. Further de-
tails about the implementation can be found in the Appendix A. The complete
PlusCal algorithms constructed for both architectures and their TLA+ transla-
tions are presented in Appendix B.

4.1 Architectures

The framework for information retrieval in the Internet represents a purely
distributed overlay network based on spaces (XVSM containers) and can be
viewed as a pattern for plugging different swarm algorithms. In this work, ant
algorithms and bee algorithm are plugged.

4.1.1 P2P Unstructured Intelligent Overlay

The architecture and design, used for the application scenario - Informa-
tion Retrieval from the Internet, is described in the following way ([ŠeKü09],
[ŠeKü10a]):

When a container is created, it becomes accessible to the public by its URL
- it can be located and accessed via this URL and all operations (read, take,
write) refer to the container by its URL. In this way, no explicit connection to
a space is needed. The improvement of this access of containers by introduc-
ing an intelligent lookup mechanism is investigated.

The pre-assumptions are:
1) No overlapping containers exist.
2) An entire container must belong to one node, i.e., one node can contain

one or more complete containers; but it is not possible that one part of the
container belongs to one node and another part to some other node.

3) Container C can contain “subcontainers” in a sense that the entries of C
contain references (URLs) to some other containers.

CHAPTER 4 – DESIGN AND IMPLEMENTATION

 56

The first step in designing an intelligent lookup is to create an overlay net-
work that consists of lookup containers.

The coordination space serves to implement lookup containers. A container
is published under one or more published names. Therefore, the container is
reachable by its URL and additionally by its published names. Each entry
stores a published name and a URL of some container, and possibly some ad-
ditional information of its properties.

Example: An entry without additional information can be
[published-name=”test”, URL=”www.test.ac.at”].

The lookup is performed by means of swarm intelligence. When some spe-
cific container is needed to be found, then the searching is done through
lookup containers according to the published name and the result is the URL
retrieved from one of the given lookup containers7.

Structure of the Overlay Network. The chosen overlay is a purely decen-
tralized and unstructured one. For an initial construction, the scale-free net-
work approach ([Cald07]) as a common, real wide-spread approach is used
with the initial number of containers, m0 = 2, according to the Barabási–Albert
model that is an algorithm for generating random scale-free networks
([AlBa02]). The network is dynamically created. URLs are retrieved by using
published names. The relationship between URLs and published names is 1: n
relation.

A node is a computing device that might consist of several core processors.
An autonomous agent is a software program that is self-responsible to be up
and running. An agent implements a certain reactive and continuous behav-
iour ([DDFG06]). Agents can move from node to node, and they can dynami-
cally join and leave. A client issues requests at any reachable node in the net-
work. A design pattern is a reusable solution in software design ([HoWo03]).

The main architecture is represented in Fig 4.1. (ovals represent space con-
tainers, rectangles represent software agents). This figure represents the local
node pattern (the so-called swarm node). The whole network consists of finite
numbers of swarm nodes. As both ant algorithms and bee algorithm are im-
plemented, the swarm node is the ant node (and the architecture refers to the
ant space, the ant agents and the ant answer space) in case of the ant algo-
rithms, i.e., the swarm node is the bee node (and the architecture refers to the
bee space, the bee agents and the bee answer space) in case of the bee algo-
rithm. The local node models the content which is the subject of search and
provides an environment for its searching by using swarm agents (ants or

7 The manipulation of data in the overlay network uses the XVSM core API and query lan-

guage.

CHAPTER 4 – DESIGN AND IMPLEMENTATION

57

bees). The components of a local node are: clients, swarm agents, a swarm
space, a content space and a routing space.

Figure 4.1. Local Node Pattern

Clients supply the requests. The swarm space is dedicated for putting the

searching requests and contains the information about the current status of
searching and the current list of visited nodes. The swarm agent receives the
request, realizes the search and changes the status of the search according to
the quality of data contained on a particular node (no_data, acceptable_data,
exact_data) by using data quality policy which is implemented by the similar-
ity function (explained in detail in 5.2.3.) and presented in Fig. 4.2. Swarm
agents consult a content space and a routing space. The content space contains
the information about the public name(s) and the real name(s). The routing
space contains the list of neighbouring nodes (like a routing table) and the ad-
ditional information connected with the type of algorithm (e.g., quantity of
pheromones for ant algorithms, duration of waggle dance for bee algorithm on
links). At the end, the result is put in the answer space, where it is picked up
by clients.

Figure 4.2. Node classification according to the data quality policy.

no data
acceptable

data exact data

1 2

client swarm space

swarm

agent swarm

answer

space

content

space

routing

space

CHAPTER 4 – DESIGN AND IMPLEMENTATION

 58

The next figure 4.3. presents the pattern composition in case of ant algo-

rithms. Namely, in case of ant algorithms, there are two types of behaviour of
an ant agent: forward and backward. The elements of swarm (ant) pattern are
swarm (ant) agents and a data quality policy expressed through the similarity
function. This policy estimates the quality of information on the current node.
As denoted, there are two types of ant agents:

 FORWARD – the agent searches the local content; in case that the
desired content is not found, it goes to the next (neighbouring) node
by using the information from the routing space.

 BACKWARD – if the desired content is found, the agent gets status
“backward” and takes the same way back (i.e., the same path that
forward agent used, bit in opposite direction).

The same figure can be used in case of bee algorithm. The difference is that
a swarm (bee) agent has no explicitly separated state of forward and back-
ward. The whole trip forth and back is encompassed in the so-called naviga-
tion phase of an agent (chapter 5). So, the violet rectangle in Fig.4.3. (without
forward and backward designation) can represent a swarm bee agent.

Figure 4.3. Pattern composition (for ant algorithms).

CHAPTER 4 – DESIGN AND IMPLEMENTATION

59

4.1.2 SILBA

The approaches, numbered in 3.3., mainly try to improve only one of the
components of the whole load balancing infrastructure, namely the load bal-
ancing algorithm. The original problem includes missing of a general frame-
work that is the implementation of a complex pattern composed of several
sub-patterns that represents a general, re-usable architectural solution to a cer-
tain problem scenario. A framework can be measured by its architecture agil-
ity ([KüŠe09]).

A comprehensive classification of different load balancing approaches can
be found in ([KüŠe09]), where it is referred to the problem as a lack of provi-
sioning a general framework, autonomy, self-* properties, and arbitrary con-
figurations.

Some interesting approaches are based on autonomous agents and multi
agent technology. According to multi-agent systems, load balancing can be
divided into these categories ([GoSc01]):
 A static load balancing: once the tasks have been launched on a specific

server, they cannot be migrated elsewhere.
 A mobile load balancing: a task may migrate to another server, utilizing

the agent's mobility.

Table 4.1. Classification of load balancing approaches ([KüŠe09])

 framework abstraction no framework

agent based [HCCD05]*, [WaLi03],
[TLYD05], [RaHa00]

[GeRa03], [TSTNT05]*, [JoDK02],
[HeBP07]

without agent [BCCP04], [BaCh03] [GLSKS04], [KaRu04], [MTYK06],
[Putr03], [Rahm08], [XuGu07],
[XuBh06], [ZhHu07], [ZoDK07]

The above table gives another type of classification through two “filters”,

i.e., according to two criterions: whether an approach uses agents or not, and
whether an approach possesses a general framework or not.

([DaJS06]) presents fundamentals of different multi-agent architectural
styles, shows how they can be characterized and evaluated, and considers
whether an approach introduces a general framework (taking in the considera-
tion both structured P2P and unstructured P2P networks as well as grid).
Those papers that use a very specific load balancing algorithm are marked
with “*”. For example, ([Rahm08]) puts the focus on DHT-based P2P systems
only.

Each of categories, presented in table 3.1, is discussed:

CHAPTER 4 – DESIGN AND IMPLEMENTATION

 60

 Agents and framework: ([HCCD05]) uses a very problem-specific load
balancing algorithm with a focus on parallel database systems.
([WaLi03]) presents a dynamic behaviour of agent-based load balanc-
ing on grids as well as modelling and predicting load balancing behav-
iour in order to explore the effects of agents’ strategies on the quality of
load balancing. A disadvantage is that the model used for abstraction is
not very generic. ([TLYD05]) is also problem-specific, in particular de-
signed for parallel database systems, and not generic. ([RaHa00]) pro-
vides a generic approach to implement any kind of dynamic load bal-
ancing algorithm in a heterogeneous cluster using software agents. A
disadvantage in this approach is that it strictly uses only sender-initiated
algorithms (no generalization is shown that allows plugging in also
other algorithms).

 Agents, no framework: ([HeBP07]) describes the AMBLE model, an
awareness model which manages load balancing by means of a multi-
agent based architecture, with the aim to establish a cooperative load
balancing model for collaborative grid environments, and presents its
extension, named C-AMBLE (Cooperative Awareness Model for Bal-
ancing the Load in grid Environments). It applies some theoretical prin-
ciples of multi-agents systems, awareness models, and third party mod-
els, to promote an efficient autonomic cooperative task delivery in grid
environments.

 No agents, framework: ([BCCP04]) describes the design of a flexible
load balancing framework, named PREMA, and runtime software sys-
tem for supporting the development of adaptive applications on distrib-
uted memory parallel computers. An indication of the flexibility of the
PREMA system has been given by implementing several load balancing
policies.

 No agents, no framework: ([Putr03]) states that load balancing at the
middleware level allows more flexibility than existing solutions based
at lower system levels. DLBS (Dynamic Load Balancing Service) con-
sists of a scalable monitoring infrastructure, a connection manager (in-
tegrated into the middleware) and customizable load balancing strate-
gies. It brings new solutions regarding large scale load balancing for
middleware-based applications, and offers a multi-criteria and easily
customizable load balancing service.

Hence, the list of issues that an advanced approach needs to comprise and
provide is the following issues:

 An intelligent load balancing algorithm: Existing load balancing algo-
rithms are not powerful enough to cope with high dynamics and com-
plexity in nowadays systems. New intelligent approaches are needed
to support adaptation and improve performance and scalability.

CHAPTER 4 – DESIGN AND IMPLEMENTATION

61

 A General Framework: Existing load balancing approaches are very
problem- specifically oriented and therefore, their comparison is very
difficult or even impossible to be done. A new approach needs to be
“omnipotent” and undependable of the specific problem. Therefore, in
order to find a best solution for a problem, a generalized framework is
needed that allows for testing and tuning different load balancing algo-
rithms for a specific problem and environment.

 Autonomy and Self-* Properties: Increased complexity of software
systems, diversity of requirements, and dynamically changing configu-
rations, force to find new solutions based on self-organization, auto-
nomic computing and autonomous (mobile) agents. Intelligent algo-
rithms require autonomous agents which are advantageous in
situations that are characterized by high dynamics, not-foreseeable
events, and heterogeneity.

 Arbitrary Configurations: As it is already stated, load balancing can
take place at a local level, to manage the load among local core proc-
essors on one node, as well as at a network level (intranet, internet,
cloud). A general load balancing framework must support arbitrary
configurations and be able to cope with all these demands at the same
time by offering means to abstract hardware and network heterogenei-
ties.

Load Balancing functions through different policies. Two of them are the

main ones: transfer policy and location policy. A transfer policy determines
whether and in which form a resource should participate in load distribution
and in that sense, the classification of resources is done ([ShKr94]). A simple
transfer policy would be to define two parameter values T1 and T2 (Fig.4.4.)
which can either be assumed to be static or can be changed dynamically. A
location policy determines a suitable partner of a particular resource for load
balancing ([ShKr94]).

Figure 4.4. The classification of nodes according to the Transfer Policy
([KüŠe09])

This research focuses on a new conception of a self-organizing coordina-

tion infrastructure that suggests a combination of coordination spaces, self-
organization, adaptive algorithms, and multi-agent technologies. Each of the
numbered issues has some form of self-organization in its incentive. In the

CHAPTER 4 – DESIGN AND IMPLEMENTATION

 62

following, a load balancing framework termed SILBA (self initiative load
balancing agents) is described in detail. SILBA supports dynamic exchange of
algorithms and combinations of different algorithms (both unintelligent and
intelligent8). The underlying logic is to serve as a test bed to ease the selec-
tion of the best algorithm for a certain problem scenario under certain condi-
tions. SILBA supports load balancing on several levels (e.g., between nodes
in network, between subnets in a network as well as between different net-
works) and allows for combinations of different algorithms on different levels
(e.g., swarm intelligence algorithms on each level or combination of swarm
intelligent algorithms with unintelligent algorithms). The architecture is agile,
i.e., new requirements on load balancing algorithms, the network infrastruc-
ture, dynamic processes (like joining and leaving of agents) do not influence
to the stability of the architecture and do not become “architecture breakers”
([MoKS10]).

Basic SILBA Design

The SILBA framework ([KüŠe09]) allows the exchange of pluggable algo-
rithms and supports their combinations. The SILBA itself does not solve the
load balancing problem - it serves as a “platform” to ease the selection of the
best algorithm for a certain problem scenario. It is based on decentralized con-
trol and a blackboard based style of collaboration, which is the starting point
for the realization of self-organization. The SILBA pattern is domain inde-
pendent and can be used on different levels.
A local node level. A load is allocated to several core processors of one com-
puter. In this case, load balancing refers to distribution of load between all
core processors and their balanced utilization.
A network level. It refers to the distribution of the load among different nodes
and can be extended up to several sublevels: load balancing between different
subnets inside one network and load balancing between different networks.

The basic components of the SILBA model are clients, autonomous
agents, tasks and policies. Clients request for tasks to be executed and they are
responsible for the load, present in a network. Autonomous agents operate in a
P2P network, dynamically exchanging amount of work between nodes. In this
model, different types of autonomous agents exist (they are described in the
further text). A task can be described as a tuple:

(priority, job, description, properties, timeout, answer space), where
 the priority pinpoints to the importance of a task,

8 By using the notion of “intelligent algorithms” it is often referred to the class of

algorithms from artificial intelligence based on some kind of swarm intelligence or
evolutionary computation.

CHAPTER 4 – DESIGN AND IMPLEMENTATION

63

 the job is expressed in a XML- or WSDL-format,
 a semantic description is optional parameter,
 properties are specific for a certain task and could be, e.g., whether task's

execution mode is “at-most-once” or “best-effort”,
 a timeout, and
 an answer space is an URL of an Internet addressable resource where to

write the result of the execution back.
Two main policies, transfer policy and location policy, are defined in

chapter 3.
The SILBA pattern is composed of the following sub-patterns (Fig.4.5).

Figure 4.5. Patterns in SILBA: (a) local node pattern (b) allocation pattern
(c) routing pattern ([KüŠe09])

The execution of requests by local worker agents takes place in the local

node pattern (Fig4.5(a)). The basic components of the local node pattern are:
clients, worker agents, load space, and answer space. The requests, put by cli-
ent(s), are accessible in either the order they arrived, or by means of other cri-
teria, (e.g. their priority, the required worker role, or their timeout date).
Worker agents actively and constantly compete for a work. In a load space,
new requests are put by clients, and the information about all worker agents’
registrations and the current load status (UL, OK, OL) of a node are main-
tained. So, this is the place where transfer policy is continuously updated. In
Fig 4.4., a very simple transfer policy is presented. It is extended by the fol-
lowing parameters: individual criteria (T0); a time threshold parameter (T1) - if
time exceeds this threshold, the task is rescheduled according to the location
policy; threshold parameters (T2 and T3) marking how many tasks one worker
agent may have in order to be under-loaded (UL), ok-loaded, (OK), or over-
loaded (OL). The transfer policy is executed by each worker agent autono-

CHAPTER 4 – DESIGN AND IMPLEMENTATION

 64

mously based on some individual criteria (T0). Finally, the answers that were
computed by the worker agents are put directly in the answer space, so that
they can be picked up by the clients.

Redirecting a load between the load spaces of different local nodes is gov-
erned by the allocation pattern (Fig4.5(b)). The basic components of the al-
location pattern are: load space, allocation agents, policies, and allocation
space. There are three types of allocation agents: arbiter agents, IN agents,
and OUT agents. Arbiter agents query the load of the load space and publish
this information to the routing space. Both IN and OUT agents read routing
information from the allocation space and pull/push work from/to another
node in a network to which the current node has a connection. The allocation
space holds information about the best partner nodes as computed by the loca-
tion policy.

The routing pattern (Fig4.5(c)) is responsible for the execution of the lo-
cation policy according to a particular load balancing algorithm. The basic
components of the routing pattern are: allocation space, routing agents, and
routing space. In a more complex situation where the combination of algo-
rithms takes place, routing agents can be of different types. They mutually
communicate and collaborate with other routing agents, but only of the same
type, via the corresponding routing spaces of this type. Each type of routing
agents has its own routing space where specific information, required by the
applied algorithm, is stored and retrieved9. The information about the best or
suitable partner node is stored in an allocation space, where the corresponding
IN or OUT allocation agents can take this information and distribute the load
between the local node and its partner node.

The full complexity of this architecture can be viewed in a pattern com-
position. Namely, all above described patterns can be composed by connect-
ing them via shared spaces. The agreement about format of entries stored in
these spaces is the prerequisite.

Figure 4.6. An example of a network configuration ([KüŠe09])

9 For example, this specific information can be pheromones, if ant algorithms are used as

LB algorithm, or duration of waggle dance, if bee algorithm is used as LB algorithm.

CHAPTER 4 – DESIGN AND IMPLEMENTATION

65

As an example, Fig.4.6. represents seven networks that have different rela-
tionships to each other. The nested networks and the intersection between two
(or more) networks are allowed. Therefore, nodes can belong to one or more
networks, e.g., nodes N1 and N2 are part of one network each, whereas N3
belongs to two networks.

Extended SILBA Design

The design of the basic SILBA can be extended towards remote load bal-
ancing. Although the patterns for different levels of load balancing are the
same at each level, they are parameterized by other algorithms. The exten-
sions of the SILBA framework allow for load balancing on several levels.

Example: The extended SILBA with two levels can be described as fol-
lows:
 SILBA level1: between different subnets, simultaneously with load bal-

ancing between nodes within these subnets, and
 SILBA level2: between different networks, simultaneously with load

balancing between subnets in these networks and nodes within these
subnets.

Different algorithms (hybrid algorithms, their combinations) can be applied
on each level and load balancing in the whole network can be realized through
the combination of algorithms. Fig.4.7. represents one network topology con-
figuration example. The overlapping of different subnets as well as the exis-
tence of nested subnets is allowed and supported. In the following text, two
levels of load balancing are described. Note that the SILBA is not limited with
the number of levels and can be further extended to n levels (n 1, n N).

The extended SILBA introduces more benefits:

1. More efficient load balancing and an improving of the overall system per-
formance;

2. A concurrent exchange of different load balancing algorithms on different
levels, which leads to construction of their combinations and hybrid forms;
therefore, it is easier to find the best combination of algorithms for a par-
ticular problem;

3. The approach is domain independent, problem independent and could be
used in an arbitrary network structure.

CHAPTER 4 – DESIGN AND IMPLEMENTATION

 66

Figure 4.7. An example of a network topology ([KüŠe09])

Load balancing in a Subnet (level1)
An extended behaviour of a routing agent is necessary. For example, in

Fig.4.5, node N3 belongs to two different subnets. In one subnet, routing
agents are of type1 (i.e., they implement one load balancing algorithm) and in
the other subnet routing agents are of type2 (i.e., they implement another load
balancing algorithm). So, in order to collaborate with nodes from both sub-
nets, node N3 must posses both types of routing agents (incl. both types of
their routing spaces that hold the information specific for each load balancing
algorithm respectively). The collaboration between different types of routing
agents at node N3 goes through its allocation space. As the allocation space
holds the information about partner nodes (computed by the location policy),
the IN and OUT allocation agents assume that the information about the best
partner to/from which to distribute load can be queried from the allocation
space.
Load balancing between Subnets (level2)

The next level of load balancing includes a further extension of routing
agent behaviour for the internet routing. Each routing space is published under
a public name by using the publishing layer and lookup peer-to-peer (e.g.,
JXTA [JXTA10]) layer. A routing within a subnet uses the same pattern as
routing between one or more subnets.

CHAPTER 4 – DESIGN AND IMPLEMENTATION

67

4.2 Model description and verification

The architectures explained in subsection 4.1. are modelled by using the
PlusCal algorithm language in order to verify them. A mathematical notation
for the construction by using the PlusCal algorithmic language is provided. By
using TLC model-checker, the correctness of architectures is proven for all
combination of algorithms that can be plugged in and all network topologies.

4.2.1 Pluscal Algorithm Language

The PlusCal algorithm language is based on TLA+ (Temporal Logic of Ac-
tions) specification language ([Lamp09]) and made with the intention to pro-
vide tools for describing algorithms, making their specifications and checking
their correctness. Under the name “algorithms”, a wide class is encompassed
(including the algorithms that describe the architectures). So, it is possible to
check the correctness of a model or architecture and verify it by using TLC
model checker ([Lamp09]). TLC is a model checker for specifications written
in TLA+. PlusCal can be applied both to sequential and concurrent algo-
rithms. A translation of a PlusCal algorithm generates a TLA+ specification,
and further it can be subjected to the TLC model checker.

PlusCal has the mathematical and logical basement, i.e., it is based on set
theory and first-order logic. Namely, TLA+ specification is high-level specifi-
cation language based on predicate logic, sets and functions. However, Plus-
Cal is highly descriptive and expressive, and therefore can replace pseudo-
code. The algorithm in PlusCal can be written in two syntaxes: p-syntax and
c-syntax. The algorithms presented in subsection 4.2.2. are written in c-
syntax.

The algorithm written in PlusCal must be positioned in a file of a TLA+
module and it has the following structure ([Lamp09]):

--algorithm name
 declaration(s)_of_variables
 definitions
 macro(s)
 procedure(s)
 algorithmBody OR process(es)
 end algorithm

where it is possible to have 0 or 1 instance of declaration, 0 or 1 instance of
definition, 0 or more instances of macro, 0 or more instances of procedure,
and an algorithm body or 1 or more instances of process.

The precise grammatical rules for each of these items can be seen in
([Lamp09]).

CHAPTER 4 – DESIGN AND IMPLEMENTATION

 68

Labels indicate atomic actions and are required in front of the first state-

ment in the body of a procedure or a process, ����� statement, in front of the
statement immediately preceded by an �� or ������ statement that con-
tains a ����� ����� ������� or labelled statement with it.

The most important PlusCal statements are ([Lamp09]):
 Assignment to a variable or a component
 If statement (the meaning is well-known):

if test then clause1 else clause2 end if;

 Either statement (it refers to a nondeterministic choice, i.e., any ex-
ecutable clause can be chosen) :

either clause1
 or clause2
 ...
 or clausen
end either ;

 While statement (the meaning is also well-known):

 label : while test do body end while ;

 Await statement (it can be executed only when the value of expr
equals TRUE, otherwise it blocks):

 await expr ;

 With statement (it allows for a nondeterministic choice of an element
from set S):

 with el S do body end with ;

 Skip statement does nothing
 Print statement (TLC does printing of expr):

 print expr ;

 Assert statement (it asserts that expr equals TRUE and in this case it
is equivalent to skip; in case that expr equals FALSE, TLC will re-
port an error message):

assert expr ;

Instead of printing results (a huge number of them, as there can be
many different states – often an infinite number of reachable states)
and examine them by hand, assert statement is a useful and elegant

CHAPTER 4 – DESIGN AND IMPLEMENTATION

69

tool to check the correctness of the results – TLC will do the check-
ing automatically by using assert statement.

 Call statement and return statement are correlated with procedures
 Goto statement (the meaning is also well-known):

goto label;

Further processes, procedures, macros and definitions may be parts in a
PlusCal algorithm:

 Processes: Algorithms might be multiprocess algorithms and contain
one or more concurrent processes. In case that it is required to denote
a set of processes, then use

process ProcName Set

otherwise, in case of one individual process, then use

process ProcName = Id

 Procedures: One or more procedures might be part of an algorithm.
A procedure MyProc will begin with

procedure MyProc (param1, …, paramn)

whereas procedure’s body starts with begin and ends with end
procedure, and must begin with a labelled statement. A procedure
is called by using a call statement, e.g., the previous procedure
could be called as

call MyProc (expr1,…,exprn) ;

 Macros are similar to procedures, except the fact that “a call of macro
is expanded at translation time”

 Definitions are realized by using a define statement

PlusCal uses the expressions and definitions inherited by TLA+, and in
accordance with it, defines numbers, strings, Boolean operators (conjunction
, disjunction , negation , implication , equivalence), sets, functions,
records, tuples and sequences. For example, a set of tuples is described as the
Cartesian product of the particular sets. Comments are denoted between “(*”
and “*)” or after “*” ([Lamp09]). Symbols are typed as ASCII strings, e.g.,
“” is typed “\in”, “” is typed “/\”, “” is typed “\/”, etc. ([Lamp09]).

CHAPTER 4 – DESIGN AND IMPLEMENTATION

 70

4.2.2 Architectures described in PlusCal

Before starting with the explanation of the PlusCal algorithms for archi-
tectures, the way of modelling spaces and the operations in XVSM are ex-
plained.

Spaces are simulated as lossy FIFO channels that use message sending and
communicate synchronously. In both algorithms, operations read, take and
write with FIFO coordinator and key coordinator are modelled by using the
following operations on channels:

 Head(s) gives the first element of sequence s,
 Tail(s) gives the tail of sequence s, when its head is removed,
 Append(s,e) makes a new sequence that is obtained by appending ele-

ment e to the tail of sequence s,
 Len(s) is the length of sequence s.

By using the numbered operations, macros for read, take and write with
FIFO coordinator and read, take and write with key coordinator are made. En-
tries (i.e., tuples) in spaces are finite sequences. Therefore, modelling the op-
erations with FIFO coordinator is self-descriptive. Modelling the operations
with key coordinator implements the possibility to “extend” the channel, if
needed. For example, macro WriteKEY allows for putting an element on
100th position in the channel, if the first three positions are with elements (so
the length of the channel is 3), by assigning “emptiness” (<<>>) between 3rd
and 100th position. Macros TakeKEY and ReadKEY use await statement,
i.e., the actions can be done only in case that the length of a channel is greater
or equal than the requested key (and that the channel itself is not empty). If so,
then macro ReadKEY implies reading the element on the specified position,
whereas macro TakeKEY implies taking the element from the specified posi-
tion and changing the channel itself.

The next algorithm describes the first architecture - Lookup pattern com-

position:

--algorithm Lookup {
* msgC-the array of channels for messages, spaces are simulated
* as channels, i.e., msgC[1],...,msgC[N] simulate swarm spaces,
* msgC[0] simulates the answer space
 variables msgC = [im \in 0 .. N |-> <<>>];
 define {
 clientNode == 0
 fromNode == 1
 currPath == 2
 pathPos == 3

CHAPTER 4 – DESIGN AND IMPLEMENTATION

71

 searchStr == 4
 swarmType == 5
 searchStatus == 6
 }
macro WriteFIFO (m , chan) { chan := Append(chan, m) }
macro TakeFIFO (v , chan) { await chan /= <<>>;
 v := Head(chan);
 chan := Tail(chan)}
macro ReadFIFO (v , chan) { await chan /= <<>>;
 v := Head(chan)}

macro WriteKEY (m , chan, key) { chan := [ikey \in 1 .. (IF
Len(chan) < key THEN key ELSE Len(chan)) |-> IF ikey = key THEN
m ELSE IF ikey <= Len(chan) THEN chan[ikey] ELSE <<>>]}

macro TakeKEY (v , chan, key) { await Len(chan) >= key /\
chan[key] /= <<>>; v:=chan[key];
chan := [ikey \in 1 .. Len(chan) |-> IF ikey = key THEN <<>>
ELSE chan[ikey]]}

macro ReadKEY (v , chan, key) { await Len(chan) >= key /\
chan[key] /= <<>>; v := chan[key]};

process (Client = 0)
* msg - the message with the request
variables msg = <<>>; initialPath = [ip \in 1 .. N |-> 0]; i; j;
{
 * send M messages, i.e., requests for searching
 l1 : i := 1;
 l2 : while (i <= M) {
 * nondeterministically select some node j
 with (rndNode \in 1 .. N) { j := rndNode;};
 * the message goes to node j
 WriteFIFO (<<clientNode, initialPath, 0, "searchStr", "F",

FALSE>>, msgC[j]);
 i:=i+1;
 };
 * wait for processing the request
 l3 : while (i > 1) {
 * take the message with the processed request msg
 * from its channel, i.e., from the "answer space" msgC[0]
 TakeFIFO (msg, msgC[clientNode]);
 i := i-1;
 };
 * assert that there is nothing left in channels, i.e., that

CHAPTER 4 – DESIGN AND IMPLEMENTATION

 72

 * the number of sent messages minus the number of received
 * messages equals to 0
 l5 : while (i <= N) {
 assert (Len(msgC[i]) = 0);
 i:=i+1;
 };
 assert (Len(msgC[clientNode]) = 0);
 }

process (Swarm \in 1 .. N)
variables msg = <<>>; nextNode; newPos; newType; newStatus; i;

iNodes {
 l1 : while (TRUE) {
 either skip;
 or {
 * accept the message with request msg from its channel

* msgC[self]
 TakeFIFO (msg, msgC[self]);
 * processing ...
 * if the type is forward
 if (msg[swarmType] = "F") {
 * the path lenght is increased by one
 newPos := msg[pathPos]+1;
 * newStatus simulates a search in a content space
 with (rndFound \in {TRUE, FALSE}) {newStatus:= rndFound};
 * if new status is found or the path length equals N
 if(newStatus \/ newPos = N) {
 * the type becomes backward
 newType := "B"
 };
 else {newType := "F"}
 };
 else {
 * in "backward" case, the status of a search does not

*change and the current path length decreases by one
 newStatus := msg[searchStatus];
 newPos := msg[pathPos]-1;
 newType := "B";
 };
 * selection of the next node
 if (newType = "F") {
 * from set 1..N, exclude nodes that are in the path
 iNodes := 1 .. N \ {self};
 i := 1;
 l2 : while (i<newPos) {

CHAPTER 4 – DESIGN AND IMPLEMENTATION

73

 iNodes := iNodes \ {msg[currPath][i]};
 i := i+1;
 };
 * from the rest of them, randomly (nondeterministically)

* select one, i.e., this simulates search and selection
* in the routing space

 with (rndNext \in iNodes) {nextNode := rndNext};
 };
 else {
 * for the "backward" type, the value of a previous
 * position in the path refers to the previous node
 * or if it is in the first position, the processed
 * message is sent (routed back) to the client
 if (newPos=1) {
 nextNode := clientNode;
 };
 else {
 nextNode := msg[currPath][newPos-1];
 };
 };
 * the message is processed
 l3 : msg[fromNode] := self || msg[currPath][newPos] :=

self || msg[pathPos] := newPos || msg[swarmType] :=
newType || msg[searchStatus] := newStatus;

 WriteFIFO(msg, msgC[nextNode]);
 };
 };
 }
}

Listing 4.1. The Pluscal algorithm for Lookup pattern composition.

The constants are: M is the number of swarms with requests, N is the

number of nodes. They are configurable parameters in the algorithm. As
spaces are simulated as flexible channels, msgC denotes the array of channels
for messages, i.e., msgC[1],...,msgC[N] simulate swarm spaces, whereas
msgC[0] simulates the answer space. An entry (tuple) msg consists of the fol-
lowing information: fromNode, currPath, pathPos, searchStr, swarmType,
searchStatus, where fromNode denotes the node from which the message is
sent, currPath is the current path, i.e., the array of visited nodes, pathPos is
the path position (the length of the current path), searchStr is the search pat-
tern, swarmType is type F (forward) or B (backward), and searchStatus is the
status of a search TRUE - found, FALSE - not found.

There are two processes: the client and the swarm agents.

CHAPTER 4 – DESIGN AND IMPLEMENTATION

 74

The client (Client) is described as a process that sends M messages, i.e.,
requests for searching by writing them into load spaces. As with statement
allows for nondeterminism, nodes in which load spaces will be put requests
are selected randomly. Then the client waits for processing the requests and
accepts the message with the processed request msg from its channel. At the
end, the client asserts that the system works correct, i.e., the number of re-
quests have entered in the system (input) is the same as the number of proc-
essed requests (output).

The swarm agents (Swarm) are described as a set of concurrent processes.
A swarm agent accepts the message with request msg from its channel
msgC[self], processes the request (it simulates the consulting of its content
space) and according to the obtained feedback (true or false), it will continue:
if TRUE or all nodes in the network are already visited, the status of the agent
will be changed to “backward”; otherwise, the selection of the next node is
done nondeterministically (it simulates the consulting of its routing space) and
the request is routed to the swarm space of the next node. . In the either
statement, skip is used to prevent waiting for “lazy” agents.

The next algorithm describes the second architecture - SILBA pattern

composition.

--algorithm Silba {
* msgC- the array of channels for messages, spaces are
* simulated as channels, i.e., msgC[1],...,msgC[N] simulate
*swarm spaces, msgC[0] simulates the answer space
* allocC-the array of channels that simulate allocation spaces
* nStatus–the array of nodes’ status

variables msgC = [im \in 0 .. N |-> <<>>]; allocC = [il \in 1 ..
N |-> <<>>]; nStatus = [in \in 1 .. N |-> "UL"];
define {
 clientNode == 0
 fromNode == 1
 reqID == 2
 partnerNode == 3
 }

macro WriteFIFO (m , chan) { chan := Append(chan, m) }
macro TakeFIFO (v , chan) { await chan /= <<>>;
 v := Head(chan);
 chan := Tail(chan)}
macro ReadFIFO (v , chan) { await chan /= <<>>;
 v := Head(chan)}

CHAPTER 4 – DESIGN AND IMPLEMENTATION

75

macro WriteKEY (m , chan, key) { chan := [ikey \in 1 .. (IF
Len(chan) < key THEN key ELSE Len(chan)) |-> IF ikey = key THEN
m ELSE IF ikey <= Len(chan) THEN chan[ikey] ELSE <<>>]}

macro TakeKEY (v , chan, key) { await Len(chan) >= key /\
chan[key] /= <<>>; v:=chan[key];
chan := [ikey \in 1 .. Len(chan) |-> IF ikey = key THEN <<>>
ELSE chan[ikey]]}

macro ReadKEY (v , chan, key) { await Len(chan) >= key /\
chan[key] /= <<>>; v := chan[key]};

process (Client = 0)
* msg - the message with the request
 variables msg = <<>>; i; j; {

 * send M messages, i.e., requests
 l1 : i := 1;
 l2 : while (i <= M) {
 * select randomly (nondeterministically) some node j
 with (rndNode \in 1 .. N) { j := rndNode;};
 * the message goes to the msg channel of node j, i.e.,

* to the "load space" of node j
 WriteFIFO (<<clientNode, i, clientNode>>, msgC[j]);

 i:=i+1;
 };
 * wait for processing the request
 l3 : while (i > 1) {
 * accept the message with the processed request msg

* from its channel msgC[0], i.e., msgC[0] refers to
* the answer space

 ReadKEY (msg, msgC[clientNode], i-1);
 i:=i-1;
 };
 * assert that there is nothing left in channels,i.e., that

* the number of sent messages minus the number of received
* messages equals to 0

 l4 : while (i <= N) {
 assert (Len(msgC[i]) = 0 /\ Len(allocC[i])=0);
 i:=i+1;
 };
 assert (Len(msgC[clientNode]) = M);
 }

process (WA \in 1 .. N)

CHAPTER 4 – DESIGN AND IMPLEMENTATION

 76

variables msg = <<>>; {
 l1 : while (nStatus[self] /= "OL") {
 either skip
 or {
 * accept the message with the request msg from its
 * channel msgC[self], i.e., "load space"
 TakeFIFO (msg, msgC[self]);
 * processing ...
 skip; * "execute" some job
 l2 : msg[fromNode] := self;
 WriteKEY(msg,msgC[clientNode],msg[reqID]);
 };
 l3 : if (Len(msgC[self]) < T1) {
 nStatus[self] := "UL"
 }
 else {
 if (Len(msgC[self])<T2) nStatus[self]:= "OK";
 else nStatus[self] := "OL"

 }
 };
 }

process (Arbiter \in 1 .. N)
variables msg = <<>>; {
 l1 : while (nStatus[self] = "OL") {
 either skip
 or {
 * accept the message with the request msg from its
 * channel msgC[self], i.e., "load space"
 TakeFIFO (msg, msgC[self]);
 * send the request to allocC, i.e., "allocation space"
 l2 : msg[fromNode] := self;
 WriteFIFO(msg, allocC[self]);
 };
 };
 }

process (RA \in 1 .. N)
variables msg = <<>>; ack; i; pNodes; pNode; {
 l1 : while (TRUE) {
 either {
 if (nStatus[i]="UL") {
 i := 1;
 pNodes := 1 .. N;
 l2 : pNodes := pNodes \ {self};

CHAPTER 4 – DESIGN AND IMPLEMENTATION

77

 l3 : while (i<=N) {
 if (nStatus[i]/="OL") pNodes:=pNodes\ {i};
 i := i+1;
 };
 with(rndNode \in pNodes) {pNode := rndNode};
 WriteFIFO(<<self,0,pNode>>, allocC[self]);
 };
 };
 or {
 * accept the message with the request msg from its
 * channel allocC[self], i.e., "allocation space"
 ReadFIFO (msg, allocC[self]);
 if (msg[partnerNode] = clientNode) {
 * find UL or OK node

 i := 1;
 pNodes := 1 .. N;

 l4 : pNodes := pNodes \ {self};
 l5 : while (i<=N) {
 if(nStatus[i]="OL")pNodes:=pNodes\ {i};
 i := i+1;
 };

with (rndNode \in pNodes) {pNode := rndNode};
 allocC[self][1][partnerNode] := pNode;
 };
 };
 };
 }

process (OUTag \in 1 .. N)
variables msg = <<>>; pNode; {
 l1 : while (TRUE) {
 either skip
 or {
 * accept the message from the channel
 ReadFIFO (msg, allocC[self]);

if (msg[partnerNode] /= clientNode /\ msg[reqID]>0) {
* take the message from allocC and write it to the
* "load space" of pNode

 l2 : TakeFIFO (msg, allocC[self]);
 pNode := msg[partnerNode];
 l3: msg[fromNode] := self || msg[partnerNode] := clientNode;
 WriteFIFO(msg, msgC[pNode]);
 };
 };
 };

CHAPTER 4 – DESIGN AND IMPLEMENTATION

 78

 }

process (INag \in 1 .. N)
variables msg = <<>>; pNode; {
 l1 : while (TRUE) {
 either skip
 or {
 * accept the message from the channel
 ReadFIFO (msg, allocC[self]);
 if (msg[partnerNode] /= clientNode /\ msg[reqID]=0) {
 * take the message from allocC and write it to the
 * "load space" of pNode
 l2 : TakeFIFO (msg, allocC[self]);
 pNode := msg[partnerNode];
 l3 : TakeFIFO(msg, msgC[pNode]);
 l4: msg[fromNode] := self || msg[partnerNode] := clientNode;
 WriteFIFO(msg, msgC[self]);
 };
 };
 };
 }
}

Listing 4.2. The PlusCal algorithm for SILBA pattern composition.

The constants are: M is the number of requests (tasks), N is the number of

nodes, T1 and T2 are the threshold levels in the transfer policy and they are
configurable parameters in the algorithm. As spaces are simulated as flexible
channels, msgC denotes the array of channels for messages, i.e.,
msgC[1],...,msgC[N] simulate load spaces, whereas msgC[0] simulates the an-
swer space. An entry (tuple) msg is simplified and consists of the most impor-
tant information: fromNode, reqID, partnerNode, where fromNode denotes
the node from which the message is sent, reqID is the identification of a re-
quest (i.e., message), and partnerNode identifies the most suitable node for
exchanging the request.

There are six processes: a client, worker agents, allocation agents (arbiter
agents, IN agents, OUT agents), and routing agents.

The client (Client) is described as a process that sends M messages, i.e.,
requests for searching by writing them into load spaces (FIFO coordinator is
used). As with statement allows for nondeterminism, nodes in which load
spaces will be put requests are selected randomly. Then the client waits for
processing the requests and accepts the message with the processed request
msg from its channel (KEY coordinator is used). At the end, the client asserts

CHAPTER 4 – DESIGN AND IMPLEMENTATION

79

that the system works correct, i.e., the number of requests has entered in the
system by clients (input) is the same as the number of processed requests
(output).

The worker agents (WA) are described as a set of concurrent processes. If
the current node is not overloaded, the worker agent accepts the message with
the request msg from its channel msgC[self], i.e., from the load space of its
node, where self denotes the identifier of the process itself. Further, the
worker agent will execute a job. In the algorithm, the execution is skipped
(statement skip) as it depends on a particular type of a job (e.g., compile
tasks, etc.) and is not of interest for the architecture itself. Finally, the simula-
tion of the transfer policy is described, so the status of a node is updated dy-
namically. In the either statement (the description of the worker agent and
all other agents), skip is used to prevent waiting for “lazy” agents.

The allocation agents (arbiter, IN, OUT) are further described.
The arbiter agents (Arbiter) are described as a set of concurrent processes.

If the current node is overloaded, the arbiter accepts the message with the re-
quest msg from its channel msgC[self], i.e., from the load space of its node
and sends, i.e., writes the request to the allocation space of its node.

The OUT agents (OUTag) are described as a set of concurrent processes
that accept the message with the request from the channel. If the request is
“already known”, i.e., identified in the current load space, it takes the message
from the allocation space and writes it to the load space of its partner node
(pNode). The IN agents (INag) are described similarly. In this case, if the re-
quest is not “already known”, i.e., identified in the current load space, it takes
the message from the allocation space and writes it to its load space.

The routing agents (RA) are also described as a set of concurrent proc-
esses. As routing agents are “in charge” for realization of the location policy,
the finding of the partner node is abstracted in the algorithm’s description and
a partner node is chosen nondeterministically - it simulates the consulting of
the routing spaces and performing of a particular load balancing algorithm.

All atomic actions are labelled in the algorithm. Assignment statements
separated by | | form a multi-assignment, executed by first evaluating all the
right hand expressions and then performing all the assignments.

TLA+ specifications of architectures are made (Appendix B) and correct-

ness of them is proven via TLC model checker. So, both architectures are
correct, independently of algorithm(s) and a network topology used.

CHAPTER 4 – DESIGN AND IMPLEMENTATION

 80

4.3 Implementation

According to these specifications of architectures and consequently, their
verification, the implementation is done in Java, and the benchmarks are run
(chapter 6). As already stated - spaces are simulated as flexible channels that
use message sending and communicate synchronously. However, the usage of
autonomous spaces with an asynchronous communication is a more general
way to realize it. Therefore, as a model for asynchronous, autonomous com-
munication, XVSM is used (chapter 2, subsection 2.1.5). XVSM is middle-
ware technology that allows high decoupling and the access to the share data.
It serves for autonomous acting agents that communicate in the environment
in a P2P distributed way. The information can be put somewhere in a space by
an agent and the other agent can pick it up. Therefore, XVSM perfectly fits to
all described requirements.

4.3.1 LookUp Implementation

A space-based architecture is used for the implementation. The swarm
space is a container with a FIFO coordinator, whereas the answer space is a
container that uses a key coordinator. Fig 4.8. shows a local node agent inter-
action. Clients issue request by writing a tuple like “[searchPattern: myURL,
params:myProg, nodeID:myID, visitedNodes:myList, clientID:135,
reqID:246, timeout:100]”into the swarm space. A swarm agent consults a
content space and in case that the desired content is found, writes the answer
like “[result:resultURL, visitedNodes:myList]” into the answer space. Oth-
erwise, it consults the routing space and chooses the next node for searching.

Fig 4.9. represents an interaction scenario of a FORWARD ant agent that

has not found a searching information on node A. Actually, it represents just a
segment (routing information from node A to node B) of the complete routing
scenario, as it continues in the same way from one node to another until one
of the resulting situations is reached: exact data found on some node X, ac-
ceptable data found on some node X or no data found. A swarm agent reads
the information from the content space, i.e., consults the content space trying
to find a specified content. In case that the desired content is not found, a
swarm agent reads routing information from the routing space, based on that
decides which node to visit next and transfers the request from the current site
to the next site.

CHAPTER 4 – DESIGN AND IMPLEMENTATION

81

Figure 4.8. Local Node Implementation

Figure 4.9. Forward Ant Implementation

client

1: write swarm request

2: ok
3: take swarm request

4: request

5: process request

6: write answer

7: ok

8: take result

9: ok

content

space

@A

1: read request

2: ok

3: read routing info

4: site B

5: write request from site A

6: ok

swarm

space

swarm

agent

answer

swarm space

swarm

agent

@A

routing

space

@A

ant

space

@B

CHAPTER 4 – DESIGN AND IMPLEMENTATION

 82

4.3.2 SILBA implementation

Local Node Implementation

A load space is a container with an implicit coordinator, so-called load co-
ordinator that keeps track of every request and workers registrations, and im-
plements a transfer policy10. The answer space uses a key coordinator.

Fig. 4.10. shows a scenario of agent collaboration at local node level. First,
each worker agent must register at the load space. Then clients can issue re-
quests into the load space. The worker agents compete for tasks but only one
will be able to execute the take operation using a new local transaction, exe-
cute the task, write the result as answer entry into the answer space using the
transaction, and finally commit the transaction. If a worker that fails after hav-
ing called take request and before committing the transaction, the timeout
given at transaction start will fire and cause the rollback of the transaction.
Failover is achieved in that another worker can take the request. Finally, the
client takes the result from the answer container, correlating it with its request
via the request ID, using the key coordinator for that.

Figure 4.10. Local Node Implementation ([KüŠe09])

10 As the coordinator is pluggable, the transfer policy can be changed at any time,
even dynamically.

CHAPTER 4 – DESIGN AND IMPLEMENTATION

83

Allocation Implementation

Allocation implementation is described by using an example that shows an
interaction scenario of an OUT allocation agent (Fig. 4.11). The allocation
agent reads the load information from the load space, and writes this informa-
tion into the routing space. If the result is OL, it generates an OUT routing re-
quest. The OUT agent watches for outgoing routing requests, in a newly cre-
ated transaction takes a next routing request, tries to read a partner
information from the allocation space, and if found, takes k1 (k1 k) requests
from its load space and transfers them to the found partner site, and finally
commits its local transaction11.

Figure 4.11. Allocation Implementation ([KüŠe09])

11 If no outgoing routing request is found, or if not (yet) partner information exists,

it will abort the transaction and try later. For the case that the worker crashes, a trans-
action timeout is used at transaction start.

CHAPTER 4 – DESIGN AND IMPLEMENTATION

 84

Routing Implementation

Routing implementation describes how the location policy that resolves re-
quests for partner nodes. It is explained by continuing and extending the ex-
ample from the allocation implementation. Next figure (Fig. 4.12.) depicts a
basic routing scheme started by node A. An OUT routing request is found in
the allocation space of node A. The routing agent at node A reads this request
from its allocation space and reads the routing information from its routing
space, and routes the request to the neighbour(s), e.g. node B. The routing
agent at site B behaves in the same way, repeats the explained procedure, and
this goes further until a routing agent at a node X finds out that its local node
is OK or UL, and therefore, can accept a certain amount k1 (k1 k) of re-
quests. It will send the feedback (write this information back) directly in a
P2P way to the originally requesting site A.

Figure 4.12. Routing Implementation ([KüŠe09])

CHAPTER 4 – DESIGN AND IMPLEMENTATION

85

Implementation Parameters

In the implementation, we introduced one parameter, so-called search
mode that is configurable and determines which nodes in the network (accord-
ing to their load status) will trigger a load-balancing algorithm.

Table 4.2. Search Modes ([ŠeKü10c])

SM1 the algorithm is triggered from UL nodes, OK nodes (in a situation when
it's likely that the node will become OL, but is not yet heavily loaded) and
consequently OL nodes.

SM2 the algorithm is triggered from UL nodes

SM3 the algorithm is triggered from OK nodes (in a situation when it's likely
that the node will become OL, but is not yet heavily loaded) and conse-
quently OL nodes; the computation of x argument for (x) suitability is
slightly changed12.

SM4 the algorithm is triggered from OL nodes

SM5 the algorithm is triggered from UL and OL nodes

SM6 the algorithm is triggered from OK nodes (in a situation when it's likely
that the node will become OL, but is not yet heavily loaded) and conse-
quently OL nodes.

For suitability function , we implemented the following functions:

Table 4.3. Suitability Functions ([ŠeKü10c])

SF0 one linear function: if (x = 1.0) (x) = n, else (x) = 5x (if the
number of nodes ≤ n)

SF1 an exponential function: (x) = 10x

SF2 a polynomial function: (x) = 10x3

SF3 another linear function: if (x < 1.0) (x) = 4nx, else (x) = 5n (if
the number of nodes [5n-4,5n])

12 If a node is in OK state, the algorithm is triggered and searching for a suitable node
among the neighbour nodes is started (afterwards, this information about the most
suitable node is stored locally). As soon as the node gets OL, the tasks get re-routed to
this target node. To achieve this “a priori” searching for a suitable node (when the in-
formation about a task is still unavailable, i.e., the task complexity c is yet unknown),
we computed argument x only on the basis of host speed and host load parameters.

CHAPTER 4 – DESIGN AND IMPLEMENTATION

 86

The fitness function f is computed from the suitability function of the
found node and the number of hops to this node and we used the following
combinations:

Table 4.4. Fitness Functions ([ŠeKü10c])

FF0 f(x) = (x) / number_of_hops

FF1 f(x) = (x) • (quality_of_links / number_of_hops)

FF2 f(x) = (x) / sqrt(number_of_hops)

FF3 similar to FF0, only the local node is excluded from the comparison and
the rest of neighbouring nodes are taken in consideration.

4.4 Summary

In this chapter, two self-organizing coordination architectures on the pattern
layer were developed: architecture for searching, retrieving and placing in-
formation in the Internet and SILBA (which stands for self initiative load ba-
lancing agents) for load-balancing in heterogeneous distributed systems. In
case of information retrieval scenario, a new overlay network with an intelli-
gent lookup mechanism is developed and implemented in this thesis. The cho-
sen overlay is a purely decentralized and unstructured one. It allows for the
plugging of the intelligent lookup mechanism is based on swarm intelligence
(that is described in chapter 5), able to navigate successfully through the net-
work of data and scales well. A new generic architectural pattern SILBA is
proposed and developed for a load balancing. It allows for the plugging of dif-
ferent load balancing algorithms, and can be composed towards arbitrary net-
work topologies. First, the basic SILBA composed of several sub-patterns is
described. Further, SILBA is extended on several layers that allow routing be-
tween different subnets, simultaneously with load balancing between nodes
within these subnets.

Both architectures represent self-organized decentralized and decoupled
models in which different types of autonomous agents work concurrently and
continuously, collaborating through the spaces. The different patterns are the
parts of the complete architecture. The architectures are modeled and commu-
nication in patterns is described by using PlusCal algorithm language which is
meant to replace pseudo-code for writing high-level descriptions of algo-
rithms. The architectures are justified (via TLC model checker) and it is
proven that they are correct for all combination of algorithms that can be
plugged in, all policies and all topologies.

CHAPTER 5

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

 88

5 EMPLOYING NATURE-BASED MECHANISMS

Nature is prolific with self-* mechanisms. Learning from nature and apply-
ing this knowledge in solving IT problems is proven to be beneficial. In this
chapter, the emphasis is put on swarm intelligence:
 Ant algorithms have been used in applications, but still not enough ex-

ploited and therefore offer a challenge of improving solutions in the appli-
cation scenarios (Chapter 3).

 Bee algorithms are relatively new and although some applications exist,
they are still developing, and have neither a general form nor a theoretical
basis established; according to some specific features that bee intelligence
offers, their adaptation towards the applications in the presented scenarios
(Chapter 3) is very attractive.
This chapter starts with a general comparison of Ant Algorithms versus

Bee Algorithms, continues with the description of these algorithms and fur-
ther, the ways of mapping/adapting these algorithms to the application scena-
rios are described.

5.1 Swarm Intelligence

Different dynamic processes characterize the application scenarios. Ac-
cording to the characteristic of P2P networks (Chapter 2), it is already ex-
plained that in an unstructured P2P network, a placement of information can
be done independently of an overlay topology, but the content must be local-
ized explicitly. Unstructured P2P networks fit better to the considered scenar-
ios as they support better dynamical processes from both scenarios, like:
nodes can dynamically join and leave, the information about load changes
permanently, tasks are dynamically added and continuously processed, que-
ries that are more complex are possible, etc. Algorithms used in a particular
overlay network are inspired by swarm intelligence. Ant algorithms are in-
spired by behaviour in an ant colony and have some applications up to now
(Chapter 2). Bee algorithms are inspired by behaviour of a honey bee colony
and represent a relatively new application of one bio-mechanism with a lim-
ited number of applications and without theoretical basement. As both algo-
rithms belong to swarm intelligence, the main issue that differentiates them in
the scope of their mapping to IT problematic is presented first.

Bees communicate directly with their hive mates, i.e., if a bee finds the re-
quired information, it flies back to its hive and informs the “starting place” di-
rectly in a P2P way. So, knowledge distribution takes place in the own hive.
Bees of different hives do not communicate with each other, and bees that are
out of their hive do not communicate with other bees.

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

89

Ants communicate indirectly with their nest mates. They leave information
(pheromones) at all nodes on the backward trip. Their forward trip is compa-
rable to the bees’ forward movement (navigation), but the backward trip is
different – the ant does not directly contact the “starting place” in a P2P way
but must go the entire way back.

5.2 Ant Algorithms

5.2.1. Ant behaviour in nature

Ants represent a collective intelligence in nature. Ant colonies consist of
individual ants with simple behaviour and limited cognitive abilities. So, they
are not capable to solve complex problems individually. In spite of that, they
are highly structured social organization, capable of solving complex tasks at
the collective level, such as constructing optimal nest structure, or finding the
shortest path between a food source and their nest. Building of chains of ants
([LSTD01]), formation of drops of ants ([TBSDL01]), brood sorting, coopera-
tive transport are only some of their observed behaviours.

One of these mechanisms - finding the shortest path between a food source
and their nest – served as an inspiration for interdisciplinary self-organization
researches in order to be mathematically modelled and described, and later
shaped in an algorithmic form for IT usage. The amazing results from nature,
observed in a convergence to the shortest path, is their everyday simple activ-
ity based on pure random movements, local decisions, fully distributed,
autonomous and adaptive process. In nature, ants wander randomly, seeking
for food. Once when they find food, they return to their nest laying down
pheromone that forms an evaporating chemical path. It is a form of indirect
communication mediated by modification of the environment, so-called stig-
mergy. Thus, ants highly coordinate their behaviour and activity via stig-
mergy. Using this indirect communication, other ants locate this trail, follow it
and reinforce it, since they also lay down pheromone. As a result, shorter
paths to food have more pheromone and are more likely to be followed. Thus,
this positive feedback eventually leads all the ants following a single path.

In order to investigate behaviour of ants, ([DAGP90]) performed the so-
called “double-bridge experiments”. In the first experiment, ants had possibil-
ity to choose between two paths of the same length between their nest and the
food source. At the very beginning, there were no pheromones on the paths,
so ants chose the path randomly. Both paths had the same probability to be
chosen. After some time, due to the random fluctuation, there were a few

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

 90

more ants on one path. As a consequence, there were more pheromones on
that path that became more and more reinforced. So, the ants converged to
one path. This is the consequence of positive feedback in a self-organizing
behaviour of the ants. In the second experiment, the lengths of paths were dif-
ferent. One path was twice as long as the other. Again at the beginning, with-
out pheromone on the paths, both paths seemed to be identical to the ants. Af-
ter a while, the pheromone logically started faster to accumulate on a shorter
path, making consequently this path more attractive for the ants. In this situa-
tion, the convergence of the ants to a shorter path was driven mainly because
of the differential path length.

5.2.2. Algorithms

The original idea for the ant colony optimization metaheuristic (ACO)
comes from nature, observing the behaviour of real ants and their search for
food. ACO algorithms are probabilistic techniques for solving computational
problems that are based in finding as good as possible paths through graphs
by imitating the ants’ search for food. Mapping to the artificial ant colony
where a software agent plays the role of an ant, ACO supposes a multi-agent
organization. The natural pheromone is stigmergic information that serves for
the communication among the agents. Ants make pure local decisions and
work in a fully distributed way. From the basic Ant System algorithm
([DoSt05], [MMBR09]), different variations and extensions are derived like:
Elitist Ant System, Rank-Based Ant System, Min-Max Ant System (MMAS),
and Ant Colony System ([DoSt05]). The most popular applications of ACO
algorithms are: (network) routing, assignment, scheduling, machine learning,
etc. ([DoSt05]). Also, ACO can be combined with other algorithms, e.g., ge-
netic algorithms ([PoMe08]), forming hybrid algorithms. All of them consider
a static scenario (adding and removing the network components are not sup-
ported). AntNet ([DiDo98a]) is a network routing algorithm (originally con-
structed for adaptive routing in IP networks), based on Ant Colony Optimiza-
tion (ACO). This algorithm considers a dynamic scenario - it supports adding
and removing the network components, is highly adaptive to network and traf-
fic changes, and robust to agent failures. A detailed description of these algo-
rithms can be found in ([DiDo98a]) and ([DoSt05]).

In the following, the next algorithms are described: a basic Ant System as
the underlying algorithm, and Min-Max Ant System and AntNet as they are
used in this dissertation.

The behaviour of real ants is first mathematically described by means of a
stochastic model. Afterwards this model is expressed by using graphs theory.

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

91

Let us consider a static, connected graph G = (C,L), where C is the set of n
nodes and L is the set of undirected arcs connecting them. Two nodes, i,jC,
are neighbours, if there exists an arc (i,j)L.

Ant System algorithms ([DoSt05]) consist of two phases: the ants’ tour
(solution) construction and the pheromone update.

Phase1 - A tour construction: m artificial ants concurrently build their solu-
tions. Initially, they are positioned on randomly chosen nodes, start their trips
and choose the next node to be visited in their trip(s) by applying a random
proportional rule13 ([DoSt05]):

k
iNl ilil

ijijk
ijp

, if k

iNj (5.1)

where τij is a pheromone trail on (i,j)-arc,
ijij d1 is a heuristic value (avail-

able à priori), α and are two parameters that determine the influence of the
pheromone trail and the heuristic information, and k

iN is the set of nodes from

the neighbourhood of node i that ant k has not visited yet.

Phase 2 - Pheromone update: A pheromone value on all arcs is decreased (af-
ter all ants finished phase1) by a constant factor ([DoSt05]):

 ijij)1((5.2)

where 0 < ≤ 1 is the pheromone evaporation rate. After evaporation, the ad-
ditional amount of pheromone is deposited on the arcs that have been crossed
in the ants’ constructions of solutions, i.e., that have been used in phase1:

m

k

k
ijijij

1

 (5.3)

where k
ij is the amount of pheromone that ant k deposits on arcs it has vis-

ited.

MMAS Ant System is one popular and successful improvement of the ini-

tial Ant System algorithm. It includes the following modifications ([DoSt05]):

13 This rule is a derived from the basic statistics’ rules and represents the probabili-

ty of choosing the path, i.e., arc (i,j) when being located at the node i, where j is one
of the nodes from the neighbourhood of node i.

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

 92

 A strong exploitation of the best tours found in order to accelerate the
convergence of the process,

 The possible range of pheromone trail values are limited to the inter-
val [min,max], where min andmax are the lower and upper limits re-
spectively on the possible pheromone values introduced in order to
avoid search stagnation that could happen due to the premature con-
vergence.

 The pheromone trails are initialized with the upper pheromone trail
limit,

 The pheromone trails are reinitialized (dynamically calculated) each
time the system approaches any kind of stagnation (on this way, a
higher exploration of solutions is forced).

The first phase is the same as in the initial Ant System algorithm, but the
second phase is modified – the update of pheromone trails is implemented as
follows ([DoSt05]):

 best
ijijij (5.4)

where best
ij = 1/Cbest and Cbest can be either the length of the iteration best

tour (i.e., the best solution in the current iteration) or the length of the best-so-
far tour (i.e., the best solution from the beginning of the trial).

AntNet algorithm ([DiDo98a]) uses the same algorithmic pattern as the

other algorithms from Ant System, i.e., it also has two phases: a solution con-
struction and data structures14 update. The characteristics of this ACO algo-
rithm is that it is specifically constructed for data network routing. Routing is
the process of selecting paths in a network along which to send network traf-
fic and it “encompasses” distributed activities of building and using routing
tables. Routing table, stored in a node (networked computer), lists the routes
to particular network destinations, and in some cases, metrics associated with
those routes. A routing table is maintained by each node in the network and it
contains information about the topology of the network immediately around
the node (i.e., it contains information important for making local forwarding
decisions). As it is expectable to have a high fluctuation of data in a network,
the nodes and links suddenly can be broken (or can be added), this algorithm
supports a high dynamics.

Specific types of data structures are introduced: an artificial pheromone
matrix, Ti and a statistical model, Mi of the traffic situation over the network.
Both matrices are associated with node i of the data network. The artificial

14 Data structures are described below in the text.

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

93

pheromone matrix, Ti has the elementsijd that describe the learned desirability
for an ant in node i with destination d to move to node j. The statistical model,
Mi of the traffic situation serves to evaluate the paths produced by the ants.

The model is described as),,(2
idididi WM where id is the sample mean,

2
id is the variance, Wid is the “observation window” used to store the best

value
idbestW of the ants’ trip time from node i towards destination d. The

sample mean and variance provide the expected time to go from node i to
node d and are calculated by using the exponential models ([DiDo98a]):

))((

)(
2222
ididdiidid

iddiidid

o

o

 (5.5)

where dio is the new ant’ trip time from node i to destination d and ς is a real

parameter that weighs the number of the most recent samples that will really
affect the average. Matrix M maintains absolute distance/time estimates to all
nodes, whereas matrix T gives the measure of relative goodness for each link-
destination pair ([DiDo98a]).

Two sets of artificial ants exist: forward ants and backward ants. They dif-

fer according to their “actions”:
 Forward ant, Fs→d, travels from source node s to destination node d.
 Backward ant, Bs→d, travels back to source node s by using the same path

as Fs→d but the opposite direction; it uses the information collected by Fs→d
in order to update routing tables of the visited nodes.

Each Fs→d starts its travel from the source node s and chooses its destination
d according to this probabilistic rule15 ([DiDo98a]):

n

i
si

sd
sd

f

f
p

1

 (5.6)

where fxy is a some measure of data flow x y and n is the number of nodes.

15 This rule is also a derived from the basic statistics’ rules with a similar pattern as

Eq.4.1. and represents the probability of creating at node s a forward ant with node d
as destination.

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

 94

Phase1 – A solution construction: The ant constructs the path on this way:
a) An ant that is currently at node i chooses the next node j to be visited by

applying the following probabilistic rule ([DiDo98a]):

)1(1

i

ijijd
ijd N

p

 (5.7)

where ijd is an element of the pheromone matrix i that indicates the
learned desirability for an ant in node i with destination d to move to node
j,

iN is the number of neighbours of node i, ij is a heuristic value that

takes into account the state of the jth link queue16 of the current node i
([DiDo98a]):

iN

l
il

ij
ij

q

q

1

1 (5.8)

The parameter α (from Eq.5.6.) weighs the importance of the heuristic val-
ues with respect to the pheromone values stored in the pheromone matrix.

b) When Fs→d comes to destination node d, it generates Bs→d, then it transfers
to Bs→d all of its memory and is being deleted.

c) Bs→d travels back to the source node s using the same path as Fs→d but the
opposite direction. It uses the information collected by Fs→d in order to up-
date routing tables of the visited nodes.

Phase 2 – Data structures update: This phase considers updating matrices Ti
and Mi by the backward ant. It also refers to updates of entries corresponding
to every node d’ Sid (where Sid is a memory stack and d’≠ d) on the “sub-
paths” followed by ant Fs→d after visiting the current node i. In the pheromone
matrix, Ti, those values that suggest choosing neighbour f when destination is
d are incremented ([DiDo98a]):

)1(''' ifdifdifd r (5.9)

where r is a value used by the backward ant Bs→d traveling from node f to node
i. The intention is to increase the pheromone values ijd’ proportionally - small

16 The traveling information is divided into data and routing “packets”. Every node

has a capability to “store-and-forward” by using a buffer space (as a shared resource
among all the queues) for the incoming information and outgoing data.

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

95

pheromone values are increased proportionally more than large pheromone
values. It implies a quick exploitation of new and good discovered paths.

The values of pheromones ijd’ for destination d’ of the other neighbouring
nodes j, jNi, j≠f , are reduced in a way that the sum of pheromones on links
exiting from node i will remain 1:

 ''' ijdijdijd r jNi, jf (5.10)

There are several ways to determine and assign r values: from the simplest
way of setting r = constant to more complex way that defines r as a function
of the ant’s trip time and parameters of the statistical model Mi ([DiDo98a]):

)()(infinfsup

infsup
21 ITII

II
C

T

W
Cr best

 (5.11)

where Isup and Iinf are estimates of the limits of an approximate confidence in-
terval μ and Wbest is the best ant’s trip time, C1 and C2 are configurable pa-
rameters that weigh the influence of the two parts in Eq. 5.11: the first part
expresses the ratio between the best trip time observed over the current obser-
vation window and the current trip time, whereas the second part gives an es-
timation how far the value T is from Iinf in relation to the extension of the con-
fidence interval ([DiDo98a]).

Figure 4.2. represents a pseudo-code of ACO metaheuristic: constructSolu-

tion corresponds to phase1 (i.e., ants construct solutions by moving from the
origin to the destination, step-by-step, according to a stochastic decision pol-
icy); pheromoneUpdate corresponds to phase2 (i.e., the aim of pheromone
update is to increase the pheromone values associated with good solutions
(deposit pheromones) and decrease those associated with bad ones); dea-
monActions denotes the optional actions that cannot be preformed by single
ants (like the application of a local optimization procedure).

 procedure ACO_MetaHeuristic
 while(not_termination)

 constructSolutions()
pheromoneUpdate()

 daemonActions()
 end while

 end procedure

Figure 5.1 Pseudo-code of ACO metaheuristic ([DoSt05])

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

 96

Ant Algorithms are theoretically partially based. The convergence proofs
do not apply to the ACO metaheuristic generally ([DoSt05]), but only to one
subset of ACO algorithms (more specifically, MMAS Ant System and Ant
Colony System).

5.2.3. Mapping Ant Algorithms to Application Scenarios

In this subsection, the mapping of ant algorithms to the considered scenar-
ios is described. It is already stated that the considered scenarios contain NP-
hard optimization problems. Ant algorithms as the type of promising meta-
heuristics are applied. As the scenarios have their specificities, the ant algo-
rithms are adapted and remodelled.

Ant Algorithms for Information Retrieval

The algorithms use autonomous agents technology and are inspired by
swarm intelligence. Software agents act in swarms, i.e., more specifically, each
software agent performs the role of an artificial ant. One of the natural multi-
agent systems, ant colony, is fully distributed, self-organizing, with a high level
of autonomy. Thus, a couple of ant algorithms are adapted for this use case.
Lookup containers “communicate” with each other through a coordination
space. In order to locate a container (to find its URL for a given published
name) in an unstructured system, a nondeterministic search is applied. Search-
ing through the network and the complete lookup mechanisms is realized by
using the artificial ants: a forwarding ant carries a search request and a back-
warding ant possesses a reply to the search request. Each lookup container
“forwards” the request to its neighbours, i.e., it sends the forward ant that car-
ries the request. The ants are randomly positioned (on containers) and the
whole process is done concurrently. The responses are routed back by back-
ward ants. The above mechanism is implemented by assigning each ant a pub-
lished name and equipping each lookup container with published names and
URLs.

 Writing of information: for placing the content into the network, two

ways are used:
randomly the content is put randomly and there is no need for swarm
intelligence algorithms,

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

97

“brood sorting” ([CMVT07a]) this simulates brood sorting mechanism
in ant colony from nature; entries are distributed on the basis of their type
(similar entries stay closer to each other).

 Retrieving of information: For the case of lookup and data retrieving,
two different ant algorithms are implemented: an adaptation of MMAS
(suitable for a static scenario) and an adaptation of AntNet (suitable for a
dynamic scenario). MMAS is implemented in a hybrid form, i.e., com-
bined with Local Search. The search space is the set of URLs. The envi-
ronment is static concerning the number of lookup containers (a finite
number of them), but dynamic concerning the connection between
lookup containers. The extension can be done on the basis of properties
of AntNet algorithm by allowing a dynamic environment (i.e., the num-
ber of lookup containers can vary). An adaptation of ant algorithms com-
prises the following changes:

In the procedure constructSolution ([DoSt05]), the random proportional

rule is used (see Eq.4.1.). The heuristic values from this rule are interpreted as
a quality of the used links17, expressed in time needed for an ant to traverse a
particular path from lookup container A to lookup container B by using a par-
ticular link. The estimated length of the optimal tour (an initialization phase in
MMAS algorithm) is the length of a tour generated by the nearest - neighbour
algorithm18 ([Weis80], [GoMO06]). Thus it could be the length of the longest
tour (in time) found in the network. The assumption is that the network is not
fully connected. That means each node in a network needs not to have a direct
connection to all other nodes. In the other words, in a fully connected network
of n nodes, each node has n-1 neighbours. The update of pheromones is either
“best-so-far” or “iteration-best” which depends on the fact how large in-
stances are taken in consideration. For smaller instances, “iteration-best” is
the better strategy, whereas for bigger instances, it is better to apply “best-so-
far” ([DoSt05]).

As it is already stated, if “brood sorting” is used for writing information,
entries are distributed on the basis of their type (similar entries stay closer to
each other). Therefore, two strings that represent two URLs, are compared by
using a similarity function ([ŠeKü09], [ŠeKü10a]). This function is based

17 In a theoretical model explained by means of a graph, the connection between

nodes is defined by arcs. In reality, arcs correspond to links (in a network).
18 The nearest neighbour algorithm includes the following steps: 1) stand on an

arbitrary node as current node, 2) find out the “lightest” arc connecting current node
and an unvisited node N, 3) set current node to N, 4) mark N as visited, 5) if all the
nodes in domain are visited, then terminate, else go to step 2). This algorithm quickly
yields a short tour, but usually not the optimal one due to its "greedy" nature. It gives
as the output the sequence of the visited nodes.

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

 98

on a spatial locality that fits the best to “brood sorting” as spatial locality re-
fers to the use of data elements within relatively close storage location.

Example:
A simple spatially basic URL comparison depends on the following rules.

Namely, it is inspired by belonging to the same area (semantically) - therefore
the metaphor of host is involved and “its” weigh (k1) has a more significant
impact.

If the host is identical: add k1;
If the path is identical: add k2*path_success_rate;
If the host is not identical: add k3* host_success_rate, where the suc-

cess_rate is the number of words matching in right order divided through the
count of words.

The real coefficients k1, k2 and k3 are configurable and can take values
from [0,1] in order to normalize the similarity function. The best values for
these coefficients are determined by means of fine-tuning: k1= 0.6, k2= 0.4,
k3= 0.2.

For example, in case of some URLs, the obtained values are presented
right:

http://www.test.org/german/docs/aaa
 http://www.test.org/german/docs/aaa

http://java.sun.com/german/docs/aaa
 http://java.sun.com
 http://www.test.org/german/docs/aaa
 http://java.sun.com/german/docs/aaa
 http://www.sun.com/books/docs/plane
 http://java.sun.com/german/docs/aaa

Adapting and re-modelling of these ant algorithms for the case of location

and retrieval of data comprises the following changes ([ŠeKü09], [ŠeKü10a]),
implemented in constructSolution and depositPheromone procedure. As al-
ready explained, procedure constructSolution means that the ant made a path
and possibly found the data on that path. The interest is to find the best path,
but also to find the data with a good quality. As the result of an ant’s search-
ing for the specified data, the following situations are possible to happen: no
data found, an exact data found, and an acceptable data found with the accu-
racy , where is an error rate (configurable parameter, real number) given
in advance, connected to the definition of . Namely, the general form of the
similarity function is: = (current_solution, exact_solution), that describes
how good (acceptable) solution is found, [0,1]. The type of the similarity
function can be changed, however, its value are normalized (into segment

→Identical host and path: 0.6+0.4=1

→ Identical host: 0.6

→ Identical path: 0.4

→ 0.2*2/3 for host + 0.4*1/3 for path:
0.26666668

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

99

[0,1]). This implies the following changes in depositPheromone procedure
and consequently, the ant’s actions:
 Action 1: deposit a full amount of pheromone, if an ant found the exact

data on its trip, i.e., if (current_solution, exact_solution) = 1;
 Action 2: deposits less amount of pheromone, if an ant found acceptable

data on its trip with the accuracy , i.e., (current_solution, ex-
act_solution) ;

 Action 3: Skip depositing pheromones on the trip19, if an ant did not find
data, i.e., (current_solution, exact_solution) = 0;

 Action 4: Assign some negative values of pheromones, i.e., decrease the
values of pheromones more than they are in unvisited arcs, if an ant did not
find data.
These actions describe a depositing of a different amount of pheromones

according to the quality of solution found. Therefore, DepositPheromone pro-
cedure is adapted for this problem of interest in the following way that in-
cludes the results of the numbered actions, i.e., the value of :
1) for MMAS Ant System algorithm:

bestMC

1
 (5.12)

 where is the amount of pheromone added (Eq.4.3.) and

1

M .

2) for AntNet algorithm:

)1(r (5.13)

In both cases, the “distance” matrix (heuristic distance) is calculated by

means of “time”: the distance between lookup containeri and containerk is not
expressed as geographical distance; it is the amount of time needed to go from
lookup containeri to lookup containerk. Ants are positioned randomly.

Ant Algorithms for Load Balancing

As already stated in Chapter 3, a load balancing algorithm is responsible
for the realization of the location policy. Ant algorithms used for load balanc-
ing are MMAS and AntNet. Actually, the first phase – construct solution-
uses again Eq. 5.1. for the case of MMAS, i.e., Eq.5.6. and Eq.5.7. for the
case of AntNet. The pheromone update phase is done by using Eq. 5.12. for

19 The values on arcs (links) it traversed will be the same as the values on the rest arcs in

the network.

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

 100

MMAS and Eq.5.13. for AntNet, where the suitability function δ is defined in
Table4.3. and its argument has the values defined in Eq. 5.18. A detailed ex-
planation about suitability function in case of load balancing is presented in
subsection 5.3.

5.3 Bee algorithms

5.3.1. Bees Behaviour in Nature

One bee colony in nature consists of bees with different roles defined be-
low ([CaSn91]): foragers, followers, and receivers. A bee colony demon-
strates a natural intelligence that performs self-organization through two types
of behaviour: navigation and recruitment. The navigation means searching for
nectar in an unknown landscape. It is non-pheromone based, and thus another
strategy - so called path integration ([LMLPW00]) - is used for orientation. A
forager bee is capable to “compute its present location from its past trail con-
tinuously. So, path integration is the insect knowledge of direction towards
and distance from its destination. A forager scouts for a flower with good nec-
tar, returns to the hive, unloads nectar, and performs a recruitment strategy.
The recruitment means that a bee communicates the knowledge about the vis-
ited flowers to other bees ([CaSn91]), i.e., it “advertises” the visited flower
site. For the recruitment, a bee uses a special strategy for direct communica-
tion with its hive mates, so-called waggle dance. Using this “dance language”
on the vertical combs in the hive, bee informs its hive mates about the direc-
tion, distance and quality of the food found. The better the quality of the nec-
tar source and the shorter the distance from the hive is, the longer a forager’s
dance duration ([vonF67]). A follower randomly chooses a forager whom it
follows and visits the flower that has been “advertised” without own search-
ing. A forager can choose to become a follower in the next step of navigation,
and vice versa. A receiver always stays in the hive and processes the nectar.

High autonomy, distributed functioning, and self-organization characterize
the biological bees behaviour ([CaSn91]). Bees solve the problem in a collec-
tive decision making process. Although these characteristics are similar to
ants behaviour, the difference is presented in subsection 4.1. Bees communi-
cate directly (non-pheromone based communication), whereas ants communi-
cate indirectly (pheromone based communication).

Bee-inspired algorithms have been applied to several computer science
problems like Travelling Salesman Problem ([WoLC08]), job shop scheduling
([CSLG06]), routing and wavelength assignment in all-optical networks

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

101

([MaTA07]), training neural networks for pattern recognition (Pham et al.
2006), scheduling jobs for a production machine ([PKLP07), computer vision
and image analysis ([OlPu06]). These problems benefited of using bee intelli-
gence. Although some of these applications treat a kind of job scheduling, it
differs a lot from our approach. Namely, they used a simplified version of a
scheduling problem by including several limitation given in advance (e.g., a
single machine supplies jobs, each job needs only one operation to be exe-
cuted, etc.).

5.3.2. Bee Algorithms for Application Scenarios

As bee algorithms have neither a general form nor the theoretical founda-
tion, this subsection starts immediately with the bee algorithm for the applica-
tion scenarios. Bee algorithms have not been used for these scenarios before,
so this is a novelty as they are applied for the first time to these problems. At
the end, new theoretical results about the convergence of the presented form
of bee algorithm are derived and proven.

Bee Algorithm for Dynamic Load Balancing

The principals for usage of bee intelligence for load balancing are de-
scribed in ([ŠeKü08], [ŠeKü10c]). The way of mapping this process from na-
ture to a heterogeneous distributed system is abstracted due to the model that
corresponds to the dynamic load balancing problem and includes the follow-
ing notions. The notions from distributed systems are defined as:

 Software agents represent bees at the particular nodes.
 A node contains exactly one hive and one flower, where a flower can

have many nectar units that can be taken out by a bee and a hive has a
finite number20 of receiver bees and outgoing (i.e., forager plus fol-
lower) bees.

 A task represents one nectar unit.

At the beginning of the process, all outgoing bees are foragers as the popu-
lation is without any information about the environment. Foragers perform
two described strategies: they navigate, i.e., scout for a location policy partner
node of their node to pull or push nectar from/to it, and they recruit followers.
In the rest of the text, the emphasis will be put on the outgoing bees (foragers
and followers) as they are the main actors in the algorithm (i.e., they perform
the strategies: navigation and recruitment). The receivers only process tasks at
their node and have no influence on the algorithm. The goal is to find the best

20 A population has finite number of individuals.

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

 102

location policy partner node by taking the best path which is defined to be the
shortest one. A suitability function defines the best location policy partner
and could take any form, e.g., from chapter 5, Table 5.2.

Phase 1 – Navigation: A bee goes from one node to another until one of these
situations occurs:

 A bee found the best location policy partner,
 A bee examined all nodes in a network without results, i.e., made a

“full” path if the network is fully connected21,
 A bee examined some nodes in a network without result, i.e., made a

“partial” path if the network is not fully connected.
After finishing navigation, a bee goes back directly to the hive (which is dif-
ferent in comparison to ants behaviour; ant uses the same path to go back to
the nest). This difference is explained in subsection 4.1.
A navigation strategy determines which node will be visited next. It is
mathematically described and realized by a stochastic state transition rule22
([WoLC08]):

)(

]1[)]([

]1[)]([
)(

tAj ij
ij

ij
ij

ij

i

dt

dt
tP

 (5.14)

where ρij(t) is the arc fitness from node i to node j at time t and dij is the heu-
ristic distance between i and j, is a binary variable that turns on or off the
arc fitness influence and is the parameter that controls the significance of a
heuristic distance.

In the calculation of the arc fitness values, two situations are possible:
 A bee is forager
According to the state transition rule, arc fitness values are ij = iN1 ,

where iN is the number of neighbouring nodes of node i. A forager can de-

cide to become a follower in the next cycle of navigation.
 A bee is follower
Before leaving the hive, bee observes dances performed by other bees and

randomly chooses to follow one of the information offered through these
dances. This information contains the set of guidance moves that describes the

21 It is defined on page 87.
22 This rule is a derived from the basic statistics’ rules and represents the probabili-

ty of choosing the path, i.e., arc (i,j) when being located at the node i, where j is one
of the nodes from the neighbourhood of node i.

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

103

tour from the hive to the destination previously explored by one of its hive
mates. This is the so-called preferred path ([WoLC08]). When a bee is in a
node i at time t, two sets of next visiting nodes can be derived: the set of al-
lowed next nodes, Ai(t) and the set of favoured next node, Fi (t). Ai(t) contains
the set of neighbouring nodes of node i, whereas Fi (t) contains a single node
which is favoured to reach from node i according to the preferred path. The
arc fitness is defined as ([WoLC08]):

10),(
)(

)()()(

)()(1
)(

)(

 tAj

tFjif
tFtAtA

tFtA
tFjif

t i
i

iii

ii

i

ij
 (5.15)

where S denotes of the cardinality (i.e., the number of elements) of set S and

 is the probability of “following a node” in the preferred path. So,
)()(tFtA ii can be either 0 or 1, i.e., Ai(t) and Fi (t) may have either none

element or only one element in their intersection.

Phase 2 – Recruitment: A recruitment strategy exchanges the obtained knowl-
edge between bees about path (distance) and quality of the solution. From
these, we can derive a new fitness function

i

i H
f

1
 (5.16)

for a particular bee i, where Hi is the number of hops on the tour, and is the
suitability function of the solution. If bee i found a highly suitable location
policy partner node, then its fitness function, fi, will obtain a good value. The
colony’s fitness function is the average of all fitness functions (of each outgo-
ing bee):

n

i icolony f
n

f
1

1
 (5.17)

where n is the number of outgoing bees. After a trip, an outgoing bee deter-
mines how “good it was” by comparing its result with the average value
(Eq.5.17), and based on that decides its next role (a forager or a follower)
which is presented in Table5.1. ([NaTo04]). The success of a bee affects the
credibility of its recruitment, expressed as a quotient between fi and fcolony.

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

 104

Table 5.1. Lookup table for adjustment of probability to follow ([NaTo04]).

scores probability to follow
fi 0.5*fcolony 0.60
0.5* fcolony fi 0.65* fcolony 0.20
0.65* fcolony fi 0.85* fcolony 0.02
0.85* fcolony fi 0.00

This procedure can be described as follows ([WoLC08]):

procedure BCO_MetaHeuristic
while(not_termination)
observeWaggleDance()

 constructSolution()
 performWaggleDance()
 end while

 end procedure

Figure 5.2. Pseudo-code of BCO metaheuristic

Both under-loaded nodes and overloaded nodes (and also concurrently)

can start the location policy. The rest of the actions depend on the fact which
nodes start it, so the following situations can be differentiated:
1. An under-loaded node starts the location policy: its bee searches for a

suitable task belonging to some overloaded node and carries the informa-
tion about how complex task the node can accept;

2. An overloaded node starts the location policy: its bee searches for an un-
der-loaded node that can accept one or more tasks from this overloaded
node. It carries the information about the complexity of tasks this over-
loaded node offers and compares it with the available resources of the cur-
rent under-loaded node that it is just visiting.
Obviously in both situations, the complexity of the task and the available

resources at a node must be compared. Therefore, the following notions are
introduced ([DSCB03]):
 A host load hl represents the fraction of the machine that is not available

to the application.
 A host speed hs represents the speed of the host and its value is relative

in a heterogeneous environment.
 A task complexity c is the time necessary for a machine with hs = 1 to

complete a task when hl = 023.

23 Note: This is a hypothetical due to the definition from ([DSCB03]), as in reality,

it can be expected that some load always exists.

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

105

On the basis of these notions, the argument x of suitability function =
(x) is calculated:

hl

hs
c

x

1

 (5.18)

The situation is ideal for x = 1 as it numerically depicts that the most adequate
location policy partner will be found. The “adequacy” also comprises the is-
sue of taking care about not to waste the available resources. For example, the
situation, in which an under-loaded node with high resource capacities takes a
work from an overloaded node that offers tasks with small complexity, de-
scribes a wasting of the available resources and the example of a badly
matched location policy partner nodes. All mentioned parameters are config-
urable.

Theoretical Considerations

In the following part, basic theoretical considerations are considered:
 Does the algorithm find the optimal solution?
 Do we speak about global optimum or local optimum?
 Do we have convergence in value and/or convergence in solution?

First, we shall differentiate between ([DoSt05]):
A convergence in value: This is the evaluation of a probability that the algo-

rithm will generate an optimal solution at least once.
A convergence in solution: The algorithm reaches the state which keeps gen-

erating the same optimal solution.

We provide a convergence in value. Generally speaking, although the con-
vergence in solution is a stronger result than the convergence in value, in an
optimization problem we are interested in finding the optimal solution once,
so that the convergence in value is all that we need.

For this purpose, pre-assumptions are ([DoSt05]):

1. G = (C, L), is a graph of n nodes and links (arcs) between these nodes
(nodes are not necessarily fully connected in the load balancing scenario);
the set of nodes is C = {c1,c2,…,cn}, and the set of links (arcs) between
nodes is L = {(ci,cj): 1i,j n}; L is associated with a distance (or cost) ma-
trix.

2. (S, f,), where S is the set of candidate solutions, f is the objective func-
tion, is the set of constrains that defines the set of feasible solutions; the
goal is to find an optimal solution sopt; is the finite set of states of the
problem, = <ci,cj,…,ch,…>, is the number of nodes in a sequence,
 n; * is the set of feasible states, * ;

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

 106

3. for the time being, static scenarios in this theoretical explanation are con-
sidered;

The probability rule (Eq.5.14) could be described in a more abstracted way as:

iAj
ij

ij
hh F

F
xjcP

)(

)(
)(1

 (5.19)

where Fij is some non-decreasing function, Fij(z) = zij

The next is a new result derived as the consequence of the similar result
that considers convergence of one group of Ant System Algorithms in which,
for example, Min Max Ant System belongs to ([DoSt05]). Therefore, the next
corollary is inspired and based on one theorem from ([DoSt05]) that proves
convergence in value of Min Max Ant System. The theorem says that when
using a fixed positive lower bound on the pheromone trails finding the opti-
mal solution is guaranteed for this specific group of algorithms. The next
proof is based on some specifics for bee algorithms and some general issues
that could be found in the proof of convergence in value of Min Max Ant Sys-
tem as well.

Corollary: If P(k) is the probability that bee algorithm finds an optimal so-

lution at least once within the first k iterations, then 1)(lim

kP
k

.

Proof. From Eq.2 follows that the arc fitness for a follower bee belongs
{

1

1

l

 , }, where is the probability of choosing the preferred path and l

is the number of neighbouring nodes of a particular node. If the case for a
forager bee is added, that means {

1

1

l

 , ,
l

1}. So, for the given network

values of arc fitness can have a finite number of values and it values stay in
some closed interval [min, max]. The lower bound is positive and fixed for the
given network. Therefore, any feasible choice from Eq.5.19 for any partial so-
lution xh is made with the probability:

minmax

min
min)1(

n

p (5.20)

Any solution (incl. the optimum solution) can be generated with the prob-
ability:

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

107

 0
)1(minmax

min

m

n
p

 (5.21)

where m is the maximum length of a sequence. From this fact, it follows
that P(k) = 1-(1-p)k. For every arbitrarily small > 0, P(k) 1-. That means:

1)(lim

kP
k

.�

The better explanation of this corollary is given through the following dis-

cussion. In Bee Algorithm, the values that are assigned to arcs are the values
of arc fitness, ij. Some of these values will be implicitly reinforced by learn-
ing of the other hive mates via waggle dance (i.e., a recruitment process). The
fact how “strong” is the recruitment of a particular bee depends on the values
of suitability function and the path length. The higher the value of and the
lower the path length, the stronger the recruitment is. How could convergence
in value from ([DoSt05]) be transferred to bee algorithms? First, Bee Algo-
rithm scenario forces the best-so-far solution, and uses implicit maximum
value of max (which is directly implied by fmax from the best-so-far solution).
Second, the value of is initialized to the upper limit (0), so the minimum
value min will be reached in: a)

1

1 0

l

 , for any case b)
1

1 0

n

 , for the case

with fully connected nodes. Third, any feasible solution can be constructed
with a nonzero probability. If we assume that connection (i,j) does not have
the largest probability to be chosen (i.e., j does not belong to set Fi), then the
probability of choosing this connection is

1

1

l

 and this is the worst case

gives in Eq.5.20.

Bee Algorithm for Information Retrieval

An intelligent overlay is constructed by using bee intelligence. Bee algo-
rithm for Information Retrieval uses Eq. 5.14. and Eq. 5.15 from the naviga-
tion part, whereas the recruitment phase is realized by means of Eq. 5.16. and
the general form of the suitability function is: = (current_solution, ex-
act_solution), that describes how good (acceptable) solution is found,
[0,1]. The type of the similarity function can be changed, however, its value
are normalized (into segment [0,1]). This function is described in 5.2.3.

CHAPTER 5 – EMPLOYING ANTURE BASED MECHANISMS

 108

5.4 Summary

Chapter 5 explained how swarm intelligence can be mapped or adapted to
the located application cases. Ant intelligence algorithms can be successfully
used as algorithms for an overlay network (both for writing information and
for searching as two types of ant behaviour are modeled – brood sorting and
food searching), and also for dynamic redistribution of load in a network. Ant
intelligence is more or less known. Relatively new in IT– bee intelligence can
be also successfully used as the algorithm for an intelligent overlay network. A
special application of bee intelligence is in the domain of dynamic load ba-
lancing, where the second part that describes recruitment phase of bees’ beha-
vior contains an improvement and novelty. A construction of a bee algorithm
for load balancing and information retrieval, and an adaptation of two ant algo-
rithms for load balancing and information retrieval are references of this chap-
ter. The novelty is the implementation of bee intelligence for the load balanc-
ing problem for the first time in order to improve the quality of the solution
and scalability. However, transferring bio-mechanisms from nature requires
the adequate mathematical models that imply a construction of the appropriate
algorithms. The main common characteristic of these algorithms are: they si-
mulate some kind of bio-intelligence, so they are intelligent algorithms; these
algorithms are mostly heuristics and non-deterministic.

The main difference between bee intelligence and ant intelligence is in the
way of communication: ant communicate indirectly, bees communicate direct-
ly. Software agents that play role of ants “communicate” asynchronously,
whereas software agents that play role of bees “communicate” synchronously.

At the end, the convergence in value of bee algorithm is proven.

109

CHAPTER 6

CHAPTER 6 – BENCHMARKS AND EVALUATION

6 BENCHMARKS AND EVALUATION

This chapter contains the simulation results, obtained in both applica-
tion scenarios: information retrieval and dynamic load balancing. First, test
examples are described, and then the results are presented. After that, the
evaluation and analysis of the results are elaborated. In subsection 1.4., the
methods used to evaluate the claims of thesis are presented. One of these
methods is the usage of benchmarks. These benchmarks serve to answer
research questions 4 (what is the best parameter tuning?) and 5 (is it better
to have an intelligent or unintelligent approach or combination?) as well as
one part of research questions 1 (can these IT real use cases profit from the
usage of self-organization?) and 2 (can the principles of self-* help to cope
with complexity in heterogeneous distributed systems; what could be im-
proved by employing self-*? How and in which extent the employed prin-
ciples of self-organization improve performance and scalability in the two
application scenarios?). In these benchmarks, the performance of the sys-
tem and scalability are measured. Therefore, the benchmarks serve to
prove the improved performance and scalability of a system by employing
self-* mechanisms. The performance is an important property as the tasks
set in systems become much more complex over time, and consequently
also the demands imposed on the systems (in terms of the complexity,
number of transactions, number of users, etc). The scalability of a system
is closely related to performance. However it focuses on the predictability
of the system's performance as the workload increases ([RoWo05]). The
necessity of a fast adaptation to new requirements and changes in the envi-
ronment is highly important as even if the system meets its goals today,
there are no guarantees that it will meet goals in the future, be able to cope
with increased numbers of users, transactions, messages or to handle in-
creased complexity of processing. The performance is expressed in abso-
lute execution time ([KaBo04]). In both scenarios, the benchmarking in-
cluded: swarm intelligence algorithms (ant algorithms and bee algorithm)
and unintelligent algorithms.

The first part (section 6.2.) considers the results obtained in Information
Retrieval scenario. The swarm intelligence algorithms (first, ant algo-
rithms: MMAS and AntNet, and then, bee algorithm) are benchmarked and
compared with Gnutella lookup mechanisms. Gnutella was chosen for a
comparison as it is the most similar to the systems used in this thesis: un-
structured P2P, purely decentralized. Therefore, Gnutella is a well-known
representative from this group. The benchmarking is done in two test envi-
ronments (see subsection 6.1.2.). Tests on a cluster (6.1.3.) are done first to

CHAPTER 6 – BENCHMARKS AND EVALUATION

 112

identify the best set of parameters and to obtain the “preliminary results”.
Later, tests are done on the Amazon Cloud (6.1.4.).

The second part contains the results of Dynamic Load Balancing. This
part included benchmarking the basic SILBA (6.2.1). First, the swarm in-
telligence algorithms (ant algorithms: MMAS and AntNet, and bee algo-
rithm) are benchmarked and compared with Random algorithm, Sender al-
gorithm and adapted genetic algorithm. The intention was to perform the
benchmarks by comparing swarm based intelligence algorithms with unin-
telligent algorithm and some other intelligent (non-swarm) algorithm. Ge-
netic algorithms are famous metaheuristics. Unintelligent algorithms
(Random, Sender) are chosen due to the fact that they represent the base
algorithms from the conventional approaches. Sender initiated algorithm
refers to the triggering from over-loaded nodes. Hence, this algorithm is
chosen for the comparison with swarm based algorithms as they obtained
the best results when triggering from overloaded (and OK) nodes (al-
though, they allow for symmetric triggering). Random algorithm is neutral.
Later, the benchmarking is done for the extended SILBA (6.2.2.). As the
extended SILBA allows for dynamic load balancing on different levels
concurrently (e.g., between subnets in a network and inside subnets), dif-
ferent algorithms are plugged into different levels and their combinations
are investigated. This approach is taken in consideration as the intention
was to detect which combination of algorithms fits the best to a particular
network topology (chain, ring, full, star); also, detection which topologies
profit the most from the application of swarm intelligence is investigated.
The numbered topologies are chosen according to the fact that they fit the
best to the description of patterns (and pattern composition) from chapter
5.2. Namely, these topologies were applied to subnets and it is assumed
that subnets might have one or more nodes in the intersection.Tests on a
cluster (6.2.1.) are done first to identify the best set of parameters and to
obtain the “preliminary results”. Later, tests are done on the Amazon
Cloud (6.2.2.).

The number of sampling of nondeterministic algorithms was chosen ac-
cording to the fact how quickly the algorithm converges, and whether the
obtained results are uniform (without peaks). As a system was stable all
the time, it implied the conclusion that the results are reliable. From the
other side, scalability of a system is also proven in these benchmarks.
Hence, the further increasing the dimensions of instances (i.e., the propor-
tional increasing both the load and resources) would not jeopardize the
stability of a system. The maximal dimensions of benchmarks are implied
by a waiting time (huge dimensions responded to “too long” waiting
times).

CHAPTER 6 – BENCHMARKS AND EVALUATION

113

6.1 Results (Information Retrieval Scenario)

Information Retrieval benchmarks start with the explanation of test ex-
amples and test environments in order to present raw results obtained in
different test environments.

6.1.1 Test Examples

Test examples are constructed on the following way.
1) For ant intelligence:
Two algorithms of writing data into containers and two algorithms of

performing lookup and retrieving data from containers are implemented.
Each of their combination is performed (Table 6.1). Namely, the intention
was to detect the best combination, while each combination refers to one
algorithm of writing data into container plus one algorithm of performing
lookup (e.g., random writing plus MMAS for lookup is one combination
denoted in Table 6.1. as 1st case).

Table 6.1. Possible combinations used in benchmarks

 MMAS AntNet
random 1st case 2nd case
brood sorting 3rd case 4th case

2) For bee intelligence: as “brood sorting” is the mechanism of ant col-
ony in nature, random writing of data into container is done and combined
with bee algorithm for lookup.

As the used algorithms are non-deterministic, all test examples were
evaluated 10 times (enough number of sampling for one nondeterministic
algorithm in order to conclude whether it gives consistent results or it de-
viates and gives suboptimal solution) and the average values were found.
The benchmarks are grouped into two groups:

 first, the behaviour of the implemented algorithms is analyzed by
means of different combinations and different parameters’ settings,
as well as the obtained scalability; for each of the numbered combi-
nations, fine-tuning of parameters is done in order to discover which
parameters’ settings fit the best to which combination; afterwards,
all “winners” are compared;

CHAPTER 6 – BENCHMARKS AND EVALUATION

 114

 second, the query capability of the system is investigated and com-
pared to Gnutella lookup mechanism.

6.1.2 Test Environments

Two different test environments were used: a cluster of 4 machines, and
the Amazon EC2 Cloud. Each machine of the cluster had the following
characteristics: 2*Quad AMD 2,0GHz with 16 GB RAM. We simulated a
network with 16 (virtual) nodes. Each test run begins with a “cold start"
and all nodes being UL. On Amazon Cloud [ACloud11], we used standard
instances of 1.7 GB of memory, 1 EC2 Compute Unit (1 virtual core with
1 EC2 Compute Unit), 160 GB of local instance storage, and the 32-bit
platform. As already stated, tests are done first on a cluster to identify the
best set of parameters and to obtain the “preliminary results”. Later, tests
are done on the Amazon Cloud as the real environment.

6.1.3 Results obtained on the Cluster

In this part, first the fine-tuning of parameters is presented with the re-
sults. Later, query capability of a system is measured and compared to
Gnutella lookup mechanism. Besides, load scalability is investigated.

Fine tuning of parameters

The performances of different ant algorithms are compared (Table 6.1).
A great amount of work in the benchmarks is dedicated to the fine tuning
of parameters in order to find their best possible combination for the solu-
tion. The setting of parameters is chosen according to their predefined
range ([DoSt05]):
 For MMAS – α varied from 0 to 1 with the step of 0.5; varied from

2 to 5 with the step of 1.0; varied from 0.5 to 0.9 with the step of 0.2.
 For AntNet – α varied from 0.2 to 0.5 with the step of 0.1; C2 varied

from 0.15 to 0.35 with the step of 0.05.
The rest of parameters for AntNet were based on the following values

([DoSt05]): 0.005 for the used exponential mean coefficient, 0.3 sec for
the time interval between two generations, 15 for the maximum length of

CHAPTER 6 – BENCHMARKS AND EVALUATION

115

ant’s life (in hops), 0.3 for the maximum length of the observation window
and 0.7 for the value of C1. The number of ants was 10.

Except measurement of the absolute execution time, the issue of inves-
tigation was scalability, i.e., different types of scalability. In this first
group of benchmarks for the interpretation of scalability, we focused on
the space scalability.

“Space scalability. A system or application is regarded as having space
scalability if its memory requirements do not grow to intolerable levels as
the number of items it supports increases. Of course, intolerable is a rela-
tive term. We might say that a particular application or data structure is
space scalable if its memory requirements increase at most sublinearly
with the number of items in question” ([Bond00]).

The results in this section, represented graphically, reflect the perform-
ance, i.e., one of the performance measures – time. The memory require-
ments consider the container’s size, while the number of lookup containers
was increased. The benchmarks were performed with the memory re-
quirement (i.e., the container size) of 13000B, 26000B and 39000B. How-
ever, increasing the container size did not influence the performance. At
the beginning, the best possible combination of parameters is analyzed in
all considered cases. Figure 6.1 describes the best-obtained results while
varying of parameters in the first case (the combination of random posi-
tioning of data in the network and the lookup mechanism based on MMAS
algorithm while treating only one query). The following cases are com-
pared: the best obtained combination in the situation when the value of α
was positioned on 0.0 and the rest of parameters were varying (blue line),
the best obtained combination in the situation when the value of α was on
the next step (0.5) and the rest of parameters were varying (pink line) and
the best obtained combination in the situation when the value of α was 1.0
and the rest of parameters were varying (yellow line). Obviously, the best
results are obtained for α = 0.0, =5.0, =0.5. Because of that, we graphi-
cally presented this case (Figure 6.2). In order to illustrate the fine-tuning
of parameters, one part of benchmarks is presented in the Appendix C.

CHAPTER 6 – BENCHMARKS AND EVALUATION

 116

0

50

100

150

200

250

300

40 80 120 160 200

number of containers

ti
m

e
(i
n
m

s)

α(0.0) β(5.0) ρ(0.5) α(0.5) β(5.0) ρ(0.5) α(1.0) β(3.0) ρ(0.5)

Figure 6.1. Different kind of combination for first case (Random/ MMAS)

([ŠeKü10a]).

92

128

163

199

234

0

50

100

150

200

250

40 80 120 160 200

number of containers

ti
m

e
(i

n
 m

s)

Figure 6.2. The best combination (1st case): Random/ MMAS (α= 0.0,
=5.0, =0.5) ([ŠeKü10a])

CHAPTER 6 – BENCHMARKS AND EVALUATION

117

The next benchmarks are based on the 2nd case for Table 6.1, i.e., con-

tain the combination of random positioning of data in the network and the
lookup mechanism based on AntNet algorithm while treating only one
query. These benchmarks were also performed by tuning of parameters
and investigating the different combinations. Figure 6.3 represents the best
results obtained in this case with the following setting according to their
predefined range ([DoSt05]):

 0.35, for number of containers = 40
α = 0.2, C2=
 0.25, for number of containers > 40

Further, the best results obtained in the first and the second case are
compared (Figure 6.4). AntNet algorithm shows better results than
MMAS. The possible reason for that is: as AntNet algorithm itself is more
suitable for dynamic scenarios, it supports better the dynamic behaviour in
our system while treating one query.

Although the complete benchmarking in all combinations include fur-
ther the fine-tuning of parameters, for the next cases we give only the best
obtained results with the designated set of parameters.

76

96

130

152

178

0

20

40

60

80

100

120

140

160

180

200

40 80 120 160 200

number of containers

ti
m

e
(i

n
 m

s)

Figure 6.3. Second case: Random/ AntNet ([ŠeKü10a]).

CHAPTER 6 – BENCHMARKS AND EVALUATION

 118

92

128

163

199

234

76

96

130

152

178

0

50

100

150

200

250

40 80 120 160 200

number of containers

ti
m

e
 (
in

 m
s
)

mmas antnet

Figure 6.4. The comparison between the best obtained results in the 1st and

the 2nd case (Random/MMAS vs. Random/AntNet) ([ŠeKü10a]).

Figures 6.5 and 6.6 show the comparison between cases 1 and 3, and

cases 2 and 4 respectively. According to these results, Random/MMAS
give better results compared with Brood/MMAS. A similar situation can
be seen also on the Figure 6.6.

92

128

163

199

234

180

240

300

350

411

0

50

100

150

200

250

300

350

400

450

40 80 120 160 200

number of containers

ti
m

e
 (
in

 m
s
)

random mmas brood mmas

Figure 6.5. The comparison between the best obtained results in the 1st and

the 3rd case (Random/MMAS vs. Brood/MMAS) ([ŠeKü10a]).

CHAPTER 6 – BENCHMARKS AND EVALUATION

119

76
96

130
152

178

210

267

338

429

532

0

100

200

300

400

500

600

40 80 120 160 200

number of containers

ti
m

e
(i
n
 m

s)

random antnet brood antnet

Figure 6.6. The comparison between the best obtained results in the 2nd
and the 4th case (Random/AntNet vs. Brood/AntNet) ([ŠeKü10a])

This first group of benchmarks distinguishes between different ant algo-

rithms choosing the best one with the adequate parameters’ settings for the
given type of problem. When comparing two different ways of lookup, the
second one based on AntNet algorithm supplies a better performance (in
case of retrieving only one query). Additionally, as the increasing of the
container size does not influence the performance, the support of swarm
intelligence provides space scalability. Therefore, the usage of XVSM en-
riched by swarm intelligence provides many benefits to this coordination
model.

Raw results on different lookup mechanisms

The query capability of the system is measured and the presented
lookup mechanism is compared to Gnutella lookup mechanism. Second
group of benchmarks focused on the issue of load scalability ([VaVS98]).
The notion of load scalability is simplified to the version of interest to the
discussed problem and quantitatively described. This restricted aspect of
scalability is expressed on the basis of three dimensions: computational re-
sources available (R), load of the system (L) and performance (P). Load
scalability can be quantified by means of a “scalability ratio” rscal for a
given constant k

CHAPTER 6 – BENCHMARKS AND EVALUATION

 120

),(

),(

RkLkP

RLP
rscal

(6.1)

Usually, P is a function of L and R. A constant remaining value of P
when simultaneously increasing L and R by the same factor leads to the
“ideal” scalability ratio of 1.

The second group of benchmarks considers an increasing of the load
expressed by the number of queries needed to lookup. The number of ants
is proportionally increased in order to preserve the meaning of the ant
population. For example, if the number of ants is 10 and the number of
queries is 5, then the real ant’s behaviour and some possible convergence
of process is under the sign of question (we may assume that only 2 ants
might try to find one query). Figures 6.7 and 6.8 depict the performance
(measured in milliseconds) of the lookup mechanism performed by
MMAS and AntNet respectively. These benchmarks are done on the net-
work with 80 containers with the container size equals to 26000B (this
number was chosen as increasing the container size did not influence the
performance).

According to these preliminary benchmarks results, the presented algo-
rithms cope successfully with the increasing number of queries, com-
pounded of several simple queries. The possibility of increasing the num-
ber of ants that could work concurrently is used. Further, the presented
intelligent lookup mechanism is compared with Gnutella lookup (Table
6.2), that is implemented by using the description from [AnSp04]. The re-
sults presented in Table 6.2. for Gnutella reflect the time when the first
query is found. In order to retrieve the complete information by using
Gnutella lookup, considerably much time would be needed.

CHAPTER 6 – BENCHMARKS AND EVALUATION

121

0

20

40

60

80

100

120

140

160
ti

m
e

(i
n

 m
s)

number of queries 1 2 3 4 5

number of ants 10 20 30 40 50

time (in ms) 128 131 132 135 140

1 2 3 4 5

Figure 6.7. The lookup mechanism performed by MMAS with different

number of queries ([ŠeKü10a]).

0

20

40

60

80

100

120

140

ti
m

e
(i

n
 m

s)

number of queries 1 2 3 4 5

number of ants 10 20 30 40 50

time (in ms) 96 110 112 113 118

1 2 3 4 5

Figure 6.8. The lookup mechanism performed by AntNet with different

number of queries ([ŠeKü10a]).

CHAPTER 6 – BENCHMARKS AND EVALUATION

 122

Table 6.2. A comparison of the performances of different lookup mecha-

nisms ([ŠeKü10a])
Load Resources Performance

number
of queries

number
of

nodes

number
of ants

algorithm
used

time (ms)

1 80
10 MMAS 128
10 AntNet 96
 Gnutella 845

2 80
20 MMAS 131
20 AntNet 110
 Gnutella 1216

3 80
30 MMAS 132
30 AntNet 112
 Gnutella 1824

4 80
40 MMAS 135
40 AntNet 113
 Gnutella 2937

5 80
50 MMAS 140
50 AntNet 118
 Gnutella 4935

1 120
10 MMAS 163
10 AntNet 130
 Gnutella 1140

2 120
20 MMAS 176
20 AntNet 168
 Gnutella 1635

3 120
30 MMAS 185
30 AntNet 177
 Gnutella 2666

4 120
40 MMAS 201
40 AntNet 194
 Gnutella 4292

5 120
50 MMAS 220
50 AntNet 215
 Gnutella 7211

.

CHAPTER 6 – BENCHMARKS AND EVALUATION

123

From Table 6.2, it can be seen that the presented intelligent approach
outperforms24 the Gnutella lookup by means of the obtained performance.
Additionally, taking into account increasing of load and increasing of the
resources, according to formula (6.3), the obtained scalability is satisfac-
tory ([JoWo00]). Finally, a graphical representation of one case (80 con-
tainers) is given in Figure 6.9.

Figure 6.9. Comparison of performances of different lookup mechanisms
on 80 containers ([ŠeKü10a]).

The benchmarks from this last subsection show that the presented sys-

tem supports a larger number of queries, navigates successfully through
the network of data and scales well. Note: although 4 physical machines
were used, the number of lookup containers as virtual nodes in our overlay
network was up to 200; so the scalability was investigated on a larger
number of nodes. The benchmarks presents the definition and implementa-
tion of a new overlay network with an intelligent lookup mechanism based
on swarm intelligence that is able to navigate successfully through the
network of data and that scales well ([ŠeKü09], [ŠeKü10a]).

24 The rationale is provided at the end of section 6.1.

CHAPTER 6 – BENCHMARKS AND EVALUATION

 124

One of the performance measures was the quality of found data. In all

cases, the highest data quality is obtained (data quality = 1.0 according to
function). Because of that, this part of results is not graphically repre-
sented. The presented results, obtained on the cluster, had two-fold pur-
pose: first, for examination of the system in one of two environments, and
second, for location of the best sets of parameters (for ant algorithms) that
can be applied to the other, different environments. Therefore, the next
benchmarks, performed on Amazon Cloud, use the achievements obtained
from these benchmarks and additionally, they are enriched by adding one
more intelligent algorithm – bee algorithm.

6.1.4 Results obtained on Amazon Cloud

The benchmarks presented in this section are based on data (parameters’
settings, memory requirements, etc.) from section 6.1.3. Therefore, the
complete setting will not be repeated. Only the parameter-set identified as
the best is used here and will be repeated in the description.

Fine-tuning of parameters

As it is described in 6.1.3, this case describes the results obtained by us-
ing 5 swarm intelligence algorithms and their comparison (Fig 6.10), while
increasing the number of containers. The used container size is 26000B (an
average size from 6.1.3.), and the parameters used are:

 For MMAS: = 0.0, = 5.0, = 0.5
 For AntNet: α = 0.2, C2= 0.35, for number of containers = 40,

i.e., C2= 0.25, for number of containers > 40
 For Bee Algorithm: = 1.0, = 10.0, = 0.99

The used parameters are selected according to the best results obtained
in 6.1.3., and the parameters for Bee Algorithms followed ([WoLC08]).

The rest of parameters for AntNet were based on the values [DoSt05],
as explained in 6.1.3. The number of swarms was 10, and only one query
was treated.

CHAPTER 6 – BENCHMARKS AND EVALUATION

125

0

50

100

150

200

250

300

350

40 80 120 160 200

number of containers

ti
m

e
(i

n
m

s)

random/mmas random/antnet brood/mmas brood/antnet random/bees

Figure 6.10. The comparison between the results of all algorithms (number

of query = 1, number of swarms = 10)

In this environment, the algorithms based on a special writing technique

(brood sorting) were successful with small instances. Increasing the di-
mensions, brood/Antnet did not obtain good results (possibly an over-
clustering affected a system’s robustness and did not fit to the AntNet dy-
namics), whereas brood/MMAS preserved the obtaining of good results.
So, the behaviour of brood/MMAS is the main difference in results be-
tween these two environments. A newly introduced algorithm based on bee
intelligence, obtained relatively good results on small instances (although
not so good as brood based algorithms), but the best results with increasing
the dimension (with bigger instances).

Raw results on different lookup mechanisms

 The query capability of the system is measured and the different intelli-
gent lookup mechanism is compared to Gnutella lookup mechanism. The
used parameters are the same as in 6.1.3. The next figures (6.11 - 6.15)
present the results obtained by using different intelligent lookup mecha-
nisms, while increasing the number of queries and the number of swarms.
These benchmarks, presented on the figures, are done on the network with

CHAPTER 6 – BENCHMARKS AND EVALUATION

 126

80 containers with the container size = 26000B (this number is chosen as
increasing the container size did not influence the performance).

0

50

100

150

200

250

number of queries 1 2 3 4 5

number of ants 10 20 30 40 50

time (in ms) 172 183 195 205 217

1 2 3 4 5

Figure 6.11. The lookup mechanism performed by Random/MMAS with

different number of queries.

0

50

100

150

200

250

number of queries 1 2 3 4 5

number of ants 10 20 30 40 50

time (in ms) 159 167 186 192 201

1 2 3 4 5

Figure 6.12. The lookup mechanism performed by Random/AntNet with

different number of queries

tim
e

 in
 m

s
tim

e
 in

 m
s

CHAPTER 6 – BENCHMARKS AND EVALUATION

127

0

50

100

150

200

250

number of queries 1 2 3 4 5

number of ants 10 20 30 40 50

time (in ms) 46 126 163 194 214

1 2 3 4 5

Figure 6.13. The lookup mechanism performed by Brood/MMAS with dif-

ferent number of queries.

0

50

100

150

200

250

300

350

400

number of queries 1 2 3 4 5

number of ants 10 20 30 40 50

time (in ms) 52 280 309 328 346

1 2 3 4 5

Figure 6.14 The lookup mechanism performed by Brood/AntNet with dif-

ferent number of queries.

tim
e

 in
 m

s
tim

e
 in

 m
s

CHAPTER 6 – BENCHMARKS AND EVALUATION

 128

0

50

100

150

200

250

number of queries 1 2 3 4 5

number of bees 10 20 30 40 50

time (in ms) 82 124 160 189 200

1 2 3 4 5

Figure 6.15. The lookup mechanism performed by Random/Bees with dif-

ferent number of queries.

tim
e

 in
 m

s

CHAPTER 6 – BENCHMARKS AND EVALUATION

129

Table 6.3 A comparison of the performances of different lookup mechan-
isms (number of containers = 80)

Load Resources Performance

number
of queries

number
of nodes

number
of

swarms algorithm used time (ms)

1 80

10 random/mmas 172
10 random/antnet 159
10 brood/mmas 46
10 brood/antnet 52
10 random/bees 82

 Gnutella 474

2 80

20 random/mmas 183
20 random/antnet 167
20 brood/mmas 126
20 brood/antnet 280
20 random/bees 124

 Gnutella 506

3 80

30 random/mmas 195
30 random/antnet 186
30 brood/mmas 163
30 brood/antnet 309
30 random/bees 160

 Gnutella 476

4 80

40 random/mmas 205
40 random/antnet 192
40 brood/mmas 194
40 brood/antnet 328
40 random/bees 189

 Gnutella 502

5 80

50 random/mmas 217
50 random/antnet 201
50 brood/mmas 214
50 brood/antnet 346
50 random/bees 200

 Gnutella 517

CHAPTER 6 – BENCHMARKS AND EVALUATION

 130

Table 6.4. A comparison of the performances of different lookup mechan-
isms (number of containers = 120)

Load Resources Performance

number
of queries

number
of nodes

number
of
swarms algorithm used time (ms)

1 120

10 random/mmas 174
10 random/antnet 170
10 brood/mmas 130
10 brood/antnet 277
10 random/bees 102
 Gnutella 539

2 120

20 random/mmas 194
20 random/antnet 182
20 brood/mmas 668
20 brood/antnet 361
20 random/bees 127

 Gnutella 595

3 120

30 random/mmas 199
30 random/antnet 203
30 brood/mmas 705
30 brood/antnet 379
30 random/bees 144

 Gnutella 559

4 120

40 random/mmas 210
40 random/antnet 213
40 brood/mmas 726
40 brood/antnet 402
40 random/bees 168

 Gnutella 607

5 120

50 random/mmas 222
50 random/antnet 234
50 brood/mmas 739
50 brood/antnet 411
50 random/bees 185

 Gnutella 611

CHAPTER 6 – BENCHMARKS AND EVALUATION

131

The previous results show the following:
 The results confirmed those ones, obtained on the cluster, i.e.,

among ant algorithms in this scenario, random strategy seems to be
better than brood strategy. The brood based ant algorithms obtained
better results than the random based ant algorithms on small in-
stances. However, the results of the random based ant algorithms
are better with increasing the dimensions.

 Another conclusion from 6.1.3. is confirmed: Random/Antnet algo-
rithm is better than Random/MMAS; the possible reason for that
could be the fact that Random/Antnet better supports dynamic
processes.

 Bee algorithm obtained the best results especially on large in-
stances; this algorithm differs from ant algorithm especialy as it in-
forms the “starting place” of the search directly in a P2P way and,
therefore got the better results.

 Scalability and preformance of each intelligent algorithm are good
and outperform Gnutella lookup. Namely, the original Gnutella
architecture uses a flooding (or broadcast) mechanism that supports
an exhaustive optimization. From the other side, intelligent
algorithms focus on important areas of the solutions space. They
quickly and efficiently narrow the number of combinations to be
calculated by focusing on the areas that are most profitable and
most stable. Also, their advantage is that they try to find a global
optimum.

CHAPTER 6 – BENCHMARKS AND EVALUATION

 132

6.2 Results (Dynamic Load Balancing)

This part is divided into the results of basic SILBA benchmarks and the
results of extended SILBA benchmarks.

6.2.1 Basic SILBA Benchmarks

The following criterions guided the construction of the tests for the ba-
sic SILBA:

 As it is already mentioned, the balance between exploration and
exploitation in each of the constructed and implemented heuristics
are crucial. Hence, for each intelligent algorithm, the best combina-
tion of parameter settings – fine tuning – was the imperative.

 In order to show/prove the benefits of the SIBA framework and in-
telligent algorithms, compare these optimally tuned swarm based
algorithms with several well-known algorithms: Round Robin,
Sender, Adapted Genetic Algorithm (GA).

These benchmarks demonstrate and prove two issues. First, the agility
of the SILBA pattern based framework is proved by showing that algo-
rithms can be easily exchanged. Second, the intelligent approach based on
bee algorithms showed the promising results. As some algorithms are non-
deterministic (swarm algorithms, GAs), the test-examples are performed
10 times and the average values are computed25.

Test Examples and Test Environments

The test-examples are constructed by following Table 6.5, while setting
and tuning the parameters is obtained taking in consideration the objective:
it was not only to measure and compare the quality of the obtained results
(expressed in one of the possible metrics – time in millisec.), but also to
investigate the scalability (specifically, load scalability). Therefore, the
main representatives for the resources (i.e., available nodes) and load
(tasks, i.e., jobs to be done) are doubled. The number of used agents de-
pends on the number of nodes and the setting follows the recommended
values from ([DoSt05], [DiDo98a], [ŠeKü08]). All search modes, forms of
suitability function and forms of fitness functions are used (chapter 4). The
rest of parameters specific for the respective algorithm, that contribute in

25 It is explained at the beginning of section 6.1.

CHAPTER 6 – BENCHMARKS AND EVALUATION

133

the equations and in formulas for the procedures Construct Solution and
Deposit Pheromone took values from ([DoSt05], [ŠeKü08]), i.e., the set-
ting follows the recommended values from ([DoSt05], [DiDo98a],
[ŠeKü08]). The constant parameters are the initial threshold values used in
the realization of the transfer policy: T1 = 2 and T2 = 4. However, these
values will be dynamically recalculated in the process ([KüŠe09]). All
combinations were performed. The load is supplied by one client with an
arbitrary position in the network.

Table 6.5. Parameters

bee algorithm para-
meters

MMAS parameters AntNet parameters

number of nodes 4,8,16,32,64 4,8,16,32,64 4,8,16,32,64

number of tasks 50,100,200,400,800 50,100,200,400,800 50,100,200,400,800

search modes 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6

number of bees 4,8,16,32,64

number of ants 4,8,16,32,64 4,8,16,32,64

number of working
agents 1,2,4 1,2,4 1,2,4

suitability function 0,1,2,3 0,1,2,3 0,1,2,3

fitness function 0,1,2,3 0,1,2,3 0,1,2,3

α 0,1 0.5, 1 0.2, 0.3, 0.45

β
from 8 to 12 with step
2 from 2 to 5 with step 1

λ 0.99

ρ
from 0.2 to 0.9 with step
0.2

c2 0.15,0.25,0.3, 0.35

For performing test examples, the arbitrary topology is used (Fig.6.16)
in which full connection between nodes were not required.

An additional investigation is done according to: different size of tasks
and different frequencies of supplying tasks.

The size of tasks was also one parameter of interest. We investigated for
which task size the SILBA showed the best results. The tasks are divided
into three categories26: small (10kb), middle (20kb) and big (40kb).

26 It was initially started with tasks of 10kB, and later the size was doubled.

CHAPTER 6 – BENCHMARKS AND EVALUATION

 134

Also, we investigated for which frequency of supplying tasks into the
system, the SILBA showed the best results. Therefore, the frequency of
supplying tasks is implemented on different ways. The idea behind is to
detect whether it is better when all tasks are supplied at once or when tasks
are supplied “in waves”. One strategy was: everything supplied at once (at
the beginning). The other strategies were: tasks are supplied into 2 waves;
the first wave starts immediately and the second after a certain period of
time (10 sec, 20 sec).

The same test environments are used as described in 6.1.2.

Figure 6.16. An arbitrary topology of 16 nodes: a brown node repre-

sents a client, grey nodes are the rest of nodes in the network

Raw Result Data

After benchmarking all possible combinations of parameters form Ta-
ble 6.5. and investigation of the best parameters settings for each algo-
rithm, in both environments, the best results are obtained by using the fol-
lowing set of parameters:

 bee algorithm: α = 1, β = 10, λ = 0.99, suitability function 3, fitness
function 2; the best search mode was 4.

 MMAS algorithm: α = 1, β = 5, ρ = 0.7, suitability function 3, fitness
function 2; the best search mode was 6.

CHAPTER 6 – BENCHMARKS AND EVALUATION

135

 AntNet algorithm: α = 0.3, c2 = 0.3, suitability function 3, fitness
function 2; the best search mode was 3.

The load is generated by one client and therefore, the system was light
to moderate loaded. Under these conditions, bee algorithm showed the best
results when it is triggered from OL nodes, while ant algorithms showed
the best results when triggered from OK nodes (and consequently from OL
nodes). The described swarm algorithms are compared with Round Robin,
Sender, and Adapted GA ([ZoTe01]) that are implemented (i.e., plugged to
SILBA) in the following way (routing agents of SILBA perform the algo-
rithms):
 Random/Round Robin Algorithm: During the initialization phase,

the neighbours of the current node are stored in the routing space.
One of the neighbours is chosen randomly and the task is scheduled
at that node.

 Sender Algorithm: The OL node triggers the routing. It is achieved
by configuring OUT allocation agent (in SILBA) that is responsible
for reading routing information from the space and pushing a work
to another node in a network.27

 Adapted Genetic Algorithm (GA): The Genetic algorithm, proposed
in ([ZoTe01]), is adapted in order to avoid the central coordinator.
Several GAs are concurrently performed on different nodes. The
size of sliding window(s) is the same for all GAs and fixed to the
number of nodes, where every node has the current (waiting) task as
its candidate in that window. The sliding window is not directly de-
pendable on a client who can put tasks somewhere in the network.
Each GA will reach some combination (due to the fitness function).
All combinations are compared and the best one is chosen (at time
t). This is also done by the routing agents that communicate and ex-
change this information. GA fires continuously until all requests are
done.

The obtained results are given in Tables 6.6 and 6.7. The presented re-

sults correspond to the best search mode for the respective algorithm and
they present time in ms:

27 Similarly, in case that Receiver algorithm needs to be applied, where the UL
node initiates the routing, another type of agent - IN allocation agent - is re-
sponsible for reading routing information from the space and pulling work
from another node in a network. The Symmetric algorithm can be mapped by
combining Sender and Receiver configurations.

CHAPTER 6 – BENCHMARKS AND EVALUATION

 136

Table 6.6. Comparison on the Cluster ([ŠeKü10c])

number
of nodes

number
of tasks

bee algo-
rithm

MMAS
algorithm

AntNet
algorithm

adapted
GA

sender
round
robin

4 50 316833 205000 323800 592300 339880 347410

8 100 947322 542000 1037000 1896700 1391544 1142230

16 200 2889373 2720000 3685000 5311000 5366176 5711150

32 400 9823870 14142000 10334000 13278000 12646620 25423430

64 800 31927577 56217000 39534000 41832000 45586480 87865100

Table 6.7. Comparison on the Cloud ([ŠeKü10c])

number
of nodes

number
of tasks

bee algo-
rithm

MMAS
algorithm

AntNet
algorithm

adapted
GA

sender
round
robin

4 50 11782 15000 16000 26000 16553 16748

8 100 28396 31000 33000 45000 35996 32408

16 200 60556 61000 62000 63000 63248 64817

32 400 122703 125000 128000 135000 156638 195319

64 800 257385 273000 288000 298000 413426 807118

Graphical representation and comparison of the results from the above
presented are shown on Fig.6.17 and Fig.6.1828 (x- axis, denoted as x-data
on the figures, represents the number of nodes; y-axis, denoted as y-data on
the figures, represents the number of tasks; whereas z-axis, denoted as z-
data on the figures, represent time in ms). The presentation is done in 3D
as the obtained time depends on two variables: the number of nodes and
the number of tasks.

28 Sigma Plot is used for obtaining figures.

CHAPTER 6 – BENCHMARKS AND EVALUATION

137

Figure 6.17. Algorithms Comparison (the Cluster environment)

CHAPTER 6 – BENCHMARKS AND EVALUATION

 138

Figure 6.18. Algorithms Comparison (the Cloud environment)

The results that demonstrate the behaviour of the SILBA when the parame-
ters, task size and the frequency of supplying tasks, change are shown in
Table 6.8 and Figure 6.19, and in Table 6.9 and Figure 6.20, respectively.
The used algorithm was MMAS, and the network of 16 nodes when sup-
plying 200 tasks (in order to be in conformity with Table 6.5).

Table 6.8. Different task size.

task size (TS) time (in ms)

TS1 (10kB) 50000

TS2 (20kB) 66000

TS3 (40kB) 69000

CHAPTER 6 – BENCHMARKS AND EVALUATION

139

0

10000

20000

30000

40000

50000

60000

70000

80000

10 20 40

task size

ti
m

e
in

 m
s

Figure 6.19. Different task size

Table 6.9. Different frequency of supplying tasks.

frequency time (in
ms)

All tasks are supplied at once 74000

Tasks are supplied in two
waves: at the beginning and
after 10 sec.

84000

Tasks are supplied in two
waves: at the beginning and
after 20 sec.

95000

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

at once after 10sec after 20sec

f req uency

Figure 6.20. Different frequency of supplying tasks

CHAPTER 6 – BENCHMARKS AND EVALUATION

 140

Evaluation

Using the absolute execution time as metric for the benchmarks, bee al-
gorithms showed the best results compared with the other algorithms
([ŠeKü10b], [ŠeKü10c]). On the cluster, the bee algorithm on 64 nodes
performs 43% faster than MMAS, 19% faster than AntNet, 24% faster
than Adapted GA, and 29% faster than Round Robin. In the more realistic
environment of the Amazon EC2 Cloud, the bee algorithm on 64 nodes is
5% faster than MMAS 10% faster than AntNet, 13% faster than Adapted
GA, 37% faster than Sender, and 68% faster than Round Robin. Also,
MMAS ant algorithm performed well on the cluster. As stated in section
6.1., intelligent algorithms focus on important areas of the solutions space.
Therefore, thir results are better compared with unintelligent ones. Espe-
cially, bee algorithm behaves well (better than others intelligent algo-
rithms) – the algorithm simulates be behaviour in nature, i.e., bee software
agent informs the “starting place” directly in a P2P way.

The values of the suitability function serve as a measure of self-
organization and show how good the swarms are self-organized. The value
of argument x (of the suitability function) serves to discern the usefulness
of the intelligent algorithms and shows the correctness and adequacy of
chosen partner nodes. It reflects how good the solution (i.e., the partner
node) is chosen as well as the degree of self-organization of the used
swarms. The average x value is 1, which means that the “best” node is al-
ways chosen.

The investigation about the task size shows that if the task size is double
increased, the obtained time is slightly increased for smaller tasks (up to
20kb). This “slight” growth in time slows down for bigger tasks. Note that
this investigation has nothing to do with the algorithm itself as the algo-
rithm works in the same way when treating both big tasks and small tasks,
and the number of tasks in this investigation is the same for each tasks
size. This investigation shows the behaviour of the system in general. The
absolute execution time t is defined as the makespan, but it comprises time
needed for algorithm to be done. According to the obtained results, we can
conclude that the bee algorithm behaves well and does not impose an addi-
tional complexity. Namely, the slight increased in time is the consequence
of the increased complexity of the tasks needed to be executed.

The investigation about the frequency of supplying tasks shows the best
results when tasks are supplied at once, but also acceptable time (slightly
increased) when tasks are supplied in certain intervals of time.

CHAPTER 6 – BENCHMARKS AND EVALUATION

141

6.2.2 Extended SILBA Benchmarks

As the extended SILBA supports the multi-level load balancing strategy,
the goal of these benchmarks was to exchange concurrently the algorithms
on each level and to investigate the solution of load balancing with this
complex strategy. In considered case, there are 2 levels on which load bal-
ancing is realized concurrently: between several subnets and inside each
subnet. Different network topologies are taken in consideration. The tests
are created and performed on the basis of the following criterions:

 As the success of a particular combination depends on a network topol-
ogy, the objective was to find the best combination of algorithms for
each of the well-known topologies (chain, full, ring, star);

 For all located best combinations in particular topologies, compare and
analyze them;

 After obtaining the best combinations, perform the benchmarks on dif-
ferent network (and subnets) dimensions and evaluate the scalability is-
sue.

These benchmarks demonstrate two main messages: 1) the flexibility of
the SILBA pattern based framework by showing that load balancing prob-
lem could be easily treated in a more complex network structures with
several subnets, 2) a detection of those topologies which could profit
mostly of swarm intelligent algorithms (particularly bee algorithms).

Test Examples and Test Environment

Test examples are constructed taking into account the following issues:
the combination of algorithms, different number of subnets and number of
nodes per subnets, increased number of clients per each subnet, different
topologies ([ŠeKü11]).

The combinations (36) of all algorithms on two levels (6 algorithms on

2 levels): level1 denotes the used algorithm inside a subnet, whereas level2
denotes the used algorithm between subnets; the values of the respective
parameters are described in Table 6.5 and reused from the basic SILBA.

CHAPTER 6 – BENCHMARKS AND EVALUATION

 142

Table 6.10. Combinations of algorithms

 level1

level2

Bee Alg. MMAS AntNet adaptedGA Sender Round
Robin

Bee Alg. 1 2 3 4 5 6

MMAS 7 8 9 10 11 12

AntNet 13 14 15 16 17 18

adaptedGA 19 20 21 22 23 24

Sender 25 26 27 28 29 30

Round Robin 31 32 33 34 35 36

Different number of subnets and number of nodes per subnets:

Table 6.11. Distribution of nodes in subnets

total number of
nodes

 number of subnets number of nodes in each subnet

 16 4 4

 16 8 2

 32 4 8

 32 8 4

Increased number of clients per each subnet:

In the basic SILBA, only one client was responsible for putting the tasks
into the network. This produced a light to moderate loaded network. In the
extended SILBA, the number of clients per each subnet is increased until
the subnet becomes fully loaded: for a subnet of n nodes, the assigned
number of client is n/2. Each client supplied the same number of tasks. The
clients are symmetrically positioned in order to have fairly loaded subnet.
The same parameter is used for all test runs.

Different topologies:

The combinations of algorithms are tested on the well-known topolo-
gies: ring, star, full, chain. The objective was to define which combination
of algorithms fits the best for a particular topology. Figure 6.21 depicts one
example of each topology. The subnets could be both with intersections
and without intersections, but in both cases at least one node from each

CHAPTER 6 – BENCHMARKS AND EVALUATION

143

subnet must possess two types of routing agents in order to allow for the
realization of different types of load balancing algorithms (inside a subnet,
between subnets).

Figure 6.21. An example of different topologies: nodes are marked in red,
subnets are marked in blue, possible connections are marked in black
([ŠeKü11]).

The same test environment, i.e., the Amazon Cloud, is used for per-
forming these benchmarks. On the Amazon Cloud, we used the same stan-
dard instances as described in subsection 6.1.2.

Raw Result Data

The next figures (Fig.6.22 – Fig.6.25) show all combinations of algo-
rithms on different topologies, searching for the best combination in each
topology. The presented results demonstrate 4*4 structure, i.e., 4 subnets
and 4 nodes in each subnet. In each subnet, each client supplied 200 tasks
(i.e., the total of 1600 tasks), in order to be in conformity with the basic
SILBA settings and results, and to be enough for achieving a heavy loaded
network.

chain

full

ring

star

CHAPTER 6 – BENCHMARKS AND EVALUATION

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

AntN
et/A

ntN
e t

AntN
et/B

eeAlg
AntN

et/G
A

AntN
et/M

MAS

AntN
et/R

oundRob in

AntN
et/S

ender

BeeAlg./A
ntN

et

BeeAlg./B
eeAlg

BeeAlg./G
A

BeeAlg./M
MAS

BeeAlg./R
oundRob in

BeeAlg./S
ender

GA/AntN
e t

GA/BeeAlg
GA/G

A
GA/M

MAS

GA/R
oundRob in
GA/Sender

MMAS/An tN
et

MMAS/BeeAlg
MMAS/G

A

MMAS/M
MAS

MMAS/R
oundRobin

MMAS/Sender

RoundRobin/A
ntN

et

RoundRobin/B
eeAlg

RoundRobin/G
A

RoundRobint/M
MAS

RoundRobin/R
oundRobi

RoundRobin/S
ende

Sende r/A
n tN

et

Sende r/B
eeAlg

Sende r/G
A

Sende r/M
MAS

Sende r/R
oundRobi

Sende r/S
ender

combination of algorithms

ti
m

e
in

 m
s

Figure 6.22. Combination of algorithms in the chain topology ([ŠeKü11])

CHAPTER 6 – BENCHMARKS AND EVALUATION

145

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

AntN
et/A

ntN
e t

AntN
et/B

eeAlg
AntN

et/G
A

AntN
et/M

MAS

AntN
et/R

oundRob in

AntN
et/S

ender

BeeAlg./A
ntN

et

BeeAlg./B
eeAlg

BeeAlg./G
A

BeeAlg./M
MAS

BeeAlg./R
oundRob in

BeeAlg./S
ender

GA/AntN
e t

GA/BeeAlg
GA/G

A
GA/M

MAS

GA/R
oundRob in
GA/Sender

MMAS/An tN
et

MMAS/B
eeAlg

MMAS/G
A

MMAS/M
MAS

MMAS/R
oundRobin

MMAS/S
ender

RoundRobin/A
ntN

et

RoundRobin/B
eeAlg

RoundRobin/G
A

RoundRobint/M
MAS

RoundRobin/R
oundRobi

RoundRobin/S
ende

Sende r/A
n tN

et

Sende r/B
eeAlg

Sende r/G
A

Sende r/M
MAS

Sende r/R
oundRobi

Sende r/S
ender

combination of algorithms

ti
m

e
in

 m
s

Figure 6.23 Combination of algorithms in the full topology ([ŠeKü11])

CHAPTER 6 – BENCHMARKS AND EVALUATION

 146

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

AntN
et/A

ntN
e t

AntN
et/B

eeAlg
AntN

et/G
A

AntN
et/M

MAS

AntN
et/R

oundRob in

AntN
et/S

ender

BeeAlg./A
ntN

et

BeeAlg./B
eeAlg

BeeAlg./G
A

BeeAlg./M
MAS

BeeAlg./R
oundRob in

BeeAlg./S
ender

GA/AntN
e t

GA/B
eeAlg.
GA/G

A
GA/M

MAS

GA/R
oundRob in
GA/Sender

MMAS/A
n tN

et

MMAS/B
eeAlg

MMAS/G
A

MMA/M
MAS

MMAS/R
oundRobin

MMAS/Sender

RoundRobin/A
ntN

et

RoundRobin/B
eeAlg

RoundRobin/G
A

RoundRobint/M
MAS

RoundRobin/R
oundRobi

RoundRobin/S
ende

Sende r/A
n tN

et

Sende r/B
eeAlg

Sender/G
A

Sender/M
MAS

Sende r/R
oundRobin

Sende r/S
ender

combination of algorithms

ti
m

e
in

 m
s

Figure 6.24. Combination of algorithms in the ring topology ([ŠeKü11])

CHAPTER 6 – BENCHMARKS AND EVALUATION

147

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

AntN
et/A

ntN
et

AntN
et/B

eeAlg
AntN

et/G
A

AntN
et/M

MAS

AntN
et/R

oun
dRobin

AntN
et/S

ende
r

BeeAlg./A
ntN

et

BeeAlg./B
eeAlg.

BeeAlg./G
A

BeeAlg./M
MAS

BeeAlg./R
oundR

obin

BeeAlg./S
ender

GA/A
ntN

et

GA/B
eeAlg.
GA/G

A
GA/M

MAS

GA/R
oundR

ob
in

GA/S
ender

MMAS/A
ntN

et

MMAS/B
eeAlg

MMAS/G
A

MMAS/M
MAS

MMAS/R
ound

Robin

MMAS/S
ender

RoundR
ob

in/A
ntN

et

RoundR
ob

in/B
eeAlg

RoundR
ob

in/G
A

RoundR
ob

int/M
MAS

RoundR
ob

in/R
oundR

obin

RoundR
ob

in/S
ender

Sender/A
ntN

et

Sender/B
eeAlg.

Sender/G
A

Sender/M
MAS

Sender/R
oundRob

in

Sender/S
ender

combination of algorithms

ti
m

e
 i

n
 m

s

Figure 6.25. Combination of algorithms in the star topology ([ŠeKü11])

CHAPTER 6 – BENCHMARKS AND EVALUATION

Table 6.12. shows the overall comparison made on the basis of the re-

sults obtained. Many appearances of the same topology in Table 6.12 de-
note that the respective combinations were equal good (e.g., both combina-
tions BeeAlg./Sender and MMAS/MMAS were equal good in a chain
topology). In almost each topology (except “star” topology), the best com-
bination is made by one intelligent and one unintelligent algorithm. Al-
though these combinations are not real hybrid algorithms (each pure algo-
rithm works either inside subnet or between subnets), the overall load
distribution in the whole network is realized through their synergy. There-
fore, the intelligent algorithms find the good starting solutions (quality and
fastness), while unintelligent algorithms could improve these solutions
(fastness).

Table 6.12. Overall comparison of the best results in all topologies

topology

combination of

algorithms
 time
(ms)

chain BeeAlg./Sender 88000

chain MMAS/MMAS 88000

full RoundRobin/BeeAlg. 76000

ring BeeAlg./Sender 93000

ring MMAS/RoundRobin 93000

star BeeAlg./BeeAlg. 346000

star GA/AntNet 346000

The results from Table6.12 are presented in the next figure (Fig.6.26).

0

50000

100000

150000

200000

250000

300000

350000

400000

chain full ring star

topology

ti
m

e
in

 m
s

Figure 6.26. The results of the best combinations of each topology

([ŠeKü11])

CHAPTER 6 – BENCHMARKS AND EVALUATION

149

After obtaining the best combination for each topology, the benchmarks

with the best combinations are performed on larger network dimensions.
Table 6.13 summarizes these results and shows that the results are stable as
the same combination(s) of algorithms are obtained as the best ones for
each of different dimensions (4*4, 8*2, 4*8, 8*4).

Table 6.13. Results of the best combinations in different network dimen-
sions ([ŠeKü11])

total num-
ber

 of nodes

number of sub-
nets

number of nodes
in each subnet Chain full ring star

16 4 4 88000 76000 93000 346000

 8 2 374000 384000 359000 365000

32 4 8 420000 556000 582000 388000

 8 4 406000 455000 484000 356000

The extended SILBA offers better and more powerful solution than the

basic SILBA ([ŠeKü11]). For example, in the network of 16 nodes: the
best obtained results of the basic SILBA by processing 200 tasks is
60556ms, whereas the best obtained results of the extended SILBA by
processing 1600 tasks (i.e., 8 times bigger load) is 76000ms.

The situations that can benefit from the extended SILBA are:
1. subnets are physically required, i.e., a given network is composed of a

number of subnets
2. extremely large networks with highly increased number of nodes in

which the building of subnets and applying the extended SILBA strat-
egy could help in transferring load between very distant nodes; load
needs not to be transferred via number of hops from one node to an-
other one, so it could be transferred by using a shortcut, i.e., to “jump”
from the subnet of its original node to the subnet of the distant destina-
tion node.

CHAPTER 6 – BENCHMARKS AND EVALUATION

 150

Overall Evaluation

The metric used in these benchmarks is the absolute execution time.
According to the obtained results, it is obvious that the behaviour of a par-
ticular combination of algorithms depends on a topology. The analysis
comprises the following issues ([ŠeKü11]):
1. How much the best combination (in each topology) is better than the

“extreme” combinations: the worst one and the combination on the
second place after the best one?

In order to answer to this question and perform the analysis, the numerical
description expressed in percentages is used to distinguish the quality of
combinations.
2. What is the “behaviour” of the other combinations, i.e., how much do

they deviate from the best solution? What is the “collective behaviour”
of algorithm combinations and the used SILBA framework in each to-
pology?

The deeper analysis is done by using the additional measurements: the in-
terval of variation and the root mean square deviation (RMSD). These
measurements are introduced in order to examine the “behaviour” of the
other combinations, i.e., how much they deviate from the best solution.
The interval of variation is defined as the difference between maximum
value of the used metric (time) and its minimum value: tmax – tmax. The used
RMSD is a quantitative measure that tells how many good combinations in
a particular topology exist, i.e., how far from the best solution the data
points (the rest of the combinations) tend to be (smaller RMSD means
more good combinations).

In the chain topology, the best result is obtained by both BeeAlgo-
rithm/Sender and MMAS/MMAS. They were equal good, and better than
the combination that “took the second place”, GA/Bee Algorithm, for
5.4%, better than the worst combination for 78%, better that the average of
all combinations for 56%. The interval of variation, tmax – tmax , is
320000ms. In the chain topology, the value of RMSD is 172121.

The combination RoundRobin/BeeAlgorithm showed the best results
in the full topology. This combination was better than the combination that
“took the second place”, RoundRobin/AntNet, for 1.3%, better than the
worst combination for 80.9%, better that the average of all combinations
for 74.9%. The interval of variation, tmax – tmax, is 322000ms and the
RMSD is 248227.7.

Both BeeAlgorithm/Sender and MMAS/RoundRobin were equal good
in the ring topology. They were better than the combination that “took the
second place”, MMAS/RoundRobin, for 1.4%, better than the worst com-
bination for 60.7%, better that the average of all combinations for 24.3%.

CHAPTER 6 – BENCHMARKS AND EVALUATION

151

The interval of variation, tmax – tmax, is 535000ms and the RMSD is
216194.9.

In the star topology, the combinations BeeAlgorithm/BeeAlgorithm
and GA/AntNet were the best with the same resulting value. They were
better than the combination that “took the second place”, AntNet/MMAS,
for 6.1%, better than the worst combination for 77.4%, better that the aver-
age of all combinations for 50.1%. The interval of variation, tmax – tmax, is
319000ms and the RMSD is 153859.9.

Bee algorithms play a significant role in almost each topology, as the
best obtained results in each topology are based on bee algorithms either
used inside subnets or used between subnets or both. The rest of intelligent
algorithms also gave good results in all topologies. The exception is the
full topology where the best results are obtained when round robin algo-
rithm is used inside subnets and combined with all others algorithms (ex-
cept the combination Round Robin/Round Robin).

From numerical values of the RMSD, the greatest deviation is reached
in the full topology. The majority of the other combinations differentiate a
lot (they are worse in a significant extent) comparing to the best obtained
combination. The smallest deviation is in the star topology, so the combi-
nations behave evenly in this topology.

Another point of view is the analysis of how good response will be ob-
tained by plugging any (random) combination of algorithms in the SILBA.
The equally good results will be obtained in the star topology. So, the
SILBA framework is very stable (without peaks in results) in the star to-
pology. From the other side, Figure 6.26. shows that the results of the indi-
vidual combinations of the SILBA pattern are successful for the chain, full
and ring topologies, whereas the results obtained for the star topology are
not so good.

In the next table, the behaviour of the swarm intelligent algorithms’
combinations is extracted as these algorithms are promising ones and not
so much exploited. Table 6.14 shows how much they deviate from the best
solution in each of the used topologies. For example, the set of all combi-
nations that use bee algorithms inside subnets is denoted in the table as
“bee/others”. According to these results, all combinations from this set de-
viate slightly from the best combination in the chain topology (that are
BeeAlgorithm/Sender and MMAS/MMAS), whereas the combinations
from this set deviate more from the best combination in the star topology,
although the best combination is BeeAlgorithm/BeeAlgorithm.

CHAPTER 6 – BENCHMARKS AND EVALUATION

 152

Table 6.14 Deviation swarm based algorithms’ combinations from the best
solution ([ŠeKü11])

 chain full ring star

RMSD (Bee/Others) 35171.0 755211.9 25337.7 141470.8

RMSD (Others/Bee) 417868.4 600503.1 387401.6 537938.7

RMSD(AntNet/Others) 44899.9 659335.3 25869.2 35787.1

RMSD(Others/AntNet) 404891.3 608559.9 372385.6 541636.4

RMSD(MMAS/Others) 249164.6 686738.7 58813.3 21725.6

RMSD(Others/MMAS) 450334.3 603189.0 371052.6 526899.4

Both hybrid algorithms and combinations of algorithm increase the
probability of improving the solutions obtained by only one type of
algorithm. For example, unintelligent algorithms suffer from the problem
of finding good starting solution - these solutions are provided intelligent
algorithms.

Besides the absolute execution time, the scalability is analyzed

([ŠeKü11]). The focus is on the issue of load scalability. A very general
definition of scalability is taken into account ([JoWo00], [VaVS98]).
Namely according to ([JoWo00]), a very general family of metrics can be
based on the following definition:

),,(

),,(

111

222

CQoSF

CQoSF

 (6.2)

where F evaluates the performance, evaluates the rate of providing ser-
vices to users, QoS is a set of parameters which evaluate the quality of the
service seen by users and C reflects the cost. Further, (Jogalekar and
Woodside 2000) establishes the scaling strategy by means of a scaling fac-
tor k and the set of scaling variables which are functions of k. They express
the strategy as a scaling path in a space in which they are the coordinates.
In ([JoWo00]), it is possible to see how (k) might behave in different
situations (Fig.6.27). It is already introduced a simplified version of inter-
est to this problem (Eq. 6.1) in terms of load, resources and performance
measure.

In the presented benchmarks, the increasing of load concurrently with
the increasing of the resources is applied and analyzed. By comparing re-
sults (Tables 6.6. and 6.7 for the basic SILBA, and Table6.13 for the ex-
tended SILBA), it is easy to see that the best chosen combinations based

CHAPTER 6 – BENCHMARKS AND EVALUATION

153

on bee algorithm scale well ([JoWo00]). Load and resources are increased
twice for consecutive test runs.

Figure 6.27. Scaling behavior ([JoWo00])

Scalability in the basic SILBA
For example in the cluster environment, load and resources are in-

creased twice for consecutive test runs, i.e., they are increased by 2n com-
pared with the starting test run (4 nodes, 50 tasks). The values of rscal are
2.9, 3.0, 3.4, 3.2 (rounded to one decimal) for consecutive bee test runs,
i.e., 2.9, 9.1, 31.0, 100.8 compared with the starting test run (4 nodes, 50
tasks). These values converge to positive scalability. Such behaviour is
even better in a more real environment, i.e., on the Cloud. Almost the simi-
lar situation occurs with AntNet algorithm.

Scalability in the extended SILBA
In the chain topology:
a) if the number of subnets are increased and the number of nodes in-

side a subnet is the same, i.e., 4*4, 8*4, rscal is 4.6 (rounded to one deci-
mal), that leads to positive scalability;

b) if the number of nodes in a subnet is increased and the number of
subnets is the same, i.e., 4*4, 4*8, rscal is 4.8; 8*2, 8*4, rscal is 1.1, that
converges to perfect scalability.

Scale factor k

Scalability (k)

1

superscalable

positive scalability

perfect scalability

threshold case

unscalable

CHAPTER 6 – BENCHMARKS AND EVALUATION

 154

In the full topology:
a) if the number of subnets are increased and the number of nodes in-

side a subnet is the same, i.e., 4*4, 8*4, rscal is 5.98; that leads to positive
scalability;

b) if the number of nodes in a subnet is increased and the number of
subnets is the same, i.e., 4*4, 4*8, rscal is 7.3; 8*2, 8*4, rscal is 1.8; that
leads to positive scalability.

In the ring topology:
a) if the number of subnets are increased and the number of nodes in-

side a subnet is the same, i.e., 4*4, 8*4, rscal is 5.2; that leads to positive
scalability;

b) if the number of nodes in a subnet is increased and the number of
subnets is the same, i.e., 4*4, 4*8, rscal is 6.2; 8*2, 8*4, rscal is 1.3; that
converges to perfect scalability.

In the star topology:
a) if the number of subnets are increased and the number of nodes in-

side a subnet is the same, i.e., 4*4, 8*4, rscal is approximately 1; that leads
to perfect scalability;

b) if the number of nodes in a subnet is increased and the number of
subnets is the same, i.e., 4*4, 4*8, rscal is approximately 1; 8*2, 8*4, rscal

is approximately 1; that that leads to perfect scalability.

CHAPTER 6 – BENCHMARKS AND EVALUATION

155

6.3 Summary

In this chapter, three different sets of results are presented:
 1) The advantages of using intelligent lookup mechanisms in search-

ing, locating and retrieving information. In this problem, the combination
of one unintelligent approach (random positioning of data) and one intelli-
gent approach (retrieving of data) obtained the best results. Antnet algo-
rithm showed uniformly good results in both environments. Bee algorithm
showed the best results on big instances.

2) The advantages of using bee swarm intelligence in the context of
load balancing are presented. Additionally, two further intelligent algo-
rithms are adapted based on MMAS and AntNet ant algorithms. For these
three algorithms, the best combination of feasible parameters was identi-
fied. For the comparison and evaluation a generic load balancing frame-
work that allows the plugging and thus easy exchange of algorithms was
used. The three intelligent algorithms were compared with three well-
known unintelligent algorithms, Round Robin, Sender, and Adapted Ge-
netic Algorithm. The load was generated by one single client, and as per-
formance parameter the absolute execution time was used. Under these
conditions, the obtained results show that the bee algorithm outperforms
all other test candidates.

3) The advantages of using bee swarm intelligence in the combination
with the other algorithms (both intelligent and unintelligent) in solving
load balancing problem in more complex network structures that consist of
different subnets which might overlap each other and have nested struc-
ture. After investigation of different network topologies, the combinations
that are based on swarm algorithms showed the best results in the chain,
ring and full topologies. The best combinations in all topologies are based
in bee algorithms. The load is generated by many clients, positioned sym-
metrically in subnets. The performance measure was the absolute execu-
tion time, expressed in milliseconds. The best obtained combinations scale
good in all investigated topologies.

 156

CHAPTER 7

CHAPTER 7 – CONCLUSION

157

7 CONCLUSION

Complex adaptive systems from our environment are intended “suc-

ceed” to overcome all turbulences and adapt to new circumstances. One of
the most powerful mechanisms is the mechanism of self-organization. It
triggered a significant attention in scientific research of different discip-
lines in the recent years. Self-organization needs to be understood in order
to apply it. Self-* mechanisms are not yet completely understood and ex-
plained. The applications of self-* mechanisms offer the possibilities to
cope with complexity in different scientific areas, including information
technology.

An increased complexity in IT industry needs to be urgently treated in
different, advanced ways. The application of self-* approaches to IT prob-
lems is a promising way to solve the problem of increased complexity.

This dissertation investigated the application of self-* on two well-
known IT scenarios: dynamic load balancing in heterogeneous distributed
systems, and location and retrieval of data in the Internet.

First, it discussed which IT problems are suitable for the application of
self-* mechanisms and what kind of complexity can be found in these IT
scenarios. A short classification is given and concluded that different types
of complexity could be treated by self-* principles on a different ways. For
example, if programming complexity is a problem, then some kind of me-
thodology based on high decoupling and autonomy is needed to be ap-
plied. In case that computational complexity is a problem, then an algo-
rithmic-heuristic support can help.

Also, the ways of measuring complexity is analyzed. As it is closely
connected to the measurement of self-organization, different proposed me-
thods were presented. However, it is firmly correlated to the problem of in-
terest and therefore, some general measure of self-organization does not
exist.

Further, appropriate software architectures were constructed and nature
based self-* mechanisms were applied to the two above numbered IT prob-
lems. It could be concluded that for each self-* mechanism that should be
mapped to the IT problem, some kind of modeling (usually mathematical)
is needed as a prerequisite for the future designing of algorithms.

CHAPTER 7 – CONCLUSION

 158

The problem in the first scenario and the achievements and contribution
can be shortly described as follows. Nowadays global networks are over-
loaded with huge amounts of different information. Searching for data can
be a time consuming and exhaustive process. This implies a necessity for
the existence of an effective lookup mechanism. Therefore, the presented
self-organizing approach that combines decentralized unstructured P2P
with space based computing is constructed in order to effectively locate
and retrieve information from a network. This approach differs from others
according to several issues: it focuses on the quality of the solutions, in-
cluding the time needed to obtain that solution, it is based on a learning
principle from the nature, which helps for future searching trials, and the
common disadvantage in the used basis-combined approaches – not so
good scalability – can be diminished. E.g., this approach outperforms
Gnutella lookup. It is demonstrated this by means of different benchmarks.
For example, on the Amazon EC2 Cloud, the random/bee combination on
80 nodes with 50 swarms and by treating 5 queries was 0.5% better than
the random/AntNet combination, 7.8% better than the random/MMAS
combination and 61.3% better than Gnutella. This first presented approach
is:

 self-learning, because of a learning capabilities of swarm collective
intelligence,

 self-repairing and self-configuring, because of the used algorithms
(AntNet algorithm is a typical representative) allow for add-
ing/removing nodes (i.e., connections).

The problem in the second scenario considered dynamic load balancing

in nowadays heterogeneous distributed networks. A workload should be
evenly distributed across two or more computers, network links, CPUs,
hard drives, or other resources, in order to get optimal resource utilization,
maximize throughput, minimize response time, and avoid overload. The
presented approach comprises self-organizing, adaptable, generic
framework based on autonomous agents’ collaboration by using space
based computing technology that additionally emphasize autonomy and
high decoupling of processes. Above all, different algorithms were
plugged in (both intelligent and unintelligent ones). Two different set of
results are presented through benchmarks.

The first set of results is obtained on the basic SILBA and presents the
benefits of using bee swarm intelligence in the context of load balancing.
Further, two intelligent algorithms based on ants behaviour, MMAS and
AntNet ant algorithms, are adapted for load balancing. For these three al-
gorithms, the best combination of feasible parameters was identified, and

CHAPTER 7 – CONCLUSION

159

afterwards, these three intelligent algorithms were compared with three
well-known algorithms, Round Robin, Sender, and Adapted Genetic Algo-
rithm. The load was generated by one single client, and shows the situation
in a system that is lightly to moderately loaded. The absolute execution
time was used as the performance parameter. Under these conditions, the
obtained results show that the bee algorithm outperforms all other test can-
didates. On the Amazon EC2 Cloud, the bee algorithm on 64 nodes was
5% faster than MMAS 10% faster than AntNet, 13% faster than Adapted
GA, 37% faster than Sender, and 68% faster than Round Robin.

The second set of results is obtained on the extended SILBA and proves
the advantages of using bee swarm intelligence in the combination with the
other algorithms (both intelligent and unintelligent) in solving load balanc-
ing problem in more complex network structures that consist of different
subnets possibly overlapped with each other and have nested structure. The
combinations of algorithms are tested on different network topologies:
chain, ring, full and star. The combinations that are based on swarm algo-
rithms showed the best results in the chain, ring and full topologies. The
best combinations in all topologies are based in bee algorithms. The load is
generated by many clients, positioned symmetrically in subnets. To sum
up, in the chain topology, the best result is obtained by both BeeAlgo-
rithm/Sender and MMAS/MMAS. They were equal good, and better than
the combination that “took the second place”, GA/Bee Algorithm, for
5.4%. The combination RoundRobin/BeeAlgorithm showed the best re-
sults in the full topology. This combination was better than the combina-
tion that “took the second place”, RoundRobin/AntNet, for 1.3%. Both
BeeAlgorithm/Sender and MMAS/RoundRobin were equal good in the
ring topology. They were better than the combination that “took the sec-
ond place”, MMAS/RoundRobin, for 1.4%. In the star topology, the com-
binations BeeAlgorithm/BeeAlgorithm and GA/AntNet were the best with
the same resulting value. They were better than the combination that “took
the second place”, AntNet/MMAS, for 6.1%. The presented situation re-
fers to a fully (highly) loaded system. The performance measure was the
absolute execution time, expressed in milliseconds. The load scalability is
additionally investigated. The best obtained combinations scale well in all
investigated topologies. This second presented approach is:

 self-learning, because of a learning capabilities of swarm collective
intelligence,

 self-repairing and self-configuring, because of the used algorithms
(Antnet algorithm is a typical representative) allow for add-
ing/removing nodes (i.e., connections),

CHAPTER 7 – CONCLUSION

 160

 self-tuning, because it provides a support for coping with high and
dynamically changing loads through load balancing.

Both architectures constructed for the numbered scenarios are mod-

elled and specified by using the PlusCal algorithm language. Their cor-
rectness is justified, i.e., it is proven that they are correct for each combina-
tion of algorithms, all policies and all topologies.

This investigation can be extended by taking in consideration different

metrics used for the evaluation of results (e.g., communication delay, utili-
zation, stability, fairness across multi-user workloads, robustness in
the face of node failure, adaptability in the face of different workloads,
etc.), a benchmarking of large instances, an investigation of the impact of
load injection in different places in the network and a building of the rec-
ommendation system for a given problem (e.g., the determination of the
best topology, algorithm combinations, parameters tuning, etc. for a par-
ticular problem).

The starting research questions have therefore been answered as fol-

lows in the dissertation:
1. Research Question 1: Can the two important IT use cases: 1) load

balancing in heterogeneous distributed systems, and 2) information re-
trieval in the Internet, profit from the usage of self-organization?

The presented scenarios had profit of the usage of self-organization. In
chapter 6, the used metrics (absolute execution time, scalability) are im-
proved, present the benefits of using self-organization in these scenarios
and show the applicability of self-organization to these types of problems.
Both scenarios - load-balancing in heterogeneous distributed systems, and
searching, retrieving as well as placing information in the Internet - are
suitable for the appliance of self-mechanisms as they contain NP hard
problems that searching and optimization. In chapter 6, it is described how
and in which extent the employed principles of self-organization improve
performance and scalability, that bee intelligence outperformed other
(un)intelligent approaches taking in consideration the quality of a solution,
the metric used and a scalability issue.

2. Research Question 2: Can the principles of self-* help to cope with

complexity in heterogeneous systems? What can be improved by em-
ploying self-* mechanism? What kind of complexity exists and how can
complexity be measured with the focus on the above mentioned prob-
lems?

CHAPTER 7 – CONCLUSION

161

The principles of self-* helped to cope with complexity (programming
and computational) in heterogeneous systems due to a treatment of the pre-
sented IT scenarios. The performance and scalability are improved. In
these specific cases, the degree of self-organization in the systems is
measured by means of the similarity, i.e., suitability function that showed
how much software agents (swarms) are organized. In both cases, this
function took the highest value that means the highest quality of data was
obtain, i.e., the self-organization in the system is measured as very high.

3. Research Question 3: How can swarm intelligence be

mapped/adapted to the load balancing problem and to the problem of
locating and retrieving information in the Internet? Can bee intelli-
gence be mapped to these two use cases and how? Can ant intelligence
be adapted to these two use cases and how?
As it is already stated, the mapping and adapting of swarm intelligence

is done by using mathematical models, and consequently by the appropriate
algorithms. Chapter 5 addresses research question 3 by describing how
swarm intelligent can be mapped or adapted to the located application cas-
es. Ant intelligence required remodeling due to the specific problems, whe-
reas bee intelligence required inventing new parts in the recruitment phase
and modeling bee algorithm for a specific problematic. In this case, the
novelty is the implementation of bee intelligence for the load balancing
problem for the first time in order to improve the quality of the solution and
scalability.

4. Research Question 4: What is the best parameters tuning in each of

the considered scenarios?
The fine-tuning of parameters and the best parameters’ sets are discovered
experimentally (through benchmarks) as the considered algorithms are
non-deterministic, and presented in chapter 6. Due to these parameters’
settings, swarm intelligence outperformed other (un)intelligent approaches
taking in consideration the quality of a solution, the metric used and a
scalability issue.

5. Research Question 5: Is it better to have an intelligent approach or

an unintelligent approach or a certain combination (which one)?
The combination of intelligent and unintelligent algorithm showed the best
results. Unintelligent algorithms suffer from the problem of finding good
starting solution that can be provided by the swarms. In chapter 6, it is de-
tected which combination of algorithms fits the best to a particular network
topology; also, detection which topologies profit the most from the appli-
cation of swarm intelligence (by means of the used metric and scalability).

CHAPTER 7 – CONCLUSION

 162

7.1 Future Work

Future work will be concentrated on further developing self-* oriented
solutions in overcoming complexity in IT. Some of the points that will be
researched are:
 Investigation of new areas of natural inspired self-* that are not ex-

ploited enough or not exploited at all (e.g., like bark beetles, slime
mold, fireflies, etc.) and mapping them to real-world problems.

 Implementing self-* features in a software system in order to addi-
tionally self-improve itself after a certain period of time. A further
challenging objective is to “upgrade” the notion of self-* as follows:
a self-* system is periodically subjected to a process of evolution
that should be triggered automatically. The goal will be to make this
process applicable to different scenarios and independent of a spe-
cific problem, and to development instruments for “system evolu-
tion”, i.e., system designs shall incorporate “evolution tools” in their
origin, so that a complete system can be upgraded and changed with
a low negative impact on the environment as a whole. The intention
is to specify necessary theoretical and algorithmic frameworks for a
self-evolving infrastructure that is able to maintain itself using its
own mechanisms. In this scope, self-evolution is not one further
self-* property. Rather this is a complex process which a self-* sys-
tem is subjected to through its life time. No doubt that systems
change over time. The notion of “evolution” will denote creative
changes that lead to an improved system. The vision is to apply this
idea to already self-* systems as well as to any other kinds of sys-
tems, and to be completely general in order to be applicable to a
wide set of application problems. Over time, a successful self-
evolving system will be able to evolve more effectively. The future
work will emphasize that self-evolving systems and self-* systems
are not the same. When a system selects for structures that enable it
to evolve more effectively, a meta-selective process emerges within
that system to direct the system's own development. Self-evolution
could be realized on a meta level. The intention is to develop a gen-
eral framework and to incorporate it in our already created self-*
systems (like a proof-of-concept) in order to obtain a complex com-
position of self-(self-)* systems.

163

APPENDIX

APPENDIX

8 APPENDIX

Appendix A

The Appendix A contains some characteristic implementation details of

both scenarios (information retrieval and dynamic load balancing) carried
out in Java.

The implementation details of Information retrieval scenario

The following part gives more details about the implementation of the
information retrieval scenario by putting emphasize to the ant algorithms.
The plugging of bee algorithm is similar from the architectural point of
view.

The main class is AntNode. The methods for processing the content of
ASNode and ACNode containers are defined in AntNode class. For every
container, there is a listener – so, every time when some content in the
container is created, the appropriate method is activated: processMessage-
sEntries(), processRouteEntries(), processAntEntries(). After a content re-
storing, they start methods for processing of a restored object: processmes-
sage(), processRoute(), processAnt(). Except these methods, the methods
for writing a content in the containers of the other nodes are necessary:
putMessageEntry(), putRouteEntry(), putAntEntry(). The methods for mes-
sages processing and paths processing are specialized in the inherited
classes ASNode and ACNode. ASNode includes some special containers:
Message Container, Route Container, Ant Container and Content Con-
tainer. Message Container and Route Container are used in the initializa-
tion of the system. Content Container is lookup container, which content is
the subject of search. ACNode serves for initialization of the system by
sending the message REGISTER to the Message Container of every par-
ticular ASNode, and afterwards, by sending the Routing Table into the
Routing Container of every particular ASNode. This is implemented in run
method of this class. Some steps of run method are defined in the inherited
classes MMASAntColony, i.e., AntNetAntColony (Fig.8.1). Procedure
registerNodes() initializes every ASNode in the network by adding to it an
unique id. Then REGISTER message is written in Message Container of
the appropriate node; afterwards ASNode processes that message by proc-
essMessage(). The next step is to send ith row of “distant” matrix to ith node
in the network. ASNode processes REGISTER message that carries its id

APPENDIX

165

in the network and the address (URI) of ACNode. After this message, then
accepts the routing table and creates NNList (nearest neighbours). Simi-
larly, the methods for messages sending and paths sending are specialized
in the inherited classes ASNode and ACNode.

Figure 8.1. The organization of the main classes in Lookup scenario.

The ant is implemented by Ant class that possesses the attributes
(among the usual ones):
 node – the current node where the ant is (it takes the routing table

from this node);
 content – the content that the ant leaves on the suitable node (pu-

tAnt) or the ant searches for on the network (getAnt);
 status – an indicator: Prepare, ForwardAnt, BackwardAnt;
 actionStatus – an indicator of how the ant action was successful:

no_data, acceptable_data, exact_data;
Ant class defines the ant behaviour on the node. When the ant is on a

node, then a node initiates its enterNode method that starts (among others
actions) its run method and run method implements the ant behaviour. The
ant on ASNode performs runForward procedure or runBackward proce-
dure, depending on its status. In runForward, the ant calculates the used
time (current time – starting time from the previous node), sets the values
of the arrays tour (the array that describes the travelled path) and visited
(the array of visited nodes), checks local lookup container by checkLook-
upSpace() that is defined in inherited classes MMASPutAnt, MMASGe-
tAnt i.e. AntNetPutAnt, AntNetGetAnt, depending on the types of ants
(putAnt leaves the content on the suitable node, while getAnt searches for
acceptable content on the network). After this check, it changes the status
(becomes backwardAnt and starts with runBackward procedure) or con-
tinues further - chooses the next node by using decisionRule() method and

APPENDIX

 166

leaves the current node by using leaveNode() method. In leaveNode(), it
notes the current time and calls putAntEntry() methods of the current node
that enables the ant to go through the network on the chosen node where it
repeats the procedure. In runBackward, it returns through the same way
and updates (optionally) the routing table of the current node. The routing
table contains data about the length of the path, the amount of pheromone,
…). At the end, it comes back on the ACNode (it started from this one)
and runs one of these methods (depending on the performed action status):
runNoData(), runExactData(), runAcceptableData(). In every of these
method, the path is optimized by using localsearch() method.

ACNode performs the creation of ants (createAnts()) and sends them on
the network (startIteration). Upon finishing the iteration, ACNode informs
the other nodes in the network about that by sending the message FINISH.
Then all nodes return possible updated routing tables (it is implemented in
getChanges()). After that, ACNode starts method updateStatistics(). The
classes ASNodeStarter and ACNodeStarter start the system. ASNode-
Starter starts ASNode (it assigns the port on the local address), while AC-
NodeStarter starts ACNode for the given number of ASNodes, assigns to it
the local port, connects the nodes in the network.

More information about the some of the main classes can be found in
the following part:

Ant
It implements an ant. The ant on the node in the network is doing its run

method. This is the base class that is specialized by classes MMASAnt,
AntNetAnt.

private int id; //id of ant
private Object node; //current node
private int step; //current step on the travel
private int finalStep; //end step
private long tourLength; //total length of the travel

passed
private int[] tour; //current travel path
private boolean[] visited; //visited nodes
private AntStatusType status; //status of the ant
private Content content; //the content that is to be put

i.e. search
private AntActionStatusType actionStatus; //action
private long timeOut; //time-to-live
private long startTime; //time of starting of the ant to

the node

APPENDIX

167

The ants are going in parallel and there is a thread for every ant. The
method runAtNode implements cases: runForward and runBackward in a
sense of getStatus. The method runAtACNode implements NoData, Ac-
ceptableData, ExactData, Error in a sense of getActionStatus.

AntActionStatusType
It gives the current status of the action that an ant is doing (NoData, Ac-

ceptableData, ExactData, Error).
AntStatusType
The current status of the ant: PREPARE status – with this status the ant

is created; when the ant goes to the network, status FORWARD is taken.
AntNode
The node where an ant may be present -the main class of the nodes in

the network.
ASNode
The node in the network which content is the subject of ant searching.
ACNode
It initializes the system and starts a series of iterations. During the itera-

tion, a certain number of ants is created and sent to the network, and then
some global changes are done (run-method). This run-method comprises:
startIteration, finishIteration, getChanges, UpdateStatistics, GlobalPhero-
moneUpdate.

CNNAnt
The ant that is going through the partial path on the network by using

NearestNeighbor algorithm. They are used for determining the maximal
partial path in order to determine the initial value for tau0.

Content
The content the lookup table and the same time the content that the ant

is carrying on and uses for searching. Also, the similarity function is im-
plemented here.

Instance
The structure of the network for Ant Algorithms. NNList, choice_info

and heuristics are calculated here.

public class Instance {
 public static double ALPHA=1.0;
 public static double BETA=2.0;
 public static double XI=0.1;
 public static double RO=0.5;
 private int n; //the number of nodes
 private int[][] dist; //distance matrix
 private int nn; //length of NNList

APPENDIX

 168

 private int[][] nnList; //array of the nearest
neighbours

 private double[][] pheromone; //pheromone matrix
 private double[][] choiceInfo; //combination of phero-

mones and heuristic

RouteTo
The edge of the graph with the information about the address of the end-

ing node (URI uri).
Route
The edge of the graph with the information about the ends.
AntNetAnt
The specialized ANT class that implements AntNet algorithms.
AntNetAntColony
The specialized ANT class that implements AntNet specific algorithms.
AntNetGetAnt
Get Ant in AntNet algorithm.
AntNetPutAnt
Put Ant in AntNet algorithm.
AntNetInstance
The structure of the network for Antnet algorithms.
KOpt
Local Search algorithms
MMASAnt
The specialized Ant class that implements MMAS algorithms.
MMASAntColony
The specialized class of ACNode that implements MMAS specific algo-

rithms.
MMASInstance
The structure of the network for MMAS algorithm.
MMASGetAnt
Get Ant in MMAS algorithm.
MMASPutAnt
Put Ant in MMAS algorithm.

APPENDIX

169

The implementation details of dynamic load balancing scenario

Some main parts of the SILBA implementation are shortly described
here. The abstract SilbaBase class is created with the following inherit-
ance:

Figure 8.2. The organization of the main classes in SILBA.

SilbaNode

SilbaNode itself is a simple class. It sets up the containers, takes argu-
ments from the command line which are then passed to the routing agent.
It also adds the routing agents as aspects of the task, reads the file contain-
ing routing information and writes that information into the routing space.
For example, if a search from an underloaded node should be conducted,
the SilbaNode also starts a thread that regularly checks this node's load sta-
tus and, if the node is underloaded, writes a request for a search for suita-
ble tasks. SilbaBase requires the following arguments on start up:
 the path to the MozartSpaces properties file
 the TCP/IP address of the node itself (this is the address that other

agents will also use to connect to the containers)
 the name of the node
 the path to the neighbors file
 the number of iterations the algorithm should perform at the most
 and the number of nodes in the setup, thus determining the number

of swarms that should be used in the algorithm
 a value between 0 and 3 determining which of four suitability

functions is being used and
 a value between 0 and 3 determining which of four fitness functions

is being used.

APPENDIX

 170

Figure 8.3. A detail presentation of the main class: SilbaBase.

APPENDIX

171

Worker Agent

The worker agent (WA) extends SilbaBase and implements the Notifi-
cationListener interface of MozartSpaces. It also implements this inter-
face's handleNotification method which fires every time a task got written
to the load space. At startup of the task, the following arguments also must
be specified:

 the maximum number of parallel threads for task computation
allowed

 values for TP2 and TP3.
Upon notification, the WA checks whether the task is suitable for this

WA. If a task matches, the WA first checks whether the task should be
transferred, i.e., rescheduled immediately. This decision is based on the
TP2 and TP3 threshold values, the worker agent speed (waSpeed) and the
link speed (linkSpeed) as well as a transmission delay (td). The WA speed
is given in Byte/ms as is the link speed. The complexity of a task is given
in Bytes. If the number of tasks currently being processed by this WA is
above the TP3 value, the Transfer Policy decides what to do. So, if com-
plexity/waSpeed < complexity/linkSpeed + td, then the TP3 value is in-
creased and the task does not get rescheduled. Otherwise the task is re-
jected and rescheduled and the TP3 stays the same. This should prevent an
overall slow down of the make span if re-scheduling the task would take
more time than computing it at the same WA. If a WAThread ends (i.e. a
task is done), a task is taken from the waitingTaskList to the runningTask-
List and thus starting a new WAThread. A WAThread is a thread that
takes a task, processes it, writes the result into the answer container and
measures how fast it was doing this. This information is needed for the
Transfer Policy. The information whether a WA is underloaded/ok-
loaded/overloaded (UL/OK/OL) is regularly written to the load space, to-
gether with more load information.

APPENDIX

 172

Figure 8.4. A detail presentation of the main class: WorkerAgent

APPENDIX

173

Routing Agent

The routing agent local is a MozartSpaces preWrite LocalAspect on the
task container. This means every time some program attempts to write a
new task into the load space, the RAlocal will fire. The task gets enriched
with additional information (e.g., an assignment to a specific suitable
worker agent, a more general worker agent role, a time stamp). A worker
agent gets notified after the RAlocal added this information. A suitable
WA is found by retrieving the worker agents' load information.

Figure 8.5. A detail presentation of the main class: SilbaNode.

APPENDIX

 174

Appendix B

Appendix B contains the PlusCal algorithms of both architectures incl.

their translations into TLA+ specification (first, Lookup module, second
SILBA module).

--------------------- MODULE Lookup -------------------

EXTENDS Naturals, TLC, Sequences
* M - the number of swarms
* N - the number of nodes

CONSTANTS M, N

(* --algorithm Lookup {
* msgC the array of channels for messages, spaces are simu-
lated as flexible channels, i.e., msgC[1],...,msgC[N] simu-
late swarm spaces, msgC[0] simulates the answer space
 variables msgC = [im \in 0 .. N |-> <<>>];
 define {
 clientNode == 0
 fromNode == 1
 currPath == 2
 pathPos == 3
 searchStr == 4
 swarmType == 5
 searchStatus == 6
 }

 macro WriteFIFO (m , chan) { chan := Append(chan, m) }
 macro TakeFIFO (v , chan) { await chan /= <<>>;
 v := Head(chan);
 chan := Tail(chan)}
 macro ReadFIFO (v , chan) { await chan /= <<>>;
 v := Head(chan)}
 macro WriteKEY (m , chan, key) { chan := [ikey \in 1 .. (IF
Len(chan) < key THEN key ELSE Len(chan)) |-> IF ikey = key
THEN m ELSE IF ikey <= Len(chan) THEN chan[ikey] ELSE <<>>]}

macro TakeKEY (v , chan, key) { await Len(chan) >= key /\
chan[key] /= <<>>; v:=chan[key];
chan := [ikey \in 1 .. Len(chan) |-> IF ikey = key THEN <<>>
ELSE chan[ikey]]}

APPENDIX

175

macro ReadKEY (v , chan, key) { await Len(chan) >= key /\
chan[key] /= <<>>; v := chan[key]};

process (Client = 0)
* msg - the message with the request
 variables msg = <<>>; initialPath = [ip \in 1 .. N |-> 0];
i; j; {
 * send M messages, i.e., requests for searching
 l1 : i := 1;
 l2 : while (i <= M) {
 * nondeterministically select some node j
 with (rndNode \in 1 .. N) {j := rndNode;};
 * the message goes to node j
 WriteFIFO (<<clientNode, initialPath, 0, "searchStr",

"F", FALSE>>, msgC[j]);
 i:=i+1;
 };
 * wait for processing the request
 l3 : while (i > 1) {
 * take the message with the processed request msg from

its channel, i.e., from the "answer space" msgC[0]
 TakeFIFO (msg, msgC[clientNode]);
 i := i-1;
 };
 * assert that there is nothing left in channels, i.e., that

the number of sent messages minus the number of received
messages equals to 0

 l5 : while (i <= N) {
 assert (Len(msgC[i]) = 0);
 i:=i+1;
 };
 assert (Len(msgC[clientNode]) = 0);
}

process (Swarm \in 1 .. N)
variables msg = <<>>; nextNode; newPos; newType; newStatus;
i; iNodes {
 l1 : while (TRUE) {
 either skip;
 or {
 * accept the message with request msg from its channel

msgC[self]
 TakeFIFO (msg, msgC[self]);

APPENDIX

 176

 * processing ...
 * if the type is forward
 if (msg[swarmType] = "F") {
 * the path lenght is increased by one
 newPos := msg[pathPos]+1;
 * newStatus simulates a search in a content space
 with (rndFound \in {TRUE, FALSE}) {newStatus := rndFound};
 * if newStatus is true (found) or the path length

equals to N
 if(newStatus \/ newPos = N) {
 * the type becomes backward
 newType := "B"
 };
 else {newType := "F"}
 };
 else {
 * in "backward" case, the status of a search does not

change and the current path length decreases by one
 newStatus := msg[searchStatus];
 newPos := msg[pathPos]-1;
 newType := "B";
 };
 * selection of the next node
 if (newType = "F") {
 * from set 1 .. N, exclude nodes that are in the path
 iNodes := 1 .. N \ {self};
 i := 1;
 l2 : while (i<newPos) {
 iNodes := iNodes \ {msg[currPath][i]};
 i := i+1;
 };
 * from the rest of them, randomly (nondeterministi-

cally) select one, i.e., this simulates the search and
selection in the routing space

 with (rndNext \in iNodes) {nextNode := rndNext};
 };
 else {
 * for the "backward" type, the value of a previous po-

sition in the path refers to the previos node or if it
is in the first position, the processed message is sent
(routed back) to the client

 if (newPos=1) {
 nextNode := clientNode;
 };

APPENDIX

177

 else {
 nextNode := msg[currPath][newPos-1];
 };
 };
 * the message is processed
 l3 : msg[fromNode] := self || msg[currPath][newPos] :=

self || msg[pathPos] := newPos || msg[swarmType] :=
newType || msg[searchStatus] := newStatus;

 WriteFIFO(msg, msgC[nextNode]);
 };
 };
 }
}
*)

* BEGIN TRANSLATION
* Label l1 of process Client at line 43 col 9 changed to l1_
* Label l2 of process Client at line 44 col 9 changed to l2_
* Label l3 of process Client at line 54 col 9 changed to l3_
* Process variable msg of process Client at line 40 col 12
changed to msg_
* Process variable i of process Client at line 40 col 61
changed to i_
CONSTANT defaultInitValue
VARIABLES msgC, pc
 (* define statement *)
clientNode == 0
fromNode == 1
currPath == 2
pathPos == 3
searchStr == 4
swarmType == 5
searchStatus == 6

VARIABLES msg_, initialPath, i_, j, msg, nextNode, newPos,
newType, newStatus,
 i, iNodes

vars == << msgC, pc, msg_, initialPath, i_, j, msg, nextNode,
newPos, newType,
 newStatus, i, iNodes >>

ProcSet == {0} \cup (1 .. N)

APPENDIX

 178

Init == (* Global variables *)
 /\ msgC = [im \in 0 .. N |-> <<>>]
 (* Process Client *)
 /\ msg_ = <<>>
 /\ initialPath = [ip \in 1 .. N |-> 0]
 /\ i_ = defaultInitValue
 /\ j = defaultInitValue
 (* Process Swarm *)
 /\ msg = [self \in 1 .. N |-> <<>>]
 /\ nextNode = [self \in 1 .. N |-> defaultInitValue]
 /\ newPos = [self \in 1 .. N |-> defaultInitValue]
 /\ newType = [self \in 1 .. N |-> defaultInitValue]
 /\ newStatus = [self \in 1 .. N |-> defaultInitValue]
 /\ i = [self \in 1 .. N |-> defaultInitValue]
 /\ iNodes = [self \in 1 .. N |-> defaultInitValue]
 /\ pc = [self \in ProcSet |-> CASE self = 0 -> "l1_"
 [] self \in 1 .. N -> l1"]

l1_ == /\ pc[0] = "l1_"
 /\ i_' = 1
 /\ pc' = [pc EXCEPT ![0] = "l2_"]
 /\ UNCHANGED << msgC, msg_, initialPath, j, msg,
nextNode, newPos, newType, newStatus, i, iNodes >>

l2_ == /\ pc[0] = "l2_"
 /\ IF i_ <= M
 THEN /\ \E rndNode \in 1 .. N:
 j' = rndNode
 /\ msgC' = [msgC EXCEPT ![j'] = Ap-
pend((msgC[j']), (<<clientNode, initialPath, 0, "searchStr",
"F", FALSE>>))]
 /\ i_' = i_+1
 /\ pc' = [pc EXCEPT ![0] = "l2_"]
 ELSE /\ pc' = [pc EXCEPT ![0] = "l3_"]
 /\ UNCHANGED << msgC, i_, j >>
 /\ UNCHANGED << msg_, initialPath, msg, nextNode, new-
Pos, newType, newStatus, i, iNodes >>

l3_ == /\ pc[0] = "l3_"
 /\ IF i_ > 1
 THEN /\ (msgC[clientNode]) /= <<>>
 /\ msg_' = Head((msgC[clientNode]))
 /\ msgC' = [msgC EXCEPT ![clientNode] =
Tail((msgC[clientNode]))]

APPENDIX

179

 /\ i_' = i_-1
 /\ pc' = [pc EXCEPT ![0] = "l3_"]
 ELSE /\ pc' = [pc EXCEPT ![0] = "l5"]
 /\ UNCHANGED << msgC, msg_, i_ >>
 /\ UNCHANGED << initialPath, j, msg, nextNode, newPos,
newType, newStatus, i, iNodes >>

l5 == /\ pc[0] = "l5"
 /\ IF i_ <= N
 THEN /\ Assert((Len(msgC[i_]) = 0),
)
 /\ i_' = i_+1
 /\ pc' = [pc EXCEPT ![0] = "l5"]
 ELSE /\ Assert((Len(msgC[clientNode]) = 0),
 ")
 /\ pc' = [pc EXCEPT ![0] = "Done"]
 /\ UNCHANGED i_
 /\ UNCHANGED << msgC, msg_, initialPath, j, msg,
nextNode, newPos, newType, newStatus, i, iNodes >>

Client == l1_ \/ l2_ \/ l3_ \/ l5

l1(self) == /\ pc[self] = "l1"
 /\ \/ /\ TRUE
 /\ pc' = [pc EXCEPT ![self] = "l1"]
 /\ UNCHANGED <<msgC, msg, nextNode, newPos,
newType, newStatus, i, iNodes>>
 \/ /\ (msgC[self]) /= <<>>
 /\ msg' = [msg EXCEPT ![self] =
Head((msgC[self]))]
 /\ msgC' = [msgC EXCEPT ![self] =
Tail((msgC[self]))]
 /\ IF msg'[self][swarmType] = "F"
THEN /\ newPos' = [newPos EXCEPT ![self] =
msg'[self][pathPos]+1] /\ \E rndFound \in {TRUE, FALSE}:
newStatus' = [newStatus EXCEPT ![self] = rndFound]
 /\ IF newStatus'[self] \/ newPos'[self] = N
THEN /\ newType' = [newType EXCEPT ![self] = "B"]
ELSE /\ newType' = [newType EXCEPT ![self] = "F"]
ELSE /\ newStatus' = [newStatus EXCEPT ![self] =
msg'[self][searchStatus]] /\ newPos' = [newPos EXCEPT
![self] = msg'[self][pathPos]-1]
 /\ newType' = [newType EXCEPT ![self] = "B"]
 /\ IF newType'[self] = "F

APPENDIX

 180

THEN /\ iNodes' = [iNodes EXCEPT ![self] = 1 .. N \ {self}]
 /\ i' = [i EXCEPT ![self] = 1]
 /\ pc' = [pc EXCEPT ![self] = "l2"]
 /\ UNCHANGED nextNode
ELSE /\ IF newPos'[self]=1
THEN /\ nextNode' = [nextNode EXCEPT ![self] = clientNode]
ELSE /\ nextNode' = [nextNode EXCEPT
![self] = msg'[self][currPath][newPos'[self]-1]]
 /\ pc' = [pc EXCEPT ![self] = "l3"]
 /\ UNCHANGED << i, iNodes >>
 /\ UNCHANGED << msg_, initialPath, i_, j >>

l2(self) == /\ pc[self] = "l2"
 /\ IF i[self]<newPos[self]
 THEN /\ iNodes' = [iNodes EXCEPT
![self] = iNodes[self] \ {msg[self][currPath][i[self]]}]
 /\ i' = [i EXCEPT ![self] = i[self]+1]
 /\ pc' = [pc EXCEPT ![self] = "l2"]
 /\ UNCHANGED nextNode
 ELSE /\ \E rndNext \in iNodes[self]:
 nextNode' = [nextNode EXCEPT ![self] = rndNext]
 /\ pc' = [pc EXCEPT ![self] = "l3"]
 /\ UNCHANGED << i, iNodes >>
 /\ UNCHANGED << msgC, msg_, initialPath, i_, j,
msg, newPos, newType, newStatus >>

l3(self) == /\ pc[self] = "l3"
 /\ msg' = [msg EXCEPT ![self][fromNode] = self,
![self][currPath][newPos[self]] = self,
![self][pathPos] = newPos[self],
![self][swarmType] = newType[self],
![self][searchStatus] = newStatus[self]]
 /\ msgC' = [msgC EXCEPT ![nextNode[self]] = Ap-
pend((msgC[nextNode[self]]), msg'[self])]
 /\ pc' = [pc EXCEPT ![self] = "l1"]
 /\ UNCHANGED << msg_, initialPath, i_, j,
nextNode, newPos, newType, newStatus, i, iNodes >>

Swarm(self) == l1(self) \/ l2(self) \/ l3(self)
Next == Client
 \/ (\E self \in 1 .. N: Swarm(self))
 \/ (* Disjunct to prevent deadlock on termination
*)
((\A self \in ProcSet: pc[self] = "Done") /\ UNCHANGED vars)

APPENDIX

181

Spec == Init /\ [][Next]_vars
Termination == <>(\A self \in ProcSet: pc[self] = "Done")

* END TRANSLATION
===

Listing 8.1. The PlusCal algorithm with TLA+ specification (Lookup).

---------------------- MODULE Silba -------------------
EXTENDS Naturals, TLC, Sequences
* M - the number of requests (tasks)
* N - the number of nodes

CONSTANTS M, N, T1, T2

(* --algorithm Silba {
* msgC - the array of channels for messages, spaces are
simulated as flexible channels, i.e., msgC[1],...,msgC[N]
simulate load spaces, msgC[0] simulates the answer space
* allocC - the array of channels that simulate allocation
spaces
* nStatus – the array of nodes’ status

 variables msgC = [im \in 0 .. N |-> <<>>]; allocC = [il \in
1 .. N |-> <<>>]; nStatus = [in \in 1 .. N |-> "UL"];

 define {
 clientNode == 0
 fromNode == 1
 reqID == 2
 partnerNode == 3
 }

 macro WriteFIFO (m , chan) { chan := Append(chan, m) }
 macro TakeFIFO (v , chan) { await chan /= <<>>;
 v := Head(chan);
 chan := Tail(chan)}
 macro ReadFIFO (v , chan) { await chan /= <<>>;
 v := Head(chan)}

APPENDIX

 182

 macro WriteKEY (m , chan, key) { chan := [ikey \in 1 .. (IF
Len(chan) < key THEN key ELSE Len(chan)) |-> IF ikey = key
THEN m ELSE IF ikey <= Len(chan) THEN chan[ikey] ELSE <<>>]}

 macro TakeKEY (v , chan, key) { await Len(chan) >= key /\
chan[key] /= <<>>; v:=chan[key];
 chan := [ikey \in 1 .. Len(chan) |-> IF ikey = key THEN <<>>
ELSE chan[ikey]]}

 macro ReadKEY (v , chan, key) { await Len(chan) >= key /\
chan[key] /= <<>>; v := chan[key]};

process (Client = 0)
* msg - the message with the request
 variables msg = <<>>; i; j; {
 * send M messages, i.e., requests
 l1 : i := 1;
 l2 : while (i <= M) {
 * select randomly (nondeterministically) some node j
 with (rndNode \in 1 .. N) { j := rndNode;};
 * the message goes to the msg channel of node j, i.e., to

the "load space" of node j
 WriteFIFO (<<clientNode, i, clientNode>>, msgC[j]);
 i:=i+1;
 };
 * wait for processing the request
 l3 : while (i > 1) {
 * accept the message with the processed request msg from

its channel msgC[0], i.e., msgC[0] refers to the answer
space

 ReadKEY (msg, msgC[clientNode], i-1);
 i:=i-1;
 };
 * assert that there is nothing left in channels, i.e.,

that the number of sent messages minus the number of re-
ceived messages equals to 0

 l4 : while (i <= N) {
 assert (Len(msgC[i]) = 0 /\ Len(allocC[i])=0);
 i:=i+1;
 };
 assert (Len(msgC[clientNode]) = M);
 }

process (WA \in 1 .. N)
variables msg = <<>>; {

APPENDIX

183

 l1 : while (nStatus[self] /= "OL") {
 either skip
 or {
 * accept the message with the request msg from its

channel msgC[self], i.e., "load space"
 TakeFIFO (msg, msgC[self]);
 * processing ...
 skip; * "execute" some job
 l2 : msg[fromNode] := self;
 WriteKEY(msg, msgC[clientNode], msg[reqID]);
 };
 l3 : if (Len(msgC[self]) < T1) {
 nStatus[self] := "UL"
 }
 else {
 if (Len(msgC[self]) < T2) nStatus[self] := "OK";
 else nStatus[self] := "OL"
 }
 };
 }

process (Arbiter \in 1 .. N)
variables msg = <<>>; {
 l1 : while (nStatus[self] = "OL") {
 either skip
 or {
 * accept the message with the request msg from its

channel msgC[self], i.e., "load space"
 TakeFIFO (msg, msgC[self]);
 * send the request to allocC, i.e., "allocation space"
 l2 : msg[fromNode] := self;
 WriteFIFO(msg, allocC[self]);
 };
 };
 }

process (RA \in 1 .. N)
variables msg = <<>>; ack; i; pNodes; pNode; {
 l1 : while (TRUE) {
 either {
 if (nStatus[i]="UL") {
 i := 1;
 pNodes := 1 .. N;
 l2 : pNodes := pNodes \ {self};

APPENDIX

 184

 l3 : while (i<=N) {
 if (nStatus[i]/="OL") pNodes := pNodes \ {i};
 i := i+1;
 };
 with (rndNode \in pNodes) {pNode := rndNode};
 WriteFIFO(<<self, 0, pNode>>, allocC[self]);
 };
 };
 or {
 * accept the message with the request msg from its

channel allocC[self], i.e., "allocation space"
 ReadFIFO (msg, allocC[self]);
 if (msg[partnerNode] = clientNode) {
 * find UL or OK node
 i := 1;
 pNodes := 1 .. N;
 l4 : pNodes := pNodes \ {self};
 l5 : while (i<=N) {
 if (nStatus[i]="OL") pNodes := pNodes \ {i};
 i := i+1;
 };
 with (rndNode \in pNodes) {pNode := rndNode};
 allocC[self][1][partnerNode] := pNode;
 };
 };
 };
 }

process (OUTag \in 1 .. N)
variables msg = <<>>; pNode; {
 l1 : while (TRUE) {
 either skip
 or {
 * accept the message from the channel
 ReadFIFO (msg, allocC[self]);
 if (msg[partnerNode] /= clientNode /\ msg[reqID]>0) {
 * take the message from allocC and write it to the

"load space" of pNode
 l2 : TakeFIFO (msg, allocC[self]);
 pNode := msg[partnerNode];
 l3 : msg[fromNode] := self || msg[partnerNode] := cli-
entNode;
 WriteFIFO(msg, msgC[pNode]);
 };

APPENDIX

185

 };
 };
 }

process (INag \in 1 .. N)
variables msg = <<>>; pNode; {
 l1 : while (TRUE) {
 either skip
 or {
 * accept the message from the channel
 ReadFIFO (msg, allocC[self]);
 if (msg[partnerNode] /= clientNode /\ msg[reqID]=0) {
 * take the message from allocC and write it to the

"load space" of pNode
 l2 : TakeFIFO (msg, allocC[self]);
 pNode := msg[partnerNode];
 l3 : TakeFIFO(msg, msgC[pNode]);
 l4 : msg[fromNode] := self || msg[partnerNode] := cli-
entNode;
 WriteFIFO(msg, msgC[self]);
 };
 };
 };
 }

}
*)

* BEGIN TRANSLATION
* Label l1 of process Client at line 42 col 10 changed to
l1_
* Label l2 of process Client at line 43 col 10 changed to
l2_
* Label l3 of process Client at line 52 col 10 changed to
l3_
* Label l4 of process Client at line 59 col 10 changed to
l4_
* Label l1 of process WA at line 69 col 9 changed to l1_W
* Label l2 of process WA at line 77 col 16 changed to l2_W
* Label l3 of process WA at line 80 col 11 changed to l3_W
* Label l1 of process Arbiter at line 92 col 9 changed to
l1_A
* Label l2 of process Arbiter at line 98 col 16 changed to
l2_A

APPENDIX

 186

* Label l1 of process RA at line 106 col 9 changed to l1_R
* Label l2 of process RA at line 111 col 18 changed to l2_R
* Label l3 of process RA at line 112 col 18 changed to l3_R
* Label l4 of process RA at line 128 col 18 changed to l4_R
* Label l1 of process OUTag at line 142 col 9 changed to
l1_O
* Label l2 of process OUTag at line 23 col 31 changed to
l2_O
* Label l3 of process OUTag at line 151 col 18 changed to
l3_O
* Process variable msg of process Client at line 39 col 12
changed to msg_
* Process variable i of process Client at line 39 col 24
changed to i_
* Process variable msg of process WA at line 68 col 12
changed to msg_W
* Process variable msg of process Arbiter at line 91 col 12
changed to msg_A
* Process variable msg of process RA at line 105 col 12
changed to msg_R
* Process variable pNode of process RA at line 105 col 40
changed to pNode_
* Process variable msg of process OUTag at line 141 col 12
changed to msg_O
* Process variable pNode of process OUTag at line 141 col 24
changed to pNode_O
CONSTANT defaultInitValue
VARIABLES msgC, allocC, nStatus, pc

(* define statement *)
clientNode == 0
fromNode == 1
reqID == 2
partnerNode == 3

VARIABLES msg_, i_, j, msg_W, msg_A, msg_R, ack, i, pNodes,
pNode_, msg_O,
 pNode_O, msg, pNode

vars == << msgC, allocC, nStatus, pc, msg_, i_, j, msg_W,
msg_A, msg_R, ack,
 i, pNodes, pNode_, msg_O, pNode_O, msg, pNode >>

APPENDIX

187

ProcSet == {0} \cup (1 .. N) \cup (1 .. N) \cup (1 .. N) \cup
(1 .. N) \cup (1 .. N)

Init == (* Global variables *)
 /\ msgC = [im \in 0 .. N |-> <<>>]
 /\ allocC = [il \in 1 .. N |-> <<>>]
 /\ nStatus = [in \in 1 .. N |-> "UL"]
 (* Process Client *)
 /\ msg_ = <<>>
 /\ i_ = defaultInitValue
 /\ j = defaultInitValue
 (* Process WA *)
 /\ msg_W = [self \in 1 .. N |-> <<>>]
 (* Process Arbiter *)
 /\ msg_A = [self \in 1 .. N |-> <<>>]
 (* Process RA *)
 /\ msg_R = [self \in 1 .. N |-> <<>>]
 /\ ack = [self \in 1 .. N |-> defaultInitValue]
 /\ i = [self \in 1 .. N |-> defaultInitValue]
 /\ pNodes = [self \in 1 .. N |-> defaultInitValue]
 /\ pNode_ = [self \in 1 .. N |-> defaultInitValue]
 (* Process OUTag *)
 /\ msg_O = [self \in 1 .. N |-> <<>>]
 /\ pNode_O = [self \in 1 .. N |-> defaultInitValue]
 (* Process INag *)
 /\ msg = [self \in 1 .. N |-> <<>>]
 /\ pNode = [self \in 1 .. N |-> defaultInitValue]
 /\ pc = [self \in ProcSet |-> CASE self = 0 -> "l1_"
 [] self \in 1 .. N -> "l1_W"
 [] self \in 1 .. N -> "l1_A"
 [] self \in 1 .. N -> "l1_R"
 [] self \in 1 .. N -> "l1_O"
 [] self \in 1 .. N -> "l1"]

l1_ == /\ pc[0] = "l1_"
 /\ i_' = 1
 /\ pc' = [pc EXCEPT ![0] = "l2_"]
 /\ UNCHANGED << msgC, allocC, nStatus, msg_, j, msg_W,
msg_A, msg_R, ack, i, pNodes, pNode_, msg_O, pNode_O, msg,
pNode >>

l2_ == /\ pc[0] = "l2_"
 /\ IF i_ <= M
 THEN /\ \E rndNode \in 1 .. N:

APPENDIX

 188

 j' = rndNode
 /\ msgC' = [msgC EXCEPT ![j'] = Ap-
pend((msgC[j']), (<<clientNode, i_, clientNode>>))]
 /\ i_' = i_+1
 /\ pc' = [pc EXCEPT ![0] = "l2_"]
 ELSE /\ pc' = [pc EXCEPT ![0] = "l3_"]
 /\ UNCHANGED << msgC, i_, j >>
 /\ UNCHANGED << allocC, nStatus, msg_, msg_W, msg_A,
msg_R, ack, i, pNodes, pNode_, msg_O, pNode_O, msg, pNode >>

l3_ == /\ pc[0] = "l3_"
 /\ IF i_ > 1
 THEN /\ Len((msgC[clientNode])) >= (i_-1) /\
(msgC[clientNode])[(i_-1)] /= <<>>
 /\ msg_' = (msgC[clientNode])[(i_-1)]
 /\ i_' = i_-1
 /\ pc' = [pc EXCEPT ![0] = "l3_"]
 ELSE /\ pc' = [pc EXCEPT ![0] = "l4_"]
 /\ UNCHANGED << msg_, i_ >>
 /\ UNCHANGED << msgC, allocC, nStatus, j, msg_W,
msg_A, msg_R, ack, i, pNodes, pNode_, msg_O, pNode_O, msg,
pNode >>

l4_ == /\ pc[0] = "l4_"
 /\ IF i_ <= N
 THEN /\ Assert((Len(msgC[i_]) = 0 /\
Len(allocC[i_])=0),
)
 /\ i_' = i_+1
 /\ pc' = [pc EXCEPT ![0] = "l4_"]
 ELSE /\ Assert((Len(msgC[clientNode]) = M),
)
 /\ pc' = [pc EXCEPT ![0] = "Done"]
 /\ UNCHANGED i_
 /\ UNCHANGED << msgC, allocC, nStatus, msg_, j, msg_W,
msg_A, msg_R, ack, i, pNodes, pNode_, msg_O, pNode_O, msg,
pNode >>

Client == l1_ \/ l2_ \/ l3_ \/ l4_

l1_W(self) == /\ pc[self] = "l1_W"
 /\ IF nStatus[self] /= "OL"
 THEN /\ \/ /\ TRUE
 /\ pc' = [pc EXCEPT ![self] = "l3_W"]

APPENDIX

189

 /\ UNCHANGED <<msgC, msg_W>>
 \/ /\ (msgC[self]) /= <<>>
 /\ msg_W' = [msg_W EXCEPT ![self] = Head((msgC[self]))]
 /\ msgC' = [msgC EXCEPT ![self] = Tail((msgC[self]))]
 /\ TRUE
 /\ pc' = [pc EXCEPT ![self] = "l2_W"]
 ELSE /\ pc' = [pc EXCEPT ![self] = "Done"]
 /\ UNCHANGED << msgC, msg_W >>
 /\ UNCHANGED << allocC, nStatus, msg_, i_, j,
msg_A, msg_R, ack, i, pNodes, pNode_, msg_O, pNode_O, msg,
pNode >>

l3_W(self) == /\ pc[self] = "l3_W"
 /\ IF Len(msgC[self]) < T1
 THEN /\ nStatus' = [nStatus EXCEPT ![self] = "UL"]
 ELSE /\ IF Len(msgC[self]) < T2
 THEN /\ nStatus' = [nStatus EXCEPT ![self] = "OK"]
 ELSE /\ nStatus' = [nStatus EXCEPT ![self] = "OL"]
 /\ pc' = [pc EXCEPT ![self] = "l1_W"]
 /\ UNCHANGED << msgC, allocC, msg_, i_, j,
msg_W, msg_A, msg_R, ack, i, pNodes, pNode_, msg_O, pNode_O,
msg, pNode >>

l2_W(self) == /\ pc[self] = "l2_W"
 /\ msg_W' = [msg_W EXCEPT ![self][fromNode] = self]
 /\ msgC' = [msgC EXCEPT ![clientNode] = [ikey \in 1
.. (IF Len((msgC[clientNode])) < (msg_W'[self][reqID]) THEN
(msg_W'[self][reqID]) ELSE Len((msgC[clientNode]))) |-> IF
ikey = (msg_W'[self][reqID]) THEN msg_W'[self] ELSE
IF ikey <= Len((msgC[clientNode])) THEN
(msgC[clientNode])[ikey] ELSE <<>>]]
 /\ pc' = [pc EXCEPT ![self] = "l3_W"]
 /\ UNCHANGED << allocC, nStatus, msg_, i_, j,
msg_A, msg_R, ack, i, pNodes, pNode_, msg_O, pNode_O, msg,
pNode >>

WA(self) == l1_W(self) \/ l3_W(self) \/ l2_W(self)

l1_A(self) == /\ pc[self] = "l1_A"
 /\ IF nStatus[self] = "OL"
 THEN /\ \/ /\ TRUE
 /\ pc' = [pc EXCEPT ![self] = "l1_A"]
 /\ UNCHANGED <<msgC, msg_A>>
 \/ /\ (msgC[self]) /= <<>>

APPENDIX

 190

 /\ msg_A' = [msg_A EXCEPT ![self] = Head((msgC[self]))]
 /\ msgC' = [msgC EXCEPT ![self] = Tail((msgC[self]))]
 /\ pc' = [pc EXCEPT ![self] = "l2_A"]
 ELSE /\ pc' = [pc EXCEPT ![self] = "Done"]
 /\ UNCHANGED << msgC, msg_A >>
 /\ UNCHANGED << allocC, nStatus, msg_, i_, j,
msg_W, msg_R, ack, i, pNodes, pNode_, msg_O, pNode_O, msg,
pNode >>

l2_A(self) == /\ pc[self] = "l2_A"
 /\ msg_A' = [msg_A EXCEPT ![self][fromNode] = self]
 /\ allocC' = [allocC EXCEPT ![self] = Ap-
pend((allocC[self]), msg_A'[self])]
 /\ pc' = [pc EXCEPT ![self] = "l1_A"]
 /\ UNCHANGED << msgC, nStatus, msg_, i_, j, msg_W,
msg_R, ack, i, pNodes, pNode_, msg_O, pNode_O, msg, pNode >>

Arbiter(self) == l1_A(self) \/ l2_A(self)

l1_R(self) == /\ pc[self] = "l1_R"
 /\ \/ /\ IF nStatus[i[self]]="UL"
 THEN /\ i' = [i EXCEPT ![self] = 1]
 /\ pNodes' = [pNodes EXCEPT ![self] = 1 .. N]
 /\ pc' = [pc EXCEPT ![self] = "l2_R"]
 ELSE /\ pc' = [pc EXCEPT ![self] = "l1_R"]
 /\ UNCHANGED << i, pNodes >>
 /\ UNCHANGED msg_R
 \/ /\ (allocC[self]) /= <<>>
/\ msg_R' = [msg_R EXCEPT ![self] = Head((allocC[self]))]
 /\ IF msg_R'[self][partnerNode] = clientNode
 THEN /\ i' = [i EXCEPT ![self] = 1]
 /\ pNodes' = [pNodes EXCEPT ![self] = 1 .. N]
 /\ pc' = [pc EXCEPT ![self] = "l4_R"]
 ELSE /\ pc' = [pc EXCEPT ![self] = "l1_R"]
 /\ UNCHANGED << i, pNodes >>
 /\ UNCHANGED << msgC, allocC, nStatus, msg_,
i_, j, msg_W, msg_A, ack, pNode_, msg_O, pNode_O, msg, pNode
>>

l2_R(self) == /\ pc[self] = "l2_R"
 /\ pNodes' = [pNodes EXCEPT ![self] = pNodes[self] \ {self}]
 /\ pc' = [pc EXCEPT ![self] = "l3_R"]

APPENDIX

191

 /\ UNCHANGED << msgC, allocC, nStatus, msg_,
i_, j, msg_W, msg_A, msg_R, ack, i, pNode_, msg_O, pNode_O,
msg, pNode >>

l3_R(self) == /\ pc[self] = "l3_R"
 /\ IF i[self]<=N
 THEN /\ IF nStatus[i[self]]/="OL"
 THEN /\ pNodes' = [pNodes EXCEPT

![self] = pNodes[self] \ {i[self]}]
 ELSE /\ TRUE
 /\ UNCHANGED pNodes
 /\ i' = [i EXCEPT ![self] = i[self]+1]
 /\ pc' = [pc EXCEPT ![self] = "l3_R"]
 /\ UNCHANGED << allocC, pNode_ >>
 ELSE /\ \E rndNode \in pNodes[self]:
 pNode_' = [pNode_ EXCEPT ![self] = rndNode]
 /\ allocC' = [allocC EXCEPT ![self] = Ap-
pend((allocC[self]), (<<self, 0, pNode_'[self]>>))]
 /\ pc' = [pc EXCEPT ![self] = "l1_R"]
 /\ UNCHANGED << i, pNodes >>
 /\ UNCHANGED << msgC, nStatus, msg_, i_, j,
msg_W, msg_A, msg_R, ack, msg_O, pNode_O, msg, pNode >>

l4_R(self) == /\ pc[self] = "l4_R"
 /\ pNodes' = [pNodes EXCEPT ![self] = pNodes[self] \ {self}]
 /\ pc' = [pc EXCEPT ![self] = "l5"]
 /\ UNCHANGED << msgC, allocC, nStatus, msg_,
i_, j, msg_W, msg_A, msg_R, ack, i, pNode_, msg_O, pNode_O,
msg, pNode >>

l5(self) == /\ pc[self] = "l5"
 /\ IF i[self]<=N
 THEN /\ IF nStatus[i[self]]="OL"
 THEN /\ pNodes' = [pNodes EXCEPT

![self] = pNodes[self] \ {i[self]}]
 ELSE /\ TRUE
 /\ UNCHANGED pNodes
 /\ i' = [i EXCEPT ![self] = i[self]+1]
 /\ pc' = [pc EXCEPT ![self] = "l5"]
 /\ UNCHANGED << allocC, pNode_ >>
 ELSE /\ \E rndNode \in pNodes[self]:
 pNode_' = [pNode_ EXCEPT ![self] = rndNode]
 /\ allocC' = [allocC EXCEPT

![self][1][partnerNode] = pNode_'[self]]

APPENDIX

 192

 /\ pc' = [pc EXCEPT ![self] = "l1_R"]
 /\ UNCHANGED << i, pNodes >>
 /\ UNCHANGED << msgC, nStatus, msg_, i_, j, msg_W,
msg_A, msg_R, ack, msg_O, pNode_O, msg, pNode >>

RA(self) == l1_R(self) \/ l2_R(self) \/ l3_R(self) \/
l4_R(self) \/ l5(self)

l1_O(self) == /\ pc[self] = "l1_O"
 /\ \/ /\ TRUE
 /\ pc' = [pc EXCEPT ![self] = "l1_O"]
 /\ UNCHANGED msg_O
 \/ /\ (allocC[self]) /= <<>>
 /\ msg_O' = [msg_O EXCEPT
 ![self] = Head((allocC[self]))]
 /\ IF msg_O'[self][partnerNode] /= cli-
entNode /\ msg_O'[self][reqID]>0
 THEN /\ pc' = [pc EXCEPT ![self] = "l2_O"]
 ELSE /\ pc' = [pc EXCEPT ![self] = "l1_O"]
 /\ UNCHANGED << msgC, allocC, nStatus, msg_,
i_, j, msg_W, msg_A, msg_R, ack, i, pNodes, pNode_, pNode_O,
msg, pNode >>

l2_O(self) == /\ pc[self] = "l2_O"
 /\ (allocC[self]) /= <<>>
/\ msg_O' = [msg_O EXCEPT ![self] = Head((allocC[self]))]
/\ allocC' = [allocC EXCEPT ![self] = Tail((allocC[self]))]
/\ pNode_O' = [pNode_O EXCEPT ![self] =
msg_O'[self][partnerNode]]
 /\ pc' = [pc EXCEPT ![self] = "l3_O"]
 /\ UNCHANGED << msgC, nStatus, msg_, i_, j,
msg_W, msg_A, msg_R, ack, i, pNodes, pNode_, msg, pNode >>

l3_O(self) == /\ pc[self] = "l3_O"
/\ msg_O' = [msg_O EXCEPT ![self][fromNode] = self,
 ![self][partnerNode] = clientNode]
/\ msgC' = [msgC EXCEPT ![pNode_O[self]] = Ap-
pend((msgC[pNode_O[self]]), msg_O'[self])]
 /\ pc' = [pc EXCEPT ![self] = "l1_O"]
 /\ UNCHANGED << allocC, nStatus, msg_, i_, j,
msg_W, msg_A, msg_R, ack, i, pNodes, pNode_, pNode_O, msg,
 pNode >>

OUTag(self) == l1_O(self) \/ l2_O(self) \/ l3_O(self)

APPENDIX

193

l1(self) == /\ pc[self] = "l1"
 /\ \/ /\ TRUE
 /\ pc' = [pc EXCEPT ![self] = "l1"]
 /\ UNCHANGED msg
 \/ /\ (allocC[self]) /= <<>>
/\ msg' = [msg EXCEPT ![self] = Head((allocC[self]))]
/\ IF msg'[self][partnerNode] /= clientNode /\
msg'[self][reqID]=0
 THEN /\ pc' = [pc EXCEPT ![self] = "l2"]
 ELSE /\ pc' = [pc EXCEPT ![self] = "l1"]
 /\ UNCHANGED << msgC, allocC, nStatus, msg_, i_,
j, msg_W, msg_A, msg_R, ack, i, pNodes, pNode_, msg_O,
pNode_O, pNode >>

l2(self) == /\ pc[self] = "l2"
 /\ (allocC[self]) /= <<>>
/\ msg' = [msg EXCEPT ![self] = Head((allocC[self]))]
/\ allocC' = [allocC EXCEPT ![self] = Tail((allocC[self]))]
/\ pNode' = [pNode EXCEPT ![self] = msg'[self][partnerNode]]
 /\ pc' = [pc EXCEPT ![self] = "l3"]
 /\ UNCHANGED << msgC, nStatus, msg_, i_, j, msg_W,
msg_A, msg_R, ack, i, pNodes, pNode_, msg_O, pNode_O >>

l3(self) == /\ pc[self] = "l3"
 /\ (msgC[pNode[self]]) /= <<>>
/\ msg' = [msg EXCEPT ![self] = Head((msgC[pNode[self]]))]
/\ msgC' = [msgC EXCEPT ![pNode[self]] =
Tail((msgC[pNode[self]]))]
 /\ pc' = [pc EXCEPT ![self] = "l4"]
 /\ UNCHANGED << allocC, nStatus, msg_, i_, j,
msg_W, msg_A, msg_R, ack, i, pNodes, pNode_, msg_O, pNode_O,
pNode >>

l4(self) == /\ pc[self] = "l4"
/\ msg' = [msg EXCEPT ![self][fromNode] = self,
 ![self][partnerNode] = clientNode]
/\ msgC' = [msgC EXCEPT ![self] = Append((msgC[self]),
msg'[self])]
 /\ pc' = [pc EXCEPT ![self] = "l1"]
 /\ UNCHANGED << allocC, nStatus, msg_, i_, j,
msg_W, msg_A, msg_R, ack, i, pNodes, pNode_, msg_O, pNode_O,
pNode >>

APPENDIX

 194

INag(self) == l1(self) \/ l2(self) \/ l3(self) \/ l4(self)

Next == Client
 \/ (\E self \in 1 .. N: WA(self))
 \/ (\E self \in 1 .. N: Arbiter(self))
 \/ (\E self \in 1 .. N: RA(self))
 \/ (\E self \in 1 .. N: OUTag(self))
 \/ (\E self \in 1 .. N: INag(self))
 \/ (* Disjunct to prevent deadlock on termination
*)
 ((\A self \in ProcSet: pc[self] = "Done") /\
UNCHANGED vars)

Spec == Init /\ [][Next]_vars

Termination == <>(\A self \in ProcSet: pc[self] = "Done")

* END TRANSLATION
===

Listing 8.2. The PlusCal algorithm with TLA+ specification (SILBA).

APPENDIX

195

Appendix C

Appendix C contains just a very small portion of the huge amount of

benchmarking results in order to illustrate fine tuning of parameters. For
example, tables 8.1-8.5 contain the results needed for only one figure 6.1.
The result (best tour length in ms) represents an average of 10 test-runs,
(i.e., to obtain the result – the best tour length – 10 test-runs were per-
formed with the same values of , , , and then the average is calculated).

Tables 8.6.-8.10 have the same meaning and the final result of these ta-
bles (also each row is performed 10 times) is presented on Fig. 6.3.

The next part of tables (8.11-8.14) represent already summarized one
part of the results from the second scenario that refers to the extended
SILBA framework. Also, to obtain the result of only one row, each combi-
nation is done 10 times (explained in Chapter 6) and the average is calcu-
lated.

Table 8.1 Variation of parameters in random/MMAS (40 containers)

best tour length
(in ms) α β

222 0,00 2,00 0,50
175 0,00 2,00 0,70
109 0,00 2,00 0,90
157 0,00 3,00 0,50
371 0,00 3,00 0,70
293 0,00 3,00 0,90
380 0,00 4,00 0,50
137 0,00 4,00 0,70
170 0,00 4,00 0,90

92 0,00 5,00 0,50
160 0,00 5,00 0,70

258 0,00 5,00 0,90

261 0,50 2,00 0,50
179 0,50 2,00 0,70
353 0,50 2,00 0,90
285 0,50 3,00 0,50
196 0,50 3,00 0,70
327 0,50 3,00 0,90

APPENDIX

 196

142 0,50 4,00 0,50
276 0,50 4,00 0,70
131 0,50 4,00 0,90
110 0,50 5,00 0,50
137 0,50 5,00 0,70

296 0,50 5,00 0,90

278 1,00 2,00 0,50
189 1,00 2,00 0,70
177 1,00 2,00 0,90
127 1,00 3,00 0,50
180 1,00 3,00 0,70
201 1,00 3,00 0,90
200 1,00 4,00 0,50
230 1,00 4,00 0,70
265 1,00 4,00 0,90
172 1,00 5,00 0,50
189 1,00 5,00 0,70

147 1,00 5,00 0,90

Table 8.2. Variation of parameters in random/MMAS (80 containers)

best tour length
(in ms) α β

138 0,00 2,00 0,50
342 0,00 2,00 0,70
813 0,00 2,00 0,90
247 0,00 3,00 0,50
716 0,00 3,00 0,70
378 0,00 3,00 0,90
299 0,00 4,00 0,50
830 0,00 4,00 0,70
844 0,00 4,00 0,90
128 0,00 5,00 0,50
160 0,00 5,00 0,70

510 0,00 5,00 0,90

APPENDIX

197

147 0,50 2,00 0,50
886 0,50 2,00 0,70
285 0,50 2,00 0,90
192 0,50 3,00 0,50
293 0,50 3,00 0,70
324 0,50 3,00 0,90
271 0,50 4,00 0,50
675 0,50 4,00 0,70
177 0,50 4,00 0,90
143 0,50 5,00 0,50
168 0,50 5,00 0,70

338 0,50 5,00 0,90

838 1,00 2,00 0,50
200 1,00 2,00 0,70
881 1,00 2,00 0,90
150 1,00 3,00 0,50
750 1,00 3,00 0,70
791 1,00 3,00 0,90
719 1,00 4,00 0,50
332 1,00 4,00 0,70
160 1,00 4,00 0,90
685 1,00 5,00 0,50
288 1,00 5,00 0,70

173 1,00 5,00 0,90

Table 8.3. Variation of parameters in random/MMAS (120 containers)

best tour length
(in ms) α β

304 0,00 2,00 0,50
217 0,00 2,00 0,70
362 0,00 2,00 0,90
309 0,00 3,00 0,50
204 0,00 3,00 0,70
607 0,00 3,00 0,90
397 0,00 4,00 0,50

APPENDIX

 198

150 0,00 4,00 0,70
697 0,00 4,00 0,90
163 0,00 5,00 0,50
254 0,00 5,00 0,70

572 0,00 5,00 0,90

703 0,50 2,00 0,50
391 0,50 2,00 0,70

1129 0,50 2,00 0,90
297 0,50 3,00 0,50
515 0,50 3,00 0,70
294 0,50 3,00 0,90
512 0,50 4,00 0,50
760 0,50 4,00 0,70
857 0,50 4,00 0,90
175 0,50 5,00 0,50
448 0,50 5,00 0,70

536 0,50 5,00 0,90

218 1,00 2,00 0,50
625 1,00 2,00 0,70
420 1,00 2,00 0,90
173 1,00 3,00 0,50
358 1,00 3,00 0,70
499 1,00 3,00 0,90
445 1,00 4,00 0,50
389 1,00 4,00 0,70
210 1,00 4,00 0,90
366 1,00 5,00 0,50
662 1,00 5,00 0,70

403 1,00 5,00 0,90

APPENDIX

199

Table 8.4. Variation of parameters in random/MAS (160 containers)
best tour length

(in ms) α β

504 0,00 2,00 0,50
456 0,00 2,00 0,70
744 0,00 2,00 0,90
489 0,00 3,00 0,50
677 0,00 3,00 0,70
953 0,00 3,00 0,90

1047 0,00 4,00 0,50
639 0,00 4,00 0,70
872 0,00 4,00 0,90
199 0,00 5,00 0,50

1389 0,00 5,00 0,70

1572 0,00 5,00 0,90

763 0,50 2,00 0,50
1492 0,50 2,00 0,70

652 0,50 2,00 0,90
886 0,50 3,00 0,50
923 0,50 3,00 0,70
622 0,50 3,00 0,90
398 0,50 4,00 0,50
860 0,50 4,00 0,70
758 0,50 4,00 0,90
208 0,50 5,00 0,50
884 0,50 5,00 0,70

653 0,50 5,00 0,90

812 1,00 2,00 0,50
456 1,00 2,00 0,70
675 1,00 2,00 0,90
205 1,00 3,00 0,50
599 1,00 3,00 0,70
701 1,00 3,00 0,90

1345 1,00 4,00 0,50
1501 1,00 4,00 0,70

APPENDIX

 200

782 1,00 4,00 0,90
924 1,00 5,00 0,50

1093 1,00 5,00 0,70

1500 1,00 5,00 0,90

Table 8.5. Variation of parameters in random/MMAS (200 containers)

best tour length
(in ms) α β

715 0,00 2,00 0,50
712 0,00 2,00 0,70
502 0,00 2,00 0,90

1309 0,00 3,00 0,50
1250 0,00 3,00 0,70

775 0,00 3,00 0,90
859 0,00 4,00 0,50
924 0,00 4,00 0,70

1650 0,00 4,00 0,90
234 0,00 5,00 0,50
448 0,00 5,00 0,70

557 0,00 5,00 0,90

703 0,50 2,00 0,50
931 0,50 2,00 0,70

1653 0,50 2,00 0,90
927 0,50 3,00 0,50
889 0,50 3,00 0,70
673 0,50 3,00 0,90
837 0,50 4,00 0,50

1294 0,50 4,00 0,70
583 0,50 4,00 0,90
240 0,50 5,00 0,50
572 0,50 5,00 0,70

534 0,50 5,00 0,90

782 1,00 2,00 0,50
547 1,00 2,00 0,70

APPENDIX

201

499 1,00 2,00 0,90
245 1,00 3,00 0,50
857 1,00 3,00 0,70

1175 1,00 3,00 0,90
927 1,00 4,00 0,50
366 1,00 4,00 0,70
483 1,00 4,00 0,90

1366 1,00 5,00 0,50
712 1,00 5,00 0,70

736 1,00 5,00 0,90

Table 8.6. Variation of parameters in random/AntNet (40 containers)

best tour length
(in ms) α C2

148 0,20 0,15
95 0,20 0,20
80 0,20 0,25

100 0,20 0,30

76 0,20 0,35

112 0,30 0,15
104 0,30 0,20
165 0,30 0,25
136 0,30 0,30

92 0,30 0,35

129 0,40 0,15
92 0,40 0,20
92 0,40 0,25

120 0,40 0,30

100 0,40 0,35

88 0,50 0,15
105 0,50 0,20
117 0,50 0,25

99 0,50 0,30

120 0,50 0,35

APPENDIX

 202

Table 8.7. Variation of parameters in random/AntNet (80 containers)

best tour length
(in ms) α C2

155 0,20 0,15
102 0,20 0,20

96 0,20 0,25
110 0,20 0,30

99 0,20 0,35

126 0,30 0,15
155 0,30 0,20
173 0,30 0,25
180 0,30 0,30

101 0,30 0,35

136 0,40 0,15
111 0,40 0,20
113 0,40 0,25
147 0,40 0,30

124 0,40 0,35

109 0,50 0,15
166 0,50 0,20
149 0,50 0,25
111 0,50 0,30

169 0,50 0,35

Table 8.8. Variation of parameters in random/AntNet (120 containers)

best tour length
(in ms) α C2

297 0,20 0,15
205 0,20 0,20
130 0,20 0,25
155 0,20 0,30

148 0,20 0,35

299 0,30 0,15
267 0,30 0,20

APPENDIX

203

308 0,30 0,25
275 0,30 0,30

178 0,30 0,35

205 0,40 0,15
177 0,40 0,20
183 0,40 0,25
253 0,40 0,30

201 0,40 0,35

176 0,50 0,15
212 0,50 0,20
223 0,50 0,25
181 0,50 0,30

254 0,50 0,35

Table 8.9. Variation of parameters in random/AntNet (160 containers)

best tour length
(in ms) α C2

301 0,20 0,15
295 0,20 0,20
152 0,20 0,25
226 0,20 0,30

198 0,20 0,35

234 0,30 0,15
278 0,30 0,20
295 0,30 0,25
336 0,30 0,30

206 0,30 0,35

267 0,40 0,15
196 0,40 0,20
199 0,40 0,25
277 0,40 0,30

213 0,40 0,35

208 0,50 0,15
245 0,50 0,20

APPENDIX

 204

273 0,50 0,25
189 0,50 0,30

286 0,50 0,35

Table 8.10. Variation of parameters in random/AntNet (200 containers)

best tour length
(in ms) α C2

368 0,20 0,15
257 0,20 0,20
178 0,20 0,25
215 0,20 0,30

201 0,20 0,35

290 0,30 0,15
262 0,30 0,20
405 0,30 0,25
395 0,30 0,30

234 0,30 0,35

342 0,40 0,15
205 0,40 0,20
207 0,40 0,25
255 0,40 0,30

230 0,40 0,35

214 0,50 0,15
268 0,50 0,20
387 0,50 0,25
274 0,50 0,30

379 0,50 0,35

APPENDIX

205

Table 8.11. Combination in star topology.
combination time in ms
AntNet/AntNet 360000
AntNet/BeeAlg. 363000
AntNet/GA 361000
AntNet/MMAS 358000
AntNet/RoundRobin 361000
AntNet/Sender 360000
BeeAlg./AntNet 409000
BeeAlg./BeeAlg. 346000
BeeAlg./GA 413000
BeeAlg./MMAS 404000
BeeAlg./RoundRobin 410000
BeeAlg./Sender 410000
GA/AntNet 346000
GA/BeeAlg. 366000
GA/GA 357000
GA/MMAS 354000
GA/RoundRobin 356000
GA/Sender 355000
MMAS/AntNet 354000
MMAS/BeeAlg. 359000
MMAS/GA 359000
MMAS/MMAS 349000
MMAS/RoundRobin 351000
MMAS/Sender 352000
RoundRobin/AntNet 400000
RoundRobin/BeeAlg. 404000
RoundRobin/GA 408000
RoundRobint/MMAS 397000
RoundRobin/RoundRobin 401000
RoundRobin/Sender 412000
Sender/AntNet 881000
Sender/BeeAlg. 880000
Sender/GA 859000
Sender/MMAS 867000
Sender/RoundRobin 878000
Sender/Sender 847000

APPENDIX

 206

Table 8.12. Combinations in chain topology.
combination time in ms
AntNet/AntNet 107000
AntNet/BeeAlg. 107000
AntNet/GA 101000
AntNet/MMAS 103000
AntNet/RoundRobin 112000
AntNet/Sender 106000
BeeAlg./AntNet 96000
BeeAlg./BeeAlg. 113000
BeeAlg./GA 104000
BeeAlg./MMAS 104000
BeeAlg./RoundRobin 94000
BeeAlg./Sender 88000
GA/AntNet 94000
GA/BeeAlg. 93000
GA/GA 94000
GA/MMAS 96000
GA/RoundRobin 96000
GA/Sender 131000
MMAS/AntNet 120000
MMAS/BeeAlg. 115000
MMAS/GA 101000
MMAS/MMAS 88000
MMAS/RoundRobin 332000
MMAS/Sender 113000
RoundRobin/AntNet 372000
RoundRobin/BeeAlg. 381000
RoundRobin/GA 384000
RoundRobint/MMAS 408000
RoundRobin/RoundRobin 371000
RoundRobin/Sender 372000
Sender/AntNet 374000
Sender/BeeAlg. 383000
Sender/GA 379000
Sender/MMAS 404000
Sender/RoundRobin 371000
Sender/Sender 308000

APPENDIX

207

Table 8.13. Combination in full topology.
combination time
AntNet/AntNet 345000
AntNet/BeeAlg. 348000
AntNet/GA 346000
AntNet/MMAS 346000
AntNet/RoundRobin 343000
AntNet/Sender 343000
BeeAlg./AntNet 370000
BeeAlg./BeeAlg. 376000
BeeAlg./GA 393000
BeeAlg./MMAS 386000
BeeAlg./RoundRobin 382000
BeeAlg./Sender 398000
GA/AntNet 338000
GA/BeeAlg. 338000
GA/GA 340000
GA/MMAS 341000
GA/RoundRobin 338000
GA/Sender 360000
MMAS/AntNet 360000
MMAS/BeeAlg. 350000
MMAS/GA 359000
MMAS/MMAS 352000
MMAS/RoundRobin 358000
MMAS/Sender 359000
RoundRobin/AntNet 77000
RoundRobin/BeeAlg. 76000
RoundRobin/GA 81000
RoundRobint/MMAS 82000
RoundRobin/RoundRobin 116000
RoundRobin/Sender 90000
Sender/AntNet 300000
Sender/BeeAlg. 306000
Sender/GA 301000
Sender/MMAS 296000
Sender/RoundRobin 320000
Sender/Sender 303000

APPENDIX

 208

Table 8.14 Combination in ring topology.
combination time
AntNet/AntNet 104000
AntNet/BeeAlg. 104000
AntNet/GA 101000
AntNet/MMAS 99000
AntNet/RoundRobin 102000
AntNet/Sender 103000
BeeAlg./AntNet 102000
BeeAlg./BeeAlg. 103000
BeeAlg./GA 104000
BeeAlg./MMAS 105000
BeeAlg./RoundRobin 107000
BeeAlg./Sender 93000
GA/AntNet 103000
GA/BeeAlg. 100000
GA/GA 105000
GA/MMAS 100000
GA/RoundRobin 105000
GA/Sender 103000
MMAS/AntNet 113000
MMAS/BeeAlg. 108000
MMAS/GA 110000
MMAS/MMAS 142000
MMAS/RoundRobin 93000
MMAS/Sender 105000
RoundRobin/AntNet 398000
RoundRobin/BeeAlg. 409000
RoundRobin/GA 406000
RoundRobint/MMAS 398000
RoundRobin/RoundRobin 412000
RoundRobin/Sender 405000
Sender/AntNet 305000
Sender/BeeAlg. 316000
Sender/GA 296000
Sender/MMAS 298000
Sender/RoundRobin 302000
Sender/Sender 299000

REFERENCES

[AACH00] Abelson H., Allen D., Coore D., Hanson C., Homsy G., Knight T., Nagpal

R., Rauch E., Sussman G. and Weiss R., Amorphous Computing, Communication
of the ACM, vol. 43 (5), pp. 74–82, 2000.

[Aber01] Aberer K., P-grid: A self-organizing access structure for P2P information
systems, 9th International Conference on Cooperative Information Systems,
Springer-Verlag, pp. 179–194, 2001.

[ACDDHSP03] Aberer K., Cudré-Mauroux P., Datta A., Despotovic Z., Hauswirth M.,
Punceva M. and Schmidt, R., P-Grid: a self-organizing structured P2P system,
SIGMOD Rec., vol. 32(3), pp. 29-33, 2003.

[AGKT02] Andrzejak A., Graupner S., Kotov V. and Trinks H., Algorithms for Self-
Organization and Adaptive Service Placement in Dynamic Distributed Systems,
Tech. Rep. HPL-2002-259, Hewlett-Packard Labs Palo Alto, 2002.

[AlBa02] Albert R. Barabási A.-L., Statistical mechanics of complex networks, Reviews
of Modern Physics, vol. 74, pp. 47–97, 2002.

[Alha04] Alhazbi S.M., Measuring the complexity of Component-Based System Architec-
ture, Int. Conf. on Information and Communication Technologies: From Theory to
Applications, 2004.

[AnSp04] Androutsellis-Theotokis S., and Spinellis D., A survey of peer-to-peer content
distribution technologies, ACM Comput. Survey, vol. 36, pp. 335-371, 2004.

[ApBu05] Apel S. and Buchmann E., Biology-Inspired Optimizations of Peer-to-Peer
Overlay Networks, Quellenangabe Praxis der Informationsverarbeitung und
Kommunikation, vol. 28(4), 2005.

[Ashb47] Ashby W.R., Principles of the Self-Organizing Dynamic System, Journal of
General Psychology, vol.37, pp. 125-128, 1947.

[BaBD02] Backström T., Bjerlöv M. and Docherty P., Organization of work in complex
environments – a continuous development through communication and learning,
Managing the Complex IV, 2002.

[BaBK02] Balazinska M., Balakrishnan H. and Karger D., Ins/twine: A scalable peer-to-
peer architecture for intentional resource discovery, LNCS, Springer, pp. 149–
153, 2002.

[BaCh03] Barker. K. J. and Chrisochoides N. P., An evaluation of a framework for the
dynamic load balancing of highly adaptive and irregular parallel applications,
ACM/IEEE conference on Supercomputing, 2003.

[BaJe08] Babaoglu O. and Jelasity M., Self-* properties through gossiping. Philosophical
Transactions of the Royal Society; vol. 366(188), pp. 13747–3757, 2008.

[Ball04] Ball P., Critical Mass: How One Thing Leads to Another, ISBN 0-434-01135-5,
2004.

[Bane92] Banerjee A. V., A Simple Model of Herd Behavior, The Quarterly Journal of
Economics, vol. 107(3), pp. 797-817, 1992.

 210

[BBJM07] Babaoglu O., Binci T., Jelasity M. and Montresor A., Firefly-inspired
heartbeat synchronization in overlay networks, 1st IEEE International Conference
on Self-Adaptive and Self-Organizing Systems (SASO 2007), 2007.

[BCDDD05] Babaoglu O., Canright G., Deutsch A., Di Caro G., Ducatelle F., Gambar-
della L., Ganguly N., Jelasity M., Montemanni R. and Montesor A., Design pat-
terns from biology for distributed computing, European Conference on Complex
Systems, 2005.

[BCCP04] Barker K., Chernikov A., Chrisochoides N. and Pingali K., A load balancing
framework for adaptive and asynchronous applications, IEEE Transactions on
Parallel and Distributed Systems, vol. 15(2), pp.183-192, 2004.

[BeBM93a] Beasley D., Bull D.R. and Martin R.R., An overview of genetic algorithms:
fundamentals, University Computing, vol. 15(2), pp. 58-69, 1993.

[BeBM93b] Beasley D., Bull D.R. and Martin R.R., An overview of genetic algorithms:
research topics, University Computing, vol. 15(4), pp. 170-181, 1993.

[Berk74] Berk R., A. Collective Behavior, Dubuque, Iowa: Wm. C. Brown, 1974.
[Bezd81] Bezdek J. C., Pattern Recognition with Fuzzy Objective Function Algorithms,

Plenum Press, New York, 1981.
[BFKMT10] Bessler S., Fischer A., Kühn E., Mordinyi R. and Tomic S., Using Tuple-

Spaces to manage the Storage and Dissemination of Spatial-temporal Content,
Journal of Computer and System Sciences, Elsevier, 2010.

[BHLTT09] Bray T., Hollander D., Layman A., Tobin R. and Thompson H.S., Names-
paces in XML 1.0, W3C Recommendation, December 2009.

[BiHW92] Bikhchandani S., Hirshleifer D. and Welch I., A Theory of Fads, Fashion,
Custom, and Cultural Change as Informational Cascades, Journal of Political
Economy, vol. 100(5), pp. 992-1026, 1992.

[Blem03] Blem C., Beam-ACO Hybridizing ant colony optimization with beam search-an
application to open shop scheduling, Technical report TR/IRIDIA/2003-17, 2003.

[BlGu03] Blass A. and Gurevich Y., Algorithms: A Quest for Absolute Definitions,
Bulletin of European Association for Theoretical Computer Science 81, 2003.

 [BLLNL09] Bastos Filho C., de Lima Neto F., Lins A. , Nascimento A. and Lima M. ,
Fish School Search, Nature-Inspired Algorithms for Optimisation, Studies in
Computational Intelligence, vol. 193, 2009.

[BlRo03] Blum, C. and Roli A., Metaheuristics in Combinatorial Optimization: Over-
view and Conceptual Comparison, ACM Computing Surveys, vol.35(3), pp. 268–
308, 2003.

[BoCH00] Bojinov H., Casal A. and Hogg T., Emergent Structures in Modular Self-
Reconfigurable Robots, Proceedings of the International Conference on Robotics
and Automation, IEEE CS Press, 2000.

[BoDT99] Bonabeau E., Dorigo M. and Theraulaz G., Swarm Intelligence: From Natural
to Artificial Systems, Santa Fe Inst. Studies in the Sc. of Complexity Series, Ox-
ford Press, 1999.

 [Bond00] Bondi A.B, Characteristics of scalability and their impact on performance, 2nd
Int. Workshop on Software and Performance, ACM, 2000.

211

[BrMe008] Bronevich A.G. and Meyer W., Load balancing algorithms based on gradient
methods and their analysis through algebraic graph theory, Journal Parallel Dis-
tributed Computing, vol. 68, pp. 209-220, 2008.

[BrRP08] Brinkschulte, U., von Renteln, A., and Pacher, M., Measuring the quality of an
artificial hormone system based task mapping, 2nd Int. Conf. on Autonomic Com-
puting and Communication Systems, 2008.

[BrTy00] Bradley D. and Tyrrell A., Immunotronics: Hardware fault tolerance inspired
by the immune system, 3rd International Conference on Evoluable Systems
(ICES2000), 2000.

[Brunn01] Brunnermeier M. K., Asset Pricing under Asymmetric Information: Bubbles,
Crashes, Technical Analysis, and Herding, Oxford University Press 2001.

[BTDAC97] Bonabeau E., Theraulaz G., Deneubourg J.L., Aron S. and Camazine S.,
Self-organization in social insects, Trends in Ecology and Evolution, vol. 12, pp.
188-193, 1997.

 [BTFGGDM02] Ben-Yehuda S., Tolasch T., Francke W., Gries R., Gries G., Dunkel-
blum D. and Mendel Z., Aggregation pheromone of the almond bark beetle Scoly-
tus amygdali (Coleoptera: Scolytidae), IOBC wprs Bulletin, vol. 25, 2002.

[BuDB09] Budayan C., Dikmen I. and Birgonul M. T., Comparing the performance of
traditional cluster analysis, self-organizing maps and fuzzy C-means method for
strategic grouping, Expert System Applications, vol. 36 (9), 2009.

[BuHu97] Buchanan D., Huczynski A., Organisational behaviour, Prentice Hall, 3rd
Edition, 1997.

[CaDa03] Cao Y. and Dasgupta D., An Immunogenetic Approach in Chemical Spectrum
Recognition, Advances in Evolutionary Computing (Ghosh & Tsutsui, eds.), 2003.

[CaDFSTB03] Camazine S., Deneubourg J., Franks N.R., Sneyd J., Theraulaz G. and
Bonabeau E., Self-Organization in Biological Systems, Princeton University Press,
2003.

[CaDo98] Caro G. D. and Dorigo M., Extending AntNet for best-effort quality-of-service
routing, 1st Int. Workshop on Ant Colony Optimization (ANTS’98), 1998.

[CaGe89] Carriero N. and Gelernter D., Linda in Context, CACM, vol. 32 (4), pp. 444-
458, 1989.

[Cald07] Caldarelli G., Scale-Free Networks, Oxford University Press, Oxford, 2007.
[CaSn91] Camazine S. and Sneyd J., A model of collective nectar source selection by

honey bees: Self-organization through simple rules, Journal of Theoretical Biol-
ogy, vol. 149(4), pp. 547-571, 1991.

[CaVi08] Casadei M and Viroli M., Applying Self-Organizing Coordination to Emergent
Tuple Organization in Distributed Networks, 2nd IEEE International Conference
on Self-Adaptive and Self-Organizing Systems (SASO'08), 2008.

[CDFSTB01] Camazine S., Deneubourg J., Franks N.R., Sneyd J., Theraulaz G. and
Bonabeau E., Self-Organization in Biological Systems, Princeton University Press,
2001.

[ChLH08] Chen J.C., Liao G.X., Hsie J.S. and Liao C., A study of the contribution made
by evolutionary learning on dynamic load-balancing problems in distributed com-
puting systems, Expert Syst. Appl., vol. 34, pp. 357-365, 2008.

 212

[CHSW02] Clarke I., Hong T., Sanberg, O., and Wiley, B., Protecting free expression
online with Freenet, IEEE Internet Computing, vol. 6(1), pp. 40–49, 2002.

[ChZC10] Chen W. N., Zhang J. and Chung H., Optimizing Discounted Cash Flows in
Project Scheduling — An Ant Colony Optimization Approach, IEEE Trans. on
Systems, Man, and Cybernetics, 40(5), pp.64-77, 2010.

[Clar93] Clark F. O., Parallel Algorithms for Hierarchical Clustering, Parallel Comput-
ing, vol. 21, pp. 1313-1325, 1993.

[CLRS09] Cormen T.H., Leiserson C.E., Rivest R.L. and Stein C., Introduction to
Algorithms, The MIT Press, 2009.

[ClSW00] Clarke, I., Sandberg, O., and Wiley, B., Freenet: A distributed anonymous
information storage and retrieval system, Workshop on Design Issues in Anonym-
ity and Unobservability, 2000.

[CMVT07a] Casadei M., Menezes R., Viroli M. and Tolksdorf R., A Self-organizing
Approach to Tuple Distribution in Large-Scale Tuple-Space Systems, International
Workshop on Self-Organizing Systems, IWSOS’07, 2007.

[CMVT07b] Casadei M., Menezes R., Viroli M. and Tolksdorf R., Self-organized over-
clustering avoidance in tuple-space systems, IEEE Congress on Evolutionary
Computation, 2007.

[CoGD97] Commons M.L., Goodheart E.A. and Dawson T.L., Psychophysics of Stage:
Task Complexity and Statistical Models, International Objective Measurement
Workshop at the Annual Conference of the American Educational Research Asso-
ciation, 1997.

[Cohe10] Cohen U., Inside gigaspaces XAP - technical overview and value proposition,
Technical report, GigaSpaces White Paper, Last accessed: August, 2010.

[CRCSL02] Cortes A., Ripolli A., Cedo F., Senar, M. A. and Luque, E., An asynchronous
and iterative load balancing algorithm for discrete load model, Journal Parallel
Distributed Computing, vol. 62, pp. 1729-1746, 2002.

[CrKS09] Craß S., Kühn E., and Salzer G., Algebraic Foundation of a Data Model for an
Extensible Space-Based Collaboration Protocol, 13th Int. Database Engineering &
Applications Symposium (IDEAS), 2009.

[CSLG06] Chong C. S., Sivakumar A. I., Low, M. Y., and Gay K. L., A bee colony
optimization algorithm to job shop scheduling, 38th Conf. on Winter Simulation,
2006.

[CuWa09] Cui L. and Wang H., Reachback Firefly Synchronicity with Late Sensitivity
Window in Wireless Sensor Networks, 9th International Conference on Hybrid In-
telligent Systems, 2009.

[DaFo96] Dasgupta D. and Forrest S., Novelty Detection in Time Series Data using Ideas
from Immunology, ISCA 5th International Conference on Intelligent Systems,
1996.

[DAGP90] Deneuborg J.-L., Aron S., Goss S. and Pasteels J.-M., The self-organizing
exploratory pattern of the Argentine ant, Jourval of Insect Behaviour, vol.3,
pp.159-168, 1990.

213

[DaJS06] Davidsson P., Johansson S. and Svahnberg M., Characterization and
evaluation of multi-agent systems architectural styles, Software Engineering for
Multi-Agent Systems IV, vol. 3914, pp. 179-188, 2006.

[Dasg99] Dasgupta D. (Ed.), Artificial Immune Systems and Their Applications,
Springer-Verlag, 1999.

[Davi85] Davis L., Job Shop Scheduling with Genetic Algorithms, 1st International
Conference on Genetic Algorithms, 1985.

[Dawi96] Dawid, H., Adaptive Learning by Genetic Algorithms: Analytical Results and
Applications to Economic Models, Springer-Verlag New York, Inc. 1996.

[DDFG06] Dobson S., Denazis S., Fernández A., Gaïti D., Gelenbe E., Massacci F.,
Nixon P., Sare F., Schmidt N. and Zambonelli F., A survey of autonomic commu-
nications, ACM Trans. Auton. Adapt. Syst., vol.1(2), pp: 223-259, 2006.

[DeLR77] Dempster A.P., Laird N.M., and Rubin D.B., Maximum Likelihood from
Incomplete Data via theEM algorithm, Journal of the Royal Statistical Society,
vol. 39(1), pp.1-38, 1977.

[DeSD00] Den Bseten M., Stützle T. and Dorigo M., Ant colony optimization for the total
weighted tardiness problem, 6th International Conference on Parallel Problem
Solving from Nature, pp.611-620, 2000.

[DiDo98a] Di Caro G. and Dorigo M., AntNet: Distributed Stigmergetic Control for
Communications Networks, Journal of Artificial Intelligence Research (JAIR),
vol. 9, pp. 317-365, 1998.

[DiDo98b] Di Caro G. and Dorigo M., Extending AntNet for best-effort quality-of-service
routing, 1st International Workshop on Ant Colony Optimization (ANTS), 1998.

[DiFM00] Dingledine R., Freedman M., and Molnar D., Peer-to-peer: Harnessing the
power of disruptive technology, 1st Ed. O’Reilly (Chapter 16), Accountability, pp.
271–340, 2000.

[DIGK05] Di Marzo Serugendo G., Gleizes M. and Karageorgos A., Self-organization in
multi-agent systems, The Knowledge Engineering Review, vol. 20, pp. 165-189,
2005.

[DoSt05] Dorigo M. and Stützle T., Ant Colony Optimization, MIT Press, 2005.
[DrRo01] Druschel P. and Rowstron A., Past: A largescale, persistent peer-to-peer

storage utility, 8th Workshop on Hot Topics in Operating Systems, 2001.
[DSCB03] Da Silva D.P., Cirne W., Brasileiro F.V. and Grande C., Trading Cycles for

Information: Using Replication to Schedule Bag-of-Tasks, Applications on Com-
putational Grids, Euro-Par 2003 Parallel Processing, LNCS, pp. 169-180, 2003.

[FaRB98] Fayyad, U., Reina, C. and Bradley, P. S., Initialization of iterative refinement
clustering algorithms, 4th International Conference on Knowledge Discovery and
Data Mining, 1998.

[Farz09] Farzi S., Efficient Job Scheduling in Grid Computing with Modified Artificial
Fish Swarm Algorithm, International Journal of Computer Theory and Engineer-
ing, vol. 1 (1), 2009.

[Floy67] Floyd R.W., Nondeterministic Algorithms, Journal of the ACM, vol. 14(4), pp.
636-644, 1967.

[Floy05] Floyd S., Adaptive Web Cache, http://www.icir.org/floyd/web.html, 2005.

 214

[FoCM02] Focardi S., Cincotti S., Marchesi M., Self-organization and market crashes,
Journal of Economic Behavior and Organization, vol. 49(2), pp.241– 267, 2002.

[FoHo03] Fortnow L. and Homer S., A Short History of Computational Complexity,
Bulletin of the EATCS, vol.80, pp. 95–133, 2003.

[FrHA99] Freeman E., Hupfer S. and Arnold K., JavaSpaces: Principles, Patterns and
Practices, Addison-Wesley, 1999.

[Fuch03] Fuchs C., Co-operation in Complex, Self-Organising, Information-Generating
Systems, 47th Annual Conference of the International Society for the Systems Sci-
ences (ISSS), 2003.

[GeCa92] Gelernter D. and Carriero N., Coordination languages and their significance,
ACM Communication, vol. 35, pp. 97-107, 1992.

[Gele85] Gelernter D., Generative communication in Linda, ACM Transactions on
Programming Languages and Systems, vol.7(1), pp. 80–112, 1985.

[GeRa03] Georgousopoulos C. and Rana O. F., Combining state and model-based
approaches for mobile agent load balancing, ACM/ SAC '03 symposium on Ap-
plied Computing, 2003.

[Gian06] Giannantoni C., Mathematics for generative processes: Living and non-living
systems, Journal of Computational Applied Mathematics, vol. 189(1-2), pp. 324-
340, 2006.

[GLSKS04] Godfrey B., Lakshminarayanan K., Surana S., Karp R. and Stoica I., Load
balancing in dynamic structured P2P systems, IEEE INFOCOM, 2004.

[Gold89] Goldberg D.E., Genetic Algorithms in Search, Optimization and Machine
Learning, Addison Wesley Publ, 1989.

[GoMO06] Gomez-Ballester E., Mico L., and Oncina J., Some approaches to improve
tree-based nearest neighbour search algorithms, Pattern Recognition, vol. 39(2),
pp.171-179, 2006.

[GoSc01] Gomoluch J. and Schroeder M., Information agents on the move: A survey with
load balancing with mobile agents, Software Focus, vol. 2(2), 2001.

[Good01] Goodrich M., Algorithm Design: Foundations, Analysis, and Internet Exam-
ples, Wiley, 2001.

[Grass86] Grassberger P., Toward a quantitative theory of self-generated complexity,
International Journal of Theoretical Physics, vol. 25, pp. 907-938, 1986.

[GrMT08] Graff D., Menezes R. and Tolksdorf R., On the performance of swarm-based
tuple organization in LINDA systems, IEEE Congress on Evolutionary Computa-
tion, 2008.

[HaGr02] Hardaker G. and Graham G., Energizing your e-commerce through self-
organising collaborative marketing networks, Technical report, School of Busi-
ness, University of Salford, UK, 2002.

[HCCD05] Hu T., Chen G., Chen K. and Dong J., An adaptive load balancing framework
for parallel database systems based on collaborative agents, vol. 1, pages 464-
468, 9th International Conference on Computer Supported Cooperative Work in
Design, 2005.

215

[HDKC06] Hassas S., Di Marzo-Serugendo G., Karageorgos A. and Castelfranchi C., On
Self-Organising Mechanisms from Social, Business and Economic Domains, In-
formatica, vol. 30, pp. 63-71, 2006.

[HeBP07] Herrero P., Bosque J.L. and Perez M.S., An agents-based cooperative
awareness model to cover load balancing delivery in grid environments, OTM
Workshops (1), 2007.

[HeGe03] Heylighen F. and Gershenson C., The Meaning of Self-organization in
Computing, IEEE Intelligent Systems, section Trends & Controversies - Self-
organization and Information Systems, 2003.

 [Herr03] Herrmann K., MESH Mdl — A Middleware for Self-Organization in Ad Hoc
Networks, 23rd International Conference on Distributed Computing Systems, 2003.

 [Heyl01] Heylighen F., The Science of Self-Organization and Adaptivity, in: L. D. Kiel,
(ed.) Knowledge Management, Organizational Intelligence and Learning, and
Complexity, in: The Encyclopedia of Life Support Systems, EOLSS Publishers,
Oxford, 2001.

[Heyl08] Heylighen F., Complexity and Self-Organization, in: M. J. Bates and M. N.
Maack (eds.), The Encyclopedia of Library and Information Science, Taylor &
Francis, 2008.

[HoEw07] Ho C. and Ewe H., Ant colony optimization approaches for the dynamic load-
balanced clustering problem in ad hoc networks, Swarm Intelligence Symposium,
SIS’2007 IEEE, 2007.

[HoFo00] Hofmeyr S.A. and Forrest S., Architecture for an artificial immune system,
Evolutionary Computation, vol. 8(4), pp. 443–473, 2000.

[HoWo03] Hohpe G. and Woolf B., Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions, Addison-Wesley, 2003.

[HRTB00] Hadji R., Rahoual M., Talbi E. and Bachelet V., Ant colonies for the set
covering problem, ANTS, 2000.

[InGE00] Intanagonwiwat C., Govindan R. and Estrin D., Directed diffusion: A scalable
and robust communication paradigm for sensor networks, Proceedings of the In-
ternational Conference on Mobile Computing and Networking, ACM Press, 2000.

 [JaTh07] Jansen T. and Theile M., Stability in the self-organized evolution of networks,
9th Annual Conference on Genetic and Evolutionary Computation, 2007.

[JoDK02] Johansson S., Davidsson P. and Kristell M., Four multi-agent architectures for
intelligent network load management, 4th International Workshop on Mobile
Agents for Telecommunication Applications (MATA), 2002.

[JoLi10] Joung Y. and Lin Z, On the self-organization of a hybrid peer-to-peer system,
Journal of Network and Computer Applications, vol. 33(2), pp. 183-202, 2010.

[JoMa03] Jones C. and Mataric M., From Local to Global Behavior in Intelligent Self-
Assembly, Proceedings of the Conference on Robotics and Automation, IEEE
Press, 2003.

 [JoWo00] Jogalekar P. and Woodside C.M., Evaluating the Scalability of Distributed
Systems, IEEE Trans. on Parallel Distributed Systems, vol. 11, pp. 589-603, 2000.

 216

[KaBo04] Kaner C. and Bond W.P, Software Engineering Metrics: What Do They
Measure and How Do We Know?, 10th International Software Metrics Sympo-
sium, METRICS, 2004.

[Kant1892] Kant I., Critique of Judgment, Translated by J. H. Barnard, New York:
Hafner Publishing, 1951. (Original publication date 1892)

[KaRu04] Karger D.R. and Ruhl M., Simple efficient load balancing algorithms for peer-
to-peer systems, 16th annual ACM symposium on Parallelism in Algorithms and
Architectures, SPAA '04, 2004.

[KFŠT96] Kratica J., Filipović V., Šešum V. and Tošić D., Solving of the Uncapacitated
Warehouse Location Problem Using a Simple Genetic Algorithm, 14th
International Conference on Material Handling and Warehousing, pp. 3.33-3.37,
1996.

[KLŠF98] Kratica J., Ljubić I., Šešum V. and Filipović V., Some methods of solving the
travelling salesperson problem using genetic algorithms, 2nd International
Symposiumof Industrial Engineering SIE’98, pp. 281-284, 1998.

[KMGBT09] Kühn E., Mordinyi R, Goiss H.D, Moser T., Bessler S. and Tomic S., Using
tuple-spaces to build a storage P2P system for structured and dynamic data, 2nd
Int. Workshop on Adaptive Systems in Heterogeneous Environments, IEEE, Ja-
pan, 2009.

[KMKS09] Kühn E., Mordinyi R., Keszthelyi L. and Schreiber C., Introducing the
Concept of Customizable Structured Spaces for Agent Coordination in the Pro-
duction Automation Domain, 8th International Conference on Autonomous Agents
and Multiagent Systems, 2009.

[KrNe99] Krishnakumar K. and Neidhoefer J., Immunized Adaptive Critic for an
Autonomous Aircraft Control Application, Artificial Immune Systems and Their
Applications, 1999.

[KrRŠ97] Kratica J., Radojević S. and Šešum V., A method of improving the execution
time of simple genetic algorithm, 23rd Jupiter Conference, pp. 457-462, 1997.

[Krug96] Krugman P., The Self-Organizing Economy, Blackwell Publishers, 1996.
[KTTRS09] Ke L., Thomas K., Torres C. E., Rossi L.F. and Shen C., Naturally Adaptive

Protocol for Wireless Sensor Networks Based on Slime Mold, 3rd IEEE Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems, 2009.

[Kühn94] Kühn E., Fault-tolerance for communicating multidatabase transactions, 27th
Hawaii International Conference on System Sciences (HICSS), 1994.

[Kühn01] Kühn E., Virtual Shared Memory for Distributed Architectures, Nova Science
Publ., 2001.

[KuKG08] Kumar A., Kumar R. and Grover P. S., Towards a Unified Framework for
Complexity Measurement in Aspect-Oriented Systems, International Conference
on Computer Science and Software Engineering, 2008.

[KüMS08] Kühn E., Mordinyi R. and Schreiber C., An Extensible Space-based Coordi-
nation Approach for Modeling Complex Patterns in Large Systems, 3rd Interna-
tional Symposium on Leveraging Appl. on Formal Methods, Verification and
Validation, 2008.

217

[KüRJ05] Kühn E., Riemer J. and Joskowicz G., XVSM (eXtensible Virtual Shared
Memory) Architecture and Application, Technical Report TU-Vienna, E185/1,
2005.

[KüRŠ07] Kühn E., Ruhdorfer A. and Šešum-Cavic V., Asynchronous replication
conflict classification, detection and resolution for heterogeneous data, Interna-
tional Conference of Software and Data Technology, (ICSOFT), 2007.

[KüŠe09] Kühn E. and Šešum-Cavic V., A Space-Based Generic Pattern for Self-
Initiative Load Balancing Agents, Engineering Societies in the Agents World
ESAW, LNAI Springer Verlag, 2009.

[Lamp09] Lamport L., The PlusCal Algorithm Language, Theoretical Aspects of
Computing-ICTAC, LNCS 5684, pp. 36-60, 2009.

[LDTN08] Lemmens N., De Jong S., Tuyls K. and Nowé A., Bee Behaviour in Multi-
agent Systems, Adaptive Agents and MAS III, LNCS, pp. 145-156, 2008.

[Leit95] Leitch R.D., Reliability Analysis for Engineers. Oxford University Press, 1995.
[LiDW09] Liu B., Ding Y. and Wang J., A collaborative optimized genetic algorithm

based on regulation mechanism of neuroendocrine-immune system, Genetic and
Evolutionary Computation, GEC '09, 2009.

[LiKe87] Lin F.C. and Keller R.M., The gradient model load balancing method, IEEE
Trans. On Software Engineering, vol. 13, pp. 32-38, 1987.

[LiSm04] Liang Y. C. and Smith A. E., An ant colony optimization algorithm for the
redundancy allocation problem (RAP), IEEE Trans. on Reliability, vol. 53(3), pp.
417-423, 2004.

[Lloy01] Lloyd S., Measures of Complexity: A Nonexhaustive List, IEEE Control System,
2001.

[LMLPW00] Lambrinos D., Moeller R., Labhart T., Pfeifer R. and Wehner R., A mobile
robot employing insect strategies for navigation, Robotics and Autonomous Sys-
tems, vol. 30 (1-2), pp. 39-64, 2000.

[LSTD01] Lioni, Sauwens C., Theraulaz G. and Deneubourg J.L., Chain formation in
Oecophylla longinoda, Journal of Insect Behavior, vol. 14, pp. 679–696, 2001.

[LTSS02] Ledlie J., Taylor J. M., Serban L. and Seltzer M. I., Self-organization in peer-
to-peer systems, ACM SIGOPS European Workshop, 2002.

[MaBi02] Maymounkov P. and Birman K., Kademlia: A Peer-to-peer Information
System Based on the XOR Metric, 1st International Workshop on Peer-to-Peer
Systems (IPTPS '02), 2002.

[Macl04] MacLennan, B. J., Applications of Self-Organization to Command, Control,
and Coordination: A Position Paper; UT CS Dept. TR UT-CS-04-534, 2004.

[Masa09] Masatoshi S., dRuby and Rinda: Implementation and application of distributed
Ruby and its parallel coordination mechanism, International Journal of Parallel
Programming, vol. 37(1), pp. 37–57, 2009.

[MaTA07] Markovic G., Teodorovic D. and Acimovic-Raspopovic V., Routing and
wavelength assignment in all-optical networks based on the bee colony optimiza-
tion, AI Communications, vol. 20 (4), pp. 273-285, 2007.

 218

[MaZa04] Mamei M. and Zambonelli F., Programming Pervasive and Mobile Comput-
ing Applications with the TOTA Middleware, Proceedings of the International
Conference On Pervasive Computing (Percom), IEEE CS Press, 2004.

[MaZL04] Mamei M., Zambonelli F. and Leonardi L., Co-Fields: A Physically Inspired
Approach to Distributed Motion Coordination, IEEE Pervasive Computing, vol.
3(2), pp. 52–61, 2004.

 [MeKo05] Meer H. de, and Koppen C., Self-Organization in Peer-to-Peer Systems, Peer-
to-Peer Systems and Applications, pp. 247-266, 2005.

[Mene05] Menezes R., Self-Organization and Computer Security: A Case Study in
Adaptive Coordination, ACM Symposium on Applied Computing, 2005.

[MeTo03] Menezes R. and Tolksdorf R., A New Approach to Scalable Linda-systems
Based on Swarms, Proceedings of ACM SAC, pp. 375–379, 2003.

[MiSt90] Mirollo R. and Strogatz S., Synchronization of pulse-coupled biological
oscillators, SIAM Journal on Applied Mathematics, vol. 50 (6), pp. 1645-1662,
1990.

[MMBR09] Mullen R.J., Monekosso D., Barman S. and Remagnino P., A review of ant
algorithms, Expert Systems with Applications, vol. 36, pp. 9608–9617, 2009.

[MMTZ06] Mamei M., Menezes R., Tolksdorf R. and Zambonelli F., Case studies for
self-organization in computer science, Journal of System Architecture, vol. 52(8-
9), pp.443-460, 2006.

[MoKS10] Mordinyi R., Kühn E. and Schatten A., An Architectural Framework for Agile
Software Development, 11th International Conference on Agile Software Devel-
opment (XP), 2010.

[MoMa08] Monismith, D.R. and Mayfield, B.E., Slime Mold as a model for numerical
optimization, Swarm Intelligence Symposium SIS2008, 2008.

[Mord10] Mordiny R., Managing Complex and Dynamic Software Systems with Space-
Based Computing, PhD Thesis, 2010.

[MTIK06] Murata Y., Takizawa H., Inaba T. and Kobayashi H., A distributed and
cooperative load balancing mechanism for large-scale P2P systems, SAINT-W
'06:International Symposium on Applications on Internet Workshops, 2006.

[NaTo04] Nakrani S. and Tovey C., On Honey Bees and Dynamic Server Allocation in
Internet Hosting Centers, Adaptive Behaviour, vol. 12(3-4), pp. 223-240, 2004.

[NeSR06] Nezamabadi-pour H., Saryazdi S., and Rashedi E., Edge detection using ant
algorithms, Soft Computing, vol. 10(7), pp. 623-628, 2006.

[NWQDS03] Nejdl W., Wolf B., Qu C., Decker S., Sintek M., Naeve A., Nilsson M.,
Palmer M., and Risch T., Edutella: A P2P networking infrastructure based on
RDF, 12th International Conference on World Wide Web, 2003.

[OlPu06] Olague G. and Puente C., The Honeybee Search Algorithm for Three-
Dimensional Reconstruction, 8th European Workshop on Evolutionary Computa-
tion in Image Analysis and Signal Processing, LNCS 3907, 2006.

[OsLa96] Osman, I.H. and Laporte G., Metaheuristics:A bibliography, Ann. Operational
Research, vol. 63, pp. 513–623, 1996.

[PaAr98] Papadopoulos G. A. and Arbab F., Coordination Models and Languages,
Advances in Computers, Academic Press, pp. 329-400, 1998.

219

[PaBS04] Parunak V., Brueckner S. and Sauter J., Digital Pheromones for Coordination
of Unmanned Vehicles, Proceedings of the Workshop on Environments for Multi-
agent Systems, LNAI 3374, Springer Verlag, 2004.

[PaLF02] Parpinelli R. S., Lopes H. S. and Freitas A., Data mining with an ant colony
optimization algorithm, IEEE Transaction on Evolutionary Computation, vol.
6(4), pp. 321-332, 2002.

[PhSG2006] Pham D.T., Soroka A.J., Ghanbarzadeh A., Koç E., Otri S. and Packianather
M., Optimising neural networks for identification of wood defects using the Bees
Algorithm, International Conference on Industrial Informatics, IEEE, 2006.

[PiMR99] Picco G.P., Murphy A.L. and Roman G., Lime: Linda meets mobility, ICSE
’99, 21st International Conference on Software engineering, 1999.

[PKLP07] Pham D.T., Koç E., Lee J.Y. and Phrueksanant J., Using the Bees Algorithm to
schedule jobs for a machine, 8th International Conference on Laser Metrology,
2007.

[POAKS09] Pussep K., Oechsner S., Abboud O., Kantor M. and Stiller B., Impact of
Self-Organization in P2P Overlays on Underlay Utilization, 4th International Con-
ference on Internet and Web Applications and Services, ICIW '09, 2009.

[Pola03] Polani D., Measuring Self-Organization via Observers, ECAL’03, 2003.
[PoMe08] Roach C. and Menezes R., Handling Dynamic Networks Using Evolution in

Ant-Colony Optimization, 21st International Conference on Industrial, Engineering
and Other Appl. of Applied Intelligent Systems, 2008.

[Poor01] Poor R., Embedded Networks: Pervasive, Low-Power, Wireless Connectivity,
PhD Thesis, MIT, 2001.

[Potv96] Potvin J., Genetic algorithms for the traveling salesman problem, Annals of
Operational Research, vol. 63(3), 1996.

[Putr03] Putrycz E., Design and implementation of a portable and adaptable load
balancing framework, CASCON '03: Conference of the Centre for Advanced
Studies on Collaborative research, 2003.

[PWGB10] Pandey S., Wu L., Guru S.M. and Buyya R., A Particle Swarm Optimization-
Based Heuristic for Scheduling Workflow Applications in Cloud Computing En-
vironments, AINA 2010, pp. 400-407, 2010.

[RaHa00] Rajagopalan A. and Hariri S., An agent based dynamic load balancing system,
International Workshop on Autonomous Decentralized System, 2000.

[Rahm08] Rahman M. A., Load balancing in DHT based P2P networks, 5th Int.
Conference on Electrical and Computer Engineering, ICECE, 2008.

[RFHK01] Ratnasamy S., Francis P., Handley M., and Karp R., A scalable content-
addressable network, SIGCOMM, 2001.

[Roch98] Rocha, L. M., Selected Self-Organization and the Semiotics of Evolutionary
Systems, Evolutionary Systems: The Biological and Epistemological Perspectives
on Selection and Self- Organization, S. Salthe, G. Van de Vijver, and M. Delpos
(eds.), Kluwer Academic Publishers, pp. 341-358, 1998.

[RoMe08] Roach C. and Menezes R., Handling Dynamic Networks Using Evolution in
Ant-Colony Optimization, 21th Int. Conf. on Industrial, Engineering and Other
Appl. of Applied Intelligent Systems, 2008.

 220

[RoWo05] Rozansky N. and Woods E., Software Systems Architecture: Working With
Stakeholders Using Viewpoints and Perspectives, Addison-Wesley Professional,
2005.

[SaCM99] Sancese S., Ciancarini P. and Messina A., Message passing vs. tuple space
coordination in an aerodynamics application, 5th International Conference on Pa-
rallel Computing Technologies, LNCS, 1999.

[ScCr07] Schmickl T. and Crailsheim K., A Navigation Algorithm for Swarm Robotics
Inspired by Slime Mold Aggregation, LNCS, Swarm Robotics, pp. 1-13, 2007.

[Schu02] Schumpeter J.A., The economy as a whole – seventh chapter of the theory of
economic development. Industry and Innovation, vol. 9(1/2), 2002.

[Shal01] Shalizi C. R., Causal Architecture, Complexity and Self-Organization in Time
Series and Cellular Automata, PhD thesis, University of Wisconsin-Madison,
2001.

[ShLe09] Shoham Y. and Leyton-Brown K., Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations, Cambridge University Press, 2009.

[Skie08] Skiena S.S., The Algorithm Design Manual, Springer, 2008.
[SLTD02] Sahin E., Labella T., Trianni V., Deneubourg J.-L., Rasse P., Floreano D.,

Gambardella L., Mondada F., Nolfi S., and Dorigo M., SWARM-BOTS: Pattern
Formation in a Swarm of Self-Assembling Mobile Robots, Proceedings of the
IEEE Int. Conference on Systems, Man and Cybernetics, 2002.

 [ŠeCv02] Šešum V. and Cvetković D., Genetic Algorithms for Internet Search: Examin-
ing the Sensitivity of Internet Search by Varying the Relevant Components of Ge-
netic Algorithm, International Conferences on Advances in Infrastructure for Elec-
tronic Business, Education, Science, Medicine, and Mobile Technologies on the
Internet, 2002.

[ŠeKr99] Šešum V. and Kratica J., Some mathematic methods of solving the geophysical
inversion problem, 25th Jupiter Conference, pp. 2.61-2.66, 1999.

[ŠeKT00] Šešum V., Kratica J. and Tošić D., Solving the Geophysical Inversion Problem
Using Genetic Algorithms , YU Journal of Operational Research, vol. 10(2), pp.
283-292, 2000.

 [ŠeKü08] Šešum-Cavic V. and Kühn E., Instantiation of a Generic Model for Load
Balancing with Intelligent Algorithms, 3rd International Workshop on Self-
Organizing Systems (IWSOS), LNCS, 2008.

[ŠeKü09] Šešum-Cavic V. and Kühn E., Peer-to-Peer Overlay Network based on Swarm
Intelligence, Engineering Societies in the Agents World (ESAW), LNAI Springer
Verlag, 2009.

[ŠeKü10a] Šešum-Cavic V. and Kühn E., A Swarm Intelligence Appliance to the
Construction of an Intelligent Peer-to-Peer Overlay Network, International Con-
ference on Complex, Intelligent and Software Intensive Systems,
IEEE/CISIS/COCOSS, 2010.

[ŠeKü10b] Šešum-Cavic V. and Kühn E., Applying swarm intelligence algorithms for
dynamic load balancing to a Cloud Based Call Center, 4th IEEE International
Conference on Self-Adaptive and Self-Organizing Systems, IEEE/SASO, 2010.

221

[ŠeKü10c] Šešum-Cavic V. and Kühn E., Comparing configurable parameters of swarm
intelligence algorithms for dynamic load balancing, International Workshop on-
Self-Adaptive Network, IEEE/SASO/SAN, 2010.

[ŠeKü11] Šešum-Cavic V. and Kühn E., Self-Organized Load Balancing through Swarm
Intelligence, to appear, Springer Verlag Studies in Computational Intelligence,
book chapter.

[ŠeTo02] Šešum V. and Tošić D., Genetic Algorithms and Smoothing Filters in Solving
the Geophysical Inversion Problem, YU Journal of Operational Research, vol.
12(2), pp. 215-226, 2002.

[ShKr94] Shivaratri N.G. and Krueger P., Adaptive Location Policies for Global
Scheduling, IEEE Trans. on Software Engineering vol. 20, pp. 432-444, 1994.

[ShLe09] Shoham Y. and Leyton-Brown K., Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations, Cambridge University Press, 2009.

[ShSh03] Shalizi C.R. and Shalizi K.L., Quantifying Self-Organization in Cyclic Cellular
Automata, Noise in Complex Systems and Stochastic Dynamics, Lutz Schi-
mansky-Geier and Derek Abbott and Alexander Neiman and Christian Van den
Broeck, SPIE, vol. 5114, 2003.

[Slug07] Sluga T.A., Modern C++ implementation of the LINDA coordination language
for distributed applications, Technical report, 2007.

[SMKKB01] Stoica, I., Morris, R., Karger, D., Kaashoek, M., and Balakrishnan, H.,
Chord: A scalable peer-to-peer lookup service for internet applications, The An-
nual Conference of the Special Interest Group on Data Communication, ACM
SIGCOMM, 2001.

[Solo88] Solomon H. Y., Movement-produced invariants in haptic explorations: An
example of a self-organizing information-driven, intentional system, Human
Movement Science, vol. 7, pp. 201-223, 1988.

[Stew01] Stewart M., The Coevolving Organization, Decomplexity Associates LtD,
Rutland, UK, 2001.

[Stüt97] Stützle T., MAX-MIN Ant System for the quadratic assignment problem,
Technical Report AIDA-97-4, FB Informatik, TU Darmstadt, Germany, 1997.

[TaDa00] Tarakanov A. and Dasgupta D., A formal model of an artificial immune system,
BioSystem, vol. 55, pp. 151-158, 2000.

[TaVa02] Tanenbaum A.S., Van Steen M., Distributed Systems: Principles and Para-
digms, Prentice Hall, 2002.

[TaVe05] Tang N. and Vemuri V.R., An artificial immune system approach to document
clustering, SAC/ACM symposium on Applied Computing, 2005.

[TBSDL01] Theraulaz G., Bonabeau E., Sauwens C., Deneubourg J.L., Lioni A., Libert
F., Passera L. and Solé R., Model of droplet dynamics in the Argentine ant Linepi-
thema humile (Mayr), Bulletin of Mathematical Biology, vol. 63, pp. 1079–1093,
2001.

[TiNK02] Timmis J., Neal M. and Knight T., AINE: Machine Learning Inspired by the
Immune System, IEEE Transactions on Evolutionary Computation, 2002.

 222

[ToVi02] Toth P. and Vigo D., Models, relaxations and exact approaches for the
capacitated vehicle routing problem, Discrete Applied Mathematics, vol. 123,
pp.487-512, 2002.

[TrTU06] Trumler W., Thiemann T. and Ungerer T., An Artificial Hormone System for
Self-organization of Networked Nodes, Biologically Inspired Cooperative Com-
puting, IFIP 19th World Computer Congress, TC 10: 1st IFIP International Confer-
ence on Biologically Inspired Computing, 2006.

[TSTNT05] Thant H., San K., Tun K., Naing T. and Thein N., Mobile agents based load
balancing method for parallel applications, 6th Asia -Pacific Symposium on In-
formation and Telecommunication Technologies (APSITT 2005), 2005.

[TyAB06] Tyrrell, A., Auer, G., and Bettstetter, C., Fireflies as role models for synchro-
nization in ad hoc networks, 1st International Conference on Bio-inspired Models
of Network, Information and Computing Systems (BIONETICS), 2006.

[TLYD05] Tian J., Liu Y., Yang X.-H and Du R., Design and analysis of a novel load
balancing model based on mobile agent, Advances in Machine Learning and
Cybernetics, 4th International Conference on Machine Learning and Cybernetics
(ICMLC), 2005.

[Usyc07] Usychenko V., Evolution of self-organizing systems from the standpoint of
mechanics and thermodynamics, Technical Physics, MAIK Nauka, vol. 52(7),
2007.

[VaBr01] Van Dyke Parunak H. and Brueckner S., Entropy and self-organization in
multi-agent systems, 5th International Conference on Autonomous Agents,
AGENTS '01, 2001.

[VaVS98] Van Steen M., Van der Zijden S. and Sips H.J., Software Engineering for
Scalable Distributed Applications, 22nd Computer Software and Applications Con-
ference, 1998.

[ViCa09] Viroli M. and Casadei M., Biochemical Tuple Spaces for Self-organising
Coordination Coordination Models and Languages, LNCS vol. 5521, pp. 143-
162, 2009.

[ViCO09] Viroli M., Casadei M. and Omicini A., A Framework for Modeling and
Implementing Self-Organizing Coordination, 24th Annual ACM Symposium on
Applied Computing, (SAC 2009), 2009.

[ViCG07] Viroli M., Casadei M. and Gardelli L., A Self-Organizing Solution to the
Collective Sort Problem in Distributed Tuple Spaces, SAC '07: ACM Symposium
on Applied Computing, 2007.

[ViSk02] Vittikh V.A. and Skobelev P. O., Multi-agent systems for modelling of self-
organization and cooperation processes, 13th International Conference on the Ap-
plication of Artificial Intelligence in Engineering, pp. 91–96, 2002.

[VoBW08] Von Renteln A., Brinkschulte U. and Weiss M., Examinating Task Distribu-
tion by an Artificial Hormone System Based Middleware, 11th IEEE Symposium
on Object Oriented Real-Time Distributed Computing, (ISORC), 2008.

[vonF67] von Frisch K., The dance language and orientation of bees, Harvard University
Press, Cambridge, MA, 1967.

223

[Vygo78] Vygotsky L.S., Mind and society: The development of higher mental proc-
esses, Harvard University Press, Cambridge, 1978.

[WaLi03] Wang Y. and Liu J., Macroscopic model of agent-based load balancing on
grids, 2nd International Joint Conference on Autonomous Agents and Multiagents
systems, AAMAS '03, 2003.

[WaRC00] Waldman, M., Rubin A.D. and Cranor L.F., Publius: A robust, tamper-
evident, censorship-resistant web publishing system, 9th USENIX Security Sym-
posium, 2000.

[WaYW04] Wang S.C., Yan K.Q. and Wei C.H., Mobile target dvertising by combining
self-organization map and decision tree, IEEE International Conference on e-
Technology, e-Commerce and e-Service, pp. 249–252, 2004.

[Weis80] Weiss S.F., A probabilistic algorithm for nearest neighbour searching, 3rd
Annual ACM Conference on Research and Development in Information Retrieval
(SIGIR '80), pp. 325-333, 1980.

[Werb00] Werbach K., Syndication: The emerging model for business in the internet era,
Harvard Business Review, vol.85, pp. 85–93, 2000.

[Wien61] Wiener N., Cybernetics: or Control and Communication in the Animal and the
Machine, MIT Press, 1961.

[WMHZ02] Weikum G., Monkeberg A., Hasse C. and Zabback P., Self-tuning Database
Technology and Information Services: from Wishful Thinking to Viable Engineer-
ing, Proceedings of the 28th Very Large Databases Conference (VLDB), pp. 20–
31, 2002.

[WoLC08] Wong L.P, Low M.Y.H. and Chong C.S, A Bee Colony Optimization for
Travelling Salesman Problem, 2nd Asia International Conference on Modelling
and Simulation, 2008.

[WMLF98] Wyckoff P., McLaughry S.W., Lehman T.J. and Ford D.A., T-Spaces, IBM
Systems Journal, vol. 37(3), pp. 454–474, 1998.

[WTPWN05] Werner-Allen, G., Tewari, G., Patel, A., Welsh, M., and Nagpal, R.,
Firefly-inspired sensor network synchronicity with realistic radio effects, 3rd In-
ternational Conference on Embedded Networked Sensor Systems, 2005.

[Yang08] Yang X-S, Nature-Inspired Metaheuristic Algorithms, Luniver Press, 2008.
[Yu08] Yu H., Optimizing task schedules using an artificial immune system approach,

10th Annual Conference on Genetic and Evolutionary Computation, 2008.
[ZhHu05] Zhu Y. and Hu Y., Efficient, proximity-aware load balancing for DHT-based

P2P systems, IEEE Trans. on Parallel and Distributed Systems, vol.16(4), pp.349-
361, 2005.

[ZhKJ01] Zhao, B., Kubiatowicz, J., and Joseph, A., Tapestry: An infrastructure for
fault-tolerant wide-area location and routing, Tech. Rep. UCB/CSD-01-1141,
Computer Science Division, University of California, Berkeley, 94720, 2001.

[ZhLC06] Zhang J., Lo W.L. and Chung H., Pseudocoevolutionary Genetic Algorithms
for Power Electronic Circuits Optimization, IEEE Trans. Systems, Man and
Cybernetics, vol. 36(4), 2006.

[Zhou88] Zhou S., A trace-driven simulation study of dynamic load balancing, IEEE
Trans. on Software Engineering, vol. 14, pp.1327-1341, 1988.

 224

[ZoDK07] Zoels S., Despotovic Z. and Kellerer W., Load balancing in a hierarchical
DHT-based P2P system, International Conference on Collaborative Computing:
Networking, Applications and Worksharing, CollaborateCom, 2007.

[ZoJM01] Zoethout K., Jager W. and Molleman E., Self-organizing processes of task
allocation, 5th Simulating Societies Conference, 2001.

[ZoTe01] Zomaya A.Z. and Teh Y.H., Observations on using genetic algorithms for
dynamic load-balancing, IEEE Trans. on Parallel and Distributed Systems, vol.
12(9), pp. 899-911, 2001.

[XuBh06] Xu Z.and Bhuyan L., Effective load balancing in P2P systems, 6th IEEE
International Symposium on Cluster Computing and the Grid, CCGRID '06, 2006.

[XuDH09] Xu H., Ding Y., and Hu Z., Adaptive immune genetic algorithm for logic
circuit design, 1st Summit on Genetic and Evolutionary Computation, China,
2009.

[XuGu07] Xu M. and Guan J., Routing based load balancing for unstructured P2P
networks, Future Generation Communication and Networking, vol. 2, pp.332-337,
2007.

URL REFERENCES

[ACloud11] Amazon Elastic Compute Cloud http://aws.amazon.com/ec2/, last accessed:
January, 2011.

[Gnut03] Gnutella 2003, The Gnutella web site: http://gnutella.wego.com.
[Godl97] Golden R., Self-Organizing Systems: a resource for teachers 1997,

http://sciphilos.info/docs_pages/docs_Golden_sos_css.html
[JXTA10] http://www.sun.com/sotware/jxta, last accessed: 2010.
[Kaza03] Kazaa 2003, The Kazaa web site. http://www.kazaa.com.
[Mozart11] MozartSpaces http://www.mozartspaces.org/1.0-alpha/, last accessed:

January, 2011.
[PyLi10] PyLinda. Pylinda project homepage. http://code.google.com/p/pylinda/
[Sutc90] Sutcliffe G., Prolog-D-Linda v2: A New Embedding of Linda in SICStus

Prolog, http://www.cs.miami.edu/~geoff/Papers/Other/1993_Sut93_TR-JCU-CS-
93-6.pdf, 1990.

[TripC08] Triple Space Communication, Semantic Clustering and Self-Organization in
Triple Space, http://www.tripcom.net/docs/del/D2.4.pdf, 2008.

[XVSM11] eXtended Virtual Shared Memory http://www.xvsm.org, last accessed:
January, 2011.

