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Abstract 

With a continuously growing number of computers that are connected over distributed networks, in 

particular the internet, there is also a growing need for applications to communicate with each other 

over these networks. Following the idea of shared data spaces, XVSM (eXtensible Virtual Shared 

Memory) provides a middleware solution that allows applications to collaborate with each other in 

an easy and natural way without the need of a central server. XVSM specializes in the coordination of 

data, providing flexible data structures for all different kinds of communication, which most other 

shared data space implementations lack. Despite of that, XVSM aims to be very light-weight, and at 

the same time provide a great amount of extensibility for easily adding features that are not initially 

a part of XVSM. 

This document focuses on the XVSM core, which is the software component that implements XVSM, 

and introduces its architecture in detail, which aims to provide concurrency, scalability and 

extensibility for all the features defined in the XVSM model. An implementation of this model is 

shown with XcoSpaces, the .Net reference implementation of XVSM, which has been built following 

the introduced XVSM core architecture. It is also shown how XcoSpaces has been built as a 

component oriented architecture that greatly supports the extensibility of the XVSM model from an 

implementation point of view. 

For proving how easy it is to add additional functionality to XVSM, it is shown with XcoSpaces how 

new features are added that enable simple security mechanisms for the space. 
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Kurzfassung 

Mit einer ständig steigenden Anzahl von Rechnern die über verteilte Netzwerke, vor allem das 

Internet, miteinander verbunden sind, müssen Anwendungen auch immer öfter über solche Netze 

hinweg miteinander kommunizieren. Dem Paradigma der „Shared Data Spaces“ folgend, bietet XVSM 

(eXtensible Virtual Shared Memory) eine Middleware Lösung, die es Anwendungen erlaubt, 

miteinander auf einfache und natürliche Art und Weise zu kollaborieren, ohne die Notwendigkeit 

eines zentralen Servers. XVSM ist spezialisiert auf die Koordination von Daten, es stellt flexible 

Datenstrukturen für verschiedenste Arten der Kommunikation bereit, die von den meisten anderen 

Systemen dieser Art nicht zur Verfügung gestellt werden. Weiters ist XVSM besonders auf 

Leichtgewichtigkeit ausgerichtet, bietet aber gleichzeitig auch eine starke Erweiterbarkeit, um 

weitere Funktionen leicht hinzufügen zu können, die ursprünglich nicht in XVSM enthalten sind. 

Dieses Dokument konzentriert sich auf den XVSM core, die Softwarekomponente die XVSM 

repräsentiert, und stellt dessen Architektur im Detail vor, die insbesondere darauf abzielt, für die im 

XVSM Modell definierten Funktionen Erweiterbarkeit, Skalierbarkeit und Parallelität zu garantieren. 

Eine Implementierung dieses Modells wird vorgestellt anhand von XcoSpaces, der .Net Referenz-

Implementierung von XVSM, die nach dem präsentierten Modell entwickelt wurde. Weiters wird die 

komponentenorientierte Architektur vorgestellt mit der XcoSpaces entwickelt wurde, die die 

Erweiterbarkeit des XVSM Modells aus Implementierungssicht unterstützt. 

Um zu beweisen wie einfach zusätzliche Funktionalität zu XVSM hinzugefügt werden kann, wird 

anhand von XcoSpaces gezeigt, wie der Space um neue Funktionen erweitert wird, die ihn mit 

einfachen Sicherheitsmechanismen ausstatten. 
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1 Introduction 
In the last years, the number of people connected together by the internet has been continuously 

growing. In the end of 2007, more than 1.3 billion people were using the internet [1]. Together with 

that comes also a growing need for people to collaborate with each other online and in real-time. 

Concerning software applications, many things have of course changed in the last years as well, from 

batch applications in the beginning to global and interactive OLTP applications1. But still, as Ralf 

Westphal states in [2], applications are mostly centralized, meaning their data as well as their 

application logic is stored on a centralized server. With this kind of centralism comes a form of work 

that hasn’t changed as well: Data is processed by people sequentially. Someone inserts data into the 

system, another one loads and changes it, and so on. Many people may work on the entire amount 

of data concurrently, but in the end they all do it isolated from each other. 

The problem why this form of application is still the most common one is not that developing 

applications in another way would be impossible; there are enough applications showing that this is 

not the case. Take Skype [3] for example, which is based on real-time collaboration and is working (at 

least mostly) peer-to-peer based without a central server. The problem is that the communication 

paradigms that are used nowadays are all based on the same principles: There is one entity that 

offers some kind of service (the server), and there are one or more entities that want to use these 

services (the clients). This is clearly not a good basis for creating applications where entities 

collaborate with each other over a distributed network, because there simply is no collaboration in 

this form of communication. Furthermore, a distributed application of course must deal with the 

problem that when many entities need to communicate with each other they either need to 

maintain many connections between them or a centralized server is needed that needs to maintain 

connections to all entities (see Figure 1). A much more natural form of communication would be 

needed, for giving up on centralism and the client-server principle; a form of communication that 

aims for serverless real-time online collaboration: 

 Serverless: Applications don’t need any central infrastructure for communication, but instead 

they span up ad hoc networks for communicating with each other. 

 Real-time: Users collaborate with each other at the same time. Only in this way Collaboration 

(in its simplest form e.g. a chat) is possible. Tasks that require fast reaction, where a flow of 

communication needs to be established, are best done in real-time (in the given context 

meaning soft real-time2). 

 Online: Teams are more and more often distributed around the globe. When such a 

distributed team needs to come together, this is normally easiest by using a network like the 

internet, and thereby meeting online. 

 Collaboration: Communication is not based on one entity issuing commands and another one 

responding, but by the entities collaborating with each other by working on the same 

distributed data structures (having a team instead of a hierarchy). 

                                                           
1
 Online transaction processing, or OLTP, refers to a class of systems that facilitate and manage transaction-

oriented applications. 
2
 Soft real-time systems are typically used where there is some issue of concurrent access and the need to keep 

a number of connected systems up to date with changing situations. In contrast to hard real-time, no hard 
constraint is defined to the meaning of real-time. 
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1.1 An Introduction to XVSM 

The technological paradigm that aims to implement this form of communication is called XVSM 

(eXtensible Virtual Shared Memory) [4]. It provides a middleware3 solution based on the principles of 

shared data spaces. 

1.1.1 The XVSM Paradigm 

A shared data space provides distributed applications with a buffer for passive data, equipped with 

means for synchronization and coordination of processes. The shared buffer is comparable to a 

shared variable, a shared memory area or a shared file, and is used to hold various kinds of data. 

The idea of a shared data space was first created by David Gelernter in the 1980s [5]. He introduced a 

coordination language called Linda which operates on an abstract computation environment called 

tuple space. Concurrent processes of a distributed application coordinate themselves by 

communicating with the tuple space. Coordination is performed by writing and reading data tuples 

to/from the space. The communication always takes place between the processes and the space. 

This way the sending process does not need to know about the receiving process and there is no 

need for both processes to be connected at the same time. This decoupling of processes in both time 

and space takes away a lot of complexity in creating distributed applications. Gelernter calls this 

communication paradigm which is both decoupled in space and time generative communication. 

The original Linda model requires four operations that individual workers perform on the tuples and 

the tuple space: 

 in atomically reads and removes (consumes) a tuple from the tuple space  

 rd non-destructively reads a tuple from the tuple space  

 out produces a tuple, writing it into the tuple space  

 eval creates new processes to evaluate tuples, writing the result into the tuple space  

In addition to that, XVSM adds some functionality that a traditional tuple space lacks: 

                                                           
3
 Middleware is a software layer that lies between the operating system and the applications on each side of a 

distributed computing system in a network. 

Figure 1: Classical forms of communication in a distributed system: (1) client-server communication and (2) direct 
communication. 
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 An XVSM space is targeted to run serverless. Instead of running on a server, it is built out of 

the participating clients themselves and the space’s data is divided upon them (see chapter 

3.1). (It is of course still possible to let the space run on a single server.) 

 The XVSM space supports the use of coordinated data structures like a queue or stack, which 

allow ordering the elements in the space (introduced in chapter 3.3). 

 The XVSM space provides a great amount of extensibility in a way that additional behavior 

can be injected into the space at runtime (meaning no recompilation is needed), e.g. 

concerning security or persistency mechanisms (an overview about extensibility in XVSM can 

be found in chapter 3.6). 

 The XVSM space provides an open communication protocol that is programming language 

independent, which allows that different applications written in different programming 

languages are able to use the same space and thereby collaborate with each other. The 

protocol is not described in more detail in this thesis, for more information on it see [6]. 

 

1.1.2 Other Communication Methods 

This chapter gives a short overview about other common communication methods (as overviewed in 

[7]). 

1.1.2.1 Message Passing 

Message passing can be viewed as the ancestor of distributed interactions. Message passing 

represents a low-level form of distributed communication, in which participants communicate by 

simply sending and receiving messages. Although complex interaction schemes are still built on top 

of such primitives, message passing is nowadays rarely used directly for developing distributed 

applications, since physical addressing and data marshalling become visible to the application layer. 

Also clear disadvantages over shared spaces are that all communicating entities must know each 

other (no location transparency) and that they must be available, meaning one entity sending and 

the other one receiving, at the same time (no time decoupling). 

A more advanced approach of message passing is using message queues. With this approach, the 

producing entity sends the message not directly, but places it into a queue, from where it is later 

taken out by the consuming entity. Since the entities don’t communicate directly with each other, 

they are decoupled in both space (don’t need to know each other) and time (message doesn’t need 

Figure 2: Serverless communication with a space. 
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to be consumed immediately). Popular messaging services are for example JMS (Java Message 

Service) [8] and MSMQ (Microsoft Message Queuing) [9]. 

1.1.2.2 RPC 

One of the most widely used forms of distributed interaction is the remote invocation, or remote 

procedure call (RPC), an extension of the notion of “operation invocation” to a distributed context. A 

remote procedure call is initiated by the client sending a request message to a known remote server 

in order to execute a specified procedure using supplied parameters. A response is returned to the 

client where the application continues along with its process. While the server is processing the call, 

the client is blocked. 

By making remote interactions appear the same way as local interactions, the RPC model and its 

derivatives make distributed programming very easy. This explains their tremendous popularity in 

distributed computing. Distribution cannot, however, be made completely transparent to the 

application, because it gives rise to further types of potential failures (e.g., communication failures) 

that have to be dealt with explicitly. 

Additional problems with RPC are that there is no decoupling in space and time (since the local 

interaction model that RPC follows doesn’t need these things) because client and server are 

communicating directly with each other, and that (in contrast to shared spaces) communicating 

entities are always pressed into the client/server role, with the server processing calls from the client 

and answering to them. 

Popular RPC implementations are for example Java RMI [10] and .Net Remoting [11]. 

1.2 Objectives and Overview 

The main topics of this thesis are the detailed definition of the XVSM model and all of its features, 

and the implementation of XVSM on the .Net platform. Because this is a task that is far too large to 

be handled by one master thesis alone, the topics have been split up into several pieces among four 

participating master thesis students: Markus Karolus and Thomas Scheller (me) were responsible for 

developing the XVSM .Net implementation called XcoSpaces, Christian Schreiber and Michael Pröstler 

had the additional task of developing an implementation of XVSM in Java (called MozartSpaces), 

while all four took part in designing the theoretical XVSM model equally. 

The theoretical topics of the XVSM model have been split up between the master theses of the four 

students ([12], [6], [13] and this one), while the topics concerning one certain implementation have 

been split up between the two students responsible for that implementation (in my case the .Net 

implementation). Therefore, only all for master theses combined give a complete overview over the 

XVSM model and both the Java and the .Net implementation. However, every thesis focuses on a set 

of topics that lets it come self-comprehensive. 

This thesis first takes a look at systems related to XVSM that are based on the shared data spaces 

paradigm (see chapter 2), and introduces a classification structure which is then used to compare 

these systems to each other and to show where they are equal to or different from XVSM. After that, 

the document introduces the architecture of the XVSM core (which is the piece of software that 

represents XVSM). Chapter 3 first focuses on the requirements and functionalities of the XVSM core 

and then introduces the core architecture that is built to fulfill all of these requirements. Chapter 4 
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then focuses on how this architecture has been realized in the XVSM .Net implementation of the 

core called XcoSpaces, and also describes the modular and extensible structure of the software itself 

in detail. Finally, chapter 5 deals with the extensibility features of XcoSpaces in detail and gives an 

example of how to use these features in practice. 

A point that should also be mentioned is that XVSM, as well its implementation XcoSpaces, is under 

constant development. Although both are in a “completed” state as presented in this document, 

they are continuously revised and improved. This document describes version 0.9.1 of XcoSpaces, 

and the XVSM model as of January 2008. 
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2 A Classification of Space Based Computing 

Systems 
There is already a whole bunch of middleware solutions available that are based on the idea of 

shared data spaces like XVSM is. But although they may have that in common, most approaches are 

clearly different and have other target areas of use. The goal of this chapter is to show which 

features can be seen as most important in systems that are using the idea of shared spaces, and 

survey some of the most important models and implementations concerning which of these features 

they implement. Part of this analysis is to create a general structure that can also easily be used later 

to classify other space systems and models. 

Chapter 2.1 gives an introduction of the most common space implementations. While chapter 2.2 

introduces a structure for classifying space systems, chapters 2.3 to 2.6 describe the aspects of this 

classification structure more detailed and use it to compare the previously introduced space systems 

to each other. 

2.1 Space Based Computing Systems 

There are a lot of implementations and models available that make use of the idea of shared data 

spaces and would be interesting to research. This chapter tries to give an overview of the most 

common of these systems, whose features will then be compared and classified in the following 

chapters. 

2.1.1 Blitz (JavaSpaces) 

Blitz [14] is an open source implementation of JavaSpaces [15], which is a specification of a Linda-like 

space in Java (Blitz can thereby be seen as a representation of JavaSpaces in this paper). In addition 

to the typical JavaSpaces functions (which include writing entries to the space and reading or taking 

them using tuple matching, all of that with transaction support and the possibility to define lease 

times for single entries, as well as getting events from the space) Blitz also supports persistency 

mechanisms using an embedded database. 

Blitz is also highly configurable and provides a set of supporting tools that allow monitoring and 

administrating the space and generating statistics. 

2.1.2 GigaSpaces 

GigaSpaces [16] is also an implementation of JavaSpaces, but actually provides its own API on a 

higher level that supports more functionality and a better usability than JavaSpaces do. In addition to 

the basic functionality of JavaSpaces (see Blitz), the most important features are the following: 

 GigaSpaces contains the OpenSpaces framework which is a Spring-based framework [17] 

built on top of GigaSpaces. This allows components (called processing units) to easily scale 

out across multiple machines, using the space for both managing data and communication 

between processing units. 
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 The GigaSpaces server can be clustered and supports all common mechanisms for caching, 

replication and persistence, and provides high performance and scalability that is very well 

suited for large enterprise applications. 

 Provides extensive tool support for administration, monitoring and statistics. 

 Provides a detailed security model for authentication, authorization and data encryption. 

2.1.3 LighTS 

LighTS [18] is a Linda tuple space implementation written in Java. It has been designed with the 

following goals in mind: 

 Minimal support: LighTS implements just Linda operations. No persistency, security, or 

remote access are provided. All of this can be built around the core provided by LighTS. 

 Lightweight, fast processing: LighTS needs no runtime support (the tuple space is just an 

object that gets shared among Java threads in the same JVM), and through its minimality 

performs well with small numbers of tuples. 

 Extensibility: LighTS is designed to be as extensible as possible.  

 Small footprint: The packages providing the LighTS tuple space fit in 11 kb of jar file, which is 

a desirable property when the target platform includes hand-held and palmtop computers. 

2.1.4 Corso 

Corso [19][20] can be seen as the predecessor of XVSM, as the idea for this system has also been 

developed at the TU Vienna institute for computer languages. In contrast to the previously 

introduced systems, Corso isn’t based on the idea of Linda tuple spaces, but more on the principle of 

virtual shared memory. It allows the sharing of data objects that allow writing data into them / 

reading it from them. Transactions are supported for accessing these data objects and making them 

persistent (using an embedded database), as well as different replication mechanisms for distributing 

data objects over a network of Corso kernels. Corso is written in C and supports APIs for access over 

C++, Java and .Net. 

2.1.5 Others 

Although their features are not investigated further in this document, some other systems that are 

based on shared data spaces should also be mentioned: 

 Outrigger, which is part of Jini [21], is the standard implementation of JavaSpaces from Sun 

and therefore very similar to Blitz. 

 TSpaces [22], developed by IBM, is like JavaSpaces a Linda-like space implementation in Java, 

and is also very similar to JavaSpaces in its functionality and behavior. 

 Lime [23] (“Linda in a mobile environment”) also implements the Linda tuple space model, 

but especially focuses on the mobility of hosts (entities hosting a space) and agents (entities 

accessing spaces) and extends tuple spaces with a notion of location. 

 TuCSoN [24] (“tuple centres over the network”) exploits a notion of local tuple-based 

interaction space, called tuple centre, which is a tuple space enhanced with the notion of 

behavior specification. By programming its behavior in response to communication events, a 

tuple centre can embody coordination laws. 

 Mars [25] (“mobile agent reactive spaces”) as well defines Linda-like tuple spaces that can be 

programmed to react with specific actions to the accesses made by mobile agents. 
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2.2 Classification Structure 

To classify different space systems and compare them to each other it is first necessary to actually 

know for which concrete aspects such a system must be surveyed. The methodology loosely follows 

the ideas for surveys and classifications as presented in Androutsellis-Theotokis’ and Spinellis’ survey 

of peer-to-peer content distribution technologies [26] and Eugster’s classification of 

publish/subscribe systems and other communication methods [7]. The classification concentrates 

mostly on criteria that also allow classifying systems that have not yet been implemented, which is 

often the case when it comes to research work. The result of the research of many models and 

implementations of shared data spaces is the classification structure as shown in Figure 3: 

Probably one of the most important properties of a space is how it coordinates data, in other words 

its coordination concepts. This includes what possibilities there are to store data in the space, and 

what possibilities to get it out again. It is also very interesting if the data in the space can be 

structured in any way (e.g. hierarchical), if there are any possibilities store meta data, and what types 

of data can actually be stored in the space. 

Another important property of a space is the operations it supports. Basic operations are writing and 

reading data, but in many situations these are not satisfying, so additional operations are provided. 

Differences are also in the abilities of the operations themselves, e.g. if they support transactions or 

not, or if it is possible to execute bulk operations. Another aspect here is the possibility of getting 

events from the space since it can be very important to recognize when data in the space has 

changed. 

 

A property of a space that is rather difficult to classify but is nevertheless very important is its 

extensibility. Extensibility can concern nearly all aspects of the space, probably one of the most 

important being its coordination concepts. It is also interesting how extensibility is guaranteed and 

how difficult it is to extend the space by new features. 

The architecture of a space also has some properties of interest: One is how the space is deployed, 

which could be either embedded within an application or completely standalone (the system 

architecture), or how the space manages itself over the network, which could be either client/server 

based or peer-to-peer based (the network architecture). The space’s APIs are another part of the 

Coordination Concepts Operations Extensibility Architecture 
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Figure 3: Classification Structure for Space Based Computing Systems. 
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architecture, seeing it from the point if the space supports standardized APIs and if it has an open 

communication protocol that can be used for accessing the space. Security is also a very important 

point here (it is in general a very important thing in distributed systems), concerning user 

authentication, authorization and encrypted communication. 

The following chapters describe these properties of a space in more detail and compare the 

previously introduced space systems to each other. 

2.3 Coordination Concepts 

2.3.1 Coordination Types 

A space’s coordination types deal with the question of how data is coordinated within the space, and 

by that how data is written to and read from the space. A coordination type that nearly all space 

systems support is Linda (which is not surprising since most spaces originate from the Linda tuple 

space model), in which case every object written into the space is a tuple. When reading, a “query 

tuple” has to be defined, that is used as a template for matching against the tuples in the space. With 

this coordination type, the tuples in the space are completely unordered and thereby independent 

from each other, which makes it comparatively easy for the space to handle concurrent operations. 

Although Linda is suitable for many usage situations, with the data being completely unordered there 

are some issues that can hardly be realized with it, above all coordination types that use an implicit 

order. Such a coordination type is fifo (first in first out) which automatically orders data like in a 

queue (the first element that has been written is also the first one to be read) and is therefore 

especially useful in producer/consumer-like scenarios where data should be processed in the order it 

is written into the space. Another example of an implicit order would be lifo (last in first out), where 

elements are ordered like in a stack (the last element that has been written is the first one to be 

read). 

The third kind of coordination type is one that defines an explicit order, meaning the order can be 

influenced when writing an element into the space, and/or a certain element can be picked out using 

the given ordering when reading elements from the space. This type of coordination especially 

includes some data structures that are very often used in programming, namely arrays, lists and 

hashtables. In current systems these coordination types are very rare, which is no wonder since from 

the coordination types mentioned until now they are the least combinable with Linda, which most 

systems use as their base coordination type. 

Blitz, GigaSpaces and LighTS, as they implement either JavaSpaces or the Linda tuple space model 

directly, have Linda as their main coordination type. Blitz and GigaSpaces also support a fifo ordering 

for the entries in the space. In GigaSpaces, this is simply done by marking a class with an @Fifo 

annotation which automatically leads to ordering every object of this class that is written into the 

space in fifo order. In addition to that, GigaSpaces (surely being the most matured of these systems) 

supports defining a key, which means the space can be used like a hashtable. By marking a field in a 

class as key, objects of this class within the space get an identity, which means no two objects with 

the same key can be written in to the space, and an object in the space can be updated accessing it 

with its key. 
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Corso goes a way that is quite different to the other systems. The shared objects that can be stored 

in Corso have a unique identifier and can be given a unique name. The unique identifier allows 

accessing the shared object, and can only be acquired when knowing the shared object’s name (or 

when you are the one that created the shared object). So coordination is kind of similar to a 

hashtable, with the shared objects having a name as key (or no key at all). Despite of that, there are 

no other coordination types in Corso. 

XVSM is a system that especially concentrates on the coordination of data in the space. Therefore an 

XVSM space is structured into containers which allow very flexible coordination, including 

coordination types with both implicit and explicit order. Containers are introduced in chapter 3.3. 

2.3.2 Meta Data 

Meta data of a space can be seen as information about the data in the space (e.g. the number of 

entries in the space) or information about the space itself (e.g. the name of the space, if it has one). 

This is a feature only rarely supported by the given space systems. GigaSpaces and LighTS support 

getting the number of entries in the space or the number of entries matching a certain template. 

LighTS also supports assigning a certain name to the space, which can help distinguishing spaces from 

each other when using more than one space (which is easy with LighTS since the space is just a Java 

object so there can easily be multiple instances, but rather unnecessary for other systems, where 

there is normally only a single instance of a space running on one machine). 

This is again a point where XVSM tries to stand out above the other systems by providing a well 

defined meta data structure. In XVSM, every container is assigned a so-called meta container, that 

stores meta data for this container. An introduction of meta containers can be found in chapter 

3.3.7. 

2.3.3 Space substructure 

In addition to storing elements, some spaces allow data to be split into groups of elements belonging 

together, or for elements to be subordinated to others. This is what is meant by the word 

“substructure”, structures that are below the scope of the space, but still above the scope of a single 

data element. A simple example would be a space that can be split into sub-spaces (smaller spaces 

within the space itself), which can store entries independent from other sub-spaces, and thereby also 

allow handling the entries in different spaces completely independent from each other. 

Since a typical property of a Linda tuple space system is that the entries in a space are completely 

unordered, the other systems don’t give much thought about substructures in the space such as 

XVSM and Corso have. It is not possible to store tuples (or entries, as they are called in JavaSpaces) in 

a hierarchical order. However, it should be mentioned that the JavaSpaces implementations (Blitz 

and GigaSpaces) support inheritance, meaning: If class B is a subclass of class A, and there are both 

instances of A and B stored in the space, reading data from the space with a template of class A will 

not only return matching instances of A, but also of B. When having a well defined inheritance 

structure, this allows querying for all data in the space (using the base class), or restrict queries only 

to certain data (using a sub class), which grants a structuring of the space to a certain degree. 

XVSM supports this feature by the use of its containers (see chapter 3.3) which automatically give a 

structure to the space since no data can be stored in the space directly but only in its containers, and 

can also be used hierarchically (a container containing references to other containers). 
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2.3.4 Data Types 

It is of course not only important how data is stored in the space, but also what kind of data can be 

stored, if there are certain restrictions or if the data must be in a predefined form. In this point the 

presented systems have rather different approaches. 

Typically for Linda, data stored in a space needs to be some kind of tuple. LighTS is no exception to 

that, requiring for all objects that are written to the space to be tuples. There are predefined classes 

for tuples in LighTS that implement a tuple matching for equality. But LighTS also allows any objects 

to be written into the space whose classes implement the ITuple interface, which makes it possible to 

write nearly everything into the space (of course with the expense of needing to implement the 

ITuple interface yourself, which means defining how your class is matched against other ITuples). 

In JavaSpaces implementations like Blitz, data written into the space must be an entry (implementing 

an Entry interface). Entries are similar to tuples, with the difference that they look more like normal 

classes in object oriented programming languages (while a tuple is only a list of values). Blitz simply 

stores all public fields of an entry in the space, with the restriction that fields must not be primitive 

types (only object references, which is needed since Blitz uses the .equals() method for comparison 

of the single values). 

GigaSpaces provides a much better usability here, allowing very flexible entry definitions by the use 

of annotations. Classes don’t need to implement any interfaces, but can just define if all their public 

fields or even all their private fields should be stored in the space, and also if certain fields should be 

ignored. Fields can even be annotated with special information that marks them e.g. as keys or 

indices, and according to that these fields will be specially treated within the space. This is also very 

similar to the mapping definition by annotations in Hibernate [27] entities. 

GigaSpaces even supports interoperability for data written into the space, meaning for example data 

written into the space by a .Net program can be read by a Java program. The only requirement is that 

both sides have a class that corresponds to the same data structure within the space. GigaSpaces 

therefore provides additional annotations that allow e.g. adding to the .Net class information about 

the complete name of the Java class and adding information to the properties about the names of 

the according fields in the Java class so that the space can internally recognize both classes as the 

same. 

XVSM is normally not intended to be used with tuple matching, and therefore doesn’t require all 

data in the space to be tuples, but allows writing data of any type into the space (it only has to be 

serializable). Restrictions are only given when either using tuple matching (in which case tuples must 

be used), or when interoperability is needed (currently interoperability is granted between the Java 

and .Net version of XVSM), in which case only primitive types and tuples are supported. 

Last to mention here is Corso, which only allows writing primitive data types and strings (a sequence 

of these types with unrestricted length can be written into a single shared object). With this 

restriction, unfortunately binary data also has to be converted into a string, which is possible but not 

very efficient as it consumes much more memory than byte data. A special thing about Corso is that a 

shared object can either be const or var. The content of a const (= constant) can only be written once 

and is from then on not changeable any more, in a var (= variable) the content can be written any 

number of times. 
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2.4 Operations 

2.4.1 Basic Operations 

The most basic operations that spaces support are of course writing data into the space and 

reading/removing it from the space. But not only these operations are often provided in different 

flavors, most systems also provide additional operations to especially support individual 

functionality. All of the presented spaces support the operations write, read and take (which is a read 

operation that at the same time removes the read data from the space), except Corso which has no 

take operation. These terms are used in Blitz (as they are defined that way in JavaSpaces), 

GigaSpaces and XVSM (with the difference that operations in XVSM always target a single container 

and not the whole space). LighTS, being a traditional tuple space implementation, uses the terms in, 

out and rd (equal to take, write and read). All of the mentioned systems support a blocking 

mechanism, meaning when a read or take operation is executed and it cannot be fulfilled directly 

(e.g. when there are no entries in the space that are matching the given template), the operation 

blocks until it can be fulfilled.  All systems except LighTS also allow defining a timeout value for the 

maximum time an operation should block. 

There are two variants of these operations that are additionally important: First are non-blocking 

versions of the above operations (supported by all mentioned systems), meaning they don’t block 

when there are no matching entries in the space, and don’t throw an error in this case but just return 

nothing. Second are bulk versions of the above operations (supported by all except Blitz), that allow 

writing/reading/taking multiple elements to/from the space at once (when reading/taking: all 

elements that match the given template), which normally has the effect of performing better 

compared to having to call a method multiple times. GigaSpaces and XVSM additionally support 

defining an exact count of elements to be read or taken. 

GigaSpaces and XVSM support some additional operations: First is an operation that directly removes 

entries from the space, without returning them (in GigaSpaces called clear, in XVSM called destroy). 

Second is an operation to update entries in the space when used with key coordination (which both 

of the systems support). For an introduction of the operations supported by XVSM see chapter 3.3.5. 

Again, Corso is very different here. The basic operations are creating and destroying named and 

unnamed shared objects (it must be decided at creation time if the object is variable or constant), 

and writing data to or reading it from a shared object. 

2.4.2 Transactions 

Transactions allow for a group of operations that are performed on a space to guarantee that they 

are either successful all together or have no effect on the space at all. Typically, transactions 

guarantee the ACID properties [28], and allow the operations commit (all changes to the space made 

by this transaction are tried to be persisted) and rollback (no changes made by the transaction are 

persisted, the state from before the transaction is restored). 

Interesting differences in transactions in different space systems can be if they are either optimistic 

or pessimistic. A pessimistic transaction keeps locks to all resources that have been accessed by 

operations within this transaction, assuring that no other transactions can access these resources 

until the transaction is either committed or rolled back. This may restrict actions for other 
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transactions, but guarantees that a transaction can be committed because no other ones could 

interfere with it. In contrast, an optimistic transaction doesn’t keep any locks but just checks when 

committing if all operations performed under this transaction are possible, which would e.g. not be 

the case when in the meantime another transaction has taken an entry from the space that would 

need to be taken by an operation of this transaction. 

All of the presented systems except LighTS have support for transactions. Blitz, GigaSpaces and XVSM 

implement a pessimistic transaction model, locking entries that are accessed by a transaction until 

this transaction is committed or rolled back. This also has an impact on the blocking operations 

introduced before: If data to be read or taken is currently locked, an operation will block until the 

lock is released. All of these systems support the multiple reader / single writer model for locking, 

meaning that entries can be read by multiple readers at the same time, but only be taken by one at a 

time. 

Corso in contrast implements an optimistic transaction model. Every shared object has a version 

number that automatically increments whenever its content is changed. Data cannot be written to a 

shared object if something was written to the object since it has last been read (which is recognized 

with the object’s version number having increased). GigaSpaces additionally supports a similar 

concept together with the update operation, by being able to annotate an entry field as version field 

which is automatically incremented when an entry in the space is updated. 

Also to mention is that the transaction models of Blitz, GigaSpaces and Corso support distributed 

transactions (transactions that are spread over the network). As defined by JavaSpaces, Blitz and 

GigaSpaces have a pluggable transaction manager and thereby easily allow to be connected to 

transactions that also include targets that are completely independent of the space. 

For a detailed description of transactions in XVSM see [6]. 

2.4.3 Events 

The possibility to get events (or notifications) from the space can be very helpful, because this makes 

it possible to be informed when there are changes made to the space, e.g. new data is written. All 

systems except LighTS have support for notifications. 

In Blitz and GigaSpaces, the JavaSpaces operation notify can be used to register a notification at the 

space. It allows defining a template, so that whenever an entry matching this template is written to 

the space the notification is triggered. Callback is done by Java event handlers. As an additional way 

of receiving notifications, GigaSpaces allows registering a class for a certain event in the space, using 

a special annotation for the method that should be called when an event occurs. Through 

annotations it is also possible to define which events should trigger the callback (write or update) and 

define a certain template. 

In Corso, a notification can be registered at a shared object, triggering whenever data is written into 

the shared object. It is also possible to include more than one object within a single notification. A 

drawback of notifications in Corso is that they don’t use event handlers, but require active waiting, so 

event handling would need to be implemented as a layer on top of Corso’s notifications if needed. 

In XVSM, notifications can by default be registered at a certain container, and it can be decided 

which operations should trigger the notification (read, take, destroy, write and/or shift), but very well 
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extensible to come in very different flavors. A detailed introduction of notifications in XVSM can be 

found in [13].  

2.5 Extensibility 

Extensibility is something that is very difficult to classify, since the concepts of each system for 

providing extensibility are completely different and thereby difficult to compare to each other. 

Additionally, these concepts often require a deep knowledge of the systems to really understand 

what can be achieved with them. So, this chapter tries to give an overview of the extensibility of the 

presented systems, but does in no way claim to be complete, since it would take an own paper to 

research only these aspects of the systems in detail. 

2.5.1 Coordination 

The extensibility of a space’s coordination concepts is a very interesting thing, because it could make 

the space suitable for or adaptable to many more usage situations than with the concepts initially 

provided. In general extensibility for coordination means being able to change the space’s behavior 

of interpreting, managing and reacting to data. 

For implementing different coordination concepts, LighTS allows to implement the tuple class by 

yourself (the space only uses an ITuple interface and not a certain class for tuples). Since the tuple 

class also includes the matching logic, this also allows implementing the matching logic yourself. In 

this way any objects that implement the given ITuple interface could be written into the space and 

extend the default Linda tuple matching behavior or even create a completely different matching 

behavior. 

The topic of extensible coordination is something that XVSM is strongly focused on. As already said, 

data in XVSM is stored in containers, which can be defined for different types of coordination. These 

types of coordination are extensible in a way that users can implement their own ones and thereby 

create nearly every behavior thinkable of. Coordination types in XVSM and their extensibility are 

explained in detail in [12]. 

The other systems don’t provide mentionable extensibility in coordination. 

2.5.2 Other Concepts 

There are of course many possible ways for providing extensibility for a space. Also, all systems have 

different viewpoints of what aspects of the space are important to be extensible (which of course 

depends on the overall goals of the certain system) and how this is best done. A well known concept 

for providing extensibility are for example aspects (coming from aspect oriented programming [29]), 

or interceptors (different term, but very similar to aspects), which allow adding pieces of code at 

certain points in a software, that, after being added, will be executed every time when the execution 

of the software reaches this certain point, and thereby allowing to add additional behavior or change 

the existing one. 

XVSM makes use of such aspects, and defines a list of points where they can be inserted. More 

information about aspects in XVSM and its implementation XcoSpaces can be found in chapter 5. 

LighTS aims to provide extensibility through its clearly defined space and tuple interfaces (the tuple 

interface has already been explained above). By the space being accessed over an interface, the 
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implementation underneath (LighTS calls it the tuple space engine) can easily be replaced by an own 

one without having any influence on the application using it. Though this provides many possibilities, 

completely replacing the logic of LighTS and only using its interfaces doesn’t seem to have that many 

advantages despite of sticking to a standardized API. The LighTS interfaces can also be used to build 

adapters on top of other space systems, so that by using the LighTS interfaces, the space underneath 

can simply be replaced by another one. 

GigaSpaces doesn’t provide possibilities for influencing the behavior of the space. What is most 

mentionable about GigaSpaces concerning extensibility is its functionality for hosting components. A 

GigaSpace can host components (small applications), called processing units, and manage them in a 

Spring based framework. By that, the components are completely independent from each other, and 

an application hosted by the space can easily be extended by new components without having to 

change existing ones, or when the load increases more of the already existing components to handle 

the additional load can also be added without difficulty. In combination with easily being able to add 

new GigaSpaces servers to an existing cluster of servers (see network architecture), GigaSpaces 

scales very well. So it can be said that GigaSpaces’ extensibility features mainly concern scalability. 

Blitz and Corso don’t really provide any features for extensibility. As it is not uncommon for open 

source projects, Blitz developers state that Blitz is extensible through its well designed class 

structure, by changing source code yourself. 

2.6 Architecture 

2.6.1 System Architecture 

System architecture deals with questions about how the space is running on a single machine. Main 

differences here are if a space system is running embedded, meaning within the application that uses 

the space (which has the advantages that the space can be started by the application directly, and 

that the space can also be accessed directly without any inter-process or inter-network 

communication), or if the space is running standalone, meaning it has to be started and is running 

completely independent from any applications using it (which is also its advantage). For spaces that 

can run embedded, the standalone option normally comes for free since this can more or less be 

done with an application that just starts the space. Showing from the presented systems, embedded 

solutions are more lightweight and easier to use while standalone ones provide better manageability 

and administrative tools support. 

XVSM and LighTS are embedded solutions, both are by default started directly from the application 

using them. Both systems are extremely lightweight, with LighTS being the smaller one, but XVSM 

being superior in functionality. Since both systems are very lightweight, they are also optimal for 

execution on a mobile environment. Both LighTS and XVSM have support for mobile devices, with 

LighTS running in Java Micro Edition and XVSM in .Net Compact Framework (though the mobile 

solution is still in development and therefore not handled further in this document). While it doesn’t 

make sense for LighTS to be started standalone as it only can be accessed embedded, XVSM 

additionally supports this option (this depends on the implementation though, XcoSpaces and 

MozartSpaces do support it). A detailed description of the XVSM system architecture can be found in 

chapter 3.4. 
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Blitz, GigaSpaces and Corso are systems that are by default started and running completely 

standalone. All of them provide tools for administration and management so that the space can be 

managed completely independent of any applications using it. Blitz and GigaSpaces also have the 

possibility of being started embedded, but Blitz has some restrictions in functionality concerning 

transactions when being used that way (GigaSpaces has no restrictions). 

2.6.2 Network Architecture 

In contrast to system architecture, the network architecture is about how a space is structured within 

a network. Main differences are whether the structure is centralized (typically a client/server 

structure) or decentralized (like in a peer-to-peer structure). Questions that are linked to this are if 

the space itself is distributed (not necessarily only in a peer-to-peer structure, it could also be that 

the server is distributed across several machines), and if issues like caching, replication and 

partitioning are supported. 

Typically for the JavaSpaces model, the architectures of Blitz and GigaSpaces are client/server based. 

Blitz allows having several spaces coexisting in a network, and supports using them concurrently by 

being able to use distributed transactions and including operations on different spaces within the 

same transaction (which is of course also possible in GigaSpaces), but other than that implements no 

mentionable mechanisms for replication or caching. GigaSpaces on the other hand is clearly standing 

out here: The GigaSpaces server can be clustered and provides replication, partitioning and caching, 

supporting the most common topologies. GigaSpaces also provides failover mechanisms, so that data 

from failed instances that are part of the cluster is automatically relocated. Additional servers can 

also easily be added to the cluster, providing a very well scalable architecture. 

Corso (having as well a client/server based architecture) also allows connecting several servers 

(called kernels) together, and provides possibilities for caching and replication of shared objects. For 

every shared object a replication/caching strategy can be chosen at the time of creation. 

In contrast to these systems, XVSM has a pure peer-to-peer structure. An introduction to the 

network architecture of XVSM can be found in chapter 3.1. 

Since LighTS doesn’t have any support for remote communication, it has no network structure to 

review. 

2.6.3 API 

This point deals with the question if the space provides APIs that follow well known standards and 

are thereby easily adoptable. Support for standard APIs can always be a great benefit because a user 

is allowed to use an API that s/he perhaps already has experience with, and can also easily replace 

the software lying underneath the API if needed. Another interesting question is if the space 

supports any (programming language independent) open protocols for communication, which would 

have the benefit of being able to completely replace the space software component with self written 

software (which must only stick to the protocol for communication with the space). 

Both Blitz and GigaSpaces support the JavaSpaces API which is a well known standard (though by 

using the JavaSpaces API it is not possible to use all of GigaSpaces’ functionality). Despite of that, Blitz 

doesn’t have any other standard API support, and is only useable in Java. GigaSpaces in addition also 
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provides possibilities to use JMS (Java Messaging Services) or RPC (Remote Procedure Calls) over the 

space (having wrapper classes that actually use the space underneath for communication). 

Like GigaSpaces, the Java Version of XVSM supports a JMS API which uses the space underneath for 

communication. Despite of that, XVSM has an open XML communication protocol. This protocol can 

be used for remotely communicating with a space and is not platform specific (the protocol is also 

used for communication between the .Net and Java version of XVSM). Implementing this protocol, 

any software would be able to talk to an XVSM space. A detailed description of the XVSM xml 

protocol is given in [6]. 

LighTS and Corso both don’t implement any mentionable standard APIs (despite that the API of 

LighTS sticks to the Linda standard). 

2.6.4 Security 

For middleware like space based systems, security is a very important thing. The space could hold 

sensible data which needs to be protected from being read and altered by users without permission 

(which is especially important if the space is exposed to the internet and thereby accessible to 

everyone). The three most important aspects concerning security are authentication (user 

name/password authentication), authorization (assigning permissions to certain users to perform 

specific operations with the space) and encryption (of messages that are sent over the network). 

Being typically used in large enterprise applications, GigaSpaces has a very mature security model 

that supports all of these security aspects. GigaSpaces provides a role system for user authentication 

and authorization. System roles provide security on an operational basis, meaning it can be defined 

which operations a role is allowed to execute. Custom roles allow a more detailed definition, going 

down to class/object content level. For example, a role could be defined that blocks read/write of 

any entry instance from a specific class, or a field value security classification rule where a role blocks 

a read operation based on a template-specific field value (e.g., permit a user to read Entries from 

ClassA type where their field A=1). Classes inherit their security properties from their super classes. 

Message encryption is granted as well with the use of SSL, so the GigaSpaces security model will very 

rarely leave any desires open. 

Corso also provides a built in security solution, though with less functionality than the one of 

GigaSpaces. Authentication is based on the user accounts of the underlying operating system. The 

user that started the Corso server automatically is an administrator that can do anything within the 

system. When connecting to Corso, a username and password has to be used. The list of trusted and 

allowed users can be defined in a configuration file (trusted users may also administer the space, 

while allowed users may only access its data). 

Blitz, LighTS and XVSM have no built-in support for security mechanisms. While Blitz and LighTS also 

don’t make any special considerations of how to add security to their systems, XVSM aims to provide 

any functionality necessary for adding security by use of its extensibility features. An example for a 

simple security model built for XcoSpaces can be found in chapter 5. 
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3 The XVSM Core 
This chapter gives a detailed description of the XVSM core, which is the software that represents the 

XVSM space with its core functionality. It first introduces in general what the tasks and requirements 

of the core are. Then the core’s architecture is described in detail, as well as the possible architecture 

variants and how additional functionality can be added. 

3.1 Introduction 

A space in XVSM can be seen as a virtual room. It can hold coordinated data structures that are called 

containers. Data can be added to and removed from these containers. And of course new containers 

can be added to the space and existing ones can be deleted. 

The XVSM core (further just called core) is the piece of software that creates and manages the space 

and the containers (and their data) that are part of this space, in other words a space is hosted by a 

core. The core is also responsible for providing possibilities to access the space. In general, it can be 

said that the core is software that represents the space and therefore has to implement all of the 

space’s functionality (like for example operations on containers, as described in chapter 3.3). 

 

Figure 4 shows how a core hosting a space. But this is of course only the simplest scenario, as this 

point of view is only from a single entity (like a standalone application) that is running a core. But the 

strength of XVSM comes with collaboration, which means cores communicating with each other and 

thereby forming a space that goes beyond only the locally stored containers. 

XVSM has a pure peer-to-peer structure. A client in XVSM, at the same time also being a server 

(because it is actually a space itself), is therefore called peer (with a single peer of course being an 

instance of the core). Since being able to just access a space but not participate in it directly could 

also be useful in different situations (e.g. from a mobile device, not having much resources), a client 

only version of the peer is also supported, which doesn’t have a local space itself and thereby cannot 

store any data (see chapter 3.5). 

 

Container 

Space 

Core 

Figure 4: A core that hosts a space with three containers. 
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For better understanding of how the cores are acting in a network, we distinguish between local and 

remote cores. The local core is the one that is running locally (managed and used by our own 

application). A remote core is one that can be accessed from the local core by some kind of remote 

communication (is doesn’t matter which protocol or binding is used, as long as both cores use the 

same and are thereby able to communicate with each other). In accordance to this definition, the 

local space is the one that is hosted by the local core (the local space consists of all containers that 

are hosted by the local core). A remote space is a space that is hosted by a remote core, and consists 

of all the containers hosted by that core. 

By knowing the address of a remote core, the local core can access any container in that core’s 

space. In other words, the local core can not only be used to access containers in the local space, but 

also to access ones in a remote space as long as its address is known. For the application using the 

local core, working with a container that is part of a remote space is not any different than working 

with a container in the local space. 

Taking that into account, the space from a single core’s point of view is the entirety of all containers 

hosted locally plus all containers accessible by the core that are hosted by a remote space. 

 

3.2 Core Requirements 

For the core to be able to provide all the functionality for the space there is a number of 

requirements that the core must fulfill. First the non-functional requirements [30] are introduced, 

because many of the functional requirements are partly based on them. 

3.2.1 Non-Functional Requirements 

The non-functional requirements are particularly important when it comes to designing the core 

architecture, as the core will be unable to support them when its architecture is not built with having 

these requirements in mind. Chapter 3.4 describes how these requirements were taken into 

consideration when designing the core. 

Space Core Another Space 

Container (local) Container (remote) 

Figure 5: A space with local and remote containers. 
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3.2.1.1 Concurrency 

The core has to be able to handle multiple requests at the same time, coming from both local access 

and remote communication by another core. The core must be able to handle operations that are 

independent of each other at the same time, and must coordinate operations that depend on each 

other (like two operations that access the same container) so that they don’t get in in conflict with 

each other but still run as concurrently as possible. Only in that way it is granted that a space can be 

used by multiple entities efficiently. 

3.2.1.2 Performance 

The core is built to be usable for many different usage scenarios, one of its main purposes being real-

time online collaboration (as introduced in chapter 1). To be able to build “real-time” applications on 

top of the core, it has to provide the best possible performance, both in local and remote 

communication. 

Also, the core should not only be suitable to run on server machines, but on many different devices, 

even mobile ones. It is therefore very important that the core is designed as a very light-weight 

application, using the resources at its disposal in an optimal way. 

3.2.1.3 Scalability 

The applications which the core is suitable for should range from very simple (e.g. a chat application) 

to very complex ones (e.g. using the space to coordinate a large number of processes with the need 

for high performance and concurrency), requiring very low up to high amounts of cpu power. 

Therefore the core’s use of resources has to stay efficient in all kinds of situations, and it has to be 

able to use more cpu power as it is available (vertical scalability [31]), e.g. making use of multiple 

cpus. It is also important that a network of cores communicating with each other scales well with a 

growing number of participating cores (horizontal scalability [31]). 

3.2.1.4 Extensibility 

The core is only the base for a large amount of different applications. It is not intended to provide 

functionality like security features, persistency, replication or many other things you could think of to 

be very useful in a space. Each of these features would make the core perhaps more suitable for 

certain scenarios, but would also add unnecessary overhead for many other ones. And this would 

also clearly counteract the goal of the core being as light-weighted as possible. 

Therefore it is crucial for the core to have a maximum support for extensibility. The aim is for 

extensibility features is to embed them so deeply into the core that it is possible to add even the 

most complex features (as long as they make sense for a space), like the ones mentioned before 

(scalability, persistency and replication). The concepts of how new features are added to the core is 

especially described in chapter 3.6. 

3.2.1.5 Stability 

The core can only be acceptable as the middleware underlying an application, when the application 

can undoubtedly rely on it anytime. It is therefore extremely important that no operation can bring 

the core to an unstable state, and that the core is able to respond to a request even under high load 

and does not lose any requests at any time. 

Of course when used with extensions (like a security add on), these extensions have to provide a 

certain amount of stability themselves, as they are attached deeply into the core. 
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3.2.1.6 Fault Tolerance 

The core must be as secured against unexpected errors as possible. When an error occurs that 

doesn’t allow an operation to be fulfilled, the core must give back a response with a reasonable error 

message. This is especially important for core extensions. Whenever a core extension fails to work, 

the core should if possible recover from the error, or at least be able to give back a reasonable error 

message, otherwise it would be rather difficult to write reliable extensions for the core. 

3.2.1.7 Location Transparency 

This is a requirement especially important for distributed systems like the XVSM space. In case of the 

core, it means that access to containers must not differ, no matter if they are hosted locally or 

remotely. As soon as a container is known by the core, it is treated in the same way (at least from an 

outside view), regardless of its location. 

However, the core is not intended to provide complete location transparency. The address of a 

container still has to be known when accessing it for the first time. The lookup and discovery features 

that are needed to hide the location completely are not part of the core and must be added by 

extensions, if needed. 

3.2.1.8 Documentation 

The core will of course try to offer its basic functionality in a way that is as easily understandable as 

possible. But as a piece of software that can be used in many different ways and that is extensible, 

understanding especially these extension mechanisms so that they can be used to an optimal degree 

cannot be a simple task. Wrong usage of the core will as well result in failing to understand the big 

advantages in using it. It is therefore essential that the core provides a complete and understandable 

documentation that not only tells the reader what certain core functions do, but also how to use 

them best. 

3.2.2 Functional Requirements 

3.2.2.1 Coordinated Data Structures 

The most important functionality of the core is to provide coordinated data structures. As already 

explained above, the data structures in a space are called containers. Therefore, a container has to 

provide possibilities for coordinating its data. “Coordination” in this case means that the data is 

structured in a certain way that helps users of the space use this container for a certain task. For 

example, when the container should represent a queue, the data should automatically be structured 

in a way that always the element that has been written into the container first is also the first one to 

be read. Since everything that a user does within a space is based on containers, it is essential that 

the container provides a maximum of performance and reliability. (See chapter 3.3 for a detailed 

description of containers.) 

This feature should also provide extensibility, in a way that types of coordination that are not initially 

supported by the container can be added by the user him/herself. 

3.2.2.2 Notifications 

When independent entities are working together on the same data structure (like it is the case with 

cores in a space), it is important to have the possibility to be informed when changes in this data 

structure occur in order to avoid polling. Therefore the core must support notifications that notify a 

space user whenever something has changed in a certain container or if any other operation has 
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been executed which could be of interest for other users, and also give him/her information about 

what has been changed. For a detailed explanation of notifications in the XVSM core, see [13]. 

3.2.2.3 Transaction Support 

All operations that can be executed on a container in XVSM (see chapter 3.3) should support the 

optional use of transactions, similar to a database. The transaction must support commit and 

rollback. By committing a transaction, all operations that have been done within this transaction are 

made persistent. By rolling back a transaction, all operations that have been done within this 

transaction are reverted, the state from before this transaction is restored. Resources (like 

containers) that are currently in use by a transaction must be reserved for this transaction by locking 

mechanisms (to prevent two different transactions from conflicting with each other), as long as this 

transaction is not committed or rolled back. For a detailed explanation of transactions and locking in 

the XVSM core, see [6]. 

3.2.2.4 Basic Lookup Functionality 

It should be possible to publish a container by a certain name. By knowing this name, together with 

the address of the core where the container is hosted, a user can access this container. It should as 

well be possible to unpublish a container that has been published before. 

Although this is not a completely location-transparent way of looking up a container (because the 

address of the core still has to be known), it has been decided not to implement further lookup and 

discovery services into the core. The reasons for this are that for the cores to find each other can be a 

very different task according to the situation and can therefore more easily be solved by the 

overlying application (or a higher level API layer lying between core and application), and that a data 

structure for lookup/discovery can be very easily managed in the space itself and is therefore not a 

feature that must be provided by the core directly. 

3.2.2.5 Communication between Cores 

To be able to access a container that is hosted by a remote core, the core must of course be able to 

communicate with other cores. The communication process should be completely hidden from the 

user. As long as a container is known to the user, accessing it should be exactly the same, whether it 

is hosted by the local core or a remote core. When accessing a container, the local core automatically 

has to recognize if it has to communicate with a remote core, and know how to reach it. 

Communication between cores should be connectionless (at least from an outside view), meaning 

the user never has to deal with opening or closing remote connections. 

The communication functionality should also support extensibility, by providing the possibility to 

completely replace the current communication service by a user-implemented one. This is to enable 

the user to write communication services for special usage situations, e.g. a communication service 

that is specialized on high performance communication over LAN only, or a communication service 

specialized for overcoming firewalls. (The default communication service provided by the core should 

of course be one that is suitable for most usage situations.) For further introduction of the remote 

communication mechanisms in the core see chapter 3.4.3. 

3.2.2.6 Aspects 

The most powerful extensibility feature is the support of aspects. An aspect is a piece of code that 

can be inserted at certain points within the core. It should be possible to add aspects to any 
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operation that can be done with the core (to be executed directly before or after the operation) and 

thereby alter the operation’s behavior, including reading from and writing to containers, creating and 

destroying containers, and creating, committing and rolling back transactions. 

It should be possible to add aspects to the whole (local) space, meaning that the aspect is executed 

every time when the operation where the aspect has been added is executed. This is called a global 

aspect or space aspect. On the other hand, an aspect could also only be added to the operation of a 

single container (e.g. it is executed every time something is written into the container). This is called 

a local aspect or container aspect. 

This feature must be powerful enough to implement every thinkable extension that could be of use 

for the core. This includes security, persistency and replication features, and many more. For a 

detailed explanation of aspects in the XVSM core, see [13]. 

3.2.2.7 Low Level API 

The core must provide an API that supports all of the core’s functionality, like container and 

transaction operations. This API is more aimed for supporting the complete feature set of the core 

than providing maximum usability, which would be difficult to implement, as there are many features 

(above all the extensibility features) that require a rather detailed knowledge of the space’s internals, 

but will not be needed by most users. Therefore, providing a maximum of usability is left to higher 

level APIs that specialize on a certain subset of core operations. This feature is further introduced in 

chapter 3.4.2. 

3.2.3 Non-Core Functions 

It has already been mentioned that the core is aimed to be light-weight and support maximum 

extensibility. For the core to really be as light-weight as possible, it is essential to reduce the feature 

set to an absolute minimum, but also to still be useful guarantee that important features that are not 

part of the core can be added later by extensions. 

It will of course normally be easier to make a feature best optimized for reliability and performance 

when it is implemented right into the core itself. Because of that it is for some features not an easy 

decision if they should be part of the core and therefore make it heavier and perhaps also more 

susceptible to errors, but also make the core more useful because the features could be important in 

many situations. 

For some features it has already been explained above why they were not taken into the core feature 

set. There are some more features (that have also already been mentioned above in short) for which 

the reasons for taking them not into the core should be explained. (For more examples of extension 

features of the core, take a look at chapter 3.6 which deals with profiles.) 

3.2.3.1 Security 

Security is very important for middleware systems, and in particular for space. It is crucial for users of 

the space to be able to authenticate themselves when accessing data in the space, and to get 

authorization for accessing certain data. An important security feature is also encryption when 

remote communication is involved. 

All of these features are clearly needed as soon as it comes to coordinating sensitive data and 

preventing misuse of the space, and would speak for incorporating security features into the core. 
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On the other hand, security is also clearly a very heavy feature. But the main reason for not 

implementing security is the wide variety of possibilities how security could be implemented (or 

would be expected from a space). There can be very different answers to questions like: How should 

users be managed in the space? Which encryption modes should be supported? Which access rights 

need to be defined? Implementing a certain security model to satisfy most possible usage situations 

would be a difficult task. Because of that, it was decided that security features would be left to 

implement on top of the core by the use of aspects. 

3.2.3.2 Persistency 

The possibility of persisting the data within a space (just like in a database) clearly adds a lot of 

functionality to the space. It would make the space a lot more fault tolerant, because if a system 

crashes, the space could recover its own data after restarting and nothing would be lost. 

But it has to be kept in mind that the primary goal of the space is to coordinate, and not to store data 

(which is the clear difference between a space and a database). Of course persistency would be a 

benefit in many coordination scenarios as well, but it is not that important as to take a heavy feature 

like persistency into the core. Aspects should enable users to add persistency to the core in exactly 

the way they like, e.g. using a database underneath the core to store the space’s data. 

3.2.3.3 Replication 

In distributed systems another important feature is replication. When data is replicated to different 

cores, this adds a great deal of availability, because even when one core becomes unavailable for a 

certain amount of time, the data can still be accessed from the other cores that store replicas of it. 

Also, to compete with other distributed systems (like GigaSpaces) on the long run, it is clear that the 

possibility of adding replication will be needed. 

But replication is also a very complex issue. It is a feature that is initially not needed by most usage 

scenarios, and is rather used more to add stability and availability to certain scenarios. Therefore it 

was also in this case decided to enable aspects to implement replication features, and leave this 

feature out of the core. 

3.3 Containers 

The space’s goal of providing coordinated data structures has already been addressed in short. The 

following chapter will give more detailed information about how these data structures look like. 

Within a space, a container is a structured data storage that can contain entries.  It must not only be 

flexible in the way data is coordinated and support all kinds of different data types, but must also 

support transactions and deal with concurrent operations, e.g. when one user wants to read 

something from the container and another one wants to write something into the same container at 

the same time. 

In general, a container can be imagined as shown in Figure 6. This graphical notation will from now 

on be used for a container throughout this thesis.  
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To be able to use the container for coordinating data in every thinkable usage situation, it has to be 

highly adaptable and allow a wide variety of different types of coordination. In respect to that, a 

container’s coordination type(s) can be seen as the most important property of a container. 

3.3.1 Coordination Type 

A coordination type defines for a container how its entries are coordinated. It defines for example a 

certain order for the entries in a container, or which entries are read next in a read operation. All 

coordination types of a container have to be defined at the time the container is created. 

Possible coordination types are for example fifo (elements ordered like in a queue), lifo (like a stack), 

vector (like a list) and key (like a hashtable/dictionary). Figure 7 shows a fifo coordinated container, 

with a being the entry that has been written first (and will also be the one to be read first) and d 

written last. For further explanation, see the chapter about coordination types in [12]. 

 

3.3.2 Selector 

Selector is a general term for selecting the entries that are read from a container, or specifying how 

entries are written into the container. A read selector specifies the coordination information (order, 

key values, vector indices, …) and count of the entries that should be read from a container. A write 

selector specifies the coordination information (order, key values, vector indices, …) for entries that 

should be written into the container. For every available coordination type there is a certain selector 

that comes to use always when operations are done on a container that is coordinated by this 

coordination type. 

 

key selector  
Key=x1 

fifo order 

1 (first) 
2 
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4 (last) 

container 

a 
b 
c 
d 

container 

a 
b 
c 
d 

Figure 6: A container holding the elements a, b, c and d. 

Figure 7: A Container that is coordinated by fifo coordination type. 

Figure 8: A Selector for the coordination type key that is used to read / 
write an element with key “x1”. 
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Figure 9: An entry with value “a” and no 
selectors. 

Figure 10: An entry with value “a” and a selector that 
defines the key value “x1” for this entry, for a key 
coordinated container. 

3.3.3 Entry 

Having defined the meaning of coordination types and selectors, it can now be defined what exactly 
an entry is. An entry consists of: 

 a value (the data to be stored), 

 information about the type of value (like a string, tuple or other object)  

 and the selectors that belong to this value (like a key value or vector index). 
 

 

 

3.3.4 Container Properties 

The container has several properties that specify its behavior and that have to be defined by the time 

the container is created. 

3.3.4.1 Size 

 Bounded 

A bounded container has a specific size that defines how many entries it can hold. For 

example, a container with a size of 4 can hold 4 entries a most. 

 
 Unbounded 

An unbounded container has no size limit, and therefore can hold an unlimited number of 

entries. 

3.3.4.2 Uniqueness 

In a container with uniqueness constraints, no two entries can exist with the same value. For 

example, it would not be possible to write an entry into the container with value “a”, if another entry 

with value “a” already exists in this container. A container without uniqueness constraints doesn’t 

have this restriction. 

3.3.4.3 Coordination Types 

The most important property of a container is its coordination types. As already described above, the 

coordination types of a container describe how the entries within this container are coordinated. A 

container can have multiple coordination types (and must have at least one, a container without any 

coordination would not be useable).  

fifo order 

1 (first) 
2 
3 

4 (last) 

container 

a 
b 
c 
d 

4 

a 

key selector  
Key=x1 

a 

Figure 11: A container that is bounded to size 4. Because there are 4 entries 
in it, the container is full and cannot take any more Entries. 
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Figure 13: Taking an entry from a fifo coordinated container. 

3.3.5 Container Operations 

The operations of a container can be split into read and write operations. For a detailed explanation 

how container operations behave in combination with certain coordination types, see the chapter 

about coordination types in[12]. 

3.3.5.1 Read Operations 

A read operation reads entries from the specified container. It uses selectors to specify which entries 
should be read and the number of entries that should be read:  

 In the selector a count can be defined that says how many entries should be read from the 
container. If a count is defined, the read operation will block until the defined number of 
entries is available. If no count is specified, the read operation doesn’t block and immediately 
returns all available entries that apply to the selector. 

 If a count is specified that is greater than the maximum number of entries in a bounded 
container, an error will be thrown. 

 
There are three different types of read operations: 

 Read 

The standard operation is read, where the entries are simply read from the container, the 

container itself is not changed. Figure 12 shows the process of reading an entry from a fifo 

coordinated container. The entry is returned and the container is not changed. 

 

 Take 

If take is used as type, all the entries that are read are removed from the container. Figure 13 

shows how an entry is taken from a container. The entry is returned and removed from the 

container. 

 

 Destroy 

Destroy removes all the entries that are read from the container like take, but doesn’t give 

the entries back. Just an “acknowledged” is given back if the operation was successful. Figure 

14 illustrates this. 
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Figure 12: Reading an entry from a fifo coordinated container. 
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Figure 14: Destroying an entry in a container with fifo coordination. 

Figure 15: An entry is written to a container with fifo coordination. 

 

3.3.5.2 Write Operations 

A write operation writes entries into a specified container. A single write operation can contain one 

or more entries. If the operation consists of more than one entry, the entries are only written into 

the container if all entries can be written successfully. The selectors of the entries define how each 

entry will be coordinated in the container. 

There are two different types of write operations: 

 Write 

If a container is bounded and has reached its maximum size, or if there are any entries in the 

container that would prevent the new entry from being written (e.g. in a key coordinated 

container, when a key value already exists), a write operation blocks until there is enough 

space in the container. 

 

 Shift 

A shift operation never blocks (except in situation where a container or entry is locked, see 

chapter 3.3.6). Its purpose is to be used when an entry should absolutely be written into a 

container, even if this means that other entries in the container would need to be removed. 

If there is not enough space for an entry to be written into the container (in case the 

container is bounded), another entry is removed from the container (see Figure 17). Which 

entry is removed from the container is decided on basis of the container’s coordination types 

(this subject is handled in detail in [12]). 

Also, if there are any entries in the container that would prevent the new entry from being 

written (e.g. in a key coordinated container, when an entry with the same key value already 

exists, see Figure 16), these entries are removed from the container (in case of key 

coordination, you could also say the new entry overwrites the old one).  
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Figure 16: A new entry is shifted into a key coordinated container and replaces another one. 

Figure 17: An entry is shifted into a bounded container that is already full, which causes another entry 
(a) to be removed. 

 
 

 

 

 

3.3.6 Transactions and Concurrency 

The support for concurrency is very important for a container. To qualify as a coordinated data 

structure, the container has to guarantee that it will coordinate different users accessing the same 

data at the same time with the highest possible concurrency, but at the same time prevent 

inconsistencies, e.g. it should be possible for different users to read the same entry at the same time, 

but it must not be possible to take the same entry (using the take operation) at the same time 

(because this would mean that the same entry has been taken twice, which must of course not be 

possible). 

This issue is directly connected to the support for transactions. The container must be able to 

support the use of transactions, which means that when an operation like take or write is done using 

a transaction, it will only take effect as soon as the transaction is committed, or be completely 

undone if the transaction is rolled back. But as long as the transaction is still active, no other 

operation that would offend the outcome of the first one can be executed. For example, if an entry is 

taken from a fifo coordinated container within a transaction, no other operation (despite one within 

the same transaction of course) can take an entry from this container, because it would take the 

same entry as the one already taken by the other operation (and taking the next one would hurt the 

rules of fifo coordination, because as long as the transaction is not committed, the entry that has 

been taken is actually still part of the container). In other words it means that as long as the 

transaction has not been committed or rolled back the container (or at least the affected entry, the 

level of locking depends on which coordination type is used) is locked. 

Therefore, locking is a very important mechanism concerning transactions and concurrency.  If an 

operation wants to access a resource (container or entry) that is locked by a foreign transaction (or 

the operation doesn’t explicitly use a transaction at all, because even in that case it will need to get a 

lock for the resource for a very short amount of time), it will block until the lock is removed from this 

resource (or to be more precise, until all locks are removed that prevent the operation from 

executing). An operation will wait until it has reached its timeout. 
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The container does not specify which locking behavior is used exactly, this has to be decided by the 

implementation. But the most recommended approach is to follow the multiple-reader/single-writer 

principle, which means that multiple readers can access a resource at the same time, but only one 

writer at a time. If one transaction has written something to a resource, no other transaction can 

read from or write to this resource until the transaction that has written is committed or rolled back. 

On the other side, if a transaction has read from the resource, other transactions can still read as 

well, but no transaction will be able to write until all transactions that have read from the resource 

are committed or rolled back. Note that reader/writer in the sense of locking doesn’t mean exactly 

the same thing as the read/write operations of the container. A read lock is acquired only when the 

operation doesn’t change anything in the container, which in only the case with the read operation. 

All other operations (take, destroy, write, shift) need a write lock. 

For more information about transactions and locking, see [6]. 

3.3.7 Meta Container 

Metadata is information about data. It is used to facilitate the understanding, use and management 

of data. In case of a container, metadata would be general information about the container itself that 

does not belong to a certain entry within the container. Because such information can be very useful, 

every container in a space has its own so called meta container. A meta container is nothing else than 

a key coordinated container that can store key-value pairs (with a string as key). 

Metadata to be stored for a container is: 

 The name of the container 

 A description for the container 

 The maximum size of the container 

 The container’s current entry count 

 The creation date of the container 

 The name of the container’s creator 

 Relationships to other containers in the space, like one that contains a log about this 

container’s activities 

 Additionally a user could store own data in the meta container, which could be of any type 

and with any content 

As seen in Figure 18, the data in the meta container can be divided into two different types: 

 User-defined data 

Information that has been added to the meta container by users of the space and can be 

changed by them. The space user can define the key-pair s/he wants to add by her/himself, 

except that s/he cannot choose a key name that is already present. 

 Non-user-defined data 

Information that is added to every meta container by the time its container is created. This 

information could either be read-only, like for example the creation date of the Container, or 

could also be changeable by space users, like a container description that is by default empty 

at creation time and can later be set to a fitting text. 

 



39 
 

 

There are only two (non-user defined) values that are always part of the meta container, namely the 

maximum size of the container and the current entry count (both of them are read only). While the 

maximum size is a constant value that is never changed, the current entry count is managed by the 

container and updated every time an entry is added to or removed from the container. 

3.4 The Core Architecture 

After knowing the most important requirements for the core and understanding the structure and 

functionality of containers, the structure of the core itself has to be defined. As parts of the main 

requirements are performance and concurrency, it is clear that the core must be built as a 

multithreaded system. The core follows the staged event-driven architecture [32] approach, which 

not only supports building a concurrent multithreaded system, but also helps creating a very clear 

structure because the single components are very loosely coupled. 

Figure 19 shows the basic structure of the core. To allow each component to run on separated 

threads, communication between components is not done directly by method calls. Containers, 

similar to the ones used in a space, are used for thread-independent message passing. To distinguish 

them from the containers in the space, they are further called core containers (colored gray in the 

figure; core containers are further described in chapter 3.4.1). For all situations in the core when two 

components must communicate with each other, they use a core container to do that. In that way 

the components completely keep their independence. There are three different types of messages 

that are passed between components, marked with three different colors. Request messages (blue) 

contain information that has yet to be processed by the core. Response messages (green) contain 

answers to request messages, every request message entering the core leads to a response message 

leaving it. The third type of message is the event message (red). It is used only inside the core, to 

wake up waiting request messages. The use of events is explained later in detail. 
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The standard scenario is as follows: An application communicates with the local core by using the 

embedded API (described in chapter 3.4.2). Every time a method in the embedded API is called (e.g. 

the method for creating a container) a request message is generated. This message is written into 

the request container, from where it is taken by the core processor (handled in chapter 3.4.4) that 

does whatever is needed to fulfill the requested operation (e.g. creating the requested container). 

The core processor then creates a response fitting the operation that has been done (e.g. when a 

container is created, the content of the response message would be a reference to the container) 

and writes it to the response container, from where it is taken by the embedded API that uses the 

information contained in the response and returns it to the calling application. 

If the request would have been made not locally, but by a remote core, it would have been received 

by remote communication with the receiver component that again writes the request into the 

request container. The processing works the same as above, only that when the response message is 

written into the response container, it is taken by the sender and sent to its remote destination. 

These components are described in chapter 3.4.3. 

3.4.1 Core Containers 

The core containers are used for communication between the components of the core. To fully 

understand the structure of the core, it is first important to understand how the core containers are 

used. Similar to a container in a space, a core container provides several operations for reading and 

writing data: 

 write 

Writes a single entry (request, response or event) into the container. 

 read 

Reads a single entry from the container. If the container is empty, the operation blocks until 

an entry is written to the container that can be read. The entry that is read next is always the 
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one that has been written to the container first (like in a container with fifo coordination), in 

other words the core container is basically ordered like in a queue. 

 take 

Takes a single entry from the container. This works exactly like read, only that the read entry 

is also removed from the container. 

 destroy 

Removes a certain entry from the container, if this entry is in the container. 

Also similar to the container in a space, the core container must be absolutely capable of handling 

concurrent calls (read and/or write operations at the same time). It is also very important that the 

core container in an XVSM implementation is built for maximum performance, else it would build a 

bottleneck for both the requests entering the core and the responses leaving it. Differences of the 

core container from a container in the space are that it doesn’t support transactions and has no 

extensibility for additional types of coordination (because the built in coordination described in the 

operations above is absolutely sufficient). 

There are four core containers in the core with different tasks: 

3.4.1.1 Request Container 

The request container receives all requests that should be processed. It is therefore read by the core 

processor that has the main target of processing all requests that are received by the core. The core 

processor is actually more thought of as a pool of processors, being able to process many requests 

concurrently if needed (see chapter 3.4.4). Because the core containers support concurrency, all 

processors can take requests from the request container at the same time without problems. If there 

are no requests in the container, the processors will wait with a blocking take call, and as soon as a 

request is written into the container, one of the blocking takes will be woken up and return the 

newly written request to the processor. 

The figure shows that not only the core processor takes requests from the request container, but 

also the sender. This is because in the case when a request cannot be fulfilled by the local core, e.g. 

when it deals with a container hosted by a remote core, it has to be sent to that core so that it can be 

processed there, so it is important that local requests can be distinguished from remote requests. 

Because of that, elements in the request container are additionally flagged by a “local” or “remote” 

flag. When doing a take operation on the request container with using one of these flags, only the 

responses with this flag are returned. Because of that it is possible for the core processor and the 

sender to do a take operation and still only receive what they want, by the core processor using the 

“local” flag and the sender using the “remote” flag. 

3.4.1.2 Response Container 

All responses that are generated for successfully processed requests by the core processor are 

written into the response container. Similar to the request container, the response container has two 

different components that take responses from it, because local responses need to be taken by the 

embedded API and remote responses need to be taken by the sender. Because of that, the response 

container also uses the “local” and “remote” flags for distributing the responses to the correct 

components. The embedded API takes all local responses while the sender deals with all remote 

responses. 
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3.4.1.3 Wait Container 

It has been explained earlier in the chapter about containers that in some situations container 

operations are delayed, like when trying to read an entry from an empty container, or when the 

container is currently locked by another transaction. This waiting mechanism also has to be 

implemented in the core. 

Therefore the core has a wait container. Whenever a request cannot be processed immediately (e.g. 

a take operation cannot be processed because the container is currently empty, see chapter 3.4.5), it 

is written to the wait container. As soon as an event occurs in the core (e.g. an event would be that 

something has been written into a container), the event processor component checks the wait 

container if there are any requests that should be woken up because of that (e.g. request waiting for 

entries to be written into that container), removes these requests from the wait container and puts 

them back into the request container to be processed again. Requests that reach their timeout 

before they are processed again are removed from the wait container by the timeout handler 

component. The event processor and timeout handler components are explained in detail in chapter 

3.4.5. 

3.4.1.4 Event Container 

This container receives events by the core processor. The events are read by the event processor to 

check if there are any waiting requests that can be woken up because of this event. An event 

contains all information needed to decide if a certain request should be woken up or not, for 

example a reference to the affected container and the information if entries have been added to or 

removed from this container. Event processing is explained in detail in chapter 3.4.5. 

3.4.2 The Embedded API 

The embedded API allows applications to communicate locally with the core. It contains methods for 

every operation that can be done at space level, like creating and destroying containers, creating, 

committing and rolling back transactions, and all container operations for reading and writing. Every 

time a method in the embedded API is called a request message is generated. This message is written 

into the request container. After that the embedded API waits until a message is written into the 

response container that is the response to that request. Every request message is given a unique id 

by the embedded API, and a response is recognized as belonging to a certain request when it has the 

same id (the core processor takes care that every response is provided with the id of the belonging 

request). 

Figure 20 shows the standard scenario for communication with the core that has also already been 

explained above in short. The request shown here is one for creating a container. It therefore must 

contain all the information needed so that the container can be created (container size, coordination 

types, …). The message also contains a unique id and is flagged “local” to correctly be recognized as a 

request that has to be processed by the local core. After the core processor has finished processing 

the request (which in this case means it has created the requested container), it generates a 

response message and provides it with the id of the request. The response message is again flagged 

with “local” so that it is taken from the response container by the embedded API. The response 

contains any information that is important for the action that has been done, in case of container 

creation it contains the reference to the created container (the container’s address that is used to 

access it). 
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How the API exactly looks like is a question of the implementation, the model doesn’t specify it in 

detail. It could for example provide methods for either synchronous or asynchronous core access, or 

for both. Synchronous core access would look just like a simple method call. Within the API the call 

would block until the response to the request that has been given to the core is received, and then 

return the content of the response to the user as a result of the called method. Using asynchronous 

access, the API could give the user the possibility to define a callback method, and as soon as the 

response is received that method is called. This is also called the result callback pattern. Other useful 

patterns that could be implemented for asynchronous communication would be fire and forget, sync 

with server or poll object, see [33]. 

3.4.3 Remote Communication  

The sender and receiver components are the parts of the core that handle remote communication 

with other cores. They are responsible for sending requests that have to be handled by remote cores 

and receiving responses to requests that were handled by remote cores, as well as receiving requests 

from remote cores that need to be processed by the local core and sending responses to such 

requests back to them. 

Figure 21 shows the scenario for remote communication between two cores. Like above, a container 

should be created, but this time not at the local core (core A), but at a remote core (core B). In this 

case the caller of the method in the embedded API has to know the address of the remote core 

where the container should be created. For simplicity reasons we assume that the address of core A 

is simply CoreA and the one of core B is CoreB. The figure shows that the request created by the 

embedded API is not only flagged with “remote” so that it will be recognized as having to be sent to 

another core, it also contains the address of the remote core it has to be sent to (CoreB). The sender 

at core A takes the request from the request container and sends it to core B. Additionally the sender 

adds the own core’s address to the request, so the other core knows where it comes from. On the 

other side the request is received by the receiver, now including the address CoreA. The receiver 

writes the request to the request Container, flagged with “local” because it should be processed by 

the local core. 
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After processing (which works the same no matter if the message comes from the local or a remote 

core) the core processor writes the response into the response container. Because the address 

contained in the request is not the one of the local core, the response it flagged with “remote”. It is 

then taken by the sender and sent to the given address, CoreA. Again the sender adds the own core’s 

address to the message. Back in core A, the response is written to the response container flagged 

“local” so that it is taken by the embedded API. 

This may seem a bit complicated at the first look, but it isn’t. On the contrary, it helps keeping all 

components separated, and it also helps keeping a clear and simple design for sender and receiver. 

The tasks for sender and receiver can now easily be summed up: The sender takes messages flagged 

with “remote” from the request and response containers. It adds the local core’s address to the 

message and sends the message to the remote core’s address contained in it. The receiver waits for 

incoming messages from remote cores. When a messages is received, it is determined if the message 

is a request or a response. Requests are written into the request container, responses into the 

response container, both flagged with “local” (because the received requests are always to be 

processed in the local core, and the received responses are always meant for the embedded API). 

The clear definition of the sender’s and receiver’s tasks is also important because of the needed 

support for extensibility. The communication components must be completely (and easily) 

replaceable regarding transport protocol (like TCP or UDP) and encoding protocol (like XML or binary) 

so that the user is able to replace the standard communication components by his/her own ones that 

can be specialized for certain scenarios. Further details about remote communication mechanisms in 

the XVSM core are handled in [12]. 
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3.4.4 The Core Processor 

The core processor is the most important component of the core. It implements nearly all of the 

core’s functional requirements, like creating and destroying containers, creating, committing and 

rolling back transactions, and all the container operations for reading and writing. In other words, the 

core processor has the functionality to process every incoming request and create an appropriate 

response. 

The core processor actually consists of a pool of processors that are able to process requests 

concurrently (and all have the same functionality). This is why in all figures the core processor is 

shown not as a single box, but as a stack of boxes.  In addition, the core processor can be split into 

several smaller components, which also helps keeping this large component less complex.  

The structure of the core processor is shown in Figure 22. It is based upon the idea to split the 

operational components from the data structure components. This not only helps reducing 

complexity, but is also very helpful for coordinated access of the core’s data, because although 

multiple processors may be able to process requests concurrently, when more than one processor 

tries to access the same resource (like a container) their access has to be coordinated. 
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3.4.4.1 Processor Pool 

The first thing shown in Figure 22 is the pool of processors for processing requests. Every processor is 

doing a take operation on the request container (using the “local” flag). As soon as a processor 

receives a request, it processes that request, creates a response and writes it into the response 

container (at least in the standard case; we will deal with waiting requests later). Afterwards, it takes 

the next request from the request container. The number of processors can vary, since it could 

depend on the system power and usage scenarios how many processors are best to be used, and can 

therefore be set depending on the usage situation. 

3.4.4.2 Container Manager 

The second core processor component is the container manager. It manages all the containers that 

are hosted by the core. It provides thread safe methods for creating, destroying and retrieving 

containers. So for example when creating a container, a processor just calls the appropriate method 

of the container manager and does not need to handle any concurrency problems, because even if 

more than one processor wants to create a container at the same time, the container manager will 

coordinate these calls correctly. 

The data structures that are hosted by the container manager, representing the core’s containers, 

provide thread safe methods for the operations read, take, destroy, write and shift for a certain 

container. If a processor wants to process a write request, it first has to retrieve the container from 

the container manager to which the data should be written, and then use the write operation of the 

retrieved container data structure. Because the methods are thread safe, the processor doesn’t have 

to deal with concurrency issues, the container data structure will coordinate concurrent access from 

more than one processor itself. 

3.4.4.3 Transaction Manager 

The third component is the transaction manager. It manages all the transactions that are currently 

active in the core. The transaction manager is somewhat similar to the container manager, it 

provides thread safe methods for creating, retrieving, committing and rolling back transactions. The 

transaction data structures stored in it provide thread safe methods for adding operations to this 

transaction. A single transaction stores all its operations in the order they were executed.  

3.4.4.4 Aspect Manager 

The last component is the aspect manager. This component is essential for the support of aspects. As 

described earlier when dealing with the functional requirements of the core, an aspect is a piece of 

code that is added to the core at a certain point. Such a point where aspects can be inserted is called 

insertion point, or in short ipoint. Every operation in the core has two ipoints, one directly before (the 

pre ipoint) and another directly after (the post ipoint) the operation’s execution. Because the core 

processor is responsible for executing all requested operations, it is also the best place for 

implementing the support of aspects. The aspect manager keeps a list of aspects for every insertion 

point. Like the other manager components it provides thread safe methods for adding and removing 

aspects and for getting the list of aspects of a certain insertion point. Every aspect stored by the 

aspect manager provides a method that executes the aspect code when it is called. Since an aspect is 

not initially part of the core itself but is written and added by a user of the core, the creator of the 

aspect has to provide thread-safety for resources that are used by the aspect her/himself if needed. 
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Every time a request is processed by a processor, the processor first gets the list of aspects for the 

pre ipoint of the operation being processed from the aspect manager. Then the processor executes 

all aspects in the list (or none, when there are no aspects for this ipoint). After that the operation 

itself is executed. Directly after the execution of the operation is finished, the processor loads the list 

of aspects from the aspect manager for the operation’s post ipoint, and executes all aspects in the 

list. Aspects can also have special return values that for example tell the processor to skip an 

operation completely. Further details about aspects in the XVSM core are handled in [13]. 

3.4.5 Event Processing and Timeout Handling 

One thing that the core processor doesn’t handle directly is blocking and handling timeouts of 

unfulfillable requests (as said in earlier chapters, requests need to be delayed for example when 

there are not enough entries in the container to be read, or when another transaction currently 

blocks the container that should be accessed). If the core processor would do a direct form of 

blocking wait, it would mean to entirely block one processor thread for the time it takes for the 

request for be fulfilled (or until it times out). In a worst-case scenario, when the core receives a large 

amount of requests that cannot be fulfilled it would block the entire processor pool and thereby 

make the core unable to process any more requests (assuming that the number of processors is 

limited to a certain size, which would normally be the case). 

Therefore the core implements a system for handling blocking requests without the need of blocking 

any of the core’s operational components. The main components of this system are the wait 

container, the event container, the event processor and the timeout handler. As soon as a request 

cannot directly be fulfilled and therefore has to be delayed, the core processor doesn’t generate a 

response to the request but instead writes the request into the wait container. 

3.4.5.1 Event Processing 

Figure 23 shows the scenario when processing an unfulfillable request, in this case a read operation 

to a container that is empty, which means that the read operation is delayed until entries are added 

to the container, or until it runs into a timeout. All requests for operations accessing a container have 

to provide a certain timeout value, in this case this value is 1000 milliseconds (configurable for every 

operation). First the request is taken from the request container by the core processor (1). Because 

the request cannot be fulfilled, the core processor writes it into the wait container (2). When now 

something is written into the same container, the core processor creates an event and writes it into 

the event container. This event contains information about what happened that could be important 

for waiting requests, in this case the information that entries have been added to a certain container 

(3). The line in the figure going to the event container is dashed because not every request that is 

processed by the core leads to the creation of an event. An event only has to be created when the 

operation that is processed has a chance to wake up a delayed request. For example, creating a 

transaction could never lead to waking up another request, and so will never create any event. 
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After the event has been written into the event container, it is taken by the event processor (4). The 

event processor has the task of waking up requests that are waiting for this event. As soon as the 

event processor gets an event, it reads all requests from the wait container and checks for every 

request if the event is a reason to wake it up (5). In this case, the waiting request is a read to a 

container, which means that it can be woken up if entries are added to the same container. Since the 

event in our scenario says exactly that, the request is removed from the wait container (using the 

destroy operation) and written into the request container (6). From then follows the standard 

scenario, the request is again taken by the core processor (7), and this time it can be fulfilled, so the 

core processor generates a response including the read entries (8). 

3.4.5.2 Types of Events 

As for the types of possible events, the core model doesn’t define which types of events exactly can 

occur. This is a thing to be decided by the implementation, as different implementations could go 

different ways in how detailed the information is that an event provides. Creating very detailed 

events can be more time consuming, but make it easier for the event processor to decide if a request 

should be woken up because of a certain event or not (reduce the amount of unneeded wake-ups). 

On the other hand, creating less detailed events will be easier but also increase the chance of waking 

up a request that can still not be processed. In that case, the request would just end up in the wait 

container again, but it would still use unnecessary processing time which would better be used for 

other operations. 

The basic types of events that will probably in some way come to use in every implementation are: 

 Entries Added 

When entries have been added to a certain container, operations must be woken up that 

want to do a read, take or destroy on that container and couldn’t be fulfilled because there 

were not enough entries in the container. 

 Entries Removed 
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When entries have been removed from a bounded container, operations must be woken up 

that want to write something into that container but couldn’t be fulfilled because there was 

not enough space left in the container for the entries to be written. 

 Lock Released 

When a certain lock is released from a container or entry, operations must be woken up that 

want to access this container or entry but couldn’t be fulfilled because the container/entry 

was locked by another transaction. 

 Container Destroyed 

When a container is destroyed, it is of course not possible any more to do any operations on 

this container. Because of that, requests that are waiting for anything concerning this 

container must be woken up. These operations will then respond to the user as failed 

because the container doesn’t exist anymore. 

3.4.5.3 Timeout Handling 

In the above case, the operation could be fulfilled before the request ran into a timeout. When this is 

not the case and a request runs into its timeout, it is handled by the timeout handler component. 

This is shown in Figure 24. Until the request is written into the wait container the scenario is the 

same as above. The timeout handler regularly (in a configurable time interval) checks the wait 

container if it contains any requests that have timed out (every request contains a timestamp for 

entering the core and a timeout value, so this can easily be checked) (3). Timed out requests are 

removed from the wait container (destroyed) and written into the request container (4), from where 

it is again taken by the core processor (5). The core processor checks every request if it has not timed 

out yet. If it has timed out, the core processor generates an error response (6) for that request that 

tells the user that the request could not be fulfilled within the given time, in other words the 

operation has failed. 

 

To sum up the tasks of the event processing and timeout handling components: The event processor 

takes events from the event container. For an event it checks every request in the wait container if it 

is waiting for that event, removes such requests from the wait container and writes them back into 

the request container. The timeout handler regularly reads all waiting requests from the wait 

container and checks them for timeouts. It removes all timed out requests from the wait container 

and writes them into the request container. This structure does not only separate the blocking of 

requests from the core processor, it also grants extensibility: If in a certain usage scenario it would 
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happen very often that requests are delayed, the core could just run more than one event processor, 

because the processing of events can be done concurrently without problem. 

3.4.6 Error Handling 

Error handling is an important task when designing a system for which fault tolerance is a major 

requirement. When an error occurs during processing, the core processor must not crash, but create 

a response containing detailed information about the kind of error that occurred so the user is able 

to react properly to what happened. Defining already for the model which kinds of errors can occur 

in the core is especially important because every core implementation must later be able to 

understand error responses, no matter which core implementation they came from, so every 

implementation must keep to a single standard (otherwise interoperability would not be possible). 

The following list defines all possible types of errors and when exactly they occur. Every error has a 

unique name that always begins with “Xvsm” and ends with “Exception” (since it is the most 

common standard to handle errors with exceptions): 

 XvsmContainerCreateException 

Thrown when something goes wrong during container creation, e.g. the given size value is 

invalid or one of the container’s coordinators throws an error during initialization. In this 

case the parameters with which the containers were created should be checked for 

correctness. 

 XvsmContainerNotFoundException 

This exception is thrown when the container to be used in an operation doesn’t exist (e.g. 

when it was deleted). This exception can be thrown by any operation that uses a container. 

 XvsmContainerWriteException 

Thrown when something is wrong in a write operation (write or shift) concerning the given 

list of entries. This is the case when an entry contains selectors that don’t fit with the 

coordination types supported by the container, when an entry is written to a key in the meta 

container that is read only, or when the information contained in one of the selectors is not 

correct (e.g. when the index where an entry should be added in a vector coordinated 

container is invalid; if the information contained in a selector is correct is decided by the 

coordinator). 

 XvsmContainerReadException 

Thrown when something is wrong in a read operation (read, take or destroy) concerning the 

given list of selectors. This is the case when a selector is used for reading that doesn’t match 

to any of the container’s coordination types (e.g. a selector for fifo on a container that 

supports only key coordination), or when the information contained in one of the selectors is 

not correct (if the information contained in a selector is correct is decided by the 

coordinator). 

 XvsmOperationTimeoutException 

Thrown when the operation ran into a timeout while waiting for a lock, which is the case 

when wanting to write into a container that is currently locked by another transaction. This 

can happen in every operation that allows defining a timeout. 

 XvsmOperationFailedException 

Thrown when the operation failed because it was unable to be fulfilled (although a lock could 

be acquired) and ran into a timeout. This can happen when there are not enough entries in 
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the container (in case of a read operation), or when there is not enough space left in the 

container (in case of a write operation), or when one of the container’s coordinators doesn’t 

allow an entry to be written (e.g. in a key coordinated container, when an entry should be 

written with a key that already exists). 

Note: This is exception is similar to the one above, the important difference is that in the one 

above the operation didn’t even come to finding out if the operation could be fulfilled when 

there wasn’t a lock. 

 XvsmTransactionNotFoundException 

Thrown when the transaction used by an operation doesn’t exist (e.g. when it was already 

committed or rolled back). This can happen in every operation that uses a transaction, and of 

course at commit and rollback. 

 XvsmAspectException 

Thrown in case of an aspect-related error. This is always the case when an aspect throws an 

exception and thereby gets the operation to fail. This error can be thrown in every of the 

core’s operations since aspects can be added to every operation in the core. 

 XvsmCommunicationException 

Thrown when something goes wrong while trying to communicate with another core, e.g. 

the other core cannot be reached. This error can be thrown in every operation that can 

communicate with a remote core (all operations concerning containers, transactions and/or 

aspects at remote cores). 

 XvsmSerializationException 

Thrown when there is an error serializing or deserializing the data in a request or response 

(e.g. selectors or entries). This is mostly related to remote communication, but can also 

happen when communicating with the embedded core since entries could be stored in a 

container in a serialized state. Since all operations can also carry user-defined metadata for 

aspects with them (see chapter 5 for more information on that), this data can also be a 

reason for this exception to be thrown during an operation. 

 XvsmFatalCoreException 

When this exception is thrown, something completely unexpected happened within the core. 

After this error is thrown the integrity of the core is no more guaranteed, it is especially likely 

that the part concerned by the operation (e.g. a certain container) is no more reliable. 

For a core implementation in a programming language that supports inheritance, this feature should 

of course also be taken into account when implementing the given exceptions. All exceptions should 

have a single XvsmException base class. Also some of the exceptions are well suited to have a 

common base class, e.g. all the container related exceptions could be inherited from 

XvsmContainerException. 

3.5 Architecture Variants 

For different usage situations of the core, there are several possible architecture variants. 

3.5.1 Peer 

The standard architecture variant is the peer. It contains all of the core’s earlier introduced 

functionality. A core is running underneath an application (normally started by the application). The 

application accesses the core by use of an API lying over the core. This could be the core’s low level 
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API, but could also be a higher level API on top of the core to provide easier use of the core’s 

functions (especially when the core is extended by profiles, see chapter 3.6). Underneath the core 

lies the communication layer that defines the communication mechanisms that are used by the core 

to communicate with other cores. This is nothing else than the sender and receiver components in 

the core structure (as it has been said, these components are built to be replaceable to support 

different communication mechanisms). All communication done by the application with other peers 

goes through the core. 

 

3.5.2 Client 

The client architecture is very similar to the peer. The difference is that it does not have a fully 

functional core, only a “client core”. This client core is more or less only there to fill the gap between 

the API and the communication layer, it cannot manage any data locally. According to the core 

structure that has been introduced earlier, this variant of the core could be seen as only consisting of 

the embedded API, the request and response containers and the sender and receiver components 

(because it has no core processor and event processing components it cannot process any requests 

locally). This variant is useful when the machine the application runs on has very little power and/or 

a connection with very low bandwidth (e.g. a mobile device), and because of that should not/cannot 

host any data itself. 

 

3.5.3 Standalone 

The core can not only serve for communicating with other cores, but also for locally coordinating the 

data structures of an application, in which case it is not necessary to have any remote 

communication functionality. The standalone variant serves that purpose. Without a communication 

layer, the core cannot communicate with other cores and vice versa, and can only be accessed 

directly from the overlying application. According to the core structure, this would be a core without 

the sender and receiver components, which means that it cannot receive and process any remote 

requests or responses. 

Application 

API 

Core 

Communication 

Figure 25: Peer architecture. 

Application 

API 

Client Core 

Communication 

Figure 26: Client architecture. 
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3.6 Profiles 

One of the goals of the core is to provide a very compact set of only the most important functions, 

but also be highly extensible, so that new functions can easily be added with modules extending the 

core.  

These modules are called profiles. Profiles are situated directly above the core layer, underneath the 

API layer, with the API being specialized on using the core together with the configured profiles. In 

this way, the user of the core sees the core as a single system, although it may be extended by 

multiple profiles. 

As shown in Figure 28, there are many possibilities for useful profiles. For example, a core specialized 

on security would probably need authentication and authorization mechanisms as well as encrypted 

communication between cores, for which it could be extended by appropriate security profiles. 

 
The main way of adding these profiles to the core is by the use of aspects. Aspects are pieces of code 

that can be added into the core to be executed directly before or after any of the core’s operations. 

So the profiles are actually not only added on top of the core but (at least partly) within the core 

itself. An aspect for logging could for example simply be one that is added before the execution of 

any operation (every pre ipoint). This leads to calling the aspect every time before an operation is 

executed, and the aspect could log any information available about that operation. This is of course a 

very simple example, many of the profiles listed above would probably need several different types 

of aspects to implement their functionality into the core.  

A more complex example would be an authentication profile. It is one that shows very well that a 

profile itself can efficiently use the space to manage its own data. In this case, the profile could use 

containers in the local space to manage lists of users and user groups. The owner, as well as access 

permissions, could be stored for every container in its meta container. Aspects on pre ipoints could 
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Figure 28: Extending the core with profiles. 
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implement user authentication mechanisms that prevent users from accessing containers that they 

don’t have the right to. Even further, aspects could control access to all of the core’s functions, like 

creation of containers and transactions. For best usage of these additional functions, the API layer 

would have to provide appropriate functions for authentication, creating users, and so on. 

An implementation of a simple security aspect for the .Net version of the core is introduced in 

chapter 5. For a detailed description of aspects in the XVSM core, see [13]. 
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4 The XcoSpaces .Net Kernel Implementation 

4.1 Introduction 

This chapter gives a detailed explanation about the implementation of the XVSM core using the C# 

programming language of the .Net Framework [34]. The name of this XVSM .Net implementation is 

XcoSpaces. The phrase “Xco” stands for Xcoordination, a term that addresses the space’s ability of 

extensible coordination and is also the name of the company [35] that is later planned to distribute 

XcoSpaces. For the core the XcoSpaces implementation uses the term kernel, because the XcoSpaces 

developers found it to be more fitting when looking at the core as a piece of software. Another 

advantage to the renaming is that is it’s clear that when speaking of the core the theoretical model is 

meant and when speaking of the kernel it means the XcoSpaces implementation. 

After MozartSpaces [36], the open source XVSM implementation developed in Java (which is also 

described in [6] and [13]), XcoSpaces is the second implementation of XVSM. Because XcoSpaces 

primarily targets the Microsoft community and the Windows operating system, .Net C# has been 

chosen as the used programming language. Further reasons for C# are that it is a very modern and 

high-level programming language and supports the implementation of the XVSM concept very well. 

Also C# is one of the most wide spread programming languages and is used by a large number of 

developers, which is an ideal prerequisite for spreading the XVSM paradigm. Visual Studio 2005 has 

been chosen as programming environment, because it is most common for C#, supports all of C#’s 

features, is widely available and supported very well. 

To name a few facts, the XcoSpaces kernel consists of about 160 classes, spread over 11 assemblies 

(single projects). All classes together have about 10000 lines of code and an additional 6000 lines of 

documentation. The kernel’s testing environment currently consists of 564 unit tests which give a 

near to complete code coverage (about 95%). 

In addition to the kernel, the high level API, which is developed by Ralf Westphal, is the second part 

of the XcoSpaces implementation. This API wraps the kernel and provides more convenient classes 

and methods (like classes that implement fifo or key coordinated containers, XcoQueue and 

XcoDictionary), but doesn’t support all of the kernel’s features. Since this thesis only concentrates on 

the structure and implementation of the kernel, the high level API will not be discussed further. 

The following chapters show how the conceptual XVSM core model has been implemented, which 

changes there are in comparison to the model and which things have been uniquely added to the 

XcoSpaces kernel that were not part of the core model, as well as implementation specific details like 

class and interface descriptions and the project structure. 

4.2 The Kernel Architecture 

The first thing to take a closer look at is the architecture of the kernel. Compared to the core model, 

the kernel structure has undergone some changes. A bit of the clearness and encapsulation of the 

model has been given up to be able to provide the highest possible level of performance. 

The kernel structure can be seen in Figure 29. It shows the components named by the names of the 

classes that implement them (or at least by the name of the representing class, if a component 
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consists of more than one class). Because of being the class that represents the whole kernel, the 

embedded API has been named XcoKernel (described in chapter 4.2.1). The sender and receiver 

components have been pulled together into a single component CommunicationService (see 4.2.2). 

This component is easily replaceable for using different communication service implementations. The 

request and response containers have been removed because it turned out to be really difficult to 

get them performing well, and removing them improved the processing speed of local requests 

significantly. Because the job of the request and response containers is also the automatic 

distribution of local and remote messages to different components, this task now also needs to be 

done by other components: The XcoKernel communicates directly with the CommunicationService 

for remote requests and with the CoreProcessor (see chapter 4.2.5) for local requests (the requests 

are added directly into the core processor’s thread pool queue). The CommunicationService gives 

requests also directly to the CoreProcessor and responses to the XcoKernel. Instead of the response 

container a ResponseDistributor component has been added which simply passes remote responses 

to the CommunicationService and local responses to the XcoKernel. 

 
Small changes have also been made to the event processing components: When delaying a request, 

the CoreProcessor not only writes the request into the wait container, but wraps the request into a 

WaitRequest message (see chapter 4.2.4.3) that additionally contains information about what this 

request is waiting for, so that it easier to decide for the EventProcessor (see chapter 4.2.6) if a certain 

request should be woken up. Another difference is that the TimeoutHandler (also handled in chapter 

4.2.6) directly creates responses and gives them to the ResponseDistributor instead of letting the 

CoreProcessor handle that (which also adds a bit of performance since the request doesn’t need to 

go all the way through the core again). 

After this short overview, the following chapters provide more detailed information about the 
implementation, functionality and structure of the main kernel components. 

or 
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Figure 29: The XcoSpaces kernel structure. 
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4.2.1 The Embedded API: XcoKernel 

The embedded API is implemented in a single class named XcoKernel. From an outside view the 

XcoKernel class represents the kernel itself (or in fact IS the kernel), since the space is not only 

accessed by using the XcoKernel, but is also created by instantiating the XcoKernel. The API provided 

by the XcoKernel provides methods for synchronous calls to every kernel function. It contains no 

asynchronous methods of any kind. It has been paid attention to couple the XcoKernel class as 

loosely as possible with the rest of the core, so if an asynchronous API would be needed the 

XcoKernel class could be replaced without much effort, or simply be extended by inheriting it. Next 

to the XcoKernel, there are some other important classes that are needed to work with the kernel 

(because they are needed by the XcoKernel’s methods) and therefore can be seen as part of the API: 

 ContainerReference 
The reference to a container that is generated when the container is created and can be used to 
access this container. It is needed by many of the XcoKernel’s methods like Read(…), Take(…), 
Destroy(…), Write(…) and Shift(…). 
 

 Selector 
The base class for selectors that are used to specify which entries are read in a read operation, or to 
specify the coordination properties when writing entries to a container (like a key value or vector 
index). For every available coordination type there is a special class belonging to that coordination 
type that inherits the Selector class, like the FifoSelector for fifo coordination. 
 

 Entry 
Entries can be stored in containers, so this class is used every time something has to be written into 
or read from a container. An entry holds the stored value (object) and a list of selectors that define 
how this entry is coordinated in the container. 
 

 TransactionReference 
The reference to a transaction that is generated when the transaction is created and is needed for 
every operation that should be done within this transaction, as well as to commit or roll back the 
transaction. 
 

 Notification 
The class that represents a notification (a short introduction to notifications as a core requirement 
was given in chapter 3.2.2.2). This class allows to be automatically notified when something changes 
in a container. The implementation of notifications in the XcoSpaces kernel is handled later in detail. 
 
The use of the API is best shown by a small example. It shows creating a fifo coordinated container, 

writing an entry into this container, taking the entry and then destroying the container (because the 

kernel is instantiated with the using statement, it is automatically disposed at the end): 

//create a new space by instantiating the kernel 

using (XcoKernel kernel = new XcoKernel()) 

{ 

 //create a new fifo coordinated container 

 ContainerReference cref = kernel.CreateContainer( 

  null, -1, false, new FifoSelector()); 

 

 //write an entry into the container  

 kernel.Write(cref, null, 1000, new Entry("Hello Space!")); 

 

 //now read the entry from the container and write the value to the console 

 List<IEntry> result = kernel.Take(cref, null, 1000, new FifoSelector(1)); 
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 Console.WriteLine(result[0].Value.ToString()); 

 

 //destroy the container 

 kernel.DestroyContainer(cref); 

} 
Code Example 1: Working with the XcoKernel. 

A more detailed description of the XcoSpaces kernel API, its methods and how they are used can be 

found in[12]. 

4.2.2 Remote Communication 

The remote communication components have changed in comparison to the core model by merging 

the sender and receiver into one single component, the communication service. This has been done 

to present the communication service as a single point of replacement when wanting to replace the 

default communication service by another one. The main requirements for this component have not 

changed, one being that the communication service must be replaceable and the other being that 

the kernel must provide a default communication service that is fitting to as many usage situations as 

possible (being optimized for both reliability and performance). 

For implementing this default communication service it was chosen to use WCF (the Windows 

Communication Foundation [37]) which is a part of .Net Framework 3.0. The reasons for this choice 

are that WCF already provides communication functions on a very high level and is therefore very 

easy to use and implement, and that WCF itself is highly configurable which allows it to be fitting for 

many usage situations. It can for example be configured to communicate over TCP, but it could as 

well use web services and SOAP for communication, just by changing a few configuration 

parameters. It has therefore been assured when implementing the WCF communication service for 

the kernel that none of WCF’s configurability gets lost. 

The replaceability of the communication service is ensured by the use of contracts. More details on 

contracts in the kernel and the communication service contract are given in chapter 4.4. More 

detailed information about communication services in the kernel and the WCF implementation can 

be found[12]. 

4.2.3 Core Containers 

The core container is implemented as a generic class and thus perfectly suitable for both the event 

and the wait container (using Event/WaitRequest as generic type). Genericity is also very useful here 

because of the type safety that is reached with it for the messages that are written into and read 

from a core container. Every component that is using the core container can rely on that it only 

contains objects of that certain type. Like a normal container, the core container also uses entries to 

store its values. But because the normal entry has no type safety (its value is of type object) a special 

generic subclass is used: 

 Entry<T> : Entry 
Special generic variant of the entry class that is a subclass of Entry. The values stored in this entry 
can only be of the type T. This class is used for core containers only. 
 
Since the request and response containers have been removed in the kernel structure, it is no more 

needed for the core container to support the kind of labeling entries (with “local” or “remote”) as it 

is needed in the core model. Thus the core container’s functionality is very close to a blocking 
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message queue, with the additional abilities to read all entries and destroy a certain entry. Despite of 

that, the methods that are provided for writing to and reading from the core container very much 

stick to the definitions of the core model: 

 CoreContainer<T> 

 WriteOne Writes one Entry<T> into the container. 

 TakeOne Takes one Entry<T> from the container. If there are no entries in the 
container, the method blocks until there are entries in the container to be 
taken. 

 ReadAll Reads all Entries from the container and returns a List<Entry<T>>. An empty 
list is returned if there are no entries in the container. 

 DestroyOne Removes a certain Entry<T> from the container. If the entry was really 
removed true is returned, else false (this is needed for concurrency issues 
between event processor and timeout handler). 

 
It is also important for the core container to coordinate concurrent access from different 

components. The core container must not crash if for example a WriteOne and a TakeOne operation 

are executed by different threads at the same time. To solve this problem the core container makes 

use of the System.Threading.ReaderWriterLock class which is able to coordinate multiple threads 

using the multiple-reader/single-writer principle and is therefore perfectly suitable for the given 

situation. While ReadAll must acquire a reader lock, WriteOne, TakeOne and DestroyOne must 

acquire a writer lock when wanting to access the container. Figure 30 shows a class diagram of the 

core container structure: 

 

4.2.4 Message Types 

There are four different types of messages in the kernel that are communicated between the kernel’s 

components: Request, Response, Event and WaitRequest (which is an addition to the original core 

model). In the kernel these messages are implemented as different classes. 

4.2.4.1 Request 

The following class diagram shows an overview of both request and response messages: 

Figure 30: Class diagram of the kernel's core container. 
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The request is implemented in the RequestMessage class. It inherits from the abstract class Message 

which contains parameters that are equal for both request and response messages. 

 Message 

 MessageID The id of the message assigned and used by the XcoKernel to find the correct 
Response to a Request sent to the kernel (the response from the kernel comes 
back with the same message id). 

 IsRemote True if the address of the message belongs to a remote space. 

 RemoteAddress The address of the remote space where this message should be sent to, or has 
been received from. Or null, if it is the local space. 

 

 RequestMessage : Message 

 Content The content of this request message in form of a RequestMessageContent 
object.  

 Timestamp The date when the request entered the kernel. This is important for checking 
if a request has reached its timeout. 

 

Figure 31: Class diagram of the kernel's request/response message classes. 
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The RequestMessage class doesn’t directly contain the information that is needed for the operation 

to be executed in the kernel. This information is contained in a RequestMessageContent object. The 

reason why the content is separated from the message itself in that way is that this is needed for 

fault tolerant remote communication. When sending a request to another kernel, the 

RequestMessage object must be serialized. If the request contained data that causes deserialization 

on the other side to fail, the remote kernel would be unable to even send back an appropriate error 

message, because it cannot get the message id and remote address contained in the message. By 

separating the content from the message this can be avoided: The content is serialized first and 

stored in the request as byte array. Since the message itself doesn’t contain any other data that 

could cause the deserialization to fail, the problem of a message that cannot be deserialized cannot 

occur any more. If after deserializing the request, the content cannot be deserialized, it is no problem 

for kernel any more to generate a response with a corresponding error.  

The RequestMessageContent class itself doesn’t have any parameters but serves as base class for all 

different contents a request can have. For every operation (like container create, container destroy, 

read, write, and so on) there is a special subclass of RequestMessageContent that contains all the 

information that is needed for that certain operation. Although this solution requires a lot of class 

definitions, it has been chosen because it allows a clear definition which parameters are needed by 

every different operation. It is not necessary to give a detailed explanation of all these classes here, 

but just to show an examples, this is how the content class for the container create operation looks 

like: 

 RequestContainerCreate : RequestMessageContent 

 Size The size of the container.  

 Unique True if entries in the container should be unique. 

 CoordinationTypes A List<Selector> that defines the coordination types for the container. 

 

4.2.4.2 Response 

Since the response also transports data between the XcoKernel and CoreProcessor components, it is 

to some degree similar to the request. This is represented through the fact that like the 

RequestMessage, the ResponseMessage class also inherits from the Message class (thereby 

inheriting its MessagID, IsRemote and RemoteAddress properties), as it is also displayed in Figure 31. 

 ResponseMessage : Message 

 Content The content of this response message in form of a ResponseMessageContent 
object.  

 
Also similar to the request (and of the same reasons), the response message and the content are 

separated. Unlike the request, the response doesn’t need a timestamp since timeouts are not a topic 

for responses. Since all response contents share the fact that they must be able to return an error, a 

property for doing that is present in the ResponseMessageContent class: 

 ResponseMessageContent 

 Error Exception that has been thrown in the kernel if an error occurred while 
processing the corresponding request, or null if no error occurred. 
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Directly sending back an exception (meaning an instance of the Exception class) in the response when 

an error occurred provides a very comfortable way for the XcoKernel to give the error back to the 

overlying application. If the Error property of the response is not null, the XcoKernel just has to 

rethrow the exception in the thread where the XcoKernel’s method was called. 

Just like with the RequestMessageContent, for every different type of operation there exists one 

class inheriting the ResponseMessageContent, defining which parameters the response for that 

operation contains. Corresponding to the example given above, the response content class for the 

container create operation looks like that: 

 ResponseContainerCreate : ResponseMessageContent 

 CRef The ContainerReference object that can be used to access the container that 
has been created. 

 

4.2.4.3 WaitRequest 

Since a WaitRequest only stays within the kernel and is never the target of serialization or 

deserialization it doesn’t need most of the properties that were needed for request and response. 

The reason for not writing a request directly into the wait container is that by wrapping it into a 

WaitRequest it can be equipped with additional information that makes determining if a request 

should be woken up much easier. 

 WaitRequest 

 Operation The waiting request.  

 CRef Reference to the container that is the target of the operation. 

 TRef Reference to the transaction in which the operation was executed (or null if 
the transaction has no importance for the reason of waiting). 

 Type The type of event that the request is waiting for (like EntryAdd or 
EntryRemove). 

 
A waiting request is normally woken up when the type of event that occurred matches the type of 

event that the request is waiting for and the container for which the event occurred is also the same 

as the one that is the target of the waiting operation. The transaction only plays a role in special 

cases.  

4.2.4.4 Event 

An event must contain all information that is needed to determine if a waiting request should be 

woken up. Because of that the event must actually be able to store the same information as the 

WaitRequest. But because the information contained in the event is of clearly different purpose, it 

was decided to implement two different classes either way. An event is represented by the 

WaitEvent class: 

 WaitEvent 

 Operation The operation that should be woken up, if the event’s target is to wake up 
only one certain operation (otherwise null). 

 CRef The reference to the container for which the event occurred. 

 TRef The reference to the transaction for which the event occurred (or null if the 
transaction has no importance for the event). 

 Type The type of event that occurred (like EntryAdd or EntryRemove). 
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The following figure presents the class structure of the wait/event classes (The RequestContainerOp 

class is the base class for all request messages that are allowed to go into waiting state, namely all 

requests that concern operations on a container): 

 

The details about waiting and event processing are handled in chapter 4.2.6. 

4.2.5 The CoreProcessor 

With the removal of both the request and the response container, the structure of the core 

processor has changed to some degree. Since the requests are now given directly to the core 

processor by the other components (the XcoKernel and the communication service, as displayed in 

Figure 29), the core processor itself has to deal with dispatching the requests to certain processor 

threads. For this task a component is added to the core processor called thread dispatcher. Its task is 

simply giving an incoming request to a processor thread that is currently free, or queue the requests 

as long as all processor threads are occupied. 

When the kernel, it became clear that there were two good solutions for implementing the thread 

dispatcher, and both of them had their advantages. The first was implementing the thread dispatcher 

by using the System.Threading.ThreadPool class, with the advantage of having a solution that doesn’t 

need any additional libraries and is directly a part of and supported by the .Net Framework, but the 

disadvantage that the thread pool provides nearly no possibilities for specific configuration. The 

second solution was using the Concurrency and Coordination Runtime (CCR) [38] that is a specialized 

library for executing concurrent operations and thread coordination and is distributed together with 

Microsoft’s Robotics Framework. The advantage to this solution is clearly that it is specialized at 

exactly the task that it is needed for in the kernel and that it is also very well configurable, but it is 

also an additional library that is underlying certain license agreements that have to be taken into 

consideration. 

Because of that it has been decided to make the thread dispatcher a replaceable component (like the 

communication service). The second reason is that the thread dispatcher is one of the main points in 

the kernel to ensure scalability. Intelligent and fast processing of requests on both low-end and high-

end systems is crucial for the kernel’s performance. By having the thread dispatcher replaceable 

users could even develop specialized thread dispatchers for certain hardware or operating systems. 

Figure 32: Class diagram of the kernel's wait/event message classes. 
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The replaceability of the thread dispatcher is ensured by the use of contracts. More details on 

contracts in the kernel and the thread dispatcher contract are given in chapter 4.4. 

Figure 33 shows the most important classes of the core processor in a class diagram: 

 

Figure 34 shows the structure of the core processor. Instead of the processors taking requests from 

the request containers, they are now actively called by the thread dispatcher. Instead of writing the 

response into the response container, the processor threads now call the response distributor. This 

includes another very important difference that is not visible in the figure: The response distributor is 

a component that doesn’t run in an own thread. When being called, it does all its processing directly 

in the thread of the processor that called it. This also means that the processing of the response is all 

actually done in the processor thread until it either reaches the XcoKernel or is sent by the 

communication service. Although this makes the overall structure less clean, this is a main reason 

that the processing is significantly faster than with a response container, because it removes any 

indirections on the way of the response from the processor to its destination (the coordination of 

threads is unfortunately very costly). 

 

Figure 33: Class diagram of the kernel's core processor classes. 
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Despite of that the core processor structure is mainly the same as in the core model (which is why 

the other parts are only shown very small in the above figure). The container manager and 

transaction manager provide thread safe methods for accessing containers and transactions: 

 ContainerManager 

 CreateContainer Creates a new container according to the given size, uniqueness and list of 
coordination types. A new ContainerReference is created for the container, 
and the container is added to the local space. In addition a meta container (a 
key coordinated container) is created for this container. 

 DestroyContainer Removes the container that belongs to the given ContainerReference from 
the local space. An exception is thrown if a container with this reference 
doesn’t exist. 

 GetContainer Gets the Container object that the given ContainerReference belongs to. An 
exception is thrown if a container with this reference doesn’t exist. 

 

 TransactionManager 
 CreateTransaction Creates a new transaction. A new TransactionReference is created for the 

transaction, and the transaction is added to the local space. 

 CommitTransaction Commits the transaction by committing all operations contained in the 
transaction’s log and releasing all locks that are owned by this transaction, 
and removes it from the local space. 

 RollbackTransaction Rolls back the transaction by undoing all operations contained in the 
transaction’s log and releasing all locks that are owned by this transaction, 
and removes it from the local space. 

 GetTransaction Gets the Transaction object that the given TransactionReference belongs 
to. An exception is thrown if a transaction with this reference doesn’t 
exist. 

 
The aspect manager has undergone some changes compared to the core model. These changes are 

handled in detail in chapter 5 which deals with the implementation of aspects in the XcoSpaces 

kernel. A detailed explanation of the implementation of containers and transactions (meaning the 

Container and Transaction classes) is given in chapters 4.2.7 and 4.2.8. 
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Figure 34: The structure of the kernel's core processor. 
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Finally, the CoreProcessor class itself only needs to show a single method to the outside: 

 CoreProcessor 

 ProcessRequest Takes a RequestMessage and gives it to the thread dispatcher for processing. 

 

4.2.6 Event Processing and Timeout Handling 

Despite of wrapping the waiting requests by the WaitRequest class and letting the timeout manager 

create responses directly, the event processing and timeout handling components haven’t 

undergone many changes compared to the core model. The types of waiting (EntryAdd, 

EntryRemove, LockRelease and ContainerDestroy, see chapter 3.4.5.2) remain the same. Most of the 

effort when implementing this part of the kernel has gone into improving the performance of 

generating events and delaying and waking up requests as much as possible (the part of the model 

that doesn’t provide a detailed definition). This was tried to be reached by also optimizing the core 

processor so that events are only generated when they are necessary (but still assuring that these 

optimizations don’t noticeably slow down the normal processing of the kernel). 

The main point of optimization is the container: Since all waiting requests are waiting for some event 

that is connected to a certain container, there is no need to generate events if there are no requests 

waiting for that container. Also, if entries are added to the container within a certain transaction, 

only requests that are waiting for EntryAdd on the same container AND using the same transaction 

can be woken up immediately. Operations that are not using the same transaction can only be 

woken up as soon as the transaction is committed, because until that they will not be able to access 

anything that has been added to the container (because everything that has been added is still 

locked by another transaction) (the same goes for EntryRemove). This problem is solved through the 

use of the WaitCounter class. It is used to count how many requests are waiting for EntryAdd or 

EntryRemove on a certain container, meaning every container has two WaitCounter objects, one for 

each of these event types (also see Figure 35 for an illustration of the WaitCounter in a class 

diagram). 

 WaitCounter 

 Increase Increases the wait counter by 1 for the given TransactionReference. 

 Decrease Decreases the wait counter by 1 for the given TransactionReference. 

 Is0 If called with a TransactionReference, returns true if the wait counter for this 
transaction is 0. If called with no parameters, returns true if the overall wait 
counter is 0 (means no waiting requests for any transaction). 

 
Every time a request is delayed, the Increase method of the appropriate WaitCounter is called. Every 

time the event processor or timeout handler removes a waiting request, it calls the Decrease method 

of the same WaitCounter. Whenever entries are added to or removed from a container, the core 

processor checks by calling Is0 for the current transaction if an event needs to be created (the 

generated event then contains the TransactionReference of the current transaction). Whenever a 

transaction is committed in which entries are added to or removed from a container, the core 

processor calls Is0 without parameters from the appropriate WaitCounter of the affected container 

to check if an event has to be generated (the generated event then contains no 

TransactionReference), because after committing the transaction no lock is being held on the 

container so that all waiting operations regardless of which transaction they use can be woken up. 



67 
 

The handling of the EntryAdd and EntryRemove events in the event processor is simple: If one of 

these types of events is received, all waiting requests are woken up that wait for the same type of 

event and the same ContainerReference, and, if the event contains a TransactionReference, that 

have the same TransactionReference (otherwise this value doesn’t matter). 

The handling of the ContainerDestroy event is even simpler: The event is generated every time a 

container is destroyed and one of the container’s WaitCounters returns false when calling Is0 

without paremeters (meaning there is at least one waiting request). When the event processor 

receives such an event, it wakes up all waiting requests with this ContainerReference. 

More complicated is the waking up of requests that are waiting for the release of a lock, especially 

when locking is done at entry level (so not the whole container is locked by a transaction, but only 

single entries). A very complex situation (that the kernel must nevertheless be able to handle) is for 

example the following: When a container is working with entry level locking (like one with key 

coordination, as said earlier the possible level of locking depends on the used coordination type) it is 

possible that different entries in this container are locked by read and write locks from different 

transactions. But if now an operation wants to read the entry count of the container, still the whole 

container (and not only single entries) has to be (read) locked, because as long as the transaction 

that read the entry count is not committed or rolled back, the container’s entry count must not 

change. This also means that for being able to set a read lock on the container, there must not be any 

write locks on entries of this container. So, if such an operation is delayed, it has to be woken up as 

soon as all write locks on all entries of this container are released as long as they don’t belong to the 

same transaction (because write locks of the same transaction of course don’t affect the operation). 

These kinds of complex situations make it very problematic to generate events at the right time and 

make them wake up the right requests. To still make the kernel reliable in such situations, the main 

part of handling the waiting for locks has been implemented directly into the kernel’s locking 

mechanisms (centered in the ContainerLevelLockManager and EntryLevelLockManager classes). 

Although this reduces the kernel’s performance a little bit, it has been decided that reliability is the 

more important thing here, since it would be fatal if a situation could be produced where a waiting 

request is not woken up correctly (and in the worst case, when running with infinite timeout, ends up 

being stuck in the wait container forever). The locking classes remember every request waiting for 

LockRelease and every time a lock is released check if the preconditions for waking up any of them 

are fulfilled. As soon as that is the case, a LockRelease event is generated containing exactly the 

request that should be woken up in the event’s Operation property, which causes the event 

processor to wake up exactly this one event (as long as it is still in the wait container and hasn’t 

timed out yet). A detailed description about the kernel’s locking functionality can be found in [12]. 

4.2.7 Containers and Coordination Types 

Within the kernel, containers are represented by the Container class, which is one of the kernel’s 

most complex classes. It is not only responsible for all container operations that are executed on a 

certain container, but also for writing requests that cannot be fulfilled to the wait container, 

generating events concerning entries that have been added to and removed from this container if 

needed, managing the locking of the container and its entries (and also deciding at which level the 

locking for a certain operation has to be done), coordinating concurrent calls to the same container 

from different processors and managing the container’s aspects. 
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4.2.7.1 The Container Class 

The Container class provides methods for every container operation defined in the core model: 

 Container 

 CRef The ContainerReference object that is used to address the container from 
outside the kernel. 

 AddWaitCounter The wait counter for requests waiting for EntryAdd. 

 RemoveWaitCounter The wait counter for requests waiting for EntryRemove. 

 Read Reads a list of entries from the container and acquires a read lock for the 
resources that need to be locked. Which entries are read is decided by the 
list of Selectors provided by the operation. 

 Take Takes a list of entries from the container and acquires a write lock for the 
resources that need to be locked. Which entries are taken is decided by 
the list of Selectors provided by the operation. 

 Destroy Removes a list of entries from the container and acquires a write lock for 
the resources that need to be locked. Which entries are removed is 
decided by the list of Selectors provided by the operation. 

 Write Writes a list of Entries into the container and acquires a write lock for the 
resources that need to be locked. 

 Shift Writes a list of Entries into the container and acquires a write lock for the 
resources that need to be locked. All entries that would prevent the 
operation from being fulfilled are removed from the container. 

 GetProperty Reads the property with the given name from the container and acquires a 
read lock on the container if reading this property needs one. The type of 
the returned property value is specific based on which property is read. An 
exception is thrown if the name of the property is not known. 

 
All these operations take a request (an object of a subclass of RequestMessageContent that belongs 

especially to that operation, e.g. a RequestRead object in case of a read operation) and a transaction 

as input parameters. Note that all container operations within the kernel run with transactions, even 

if the operation was executed from outside the kernel without one. For every container operation 

that enters the kernel without a transaction, an implicit transaction is created and used for only that 

operation (meaning the transaction is created directly before the operation’s execution and 

committed directly after if the operation was successful, or rolled back if the operation has failed). 

One method that was originally not intended by any function in the core model is the GetProperty 

method. It provides access to properties of the container like its maximum size and the current entry 

count. While being able to read a container’s maximum size can be seen as a useful addition, reading 

the entry count is a thing that is absolutely necessary for using a container in many situations. The 

theoretical model intends to use the meta container for that. But with the kernel implementation, 

this brings some problems: First, data in the meta container cannot be made write protected to the 

outside (or at least not in an easy way), so the count could be overwritten from the outside. Second, 

although writing the count to the meta container every time entries are added or removed would be 

not a big problem, it would at least slow down the container operations. 

Therefore, to prevent the expense of maintaining these properties in the meta container, the 

GetProperty method has been implemented to be able read the properties directly from the 

container (properties that can be read are the maximum size, the entry count and the list of 
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coordination types). The method not only has its use for the container itself, but also for the 

container’s coordination types, more on that later. 

Figure 35 shows the container structure in a class diagram: 

 

4.2.7.2 The Container Memory 

Underlying each container is a container memory. This container memory is the place where the 

container stores all its data. To store single pieces of data, it provides memory cells. This is 

implemented in the ContainerMemory and MemoryCell classes. Every time an entry is written into 

the container, it is added to the container memory, and every time an entry is removed from the 

container it is also removed from the container memory. The container memory was originally 

implemented as a point for extending the kernel with persistency services, e.g. replacing the default 

container memory (that is storing data only in-memory) by one that stores the container’s data in a 

file or database (every thinkable kind of storage mechanism could be implemented). When restarting 

the kernel after a system crash, the container memory could automatically reload its container’s 

persisted data. 

Although the container memory is present in the kernel, it is more of a test implementation and yet 

has no support for replaceability. The reason for this is that the support for persistency has not yet 

been important enough for putting an effort into it, and providing a reliable implementation of the 

container memory would in any case need to be tested thoroughly to its usefulness by implementing 

at least one persistency model with it. Because of its immatureness and because it is also still mostly 

of no use, the implementation of the container memory is not handled further here. 

4.2.7.3 Coordination Types 

According to the model, the implementation of the concrete coordination types is completely 

separated from the container itself. Every coordination type is implemented by two classes (not 

counting supporting classes), a selector that inherits from the abstract class Selector and a 

coordinator that implements the interface ICoordinator. The selector has exactly the task that is 

described in the model, to define which entries are read from a container and how an entry is 

coordinated within a container when it is written. The coordinator implements the logic of the 

coordination type and is used by a container to manage the data for this coordination type. 

Figure 35: Class diagram of the kernel's container classes. 
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For example, the fifo coordination type consists of the two classes FifoSelector and FifoCoordinator. 

The FifoCoordinator manages all of the container’s entries in a fifo (first in first out) order. When an 

entry is written into the container, the container informs the FifoCoordinator that a new entry has 

been written. When entries are read from the container (in a fifo coordinated container the entries 

would be read by using the FifoSelector), the container asks the FifoCoordinator which entries are 

read (since the FifoCoordinator manages the entries in fifo order, it knows perfectly which entry is 

the next to be read). 

It has also been recognized during implementation, that, like the container, single coordination types 

can have special properties as well that are important to be read. A good example is the list of 

existing key values in a key coordinated container. Again, it would of course be possible to manage 

this information in the container’s meta container, but doing that would surely decrease the key 

coordinator’s performance. Because of that, the container’s GetProperty Method has been extended 

to be used together with a selector. When e.g. the key values of a key coordinated container should 

be read, the GetProperty method just has to be used with the property’s name and and the 

KeySelector. 

For users of the kernel to write their own coordination type, they just have to implement a class pair 

of selector and coordinator. To make this as easy as possible, the classes and interfaces that are 

needed therefore have been separated from the kernel into a contract assembly. For more 

information about contracts and the selector contract in particular, see chapter 4.4. For a more 

detailed description about coordination types and their implementation in the kernel, see [12]. 

4.2.8 Transactions 

Within the kernel, a transaction is represented by the Transaction class. The most important data of 

a transaction is its transaction log, which shows exactly which operations have been performed as 

part of this transaction (and in which order). The log contains three different kinds of information: 

First, information about entries that have been added to or removed from a container within this 

transaction, and second, information about the locks that have been acquired and are currently held 

by this transaction. The third kind of information that can be contained in the log is another 

transaction (which is then called a child transaction), because the transactions in the kernel are 

stored in a hierarchical structure (this is only used internally, to the outside the kernel doesn’t 

support nested transactions). 

All the items in the transaction log have one thing in common: They can be committed and rolled 

back. Because of that, the classes that represent these items all implement the ITransactionLog 

interface. 

 ITransactionLog 

 Commit Commits this log object. 

 Rollback Rolls back this log object. 

 
In addition to the Transaction class, the log is implemented with the TransactionLog and 

TransactionLock classes: 

 Transaction : ITransactionLog, ITransaction 

 RootTx The root transaction of this (child) transaction. This is needed for locking, 
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because all locks must be acquired for the root transaction (otherwise two 
child transactions of the same root transaction could block themselves). 

 Log The log of the transaction, as a List<ITransactionLog> object. 

 AddLog Adds an ITransactionLog object to the log of this transaction. 

 Commit Commits the transaction by calling Commit to all items in the log. 

 Rollback Rolls back the transaction by calling Rollback to all items in the log. 

 

 TransactionLog : ITransactionLog 

 CommitDelegate A delegate method for defining which method must be called for commit. 

 RollbackDelegate A delegate method for defining which method must be called for rollback. 

 Type The type of action that is logged with this TransactionLog object. This is an 
information to help deciding what has to be done at commit or rollback. 
Possible types are e.g. EntryAdd and EntryRemove. 

 Entry The entry that is concerned by this log object (e.g. added to or removed from 
a container). 

 Commit Commits this log object by calling the CommitDelegate that has been set 
when creating the log object. 

 Rollback Rolls back this log object by calling the RollbackDelegate that has been set 
when creating the log object. 

 

 TransactionLock : ITransactionLog 

 LockReleaseDelegate A delegate method for defining which method must be called for releasing 
the lock represented by this TransactionLock object. 

 Commit Releases the lock by calling the defined LockReleaseDelegate method. 

 Rollback Releases the lock by calling the defined LockReleaseDelegate method. 

 
Both the TransactionLog and the TransactionLock class are using delegates (method pointers) for 

commit and rollback. This a very good way for letting these classes be as flexible as possible, and also 

letting the actual code for the commit and rollback actions stay where it is best placed: The class that 

is responsible for creating the log object. For example, the container class would define a 

RollbackEntryAdd(TransactionLog t) method. When an entry is added to the container, a 

TransactionLog is created and the RollbackEntryAdd method is used as RollbackDelegate in the log. 

As soon as the log’s Rollback method is called (when the transaction is rolled back), it calls the 

delegate, which is the RollbackEntryAdd  method. This way, the container itself defines how an action 

is committed or rolled back and all the logic stays within the Container class. The TransactionLock 

class works even easier, since it doesn’t need two different possibilities for commit and rollback, 

because in both cases the lock just has to be released. Figure 36 shows an overview of the 

transaction classes in form of a class diagram. 
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Figure 37 illustrates the use of transactions in the kernel with a write operation on a fifo coordinated 

container. The left side shows how items are added to the transaction log during an operation. Since 

the first thing when executing an operation on a container is acquiring a lock, a TransactionLock 

object that represents the lock is also the first item that is added to the log. Then, both the container 

and the coordinator (represented by the “Fifo Order” box) add items to the log for adding a new 

entry (the coordinator handles commit and rollback independently of the container, so it is free do 

decide by itself when something must be added to the log and what must be done at commit or 

rollback). The right side of the figure shows how the committing of a transaction (the same one as 

before) is handled. The transaction calls the Commit method of all its log items. This is done in the 

opposite order as the log items were added (which guarantees that the all the changes on a 

container are committed before the lock is released). By calling Commit on a log item, it calls the 

delegate method that has been set when adding the log item. 

Figure 36: Class diagram of the kernel's transaction classes. 
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The implementation of transactions is handled in more detail in [12]. 

4.2.9 Error Handling 

For error handling in the kernel, exactly the exceptions have been implemented as defined for the 

core model (see chapter 3.4.6). The implementation only differs in the way that all exception names 

begin with “Xco” instead of “Xvsm”. All exceptions are inherited from the base class XcoException. 

One exception that is not part of the model and is special to the XcoSpaces implementation is the 

XcoBindingException which is thrown when there is an error binding a component to the kernel at 

runtime, like the thread dispatcher component. For more info on the dynamic binding of kernel 

components see chapter 4.3.4). 

Since the processing of requests is done in a completely different thread than the thread of the user, 

an exception can of course not be thrown directly. Because of that, all exceptions that are thrown 

during processing in the core processor are caught and a response containing the thrown exception 

is created in such a case. In that way the core processor can also act as a control mechanism for 

ensuring that only exceptions of type XcoException are thrown by the kernel, and that if some other 

exception occurred a FatalCoreException is thrown instead.  

If a response contains an exception, the embedded API rethrows it in the thread with which the 

XcoKernel’s method was called. In that way, the processing components in the kernel can still throw 

their exceptions as they would normally do (by using the throw statement) without caring about who 

must receive it in the end, and the user gets the exceptions the way s/he would expect it. 

4.2.10 Logging 

One thing that is not really necessary mentioning in a model, but becomes very important when it 

comes to implementation, especially for a piece of software as complex as the kernel, is logging. It 

can be of great help for a developer to understand the internal processes of the software and to find 
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errors. But the requirement for logging to be really useful (and not on the contrary be an obstacle for 

the kernel) is of course that it is implemented right. This means that log messages must be produced 

by the kernel not only at points that are important for processing, but they must also be 

understandable and contain useful information that helps understanding the situation. Also, logging 

must be configurable to be turned on and off, so it doesn’t decrease the kernel’s performance. It 

would be very good to have different levels of logging, so that certain messages will only be 

displayed for debugging, while others (like error messages) can be configured to be displayed always. 

Finally, it would be best to be able to decide what is done with the output, e.g. if it is written in a file 

or directly displayed in the console. 

Because logging mechanisms are already supported by the .Net Framework in form of the 

System.Diagnostics.TraceSource class as well as by free-to-use third party libraries like log4net [39], it 

was decided to use one of these solutions. Since they are specialized to the task of logging and have 

proven their worth, they are a far better solution than anything self-made. To rely not only on one 

particular logging solution, the implementation is hidden behind an interface which is one of the 

kernel’s contracts (for more information about the logging contract, see chapter 4.4.2). 

Within the kernel, the following different levels of logging are used: 

 Debug for messages that give a very detailed output about the internal processing in the 

kernel and that are only of interest when debugging. 

 Information for messages that don’t contain very important information, but still something 

useful to know not only when debugging. 

 Warning for things that happen in the kernel that are not unforeseen, but still could in some 

situations be the source for errors or be seen as a kernel error from outside the kernel, and 

are therefore a reason to warn the user about what has happened. 

 Error for any errors that happen during processing in the kernel, while it is still guaranteed 

that the error only prevented the correct execution of a single operation and the kernel is 

still fully functional after that. 

 Fatal for critical errors that could cause inconsistencies that affect the integrity of the whole 

kernel (and not just a single operation). 

These levels are not a new invention for the kernel, they are rather common and implemented in a 

similar way by different logging frameworks (although not always implemented with the same names 

as above) and have thus already proven to be useful. 

The TraceSource class has been chosen for the standard logging implementation because it doesn’t 

provide less functionality compared to any third party library and is directly integrated in the .Net 

Framework and therefore doesn’t need the use of any additional libraries. It also allows very simple 

configuration by using the application’s app.config file. It is not only configurable which level of 

logging is used for output, but also where the output is going to, like to a file or directly to the 

console (or even both). The following code shows how the logging can be configured: 

<system.diagnostics> 

 <sources> 

  <source name="XcoSpaces.Kernel" switchName="DefaultSwitch"/> 

  <source name="XcoSpaces.Kernel.Core" switchName="DefaultSwitch"/> 

  <source name="XcoSpaces.Kernel.Container" switchName="DefaultSwitch"/> 

  <source name="XcoSpaces.Services.Kernel.Communication" 

   switchName="DefaultSwitch"/> 
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 </sources> 

 <switches> 

  <add name="DefaultSwitch" value="Information" /> 

 </switches> 

</system.diagnostics> 

Code Example 2: Logging configuration with the TraceSource class. 

The shown configuration splits in two sections, named sources and switches. In the sources section it 

is defined how the loggers are named in the kernel. Giving different loggers in the kernel different 

names has the advantage that the level of logging for different parts of the kernel can be set 

independently if needed. The name XcoSpaces.Kernel is used for logging in the API classes, like 

XcoKernel and Notification. The main classes of the internal kernel structure like CoreProcessor, 

EventProcessor and TimeoutHandler use XcoSpaces.Kernel.Core as name, while the Container class 

and its related classes (like the classes for locking) use XcoSpaces.Kernel.Container. Finally, there is an 

own name for the communication classes that is used for logging in the WCF communication service. 

In the configuration shown above, the logging for all sources is kept at the same level. This is done by 

using a switch which is defined in the switches section. The value of the switch is set to Information 

which means that all log messages will be shown at this or a higher level. The switch could also be set 

to any other level, or to Off (meaning no logging is done at all).  

This configuration of course just shows the most basic things that can be done, but it is already 

suitable for most situations. Since the shown configuration doesn’t define where the logging output 

goes to, the standard output is used which is the console. Like with switches, it would be possible to 

define output types that are used by all sources, but also to define them just for a single source. 

4.2.11 Documentation 

Another thing not to be forgotten, especially since it has been identified as a core requirement, is 

Documentation. It is particularly important to see the documentation directly associated to the 

kernel implementation, and not just as some loosely related documents. Since the kernel is a 

component used for programming, the documentation should help programmers directly while 

implementing software that uses the kernel, by making use of the programming environment’s 

features like auto-complete. 

Visual studio supports that with the xml documentation feature. Classes, methods, properties and 

delegates can be documented by adding an xml documentation header to them. When compiling, 

this text can automatically be compiled into an xml file that represents the assembly’s 

documentation. This means that in addition to the XcoSpaces.Kernel.dll file, which holds the kernel 

itself, a second file named XcoSpaces.Kernel.xml is created which holds the kernel’s complete code 

documentation. 

Using this xml file when programming with the kernel enables visual studio to display this 

documentation for classes, methods and so on, when using auto-complete or similar features. 

4.3 Implementation based Kernel Design 

For a complex piece of software like the kernel, it is important not only to give some thought about 

the architecture of the kernel (which has already been handled in detail by now), but also about how 

the software itself can be structured into single components (note that although these will also be 

called components further on, they don’t necessarily have anything to do with the components of 
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the kernel architecture introduced earlier, because the point of view is a completely different one). 

The approach that has been chosen for that is called contract first design and is explained by Ralf 

Westphal in [40] and [41]. 

4.3.1 An Introduction to Contract First Design 

Contract first design views software as consisting of components. A component can be seen as a 

logical unit consisting of one or more assemblies. This definition intentionally leaves out anything 

about what should be included in a component and how software should be split into components. 

What’s important is that components encapsulate functionality that makes sense to be separated 

from other components. All further definitions could just get in the way, since that mainly depends 

on the piece of software itself. 

Now, when using components there are two basic kinds of them:  Client components (or consumers) 

and service components (or producers). A client component uses one or more service components to 

do its work. 

 

Figure 38 shows how this is done by developers most of the time. Two visual studio projects are set 

up, one for the client component and one for the service component, and then a reference to the 

service component is added at the client component (because this is necessary to instantiate classes 

of the service component). In code, using a service component within the client component would 

then typically look like that: 

ServiceComponentA a = new ServiceComponentA(); 

a.DoSomething(); 

Code Example 3: Using a service component in the traditional way. 

But there are some clear disadvantages when doing it that way. First, to implement the client 

component the service component already needs to exist, otherwise it could not be referenced in 

visual studio. Developers are forced to develop applications strictly bottom-up, and that’s bad for 

productivity. Second, testing the client component always requires the real service component. This 

could not only make testing more time-consuming if the service component takes a long time to 

execute, but also more complex as errors could not only occur in the client component but also in 

the service component. For testing the client component it would be much better to be able to 

replace the service component with a mock-up, but because the service component is instantiated 

and referenced directly by the client component this is not possible. 

Contract first design overcomes these problems by changing the relationship between client and 

service components like shown in Figure 39: The client component no more references the service 

Client Component 

Service Component A 

Service Component B client uses and 
references services 

Figure 38: Client component using service components by direct reference. 
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components directly, but only so called contracts. A contract describes the services of a service 

component in terms of interfaces and other data types independent of any service implementation. 

All contracts are defined before the service components themselves are implemented, therefore the 

name contract first design. Because the client does not reference any service components directly 

any more, the components are completely independent of each other. This principle of decoupling 

components that are directly dependent on each other is also known as the dependency-inversion 

principle [42]. 

 

This way both problems from above can be solved: Since the client no more directly references to the 

service component, they can be developed independent of each other in any order, or also in parallel 

(only the contracts have to be present first). When testing, the service component can now easily be 

replaced by a mock-up that simply implements the given contract, there isn’t any more need for 

testing with the real service component. 

There is only one problem with this design: Since the client doesn’t know the service component any 

more, it cannot instantiate any service classes directly any more. But it is of course inevitable that the 

client is still able to instantiate a service that implements the given contract. So if there is no static 

binding, how can that be done? The answer to the problem is that the binding happens dynamically 

at runtime, by using a microkernel. This is a small piece of software that is able to create an instance 

directly from an interface by using an implementation class that is bound to this interface 

dynamically at runtime, similar to the J2EE service locator pattern [43] or the dependency injection in 

the Spring framework [17]. The following code example shows how a service component is typically 

used with contract first design, without directly needing the service component implementation. The 

microkernel knows which class to instantiate depending on the given interface (assuming in this 

example that the class ServiceComponentA implements the IServiceA interface): 

IServiceA a = Microkernel.GetInstance<IServiceA>(); 

a.DoSomething(); 

Code Example 4: Using a service component in contract first design. 

How such a microkernel is implemented in the XcoSpaces kernel and how exactly it works is handled 

in chapter 4.3.4. 
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Figure 39: Prevent direct references by the use of contracts. 
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4.3.2 Contract First Design in the Kernel 

The benefits of this design especially for the kernel can be easily shown with an example. Two 

components that are easy to be identified are the kernel itself (we just call the kernel’s central 

component kernel) and the communication service. The kernel acts as the client component, it uses 

the communication service (the service component) for remote communication. 

 

Figure 40 shows the situation without using contract first design, with the kernel referencing directly 

to the communication service. This is bad not only because of the reasons already mentioned above 

(no independent development, not individually testable), but it can also not fulfill two very important 

requirements of the communication service: First, the kernel should have a default communication 

service. Second, the communication service should be completely replaceable. But with the given 

solution the communication service would not be replaceable at all. This changes when adding a 

contract to the picture, as seen in Figure 41. 

 

The figure shows the use of a communication service contract. The contract is implemented by the 

WCF communication service, which is the default communication service. It can simply be made the 

default communication service by configuring the microkernel so that when the kernel instantiates 

the communication service by using the microkernel it gets an instance of the WCF communication 

service. Also replacing the component is very easy. Since the WCF communication service is not 

referenced by any other component, it can be easily replaced by any other communication service, 

just by reconfiguring the binding in the microkernel. Especially important is that the component can 

be replaced at runtime, no recompilation is ever necessary. So the choice of design fits excellent to 

the extensibility of the kernel. 

4.3.3 The Kernel Component Structure 

The kernel’s component structure, based on contract first design, is shown in Figure 42. Components 

are named according to their classes’ main namespaces. Contracts are shown in red while normal 

components are blue. Like in the example earlier, the black filled arrows show that another 

component is referenced, while the white filled arrows show that a contract is referenced and 

inherited (implemented). Every one of these components is built as an own visual studio project. This 

also means that in the end there is one assembly (dll library) for each component. 

The main component is XcoSpaces.Kernel. It implements all of the functionality that has been 

explained in chapter 4.2, except the coordination types, remote communication, the core processor’s 
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Figure 40: The kernel directly referencing to the communication service. 

Figure 41: Direct reference between kernel and communication service removed by a contract. 
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thread dispatcher and the logging mechanisms. So, the XcoSpaces.Kernel component implements the 

complete kernel structure, including core containers, messages, core processor, event processor, 

timeout handler and embedded API. 

 

The kernel directly references only to two components (meaning not contracts). One is the 

XcoSpaces.Exceptions component which contains all Exceptions that can be thrown in the kernel. The 

kernel’s exceptions have been separated into an own component because they are also used by 

components other than the XcoSpaces.Kernel, so it is useful to separate them. The direct reference 

between these components (without contract) is clearly the better choice in this case, because the 

exceptions implement no logic at all and it wouldn’t be of any benefit to have them replaceable (not 

even for testing). They could even be seen as a kind of “contract for errors”.  

The second component that is directly referenced is the XcoSpaces.Kernel.Microkernel. This is the 

component that allows the kernel to dynamically bind components that are not directly referenced 

at runtime. This functionality of the microkernel was implemented into an own component because 

it doesn’t logically belong to the kernel’s main functionality in any way and can also easily be 

separated without having any disadvantages, and it is of course helpful to remove some complexity 

from the XcoSpaces.Kernel component. The microkernel is explained in detail in the next chapter. 

Despite of these two components, the kernel only references to contracts. Because of that, it doesn’t 

know the components that are implementing these contracts and these components don’t know the 

kernel (they only need to know and reference the contract they implement). The Communication 
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contract defines how a component that can be used by the kernel for remote communication has to 

look like. It is inherited by the Communication.WCF component that implements the WCF 

communication service. The Selectors contract defines the classes and interfaces for implementing 

coordination types. The Selectors implementation component implements seven different 

coordination types (there hasn’t been seen a need to separate every coordination type into an own 

component). The Logging contract defines the interface that is used for logging in the kernel, it is 

implemented by the Logging.TraceSource component. Finally, the ThreadDispatcher contract defines 

the interface for the core processor’s thread dispatcher. Its default implementation is present in the 

ThreadDispatcher.Threadpool component. 

Since the contracts (and the components that implement them) are not only important inside the 

kernel but also provide powerful ways to extend the kernel, they are described more detailed in an 

own chapter (see chapter 4.4). 

4.3.4 The Microkernel 

The microkernel is the component of the kernel that enables the dynamic binding of the components 

that are not directly referenced to the XcoSpaces.Kernel component at runtime. Therefore, the 

microkernel must be able to store bindings from an interface to a class and instantiate the class for a 

certain interface as long as a binding exists for it. To be able to configure these bindings, the 

microkernel must be able to load them from a configuration file. The design of the microkernel is 

kept similar to the one Ralf Westphal introduces in [41], because Ralf’s microkernel already fulfills all 

of the mentioned requirements.  

The binding configuration is loaded from both the application configuration file (app.config) and an 

embedded configuration file (a file that is directly embedded into the assembly dll). The embedded 

configuration file holds a standard configuration (the bindings that should be used by standard if 

nothing else is configured for a certain interface in the app.config), e.g. for the communication 

service contract, the standard implementation would be the WCF communication service. In that 

way, it is no must to define bindings in the app.config, only bindings have to be defined that are 

different from the default binding. The configuration is stored in form of an xml (which is the best 

solution since the app.config is an xml file and using an xml format also helps providing a clear and 

simple structure). Every binding is defined by a pair of interface and implementation in the following 

form: 

<add  

 interface="interfacename,assemblyname"  

 implementation="classname,assemblyname" 

/> 

Code Example 5: Definition of a binding in the microkernel configuration. 

The interfacename must be the complete name of an interface (including the full namespace name), 

the classname the full name of a class. The class must implement the interface and must not be 

abstract. It must also have an empty constructor, so that the microkernel can create instances of it. 

All these requirements are checked by the microkernel by the time the binding is loaded. For both 

interface and class it is also necessary to define an assemblyname, which is the name of the assembly 

file without “.dll” (e.g. for the XcoSpaces.Kernel.dll assembly file, the name would just be 

XcoSpaces.Kernel). This is necessary for finding the class/interface by reflection as soon as it is not in 

the executing assembly. 
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The following code example shows the standard binding configuration of the kernel. The interface of 

a contract assembly is bound to the class of the assembly that implements the standard for this 

contract. The definitions include logging, thread dispatcher and communication service. For selectors 

no binding is needed because the kernel doesn’t need to know the selectors implementation, it only 

works with the classes and interfaces of the selector contract (it is not necessary for a container in 

the kernel to know the implementation of selector and coordinator that it uses, no direct 

instantiation is done). 

<XcoSpaces.ConfigServices> 

 <add  

  interface="XcoSpaces.Kernel.Contracts.Logging.ILogger, 

   XcoSpaces.Kernel.Contracts.Logging" 

  implementation="XcoSpaces.Kernel.Logging.TraceSource.Logger, 

   XcoSpaces.Kernel.Logging.TraceSource" 

 /> 

 <add 

  interface="XcoSpaces.Kernel.Contracts.ThreadDispatcher.IThreadDispatcher, 

   XcoSpaces.Kernel.Contracts.ThreadDispatcher" 

  implementation="XcoSpaces.Kernel.ThreadDispatcher.ThreadPool.ThreadDispatcher, 

   XcoSpaces.Kernel.ThreadDispatcher.ThreadPool" 

 /> 

 <add 

  interface="XcoSpaces.Kernel.Contracts.Communication.IXcoCommunicationService, 

   XcoSpaces.Kernel.Contracts.Communication" 

  implementation="XcoSpaces.Kernel.Communication.WCF.XcoWCFCommunicationService, 

   XcoSpaces.Kernel.Communication.WCF" 

 /> 

</XcoSpaces.ConfigServices> 

Code Example 6: The kernel's standard binding configuration. 

To load the configuration from the app.config file, the microkernel makes use of the 

IConfigurationSectionHandler interface for implementing a custom configuration section handler. 

Since the application configuration file can contain much more (and unrelated) information than just 

the binding configuration, it is divided into sections. The .Net Framework supports the easy loading of 

such configuration settings by letting users write their own configuration section handlers. When a 

configuration section handler is defined to be able to read a certain section in the configuration, it 

will always be used automatically whenever this section is read. The microkernel takes advantage of 

that with the ServiceConfigSectionHandler class that implements the interface mentioned above. This 

enables the microkernel to read the configuration with nearly no effort. 

The main class of the microkernel is the DynamicBinder. It loads and stores the binding configuration 

and can be used to create an instance from an interface type for which a binding exists. It 

implements the singleton pattern [44], which guarantees that there is only a single instance of the 

DynamicBinder that can be accessed over its Instance property. This way, it is not needed for the 

kernel to keep an instance of the class and hand it over to any of the kernel’s classes that need it. 

 DynamicBinder 

 Instance Gets a singleton instance of the DynamicBinder. 

 LoadBindingsFromConfig Loads the bindings from the app.config and the embedded 
configuration file, and controls if the bindings are valid. Bindings 
defined in the app.config override bindings from the embedded 
configuration file. 

 CreateInstance<TInterface> Creates an instance from the generic interface type given to the 
method. An instance of the class is returned that is defined in the 
binding configuration for this interface. An exception is thrown if no 
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binding is configured for the given interface. 

 
In the way the CreateInstance method is defined, it even provides type-safety to the outside because 

it is assured that exactly the given generic type is returned. Directly at startup, the kernel calls the 

LoadBindingsFromConfig method. As soon as that is done, it can easily use the microkernel to 

instantiate any of the bound interfaces. E.g. for the thread dispatcher the call would look like that: 

IThreadDispatcher threadDispatcher = 

 Microkernel.DynamicBinder.Instance.CreateInstance<IThreadDispatcher>(); 

Code Example 7: Using the DynamicBinder to create an instance for the thread dispatcher. 

The microkernel could even be of good use for layers above the kernel that also want/need dynamic 

bindings to other components, the bindings therefore would just need to be defined in the 

app.config additionally to the kernel’s bindings. Because of the singleton access the DynamicBinder 

class could be used just like within the kernel. 

4.3.5 Component Deployment 

When developing software it is also important to think about deployment. It is important to know if 

the software has special requirements to the system it is running on, or which steps have to be taken 

in order to get it running. As a light-weight piece of software, deployment for the kernel should best 

be as easy as copying a single file. 

One disadvantage of contract-first design is that by splitting the kernel into many small components, 

it is also split into many single assembly files. Additionally, because for every assembly file there is 

also a documentation xml file, this makes a whole of 22 files for the kernel alone. A number of files 

that large is clearly not a good thing for deployment, since it is not only much more difficult to 

overlook so many files, but it also forces developers to reference a whole bunch of different libraries 

in their projects instead of only a single one to use the kernel. 

To counteract this problem, an additional program is used for deployment named ILMerge [45]. 

ILMerge allows merging a set of assemblies into a single one, and can also do the same with the 

documentation files. In this way, the kernel can be deployed with only two files (assembly and 

documentation), and the component oriented structure that has already proven its great usefulness 

for development can still be used without any disadvantages. An illustration of the deployment with 

ILMerge is shown in Figure 43. 
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Figure 43: Merging the kernel components for deployment. 
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The use of ILMerge for the kernel brings even another powerful possibility: The features of ILMerge 

and the kernel’s microkernel together could be used to easily compile different versions of the kernel 

with different configurations. For example, while the standard version of the kernel uses the 

Threadpool thread dispatcher component, another version could be merged together using the CCR 

thread dispatcher library instead with an appropriately altered embedded binding configuration file. 

4.4  Contracts 

The kernel’s contracts define how components have to look like that can be bound dynamically into 

the kernel. Next to aspects, they can be seen as the kernel’s main points of extensibility. The 

description of the contracts always shows a class diagram as a general overview of which classes, 

interfaces and delegates are part of the contract and then describes all important points of the 

contract in more detail. 

4.4.1 Selectors 

The selectors contract contains all classes and interfaces that are needed to implement coordination 

types (in other words, pairs of selector and coordinator). Coordination types must support all 

operations that can be done on a container (read, take, destroy, write, shift and reading properties), 

as well as provide full support for transactions (commit and rollback). Furthermore, when 

implementing a coordination type it can be chosen if the coordination type supports locking on entry 

level or container level. The kernel currently contains seven coordination types (implementations of 

this contract). For uniform class names, the names of the selector/coordinator classes always begin 

with the name of the coordination type and end with Selector/Coordinator, e.g. for fifo coordination 

the classes are named FifoSelector and FifoCoordinator. 

The following description only shows the most important aspects of the selectors contract and 

implementations. For a more detailed description, see [12]. 

4.4.1.1 Contract 

The following class diagram shows an overview of the Selectors contract: 
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Most important in the selectors contract are the abstract class Selector and the interface 

ICoordinator: 

 Selector 

 Count The number of entries that should be read (only when used in a read 
operation). A read operation will block until the defined number of entries 
is available.  

 COUNT_ALL Constant to be used for the Count value, when all available entries should 
be returned. Using this also means that the read operation will not block if 
no entries are available, but return an empty list of entries. 

 CreateCoordinator Creates a coordinator (instance of ICoordinator) for this selector that can be 
used to coordinate the entries in a container with the coordination type 
represented by this selector.  

 

 ICoordinator 

 AllowsEntryLocking True if the coordinator allows locking at entry level, false if it only allows 
locking at container level. 

 Read Called when a read operation (read, take or destroy) is executed on the 
container, returns the list of entries that are read by a given selector. If the 
container has more than one coordination type, the Read methods of all its 
coordination types are called successively, in which case every coordinator’s 
Read method has to take into account the entries that were pre-selected by 
the coordinator before. 

 Remove Removes a list of entries from the coordinator. 

 Write Adds one entry to the coordinator. Requires that the entry contains all 
coordination information that is needed by this coordinator to add it (in 
form of selectors). 

 GetNext Gets the next entry that would be chosen by this coordinator to be removed 
when the container is full. This is used to remove entries from the container 

Figure 44: Class diagram of the Selectors contract. 
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for shift operations. 

 GetShifted Gets a list of entries that must be removed from the container so that the 
given entry can be added. This is used for shift operations, to determine if 
any entries in the container prevent the new entry from being written (e.g. 
in a key coordinated container, this would return an entry with the same 
key as the one that should be written, if such an entry is already in the 
container). 

 GetProperty Gets a certain property from the coordinator. If the given property name is 
unknown an exception is thrown. 

 SelectorFits Returns true if the given Selector fits to this coordinator (e.g. in a 
FifoCoordinator, this would return true for a FifoSelector, otherwise false. 

 
The container uses the methods of its coordinators to do all of its operations. The way how a 

coordinator is structured makes it possible to let the container take away as much complexity from 

the coordinator as possible. For example, the coordinator is never responsible for dealing with 

locking, it just has to tell the container if it allows entry locking or not. Understanding how the 

container uses a coordinator is easier with a small example: E.g. in a take operation, the container 

would first call the coordinator’s Read method. Then it would see if a lock can be acquired for the 

selected entries. If this is successful, the container would finally call the coordinator’s Remove 

method, remove the entries from the container memory and then return it. 

Since the coordinator must also support transactions, it must be able to recognize when a 

transaction is committed or rolled back and then be able to take certain actions (e.g. an entry that 

has been removed in a take operation must be added again to restore the state from before if the 

operation’s transaction is rolled back). Therefore the coordinator must be able to use the transaction 

log. Because of that, the contract contains the interfaces ITransaction and ITransactionLog: 

 ITransaction 

 RootTx The root transaction of this (child) transaction. The coordinator can need this 
information when it implements entry locking to optimize its selection of 
entries for a certain transaction. 

 AddLog Adds an ITransactionLog object to the log of this transaction. 

 

 ITransactionLog 

 Commit Commits this log object. 

 Rollback Rolls back this log object. 

 
With the ITransactionLog interface, every coordinator can just implement its own transaction log 

class and is by that completely free of any predefined implementations of the kernel. 

4.4.1.2 Implementation: Fifo 

The first coordination type implementation is fifo, which orders the container’s entries like in a 

queue. It is an implicit order coordination type, meaning the order in which the entries are written 

and read cannot be changed, the entry to be read next is always the one that has been written first. 

There are many possible situations where fifo is of use, like in a producer-consumer scenario for 

communication between producers and consumers. 
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4.4.1.3 Implementation: Lifo 

Like fifo, lifo is an implicit order coordination type. It manages the order of the container’s entries like 

in a stack, so the next entry to be read is always the one that has been written last. Its usage 

situations are similar to fifo, but lifo would e.g. be preferred if newer messages should be taken by 

consumers before the older ones. 

4.4.1.4 Implementation: Key 

With the key coordination type, the entries are coordinated like in a hashtable. It could also be 

compared with the Dictionary class in the .Net Framework. It is an explicit order coordination type, 

because how an entry is coordinated in the container is decided on basis of the key that has been 

provided when writing the entry and this information never changes until the entry is removed from 

the container. The implementation supports genericity, meaning the type of the key can be chosen 

(e.g. it could be a string or an integer). Key is the only coordination type that supports entry locking, 

this is because for most other coordination types entry locking is either very difficult or completely 

impossible to implement because any change to the container’s entries has an effect on the whole 

container. In a key coordinated container, changes are always limited to a single entry, so entry 

locking is implementable rather easy compared to the other coordination types. 

There are many different possibilities to use key coordination, for example when data in the space 

needs to be accessed fast by a unique name. A key coordinated container can serve very well as 

single point of storage for an application’s data within the space (it enables the application to use 

only one named container and stored the references to all other needed containers there, instead of 

needing to name all containers separately and thereby increasing the risk of using the same name as 

another application). 

4.4.1.5 Implementation: Label 

The label coordination is similar to key. Other than a key, a label is not unique, so multiple entries can 

be written into a container using the same label. So, label coordination can be seen like a hashtable 

that allows attaching multiple values to a single key. Also similar to key, label supports genericity for 

defining the type of the label. 

Label coordination can serve very well as a supporting coordination type. For example, used together 

with fifo it would be possible to make a specialized producer/consumer scenario where some 

consumers take all entries from the container, but some only take entries labeled with a certain 

value (like the “local” and “remote” flagging in the core model’s request and response containers). 

4.4.1.6 Implementation: Vector 

The vector coordination type manages entries like in a linked list. It is named after Java’s Vector class. 

It is kind of a hybrid between implicit and explicit order, because entries can be inserted at an explicit 

index, but the index can change while they are in the container when other entries are inserted to or 

removed from a lower index than the one of the entry. The importance of this coordination type is 

clear: It can be used for everything that a List<> is used, for every task where something needs to be 

stored in a list and the single entries need to be accessible and/or be inserted to certain positions (if 

that would not be the case and only the first or last entry needed to be accessible, fifo or lifo would 

be the better choice). 
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4.4.1.7 Implementation: List 

The list coordination type can be seen as an “improved” version to vector. It acts exactly like vector, 

but additionally supports the overwriting of an entry in the container at a certain index with shift. It is 

therefore more similar to .Net’s List<> class. It was decided not to just implement this improvement 

into the vector coordination type to keep the functionality of vector the same as in the Java 

implementation of XVSM (for not loosing interoperability). This coordination type is therefore unique 

to the XcoSpaces kernel. 

4.4.1.8 Implementation: Linda 

Linda coordination enables a container to be used like a classical tuple space. In addition to the 

LindaSelector and LindaCoordinator classes, the implementation consists of the ILindaMatchable 

interface. The value of entries written to the container must implement this interface. When reading 

entries from the container, the coordinator uses this interface’s Matches method to find entries that 

match the query object that must be contained in the selector that is used for reading. Linda 

coordination comes to use when it is necessary to select entries from the container by their content. 

4.4.2 Logging 

The logging contract is used in the kernel for logging information that helps understanding the 

kernel’s internal processes and finding errors. The basics about the logging functionality in the kernel 

have already been discussed in chapter 4.2.10. 

4.4.2.1 Contract 

The contract consists of only one interface, named ILogger. It provides methods to log messages for 

every different level of logging: 

 

 ILogger 

 Start Initializes the logger. The method takes a name and a class type as parameters 
which allow the logger to configure itself properly depending on for which 
purpose it is used. 

 Debug Logs a debug message. 

 Info Logs an info message. 

 Warn Logs a warning message. 

 Error Logs an error message. Optionally takes an exception as second parameter. 

 Fatal Logs a fatal error message. Optionally takes an exception as second 
parameter. 

 

Figure 45: Class diagram of the Logging contract. 



88 
 

The kernel just uses these methods and doesn’t care which level of logging is currently set. The 

logger itself decides if a log message has to be logged or if it can just be ignored because the current 

logging level is higher than the level of the log message. 

4.4.2.2 Implementation: TraceSource 

The logging contract has only one implementation. This implementation uses the 

System.Diagnostics.TraceSource class of the .Net Framework. The name parameter of the logger’s 

Start method is used as source name, which again can be used to configure a certain logging level in 

the app.config file. For the logging levels, a subset of values of the TraceEventType enum is used 

which can easily be mapped to the levels that have been defined for the kernel. So, the logger 

implementation stays extremely simple, using only a single line of code for implementing each of the 

ILogger interface’s methods, and is yet very well configurable because of being able to define all 

logging levels in the application configuration file. Every other important aspect of the TraceSource 

implementation has already been explained earlier and will thus not be handled further here. 

4.4.3 ThreadDispatcher 

The thread dispatcher is used in the core processor to process requests in multiple processor threads 

concurrently. Its main tasks are giving an incoming request to a processor thread that is currently 

free, or queue incoming requests as long as all processor threads are occupied, and managing the 

core processor’s threads in general (meaning the thread dispatcher has to handle things like the 

creation of new threads if needed). Details on how the thread dispatcher is integrated into the core 

processor have been handled in chapter 4.2.5. 

4.4.3.1 Contract 

The following diagram shows the classes that are part of the ThreadDispatcher contract: 

 

To not make the thread dispatcher dependent of the kernel’s request messages (which would make 

it much more difficult to separate a clear contract from the kernel), the contract defines the 

IDispatchable interface for dispatchable messages. This (method- and property-less) interface is 

implemented by the RequestMessage class. Other than that, the contract defines the 

IThreadDispatcher interface which must be implemented by every thread dispatcher class: 

 IThreadDispatcher 

 Start Initializes the thread dispatcher and acquires all needed resources (like 
threads that need to be created). 

 Stop Stops the thread dispatcher and frees all acquired resources. 

 QueueMessage Takes an IDispatchable object as parameter. The given messages is given to 

Figure 46: Class diagram of the ThreadDispatcher contract. 
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the next free thread for processing (or queued up if no thread is currently 
free). 

 
Additionally, the thread dispatcher of course also has to know what to do exactly with the messages 

that have to be processed. It therefore just uses a delegate method that is called in the thread that 

processes the message: 

 ProcessMessageDelegate 
Delegate defining the method to be called for a message to be processed. Takes an IDispatchable as 
parameter. 

 
The thread dispatcher’s Start method takes such a delegate as parameter and the thread dispatcher 

then simply calls it in an own thread whenever processing a new message, with the message to be 

processed as parameter. 

4.4.3.2 Implementation: Threadpool 

The Threadpool implementation is the standard implementation of the kernel, using the 

System.Threading.Threadpool class of the .Net Framework. The advantage of this implementation is 

that it doesn’t use any third party libraries, is very simple and has proven to be reliable. Since the 

Threadpool class allows no direct instantiation and only to use threads of the “standard” thread pool 

that applies to the whole application, no resources need to be acquired, all the resources being used 

are already there (so the Start and Stop methods practically do nothing). But this is also the downside 

of the this implementation, with the Threadpool class it is not possible to create an own pool of 

threads just for the core processor, which also implies that it relies on the rest of the application how 

many threads are currently free for the core processor to use. For processing a message, the thread 

dispatcher simply uses the ThreadPool.QueueUserWorkItem method which takes the method to be 

called and that method’s parameters as input. 

4.4.3.3 Implementation: CCR 

The second thread dispatcher implementation uses the CCR [38] to start and manage its threads. 

Since it is not the standard implementation, it is not a fixed part of the kernel. In contrast to the 

Threadpool implementation, the CCR allows to start up a thread pool that is completely separated 

from the other threads of the kernel and overlying applications. This is done by creating a Dispatcher 

object, which is also clearly an advantage to the static Threadpool since it allows further 

configuration, like defining which type of object can be processed by the created threads. In the end, 

the CCR implementation shows a slightly better performance when having to deal with many 

concurrent requests at once (but the difference quickly becomes unnoticeable with less frequent 

requests). 

The reasons for making the Threadpool implementation the kernel’s standard thread dispatcher are 

that no additional library is required and that the CCR library is not allowed to just be bundled 

together with the kernel for distribution because of the license agreement under which it is 

published. 

4.4.4 CommunicationService 

The communication service is used by the kernel to communicate with other kernels. It is responsible 

for sending and receiving requests and responses and for dealing with all communication related 
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tasks like how to reach another kernel, providing reliability and handling communication errors. It is 

also responsible for message serialization and deserialization. 

The following description only shows the most important aspects of the communication service 

contract and implementation. For a more detailed description, see [12]. 

4.4.4.1 Contract 

The following class diagram shows the classes of the CommunicationService contract: 

 

The contract defines the IXcoCommunicationService interface that has to be implemented by all 

communication services. By working with delegates, the communication service doesn’t need to 

know anything about where it gives received messages to, it just needs to call a certain method 

whenever it receives either a request or response message. Additionally to the type of message, the 

communication service needs to know to which address a message has to be sent to. To implement 

this functionality, the contract defines the three interfaces IMessage, IRequestMessage (which is 

implemented by the kernel’s RequestMessage class) and IResponseMessage (which is implemented 

by the kernel’s IResponseMessage class).  

 IXcoCommunicationService 

 RequestReceivedMethod Definition for the method to be called when a request 
(IRequestMessage) is received from a remote kernel. 

 ResponseReceivedMethod Definition for the method to be called when a response 
(IResponseMessage) is received from a remote kernel. 

 Start Starts the communication service at the given port, also takes two 
method delegates as parameters for the methods to be called when 
receiving requests or responses. 

 Stop Stops the communication service. 

 SendMessage Sends an IMessage to the given address. 

Figure 47: Class diagram of the CommunicationService contract. 
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 IMessage 

 RemoteAddress The address to where the message should be sent, or the address from where 
the message has been received. 

 
The IRequestMessage and IResponseMessage interfaces both inherit the IMessage interface. Since 

they are only needed for the communication service to distinguish between requests and responses, 

they both don’t have any methods or properties. 

4.4.4.2 Implementation: WCF 

The standard communication service implementation uses the Windows Communication Foundation 

(WCF) [37] for handling all communication issues, which has been chosen because it is easy to 

implement and at the same time highly configurable. If not further configured, the WCF 

communication service uses TCP for communicating. For better performance, a connection to 

another kernel is stored and reused once it has been opened (because it has shown that opening and 

closing connections is very time consuming and slows communication significantly). Only when a 

connection is not used for a certain amount of time it is closed. For message serialization, the WCF 

implementation simply uses binary serialization. 
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5 Aspects in the XcoSpaces Kernel 

5.1 Introduction 

The most powerful extensibility feature of the core is the support for aspects. Aspects are more or 

less pieces of code that can be added at certain points in the core which are called insertion points 

(or ipoints). As soon as an aspect has been added at a certain point it will be executed whenever the 

execution of an operation in the core reaches that point. As is has been said earlier, there is one 

ipoint before and one after every operation, because of which these are called pre- and post-ipoints.  

One important thing to guarantee as much flexibility as possible is the separation of aspects for a 

single container (called local or container aspects) and aspects for the whole space (called global or 

space aspects). This makes it possible to either change the behavior of only a container or of the 

whole space, depending on which kind of aspect is used.  

It is of course also possible to add more than one aspect to the same ipoint, in which case the aspects 

are executed sequentially in the order that they were added. It can be very important to think about 

this order when adding aspects to the space since aspects concerning things like security could be 

needed to be executed before all other ones so the integrity of the core cannot be harmed. 

For the aspect to be able to influence an operation running in the core (and also for the core to 

understand the outcome of an aspect call) there are four different return types that the aspect can 

use: 

 Ok 

The execution of the operation can continue as normal. 

 Skip 

The operation, as well as all succeeding pre- or post- aspects, should be skipped (but not 

throw an error). If used at a pre-ipoint the execution skips all succeeding pre aspects and 

goes directly to the execution of the post aspects. This can be used to implement aspects 

that actually completely replace the logic of a whole operation. If used in a post aspect, Skip 

has no impact on the operation itself (because its execution has already been finished) and 

only skips all succeeding post aspects. 

 Reschedule 

The operation should be cancelled and immediately rescheduled. All succeeding pre- or post-

aspects are skipped like with Skip. 

 Error 

The operation should result in an error (defined by the aspect). This can be used for any 

situation where the aspect doesn’t want the operation to be processed successfully or in 

case of errors in the aspect itself. All succeeding pre- or post-aspects are skipped. 

All important things about aspects in practice are explained in the next chapters. A detailed 

introduction of aspects in theory can be found in [13]. 
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5.2 Kernel Implementation 

The implementation of aspects into the core in theory has shortly been introduced in chapter 3.4.4. 

For the XcoSpaces kernel the most important points of the aspect model have stayed the same. 

Mostly the core processor structure only has to be refined a bit, taking into account both container 

and space aspects. This is shown in Figure 48. (See chapter 4.2.5 for an explanation of the core 

processor implementation.) 

5.2.1 Core Processor 

Because of the separation of container and space aspects, these are also separated into different 

managers in the core processor. Since the aspects of different containers don’t have any relation to 

each other, every container has its own container aspect manager. For managing the space aspects 

there is a single space aspect manager.  Every aspect manager (both the one for the space and those 

for the containers) manages an individual list of aspects for every ipoint. Also, for every ipoint the 

aspect manager provides a method that calls all these aspects (always in the order that they were 

added) and also manages the skipping of aspects (as needed by certain aspect results).  

 

 

When adding an aspect to an aspect manager a list of ipoints has to be provided that tells the aspect 

manager where it has to be added. The separation of the list of aspects into lists for every single 
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Figure 48: Aspects in the Core Processor. 
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ipoint has two advantages: The user has more control over what the aspect does in the core. 

Although an aspect would normally always be added to the same ipoints, it could be that sometimes 

only a part of an aspect’s functionality is wanted and therefore it doesn’t need to (or even must not) 

be added to certain ipoints where it would normally be added to. The second advantage is that the 

performance can be controlled and optimized much better this way. If for every operation the 

processor would need to go through the list of all aspects and call all their methods (even if the 

methods do nothing but just return Ok as result), this would noticeably slow down operations even 

when they are not concerned by most of the aspects. 

The following definition of the ContainerAspectManager class shows how the aspect managers are 

structured (only the methods for a few of the ipoints are listed): 

 ContainerAspectManager 

 AddAspect Adds an aspect to a given list of ipoints of the container.  

 RemoveAspect Removes an aspect from a given list of ipoints of the container.  

 PreRead Calls all aspects that need to be called before a read operation. 

 PostRead Calls all aspects that need to be called after a read operation. 

 PreTake Calls all aspects that need to be called before a take operation. 

 … (there is one method for every ipoint) 

 
The ipoints themselves are represented by the enumerations ContainerIPoint and SpaceIPoint (see 

Figure 49). So the list of ipoints for adding an aspect to the ContainerAspectManager is actually a list 

of ContainerIPoint values. 

The results of the aspects calls (as described above) are represented by the AspectResult 

enumeration with the values Ok, Skip and Reschedule. In case of an error the aspect can simply throw 

an exception which then leads to the operation failing and giving the thrown exception back to the 

user. To be handled as an expected error, the thrown exception should always be inherited from the 

XcoAspectException class, otherwise the error will be seen as an unexpected error and lead to an 

exception thrown by the aspect manager telling that a certain aspect at a certain ipoint has failed to 

execute correctly. 

5.2.2 XcoKernel 

Since the XcoKernel provides possibilities for accessing all kernel functions it also needs to provide 

methods for the user to be able to manage the space’s aspects. Therefore, some methods are added 

to the XcoKernel: 

 XcoKernel 

 OperationContext The operation context that is used for all of the kernel’s operations. 

 AddSpaceAspect Adds an aspect to a given list of ipoints of the space. 

 RemoveSpaceAspect Removes an aspect from a given list of ipoints of the space. 

 AddContainerAspect Adds an aspect to a given list of ipoints of the container identified by 
a given container reference. 

 RemoveContainerAspect Removes an aspect from a given list of ipoints of the container 
identified by a given container reference. 
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The methods for adding and removing aspects are also implemented in a second variant where they 

take just an aspect as input parameter but no ipoints. These methods generate the list of ipoints 

from the given aspect on the fly, by looking at which methods the aspect overrides (the list is built 

from all ipoints from which the methods have been overridden). This is a convenient way for users to 

add aspects to the space (or remove them) with the default list of ipoints for this aspect without 

having to create the list of ipoints themselves. 

Note that in the current version of the XcoSpaces kernel it is only possible to add aspects to the local 

space. So when a container aspect is tried to be added to a remote container, an exception is 

thrown. Adding aspects to a remote space by transferring an aspect object would cause some 

problems that cannot easily be solved: First, aspects would need to be made serializable or there 

would be some method needed to instantiate aspects directly at the space where they are needed 

but still set the variable properties of the aspect. Second, it would always be needed that not only 

the user that wants to add the aspect but also the remote kernel where the aspect should be added 

has loaded the class definition of this aspect. Adding an aspect unknown to the remote kernel would 

be impossible. Later versions are planned to support the adding of aspects to a remote space by the 

use of scripting ([13] handles this matter in more detail). 

5.3 Implementing Aspects for the Kernel 

An aspect can be implemented by inheriting from the abstract base class ContainerAspect (for 

implementing a container aspect) or SpaceAspect (for implementing a space aspect). Each of these 

abstract classes defines one method for every (space/container-) ipoint (pre read, post read, pre 

take, …). Such a method is then called by the aspect manager if the aspect has been added to the 

ipoint where this method belongs to. As input parameters the methods take all important 

parameters of the operation, e.g. directly before creating a container (post container create ipoint) 

the important parameters are the size, uniqueness and coordination types for the container to be 

created, directly after (pre container create ipoint) an important parameter is the container 

reference that will be given back to the user. Parameters which the aspect can have influence on are 

handed over as ref parameters so the aspect is able to directly change them. Other parameters that 

are currently available are handed to the aspect method for information purposes only. 

The following class diagram gives an overview of the aspect classes in the kernel (ContainerAspect, 

SpaceAspect and their base class) and the enumerations that define the lists of ipoints in the kernel 

(ContainerIPoint and SpaceIPoint): 
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How the definition/implementation of a method within an aspect class looks like (by example of the 

pre/post container create ipoints) is also shown in the following code example. The 

Figure 49: Class diagram of the kernel's aspect classes. 
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PostContainerCreate method still gets the size, uniqueness and coordination types as parameters but 

at this point they cannot be changed any more (because the container has already been created). 

public virtual AspectResult PreContainerCreate(ref int size, ref bool unique,  

 ref List<Selector> coordinationTypes, OperationContext context) 

{ 

 return AspectResult.Ok; 

} 

 

public virtual AspectResult PostContainerCreate(int size, bool unique, 

 List<Selector> coordinationTypes, ref ContainerReference cref, 

 OperationContext context) 

{ 

 return AspectResult.Ok; 

} 

Code Example 8: Methods for pre/post container create in the SpaceAspect class. 

The code example also shows some more important details about aspects: The methods in the 

(abstract) ContainerAspect and SpaceAspect classes are not abstract, they are already implemented 

with a default behavior so that they do nothing and just return AspectResult.Ok. This makes the code 

for implementing an aspect a lot shorter because not all methods for all existing ipoints have to be 

overwritten, only the ones that are really needed by that aspect. (To be able to overwrite the 

methods, they are of course all marked with the virtual keyword). 

The second thing that is shown in the code example is that all aspect methods have an 

OperationContext object as parameter. Sometimes aspects will not only need the information they 

get delivered in a certain operation any way, but also some information about the context of the 

operation itself, e.g. information about which user has executed this operation. The aspect could use 

this information for example to allow certain operations only to certain users. 

The user can store key-value pairs in the operation context with a string as key and any object as 

value. The aspect can then read these properties and use it, or it could even use the operation 

context to store values itself and other aspects that are called after this one can read these values. 

 OperationContext 

 this Array accessor for the properties of this OperationContext.  

 AddProperty Adds a property to the OperationContext.  

 ContainsProperty Checks if a key is contained in the OperationContext. 

 RemoveProperty Removes a property from the OperationContext. 

 
Another important thing is that an aspect must be able to access the space itself, because only then 

many of the things that are planned to be done with aspects can really be done. Aspects must e.g. be 

able to create and use containers, an example where this can be absolutely necessary even in simple 

cases is shown later. 

Letting the aspect access the space is only possible when the aspect has a reference to the local 

kernel (the XcoKernel instance). This is done by a protected property. Because this property is similar 

in both the space and the container aspects it is part of the abstract class Aspect which both 

ContainerAspect and SpaceAspect inherit. 

 Aspect 

 OwningKernel Reference to the Local XcoKernel. 



98 
 

 
The OwningKernel property is automatically set by an internal method (not visible outside the 

XcoSpaces.Kernel assembly) by the time the aspect is added to the space, it can be accessed from 

inside the aspect but not changed. 

How aspects can be used in practice and what possibilities they offer is best explained with an 

example. 

5.4 Aspect Implementation Example 

5.4.1 Introduction – The SimpleSecurityAspect 

The aspect that is going to be used in this example implements a very simple security model and is 

therefore called SimpleSecurityAspect. The goal is to let only users do something within the space 

when they authenticate themselves with a valid username and password. If the user and password 

are valid, the space should behave completely normal, but if not an exception should be thrown 

telling the user that he is not allowed to access the space. At least the one who added the aspect to 

the space should also be able add new users, change the password of existing users and remove 

users while the space is running. 

5.4.2 Implementation of the SimpleSecurityAspect 

Since all of the space’s possible operations should be secured, the SimpleSecurityAspect needs to be 

implemented as a SpaceAspect. The pre-ipoints are perfectly suitable for checking if the user is valid 

or not. If the user is not valid, an exception can be thrown and the operation will not be executed but 

return an error instead. Since this is an expected exception, it should be implemented as a subclass 

of XcoAspectException. We simply call this Exception SimpleSecurityException. 

Of course an operation doesn’t normally deliver a username and password. So a way is needed to 

transport the username and password to the kernel so that the aspect can read it when needed. The 

OperationContext introduced before is perfectly suitable for that. There just need to be two key 

names defined for username and password (like “simplesecurity.user” and 

“simplesecurity.password”, so names will surely not interfere with those of any other values stored 

in the operation context). Before a user accesses the space he can add the username and password 

to his operation context and it will then be sent together with every operation. 

Since it is enough that the person that adds the aspect can manage users (which implies that the 

aspect is added to this person’s local space, since aspects cannot be added to a remote space), this 

can simply be done by methods of the aspect itself. So the aspect can simply provide AddUser and 

RemoveUser methods to do that. 

To also secure access to containers a SpaceAspect is not enough. This can only be done with a 

ContainerAspect. Again, the aspect can just be registered at all of the container’s pre ipoints and 

throw an exception if the authentication information is not valid. Because every container that is 

created should also be secure, the SimpleSecurityAspect has to add a container aspect to every new 

container directly after it is created. This also has the advantage that if it later should be possible to 

secure only certain containers in the space and leave other containers unsecured, the aspect can 

easily be changed to decide if it secures a container or not by the time the container is created just 

by adding the security aspect to it or not. 
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The following code example shows the implementation of the SimpleSecurityAspect class: 

public class SimpleSecurityAspect : SpaceAspect 

{ 

 public const string PROPERTY_USER = "simplesecurity.user"; 

 public const string PROPERTY_PASSW = "simplesecurity.pass"; 

 

 private Dictionary<string, string> users = new Dictionary<string, string>(); 

 

 public void AddUser(string user, string password) 

 { 

  users[user] = password; 

 } 

 

 public void RemoveUser(string user) 

 { 

  if (users.ContainsKey(user)) 

   users.Remove(user); 

 } 

 

 private void CheckUserValid(OperationContext context) 

 { 

  if (!context.ContainsProperty(PROPERTY_USER) ||  

   !context.ContainsProperty(PROPERTY_PASSW)) 

   throw new SimpleSecurityException( 

    "No authentication information could be found."); 

  string user = (string)context[PROPERTY_USER]; 

  if (!(users.ContainsKey(user) &&  

   users[user] == (string)context[PROPERTY_PASSW])) 

   throw new SimpleSecurityException("Authentication not valid."); 

 } 

 

 public override AspectResult PreContainerCreate(ref int size,  

  ref bool unique, ref List<Selector> coordinationTypes,  

  OperationContext context) 

 { 

  CheckUserValid(context); 

  return AspectResult.Ok; 

 } 

 

 ... 

 

 public override AspectResult PreTransactionRollback( 

  ref TransactionReference tref, OperationContext context) 

 { 

  CheckUserValid(context); 

  return AspectResult.Ok; 

 } 

 

 

 public override AspectResult PostContainerCreate(int size, bool unique,  

  List<Selector> coordinationTypes, ref ContainerReference cref,  

  OperationContext context) 

 { 

  this.OwningKernel.AddContainerAspect( 

   cref, new SimpleSecurityContainerAspect(this)); 

  return AspectResult.Ok; 

 } 

} 

Code Example 9: Implementation of the SimpleSecurityAspect. 

The user management is simply done with the use of a dictionary that has the username as key and 

the password as value. The AddUser and RemoveUser methods allow adding, changing and removing 

users in this dictionary. The CheckUserValid method looks into an OperationContext object to see if it 

contains the needed username and password and checks if they are valid. The property names for 
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both values are defined as public constants. If the check leads to the authentication being invalid a 

SimpleSecurityException is thrown. 

All the methods for the pre ipoints are now simply using the the CheckUserValid method to check the 

authentication information and then return Ok as result (because if no exception has been thrown 

everything is fine). The only method for a post ipoint that needs to be implemented is 

PostContainerCreate because directly after container creation an aspect needs to be added for 

securing the created container. This container aspect is implemented as an inner class named 

SimpleSecurityContainerAspect. Just like the aspect for the space, the container aspect implements 

the methods for all pre ipoints and there uses the CheckUserValid method to check the user 

authentication. The following code example shows its implementation: 

private class SimpleSecurityContainerAspect : ContainerAspect 

{ 

 private SimpleSecurityAspect securityAspect = null; 

 

 public SimpleSecurityContainerAspect(SimpleSecurityAspect securityAspect) 

 { 

  this.securityAspect = securityAspect; 

 } 

 

 public override AspectResult PreDestroy(ContainerReference cref,  

  TransactionReference t, ref List<Selector> selectors, int retryCount,  

  OperationContext context) 

 { 

  securityAspect.CheckUserValid(context); 

  return AspectResult.Ok; 

 } 

 

 public override AspectResult PreRead(ContainerReference cref,  

  TransactionReference t, ref List<Selector> selectors, int retryCount, 

  OperationContext context) 

 { 

  securityAspect.CheckUserValid(context); 

  return AspectResult.Ok; 

 } 

 

 ... 

 

 public override AspectResult PreRemoveAspect(ContainerReference cref,  

  ref ContainerAspect aspect, ref List<ContainerIPoint> iPoints,  

  OperationContext context) 

 { 

  securityAspect.CheckUserValid(context); 

  return AspectResult.Ok; 

 } 

} 

Code Example 10: Implementation of the SimpleSecurityContainerAspect. 

5.4.3 Using the SimpleSecurityAspect 

With these preparations done, the SimpleSecurityAspect is ready to be used. The following code 

example shows how the aspect is added to the space and how the user authentication with the use 

of the OperationContext works: 

using (XcoKernel kernel = new XcoKernel()) 

{ 

 //add the SimpleSecurityAspect to the space and create a test user 

 SimpleSecurityAspect securityAspect = new SimpleSecurityAspect(); 

 securityAspect.AddUser("testuser", "testpassword"); 

 kernel.AddSpaceAspect(securityAspect); 
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 //accessing the space without authentication results in an error 

 try 

 { 

  kernel.CreateContainer(null, -1, false, new FifoSelector()); 

 } 

 catch (SimpleSecurityException ex) 

 { 

  Console.WriteLine("Result without authentication: " + ex.Message); 

 } 

 

 //after adding a correct authentication information to the kernel's 

 //OperationContext, the space can be accessed 

 kernel.OperationContext = new OperationContext();  

 kernel.OperationContext.AddProperty( 

  SimpleSecurityAspect.PROPERTY_USER, "testuser"); 

 kernel.OperationContext.AddProperty( 

  SimpleSecurityAspect.PROPERTY_PASSW, "testpassword"); 

 ContainerReference cref = kernel.CreateContainer( 

  null, -1, false, new FifoSelector()); 

 kernel.Write(cref, null, 1000, new Entry("test")); 

} 

Code Example 11: Using the SimpleSecurityAspect. 

The example first shows how the aspect is added to the space and a user named testuser is added 

with the password testpassword. By using the AddSpaceAspect method with only the aspect as 

parameter, the aspect is automatically added to all ipoints for which it has implemented methods 

(which are all pre ipoints and the post container create ipoint). The following operation for creating a 

container at the same space results in a SimpleSecurityException because the kernel’s operation 

context contains no username and password information. The exception is the one that is thrown by 

the aspect itself. Always when an aspect throws an exception it is transported back as response and 

then rethrown in the user’s thread. After that the kernel’s operation context is provided with a 

correct username and password and the kernel can then be accessed without problem. 

5.4.4 More Ideas for the SimpleSecurityAspect 

The given example of a security aspect of course only provides very limited functionality, but it 

should basically just show how easy it is to extend the space with aspects and alter the functionality 

of all space operations. It would be fairly easy to add some more functionality to the given aspect to 

advance it from just a nice little example to something that could already be interesting for using in a 

small application that just needs a basic possibility for user authentication: 

 Information about the users could be extended by predefined roles, like administrators and 

standard users. Some operations could then only be allowed for certain user roles, e.g. while 

every user can read from and write to containers, only administrators are allowed to create 

and destroy containers. 

 Instead of managing the list of users locally within the aspect, it could also be managed 

within a container in the space (which of course would need to be secured so that only 

administrators can change it). This would allow the list of users not only to be managed 

locally, but also from remote kernels, and a security aspect in a remote kernel would be able 

to use the same container for user authentication. 

 When creating a container, a user could decide which users should have access to it, for 

example by providing a list of usernames in the operation context when executing the 

container create operation. 
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5.5 Notifications in the XcoSpaces Kernel 

This chapter handles the implementation of notifications in the kernel which is based on aspects, and 

also gives a short introduction to notifications in theory. 

5.5.1 Introduction 

As discussed in chapter 3.2.2.2, one of the requirements for the core is the support for notifications. 

Basically, notifications are a way for the user of a space to automatically be informed when 

something has happened in the space, e.g. when an entry has been added to or removed from a 

certain container. 

Such a notification could be implemented/used in many different flavors: The most basic form of 

notification would just be to inform the user that something has changed in the container (e.g. an 

entry has been added) and nothing more. The user would then need to take action himself (e.g. read 

the new entry from the container), but could on the contrary as well decide to just ignore what has 

happened. Another form of notification could not only inform the user but also directly deliver the 

entry/entries to the user that was/were part of the action. This could be useful when the user always 

wants to know which entries were involved in certain changes, e.g. which entries were removed from 

a container by take or destroy. 

But there are many more things to think about when implementing notification behavior. The user 

should be able to choose on which actions he wants to be notified, e.g. only when entries are added 

or only when entries are removed. He could even be given the possibility to define that he only 

wants to be informed when the change on the container fulfills certain criteria, like only entries that 

are added to a key coordinated container having “x” or “y” as key value. More things to be decided 

could be: Must it be guaranteed that the user is informed about every event that occurs? Must the 

order of notifications be the same one as the order of events in the space that triggered them? What 

is the notification’s behavior in combination with transactions (e.g. should it fire on uncommitted 

changes)? All these questions are handled in detail in [13]. 

5.5.2 The Notification1 Definition 

Since the implementation of notifications into the core has been identified as a requirement, but it 

would be impossible for one implementation to fulfill all possible flavors of notifications (it also 

wouldn’t make sense to put much energy into implementing all possible flavors when some of them 

are only needed very rarely), a certain subset of these flavors needs to be built for that, which is 

called the Notification1 definition. This definition contains the features that have been identified as 

most important for notifications in the space. 

5.5.2.1 General Behavior 

The main purpose of a Notification1 is to inform the creator what has happened on a specified 

container. There are two important constraints Notification1s have to follow. First, the Notification1 

mechanism is never allowed to miss any event that involves its container as target. The second one is 

that it just informs about the past and gives no information about the container’s content at the 

moment of firing (e.g. by the moment a notification fires because of a written entry, it is not 

guaranteed that this entry is still in the container). It can either just inform or return the entries that 

lead the Notification1 to fire. 
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5.5.2.2 Targets 

Notification1s can have different targets, which decide when a Notification1 should fire. Those 

targets include write, shift, read, take and destroy operations on a specified container. For example, a 

Notification1 with the target write is supposed to fire whenever an entry has been written to that 

container. If the notification is supposed to return the affected entries, the written entries will be 

returned. Notification1 with the target take is supposed to fire whenever entries have been taken 

from that container, and should return the taken entries if it is supposed to. The same applies to the 

other operations. 

Concerning the selection of certain events, the Notification1 is not needed to support any 

preselection. The use of selectors would be best suited to do that but would also bring some 

difficulties when certain coordination types like vector are involved. 

5.5.2.3 Transactions 

When an operation on a container is performed within a transaction, a Notification1 will fire only as 

soon as the transaction is committed (and not fire at all if the transaction is rolled back). This means 

that as soon as a transaction is committed, the notification immediately fires for all events of this 

transaction. It is important to mention that what is fired at that time is not based on what the 

transaction changed in the container overall, but exactly on what has been done within the 

transaction. E.g. if an entry has been written and then destroyed in the same transaction, the 

Notification1 (if it has both write and destroy as targets) will fire for both of these operations when 

the transaction is committed. 

There is also the possibility to create a Notification1 “within” a certain transaction, in which case the 

notification immediately fires for all operations that are done in this transaction. 

5.5.3 The Aspect Based Notification Implementation 

As said at the beginning of this chapter, the implementation of aspects in the XcoSpaces kernel is 

based on aspects. It has been chosen to implement notifications with aspects because aspects 

provide all the possibilities needed to do that, and in this way no additional mechanisms have to be 

implemented directly into the kernel. Also, using aspects saves implementation time and also 

reduces the amount of additional code that needs to be tested for errors. The only drawback of 

implementing notifications with aspects is that it would of course be easier to optimize notifications 

for performance with a native implementation. But since aspects would of course needed to be 

optimized for performance themselves (otherwise they would not be suitable for all the problems 

that aspects are aimed to solve), it has been decided to use them anyway. 
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Figure 50: Notifications in the kernel implemented by aspects. 
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Figure 50 shows a in a simplified way how an aspect is used to implement a notification. There are 

two clients that use the space, one is the so called worker (because he executes operations on the 

displayed container), and the other one the observer that wants to get notified about every change in 

the container (thus further also called observed container), in other words the client that wants to 

use the notification. An aspect is added to the observed container that is called at the post ipoint of 

write, shift, take and destroy (all operations that change the content of the container). After a write 

or shift operation this aspect creates a new notification object and puts all written entries into it, 

after a take or destroy operation the aspect does the same, only with all the entries that have been 

taken/destroyed. This notification object is written to a so-called notification container, which is just 

a fifo coordinated container. The observer does nothing more than execute a blocking take on the 

notification container. Now, whenever something is changed in the observed container the aspect is 

triggered and the changes are written into the notification container. As soon as this happens the 

observer’s blocking take operation is automatically woken up and the notification object which has 

just been written into the notification container is returned. After that the observer just has to do a 

take on the notification container again and wait for the next firing of the notification. 

5.5.3.1 The Notification Aspect 

The notification aspect is implemented in the NotificationAspect class, which is (of course) a subclass 

of ContainerAspect. It implements the methods for the post ipoints of write, shift, read, take and 

destroy. When the aspect is instantiated, the reference to the notification container is given to it. 

This container reference is then used by the aspect when one of its implemented post ipoint 

methods is called to write an object into the notification container that contains the entries that 

were the target of the operation and the kind of operation that occurred. For which operations a 

notification fires when it is added to a container depends on which ipoints the aspect is added to, e.g. 

if the notification should fire only for write and shift, the aspect would be added to the pre write and 

pre shift ipoints, but not pre read, take and destroy. 

It must of course also be guaranteed that the aspect can easily be removed again as soon as the 

observer wants to cancel the notification. It is much easier for the observer to do that without even 

needing to directly know the aspect. Also, it should be guaranteed that as soon as the observed 

container is destroyed, the notification container that is now no more needed also gets destroyed 

automatically. 

These two things are guaranteed by the aspect implementing the PostContainerDestroy method and 

being added it this ipoint to both the observed container and the notification container. When the 

observer wants to cancel the notification, he just needs to destroy the notification container. The 

aspect’s PostContainerDestroy method is called and the aspect recognizes that its notification 

container was destroyed and can then removes itself from the observed container (by just calling the 

owning kernel’s RemoveContainerAspect(…) method). On the other hand, if the aspect’s 

PostContainerDestroy is called from the observed container, the aspect can immediately destroy the 

notification container because it is no more needed. 

5.5.3.2 The Notification Class 

Although the implementation of notifications is done by using aspects internally, the user should of 

course still get the feeling that he is dealing with notifications and not bother about anything 

concerning the use of aspects. To make the user experience notifications in the way it should be, it 

should also be prevented that the user himself has to open an own thread and use it for doing the 
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blocking take operation to the notification container. Therefore a notification presents itself to the 

user in form of the Notification class. When a user wants to create a notification on a certain 

container, he needs to use one of the following two methods in the XcoKernel: 

 XcoKernel 

 CreateReadNotification Creates a notification on a given container that has the operations read, 
take and/or destroy as targets. Returns a Notification object. 

 CreateWriteNotification Creates a notification on a given container that has the operations write 
and/or shift as targets. Returns a Notification object. 

 
When calling one of these two methods the XcoKernel creates a notification container and adds a 

NotificationAspect to the target container that writes into the newly created notification container. 

The kernel then creates a Notification object that knows the reference to the notification container 

and returns it. The Notification works with delegate methods to inform the user that something has 

happened. 

 Notification 

 SetReadCallback Sets a callback delegate method that should be called whenever the 
notification fires because of a read, take or destroy operation. 

 SetWriteCallback Sets a callback delegate method that should be called whenever the 
notification fires because of a write or shift operation. 

 Start Starts taking notification objects from the notification container in a 
separate thread with blocking take. Calls the read or write callback 
method as soon as a new notification object is received. 

 Stop Stops the notification by destroying the notification container. 

 
The callback methods have a list of entries and an operation type as parameters. As soon as the user 

calls Start the defined callback method will be called whenever the notification fires. A simple call to 

Stop destroys the notification container and thereby removes the NotificationAspect from the 

observed container. 



106 
 

6 Future Work 
There are still many things to do concerning XVSM and its implementation XcoSpaces, starting from 

improvements on the current functionality to extending XcoSpaces with new features. The following 

list gives an overview of the most important future work: 

 More work needs to be done to prove that the XVSM model goes into the right way. There 

exist certain ideas of improving the container structure and making it better usable and more 

understandable than it is now. These ideas will need to be compared and tested against the 

current model. Also, more prove is needed by extensive benchmarking of the 

implementations, to show if the XVSM core model is really as extensible as it claims to be 

(until now benchmarks have only been done within simple scenarios). 

 These changes in the model also have an influence on XcoSpaces, being an XVSM 

implementation, and will thus need to be implemented in into the XcoSpaces kernel. 

 The implementation of aspects aims to provide everything that is needed for extending the 

core with features like security, persistency and many more. Although simple aspects have 

already been implement for testing, many more aspects will need to be implemented to test 

if the given aspect functionality is really enough and suitable for everything that should be 

achieved with them. 

 Also connected to the last point: The XcoSpaces kernel may already be in a rather mature 

stage, but the kernel alone only provides few features, much has been left out from the 

kernel to be later implemented with the use of aspects as so-called profiles. Such profiles 

need to be implemented in order to provide additional important functionality for the kernel. 

 With the currently available communication services in XcoSpaces, the kernel still has 

problems in certain scenarios, especially when it comes to communicating over firewalls and 

NAT. New communication services need to be implemented (one that is using the Jabber 

protocol is already planned) to overcome these problems. 

 Tools for administration, management and debugging of XcoSpaces need to be built that for 

example allow looking into the space and see the currently existing containers and their data, 

as well as allow general configuration of the space, e.g. how many threads are used in the 

core processor thread pool. 
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7 Conclusion 
This document presented the architecture of the XVSM core, which is the central piece of software 

representing XVSM. This architecture tries to take into consideration all requirements that emerge 

from the XVSM model as good as possible. The document also introduced the XcoSpaces kernel and 

shows how it implements the XVSM model. In addition, the design of the kernel from an 

implementation point of view has been shown, with a special aim for introducing the contracts that 

are part of XcoSpaces and allow flexibly replacing several parts of the kernel. 

A special focus has also been set on introducing the extensibility mechanisms of XcoSpaces called 

aspects, and to show how they work and that they really enable adding new behavior to the kernel 

and extending existing functionality. The SimpleSecurityAspect showed that this is absolutely 

possible. 

The document also introduced a structure for classifying systems that implement (or are similar to) 

the shared data spaces paradigm, and surveyed a bunch of systems according to this structure. It 

became clear that creating a good classification structure is not an easy task, because taking all 

possible points of interest into account would make it too heavy, but concentrating only on certain 

points can easily make some systems look better than they are (and others look worse) when other 

points remain unmentioned. 

The following table gives a short overview of the systems that were presented in the classification 

and compares them to XVSM. A star means that a certain function is supported (and no star that it 

isn’t). Topics marked with (R) have a rating instead, with three stars being best and no stars worst. 

 Blitz GigaSpaces LighTS Corso XVSM 

Coordination Concepts      
Linda Coordination * * *  * 
Fifo Coordination * *   * 
Key Coordination  *   * 
Other Coordination Types     * * 
Meta Data (R)  * *  *** 
Space Substructures (R) * *  ** *** 
Data Type Support (R) ** *** ** * *** 
Operations      
Basic Operations (R) ** *** ** ** *** 
Events * *  * * 
Transactions * *  * * 
Extensibility      
Coordination (R)   **  *** 
Other Concepts (R) * * *  *** 
Architecture      
Embedded System (*) (*) *  * 
Standalone System * *  * (*) 
Client/Server Based * *  *  
P2P Based     * 
Partitioning/Repl./Caching (R)  ***  ** * 
API Support (R) * ***   ** 
Security (R)  ***  ** * 

 
Judging from the results of the classification, the systems that came out to be outstanding above the 

others are GigaSpaces and XVSM. GigaSpaces is great concerning usability, support for different 
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coordination types and above all its extensible and scalable server architecture with support for all 

different kinds of replication and caching mechanisms. XVSM stands out even more when it comes to 

coordination, and has a great amount of extensibility. 

This shows at least to a certain degree, that XVSM really does well in the points where its design 

aimed it to do. But it also shows what has already been mentioned in the future work chapter: 

Currently XVSM clearly falls behind other systems when it comes to functionality like replication, 

caching, persistency and security features. Although these functions may not be needed everywhere, 

they are clearly very important. Profiles, although already planned for supporting these features, are 

not yet implemented, and will need to be implemented not only to support all the needed features, 

but also to show if the introduced extensibility features, above all aspects, are really suitable for all of 

that. 
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