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Abstract 

Joins are a core operation in database systems. Nowadays every larger database system 

comes with XML support which allows XPath or XQuery statements to retrieve the stored 

data. Structural joins have to perform as good as possible to support efficient data retrieval.  

Many different algorithms have been proposed which work with different strategies to 

process a structural join.  Every algorithm has its strengths and weaknesses. The core of 

every algorithm is the numbering schema which allows determining a structural relationship 

between two nodes efficiently.  

Earlier proposed algorithms like the TreeMerge and the StackTree only handle queries with 

two nodes. A longer query has to be split and its intermediate results merged together 

afterwards.  

Later algorithms like the TwigStack or the PathStack process a query at once and use a 

special stack-encoding to store intermediate results efficiently. The usage of stacks has 

proven as very efficient. The StackTree was the first algorithm which used one stack to cache 

ancestor nodes. 

State of the art is the Twig2Stack which can also handle optional query nodes. It uses a much 

more complex stack-encoding combined with the numbering schema. 

Even specific index structures have been proposed to speed up the search for ancestors or 

descendants of a node. Some structures like the B+ tree have been adapted from the 

relational databases to work with the numbering schema.  

Other structures like the XR-tree were especially designed to find ancestors and descendants 

of a node very efficiently. New concepts like stab lists have been introduced in this structure.  

This work will give an overview how the algorithms have improved and how the new 

strategies affect the join performance.  
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Kurzfassung 

Join Operationen spielen bei Datenbanksystemen eine entscheidende Rolle. Sie gehören 

zu den wichtigsten Operationen und beeinflussen stark die Leistung des gesamten 

Systems. Nahezu jeder namhafte Datenbankhersteller liefert seine Produkte mit XML 

Unterstützung aus und ermöglicht so Datenbankabfragen mit XPath oder XQuery.  Somit 

sind strukturelle Joins sehr wichtig, um eine effiziente Abfrage zu ermöglichen.  

Im Laufe der Zeit wurden zahlreiche Algorithmen veröffentlicht, welche die 

verschiedensten Strategien haben, um möglichst effizient zu arbeiten. Die wichtigste 

Gemeinsamkeit ist die Nummerierung der Knoten. Dieser Index macht es möglich 

schnell und effizient die Beziehung zwischen zwei Knoten zu ermitteln.  

Frühere Algorithmen wie der TreeMerge oder der StackTree können jeweils immer nur 

zwei Abfrageknoten verarbeiten. Dafür müssen längere Abfragen aufgespalten werden 

und die Teilergebnisse später zusammengefügt werden. Es ist klar, dass durch das 

Zusammenfügen die Performanz des Algorithmus leidet. Für Abfragen, die nur aus zwei 

Knoten bestehen, liefert der StackTree jedoch sehr gute Ergebnisse, da der Algorithmus 

selbst nur wenig Overhead erzeugt.  

Neuere Algorithmen wie der PathStack oder der TwigStack verarbeiten eine Query als 

ganzes und sparen somit das Zusammenführen der Zwischenergebnisse ein. Natürlich 

haben diese Algorithmen mehr Overhead beim verwalten ihrer Datenstrukturen.  Die 

zuvor erwähnten Algorithmen verwenden zum Beispiel eine spezielle Datenstruktur aus 

Stacks die Zwischenergebnisse optimal speichert um eine optimale Leistung zu erzielen.  

Der Aktuellste ist der Twig2Stack Algorithmus, welcher sogar optionale Abfrageknoten 

verarbeiten kann. Dieser hat eine noch komplexere Datenstruktur und ist somit eine 

Weiterentwicklung des PathStack.  

Es wurden ebenfalls weitere Indexstrukturen verwendet, welche die Suche nach einem 

Vorgänger und Nachfolger einer Knoten beschleunigen. Dabei wurden bewährte 

Strukturen wie der B+-Baum angepasst aber auch neue Strukturen wie der XR-Baum 

entwickelt. Dabei wurden zum Beispiel neue Konzepte wie die Stab-lists eingeführt.  

Diese Arbeit gibt einen Überblick wie die Algorithmen mit der Zeit verbessert wurden 

und wie sich neue Ideen und Strategien auf die Join Operation auswirken.  
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1 Introduction 
The XML format is well defined and wide spread. Due to its tree structure it is easy to build 

up hierarchical structured repositories and makes XML perfect to store and transmit data. 

Another advantage is the processing flexibility. The XML document can be read at once, 

which makes it possible to browse through the DOM structure. It can also be read from a 

stream and in this case each tree node will be processed when it is read. These advantages 

made XML standard for storing data and it is used for example in various different 

communication protocols.  

The amount of data increases rapidly which causes that it is very important to access saved 

data efficiently. Many programmers shred [22] a received XML document to a relational 

database. With the relational database they assure that they can use all its advantages like 

joins and indexes to receive needed data quickly. Obviously the shredding process of the 

data has a big disadvantage. Every transformation causes overhead which uses system 

resources and decreases processing performance. Applications often need data in the 

original format to retransmit it. Then the data will be read out of the relational database and 

transformed to XML again. In cases where the data is needed in the original XML format the 

wrapping operation is very inefficient. Especially when a lot of requests have to be processed 

it can decrease system performance.  Then it is better to store the data in its native XML 

format to avoid wrapping of the data. Techniques from relational databases have been 

adapted that they could be used for XML repositories. For example various index types 

which make it possible to find data much faster.   

Structural joins are an XML database core operation. The information has to be retrieved 

efficiently and in a specified structure. An XML query also specifies the tree structure of the 

searched data and not only the node labels/values. Many different join algorithms have 

been proposed. Some algorithms are a direct optimization from recently proposed 

algorithms and other algorithms introduced new concepts. For example the Tree-Merge 

algorithms have a direct counterpart in the relational database systems and have been 

adapted to work with XML repositories.  

In section 2 the numbering schema is presented which is very important to determine 

structural relationships and is used in every algorithm.  

Section 3 shows the structural join algorithms which are using indexes like the B+ tree or the 

R-tree. The Stack-Tree compared with the Tree-Merge algorithms avoids multiple accesses 

to nodes by introducing a stack. This technique brings a performance gain which is also used 

later when more complex index structures are used.  

Section 4 introduces holistic path join algorithms which use a compact stack encoding to 

optimize the join operation.  
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Section 5 presents holistic path join algorithms which avoid large intermediate results by 

using streams and the stack-encoding.  

Section 6 presents to major index structures for join algorithms. The B+ tree is the basic 

structure which is used by the XR-tree and the XB-tree. For this reason its basic operations 

are shortly presented. In this section also the containment forest enhancement for the B+ 

tree is presented. It has been shown that the XB-tree outperforms the other structures in 

case of highly recursive data.  

Section 7 shows algorithms which make use of index structures to skip elements which are 

not part of the solution. Especially for large input lists it speeds up the join operation. All 

index structures are used which were presented in section 6. 

Section 8 presents details about the results from an implementation of the TreeMerge, 

StackTree and the PathStack.  

The goal of this work is to show how new ideas increase the join performance. It is 

interesting how one idea leads to another one and how index structures speed up the join 

operation.  

This work gives a detailed overview about join algorithms and shows in the practical section 

how the algorithms perform. It has been shown that there is not always one best algorithm 

for every query. For example the StackTree is very fast if the query has only two nodes, but it 

gets slower if the query is longer. A combination of these algorithms might be very 

interesting and can be future work on this sector. 
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2 Basic Definitions 

2.1 XML introduction 
The Extensible Markup Language (XML) is a general-purpose specification for creating 

custom markup languages. [12] XML is classified as an extensible language, because users 

can create their own elements. Its primary usage is to share structured data over different 

information systems. It is a simplified subset of the Standard Generalized Markup Language 

(SGML). 

 

Figure 1 [1] 

Figure 1 [1] shows an example XML document which holds all information about a book.  

There are two levels of correctness of a document:  

 Well-formed: The syntax is correct. For example every start-tag is closed by an end-

tag.  

 Valid: A valid XML documents conforms to some semantic rules. These rules are for 

example defined in a DTD. 

One big advantage of XML is the flexibility of processing XML documents. Traditionally the 

DOM or the SAX API is used.  

The DOM API allows navigation of the entire document as if it were a tree of nodes 

representing the documents contents.  

The SAX API works event driven and contents are reported as “callbacks” to various methods 

of a handler object.  



  
10 

 
  

2.2 DTD 
Document Type Definition (DTD) is used to represent documents of a special type. [13] A 

DTD is consists of element types, attributes of elements, entities and notations. It declares 

the structure of the XML document.   

 

Figure 2 [13] shows an example which expresses [13]:   

1. people_list is a valid element name, and an instance of such an element contains 

any number of person elements. The * denotes there can be 0 or more person 

elements within the people_list element. 

2. person is a valid element name, and an instance of such an element contains one 

element named name, followed by one named birthdate (optional), then gender 

(also optional) and socialsecuritynumber (also optional). The ? indicates that an 

element is optional. The reference to the name element name has no ?, so a person 

element must contain a name element. 

3. name is a valid element name, and an instance of such an element contains "parsed 

character data" (#PCDATA). 

4. birthdate is a valid element name, and an instance of such an element contains 

character data. 

5. gender is a valid element name, and an instance of such an element contains 

character data. 

6. socialsecuritynumber is a valid element name, and an instance of such an element 

contains character data. 

2.3 XPath 
The XML Path Language (XPath) is a query language which makes it possible to select parts 

of the XML document. The current version is XPath 2.0.  

An XPath expression consists of a sequence of location steps and each location step has 

three components [14]: 

 an axis 

 a node test 

 and a predicate. 

<!ELEMENT people_list (person*)> 

<!ELEMENT person (name, birthdate?, gender?, 

socialsecuritynumber?)> 

<!ELEMENT name (#PCDATA)> 

<!ELEMENT birthdate (#PCDATA)> 

<!ELEMENT gender (#PCDATA)> 

<!ELEMENT socialsecuritynumber (#PCDATA)> 

 
Figure 2 [13] 
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An Axis Specifier like 'child' specifies the direction to navigate from a context node. The node 

test and the predicate are used to filter the nodes specified by the axis specifier.  

 

Figure 3 [14] shows a short XML file to show the abbreviated and the expanded syntax of 

XPath.  

The simplest XPath query is A/B/C to select node C.  

The expanded syntax for the same query is: /child::A/child::B/child::C 

In this work the abbreviated syntax is used to save space. 

2.4 Numbering Scheme 
A very important operation is to test if a node is an ancestor/descendant of another node. It 

is certainly the same problem with parent child relationships. The intuitive solution is to 

search each node in the repository and search the other node in the sub tree. Certainly it is 

very inefficient so an index is needed which helps to determine this relationships efficiently. 

So a numbering scheme was introduced which can easily be generated and updated when 

the XML repository changes.  

A position of an element can be represented by a 3-tuple: (DocumentId, StartPosition : 

EndPosition, LevelNumber) 

 

Figure 4 [1] 

 

<A> 

  <B> 

   <C/> 

  </B> 

</A> 

 
Figure 3 [14] 
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The DocumentId is the identifier for the XML document. In the example above it is set to 1. 

[1] If the structural join algorithm handles multiple documents this identifier is very 

important to determine a possible relationship. If the identifier of both nodes does not 

match they are not related in any way. 

The StartPosition can be generated by counting all elements above the current node. For the 

EndPosition all elements under the current node will be counted. To handle future updates, 

where new elements will be inserted, it is possible to extend the (StartPosition : EndPosition) 

interval. When an insert occurs all Start and EndPositions have to be updated what can 

cause in the worst case that every tuple will be updated.  

The LevelNumber is the nesting depth of the node in the document. It is needed to 

determine a parent-child relationship.  

Structural relationships between nodes which are indexed in this fashion can be easily and 

efficiently determined. The node n1 is encoded as (D1, S1 : E1, L1) and node n2 is encoded as 

(D2, S2 : E2, L2). 

Ancestor-descendant relationship between node n1 and node n2: 
1) D1 = D2 
2) S1 < S2 and E2 < E1 

 
Parent-child relationship between node n1 and node n2: 

1) D1=D2 

2) S1 < S2 and E2 < E1 

3) L1 + 1 = L2  

The LevelNumber is not needed to check an ancestor-descendant relationship. The most 

important advantage of this representation is, that the ancestor-descendant relationship can 

be tested without any knowledge of the intermediate nodes in the path.  

 

Figure 5 [1] 

The relationship between 'title' and 'XML' is an ancestor-descendant and also a parent-child. 

The DocumentIds of the nodes are both 1. Then the StartPosition of 'title' (2)  is smaller than 

the StartPosition of 'XML' (3) and the EndPosition of 'title' (4) is larger than the EndPosition 

of 'XML' (3). With these three checks an ancestor-descendant relationship is verified, but for 

a parent-child relationship the LevelNumbers have to be tested too. The LevelNumber from 

'title' (2) increased with one is equal to the LevelNumber of 'XML' (3) which shows the 

parent-child relationship.  
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3 Structural Joins 
An XML document organizes data in a tree structured format. The primitive tree 

relationships are parent-child and ancestor-descendant. A query specifies patterns of 

selection predicates on multiple items that have specific tree relationships.  

For example take a look at the following XPath expression:  book[title = 'XML']//author[. = 

'jane'] 

It selects all author elements which have the content 'jane' and are descendants of a book 

with the title 'XML'. This shows that an XQuery expression can be represented as a node-

labeled tree pattern. Node-labels are elements and string values. Such a query tree pattern 

can be decomposed into a set of parent-child or ancestor-descendant relationships. For this 

example the parent-child relationships are (book, title), (title, XML) and (author, jane) and 

the ancestor-descendant relationship is (book, author).  Below the relationships are shown 

graphically. [1]  

 

Figure 6 [1] 

 

Figure 7 [1]          

To find all occurrences each of the binary structural relationships will be matched against the 

XML database and the matches will be stitched together. Even a complex query tree can be 

decomposed into a set of basic binary relationships.  

3.1 Example 
The presented algorithms assume that they have as input the list of potential ancestors and 

the list of potential descendants. How these lists are generated is not covered by the join 

algorithms directly. It is mentioned to create an index which makes it possible to generate 

these lists quickly. Both lists are sorted with the StartPosition of the nodes.  

For better understanding of the algorithms an example is used to show step by step how the 

algorithm is working. Each node is indexed with the numbering scheme to detect a structural 

relationship between two nodes. 
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Jane nodes colored in blue are descendants and author nodes colored in green are 

ancestors.  For this example the DocumentId of all nodes is 1.  

For the example query author/jane the AList consists of nodes labeled with author and the 

DList consists only of nodes labeled with jane. 

AList: (1, 3:5, 3), (1, 11:13, 3) 
DList: (1, 4, 4), (1, 7, 4), (1, 15, 4) 
 

To show how the algorithm matches an ancestor descendant relationship the example query 

book//jane is used.  

AList: (1, 2:9, 2) 
DList: (1, 4, 4), (1, 7, 4), (1, 15, 4) 
 

3.2 Tree-Merge Algorithm 
Both Tree-Merge algorithms assume that all nodes in the input lists (AList, DList) have the 

same DocumentId and are sorted by the StartPosition attribute. A modification to handle 

multiple DocumentIds is straight forward. The input lists would have to be sorted by the 

DocumentId first and afterwards sorted by the StartPosition. Then the check of the 

structural relationships must cover the DocumentId too. Obviously the nodes must have the 

same DocumentId to have a structural relationship like parent-child or ancestor-descendant. 

Tree-Merge-Anc uses the ancestor list as outer join list and the Tree-Merge-Desc the 

descendant list. It is the decision of a query planner which algorithm performs best on a 

given query. As in relational databases it is important to collect statistics about the stored 

data to make predictions about query runtimes and make optimizations possible. Both 

algorithms have the disadvantage that in the worst case they have to skip a lot of nodes 

which are not part of the solution.  

book 

author 

jane mike 

illustrator 

jane 

author illustrator 

text 

books 

jane 

1, 1:18, 1 

1, 2:9, 2 

1, 3:5, 3 

1, 4, 4 

1, 6:8, 3 

1, 7, 4 

1, 10:17, 2 

1, 11:13, 3 1, 14:16, 3 

1, 12, 4 1, 15, 4 

Figure 8 
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3.2.1 Tree-Merge-Anc 

The algorithm is an extension of the tradition relational merge join algorithms.  

 
For simplicity the algorithm is represented in pseudo code. [1] The outer join operand is the 

ancestor which is similar to the MPMGJN algorithm which was proposed by Zhang et al. [2]. 

The optional clause [&& (d.LevelNum = a.LevelNum + 1)] is used to match parent-child 

relationships. The inner loop which skips unmatchable descendants ignores all descendants 

which have a lower StartPosition than the current ancestor.  

Step-by-step execution with the example query author/jane: 

AList: (1, 3:5, 3), (1, 11:13, 3) 
DList: (1, 4, 4), (1, 7, 4), (1, 15, 4) 
 

1) Node (1, 3:5, 3) from AList is stored into variable a  

2) Node (1, 4, 4) from DList is stored into variable d 

3) The first inner loop which skips unmatchable nodes terminates with the first check 

d.StartPos < a.StartPos (4<3 is not true) 

4) The second loop checks d.EndPos < a.EndPos which is true (4 < 5) 

Algorithm Tree-Merge-Anc (AList, DList) 

/* Assume that all nodes in AList and DList have the same DocId 

*/ 

/* AList is the list of potential ancestors, in sorted order of 

StartPos */ 

/* DList is the list of potential descendants in sorted order of 

StartPos */ 

     

01 begin-desc = DList->firstNode; OutputList = NULL; 

02 for (a = AList->firstNode; a ! = NULL; a = a->nextNode) { 

03 for (d = begin-desc; (d ! = NULL && d.StartPos <     

  a.StartPos); d = d->nextNode) { 

04            /* skipping over unmatchable d’s */  

 } 

 

05 begin-desc = d; 

06 for (d = begin-desc; (d ! = NULL && d.EndPos < a.EndPos); d 

07  = d->nextNode) { 

08      if ((a.StartPos < d.StartPos) && (d.EndPos <  

   a.EndPos) [&& (d.LevelNum = a.LevelNum + 1)]) { 

          /* the optional condition is for parent-child  

      relationships */ 

09          append (a,d) to OutputList;  

  } 

 }  

} 

Figure 9 [1] 
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5) The node-pair ((1, 3:5, 3), (1, 4, 4)) will be appended to the output list, because the 

condition ((a.StartPos < d.StartPos) && (d.EndPos < a.EndPos) & (d.LevelNum = 

a.LevelNum + 1) is true. (3<4 and 4<5 and 4=3+1) 

6) Node (1, 7, 4) is assigned to d and the loop terminates d.EndPos < a.EndPos (7<5) 

7) Node (1, 11:13, 3) is assigned to a in the first loop. 

8) Node (1, 4, 4) and Node (1, 7, 4) are skipped. (4<11) , (7<11) 

9) Node (1, 15, 4) is assigned to d 

10) The skipping loop is terminated (15<11) 

11) The second loop checks d.EndPos < a.EndPos which is false (15 < 13) 

12) The AList is now empty and the algorithm terminates with the solution ((1, 3:5, 3),(1, 

4, 4)) 

 

Step-by-step execution with the example query book//jane: 

AList: (1, 2:9, 2) 
DList: (1, 4, 4), (1, 7, 4), (1, 15, 4) 
 

1) Node (1, 2:9, 2) from AList is stored into variable a  

2) Node (1, 4, 4) from DList is stored into variable d 

3) The first inner loop which skips unmatchable nodes terminates with the first check 

d.StartPos < a.StartPos (4<2) 

4) The node-pair ((1, 2:9, 2), (1, 4, 4)) is appended to the output list, because the 

condition ((a.StartPos < d.StartPos) && (d.EndPos < a.EndPos) is true. (2<4 and 4<9) 

5) Node (1, 7, 4) from DList is stored into variable d 

6) The node-pair ((1, 2:9, 2), (1, 7, 4)) will be appended to the output list, because the 

condition ((a.StartPos < d.StartPos) && (d.EndPos < a.EndPos) is true. (2<7 and 7<9) 

7) Node (1, 15, 4)is assigned to d and the loop terminates d.EndPos < a.EndPos (15<9) 

8) The main loop terminates, because no ancestors are left 

9) The algorithm outputs the solution ((1, 2:9, 2), (1, 4, 4)), ((1, 2:9, 2), (1, 7, 4)) and 

terminates. 

Note: The optional clause [&& (d.LevelNum = a.LevelNum + 1)] is not used in ancestor-

descendant relationship matching. 

3.2.2 Analysis of Tree-Merge-Anc for ancestor/descendant relationship 

 
Theorem 3.2.2.1 [1]:  
 

The space and time complexities of Algorithm 
Tree-Merge-Anc are O(|AList| + |DList| + |OutputList|), 
for the ancestor-descendant structural relationship. 
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When no two ancestor nodes are themselves related with an ancestor-descendant 

relationship the size of OutputList is O(|AList| + |DList|). The algorithm makes a single pass 

over AList and at most two passes over DList2.  

In the next case multiple nodes in AList have an ancestor-descendant relationship. Then 

multiple passes over the same set of descendants may be made. The size of the OutputList is 

quadratic in the size of the input lists O(|AList| * |DList|). In [1] is shown that the algorithm 

still has optimal time complexity, but is not I/O optimal.   

3.2.3 Analysis of Tree-Merge-Anc for parent/child relationship 

The time and space complexity is the same as if one were matching a parent-child 

relationship between the same input lists. Only the size of OutputList can be much smaller. 

In the case that all ancestor nodes form a long chain of length n and each node has two 

descendants, the size of OutputList is O(|Alist| + |DList|). The time complexity is O((|Alist| + 

|DList|)2). The I/O complexity is also quadratic. [1] The structure of the sample tree is shown 

below.  

The ancestors form a list and each node has two descendants:  

 

Figure 10 [1] 

The graphic shows the matching from the structural relationships:   

Figure 11 [1] 
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The dotted line shows the matching of the ancestor with its two descendants. When 

matching a1 and d2n all descendants from d1 to d2n-1 have to be skipped. It is obvious that this 

is the worst case scenario for the Tree-Merge-Anc algorithm, because of the high amount of 

skipped descendants in every run.   

3.2.4 Tree-Merge-Desc 

 

 

For simplicity the algorithm is represented in pseudo code, but originally it has an error. The 

condition of the second inner loop is originally a.StartPos < a.StartPos which can never 

evaluate to true. The correct condition is a.StartPos < d.StartPos. The Tree-Merge-Desc 

algorithm deals with the case when the outer loop is the descendant list.  

Step-by-step execution with the example query author/jane: 

AList: (1, 3:5, 3), (1, 11:13, 3) 
DList: (1, 4, 4), (1, 7, 4), (1, 15, 4) 
 

1) Node (1, 4, 4) from DList is stored into variable d 
2) Node (1, 3:5, 3) from AList is stored into variable a 

Algorithm Tree-Merge-Desc (AList, DList) 

/* Assume that all nodes in AList and DList have the same 

DocId */ 

/* AList is the list of potential ancestors, in sorted order 

of StartPos */ 

/* DList is the list of potential descendants in sorted 

order of StartPos */ 

     

01 begin-desc = AList->firstNode; OutputList = NULL; 

02 for (d = DList->firstNode; a ! = NULL; d = d->nextNode) { 

03 for (a = begin-desc; (a ! = NULL && a.StartPos <    

   d.StartPos); a = a->nextNode) { 

04            /* skipping over unmatchable d’s */  

 } 

 

05 begin-desc = a; 

06 for (a = begin-desc; (a ! = NULL && a.EndPos <   

       d.EndPos); a = a->nextNode) { 

07      if ((a.StartPos < d.StartPos) && (d.EndPos < 

    a.EndPos) [&& (d.LevelNum = a.LevelNum + 

    1)]) { 

          /* the optional condition is for parent- 

    child relationships */ 

08          append (a,d) to OutputList;  

  } 

 }  

} 

 
Figure 12 [1] 
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3) Ancestor a will not be skipped, because check a.EndPos < d.StartPos is false. (5 < 4) 
4) The node-pair ((1, 3:5, 3), (1, 4, 4)) will be appended to the output list, because the 

condition ((a.StartPos < d.StartPos) && (d.EndPos < a.EndPos) & (d.LevelNum = 
a.LevelNum + 1) is true. (3<4 & 4<5 & 4 = 3+1) 

5) Node (1, 11:13, 3) from AList is stored into variable a 
6) Loop terminates, because a.StartPos < d.StartPos is false (11<4) 
7) Node (1, 7, 4) from DList is stored into variable d 
8) Ancestor (1, 3:5, 3) will be skipped, because check a.EndPos < d.StartPos is true. (5 < 

7) 
9) Node (1, 11:13, 3) from AList is stored into variable a 
10) Ancestor (1, 11:13, 3) will not be skipped, because check a.EndPos < d.StartPos is 

false. (13 < 7) 
11) Node (1, 7, 4) is not part of the solution, because the loop check a.StartPos < 

d.StartPos fails 
12) Node (1, 15, 4)from DList is stored into variable d 
13) Ancestors (1, 3:5, 3), (1, 11:13, 3) will be skipped, because check a.EndPos < 

d.StartPos is true. (5< 15), (13 < 15) 
14) No ancestors are left and the solution ((1, 3:5, 3), (1, 4, 4)) will be outputted and the 

algorithm terminates.   
 
Step-by-step execution with the example query book//jane: 

AList: (1, 2:9, 2) 
DList: (1, 4, 4), (1, 7, 4), (1, 15, 4) 
 

1) Node (1, 4, 4) from DList is stored into variable d 
2) Node (1, 2:9, 2) from AList is stored into variable a 
3) Ancestor a will not be skipped, because check a.EndPos < d.StartPos is false. (9 < 4) 
4) The node-pair ((1, 2:9, 2), (1, 4, 4)) will be appended to the output list, because the 

condition ((a.StartPos < d.StartPos) && (d.EndPos < a.EndPos) & is true. (2<4 & 4<9) 
5) The loop terminates, because no more ancestor are available  
6) Node (1, 7, 4) from DList is stored into variable d 
7) Ancestor a will not be skipped, because check a.EndPos < d.StartPos is false. (9 < 7) 
8) The node-pair ((1, 2:9, 2), (1, 7, 4)) will be appended to the output list, because the 

condition ((a.StartPos < d.StartPos) && (d.EndPos < a.EndPos) is true. (2<7 and 7<9)  
9) The loop terminates, because no more ancestor are available  
10) Node (1, 15, 4) from DList is stored into variable d 
11) Ancestor a will be skipped, because check a.EndPos < d.StartPos is false. (9 < 15) 
12) The algorithm terminates and outputs the solution ((1, 2:9, 2), (1, 4, 4)), ((1, 2:9, 2), 

(1, 7, 4)) 
 

3.2.5 Analysis of Tree-Merge-Desc 

There is no analog to theorem 3.2.2.1. The time complexity can be O(|AList| + |DList| + 

|OutputList|2) in the worst case. [1] This happens for example if the first ancestor a0 is the 

ancestor of all other nodes in AList.  
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Figure 13 [1] 

 

Figure 14 [1] 

Here each node in DList has only two ancestors in AList. So the size of the OutputList is 

O(|AList| + |DList|). [1] The AList is repeatedly scanned which results in a time complexity of 

O(|AList| * |DList|). [1]  

3.3 Stack-Tree algorithm 
The stack-tree family of structural joins has no counterpart in traditional join processing. The 

idea is to introduce a stack which allows storing ancestors which are not fully processed and 

can be part of the final solution. The skipping of ancestors or descendants is not needed and 

gains a lot of performance. The worst case of the Tree-Merge algorithms is handled 

efficiently. The numbering schema which was introduced before is also used.  Again AList 

and DList are given which contain all possible ancestors and descendants.  

3.3.1 Stack-Tree-Desc 

The output list i[(ai, dj)] is sorted by (DocumentId, dj.StartPos, ai.StartPos). This is extremely 

efficient in practice. 

 A stack will be used to store a sequence of ancestors. Each ancestor on the stack is a 

descendant of the nodes below it. If a new node from AList is a descendant of the current 

top of the stack it is simply pushed onto the stack. If a new node from DList is a descendant 

of the top of the stack it is a descendant of all elements on the stack. It is guaranteed that it 

is no descendant of any other node in AList. So this descendant is part of the solution with 

every ancestor node on the stack. If a new node from DList is not a descendant of the top of 

the stack the top element can be popped, because it can never be an ancestor of any future 
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descendant node. The stack elements will be popped till the stack is empty or the ancestor-

descendant relationship is given.  

 

Figure 15 [1] 

Figure 15 [1] shows the worst case for the tree-merge algorithms. As shown before a tree-
merge algorithm has to skip a lot of ancestor or descendant elements depending of which is 
the inner/outer join operand. The stack which is empty in the beginning and both input lists 
are conceptually merged. (see b)  a1 has been pushed onto the stack and is now compared 
with d1. This pair is part of the solution. Figure d shows the stack and the elements after 
many execution steps. At last the element a1 on the stack will be compared with d2n and will 
be added to the output list. (see c-e) 
This shows that the stack-tree algorithms perform much better, because the skipping of 
elements is not needed and every descendant element will be checked only once. Skipping 
of elements means that elements will not be processed more than once. Only elements on 
the stack may be scanned more than once.  
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The original Stack-Tree-Desc algorithm [1] contained some errors. The stack is initially empty 

which results in an error when resolving stack->top.EndPos in the first run of the while loop. 

Then imagine the case when the last ancestor from AList is pushed onto the stack. The 

variable a is now null and it is not possible for the algorithm to get into the branch where the 

top stack element is popped. From this time on the algorithm will cycle in an endless loop, 

because the stack can never get empty. Conditions were corrected and the condition 

(a.StartPos > stack->top.EndPos) was eliminated which is not needed. 

Algorithm Stack-Tree-Desc (AList, DList) 

/* Assume that all nodes in AList and DList have the same DocId 

*/ 

/* AList is the list of potential ancestors, in sorted order of 

StartPos */ 

/* DList is the list of potential descendants in sorted order of 

StartPos */ 

     

a = AList->firstNode;  

d = DList->firstNode;  

OutputList = NULL; 

     

01 while (the input lists are not empty or the stack is not  

  empty){ 

02 if ((a.StartPos > stack->top.EndPos) && (d.StartPos >   

  stack->top.EndPos)) { 

  /* time to pop the top element in the stack */ 

03  tuple = stack->pop();  

04 } else if (a.StartPos < d.StartPos) { 

05  stack->push(a) 

06  a = a->nextNode  

 }else{ 

07  for (a1 = stack->bottom; a1 ! = NULL; a1 = a1->up) { 

08   [if(d.LevelNum = stack->top.LevelNum + 1)] 

09    append (a1,d) to OutputList 

  } 

10  d = d->nextNode 

 } 

} 

 
Figure 16 [1] 
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The loop now terminates if all descendants have been processed or no ancestors are left. 

This avoids an endless loop if ancestor elements remain on the stack. Now an ancestor 

element will be popped from the stack when its StartPosition is smaller than d.StartPosition. 

It is obvious that this ancestor cannot be part of the solution and can be dropped.   

The optional clause [if(d.LevelNum = stack->top.LevelNum + 1)] is needed to check a parent-

child relationship between an ancestor and a descendant.  

Step-by-step execution with the example query author/jane: 

AList: (1, 3:5, 3), (1, 11:13, 3) 
DList: (1, 4, 4), (1, 7, 4), (1, 15, 4) 
 

1) (1, 3:5, 3) is stored into a 
2) (1, 4, 4) is stored into d 

Algorithm Stack-Tree-Desc (AList, DList) 

/* Assume that all nodes in AList and DList have the same DocId 

*/ 

/* AList is the list of potential ancestors, in sorted order of 

StartPos */ 

/* DList is the list of potential descendants in sorted order 

of StartPos */ 

/* Stack is empty */ 

     

a = AList->firstNode;  

d = DList->firstNode;  

OutputList = NULL; 

 

01 while ((DList != NULL || d != null) && (AList != NULL  

  || a != null || !stack.empty)) { 

02 if (!stack.empty && d != null && (d.StartPos > stack- 

  >top.EndPos)) { 

  /* time to pop the top element in the stack */ 

03  tuple = stack->pop();  

04 } else if (a != null  && d != null  && a.StartPos <  

    d.StartPos) { 

05  stack->push(a) 

06  a = a->nextNode  

 }else{ 

07  for (a1 = stack->bottom; a1 ! = NULL; a1 = a1->up) { 

08   [if(d.LevelNum = stack->top.LevelNum + 1)] 

09    append (a1,d) to OutputList 

  } 

10  d = d->nextNode 

 } 

} 

 

 Figure 17 
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3) a.StartPos < d.StartPos so node (1, 3:5, 3) will be pushed onto the stack and (1, 11:13, 
3) will be stored into a 

4) Next loop cycle the else branch will be entered. The only element on the stack is (1, 
4, 4). The parent-child relationship is given (d.LevelNum = stack->top.LevelNum + 1) 
so the pair ((1, 3:5, 3), (1, 4, 4)) will be appended to the solution. Ancestor (1, 7, 4) 
will be stored into d. 

5) Then the stack element (1, 3:5, 3) will be popped, because d.StartPos > stack-
>top.EndPos is true. (7 > 5) 

6) Descendant (1, 7, 4) will be skipped in the else branch. The stack is empty and node 
(1, 15, 4) will be stored into d. 

7) a.StartPos < d.StartPos so node (1, 11:13, 3) will be pushed onto the stack. Now the 
ancestor list is empty and a stays null. 

8) d.StartPos > stack->top.EndPos and node (1, 11:13, 3) will be popped. 
9) Now there is no ancestor left and the algorithm finishes.  

 
In case of an ancestor-descendant relationship the execution is similar. When iterating over 
the stack elements, no check of the node levels is needed.   
 
Step-by-step execution with the example query author//jane: 

AList: (1, 3:5, 3), (1, 11:13, 3) 
DList: (1, 4, 4), (1, 7, 4), (1, 15, 4) 
 

1) (1, 3:5, 3) is stored into a 
2) (1, 4, 4) is stored into d 
3) a.StartPos < d.StartPos so node (1, 3:5, 3) will be pushed onto the stack and (1, 11:13, 

3) will be stored into a 
4) Next loop cycle the else branch will be entered. The only element on the stack is (1, 

4, 4). The pair ((1, 3:5, 3), (1, 4, 4)) will be appended to the solution. Ancestor (1, 7, 4) 
will be stored into d. 

5) Then the stack element (1, 3:5, 3) will be popped, because d.StartPos > stack-
>top.EndPos is true. (7 > 5) 

6) Descendant (1, 7, 4) will be skipped in the else branch. The stack is empty and node 
(1, 15, 4) will be stored into d. 

7) a.StartPos < d.StartPos so node (1, 11:13, 3) will be pushed onto the stack. Now the 
ancestor list is empty and a stays null. 

8) d.StartPos > stack->top.EndPos and node (1, 11:13, 3) will be popped. 
9) Now there is no ancestor left and the algorithm finishes.  

 

3.3.2 Analysis of Stack-Tree-Desc 

Theorem 3.3.2.1 [1]: 

The space and time complexities of Algorithm 
Stack-Tree-Desc are O(|AList| + |DList| + |OutputList|) 
for both ancestor-descendant and parent-child structural relationships. 
Further, Algorithm Stack-Tree-Desc is a non-blocking algorithm. 
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Each page of the input lists is read once. The result is output as soon as it is computed.  

Theorem 3.3.2.2 [1]: 

The I/O complexity of Algorithm 

Stack-Tree-Desc O( , 

for ancestor-descendant and parent-child structural relationships, 
where B is the blocking factor. 

3.3.3 Stack-Tree-Anc 

In this case the output list [(ai,dj)] is sorted by (DocumentId, ai.StartPos, dj.StartPos). It is not 

trivial to modify the Stack-Tree-Desc to produce this output. If a node from AList is an 

ancestor of any node of DList then every node a’ from AList that is ancestor from a is also 

ancestor of d. The StartPosition from a’ is smaller than the StartPosition of a the output of 

the pair (a,d) has to be delayed till the pair (a’, d) has been added to the output list. It is also 

possible that a new element d’ after d joins with a’ as long as a’ is on the stack. So the pair 

(a, d) cannot be appended to the output list until a’ is popped from the stack. There can be 

built up large join results which cannot yet be output. [1] 

 In the Stack-Tree-Anc algorithm also a stack is used to store ancestor nodes. Each ancestor 

on the stack is a descendant of the nodes below it. Two lists are associated with each 

ancestor on the stack. The first list is called self-list. [1] It is a list of result elements from the 

join of this element with DList elements. The second one is called inherit-list. [1] This list 

contains join results involving AList elements that where descendants of the current top of 

the stack. 

When a new node from AList is a descendant from the node on top of the stack it is simply 
pushed onto the stack. When a new node from DList is a descendant from the current top of 
stack it is added to the self-lists of the nodes on the stack. If no node (from AList or DList) is a 
descendant from the top of the stack it can be popped. It is guaranteed that no future node 
is a descendant of the current top of stack. [1] All nodes will be popped till a descendant is 
found. When the bottom element is popped its self-list is output and then follows its inherit-
list. When any other element in the stack is popped no output is generated. Instead its 
inherit-list will be appended to its self-list, and the result appended to the inherit-list of the 
new top of stack. 



  
26 

 
  

 

3.3.4 Analysis of Stack-Tree-Anc 

The main difference to the Stack-Tree-Desc is that join results are associated with nodes in 

the stack. The only thing which has to be analyzed is the appending of the lists, each time 

when a stack element gets popped. If the lists are implemented as linked lists these append 

operations can be carried out in unit time.  Combined with the analyses of the Stack-Tree-

Desc the algorithm is O(|input| + |output|) in the worst case. [1] 

Algorithm Stack-Tree-Anc (AList, DList) 

/* Assume that all nodes in AList and DList have the same 

DocId */ 

/* AList is the list of potential ancestors, in sorted order 

of StartPos */ 

/* DList is the list of potential descendants in sorted order 

of StartPos */ 

     

a = AList->firstNode;  

d = DList->firstNode;  

OutputList = NULL; 

     

01 while (the input lists are not empty or the stack is not 

   empty) { 

02 if ((a.StartPos > stack->top.EndPos) && (d.StartPos >  

   stack->top.EndPos)) { 

  /* time to pop the top element in the stack */ 

03  tuple = stack->pop(); 

04  if (stack->size == 0) {  

   /* we just popped the bottom element */ 

05   append tuple.inherit-list to OutputList  

  } else { 

06   append tuple.inherit-list to tuple.self-list 

07   append the resulting tuple.self-list to stack-

     >top.inherit-list 

  } 

08 } else if (a.StartPos < d.StartPos) { 

09  stack->push(a) 

10  a = a->nextNode 

 }else { 

11  for (a1 = stack->bottom; a1 ! = NULL; a1 = a1->up) { 

12   if (a1 == stack->bottom)  

13    append (a1,d) to OutputList 

   else  

14    append (a1,d) to the self-list of a1 

  } 

15  d = d->nextNode 

 } 

} [1] 

Figure 18 [1] 
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For the I/O complexity analysis it cannot be assumed that all result lists fit to memory.  A 

buffer management is needed. The only performed operation on the lists is to append one 

list to another. The read out at the end is the only exception. Access to the tail of each list is 

needed during the computation, so rest of the list can be paged out. When list x is appended 

to list y it is not necessary to hold the head of list x in memory. The append operation only 

establishes a link to this head in the tail of y.  The number of entries in the lists is equal to 

the number of entries in the output.  

Theorem 3.3.4.1 [1]: 

The space and time complexities of Algorithm 
Stack-Tree-Anc are O(|AList| + |DList| + |OutputList|), 
for both ancestor-descendant and parent-child structural relationships. 
The I/O complexity of Algorithm Stack-Tree-Anc is 

O( , for both ancestor-descendant 

and parent-child structural relationships, where B is the blocking factor. 
 

3.4 Summary 
The first structural join algorithms split a query in binary relationships and merge the 

intermediate results. The TreeMerge algorithm is the simplest algorithm which uses two 

nested loops to match all nodes which are part of the result. Obviously many nodes get 

scanned more than once which causes a quadratic runtime.  

The StackTree introduces a stack which helps to cache ancestor nodes to avoid the repeated 

scanning of nodes. This idea brings a huge performance gain and has shown to be a very 

lightweight implementation.  

One big disadvantage of all algorithms presented in this section is that a longer query has to 

be split. The merge of the intermediate results decreases the performance. Later algorithms 

try to avoid splitting and process the query at once. 

Algorithms which deal especially with sibling relationships have been proposed by [15]. This 

work proposes two structural join algorithms which efficiently process sibling relationships. 

Another work proposes the PBiTree [16] which helps to determine the ancestor-descendant 

relationship between two nodes.  

The paper [18] proposes a new operator called structural semi-join and the algorithms for 

efficient processing XML path queries. With this operator it is possible to process queries 

which return the descendant or ancestor nodes only.   
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4 Holistic Path Join Algorithms 
Previous algorithms decompose the twig pattern into binary structural relationships. The 

matching is achieved by using structural join algorithms to match binary relationships and 

stitching together these matches. A limitation of this approach is that intermediate results 

can get very large which decreases the join performance. A holistic twig join creates no large 

intermediate results and gains more performance. The numbering scheme (DocumentId, 

StartPosition : EndPosition, LevelNumber)  mentioned above is used to determine structural 

relationships between nodes. Also a chain of linked stacks is used to compactly represent 

partial results which are then used to obtain matches to the query twig.  

4.1 Notation 
The StartPosition and EndPosition will be denoted as LeftPosition and RightPosition, but the 

functionality does not change. It is just a more intuitive label. [3] 

A twig node supports the following operations: 

1) isLeaf:   Node -> Bool 

2) isRoot:   Node -> Bool 

3) parent:   Node -> Node 

4) children:   Node -> {Node} 

5) subtreeNodes: Node -> {Node} 

Path queries have only one child per node. Otherwise children(q) returns a set of children 

nodes. Result of subtreeNodes(q) is the node q and all its descendants.  

With each node q in a query twig pattern a stream Tq is associated. The stream contains the 

positional representation of the nodes which match twig pattern node q. This can be 

obtained by using an index or another efficient access method. The nodes in the stream are 

ordered by (DocumentId, LeftPosition) values. [3] 

A stream supports the following operations: 

1) eof 

2) advance 

3) next 

4) nextL 

5) nextR 

Operation nextL returns the LeftPosition coordinates in the positional representation of the 

top element in the stack and operation nextR the RightPosition. 

The nodes in stack Sq (from bottom to top) lie on a root-to-leaf path in the XML database. 

The set of stacks always keep a compact encoding of partial and total answers to the query 

twig pattern.  



  
29 

 
  

 

Figure 19 [3] 

Figure 19 [3] a shows an example repository and graph b shows the query.[3] The query twig 

pattern searches for the nodes A, B and C in an ancestor-descendant relationship. The 

results are encoded in the stacks of the query nodes (c).  

[A2, B2, C1]  is a solution, because C1 points to B2 and B2 points to A2. A1 is below A2 on the 
stack SA which makes [A1, B2 , C1]  to an answer. [A1, B1,  C1]  is also an answer, because B1 is 
below B2 on stack SB and B1 points to A1.   
[A2, B1 , C1]  is not an answer, because A2 is above the node A1 on stack SA to which B1 points. 

4.2 PathStack 
The PathStack[3] computes answers to a query path pattern for the case when the streams 

contain the same DocumentId. If multiple XML documents should be handled it can be 

adapted quite easily. In that case the DocumentId of two nodes has to be tested for equality 

before the streams and stacks are manipulated.  



  
30 

 
  

 

The key idea is to repeatedly construct compact stack encodings of partial and total answers 

to the query path pattern. This will be achieved by iterating through the stream nodes in 

sorted order. (The nodes are sorted by their LeftPosition) The query path pattern will be 

matched from the query root down to the query leaf. [3] 

At Line 2 the Algorithm identifies the stream containing the next node to be processed. Lines 

3-5 remove partial answers which cannot be extended to total answers. Line 6 augments the 

partial answers which are encoded in the stacks with the new stream node.  When a node is 

pushed onto the stack Sqmin  (qmin is the leaf node of the query path) the stacks contain an 

encoding of total answers and function showSolutions[3] is invoked.  

Algorithm PathStack(q) 

01 while !end(q) 

02 qmin = getMinSource(q) 

03 for qi in subtreeNodes(q) // clean stacks 

04   while (!empty(Sqi) && topR(Sqi ) < nextL(Tqmin)) 

05    pop(Sqi) 

06  moveStreamToStack(Tqmin,Sqmin, pointer to top(Sparent (qmin))) 

07  if(isLeaf(qmin)) 

08   showSolutions(Sqmin , 1) 

09   pop(Sqmin) 

 

Function end(q) 

 return for all qi element subtreeNodes(q):isLeaf(qi)=>eof(Tqi ) 

 

Function getMinSource(q) 

 return qi element subtreeNodes(q) such that nextL(Tqmin) 

 is minimal 

 

Procedure moveStreamToStack (Tq, Sq, p) 

01  push(Sq, (next(Tq),p)) 

02  advance (Tq) 

Figure 20 [3] 



  
31 

 
  

 

ShowSolutions outputs query path answers encoded in the stacks as n-tuples sorted in leaf-
to-root order. That ensures that over the sequence of invocations the answers are also 
computed in leaf-to-root order. The showSolutions function above is for the case when only 
ancestor-descendant relationships are in the query path. When parent-child edges are also 
present the LevelNumber has to be checked. The PathStack algorithm does not need to be 
changed. Each time when it calls showSolutions it has to ensure that it does not output 
incorrect tuples. Otherwise it causes unnecessary work. To avoid this unnecessary work the 
recursive call (lines 6-7) has to be modified to check for parent-child edges. Only a single 
recursive call ((showSolutions(SN- 
1, S[SN].index[SN].pointer_to_the_parent_stack)) has to be invoked  after verifying that the 

LevelNumber of the two nodes differs by one. Looping through all nodes in the stack S[SN-1] 

would still be correct, but causes useless work, which decreases the performance of the 

algorithm.  

If the final answers should be sorted root-to-leaf it does not suffice that each invocation of 

showSolutions outputs answers in root-to-leaf order. To accomplish this order the algorithm 

would need to block answers and delay their output till there is no answer prior to them.  

Step-by-step execution with the example query author//jane: 

Stream Tauthor: (1, 3:5, 3), (1, 11:13, 3) 
Stream Tjane: (1, 4, 4), (1, 7, 4), (1, 15, 4) 
 

1) Author node (1, 3:5, 3) has the smallest StartPos and will be processed. 

2) All stacks are empty at startup so no cleanup is needed. 

Procedure showSolutions (S N, SP) 

// Assume, for simplicity, that the stacks of the query 

// nodes from the root to the current leaf node we 

// are interested in can be accessed as S[1] . . . . . S[n]. 

// Also assume that we have a global array index[1..n] 

// of pointers to the stack elements. 

// index[i] represents the position in the i'th stack that 

// we are interested in for the current solution, where 

// the bottom of each stack has position 1. 

// Mark we are interested in position SP of stack SN. 

 

01 index[SN] = SP 

02 if (SN== 1) // we are in the root 

03 // output solutions from the stacks 

04 output (S[n].index[n],..., S[1].index[1]) 

05 else // recursive call 

06 for i = 1 to S[SN].index[SN].pointer_to_parent 

07 showSolutions (SN – 1, i) 

Figure 21 [3] 
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3) (1, 3:5, 3) will be pushed onto Sauthor 

4) Jane node (1, 4, 4) will be processed in the next loop cycle 

5) (1, 4, 4) will be popped onto Sjane and linked to the top of Sauthor  

6) Jane is a leaf node so show solution outputs ((1, 3:5, 3), (1, 4, 4)) and pops (1, 4, 4) 

from Sjane 

7) Then jane node (1, 7, 4) will be processed.  

8) Again is will be pushed onto the stack Sjane and linked to the top of Sauthor 

9) Jane is a leaf node of the query so show solution is executed and jane node (1, 7, 4) 

will be popped from stack 

10) Next loop cycle processes author node (1, 11:13, 3) and pops (1, 3:5, 3) from stack 

Sauthor. 

11) Then node (1, 11:13, 3) will be pushed onto Sauthor 

12) Then last jane node (1, 15, 4) will be popped onto Sjane 

13) ShowSolutions will be executed and jane node (1, 15, 4) popped. 

14) Then the algorithm terminates, because no leaf nodes are left. 

4.3 Analysis of PathStack 
 
PROPOSITION 4.3.1 [1]: 

 If we fix node Y, the sequence of cases 
between node Y and nodes X on increasing order of LeftPos 
(L) is: (1|2)*3*4*. Cases 1 and Cases 2 are interleaved, then 
all nodes in Case 3 before any node in Case 4, and finally 
all nodes in Case 4 

 

 

Figure 22 [3] 

LEMMA 4.3.1 [3]:  
Suppose that for an arbitrary node q in the 
path pattern query, we have that getMinSource(q) = qN. 
Also, suppose that tqn is the next element in q's stream. 
Then, after tqN is pushed on to stack SqN , the chain of stacks 
from SqN to Sq verifies that their labels are included in the 
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chain of nodes in the XML data tree from tqN to the root. 

 

For each node tqmin pushed onto stack Sqmin the above lemma shows that all answers in 

which tqmin is a match for query node qmin will be output. 

THEOREM 4.3.2 [3]:  
Given a query path pattern q and an XML 
database D, Algorithm PathStack correctly returns all answers 
for q on D. 

An XML path of length n is given. PathStack takes n input lists of nodes which are sorted by 

(DocumentId, LeftPosition) and computes a sorted output list of n tuples that match the 

query path. The I/O and CPU costs of PathStack are linear in the sum of sizes of the n input 

lists. The invocations of showSolutions are not included in this calculation. The costs of 

showSolutions is proportional to the size of the output list.[3] 

The worst-case space complexity of PathStack is the minimum of the sum of sizes of the n 

input lists and the maximum length of a root-to-leaf path in the XML database.[3] 

4.4 PathMPMJ 
The generalization of the MPMGJN algorithm [3] (Multi-Predicate Merge Join) for path 

queries processes one stream at a time to compute all solutions. As example the path 

q1//q2//q3 is used.  

The algorithm uses the first element from the stream Tq1 and generates all solutions that use 

that element from Tq1. Then Tq1 will be advanced and Tq2 and Tq3 will be backtracked to the 

earliest position which might lead to a solution. This step will be repeated until Tq1 is empty. 

[3] 

To generate all solutions the algorithm starts recursively with the first marked element in 

Tq2. The step gets all solutions that use that element and the calling element in Tq1 and 

advances stream Tq2 until there are no more solutions with the current element in Tq2.   

One mark per stream is too inefficient in practice, because all marks have to point to the 

earliest segment that can match the current element in Tq1. It is better to use a stack of 

marks. In this optimization each node will not have a single mark in the stream, but k marks. 

(k is the number of ancestors in the query) [3] 

Each mark points to an earlier position in the stream. For query node q the i’th mark is the 

first point in Tq such that the element in Tq starts after the current element in the stream of 

q’s i’th ancestor.  
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THEOREM 4.4.1 [3]: 

Given a query path pattern q and a XML database D, Algorithm PathMPMJ correctly 
returns all answers for q on D. 

  

Algorithm PathMPMJ (q) 

01 while (!eof(Tq) && (isRoot(q)|| 

   nextL(q) < nextR(parent(q)))) 

02  for (qi element subtreeNodes(q)) // advance descendants 

03   while (nextL(qi) < nextL(parent(qi))) 

04    advance (Tqi) 

05   PushMark (Tqi) 

06  if (isLeaf(q)) // solution in the streams' heads 

  outputSolution() 

07  else PathMPMJ (child(q)) 

08  advance (Tq) 

09  for (qi element subtreeNodes(q)) // backtrack descendants 

10   PopMark (Tqi) 

Figure 23 [3] 
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4.5 Summary 
Holistic Path join algorithms try to avoid splitting and merging of intermediate results by 

processing a root-to-leaf path from a query at once. The most important algorithm is the 

PathStack which extends the idea from the StackTree and uses more than one stack to cache 

nodes. This stack encoding has been proven as very efficient and the PathStack is very fast in 

processing longer queries which are not nested. 

If the query consists of more than one root-to-leaf path splitting becomes unavoidable which 

decreases the performance. Twig Join algorithms from section 5 were designed to deal with 

a query twig at once without splitting up the query. 
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5 Twig Join Algorithms 
To decompose the twig into multiple root-to-leaf patterns and use PathStack to identify 

solutions and then merge-join these solutions is straight-forward. This computation has the 

same problem as techniques which base on binary structural joins. Many intermediate 

results may not be part of any final answer.  

Example: 

 

  

When matching the query twig against the given XML database the paths author-fn-jane and 

author-ln-doe have two solutions. The query twig pattern has only one solution. 

Query Twig 

 

Figure 25 [3] 

 

 

 

XML database 

 

Figure 24 [3] 
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5.1 Twig Stack 
If the query paths have many solutions that are not part of the final output the usage of 

PathStack is suboptimal. The computation costs for a twig pattern would not be proportional 

to the sizes of the input and output only. Also the sizes of the intermediate results are added 

to the computation costs. The TwigStack avoids the costs of the intermediate results. [3]  

Again the presented algorithm assumes that the DocumentId from all nodes is equal. In the 

case of more than one XML document the algorithm would have to check the DocumentIds 

first before manipulating the nodes in the streams and stacks.  

 

Algorithm TwigStack(q) 

 // Phase 1 

01 while !end(q) 

02  qact = getNext(q) 

03  if (!isRoot(qact)) 

04  cleanStack(parent(qact), nextL(qact) 

05 if (isRoot(qact) || !empty(Sparent(qact))) 

06  cleanStack(qact, next(qact)) 

07  moveStreamToStack(Tqact, Sqact, pointer to 

top(Sparent(qact))) 

 

08  if(isLeaf(qact)) 

09   showSolutionsWithBlocking(Sqact,  1) 

10   pop(Sqact) 

11 else adcance(Tqact) 

 

 // Phase 2 

12 mergeAllPathSolutions() 

 

Function getNext(q) 

01 if (isLeaf(q)) return q 

02 for qi in children(q) 

03 ni = getNext(qi) 

04 if (ni != qi) return ni 

05 nmin = minargni nextL(Tni) 

06 nmax = maxargni nextL(Tni) 

07 while nextR(Tq) < nextL(Tnmax) 

08 advance(Tq) 

09 if nextL(Tq) < nextL(Tnmin) return q 

10 else return nmin 

 

Procedure cleanStack(S, actL) 

01 while !empty(S) && (TopR(S) < actL) 

02 pop(S) 

 

Figure 26 [3] 
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The TwigStack algorithm operates in two phases.[3] In the first phase (lines 1-11) some 

solutions to individual query root-to-leaf paths are computed. In this step not all solutions 

are computed. In the second phase (line 12) the solutions are merge-joined to compute the 

answers to the query twig pattern.  

There is a difference of PathStack and the first phase of TwigStack. First TwigStack ensures 

that before a node hq from stream Tq is pushed on stack Sq, node hq has a descendant hqi in 

each of the streams Tqi. It also ensures that each of the nodes hqi recursively satisfies the first 

property. [3] 

When the query twig pattern has only ancestor-descendant edges, each solution to each 

individual query root-to-leaf path is guaranteed to be merge-joinable with at least one 

solution to each of the other root-to-leaf paths. [3] That ensures that no intermediate result 

is larger than the final answer.  

The second merge-join phase of TwigStack is linear in the sum of its input and output sizes, 

but only if the inputs are sorted in order of common prefixes of the different root-to-leaf 

paths. The solutions to individual query paths have to be output in root-to-leaf order which 

needs blocking. Function showSolutions cannot be used anymore, because it outputs the 

solutions in leaf-to-root order.  

Consider the same query twig pattern and XML document from before. Before TwigStack 

pushes an author node onto the stack Sauthor, it ensures that this author node has a 

descendant fn node in the stream Tfn and a descendant ln node in the stream Tln. This causes 

that only one of the three author nodes is pushed onto the stack. Finally the merge join 

phase computes the desired answer. 

5.1.1 Analysis of TwigStack 

DEFINITION 5.1.1.1 [3]:  
Consider a twig query Q. For each node 
q ∈ subtreeNodes(Q) we define the head of q, denoted hq, 
as the first element in Tq that participates in a solution for 
the sub-query rooted at q. We say that a node q has a minimal 
descendant extension if there is a solution for the subquery 
rooted at q composed entirely of the head elements of 
subtreeNodes (q). 

LEMMA 5.1.1.1 [3]: 
Suppose that for an arbitrary node q in the 
twig query we have that getNext(q) = qN. Then, the following 
properties hold: 
1. qN has a minimal descendant extension. 
2. For each node q' ∈ subtreeNodes(qN), the first element in Tq’ is hq’.  
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3. Either (a) q = qN or (b) parent(qN) does not have a minimal right extension because 
of qN (and possibly other nodes). In other words, the solution rooted at p = parent(qN) 
that uses hp does not use hq for node q but some other element whose L component is 
larger than that of hq. 

 

With the lemma above, when getNext returns qN, it is guaranteed that hqN has a descendant 

extension in subtreeNodes(qN). Any element in the ancestors of qN that uses hqN in a 

descendant was returned by getNext before hqN.  

THEOREM 5.1.1.1 [3]:  
Given a query twig pattern q and an XML 
database D, Algorithm TwigStack correctly returns all answers 
for q on D. 

Proof [3]: 
In Algorithm TwigStack, we repeatedly find getNext(q) for query q (line 2). Assume 
that getNext(q) = qN. Let AqN be the set of nodes in the query that axe ancestors of qN. 
We know that getNext already returned all elements from the streams of nodes in AqN 
that are part of a solution that uses hqN. If q != qN, in line 4 we pop from parent(qN)'s 
stack all elements that are guaranteed not to participate in any new solution. After 
that, in line 5 we test whether hqN participates in a solution. We know that qN has a 
descendant extension by Lemma 4.1 (see Lemma 5.1.1.1 above), property 1. If q != qN 
and parent(qN)'s stack is empty, node qN does not have an ancestor extension. 
Therefore it is guaranteed not to participate in any solution, so we advance qN in line 
11 and continue with the next iteration. Otherwise, node qN has both ancestor and 
descendant extensions and therefore it participates in at least one solution. 
We then clean qN's stack (line 6) and push hqN to it (line 7). Finally, if qN is a leaf node, 
we output the stored solutions from the stacks (lines 8-10). 

 
The optimality can only be proved when the query twig pattern has only ancestor-

descendant edges. Only elements with a descendant and an ancestor extension are pushed 

onto the stack. This ensures that no element is pushed onto the stack which does not 

participate in any solution. The merge post processing step is optimal, which brings the 

result:  

Given is a query twig pattern q with n nodes and only descendant edges and a XML database 

D. TwigStack has worst-case I/O and CPU time complexities linear in the sum of the n input 

and output lists. [3] O(|Input| + |Output|).  

The worst-case space complexity of TwigStack is the minimum of (i) the sum of sizes to the n 

input lists and (ii) n times the maximum length of a root-to-leaf path in D. [3] 

O=(min(|Input|, n*maxRootToLeafPathLength)) 

In case of query twigs with only ancestor-descendant edges, the worst-case time complexity 

of TwigStack is independent of the sizes of solutions to any root-to-leaf path of the twig.[3] 
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In case of parent-child edges in the query twig TwigStack is no longer guaranteed to be I/O 

and CPU optimal. The algorithm can produce a solution for one root-to-leaf path that does 

not match with any solution in another root-to-leaf path.  

As example consider the query twig pattern with the three nodes A, B and C. There are 

parent-child edges between (A, B) and (A, C).  The XML data tree consists of node A1, with 

children A2, B2, C2. Node A2 has children B1, C1. The three streams TA, TB und Tc have as first 

element A1, B1, C1. It cannot be determined if any of them participates in another solution 

without advancing other streams, but a stream cannot be advanced before knowing if it 

participates in a solution. Optimality is no longer guaranteed. [3] 

5.2 Twig2Stack 
The Twig2Stack algorithm [9] was inspired by the PathStack algorithm. It processes 

generalized tree patterns and tries to avoid large intermediate results. 

5.2.1 Generalized tree patterns 

Multiple path expressions in the FOR, LET, WHERE and RETURN clauses may have different 

semantics. Existing work shows that it is better to consider these expressions as a whole in 

terms of a generalized tree pattern (GTP). [9]  

 

Figure 27 [10] 

Figure 27 [10] shows two sample XQuery statements and their GTPs. In XQuery1 node D is 

not a return node. Only its existence is of interest. In XQuery2 node C is optional. Any 

matching C must be grouped together under their common ancestor element B. Returning 

the entire twig results is seldom necessary and may cause duplicate elimination or ordering 

problems. [10]  

The concept of generalized twig patterns was introduced in [9]. A GTP may have solid and 

dotted edges which represent mandatory and optional structural relationships.  
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For a given GTP not all nodes are return nodes. For path expressions in the FOR clause only 

the last node is the return node. An example is the node B in GTP1. For the path expression 

in LET or RETURN grouping of the matching elements under their common ancestor may be 

needed. An example is the node C in GTP2.  

 

Figure 28 [10] 

Now it will be described briefly how the results are being generated when there are non-

return nodes in the GTP query (on example XML document from Figure 28 [10]): 

1) For path query //B//D assume that B and D are both return nodes. The final matches 

are: (b1, d1), (b2, d2), (b2, d3), (b3, d2), (b3, d3), (b4, d4) 

2) Assume D is the only return node. In this case the results should be (d1), (d2), (d3), 

(d4). To generate distinct paths duplicate elimination is unavoidable.  

3) Consider query //A/B where B is the only return node. The results are (b1), (b2), (b3), 

(b4). The order is different from the order for the entire path matches (a1, b4),(a2, 

b2),(a3, b1), (a4, b3). Sorting becomes unavoidable in this case.  

5.2.2 Hierarchical Stack Encoding 

The stack encoding is used to record ancestor-descendant relationships between elements 

in the same query node.  

For each query node N of a twig query Q a hierarchical stack HS[N] is associated. Each 

hierarchical stack consists of an ordered sequence of stack trees ST. A stack tree is an 

ordered tree where each tree node is a stack S.  
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Figure 29 [10] 

 In Figure 29 [10] HS[A] contains one stack tree and HS[D] contains three stack trees. Each 

stack S contains zero or more elements. One document element is an ancestor for all 

elements below when in the same stack and it is also an ancestor for elements in 

descendant stacks. Two elements have no ancestor-descendant relationship if their 

corresponding stacks have no ancestor-descendant relationship. For example element a2 in 

HS[A] is ancestor for a3 and a4. A3 and a4 have no ancestor-descendant relationship.  

To create the hierarchical structure among stacks when visiting the document in post-order 

a region encoding is associated to each stack. The LeftPos for a stack S is the smallest LeftPos 

among all elements in stack S and its descendant stacks. The RightPos for a stack S is the 

largest RightPos among all elements in stack S and its descendant stacks. 

For example stack HS[B] has the encoding [4, 27]. A level number is not needed in the 

encoding.  

The region encoding for a stack-tree ST is the same as the encoding of ST’s root stack.  

In a given hierarchical stack HS[N] its stack trees are ordered based on their RightPos. For a 

given stack S its child stacks are also ordered based on their RightPos.  
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5.2.3 Creating Hierarchical Stacks through merging 

Leaves are visited before the root in post-order traversal. So the hierarchical structure is 

built in a bottom-up manner. For this a merge operation is needed to combine multiple 

stacks to a single one.  

 

Figure 30 [10] 

Figure 30 [10] shows how the stack trees in HS[A] are created.  

 

 

 

Boolean merge (HierarchicalStack HS[M], docElement e, 

Axis axis) 

 

Boolean Satisfied = FALSE; 

StackTreeSet STS = empty; 

 

01 BEGIN 

02  FOR each stack tree ST of HS[M] 

  //Visit in descending order of ST.RightPos 

03   IF ST.RightPos < e.LeftPos 

04    break; //No need to keep visiting more 

     stack trees; 

05   IF axis = PC AND ST.top.Level = e.Level+1 

06    Satisfied = TRUE; 

07    addPCEdge(e, M, ST.top); 

08   ELSE IF axis = AD 

09    Satisfied = TRUE; 

10    addADEdge(e, M, ST.top); 

11    STS = STS union ST; 

12  createMergedStackTree(STS); 

13  return Satisfied; 

14  END 

Figure 31 
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Function createMergedStackTree (line 12) creates a new stack and lets all stack trees in STS  

be its children. Line 5-10 is to process one query step. The newly or merged stack must 

always have the largest RightPos.  

LEMMA 5.2.3.1  
Assume that for a given document element e, the 
stack trees ST1, ST2, ..., and STn are merged and a new root 
stack STn+1 is created. For any document element e’ visited during 
the rest of the post-order document traversal, it will be either 
an ancestor of all ST1, ST2, ..., and STn or of none of them. 

5.2.4  Bottom-up query processing 

The algorithm visits the nodes in post-order. A global stack is maintained to manage 

elements on the same path. When an element e is given, all elements will be popped that 

are not e’s ancestors. Then e will be pushed onto the stack. The popped elements are in 

post-order. (see line 2, 3, 6) 

The idea is as follows: 

A given element e will be pushed into a hierarchical stack HS[E] if it satisfies the sub-twig 

query rooted at this query node E. Only E’s child query nodes M need to be checked, 

because all elements in HS[M] have already satisfied the sub-twig query rooted at M. Finally 

the hierarchical stack structure is maintained using the merge algorithm when checking one 

query step or when pushing one document element into the hierarchical stack. Maintaining 

the hierarchical structure among stacks serves multiple purposes. First it encodes the 

partial/complete twig results to minimize intermediate results. Second it reduces the query 

processing costs and third it enables efficient enumeration. [10] 
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A document element e will be pushed into HS*E+ if all query steps to E’s child nodes M have 

been satisfied. Because of the post-order traversal all e’s descendants must have been 

visited and have been pushed into HS[M] if satisfied. Checking of one query step E -> M for e 

can be done with merging of HS[M].  

Assume n stack trees in HS[M] named ST1 to STn.   

First assume none of the stack trees are e’s descendants. Then it can be concluded that e 

cannot satisfy E.  

Then assume the stack trees STp … STn are e’s descendants. STi.top is denoted as the top 

element of the root stack of stack tree STi.  STi.top may be empty if the top stack is empty.  

In case when the query step E -> M is an ancestor-descendant relationship then all elements 

in the stack trees satisfy this step. The results of this query step will be encoded by creating 

Procedure Twig2Stack(docElement e) 

 

Stack docPath; 

docElement currentElem; 

 

01 BEGIN 

02  WHILE docPath not empty AND docPath.top is not e’s ancestor 

03   currentElem = docPath.pop(); 

04   FOR each query node E with matching label of   

   currentElem 

05    MatchOneNode(currentElem, HS[E]); 

06    docPath.push(e); 

07 END 

 

Procedure MatchOneNode (docElement e, HierarchicalStack HS[E]) 

 

Boolean Satisfied; 

 

01 BEGIN 

02  Satisfied = TRUE; 

03  FOR each child query node M of E & Satisfied 

04   Satisfied = merge(HS[M], e, axis(E_M)); 

05   IF Satisfied 

06    merge(HS[E], e, ""); 

07    push (HS[E], e); 

08 END 

Figure 32 [10] 
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edges e to STp.top, … , STn.top. The edge simply means that STi.top and the elements in the 

descendant stacks are e’s descendants.  

When the query step E -> M is a parent-child relationship only STp.top, … , STn.top might be 

child of e. The edges are created if the level number equals e.LevelNumber + 1.  

After this query step checking phase the stack trees STp.top, … , STn.top will be merged  and 

a new root stack is created.  

Optional axis can easily be supported. An element will be pushed into the stack if all its 

mandatory axes are satisfied. Edges are created for optional and mandatory children.  

THEOREM 5.2.4.1 [10]:  
For any document element e, it is pushed into 
HS[E] iff it satisfies the sub-twig query rooted at E. 

 
PROOF [10].  

1) “->”: The proof is straightforward based on the dynamic 
programming nature of the Twig2Stack algorithm. 
2) “<- ”: If E is a leaf query node, then any document element 
e with matching labels satisfies this query node and will be pushed 
into HS[E]. The theorem is trivially true. For a non-leaf query 
node E, we prove the theorem by contradiction. 
Assume one element e satisfies E but is not in HS[E]. Then at 
least one query step E -> M failed when merging HS[M]. Since 
e satisfies E, there must exist one element m which satisfies M and 
the structural relationship between e and m satisfies the query step 
E -> M. There can be two reasons why the merging of HS[M] 
failed. They are either (i) m in HS[M] however the structural 
relationship between e and m is not captured through merging to 
satisfy the query step. Clearly, m must reside in one stack tree in 
HS[M] and e must be able to find this stack tree as its descendant - 
AD relationship is thus satisfied. If m is the child of e, then m must 
be at the top of one stack tree - PC relationship is thus satisfied. 
Hence, case (i) is not possible. (ii) m is not in HS[M], or in other 
words, m does not satisfy M. By applying the same reasoning, we 
can conclude that there must exist one p element that satisfies query 
node P (P is M’s child query node) but not in HS[P]. Eventually 
when reaching the leaf query node, as stated before, all the elements are satisfied 

and must be in the corresponding hierarchical stack. Hence, case (ii) is also not 

possible.  

5.2.5 Space Complexity and memory requirement 

The number of path matches is in worst case exponential in terms of the size of the query 

O(|D||Q|).  

THEOREM 5.2.5.1 [10]:  
For a given twig query Q and an XML document 
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D, both the space and time complexity of Twig2Stack algorithm 
in Figure 7 are O(|D||B|), where |B| is the maximum of 
1) B1 =max(number of query nodes with the same label in Q ) 
and 2) B2 = max(total number of children of query nodes with the 
same labels in Q). Obviously, |B| <= |Q|. 

 
PROOF [10].  

We show the case when the query nodes have distinct 
labels. There are two costs in Twig2Stack, namely, the cost for 
merging stacks and the cost for checking all branches of one query 
node. For the merge cost, assume that there are n elements in one 
hierarchical stack. It is easy to show that the merge cost is O(n), 
since once the stack trees are merged, they need not be considered 
for merging again. When all query nodes have distinct labels, obviously 
the total merge cost is O(|D|). The branch checking cost is 
bounded by the maximum fan-out of the query nodes. 

The memory requirement of Twig2Stack is higher than in TwigStack. In the worst case 

Twig2Stack may keep the full document in memory. This will practically never happen, 

because only document elements will be stored which satisfy some part of the query twig.  

5.3 Summary 
The TwigStack was inspired by the PathStack algorithm. It uses the same stack encoding, but 

it checks every node if it is part of any solution. This check decreases the size of the 

intermediate results which increases the performance. 

The Twig2Stack uses a much more complex stack-encoding which decreases intermediate 

results. It can also handle optional query nodes. 

Another algorithm which is not covered in this work is the MyTwigStack [17]. It advances the 

TwigStack with an effective path merging scheme to gain more performance. 

The TwigStackList [18] uses a read-ahead state to read the elements from the input data 

streams and cache them into main memory.  

Another optimization is the TwigOptimal [20] which tries to reduce the cursor movements to 

gain more performance. 
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6 Indexes 
All presented algorithms are using the introduced numbering scheme which helps to 

determine structural relationships like parent-child or ancestor-descendant. This is an 

effective index over all nodes in the XML repository. There are a lot of other operations in 

the algorithms which can be optimized by an index structure. One example is to read out all 

children from a node. In relational database systems there exist a lot of different index 

structures which are optimized for a specific use case. Nearly all structures can be adapted 

and used for XML databases. The rapid growth of XML databases has led to much research 

on this sector. 

The most important index structures for the join algorithms are the B+-tree, XB-tree and the 

XR-tree. The B+-tree is the basic structure for the XR and the XB-tree. Each data structure 

has special advantages and tradeoffs for the join algorithms. 

6.1 B+ Tree 
The B+ tree is an enhancement of the B-tree and stores all records in the lowest level of the 

tree. Only keys are stored in interior blocks. It supports efficient insertion, retrieval and 

removal of records. Each record is identified by a key. In the case of the join algorithms the 

key is the numbering scheme. The tree is always balanced which is the reason for the high 

performance of any operation on the tree like searching.  

 

 

Figure 33 [5] 

 

The linked list (colored red) allows a rapid in-order traversal.  
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The data is stored in a block-oriented context. When a storage system with a block size b is 

given the B+ tree stores a number of keys equal to a multiple of b. This is very efficient 

compared to a binary search tree. [5] 

B+ tree is used in various file systems and database systems for block indices. For example it 

is used in ReiserFS or NTFS for Microsoft Windows. 

The maximum number of keys in a tree node is called the order of the B+ tree. It is denoted 

by the variable b.  The minimum number is 1 / 2 of the maximum. [5] It can be rounded up 

or down, but it must be done consistently throughout the tree. The minimum number 

restriction is lifted for the root node. There may be the case that the tree contains too few 

entries to fill the index.  

Example: The order of a B+ tree is b. Each node has at least (b/2) + 1 keys and at most b 

keys. The root element has 2 to b keys.  

This results that the number of keys that may be indexed in a B+ tree is a function of the 

order b and the height of the tree. 

A B+ tree with order b and h levels has the following characteristics: 

 maximum number of records stored is n = bh 
 minimum number of keys is 2(b / 2)h − 1 
 space complexity of the tree is O(n) 

A search operation has the same complexity of O(logbn) operations.  

An insert operation requires O(logbn) operations in the worst case. First the position for the 
insert has to be searched and then an overflow of the node can occur. Then a split of the 
node happens.  

The basic B+ tree operations will be needed for the containment forest extension and will be 
shortly presented. These operations are the basics for every following index structure which 
is important for joins.  

Simple insertion of 12: 

 

Insert of element 15 results in an overflow which causes a split: 

 

 

 

 

3 - 3 12 

3 12 15 

15 - 

3 12 15 - 
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A split can also result into a new root node.  

The remove operation requires O(logbn) operations in the worst case. If the node has not 
enough elements after the remove it will be merged with a sibling node.  

For example if 37 in this tree will be removed the node has only one key left.  

 

 

 

 

 

This causes an under run of this node and a merge operation with its sibling has to be done.  

 

 

 

 

Key 34 moves to the sibling node and the old node will be deleted.  

 

 

 

 

The most important feature of the B+ tree is the ability to make efficient range queries. For 
this the leaf nodes are structured as a linked list. For example when searching all data nodes 
with key 2-6 the tree will be traversed till key 2 is found. Then a sequential scan from key 2 
till key 6 collects the needed data.  

For structural joins this range queries accomplish an efficient retrieval of descendants from a 
node. The numbering schema will be used as key.  

20 21 23 - 34 37 - - 

25 34 - - 

25 31 - - 

20 21 23 - 34 - - - 

25 34 - - 

25 31 - - 

20 21 23 - 

25 - - - 

25 31 34 - 



  
51 

 
  

 

Figure 34 [6] 

The graphic above shows a sample XML document. All nodes have been indexed with the 

introduced numbering scheme. This information can simply be indexed by a B+ tree as 

shown below.  

 

Figure 35 [6] 

The pointers between sibling nodes are missing in the graphic for simplification. This index 

assumes the same DocumentId for all nodes.  

A sequential scan of the input lists is not needed anymore. All the ancestor-descendant 

information can be retrieved efficiently by using the B+ tree. An example is shown in the 

following graphic.  
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Thin line segments represent the (start, end) intervals of nodes in the ancestor list and thick 

line segments represent the (start, end) intervals of elements in the descendant list.  

 

Figure 36 [6] 

Figure 36 [6] a shows a scenario where ancestor elements should be skipped. For this 

example the Stack-Tree-Desc algorithm will run through the following steps: 

1) push a1, a2, a3 into the stack and join them with d1 

2) pop a3 and a2 from the stack 

3) examine elements a4 trough a13 from AList (pushing and popping each element) 

4) push a14 into the stack and join a14 and a1 with d2  

Obviously the third step is wasteful. The pushing and popping of the elements costs a lot of 

CPU resources.  

With a B+ tree step 3 can be avoided. After a2 is popped the algorithm directly jumps to a14 

by using the B+ tree. a14 has the smallest start which is larger than the end from a2.  

Figure b shows a scenario where descendant elements should be skipped. After a1 was 

joined with d1 the Stack-Tree-Desc will scan the elements d2 to d13. Again this costs resources 

and can be avoided by a B+ tree. With the index the algorithm can directly jump to d14 which 

is the element from DList with the smallest start that is larger than the start from a2. 

 

6.2 B+ Tree with embedded containment forest 
The containment forest is not directly a standalone index, but it is a powerful enhancement 

of the B+ tree which can gain a lot of performance.  
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A containment forest links elements from the same tag. Each element corresponds to a node 

in the structure and is linked to other elements from the same tag. The link is established via 

parent, first-child and right-sibling pointers.  

Parent Pointer: 

Given are nodes n and np from the same tag. Node np is called parent of node n when the 

conditions a and b are fulfilled: 

a) np is n’s ancestor in the document tree (np.start < n.start < n.end < np.end) 

b) there is no other ancestor node na from n where np is the ancestor of na 

First-child: 

Given are nodes n and nc from the same tag. Node nc is called first-child of node n when the 

conditions a and b are fulfilled: 

a) nc is a child of n 

b) there is no other same-tag node that is a child of n and is before nc (node n1 is before 

n2 when n1.end < n2.end) 

Right-sibling: 

Given are nodes n and ns from the same tag. Node ns is called right-sibling of node n when 

the conditions a and b are fulfilled: 

a) n and ns have the same parent node 

b) there is no same-tag node between them with the same parent (n2 is between them 

when n1.end < n2.start and n2.end < n3.start) 

 

 

Figure 37 [6] 
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A containment forest has the following properties: 

 The (start, end) interval of each node contains all intervals in its sub tree 

 All start numbers follow a preorder traversal 

 Start (end) numbers of sibling nodes are in increasing order 

A containment forest for a given tag can easily be embedded in the B+ tree which indexes 

the tags. This will be accomplished by adding parent and next-sibling pointers among the 

leaf records. First-child pointers are always stored subsequently in the B+ tree. [6] 

Obviously the operations of a B+ tree with an embedded containment forest must be 

extended too. 

At each deletion and insertion the containment forest pointers have to be updated. The 

algorithm which handles inserts is shown below in pseudo code.  

 

First the new element will be inserted into the B+ tree using start as key. Then the right-

sibling and parent pointers will be adjusted among the leaf elements. Step 7 locates among 

the existing elements which element will be the parent, left sibling, right sibling and first 

child of the new element.  

To locate the left sibling of the new element a the B+ tree will be used to locate element e 

with the largest start which is smaller than a.start. Either Element e is the parent of a or e is 

before a. If e is parent of element a then a does not have any left sibling. Otherwise consider 

the parent of e. Either e.parent is parent of or it is before a. In the first case e is left sibling of 

a. In the second case recursively consider the parent of e.parent and so on. If the highest 

ancestor of e in the containment forest is before a it becomes the left sibling of a.  

The procedure of finding the left sibling also finds the parent of a.  

To locate the right sibling the B+ tree is used to find the element e with the smallest start 

that is greater than a.end. If e.parent is the same as the parent of a then e is the right sibling 

of a. Otherwise a does not have a right sibling.  

Algorithm Insert_B+sp (int start, Attribute attr) 

 

01 Use the B+-tree insertion algorithm to insert a new 

element (start, attr) 

02 if ( leaf page overflow occours ) then 

03  for ( each element i that is moved to a new page) 

04  Adjust pointers pointing to i;  

05 endfor 

06 endif 

07 Find the parent, left sibling, right sibling, and   

first child of the new element and link them with it. 

Figure 38 [6] 
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It is simple to determine the first-child of a. The leaf elements of the B+ tree are sorted by 

the StartPosition so the algorithm just has to examine the element stored right after a.  

If a page overflow occurs on an insert, the B+ tree insertion algorithm will move some 

records to other pages. The pointers pointing to these elements have to be adjusted.  

Again the algorithm, which handles delete operations, is shown in pseudo code below.  

 

First the element a will be deleted from the containment forest. Then all related elements 

will be located. (parent, first-child, left sibling, right sibling) 

Different from the insertion algorithm the parent and right sibling elements don’t have to be 

located.  

The parent pointers of all childrens from a will be set to a.parent. For the left sibling of a its 

right sibling has to be set to the first child of a. For the last child of a its right sibling pointer 

will be set to point to a.right. After this modifications element a can be deleted with the 

deletion algorithm of the B+ tree.  

If a page underflow occurs its records will be moved to a sibling page. All pointers of the 

moved records have to be adjusted.  

Analyzing the containment forest enhancement: 

The depth of a node is the number of ancestors a node has.  

The max-depth denotes the maximum depth of any node in the forest.  

The max-span corresponds to the maximum number of children under any node.  

These parameters are depending on the document characteristics. Elements with bigger 

intervals tend to have many children elements and create deeper subtrees. This increases 

the max-depth and max-span.  

THEOREM 6.2.1 [6]:  

Algorithm Delete_B+sp ( Pointer a ) 

01 Locate the left sibling and the first child of a; 

02 Adjust the C-forest pointers of the related elements; 

03 Use the B+-tree deletion algorithm to delete element 

a; 

04 if ( a leaf page underflow occours ) then  

05 for ( each element I that is moved to a new page ) 

06  Adjust pointers pointing to i; 

07 endfor 

08 endif 

Figure 39 [6] 
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The amortized insertion/deletion cost of a B+sp-tree is O(h + s + d), where h is the 

height of the B+-tree and s, d are the max-span and the max-depth of the embedded 

C-forest. 

 

6.3 XR-tree 
The XR-tree was especially designed for XML data. Again the numbering scheme is used to 

index a node.  

Definition 6.2.1 [7]:  
Given a key k and an element with region 
Ei(si, ei) , Ei is said to be stabbed by k, or k stabs Ei, 
if si ≤ k ≤ ei. Given a set of ordered keys, kj(0 ≤ j < n), 
where kx < ky if x < y, and an element Ei(si, ei), Ei is 
said to be primarily stabbed by kj, or kj primarily stabs Ei, 
if (1) si ≤ kj ≤ ei, and (2) for all l, l < j, kl < si, that is, 
kj is the smallest key that stabs Ei. 

Definition 6.2.2 [7]: 
Given a set of ordered keys, kj(0 ≤ j < n), 
where kx < ky if x < y, and a set of elements E = 
Ui(si, ei), the stab list of a key kj is the list of elements 
in E that are stabbed by kj , denoted as SLj or SL(kj). The 
primary stab list of a key kj is the list of elements in E that 
are primarily stabbed by kj , denoted as PSLj or PSL(kj ). 

The stabbing and primary stabbing relationships are shown in the Figure below. 

 

Figure 40 [7] 

Given are the keys k0 < k1 < k2 < k3 < k4 and seven regions (si, ei). The list of regions stabbed by 

kj are: 

 SL0 = {(s0, e0), (s1, e1), (s2, e2)} 

 SL1 = {(s0, e0), (s3, e3)} 

 SL2 = {(s0, e0), (s4, e4), (s5, e5)} 

 SL3 = {(s0, e0), (s4, e4)} 

 SL4 = {(s6, e6)} 
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The primary stab lists are: 

 PSL0 = {(s0, e0), (s1, e1), (s2, e2)} 

 PSL1 = {(s3, e3)} 

 PSL3 = 0 

 PSL4 = {(s6, e6)} 

Strict ancestor-descendant relationship holds between each pair of neighboring elements in 

a primary stab list.  

In case of k0 and PSL0 (s0, e0) is an ancestor of (s1, e1) which is an ancestor of (s2, e2). The first 

element of PSLk is the ancestor of all other elements in the list and its region covers all other 

regions in PSLk. 

Definition 6.2.3 [7]:  
The start and end positions, psj, pej, of key kj 
with primary stab list PSLj are defined the start and end 
positions of the first element of PSLj when PSLj != ∅, and 
(nil, nil) if PSLj = ∅. 

In case of the example shown in Figure 40 [7] we get the results: 

 (ps0, pe0) = (s0, e0) 

 (ps1, pe1) = (s3, e3) 

 (ps2, pe2) = (s4, e4) 

 (ps3, pe3) = (nil, nil) 

 (ps4, pe4) = (s6, e6) 
 
 
Those shown definitions where summarized by [7] to a final structure description: 
 
Definition 6.2.4 [7]: 
 
An XR-tree for a set of region-encoded XML elements is a tree with the following properties: 
 

1. An XR-tree is a balanced tree. 
2.  An internal node contains m key entries in the form of (ki, psi, pei), with k0 < 

k1 < · · · < km−1, and d ≤ m ≤ 2d, where d is the degree of the XR-tree. 
3. An internal node with m keys also contains m + 1 pointers pj , (0 ≤ j ≤ m), 

pointing to the nodes in the next level of the tree, such that all keys in the 
node pointed by pi are less than ki, and all keys in the node pointed by pi+1 
are greater than or equal to ki, respectively. 

4. An internal node n is associated with a stab list, SL(n), which holds all 
elements Ei, such that Ei is stabbed by at least one key in n but not stabbed by 
any key of any ancestor of n. Each element in SL(n) is in the form of (s, e, 
pointer), where (s, e) is the region of the element and pointer points to the 
data entry of the element.  
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5. SLj , PSLj for the set of all keys kj in an internal node n are defined on the list 
SL(n) by Definition 6.2.2. Each pair of (psj, pej) of kj is defined by Definition 
6.2.3. 

6. Leaf nodes contain element entries, in the form of (s, e, InStabList, pointer), 
where (s, e) is the region of the element, and s is the index key. InStabList is a 
flag indicating whether the element is included in any stab list of internal 
nodes, and pointer points to the data entry of the element. 

7. Leaf nodes are linked from left to right. 
 
With these definitions an XR-tree is a B+ tree with a complex index key entry and extra stab 
lists associated with its internal nodes. This supports efficient structural joins which will be 
shown later.  
 

 
Figure 41[7] 

 
Figure 41[7] shows an example. The left internal node has an empty stab list. Region (20, 75) 

is stabbed by key 46. It is not part of the stab list of the right node, because it is already 

stabbed by key 24 in the root. This shows that a region will always be included in the 

topmost nodes stab list. For key 19 ps(19) and pe(19) are set to nil, because PSL(19) = 0. In case 

of key 46 PSL(46) = {(40, 65), (45, 60), (46, 47)}. ps(46) = 40 and pe(46) = 65.  

Indexing keys must not be start positions of element nodes. It is better to choose the key to 

minimize the size of the stab lists. If 80 will be taken as key (which is the start of element (80, 

91)) instead of 79 the stab list would contain one more element.  

6.3.1 Performance Analysis 

Due to the stab lists maintaining the tree causes a bit more overhead.  

6.3.1.1 Space complexity 

The sizes of the stab lists may be a concern. Each element region can only be included at 

most once in one stab list. This results that the elements in the stab lists will not exceed the 

elements which are indexed in the tree. Each index key can at most stab hd elements. hd is 

the  maximum number of nesting element nodes indexed.  

The maximum number of pages for a stab list is [7]: Smax  
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BI is the maximum number of entries in an internal node. Bs is the maximum number of 

tuples a stab list page can hold. When fmin is 0,5 and fmax is 1 then Smax = 2hd pages. Normally 

the number of pages is between zero and a few pages. 

6.3.1.2 Access cost complexity 

If an element set is highly nested the stab list of an internal node can span a few pages to 

tens of pages. In such extreme cases the access costs can be a concern.  

For example the PSLi often needs to be located for key kj when searching or updating in the 

XR-tree. It is a problem when a lot of pages have to be scanned to locate PSLi. This problem 

can be solved with a ps directory page that maps each psj to the location of PSLj. 

 

Figure 42 [7] 

The ps directory page contains one entry for each index key. An entry has the format (psj, 

pointer) where psj is the ps field of key kj. The pointer points to the head of PSLj in the stab 

list. The pointer is set to nil when PSLj = 0. This is the case for ps1 in Figure 42 [7].  

With this extension it takes only 1 or 2 disk I/O’s to locate PSLj[7].  

 

6.3.2 Inserting 

The inserting is equivalent to the B+ tree.  
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Step I1 navigates down to a leaf page and inserts element E. It gets also inserted into the 

stab list of the highest internal node that stabs it. If there is one the flag InStabList will be set 

to true. 

In case of an overflow step I22 and I32 also split the stab lists. The split costs are 

independent of the size of the stab list, because for the split only access to the page which 

holds the splitting point is needed. No other pages of the stab list have to be touched.  

After a split a new key k’ is proposed to the upper level and the set of elements stabbed by 

k’ will be proposed to the upper level. It will be denoted as StabSet’. See Figure 44 [7]b 

Algorithm Insert: 

Input: A new element, E = (s, e, pointer), to be inserted. 

 

I1 [Find a leaf page for insertion]  

 Navigate down to a  proper leaf page for insertion. 

 Insert E into the stab  list of the highest internal 

 node that stabs it, if any. 

 

I2 [Insert E into the leaf page L] 

 

 I21 If L has room for another element, insert E and  

 return. 

 

 I22 Otherwise, split L by moving second half   

 entries to a new leaf page Lnew. Insert E into  

 the correct leaf page. Give up a new key entry  

 k’, pointer’), together with its StabSet’. 

 

I3 [Insert (k’, pointer’, StabSet’) into internal node I] 

 

 I31 If I has enough room, insert the new entry and its 

  StabSet’ into I. 

 

 I32 Otherwise, split I by moving the second half   

  entries, together with their primary stab lists,  

  to the new node Inew. Insert the new entry and its 

  StabSet’ into the proper internal node. Give up a 

  new key entry(k’, pointer’), together with its  

  StabSet’. Repeat step I3, or go to I4 if I is the 

  root node. 

 

I4 [Grow the XR-tree taller]  

 If the node split propagation caused the root to split, 

 create a new root whose children are the two resulting 

 nodes. 

Figure 43 [7] 
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where k’ is inserted after k2 which is selected for being the key to be given up. StabSet’ 

contains all elements from SL(I) and SL(Inew) that are stabbed by k’.  

If the split occurs on a leaf page all elements from L and Lnew are retrieved which are newly 

stabbed (and InStabList flag is false) and set the flag to true. 

 

Figure 44 [7] 

 

Figure 45 [7] 

 

 

The basic insertion has the complexity of O(logFN) which is the same of the B+ tree. This does 

not include the maintenance of the stab lists.  

The amortized I/O costs for the stab list maintenance is given by the worst case total I/O 

costs for inserting N elements and divide the result by N.  

Worst case is given when all elements in leaf pages are stabbed by internal nodes. Each 

element at height h is given up from the lower level h-1. This will be done in step I22 and I32 
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in Figure 43 [7]. It is assumed that every element is given up from a lower level. An element 

at height h will be given up h times from leaf to its current position during a split. Cdp 

denotes the costs for one move. (E.g. moving from level h-1 to h) A stabbed element at 

height h causes CDP*h displacement costs. The amortized I/O cost CDP for each insertion is 

divided by the total number of insertions.  

*h/N  [7] 

Nh is the number of total stabbed elements at height h. Each internal node stabs at most 

hd*BI*f elements. The maximum total number of stabbed elements with height>1 is 

hd/BL*BI*f2 * N.  

hd/BL*BI*f2 << 1 implies that most stabbed elements are at height 1. In the worst case all 

elements are stabbed in height 1. This result to [7] 

THEOREM 6.2.2.1 [7]:  
The amortized I/O cost for inserting a new element 
into an XR-tree is O(logFN +CDP ), where N is the 
number of elements indexed, F is the fanout of the XR-tree, 
CDP is the cost for one displacement of a stabbed element, 
or the cost for deleting an element from a stab list and then 
inserting it into another stab list. 
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6.3.3 Deletion 

Similar to deletion in a B+ tree redistribution or merging occurs in case of an underflow. 

Again here the maintenance of stab lists is interesting.  

 

 

Algorithm Deletion: 

Input: An element, E = (s, e, pointer), to be deleted. 

 

D1 [Locate E in leaf page]  

 Locate the leaf page containing E. 

 Delete E from the internal node I if its stab list 

 contains E. 

 

D2 [Delete E from leaf page L] 

 

 D21 Delete E from L. If L remains at least half full,  

  return. 

  

 D22 Otherwise, let S be a sibling of L. If S has extra 

  entries, redistribute entries between L and S and 

  update their parent entry. 

 

 D23 Otherwise, merge S and L. Propagate the deletion up 

  the tree with the key of their parent entry. 

 

D3 [Delete the entry from an internal node I] 

 

 D31 Suppose entry j is to be deleted. Delete entry j  

  from I and “reinsert” elements in SL(I) that are  

  no longer stabbed by I. If I remains at least half 

  full, return. 

 

 D32 Otherwise, let S be a sibling of I. If S has extra 

  entries, redistribute entries between L and S.  

  Update their parent entry properly and return. 

 

 D33 Otherwise, merge L and S, and their stab lists.  

  Propagate the deletion up the tree with the key of 

  their parent entry. 

 

D4 [Shorten the tree]  

 If the root has only one child after the deletion, make 

 the child as the new root. 

Figure 46 [7] 
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Deleting an index entry will cause that some elements in SL(I) will not be stabbed any longer. 

For each element E’ it has to be reinserted at the highest internal node that stabs it. If no 

such interval node exists the flag InStabList will be set to false.  

After redistribution between two internal nodes the entry with key k in the parent node P 

has to be updated with key k’. SL(k’) has to be removed from the two internal nodes and 

inserted into SL(P). Then some elements in SL(P) might not be stabbed any longer by P when 

k is replaced with k’. This will be handled similar to the entry deletion case. [7] Redistribution 

between two leaf pages works similar.  

In case of merging two internal nodes from I to its left sibling S also SL(I) and SL(S) will be 

merged. For this SL(I) and SL(S) will be simply linked.  

The I/O costs also include additional costs for maintaining the stab lists like in the insert 

operation.  

THEOREM 6.2.3.1 [7]:  
The amortized I/O cost for deleting an element 
from an XR-tree is O(logFN + 3 · CDP ), where N is the 
number of elements indexed, F is the fanout of the XR-tree, 
CDP is the cost for the displacement of an element from one 
stab list to another. 

 

6.4 XB-Tree 
The XB-tree is a variant of the B+ tree which was especially designed for indexing positional 

representations in the format (DocumentId, LeftPosition, RightPosition). The structure in 

Figure 47 [8] assumes that the DocumentId of all nodes is equal. To extend the XB-tree to 

index nodes with different DocumentIds is straightforward.  
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Figure 47 [8] 

 

All nodes in the leaf pages are sorted by their LeftPosition (L). This is similar to a B+ tree on 

the L values. The difference between an XB-tree and a B+ tree lies in the data maintained at 

internal nodes. Each node N in an internal page consists of a bounding segment [N.L, N.R]. (L 

denoted the LeftPosition value and R the RightPosition value) Also a pointer to its child page 

N.page is maintained. This page contains all nodes with bounding segments included in [N.L, 

N.R]. Bounding segments of nodes in internal pages might partially overlap, but they are in 

increasing order. Each page P has a pointer to its parent page P.parent and an integer 

P.parentIndex which is the index of the node in P.parent which points back to P.  

The maintenance is also quite similar to a B+ tree using the L value as key. The only 

difference is that R has to be propagated above.  

To process the findAncestors queries the XB-tree starts from the root node and goes down 

to the leaf nodes. Only paths that are with intervals that can cover the given interval are 

searched. Data entries in leaf nodes which can cover the given interval are output as results. 

In the worst case the findAncestors operation covers the whole tree.  

The findAncestors operation is optimal when the intervals in the index nodes are the 

minimum bounding intervals of the intervals in their child nodes. This is because every 

search path, except for the last search path, will yield at least one ancestor that contains the 

given descendant element. [8]  

Definition (Valid Path) [8]:  
A root-to-leaf search path in 
an XB-tree for a findAncestors operation is a valid path 
if the leaf node of the path contains at least one ancestor 
element interval that covers the given descendant interval. 
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As example Figure 47 [8] is searched for element (90,92). The two root-to-leaf search paths 
(2; 95) → (2; 95) → leaf and (20; 102) → (60; 94) → leaf are valid paths, because they lead 
to leaf nodes that contain the searched data entries. Search path (20; 102) → (80; 102) → 
leaf is not a valid path. 
 
THEOREM 6.4.1 [8]:  

Let the intervals of the index nodes in an 
XB-tree be the minimum bounding intervals. Given an element 
interval, every search path of the findAncestors operation 
must be a valid path except for the last search path. 

An index entry consists of an interval and a child pointer. Assume Ki and Kj to be two 

consecutive intervals in an index node. Let Ci be a child node that is pointed by Ki like in 

Figure 48 [8] shown.  

 

Figure 48 [8] 

Suppose the intervals Ki and Kj overlap and the given descendant Id lies in the overlap. The 

path Ki → Ci is then not the last path. Because this is an XB-tree with minimum bounding 

intervals there must exist a key keyi in child node Ci that keyi.e = Ki.e. Consider Ki.e > Id.e and 

keyi.s < Kj.s <  Id.s then keyi.s < Id.s < Id.e < keyi.e implies that Ci has at least the interval keyi 

which contains Id. [8] The same reasoning happens when traversing down the XB-tree. It can 

be guaranteed that every search path except the last one returns at least one ancestor 

element that contains Id. 

6.5 Summary 
Index structures speed up operations like the search for ancestors or descendants of a node. 

Various structures have been developed. Classical structures like the B+-tree perform very 

well, but also new structures like the XR-tree have been proposed.  

The B+ tree, XR and XB-tree are used in combination with the numbering schema. There are 

also indexing techniques which do not use the numbering schema. They create a structural 

summary of the XML document in the form of a labeled graph. [21] The idea is to preserve 

all paths while having fewer nodes and edges. [6] 

The XB-tree is a variation of the B+-tree and is the most robust solution. Certainly there were 

much more index structures proposed. Another index structure which is not covered in this 

work is for example the Ctree [4]. 
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7 Index based join algorithms 
Processing of nodes which are not part of the solution decreases the join performance. The 

usage of index structures should help to avoid such nodes. This is illustrated in Figure 50 [6]. 

With such an index structure it is very efficient to find ancestors and descendants of a node.  

This section shows some examples with the StackTree algorithm which uses the B+, XR and 

XB-tree to speed up the join operation. Figure 56 [8] shows how the different index 

structures process an ancestor and descendant search. 

One example of the TwigStack shows the usage of an XB-tree to gain more performance.  

The most important index operations are the search for ancestors and the search for 

descendants.  

Benchmarking results can be found in [6] and are not covered in this work. The XB-tree 

seems to be the most robust solution. 
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7.1 Anc_Des_B+ 

 

The leaf pages in each B+ tree are linked together. Due to this the elements can be viewed as 

a sorted list. Variable a and d denote the first elements from AList and DList. The algorithm 

moves a and d forward and joining them until one of the lists is empty.  

During runtime the algorithm keeps a stack of ancestor elements.  

In Steps 11 and 15 use the B+ tree to skip elements from the ancestor and descendant list.  

To avoid unnecessary B+ tree accesses in practice, first it will be checked if the next ancestor 

element is on the same page p as the previous ancestor.  

Step 14 shows that the stack has to be empty when the algorithm wants to skip elements in 

the descendant list.  Otherwise it can happen that elements will be skipped which could be 

joined with an ancestor element on the stack. This will lead to an error.  

Algorithm Anc_Des_B+(List A, List D) 

01 Let a, d be the first elements of A and D; 

02 while (not at the end of A or D) do 

03  if( a is an ancestor of d) then 

04   Locate all elements in A that are ancestors  

  of d and push them into the stack; 

05   Let a be the last element pushed; 

06  Output d as a descendant of all elements in  

  stack; 

07   Let d be the next element in D; 

08  else if (a.end < d.start) then 

09  Pop all stack elements which are before d; 

10  Let l be the last element popped; 

11   Let a be the element in A (locate using B+-tree) 

  having the smallest start that is larger than 

  l.end; 

12  else 

13   Output d as decendant of all elements in stack; 

14  if ( ancestor stack is empty ) then 

15    Let d be the element in D (locate using B+-

   tree) having the smallest start that is 

   larger than a.start; 

16   else 

17   Let d be the next element in D; 

18  end if 

19 end if 

20 endwhile 

 

 
Figure 49 [6] 
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Figure 50 [6] 

Figure 50 [6] shows this situation. The algorithm is currently checking ancestor a3 against 

descendant d2 while a1 is on the stack. a3 is after d2 so the algorithm goes to step 13. 

Without step 14 it would have continued to step 15 and skip descendants d3 and d4. This 

would fail to join d3 and d4 with a1. 

 

7.2 Anc_Des_B+ using sibling pointers 
The Anc_Des_B+ algorithm also works with B+ trees which are enhanced with a containment 

forest.  

One difference appears in step 11 that finds the element anew which has the smallest start 

larger than a.end. Due to the containment forest the relationship between anew and a is as 

follows:  

 If a has a right-sibling then anew=a.sibling 

 If a does not have a right-sibling, but a.parent has a sibling then anew = 

a.parent.sibling. 

This will go up in the tree until a sibling is found. If a and no ancestor of a has a right-sibling 

the algorithm finishes, because no other ancestor element needs to be examined.  

At step 11 all ancestors of a are in the stack. Each element has now a right-sibling pointer 

which makes it possible to the address of anew is identified directly without any extra I/O. 

This improves the algorithm, because the B+ tree traversal is avoided in this case.  

In a plain B+ tree even if all pages are in memory the algorithm still has to search for the new 

ancestor element. Due to the sibling pointers this can be avoided.  

7.3 Stack-based Structural Joins with XR-trees 
To process the join operation two basic operations are needed: 

 FindDescendants: searches all descendants for a given element Ea in an element set 

indexed by an XR-tree 

 FindAncestors: searches all ancestors for a given element Ed in an element set 

indexed by an XR-tree 
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7.3.1 Searching for descendants 

To find all descendants of a given element (sa, ea) is to find all elements Ei such that sa > 

Ei.start < ea. This can be accomplished by a simple range query over the start position of the 

elements. There is no need to access the stab lists.  

 

 

It is obvious that the algorithm retrieves all descendant elements for the given element. 

 
THEOREM 7.3.1.1 [7]:  

The operation FindDescendants over an XRtree 
can be evaluated with optimal worst case I/O cost: 
O(logF N + R/B), where N is the number of elements indexed, 
F is the fanout of the XR-tree, R is the output size, B 
is the average number of element entries in each leaf page. 

7.3.2 Searching for ancestors 

A search for ancestor elements (sd, ed) means to find all elements Ei such that Ei.start < sd < 

Ei.end.  In case of nodes indexed by an XR-tree all nodes stabbed by sd are searched. 

Elements stabbed by sd could be scattered in any leaf page left to the leaf page on the search 

path of sd. A sequential search over the leaf pages could be too costly.  

Instead during the navigation from the root to the leaf page all stab lists of internal nodes 

are searched for elements stabbed by sd.  

Algorithm 3 FindDescendants 

 

Description: find all descendant elements of EA = (sa, ea) 

   in XR-tree T. 

 

01 node := T.root; 

02 while node is not a leaf page do 

03  find the largest key ki in node, such that ki ≤ sa; 

04  if found, let node := ki.rightChild; otherwise, let 

 node := k0.leftChild; 

05 end while 

 

06 stop := FALSE; 

07 while not stop do 

08  for all entries Ei in node do 

09   if sa < Ei.start < ea, output Ei; 

10   if Ei.start > ea, let stop := TRUE; 

11  end for 

12  node := node.next; 

13 end while 

Figure 51 [7] 
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After reaching the leaf page all elements are output which are not included in the stab lists 

of internal nodes. This is shown in the algorithm below.  

 

 

 

The algorithm which searches elements in a stab list is shown below.  

Algorithm 4 FindAncestors 

 

Description: Find all ancestors of ED = (sd, ed) in XR-

   tree T. 

 

S0 Let node be the root of T; 

S1 Search non-leaf pages 

 

While node is not a leaf page do 

 S11 Retrieve all elements stabbed by sd in its stab 

  list, by calling SearchStabList (Algorithm 5). 

 

 S12 Find the largest key ki, such that ki ≤ sd. 

 

 S13 If found, let node be ki.rightChild; otherwise, 

  let node be the left child of the first index 

  entry. 

 

S2 [Search within the leaf page]  

Search from the first element of node to output elements 

that are stabbed by sd but with InStabList flags being no, 

until an element whose start position is greater than sd 

is encountered. 

Figure 52 [7] 
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Assume sd falls in [ki, ki+1). Sd cannot stab any element in PSLj where j>i+1, because such 

elements have their start values larger than ki+1. Only PSLc has to be checked where c <=i+1. 

If sd stabs an element in a PSL it stabs it ancestors in the PSL.  

When searching a PSL the algorithm just scans from the beginning and stops when the 

current element is not stabbed by sd. (line 4) 

The I/O efficiency of SearchStabList is guaranteed because a stab list is only accessed when it 

contains at least one element which is stabbed. With the ps directory page it is possible to 

access the PSL of any key in 1-2 disk I/O’s. 

THEOREM 7.3.2.1 [7]:  
The operation FindAncestors takes 
O(logF N + R) worst case I/O cost, where N is the 
number of elements indexed, F is the fanout of the XR-tree, 
R is the output size. 

The correctness of FindAncestors is assured by the following lemma. 

LEMMA 7.3.2.1 [7]: 

Let T be an XR-tree of height H, ps be a query 
point. Let IH−1 → IH−2 → ·· · → I1 → L0 be the path 
for ps to navigate from IH−1, the root of T, down to a leaf 
page, L0. Let R be the set of elements stabbed by ps in T. 
Then, for each element E ∈ R, it must appear in L0 or the 
stab list of some Ii, where i ∈ {H − 1,H − 2, · · · , 1}. 

7.3.3 Structural joins on XR-tree indexed data 

Input lists A and D are both indexed with an XR-tree. The join can be processed like a merge-

join in database systems, because the leaf pages are sorted by the start positions. Different 

Algorithm 5 SearchStabList 

 

Description: Search the stab list of an internal 

node I for all elements stabbed by sd. 

 

01 let ki be the key in I, such that ki ≤ sd < 

 ki+1; 

02 for c = i + 1 to 0 do 

03  if psc _= nil and psc < sd < pec then 

04   Scan PSLc and output the scanned elements 

  until an element not stabbed by sd is  

  encountered; 

05  end if 

06 end for 

Figure 53 [7] 
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from the typical merge-join algorithm the presented algorithm can skip elements which are 

not needed in the join. For every element it is possible, to retrieve its ancestors and 

descendants with the two basic operations described before. Elements which are no 

ancestors or descendants will not be touched. Again a stack will be used to store ancestors 

during its execution.  

 

 

Pointers CurA and CurD always point to the current elements in A and D. Initially they are set 

to the first element in the lists. (line 1-2)  

Like mentioned above a stack is maintained. Every element on the stack is a descendant of 

the elements below it.  All elements in the stack are ancestors of CurD’ where CurD’ is the 

element before CurD in D. The stack is initially empty. (line 3) 

Algorithm 6 Stack-based Structural Joins with XR-trees 

 

Input:A is the ancestor set and D is the descendant set. 

 

01 CurA := First(A); 

02 CurD := First(D); 

03 stack := ∅; 
 

04 while CurA != EndOf(A) and CurD != EndOf(D) do 

05  if stack != ∅ then 
06   pop all elements that are not ancestors of CurD; 

07  end if 

 

08  if CurA.start < CurD.start then 

09   Ad := FindAncestors(A, CurD.start); 

10   for each aj ∈ Ad, if aj not ∈ stack, push it on the 
  stack; 

11   output pairs (a ∈ stack, CurD); 
12   CurA := first element in A whose start > CurD.start; 

13   CurD := next element in D after CurD; 

14  else 

15  if stack != ∅ then 

16   output pairs (a ∈ stack, CurD); 
17   CurD := next element in D after CurD; 

18  else 

19   CurD := first element in D whose start >  

  CurA.start; 

20  end if 

21 end if 

22 end while 

Figure 54 [7] 
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At each iteration of the loop the algorithm tries to skip elements without matches based on 

current positions of CurA and CurD. If CurA is before CurD it tries to skip ancestors based on 

CurD, otherwise it skips descendants based on CurA. This is repeated until one of the lists is 

exhausted.  

The algorithm in details: 

The stack keeps the ancestors of an element CurD’ preceding CurD. Some top elements of 

the stack may not be ancestors of CurD, because CurD.start > CurD’.start. Those elements 

cannot be ancestors of any element after CurD and they will be popped from stack. (line 5-7) 

In case where CurA is before CurD is coped with from line 9 to 13. All ancestors of CurD are 

retrieved and pushed onto the stack. All matched pairs for CurD will be output and CurD and 

CurA forwarded. Only ancestors which are not already onto the stack are pushed. (line 9-10) 

Line 15-19 deals with the case where CurA is behind CurD which means that no elements will 

be skipped when the stack is not empty. If the stack is not empty CurD will be preceded by 

one. Otherwise CurD is moved to the element right after CurA. (line 19) 

7.4 Anc-Desc Structural Join 
A generic index based algorithm was proposed by [8] which can make use of a B+, XR and a 

XB-tree.  
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Also this algorithm takes two input lists with ancestors and descendant elements which are 

ordered by their starting positions. The input lists are scanned with help of the indexes. A 

stack is also used to store ancestor elements for later use.  

Initially the stack is empty and the cursors are set to point to the first element in the lists. 

(lines 1-3) 

In each iteration the algorithm checks the current descendant for ancestors. If no ancestors 

are found d points to the next element whose start is greater than the start point of the 

current ancestor element. (line 8-9)  

 Otherwise all ancestor elements for the current descendants which are not already in the 

stack are retrieved. This will be done by calling the function findAncestors. The results are 

pushed onto the stack. (line 12)  

Then pointer a is updated to point to the next element which likely has descendant 

elements. (line 13) 

The new elements which are pushed onto the stack together with the ancestors which 

already were on the stack yield all ancestors for the current descendant. (line 14) 

Algorithm 1 Ancestor-Descendant Structural Join 

 

Input: Lists A and D 

 

Output: All matching (ai; dj), such that ai covers dj 

 

01 a = A.first 

02 d = D.first 

03 stack = 0;  

 

04 while !eof(D) and !(eof(A) and isEmpty(stack)) 

 

05  pop all ai from stack, such that ai can’t cover d 

06  let al be the last element (if any) popped 

 

07  next = Max(al.e; a.s) 

 

08  if stack = 0 and d.s < a.s then 

09   d = first di in D, such that di:s > a:s 

10  else 

11   if di:s > a:s then 

12   push findAncestors(Ta; d; next) into  

   stack 

13    a = first an in A, such that an.s > d.s 

14   output (ai, d) for all ai element stack 

15   d = D.getnext() 

Figure 55 [8] 
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Finally d is set to the next descendant element in D.  

The algorithm terminates if: 

 List D is exhausted 

 List A is exhausted  and the stack is empty 

7.4.1 Searching for ancestors 

The algorithm has to execute findAncestors (Di) and findAncestors (Di+1) consecutively. Di 

and Di+1 are the descendant intervals.  

 

Figure 56 [8] 

The figure above illustrates how each index structure handles the searches. The grey areas 

labeled Di and Di+1 denote the interval ranges of the ancestor elements in the leaf pages that 

contain Di and Di+1. The search paths for the two searches are denoted by dashed and solid 

lines.  

The B+ tree supports consecutive findAncestors efficiently, because the scan for the second 

search starts from the leaf page where the first search ends. 

The XR-tree cannot distinguish the ancestor elements which have been used in the first 

search when the second one is performed. This is because the majority of the matching 

ancestor nodes are obtained from the stab lists.  

The XB-tree can support consecutive queries efficiently, because it stores the interval 

information into the index nodes.  

7.5 TwigStack XB 
The TwigStack XB is an extended version of the TwigStack algorithm which uses an XB-tree to 

gain more performance. It maintains a pointer act = (actPage, actIndex) to the actIndex’th 

node in page actPage of the XB-tree.  

There are two operations that affect this pointer:  

advance:  If act = (actPage, actIndex) does not point to the last node in the current page 

actIndex will be advanced. Otherwise act will be replaced with (actPage.parent, 

actPage.parentIndex) and recursively advanced. 
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drilldown: If actPage is not a leaf page and N is the actIndex’th node in actPage it will be 

replaced with (N.page, 0) that it points to the first node in N.p. 

Initially act is set to (rootPage, 0). It points to the first node in the root page of the XB-tree. 

The traversal is finished when act points to the last node in rootPage and gets advanced.  

 

Algorithm TwigStackXB(q) 

 

01 while !end(q) 

02  qact = getNext(q) 

(03) if (isPlainValue(Tqact)) 

04   if (!isRoot(qact)) 

05    cleanStack(parent(qact), next(qact)) 

06  if(isRoot(qact) || !empty(Sparent(qact))) 

07   cleanStack(qact, next(qact)) 

08   moveStreamToStack(Tqact,Sqact , pointer to 

   top (Sparent(qact) ) ) 

 

09   if (isLeaf(qact)) 

10    showSolutionsWithBlocking(Sqact,l) 

11    pop(Sqact) 

 

12   else advance(Tqact) 

(13) else if (!isRoot(qact) && empty(Sparent(qact))&& 

  nextL(Tparent (qact)) > nextR(Tqact)) 

 

(14)  advance (Tqact) // Not part of a solution 

(15) else // Might have a child in some solution 

(16)  drillDown (Tqact) 

 

// Phase 2 

17 mergeAllPathSolutions() 

 

Function getNext(q) 

01 if (isLeaf(q)) return q 

02 for qi in children(q) 

03  ni = getNext(qi) 

(04) if (qi != ni || !isPlainValue(Tni) ) return ni 

05 nmin = minargni nextL(Tni) 

06 nmax : maxargni nextL(Tni) 

07 while (nextR(Tq) <nextL(Tnmax)) 

08  advance(Tq) 

09 if (nextL(Tq) <nextL(Tnmin) ) return q 

10  else return nmin 

 

Procedure cleanStack(S, actL) 

01 while (!empty(S) && (topR(S) < actL)) 

02  pop(S) 

Figure 57 [3] 
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The changes of TwigStack to TwigStack XB are indicated with line numbers in brackets. The 

function isPlainValue returns true if the actual pointer in the XB-tree is pointing to a leaf 

node.  

THEOREM 7.5.1 [3]  
Given a query twig pattern q and an XML 
database D, Algorithm TwigStackXB correctly returns all answers 
for q on D. 

 

7.6 Summary 
This section shows how index structures can be used to speed up the join operation. The 

StackTree has been modified to work with a B+ tree and a XR-tree. These structures avoid 

unnecessary processing of elements which are not part of the final solution. A  detailed 

speed comparison can be found in [7].  

State of the art is the TwigStackXB algorithm which uses a XB-tree. 
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8 Implementation and experimental results 
In this section the TreeMerge, StackTree and the PathStack algorithm will be tested on a 

given test dataset. An important difference between these algorithms is that the TreeMerge 

and the StackTree algorithm have to split a query into binary subsets and merge the results 

afterwards. The PathStack is able to process the query at once which avoids the merging 

phase.  

This section tries to show how the different strategies of the algorithms increased the 

performance. The simplest algorithm is the TreeMerge join algorithm. It uses no stack to 

cache nodes and simply uses two nested loops to compare the ancestor and the descendant 

nodes.   

An optimization is represented by the StackTree algorithm. It stores ancestors in a stack to 

gain more performance and avoid the skipping of elements which are not participating in the 

join. It will be shown that this simple enhancement brings a huge performance gain.  

The PathStack uses more stacks to store intermediate results. Every query node has its own 

stack to store ancestor nodes and encode the results. It is obvious that the stack-encoding 

causes more overhead, but this will be amortized by not needing a merge phase. 

8.1 Dataset 
For the test data i chose the book example from [1] and extended it to run some test 

queries. I decided to write my own generator to be more flexible and generate the 

numbering schema information directly into the XML tags.  

 

Especially I wanted to simulate different worst case situations in every query to see how 

each algorithm behaves and how the runtime was affected.  

<author level="3" leftPos="8" rightPos="12"> 

 <name level="4" leftPos="9" rightPos="11"> 

  Peter1 

 </name> 

</author> 

Figure 58 
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Figure 59 shows the DTD for the test set. 5000 book entries have been generated with 

various chapters. Details about the generation can be found in the implementation section.  

8.2 Queries 
The queries were chosen to create various scenarios which should increase the runtimes of 

the algorithms.  

8.2.1 Query 1:  //chapters/chapter 

This query handles a lot of nodes since every book with chapters can have from 5 up to 20 

chapters. Especially the TreeMerge algorithm would have to skip a lot of descendent 

elements (chapter).  

8.2.2 Query 2: //book/title  

This is a simple query which has not that many elements. It should be a test for the 

PathStack algorithm which is more complex and will show how the overhead with the stacks 

influences the runtime.  

8.2.3 Query 3: //book/subtitle 

Query 3 returns no results because a book does not have a subtitle. Only chapters can have a 

subtitle. This should test the algorithms how they behave with elements they cannot match.  

8.2.4 Query 4: //title/chapter 

This query also does not return any elements. It has a big number of nodes which have to be 

tested.  

8.2.5 Query 5: //book/chapters//subtitle 

This query has to be split into book/chapters and chapters//subtitle. Book/chapters will 

generate much more results which are not part of the final result.   

<?xml version="1.0" encoding="UTF-8"?> 

 

<!ELEMENT title (#PCDATA)> 

<!ELEMENT subtitle (#PCDATA)> 

<!ELEMENT name (#PCDATA)> 

<!ELEMENT illustrator ((name))> 

<!ELEMENT chapters ((chapter+))> 

<!ELEMENT chapter ((title, subtitle?))> 

<!ELEMENT books ((book+))> 

<!ELEMENT book (((illustrator, chapters?) | (author,  

     illustrator, chapters)))> 

<!ELEMENT author ((name))> 

Figure 59 
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8.2.6 Query 6: //book//chapters//chapter//title 

This query causes very much overhead, because it has to be spit into book//chapters, 

chapters//chapter and chapter//title. Afterwards the results have to be merged which 

increases the runtime of the TreeMerge and the StackTree. Three merge operations are 

needed to get the final results. 

8.2.7 Query 7: //book/chapters/chapter/title 

This query is equal to Query 6, but has only parent-child relationships. I wanted to test if a 

parent-child relationship causes a different runtime behavior.  

8.3 Implementation 

8.3.1 Node 

Class node is a container class which keeps all information about the numbering schema like 

the positions or the level of the node. 

 

 

 

8.3.2 Pair 

The TreeMerge and the StackTree generate Pair classes as results.  

Figure 60 

Node 

startPos : int 

tag : String 

endPos : int 

level : int 

 

 

 

getStartPos() : int 

getEndPos() : int 

getLevel() : int 

getTag() : String 

equals(Node n) : Boolean 

checkRelation(Node child, boolean 

parentChild) : boolean 
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8.3.3 Tuple 

The PathStack algorithm organizes all nodes with stacks of Tuples. Attribute idx keeps the 

index of the parent stack.  

 

8.3.4 PStack 

For every query node the PathStack has a PStack which is needed to encode the nodes. Each 

PStack has a parent PStack except for the PStack of the root query node.  

 

 

 

Tuple 

n : Node 

idx : int 

+ getN() : Node 

+ getIdx() : int 

Figure 62 

Pair 

n1 : Node 

n2 : Node 

+ getN1() : Node 

+ getN2() : Node 

Figure 61 

Stack<Tuple> 

PStack 

parent : PStack 

name : String 

+ topL() : int 

+ topR() : int 

+ getParent() : PStack 

+ getName() : String 

Figure 63 
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8.3.5 Query 

The TreeMerge and the StackTree algorithm can only handle one relationship at one time. 

The PathStack can resolve the full query and needs all relationships of the query nodes 

during the join. The class query contains all information about the query node relationships. 

 

8.3.6 Generator 

For fast data generation XMark [11] is a good choice, but to gain more flexibility in the data 

generation i decided to write my own data generator. I randomized specific tags like the 

author tag in a book to create special result sets for my queries. It is a straight forward 

implementation which also generates the numbering schema for each tag.  

8.3.7 Parser 

With the SAX parser I was able to quickly parse the needed nodes from the example 

repository. It returns a vector of nodes sorted by the start positions of the tags. I generated 

the numbering schema directly into my XML repository. Otherwise I would have to iterate 

through the XML tree to generate the numbering schema.  

 

 
Figure 65 

Parser 

org.xml.sax.helpers.DefaultHandler 

 

parseTags : Vector<String> 

parsed : HashMap<String, Vector<Node>> 

+ startElement(…) : void 

+ getNodes(): Vector<Node> 

Query 

queryNodes : Vector<String> 

relations : HashMap<String, Boolean> 

+ addNode(…) 

+ getQueryNodes() 

+ getRelations() 

+ parentRelationship(…) 

Figure 64 
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8.3.8 TreeMerge 

This algorithm takes the two sorted lists of ancestors and descendants as input. These lists 

can be directly used from the parser. Each node contains its numbering information which is 

needed to check ancestor-descendant und parent-child relationships. 

It iterates over the ancestor nodes and skips all descendants which are not joinable with the 

current ancestor. This skipping is very costly which can be seen very well in Query 2. It has to 

skip a lot of title nodes which increases the runtime.  

Operation merge and mergeIntermediate merge the results from the sub queries in nested 

loop manner.  

 

 

8.3.9 StackTree 

For the stack tree a stack has to be maintained to cache ancestor nodes. In my test it shows 

very good results. The stack increases performance and does not cause too much overhead.  

The algorithm terminates when the stack is empty and no ancestor elements in the input list 

are left or no descendant elements where left. 

 

 

8.3.10 PathStack 

PathStack expects for every query node a stream which returns the nodes in sorted manner. 

For my purposes it was better to lead all data into memory, because it is much faster than 

the latency of my hard drive.  

The PathStack uses more than one stack to encode its intermediate results. For each query 

node one stack is maintained which is linked to the stack of the parent query node. I decided 

to manage all stacks and streams in a hash map. 

TreeMerge 

+ join(…) : Vector<Pair> 

+ echo() : void 

+ merge : Vector<Vector<Node>> 

+ mergeIntermediate : Vector<Vector<Node>> 

 
Figure 66 

StackTree 

+ join(…) : Vector<Pair> 

+ echo() : void 

+ merge : Vector<Vector<Node>> 

+ mergeIntermediate : Vector<Vector<Node>> 

 

stack : Stack<Node> 

 

Figure 67 
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8.4 Results 
Every algorithm handled a test repository with 5000 books. The StackTree showed very good 

performance on queries with two nodes. It is also faster than the PathStack, because it has 

less overhead.  

PathStack outperforms the other two algorithms when the query has more than three 

nodes. The merge of the intermediate results from the TreeMerge and StackTree is 

extremely costly.  

Especially in query 1 the TreeMerge algorithm has to skip a lot of chapter nodes and causes 

an increased runtime. Here the StackTree performs best, because it has less overhead than 

the PathStack.  

Query 2 handles fewer nodes than query 1. Here the difference between StackTree and 

PathStack is much higher.  

Query 5, 6 and 7 have more than 2 query nodes. Here the merge of the intermediate results 

has a huge impact on the runtime of the TreeMerge and StackTree. The difference to the 

PathStack is very high which shows that for more complex queries PathStack performs best. 

Query 6 and 7 has nearly the same runtime. The only difference between these two queries 

is the relationship between the query nodes. Query 6 resolves only parent-child 

relationships and query 7 only ancestor-descendant relationships.  

 

Query 1 2 3 4 5 6 7 
TreeMerge 
[ms] 20703 5047 1094 33765 19641 161640 159688 
StackTree 
[ms] 297 140 47 250 10656 130234 124813 
PathStack 
[ms] 1703 1875 281 3312 343 3532 3484 

 

PathStack 

+ join(…) : Vector<Pair> 

+ echo() : void 

+ merge : Vector<Vector<Node>> 

+ mergeIntermediate : Vector<Vector<Node>> 

- end : Boolean 

- getMinSource : Node 

- getSubtreeNodes : Vector<String> 

- showSolutions : Vector<Vector<Node>> 

 

Query query; 

streams  : HashMap<String, Vector<Node>> 

stacks  : HashMap<String, PStack>  
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Figure 68 

 

8.5 Optimal merge of intermediate results 
The tests have shown that the merge process of intermediate results is very costly. Many 

intermediate results may not be part of the final result. Especially when a query is longer the 

intermediate results which are useless for the final solution can get very large.  

To reduce the costs of the merge phase where the results get merged it would be possible to 

use nodes from a previous processing step. This would reduce the size of the intermediate 

result and increase the runtime performance. The simple optimization would speed up the 

MergeTree and the StackTree if the query twig has more than two nodes. The merge phase 

can be completely avoided.  
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Figure 69 shows an example query twig which would be decomposed into books/book and 

book/author. This causes that the results of books/book and book/author has to be merged.  

The optimization would first compute the results to books/book and pass this results to the 

next processing step book/author. The book nodes from the first subquery will be used as 

ancestors for the next subquery.  

This is certainly also possible from the other side. That first book/author will be computed 

and the results given up to provide the descendants for the next subquery. A query planer 

could help to determine the optimal processing queue of the subqueries.  

 

 

books 

book author 

books/book books/book/author 

Figure 70 

books 

book 

book 

author 

books 

book 

author 

Figure 69 
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9 Conclusion 
Many structural join algorithms have been proposed with different ideas and strategies. The 

key of every algorithm is the numbering schema, which helps to determine structural 

relationships efficiently.  

Some algorithms process a query at once and others have to split it to process only two 

query nodes at a time. State of the art is the Twig2Stack which is able to process GTPs and 

can for example also handle optional query nodes.  

My tests have shown that the StackTree delivers very good results if the query has only two 

nodes. It has not very much overhead and the stack is a good strategy to increase the 

performance. The disadvantage is that if the query has more than two nodes the 

intermediate results have to be merged. This happens in nested loop manner and costs a lot 

of processing time. A possible optimization is shown in 8.5. Some detailed tests with real 

world data would be very interesting and show how the optimization works.  

Future work could be a query planner which chooses the algorithm depending on its 

statistics over the data. Like in relational database systems where a query planner decides to 

use an index or a sequential table scan. A combination of different algorithms could use the 

advantage of every algorithm. One example could be the usage of the StackTree algorithm if 

the query has only two nodes.  
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