
!

!

!

!

!

!

!

!"#$%&%'()*+,#+-./)01%&.)2.3.&456.+')

748)9.$:;#"./)055&%-#'%4+")
!

!

"#$%&'()*+#,!
!

-./!+/0123.23!456!17145896:;52!</1456!

!

<#1%"'.8)/.8)=4>%#&:)?+/)9%8'"-,#7'"@%"".+"-,#7'.+)
!

98!)1;852!456!=>.49.86!

!

A+7486#'%B6#+#1.6.+')
!

1.635?@;/>!AB2!

!

C8%./8%-,)2%66.&D);#BBE'.-,+E)
'1>/97502.885/!CDCEEDC!!

!

18F!

!"#$%$&$'()*'+",-./01/'2"0'3&#%"/##'4"1%"//*%"15'6"%7/*#%8'9%/"''

'

!

*5>/5..23F!

3/$*/&/*:3/$*/&/*%";'2<,<6"%7<=>*,(<'?%@.<=!"1<'?*<'A/"2$/'B,$#CD"%1'

'

'

'

'

'

9%/"5'EF<EG<HGGI!! ! GGGGGGGGGGGGGGGGGGGGGGG! ! ! GGGGGGGGGGGGGGGGGGGGGG!
! ! ! ! HI2>5/6:;/9?>!J5/?1665/K92L! ! HI2>5/6:;/9?>!*5>/5.5/K92L!

!

!

!

!

,5:;296:;5!I29A5/69>M>!N952!

(OPCQC!N952! !R1/06S01>-!PD! !,50T!UQDKHCLPKVWWCPOC! !;>>SFKKXXXT>.X952T1:T1>

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

!

3

I assure that I wrote this diploma thesis myself and I only used the stated

sources and tools.
Ich versichere, dass ich diese Diplomarbeit selbstständig verfasst, und nur die

angegebenen Quellen und Hilfsmittel verwendet habe.

Vienna, October 2008

4

5

Acknowledgement

Before going in medias res, I want to thank those people that supported me dur-
ing the past years of my life, especially during my studies.

First of all I want to thank my parents, Margarete and Friedrich, which always
stood and hopefully will be standing behind me. Without their love and helpful-
ness, I wouldn’t have been able to be who I am and to have the luxury to finish a
study. I want to thank them for their patience and generousness and finally their
love towards me.

I also want to thank the rest of my family for their endless support in good and
bad times.

I want to thank Klara, for her never-ending love and her support and motivation
when writing this thesis.

Thanks to Günter Baumgartner and Peter Trimmel for their great mentoring

and professional support, and their English skills when proofreading this thesis. I
also want to thank you for letting me learn so much from you and your profes-
sional attitude for work.

Thanks to Christoph Kroneder for his insightful presentations and discussions
about Agile Methods.

Thanks to Andi Hejl and Georg Kreuch for the budget for implementing the
practical part of this thesis.

Thanks to Simone Kriglstein for her detailed feedback.
And finally thanks to Prof. Renate Motschnig for her feedback and supervision

of this work.

Thank you all for your helpfulness. I wouldn’t have been able to do this with-

out you!

6

7

Abstract

During the past few years the author has been working at Siemens as a working
student with a part-time employment. He worked within the “Support Center for
Components & Internet Technology” group, which was responsible to stay up-to-
date with modern Internet technologies and be technical leader for web trends. A
certain part of the daily work was to examine new technologies, programming
languages and hypes, building know-how and implement prototypes for demon-
stration purposes.

The past years brought lots of new technologies to the web, which finally was
called Web 2.0, because of new possibilities for users and developers. One of the
latest trends is the use of Rich Internet Applications, which add new functionality
to browser-based applications and integrate the efficient usage of rich data sets.
Also the integration of rich media and multimedia items is a central, new opportu-
nity since the introduction of Rich Internet Applications.

Many different start-ups evolved and they built user-centric web-applications.
Sometimes different sites had the same idea, but only a few grew to huge web-
sites. Because these sites were done by start-ups, which weren’t able to put mil-
lions of dollars into marketing, there must be another cause, why some sites were
successful and some weren’t. One of the important differences to other sites was
most likely usability. Usability for web sites is more and more important when the
website’s purpose is the integration of the user and his participation. Different
guidelines are available for usability, but most of them are very old. It’s important
to adapt these guidelines for modern web applications, and finally Rich Internet
Applications.

The author of this thesis selected the topic, because of his interests in web ap-

plications, usability and agile development. Also his Bachelor thesis was about
“Rich Internet Applications and Service Oriented Architectures”; the thesis at
hand dives into a more detailed description of how to implement such applications
in terms of better usability and the development process using Agile Methods.

8

9

Abstract (German)

Während seiner Studienzeit arbeitete der Autor dieser Arbeit als Werksstudent
bei Siemens mit einem Teilzeitvertrag. Er war in dem „Support Center for Com-
ponents & Internet Technology“ tätig. Der Zuständigkeitsbereich des Support
Centers lag darin, neue Technologien, vor allem im Bereich von Internet und Web
ausfindig zu machen und als technischer Ansprechpartner für diese Technologien
im Konzern kompetent zu sein. Neue Programmiersprachen und Web-
Technologien war nur ein Teil der Aufgabe, daneben war es wichtig, Know-how
Aufbau zu betreiben und Prototypen mit Hilfe neuer Technologien zu erstellen,
um Showcases zu zeigen.

Die letzten Jahre brachten vielen neue Technologien in den Web-Bereich. Der
neueste Trend, bzw. die Bezeichnung Web 2.0 steht gerade dafür, dass sich für
Benutzer und Entwickler viel getan hat und sich neue Möglichkeiten eröffnen. Ein
ebenso aktueller Bereich aus dem Umfeld von Web 2.0 sind sogenannte Rich In-
ternet Applications. RIAs sind Web-Applikationen, die im Browser ablaufen aber
neue Funktionalitäten einbringen und somit komplexere Daten visualisieren und
verarbeiten können. Multimedia Daten, wie z.B. Videos oder Musik, etc. lassen
sich ebenso in Rich Internet Applications einbetten.

Die letzten Jahre brachten viele neue Firmen und Start-Ups auf den Markt, vor
allem benutzerzentrierte Web-Applikationen sind derzeit ein Hype. Viele ver-
schiedene Firmen hatten wohl die gleichen Ideen, wenn es um solche Applikatio-
nen geht, doch nur wenige schafften es bis an die Spitze. Vor allem Start-Ups oh-
ne viel Kapital können sich jedoch keine millionenteuren Marketing-Auftritte
leisten; es muss daher andere Grüne geben, warum Firmen mit ihren Ideen erfolg-
reich sind. Einer dieser Gründe war höchstwahrscheinlich die Usability, also die
möglichst einfache Benutzbarkeit von solchen Services. Wenn es darum geht, Be-
nutzer an Webseiten zu binden und vor allem den Benutzer Teil der Webseite
werden zu lassen, in dem er zu den Inhalten beiträgt, ist es wichtiger als je zuvor,
die Webseite so zu gestalten, dass der Benutzer sich mit ihr zurechtfindet.
Für Software-Entwicklung gibt es viele verschiedene Richtlinien, jedoch kaum
angepasst an moderne Web-Applikationen. Gerade der Umstand, dass der Benut-

10

zer ins Zentrum der Applikationen tritt, erfordert aber die Analyse solcher Richtli-
nien für Web-Applikationen und im Speziellen auch für Rich Internet Applikatio-
nen.

Der Autor dieser Arbeit hat das Thema aufgrund seines großen Interesses zu
den Themen Web-Applikationen, Usability und auch Agile Methoden ausgewählt.
Bereits seine Bakkalaureatsarbeit handelte von „Rich Internet Applications and
Service Oriented Architectures“.
Diese Arbeit beleuchtet die Implementierung von solchen RIAs, speziell im Hin-
blick auf Usability und den Entwicklungsprozess mit Agilen Methoden.

11

12

13

Table of contents

Acknowledgement ...5

Abstract ..7

Abstract (German) ..9

Introduction ...17

Web based applications...21
Client/Server-Based Web Applications...21
Service Oriented Web Applications ..22
Rich Internet Applications...24

The evolution of Rich Internet Applications...25

Agile Software Development...29
The Waterfall Model ...29
The Rational Unified Process..31
Agile Software Development ..34

Definition of terms in Agile Methods ...38
The Scrum process..42

Agile development for web-based applications...45
Agile Methods for very small projects ..48
Agile Methods for single-person projects ...51

Usability in web-based applications...55
Design principles for better usability ..57

Usability at Siemens ...62
Web-based applications for business applications64

Implementation of “Project Calculation” ...67
Project description...68

Purpose of the application...69
A selection of use cases of the application ...70
Functionality of the application ..77

14

Used technologies ... 89
Project architecture: Before and now .. 91

Before: Architecture of the Excel solution ... 91
Now: Architecture of the Rich Internet Application............................... 94

How Agile Methods were used during development 96
Cairngorm Micro Architecture .. 96

Usability inspection for Project Calculation ... 101
Results of the usability inspection ... 102

Conclusion.. 115

Table of Figures... 117

Bibliography .. 119
Books:... 119
Papers, Journals & Presentations .. 119
Videos... 120
Web Pages .. 120

15

16

17

Introduction

In today’s environment IT companies who are creating customized projects for
individual customers have to calculate the costs for each single project individu-
ally. Most projects require individual development or customization because of
domain-specific needs. IT companies have to compete harder than ever to win
project tenders and to get a satisfying margin when getting paid for the project.

With increased size of the projects the calculation for the costs are getting more
and more complex too. If project development lasts for several years or even the
people working for the project are settled in different countries the calculation
process takes much time due to different location- and time-specific costs. For
project leaders it is very important to have an overview over different parts of the
projects and how expensive they are. There should be a simple way to enter and
change different variables, which are part of the calculation and represent impor-
tant parameters of the calculation. And, of course, theses changed values should
affect all the following calculations too and the project leader should see how
these new values fit into his calculation.

Web-based applications have become ubiquitous in the last years. Well-known

hype-words like “Web 2.0” have been an accelerator to the trend to bring applica-
tions to the browser and let the user interact with them online. The latest develop-
ment in this area is to get away from classic client/server architectures where the
browser is only the rendering part of the application (the view) and the server has
to do all of the business logic, calculations, etc. There are more and more libraries
for web development available, which allow rich user interfaces with client-side
logic to not let the server bear the entire payload.

With classic client/server architecture for web-based applications each request
to the server requires a complete refresh of the view and the browser has to render
the entire page again. Additionally the complete rendering information (the de-
sign) has to be transferred from the server to the client at each request. This re-
quires a lot of redundant information exchange and wastes a lot of network traffic
bandwidth. Modern web applications make use of libraries to cope up with these

18

problems. Many web applications use AJAX (Asynchronous JavaScript And
XML) to have a connection to the server. Such applications only transfer pure in-
formation (data) from the server to the client and vice-versa. The layout has to be
transferred only once (and, of course when layout changes are made due to differ-
ent application parts). For the rest of the usage of the application only the informa-
tion that is required at the moment has to be transferred.

There’s also another type of web-based applications that take advantage of
data-only transfer technologies. Rich Internet Applications (RIA) is the generic
term, when one’s speaking about web applications. RIAs have a rich user interface
with user-centered controls providing a better user experience and they are mostly
built on a service-oriented architecture (SOA), which provides the interface to data
stores and business logic. AJAX-powered applications are such RIAs. But there
are different other technologies that allow a better user experience than standard
client/server web applications. For example Microsoft Silverlight and, the tech-
nology used in this thesis, Adobe Flash.

Different development processes have affected the past decades of software

engineering. Common development strategies were the waterfall model, the ra-
tional unified process, extreme programming, etc. One quite new strategy in soft-
ware engineering is the use of “Agile Methods”. This method is based on quick
iterations of steps as planning, designing, developing and testing. The goal of
these short iterations is to keep the overhead for project planning very small and to
have many builds of the application. Those builds don’t have the full feature-set of
the final application but those features, which are implemented, should be working
and should be without bugs. Working with Agile Methods is quite similar to pro-
totyping applications. It’s important to have parts of the application finished very
quickly without having to do lots of administrative tasks and time-consuming de-
sign-phases. One of the different specifications of agile development is called
“Scrum”. Scrum has a predefined set of roles in a project. The developers, design-
ers, etc. are called “team”. A team normally consists of a very small number of
people who work together. The “Scrum master” is responsible that the Scrum
process is executed correctly. He’s also host of Scrum meetings (which are called
“sprints”). The “product owner” within the Scrum process is the person, which
represents the customer to the team and the Scrum master. The product owner is
responsible for the feature-set of the application and observes the project from the

19

business perspective. Typical iterations last 2-4 weeks. Those iterations are called
“sprints”. From the complete feature set for the complete applications small parts
are picked out into “sprint backlogs”, which represent the work that has to be done
until the sprint is over. After each sprint iteration a sprint meeting is scheduled
where the Scrum master and the team reflect the past sprint and improvements for
the future are discussed. Additionally to the sprint meetings every day a “Scrum
meeting” is scheduled. Here every team member is asked questions about his cur-
rent status and what his plan for the following day is.

An important part of an application is always its usability. Usability means how

the user is able to interact with the application. If the usage is complicated and the
user has to read many manuals to understand how to use the application, the us-
ability level is low. But if the application is designed in a way that the user can
“learning by doing” or the user even can use the application correct instantly, the
usability level is very high. Several repeating steps can improve usability during
application development. Representative users (for the target audience) perform-
ing representative tasks (tasks which will be in focus for the application’s purpose)
should be observed. After they are finished, one has to analyze where the testers
had problems and which steps have to be improved (e.g. to improve the perform-
ance of the application). There are many different aspects of usability that can be
measured and all are important for the quality of the product.

20

21

Web based applications

Web based applications can be run in the browser of the client computer and
interact with a backend on a server. Typically these kinds of applications are
called client/server-based applications.

Client/Server-Based Web Applications

Nowadays most web-based applications are developed based on client/server
architecture. These applications are mostly text-based (HTML) and require page
refreshes on each interaction with the server. That means, if a user enters a value
into a form and wants to save this value to the server, a request is made to the
server and the server performs a save operation for this value. Maybe the value
that was entered by the user is not valid (e.g. the user should enter a number but he
entered a letter), and then the server has to inform the user to enter a valid charac-
ter. So the server creates a web page with an error message to tell the user to cor-
rect his entered value. Therefore the entire web page has to be sent to the user
again just to tell him that there was a single wrong value. The user then can enter a
correct value and submit the page again to the server. If all values are valid and
processed on the server, a response page has to be created to tell the user that his
values were saved. Again a complete page with all of its design has to be trans-
ferred to the client computer’s browser and to be rendered there.

From the browser’s perspective of view this is very simple to accomplish. The
browser only displays information that comes from the server and does not have to
process any logic and therefore does not have any responsibility for the entered
data. The server however has to take care on all of the logic. The server checks the
validity of the user submitted values, interacts with the backend services (maybe
other applications, web services, databases, etc.) and has to generate the design
and the pages for the client to display. Those tasks may be very complex tasks for
the server and require a lot of processing power. If one imagines thousands of si-
multaneous requests by clients to a server and the server is responsible for every-

22

thing (business logic and view) this may be a huge payload to take. Also the ex-
perience for the user may suffer from this fact because the page roundtrips may
take longer because the server is overloaded causing the downgrade of respon-
siveness.

Service Oriented Web Applications

In the last years some new or improved methods have emerged to better these
drawbacks of the non-intelligent client. Technologies such as AJAX, Adobe Flash
or Microsoft Silverlight cope up with the problems that everything has to be ren-
dered and transferred over the network again and again. With service oriented ar-
chitectures and e.g. web services the client can just exchange data, which is
needed for the current task. This can speed up the performance and transaction
rates of web applications dramatically.

What is a “Web Service”?
Generally a Web Service is known as a term, which stands for programmatic

interfaces made available for application-to-application communication. [W3C]
Engineers use the term web service mostly to describe a remotely accessible

component, which allows the “service-consumer” to access functionality from an-
other machine. Normally web services are accessed via HTTP or HTTPS from
within web applications. Generally web services don’t rely on a specific protocol.
But for the purpose of this thesis we stick with web services over HTTP(S). An
advantage of web service is that they are loosely coupled (at least by design) and
therefore consumers don’t have to have knowledge of what’s behind the service
façade and the services don’t change their signature when the underlying logic
may change. With web services it’s possible to get great interoperability between
existing applications, whereas one has to keep in mind that web services are not
the solely answer for Enterprise Application Integration (EAI). But web services
may help to solve EAI issues. Web services are also designed to be understandable
by humans and machines. They are described in an XML based language where
the services’ operations are defined. The language for the description of an entire
web services is known as Web Service Description Language (WSDL) [WSDL].
Within this declaration important information about the usage, required parame-
ters for operations, endpoints and protocols are written down.

23

SOAP [SOAP] is used as a protocol for web service communication. The
SOAP messages (request / response) are encoded in XML to be readable by the
computer on one hand and understandable for humans on the other hand. SOAP is
very similar to XML-RPC (Remote Procedure Call), which stands for XML mes-
sage exchange over HTTP. The main differences between SOAP and XML-RPC
are that SOAP does not rely on a specific protocol as HTTP as XML-RPC does
and another difference is that SOAP contains header and body information within
a specified envelope (see: Figure 1).

Figure 1: Structure of a SOAP Message

Taking advantage of technologies and architectures such as web services, de-

velopers can quickly build web applications that take use of the data and logical
operations provided by the services. Examples for such a usage could be to load
products for a shopping cart application based on a selected category. At first a list
of available product categories is displayed for the user. Then the user selects a
category, which invokes a service request to the server. The service then reaches
this request further to the internal business logic where a result set is created. This
result set then will be passed to the service and the response comes as a SOAP
message back to the client. The client application then decodes the SOAP message
and creates a list of the available products for the selected category. This can be
done with JavaScript libraries (if the interface is based on HTML) or within
Adobe Flash or Microsoft Silverlight with their respective scripting languages.

24

That way would save the HTML overhead for the formatting of objects when
switching between categories for example. That means that the client side knows
how to format objects of type “product”. With a client/server-based architecture,
the server would have to know how to format these objects and generates the
source code, which the client browser would interpret at runtime for rendering.
Figure 2 shows the differences in processing data between client/server based web
applications and Rich Internet Applications.

Figure 2: Difference between client/server based web applications and

Rich Internet Applications (top: client/server based, bottom: RIA)

Rich Internet Applications

The term “Rich Internet Application” [ALL02] stands for applications, which ex-
tend functionality and user experience compared to standard client/server-based
web applications. This can be accomplished by adding custom user interface con-
trols to the application such as navigation panes, accordions, date-selectors, etc.
Also the integration of rich media such as audio and video can be seen as part of
Rich Internet Applications. It’s difficult to narrow down the term RIA to specific
characteristics but mostly they try to implement features the user is used to from
desktop applications. RIAs can take over some processing of data to relieve the
server’s payload but the main purpose is the client-side logic when presenting

25

data. The client itself is responsible how data will be displayed. In most RIA envi-
ronments it’s possible to sort or filter data on the client. In old client/server-based
applications the sorting of data required a complete page refresh with the complete
processing done by the server. That means that the client itself can do simple
tasks. Therefore the term “rich” not only means rich media integration, it also
means that there’s a rich subset of functionality already on the client. Nowadays
computers are not weak machines as they were used earlier when thin clients were
used on networks and all of the processing power has been done on mainframes.
Many client computers have more features and more powerful hardware than
some Internet servers. And the client computer’s performance is not used when
just surfing through static (or generated) pages. But the server has to generate and
calculate these pages for thousands of parallel requesting users. Rich Internet Ap-
plications use the processing power of the client computers to bring simple and
not business-relevant functionality to the client to disburden the server.

The evolution of Rich Internet Applications

Rich Internet Applications follow a simple matrix of important facts for applica-
tions with the axes: “reach” and “rich” (see Figure 1).

The first axis “reach” stands for the population of applications.
The second axis “rich” stands for the kind interactivity for applications are the

pure text based or do they allow interactive change of data.

26

Figure 3: Evolution of Rich Internet Applications

In the early beginnings of computers and applications there was no “reach” for
applications available. That means applications were installed locally on one ma-
chine. Due to the lack of networks there was nothing the application could com-
municate with. The interfaces of those applications were text-based and there was
nearly no interactivity available within these applications. So these applications
were not rich and had no reach.

Later the applications became more “rich”. That means with the beginning of
graphical user interfaces (GUI) applications became more functionality and with
pointer devices such as the mouse they became highly interactive. For example
database applications allowed sorting or filtering of data. But those apps were
desktop applications and were sometimes connected to a local network but not to a
large network as the Internet. So these applications were “rich” but didn’t have
“reach”.

With the beginning of the Internet era web applications became more and more
popular. They followed the client/server principle and allowed the interaction with
the largest network, the Internet. But the browsers were applications, which only
could render markup language and very few scripts at the beginning. So the logic
parts had to be done by the server. While those applications made a step forward
to obtain a higher reach factor, they made a step back because of the lack of inter-
activity. These applications were not rich but they had reach.

27

The next and currently evolving step in application development is to write ap-
plications, which have reach and richness. These applications should look differ-
ent when comparing them with their history? They should be able to connect to
the network as web-based applications. But they should also be able to act intelli-
gent in a way that not for all operations a server is needed. These applications then
are rich and they have reach. Finally such applications are called “Rich Internet
Applications”.

Note: A further step in the evolvement of applications is an “occasionally con-

nected application”. Such an application would have both, reach and richness, be-
cause it originates from Rich Internet Applications. But these applications also
need to have enough intelligence to allow the user to continue working when
there’s no network connection available. Such applications have to keep data off-
line and save the data the user enters and synchronizes when there’s network con-
nection available again.

The implementation part of this thesis is a Rich Internet Application built with
Adobe Flex but as part of the requirement for the application it will also be de-
ployed as an occasionally connected client as an Adobe AIR application.

28

29

Agile Software Development

When speaking about different software development processes, many engineers
will think about large specifications of processes. In the past decades many differ-
ent methods for software development have been widely used and are well know.
The waterfall model, the V-model, the Rational Unified Process are just three of
many different paradigms how to develop software projects and how to manage
them. Most of these processes describe how to iterate different steps during devel-
opment to improve the overall quality of the engineered product. They use quality
standards, require domain-specific knowledge (for example for testing tools) and
they require complete design specifications before the pure development part can
start.

To show the difference between commonly used software development proc-
esses and the idea of agile software development two of the most-known devel-
opment process will be described, followed by a detailed description of Agile
Methods with some specific characteristics. The two already well-know processes
described here are the waterfall model and the Rational Unified Process.

The Waterfall Model

The waterfall model has been very popular in software development for years.
Mostly large software companies with large development projects to cope with
use it. The waterfall model in its original version is non-iterative. [ROY70] That
means that the engineers only can start with the next phase of the process, if the
previous step is completely fulfilled. The waterfall model consists of five to seven
main phases (depending on how to split phases), which are run through sequen-
tially (see Figure 4).

30

Figure 4: Phases of the waterfall model

The phases are:
1. Requirements specification:

The requirements analysis contains the purpose of the application and
describes how it should be used. This can be done by defining use-
cases, functional and non-functional requirements, different con-
straints (design, performance, quality), interfaces to external applica-
tions … The Requirements specification also contains general infor-
mation about the project and dependences to other projects.

2. Design specification:
Within the design specification important parts of the system architec-
ture are formally described. Depending of the kind of the application,
different methods are applicable to describe the software process. This
can be done by flow-chart diagrams, which describe the application
process flow or this can be done by creating storyboards for user-
interaction. As a formal method for the description of the application
design the UML (Unified Modeling Language) is mainly used. UML
is a standardized set of objects that represent different parts of an ap-
plication and allow creating a graphical representation of the applica-
tion architecture.

3. Programming (sometimes Implementation or Construction):
Sometimes this step and the step before (Design specification) are

31

separated into three standalone steps: Specification, Design and Im-
plementation. The main difference is that within the Design step there
would be some basic algorithms already predefined and taken out
from the Programming step.
The Programming step contains the development of the application.
Based on the steps before there should be a detailed set of instructions,
which need to be implemented by the programmers.

4. Integration:
Within this step all developed modules are brought together and they
are meant to work together. This step is called integration because dif-
ferent parts of the applications come together to build a homogeneous
application.

5. Delivery:
One of the main points of this step is acceptance testing by the cus-
tomer to check, if the product meets the customer’s expectations. If
the product is accepted, it gets packaged and installed at the customer
and finally will be used.

6. Maintenance:
Even if the software meets the entire customer’s expectations on de-
livery it’s rather possible that over time new features are requested or
bugs are found. To improve the software it enters the maintenance
phase. Therefore it re-iterates all the previous steps, which results in a
new version of the software on delivery.

One big drawback of the waterfall model is that the phases before implementa-
tion are taking much time. Often it’s not useful to have detailed instructions for
every small piece of the software. Sometimes it’s better to find limitations and
possibilities of the application requirements while developing and engineers can
react on sudden problems. The waterfall model writes down the specification,
which can’t be changed (according to the process description).

The Rational Unified Process

The Rational Unified Process [EVE00] derives in its original state from the
unified process. The main difference to the waterfall model is that it’s an iterative

32

development. Basically the Rational Unified Process is use case driven (RUP is
very familiar with UML), architecture-centric, iterative and incremental. Due to its
closeness to UML, a basic principle of the RUP is to break down the requirements
into functional requirements, which then are represented as use cases. During the
architectural analysis also non-functional requirements are surveyed. These are
mostly the common non-functional requirements, such as reusability, safety, main-
tainability, etc. The actual process of the RUP is iterative and incremental. Similar
to Agile Methods, there are many iterations that result in an increment of the over-
all product development outcome. Four phases are defined within the RUP and
represent the entire process. These phases can be split into several iterations with
increments at the end of each of them (see Figure 5). [ÖHM05, KRU01]

Figure 5: Rational Unified Process1

1. Inception phase:
During the Inception Phase, the use cases for this iteration have to be defined
and determined. All requirements have to be identified and the business case
has to be developed. Also administrative tasks have to be done: who will work
on the project and on which tasks, how much time is needed, a schedule has to
be created. Risk management is also part of the inception phase.

1 Image taken from: http://upload.wikimedia.org/wikipedia/en/0/05/Development-iterative.gif

33

2. Elaboration phase:
The Elaboration Phase is used for the core architecture of the iteration. It’s im-
portant to fixate the architecture for the upcoming construction phase, so that
the construction can be done efficiently. Use case diagrams are created and the
core components (from the architectural perspective) are created as classes.
That means a small part of implementation starts during this phase, just to bring
the architecture from the paper to source code. In the end of this phase, it
should be clear that the planned architecture will work and finally a detailed
schedule for the Construction Phase has to be planned.

3. Construction Phase:
Based on the architectural definitions (and source code fragments), engineers
and developers start coding the required functionality. The construction phase
is usually the longest and largest phase within the project and should be split
into several iterations. Iterations within this phase should be planned to repre-
sent single features or small feature groups to have a visible increment after the
iteration.

4. Transition Phase:
Within this last phase, deployment is done at the customer. This phase is also
commonly split into several iterations to react on feedback of the customer.

Sometimes there are mentioned two additional phases: Production phase and
Retirement phase. These phases are used within the Enterprise Unified Process
and are out of scope of this short introduction to the Unified Process.

The Rational Unified Process is an improvement to the waterfall model, be-
cause it more iterative. Several iterations within some phases allow more detailed
preparation for the upcoming phases. It’s also important to start developing earlier
than in the waterfall model, to get a feeling for the architecture and to check, if the
planned architecture will work later on. Nevertheless the Rational Unified Process
is also a heavy-weighted process with a lot of overhead at the beginning of a soft-
ware development project. For web applications it won’t fit completely because
the customer identifies often functionality during the product development lifecy-
cle and a lightweight process would be better to react on the customer’s needs in-
stantly.

34

Agile Software Development

The ideas of Agile Software Development were initially mentioned about a decade
ago. Several factors lead to a rethinking about established processes.

One factor was that in the late 90s more and more companies got equipped with
an IT infrastructure. Therefore custom applications were needed with domain-
specific functionality. But these applications were not such huge applications than
they were in the years before. And using heavyweight development processes for
lightweight applications was not a clever idea.

Another cause was that more and more new programming languages and para-
digms evolved that allowed a more abstract kind of programming. This permitted
a less detailed architectural view and therefore not that much requirements and de-
sign engineering.

One of the most important motivations for a new paradigm was that developers
didn’t exactly follow models as the waterfall model or the Rational Unified Proc-
ess. At least they could not work that effectively as they could without those para-
digms.

Agile Software Development tries to bring the implementation part of the de-
veloper back to be the most challenging and most important part of the work. But
it’s very important to check the parts that were developed quite often to react on
changes or find improvements immediately.

There are several challenges in product development that need to get solved.
The following challenges lead to Agile Methods: [KRO07]

Note: the following text contains special roles and terms of the Agile Methods
process. These terms will be explained later in detail.

Requirements are unknown, unclear, and not stable. Changing requirements
or inserting new requirements is difficult.

This means that in most (or nearly all) “real world” projects it’s quite impossi-
ble to determine exactly what the customer wants. Many features and functional-
ities are explored when people are working together on the project and not before
the project has started. If there’s a fixed specification at the beginning of a projects
and the engineers follow a strict process (e.g. the waterfall model) it’s not possible
to change the requirements instantly or insert new requirements. The whole proc-
ess has to be run through to create a new version afterwards.

35

Agile Methods however try to identify the needs and requirements of the prod-
uct together with the customer. It’s necessary to get the customer “on the boat”
and have a commitment from the customer to use Agile Methods. Therefore the
client has to name someone who can act as the “product owner” role during devel-
opment and who is accessible for the engineers all the time. The product owner
also is in contact with the “Scrum master” all the time and if the owner wants new
features or has new requirements, he would tell it to the Scrum master.

Documentation takes up too much time (especially before implementation has
started).

This comes as a result of the previous challenge: if one tries to determine all
requirements that could evolve at any time for the product, this needs much time
for specification.

In Agile Methods documentation is also important. Terms like “product back-
log” or “sprint backlog” are the key elements of documentation before implemen-
tation starts. But opposite to classical software development processes it’s unusual
to write requirements specification sheets with hundreds of pages.

Project progress is not transparent.
When using conventional or traditional processes for software development,

the project progress is only visible on the paper. The project leader may point out
exactly, how much manpower has been used already and which features may have
been implemented already. But until this moment, there are no releases of the
software. That means it’s impossible to have a look at a usable software prototype.
Only when there are builds made it might be possible to have a look at them, but
generally the project progress cannot be made visible by working releases of the
software.

Agile Methods have time-boxed intervals for releasing running and stable
software. The quality of the yet-developed features has to be at the highest possi-
ble level, as if this was the release for the customer for the rollout. Even if there
are nearly no features developed, a working release is very important and there-
fore the project progress is transparent, it’s easy to determine which features are
already implemented and which are missing.

Integration is done towards project end and leads to unforeseeable problems
and delays.

36

Late integration may lead to a “big bang” if in the end problems evolve which
could have been easily solved at the beginning. Often application integration into
other systems is a very complex process. Therefore it would be clever to check
these things at the beginning to detect possible incompatibilities. At the beginning
those problems often can be solved and the projects build on a solid base. If the in-
terfaces to legacy systems have to be changed late, many workarounds have to be
made, which leads to instability and a non-solid base for the entire product and the
time for the workarounds is normally not planned and the budget for the project is
exceeded.

Agile Methods do have regular and frequent releases. These releases are built
to test their interaction with its interfaces to other parts of the environment. So it’s
simple to determine possible challenges or blockers, which then could be handled
soon to bring the product to a solid interface interaction.

Testing not executed properly due to a lack of time.
In software development processes like the waterfall model or similar other

methods testing is often a fixed component in the process theory. But often the
budget is very narrow calculated and if the steps before testing consume too much
budget, testing is done on a very low level. When products have to be at the cus-
tomer on time and there are some delays during development the last step has to
be shortened. This may lead to big problems since errors found at the customer af-
ter release are usually more expensive as if they were found during development.

Developing with Agile Methods contains the testing part in each iteration and
in fact on each day. Some specifications such as “test driven development” even
have testing specified before development. (In TDD a test case follows the speci-
fication. After that the code has to be written that satisfies the test case. So the
product assembles after solving all tests.)

Quality problems accumulate from release to release.
If testing is not executed regularly and properly, some errors might be unde-

tected and software builds on a faulty base. If the base is faulty and there’s no time
or budget to correct these errors, mostly workarounds are implemented. If this
continues more and more such workarounds are building big parts of the product.
It’s obvious that the unsolved errors may get bigger and bigger and at a certain
point these errors must be solved. Then all workarounds, which rest upon, these
errors (or underlying workarounds) need to be detected and solved. This may lead

37

to quality problems since it’s not guaranteed that all these workarounds are found
and corrected.

Agile Methods specify that each release, after each sprint has to be at a quality
level of a production-ready product. Therefore the quality is more important than
the number of features. If a certain part of the product is not production-quality, it
won’t get into the sprint-release. Only on acceptance it may be part of the release
and errors won’t lead into workarounds later.

Too many errors are detected too late.
As already mentioned above, late detected errors may result in big problems.

But why are errors often detected too late in classical methods of software devel-
opment? The answer is that limited time at the end of the development process
causes limited time for testing. So many errors are not found or found too late
(maybe at the customer).

Developing with Agile Methods assures that functionality only is inside a
package, if it’s well tested. And the tests are not done at the end of the product de-
velopment, testing is done in each iteration during the development cycle (each
“sprint”).

Conflicts and problems are hidden and not solved.
Classical ways of development don’t bother about personal problems or con-

flicts within the development teams. Agile Methods try to create a good environ-
ment for working and try to relieve the administrative burdens from the engineers.
The “Scrum master” is responsible to keep problems and urgent customer requests
away from the developers so that they can finish their work they just began with-
out interruption.

These challenges show, in which direction Agile Methods point. They raise the

problems of classical software development processes and try to improve these is-
sues with Agile Methods.

As mentioned above, there are some domain-specific terms in use at Agile Meth-
ods, especially in Scrum, which are explained here:

38

Definition of terms in Agile Methods

Scrum is not just “hacking” and rapid prototyping. It also has different kinds of
formalism that has to be followed. And it has some fixed time intervals with ex-
pected results that have to be accomplished. The illustration on page 43 (Figure 7)
shows, how the process is working, where one can find the time intervals and
which phases are part of Scrum.

Agile Methods are not based on a single big iteration over all steps during de-

velopment such as requirements, specification, implementation and testing. Agile
Methods iterate on all of these steps all the time, every month, every week, and
every day. [HRU04]

• Setup-Phase:
In the setup phase, several things have to be accomplished: the teams are built
and the different roles are assigned to the personnel, working on the project.
Also the basic requirements are specified and a certain document is created, the
“Product Backlog”. The product backlog contains so-called user stories, which
describe generally a To-Do list in a special manner.

After the setup-phase has been done, the main part of the process is starting.

• Sprint:
A sprint is a fixed time interval, where development happens. Typically sprints
are 15-30 days long, depending on the size of the project and how many people
are involved. During a sprint, part from the product backlog, the sprint backlog,
is the list of tasks to do.

• Daily Standup Meeting (also: Scrum Meeting):
Each (working) day, all team members and the Scrum master get together for a
short meeting (max. 15 minutes). At these meetings, the Scrum master asks
each person, what his goals for the past day was and if he could realize them.
Also the Scrum master asks if there were any pitfalls or problems the team
member ran across. If so, they are noted. Finally the team member is asked for
his goals for the current day. All members are asked and the Scrum master
summarizes the things he learned and updates the sprint backlog and the
“Sprint Burndown Chart” according to accomplished tasks.

39

• Product Backlog:
The product backlog is a table with entries like in a To-Do list. Each entry
marks a “User story” and also contains a priority grade and a column for “story
points”. The story points are similar to combined effort and complexity, the
priority is set by the product owner and contains the priority, how fast this cer-
tain feature should be part of the product but on the other hand it also contains
the risk for this feature. That means if there’s a high risk when implementing
this feature because it’s very difficult or there’s only little experience with that
specific domain and if this features is not possible to implement this would be
the blocker, then this feature should get a high priority to get implemented first.
Before implementation is started then, the product backlog is ordered by prior-
ity, so that the high-prioritized items are on top. The team and the Scrum mas-
ter then decide, how many user stories are part of the next iteration, the next
sprint and these user stories are then transferred to the sprint backlog.

• Sprint Backlog: The sprint backlog contains the user stories for a single sprint.
Within the team, each developer can choose, for which user stories he’s re-
sponsible. Each user story is normally broken down into different tasks. Each
of the tasks should be done within about one day, so that at the next daily meet-
ing it can be marked as done or not done. The tasks should possibly defined
very small and understandable, if a tasks is so big that it will take much longer
than one day, it should be split into smaller parts.
The sprint backlog should be finished and all user stories marked as done at the
end of each sprint.

• Sprint Burndown Chart:
The sprint burndown chart (an example can be seen in Figure 6) is a 2-axis dia-
gram that reflects the progress during the sprint. Based on the progress the team
and the Scrum master may decide to remove some user stories from the current
sprint and postpone them and put them back to the product backlog, if the chart
shows that time is running out for too much user stories to be done. The x-axis
shows the remaining time in the sprint whereas the y-axis shows the remaining
effort to do (planned hours, tasks, user stories, etc.). In a sprint burndown chart
there are always two lines visible: one line, which shows what the progress
should look like if everything goes fine and there are no delays and the second
line shows the actual project progress. If the second line is above the straight
line, the progress is going to slow to meet the expectations in the end. If the

40

line keeps staying above, the Scrum master has to discuss with the team, if and
which user stories may be postponed to the next sprint. If the line is below the
planned line, the team works faster than expected.

Figure 6: Sprint Burndown chart

• User Story:
A user story is an entry in the product backlog that describes certain functional-
ities for the product. A user story should be written down in the following for-
mat:
As a <role>, I want to <action> so I can <benefit>.
These sentences should be easy to understand and make clear, what has to be
done.
Examples for user stories may be:

– As a program, I want to have an API method for server interaction so I can
use the server for a calculation.

– As a user, I want to have a dialogue, where I can input my address data and
contact details.

– As a user, I want to search for my colleague’s name, so I can find his tele-
phone number and call him.

Based on such user stories it may be great, if there will be a design mockup for
each user story. It’s helpful if these user stories (plus the mockup) are drawn on
small paper cards. Writing user stories on paper cards has three advantages: First,

41

they don’t get too long. A user story should be written short and precise, so that
anybody understands its purpose. Second, when putting theses user stories on a
pin board, one can keep track of its progress and who’s assigned to that user story.
And third, with the simple mockup, there’s already the first idea, how to design
the software. With many user story cards and mockups, one has an overview over
the entire application.

Scrum uses different roles for the people working for a project. Based on the
theory, there are at least three roles, which are part of the personnel. [SZA07]

• Product Owner:
In a perfect environment the product owner is an employee by the customer.
He’s responsible for all details for the product in question. He represents the
customer, his requirements and wishes. The product owner also assigns the pri-
ority of features, which should be developed in the product backlog. If this per-
son is not the customer itself, this person should be as informed as the customer
in any perspective of content and be accessible at any time for content and re-
quirements-related questions for the team and the Scrum master. During the
sprint the product owner must resist to change items in the sprint backlog be-
cause when the sprint is in progress things must not be changed due to the regu-
lations of agile development.

• Scrum Master:
The Scrum master is the person, which is responsible for the team. He acts as a
shield between the team and the product owner. He ensures the productivity of
the team and tries to avoid interruptions in the workflow of the team members.
This person is also responsible that the Scrum process is done right and he’s the
moderator of the daily meetings. The Scrum master ensures that the sprints are
finished on time and that each increment (after each sprint) is a potentially
shippable version of the product. (Potentially shippable just means that the de-
livered parts are working as expected and does not mean that any functionality
is in the release but don’t work correctly.)

• Team:
The team consists ideally of seven (± 2) persons. The team should work in a
cross-functional way that means that there are programmers, designers, testers,
etc. in the team so that the team can manage itself and doesn’t require interac-
tion with other teams during a sprint. Often it’s useful to have the team together

42

in one team room during product development. The team itself has freedom
how it accomplishes the tasks that need to be done. They can figure our by
themselves how to turn the user stories from the sprint backlog into working
functionality after the sprint.

The Scrum process

When talking about agile development, one might think that “agile” may mean
chaotic. Only because a team works in chaos and that works, and the results are
good, this might be agile because they react fast on changes and so on. But Agile
Methods do have very strict rules to follow. Scrum, as a special model of Agile
Methods, which is commonly used when talking about Agile Methods. The most
known model in agile development is XP (eXtreme Programming), but it’s also
the most extreme example of alternative development strategies. When using
Scrum the first time, it might be difficult to set it up for all of the involved per-
sons: it’s hard to define all needed specifications and to find the right people for
the different roles. The Scrum process itself is very strict to follow. One important
keyword is “time boxed”. In Scrum, nearly everything is time boxed. That means,
every meeting, sprint iteration and daily Scrum meeting has a fixed length and
should not be shorter or longer. The following illustration shows a (perfect) flow
for Scrum: [HRU04, KRO07]

43

Figure 7: Scrum Flow

• Vision:
At first, when initiating a project with Scrum, there’s the vision. The vision
might be an idea for an internal project to develop, or a won tender for a cus-
tomer and the order for an application.

• Start up phase:
In the start up phase the teams are defined that work on the project and how
they manage themselves. Also an initial product backlog will be defined and
adjusted with the product owner. A release plan is defined and estimation is
made on how long the implementation will last. Also administrative decisions
and documents are created, such as coding guidelines, etc.

44

• Product Backlog:
The requirements have to be defined and written down into the product back-
log. But that’s not a typical requirements engineering, instead the team works
with the product owner, to define all functionalities, which should be part of the
application and also other tasks, which are part of the project should be written
down into the product backlog.

• Realization phase:
Once the product backlog is finished, the realization phase begins. This phase
is called sprint and lasts, under normal circumstances, one month. As described
above, a sprint should be seen as atomic and should not be interrupted by
change requests by the product owner.

• Sprint Planning:
The first part of the sprint is the sprint planning. Sprint planning is normally a
meeting between team, Scrum master and product owner. The Scrum master is
responsible to invite all necessary people to the meeting and he also acts as a
moderator. Together with the team, the product owner creates a sprint backlog
out of the product backlog and the sprint backlog is seen as the sprint goal.
Once the sprint backlog is complete, the sprint execution phase can be started.

• Sprint Execution:
In this phase, the team is responsible for the implementation of all needed func-
tionalities defined in the current backlog. Not only implementation is impor-
tant, also testing, designing, etc. is done during this development step.

• Daily Scrum Meeting:
Each (working) day of the sprint, the Scrum master initiates the daily Scrum
meetings. There the Scrum master and all team members get together for a
short meeting. Often the name “daily standup meeting” is used because these
meetings should be done standing and very short. The Scrum master then asks
every team member about his progress with three questions:

– What have you been doing during the last Scrum period (the last day)?
– Were there any problems you ran across and what those may affect?
– What’s your plan for the next Scrum period (this day), what will be your

tasks?

Based on the answers of these questions, the Scrum master updates the sprint
burndown chart to reflect the progress of the sprint.

45

Another job of the Scrum master is, to act as a shield between the team and the
product owner. The team should be able to work without disturbance from the
customer. If there’s really a big request for interruption, the Scrum master has
to decide, if and how the current sprint will be interrupted.

• Sprint Review:
The sprint review is a meeting at the end of the sprint. At this meeting again the
team, the product owner and the Scrum master are involved. The team presents
the accomplished work to the product owner. Based on the satisfaction of the
customer, some items on the sprint backlog may be approved and some may be
pushed again into the next sprint backlog for improvement tasks. At this point
the product owner may decide, if the achieved result is released on to the pro-
duction system or not. The quality of the product at the time of a sprint review
should always be production-ready, so that the customer may use the product
instantly.

• Sprint Retrospective:
During the sprint retrospective meeting, the team and the Scrum master talk
about problems and chances of the past sprint. Together improvements are dis-
cussed and how they can be implemented during the next sprint. The Scrum
master also checks the agility status of the project.
After the retrospective, the sprint planning starts again (if there are user stories
left on the product backlog).

Agile development for web-based applications

Note: This chapter is based on the own experience of the author when developing
web applications using Agile Methods.

Web-based applications are mostly a set of functionalities bound together into a
portal solution. Many customers need applications for intranet solutions, e.g.
travel management, WIKIs, forums, content management systems, etc. Also ex-
tranet applications are needed, to stay in contact with customers, e.g. for booking
systems, claim management, contact, etc. These applications are often only a few
components, which need to be integrated to work together. Therefore a big part in
developing web-based applications is integration. Integration is difficult to be split

46

for Agile Methods. The rest (writing components for functionality) is easy to split.
As an example a CRM (customer relationship management) application is used
(only a small part, a complete CRM application would be too large to describe
here). The CRM system should have the following features:

• Add / Edit / Delete contacts
• Add / Edit / Delete companies
• Assign contacts to companies
• Manage orders and assign them to contacts / companies

Based on these requirements, the product backlog should be created. As de-
scribed above, the backlog consists of several user stories, which describe interac-
tion with the application and contain priority and effort estimation. The effort may
be a real number for hours to work on, or just a descriptor that indicates the size of
the task (such a description could also be: XS to XL, as these “numbers” are used
for T-shirt sizes). The product owner and the team then together are setting the
priority, respecting both, technical priority and content priority. An example Prod-
uct Backlog can be seen in Table 1.

Priority User story Effort

1 As the server admin, I want to set up the test server, so the
developers can start implementing the application.

8

4 As the designer, I want to create designs for the application,
so the developers can concentrate on implementing features.

40

2 As the user, I want to manage contacts, so I can use them
later for relationship management.

20

2 As the user, I want to manage companies, so I can use them
later for relationship management.

20

3 As the user, I want to create relationships between contacts
and companies, so I can see who’s involved in which com-
pany.

10

3 As the user, I want to manage orders from customers, so I
can see a history of the work from my company to the se-
lected company.

24

3 As the user, I want to have an overview of all projects I’ve
ever done, so I can see if there may be a customer who may

24

47

Priority User story Effort
need another product from me, when it’s missing in his job
list.

1 As the DB admin, I want to create a database schema, so that
developers can leverage on that and it will be extensible for
future purposes.

12

Table 1: Example for a Product Backlog

During the sprint planning the next step is to take some user stories out of the
product backlog and put it into the sprint backlog.

DONE User story / Task Effort
 As the user, I want to manage contacts, so I can use them

later for relationship management.
20

 Create a view class based on the designer’s guidelines for
displaying a list of contacts.

2

 Create a view class for contact manipulation (form). 2
 Create structural classes for events, commands and delegates. 3
 Create value object class with properties to match the fields

defined in the database.
1

 Add validation classes to required fields 2
 Implement handlers for clicking. 2
 Implement methods for create / edit / delete 4
 Set up formatting classes to display special properties in a

nice way (e.g. Date formatting)
2

 Testing 2
Table 2: Example for a Sprint Backlog (one user story and corresponding

tasks)

In Table 2 a new column appeared, called “DONE”. This column should be
checked, if a certain task has been done. The term “DONE” should be defined dur-
ing the set-up phase. It has to be clarified, if e.g. testing is part of the task or
should be mentioned separately, or if the Scrum meeting with the drawing into the
burndown chart is part of the tasks / the user story.

Looking at this table it’s obvious that one single -developer should implement
this user story. The tasks are very small and it wouldn’t make sense to split these

48

tasks to multiple persons. Therefore it’s usual that developers have several user
stories at once to work on during a sprint. Even if sprints are shortened to one
week, it’s possible to have several tasks, depending on the granularity of their de-
scription in the product and sprint backlog.

During implementation of these tasks, there are daily Scrum meetings. The de-
veloper will be asked about his progress and the progress will be updated into the
Scrum burndown chart. At the end of the sprint this feature should be imple-
mented completely. If not, its release will be postponed to the end of the next
sprint. If the feature is ready it will be packaged during the sprint retrospective
phase and delivered (if applicable) to the customer.

During the sprint review and sprint retrospective phases, developers and the
Scrum master discuss if there were any problems and how these problems could
be solved in the next sprint. When this discussion is over, the next sprint begins
with the sprint planning.

Agile Methods for very small projects

Normally Agile Methods scale very well in project with different sizes. Due to
the possibility of hierarchies for teams, even for very big projects Agile Methods
may work [HRU04]. But for (very) small projects, Agile Methods don’t work that
good.

Note: This part of the thesis is based on the experience of the author during the
development of the practical part for this topic. The fact that Agile Methods don’t
fit in any project of any size does not mean that there are no parts of the process,
which can be used. In fact, there are some ideas of Agile Methods, which should
be used in all development projects.

There are several factors, why the original process and rules for agile develop-
ment won’t work for very small projects. An example will describe, where the
blockers may be and at which sizes of projects Agile Methods won’t fit in its en-
tire form.

As an example, if a team consists of five employees (the lowest number, men-
tioned in the recommendation for Agile Methods) and a sprint that will last one
month there may be a problem. If there should be agility in a project, sprint meet-
ings are essential, therefore at least two or three sprints should be performed until

49

the project is finished. Assuming that a sprint lasts one month, three sprints last
three months, such a project with five team members consumes 15 person months.
That’s not a small project. Small projects are usually projects between two and
eight person-months.

Even if fewer people work on a project, let’s say three people, and the sprint is
shortened to be bi-weekly, for a normally two-person-months project there’s just
one sprint. That’s because three people × 0.5 months = 1.5 months. This means,
there is no more sprint available after the first one.

And for the “big”, eight-person-months project there are five sprints. This is
because five three × 0.5 months = 1.5 months and 1.5 months × 5 would be 7.5
months, which is close to the targeted eight-person-months project.

Vice versa that means if a team consists of three people and the sprint is short-
ened to two weeks and there should be at least five sprints, the minimum time for
the project would be eight-person-months. And that’s only pure working (devel-
opment) on the project. There’s no overhead for Scrum and sprint meetings, and
the product owner and Scrum master are also not accounted yet. Estimated that
these two roles and the Scrum and sprint meetings are accounted by ~20% of the
overall time (called “overhead”), that means the smallest project has to be nine
person months for this slimmed-down version of Agile Methods. Normal itera-
tions (monthly) for sprints would cause that the minimum is 18 months. And with
five members this will go far over 30 person months, which are more than two and
a half person years.

Table 3 will show typical numbers for agile development in small projects.

Persons Sprint length
(months)

Sprints Development
time (months)

20%
overhead

Total
(months)

3 0.5 3 4.5 1 5.5
3 1 3 9 2 11
3 0.5 5 7.5 1.5 9
3 1 5 15 3 18
5 0.5 3 7.5 1.5 9
5 1 3 15 3 18
5 0.5 5 12.5 2.5 15
5 1 5 25 5 30

Table 3: Examples for agile development durations in small projects

50

When looking at this table the shortest project with three people using agile de-
velopment methods “light” would be nearly six person months. And the fact that
small projects are commonly projects between two and eight person-months, six
months would only represent the upper third of these projects. The shortest possi-
ble project with “standard” agile parameters (five persons, sprint length is one
month) would be 30 person-months.

Given the fact that Agile Methods in general are commonly understood as quite
efficient and effective mindset as a software development process, this calculation
shows the method’s limitations.

But besides the fact that not all Agile Methods ideas are suitable for very small
projects, a number of concepts should be used anyway:

• Agile procedure with the customer: When the customer is willing to use con-
cepts of Agile Methods, it would be a good idea to do documentation and meet-
ings together with the customer to save time for development. It’s always a
good idea to have a close relationship with the customer because a steady con-
tact may prevent misunderstandings and thrives business connections.

• User stories and tasks: In small projects there’s often very little documenta-
tion. Sometimes there’s a requirement specification or a short proposal docu-
ment. When there’s an agreement with the customer it would be better to write
detailed user stories and tasks instead of such documents. Based on these user
stories and tasks, it easier to create documentation (if needed) and it also helps
the understanding of the progress during development.

• Sprint planning and review: Even if the customer is not available at all times
for the developers / the team, a short sprint planning and a sprint review is a
good idea to give all involved persons a status update over the progress of the
implementation. These meetings don’t have to be on a strict regular basis but
they should be done for informational purpose. For all developers it’s important
and interesting, which features are already done and what the colleagues are
working on. Detailed analysis of the progress by drawing sprint or Scrum burn-
down charts is not necessary, within small teams and short periods it’s enough
to speak about finished user stories or tasks. Short demonstrations of new func-
tionalities may also help to understand the progress and is mostly exiting for
the colleagues.

51

Finally, Agile Methods don’t work in their entire process scope for very small
projects, but it’s important to pick out several ideas of Agile Methods and use
them even in such projects. Not only methods, which are defined in the special-
ized version of Agile Methods Scrum may be applicable, also methods like eX-
treme Programming or Pair Programming may be a good idea to try.

Agile Methods for single-person projects

Agile Methods for single-person projects are a continuation of the theory of
Agile Methods for very small projects. Usually at Agile Methods the “Team” is
the center of the entire software development process. Without a team and its
communication, it’s difficult to act “agile”. But sometimes projects are so small,
that only one single person is going to work on it.

Is it possible to embed Agile Methods in such a diminutive development process?

Agile Methods in its entire characteristics won’t fit for these kinds of projects,
but again, as described above, some ideas can be used and should be recycled.
Most of the time developers familiar with Agile Methods use such ideas implic-
itly, without thinking about the origin of their doing. Single-Person projects com-
monly don’t use large and overweighed software development processes like the
waterfall model and developers also don’t write long requirement specification
documents when developing alone. Their approach is mostly to define certain To-
Do lists, with features to be developed. If someone really wants to act as agile as
possible, this list can be written using the pattern of User Stories. To calculate the
overall effort for the project and present estimation for the overall project costs to
the customer, these User Stories are evaluated in their complexity and finally a
development expense is defined. When using the agile approach, it would make
sense to make a note on the implementation complexity and the “blocking factor”,
which means the problem, which may exaggerate, when developing this certain
functionality.

When all of these things are done, the developer has created a “Product Back-
log light”, a list with User-Story-like To-Dos, and their estimations on complexity
and effort.

52

Many developers are using a time-management system to keep track on their
development time. The author’s system for time management during work is
called “TimeCards” and allows a detailed description of done work.

To understand the further intention, why such time management tools may be im-
portant for Agile Methods in single-person projects (and may even be more impor-
tant in larger projects), the TimeCard system has to be described shortly for better
understanding:

Time cards are single work tasks, which can be entered and described within a
web-application (described in [DIM05]) for weekly and monthly reports. A single
time card consists of:

• Type of work
• Date
• Time (from and to)
• Project
• Task
• Technology
• Description

The type of work is chosen from a list, which contains entries like: Meeting,
Programming, Content, Know-How, Administrative, etc. The Project is a list of
projects, the developer works on. Task allows entering small packages of the pro-
jects the time card can be assigned to. Technology lists a selection of technologies,
which the developer uses. Description is a free text entry box into which the de-
veloper describes what he did within the timeframe of the time card.

Time cards are normally small tasks between one and four hours. That means
usually 3 to 5 time cards a day are common, and mostly these time cards have dif-
ferent tasks assigned, depending on the flexibility and responsibility of the devel-
oper.

The TimeCards system also allows the dynamic adding of new projects, tasks
and technologies, therefore there’s no administrative need for project setup, etc.
Each developer may have his own tasks or can share the same tasks with other de-
velopers. Finally, TimeCards allow detailed reporting on the developer’s work.
Reports of used technologies are available as well as detailed summarized infor-
mation for projects and their sub-tasks, and how much time has been spent on cer-
tain functionality.

53

Using a time management system like TimeCards or something similar may
help applying agile methodology to software development projects. Having a de-
tailed report for each task (which should be mapped to tasks within User Stories),
a project and event sprint burndown calculation can be done.

In summary, Agile Methods don’t work perfectly for single-person software

development projects. But with a good environment and planning, developers can
reuse ideas from Agile Methods when working alone, and profit from this basic
and very little administrative overhead, when working in large agile-driven devel-
opment projects.

54

55

Usability in web-based applications

Usability in web-based applications has to be treated slightly different than us-
ability in classical desktop applications. In desktop applications there are mostly
user interface guidelines, which describe, how applications should look like. One
of the most-known and detailed guidelines is from Apple Inc., which describe in
their “Human Interface Guidelines” how desktop application on their operating
system, Mac OS X, should look like [APP08]. Such guidelines for user interfaces
also contain large parts about usability. Positioning of buttons is not only a design
decision, it’s also very important for usability. Users expect certain positions for
buttons and menus. At least they expect a consistent look and feel throughout ap-
plications of the same manufacturer or on the same operating system.

Other things described in such guidelines are the behavior of applications on
certain user interactions. These guidelines describe what should happen, when a
user clicks a close button; or what should happen, when a user drags and drops ob-
jects or when a user moves objects to the trash. Also detailed descriptions are
made for interactions with spreadsheets, double-click handling, application icons,
menus, etc.

Most of these specifications are only suitable for desktop-applications. The ma-
jority of web-based applications don’t use spreadsheets or don’t even user menus.
That’s because browsers don’t support such features by default. But in the last few
months and years a new term evolved, named “Web 2.0” and a new era for web-
based applications started. Technologies like AJAX and Flash allowed new user
interface elements, which could be used easily in web-applications. New forms of
navigation elements like accordions, menu bars, stacks, etc. came with these tech-
nologies, which were not parts of typical web applications before. Therefore it’s
important to have guidelines, how to use them in an appropriate way, so that the
user is not confused when using them and knows, how to use them correctly.

But usability is not only the term, which describes the interaction of the user
with interface controls (see page 57 for a detailed list, what the common under-
standing for usability is). Usability is commonly known as the degree of ease, how

56

a user can use a tool to achieve a certain goal. Therefore important parts of usabil-
ity are also efficiency, effectiveness and satisfaction.

For engineers and designers it’s important to think, who will use the applica-
tions they develop. Based on these facts, the user interface and the application be-
havior should match the user’s skills and needs. It’s also a need that the context of
the application has to be considered. If the application is a standalone application
(even on the web), there are fewer restrictions on how the applications should look
like or how its look and feel should be. But if the application is part of a bigger set
of applications, it must fulfill eventually defined user interface guidelines from the
parent application. For example if there’s a company intranet and there’s a web-
based travel management tool, which should be integrated into the intranet, it
would be extremely helpful for users, if this application meets the expectation to
be consistent in its usage and look and feel with other intranet applications. If
that’s not possible, e.g. because the applications is an acquired application with no
modification options, it should be launched externally and not in the context of the
parent application.

What’s also extremely relevant in terms of usability is efficiency. It’s important
to measure, how much time a user needs to do certain tasks. And it’s also impor-
tant, how much time the user needs doing the task the first time, without previous
knowledge and help, and how long he needs, when doing the task very often (e.g.
because it’s a recurring task which has to be done again and again). These factors
are very important for the measurement of usability. If the user needs very long
time, even the task is recurring, there’s room for improvement in usability. To
cope up with problems that first-time users behave different than frequent users,
e.g. users can be enabled to use shortcuts for things, they use very often [SHN].

But there are some other important facts in terms of usability for web applica-
tions, which are not technology related. It’s important to test, how users behave on
the website, which parts are interesting and what the user is looking for and what
he can’t find.

There are different approaches to test these factors. On one hand, before devel-
oping a website it’s important to ask real users, what they expect from the site. For
example, for an Intranet web page the employees of the department are the key
users, therefore they should be asked, what they expect to find there. In terms of
acceptance, it’s very important to let employees be participating during software
planning and development. [PUS08]

57

On the other hand, sometimes it’s not possible to ask users before launching a
website, what they are expecting. This may be the case, if a new online shopping
website should be launched. Then it’s important to start surveying users, as soon
as they start using it. For example during the checkout process, there may be a
checkbox, questioning: “Would you like to use PayPal as payment method in the
future?”

Finally usability tests can be performed to detect the problems of a website. In-
stead of large usability tests, also a small group of individuals should detect the
major problems on a website. According to Jakob Nielsen, it’s enough to perform
usability tests with 5 users. Five users find 85% of all usability problems [NIE00].
If there are problems detected, alternatives for the current solution for a task
should be developed and tested again with the users. The test persons should iden-
tify the best solution for the overall system and in terms of usability. It’s also very
important for the developer and the customer (of the website, not the test person)
to watch the test persons working. So the may get insights, how possible custom-
ers (of the products from the website) work on the website, how they use it and
where to improve workflows for the users to deliver him a better experience and
bring him back for another purchase.

Design principles for better usability

There are many different metrics to measure usability, e.g. with eye-tracking
technologies or the length of the way of the mouse pointer. But to describe how to
improve usability it’s difficult to define exact rules. Due to the fact that usability
can’t be objective per se, there only can be recommendations or guidelines how to
evaluate and then improve usability.

One of the pioneers of usability topics is Jacob Nielsen. In different papers he
describes heuristics for user interface design. One of the most known publications
is the list of “Ten Usability Heuristics”, which contains ten so-called rules of
thumb [NIE05] from his book “Usability Engineering” [NIE93]. A detailed de-
scription of the meaning of these rules can be found on page 62 where specifics
within Siemens are mentioned.

1. Visibility of System status
2. Match between system and real world

58

3. User control and freedom
4. Consistency and standards
5. Error prevention
6. Recognition rather than recall
7. Flexibility and efficiency of use
8. Aesthetic and minimalist design
9. Help users recognize, diagnose, and recover from errors
10.Help and documentation

Nielsen developed these principles back in 1990, when the World Wide Web
didn’t exist at all and shortly after the first web browsers were created those
weren’t capable of technologies as nowadays. Although the most principles can
and should be used today as well there have to be some corrections or enhance-
ments to these principles. For standard web applications, which are HTML based,
some paradigms may not work, for modern Rich Internet Applications, which tend
to imitate desktop applications these rules may start to apply again.

To have a better look on these guidelines for HTML based web applications
and Rich Internet Applications, a detailed list of pros and cons will be created:

1. Visibility of System status

– HTML based applications are commonly not able to display the system
status always up-to-date. Normally, such status updates can only be deliv-
ered to the user on page requests. If the system is down, a page request
cannot be done and the application interaction has to be ended. (Although
some browsers allow browsing back in history, the application ended with-
out prior notification).
Not only the system’s up- or down-status should be displayed, also during
interaction (e.g. uploading data, etc.). HTML does not have appropriate
tools for displaying such interaction, although there may be some tricks
with JavaScript, but these methods are not common ways to inform the
user what’s going on.

– Rich Internet Application may be able to display the system’s status and
inform the user that the host may be currently unavailable. This can be
done via push notification from the server, when there’s a planned mainte-
nance timeframe, or on data submit via services that leads to errors. How-
ever the Rich Internet Application has not to be quit at that moment be-

59

cause it’s running on the client and no page refreshes are necessary. The
user may wait until the host is back online.
Rich Internet Applications can display what’s going on, during server in-
teraction (e.g. when transferring data via Web Services, etc.). It’s also pos-
sible to show progress information when uploading files, etc.

2. Match between system and real world

– Both, HTML based web applications and Rich Internet Applications
should be able to speak the user’s language. The main idea for this guide-
line is that the user should find ways of interaction natural and descriptors
are commonly understandable. There are no limitations for HTML applica-
tions or RIAs that may prevent these improvements.

3. User control and freedom

– Nielson’s intentions with this idea were, to provide functionality such as
Undo. HTML based applications don’t support such functionality. Only
very basic methods, like Forms reset, are available. The browser’s history
functionality may help in certain environments.

– RIAs also don’t support Undo and Redo out-of-the-box. But some frame-
works, such as Adobe’s Flex do have APIs for such functionality. It’s also
possible to use the browser’s history (Back and Forward buttons) to switch
between states.

4. Consistency and standards

– HTML based web applications mostly use standard user interface controls
such as buttons, text inputs, etc. Although these controls can be styled via
style sheets, users generally recognize them as standard controls. But there
are some drawbacks because HTML does not support all user interface
elements the user may know from client applications, such as tabs, menus,
etc. HTML navigation for example, works different than the File / Edit /
View / … menus in desktop applications.
In general users know that they are working with a web application and
they have a concrete knowledge how to use them. Often web designers try
to escape the rules for web applications and design their web applications
to look like desktop applications but this is not the way to go. People using

60

a web application want to use a web application and not a hybrid between
bad application designs and web design principles.

– Rich Internet Applications also use standard controls, the users are aware
of. Most of the time, these controls don’t use the same look as those com-
ing from the operating system’s default settings. On one hand they don’t
look that different than standard controls, on the other hand, they can be
styled to look like the designer wants them. Rich Internet Application also
introduce new controls, the user didn’t know earlier, e.g. Accordion con-
trols. These controls allow saving space on the screen and group similar
inputs together and providing a better experience for the user. For example
the most common inputs can be placed on the first accordion pane, more
advanced inputs, which are not necessary for all cases can be placed into
the “advanced” pane. Such individual or complex controls have been in-
troduced by Rich Internet Application and are now ported back to standard
controls; even in HTML based applications JavaScript libraries allow such
complex user interface elements.

5. Error prevention

– HTML based applications are able to check for errors in user inputs via
JavaScript. Either one can develop such algorithms by self, or there are lots
of libraries available for download, which help with such common prob-
lems.

– Rich Internet Applications also do have error prevention and forms valida-
tion bundled. They even allow checking for errors during user input and
marking visually, where the error occurred.

6. Recognition rather than recall

– To enter data into forms, basic HTML applications don’t offer many dif-
ferent user interface controls. Plain text input fields, text areas, or drop
down menus are available. It’s up to the developer, if he implements inputs
as drop down menus (if applicable) or to let the user input the data manu-
ally. If a choice is possible, it’s always better to let the user choose instead
of letting him input data manually. This could lead to typing errors or even
semantic wrong values, if the user didn’t understand the purpose of the

61

field correctly. Normally there’s no limitation in standard controls with
HTML based applications.

– Rich Internet Applications do have the same basic input fields such as
HTML forms do, such as text inputs, text areas, or drop down menus.
However there are some additional controls too, which help the user to re-
duce his memory load, e.g. there are pre-defined actions for drag and drop,
that means a user may drag items to their places instead of typing in values
into forms. Although this may sound handy, it’s also important to keep the
alternative available, because some power-users may prefer to enter values
manually instead of using the mouse for drag and drop.

7. Flexibility and efficiency of use

– HTML applications don’t support accelerators generally. Because HTML
applications are normally just for data display and data manipulation and
following data transmission, object manipulation for acceleration is not
available.

– Rich Internet Applications understand and use a rich data model. This
leads to better object manipulation and full object control. That means,
Rich Internet Application may, e.g. clone objects. Such functionalities al-
low the user to change only small parts of the objects, and save it, instead
of creating the object as a completely new object and add all values, which
are already input in another object just to change a single property. Such
accelerators allow the user to act really fast and help him to reduce the
time of data input dramatically. Rich Internet Applications also allow par-
tial objects, e.g. when the user starts to fill a form, he can navigate within
the RIA and come back and the form still is the same with the already in-
put data. HTML apps wouldn’t support that, except the server keeps all in-
put data at all states, which would be very difficult to implement.

8. Aesthetic and minimalist design

– Designers can design HTML apps and Rich Internet Applications indi-
vidually. There’s no limitation, not to design them aesthetically or mini-
malistic.

9. Help users recognize, diagnose, and recover from errors

62

– HTML applications and Rich Internet Applications both support instant
notification on user errors, such as syntactic wrong user inputs, etc. It’s up
to the developer to create error messages, the user can understand and they
don’t confuse the user.

10.Help and documentation

– HTML applications may contain documentation just as RIAs. Rich Internet
Applications allow searching within the documentation due to its rich data
capabilities and instant filtering methods. It’s also possible to embed audio
or video into the documentation, generally for both types of web applica-
tion, HTML based and RIA.

Usability at Siemens

Within Siemens there are also usability criteria for application development. A
dedicated Support Center “Usability” created the checklist based on the ISO stan-
dard 9241 (“Ergonomics of Human System Interaction”) and also adapted Niel-
sen’s usability heuristics. These Siemens-internal guidelines were created espe-
cially for the Siemens Engineering Methods (SEM), which are the base for all
software projects [SEM] and are manifested in a ten-topic-structure:

1. Simple and natural structure of windows / dialogue sequences:
In general, dialogues shall only contain basic information, so that the user
won’t get distracted by unnecessary information. Often it’s better to have a
multi-step assistant dialogue than a huge dialogue with all input fields in one
window. Similar information should be grouped together to help the user to
work as efficient as possible when he doesn’t have to switch between different
topics.

2. Visibility:
It’s important for the user to understand, what he’s working on. It should be
possible to identify, which window is currently active and within which form
field the cursor resides. In terms of visibility it’s also important that the user is
able to view the whole content of an application window without the need to
scroll.

63

3. Speak the user’s language:
While developing software, engineers have to thing about the typical user of
the application. End users often don’t understand terminology that’s vocabulary
of developers. The user should not be bothered with technical details, why
some error occurred, instead he should be given advices how to prevent such
errors. It’s not always important to have localized versions of software. Even if
there are localized versions available, sometimes it’s better to keep the original
(mostly English) term, if this term is well known as foreign word and even used
in the natural language of the user.

4. Minimize user memory load:
By memory load the need to think about unnecessary things meant. The user
should not be forced to keep everything in his head during software interaction.
That means that the system should help the user when filling out forms by e.g.
displaying context-relevant help or input tips. It’s also better to have a list of
available items than forcing the user to keep all items in his head and let him
fill out the form with memorized values.

5. Consistency and compliance with standards:
On one hand consistency means the same look and feel of dialogues and inter-
face elements throughout the entire application. On the other hand, the applica-
tion should also respect user interface guidelines from the operation system
layer above. Buttons should look similar to buttons that are used in standard
operation system dialogues. Web applications don’t have to use the exact but-
ton layouts that are used, when displaying non-styled HTML interface ele-
ments. Users are used to that HTML based applications are styled and buttons
don’t look the same always. But desktop applications should at least try to keep
a consistent design with the operation system’s design. Therefore some vendors
of operating systems created detailed guidelines, how to create applications that
integrate well into the operating system (e.g. Apple Inc’s “Human Interface
Guidelines” [APP08]).

6. Feedback and good error messages:
The system should always let the user know what’s currently going on. Al-
though this is difficult for web applications, modern technologies like RIAs or
AJAX allow notifying the user what’s going on at the backend. Error messages
should primary be understandable by the user and not by the developer. Of
course it should be possible to track the error for developers too, e.g. by dis-

64

playing details, but this should only be done on explicit request and not by de-
fault. The application should inform the user what he can do when an error oc-
curs.

7. Prevent input errors and clearly mark exits:
Instant notification of semantically or syntactically wrong values helps the user
to correct these inputs directly without loosing the context. When content vali-
dation is done at the end of a longer input process, the user has to think about
different values again and jump from error to error. It’s also important to pro-
vide exit strategies for the user, e.g. when the user wants to create a new data
record and the input dialogue appears, it should be possible to cancel this proc-
ess and don’t force the user to create a useless entry and deleting it afterwards.

8. Shortcuts, flexibility, learnability:
User interfaces should have a design to be used from novices and experts si-
multaneously. On one hand assisted data input for beginners should help the
user to understand the context of his entered data, on the other hand fast data
input with shortcuts should be made available for expert users to save time.

9. Online help and documentation:
Most web applications don’t come with a printed documentation or a detailed
user manual. But it’s important to offer context-based help functionality to pro-
vide detailed information for the user, how to use the application and give ex-
amples what to input in form fields.

10.Aesthetics:
Although aesthetics is very subjective, at least coloring and styling of the appli-
cation should be appropriate and should not disturb the user when using the
software.

Web-based applications for business applications

Nowadays business applications are re-implemented as web-based applications
very often within company Intranets. Different approaches are available for these
tasks to display rich data sets and allow users to manipulate these data. Business
applications usually are used for complex tasks, such as flight planning, travel cost
accounting, etc. Such tasks do have a large data model thus these applications
were desktop applications earlier. When creating Rich Internet Applications,

65

which can handle these types of datasets, there are in general two ways, how to
design and implement those: AJAX or Flash/Flex/Silverlight based applications
that run in a browser plug-in. According to a Forrester Research paper [RIE08],
Ajax is not the best choice when developing business applications. Ajax should be
used for Ajax-driven mash-ups or “Ajaxified” HTML, but Ajax business apps
don’t satisfy power users. Although Ajax is an improvement to simple page re-
quests, as they were used in standard HTML applications, Ajax applications may
also generate a lot of server roundtrips due to instant validation of input fields, etc.
According to the research paper, standard HTML applications are often faster for
users than Ajax applications. This may be based on the increased bandwidth of
network and Internet connections. Therefore a complete page roundtrip may be
“felt” faster, than a page that stays on the browser but has to validate after each
input. Often the JavaScript interpretation process takes long and uses much CPU
power on the client computer.

The paper [RIE08] describes that the Ajax applications really disappoint
power-users of the business applications. One of the problems was that the com-
plexity of input validation was very time-consuming. Developers had to reduce the
real-time input validation compared to desktop applications, which were able to
validate inputs instantly. Desktop application’s validation is very fast, because the
executed code is compiled and faster done on the processor. JavaScript has to be
interpreted, which consumes lots of time. Even if the validation was done of the
server, the process produced a delay, because the data has to be sent to the server,
processed over there and sent back to the client. On the client a notification has to
be raised, if there was an error. These steps last very long and delay the power-
user’s fast workflow. Another drawback of Ajax-based business applications was
that they are not desktop independent. Although different Ajax frameworks use
standardized methods, it cannot be guaranteed that the user will use the right
browser in the right version. Therefore different workarounds have to be made and
absolute desktop independence is not available.

The two major bottlenecks of Ajax applications are the commonly slow
JavaScript interpreters and the slow access to the Document Object Model
(DOM).

Finally Forrester recommends using large vendors’ ecosystems for Rich Inter-
net Applications. This could be on one hand Microsoft’s Silverlight technology
which fits in Microsoft dominated environments, or, on the other hand, Adobe’s

66

Flex and AIR technologies, which have a large lifecycle background, with access
to Adobe’s LifeCycle data services and PDF capabilities.

67

Implementation of “Project Calculation”

Within Siemens it’s important to calculate the costs for projects quite accurate
so that the price is reasonable for both, customer and producer. Therefore several
factors are part of such calculations, which have to be considered during estima-
tion. Not only manpower cost has to be considered, even risk management, mate-
rial cost, travel cost, etc. are part of complex calculations.

For project leaders it has to be very easy to calculate the possible costs for pro-
jects to create an appealing offer to the customer. Basic data should be calculated
and obtained by such a tool automatically, like hourly rates, travel costs for differ-
ent countries, etc. The project executive should only fill in amounts of workload,
travels, etc. to get a sum of costs very quickly. If the project leader would have to
look for all these basic data by himself, it would take much longer to calculate and
there might be much more errors when looking up such things manually.

The application “Project Calculation” was originally based on a Microsoft Ex-
cel Sheet with Macros and Visual Basic elements. The user could enter a fixed
number of entries but the overall input process was very difficult and very limited.
For example there were a predefined number of work packages the user could en-
ter and the maximum project horizon was five years. Calculations that would ex-
ceed these limitations could not be calculated with that Excel sheet. There were
also many other limitations with this technology: With Excel, when you’ve en-
tered data, these data was kept within the sheet and could not be exported auto-
matically. That means the data was always at the user who had the Excel calcula-
tion sheet. If the user didn’t extract the calculated values, nobody could use these
data. Even if the user sent the Excel sheet via e-mail to colleagues, there could
evolve incompatibilities because when they were editing the calculation there was
no way to merge the edits together to a single, consistent calculation sheet.

Besides the data input in the Excel sheet was very complicated and without
hints what to do for the user. Huge worksheets with several hundreds of rows and
columns needed to be filled out and already entered data was hard to find in such
giant datasets.

68

Now it was time to improve this application by using a completely different
approach for such a tool. The requirement was to create a Rich Internet Applica-
tion based on a platform with rich data processing capabilities and user interface
elements with user-centric input processes. There were only very few constraints
how to create, design and implement such an applications, that’s why things were
a little bit unclear during implementation and at some parts the desired develop-
ment method “Agile Methods” didn’t work out as intended.

Nevertheless the tool was developed with Adobe Flex, which delivers an
Adobe Flash application as output and Adobe ColdFusion on the backend for ser-
vice interaction. The application was deployed in two ways, on one hand as a
browser embedded web application (as Flash file) and on the other hand as a desk-
top application, deployed as Adobe AIR application. AIR applications are capable
of online/offline detection and the user can store data locally on the hard disk and
synchronize with the server later, when back online.

Project description

The main purpose of the application was to provide a web application for pro-
ject calculation that can be embedded into the Intranet of Siemens. So it could be
accessed by anyone who needs to calculate specific costs for project cost estima-
tion. Several different cost types need to be entered, e.g. personnel cost, travel
cost, risk management, etc. All these values have to be calculated based on time
(fiscal years) and work packages. The collected data then is used for documenta-
tion and controlling of projects and for transmission to continuative processes, e.g.
bid presentation packs, risk reviews, etc.

Controlled by structured input assistance, the entry should be done as easy and
intuitive as possible. Overview tables, tables as well as graphs, should help the
user to keep an eye on the overall situation of the project during data input at any
time.

It was important to develop the project calculation solution as a Rich Internet
Application so that a high usability factor and a high transaction rate can be ac-
complished. It’s also important that an XML export of all entered data is possible
so that different other tools can work with the already calculated data too.

69

Another important requirement was that the application should be available in a
multi-language user interface. That means the user should be able to switch the
language of the user interface during data input at all time.

Purpose of the application

Goal of the application is, to allow easy setup for project calculations. Unlike
the current application, based on Microsoft Excel, only the currently needed input
fields should be displayed and allow data input. The Excel sheet always shows all
possible data input fields, which is very confusing for the user. Therefore intelli-
gent dialogues should only display context-relevant information. This is an impor-
tant advantage in terms of usability for the user and should prevent errors in data
input (because the data will be entered in the right fields).

The application should be web-based so that the entered data can be stored on
servers and not only within the Excel sheet. This allows later analysis of overall
project calculations. Due to central access within the Siemens Enterprise Portal
access for all (authorized) employees is granted. It’s also possible to define multi-
ple users for one calculation. That means is possible that several persons may look
at the latest and most up-to-date version of the calculation simultaneously. It’s
also possible to provide dashboard functionality. With the integrated dashboard
statistic reports can be displayed with charts and diagrams for better visual under-
standing. In a later version, dashboard functionality for cross-project analysis will
be a feature for the headquarter to compare the performance between projects.

The complexity of the data structure for the calculation requires process-driven
user guidance. Pure database-table-driven mask applications don’t have a high
user acceptance rate and won’t be a clearly arranged way for user input and data
storage. By process-driven user guidance a mixture of expert-entry (as in Excel)
and assistant-driven user input (as in a shopping cart application) is meant. Such
guidance allows different entry paths for the user and not a single-path entry
where several steps have to be completed before another can be started. Another
important factor is that the user can have an overview over already input data at
any time. Instantly available charts with key performance indicators help to sum-
marize the project costs.

70

A selection of use cases of the application

Use cases are used in software development processes as a certain method to de-
scribe functionality of the application. Use case models are normally created using
UML (Unified Modeling Language). Typically a use case is the summary of a
UML diagram with a table, describing the entire use case. A typical schema for a
detailed description of a use case contains the following properties: [HIT03]

• Use case name
• Short description / Summary
• Preconditions
• Post-conditions
• Exceptions
• Post-conditions when exceptions occur
• Actors
• Trigger
• Standard procedure
• Alternative paths

Most of the time, not all of these entities are available or required, but it makes
sense to always use a template for use case descriptions with all entities for a bet-
ter standardization of document templates.

The entire application consists of several functionalities, which are shown in
the use case diagram in Figure 8:

71

Figure 8: Basic use case for the ProCalc application; describes the main

functionality of the ProCalc tool

Most of the functionality is described very basically in the use case overview
above. For example the use case “Enter Cost Distribution” (Figure 9) could be
split into several other use cases: Enter Personnel Costs, Enter Material Costs, and
Enter Ancillary Costs. In the picture below, this generalization is displayed to de-
tail the depths of the Use cases. For example Figure 10 shows the use case “Enter
Personnel Costs”.

Table 4 and Table 5 below describe two use cases in detail.

Figure 9: Generalization of use case "Enter Cost Distribution"

72

Use case: Enter Personnel Costs

Figure 10: Use case "Enter Personnel Costs"

Use case name Enter Personnel Costs
Short description The project leader adds a dataset for the later calculation

of project costs. This dataset represents personnel costs,
which consists of entities like: fiscal year, working pack-
age, country and cost group or partner company, quantity,
date, sum, description. The user can save the entry and de-
lete or modify it afterwards. During data input, the sums
of the entire project should be recalculated automatically
for a better overview of the consequences caused by this
dataset.

Preconditions The system has loaded all necessary code tables (coun-
tries, fiscal years, etc.)
The user has entered a lead country in the general project
data settings.
The user has entered working packages.

Post-conditions New dataset for personnel cost is saved.
The sum is automatically added to the entire project sum
and also to listener variables, which are using values of the
sub-sums of personnel costs.

Exceptions -
PC when exceptions -

73

Actors User (Project leader)
Trigger The user opens the window for adding personnel costs and

clicks on “New Cost Entry”.
Standard procedure 1. The user clicks on “New Cost Entry”.

2. The user selects a working package.
3. The user selects a fiscal year.
4. The user selects a country.
5. The user selects a cost group.
6. The user enters the number of working hours or man-

days.
7. The user enters a description for this dataset.

Alternative Paths Alternative 1:
4. The user selects “external assignment”
5a. The user selects an existing partner company from the
list of partner companies
5b. The user clicks on “Add Partner” to create a new part-
ner company.
6. The user enters an hourly rate for the partner company.
7. The user enters the number of working hours or man-
days.
8. The user enters a description for this dataset.

Alternative 2:
6. The user chooses to add a constraint for his selected
values for country, fiscal year and working package. He
clicks on the number, which currently represents the mul-
tiplier between hours and manday and enters a new num-
ber.

Table 4: Use case description for use case "Enter Personnel Costs"

74

Use case: Edit a Personnel Cost Entry

Figure 11: Use case "Edit Personnel Cost"

Use case name Edit Personnel Cost
Short description The project leader selects an already existing dataset and

modifies parts of the properties. Afterwards the new gen-
erated sums are automatically distributed through the
overall project data.

Preconditions A dataset is available for editing.
Post-conditions The dataset has been updated.

The new generated sum is automatically updated within
the entire project sum and also distributed to listener vari-
ables, which are using values of the sub-sums of personnel
costs.

Exceptions -
PC when exceptions -
Actors User (Project leader)
Trigger The user clicks on an existing entry (of type “Personnel

cost”) in the list of cost entries
Standard procedure 1. The system reads the selected entry from the list and

gets all object metadata.
2. Based on the characteristics of the objects (whether it

75

contains fiscal year, country and cost group, or fiscal
year and partner company, the drop down boxes are
preselected with the values of the objects.

3. Depending on the settings for fiscal year, country and
working package respectively fiscal year, partner com-
pany and working package, a lookup is done for deter-
mination, if there’s a constraint for the multiplier of
hours to mandays. If so, it’s displayed, otherwise the
standard value is displayed.

4. All remaining fields are updated and prefilled with the
dataset’s values.

5. The user now can change / enter values as describe in
the use case: “Enter Personnel Costs”

Alternative Paths -
Table 5: Use case description for use case "Edit Personnel Costs"

Based on the two use cases above, the activity diagram in Figure 12 shows the
possible usage of the Personnel cost dataset creation / manipulation. Multiple
forks show the alternative paths for data input.

76

Figure 12: Activity Diagram "Add/Edit Personnel Cost"

77

Functionality of the application

When the application is launched, the user is asked for user credentials so the
backend can check if the user is authorized to use the application. Next to this
check, the backend searches automatically for already executed calculations or
calculations by the user that are work in progress. A list with available and edit-
able calculation then is displayed and the user can select the calculation he wants
to edit. Next to this a list of version of the calculations is also available and the
user can select, which version of the chosen calculation he wants to edit. This also
includes the latest version of the calculation, called the “draft” version.

After that a connection to the backend is made to download the latest control
information from the server. This control information contains current hourly rates
for different countries, the list of countries, travel cost allowances … which are
used in the calculation later. When the project is saved the first time, these values
will be saved with the project and frozen. Otherwise the values would change over
time, if the rates were changed, for example.

After the user selected a calculation or he decided to create a new calculation,
the user can then choose what to do. The first step might be to launch the “general
project data” (Figure 13) where he can input global data for the project. This
might be the lead country (the country where the project’s headquarter resides),
the currency, the first fiscal year, planning horizon, etc. These settings are needed
in the further data input pages to display correct values, depending on the entered
data. Several of these basic data can be chosen from a dropdown list for easy data
input (e.g. there’s a list of countries).

78

Figure 13: ProCalc Screen: General Project Data (some values are already

entered, overview stats are displayed)

After the setup of the calculation project, there are several menu items available
for the user to choose:

• Working packages
• Cost distribution
• Travel Cost
• Opportunity-, Risk- and Cash-Effect Management
• Financial Planning
• KPI Sheet
• Dashboard

These menu items provide instant access to all data that were already entered or
allow entering relevant data for the calculation.

The menu “Working packages” (Figure 14 and Figure 15) allows the creation,
modification or deletion of working packages. Working packages are used to clas-
sify different parts of the project, for example “Architecture”, “Design”, “Imple-
mentation”, … could be working packages. It’s also possible to assign individual
colors to these working packages. The colors are shown then throughout the entire
calculation for easy identification of different working packages.

79

Figure 14: ProCalc Screen: Menu Working Packages

Figure 15: ProCalc Screen: Working Packages entered, Color coding

The menu “Cost distribution” (Figure 16, Figure 17, and Figure 18) holds all
costs from the project except travel cost. It’s possible to enter manpower entries
for employees in different countries. The user can choose working package, fiscal
year, country and cost group and then enter the number of hours or workdays. The

80

rate for the manpower hours is defined from the combination of fiscal year, coun-
try and cost group and therefore calculated automatically. The user then can insert
a short descriptive text for this dataset and save the entry.

Figure 16: ProCalc Screen: Cost distribution editor (empty)

Figure 17: ProCalc Screen: Add Cost Entry "Personnel Cost", Selection of

Working Package

81

Figure 18: ProCalc Screen: Based on the selection of fiscal year and coun-

try, the drop down box for cost group gets populated with suitable values

Figure 19: ProCalc Screen: Different Working Packages result in different

color-coding in the list of all Cost Entries

Next to the data entry fields is a list with all already saved entries is shown
(Figure 19) with a summary of the entered data. If the user clicks on the entry, the

82

data input fields automatically get prefilled with the selected entry and all the data
for instant modification or deletion. It’s also possible to duplicate entries when the
user clicks on the item in the list and after that on the “save as new” button. It’s
quite easy to add different positions with only small differences doing that way.
Not only manpower entries can be made, it’s also possible to enter material costs
and ancillary costs that may evolve in the project. The user can switch between
these types very easily by clicking on the navigation accordion on the data input
part of the application. Besides for external manpower (e.g. 3rd party purchases)
it’s possible to define partner companies (Figure 20) with custom hourly rates
(Figure 21).

Figure 20: ProCalc Screen: Creation of a new Partner Company

83

Figure 21: ProCalc Screen: Creation of Hours-per-Manday constraints for

a given set of fiscal year, country and working package

Above the list with all entered positions an opportunity is provided to filter the
data. It’s possible to filter certain work packages (Figure 22) and countries and the
result of the filter is immediately visible and the sums are re-calculated automati-
cally in this view. Also a full-text search is available to search for certain entries in
the list. The list is updated instantly while typing in the search field. Of course the
filters and the search can be combined. Another possibility in this view is that the
items can be sorted by clicking on the headers of the list. Sorting also works when
filtering or during the search.

84

Figure 22: ProCalc Screen: Filter by Working Package

Within the menu “Travel cost” a calculation for possible travel cost can be
started. Two different alternatives are available for the calculation. The first (and
easy) alternative is that travel costs are proportional to manpower cost (Figure 23).
There are three different input fields, where a percentage can be entered: for man-
power cost within the own country (defined as lead country), international re-
sources within Siemens and external partners. Next to the percentage input fields,
the sums of the three manpower costs are displayed for a better overview. The
user also can enter the number of days where travels may occur, so an average
sum for each travel day is calculated.

85

Figure 23: ProCalc Screen: Travel Cost entry, Alternative 1

The second alternative (Figure 24 and Figure 25) is far more detailed: here it’s
possible to enter exact values for several different parts of travel costs. First of all
the travels per month and the number of traveling people can be entered. Depend-
ing on the part of travel cost calculation (home country, international assignments,
external partners) different input fields appear. Several factors can be entered:
flight costs between countries, rental cars, driven kilometers, railway, accommo-
dation, public transportation, etc.). Based on these values again a sum for this al-
ternative is calculated.

86

Figure 24: ProCalc Screen: Travel Cost entry, Alternative 2

Figure 25: ProCalc Screen: Travel Cost entry, Alternative 2, international

resources

For each of the alternatives a distribution matrix is also available (Figure 26).
This matrix allows the distribution of travel costs over working packages and fis-
cal years. Below the columns and next to the rows the percentage sums are calcu-

87

lated automatically for a better overview how much money has been spent during
certain years or working packages on travel costs.

Figure 26: ProCalc Screen: Travel Cost distribution matrix

The next menu item is “Opportunity-, Risk- and Cash-Effect Management”
(Figure 27). The user finds a list with entries of these types categorized within an
accordion navigation. Below buttons are available for manipulation of these items.
When editing or creating an item, a popup dialogue appears where the user can en-
ter values for the current item (Figure 28). This popup window is also separated in
multiple steps for a better overview and input guidance. For risk management a
risk category has to be selected or a new one can be created for this single item. A
risk owner person can be identified and a descriptive text can be entered. In the
next step a “due date” can be selected for this risk item and the gross risk (in total)
can be entered. The probability (in percent) has to be provided by the user and the
weighted risk will get calculated. It’s also possible to select the risk impact (from
minor to extreme) and the degree of implementation from drop down lists. In the
last (optional) step it’s possible to split the risk to fiscal years by sum. That means
it’s possible to move risks to certain years during project time for better calcula-
tion, when and how much money is used.

88

Figure 27: ProCalc Screen: List of entered risks

Figure 28: ProCalc Screen: Window for adding a Risk item

The same functionality is used within Opportunity- and Cash-Effect Manage-
ment.

 The menu “Financial Planning” provides the opportunity to enter parameters
for depreciations of good, per fiscal year.

89

Finally the menu “Key performance indicators” the user finds a complete list-
ing of all entered values in the project and all calculated values. Several perform-
ance indicators are displayed and aggregated by work package, cost types, and fis-
cal years. These performance indicators will be displayed within a second browser
window as a popup in HTML format.

The last menu entry “Dashboard” offers detailed analysis for all entered and
calculated data. The user can switch between different views. Work packages and
fiscal years are variable parameters and can be shown in detailed views. The fol-
lowing reports are available:

• Costs per work package
• Costs per fiscal year
• Costs per work package and fiscal year
• Manpower per work package
• Manpower per fiscal year
• Manpower per package and year

These reports then are displayed in different charting views like: line charts, bar
charts, or pie charts.

Used technologies

Due to the requirement that the application should be done as a Rich Internet
Application, there were only a few technologies that can handle this requirement:
AJAX, Adobe Flash or Microsoft Silverlight. Because Microsoft Silverlight is not
yet deployed on many client PCs and AJAX does not allow automatic generation
of vector-based charts for data visualization, the choice for the technology was
Adobe Flash. In particular when talking about Flash, the Adobe Flash Platform is
meant. Flash is only the output (as SWF file) of the authoring system for Rich In-
ternet Applications named Flex. Flex (and its corresponding IDE FlexBuilder) de-
livers a huge set of reusable components for user interaction and service access.
There are more than standard GUI elements like buttons or lists available; also
more complex elements for navigation like accordions, view stacks or trees are
available. Besides Flex is equipped with many interaction possibilities like web
services, remote objects, HTTP calls or REST services, all these features are easy

90

to access for the developer. Flex is not only suitable for service-oriented architec-
tures. It’s also suitable for event driven architecture. The programming language
of Flex is ActionScript 3, which is based on ECMA-Script 262 and therefore has
all the capabilities for “eventing”. Since the introduction of FlexBuilder 3 a new
technology emerged developed by Adobe, called Adobe AIR. AIR stands for
Adobe Integrated Runtime and is a cross-platform runtime environment for appli-
cations. Rich Internet Applications developed with Adobe Flash, Adobe Flex or
Adobe Dreamweaver can be exported as AIR applications. These packages can
then be installed to computers locally on to the hard disc. AIR applications don’t
need to be based on Flash: in fact AIR combines the strength of HTML and
JavaScript (AJAX) with the power of Flash / Flex. The AIR runtime acts as a spe-
cial version of a browser but has access to the local file system and does not run in
a security sandbox as the Flash player does. AIR provides interfaces to the file
system, direct database access, PDF generation, etc. Besides these special func-
tionalities Flex applications can be ported to AIR directly without modifications.
This advantage is quite big because existing Flex applications can then without re-
implementation easily be ported to AIR applications and additional features like
local file system access can be added quite fast to the application.
Another reason for the choice of Flash as deployment technology was the huge
penetration of the Flash player on internet-enabled client PCs. Within Siemens all
standard PCs have the latest Flash player version installed. But even outside Sie-
mens the Flash player installation rate is at 98.8%, which means that nearly all in-
ternet-enabled PCs can run Flash content [ADO08].

On the backend, which has to deliver the data via web services, the decision
was to use Adobe ColdFusion 8 as server technology. ColdFusion allows fast da-
tabase interaction and quick web service deployments and it’s used in the author’s
department frequently. There’s also a specialized binary connection for Flash and
ColdFusion, called RemoteObject in Flex, which speeds up the communication
between client and server due to shorter message lengths. This connection uses
AMF (ActionScript Message Format) and allows calling components or Java
classes directly from Flex without exposing methods as web services.

The backend administration is based on an open-source content management
system named “FarCry”. FarCry is based on ColdFusion and acts as a web appli-
cation framework. For developers it’s very comfortable to set up new content
types that can act as data storage. It allows automatic generation of administration

91

interfaces and saves a lot of time when developing web applications. FarCry can
interact and set up different types of databases. In this application Microsoft SQL-
Server is used.

Additionally to these technologies an interesting part is the communication be-
tween the backend and the frontend. As already mentioned above, “remoting” is
used for the data channel between Flex and ColdFusion. A quite new part of these
technologies are the Adobe LiveCycle Data Services ES. These data services al-
low a higher level of data integration in Rich Internet Applications. In the applica-
tion LiveCycle Remoting is used, which uses the AMF3 protocol. This binary pro-
tocol allows the automatic mapping between JAVA objects (which are internally
created in ColdFusion) and ActionScript objects. That means one can declare in
ActionScript, to which of the remote classes this is mapped. When fetching or
sending data between client and server, these will get serialized and deserialized
automatically and casted to the right classes on both sides. There’s no need for the
developers to cast the objects or build them together manually. To accomplish this
mapping, ColdFusion components of the value object classes have to be gener-
ated. For example if there’s an ActionScript class Country.as, the corresponding
ColdFusion component Country.cfc has to be created with the same public proper-
ties (or setter and getter methods). In ActionScript this ColdFusion component has
to be referenced as “RemoteClass”. The data services automatically recognize if
there are objects to transfer, which are typed with the remote class metadata at-
tribute. If so, these objects are casted automatically to the right classes.

Project architecture: Before and now

Before: Architecture of the Excel solution

The architecture of the old tool was very simple. It was a plain Excel sheet,
where different work sheets were used for data input. Entered data could not be
extracted automatically; this could only be done by cut & paste. The work sheets
were poorly designed and did not scale with the amount of entered data. All input
fields were limited to a certain number of elements and could not be extended and
not even reduced. The application was split into ten worksheets where data could

92

be entered and two additional worksheets with some lookup data for drop down
boxes:

• General Project Data:
On this sheet general data about the project can be entered. These data contains
information about the project title, the project time frame and planning horizon,
business sectors and the customer. There are also some fields for input, which
are used for later display on bid presentation packs as proposal manager, etc.
Additionally to these inputs there can be defined the work packages for the pro-
ject. A fixed number of ten work packages can be entered to structure the pro-
ject and the offer. Finally the project status can be set, whether it’s before 1.0,
1.0 or after this version. The version 1.0 has to be frozen later for archiving.

• Own unit & Summary:
Within this huge work sheet, which is a matrix between all work packages and
all fiscal years with tables of cost groups, the user can enter the amount of work
in hours, for each work package in each fiscal year of the project. It’s not pos-
sible to add any details to the entries; this may be done in a separate work sheet
or somewhere else. Additionally there are two free slots available where the
user can enter material costs and three slots for ancillary costs. These costs are
added to the sums which are calculated for each work package and finally for
all costs for the own unit. Own unit means in general the own country where
the project is located and accounted. Additionally to the sums of costs of the
own unit, in this work sheet there’s also the summary of travel costs for the
own country and all costs of other countries and external assignments. These
data will be entered in later work sheets.

• SIS wide assignments:
The project leader can enter data for international assignments on this page.
Additional to the input possibilities on the sheet “Own unit & Summary” the
user can now choose a country for each cost group. Different countries and
their cost groups have different rates, which have to be calculated correctly. A
big problem with this sheet is that it’s impossible to have manpower calculated
with the same cost group in two different countries. And with the fact that no
description for entries can be made, it’s impossible to keep track of the entries,
when they are manipulated so that this basic task could be accomplished (by
changing the pricing codes for lookup tables).

93

• External resources:
This sheet works similar to the sheet before. But instead of selecting countries,
the user can choose from a list of partners, which may be involved in the pro-
ject. The hourly rates for these partners can be defined manually.

• Travel cost:
Travel costs can be entered with two different alternatives. The first and simple
method is to define travel cost as percentage of manpower cost for each of own
unit, international assignments and external resources. The second alternative is
to input exact data for travel time, public transportation, rental cars, and ac-
commodation and so on. For international assignments reference countries can
be selected to calculate prices for flights and travel time in different countries.
Additional to these main entries, there are matrices for each alternative that al-
low the distribution of percentages for work packages and fiscal year. So a bet-
ter calculation can be conducted, which respects subtotals for fiscal years and
work packages.

• Opportunity, Cash & Risk Management:
Risk management is important for project calculation. In this work sheets not
only risks can be entered, it allows also entries for opportunity and cash man-
agement. Risks can be classified by a risk category, which can be chosen from
a drop down list. An owner and a description have to be entered too. Several
other fields require input for a proper calculation like due date, degree of im-
plementation of actions, probability, impact, gross risk, etc. The same fields are
available for opportunity and cash effect management.

• Project KPI Sheet:
This sheet displays a summary of all entered manpower, material and ancillary
costs for each fiscal year and each work package. Below this listing a section
called “Financial planning” is appended. The project manager can enter values
for effects based on capitalization, e.g. depreciation, and effects on direct profit
and loss.
This sheet then displays the key performance indicators for these parts of the
calculation.

In the Excel tool there were no statistics or reports generated to give an over-
view over the costs for the projects. It was impossible to find out how much
money will be spent in one country or to get aggregated data for basic reports.

94

Now: Architecture of the Rich Internet Application

The newly developed Rich Internet Application “ProCalc” follows the basic ar-
chitectural patterns of the Cairngorm Micro Architecture Framework [CGM]
(which is described in-detail in a later chapter). Several “value objects” define the
basic class diagram and how the data structure is built. The following picture
shows an overview over the classes:

Figure 29: High-level overview of the ProCalc web application

95

Based on several blocks, the ModelLocator class is the central data storage for
the entire web application. There are four major blocks within the model locator,
which hold the data:

• Code Tables:
The code tables are divided into several sub-classes, e.g. Country, FiscalYear,
RiskCategory, etc. The datasets are transferred from the server to the client on
project creation time. Due to the fact that these data may change over time, and
therefore would affect the calculation without easy detection, why values have
changed, these data are frozen, once retrieved and saved with the project. That
means, once a project has been created, the code tables’ data persist and cannot
be changed.

• CalcData:
Within the package CalcData, all relevant data for project costs are saved. On
one hand the CostEntries (with its specialized occurrences ManpowerCost, Ma-
terialCost and AncillaryCost) reflect the direct costs of the project, in terms of
development time and material costs. On the other hand data such as Risks,
Opportunities or Cash Effects can be entered and calculated.

• TravelCost:
The next block is for travel costs. Travel costs are a complex and large struc-
ture of data, because there are several alternatives available in the calculation
and each alternative should be saved. For each alternative there’s also a matrix
of percentages, how much of the travel costs should be accounted per work
package, per country and per fiscal year.

• GeneralProjectData:
Finally the class for GeneralProjectData contains basic project information,
such as lead country, first fiscal year, project’s title, responsibilities, etc.

There are two further classes within the model locator: FilteredData and Stats.
The first one, FilterData is only used within the application for easy access to cur-
rently filtered data in all views. This class saves, if a user has defined a filter, e.g.
to only show data from one single country.

The second class, Stats, is important because it has bindings on all values and
creates statistics and reports as soon, as some values are changed. These data will
also be transferred to the backend for later usage and cross-project reports.

96

How Agile Methods were used during development

At the beginning of project development the environment was completely differ-
ent than at the end. At first, the customer wanted to have a working solution very
quickly and also wanted the developers to find out, what he wants. That means
there were no detailed requirements available. Therefore programming started as
soon as a document was started, defining eventual requirements, to show some
screenshots, how the project may look like. The author alone did the main part of
the project. A colleague has developed just the backend connector. Therefore Ag-
ile Methods were not the way to go at the beginning of the project. During the de-
velopment process, it became clearly that a more structured method of the devel-
opment has to be defined. Agile Methods were chosen and used. One colleague
acted as the Scrum master and Scrum meetings followed. Some principles of Ag-
ile Methods were changed to fit the project’s size. Sprints were shortened to be
weekly and the Scrum meetings were only made every second day. As already
mentioned above, Agile Methods don’t work for any project size with only a lim-
ited number of developers. However, it helped a lot to structure the workflow and
find a better way of development than pure “hacking”.

Finally Agile Methods were used for about 6-8 weeks during project progress.
Several sprints were completed and meetings were held.

Cairngorm Micro Architecture

Cairngorm is an open source framework [CGM] for applications developed
with Adobe Flex. Cairngorm provides a predefined set of classes and functional-
ities, to create well-structured applications in an extended MVC (Model – View –
Controller) pattern. Software patterns are in general very useful in the most pro-
jects because it’s easier to understand, how the application works, when viewing
the source code and it’s also valuable to have a predefined structure, how to write
code. Therefore one can leverage on best-practice patterns and there’s no need to
reinvent the wheel.

Instead of the three-tier framework of MVC, Cairngorm provides an up-to six-
tier architecture. These layers are:

97

• Business
• Commands
• Controls
• Model
• View
• Value Objects (VO)

These layers provide a great maintainability for the application. To describe
these layers, the following picture (Figure 30) will be helpful:

Figure 30: Cairngorm Micro Architecture Overview

First of all, an application has a view. A view consists of the user interface of
an application, such as text input fields, buttons, list controls, panels, windows,
etc. An application normally has multiple views, which are visible when they are
needed. Within such views, data is displayed. This data comes from the model, in
general from value objects. Value objects represent instances of data entries (simi-
lar to rows in a database table). The model contains all different value objects; in
general, the model contains all data from the application in a structured format.
ActionScript has the possibility to define variables, or even classes, as “bindable”.
That means if these properties are changed, “bound” elements are updated too.
Therefore one does not have to update the view, if the data changes, programmati-
cally.

98

If the user now clicks a button or changes data (dependent on implementation),
a custom event is triggered. The event then is dispatched to the CairngormEvent-
Dispatcher. Cairngorm’s architecture also makes use of the FrontController pat-
tern. The FrontController acts as a central place where events are mapped to
commands. If a certain event is fired, the mapped command is executed after-
wards.

Custom Commands are derived from a Cairngorm interface and implement
methods defined by the interface. One of the methods is “execute”. This method is
called automatically from the FrontController, when the suiting event has been
dispatched. This method gets the dispatched event as a parameter and this event
contains values specific for this command. For insert or update methods, the value
object would be contained within this event. The command’s execute method now
creates an instance of the delegate class. This class is within the business package
and creates the service call to the backend. The command class however also im-
plements the Responder interface, which defines methods for result or faults of the
service call. When calling the dispatcher, the command class passes itself to the
delegate class as the suiting responder instance. Therefore the command class is
responsible for creating the service call and also for handling responses and faults
of the service. If the service call was successful, the result method will be called
which parses the values returned by the service method. If valid results are re-
turned, the model will be updated now by this method. And when the model is up-
dated, all user interface elements, which are bound to the value objects in the
model, are updated automatically. This represents the cycle of interaction within
the Cairngorm framework.

As an example, let’s have a look to a small application, made with Cairngorm
(Figure 31). The example application consists of a small contact manager. It’s
possible to add and edit contacts, which can store first name, last name and an
email address. The data will be stored to the backend via a web service call.

The main application contains references to the application’s business object
“Services”, which acts as a service locator. It’s quite easy to change the kind of
service with this architecture, because the service locator acts as a central interface
for backend communication. The main application also has a reference to the Con-
troller, as the dispatcher for command execution. Within the main user interface,
there are two view modules: ContactList and ContactEdit. The ContactList view
(within the screenshot on the right side) displays a data grid with all Contacts,

99

which are already saved in the backend. The ContactEdit view (on the left side of
the screenshot) allows users to create or edit certain contact items. When a user
clicks on an entry in the list, the text input fields automatically get prefilled with
the currently highlighted element values. If the user clicks on “Update” or “Add”,
the ActionScript functions updateContact or addContact are called. Both methods
create an instance of the value object type Contact and fill the data, based on the
user’s entries. Then a SaveContactEvent is created which contains the contact data
and a flag, if the entry should be added as new contact or an existing one should
be updated. This event is dispatched by the CairngormEventDispatcher, which
throws the Event so that the FrontController can handle them. The Controller class
maps the event to a Command, which is the SaveContactCommand class. In the
execute method of this command, the delegate is created and the command is
added as the responder object. Within the delegate class, the responder methods
for the service calls are defined (onResult and onFault from the command class).
In the saveContact method of the delegate, the ServiceLocator is called to provide
the instance of the service connection. With this instance, the service method is
called. When there’s an answer from the service, the corresponding method is
called (onFault or onResult). In the onResult method, the result from the service
(the list of contacts) is written to the modelLocator. In the ContactList view, the
data grid is bound to this ModelLocator property and updated instantly, because
the ModelLocator is a “bindable” object, which allows instant change of all refer-
encing components, if the property is changed.

Finally the application looks like this:

Figure 31: Example application: Contact Manager

100

101

Usability inspection for Project Calculation

After the implementation part of the ProCalc tool, a usability inspection has
been performed. Detailed user tests are mostly too expensive in terms of money
and time for companies, so usability inspections are commonly made. According
to Jakob Nielsen “Usability inspection is the generic name for a set of methods
that are all based on having evaluators inspect a user interface”. [NIE95]

Commonly for usability inspections 3-5 people are asked about the usability of
the application. This can be done by using the application itself, or by showing
those people printed screenshots of the application. If the screenshot method is
applied, it’s important to let the testers use their fingertips as a pointing device.
For example they should really press on the button symbol, when they want to
press the button, which is shown on the printout.

For the usability inspection of the ProCalc tool, three people were used for the
tests. All of them are employees at Siemens but they have different backgrounds:
User 1 works for one year at Siemens and is primary a C/C++ developer for power
systems. User 2 also works for power systems, but he also has to do a lot of man-
agement tasks. User 3 is a web developer for Rich Internet Applications. These
three users were selected because of their different working areas but they all three
users share the interest in well designed and easy-to-use applications.

 A set of 30 printouts with several states of the application was shown to them.
Also the users were asked 16 questions. During the test, a small story was ex-
plained to describe what the users should do. A protocol has been made for all de-
cisions the users made and all questions, which were asked.

Before the inspection started, the purpose of the application was declared and
what the application’s goal was. This was done without showing the first screen-
shot to let the user think about what he may expect. The process of using finger-
tips as pointer was described and that staying above elements would cause the in-
terviewer to speak the tooltip, which would have been shown on the screen, if the
application were used directly.

Together with Siemens’ Support Center for usability sixteen questions elabo-
rated for the usability inspection. The questions were asked by the interviewer di-

102

rectly and sometimes the interviewer asked the users, what they might do during a
certain state of the application and the users should explain in detail the purpose of
the current screen.

The goal of the usability inspection was to find out the main issues of the user
interface of the ProCalc application for a later improvement of the tool.

Results of the usability inspection

For the detailed result of the usability inspection only the most important ques-
tions and reactions are described here. The following table shows at first a descrip-
tion of the screen and the question and then shows the reactions / answers of the
currently user. After the table, a summary is given, what the purpose of the appli-
cation was and which things were recognized correctly and where room for im-
provement could be.

Screen 1: Entry screen of the application, “General Project Data”

Figure 32: Usability inspection: Screen 1, "General Project Data"

Question: What do you see?
User 1 User found:

103

• All input fields for the general project data
• Logged in user and his department
• Menu on the left
User didn’t find:
• Language select box
Additional comments: none

User 2 User found:
• All input fields for the general project data
• Logged in user and his department
• Menu on the left
• Language select box
User didn’t find: -
Additional comments:
• Input field for currency should be a drop-down list instead of a free

text input field
User 3 User found:

• All input fields for the general project data
• Menu on the left
• Language select box
User didn’t find:
• Logged in user and department
Additional comments: none

Table 6: Usability inspection - Part 1

In the first screen, it was necessary for the user to find: the menu, the language
select box, the information about the currently active user, and the data input
fields for the general project data. One user didn’t find the language selection box
and one user didn’t find the logged in user.

In general, the logged in user is a little bit odd to recognize, because the name
was not specific to the interviewed person, so it may be difficult to identify the
foreign name. For later usability inspections, the user name should match the test
user’s name.

104

Screen 2: “Working packages” with empty list of working packages, no input field
was prefilled.

Figure 33: Usability inspection: Screen 2, “Working Packages”

Questions:
1. What are the buttons for?
2. What is the color selection for?
3. How can a new working package named “Meeting” with color “pink” be

created?
User 1 1. User understood buttons correctly

2. After some thinking, user proposed that the colors might reflect cer-
tain departments or priority of the working packages.

3. User performed steps for creating a new working package correctly.
User 2 1. User did not understand buttons correctly. Didn’t understand button

“New”, thought “Save” would act as new.
2. User thought, colors might be used for grouping working packages.
3. User performed steps for creating a new working package correctly.

User 3 1. User did not understand buttons correctly. Didn’t understand button
“New”, thought “Save” would act as new.

2. Didn’t understand color attribute, would click on “Help” to obtain

105

information.
3. User performed steps for creating a new working package correctly.

Table 7: Usability inspection - Part 2

The buttons were mainly used for eye-candy only and because sometimes full-
sized buttons didn’t fit into the designated layout area because they were too large.
Obviously users can’t really interpret what these icons are for and therefore stan-
dard buttons should replace the icons again.

The color attribute in the working packages is used in the entire application.
Every cost entry, which has an assigned working package, will always be dis-
played in this color. So users can easily find elements, which are grouped together.
Because the users didn’t understand the purpose of this color-coding, one has to
think about removing this feature or describe the purpose in a text note next to the
input fields.

There are two options for improvement of the application. Either the use of
colors for working packages will be removed completely, because users don’t un-
derstand them. Or their use will be explained in details, so that users know what
they are for and they can use them correctly.

Screen 4: “Cost distribution” with empty list of cost entries. All input fields are dis-
abled.
Screen 5 with active input fields, initial object in entry list with yellow background.

106

Figure 34: Usability inspection: Screen 4, "Cost distribution (empty)"

Figure 35: Usability inspection: Screen 5, "Cost distribution - select working

package"

Questions:
1. How would you create a new Personnel Cost Entry?

107

2. Do you understand the buttons?
3. Why does the element in the list (Screen 5) have a yellow background?

User 1 1. The user clicked on the “New” icon, and then followed the correct
sequence for adding a new personnel cost entry.

2. The user understood the icons, after the tooltip message was men-
tioned.

3. The user thinks, that’s because it’s in edit mode currently.
User 2 1. The user clicked on the “New” icon, and then followed the correct

sequence for adding a new personnel cost entry.
2. The user did not understand the reset button and requested an ex-

planation for it.
3. The user thinks, that’s because it’s in edit mode currently.

User 3 1. The user clicked on the “New” icon, and then followed the correct
sequence for adding a new personnel cost entry.

2. The user thinks that the “Copy” button is for “Show element”.
3. The user thinks, that’s because it’s in edit mode currently.

Table 8: Usability inspection - Part 3

As already mentioned above, the buttons are not as clear to understand, as they
should be. And also the colors should be described in a better way already in the
Working Package setup.

Screen 16: “Cost distribution” – Overview. All elements are entered; a list with
15 elements (mixed Personnel-, Material-, and Ancillary Costs) is shown.

108

Figure 36: Usability inspection: Screen 16, "Cost distribution (full)"

Questions:
1. Why are the elements shown in different colors?
2. How many elements have been entered? What’s the overall sum of costs?

(The user should recognize the footer with aggregated information)
3. How can you sort the elements, so that the most expensive element (most

expensive unit price) is on top?
4. How would you act to only show entries from the working packages “Ar-

chitecture” and “Implementation”?
5. How would you act to show only Material Costs?

User 1 1. User did recognize that colors reflect the working packages.
2. The user found the footer and named the correct number of ele-

ments and the correct sum.
3. The user clicked on the header element “Unit price”. The inter-

viewer told him, that now the cheapest element is on top. The user
clicked again on the header element “Unit price”.

4. The user clicked on the “Filter Working Packages” button and se-
lected all non-matching Working Packages in the new window and
clicked on “Filter”.

109

5. The user deselected the checkboxes “Personnel Services” and “An-
cillary Costs”.

User 2 1. User did recognize that colors reflect the working packages.
2. The user found the footer and named the correct number of ele-

ments and the correct sum.
3. The user clicked on the header element “Unit price”. The inter-

viewer told him, that now the cheapest element is on top. The user
clicked again on the header element “Unit price”.

4. The user clicked on the “Filter Working Packages” button and se-
lected all non-matching Working Packages in the new window and
clicked on “Filter”.

5. The user deselected the checkboxes “Personnel Services” and “An-
cillary Costs”.

Additional Comments:
• The user missed filtering methods to filter by Fiscal Year.
• The user lacks arrows next to the headers, when sorting was active.
• The user missed toggle-buttons for select/deselect all in the filtering

windows.
• The user criticized that the data entry fields are not inactive when

filtering is active; especially the data input field for “Ancillary
Costs” was active, when the filter defined to show only Material
Costs.

• The user proposed to re-label the “Reset Filter” button as “Clear
Filter”

User 3 1. User did recognize that colors reflect the working packages.
2. The user found the footer and named the correct number of ele-

ments and the correct sum.
3. The user clicked on the header element “Unit price”. The inter-

viewer told him, that now the cheapest element is on top. The user
clicked again on the header element “Unit price”.

4. The user clicked on the “Filter Working Packages” button and se-
lected all non-matching Working Packages in the new window and
clicked on “Filter”.

110

5. The user deselected the checkboxes “Personnel Services” and “An-
cillary Costs”.

Table 9: Usability inspection - Part 4

In general the users were satisfied with the current screen and they found in-
stantly all of the questioned elements and values. Some minor tweaks can be made
for the overall layout, but this is handled in the last question below.

Overall discussion.
Questions:

1. Did you like the colors (for Working Package coloring)?
2. Are you satisfied with the menu itself and its order?
3. Do you miss anything, or is something there you didn’t expect?
4. How would you switch the language of the user interface?
5. What does the term “Search” mean in the Cost distribution window?

Would the term “Filter” be more accurate?
6. Do you have any other things you want to mention?

User 1 1. The user understood the meaning of the colors but he would choose
different ones.

2. The user liked the menu and its order.
3. The user didn’t miss anything and didn’t find anything he didn’t ex-

pect.
4. The user would use the language selector on the top right corner of

the screen.
5. The user thinks that with the search function he can search for

“where / when / Working Packages / Description” within the Cost
entry list. He likes the term “Search” more than “Filter”.

6. The users didn’t like the “Reset” button in the Cost entry dialogue.
The button was not clear in its functionality.

User 2 1. The user understood the meaning of the colors but he would rather
prefer not to use colors and have alternating row colors in white and
gray.

2. The user liked the menu and its order.
3. The user didn’t miss anything and didn’t find anything he didn’t ex-

111

pect.
4. The user would use the language selector on the top right corner of

the screen.
5. The user didn’t understand what he could search for. For filtering he

would rather user the term “Free / Custom Filter” and the position
of the filter box should be more prominent next to the other filters.

6. The user had several points he wanted to discuss:
– He would like to have the cost entry list’s header and footer to

be more integrated into the list itself, e.g. by a border, so users
can identify better that these things belong together.

– The sum and number of elements label should be bigger to be
found at first sight.

– In the Working package view the user would rather place the
input fields on the left and the list with working packages on
the right. He thinks that it would be more natural to work “from
left to right”. He also would add a bigger description field for
the working package, because “users would enter more detailed
descriptions, if there’s enough room. If the field is very limited,
they only write very short descriptions”.

– The user expected to see overall sums for working packages al-
ready in the working packages view and the possibility to
switch directly to editing mode from there.

– In the cost distribution view the user also would change the or-
der of the panels. He would event go that far to add a popup
window for the creation and editing of entries so there’s more
space for the overview of existing entries.

– He would like to have sorting possibilities for the fiscal year.
– He would also increase the “description” field for cost entries,

so users can input more detailed descriptions for the cost en-
tries.

– The user would like to have an additional field “comment” for
cost entries, where project leaders can add additional informa-
tion, why the entered e.g. this very number of working hours or
they could enter, why they chose the selected rate according to

112

current currency exchange ratio.
– The user didn’t like the icons at all, he’d rather prefer plain and

easy-to-understand buttons.
User 3 1. The user understood the meaning of the colors and he mentioned

that the colors are user-selectable so there’s no problem to choose
no color (white).

2. The user liked the menu and its order.
3. The user didn’t miss anything and didn’t find anything he didn’t ex-

pect.
4. The user would use the language selector on the top right corner of

the screen.
5. The user understood the meaning of the search function. He likes

the term “Search” more than “Filter”.
6. The user had several points he wanted to discuss:

– The user requested a tighter integration of the footer to the cost
entry list, e.g. by a border.

– The user mentioned that the descriptive texts for input fields
are not always understandable at first sight.

– The user liked the tooltips for so many elements.
– The user didn’t really like the icons. In his mind one needs to

get used to them, but with their tooltips they are ok. But the
tooltips are very important to understand their meaning.

Table 10: Usability inspection - Part 5

Mainly User 2 described flaws and usability problems in the application. To act
“from left-to-right” is for sure a good idea and should be tested with different us-
ers. The idea for using popup windows for data entry should be discussed very
carefully. Opening a popup window may hide the content below and the user can’t
see the already entered values. But on the other hand a dedicated popup window
would allow a more detailed and specific data input view and users may have ad-
ditional controls for entering data.

The common question for a tighter integration of header and footer in the cost
entry overview is easy to accomplish and in fact a good idea.

The users honored the idea of many tooltips because they helped to understand
the purpose of some form elements. However the tooltips were indispensable for

113

the use of the icons and that’s not great usability. The icons in general should be
revised or exchanged by common buttons.

The overall discussion with the users revealed that they were more than satis-

fied with the usability of the application. Of course they found some minor tweaks
but compared to the “old” version of the project calculation tool (which was made
in Microsoft Excel), it’s a huge step forward and helps the project leaders to calcu-
late their project costs with a better overview and easier to understand.

114

115

Conclusion

During the development of the project calculation tool and during writing this
diploma thesis, several remarkable things were detected.

To cope up with today’s environments’ and markets’ needs, it’s important to
keep some things in mind: create stunning websites which are able to gain a high
adoption rate using easy-to-use interfaces and be fast on the market. These two
goals can be achieved, when developers and managers are able to use the right
technology and software development process.

On one hand Agile Methods are commonly used in semi-large projects for a
transparent development process and a reduced time-to-market. On the other hand
and described in this thesis, Agile Methods are not the sole answer in product de-
velopment and Agile Methods are not entirely scalable to small projects. Often
rapid prototyping has to be done without strict rules and exactly defined develop-
ment processes.

Nowadays most web-applications are plain HTML based. In the emerging need
of business applications with rich datasets and high interactivity new technologies
have to be adapted to satisfy users and customers. These so-called Rich Internet
Applications rely on modern technology platforms and frameworks such as Mi-
crosoft Silverlight or Adobe’s Flash Platform. Allowing users to work locally with
data without permanent server roundtrips and server validation will result in more
productivity and therefore in better results, because users have more time to think
about the values they are about to enter.

Finally Rich Internet Applications have already started are going to be the up-
coming standard for business applications, because they can visualize complex
data into reports and react to data changes immediately. Adobe’s Flex and AIR
framework even allow taking the data offline, working with them on the road and
synchronizing data, when one’s back online. This is a great method to improve the
workflow and to optimize the time, e.g. when someone is on a business travel.

Using these kinds of technologies is important for all developers to keep up
with tomorrow’s needs. – And finally: It’s great fun :-)

116

117

Table of Figures

Figure 1: Structure of a SOAP Message..23
Figure 2: Difference between client/server based web applications and Rich

Internet Applications (top: client/server based, bottom: RIA)...........................24
Figure 3: Evolution of Rich Internet Applications ..26
Figure 4: Phases of the waterfall model ..30
Figure 5: Rational Unified Process..32
Figure 6: Sprint Burndown chart ...40
Figure 7: Scrum Flow..43
Figure 8: Basic use case for the ProCalc application; describes the main

functionality of the ProCalc tool ...71
Figure 9: Generalization of use case "Enter Cost Distribution"71
Figure 10: Use case "Enter Personnel Costs" ..72
Figure 11: Use case "Edit Personnel Cost"..74
Figure 12: Activity Diagram "Add/Edit Personnel Cost"..76
Figure 13: ProCalc Screen: General Project Data (some values are already entered,

overview stats are displayed)...78
Figure 14: ProCalc Screen: Menu Working Packages...79
Figure 15: ProCalc Screen: Working Packages entered, Color coding79
Figure 16: ProCalc Screen: Cost distribution editor (empty)80
Figure 17: ProCalc Screen: Add Cost Entry "Personnel Cost", Selection of

Working Package...80
Figure 18: ProCalc Screen: Based on the selection of fiscal year and country, the

drop down box for cost group gets populated with suitable values81
Figure 19: ProCalc Screen: Different Working Packages result in different color-

coding in the list of all Cost Entries...81
Figure 20: ProCalc Screen: Creation of a new Partner Company82
Figure 21: ProCalc Screen: Creation of Hours-per-Manday constraints for a given

set of fiscal year, country and working package..83
Figure 22: ProCalc Screen: Filter by Working Package..84
Figure 23: ProCalc Screen: Travel Cost entry, Alternative 185

118

Figure 24: ProCalc Screen: Travel Cost entry, Alternative 2 86
Figure 25: ProCalc Screen: Travel Cost entry, Alternative 2, international

resources.. 86
Figure 26: ProCalc Screen: Travel Cost distribution matrix 87
Figure 27: ProCalc Screen: List of entered risks ... 88
Figure 28: ProCalc Screen: Window for adding a Risk item 88
Figure 29: High-level overview of the ProCalc web application 94
Figure 30: Cairngorm Micro Architecture Overview.. 97
Figure 31: Example application: Contact Manager ... 99
Figure 32: Usability inspection: Screen 1, "General Project Data" 102
Figure 33: Usability inspection: Screen 2, “Working Packages” 104
Figure 34: Usability inspection: Screen 4, "Cost distribution (empty)" 106
Figure 35: Usability inspection: Screen 5, "Cost distribution - select working

package" .. 106
Figure 36: Usability inspection: Screen 16, "Cost distribution (full)"....................... 108

119

Bibliography

Books:

[NEW04] Eric Newcomer, Greg Lomow: Understanding SOA with Web Ser-
vices, Addison Wesley, 2004

[SHO08] James Shore, Shane Warden: The Art of Agile Development,
O’Reilly, 2008

[THO06] Dave Thomas, David Heinemeier Hansson: Agile Web Development
with Rails, Second Edition, Pragmatic Bookshelf, 2006

[GAM95] Erich Gamma et al.: Design Patterns – Elements of Reusable Object-
Oriented Software, Addison Wesley, 1995, 34th printing, 2007

[HRU04] Peter Hruschka et al.: Agility kompakt, Spektrum Akademischer Ver-
lag, 2004

[MAR08] Tom DeMarco et al.: Adrenaline Junkies and Template Zombies –
Understanding Patterns of Project Behavior, Dorset House, 2008

[LOT07] Joey Lott, Danny Patterson: Advanced ActionScript 3 with Design
Patterns, Adobe Press, 2007

[ROY70] Winston Royce: Managing the Development of Large Software Sys-
tems: Concepts and Techniques, Proc. IEEE Westcon, 1970

[HIT03] Martin Hitz, Gerti Kappel: UMLWork, dpunkt.verlag, 2003
[NIE93] Jakob Nielsen: Usability Engineering, Academic Press Inc, 1993

Papers, Journals & Presentations

[RIE08] Stefan Ried, Ph.D. et al.: Ajax Disappoints Power Users Looking for
Web 2.0-Style Business Apps, Forrester Research, Inc., 2008

[PUS08] Frank Puscher: Usability + Webdesign, Internet World Business
Guid, 2008

120

[DIM05] Friedrich Dimmel: Service Oriented Architectures & Rich Internet
Applications, Bachelor Thesis, University of Technology, Vienna, 2005

[ÖHM05] Peter Öhmans: The Rational Unified Process, Chalmers University
of Technology, Sweden, 2005

[KRU01] Philippe Kruchten: What is the Rational Unified Process, IBM De-
veloper Works, 2001

[APP08] Apple Inc.: Apple Human Interface Guidelines, 1992, 2001-2003,
2008

[KRO07] Kroneder Christoph et al., Agile Methods for SEM, 2007

Videos

• Ken Shwaber in Scrum et al.
http://video.google.com/videoplay?docid=2531954797594836634
retrieved on: April 16th, 2008

• Jeff Sutherland in Scrum Tuning: Lessons learned from Scrum implementation
at Google
http://video.google.com/videoplay?docid=8795214308797356840
retrieved on: April 16th, 2008

• Several Cairngorm introduction videos by David Tucker
http://www.davidtucker.net/2008/04/01/cairngorm-videos-available-as-flv-
downloads
retrieved on: May 20th, 2008

Web Pages

• [HOW01-1] Forrester Research - X Internet, Carl Howe et al., 2001
http://www.forrester.com/ER/Research/Report/0,1338,11282,00.html
retrieved on: April 16th, 2008

• [HOW01-2] The X Internet by Carl D. Howe with George F. Colony, Bill
Doyle, Christopher Voce, Rebecca Shuman - Forrester Research
http://www.forrester.com/ER/Marketing/1,1503,214,FF.html
retrieved on: April 16th, 2008

http://video.google.com/videoplay?docid=2531954797594836634
http://video.google.com/videoplay?docid=8795214308797356840
http://www.davidtucker.net/2008/04/01/cairngorm-videos-available-as-flv-downloads
http://www.davidtucker.net/2008/04/01/cairngorm-videos-available-as-flv-downloads
http://www.forrester.com/ER/Research/Report/0,1338,11282,00.html
http://www.forrester.com/ER/Marketing/1,1503,214,FF.html

121

• [OUT] Outsmart / Our Technology - Rich Internet Applications
http://www.getoutsmart.com/rich-internet-applications.htm
retrieved on: April 16th, 2008

• [IDC03] IDC: Rich Internet Applications, 2003
http://www.adobe.com/platform/whitepapers/idc_impact_of_rias.pdf
retrieved on: April 16th, 2008

• [SZA07] Scrum Alliance - Glossary of Scrum Terms, Victor Szalvay, 2007
http://www.scrumalliance.org/articles/39-glossary-of-scrum-terms
retrieved on May 9th, 2008

• [ADO08] Flash Player version penetration
http://www.adobe.com/products/player_census/flashplayer/version_penetration
.html
retrieved on: August 7th, 2008

• [NIE] Heuristic Evaluation/ How-To Conduct a Heuristic Evaluation
http://www.useit.com/papers/heuristic/heuristic_evaluation.html
retrieved on: July 16th, 2008

• [NIE95] Summary of Usability Inspection Methods, Jakob Nielsen
http://www.useit.com/papers/heuristic/inspection_summary.html
retrieved on: September 17th, 2008

• [NIE00] Why you only need to test with 5 users, Jakob Nielsen
http://www.useit.com/alertbox/20000319.html
retrieved on: October 8th, 2008

• [NIE05] Heuristics for User Interface Design
http://www.useit.com/papers/heuristic/heuristic_list.html
retrieved on: July 16th, 2008

• [EVE00] Rational Unified Process
http://everything2.com/e2node/Rational%2520Unified%2520Process
retrieved on: August 6th, 2008

• [W3C] W3C Consortium / Web Services
http://www.w3.org/2002/ws/
retrieved on: August 28th, 2008

• [SOAP] W3C Consortium / SOAP
http://www.w3.org/TR/soap/
retrieved on: October 8th, 2008

http://www.getoutsmart.com/rich-internet-applications.htm
http://www.adobe.com/platform/whitepapers/idc_impact_of_rias.pdf
http://www.scrumalliance.org/articles/39-glossary-of-scrum-terms
http://www.adobe.com/products/player_census/flashplayer/version_penetration.html
http://www.adobe.com/products/player_census/flashplayer/version_penetration.html
http://www.useit.com/papers/heuristic/heuristic_evaluation.html
http://www.useit.com/papers/heuristic/inspection_summary.html
http://www.useit.com/alertbox/20000319.html
http://www.useit.com/papers/heuristic/heuristic_list.html
http://everything2.com/e2node/Rational%20Unified%20Process
http://www.w3.org/TR/soap/

122

• [WSDL] W3C Consortium / WSDL
http://www.w3.org/TR/wsdl
retrieved on: October 8th, 2008

• [ALL02] Jeremy Allaire – Macromedia Flash MX – Next generation rich cli-
ent, 2002
http://www.adobe.com/devnet/flash/whitepapers/richclient.pdf
retrieved on: October 8th, 2008

• [SHN] Ben Shneiderman – Eight Golden Rules of Interface Design
http://faculty.washington.edu/jtenenbg/courses/360/f04/sessions/schneiderman
GoldenRules.html
retrieved on: October 8th, 2008

• [SEM] Siemens Software Engineering Methods
http://www.pse.siemens.at/apps/sis/ge/pseinternet.nsf/0/PK1A6844054A7E23F
2C12569EE003A1A93/$FILE/QM_folder_deutsch.pdf
retrieved on: October 8th, 2008

• [CGM] Cairngorm Micro Architecture
http://opensource.adobe.com/wiki/display/cairngorm/Cairngorm
retrieved on: October 8th, 2008

http://www.w3.org/TR/wsdl
http://www.adobe.com/devnet/flash/whitepapers/richclient.pdf
http://faculty.washington.edu/jtenenbg/courses/360/f04/sessions/schneidermanGoldenRules.html
http://faculty.washington.edu/jtenenbg/courses/360/f04/sessions/schneidermanGoldenRules.html
http://www.pse.siemens.at/apps/sis/ge/pseinternet.nsf/0/PK1A6844054A7E23F2C12569EE003A1A93/$FILE/QM_folder_deutsch.pdf
http://www.pse.siemens.at/apps/sis/ge/pseinternet.nsf/0/PK1A6844054A7E23F2C12569EE003A1A93/$FILE/QM_folder_deutsch.pdf
http://opensource.adobe.com/wiki/display/cairngorm/Cairngorm

